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ABSTRACT 

 

The need for a therapeutic human immunodeficiency virus (HIV) vaccine is urgent for the 

control of the acquired immunodeficiency syndrome (AIDS) epidemic. The variability of the 

virus as well as its ability to undergo escape mutations in T cell epitopes are important obstacles 

facing the development of an AIDS vaccine. Consequently, a powerful strategy would be the 

induction of robust antigen specific T cell responses targeting patient-specific virus sequences 

expressed during the course of infection. An attractive vaccine approach to achieve this is the use 

of dendritic cells (DC) transfected with in vitro transcribed mRNA encoding autologous virus 

sequences. The rhesus macaque model provides an ideal preclinical setting to test the therapeutic 

potential of DC-based vaccination. We hypothesize that optimal antigen presentation and 

stimulation of potent T cell responses could be achieved by loading DC from SIV-infected 

macaques with mRNA encoding virus-derived sequences isolated during the course of infection.  

This represents a powerful strategy for the generation of a potential therapeutic AIDS vaccine. In 

support of our hypothesis, we generated the following evidence: (1) nucleofection is a superior 

method for efficient transfection of human and monkey monocyte-derived DC with DNA and 

mRNA to conventional electroporation and lipofection; (2) nucleofection of DC with mRNA  led 

to better protein expression and DC maturation as compared to DNA transfection;  (3) mRNA 
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nucleofection of DC resulted in rapid and sustained gene expression, a critical factor in DC-

based immunotherapy for durable antigen presentation; (4) nucleofection  of monkey monocyte-

derived DC with wild-type non codon-optimized gag mRNA was efficiently expressed and 

induced strong antigen-specific T cell responses whereas DNA transfection led to non-specific T 

cell stimulation; (5)   enhanced CD4+ T cell responses were observed when Gag was redirected 

to the lysosomal pathway via the targeting signal of the lysosome-associated membrane protein 

(LAMP-1) following nucelofection of DC with mRNA; (6) rhesus DC transfected  with 

lysosome-targeted gag mRNA encoding an escape mutation in an immunodominant CTL epitope 

stimulated CD4+ and CD8+ T cell responses of almost equivalent magnitude directed towards 

undefined epitopes outside of the mutated region; (7) gag or env mRNA transfected-DC from 

SIV-infected macaques stimulated significant antigen-specific T cell responses in an entirely 

autologous system; (8) DC cotransfected with gag mRNA as well as mRNA encoding CD70 or 

OX40L did not result in enhanced immunostimulatory functions. HIV/AIDS is a significant 

public health problem demanding action. This work demonstrates that mRNA-transfected DC 

expressing SIV antigen from infected monkeys stimulate broad and relevant T cell responses, 

thus supporting this approach for the generation of a therapeutic HIV vaccine to decrease the 

burden associated with the infection. 
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1.0  INTRODUCTION 

1.1 HIV-1 AND SIV 

 Human immunodeficiency virus (HIV), the causative agent of acquired immunodeficiency 

syndrome (AIDS), belongs to the family Retroviridae and genus lentivirus. HIV-1 isolates are 

classified into 3 groups; M, O and N (135, 242). M is responsible for the majority of HIV-1 

global epidemic and is further subdivided into subtypes or clades (A-K, excluding E).  Simian 

immunodeficiency virus (SIV) is also a lentivirus. SIV is a species restricted to African 

nonhuman primates and does not cause disease in their natural host (109). Evidence indicates 

that recombination of distinct SIV isolates led to the generation of HIV-like viruses. These 

viruses infect wild chimpanzees but do not cause disease. It is suggested that humans have been 

infected zoonotically to initiate the AIDS epidemic. HIV-1 and SIV, responsible of the 

progressive failure of the immune system AIDS, share approximately 40-50% genomic sequence 

homology (107) and that serological cross-reactivity is limited (127).  

There are several similarities between SIV infection of macaques and HIV-1 infection of 

humans. Similar to HIV, most SIV isolates use the CCR5 coreceptor for viral entry (271, 288, 

290). In addition, both HIV-1 and SIV replicate in activated as well as resting T cells (291). 

Infection by HIV or SIV is characterized by rapid depletion of memory T cells in gut associated 

lymphoid tissues (34, 165, 168). Following infection of humans and macaques with HIV-1 and 
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SIV respectively, acute infection resolves with the onset of antigen-specific immune responses 

(31, 120, 136, 137, 235). Moreover, HIV-1 and SIV utilize similar evasion mechanisms to escape 

the host immune responses (44, 91, 92, 218, 277, 289). The plasma viral load in both infections 

predicts the rate of disease progression (154, 170). The onset of disease in infected individuals 

and macaques takes place after CD4+ T cell depletion; progress to AIDS is accompanied by a 

variety of opportunistic infections, hematological as well as neurological disorders (150). Due to 

existing similarities between HIV and SIV, the SIV macaque model is the best animal model for 

studying HIV pathogenesis and testing possible therapeutic strategies (57, 132).  

1.2 THE GLOBAL AIDS EPIDEMIC 

Since 1981, more than 25 million people have died of AIDS. Moreover, the number of people 

living with HIV has risen from around 8 million in 1990 to 40 million today and is still growing. 

Around 4 million adults and children became infected with HIV during 2006. Despite 

improvements in access to antiretroviral therapy, 3 million people died of AIDS last year 

(www.unaids.org). Thus, HIV continues to be a burden of mortality and morbidity. 

1.3 ANTIRETROVIRAL THERAPY AND HIV INFECTION 

Highly active antiretroviral therapy (HAART) has revolutionized patient care with HIV. HAART  

maintains suppression of HIV-1 replication to very low levels for an extended period of time in 

HIV-1 infected individuals, as well as reduces the morbidity and mortality of infected patients. 
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Thus, the use of HAART promoted the quality of life by controlling viral replication in infected 

individuals (110, 203). However, HAART is accompanied by many problems.  Long-term 

metabolic toxicities, development of drug resistance resulting in escape mutants, and the cost of 

drugs as well adherence to strict regimens are important factors leading to reduction in the long-

term use of antiretroviral therapy (ART) (208). Another important factor contributing to failure 

of HAART in long term HIV-1 control is the persistence of latent virus in CD4+ T cells,  

providing a life-long supply of replication-competent forms of HIV-1 (49, 75, 105) and thus 

rendering any hope for virus eradication unrealistic with current ART (50, 210). Moreover, it has 

been demonstrated that when drug treatment is interrupted, plasma viral loads rebound to 

pretreatment levels (60, 202). These findings, along with the persistence of HIV-1 in other 

reservoirs such as the central nervous system (87), and the inability of HAART to clear infection,  

urgently require an alternative approach to control long-term infection.  

1.4 HIV INFECTION: IMPACT ON THE IMMUNE SYSTEM 

1.4.1 Overview: immune responses to HIV 

A burst of viremia is detected during the primary stage of HIV infection by day 7 and peaks 3 

weeks after exposure. During primary infection with HIV-1, CD8+ T cells are detectable in 

circulation before neutralizing antibodies and a decline in plasma viremia is associated with 

expansion of these cells (31, 136). The development of antibody responses takes place rapidly 

with increased affinity to early virus strains (218). A set point, or point of equilibrium, is reached 

2 to 6 months post infection. Early in infection, HIV-1 forms a pool of latently infected, resting 
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CD4+ T cells (49). As a result, HIV-1 infection is established indefinitely. Even when ART is 

capable of reducing viremia to undetectable levels (<50 RNA copies per milliliter), these viral 

reservoirs persist (50). Despite the generation of cellular and humoral immune responses, 

progression to AIDS still takes place. Therefore, the ultimate goal of HIV/AIDS research is the 

development of a safe and effective vaccine. 

1.4.1.1 Control of HIV/SIV infection  

When designing a vaccine, both the humoral and cellular immune responses should be elicited. 

However, the fact that HIV-neutralizing antibodies are detected several weeks post infection and 

the absence of temporal relationship between early viral control and antibodies generation raised 

questions regarding the importance of these antibodies in HIV control (148, 149).  

Understanding the mechanisms by which HIV-1 replication is controlled is important for 

the design of successful therapeutic vaccines. It is well known that cell-mediated immune 

responses play important role in host defenses against viral infections. In particular, CD8+ T cells 

play a critical role in the host defense mechanisms in HIV-infected individuals where the 

increase in cytotoxic T lymphocytes (CTL) activity coincides with the clearance of viremia (31, 

136, 199) and the observation of low viral loads and persistent non-progressive infections (220). 

In rare individuals known as elite controllers, the specific cellular immune responses are 

associated with suppression of HIV replication to undetectable levels (25).  

As in HIV-1 infection, primary infection of rhesus macaques with SIV is characterized by 

a burst of virus replication followed by a decline in viremia due to emergence of CTL (120, 137, 

235).  Importantly, depletion of CD8+ lymphocytes in primary and chronic SIV infection, results 

in uncontrolled viremia and inability to generate neutralizing antibodies.  These findings reflect 
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the strong antiviral activities of CD8+ T cells and highlight the importance of high frequency 

CTL responses in the development of an efficient HIV/SIV vaccine.  

In addition to the critical role played by CD8+ CTL in the control of HIV-1 replication, 

CD4+ T cells are also involved in the control of viral infection.  This is achieved by providing 

help for the stimulation and/or maintenance of antibody as well as CD8+ T cell responses (8). In 

addition, CD4+ T cells mediate antiviral effector functions through cytokine production or 

cytolysis (194). In deed, a strong negative association has been found between viral load and 

Gag-specific CD4+ T helper-cell responses (223). Moreover, Gag-specific T helper cells 

positively correlated with Gag-specific CTL and negatively correlated with plasma viral load. It 

has been demonstrated that virus-specific CD8+ T cells persist in the absence of CD4+ T cells but 

have low effector function (245). Consequently, the induction of HIV-1 -specific CTL as well as 

T-helper responses is an important criterion in the design and development of an effective AIDS 

vaccine (90, 124, 125). 

1.5 HIV/AIDS VACCINE: CHALLENGES 

The findings stated above emphasize the strong requirement of CD4+ and CD8+ T cells for the 

control of HIV-1 infection, and therapeutic vaccines designed to promote broad cellular immune 

responses are being actively pursued. However, an important challenge in the development of 

vaccines for HIV-1 is the diversity of clinical isolates (83) coupled with the propensity for the 

virus to undergo escape mutations in T cell epitopes through selective pressure in vivo (91, 92).  
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1.5.1 Genetic variability of HIV-1 

Considerable heterogeneity is revealed by the phylogenetic tree analysis of HIV RNA and 

protein sequences (216). Genetic variability of HIV is due the rapid replication of the virus, its 

high mutation rate as well as propensity for recombination (133, 135). Due to emergence of virus 

variability during chronic HIV-1 infection, the immune system has to deal with a large number 

of viral variants rather than the original one seen in acute infection (274). There are three types 

of HIV-1, M, N, and O. M, the main type, is divided into 10 subtypes or clades. These clades 

differ by approximately 20% of amino acid sequence as well as their geographic distributions. 

Moreover, there is up to 10% variability in the amino acid sequences within the clades. Subtype 

C is the most prevalent HIV-1 globally, especially in regions where vaccines might be evaluated 

(UNAIDS, www.unaids.org). Although the hope is to generate a single vaccine strain inducing a 

cross-reactive response conferring protection, the relevant issue of viral diversity confinds this 

goal (149). Consequently, two major approaches have been used for the selection of a vaccine 

strain: the first is to use isolates of specific subtype from a geographic region where the vaccine 

is to be used (238), for example using Indian strain in India and so on. The second strategy is to 

construct a consensus or ancestral sequence on the basis of an evolutionary mode (83). 

Consensus sequences are central sequences to the virus based on the most common amino acid in 

each position in an alignment (135, 196). Based on maximum likelihood, ancestral sequences are 

reconstructed from a phylogenetic tree. These sequences are similar to the circulating strain and 

may elicit cross-reactive responses.  

Depending on the protein under consideration, 5-25% of amino acids within viral strains 

differ within the same HIV-1 clade (274). This variability affects the cellular immune responses 

in infected individuals due to the constraints imposed by the sequence specificity (89, 206, 207). 
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It has been recently reported that the use of autologous peptides allows the detection of strong 

and broad T cell responses against HIV-1 p24 Gag, Vpr and Tat. These authors demonstrated 

that the use of overlapping peptides based on HIV-1 clade B consensus sequence was associated 

with weaker responses especially in the more variable Tat and Vpr regions (7).   

1.5.2 The escape phenomenon  

 It is critical to know how sensitive T cell clones are to virus variability. The idea that T cells can 

cross-react broadly and that matching a vaccine to the virus subtype is not needed is not 

applicable in HIV-1 infections. Data indicate that most sequence variation in an epitope generate 

escape mutants (144). Moreover, viral escape from CTL-mediated immunity occurs frequently in 

HIV-1 as well as SIV infections (3, 4, 42, 68, 73, 80, 89, 92, 122, 134, 198 ) and therefore can 

lead to loss of vaccine-induced protection (18).  Therefore, an ideal HIV-1 vaccine design would  

have a genetic sequence matching the virus in the population to be vaccinated (64). At a first 

glance, this would mean matching vaccine to clades. However, due to the differences within 

clades, the latter could lead to evasion of virus from induced T cell immunity. Thus, in addition 

to matching the vaccine and the clade, vaccinologists need to induce broad T cell responses 

directed against multiple epitopes in order to reduce the risk of escape. 

1.5.2.1 Immunodominant versus subdominant epitopes 

Immunodominance is another issue to consider in the design of a vaccine against HIV-1 (89, 

286). In this case, T cell responses are predicted by the HLA type of the infected individual and 

thus exerting more pressure for virus escape. The selection of epitopes during antigen 

processing, different affinity of different epitopes on HLA molecules as well as half-life at the 
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cell surface are all possible mechanisms of immunodominance (283). Recent reports 

demonstrated the importance of subdominant epitopes in the control of HIV-1 replication (76). 

High allele frequencies were found to eliminate subdominant epitopes despite being effective at 

stimulating CTL responses. Moreover, high affinity CTL down-modulate peptide-MHC 

complexes on antigen-presenting cells leading to preferential expansion of high-affinity CTL 

(130, 204). Subsequently, preexisting CTL responses decrease CTL-specific responses to other 

epitopes within the construct. This highlights the negative impact that could be exerted by the 

use of centralized sequences in the face of immune escape due to preferential expansion of 

immunodominant CTL epitopes while ignoring subdominant ones.  Thus expansion of specific 

CTL responses for multiple epitopes should be considered in designing HIV-1 vaccines.  

Importantly, the immune system can develop novel CD8+ T cell responses against CTL 

escape variants during chronic HIV-1 infection (6). Authors followed a number of HIV-1-1 

infected  individuals for more than 6 years following acute infection, 4 of which had an escape 

mutation in HLA-A*11 restricted Gag epitope. A decline in CD8+ specific T cell responses was 

observed in these patients. However, following this event, a new CD8+ T cell response was 

documented. This response to the escape variant was as strong as the one observed to the wild-

type sequence. This finding supports the use of sequences encoding potential circulating variants 

leading to protection against escape mutation. In vitro studies showed that the virus-specific 

CD8+ T cell responses directed against consensus sequences persist from earlier responses but do 

not recognize autologous virus (145). Thus more evidence is provided towards the importance of 

using autologous virus sequences in the design of HIV-1 vaccines especially in the face of an 

escape mutation. Consequently, HIV-1-1 vaccine based on a single virus sequence, particularly 

immunodominant, will induce CTL responses that are too specific to provide protection against 
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the quasispecies of the variable HIV-1-1, hence limiting the ability of this vaccine to control the 

virus.  

Moreover, many studies demonstrate that HIV-1-1 escapes rapidly from CD8+ T cell 

mediated immune responses not only within targeted epitopes but also flanking epitopes (3, 32, 

131). Hypervariability regions in HIV-1 are also associated with specific CTL epitopes in 

individuals with a specific major MHC class I haplotypes (175). There have been reports that 

some CTL escape mutation revert after transmission and subsequently remain useful for CTL 

based vaccines (3, 80, 147). These findings emphasize the importance of determining which 

immune responses remain relevant and which ones are lost through escape mutations for vaccine 

design and highlighting the importance of CTL in shaping the evolution of HIV-1 and SIV 

variations (80). Moreover, intrapatient evolution of HIV-1 caused by CTL escape is not 

necessarily reflected into HIV-1 evolution at the population level. To account for these 

complexities, a therapeutic vaccine should be tailored towards the autologous virus present in an 

individual at the time of immunotherapy and thus dominant and subdominant epitopes would be 

introduced.  

1.6 DENDRITIC CELL: FUNCTIONS 

Dendritic cells (DC) are the most potent antigen presenting cells and have been attractive 

candidates in the development of vaccines (14, 16).  They are important players in innate as well 

as adaptive immune responses. They are present at low numbers in peripheral tissues where they 

capture antigen by phagocytosis, macropinocytosis or receptor-mediated endocytosis. DC 

process antigens and load peptides onto MHC molecules which are transported to the cell surface 
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for antigen presentation (141). DC maturation is induced by pathogens through their cell wall 

components (e.g. lipopolysaccharide), viral products (double stranded RNA), and inflammatory 

cytokines such as IL-1 or TNF-α. Complete DC maturation takes place through CD40/CD40L-

dependent and independent interaction between DC and helper T lymphocytes (255). Maturation 

takes place during DC migration from the peripheral tissue to the lymphoid organs and it is 

associated with the loss of endocytic and/or phagocytic function, morphological changes, 

changes in MHC class II molecules and most importantly upregulation of expression of co-

stimulatory molecules CD80, CD86 and CD40 as well as expression of CD83 (13). During 

maturation, DC downregulate the expression of chemokine receptors such as CCR1, CCR5 and 

CCR6, constitutively expressed on immature DC and upregulate CCR7 expression driving DC 

into the lymph node in response to chemokines such as MIP3β or 6kine (164, 231). Once DC 

mature, they synthesize cytokines required for the development of helper T cells and CTL; these 

cytokines include IL-12, IL-15 and IL-18. In addition, mature DC produce chemokines essential 

for attracting naïve and memory T cells.  

1.6.1 Antigen processing and presentation by Dendritic Cells 

Extracellular antigens are processed and presented by MHC class II molecules. The MHC II-

peptide complexes as well as CD86 are translocated to cell surface to induce primary T cell 

expansion through interactions with CD4+ T cells (115). As a result of this interaction, T cells 

differentiate into Thelper (Th) 1 and Th 2 cells producing IFN- γ and IL-4, respectively. CD4+ T 

cells are essential in licensing the DC to activate CD8+ T cells via CD40L-CD40 interactions 

(219, 236) and maintenance of CD8+ T cell memory. 
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MHC class I molecules process antigens synthesized in the cytoplasmic compartment 

(224). DC are also capable of exogenous antigen cross-presentation onto MHC class I molecules 

(1, 99). This pertains to the proteins derived from immune complexes, inactivated microbes or 

other antigens synthesized in other cells and then cross to MHC of DC (63, 101). Endogenously 

acquired antigens, i.e. synthesized proteins in the cytoplasm, are cleaved by the proteasomes into 

peptides, transported to the endoplasmic reticulum (ER) via transporters for antigen presentation 

(TAP), loaded onto MHC class I molecules and then transferred to cell surface where these 

complexes are recognized by CD8+ T cells. Following contact with T cells, DC produce IL-15 

which leads to priming of CD8+ T cells including expansion and generation of effector functions.  

Given the role of DC in immune control and the determination of the type of T cell 

response , it is logical to use these cells as targets for clinical applications such as resistance to 

infections, tumors , immunodeficiency and most important in vaccines. The optimistic promise 

of DC-based vaccine does not mean overlooking the abilities of certain pathogens to evade the 

immune system and directly affect DC functions.  

1.6.2 Dendritic Cells and HIV-1-1 infection 

For a better understanding of DC-based vaccination against  HIV-1 or  SIV, we need to know the 

role of DC in the entry of these viruses, their trafficking in DC and transfer to T cells. DC 

express CD4, an  HIV-1 receptor, as well as chemokine receptors acting as coreceptors for HIV-

1 (281). Consequently, many studies initially analyzed whether DC constitute virus replication 

sites or act as vehicles to transport the virus from the mucosa to activated T cells in secondary 

lymphoid organs. It has been found that coculture of resting T cells with DC leads to HIV-1 

replication  (39, 74, 213, 278). Moreover, virus production in vitro was found within syncitia, 

 11 



confirmed  in vivo by the formation of HIV-1-expressing syncitia at the surface of tonsils and 

adenoids (77, 78). Using the SIV model, infected DC with virus were seen in the mucosa. 

Reports on DC involvement in virus spread to CD4+ T cells followed by virus replication have 

been demonstrated (112, 113). Moreover, replication of HIV-1/SIV in DC has also been 

demonstrated in vivo (78, 112, 113) and in vitro (84, 251). Since DC acquire antigens from 

peripheral tissues and transport them to lymphoid tissues, HIV-1/SIV may gain access to CD4+ T 

cells through this pathway (215). 

1.6.2.1 trans- or cis-infection  

DC, the most potent APC, act as traffic line for HIV-1-1.   The fate of HIV-1-1 in DC has been a 

controversial topic.  The attachment of HIV-1-1 to DC takes place through glycoprotein (gp) 120 

on the virus and mannose specific C-type lectin receptors (CLRs) on DC. DC-SIGN (CD-209) is 

the major CLR on some myeloid-derived DC. Immature DC express high levels of CLRs 

including CD207 (Langerin) on epithelial langerhans cells and CD206 (mannose receptors) on 

dermal DC (259).  trans-infection is the process by which HIV-1 is transferred from monocyte-

derived  DC to CD4+ T cells and that DC are not productively infected (84). Others believe that 

DC get infected before viral transfer to CD4+ T cells (267). This takes place through cis infection 

where HIV-1-1 gp120 binds to CD4 receptor and to either CCR5 (R5 strains of HIV-1-1) or 

CXCR4 (X4 strains of HIV-1-1).  Immature monocyte-derived DC express CD4 as well as 

CCR5 but less amounts of CXCR4. Recently, monocyte-derived DC were reported to process 

and degrade virus in compartments lacking endolysosomal markers, a process suggested to take 

place in initial phase where virus is transferred to T cells and a second phase where residual virus 

generate productive infection in immature DC leading to transfer to T cells (260). This was 

confirmed by comparing live and AT-2 treated HIV-1/SIV. HIV-1-1 is cytopathic following 
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syncitia formation between DC and T cells. The above data highlight the fact that DC might play 

the role of a “Trojan horse” for transport of HIV-1-1 and SIV to T cells for replication (166, 

214). Most important is the binding of DC-SIGN to HIV-1-1 and consequently promoting 

infectivity to T cells. Thus, DC are involved in the offense of HIV-1-1 as well as defense of the 

infected host (221). 

In any case, whether DC are productively infected or not during transfer of virus to CD4+ 

T cells, monocyte-derived DC isolated from HIV-1-infected individuals at different stages of the 

disease (i.e. immunocompetent, immunosuppressed before initiation of treatment, as well as 

those receiving treatment with undetectable viral load) were recently found to express normal 

phenotype as well as allogenic stimulatory capacity as normal DC. Moreover, impaired antigen- 

specific CD4+ T cell responses associated with HIV-1-1 infection was partially restored by 

antigen presentation of DC (193).  Thus, more evidence is provided supporting the efficiency of 

DC in antigen presentation. As a result, immunization strategies against HIV-1 targeting DC 

offer a great advantage in the ability to stimulate antigen-specific protective immune responses 

(246).  

1.6.3 Methods of antigen delivery to Dendritic Cells 

It is well known that the method of antigen delivery to and uptake by DC affect the ability and 

efficiency of antigen presentation to T cells. The MHC class I pathway involves proteins 

generated within the cells that are cleaved by proteasomes and enzymes in the cytosol and thus 

stimulate CD8+ T cells. Extracellular proteins endocytosed and processed in the lysosomal 

pathway will be presented by class II pathway leading to CD4+ T cell stimulation (141). In 

addition, DC have the capacity to internalize exogenous antigens for CTL stimulation by cross-
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priming. Thus, DC act as natural adjuvants. Several methods of in vitro antigen delivery to DC 

have been described. These include loading with peptides (86, 191, 237), proteins (114), viral 

vectors (94, 36, 71, 247, 292), and inactivated viral particles (156, 158), DNA based 

immunizations (53) and transfection of DC with RNA or plasmid DNA (86).   

Although synthetic peptides are readily available for clinical use, the use of DC with 

peptides depends on the individual’s HLA haplotype. The latter determines the MHC molecules 

expressed in an individual since different molecules bind and present different sets of peptides. 

Moreover, the peptide-MHC complexes have limited persistence on DC.  Engulfed proteins are 

processed to peptides by the lysosomal/endosomal MHC class II pathway and thus induce CD4+ 

T cell response only.  DC pulsed with viral vectors or inactivated viral particles are effective at 

inducing HIV-1-specific T cell responses in vitro. Antigen specific T cell responses are induced 

in macaques vaccinated with DC expressing SIV or HIV-1 antigens post challenge with 

pathogenic virus strains (35, 155, 158, 191, 273). Viral vector pulsing has been based on the use 

of adenovirus, poxviruses, and lentivirus. These are preferred candidate for introducing antigen 

into DC due to high level transgene expression; however, their usefulness is limited due to 

undesired activation of DC as well as anti-vector responses due to preexisting immunity (36, 72, 

118, 176, 268). 

1.6.3.1 Non-viral gene transfer  

A number of recent studies aimed at solving the above obstacles by using non-viral gene transfer 

methods. These methods consist of loading DC with DNA or mRNA (86). Poor expression of 

transgene combined with the toxicity caused by DNA transfection has limited the use of DNA 

(12, 146, 248, 261, 262, 268). Methods to enhance gene expression following transfection of DC 

with DNA have been proposed based on DC maturation (142). The use of DC transfected with 
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mRNA encoding tumor or virus antigen has been popular for the generation of high levels of 

gene expression associated with limited toxicity as compared to DNA and importantly the 

induction of antigen-specific T cell responses (86, 103, 104, 129, 169, 212, 248, 250, 266, 269, 

279). mRNA transfection of DC was recently found to result in similar numbers of transducible 

cells as when using virus-mediated transfer (160). 

It is clear that mRNA gained a wide acceptance as a valuable mean for gene transfer to 

DC; however, the debate still exists on the method to be used to attain best transfection 

efficiency results combined with sustained antigen production. Several methods have been 

described in the literature with variable results. Passive pulsing, electroporation, lipofection and 

recently nucleofection, a modified version of electroporation, have been used for transfection of 

DC with mRNA encoding tumor ad viral antigens (86, 129, 140, 146, 169, 266, 269, 279). Many 

lessons are learned from the use of these different methods to target tumor or viral antigen to DC 

for vaccination. The choice of antigen, the cytotoxicity of the method applied, the level of 

protein expression and its sustainability, the effect of transfection on the stimulatory capacity and 

cytokine production profile of transfected-DC are to be considered carefully when introducing 

antigen to DC.   
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1.7 HIV-1 VACCINES 

1.7.1 First generation vaccines: stimulation of antibody responses 

Soon after  HIV-1 was identified, efforts to develop an effective vaccine began. The first vaccine 

candidates against  HIV-1 were based on the use of recombinant envelope proteins in order to 

stimulate the neutralizing antibody responses similar to the successful generation of hepatitis B 

vaccine (121). These vaccines protected chimpanzees from HIV-1 infection but failed to protect 

healthy individuals (52) due to evasion mechanisms evolved by the virus (277). Consequently, it 

was concluded that the stimulation of antibodies to neutralize primary HIV-1 isolates is difficult 

(38). 

1.7.2 Vaccines stimulating T cell responses 

Hence, increased attention shifted to T cell mediated immunity especially due to its impact on 

the control of HIV-1 infection. Many studies support the role of T cell immunity in early and 

subsequent control of HIV-1 infection in humans as well as SIV infection in non-human 

primates.  Consequently, the new generation of vaccines aimed at stimulating strong cell 

mediated immune responses. Many vaccine candidates developed and have been tested in the 

non-human primate model and some of which have entered human clinical trials. The use of 

animal models of HIV-1 infection proved to be valuable to determine the effect of suggested 
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vaccines on viral infection and disease progress. These approaches have been extensively 

reviewed and constitute of live attenuated, whole inactivated vaccines, recombinant proteins, 

synthetic peptides or lipopeptides, virus-like particles, DNA vaccines, live recombinant viral or 

bacterial vectored vaccines and finally DC loaded with inactivated virus or viral antigens (67, 

167). 

The pathogenically attenuated viruses providing safe and effective production against 

smallpox, measles and polio, have also protected against SIV infection in macaques (58); 

however, adult monkeys infected with these viruses developed a late onset disease and new born 

monkeys developed disease following infection. Similar results were obtained in humans as well. 

Thus the safety of this strategy is questionable (143). Historically, physically or chemically 

inactivated viruses provided effective immune responses against influenza and polio (148). 

Similarly, formalin-inactivated viruses have protected monkeys from SIV albeit for a short 

period of time (180); thus this approach did not offer a lot of optimism.  An attractive source of 

HIV-1 antigens in vivo may be the live and apoptotic infected CD4+ T cells. The latter was found 

to be more efficient at stimulating T cells as compared to direct infection or defective virus 

particles or proteins (162). Other vaccines include recombinant modified vaccinia virus (MVA), 

recombinant adenovirus-5, and recombinant vesicular stomatitis virus. These vaccines were 

tested in the monkey model. The challenge virus was an aggressive simian-human 

immunodeficiency virus (SHIV-1) 89.6P expressing CXCR4-specific HIV-1 envelope and 

leading to rapid decline of CD4+ T cells and immunodeficiency (10, 20, 222, 241). In these 

studies, authors reported that animals remained healthy and did not lose CD4+ T cells with no 

sterilizing immunity. In addition to the MVA model in non-human primates (108), the 

vaccination of macaques with a recombinant canarypox virus expressing SIV Gag, Pol and Env, 
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was found to be immunogenic after producing sufficient protein. The low frequency CTL 

responses induced post challenge was of short duration (233). The recombinant adenovirus 

vectors have been an attractive approach in the monkey model (21) and many candidates are 

entering the clinical trial phase (121, 167) and human volunteers were able to elicit HIV-1-

specific T cell responses. One disadvantage associated with this strategy is the preexisting 

immunity to the vector leading to decline in immunogenicity (19).  This problem is attempted to 

be resolved by plasmid DNA vaccination followed by recombinant adenovirus boosting. 

Moreover, Peptide-based vaccines were also found to induce protection in macaques infected 

with SHIV-1 (89.6P) (190, 191). Despite the immunogenicity of many of these models in 

infected animals and their ability to control the infecting virus, it is unknown how close the 

CD8+ T cell responses in monkeys would be in humans (167) and how relevant the generated 

immune responses are in the face of virus escape.  

1.7.3 Virus-like particles  

The safety issues associated with the use of live attenuated vaccines especially in 

immunocompromised patients as well as the failure of recombinant gp120 to protect against 

HIV-1-1 and to generate neutralizing antibodies (38, 52) lead to the emergence of the idea of 

virus like particles (VLP) where the envelope is presented in its original form (66).  These 

particles cannot replicate, nor produce virus and thus are safe.   It has been recently demonstrated 

that SHIV-1 VLP bind to DC, are internalized and lead to significant up-regulation of CD83 and 

CD40 and subsequent release of IL-12, IFN-γ, and TNF-α. The immunogenicity of VLP is 

enhanced by loading them into DC where studies reported that HIV-1-1 VLP induced maturation 

of DC in vitro and in vivo (230). Although several advantages are associated with the use of 
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VLPs, it has been suggested since they have a similar structure as the wild-type viral structure, 

that they might induce a similar non protective effect. Moreover, VLPs are also considered to be 

less potent than live attenuated viruses or replicating viral vector-mediated vaccines since they 

are non-replicating.  

1.7.4 Clinical trials  

To date there is no approved vaccine against HIV-1-1 despite the effort and the numerous 

strategies devised for this purpose. Several approaches are in various stages in clinical trials with 

at least 5 completed but results not yet reported (167). These include recombinant DNA plasmids 

(70) , recombinant viral vectors such as the canarypox  immunogens (ALVAC) (62), DNA prime 

and modified vaccinia Ankara (MVA) (181) (similar studies were performed earlier in 

nonhuman primates (10, 24) and lead to protection against disease), replication incompetent 

adenovirus vectors (241), sindbis virus-based replicon particles (264). VLPs, proteins as well as 

other candidates are being tested as well in clinical trials with a variety of HIV-1 immunogens in 

different geographic areas (121, 167).  

There is a massive number of studies in progress in an effort to generate an effective 

HIV-1 vaccine. It is disappointing though that in most cases only CD8+ T cell responses are 

targeted and the issues of virus variability as well as arising escape mutations during the course 

of the infection are not yet resolved. 
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1.8 DENDRITIC CELL-BASED VACCINES 

DC have been extensively exploited for the generation of cancer as well as HIV-1 vaccines (86, 

275) especially due to their role as potent antigen-presenting cells. Importantly, monocyte-

derived DC isolated from HIV-1-infected individuals exhibit normal phenotype and cytokine 

production (47). In the HIV-1/SIV field, DC transduced with Gag protein were found to induce 

antigen-specific T cell responses in vitro (155). Moreover, when rhesus macaques infected with 

SIV and later patients chronically infected with HIV-1 were vaccinated with DC pulsed with 

heat-inactivated or chemically-inactivated HIV-1 or SIV, strong T cell responses were observed 

associated with a decrease in viral titers (81, 156 - 158). These DC-based prophylactic vaccine 

approaches  against HIV-1-1 including vaccination of macaques with DC expressing SIV or 

HIV-1 antigens (35, 190, 273) have been based on well characterized strains of virus that may 

not be suitable for therapeutic vaccination as epitopes expressed by DC may not represent those 

in the infected individual. Efforts to include autologous viral Ag in therapeutic vaccines have 

relied on inactivated virus particles propagated from individual patients (157); however, this 

procedure is labor-intensive and may not uniformly lead to sufficient virus recovery for DC 

loading in all patients.  

1.8.1 DNA versus mRNA 

Recently more focus has been directed towards plasmid DNA and RNA based DC vaccination 

(40, 86, 97, 98, 212, 261). Non-viral gene delivery methods are more appealing than viral vector-

based strategies due to safety issues. Consequently, the use of nucleic acids was studied in cancer 

as well as viral immunotherapies. DNA and mRNA are both safe and easily produced and lead to 

 20 



protein translation in the cytoplasm of DC. In addition, both nucleic acids can encode for 

multiple epitopes and do not require the knowledge of the HLA haplotype of each patient. DNA 

has been reported to be not suitable for transfection of DC (160, 248, 269). Major advantages of 

RNA transfection over DNA is safety where the half-life of stable mRNA is less than 24 hours in 

mammalian cells whereas unintegrated DNA can persist in non-dividing cells (40, 174). Limited 

DNA has been reported to undergo trafficking to the nucleus (161).  In contrast, mRNA is 

immediately translated in the cytoplasm and there is no danger of integration in cellular genetic 

material as the case with DNA. Thus mRNA-based DC therapies have been more popular in 

patients with cancer (15, 86, 191, 237) where strong antitumor responses have been observed 

against prostate-specific antigen (PSA) (104), carcinoembryonic antigen (CEA) (185, 179), and 

telomerase reversed transcriptase (TERT) (251) following transfection of DC with the respective 

mRNA. As a result of the successful in vitro work, the use of mRNA-transfected DC is being 

translated into phase I/II prostate cancer and renal cancer clinical trial (86, 96, 103, 212).  

The use of DC transfected with mRNA encoding tumor antigens has been generally 

successful.  The efficient handling and presentation of antigen by DC make these cells most 

appropriate for the development of HIV-1 vaccines stimulating robust T cell-mediated immunity. 

Importantly, we (169) and others (129, 266, 279) demonstrated that DC transfected with mRNA 

encoding SIV or HIV-1 antigen resulted in strong primary CD4 + and CD8+ T cell immune 

responses in vitro. Similarly, polyclonal T cell responses were induced in vitro against DC 

transfected with CMV RNA (102) and human papillomavirus RNA (257).   

The best way to incorporate HIV-1 evolutionary path into a vaccine approach is to use 

autologous virus antigen, specifically mRNA-encoded antigen. Autologous virus will contain 

multiple epitopes derived from the circulating strain during infection. The inclusion of dominant 
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and subdominant epitopes demonstrated to be useful for protection especially after emergence of 

escape variants will be included in this design. In addition, when using autologous forms of 

antigen, we don’t need to worry about identifying immunodominant CTL epitopes across HIV-1 

genome and consequently clade specificity versus cross-clade reactivity for the vaccine design 

especially since data show significant differences in CTL epitopes within Gag, Rev and Tat 

clustering in different ethnic groups infected by different HIV-1-subtypes (195). 

1.8.2 Nucleic acid based-DC vaccination for stimulation of CD4+ and CD8+ T cell 

responses 

Once mRNA or DNA is translated into proteins in DC, they will be degraded into peptides 

presented to MHC class I. Given the need to promote both CD4+ and CD8+ T cell responses in 

therapeutic immunization strategies, antigens have been modified to generate better MHC class I 

and MHC class II presentation. This could be achieved by using nucleic acids bearing lysosomal- 

associated membrane protein-1 (LAMP-1) targeting signal for the channeling of endogenously 

expressed proteins in DC into the endosomal/lysosomal compartment. LAMP-1 is a type 1 

transmembrane protein mainly localized to lysosomes and endosomes (282). A number of 

antigens have been reported to stimulate enhanced immune responses when targeted to the 

lysosomal membrane as compared with vaccines encoding native antigens: vaccinia vectors 

HIV-1-1 gp160/LAMP (226, 228), human papilloma virus E7/LAMP (282), and 

cytomegalovirus pp65/LAMP (29). Plasmid DNA antigen/LAMP vaccines encoding dengue 

virus 2 premembrane /envelope /LAMP (217) as well as human papilloma virus E7/LAMP (119) 

were also reported to induce better CD4+ T cell responses. DC transfected with mRNA bearing 

LAMP and encoding carcinoma antigen (185) and telomerase reverse transcriptase have also 
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been documented in the cancer field (251). Recently, DC transfected with mRNA encoding 

hTERT/LAMP-1 induced a strong CD4+ and CD8+ T cell responses in patients with prostate 

cancer (85). Similarly, HIV-1-1 p55Gag encoded in LAMP-1 as a DNA plasmid vaccine chimera 

elicited enhanced cellular as well as humoral immune responses in immunized mice with a 10-

fold increase in CD4+ T cell responses and 4- to 5-fold increase in CD8+ T cell responses (61, 

163). In the SIV/HIV-1 field (129, 169), it has been recently demonstrated that monocyte-

derived DC transfected with mRNA encoding SIV Gag and HIV-1 Nef bearing LAMP-1, 

respectively,  were able to induce CD8+as well as CD4+  antigen-specific T cell responses in 

vitro.  
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1.9 CONCLUDING REMARKS 

During the past few years, significant progress in the study of DC biology as well as various 

transfection methods devised for antigen loading of DC facilitated the use of these sentinels for 

the generation of tumor and viral vaccines. In all the studies briefly reviewed above, it is clear 

that DC are the decision makers regarding the type and the quantity of T cell immunity. The 

generated antigen-specific T cells should be able of cytokine production, proliferation upon 

reexposure to antigen, migration to the site of injury and CTL function. Moreover, CD4+ T cells 

have to be taken into account for optimal vaccine specific immunity due to their role in 

maintenance of CD8+ T cell memory. The role of DC along with antigens and T cells constitute 

the core of immune control. The primary goal of an AIDS vaccine is to prevent establishment of 

a persistent infection and consequently delay progression to disease through the development of 

strong cellular responses. The development of HIV-1/AIDS vaccine deals with two major 

problems: the genetic variability of HIV-1 as well as its propensity for immune evasion. These 

issues need to be addressed in the design of an immunogen. Our work is based on the use of 

mRNA encoding autologous virus sequences isolated from SIV-infected macaques to load DC 

for the generation of relevant and potent cell mediated immunity, and thus accounting for the 

complexities associated with HIV-1 infection.   mRNA-based DC vaccines are safe, easy and 

clinically applicable. In conclusion, transfection of DC with mRNA offers practical as well as 

immunological advantages over other methods for therapeutic immunization against HIV-1.  
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2.0  HYPOTHESIS AND SPECIFIC AIMS 

An important challenge in the development of vaccines for HIV-1 is the diversity of clinical 

isolates coupled with the ability of the virus to undergo escape mutations in T cell epitopes 

through selective pressure in vivo. Hence, CTL responses induced in response to the infecting 

strain might be incapable of controlling circulating virus during the course of infection. Thus, a 

therapeutic vaccine against HIV-1 should be tailored towards the autologous virus present in an 

individual at the time of immunotherapy.  We hypothesize that therapeutic immunization 

strategies aiming at optimizing antigen presentation and stimulation of potent T cell responses 

could be achieved by loading DC from SIV infected macaques with mRNA encoding autologous 

virus sequences isolated during the course of infection. We will use the rhesus macaque SIV 

model since it provides an ideal preclinical setting to test the therapeutic potential of DC-based 

vaccines using virus-derived mRNA. The specific aims of this project are:  

 

1) To compare the transfection efficiency of monocyte-derived DC transfected with 

plasmid DNA or in vitro transcribed mRNA. In this aim, a side-by-side comparison of 

GFP expression post-transfection of K562 cells, human and monkey monocyte-derived 

DC with plasmid DNA or mRNA will be performed using four different transfection 

methods. Depending on the results of these preliminary experiments, we will adopt a 

transfection strategy as a method of choice.  We will characterize the phenotype of 
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monocyte-derived DC following transfection with pEGFP-N1 DNA and gfp mRNA.  

Time course kinetics will also be performed post transfection of monocyte-derived DC 

with DNA or mRNA to determine the durability of gene expression. Finally, a 

comparison of the effect of DC transfected with DNA or mRNA encoding wild-type SIV 

Gag on the generation of antigen-specific T cell responses will be investigated. 

2) To test the ability of DC transfected with virus-derived mRNA to stimulate specific 

T cell responses in vitro in an entirely autologous system. In this aim, we will assess 

the utility of mRNA-based DC transfection in the SIV model. The ability of gag mRNA 

to stimulate Gag-specific T cell responses will be assessed first in a heterologous system. 

Afterwards, DC will be nucleofected with gag mRNA isolated during infection and the 

ability to stimulate autologous T cell responses will be determined. In addition, the 

impact of a CTL escape mutation in an immunodominant epitope (CM9) on T cell 

responses will also be assessed. Finally, we will determine the efficacy of gag mRNA-

transfected DC bearing the lysosomal-associated membrane protein-1 (LAMP-1) 

targeting signal to induce CD4+ and CD8+ T cell responses in the presence and absence of 

a CTL escape mutation.  

3) To test the ability of costimulatory TNFR family molecules CD134 (OX40L), and 

CD70 to improve the immunostimulatory capacity of monkey monocyte-derived 

DC. We will first determine the endogenous expression of these molecules by SIV-naïve 

and SIV-infected DC. Following generation of mRNA encoding monkey CD70 or 

OX40L, we will test the immunostimulatory capacity of DC transfected with gag mRNA 

and cotransfected with CD70 mRNA, OX40L or both. 
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3.2 ABSTRACT 

Nucleofection is an effective means of delivering transgenes to primary cell lines but its use in 

introducing DNA or mRNA into dendritic cells (DC) has not been widely investigated. We show 

that nucleofection is a superior means of transfecting human and monkey monocyte-derived DC 

with DNA and mRNA as compared to lipofection and conventional electroporation. However, 

delivery of DNA and mRNA had significantly different outcomes in transfected DC. DC 

nucleofected with DNA encoding the GFP gene had poor Ag expression and viability and were 

refractory to maturation with CD40 ligand (CD40L). In contrast, >90% of DC nucleofected with 

mRNA expressed uniform and high GFP levels from 3 h to 96 h post transfection and had a 

normal maturation response to CD40 ligation. Monkey DC nucleofected with mRNA encoding 

wild type simian immunodeficiency virus (SIV) Gag stimulated robust Ag-specific effector T 

cell responses in autologous PBMC from a vaccinated monkey both at 24 h and 48 h post 

nucleofection, whereas no detectable T cell response was noted when DC were nucleofected with 

DNA encoding the same Gag sequence. These data indicate that mRNA nucleofection could be 

an optimal means of transfecting DC with tumor or viral Ag for DC-based immunotherapy.  
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3.3 INTRODUCTION 

Monocyte-derived dendritic cells (DC) are currently being used as therapeutic vaccines for 

cancer and infectious diseases and approaches to express tumor-associated or viral Ag in DC are 

being widely sought (15, 86, 157, 191, 212). Viral vectors based on adenovirus, poxviruses and 

lentivirus induce high level Ag expression in DC but may be associated with safety concerns or 

alteration of DC function, limiting their usefulness (69, 72, 118, 176, 268).  An attractive 

alternative to vector-mediated delivery of Ag into DC is the use of nonviral gene transfer based 

on DNA or mRNA. DNA transfection of DC has been used successfully in some studies but is 

limited by poor expression levels and toxicity (12, 146, 248, 262, 268) although methods to 

enhance expression based on DC maturation have been proposed (142). mRNA transfection of 

DC is being increasingly utilized for cancer immunotherapy and in vitro stimulation of virus-

specific T cells but approaches to deliver mRNA into primary DC cultures have been limited (86, 

103, 129, 212, 229, 250, 266, 269).  

Recently, nucleofection has emerged as a superior method for delivery of transgenes to 

primary cell lines including cytokine-induced killer cells, neurons, keratinocytes, macrophages 

and DC (56, 82, 116, 140, 146, 169, 182, 256). Nucleofection has primarily been used as a 

method of introducing DNA into cells as it is reported to deliver DNA directly into the nucleus, 

enhancing gene expression (95). However, recent studies suggest that nucleofection of DC with 

mRNA is an effective means of inducing high level Ag expression (140, 169). While 

conventional methods of gene delivery have been compared using monocyte-derived DC (248, 

278), a limited number of studies have employed the more efficient process of nucleofection to 

evaluate DNA and mRNA delivery into these cells (140), and none to our knowledge have 
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compared the capacity for mRNA- and DNA-nucleofected DC to stimulate Ag-specific T cell 

responses.  

In the present study we did a comprehensive analysis of DNA and mRNA transfection of 

human and monkey monocyte-derived DC, comparing liposomal transfection methods and 

conventional electroporation with nucleofection. We confirm that nucleofection is a superior 

method for delivery of both DNA and mRNA into primary DC lines. DC nucleofected with 

mRNA had rapid and sustained Ag expression with limited toxicity, were responsive to 

maturation stimuli and induced robust virus-specific effector T cell responses. In contrast, DC 

nucleofected with DNA had limited Ag expression and poor viability, were refractory to 

maturation with CD40L, and were unable to stimulate detectable T cell responses to viral Ag. 

These results indicate that nucleofection of DC with mRNA is preferred for immunotherapeutic 

applications, whereas nucleofection with DNA may result in ineffective DC.  
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3.4 MATERIALS AND METHODS 

3.4.1 Plasmid and mRNA generation  

Generation of the pSP73/GFP/A64 and pSP73/SIVmac239Gag/A64 plasmids and in vitro 

transcription of mRNA were performed as described previously (169). pEGFP-N1 DNA was a 

gift from Dr. Velpandi Ayyavoo, University of Pittsburgh. pSP73/SIVmac239Gag/A64 was used 

as a template for the amplification of Gag by PCR using the following forward and reverse 

primers, respectively: pGagN1F:5’GCGCTCGAGGCCACCATGGGCGTGAG3’; pGagN1R:5’ 

CGCGCGGCCGCTTACTTGCCCAACTGCATGTAG 3’. pEGFP-N1 DNA was digested with 

XhoI and NotI and the larger vector band retrieved by gel purification. XhoI- and NotI-digested 

gag PCR product was inserted to the XhoI- and NotI- digested pEGFP-N1 DNA to generate 

pSIVmac239Gag-N1.   

3.4.2 Cells 

DC were cultured from purified blood monocytes of SIV-naïve rhesus macaques or healthy 

human volunteers as described (22). In some experiments DC were matured for 24 h or 48 h with 

3 μg/ml recombinant trimeric CD40L (Immunex, Seattle, WA) as described (22). Approval was 

obtained from the institutional review board prior to experiments involving human samples and 

from the institutional animal use and care committee for all experiments involving rhesus 

macaque samples. K562 cells were grown in Iscove’s Modified Dulbecco’s medium (Hyclone, 

Logan, UT) supplemented with 10% FBS.   
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3.4.3 Transfection of K562 cells and DC 

K562 cells were washed twice with Opti-MEM (Gibco Invitrogen Corporation, Frederick, MD) 

and transfected with TransFast transfection reagent (Promega, Madison, WI) or Transmessenger 

reagent (Qiagen, Valencia, CA) by adding 2 or 4 µg GFP mRNA or DNA in Opti-MEM with 

other reagents provided by the manufacturers to 1 x 106 cells as described (169). For 

electroporation, 1 x 106 K562 cells were electroporated with 10 µg mRNA or DNA in a total 

volume of 250µl in a 0.4-cm cuvette using the Gene Pulser II Electroporation System (Bio-Rad, 

Hercules, CA) with voltage/capacitance settings of 260 V/150 µF or 300 V/150 µF, respectively 

(269).  Immediately after electroporation, cells were incubated for 5 min on ice. For 

nucleofection  10 µg DNA or  mRNA  was added to 1 x 106 K562 cells in Opti-MEM in a final 

volume of 100µl and transfected in a 2 mm-wide electroporation cuvette (BTX, San Diego, CA) 

using the T-16 program of the Amaxa nucleofector (Amaxa, Koln, Germany). Smaller amounts 

of mRNA and DNA were used for lipofection as compared to electroporation and nucleofection 

as toxicity was noted at higher amounts with the former methods (data not shown). K562 cells 

were cultured in Iscove’s Modified Dulbecco’s medium for 24 h at 37oC following transfection. 

DC were transfected as immature cells (day 5 of culture) or as mature cells after 24 h incubation 

with CD40L (day 6 of culture). Lipofection using TransFast or TransMessenger reagents was 

done as for K562 cells. For electroporation, 1-2 x 106 DC in Opti-MEM were mixed with 5 ug to 

20 µg mRNA or DNA depending on the experiment and electroporated as for K562 cells using 

voltage/capacitance settings of 300 V/150µF and 250 V/300µF, respectively, as described (169, 

248). Nucleofection of DC was done as described for K562 cells using 5 ug to 20 µg mRNA or 

DNA and the U-02 or T-01 Amaxa program. Following transfection, DC were cultured in pre-
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warm complete RPMI supplemented with GM-CSF and IL-4 for 24 h or 48 h at 37oC, with and 

without CD40L, as described (169).  

3.4.4 Confocal microscopy 

DC nucleofected with pEGFP-N1 DNA or gfp mRNA 24 h previously were harvested using 20 

mM EDTA and resuspended in PBS prior to settling onto glass slides at 37oC for 1 h.  Adhered 

cells were fixed with 2% paraformaldehyde for 15 min and washed in PBS.  Gelvatol was used 

to apply coverslips to slides.  DC were imaged for green fluorescent protein and differential 

interference contrast using an Olympus Fluoview 500 laser scanning confocal microscope 

(Olympus, Center Valley, PA). Images were collected using MetaMorph software (Molecular 

Devices, Sunnyvale, CA).   

3.4.5 Flow cytometric analysis 

GFP expression in transfected K562 cells and DC, and expression of HLA-DR, CD80, CD83, 

CD86 and CD40 on transfected DC were done as described (169).  

3.4.6 ELISPOT assay 

Gag-specific IFN-γ ELISPOT assays were done as described (169). Briefly, immature monkey 

DC were nucleofected with 10 ug pSIVmac239Gag-N1DNA or with gag mRNA transcribed 

from pSP73/SIVmac239Gag/A64 and simultaneously matured with CD40L (3 ug/ml) for 24 h or 

48 h prior to incubation with autologous PBMC at a 1: 10 ratio. Control cells were nucleofected 
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with pEGFP-N1 DNA or gfp mRNA transcribed from pSP73/GFP/A64 or mock-transfected. 

IFN-γ spot-forming cells were developed and enumerated as described (21). 

3.5 RESULTS  

3.5.1 Nucleofection with mRNA is a superior method of introducing transgene into 

primary human and monkey monocyte-derived DC  

We performed a side-by-side comparison of Transfast and Transmessenger lipofection methods 

along with electroporation and nucleofection using a GFP reporter construct. Cells were either 

transfected with pEGFP-N1 DNA or in vitro-transcribed gfp mRNA that was generated from the 

plasmid pSP73/GFP/A64 (169) and monitored for GFP expression at 24 h by flow cytometry. 

For lipofection methods we used 4 ug DNA or mRNA as toxicity was noted at higher amounts 

(data not shown), whereas for electroporation and nucleofection we used 10 ug DNA or mRNA. 

In initial experiments we used the chronic myelogenous leukemic cell line K562 that is readily 

transfected with plasmid DNA or mRNA (23, 269). Transfection of K562 cells with EGFP-N1 

DNA using the two lipofection methods produced no detectable GFP fluorescence, whereas 

transfection via electroporation resulted in 16% GFP-expressing cells at 24 h. In contrast, 60% of 

K562 cells expressed GFP following nucleofection with EGFP-N1 DNA using the T-16 program 

of the nucleofector device, which was shown in preliminary experiments to generate the highest 

efficiency of transfection with this cell line (Figure 1A and data not shown). Transfection with 

mRNA was significantly more effective than transfection with DNA by all methods, with 8% to 
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16% GFP expression following lipofection, and 86% and 91% of K562 cells expressing GFP 

following electroporation and nucleofection, respectively (Figure 1A).  

We next tested the capacity of lipofection, electroporation and nucleofection to transfect 

human and monkey immature monocyte-derived DC. In addition to measuring GFP expression 

at 24 h post transfection we assessed the effect of transfection on DC viability using the standard 

approach of trypan blue exclusion. Transfection of DC with DNA using lipofection or 

electroporation produced negligible GFP expression and significant cell death, with viability 

ranging from 40% to 57% (Figure 1B and C; Table 1). Nucleofection with DNA using the U-02 

program was more effective than the other methods at generating GFP-expressing DC but was 

associated with enhanced cell death, with only 24% of DC remaining viable at 24 h post 

transfection (Figure 1B and C; Table 1), similar to other reports (146). Switching the 

nucleofector program to T-01 as favored by others (146) did not enhance transfection efficiency, 

and increasing the quantity of DNA to 20 ug was associated with a significant increase in 

toxicity (data not shown). Lipofection with mRNA resulted in variable transfection of DC, with 

maximum expression noted in monkey DC following Transmessenger lipofection, although the 

proportion of viable cells was only 52% to 55% (Figure 1B and C; Table 1). In contrast to K562 

cells electroporation of DC with mRNA was inefficient, with expression levels not exceeding 

17% and viability averaging only 46% (Figure 1B and C; Table 1). However, nucleofection with 

mRNA using the U-02 program was a highly effective means of transfecting human and monkey 

monocyte-derived DC, with the proportion of DC expressing GFP reaching 96% at 24 h post 

transfection (Figure 1B and C, bottom rows; Table 1). Nucleofection with mRNA maintained the 

highest cell viability of all methods, although the proportion of viable cells at 24 h post 

transfection was still only 68% (Table 1), consistent with other reports (140). Similar 
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transfection efficiency and DC viability were noted when nucleofection was performed with a 

range of mRNA from 5 ug to 20 ug (data not shown).  
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Figure 1. Evaluation of DNA and mRNA transfection of K562 cells and human and monkey DC. (A) K562 
cells were transfected with pEGFP-N1 DNA (top row; filled histograms) or gfp mRNA (bottom row; filled 
histograms) or mock transfected (empty histograms) using the methods indicated and GFP expression determined 24 
h later by flow cytometry. 4 ug DNA or mRNA was used for lipofection with Transfast and Transmessenger 
reagents, whereas 10 ug DNA or mRNA were used for electroporation and nucleofection. (B, C) Immature human 
(B) or rhesus macaque (C) monocyte-derived DC were transfected with GFP DNA or gfp mRNA and analyzed as 
for (A). Numbers represent the percent of cells expressing GFP based on mock transfection. Results represent three 
different experiments.   
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Method     DNAa      RNAb       
   ________________________________  ________________________________ 

   GFP expressionc Viabilityd           GFP expression             Viability 

___________________________________________________________________________________________  

Transfaste  0    57 (3)f   7 (3)   52 (4)  

Transmessengere 2 (1)   49 (1)   14 (8)   55 (4)   

Electroporationg 4 (7)   40 (2)   9 (7)   46 (3)  

Nucleofectionh  10 (4)   24 (5)   91 (3)   68 (6)     

___________________________________________________________________________________________ 

aEGFP-N1 DNA 

bIn vitro-transcribed gfp mRNA 

cPercentage of cells expressing GFP at 24 h post transfection 

dPercent viable cells at 24 h post transfection 

e4 ug DNA or mRNA was used with both lipofection methods 

fMean (SEM) of 2-5 experiments  

gCells were electroporated with 10 ug DNA or mRNA using 250V/300uF or 300V/150uF settings, respectively 

hAmaxa U-02 program was used for both DNA and mRNA 

 

Table 1. Gene expression and cell viability following transfection of immature monkey monocyte-derived DC 
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Flow cytometric analysis of nucleofected cells indicated that GFP expression varied in 

intensity and uniformity depending on whether DNA or mRNA was used, with DNA producing 

a wide range of fluorescence and mRNA generating uniform expression in almost all cells 

(Figure 1B and C). To evaluate this in more detail we examined DC by confocal microscopy 24 

h after DNA and mRNA nucleofection. The majority of mRNA-transfected DC showed a similar 

intensity of GFP expression when examined individually by microscopy, whereas GFP 

expression in DNA-transfected DC was highly variable; with some cells having intense 

fluorescence and a majority having weak or undetectable fluorescence (Figure 2). Expression of 

GFP in DNA- or mRNA-transfected DC was cytoplasmic in distribution, as expected (Figure 2). 

Taken together, these data indicate that nucleofection with mRNA is a superior method of 

introducing transgenes into DC both with respect to Ag expression and cell viability.   
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Figure 2.  Expression of GFP in mRNA- and DNA-nucleofected DC. Immature monkey monocyte-derived DC 
were nucleofected with gfp mRNA (A, C) or pEGFP-N1 DNA (B, D) and examined by confocal microscopy 24 h 
later. Shown are GFP expression (left) and differential interference contrast (right). (A,B) Original magnification, 
X200. (C, D) Original magnification, X1500. 
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3.5.2 mRNA nucleofection of DC produces rapid and sustained expression of transgene  

A potential limitation of mRNA transfection of DC for immunotherapy is that mRNA is labile in 

cells and may be degraded rapidly resulting in limited duration of Ag expression. We therefore 

assessed the durability of transgene expression in monkey immature monocyte-derived DC by 

harvesting cells at various intervals after DNA or mRNA transfection and determining the 

proportion of cells expressing GFP by flow cytometry. For these and all other experiments we 

focused on nucleofection as the preferred method of transfection. GFP expression following 

nucleofection of DC with pEGFP-N1 DNA was detectable at 3 h post transfection and 

maintained relatively constant levels of expression from 6 h to 48 h post transfection after which 

the proportion of GFP-expressing cells markedly declined (Figure 3), similar to other reports 

(146, 262).  In contrast, the proportion of monkey DC expressing GFP following nucleofection 

with in vitro-transcribed gfp mRNA reached maximal levels by 3 h and stayed at this high level 

for 96 h, being the duration of the experiment (Figure 3). Similar rapid and sustained kinetics of 

transgene expression were noted in other studies following mRNA delivery to human DC using 

either electroporation or nucleofection (140, 169, 263, 269). These findings indicate that delivery 

of mRNA rather than DNA generates more durable expression of transgene in monocyte-derived 

DC.  
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Figure 3. High-level and durable GFP expression in monkey DC nucleofected with gfp mRNA but not 
pEGFP-N1 DNA. Immature monkey monocyte-derived DC were nucleofected with 10µg gfp mRNA or pEGFP-N1 
DNA and GFP expression determined at various intervals post transfection by flow cytometry.   
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3.5.3 Relationship between DNA and mRNA nucleofection and DC maturation  

Immature DC are specialized in Ag uptake and as such transfection of DC with either DNA or 

mRNA is traditionally done at the immature stage of differentiation. However, it has been 

reported that DNA transfection is more effective in murine DC that have undergone spontaneous 

maturation in culture, and that transfection efficiency is markedly increased with concomitant 

CD40 ligation to induce terminal differentiation (142). To determine the influence of DC 

maturation on transfection efficiency we nucleofected human monocyte-derived DC with DNA 

and mRNA encoding gfp with and without prior treatment of cells with CD40 ligand (CD40L) 

for 24 h to induce maturation. Maturation was confirmed by phenotypic analysis using flow 

cytometry (data not shown). Prior DC maturation did not enhance GFP expression, as 

nucleofection of DC with DNA or mRNA generated similar levels of transgene expression 

regardless of the maturation state at the time of gene delivery (Figure 4A).  

We next evaluated the responsiveness of DNA- and mRNA-nucleofected DC to 

maturation. Human immature DC were nucleofected with pEGFP-N1 DNA or gfp mRNA or mock 

nucleofected and either left untreated or treated immediately with CD40L. Cells were harvested 

and their phenotype analyzed 24 h post nucleofection by flow cytometry. To ensure that the 

phenotype of only transgene-expressing cells was analyzed, cells were gated based on GFP 

expression. Mock-nucleofected immature DC expressed relatively high levels of HLA-DR and 

CD40 and low levels of CD86 and lacked expression of CD80 and CD83, as expected (Figure 4B 

and C) (22). Nucleofection of immature DC with pEGFP-N1 DNA did not induce maturation 

based on phenotype (Figure 4B). However, DC nucleofected with DNA were refractory to CD40L, 

as GFP-expressing DC had negligible increases in CD83, CD86 and CD80 expression following 

CD40 ligation as compared to mock-nucleofected cells (Figure 4B). In contrast, immature DC 
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nucleofected with gfp mRNA had a minor shift in expression of CD83 and CD80 as compared to 

mock-nucleofected DC and  responded normally to subsequent CD40 ligation, with increases in 

CD83, CD86 and CD80 expression similar to mock-nucleofected cells (Figure 4C). These data 

indicate that mRNA-nucleofected DC are responsive whereas DNA-nucleofected DC are 

refractory to maturation.   
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Figure 4. Maturation potential of mRNA-nucleofected or plasmid DNA-nucleofected human monocyte-
derived DC.Maturation potential of mRNA-nucleofected or plasmid DNA-nucleofected human monocyte-derived 
DC. (A) Day 5 immature human monocyte-derived DC were nucleofected with 10µg pEGFP-N1 DNA or 10µg gfp 
mRNA or mock-nucleofected. Cells were either cultured without CD40L (immature) or with the immediate addition 
of CD40L. Day 5 immature human monocyte-derived DC were nucleofected with 10µg pEGFP-N1 DNA (B) or 
10µg gfp mRNA (C) (filled histogram) or mock-nucleofected (empty histogram). Cells were either cultured without 
CD40L (immature) or with the immediate addition of CD40L. 24h post-nucleofection, cells were stained with PE-
labeled mAB and analyzed by flow cytometry.  
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3.5.4 mRNA- but not DNA-nucleofected DC stimulate robust virus-specific T cell 

responses 

A key issue in DC transfection for immunotherapy applications is the capacity to stimulate T cell 

responses to the specific transgene being introduced. This has been evaluated in the past using 

lipofection and electroporation approaches to deliver DNA or mRNA into monocyte-derived DC 

(248, 270); however, the ability to stimulate T cell responses following DNA and mRNA 

transfection of DC via nucleofection, which we have shown is a superior method of transfection, 

has not been compared. To evaluate this, we cultured monocyte-derived DC from a rhesus 

macaque that had a robust CTL response to simian immunodeficiency virus (SIV) Gag through 

vaccination (169). Immature DC were nucleofected with either pGag-N1 DNA encoding native 

SIVmac239 gag or gag mRNA (169) and immediately matured with CD40L  for various 

intervals to induce maturation. Transfected DC were then cultured with autologous PBMC at a 

1:10 ratio in a short-term IFN-γ ELISPOT assay to determine their capacity to stimulate Gag-

specific effector T cells (169). DC that had been nucleofected with wild type gag mRNA 24 h 

earlier induced robust Gag-specific T cell responses with a frequency of greater than 5,000 IFN-γ 

spot-forming cells/million PBMC (Figure 5), similar to the frequency detected using DC pulsed 

with a pool of SIV Gag peptides (169). Importantly, DC that had been nucleofected with gag-

expressing mRNA 48 h previously induced reduced but still strong T cell responses, supporting 

the notion that Ag expressed following mRNA delivery of transgene is processed and presented 

in DC for extended periods. In contrast to mRNA, DC nucleofected with DNA encoding wild 

type gag generated no detectable responses above the non-specific responses generated by DC 

nucleofected with p-EGFP-N1 DNA at either 24 h or 48 h post nucleofection (Figure 5). These 

data indicate that DC nucleofected with viral mRNA present Ag to T cells and stimulate robust 
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virus-specific T cell responses, whereas DC nucleofected with a comparable DNA construct are 

ineffective. 
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Figure 5. Monkey monocyte-derived DC nucleofected with wild-type SIV gag mRNA but not plasmid DNA 
encoding Gag stimulate Ag-specific T cells.Immature DC propagated from an SIV Gag-vaccinated monkey were 
mock-nucleofected or nucleofected with DNA or mRNA encoding GFP or SIVmac239 Gag as indicated and 
matured with CD40L for 24 h (left) or 48 h (right) prior to incubation with autologous PBMC in an IFN-γ ELISPOT 
assay. IFNγ spot-forming cells (SFC) were measured 24 h later. Shown are mean ± SEM of triplicate 
determinations.  
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3.6 DISCUSSION 

Nonviral-based approaches for delivering genes to DC for cancer immunotherapy have distinct 

advantages over recombinant virus-based strategies, in particular because DNA or RNA can be 

amplified directly from tumor and serve as a source of polyvalent patient-specific Ag (12, 104, 

249). This strategy is being employed in the design of therapeutic DC-based vaccines for HIV-1-

infected individuals as well, as viral mRNA expressing patient-derived sequences or sequences 

from SIV-infected monkeys can readily be introduced into monocyte-derived DC for stimulation 

of autologous T cells (169, 266). Our studies confirm that nucleofection is superior to 

conventional electroporation and lipofection for introducing DNA and mRNA into human and 

monkey monocyte-derived DC, although nucleofection offered no advantage over 

electroporation when mRNA was introduced into the K562 cell line. However, mRNA was a 

significantly better source of Ag than was DNA for nucleofection of DC, producing higher level, 

more uniform and more durable Ag expression with limited toxicity.  

The efficiency of nucleofection was such that as little as 5 ug mRNA resulted in almost 

complete transfection of DC, yet up to 20 ug mRNA could be safely delivered without 

compromising cell viability (data not shown). This provides the advantage of being able to 

introduce relatively small amounts of mRNA encoding multiple genes into DC simultaneously, 

such as different patient-derived viral genes for immunotherapy of HIV-1 infection. Alternatively, 

mRNA encoding individual virus or tumor Ag could be introduced together with genes designed to 

enhance DC function and Th1-stimulating capacity, such as OX40 ligand (59) or IL-12p70 (126), 

or to prolong DC survival, such as the gene encoding the anti-apoptotic protein Bcl-xl (111). In 

contrast, increasing the amount of DNA delivered by any means had a negative impact on DC 

viability, and introduction of only single gene into DC would be feasible using this approach.  
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Prior or concurrent maturation of human monocyte-derived DC with CD40L did not alter 

nucleofection efficiency with either DNA or mRNA in our studies, similar to previous reports 

(146, 178). It is possible that human and murine DC behave differently in this regard, as Larregina 

et al. reported that simultaneous transfection and CD40-mediated maturation of murine bone 

marrow-derived DC significantly enhanced DNA transfection efficiency (142). In fact, human DC 

nucleofected with DNA are refractory to maturation with CD40L, as we now show, or 

lipopolysaccharide (146). These effects are likely to be associated with the toxicity of DNA in DC, 

which results in reduction in the proportion of viable DC expressing Ag over time due to cell death 

(146).  In contrast, DC nucleofected with mRNA were fully responsive to CD40 ligation, similar to 

other reports (146, 169). These studies suggest that mRNA-based delivery of genes will retain DC 

viability and responsiveness to maturation stimuli that are critical for T-cell stimulatory capacity, 

whereas delivery of Ag via DNA could potentially be deleterious. 

A critical factor in gene transfection of DC for immunotherapy is the capacity for sustained 

presentation of Ag to tumor- or virus-specific T cells. We found that DC nucleofected with wild 

type SIV Gag Ag via mRNA nucleofection 24 h earlier stimulated strong Gag-specific effector T 

cell responses in a vaccinated monkey. Importantly, significant T cell responses were induced 48 h 

after introduction of mRNA into DC, reflecting the stable presentation of Ag in nucleofected cells. 

Similarly, B lymphoblastoid cells transfected with mRNA encoding a codon-optimized HIV-1 nef 

protein had undiminished capacity to stimulate Nef-specific T cells for at least 72 h post 

transfection (129). This durable Ag presentation by mRNA-transfected DC should be sufficient for 

DC to traffic to lymph nodes and engage Ag-specific T cells following intradermal or 

subcutaneous delivery to patients (177, 256). In contrast, DC nucleofected with DNA encoding 

Gag Ag were unable to induce a detectable Gag-specific T cell response in the same animal at 

 51 



either 24 h or 48 h post transfection. Similarly, human DC expressing mRNA-encoded influenza 

matrix protein by electroporation were far superior in their capacity to stimulate M1-specific CTL 

as compared to DC expressing DNA-encoded Ag (248). In other studies, human DC transfected 

with DNA encoding human tumor-associated Ag were capable of stimulating Ag-specific CTL 

lines or priming autologous tumor-specific T cells (12, 262). It is possible in our studies that T cell 

stimulation would have been enhanced if DNA encoding codon-optimized viral Ag was used to 

transfect DC. However, we believe the use of wild type Ag derived directly from an infected 

individual provides a more relevant and robust test of DC-stimulatory capacity than does codon-

optimized Ag, given the likely emphasis on autologous viral Ag in immunotherapy for HIV-1 

(169, 266).  

These data indicate that nucleofection of primary DC cultures with mRNA is an effective 

and non-perturbing means of delivering Ag for DC-based immunotherapy of cancer or infectious 

diseases, providing uniform and sustained Ag expression and presentation for stimulation of Ag-

specific T cell. In contrast, while nucleofection is a more effective means of introducing DNA into 

DC than other methods, the resulting low viability, refractoriness to maturation, and poor T cell-

stimulating capacity of transfected DC makes this approach highly unfavorable.   
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4.2 SUMMARY 

A potentially powerful strategy for therapeutic HIV-1 vaccination is the use of DC transfected 

with mRNA encoding autologous viral Ag, as epitopes presented by transfected DC would 

exactly reflect those expressed by infected cells in the individual. Using human and rhesus 

macaque monocyte-derived DC we show that nucleofection is a superior method for mRNA 

transfection resulting in high level protein expression and DC maturation. DC transfected with 

SIV gag isolated from an infected monkey stimulated robust Ag-specific recall T-cell responses 

of similar magnitude to those induced by peptide-pulsed PBMC that were predominantly CD8+ 

T-cell mediated. Enhanced CD4+ T -cell responses could be stimulated when Gag was redirected 

into the lysosomal pathway via the targeting signal derived from lysosome-associated membrane 

protein-1 (LAMP-1). Rhesus DC transfected with lysosome-targeted gag encoding an escape 

mutation in an immunodominant CTL epitope stimulated CD4+ and CD8+ T-cell responses of 

almost equivalent magnitude directed towards undefined epitopes outside of the mutated region. 

Finally, gag-transfected DC from SIV-infected monkeys stimulated significant Ag-specific recall 

T cell responses in an entirely autologous system. These findings demonstrate that mRNA-

transfected DC expressing SIV Ag derived from infected monkeys stimulate broad and relevant 

T-cell responses, supporting this approach for therapeutic HIV-1 vaccine development.  
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4.3 INTRODUCTION 

It is well appreciated that strong CD4+ and CD8+ T-cell  immunity is required for control of 

HIV-1 infection (31, 136, 153, 223, 235) , and therapeutic vaccines designed to promote broad 

cellular immune responses are being actively pursued (275). However, an important challenge in 

the development of vaccines for HIV-1 is the diversity of clinical isolates (83) coupled with the 

propensity for the virus to undergo escape mutations in T-cell epitopes through selective pressure 

in vivo (92). Hence, CTL induced in response to the infecting strain may be incapable of 

controlling circulating virus as infection progresses (4, 32, 89, 198). To account for this 

complexity, a therapeutic vaccine should be tailored towards the autologous virus present in an 

individual at the time of immunotherapy. 

DC are professional APC capable of Ag uptake, processing and presentation and are 

attractive candidates in the development of vaccines (13, 14). In vitro studies have demonstrated 

that DC transduced via viral vectors or pulsed with inactivated viral particles are effective at 

stimulating HIV-1-specific CTL responses (71, 156). Moreover, vaccination of rhesus macaques 

with DC expressing SIV or HIV-1 Ag induces broad virus-specific cellular responses which 

promote protection against pathogenic virus challenge (35, 155, 158, 190, 273). These 

prophylactic vaccine approaches have been based on well characterized strains of virus that may 

not be suitable for therapeutic vaccination as epitopes expressed by DC may not represent those 

in the infected individual. Efforts to include autologous viral Ag in therapeutic vaccines have 

relied on inactivated virus particles propagated from individual patients (157); however, this 

procedure is labor-intensive and may not uniformly lead to sufficient virus recovery for DC 

loading in all patients.  
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An attractive alternative source of viral Ag for therapeutic DC-based vaccination is 

mRNA, an approach that has been developed in the cancer immunotherapy field (139, 249). DC 

transfected with codon-optimized HIV-1 mRNA have been shown to induce strong T-cell 

immune responses in vitro (266, 279) with enhanced CD4+ T-cell responses arising from DC 

expressing lysosome-targeted Ag (129). DC transfected with autologous viral mRNA isolated 

from HIV-1-infected individuals induce significant virus-specific T-cell responses (266). The 

rhesus macaque SIV model provides an ideal preclinical setting to test the therapeutic potential 

of DC-based vaccines using virus-derived mRNA. Here, we evaluated the capacity of mRNA-

transfected DC to stimulate T cell responses against SIV using an in vitro system. We adopted a 

new electroporation method to generate high level expression of gag mRNA isolated during 

infection, and assessed the efficacy of mRNA-transfected DC bearing the lysosomal- associated 

membrane protein-1 (LAMP-1) targeting signal to induce both Ag-specific CD8+ and CD4+ T-

cell responses. To provide a realistic test of the therapeutic potential of viral mRNA as an Ag 

source, we measured T-cell immunity induced by mRNA-transfected DC expressing a virus 

escape mutation acquired during infection.   
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4.4 MATERIALS AND METHODS 

4.4.1 Plasmid and mRNA generation  

gfp was subcloned from pGEM4Z/GFP/A64 (27, 28) into pSP73-Sph/A64 (183, 184) using 

BamHI to generate pSP73/GFP/A64. Similarly, gfp was subcloned into pSP73/gp96ss/LAMP-

1/A64 using Sfil to generate pSP73/GFP-LAMP-1/A64.  For the initial generation of Gag-

encoding plasmids, PBMC were isolated from a rhesus macaque 2-weeks post infection with 

SIVmac239 and cellular DNA extracted using DNeasy tissue kit (Qiagen, Chatsworth, CA). For 

all other Gag-expressing plasmids, cell-free plasma was isolated from monkeys infected with 

SIVmac251 or SIV/DeltaB670 and viral RNA isolated using QIAMP viral RNA kit (Qiagen). 

Samples from a total of 12 infected monkeys with virus loads ranging from 102 to 5.5 x 106 RNA 

copies/ml plasma were used over the course of the study. Approval was obtained from the 

institutional animal use and care committee for all experiments involving rhesus macaque 

samples. The gag gene from each virus was amplified by PCR using gene-specific primers and 

subsequently subcloned into the pSP73 vector to generate pSP73/mac239Gag/A64, 

pSP73/mac251Gag/A64, pSP73/B670Gag(T182I)/A64 and pSP73/B670Gag/A64, depending on 

the particular virus isolate. Influenza HA was tagged to SIVmac239 Gag to generate pSP73/Gag-

HA/A64. gag from SIVmac239, SIV/DeltaB670 inoculum and SIV/DeltaB670 Gag (T182I) 

were additionally cloned into the pSP73-LAMP-1 vector to generate pSP73/GAG-LAMP-1/A64, 

pSP73/B670GAG-LAMP-1/A64 and pSP73/B670GAG (T182I)-LAMP-1/A64, respectively. gag 

sequences encoding amino acids 159-252 from SIV/DeltaB670 encompassing either wild-type or 

mutated CM9 sequences were subcloned into pSP73 as above to generate pSP73/B670Gag159-

252/A64 and pSP73/B670Gag159-252(T182I)/A64, respectively. For generation of mRNA, 
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pSP73/GFP/A64 was linearized with SpeI, whereas all Gag-expressing plasmids were linearized 

using NotI. In vitro transcription was done with T7 polymerase using the mMessage Machine kit 

(Ambion, Austin, TX). Purification of in vitro transcribed mRNA was performed by DNase I 

digestion followed by LiCl precipitation and a 70% ethanol wash. The quality of mRNA was 

checked by agarose formaldehyde gel electrophoresis. mRNA concentration was assayed by 

spectrophotometry (GeneQuant pro, Amersham Pharmacia Biotech, Little Chalfont, UK) at 

OD260.  

4.4.2 Propagation and transfection of DC 

Approval was obtained from the institutional review board prior to experiments involving human 

samples. DC were cultured from purified blood monocytes of SIV-naïve or SIV-infected rhesus 

macaques or healthy human volunteers using 1,000 U/ml GM-CSF (Berlex Laboratories, Inc., 

Richmond, CA) and 1,000 U/ml IL-4 (Schering-Plough, Kenilworth, NJ) as described (22). DC 

were transfected at day 5 of culture. For transfection using the TransFastTM Transfection reagent 

(Promega, Madison, WI) or TransMessenger reagent (Qiagen, Valencia, CA), 4 µg GFP mRNA 

was used with Opti-MEM (Gibco Invitrogen Corporation, Frederick, MD) and other reagents 

provided by the manufacturers and 106 DC transfected as per each manufacturer’s instructions.  

For electroporation, 2 x 106 DC in Opti-MEM were mixed with 10 µg GFP mRNA and 

electroporated in a 0.4-cm cuvette using the Gene Pulser II Electroporation System (Bio-Rad, 

Hercules, CA) at a voltage of 300 V and a capacitance of 150µF. For nucleofection using Amaxa 

nucleofector (Amaxa, Koln, Germany), 10-20 µg mRNA was added to 1-2 x 106 DC in Opti-

MEM and transfected in a 2 mm-wide electroporation cuvette (BTX, San Diego, CA) using the 

U-02 program. Smaller amounts of mRNA were used for lipofection as compared to 
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electroporation and nucleofection as toxicity was noted at higher amounts with the former 

methods (data not shown). Following transfection with the various methods, cells were cultured 

in fresh RPMI with 10% FCS, L-glutamine, sodium pyruvate, nonessential amino acids, 

penicillin-streptomycin and 10 mM HEPES buffer (complete media) supplemented with GM-

CSF and IL-4 for 24 h. In some experiments DC were matured for 24 h immediately following 

transfection with 3 μg/ml recombinant trimeric CD40L (Immunex, Seattle, WA) as described 

(22). 

4.4.3 Flow cytometric analysis 

GFP expression was measured in transfected DC by flow cytometry at various intervals after 

transfection using a Beckman Coulter cytometer (Miami, FL). For immunophenotyping of DC, 

cross-reactive mAb to human HLA-DR, CD80, CD83, CD86 (all from BD Pharmingen, San 

Diego, CA) and CD40 (Ancell, Bayport, MN ) were used as described (22).  

4.4.4 Detection of Gag expression 

24 h post-transfection with gag or gag-HA mRNA, monkey DC were lysed and lysates were 

separated by gel electrophoresis and transferred to nitrocellulose membrane or polyvinylidine 

difluoride membrane (Bio-Rad), respectively. Gag p17 was detected by probing cell lysates with 

p17-specific mAb KK59 followed by HRP-conjuguated anti-mouse IgG (Bio-Rad). Gag-HA was 

detected by mAb anti-HA-Peroxidase (12CA5) (Roche Applied Science, Indianapolis, IN).  

Development was performed using the Immun-StarTM HRP Substrate kit (Bio-Rad).  
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4.4.5 ELISPOT assay 

Previously frozen PBMC were pulsed with pools of 15-mer peptides spanning the entire 

sequence of SIVmac239 Gag protein or influenza HA (Sigma Genosys, Woodlands, TX) and 

IFN-γ production detected 24 h later by ELISPOT assay as described (21). For assays using 

peptide-pulsed DC, monkey DC were matured with CD40L for 24 h as above and incubated with 

Gag or HA peptides (5 µg /ml) for 1 h at 37oC. Cells were washed and incubated with PBMC at 

a 1:10 ratio in the ELISPOT assay. For experiments using mRNA transfected DC, DC were 

transfected with gag or gfp mRNA or mock transfected (nucleofected in the absence of mRNA) 

and matured with CD40L for 24 h prior to incubation with PBMC. Where indicated, transfected 

DC were incubated with PBMC depleted of CD4+ T cells (CD4 microbeads, Miltenyi Biotec, 

Auburn, CA) or CD8+ T cells (CD8 microbeads, Miltenyi Biotec), as described (35). Depletions 

were >90% efficient for each T-cell subset (35). The same total number of cells was added to 

wells irrespective of depletion conditions.  

4.4.6 Statistics 

We used non-parametric tests (Wilcoxon) to test the difference in median between autologous 

Gag-specific T –cell responses and GFP-induced T-cell responses.  

 

 

 62 



4.5 RESULTS 

4.5.1 Human monocyte-derived DC express high levels of Ag following nucleofection  

Given the variety of approaches that have been devised for DC transfection, from lipid- based to 

electroporation based-methods, we first sought to optimize mRNA transfection of DC. In initial 

experiments, we used human monocyte-derived DC transfected with gfp mRNA generated from 

the linearized plasmid pGEM4Z/GFP/A64 (27). DC were propagated from purified monocytes 

(22) and cultured for 5 days at which time they were transfected by standard electroporation, 

TransFastTM lipofection, TransMessenger lipofection and nucleofection. Expression of GFP was 

measured 24h later by flow cytometry. Transfection efficiency ranged from no to moderate 

expression of GFP following the standard methods of electroporation and lipofection consistent 

with earlier reports (248) (Figure 6A). In contrast, 92% of DC expressed GFP following 

nucleofection with  mRNA, similar to findings in murine macrophages (265) (Figure 6A). GFP 

expression was detected as soon as 3h and peaked at 24h post-nucleofection (Figure 6B). 48h 

post-nucleofection, 70% of human DC still expressed GFP, similar to previous findings (269).  
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Figure 6.  Efficient mRNA transfection of human monocyte-derived DC via nucleofection. (A) Immature 
human monocyte-derived DC were transfected with gfp mRNA (filled histogram) or mock transfected (empty 
histogram) using electroporation, TransfastTM lipofection, TransMessenger Transfection reagent or nucleofection, 
and GFP expression determined 24h later.  (B) Immature human monocyte-derived DC were nucleofected with gfp 
mRNA or mock-nucleofected and expression of GFP determined at 3, 24 and 48h post-nucleofection. Numbers 
represent the percent of DC transfected based on mock transfection. 
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4.5.2 Efficient mRNA transfection of DC from SIV-infected monkeys 

We next evaluated the capacity of nucleofection to transfect rhesus macaque monocyte-derived 

DC. As for human DC, DC cultured from blood of SIV-naïve monkeys were readily transfected 

with mRNA, with 73% of cells expressing GFP protein within 24 h (Figure 7A). Given that our 

goal is to use mRNA-transfected DC during SIV infection, we next determined whether SIV 

infection itself affects the capacity for DC to be transfected with mRNA. DC were propagated 

from pooled cryopreserved monocytes taken between 3 and 45 weeks post infection of a rhesus 

macaque with SIV/DeltaB670 (virus load ranged from 102 to 5 x 105 RNA copies/ml plasma 

over this time), and from monocytes collected at 27 weeks post infection from a macaque with 

neuroAIDS following SIVmac251 infection (virus load 1.2 x 106 RNA copies/ml plasma), and 

nucleofected with gfp mRNA as above. There was no evidence for reduction in mRNA 

transfection in either sample, as evidenced by high level GFP expression (Figure 7A). These data 

indicate that SIV infection does not impact the capacity for monocyte-derived DC to be 

transfected, even when cells are propagated from animals in the advanced stages of disease. We 

next evaluated the effect of diverting Ag into the lysosomal/endosomal pathway on protein 

expression in transfected DC.  We first subcloned gfp from pGEM4Z/GFP/A64 into the 

pSP73/gp96ss/LAMP-1/A64 vector encoding the targeting signal of LAMP-1. SIV-naïve rhesus 

macaque monocyte-derived DC were then nucleofected with mRNA expressing GFP with and 

without LAMP-1 targeting signal and analyzed at 24h post-nucleofection. GFP expression was 

substantially decreased in DC transfected with endosome-targeted GFP as compared to controls, 

dropping from 88% to 15% (Figure 7B). These data are consistent with a rapid processing of 

endogenously produced protein when it is directed into the endosome (226).  
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Figure 7. Efficient mRNA transfection of DC propagated from monkeys with and without SIV infection. 
 (A) DC were propagated from an SIV-naïve macaque (top), from pooled monocytes taken from a macaque at 3 – 45 
weeks post SIV infection (middle) or from monocytes taken 27 weeks post SIV infection from a monkey with 
neuroAIDS (bottom), and nucleofected with gfp mRNA or mock-nucleofected. Expression of GFP was determined 
24 h later. (B) Monocyte-derived DC propagated from an SIV-naïve rhesus macaque were nucleofected with gfp 
mRNA (bold line), gfp-LAMP-1 mRNA (dotted line) or mock-nucleofected (filled histogram) and expression of 
GFP determined 24h later. Numbers represent the percent of DC nucleofected based on mock-transfection.  
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4.5.3 mRNA nucleofection induces phenotypic DC maturation 

Transfection of immature human DC with mRNA via lipofection but not electroporation has 

been reported to induce maturation (43, 103, 128, 269, 278). To test the effect of mRNA 

nucleofection on maturation of DC, we analyzed the phenotype of nucleofected monkey DC with 

and without stimulation with CD40L. Nucleofection of immature DC with gfp mRNA, but not 

mock nucleofection, led to expression of CD80 and CD83 and upregulation of CD86 and CD40 

indicative of maturation (Figure 8). Expression of CD83 was moderately enhanced when mock- 

or mRNA–transfected DC were exposed to CD40L based on a more pronounced shift in CD83 

expression (Figure 8). These data indicate that mRNA transfection induces DC maturation, but 

that other exogenous stimuli known to induce maturation may provide additional benefits.  

 

 

 

 

 

  

 67 



 

Figure 8. Nucleofection of monkey monocyte-derived DC results in phenotypic maturation. Day 5 immature 
monocyte-derived DC propagated from an SIV-naïve rhesus macaque were nucleofected with gfp mRNA (filled 
histogram) or mock-nucleofected (empty histogram), and then cultured without CD40L (upper row) or with the 
immediate addition of 3 µg/ml CD40L (lower row). At 24h post-nucleofection, cells were stained with PE-labeled 
mAb as shown and analyzed by flow cytometry.  
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4.5.4 Efficient T cell stimulation using DC expressing wild-type gag mRNA  

We next sought to determine whether wild-type, non codon-optimized SIV gag mRNA could be 

efficiently expressed in monkey DC, which is an important criterion for using autologous virus 

as a source of Ag. To test for expression of Gag protein in mRNA-transfected DC, we isolated 

PBMC from a rhesus macaque 2 weeks post-infection with SIVmac239 and amplified gag from 

cellular DNA. Virus replication in vivo over this 2-week period had no impact on the sequence of 

the gag gene, as no mutations were detected when compared to the published SIVmac239 Gag 

sequence (data not shown). gag cDNA was subsequently cloned into pSP73-Sph/A64 and 

mRNA generated for nucleofection of immature DC. 24h post-nucleofection, Gag protein was 

readily detected in cell lysates as determined by western blotting with SIV p17-specific mAb 

KK59 (Figure 9A). Similarly, Gag protein could be detected in lysates following transfection of 

cells with gag mRNA linked to an influenza hemagglutinin (HA) tag and labeling with an HA-

specific mAb (Figure 9A).  

To determine the capacity of mRNA-transfected monkey DC to stimulate Gag-specific T-

cell responses, we nucleofected SIVmac239 gag mRNA into DC propagated from a healthy 

monkey (R187) that had been immunized with a recombinant adenovirus-based vaccine (21). This 

monkey expressed the MHC class I allele Mamu-A*01 and had a robust CTL response to the 

immunodominant SIV Gag epitope CM9181-189 (173) (data not shown). SIV gag mRNA-transfected 

DC stimulated a strong IFN-γ response from autologous PBMC that was Gag-specific; as 

negligible T cell reactivity was noted when PBMC were stimulated either with gfp mRNA-

transfected or mock-transfected DC (Figure 9B). This level of T-cell reactivity was similar to that 

induced when PBMC were pulsed with peptides spanning the entire SIVmac239 Gag protein, the 

standard method for inducing virus-specific T-cell responses (21) (Figure 9B).  DC pulsed with 
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Gag peptides, but not a control panel of HA peptides, generated slightly more robust responses 

(Figure 9B).  We next addressed whether these recall responses were CD4+ or CD8+ T-cell 

mediated and the effect of redirecting Gag to the lysosome on these responses. DC from R187 

nucleofected with SIVmac239 gag mRNA induced Gag-specific T-cell responses that were almost 

exclusively CD8+ T-cell mediated based on cell depletion experiments (Figure 9C).  In contrast, 

DC nucleofected with gag-LAMP-1 mRNA produced similarly strong CD8+ T-cell mediated 

responses but a greater CD4+ T-cell responses to Gag (Figure 9C). The enhanced T-cell response 

noted with either gag or gag-LAMP-1 transfection when CD4+ T cells were depleted is likely due 

to the concurrent enrichment of CD8+ T cells in these conditions, as found in our previous studies 

(21, 35). Together, these data demonstrate that DC nucleofected with wild-type SIV gag mRNA 

efficiently present Ag to virus-specific T cells and that redirecting Gag Ag to the lysosomal 

pathway enhances CD4+ T-cell responses, consistent with previous reports (129, 251, 250). 
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Figure 9. DC nucleofected with wild-type SIV gag mRNA stimulate antigen-specific T cells. 
 (A) Left panel: Immature monkey monocyte-derived DC were nucleofected with SIV gag mRNA isolated from an 
infected monkey or mock-nucleofected and cell lysates probed with p17-specific mAb KK59 24h later. Right panel: 
Immature monkey monocyte-derived DC were nucleofected with SIV gag mRNA, SIV gag-HA mRNA or mock-
nucleofected and cell lysates probed with anti-HA mAb 24 hours later. (B) PBMC from a healthy Gag-vaccinated 
Mamu-A*01-expressing rhesus macaque (R187) were pulsed with pools of Gag or HA peptides, or incubated with 
DC pulsed with Gag or HA peptides, or DC nucleofected with SIV mac239 gag or gfp mRNA, and IFN-γ 
production detected 24h later by ELISPOT. Shown are mean ± SEM of triplicate determinations. (C) DC from R187 
were nucleofected with mRNA encoding SIVmac239 gag, gag-LAMP-1 or gfp and incubated with autologous 
PBMC with or without Ab-mediated depletion of CD4+ or CD8+ T cells in an ELISPOT assay. Shown are mean ± 
SEM of triplicate determinations.  SFC=spot-forming, dep=depleted.  
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4.5.5 T cell stimulation using DC expressing Gag encoding a CTL escape mutation 

The advantage of using autologous virus as a source of Ag in a therapeutic HIV-1 vaccine is the 

capacity to present relevant epitopes to the immune system, particularly in the event of virus 

escape. To evaluate this capacity in our system, we next expressed gag isolated from a Mamu-

A*01-expressing macaque M2201 that contained a threonine to isoleucine escape mutation at 

amino acid 182 within the immunodominant CM9 epitope 15 weeks after infection with the 

uncloned pathogenic isolate SIV/DeltaB670 (21). To provide a relevant comparison to previous 

experiments, we continued to use DC and PBMC from the healthy Gag-vaccinated Mamu- 

A*01-expressing macaque R187. As expected, DC nucleofected with mRNA encoding 

SIVmac239 gag or gag cloned from SIV/DeltaB670 inoculum (B670 gag) stimulated robust 

Gag-specific recall T-cell responses (Figure 10A). In contrast, DC transfected with gag mRNA 

isolated from animal M2201 at 15 weeks post-infection and encoding the CM9 epitope escape 

mutation (referred to as B670 gag (T182I)), induced substantially reduced T-cell responses 

(Figure 10A). gfp mRNA-transfected or mock-transfected DC  stimulated background IFN-γ 

release from PBMC, as expected (Figure 10A). To document that the T-cell response to DC 

transfected with B670 gag (T182I) mRNA was directed to epitopes other than CM9, we 

generated shorter sequences of mRNA from the inoculum and escape viruses. DC transfected 

with B670 gag159-252 mRNA, encoding intact CM9 but no other known Mamu-A*01-restricted 

CTL epitopes, stimulated strong T-cell responses, whereas DC transfected with B670 gag159-

252(T182I) mRNA encoding mutant CM9 induced no detectable response, similar to gfp- or 

mock-transfected DC (Figure 10A). Similar results were obtained when DC were pulsed with 

wild-type CTPYDINQM peptide as compared to peptide CIPYDINQM containing the threonine 

to isoleucine mutation at position 2 (data not shown), indicating that the difference in T cell 
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response was not due to differential expression of the various mRNA constructs. These findings 

confirm that DC transfected with gag mRNA containing an escape mutation in the 

immunodominant CM9 epitope presented intact subdominant epitopes for stimulation of T cells. 

We next determined the impact of lysosome- targeting of Gag protein on the resulting T- 

cell responses to mutant Gag. DC from R187 nucleofected with B670 gag but not gfp induced 

Gag-specific T-cell responses that were primarily CD8+ T-cell mediated, as expected. In contrast, 

both CD8+ and CD4+-mediated T-cell responses were induced by DC nucleofected with B670 gag-

LAMP-1 mRNA (Figure 10B). The effect of lysosome targeting on the CD4+ T cell response was 

even greater when gag mRNA encoding the mutated CM9 epitope was expressed as a lysosomal 

protein via B670 gag (T182I)-LAMP-1 mRNA, with almost equivalent CD4+ and CD8+ T-cell 

responses being generated (Figure 10B).  
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Figure 10. DC nucleofected with SIV gag or gag-LAMP-1 mRNA encoding a mutated immunodominant CTL 
epitope induce T-cell responses to undefined subdominant epitopes mediated by both CD4+ and CD8+ T cells. 
 (A) Left: DC from a healthy Gag-vaccinated Mamu-A*01-expressing rhesus macaque (R187) were nucleofected 
with mRNA encoding SIVmac239 gag, SIV/DeltaB670 gag (B670 gag), SIV/DeltaB670 gag with T182I mutation 
(B670 gag (T182I)), or gfp and used in an ELISPOT assay with autologous PBMC. IFN-γ producing cells were 
enumerated 24h later. Right: DC from R187 were nucleofected with mRNA encoding SIV/DeltaB670 gag159-252 
(B670 gag159-252), SIV/DeltaB670 gag159-252 with T182I mutation (B670 gag159-252 (T182I)) or gfp and used 
in an ELISPOT assay as above. (B) DC from R187 were nucleofected with  B670 gag, B670 gag-LAMP-1,  B670 
gag (T182I), B670 gag(T182I) –LAMP-1 or gfp  mRNA and used with autologous PBMC with and without Ab-
mediated depletion of CD4+ or CD8+ T cells in an ELISPOT assay as above.  Shown are mean ± SEM of triplicate 
determinations.  SFC=spot-forming, dep=depleted.  
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4.5.6 DC expressing autologous gag mRNA stimulate Ag-specific T-cell responses  

We next tested the ability of mRNA-transfected DC to stimulate virus-specific T-cell responses 

in an entirely autologous system. We first determined the ease with which gag could be 

amplified from blood of SIV-infected monkeys. We were able to recover gag from cell-free 

plasma from 11/11 SIV-infected monkeys with virus loads as low as 102 RNA copies/ml plasma 

(data not shown), indicating that recovery of gag from infected plasma is remarkably efficient. 

DC were subsequently propagated from 3 macaques infected with SIV/DeltaB670 (M2201, 

M2301, and M7801) and 2 macaques infected with SIVmac251 (R484, R486). Plasma harvested 

at week 15 post-infection from the first group and week 4 post-infection from the second group 

was used to amplify the predominant gag sequence from viruses present in each animal. gag was 

then subcloned into the pSP73-Sph/A64 vector for mRNA generation and DC transfection. 

mRNA- or mock-transfected DC were then incubated with autologous PBMC from each animal 

in an ELISPOT assay. DC transfected with autologous gag mRNA induced greater T-cell 

responses than DC transfected with gfp mRNA in each animal (Figure 11A), and this difference 

was statistically significant when compared across all animals combined (P=0.043; Figure 11B). 

Notably, in animals M7801 and M2201 which provided sufficient DC for additional control 

conditions, gfp- and mock-transfected DC stimulated similar background levels of IFN-γ release 

from autologous PMBC (Figure 11A). This finding confirms that mRNA transfection in itself did 

not negatively or positively impact the capacity of DC to stimulate T cells. The magnitude of 

individual responses to Gag was not associated with virus load (data not shown).  These data 

confirm that DC transfected with mRNA encoding Gag Ag isolated during infection can 

stimulate significant autologous T-cell responses.  
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Figure 11. DC nucleofected with gag mRNA isolated from infected monkeys induce significant Gag-specific 
T-cell responses from autologous PBMC. 
 (A) Immature DC propagated from SIV-infected rhesus macaques as shown were nucleofected with mRNA 
encoding autologous gag or gfp (five animals) or mock-nucleofected (two animals) and used as stimulators of 
autologous PBMC in an IFN-γ ELISPOT assay. Shown are mean ± SEM of triplicate determinations. (B) 
Comparison of IFN-γ release from autologous PBMC in response to gag- or gfp-transfected DC for all five animals 
combined. Shown are mean ± SEM of triplicate determinations. SFC: spot-forming cells.  
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4.6 DISCUSSION  

The need for a therapeutic vaccine for HIV-1 is apparent given the inability of antiretroviral 

therapy to eradicate virus in infected individuals (48, 75). However, virus diversity coupled with 

emergence of escape mutants during the course of infection in infected individuals suggest that 

the source of Ag in such vaccines is critical (2, 92, 274). Here we complement recent in vitro 

studies in humans (129, 266) by showing that monkey monocyte-derived DC expressing viral 

mRNA isolated during SIV infection stimulate strong and broad virus-specific T-cell responses 

even in the face of virus escape, with an enhancement of the CD4+ T-cell response seen when Ag 

is targeted to the lysosome.  

We found that nucleofection was a superior method to introduce mRNA into monkey and 

human monocyte-derived DC, with electroporation and lipofection providing relatively poor 

levels of Ag expression. Nucleofection has been used for DNA transfection of human DC and 

cytokine-induced killer cells (56, 182) as well as mRNA transfection into primary rat neurons 

and murine macrophages cell lines (82, 265). Other reports have indicated that electroporation is 

relatively efficient at transfecting human DC with mRNA although results have been somewhat 

variable (129, 229, 266, 269). mRNA transfection of immature monocyte-derived DC by 

nucleofection induced significant maturation as evidenced by expression of CD83 and CD80 and 

upregulation of CD40 and CD86. Similarly, DC transfected with mRNA via lipofection or 

simple pulsing undergo phenotypic maturation (43, 103, 128, 279). DC maturation is thought to 

be mediated by mRNA binding to endosomal TLR3 by regions of double stranded secondary 

structures (43, 128). In contrast, mRNA transfection of human monocyte-derived DC via 

electroporation does not appear to induce maturation (269) although the reason for this 

discrepancy is unclear. Despite the maturation induced through mRNA nucleofection we found a 
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modest enhancement of expression of CD83 following ligation of CD40, suggesting that 

maturation via mRNA transfection can be augmented by other stimuli. It is likely that agonists of 

other TLR such as TLR8 may synergize with mRNA to activate DC, as combined ligation of 

TLR3 and TLR8 appears to produce optimal maturation of myeloid DC (187).  

We found that recovery of virus cDNA for mRNA generation is an efficient process even 

when samples are isolated from monkeys with very low virus loads, indicating that this approach 

may be preferable to cell culture techniques for the generation of autologous virus Ag (157). 

However, the use of autologous virus Ag in itself is technically demanding, requiring the 

recovery of virus sequences from each individual. Nevertheless, autologous virus Ag does offer 

several potential advantages for immunotherapy over alternatives based on artificial sequences 

encoding a centralized (consensus or ancestral) gene, which have been put forward as a vaccine 

strategy to address HIV-1 diversity  (83). Firstly, using DC transfected with autologous virus Ag 

expressing mutated immunodominant CTL epitopes leads to stimulation of CTL specific for 

subdominant epitopes, as we have shown, and such epitopes are known to be important in virus 

control (76). While conserved subdominant epitopes would also be expressed by centralized 

sequences, using the latter in therapeutic vaccines in the face of immune escape could have a 

negative effect, as CTL specific for immunodominant epitopes present in the consensus sequence 

will be preferentially expanded (204). This may occur even as long as 4 weeks following 

complete replacement of circulating virus with escape mutants (21). Secondly, de-novo 

generation of novel CTL epitopes can arise from mutated immunodominant epitopes (6), and 

these novel epitopes would not be presented by DC transfected with centralized sequences. The 

value of reagents based on autologous virus over consensus sequences in stimulating enhanced 

CTL responses to variable regions of HIV-1 has been demonstrated in vitro using comprehensive 
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panels of overlapping peptides (7). Whether autologous virus Ag provides a clinical advantage 

over centralized Ag awaits comparative DC-based immunotherapy studies in HIV-1-infected 

individuals.  

It is important in therapeutic vaccination for HIV-1 that virus-specific CD4+ T-cell 

responses be expanded, as these are critical in maintenance of CTL (205, 223, 227). Our results 

indicate that lysosome-targeting of protein leads to reduced expression of the intact protein in 

transfected cells, but enhanced stimulation of virus-specific CD4+ T cells, consistent with 

previous findings (129). The effect of targeting viral Ag to the lysosome on the relative 

magnitude of the CD4+ T-cell responses was amplified with the loss of an immunodominant 

CTL epitope naturally acquired during SIV infection. Overall, these data support the use of 

lysosome-targeted autologous viral Ag in DC-based therapeutic vaccination for HIV-1.  
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5.1 PREFACE 

The following work was performed to elucidate the effect of costimulatory molecules on 

antigen-specific T cell responses. We show in this section that OX40L and CD70 did not 

improve Gag-specific T cell responses in SIV-naïve as well as SIV-infected monkeys in vitro.  

 

Nada M. Melhem ran all experiments and wrote this chapter. Plasmid generation and real-time 

PCR were done by Xiang Dong Liu. This study is in partial fulfillment of specific aim 3. 
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5.2 ABSTRACT 

The goal of HIV-1 therapeutic vaccine is to stimulate strong CTL and Th cell responses. DC-

based vaccines have been widely studied and we and others reported on the capability of mRNA 

transfected-DC encoding viral antigen to induce antigen-specific T cell responses in vitro. In this 

report, we wanted to investigate whether we can enhance the immunostimulatory functions of 

monkey monocyte-derived dendritic cells (DC) propagated from SIV-infected macaques by 

transfecting cells with one or two mRNA encoding OX40L or CD70, members of the tumor-

necrosis factor receptor family (TNFR). We show that the endogenous expression of these 

molecules is higher in mature DC or DC transfected with gag mRNA, as compared to cells in 

their immature state. When CD40L was immediately added following nucleofection with gag 

mRNA, endogenous expression of OX40L and CD70 was improved. Compared to cells derived 

from SIV-naïve macaques, DC propagated from SIV-infected animals followed the same trend 

for endogenous expression of costimulatory molecules but with lower values. We show 

expression of OX40L and CD70 by western blot analyses following nucleofection of monkey 

DC with the respective mRNA. In addition, transfection of DC with more than one gene does not 

impact their translational efficiency. Unexpectedly, our results indicate that DC cotransfected 

with gag mRNA as well as CD70 or OX40L mRNA did not improve the immunostimulatory 

capability of DC derived from chronically infected macaques. We suggest further in vitro 

investigations to confirm the role of these molecules during chronic SIV infection.  
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5.3 INTRODUCTION 

There is increasing evidence that the tumor necrosis factor receptor family (TNFR), including 

important costimulatory molecules, have the ability to promote the quality of T cell responses 

and improve T cell memory (243, 276). This is particularly important when designing a 

therapeutic vaccine for HIV-1 because the quality and the magnitude of T cell responses are 

expected to decline with the progress of infection (37). The TNFR family contains several 

molecules.  In this study, we are interested in OX40L and CD70. OX40 (CD134) and CD27 

interact with their ligands OX40L and CD70, respectively (55, 276). OX40 is transiently 

expressed on CD4+ and CD8+ T cells following T cell receptor ligation (41, 253).  CD27, the 

respective receptor of CD70, is expressed on naïve T cells (94). OX40L and CD70 are expressed 

on activated antigen presenting cells (APC), namely dendritic cells (DC) (55, 243, 276). Upon 

antigenic challenge, DC, B and T lymphocytes at priming and effector sites, acquire CD70. 

CD70 expression is transient and associated with the presence of antigen-specific CD8+ T cells 

(33). It has been reported that OX40L ,either alone or in combination with 4-1BBL, enhances the 

production of IL-2 and IFN-γ from T cells and stimulates CTL and memory CD8+ T cell 

responses (59, 239). T cell survival has been enhanced due to increased proliferation and 

cytokine production as a result of OX40-OX40L signaling (93). The interaction between CD70 

and its receptor CD27 on T cells enhances T cell proliferation, cytokine production, as well as 

cell survival and enhancement of memory T cells (33, 276). Moreover, expression of CD70 on 

APC is involved in CD4+ T cell help for CD8+ T cell responses (253). 

In primary HIV-1 infection, the emergence of CTL is correlated with a dramatic decrease 

in viral load (31, 120, 136, 235). Later during infection, CTL fail to control viral replication due 

to escape mutations arising in T cell epitopes as a result of selective pressure in vivo (92). The 
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role of CD4+ T cell responses in the generation as well as the maintenance of effective T cell 

memory responses has been well documented (117, 240, 252). Moreover, a better CD4+ T cell 

response can enhance a CTL response (79, 125).  Recently, it has been reported that mRNA-

transfected DC encoding OX40L enhance the immunostimulatory functions of DC by promoting 

an Ag-specific CD4+ T cell response, Th-1 polarizing activity as well as Ag-specific CTL 

responses in vitro. In addition, vaccination of mice with cancer using OX40L mRNA-transfected 

DC resulted in an enhanced antitumor immunity as a result of in vivo priming of Th1 T cell 

responses (59). 

Given the involvement of OX40-OX40L and CD70-CD27 signaling in the promotion of 

human memory T cell functions (285), we sought to investigate the role of these costimulatory 

molecules in the enhancement of CTL responses in vitro in SIV-infected macaques. We have 

previously demonstrated that mRNA-transfected DC expressing SIV Gag derived from infected 

macaques stimulate broad and relevant T cell responses.  In this study, we evaluated the capacity 

of gag mRNA-transfected DC cotransfected with OX40L mRNA and /or CD70 mRNA to 

improve the immunostimulatory functions of DC derived from SIV-infected rhesus macaques in 

an in vitro system. 
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5.4 MATERIALS AND METHODS 

5.4.1 Plasmids, mRNA generation  

gfp was subcloned from pGEM4Z/GFP/A64 (27) into pSP73-Sph/A64 (183, 184) using BamHI 

to generate pSP73/GFP/A64. SIVmac239 Gag as well as SIVmac251 Gag were also subcloned 

into pSP73 and linearization of plasmids encoding GFP or Gag and in vitro transcription were 

performed as before (169).   

 

5.4.2. Cloning and expression of rhesus macaque OX40L and CD70 

OX40L and CD70 are known to be induced on mouse splenic DC by exposure to CD40L (45, 

201). Thus, for the generation of monkey CD70 and OX40L, 4x106 arcHIV-1ed lymph node 

cells from SIV-naïve rhesus macaque were cultured in complete DC medium for 24 h in the 

absence or presence of 3µg/ml CD40L. These lymph node cells were used as a source of RNA 

for cloning of OX40L and CD70. RNA was extracted using RNeasy kit (Qiagen, Chastworth, 

CA). Using primers based on the human sequence of CD70 (Gene bank # L08096) and OX40L 

(Gene bank # X79929), RT-PCR was performed to amplify the monkey homologues. The 

forward and reverse primers are: OX40LF: 

5’CCCTCGAGGCCACCATGGAAAGGGTCCAACCCCTGGAAGAAGAGA; OX40LR: 

5’GCCCAAGCTTGCCATCAGCCCCTCAAAGGACAC3’; CD70F: 

5’GGAAGCTTGCCACCATGCCGGAGGAGGGTTC3’;CD70R:5’CGGAATTCTCAGGGGC

GCACCCACTG3’.  Using XhoI and HindIII for OX40L and HindIII and EcoRI for CD70, 

genes were subcloned into pSP73 vector to generate pSP73/OX40L/A64 and pSP73/CD70/A64. 

Using the following forward and reverse primers, OX40LF and OX40LHAR 
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(5’GCAAGCTTTCAAGCGTAATCTGGTACGTCGTATGGATAAAGGACACAGA3’) as 

well as CD70F and CD70HAR 

(5’CGGAATTCTCAAACGTAATCTGGTACGTCGTATGGATAGCGCACCCACTG3’), we 

amplified OX40L-HA and CD70-HA genes, respectively and then subcloned them into pSP73 

for the generation of pSP73/OX40L-HA/A64 and pSP73/CD70-HA/A64. Influenza HA was 

tagged to CD70 and OX40L to facilitate the detection of expressed proteins. Linearization was 

performed with Not I and mRNA generation as before (169). At 24 h post transfection with 

OX40L-HA or CD70-HA mRNA, monkey DC were lysed and lysates separated by gel 

electrophoresis and respective proteins detected by mAB anti-HA peroxidase (169). The 

endogenous expression of CD70 and OX40L was performed by real time PCR (Taqman EZRT-

PCR Core reagents, Applied Biosystems, Foster City, CA)  as per manufacturer’s 

recommendations using the RNeasy kit for RNA extraction, followed by treatment with DNase I 

(Amplification Grade, Invitrogen, Carlsbad, CA). PDH was used as internal control for real time 

RT-PCR.  

5.4.2 Generation and transfection of DC 

Monkey monocyte-derived DC were generated from peripheral blood mononuclear cells 

(PBMC) and grown in the presence of GM-CSF and IL-4. Day five immature DC were 

transfected by the amaxa nucleofector with various mRNA. GFP expression was measured in 

transfected cells by flow cytometry using a Beckman Coulter cytometer (Miami, FL) as 

previously described (169).  
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5.4.3 ELISPOT assay  

Specific IFN-γ production was detected by ELISPOT assay as described (169). Briefly, DC were 

washed and incubated with PBMC at a 1:10 ratio in the ELISPOT assay. DC were transfected 

with mRNA encoding gag, gag and CD70, gag and OX40L, gag and CD70 and OX40L, OX40L 

and CD70, or gfp. Immediately following transfection, DC were matured with CD40L for 24h 

prior to incubation with PBMC.   

5.5 RESULTS 

5.5.1 Endogenous expression of CD70 and OX40L in monkey monocyte-derived DC  

In preliminary experiments, real-time PCR was performed to determine the endogenous 

expression of OX40L and CD70 in monkey monocyte-derived DC. This is important to 

document underrepresented genes and consequently compensate for it by mRNA transfection. 

For this purpose, DC from SIV-naïve macaques were exposed to treatments and message 

expression of costimulatory molecules detected. When DC were transfected with gag mRNA and 

immediately matured with CD40L, there was an increase in endogenous expression of CD70 

compared to immature cells treated similarly (Figure 12A). This expression was comparable to 

what we observed in gag mRNA-transfected DC treated immediately with TLR8 agonist , which 

synergize with TLR8 to induce DC maturation (data not shown) (187). When DC were 

cotransfected with gag mRNA and CD70 mRNA and immediately matured with CD40L, it was 

evident that we have successfully introduced the CD70 gene into these cells as indicated by the 
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high increase in fold change above immature DC (data not shown). We observed a similar trend 

for the endogenous expression of OX40L in DC propagated from SIV-naïve macaques (Figure 

12B). We sought to perform western blot analyses on DC treated as above and using anti-human 

CD27L Ab (R & D systems) and anti-human OX40L Ab (R & D systems) to detect endogenous 

expression of OX40L and CD70 . We were not able to detect protein expression (data not 

shown).  

We performed similar experiments using DC propagated from blood of SIV-infected 

macaques. We found similar pattern as those described above; however, the levels of OX40L and 

CD70 endogenous expression in DC were lower (Figure 13). Consequently, we expected that 

transfection of DC with mRNA encoding one or both costimualtory molecules, would lead to 

increased protein expression and thus might add beneficial effects for T cell stimulation. 
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Figure 12.  Endogenous expression of CD70 and OX40L in monkey monocyte-derived DC isolated from SIV-
naïve macaques.   CD70 (A) and OX40L (B) message expression was determined by real-time PCR in monocyte-
derived DC propagated from blood of SIV-naïve macaques. The conditions are the following: immature DC (DC), 
DC matured with CD40L (DC+CD40L), mock-nucleofected DC (mock), SIVmac239 gag mRNA-transfected DC 
(gag), SIVmac239 gag mRNA transfected DC and matured with CD40L (gag +CD40L). Results are representative 
of two experiments.  
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Figure 13. Endogenous expression of CD70 and OX40L in monkey monocyte-derived DC isolated from SIV-
infected monkeys.  CD70 (A) and OX40L (B) message expression was determined by real-time PCR in monocyte-
derived DC propagated from blood of SIVmac251-infected macaques. The conditions are the following: immature 
DC (DC), DC matured with CD40L (DC+CD40L), mock-nucleofected DC (mock), SIVmac251 gag mRNA-
transfected DC (gag), SIVmac251 gag mRNA transfected DC and matured with CD40L (gag +CD40L).  
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5.5.2 Nucleofection of DC with CD70 or OX40L mRNA results in protein expression 

Monkey CD70 and OX40L genes subcloned into pSP73-Sph/A64 were used as templates for 

DNA linearization followed by in vitro transcription for the generation of the respective mRNA 

(Figure 14A). Monkey monocyte-derived DC were nucleofected with OX40L or CD70 mRNA. 

24h post-transfection, proteins were detected in cell lysates following probing with an HA-

specific mAB since CD70 and OX40L were linked to influenza hemagglutinin (Figure 14B). 

This confirms that mRNA encoding costimulatory molecules introduced into DC is successfully 

translated.  
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Figure 14.  Nucleofection of monkey monocyte-derived DC with OX40L or CD70 mRNA results in protein 
expression.(A) Not 1 linearized pSP73/OX40L-HA/A64 or pSP73/CD70-HA/A64 plasmids were used for 
generation of mRNA by in vitro transcription. (B) Immature monkey monocyte-derived DC were nucleofected with 
OX40L-HA mRNA, CD70-HA mRNA or mock-nucleofected and cell lysates probed with anti-HA peroxidase mAb 
24 hours later. 
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5.5.3 Transfection efficiency is not affected by cotransfection of monkey monocyte-

derived DC with multiple genes  

The advantage of using DC-based immunotherapy is that multiple immunogenic genes could be 

administered to these cells, simultaneously for the stimulation of multispecific T cell responses. 

We investigated the possibility of administering two mRNA to monkey monocyte-derived DC by 

nucleofection. DC were cotransfected with mRNA encoding Gag and another one encoding a 

reporter gene, GFP. 24h post transfection, flow cytometry was performed to detect protein 

expression. The transfection efficiency of DC, as detected by GFP production was not changed 

as compared to cells transfected with gfp mRNA only (Figure 15). 
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Figure 15. Cotransfection of monkey monocyte-derived DC with gag and/or gfp mRNA does not impact 
transfection efficiency of the reporter gene. Monkey monocyte-derived DC were transfected with mRNA 
encoding GFP or with gfp mRNA and SIVmac239 gag mRNA. 24h post transfection, flow cytometry was 
performed to detect GFP expression. Results are representative of two experiments. Bold line: GFP, dotted line: 
GFP and Gag, gray line: mock-nucleofected DC. 
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5.5.4 Costimulatory TNFR molecules do not enhance specific CTL responses  

We have previously demonstrated that gag mRNA-transfected DC induce potent and specific T 

cell responses in vitro in SIV-naïve and SIV-infected macaques (169) (Chapters 1 & 2). In this 

study, we evaluated whether cotransfection with mRNA encoding costimulatory molecules along 

with SIV Ag would induce better specific CTL responses. IFN-γ ELISPOT assay was used to 

determine the overall response to gag mRNA in the presence and absence of costimulatory 

molecules. Monkey monocyte-derived DC propagated from blood of a healthy macaque were 

nucleofected with gag mRNA, cotransfected with gag mRNA and CD70 or OX40L mRNA or 

cotransfected with three mRNA encoding gag, CD70 and OX40L. The level of Gag-specific T 

cell reactivity to gag mRNA was the same regardless of the presence or absence of OX40L 

and/or CD70 (Figure 16).  The value of using these costimulatory molecules is to determine their 

impact on T cell responses particularly during chronic SIV infections. Thus, DC propagated from 

blood of two monkeys (R484 and R486), infected with SIVmac251, were transfected with gag 

mRNA, cotransfected with gag and CD70 or OX40L mRNA or cotransfected with mRNA 

encoding all three genes. The latter was performed with cells from R484 but not R486 due to 

insufficient cell numbers.  IFN-γ  ELISPOT assays were performed. The magnitude of Gag-

specific T cell responses was almost the same in the absence or presence of costimulatory 

molecules (Figure 16). In addition, non-specific T cell stimulation was observed when DC were 

transfected with gfp mRNA or CD70 and OX40L mRNA.  In our hands, OX40L and CD70 did 

not enhance better T cell responses in vitro.  
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Figure 16.  Immunostimulatory functions of DC propagated from SIV-naïve macaques are not promoted by 
TNFR costimulatory molecules in vitro. Immature DC propagated from a healthy macaque (R187) were 
transfected with the following mRNA: gag, gag and OX40L, gag and CD70, gag, OX40L, and CD70, OX40L and 
CD70; or gfp. DC were used as stimulators of autologous PBMC for 24h in an IFN-γ ELISPOT assay. Shown are 
mean ±SEM of triplicate determinations. SFC=spot-forming cells. gag mRNA used encodes SIVmac239 Gag.  
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Figure 17. Immunostimulatory functions of DC propagated from SIV-infected macaques are not promoted by 
TNFR costimulatory molecules in vitro. Immature DC propagated from two rhesus macaques infected with 
SIVmac251 (R484, R486) were transfected with gag, gag and OX40L, gag and CD70, gag, OX40L and CD70 
(R484), OX40L and CD70; or gfp. DC from the R486 were not cotransfected with gag, CD70 and OX40L mRNA, 
simultaneously due to insufficient numbers of harvested DC. DC were used as stimulators of autologous PBMC for 
24h in an IFN-γ ELISPOT assay. Shown are mean ±SEM of triplicate determinations. SFC=spot-forming cells.  gag 
mRNA encodes SIVmac251 Gag. 
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5.6 DISCUSSION  

The goal of any vaccine strategy directed against HIV-1/AIDS is the generation of a strong cell 

mediated immune response capable of controlling virus replication. DC are the most potent 

antigen presenting cells. Immature DC acquire antigen from peripheral tissues and then migrate 

to the lymph nodes, a process during which they undergo maturation as well as phenotypic 

changes (16). The use of DC in the design and development of tumor as well HIV-1 vaccines is 

being extensively studied (86, 275).  Based on observations made by us (169) and others (129, 

266, 269), transfection of DC with SIV or HIV-1 mRNA is successful at generating strong Ag-

specific T cell responses. Here we sought to determine the impact of cotransfection of DC with 

costimulatory molecules on T cell responses along with virus Ag.  

Low OX40L cell-surface expression was observed on human monocyte-derived DC in 

their immature state as well as when matured with TNF-α, IL-1β, IL-6 and PGE2 (59). However, 

CD40L-matured DC induced OX40L expression. Moreover, authors were able to overcome low 

OX40L surface expression on DC by transfection with OX40L mRNA. Our results indicate that 

the endogenous message expression of CD70 and OX40L is higher in DC propagated from blood 

of SIV-naïve and SIV-infected and matured with CD40L as compared to immature cells. This 

level is similar to the one observed after transfection of DC with mRNA encoding wild-type Gag 

and an improvement in expression is observed when gag mRNA transfected DC are exposed to 

CD40L. This agrees with our previous data showing that mRNA results in modest DC 

maturation and that addition of CD40L provides additional benefits at maturation (169) as well 

as endogenous expression of costimulatory molecules.  
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 In this report, we show that transfection of monkey monocyte-derived DC with more 

than one in vitro transcribed mRNA does not negatively affect expression of the marker gene 

GFP. This is critical since we are suggesting the introduction of multiple genes into monocyte-

derived DC. We have shown significant T cell responses to DC transfected with mRNA 

encoding autologous Gag sequences isolated from SIV-infected macaques. However, these 

responses were lower than those observed in healthy macaques (169). This could be due to weak 

T cell responses, reported in HIV-1-infected individuals and SIV-infected monkeys (11, 100, 

172, 284). Following confirmation of expression of CD70 and OX40L in mRNA-transfected DC 

by western blot, as we successfully demonstrated Gag expression in monkey monocyte-derived 

transfected with wild-type gag mRNA (169), we next assessed whether DC transfected with 

costimulatory molecules are capable of improving Ag-specific CD8+ T cell responses. 

Surprisingly, our in vitro data shows that viral specific CTL responses are not enhanced by 

cotransfection of DC with CD70 and/or OX40L mRNA along with gag mRNA when DC 

originated from both SIV-naïve or infected monkeys. These results are contradictory with 

previous reports demonstrating in vitro improvement of CTL and CD4+ T cell responses (59). 

Due to the loss of CD4+ memory T cells from the mucosa and other tissues during SIV 

and HIV-1 infections (34, 151, 165, 209), we suggest the reassessment of the role of these 

costimulatory molecules for the enhancement of viral specific T cell responses, particularly in 

chronically infected macaques with low CD4+ counts. Moreover, we previously reported that 

mRNA transfected DC encoding wild-type Gag bearing the targeting signal of the lysosomal 

associated membrane protein-1 (LAMP-1) leads to strong CD8+ T cell responses and enhances 

CD4+ T cell responses in vitro (169). Consequently, cotransfection of DC with  mRNA encoding 

virus-specific antigen and  bearing LAMP-1 targeting signal and as well as mRNA encoding 
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these costimulatory molecules might highlight the importance of costimulatory molecules 

towards enhancing Ag-specific CD8+ and promoting CD4+ T cell responses. 
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6.0  OVERALL SUMMARY AND DISCUSSION  

Despite the fact that ART can control HIV-1 infection by reducing viral replication in CD4+ T 

cells as well as other cell types in blood and lymphoid tissues, the persistence of reservoirs of the 

virus and the emergence of viral variants represent important obstacles in the treatment of HIV-1 

(92, 149).Thus, the development of HIV-1 therapeutic vaccine is urgently needed. The first step 

in any vaccine design is to deliver the antigen in a way leading to the generation of efficient and 

strong T cell responses. DC are the most potent antigen-presenting cells.  Immature DC uptake 

and process antigen, a process leading to their maturation and consequent migration to the lymph 

nodes (16, 231). Reaching the lymph nodes, DC attract and activate T cells (232). This unique 

property made DC a subject of interest for the generation of cancer and HIV-1 vaccines (86, 

275). 

 

The current project aimed to: (1) determine the best transfection method for antigen 

delivery to monocyte-derived DC; (2) investigate the ability of monkey monocyte-derived DC to 

induce specific T cell responses against autologous virus sequences isolated during SIV 

infection; and (3) determine whether costimulatory molecules like OX40L and CD70 can 

improve the immunostimulatory capacity of antigen-transfected monkey monocyte-derived DC.  
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6.1 MRNA IS BETTER THAN DNA FOR STIMULATION OF ANTIGEN-SPECIFIC 

T CELL RESPONSES 

Prior work had described the use of plasmid DNA as well as mRNA as antigen sources for 

transfection of DC and their potential use as therapeutic agents against cancer and infectious 

agents (86, 102, 129, 169, 212, 248, 257, 266, 269). These alternatives developed due to the 

disadvantages associated with the use of viral vectors, considered as preferred methods for 

antigen delivery to DC. Viral vectors based on adenovirus, poxviruses and lentivirus induce high 

level antigen expression but might lead to undesired vector –specific immune responses (72, 118, 

176, 292). A common finding in studies using mRNA or DNA, is  that human monocyte-derived 

DC transfected with antigens encoded by in vitro transcribed mRNA are able of inducing 

antigen-specific T cell responses despite the use of different delivery methods. In an effort to 

learn more about the use of mRNA encoding autologous virus sequences as a therapeutic 

approach for the treatment of HIV-1, we used the rhesus macaque SIV model to test the potential 

of DC-based vaccines using virus derived sequences. 

6.1.1 Transfection efficiency of monocyte-derived DC with DNA and mRNA  

Our first goal was to address the efficacy of transfecting monkey monocyte-derived DC and to 

compare the transfection efficiency of DC with plasmid DNA and mRNA. In preliminary 

experiments, we used leukemic K562 cells, human monocyte-derived DC along with monkey 

monocyte-derived DC ; these cells were transfected with DNA or mRNA encoding GFP and a 

side-by-side comparison was performed following use of TransfastTM, Transmessenger reagent, 

electroporation and nucleofection. We found that nucleofection is a superior method for delivery 
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of both DNA and mRNA. However, mRNA delivery into DC via nucleofection maintains 

relatively high viability and consistently produces higher protein levels in transfected cells as 

compared to DNA-transfected DC. Our results are consistent with previous findings in primary 

rat neurons and murine macrophage cell lines (82, 265) as well as human monocyte-derived DC 

(140). We report that mRNA is a highly efficacious method for the introduction of transgenes 

into DC associated with sustained antigen expression (Chapter 1). These findings are not 

surprising particularly in non-dividing cells like DC especially since DNA undergoes limited 

trafficking to the nucleus (161). In contrast, mRNA is immediately translated in the cytoplasm 

and does not pose a risk like DNA integration in the cellular genetic material. Entry of plasmid 

DNA into the cell is a multistep process starting by internalization into the cytoplasm in the 

presence of cytoplasmic enzymes. The results of the competition between the DNA entry as well 

as intracellular degradation determines gene expression (161, 258).Thus DNA is at risk during 

the loading process into cells.  

We found that immature DC as well as DC matured with CD40L immediately post 

nucleofection yield similar transfection efficiencies. This was observed following DNA as well 

as mRNA nucleofection (Chapter 1). In our hands, protein expression post transfection with 

nucleic acids is not affected by the DC state. Our results are consistent with previous reports 

using electroporation for transgene expression (146, 171). Other reports showed that DNA 

transfection of murine bone marrow derived DC is more effective following CD40-mediated 

maturation of (142). Moreover, we show that human monocyte-derived DC transfected with 

DNA are refractory to maturation with CD40L as is the case with lipopolysaccharide (146). 

These effects could be due to the toxicity exerted by DNA on DC leading subsequently to lower 

levels of protein expression in viable cells.  
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6.1.2 Nucleofection of Human and monkey monocyte-derived DC with mRNA induces 

phenotypic maturation 

An important factor in DC-based immunotherapy is the degree of cell maturation for optimal 

antigen presentation especially since immature DC capture antigen but mature DC process and 

present it to naïve T cells (16, 231). We sought to analyze the effect of mRNA and DNA 

nucleofection on maturation of human monocyte-derived DC as there have been contradicting 

reports depending on the transfection system used (43, 103, 128, 140, 169, 248, 269, 279). Our 

data indicates that mRNA transfection induces DC maturation whereas DNA limits the capacity 

of DC to undergo maturation (Chapter 1). In addition, nucleofection of monkey monocyte-

derived DC with mRNA also induced phenotypic maturation (169) (Chapter 2). In both cases, 

the addition of CD40L provided additional benefits reflected by more pronounced shift in 

expression of costimulatory molecules.  In vitro transcribed mRNA is reported to stimulate 

TLR3 on DC and induce immune activation likely through secondary structures (43). Thus, 

mRNA is an endogenous ligand for TLR3 (128). Pathogens escaping immune surveillance also 

escape detection by TLRs (192). Consequently, loading DC with mRNA, particularly autologous 

mRNA isolated from infected individuals at the time of immunotherapy, might enhance their 

ability to activate the immune system in the face of an escape event. Moreover, ligation of TLR3 

and TLR8 results in maturation of myeloid DC. Thus mRNA might synergize with agonists of 

other TLR, i.e. TLR8, to activate DC and induce higher production of IL-12 and IL-23 (187). 
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6.1.3 Monkey monocyte-derived DC nucleofected with wild-type gag mRNA but not DNA 

induce efficient and specific T cell stimulation  

We next sought to perform functional studies to investigate the impact of nucleofection of DC 

with wild-type non codon-optimized mRNA or DNA on the capacity of transfected cells to 

induce antigen-specific T cell responses using the rhesus macaque model. This monkey model 

provides an ideal preclinical setting to test the therapeutic potential of DC-based vaccines. We 

found that DC nucleofected with mRNA encoding wild-type SIVmac239 Gag induced antigen-

specific CTL responses in vitro whereas DNA did not. Our results are consistent with previous 

reports (248, 269).  

To our knowledge, this is the first report comparing the capacity of stimulating specific T 

cell responses in vitro following nucleofection of DC with mRNA and DNA encoding virus-

specific antigen.  We speculated to observe lower CTL responses induced by plasmid DNA-

transfected DC due to the fact that mRNA is immediately translated into protein inside the 

cytoplasm whereas DNA has to be transcribed, translated into proteins and subsequently peptides 

derived from the translated proteins presented to T cells via MHC class I molecules. It was 

unexpected that plasmid DNA does not stimulate specific-T cell responses. The results 

summarized above were observed at 24 and 48 h post nucleofection of DC with mRNA or 

plasmid DNA encoding Gag. These results coincide with the long lived gene expression (Chapter 

1) in DC, thus an extended supply of antigen for presentation following transfection with mRNA.  

Other studies reported similar findings following transfection of human monocyte-derived DC 

with mRNA using electroporation or nucleofection (140, 169, 263, 269). Our results confirm the 

usefulness of mRNA-based delivery of genes in retaining DC viability and responsiveness to 
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maturation stimuli that are important for T-cell stimulation, whereas DNA delivery could have 

deleterious effects on the functional properties of DC.  

In the field of HIV-1, DC transfection was performed using mRNA encoding codon-

optimized antigens to stimulate antigen-specific T cell responses in vitro (266, 279). Although 

codon optimization allows enhanced gene expression and make these genes promising vaccine 

candidates, these sequences do not reflect the circulating virus sequences in an infected 

individual. Moreover, with our optimized nucleofection system, protein expression in DC 

transfected with mRNA encoding wild-type Gag  is consistently high (Chapters 1 and 2).  

Our protocol for T cell assays follows the sequential addition of a maturation stimulus, 

CD40L, immediately post transfection with mRNA. Specific in vitro T cell responses to viral 

antigen were detected against mRNA-transfected DC propagated from SIV-naïve as well as SIV-

positive macaques (Chapter 2). This coincides with higher expression of costimulatory molecules 

on DC (Chapters 1 and 2) or perhaps a cytokine profile enhanced by addition of CD40L. Our 

results are similar to previous reports, emphasizing the use of different maturation stimuli for 

better T cell stimulatory activity (123, 152, 178, 211, 234, 263). We believe that mRNA 

transfection of DC followed by maturation is a logical sequence especially if intranodal 

administration of the vaccine is to be performed for in vivo studies.  
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6.2 AUTOLOGOUS VERSUS HETEROLOGOUS VIRUS-DERIVED SEQUENCES 

FOR T CELL STIMULATION 

 DC-based HIV-1/SIV vaccines described in the literature are based on well characterized strains 

of virus (35, 155, 157, 189, 273). This approach may not be suitable for therapeutic vaccination 

since epitopes expressed by DC may not reflect those present in the infected individual at the 

time of immunotherapy due to the ability of the virus to undergo escape mutations in the T-cell 

epitopes through selective pressure in vivo (92). The present study provides evidence supporting 

the use of mRNA encoding autologous virus sequences isolated from SIV-infected macaques for 

the generation of relevant antigen-specific T cell responses. The following briefly summarizes 

our findings:  

6.2.1 SIV infection does not affect the capacity of DC to be transfected 

Given that our goal is to use mRNA-nucleofected DC during SIV infection, we evaluated 

whether SIV infection affects the transfection efficiency of DC. Our data show no evidence of 

reduction in mRNA transfection efficiency in DC isolated from SIV-naïve, SIV-infected or 

monkey with neuroAIDS (Chapter 2).  

6.2.2 The effect of diverting antigen into the lysosomal/endosomal pathway 

There is extensive evidence that cellular immunity plays an important role in control of HIV-1 

infection and that virus-specific CD4+ T cell responses are critical in maintenance of CTL (205, 

223, 227). Taken together, these findings support the development of therapeutic immunization 
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strategies stimulating both CD4+ and CD8+ T cell responses.  We are proposing the use of 

mRNA as a source of antigen loaded onto DC as an approach for therapeutic HIV-1 vaccine. 

This mRNA is translated endogenously and subsequently, the respective protein is degraded by 

the proteasome and enter the MHC class I pathway. We generated mRNA encoding  wild-type 

non codon optimized Gag bearing the targeting signal of the lysosomal associated membrane 

protein-1 (LAMP-1) to induce both antigen-specific CD8+ and CD4+ T cell responses by 

directing antigen expression to MHC class II molecules. Previous studies reported the 

enhancement of CD4+ T cell responses (61, 129, 163, 169, 226, 251) whereas others did not find 

any effect exerted by LAMP-1 when linked to viral or tumor antigens (272). We found that DC 

from SIV-naïve macaques nucleofected with gag-LAMP-1 mRNA induced strong CD8+ T cell 

mediated responses similar to those observed in DC transfected with gag mRNA. However, a 

greater CD4+ T cell responses were induced by the former (Chapter 2).  

Our data confirm that DC nucleofected with wild-type gag mRNA efficiently present 

antigen to virus-specific T cells and that channeling Gag antigen to the lysosomal pathway 

enhances CD4+ T cell responses.  

6.2.3 Efficient T cell stimulation using DC transfected with gag mRNA encoding a CTL 

escape mutation 

The main purpose of this project is to demonstrate that antigen specific T cell responses are 

induced by DC transfected with autologous virus sequences isolated from infected macaques at 

the time of immunotherapy. This goal is particularly important in the face of virus escape. 

Consequently, we nucleofected DC with mRNA encoding mRNA encoding Gag isolated from a 

Mamu-A*01-expressing macaque containing a threonine to isoleucine escape mutation at amino 
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acid 182 within the immunodominant CM9 epitope. The latter induced reduced T cell responses 

as compared to DC nucleofected with mRNA encoding intact Gag sequences in a non-

autologous system.  

6.2.4 T cell stimulation by gag mRNA transfected-DC in the face of virus escape is 

directed against subdominant epitopes  

 We confirmed that the decline of T cell responses mentioned above was due to escape in the 

CM9 epitope and that the generated response was against intact subdominant epitopes known to 

be important in virus control (169). This was observed following nucleofection of DC with 

shorter sequences of mRNA encoding Gag from the inoculum as well as escape viruses (Chapter 

2).  

6.2.5 Effect of LAMP-1 on the generated T cell responses to mutant Gag 

We found that DC nucleofected with gag-LAMP-1 mRNA containing an escape mutation in the 

CM9 immunodominant epitope were able to stimulate almost equivalent  CD8+ and CD4+ T cell 

responses. Consequently, the effect of targeting antigen to the lysosome resulted in an amplified 

CD4+ T cell responses with the loss of an immunodominant CTL epitope naturally acquired 

during SIV infection (Chapter 2). These data support the use of lysosome targeted viral antigen 

in DC-based therapeutic vaccination for HIV-1.  
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6.2.6 Efficient T cell stimulation by autologous gag mRNA transfected-DC  

We next generated autologous Gag sequences isolated from chronically infected macaques with 

SIVmac251 or SIV/DeltaB670 to test the ability of mRNA-transfected DC to stimulate virus-

specific T cell responses in an entirely autologous system.  As expected, we observed relevant 

and potent autologous Gag-specific CTL responses (Chapter 2). Our results are consistent with 

previous findings in HIV-1-infected individuals (266).  The value of using autologous sequences 

is appreciated in the event of a virus escape.   This is important since as we have shown, DC 

transfected with mRNA encoding CTL escape mutations still stimulate relevant and significant 

specific T cell responses to subdominant epitopes. Such epitopes were reported to be important 

to in vivo HIV-1 control (76). Authors found that high allele frequencies could eliminate 

subdominant epitopes despite being effective at stimulating CTL responses. Moreover, high 

affinity CTL down-modulate peptide-MHC complexes on antigen-presenting cells leading to 

preferential expansion of high-affinity CTL (204).  This could be faced when using centralized 

sequences. In addition, the recent description of the de-novo generation of novel CTL epitopes 

from mutant immunodominant epitopes (6) highlight the importance of using autologous 

sequences as these novel epitopes would not be presented by DC transfected with centralized 

sequences.  

In conclusion, HIV-1-1 vaccine based on a single virus sequence, particularly 

immunodominant, will induce CTL responses that are too specific to provide protection against 

the quasispecies of the variable HIV-1-1, hence limiting the ability of this vaccine to control the 

virus. Moreover, inducing CTL responses to epitopes that are no longer present is redundant and 

may be deleterious in stimulating immunodominant responses that are not capable of recognizing 

the virus (147). The evolution of HIV-1 is of critical value to HIV-1 vaccine design. To account 
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for these complexities, a therapeutic vaccine should be tailored towards the autologous virus 

present in an individual at the time of immunotherapy and thus dominant and subdominant 

epitopes would be introduced.  

6.2.7 Efficient T cell stimulation by autologous env mRNA transfected-DC  

A vaccine should aim at inducing a multispecific T cell stimulation. Hence, we performed in 

vitro studies using DC nucleofected with autologous env mRNA isolated from two SIV-infected 

macaques at week 25 post-infection. Similarly to our results with Gag-transfected DC, we 

observed Env-specific T cell responses in an entirely autologous system (Figure 18).  

Consequently our system consisting of nucleofection of DC with mRNA encoding 

autologous virus sequence isolated during the course of infection proves again to be able to 

stimulate strong specific T cell responses and thus further supporting the usefulness of this model 

for the development of a therapeutic HIV-1 vaccine.  
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Figure 18. DC nucleofected with env mRNA isolated from infected monkeys induce significant Env-specific T-
cell responses from autologous PBMC. Immature DC propagated from two rhesus macaques (3398 and 15001) 
infected with SIV/DeltaB670  were nucleofected with mRNA encoding original inoculum env, autologous env ( 
week 25 post-infection) gfp or mock-nucleofected (one animal) and used as stimulators of autologous PBMC in an 
IFN-γ ELISPOT assay. DC to PBMC ratio used was 1:10. Shown are mean responses of triplicate determinations 
with the mean for the group represented by a horizontal line. SFC=spot-forming cells. 
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6.3 EFFECT OF COSTIMULATORY MOLECULES OX40L AND CD70 ON THE 

IMMUNOSTIMULATORY CAPACITY OF GAG MRNA TRANSFECTED-DC  

There is increasing evidence that members of the TNFR family promote the quality of T cell 

responses as well as improve T cell memory (243, 276). In addition, recent reports demonstrated 

that DC transfected with mRNA encoding OX40L enhances the immunostimulatory functions of 

DC in vitro as well as lead to enhanced antitumor immunity in vivo (59). Consequently, we 

sought to determine the effect of gag mRNA transfected-DC cotransfected with mRNA encoding 

OX40L, CD70 or both on antigen specific T cell responses. The following is a brief summary of 

our findings:  

6.3.1 The immunostimulatory capacity of gag mRNA transfected DC is not enhanced by 

cotransfection with OX40L and /or CD70 mRNA 

We found that DC propagated from SIV-naïve macaques are successfully transfected with more 

than one gene. This is important as we are proposing the administration of multiple 

immunogenic genes for the development of an effective HIV-1 vaccine. The results from our 

studies made us reflect on the possibility of improving the immunostimulatory capacity of 

mRNA-transfected monocyte-derived DC during SIV infection since we have observed a decline 

in T cell responses directed against autologous sequences and also due to reports of loss of CD4+ 

memory T cells from the mucosa and other tissues during SIV and HIV-1 infections (34, 151, 

165, 209). Moreover, previous reports demonstrated that CD70 is overexpressed in HIV-1-

infected individuals and contributes to better T cell functions compensating for decline in CD4+ 

help for maintenance of CD8+ T cell responses (197). 
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Unexpectedly, we found that DC cotransfected with gag mRNA as well as mRNA encoding 

CD70 or OX40L or both, did not improve the immunostimulatory capability of DC derived from 

SIV-naïve or chronically infected macaques (Chapter 3). It might be that our optimized system 

with gag mRNA is the ultimate level of antigen-specific T cell stimulation.  Additional analyses 

are needed for the elucidation of this matter. 

6.4  PUBLIC HEALTH SIGNIFICANCE  

Worldwide, 40 million people are living with HIV-1, 4.3 millions were newly infected with the 

virus in year 2006  and last but not least , 2.9 millions  died of AIDS last year (UNAIDS/WHO 

2006). Despite the effort and the promising developments to address the AIDS epidemic, the 

number of people living with HIV-1/AIDS is growing. In spite of the benefits associated with 

antiretroviral therapy in the longer survival of infected individuals, there is a risk of treatment 

failure due to viral drug resistance or drug toxicity. Although there was a decline in HIV-1 

prevalence in some sub-Saharan African countries, this trend does not have an impact on the 

global AIDS epidemic. The AIDS epidemic is associated with loss of lives, lower economic 

productivity as well as higher health costs. Thus, the development of therapeutic HIV-1 vaccine 

is needed now more than ever, a vaccine that would boost the immune response and contain the 

virus and as a result decrease its rate of transmission.  Given the diversity of clinical isolates (83) 

and the ability of the virus to undergo CTL escape mutations (92) we have to tailor a vaccine 

directed towards the autologous virus present in the individual at the time of immunotherapy. 

Our vaccine design account for this complexity by using DC transfected with mRNA encoding 

viral sequences reflecting those expressed in the infected macaque. These cells stimulated broad 
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and relevant T cell responses, the ultimate goal of any vaccine. We believe that taking our design 

to the in vivo model would have a potent protective effect on the immune response and 

consequently decrease the burdens associated with the infection.  

Together, these data support our hypothesis that autologous viral antigen is capable of 

stimulating relevant and specific T cell responses against the infecting strain at the time of 

immunotherapy. mRNA-based DC vaccination is a safe and clinically feasible method. 

Moreover, our data highlight the importance of virus-specific immune responses directed against 

lysosome-targeted autologous SIV sequences for the characterization of the actual breadth and 

magnitude of cell mediated immunity. 
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6.5 FUTURE DIRECTIONS 

6.5.1 Generation of multispecific T cell responses  

Aiming at introducing a multispecific CD8+ and CD4+ T cell responses in HIV-1-infected 

individuals, we suggest performing additional in vitro studies using autologous gag mRNA as 

well as autologous mRNA encoding other important components of the SIV genome such as 

Env, Pol and Nef and bearing the targeting signal of LAMP-1 . We expect the generation of 

broad and relevant specific T cell responses.  

6.5.2 Investigation of the migratory potential, cytokine profile production, as well as IL-

12 production by antigen-transfected DC  

To induce optimal T cell responses, DC have to respond to lymph node-derived chemokines. It 

has been reported that DC electroporated after maturation migrate more efficiently in vitro (171, 

263) and are more effective in antigen presentation compared to DC electroporated before 

maturation. We suggest performing similar studies to compare the ability mRNA-nucleofected 

DC, mock-nucleofected and untreated DC to express CCR7 and to migrate towards its ligand 

CCL19 (MIP-3β). In addition, we suggest performing similar studies on DC nucleofected with 

plasmid DNA in order to gain a better understanding on the inefficiency of DNA-transfected DC 

to stimulate T cells as we observed.  

Following exposure to a maturation factor such as LPS or CD40L, DC produce IL-12 for 

a short period of time and then enter a stage of exhaustion (13). It is critical when using DC-

based vaccines to check the ability of DC to secrete cytokines, particularly IL-12. IL-12 is 
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involved in polarizing the immune response toward a Th1 response in vivo and activating naïve 

CD8+ T cells (225). In addition, IL-12 affects CD4+ T cells to mediate CTL-independent 

suppression of tumor growth (106) as well as providing CD4+ and CD8+ T cells with a survival 

signal in vivo. There have been reports of reduced IL-12 production in electroporated DC (69, 

263). There is still a debate as to which cytokines to add in addition to CD40 ligation leading to 

optimal IL-12 production (30, 200). This topic requires performing in vitro studies using our 

optimized transfection system.  

6.5.3 Testing the immunostimulatory capacity of antigen-transfected DC cotransfected 

with OX40L and or CD70 in AIDS macaques  

We suggest performing more detailed experiments on the effect of coadministration of mRNA 

encoding costimulatory molecules along with mRNA encoding SIV antigen(s) of choice to DC. 

We suggest using DC and T cells propagated from macaques during chronic SIV infection with 

low CD4+ counts, a stage where stimulation of optimal specific T cell responses is needed.   

Moreover, we suggest using mRNA-transfected DC bearing the lysosomal associated membrane 

protein (LAMP-1) targeting signal to highlight the importance of these costimulatory molecules 

towards enhancing Ag-specific CD8+ and promoting CD4+ T cell responses. 

6.5.4 In vivo studies  

The next step in vaccine design following experimental testing is to perform animal studies.  We 

suggest the use of the rhesus macaque model. SIV infection in rhesus monkeys is characterized 

by a burst of viremia and follows the same course of infection as HIV-1 in humans, regardless of 
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the route of exposure. Thus, this is an ideal preclinical setting to test the therapeutic potential of  

DC-based vaccines using virus-derived mRNA.  

 

Current progress has been made in the field of DC-based immunotherapy and HIV-1; 

however, our work expands on the knowledge in this area by demonstrating the superiority of 

nucleofection for antigen loading of DC and the ability of mRNA-transfected DC encoding 

autologous SIV antigen to stimulate strong antigen-specific T cell responses.  
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