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As the search for fabrication techniques towards the production of large area defect free three-

dimensional photonic crystals continues, holographic lithography presents itself as a possible 

solution.  In this thesis, a simplified method that is free of complex optical setups is 

demonstrated.  Within the core of the method presented lies a readily available optical 

component, a phase grating that by design presents a region of interference available for 

lithographic processing.   The phase grating exhibiting a one-dimensional periodic arrangement 

designed to diffract into three substantial orders necessitates two exposures after which a three-

dimensional periodic arrangement is realized.  The negative tone photo resist, SU-8 utilized to 

record the designed intensity distribution proves itself as a viable intermediary towards high 

dielectric contrast structures. 

 

The previously established large bandgap photonic crystals present fabrication challenges 

and thus approximations to these structures have been proposed.  The specific method employed 

opens the door to only one of the previously established champion photonic crystals but 

nevertheless the most sought after diamond structure predicted to exhibit one of the largest 

possible band gaps.  The woodpile structure possessing some of the qualities of the diamond 
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lattice is proven to be an adequate practical approximation and once properly designed exhibit 

large band gaps.  The specific technique employed permits the exploration of the 11 FCC space 

groups along with the FCT and Tetragonal space groups. 

 

The fascination that these structures have provoked is fueled by the vast predicted 

applications encompassing nearly all known scientific disciplines.  One does not have to venture 

far to realize the potential held for the telecommunication industry such as dense wavelength 

multiplexers, high efficiency lasers, lasers of previously unavailable wavelengths, super 

continuum sources, flat lenses, superprisms, lossless waveguides, and resonant cavities to 

mention a few.  Developments of these devices would progress the advancement of technologies 

such as optical storage, drug delivery systems, and advanced imaging.  Some have even 

compared the discovery of these materials to the revolution achieved by the semiconductor 

industry with the advent of controllable electronic band gaps.  
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1.0  INTRODUCTION 

The study of electromagnetic waves in dielectric materials in a periodic arrangement began over 

a century ago.  The behavior of electromagnetic waves in these peculiar materials was first 

examined by Lord Rayleigh in 1887 in connection with the strange reflective properties of a 

certain crystalline mineral that has periodic planes at which twinning occur.1  He concluded that 

these structures exhibit a narrow range of frequencies prohibiting the propagation of 

electromagnetic radiation and that this gap is dependent on the angle at which the light beams 

entered the media.  The varying periodicity experienced by radiation impinging at non-

orthogonal incidence lead to his observation of reflected colors highly dependent on this angle.  

A modern examination of these structures groups them into the familiar 1D photonic prystals 

along with their unique properties.   

 

Following his work over the next century, considerable effort has been given to the study 

of multilayer films and has been put to use in many applications ranging from antireflection 

coatings to enhancing the efficiency of LEDs to highly reflective mirrors in laser cavities 

(VCSEL).  It was not until 1987 when S. John and E. Yablonovitch, by their merging of 

electromagnetism and solid state physics, shed light on the concept of omnidirectional band gaps 

in two and three dimensions.2,3  These novel arrangements generated great interest and 

henceforth many developments have been made towards the fabrication and application of these 
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materials, later termed “photonic crystals.”  Due to the difficulty of fabrication in the optical 

regime, early works were constrained to theoretical studies and structures in the microwave 

regime.  In 1996, T. Krauss demonstrated the first two-dimensional photonic crystal at near-

infrared wavelengths by borrowing fabrication methods used in the semiconductor industry.4  

Despite the success of these developments, the first two-dimensional photonic crystal that found 

commercial interest was in the form of photonic crystal fiber, developed by P. Russell in 1998.  

The well established fabrication methods in the semiconductor industry expedited the 

developments of two-dimensional photonic crystals however this was not the case for the three-

dimensional counterpart.  The lack of available techniques to rely on led to slow progression in 

developments of three-dimensional crystal and an attempt was made by borrowing existing 

methods available in the semiconductor industry along with some clever thinking which led to 

the layer-by-layer fabricated woodpile structure.5,6   

The exhaustion of the available techniques and the difficulty that accompanied them led 

to the advancement of new and creative processes encompassing colloidal self-assembly7, 

multiphoton direct laser writing8, and multibeam holographic lithography9-16.  Among the 

available techniques towards the fabrication of three-dimensional photonic crystals, holographic 

lithography has attracted the most attention for its inherent flexibility.  Although its employment 

produces intermediary templates by the use of infiltration and inversion techniques,17 these can 

be converted into high dielectric contrast structures.  Traditionally, multi beam interference 

lithography was realized by a large number of bulk optical components, such as mirrors, beam 

splitters, and lenses.10,11  These optical setups inherit many degrees of freedom demanding 

precision in alignment and are susceptible to thermal variations and mechanical vibrations.  

Recently, a number of groups have demonstrated the construction of multi beam interference 
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using single deflective or diffractive optical elements12-15 along with lithography based on 

multiple diffractive elements on one glass mask12 and a single flat top prism.13  By employing 

two orthogonally aligned phase masks, photonic crystals with woodpile structures have been 

recently demonstrated through one or two laser exposures.14-16  Continuous attempts at reducing 

the components required either by utilizing more complex elements or by the merging of 

multiple elements into single components eased the battle with alignment stemming from 

thermal variations and mechanical vibrations and phase matching requirements of multiple 

overlapping beams.  These advancements are not free from the constrictions that accompany 

them as these optical setups possessing reduced degrees of freedom are also limited to a half-

space.  That is, one side is used for the generation of the interference and the other is for the 

recording of the interference, thus resulting in elongation along the optic axis accompanied by 

reduced crystal symmetry and band gaps.  The work presented here demonstrates the feasibility 

of producing large area defect free photonic crystal templates using diffractive optical elements 

as a replacement to bulk optical setups along with an attempt to regain lost crystal symmetry due 

to elongation. 
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2.0  BACKGROUND INFORMATION 

2.1 PBG THEORY AND CHARACTERISTICS 

Photonic crystals, structures composed of alternating high and low index of refraction, generally 

but not limited to dielectrics, arranged in some periodic scheme are theorized and have been 

demonstrated to exhibit unique characteristics that present a newfound control over 

electromagnetic radiation.  Analogous to its electronic counterpart, atoms or molecules arranged 

in a repeating scheme present a periodic potential to a propagating electron.  For electrons, the 

material and the geometric arrangement directly affect the conduction properties of the crystal.  

Electrons traversing conducting crystals without scattering posed a problem that the physics of 

the era was not equipped to handle, but this peculiar behavior was explained by the advent of the 

theory of quantum mechanics.  This new physics treated the electrons as waves, and waves that 

met a specific criterion could traverse through a periodic potential without scattering; conversely, 

the structure could exhibit an energy gap that prohibits the propagation of these waves in a range 

of frequencies.  Photonic crystals in which the constituents are replaced by macroscopic media 

with differing dielectric contrast and the periodic potential is replaced by a periodic dielectric 

function can present many of the same phenomena to photons as semiconductors do to electrons. 
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These novel artificial materials can provide exact control over the propagation of 

electromagnetic radiation.   Once designed to fulfill a certain dielectric contrast requirement, 

they can prohibit the propagation of light in a range of frequencies along certain direction or all 

directions.  Forbidden gaps in Photonic crystals can be either omnidirectional or partial, 

encompassing all possible directions of propagation or just a subset of wavevectors.  Regardless 

of the span of the gap, the origin of the opening can be understood by examining a one-

dimensional periodic system.  A slab of dielectric with a uniform dielectric constant has plane 

wave eigensolutions ω(k)=ck referred to as the “light cone.”  This system is a special case of 

periodic structures where period of repetition “a” approaches zero yielding the unbounded 

dispersion relation.  Labeling the states in terms of Bloch envelope functions and wavevectors 

for some a>0, reveals the degeneracy inherent in this system.  The wavevectors, |k|>π/a are 

folded into the first Brillouin zone (dashed line in figure 1(a)), the k=- π/a mode lies at an 

equivalent wavevector to the π/a mode with the same frequency and so on. 

 
 
   

 
 
 

Figure 1. Dispersion relation example, (a) band diagram of a uniform slab, (b) band diagram of a 1D periodic 
structure. 
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A direct way of observing the origin of the opening of forbidden gaps is accomplished by 

decomposing the wave solutions into linear combinations of sines and cosines and disturbing the 

uniform dielectric function with a periodic component whether the disturbance is sinusoidal  

ε(x)=1+Δcos(2πx/a),  or some other oscillatory function. 

 
 
 

 
 
 

Figure 2. Band opening demonstration by solution decoupling 
 
The presence of an oscillating dielectric disturbance breaks some of the previously 

established degeneracy by forcing the cosine solutions to occupy higher ε regions and the sine 

solutions to lower ε regions.  This phase shifting between the two solutions is directly 

responsible for the opening of forbidden gaps.  Applying perturbation theory under the constraint 

of small variation shows the bandgap as a function of mid-gap frequency to be Δω/ω≈Δ/2. 23 

From this it follows that any periodic modulation of the dielectric function results in the 

formation of a forbidden gap while a small modulation results in a small gap and vice versa. 

 

The formations of complete bandgaps in higher dimensions require more precise 

arrangements.  Along each path taken there will be an opening of a forbidden gap predicted by 

the 1D argument.  The formation of a global gap is accomplished by ensuring that all the 1D 
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gaps overlap in frequency and that each one is sufficiently large.  Along these one-dimensional 

paths the mid-gap frequency, as it inversely relates to the periodicity ∼cπ/a (ε) ½, leads to the 

symmetry requirement of similar periodicities in all directions.  Henceforth, the triangular lattice 

in two-dimensions and the face centered cubic lattice (FCC) in three-dimension posses the 

largest gaps.  Examining how the fields behave at the boundaries reveals yet another criterion.  

At a dielectric boundary, whether the electric field is parallel or perpendicular, the energy density 

ε|E|2 will be discontinuous across the interface stemming from the boundary conditions that E|| 

and εE⊥ are continuous.  The discontinuity of the energy density gives rise to difficulties in 

confinement of the perpendicular electric field lines in the higher ε regions and the parallel field 

lines in lower ε regions.  Factoring in this latter requirement, the designed structure should be 

composed of thin continuous channels running in all directions, facilitating strong confinement 

of lower bands and the forcing out of the higher bands, as these thin shapes cannot support 

multiple modes.18 

 

The wave equation describing electromagnetic radiation in dielectrics is free of 

parameters constricting the solutions to specific length scales, under the assumption of 

macroscopic media, rendering the wave equations invariant of scale.  This is a very useful 

property as difficult to manufacture structures at the optical lengths could be manufactured at 

larger, more easily attainable scales and the measured characteristics with some linear 

adjustments describe the structures at all length scales.  This leads to simple relationships 

between electromagnetic problems that differ only by the linear scaling of distances and 

amplitudes.  If the dielectric function is modified by linearly adjusting the spacing ε(r/p), where r 

represents the dielectric function’s spatial dependence and p is the scaling factor, i.e. contraction 
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or expansion.  After passing through the wave equations, the scaling adjusts the frequency 

eigensolutions by ω/p and the mode solutions by H’(r’) = H(r’/p).  Or, if multiple solutions are 

desired for the same structure at different dielectric constants, linearly scaling the permittivity 

amplitude ε(r)/p and passing it through the wave equations shows that changing the amplitude of 

the dielectric contrast has no effect on the field distributions and it simply scales the frequency 

eigensolutions by p1/2ω.18 

 

Another interesting property that does not require large dielectric contrasts, and for that 

matter even significant opening of forbidden regions, is the anomalous refraction observed at the 

interface of a photonic crystal with that of a homogenous medium.  Under certain conditions, the 

refraction angle is found to be very sensitive to changes in the incidence angle and wavelength.  

This characteristic is attributed to the anisotropy of the bands and the dispersion that 

electromagnetic radiation could experience is theorized to be orders of magnitude greater than 

that observed in conventional prisms; hence, its appropriate naming convention, “superprism.”  

Since its introduction by Kosaka et al.,19 many have demonstrated this interesting property in 

two-dimensions and later in three-dimensions.  Jesper Serbin and Min Gu recently demonstrated 

that superprism phenomena can take place in polymeric woodpile structures with an index 

contrast of 1.6 or lower, and a periodicity ratio of 2.8.21  The periodicity ratio is defined as the 

period of repetition of the structure in the stacking direction divided by the periodicity in the 

remaining directions.  The strong dispersion characteristics of photonic crystals are thought to 

significantly advance wavelength division multiplexing technologies amongst others.  Kosaka et 

al. have also demonstrated that photonic crystals can exhibit a lens like behavior found in 

conventional optics.20  They have observed that self collimation amongst other lens like behavior 
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can take place in a three-dimensional photonic crystal, behaviors that typically arise from non 

linear effects (Kerr effect causing self focusing or soliton propagation) requiring high energy 

inputs and can very easily collapse.  In photonic crystals, they are found to be independent of the 

light intensity and other requirements typically employed to prevent beam divergence or 

diffraction broadening. 

2.2 MAXWELL’S EQUATIONS IN PERIODIC STRUCTURES 

Photonic crystals, artificial structures designed primarily for the manipulation of electromagnetic 

fields, are naturally examined by the equations that describe these fields.  Four equations, 

Gauss’s law, Gauss’s law for magnetism, Faraday’s law of induction, and Ampere’s law with 

Maxwell’s correction govern all electromagnetic fields regardless of form and, therefore, 

encompass the fields in these structures. 
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Gauss’s law relates the electric charge contained within a closed surface to the surrounding 

electric field.  Gauss’s law for magnetism formulates that the total magnetic flux through a 

surface is zero; that is to say, that magnetic charges come in pairs dismissing the existence of 

magnetic monopoles.  Faraday’s law of induction coupled with Ampere’s circuit law describes 

how a changing magnetic field is always accompanied by an electric field and vice versa.  
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Maxwell’s addition of the displacement current to Ampere’s law completed the theory by adding 

changing electric fields to the mix.  Before Maxwell’s addition, it was believed that magnetic 

fields are generated only by electric currents. The original form of the displacement current 

described a polarization current in a dielectric medium and led Maxwell to derive the wave 

equation by associating this displacement current to time-varying electric fields.  A modern 

approach that replaces the original derivation and saves some cumbersome mathematics 

combines Ampere’s circuit law with Faraday’s law of induction.  The derivation begins by the 

examination of Maxwell’s equations in the Heaviside form with the following conditions.  First, 

the medium is source free and lossless, that no current exists, and that ε(r) is real.  Next, the 

medium is time-invariant such that any mode can be decomposed into a set of plane waves by 

Fourier theory.  And finally, that the permeability inside the material is constant.  Taking the curl 

of the two relations gives the following: 
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Using the cross product vector identity and the assumption that the fields are time-harmonic, the 

wave equations are obtained in the frequency domain.   
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The wave equations in differential form provide a good starting point for any method 

chosen to solve a particular system.  The two basic approaches in solving the wave equations in 

periodic media are the Finite Difference Time Domain Method (FDTD) and the Plane Wave 

Method (PWM).  Both methods with some additional work can lead to the same results, but the 

FDTD is primarily used for finding the field distributions as a function of time within a structure 

whereas the PWM leads directly to the dispersion relation.  Both heavily rely on dense 

computational data in obtaining high degrees of accuracy and, therefore, both are 

computationally intensive.  Faster methods have been developed that can drastically reduce 

computation time and data storage requirements22 but the PWM is developed and implemented 

as a starting point.  Either wave equation, whether it is a function of E or H, can be used to solve 

the system, but in practice the wave equation that is a function of H is preferred.  The H field 

dependent wave equation is already in the form of a positive definite Hermitian Eigen system; 

however, with some additional work the E field dependent equation can be cast in that form as 

well.  The depth of the complication in choosing the E field wave equation is reached when 

imposing the transversality constraint as it depends on the permittivity.  If instead the electric 

displacement field is chosen, the dependence on the permittivity of the transversality constraint is 

eliminated, but then the permittivity appears three times in the wave equation and will 

undoubtedly complicate the computation, as it is now, is in the form of a generalized 

eigensystem.  The H field dependent wave equation is already in a more pliable form and 

transversality constraint for the magnetic field is easily imposed.  The H field inside the structure 

can be written in terms of a propagating function multiplied by a function with the same 

periodicity as the structure: 
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The periodic function hk is Fourier expanded into the sum of plane waves and recombined to 

form 
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Imposing the transversality constraint which essentially states that magnetic monopoles do not exist 

gives 

0)'(

0)()(

'

'

)'(
'

=⋅+

=⋅∇=⋅∇ ∑ ⋅+

G

G

rGki
Gk

hGk

erhrH
 

The magnetic field is normal to the direction of propagation and leads directly to the separation 

of field components into their respective dimensions, 
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where (e1, e2, e3,) are unit vectors and form an orthonormal triad allowing the decomposition of 

the magnetic fields into their directional components. 
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The decomposed magnetic field can now be introduced into the wave equation, equation 2 by 

taking its curl. 
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Here, the Fourier expansion of the inverse of the permittivity is introduced, 
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The variables G’ and G’’ are the variables of the expansions of the magnetic field and the 

permittivity and are reduced by equating G=G’+G’’.  Taking the next curl, we get 
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Recombining the wave equation with the decomposed magnetic field and the applied curls, we 

get 
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The wave equation can be pushed further by dividing out similar exponential factors, subtracting 

G’’ from the exponential factors on both sides, making use of the delta function identity by 

integrating over all space, and substituting G for G’’ since it is a dummy variables. 
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From above, substituting G for G’’ and using the following identities, 
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where, the equation is multiplied by ev’ and is simplified by making use of the following vector 

identities 
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Applying the transformations, G to G’’, G’ to G and G’’ to G’, the relation will be in the form 

of23 (pg. 129) 
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A more useful form of this relation from the perspective of computation is in matrix notation.  

The (k+G) terms can be rewritten in the form of vector magnitude multiplied by the direction 

unit vectors. 
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The relation written in Eigen value form, 
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The relations arrived at are readily implemented by any computational tool such as 

Matlab and other vectorial computational aids.  The variables k and G are found by closely 

examining the structure in reciprocal space where the k vectors are the directions chosen in the 

Brillouin zone and the G vectors are the reciprocal lattice vectors.  An accurate representation of 

the inverse of the dielectric function κ is paramount and directly determines the accuracy of the 

results, but can be cumbersome to obtain.
 

2.2.1 Fourier expansion of the Permittivity 

The difficulty in solving the eigenvalues for the eigensystem lies in obtaining an accurate 

representation of the primitive cell in the Fourier domain.  Finding the analytical transform of the 

primitive cell will greatly reduce computation size and time, but an analytical transform is not 

necessary and sometimes even too difficult to obtain and in such cases one would have to rely on 

a Fast Fourier Transform (FFT) library and the problems that accompany them.  Some of these 

are aliasing and considerably larger matrices that in turn require more storage space and 

computation time and results in problems with convergence.24  Fourier theory dictates that any 

periodic signal can be reconstructed to its original form by the superposition of an infinite 

number of plane waves.  In practice a reasonable degree of accuracy can be achieved with a 



 16 

finite number of plane-waves.  The dielectric function of the structure being itself periodic is 

rewritten as a sum of plane waves. 

rerrG rrGi ∂
Ω

=)( ∫
Ω

•−)(1 εε
     (5) 

where ε is the permittivity, Gr is a Reciprocal lattice vector, and Ω is the volume of the 

elementary cell.  The primitive cell contains two elliptical cylinders displaced and rotated about 

the origin and can overlap one another.  The direct treatment of elliptical cylinders offset and 

rotated from and about the origin is cumbersome; therefore, utilizing the properties of the Fourier 

transform is ideal.  The ellipticity, the offset, and the rotation are dealt with by the use of Fourier 

transform properties tabulated by Bracewell and are termed “affine transforms.”25  Circular 

symmetry simplifies the form of the permittivity in the respective dimensions to a circular step 

function and in the remaining dimension the cylinders take the form of square waves.  
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here, the introduction of y’’ and p’’ is for the simplicity of illustration as they encompass the 

rotation and the ellipticity, and the displacement is shown by p1 and p2.  The two permittivity 

symbols, εa and εb represent the dielectric constants of the rods and the background respectively. 

The Π symbol is used to represent the step function, Rc is the radius of the rods, h is the length 

of the rods.  In cases where the step function is a function of the radius, the step function is 

considered as a circ function.  The translation vector Rp allows the permittivity function to span 

over the whole space.   

To account for the possibility of overlap, in such a case when simple addition of the two 

cylinders produces erroneous results, an operation that merges the two cylinders while retaining 
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the original heights is developed.  The union operation cannot be applied directly but 

conceptually, it describes the operation rather well.  In cases where an overlap exists and cannot 

be avoided the mathematical equivalent of the union has to be applied and its development is 

presented in Appendix A. 

 

To begin the Fourier treatment of the primitive cell, the equation of an ellipse is 

considered as a starting point.  In calculus when dealing with the integration of an ellipse, it is 

common practice to perform a change of variables that pull out the ellipticity as a multiplicand 

and integrate over the remaining unit circle. A general equation for an ellipse is 
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where, “a” is the radius of the major axes, and “b” is the radius of the minor axes, changing the 

variables x and z to x’ and z’ gives, 
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 The standard way of finding the integration factor accompanying a change of variable is by the 

use of the Jacobian, defined as26 (pg. 974) 
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For the transformation performed above to the ellipse, the integration factor is 
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The equation of the Fourier transform of the permittivity has the exponential multiplicand that 

has real space and Fourier space dimension variables which must be transformed as well. 

Replacing x,y and z with their equivalents, collecting terms, and determining the transform of the 

Fourier space vectors, we arrive at 
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The variable change has reduced the complexity of integration due to ellipticity and now a 

variable change to reduce the complexity of rotation is developed.  Because the cylinders are 

rotated about the z’-axis, only the variables representing the x’y’-plane will change, equivalent to 

performing a two-dimensional rotation.  The standard system of equations that return the new 

variables after a two-dimensional counterclockwise rotation is27, 
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Applying the rotation transformation reduces the complexity of integration by aligning the 

coordinate axes with that of the cylinder.  Substituting in the rotation equations and then solving 

for x’ and y’ necessitates solving the system of equations. 
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Following the same method one more time, the equation for x’ is found. 
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Any time a variable transformation is done the integration factor accompanying the said 

transformation needs to be found.  Using the Jacobian, the integration factor is found to be 
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As expected, the integration factor reduces to 1 since a rotation transformation will be absorbed 

by the bounds over which the function is integrated.  As before, the variables in the exponential 

term need to be modified to complete the changes.  Substituting for x’ and y’ with the newly 

found equivalents 

'')cos(''')sin('')sin('')cos( ''''''' yGyxyx GyGxGxyGyxGx ββββ +− +=⋅+⋅  

and by collecting terms and reassigning variables, we arrive at the transformed exponential term 
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The necessary transformations that simplify otherwise complex mathematics have been 

established.  This is allowed because the said transformations are linear and belong to a class of 

operations termed “affine transforms.”  The resulting relations developed in Appendix A dealing 

with the overlap are now introduced.  There, the permittivity function is written as an algebraic 

sum of its individual components, the two cylinders with a height of εa sitting in a background of 

εb.  Substituting this permittivity function into permittivity integral and braking up the integral, 

we get 
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Defining the integral of the product of C1 and C2 as the overlap integral, and using the Fourier 

transform duality, that multiplication in real-space is equivalent to convolution in the Fourier 

domain, the integral becomes 
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Separating the rest of the integrals for ease of handling, 
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Since the first integral is simply the Fourier transform of a constant, it exists in the Fourier 

domain as a delta function, thus it will only influence the coefficients at the center of the 

spectrum, i.e., all reciprocal lattice vectors of zero length.  And it simply evaluates to 
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The evaluation of the rest of the integrals requires a little more work.  The summations in the 

integrals can be dropped since y’’ and p’’ span the whole domain and these coupled with the 

translation vectors Rz and Rp, span the whole space. 
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The solutions can be decoupled into two regions when the reciprocal lattice vectors exist only at 

the origin and when they exist elsewhere.  Considering the case of the origin when Gr is zero, 
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This integral evaluates to yielding the fractional volume of the cylinder with respect to the 

volume of the space it sits in, 

Ω
=

Ω
= ∫ ∫∫

−

2

0

2

0

2

2

2 '''''''' RcabhddppdyabI
Rc

h

h

πθ
π

 

Next, the case when the reciprocal lattice vector, Gr, is other than zero is examined.  The step 

functions are removed from the integral as these are absorbed by the limits of integration. 
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The dot product in the exponential term is converted to spherical coordinates, 

( )

)cos(''''),sin(''''

)cos(''''),sin(''''

''''''''''''

θθ

φφ

GpGzGpGx

pzpx

zGzxGxippGi ee

==

==

⋅+⋅−⋅− =

 

Substituting for x’’ and z’’ and for Gx’’ and Gz’’, we get 
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and by making use of the product to some trigonometric identities, the reciprocal lattice vector G 

is rewritten as, 
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Making these substitutions in the integral, we arrive at 
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The following identities relate the area of a periodic exponential function in one period to a first 

order Bessel function, and allow simplifications in the integrals. 
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These transformations allow I2 to be rewritten and solved as 
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The evaluation of integral I3 is done much the same way as it was done for I2.  The form of the 

equation is the same, and the only changes that actually occur are the values of the translation 

and rotation.  The results obtained for the various integrals all have constants that are common 

between them and these are pulled together into a single descriptor, the fractional volume. 

Ω
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2Rcabhfr π

 

At this point, the results can be cast in either form, the direct treatment of cylinders with 

overlap or by proceeding with an alternate elementary cell that provides the same results without 

having to consider overlap.   The direct treatment that allows for overlap of the cylinders in the 

elementary cell reveals the permittivity function in Fourier space.  Examining the solutions by 

considering the reciprocal lattice vectors at zero and at other than zero leads to the final form of 

the permittivity function.  When the reciprocal lattice vectors are zero the permittivity does not 

depend on variables and its value defines the height of the spectrum at zero.  Collecting all the 

results at zero gives 
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When the reciprocal lattice vectors acquire values other than zero, the permittivity in reciprocal 

space is defined by the product of a first order Bessel function with that of a Sinc function.   
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Recalling the transformations that were performed and substituting back to Gx, Gy, and Gz 

terms, the variables are 
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The numerical subscripts for the translation p and rotation β specify the cylinder that is 

considered within the primitive cell.  The final form of the permittivity in Fourier space that 

combines the solutions in all the domains and allows the cylinders in the primitive cell to 

overlap, is 
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If an alternate primitive cell is found that does not contain overlaps of cylinders, then a 

relation describing that case can be formed by reducing the obtained results.  The adjustment 

encompasses only the removal of overlap terms for all solutions.  At Gr zero, the height of the 

spectrum at zero is reduced by removing the additional terms acquired by the overlap. 
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At reciprocal lattice vectors other than zero, the permittivity function is modified by removing 

the convolution term from the equation with overlap.  The final form of the permittivity for the 

case of non-overlapping cylinders in the Fourier domain is 
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2.3 GENERATION OF THE INTERFERENCE PATTERN 

The electromagnetic nature of light allows us to exploit its inherent periodicity to engineer a 

multitude of spatially periodic intensity distributions.  These distributions can be converted into a 

special class of new material, photonic crystals, via holographic lithography.  Manufacturing 

photonic crystals by the recording of designed interference patterns provides control over many 

degrees of freedom which can be manipulated to provide structures of different crystallographic 

classes.   Holographic lithography involves the recording of formations of spatially periodic light 

intensity distributions from the interference of two or more coherent light beams.  The electric 

field of a planar monochromatic light is mathematically described by 

)(
,),( mmm wtrki
mom eEtrE φ+−⋅⋅=     (12) 

where m is the index of the beam, k is the wave vector, w is the angular frequency, the constant 

Eo is the electric field strength, and φ is the initial phase of the beam.  The presence of multiple 

beams oriented such that they overlap in some region of space produce a new distribution, and 

this distribution is simply the vector sum of the individual components.  The intensity in the 

region of overlap of the multiple beams is proportional to the square of the resultant vector sum.  
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The mathematical description shown is a general one and it applies to all types of polarization of 

monochromatic light whether linear, circular, or elliptical.  Since the temporal component in the 

description freely propagates without any alterations, it falls out of the intensity equation due to 

the inner product with its complex conjugate. 
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Here, N is the number of planar monochromatic beams of light that overlap and the other terms 

are as described before.  For linearly polarized electromagnetic radiation, the intensity equation 

can be written in a simpler form28 
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And for the case where N is 2, the intensity equation simplifies to 
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This is the equation for a one-dimensional intensity distribution or in other words, a one-

dimensional grating with a spatial period of 

|||| 21 kkk −=∆  

As shown, the interference of two beams produces a one-dimensional periodic intensity 

variation whereas the interference of three and four beams produces two and three dimensional 

intensity variations respectively.  Since one of the many principles of engineering is to generalize 

difficult scientific developments into easily reproducible and cost effective methods, the 
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generation of the intensity variation is produced with an off the shelf phase grating (Ibsen 

Photonics).  The phase grating is designed such that it has a spatial period of 900nm and it 

diffracts into only three orders of substantial intensity, the 0th and the ±1st orders with an 

efficiency of 97.3%.  Of this intensity 62% is diffracted to the 0th order and 35.3% to the ±1st 

orders.  The electric fields of the three beams diffracted by the phase grating are mathematically 

described by 
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These three beams then interfere in the region they overlap to produce the periodic intensity 

distribution recorded by the photo resist.  The region of overlap is determined by the cross 

sectional area of the impinging beam and the angle of diffraction.   Since three beams produce a 

two-dimensional periodic intensity variation and the goal is to have a three-dimensional 

variation, the photo resist is subjected to two exposures.  The second intensity variation is just a 

modification of the first such that the resultant structure exhibits a three-dimensional variation.  

There are two methods available that modify the second set of beams to achieve a three 

dimensional intensity variation.  The initial phase components in the equations encompass this 

degree of freedom.  Since the initial phase in holographic lithography is generally arbitrary and 

will only change the starting value, it can be ignored for the first exposure but it will become 

paramount for the second exposure.  The phase components in the intensity equation of the 

second exposure can be controlled by either a physical displacement of the starting position or by 

placing a phase shifting plate in path of the beam.  Either method produces the same result which 

is a phase difference between the first and second exposures.  The total Intensity that the photo 

resist is subjected to is the sum of the two intensity distributions. 
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Written out into all of its components with the phase components replaced by displacements in 

the z direction, the relation becomes 
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A fixed wavelength laser impinging on the phase mask will emerge as three beams as 

depicted in the following diagram.  Here, the axes are arbitrarily chosen and arranged such that 

the beam propagates in the positive z direction.  The diagram depicts three k-vectors at some 

angle theta and phi in spherical coordinates.  Theta is the angle of rotation of the beams while phi 

is the angle diffraction of the laser beam inside the photo resist. 
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Figure 3. Orientation of k-vectors for light diffracted by the phase grating 
 

The angle phi is not unique amongst the diffracted beams, the central beams possess one value of 

phi and the others possess another at normal incidence.  As mentioned before, a phase grating is 

used to produce three in plane interfering beams at some angle φ.  This angle is found by using 

Snell’s law inside the photo resist and is found to be 19.8⁰ when the wavelength of the laser is 

514.5nm in free space and applies to all non-central beams.  The three beams produced by the 

phase grating have two different electric field intensities; the central or undirected beam contains 

62% and the two diffracted ones contain 35.3%.  This is the same for the second exposure as 

well.  Applying the aforementioned simplifications, a general formula that describes the intensity 

variation as a function of the angle of rotation, diffraction, and displacement is 
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Theta takes on two values, one being the angle of rotation of the first exposure, and the 

second being the angle of rotation of the second exposure.  Phi takes on one value and is the 

angle of diffraction.  As two rotation angles are demonstrated, two intensity equations are shown 

describing the respective intensity distributions.  The specific intensity distribution for the 

orthogonal exposure is kept symmetric in the xy directions to mirror the orientation of the 

structure examined later. 
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The intensity variation takes on a different form as the angle of rotation is varied.  The second 

variation demonstrated is when the rotation angle theta takes on the value of 60⁰. 
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2.3.1 Intensity Distribution Design 

Since the intensity variations are then recorded by the photo resist, the phase delay forced on the 

second set of beams has to be such that the total intensity variation is both three-dimensional and 

well interconnected.  The interconnectivity is a crucial aspect and it will determine whether the 

processed structure will support itself and remain crystalline.  The interference of the first three 

beams produces a two-dimensional intensity variation in the form of elliptical cylinders arranged 

in a triangular array.  
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Figure 4. Normalized intensity distribution depicting the interference pattern generated by the phase 
grating 

 
The diagram shows the equal energy contours of normalized intensity of 0.6 and above; 

however, energy is present in the entire region but it is of lower value than 0.6 and so for the 

purpose of illustration it is omitted.  The energy of the background is an artifact of the 

interference and is contributed to mostly by the constant terms in the overall intensity equation.  

This background energy is an important topic that will be described later.  Subsequent exposure 

places a second triangular array of cylindrical intensity variations displaced from the first by 

some distance zo such that the layers fully interconnect. 
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Figure 5. Normalized intensity distribution for two orthogonal exposures 
 

The periodicity of the constructed intensity variation is determined by examining the 

simplified intensity equation of the two sets of beams.  The periods of repetition are invariant of 

translation in the z-direction and they are found by setting the respective components to zero and 

taking the partial derivatives in the directions considered.  For the case of orthogonal exposure, 

the periodicities of the structure in the x and y directions do not differ. 
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The periodicity of the intensity variation in the z-direction is also invariant of translation and is 

found by taking the partial derivative in that direction while holding the x and y directions 

constant at any arbitrary value.  The final form of the periodicity is shown as a function of 

wavelength and angle of diffraction inside the photo resist. 
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Following the same procedure one more time reveals the periodicity of the structure 

composed of intensity variations rotated by 60 degrees from one another.  The invariance of the 

periodicity in the stacking direction to rotation is obvious as it is not a function of the angle of 

rotation. 

φ
λ

φ
λ

φ
λ

πφπφ

sin3
32

sin3
,

sin

,sin
2
3,sin

2
1

22 =+=

====

=⋅=⋅

yx

yx

yx

aaL

aa

akak

    (17)

 



 35 

The amount of phase shift forced on the second exposure by the translation of the origin 

determines whether the processed structure is well interconnected and is crystalline.  The 

required translation in the z-direction to achieve a complete and symmetric interconnectivity is 

easily obtained by examining the overlapped intensity variations and is found to be a quarter of 

the periodicity in the z-direction. 
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With this translation the layers of cylindrically confined energies will be interconnected 

with one another to form a three-dimensional variation in intensity which once processed will 

form the crystal template. Finally, an equation allowing the explorations of various contrast 

ratios as functions of the two angles is revealed. 
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2.4 CRYSTALLOGRAPHIC ANALYSIS 

The analysis of the periodic nature of the intensity variation is done through a well established 

set of tools in solid state physics.  It is established that three-dimensional crystalline structures 

can vary between 7 crystal systems and 14 Bravais lattices.29  It is important to know that how 

many of these 14 Bravais lattices the template can be cast into as some of the interference 

parameters are varied.  This information will undoubtedly simplify any further analysis and 

presents one with a clearer view of the underlying properties of any structure.  After careful 
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exploration, it is found that the structure of the template can be cast into a modified diamond 

structure with a two-atom basis.  The diamond structure with a two atom basis is generally 

referred as the zincblende structure and is a part of the cubic crystal system and it is a face 

centered Bravais lattice (FCC).  However, the template exhibits cubic symmetry only under 

certain conditions and therefore in the analysis, the periodicity in the stacking direction, z-

direction, must be allowed to vary.  For C/L=21/2 the lattice can be considered as an FCC 

primitive unit cell and at other ratios it is a face centered tetragonal (FCT) primitive unit cell.   

To cast the structure of the template into the zincblende form the structure in Cartesian 

coordinates is aligned such that the x and y axes are along the [110] and the [1-10] directions 

while the z coordinate axis remains unchanged.30  This alignment is precise for an exposure 

rotation of 90⁰; at others, the alignment has to be adjusted. 

 
 
 

 
 
 

Figure 6. Diagram depicting the two atoms in the primitive cell along the respective orientations 
 

With an orthogonal exposure, symmetric vectors that describe the structure are the FCC 

primitive vectors.  The idea is to find a basic set of vectors that after integral repetition will 

reproduce the structure without any overlap or gaps. 
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Computations in 3-dimensions over large areas are cumbersome with respect to time and 

storage requirements.  It is paramount to reduce a primitive cell to a non-repeating region 

minimizing the extent over which calculations are performed.  The continuation of the analysis 

in reciprocal space brings forth important features such as Brag planes and a minimum non-

repeating region in which computations are less cumbersome.  The transformation of any 

periodic lattice to reciprocal space is accomplished by the following three primitive vectors that 

depend only on the real space lattice vectors.29 
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This allows the conversion of the real space lattice vectors into reciprocal space, and these are 
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The k-space Wigner-Seitz primitive cell, also known as the first Brillouin zone, is the 

region in which a set of points exists that can be reached from the origin without crossing any 

Bragg planes.  The first Brillouin zone can still be computationally large.  Finding a set of points 
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within that truly minimize the volume of computation is done through symmetry operations that 

yield a region termed “the irreducible Brillouin zone.”18  The first Brillouin zone for an FCC 

crystal lattice is the body centered cubic Wigner-Seitz cell, but as the ratio of the periodicity 

varies, the geometry of the Wigner-Seitz cell also varies with this change. 

 
 
 

 
 
 

Figure 7. Evolution of the first Brillouin zone with changes in periodicity ratios 
 

As the C/L ratio varies from .707 to 5 the geometry of the first Brillouin zone spans from a BCC 

and FCC hybrid to a highly distorted FCC, or an FCT Brillouin zone.  With a C/L=21/2 ratio the 

first Brillouin zone acquires a full FCC symmetry.30  Within the first Brillouin zone, a minimum 

region exists that is truly non-repeating and is found by examining the underlying symmetry of 

the primitive unit cell.  The irreducible Brillouin zone for the case of full FCC symmetry is the 

volume region within the critical points. 
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Figure 8. First Brillouin zone for a woodpile structure with C/L=21/2 
 

For spherical atoms the unprimed critical points are sufficient to describe the irreducible 

Brillouin zone, but for the case of cylinders the additional points are required due to broken 

symmetry operations.   

 

The second case explored is when the rotation of the second exposure is at a 60⁰ angle to 

the first.  In this case the symmetric set of primitive vectors is found by examining the structure 

and the vectors for orthogonal rotation in conjunction with the new primitive cell.  Primitive 

vectors that correctly reproduce the 60⁰ structure in real space and reciprocal space are 
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The first Brillouin zone is found in much the same way as it was for the orthogonal exposure:  

the lattice points are examined in reciprocal space by identifying Bragg planes that form the 
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boundary of the structure.  The symmetry of the Brillouin zone reflects the non-orthogonal 

exposure rotation seen in Figure 9 (right). 

 
 
 

 
 
 

Figure 9. The first Brillouin zone for a 60° structure (left), with top view to show the respective angular 
distortion (right) 

2.5  SOLVING THE WAVE EQUATION 

 
The wave equation describing the interaction of electromagnetic radiation with that of periodic 

structures is derived and placed into vectorial form.  The expression in such form simplifies the 

implementation into available computational aids, for example Matlab, for solving the 

eigenvalues of a system.   
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Existing in the frequency domain, the equation depends on variables that describe the structure in 

reciprocal space. The variable k is a minimized set of reciprocal lattice vectors along the edges of 

the first Brillouin zone.  The vector set, G, consists of integral combinations of the reciprocal 

lattice vectors describing the number and location of atoms in the vicinity of the origin.  

332211 bmbmbmG ++=       (22)
 

The unit vectors ei describe the two directions and are found by examining the directions of 

(k+G).  The permittivity of the structure encompassing all the geometric details is represented by 

κ in the relation.  Having derived an analytical equation for the structure in the frequency 

domain, the arduous task of using a Fast Fourier Transform (FFT) library with its accompanying 

hurdles is avoided.  The freedom of exposure rotation allows non-orthogonality in the primitive 

cell and as a consequence, finding an accurate Fourier representation by means of FFT would 

prove to be challenging.  Along with the said difficulties that arise from non orthogonal systems, 

aliasing and other artifacts that pollute the results would accompany any FFT package.  Although 

finding the analytical transform for a primitive cell could prove to be challenging as it was for 

the current structure, at the moment it is a preferable route in comparison to the alternative. 

 
The relation describing the system is a Hermitian eigenvalue problem and can be 

implemented by numerical methods.  Just as Fourier theory dictates, any periodic signal can be 

perfectly reconstructed by an infinite number of plane waves; however, in practice reasonable 

accuracy is achieved by a finite number of them.  Since the problem exist in three-dimensions, 

considering only a small number of plane waves, n, along each direction explodes the problem 

into a N=(2n+1)3 matrix.  Needing only two dimensions, the three dimensional matrices are 

transformed into two-dimensional ones forming matrices of 2Nx2N size.  From these it follows 

that it is preferable to have a primitive cell composed of smoothly varying objects as they require 
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fewer plane waves to reproduce them with the same accuracy as would object with sharp edges.  

The primitive cell for the woodpile structure generated by the method employed in this thesis is 

elongated in the stacking direction yielding highly elliptical cylinders as atoms in the primitive 

cell.  This anti-symmetry requiring higher frequency components for accurate reproduction in the 

Fourier domain demand more plane waves.  The need for a high number of plane waves is also 

apparent upon examining the cylinders along their axes as in these dimensions they are 

represented by square waves.  Improvements that replace discontinuous functions with smoothly 

varying ones by some sort of averaging are much needed as computations in the current form 

will fast become time-consuming for standard desktop computers. 

 

Some properties of such systems described by wave equations simplify the 

implementation of components by considering only certain parts of the problem.  The operator ψ 

is a linear that is if h1 and h2 are solutions, then h1+h2 are solutions.  The operator is Hermitian, 

( f ,ψg) = (ψf , g).  The dielectric function is positive definite yielding real eigenvalues. 

 

The general scheme of implementation can be compounded into a few steps.  First, the 

reciprocal lattice vectors are calculated from which the vector set G is found for a chosen number 

of plane waves.  The three dimensional matrices describing position in the Frequency domain are 

then transformed into two-dimensional ones after which the permittivity matrix is solved.  Next, 

the predetermined k-points along which calculations are performed are input and this set is 

further expanded by linear interpolation.  Lastly, the unit vectors are found by examining the 

directions of (k+G) in the respective dimensions.  The eigenvalues are solved by Matlab’s built-

in function along with proper truncations.  The large size of the matrices returns a vast number of 
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eigenvalues; however, only the lowest order modes are of importance and thus the returned 

eigenvalues are truncated to 10 modes.  The Matlab program that solves for the dispersion 

relation is found in Appendix C. 

 

The eigenvalues returned by the current implementation are validated with published 

works30 and with MIT’s Photonic Bands Package (MPB)22.  The diamond structure composed of 

spherical atoms proved to be a viable test structure as the smoothly varying features facilitated 

small computations.  Three hundred and forty three (343) plane waves returned indiscernible 

results from that found by MPB.  However, the woodpile arrangement composed of cylindrical 

atoms poses computational difficulties on a Pentium 4 desktop computer with 2Gb of ram.  To 

test the Matlab implementation, a symmetric woodpile arrangement is picked with a C/L of 1 and 

atomic radii of C/8 oriented orthogonally. 
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Figure 10. Band structures of a woodpile arrangement with C/L=1, radii = C/8.  (a)-the band structure by 
Matlab with cylindrical atoms, (b)-by MPB with cylindrical atoms, (c)-by MPB with rectangular atoms, and (d)-

First Brillouin zone with labeled k-vectors. 
 
The plots of Figure 10 describe the dispersion relation along with the labeled k points in 

the first Brillouin zone.  The Matlab implementation produced the band diagram (a) with 3375 

plane waves reaching the limit of the said computer and consuming 8.3 hours for the 

computation.  The direct implementation of the plane wave method with parallelized computing 

capable of handing very large computations will produce very accurate results, but its 

unavailability lead to the use of MPB to supplement and perform the many computations 

required to map out the system.  While MPB is based on the plane wave method, it is 

implemented by making use of averaging methods to smooth out discontinuities in the dielectric 
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function and by using iterative eigensolvers in solving for the eigenvalues which in turn greatly 

reduce the computational resources needed.  The band diagram (a) generated by Matlab has 

almost converged to the results obtained by MPB (b); the slight variations are the result of too 

few plane waves in the Fourier representation.  The need to perform calculations at various C/L 

ratios led to the examination of using rectangular atoms as MPB does not have the capability to 

implement elliptical cylinders.  The dispersion relations found by square atoms are similar to 

those found using cylindrical ones albeit an overall frequency offset.  Using rectangular atoms 

will provide a good approximation for examining the size of the bandgap at various C/L ratios 

and especially at greater elongations.  The periodicity ratio, C/L was defined as the ratio of the 

periodicity of the structure in the stacking direction to the magnitude of the periodicity along the 

other two directions.  The sample MPB code that calculates the dispersions relation while 

maximizing the bandgap with respect to the lateral atomic dimension is found in Appendix D. 
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Figure 11. The variations in bandgap with changes in periodicity ratios for the two exposure rotations. 

2.6 DRIVING CHEMISTRY 

 
At the base of holographic lithography complex chemistry exists enabling the recording of 

designed intensity distributions to form durable structures withstanding the stresses of 

lithographic processing and of various inversion schemes.  The commercially available SU-8 

mixture (Microchem) consisting of a derivative resin with triaryl sulphonium salts as photoacid 

generators dissolved in organic solvents such as cyclopentanone is a suitable negative tone photo 

resist for the production of high resolution polymeric structures.  SU-8, designed for the 

formation of multiplayer films with fine features, is used to provide films up to 2mm thick with a 
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contrast ratio of 20 or greater.  Another requirement that SU-8 meets is that it is highly 

transparent in the near-UV and visible regions promoting uniform exposures throughout the film.   

 
The intensity distribution is generated by a laser in the visible regime and since SU-8 is 

formulated to be sensitive to UV, it does not respond significantly to visible light; hence, some 

modifications are made.  The additives that enable the recording of visible interference patterns 

are photosensitizers that absorb visible light and transfer the charges to the onium salts through 

the formation of charge transfer complexes.  The photosensitizers used are 5,7-diiodo-3-butoxy-

6-fluorone and phenyl-p-octyloxyphenyl-iodoniumhexafluoroantimonate (H-Nu 470 and OPPI 

from Spectra Group Limited, Inc.).  Upon exposure to UV light, the photosensitizer transfers the 

acquired charges to the sulphonium salts generating photoacids in localized regions.  The high 

temperature insensitivity of SU-8 plays a pivotal role in minimizing acid diffusion before post 

exposure bake and it prevents polymerization during exposure among other nonlinear changes. 
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Figure 12. A general scheme for photosensitized cationic polymerization.  Redrawn from Ref. 33 

 
Thermal excitation subsequent to exposure accelerates acid diffusion and induces cationic 

polymerization.  The underexposed resist is then removed by propylene glycol methyl ether 

acetate (PGMEA from Microchem) followed by careful removal of solvents by isopropyl alcohol 

(IPA) and drying.  The drying process is critical as structures with fine features can collapse 

from surface tensions between liquid and air interfaces and it is found that using IPA can greatly 

reduce what would otherwise be surface tensions if water is employed instead. 

 

The DC term in the intensity distribution along with the lower energy oscillatory 

components complicates things as they also generate photoacids resulting in a non-zero acidic 

background that blurs the separation between exposed and underexposed regions.  If not 

considered, this blurring will prevent the full opening of pores adding complications to 

subsequent stages of the process. 
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Figure 13. Diagram of the light intensity present in the region of interference with separated components 
into DC and oscillating terms.  Redrawn from Ref. 33 

 
The non-zero background could be minimized by controlling some of the terms in the 

intensity equation, by optimizing the loading of the photosensitizer, or by chemical means.  The 

distributions of photoacids determine the regions that polymerize and adding an acid scavenger 

reduces the concentration and minimizes acid diffusion.  An appropriate amount of 

Triethylamine (TEA) which partially neutralizes the photoacids generated by the non-zero 

background is employed as a method of control over the effect of the background energy.31 
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3.0  EXPERIMENTAL PROCEDURES 

3.1 EXPERIMENT SETUP 

The generation of the interference pattern requires several components that are readily available.  

The laser beam is provided by an Argon Ion laser (Spectra-Physics Model 2020) adjusted for 

monochromatic output at 514.5nm.  The output of the laser is linearly polarized and the 

accompanying electric field oscillates in the horizontal plane.  Next, the propagating beam 

interacts with an electric shutter due to the small exit aperture of the shutter and it allows precise 

control over the exposure time down to 100ms.  The active laser beam is then enlarged. This 

enlargement is necessary as it determines the length of the region over which the three-emerging 

beams overlap producing useful interference.  The laser beam is enlarged by a biconvex two-lens 

system to a beam diameter of about a half an inch utilizing the available grating area.   

 

The beam itself consists of several modes and the additional modes other than the TEM00 

distort the interference pattern by reducing the contrast between the maximums and minimums in 

the oscillatory components as well as adding to the DC terms increasing the constant background 

energy.  The removal of the additional modes is accomplished by a 1µm diameter spatial filter 

placed at the focal point of the magnification system.  This particular size of the spatial filter is 
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calculated to be optimal at the wavelength of the laser, the incoming beam diameter, and the 

properties of the lens used to focus. 

 

 

 
 
 

Figure 14. Experimental setup used to exposure samples to designed interference 
 
Next, the magnified and collimated laser beam interacts with the phase grating diffracting 

it into three substantial orders.  Originally, the phase grating was placed onto a rotation stage to 

allow rotation about the optic axis; however, this proved to be undesirable as it added unwanted 

displacements between the first and second exposures.  To remove the undesirable degrees of 

freedom from the phase grating positioning, two phase gratings are fixed onto a polished quartz 

wafer at the chosen angle of rotation about the optic axes.  The sample holder that positions the 

prepared photo resist parallel to the phase grating is mounted on a high precision motion stage 

(Newport PM500-4L) that allows displacement in the x y and z directions with ±100nm 

precision.  The interference setup in its entirety along with the Argon Ion laser is mounted on a 

vibration damping optical table and floated on air pockets through the exposure process.  The 

power provided by the laser beam is measured to be 0.45W immediately before impinging on the 

phase grating. 
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The photo resist used to record the designed interference pattern is SU-8 2035, which is a 

high aspect ratio negative tone epoxy base polymer.  Its maximum absorption is for ultraviolet 

light at 365nm and henceforth it is modified to extend its absorbance into the 515 nm range.  SU-

8 is modified by adding a photosensitizer to bring the interaction wavelength into the 515nm 

regime, a co-initiator acting as a catalyst, and propylene carbonate (PC) to assist in the 

dissolution. The photosensitizer is 5,7-diiodo-3-butoxy-6-fluorene (HNU-470) and has 

absorbance of 0.5 in the wavelength of interest.  The co initiator, 4-octyloxphenyl iodonium 

hexafluoro-antimonate (OPPI), assists in the charge transfer of the chemical reaction subsequent 

to exposure.  A small amount of photo resist is prepared at a time, sufficient for about 10 days of 

trials due to the sensitivity of the mixture to thermal and electromagnetic radiation.  The photo 

resist solution is composed of 40g of SU-8 2035, 0.5wt% of H-Nu-470 , 2.5wt% of OPPI, and 

10ml of PC.  The mixture is stirred for several hours to ensure complete dissolution that, in turn, 

results in higher contrast structures.  Through experimentation, the difficulty of obtaining the 

desired result became transparent and is thought to be caused by the large background energy 

present in the interference pattern.  To ease this hurdle, it is found that the addition of 

Triethylamine neutralizes some of the Lewis acids generated by exposure of the photo resist to 

radiation.  The generation of Lewis acids is paramount as it allows the recording of the intensity 

pattern; however, the background energy present also generates these acids detrimental to the 

process by reducing the contrast between the exposed and underexposed regions.  

 

The analysis of the samples is done by two types of imaging and a simple diffraction test.  

Once a sample is thoroughly dry it is examined by a high resolution optical microscope with a 

computer imaging interface.  Examination by an optical microscope allows rough sorting of 
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samples into two categories: those that could possess the desired structural results and those that 

do not.  The samples deemed for further analysis are then closely examined by a Scanning 

Electron Microscope (SEM) that is capable of resolving features in orders of magnitude greater 

than designed for this template.  Finally, if one or two samples remain in the batch of dozens, 

they are subjected to diffraction tests that qualitatively reveal the disorder present on a larger 

scale.  A clean diffraction image was the result of a large area defect minimum region. Other 

samples that had either very rough surfaces or small regions of structural integrity had diffraction 

images with low intensity peaks surrounded by surface scattered light spots. 

 

The several variables that play a key role in the process, some intended and some not, 

each within its own frame of reference require a large number of iterations to achieve 

convergence.  The intended set of variables are pre and post bake times, spin coating speed, the 

time length of exposure, the time length of developing, and the weight percent of TEA with 

respect to the amount of SU-8.  Other variables detrimental to the process stem from the 

precision required to align the two sets of intensity distribution according to design criteria.  The 

displacement of the phase grating by a motion stage rated at ±100nm with ±100nm uncertainty 

contributes a significant amount of error with respect to the required translation, specifically in 

the vicinity where the two intensity cylinders overlap as the error of the motion stage here is 

comparatively significant.   

 

The alignment of the optical setup requires the most attention, as it is paramount that the 

translation of the second exposure takes place along the optic axes and having no quantitative 

method implemented to control this variable, it poses the greatest uncertainty.  The pre and post 
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bakes adhere to established procedures developed by several groups;31,32 some variations were 

explored without any significant deviations.  The variables of spin coating that determine the 

thickness and the uniformity of the SU-8 surface are held constant at providing a thickness of 

about 10µm.  The thickness of the SU-8 mixture spun onto the substrate can, of course, vary 

throughout the process of fabrication due to the variable contents of TEA among others.   

Control over the variability of time length of developing is exerted by developing every sample 

for short time periods, and examining each one under low light conditions and repeating until 

exhaustion.  The employment of these steps reduced the variables required for consideration to 

the time length of exposure, translation, and TEA concentration.  The required translation is a 

known variable; however, displacements between the two gratings mounted on a quartz wafer 

could easy have unwanted offsets that coupled by the error of translation demanded attention.  

The two variables are explored by holding translation constant at an incremental value at which 

the exposure time is varied linearly in a predetermined range.  The previous method is employed 

for each solution mixture of SU-8 containing various amounts of TEA from 1-40 mol%. 

3.2 FABRICATION PROCEDURE 

The process of producing the template can be split into three stages.  In the first stage, the sample 

is prepared for exposure; next, the sample is exposed; and, third, the sample is post processed to 

reveal the designed template.  In the sample preparation stage, the substrates are polished glass 

slides treated with piranha solution and dehumidified by baking on a hot plate.  Each substrate is 

coated with a thin layer of OmniCoat (1µm) to enhance the adhesion of SU-8 to the substrate.  

The photo resist mixture is spun onto the treated substrates at speeds of 700 to 1500 rpm, 
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resulting in a range of thicknesses from 25 to 5µm.  The prepared samples were then prebaked at 

65⁰C for about 30 min to remove the solvent from the photo resist mixture.  The length of the 

prebake does not require precision as its goal is to remove the solvent and therefore it can be 

subject to alterations.  Higher temperature prebake is not advised as it can act to generate Lewis 

acids and, in turn, reduce the contrast ratio before exposure to the desired radiation.  The 

uniformity of the thermal radiation in the baking process and the gradual ramping of the 

temperature is however vital in the abatement of the inescapable surface effects. 

  
The samples are then exposed to the designed interference pattern twice, once at one 0 

degrees, and another at the angle of choice about the optic axes.  Before exposure, the 

interference setup is realigned from a drift caused by vibration coupling and minute thermal 

variations.  To demonstrate, two angles were primarily chosen for the second exposure, 90⁰ and 

60⁰.  The orthogonal exposure being fundamental in the design exhibits reduced crystal 

symmetry and in an attempt to correct for this, another exposure is demonstrated.  The 60⁰ 

exposure rotation corrects for some of the destroyed symmetry resulting from elongation in the 

stacking direction.  The duration of exposure is experimentally determined and is found to be 

optimal at 0.9s for both rotations.  The exposed samples were then baked again for 10 minutes at 

65⁰C and for 5 minutes at 95⁰C in order to crosslink the regions retaining significant amounts of 

Lewis acids.  After cooling to room temperature, the samples were placed in the developing 

solution for 5 minutes and washed off with isopropyl alcohol and allowed to dry in air while 

maintaining a low intensity red light environment for the entire process. 



 56 

4.0  EXPERIMENTAL RESULTS 

4.1 STANDARD EVALUATION 

Through experiment, a procedure was developed that adapted to the trial and error inherent in the 

process.  The amount of SU-8 formulated was such that it provided enough samples that the 

iterations needed to produce convergence to a local optimum could be achieved in a window of 

about 10 days.  This was roughly estimated to be about 100 samples out of which at least one 

sample that showed progress was obtained.  After 10 days, a new solution was prepared as the 

additional uncertainty acquired by degradation of the solution to an already existing surplus was 

undesirable.  

 
Initial experiments were conducted without the addition of an acid scavenger; instead, the 

amount of photo initiator was varied with partial success.  After several iterations some of which 

provided excellent surface recordings, only few had openings and from this few only fractions 

had openings beyond the first layer.  Initially a single phase mask mounted on a rotation stage 

was utilized adding additional uncertainty to the positioning of the second intensity distribution 

and henceforth increasing the number of trials needed to converge to somewhat acceptable 

results.  The sample that reassured confidence as well as initiated the search for an alternative 

method of control over acid diffusion came after many trials with fully opened features only one 

layer deep. 
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Figure 15. Surface SEM image of sample having 60° structure 
 
A few iterations resulted in samples with very uniform openings but were confined 

purely to the surface.  Imaging analysis with the depth in scrutiny showed that even after days of 

developing, the remaining unopened structure was not affected.  This suggested that either the 

exposure time needed to be shortened or the background energy needed more careful attention. 

 
 

 
 
 
Figure 16. Sideview SEM image (left) showing partial opening, Surface optical microscope image (right) 

showing excellent surface structure 
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An alternative method of control over the background energy was accomplished by the 

addition of an acid scavenger, TEA.  Various SU-8 solutions were made containing 1 to 40 

mol% TEA each of the predetermined volume.  Solutions that contained 30 to 40 mol% TEA 

provided structures with fully opened features of which only a few did not collapse pertaining to 

very short exposure and developing times.  The precision that these solutions demanded in the 

exposure and developing stages resulted in thinner than expected features suggesting that the 

photo-acids were neutralized more than desired. 

 

 

 
 
 
Figure 17. SEM image of 60° structure, left close examination of the surface, right examination of the side 

A sample acquired by paying careful attention to the exposure and developing and 

furthermore to drying was obtained and full collapse was prevented.  This structure exhibits 

structural integrity on a large scale; however, at examining the depth dimension, the partial 

collapse that took place is notable.  This is seen as the sideways skewing of the image and it most 

likely took place in the drying process as it is here that the stresses exerted on the structure 

culminate from the capillary forces between the liquid and air interfaces.  
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Figure 18. SEM image showing fully opened crystal with surface view (right) and side view (left) 

The remaining solutions containing 1 to 20 w% TEA, 20% along with 0.9s exposure time 

yielded fully opened structures without any notable collapse.  The SEM images that are 

magnified to reveal the structure contain insets pertaining to that which is predicted by 

simulation.  The simulation is generated in Matlab by mapping out the overall intensity 

distributions and plotting the normalized isointensity volume of 0.5 and above.  The Matlab 

program is found in Appendix B.  The three-dimensional simulations are then rotated such that 

the crystal axes line up with that of the SEM images taken.  This structure possesses a modified 

FCT symmetry and is the result of a 60° rotation between the first and second exposures. 
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Figure 19. Surface image showing long range order (top left), closer view with predicted structure inset 
(top right), side view with prediction inset (bottom left), top view for another crystal plane (bottom right) 

 
The periodicity of the template in the xy-directions is estimated by measurement tools 

built into the scanning electron microscope imaging system.  In this direction, the lengths are 

equal in magnitude and the average of four measured values was 1µm, whereas the estimated 

value was 1.05µm.  Performing the same measurements on the depth dimension gave the 

measured periodicity C to be anywhere from 3.8-5.5µm as opposed to the 5.2µm estimate.  This 

measurement might not be as accurate as it is difficult to ascertain the rotation of the template.  

Prior hardships were encountered with the rotation of the sample holding stage to the exact 

vertical position.  
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4.2 DIFFRACTION ANALYSIS 

The samples that were imaged and deemed to possess excellent surface features, or a fully 

opened structure with a rough surface, or a combination of both were then subjected to 

diffraction by a Helium Neon laser and a white light source.  Although the implementation of the 

diffraction analysis did not reveal any quantitative results, it is however found to qualitatively 

assess whether the structures possessed global or local structural uniformity.  Iterations prior to 

the addition of TEA provided samples that had very large areas of defect free regions limited to 

the surface.  These of course had very clean diffraction images when subjected to a HeNe laser 

and a white light source.  

 

 

 
 
 

Figure 20. Diffraction image taken for 90° structure with a HeNe laser (left) and white light (right) 
 

Iterations that provided samples with fully opened features in three-dimensions generally 

had a rough surface from collapse as thin protruding membranes did not have any lateral support 

to withstand the forces of surface tension.  The diffraction images from these samples were 

polluted with light spots as the random surface scattered some of the rays off axes. 
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Figure 21. Diffraction image taken for 60° structure with a HeNe laser (left) and white light (right) 

A sample processed with the solution mixture containing 20 mol% TEA with an exposure 

time of 0.9s proved to have the greatest chance of providing samples that had both fully opened 

features throughout the structure along with clean surface features if the developing and drying 

were controlled very carefully.  Careful developing was done through continuous immersion into 

the two petri dishes placed side by side, one containing the SU-8 developer, the other the 

isopropyl alcohol.  This allowed the removal of washed away components that could potentially 

adhere to the surface of the sample. 

 
 

 
 
 

Figure 22. Diffraction image taken for 45° structure with a HeNe laser (left) and white light (right) 



 63 

5.0  ANALYSIS 

5.1 SUMMARY 

This experiment was done under the guidance of Dr. Yuankun Lin, in collaboration with the 

University of Texas-Pan American.  He provided a recipe for the SU-8 mixture along with 

background information necessary to fabricate the structure including some preliminary band 

diagrams.  The recipe for the SU-8 mixture was later altered by varying the photo initiator and 

co-initiator in an attempt to counteract the effects of the background energy and later these 

detrimental effects were mitigated by the addition of TEA.  The mathematics driving the process 

including the simulated predictions of the band diagrams was developed post experiment due to 

the needed expertise in solid state physics.  With the acquisition of expertise in solid state 

physics and electromagnetic theory, the driving mathematics was established based on the need 

to place the experiment in proper context.  The mathematics developed post experiment led to 

the discovery of the lack of significant global openings beyond a periodicity ratio, C/L of 2.35.  

The predicted C/L ratios for the structures fabricated are 5.7 and 5 for 90° and 60° exposure 

rotations respectively.  The periodicity of the structure in all dimensions is strongly dependent on 

two components: namely, the phase grating and the laser.  The particular components employed 

were those on hand at the time.   
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The analysis of the structure in the frequency domain was not without some difficulties.  

The solution of the Eigen system by Plane Wave decomposition is fairly straight forward albeit 

the placement of the wave equation in a simplified computational form was not without tedious 

mathematics.  The true depth of mathematics was reached once the equations called for an 

adequate Fourier representation.  Fortunately, the treatment of various multidimensional shapes 

in Fourier space along with their linear transformation has been previously documented.  

Although, the derivation of the Fourier representation of the primitive cell was nearing 

completion at the time of discovery of the text containing pertinent information,25 it was 

reassuring to be able to compare it to previously established mathematics.  The implementation 

of the Plane Wave Method (PWM) was done in Matlab in vectorial form through the use of its 

packages optimized for large computations.  The PWM is a robust method capable of providing 

very accurate predictions as long as vast amounts of computational resources are available.  

Solving this system on a 3GHz Pentium 4 processor with 2GB of RAM did prove to be difficult, 

the largest computation possible on this system was with 3375 Plane Waves (PW) consuming 8.3 

hours.   Structures with elongation, such as the case in this experiment, possessing reduced 

symmetry required even more PW for the band diagram to converge necessitating the use of 

MPB.  MPB has built-in functions to provide various shapes in three-dimensions but not an 

elliptical cylinder; therefore, a rectangular slab is used to approximate the shape of the atoms.  

This approximation is deemed adequate as it has been shown that the band diagram of the system 

does not significantly change with the change of atomic shape.  The variations in the size of the 

bandgap are not significant.  The use of MPB in predicting the band diagrams lead to a partial 

bandgap map of the system summarized by the plot that relates the size of the bandgap to the 

structure elongation factor, i.e. periodicity ratio C/L of the two exposure rotations.  
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As a measure of success in predicting the structure of the template, the geometric 

properties were compared.  The structure to the naked eye strongly resembles that which is 

simulated, but with the help of built-in tools of the Scanning Electron Microscope rough 

measurements were done to compare to simulations.  From the measured quantities, the largest 

deviation is found in the periodicity of the stacking direction C as its measured value was ranged 

from 3.8-5.5µm.  The large deviations in the measured values of C could come from the 

alignment issues of the sample holding stage within the SEM or a bad estimate of the index of 

refraction of the photo resist solution, the prior is likely.  At examining the simulation of the 

isointensity surface, an isointensity value of 0.5 adheres to the template the closest though a 

more analytical approach is preferable.  At the moment one does not exist. 

  

During the analysis of the variables deemed to provide control over the fabrication of the 

structure, no systemic regularities were observed in the displacement.  Bringing the second phase 

grating into play by displacing the motion stage in the lateral direction coupled with that along 

the optic axis made it difficult to hone in on a subset of values in displacement.  If the 

experiment consisted of one phase grating, the uncertainty in translation along the optic axis 

would have been manageable.  As no quantitative method of control over this variable was 

implemented, translation to the second phase grating randomized the system.  The optimal values 

for the two controllable variables of fabrication were found with ease: the exposure time found to 

yield the best structure was 0.9 seconds for 20 mol% TEA solutions.  An attempt was made to 

counteract the elongation by generating structures by other than orthogonal secondary exposure.  

Although, the demonstrated 60° rotation did have a reduced periodicity ratio, it was not reduced 
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enough for the structure to possess a global forbidden band.  In the simulation, as the rotation 

angle decreases from normal, the peak of the size of the gap shifts to higher C/L ratios, but the 

maximum obtainable gap is also reduced.  There could still be a rotation angle for which a global 

forbidden region exists; however, this was not explored. 

 

The manufacture of photonic crystal templates by means of holographic lithography 

returned mixed results.  This method of crystal fabrication using SU-8 as a medium is proven to 

be viable at providing the structures designed for.  The geometric properties of the structure 

obtained by experiment adhere closely to that obtained by simulation with the largest deviation 

being in that of the periodicity C; more analysis is needed to uncover the source.  SU-8, 

formulated for interaction with radiation in the UV regime was successfully modified to interact 

with visible light by the action of charge transference.  Overall, the manufacture of crystal 

templates by the use of holographic lithography was successful and the difficulties that were 

encountered are those of error in design.   

The use of two one-dimensional phase gratings necessitated physical displacements that 

by their nature add a great deal of uncertainty to the process.  Relying on devices to add 

displacements comparable in magnitude to the wavelength in the visible regime should generally 

be avoided.  In cases where the design calls for these types of mechanisms, reevaluation should 

take place as the uncertainty acquired calls for a great deal of trial and error.  The initial goal 

being the manufacture of crystal templates that by means of inversion would provide a structure 

possessing a global forbidden region was not met and is a direct result of the order of procession.  

The bandgap analysis of the predicted structure should have taken place prior to experiment as in 

that case, the results of simulation would have necessitated reevaluation in design.  However, all 
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is not lost as the structure fabricated has potential uses even without possessing global openings 

such as the strong dispersion effects demonstrated for structures of this type towards the 

enhancement of wavelength division multiplexing.  And, as the groundwork having been laid 

out, the manufacture of an alternate design will without a doubt be expedited. 

5.2 FUTURE WORK 

Every stage of the experiment from simulation to fabrication could be subjected to in-depth 

evaluation and, as a result, implementable methods that provide improvements would surface.  

The large computations required to accurately predict the band structure could be greatly reduced 

by employing averaging in the treatment of the plane pave decomposition of the “atoms” along 

with iterative methods in obtaining the solutions to the Eigen system.  The uses of these 

improvements have been demonstrated by Steven Johnson et al., as their program, MPB, solves 

complex systems with a fraction of the resources that the direct implementation calls for.  The 

code relying on analytical representations of the structure in the frequency domain could be 

improved by developing a method that accurately determines the same representation by means 

of FFT as finding the analytical transform could prove to be arduous for non-symmetric atomic 

shapes possessing complex geometries. 

 
Prior to the addition of TEA which partially neutralized the generated photo acids and in 

turn mitigated the effects of the background energy, samples were acquired that possessed 

excellent surface recordings.  Despite the fact that these had very clean diffraction images, they 

were categorized as partial successes at the time.  At examination of the process with the 
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positioning in focus, these mistakes were thought to provide a much needed solution alleviating 

the need for displacement.  The problems that stem from the use of one-dimensional phase 

gratings are the result of the need for translation for the formation of three-dimensional 

structures.  On the other hand, if a multi-dimensional grating is used, this need for translation 

could be eliminated.  The design and manufacture of a grating that generates a desired intensity 

distribution that removes one or all required physical displacements would make the process of 

holographic fabrication of crystal templates highly repeatable.  Furthermore, since true FCC 

lattices are the ones that possess the largest gaps, whether in the form of single or multi atomic 

primitive cells, further exploration could reveal the possibility of generating interference patterns 

that come closer and closer to these parent structures. 

 

Even though the experiment was met with partial success, the work in the current frame 

of reference is not complete.  With some additional work, a complete characterization of the 

system could be obtained that explored the possibility of forbidden regions at secondary 

exposure rotation angles much lower than demonstrated.  The characteristic plots that relate the 

size of the band gaps to C/L ratios could be expanded by the addition of other rotation angles to 

discover an angle that could be manufactured with the current setup yielding a global opening in 

the gap, although the gap might be small.  An addendum to the process that provided a measured 

band diagram of the system to compare to simulated ones would complete the work within the 

current frame.  Although, measuring the bandgap would most likely require the conversion of the 

template to a higher dielectric contrast.  As has been previously mentioned, one possible use of 

the manufactured template, even without a complete gap, is the manufacture of devices that take 

advantage of the strong dispersion that electromagnetic radiation experiences in woodpile 
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structures of lower index of refraction.  The exploration of this particular application would be a 

relatively small feat if the physics driving the process is detailed.  Then a coherent broadband or 

variable source with a light intensity meter would suffice to validate this claim for the current 

template. 
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APPENDIX A 

UNION OPERATION FOR OBJECTS 

Since the union operation is not a mathematically sound operation for vectors and objects, its 

equivalent needs to be found.  To begin, cylinder 1 is defined as C1, and cylinder 2 as C2.  The 

permittivity function is rewritten in terms of these as, 
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The summation can be ignored since its function is to reproduce a crystal composed of these 

units.  So, what remains is the product of two step functions describing the shape of the object in 

three-dimensional space.  In the y’’-direction, it is simply a square wave that specifies the 

starting and ending of the cylinders.  In the x’’z’’-directions, the step function is revolved about 

the center to give a circularly symmetric square wave; it is basically the circ function. 

 

To create a composite structure from a cylinder and a rotated and displaced version of 

itself, addition will not give the correct result.  With a little topological reshaping, the 

mathematical equivalent of the union operation is obtained.  The cylinders, C1 and C2, without 
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the multiplicative coefficients are of unit height.  This is not a dimensional unit as the cylinders 

do have a length and a radius that is not unity.  The value that the objects take is unity, similar to 

a one dimensional square wave of unit height. 

 

The cylinders are inverted so that the space containing them is of height one and the 

cylinders are of height zero.  Now, the product of the inverted cylinders will evaluate to zero 

everywhere that the cylinders exist, including their overlap.  By subtracting this result from 

unity, the union operation is performed.  Finally, with a little algebra and multiplying it by a 

constant and then adding another constant, the mathematical treatment of the composite structure 

is obtained. 
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APPENDIX B 

MATLAB CODE THAT PREDICTS THE GEOMETRY OF THE STRUCTURE 

%Code calculating the interference pattern resulting from two exposures 
clear all 
clc 
tic 
  
angle = 60;      %amount of rotation of the second exposure 
shift = 0;       %amount of rotation of the coordinate system 
zoff = 1.3;      %amount of translation in the z direction, C/4 
%angle of first order diffraction in SU-8 mixture using n = 1.67 
firstorder = 19.8;  
  
lamb = .5145/1.67;  
  
%The span and spacing of the limits and axes considered in micrometers 
x = (0:.05:2.6); 
y = (0:.05:2.6); 
z = (1:.1:7.9); 
  
%Generating the grid of points to work on 
[X Y Z] = ndgrid(x,y,z); 
  
%Specifying the know values of the k-vectors 
k1 = 2*pi/lamb; k2 = k1; k3 = k1; k4 = k1; k5 = k1; k6 = k1; 
k1x = 0; k1y = 0; k1z = k1; 
k4x = 0; k4y = 0; k4z = k1; 
  
%Specifying the amplitudes of the plane waves, obtained by measurement 
E1o=0.68; 
E2o=.335; 
E3o=.335; 
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E4o=E1o; 
E5o=.335; 
E6o=.335; 
  
 
 
%finding the remaining k-vectors 
%first exposure 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%k-vector geometry for k2 
theta = (shift)*pi/180; 
phi = (90-firstorder)*pi/180; 
%the function sph2cart converts from spherical to Cartesian 
% returning its corresponding x y z components 
[k2x,k2y,k2z] = sph2cart(theta,phi,k2); 
  
%k-vector geometry for k3 
theta = (shift)*pi/180; 
phi = (90+firstorder)*pi/180; 
[k3x,k3y,k3z] = sph2cart(theta,phi,k3); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%second exposure 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%k-vector geometry for k5 
theta = (shift+angle)*pi/180; 
phi = (90-firstorder)*pi/180; 
[k5x,k5y,k5z] = sph2cart(theta,phi,k5); 
  
%k-vector geometry for k6 
theta = (shift+angle)*pi/180; 
phi = (90+firstorder)*pi/180; 
[k6x,k6y,k6z] = sph2cart(theta,phi,k6); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
%Expressing the plane waves on the grid of points 
E1 = E1o*exp(i*(k1x*X+k1y*Y+k1z*Z)); 
E2 = E2o*exp(i*(k2x*X+k2y*Y+k2z*Z)); 
E3 = E3o*exp(i*(k3x*X+k3y*Y+k3z*Z)); 
E4 = E4o*exp(i*((k4x*X+k4y*Y+k4z*(Z-zoff)))); 
E5 = E5o*exp(i*((k5x*X+k5y*Y+k5z*(Z-zoff)))); 
E6 = E6o*exp(i*((k6x*X+k6y*Y+k6z*(Z-zoff))));  
  
%Electric fields of the first and second exposure 
E1t = (E1+E2+E3); 
E2t = (E4+E5+E6); 
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%The intensity distributions of the two exposures 
I1t = abs(E1t).^2; 
I2t = abs(E2t).^2; 
It = I1t+I2t; 
  
%Normalizing the intensities 
It=It./max(max(max(It))); 
I1t=I1t./max(max(max(I1t))); 
I2t=I2t./max(max(max(I2t))); 
  
%setting the normalized intensity value separating used and unused regions 
level = 0.5; 
  
 
%Preparing to plot, the data is smoothed to appear continuous in the plots 
figure(1) 
data = smooth3(It,'gaussian',5); 
p1 = patch(isosurface(x,y,z,data,level), ... 
   'FaceColor',[0 0 150/255],'EdgeColor','none'); 
  
p2 = patch(isocaps(x,y,z,data,level), ... 
    'FaceColor','interp','EdgeColor','none'); 
isonormals(x,y,z,data,p1) 
  
colormap 'jet'; 
view(139,15) 
axis equal; 
camlight headlight; lighting phong; material dull; 
xlabel('X(um)'); ylabel('Y(um)'); zlabel('Z(um)'); 
 
%Title of the plot 
title('Normalized Intensity') 
axis([min(x) max(x) min(y) max(y) min(z) max(z)]); 
colorbar 
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APPENDIX C 

MATLAB CODE THAT SOLVES FOR THE DISPERSION RELATION 

%Code that solves for the Eigenvalues of a three-dimensional periodic 
%dielectric lattice 
  
clear all 
clc 
tic 
  
n=3;     %number of atoms in one axis direction 
NPW=(2*n+1)^3;  %the number of plane waves to be used 
  
epsa=13;    %permittivity of the material 
epsb=1;     %permittivity of the background 
a = 1;      %periodicity a in the x and y directions 
c = 1.8;    %periodicity in the stacking(z) direction 
R = a/8;    %radius of the rods 
ae = R;     %radius of the rods along the stacking direction 
be = c/8;   %radius of the rods along the x and y directions 
h = a/sqrt(2);     %the length of the rods, depends on orientation 
beta1 = pi/2-pi/4;  %the angle of rotation of the first cylinder 
beta2 = -pi/4;      %the angle of rotation of the second cylinder 
  
  
%regular fcc vectors for a 90 degree woodpile structure 
a1=1/2*[0 a c]; 
a2=1/2*[a 0 c]; 
a3=1/2*[a a 0]; 
  
%30 degree woodpile vectors 
% a1 = [0 cos(15*pi/180)*a c/2]; 
% a2 = [sin(15*pi/180)*a 0 c/2]; 
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% a3 = [sin(15*pi/180)*a cos(15*pi/180)*a 0]; 
  
%60 degree woodpile vectors 
% a1 = [0 sqrt(3)*a/2 c/2]; 
% a2 = [a/2 0 c/2]; 
% a3 = [a/2 sqrt(3)*a/2 0]; 
  
%reciprocal lattice vectors 
volume=dot(a1,cross(a2,a3)); 
b1=2*pi*cross(a2,a3)/volume; 
b2=2*pi*cross(a3,a1)/volume; 
b3=2*pi*cross(a1,a2)/volume; 
  
%forming a 3D grid of integral spacing representing atoms 
[Xgrid Ygrid Zgrid] = ndgrid(-n:n);   
%forming the reciprocal space vectors 
Gx=b1(1)*Xgrid + b2(1)*Ygrid + b3(1)*Zgrid;  
Gy=b1(2)*Xgrid + b2(2)*Ygrid + b3(2)*Zgrid;  
Gz=b1(3)*Xgrid + b2(3)*Ygrid + b3(3)*Zgrid; 
  
%preparing the reciprocal space vectors for conversion to 2D  
%creating the reciprocal space vectors G and G' by use of transpose 
Gxm = repmat(Gx(:)',NPW,1); 
Gym = repmat(Gy(:)',NPW,1); 
Gzm = repmat(Gz(:)',NPW,1); 
  
%reciprocal lattice vector G' 
Gxn = Gxm'; 
Gyn = Gym'; 
Gzn = Gzm'; 
  
%2D reciprocal space vectors, by mathematical operation (G-G') 
Ggx = Gxm-Gxn; 
Ggy = Gym-Gyn; 
Ggz = Gzm-Gzn; 
  
%Creating the various forms of reciprocal space vectors that will be used 
G = horzcat(Gx(:),Gy(:),Gz(:)); 
clear Xgrid Ygrid Zgrid Gxm Gxn Gym Gyn Gzn Gzm Gx Gy Gz 
  
Gx1 = Ggx*cos(beta1) + Ggy*sin(beta1); 
Gy1 = -Ggx*sin(beta1) + Ggy*cos(beta1); 
  
Gx2 = Ggx*cos(beta2) + Ggy*sin(beta2); 
Gy2 = -Ggx*sin(beta2) + Ggy*cos(beta2); 
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Gp1 = sqrt((ae*Gy1).^2+(be*Ggz).^2); 
Gp2 = sqrt((ae*Gy2).^2+(be*Ggz).^2); 
  
Gr = sqrt((Ggx).^2+(Ggy).^2+(Ggz).^2); 
Gg = horzcat(Ggx(:),Ggy(:),Ggz(:)); 
  
  
%eliminating division by 0 by replacing zero values with 1 
na = find(Gr==0); 
Gr(na) = 1; 
  
na1 = find(Gp1==0); 
Gp1(na1) = 1; 
  
na2 = find(Gp2==0); 
Gp2(na2) = 1; 
  
clear Ggx Ggy Ggz 
  
display('Calculating the permitivity, eps(G-G'')'); 
r1=[a/8 a/8 2*be];      %position of the first cylinder 
r2=[0 0 0];             %position of the second cylinder 
  
%this part prepares a matrix to represent the dot product in the  
%exponential terms due to displacement expressed by exp(i*r(1,2) dot G) 
%dot product equivalent for the position of the first cylinder 
r11 = repmat(r1,NPW^2,1); 
dt1 = dot(Gg,r11,2); 
dt1 = reshape(dt1,NPW,NPW); 
  
%dot product equivalent for the position of the second cylinder 
r22 = repmat(r2,NPW^2,1); 
dt2 = dot(Gg,r22,2); 
dt2 = reshape(dt2,NPW,NPW); 
  
  
%fractional volume of the elementary cell 
fr=pi*h*R*R/volume; 
  
%forming the permittivity matrix 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%the permittivity matrix for cylinder one 
epsC1 = 2*fr*(epsa-epsb)*(sinc(Gx1*h/2).*besselj(1,Gp1)./(Gp1)).*exp(i*dt1); 
%the permittivity matrix for cylinder two 
epsC2 = 2*fr*(epsa-epsb)*(sinc(Gx2*h/2).*besselj(1,Gp2)./(Gp2)).*exp(i*dt2); 
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%the permittivity for the entire elementary cell 
eps = epsC1+epsC2; 
%amending the height at zeroes 
eps(na) = epsb + 2*(epsa-epsb)*fr; 
  
%forming the permittivity matrix for the overlapping case 
% C1 = 2*fr*(sinc(Gx1*h/2).*besselj(1,Gp1)./(Gp1)).*exp(i*dt1); 
% C2 = 2*fr*(sinc(Gx2*h/2).*besselj(1,Gp2)./(Gp2)).*exp(i*dt2); 
  
% c1 = ifftn(C1); 
% c2 = ifftn(C2); 
% cc = (epsa-epsb).*(c1+c2-c1.*c2); 
% eps = fftn(cc); 
% 
%or another way that avoids taking the inverse FFT 
%% eps = (epsa-epsb)*(C1+C2-conv(C1,C2,'same')); 
% eps(na) = epsb+(epsa-epsb)*(2*fr-fr^2); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
clear Gg Gr Gp1 Gp2 Gx1 Gx2 Gy1 Gy2 ep1 ep2 r11 r22 dt1 dt2 Ggx Ggy Ggz... 
    na na1 na2 
  
%getting the inverse of the permittivity matrix, kappa 
kappa = inv(eps); 
  
clear eps 
  
%preparing the k-vectors on the edge of the first Brillouin Zone 
%k-vectors along which calculations are performed for a 90 degree structure 
k1=interpolate([0 0.5 0.5]*[b1;b2;b3],... 
    [0.25 0.625 0.625]*[b1;b2;b3],4,0);             %X to U 
k2=interpolate([0.25 0.625 0.625]*[b1;b2;b3],... 
    [0.5 0.5 0.5]*[b1;b2;b3],4,0);                  %U to L 
k3=interpolate([0.5 0.5 0.5]*[b1;b2;b3],... 
    [0 0 0]*[b1;b2;b3],4,0);                        %L to Gamma 
k4=interpolate([0 0 0]*[b1;b2;b3],... 
    [0.25 0.5 0.75]*[b1;b2;b3],4,0);                %Gamma to W 
k5=interpolate([0.25 0.5 0.75]*[b1;b2;b3],... 
    [0.375 0.375 0.75]*[b1;b2;b3],4,0);             %W to K 
k6=interpolate([0.375 0.375 0.75]*[b1;b2;b3],... 
    [0.5 0.5 0]*[b1;b2;b3],4,0);                    %K to X' 
k7=interpolate([0.5 0.5 0]*[b1;b2;b3],... 
    [0.625 0.625 0.25]*[b1;b2;b3],4,0);             %X' to U' 
k8=interpolate([0.625 0.625 0.25]*[b1;b2;b3],... 
    [0.5 0.75 0.25]*[b1;b2;b3],4,0);                %U' to W' 
k9=interpolate([0.5 0.75 0.25]*[b1;b2;b3],... 
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    [0.375 0.75 0.375]*[b1;b2;b3],4,0);             %W' to K' 
k10=interpolate([0.375 0.75 0.375]*[b1;b2;b3],... 
    [0.25 0.75 0.5]*[b1;b2;b3],4,1);                %K' to W'' 
kt=[k1;k2;k3;k4;k5;k6;k7;k8;k9;k10]; 
  
%%%The function created to expand the list of k vector by linear 
%%%interpolation 
% function kvectors = interpolate(kstart,kend,n,ending) 
%     kvectors = zeros(n+1,3); 
%     increment = (kend-kstart)/n; 
%     for i=1:3 
%         if increment(i) == 0 
%             kvectors(:,i) = 0; 
%         else 
%             rowvec = kstart(i):increment(i):kend(i); 
%             kvectors(:,i) = rowvec'; 
%         end 
%     end 
%      
%     if ending == 0 
%         kvectors(n+1,:) = []; 
% %         temp = kvectors(1:n,1:3); 
% %         clear kvectors 
% %         kvectors = temp; 
% %         clear temp 
%     end 
  
clear k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 
  
%************************************************************************ 
%Solving for the Eigenvalues 
Eigen_freqs = []; 
display('Solving the Hermitian Eigensystem for the Eigenvalues'); 
for i=1:size(kt,1) 
     
    k=kt(i,:); 
    K(:,1)=k(1)+G(:,1); 
    K(:,2)=k(2)+G(:,2); 
    K(:,3)=0; 
  
    %the unit vectors e1 and e2 are found 
    %e1 can be written in normalized form along (y,-x) 
    magK = sqrt(K(:,1).^2+K(:,2).^2+K(:,3).^2); 
    e1=[K(:,2)./magK,-K(:,1)./magK,zeros(length(K),1)]; 
    %eliminating division by zero 
    e1(isnan(e1))=1/sqrt(2); 
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    %reconfiguring K in the z direction 
    K(:,3)=k(3)+G(:,3); 
  
    %finding e2 such that it is normal to e1 and K 
    e2=cross(e1, K); 
    %nomalizing e2 to unity 
    mage2 = sqrt(e2(:,1).^2+e2(:,2).^2+e2(:,3).^2); 
    mage22 = repmat(mage2,1,3); 
    e2=e2./mage22; 
  
    %eliminating division by zero 
    e2(isnan(e2))=1/sqrt(2); 
  
    %true magnitude of K 
    mK = sqrt(K(:,1).^2+K(:,2).^2+K(:,3).^2); 
  
    %forming the matrices given by the matrix form of the wave equation 
    M1=([mK.*e2(:,1),mK.*e2(:,2),mK.*e2(:,3)]... 
       *[mK.*e2(:,1),mK.*e2(:,2),mK.*e2(:,3)]').*kappa; 
    M3=([mK.*e2(:,1),mK.*e2(:,2),mK.*e2(:,3)]... 
       *[mK.*e1(:,1),mK.*e1(:,2),mK.*e1(:,3)]').*kappa; 
    Mt=[M1,M3]; 
 
    clear M1 M3 mage2 mage22 
  
    M2=([mK.*e1(:,1),mK.*e1(:,2),mK.*e1(:,3)]... 
       *[mK.*e2(:,1),mK.*e2(:,2),mK.*e2(:,3)]').*kappa; 
    M4=([mK.*e1(:,1),mK.*e1(:,2),mK.*e1(:,3)]... 
       *[mK.*e1(:,1),mK.*e1(:,2),mK.*e1(:,3)]').*kappa; 
    M=[Mt;M2,M4]; 
  
    clear Mt M2 M4 e1 e2 mk 
     
    %solving the eigen values of the total matrix M 
    %the eigen values are sorted to facilitate truncation to the lowest  
    %order modes 
    E=sort(abs(eig(M))); 
    %the Eigenvalues are adjusted to proper units, a/lambda or wa/(2pi*c) 
    Eigen_freqs(:,i)=sqrt(E(1:10)).*a./(2*pi); 
     
    display([horzcat('k',num2str(i)) ' of '... 
        horzcat('k',num2str(length(kt))) ' is done']); 
    toc 
    clear M E 
end 
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%************************************************************************* 
%Plotting the Dispersion Relation 
figure1 = figure; 
  
% Create axes 
axes1 = axes('Parent',figure1,... 
    'XTickLabel',{'X','U','L','Gamma','W','K','X''','U''','W''''',... 
    'K''','W'''''},'XTick',1:4:length(kt)); 
xlim([1 length(kt)]); 
box('on'); 
grid('on'); 
hold('all'); 
  
% Create multiple lines using matrix input to plot 
plot(1:length(kt),Eigen_freqs,'LineWidth',2,'Parent',axes1); 
  
% Create title 
title('Dispersion relation of a 90 degree woodpile photonic crystal'); 
  
% Create xlabel 
xlabel('wave vectors k'); 
  
% Create ylabel 
ylabel('wa/2\pic'); 
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APPENDIX D 

SAMPLE MPB CODE USED FOR THE PREDICTION OF THE DISPERSION 

RELATIONS 

;MPB code that calculates the dispersion relation of a woodpile 
;structure composed of either rectangular or cylindrical rods 
;the sample code calculates for a structure with a C/L ratio of 1 
 
;setting up the geometry and the dimensions of the basis 
(set! geometry-lattice (make lattice 
                         (basis-size (sqrt 0.5) (sqrt 0.5) (sqrt 0.5)) 
                         (basis1 0 1 1) 
                         (basis2 1 0 1) 
                         (basis3 1 1 0))) 
 
;defining the k-vectors along which calculations are performed 
(define-param k-interp 4) 
(define X   (vector3 0 0.5 0.5)) 
(define U   (vector3 0.25 0.625 0.625)) 
(define L   (vector3 0.5 0.5 0.5)) 
(define Gamma  (vector3 0 0 0)) 
(define W   (vector3 0.25 0.5 0.75)) 
(define K   (vector3 0.375 0.375 0.75)) 
(define X'   (vector3 0.5 0.5 0)) 
(define U'   (vector3 0.625 0.625 0.25)) 
(define W'   (vector3 0.5 0.75 0.25)) 
(define K'   (vector3 0.375 0.75 0.375)) 
(define W''  (vector3 0.25 0.75 0.5)) 
 
;setting the order of the k-points and linearly interpolating  
;between them to increase the resolution of the calculations 
(set! k-points (interpolate k-interp (list X U L Gamma W K X' U' W' K' W'')))  
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(define-param eps 13) ; the dielectric constant of the material 
(define diel (make dielectric (epsilon eps))) 
 
(define-param h 0.25) ; height of logs 
 
 
;creating the primitive cell 
(define (first-gap w) 
(set! geometry 
        (list 
         (make block (material diel) 
               (center (cartesian->lattice (0 0 0))) 
               (e1 (cartesian->lattice   (1 1 0))) 
               (e2 (cartesian->lattice   (1 -1 0))) 
               (e3 (cartesian->lattice   (0 0 1))) 
               (size infinity w h)) 
         (make block (material diel) 
               (center (cartesian->lattice (0.125 0.125 h))) 
               (e1 (cartesian->lattice   (1 1 0))) 
               (e2 (cartesian->lattice   (1 -1 0))) 
               (e3 (cartesian->lattice   (0 0 1))) 
               (size w infinity h)))) 
 
(set! resolution 16) ;sets the resolution of the spatial grid 
(set! num-bands 10) ;the number of bands to calculate for 
(set! mesh-size 7) ; sets the size of the mesh 
(run) 
 
(retrieve-gap 2)) ; return the gap from band 1 to band 2 
 
;maximing the gap with respect to the width or the radius of the logs 
(define result (maximize first-gap 0.1 0.02 0.5)) 
(print "width at maximum: " (max-arg result) "\n") 
(print "gap size at maximum: " (max-val result) "\n") 

;if instead cylinders are used, the later part of the code is  
;replaced by the following 
 
;(define (first-gap r) 
;(set! geometry 
;        (list 
;         (make cylinder (material diel) 
;               (center (cartesian->lattice  (0 0 0))) 
;               (axis (cartesian->lattice    (1 1 0))) 
;               (radius r) 
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;               (height infinity)) 
;         (make cylinder (material diel) 
;               (center (cartesian->lattice  (0.125 0.125 h))) 
;               (axis (cartesian->lattice    (1 -1 0))) 
;           (radius r) 
;               (height infinity)))) 
 
;(set! resolution 16) 
;(set! num-bands 10) 
;(set! mesh-size 7) ; increase from default value of 3 
;(run) 
 
;(retrieve-gap 2)) ; return the gap from TM band 1 to TM band 2 
 
;(define result (maximize first-gap 0.05 0.02 0.3)) 
;(print "radius at maximum: " (max-arg result) "\n") 
;(print "gap size at maximum: " (max-val result) "\n") 
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