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HELICITY AND PHYSICAL FIDELITY IN TURBULENCE MODELING

Leo Gregory Rebholz , PhD

University of Pittsburgh, 2006

This thesis is a study of physical fidelity in turbulence modeling. We first consider

conservation laws in several popular turbulence models and find that of the Leray, Leray-

deconvolution, Bardina and Stolz-Adams approximate deconvolution model (ADM), all but

the Bardina model conserve a model energy. Only the ADM conserves a model helicity. Since

the ADM conserves a model energy and helicity, we then investigate a joint helicity-energy

spectrum in the ADM. We find that up to a filter-dependent length scale, the ADM cascades

energy and helicity jointly in the same manner as the Navier-Stokes equations.

We also investigate helicity treatment in discretizations of turbulence models. For invis-

cid, periodic flow, we implement energy conserving discretizations of the ADM, Leray, and

Leray-deconvolution models as well as the Navier-Stokes equations (NSE) and observe he-

licity treatments. We find that of none of the models conserve helicity (or model helicity) in

the discretizations. Since the Leray-deconvolution model of turbulence is newly developed,

our implementation is new and thus we analyze the trapezoidal Galerkin scheme that we

implement and compare it to the usual Leray model.

Lastly, we develop an energy and helicity conserving trapezoidal Galerkin scheme for

the Navier-Stokes equations. We prove conservation properties for the scheme, stability,

and show the scheme does not lose asymptotic accuracy compared to the usual trapezoidal

Galerkin scheme. We also present numerical experiments that compare the energy and

helicity conserving scheme to more typical schemes.
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1.0 INTRODUCTION

This thesis is a study of physical fidelity in turbulence modeling. Simulating turbu-

lent flow is essential to many important engineering applications, including aerodynamics,

weather prediction, and heat exchangers. However, modern science does not yet have a

good understanding of turbulent phenomena. There are many difficulties associated with

turbulence which leads many to believe a complete understanding is not even in the fore-

seeable future. The main difficulties are that turbulence is diffusive, chaotic and irregular,

three dimensional and rotational, highly dissipative, is a continuum phenomena, and that

the vortex stretching mechanism generates very small scales. Since turbulence itself is not

well understood, accurately simulating turbulence is not either.

The equations of motion for an incompressible, Newtonian fluid (e.g. water) are the

Navier-Stokes equations. They are given below in nondimensional form, with u and p repre-

senting fluid velocity and pressure, ν the kinematic viscosity (which is inversely proportional

to the Reynolds number Re), and external force f .

ut + u · ∇u +∇p− ν∆u = f (1.1)

∇ · u = 0 (1.2)

These equations are not a model for turbulent (or laminar) fluid flow; they are built directly

from physical conservation laws. However, only for very basic flows can analytic solutions

to (1.1)-(1.2) be found. Furthermore, a complete mathematical theory for these equations

is lacking, and will be difficult to discover - it is hard enough that the most famous gap in

the theory, existence and smoothness of NSE solutions in three dimensions, is a One Million

Dollar Clay Prize Problem.
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Without the availability of analytic solutions to the NSE, scientists have resorted to

computer simulation. This has been partially successful; for slow moving, viscosity dom-

inated flows on small domains, accurate solutions can be obtained using direct numerical

simulations (DNS). However, for turbulent flows, DNS often fails. The main reason for this

was discovered by Kolmogorov [31], and discussed in [37]: From the critical length scale

determined by Kolmogorov, the smallest persistent eddy containing energy in a turbulent

flow has length scale = O(Re−3/4). Thus for an accurate simulation that captures everything,

one must choose

∆x = ∆y = ∆z = O(Re−3/4), (1.3)

and therefore the number of meshpoints will be on the order of Re9/4. This presents a

problem, since Re can be very high for not very large domains (Reynolds number for flow

around a car is on the order of 106, and for flow around an airplane is on the order of 107

[33]). Hence it is simply not computationally feasible to use DNS for turbulent flows in

many settings. Further, even when compututational power is enough to use a DNS for these

problems, there will be larger problems of interest (aircraft carriers, even geophysical flow

which has Re on the order of 1020).

In many cases, this need for such a large number of degrees of freedom leaves scientists

to either compute on an underresolved mesh or solve a model of the NSE which requires

less degrees of freedom. Large eddy simulation (LES) turbulence models, for example, are

a class of turbulence models that require many less degrees of freedom than a DNS. This is

because they solve for flow averages, and do not require the small scale detail they filter out.

There are many other models of turbulence besides LES models. The plethora of models

in existence can create a problem for scientists who must choose a model for a simulation.

Hence there has been a recent push to distinguish between models by examining their physical

properties, and comparing these properties to the Navier-Stokes equations. For example, it

has long been known that the NSE conserve energy (E =
∫

Ω
u2) for inviscid flow, and

from the K41 theory it is known that the NSE cascades energy through wave space up to

a cut-off length scale where viscosity takes over [31]. For a turbulence model’s solution

to have physical relevance, the model should share these the same physical characteristics

of the NSE. In 2005, a re-examination of the Leray LES model [39] by Cheskidov, Holm
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and Titi studied the energy cascade of the model, and found that not only does the Leray

model conserve energy, but up to a filter-dependent length scale cascades energy at the

same rate as the NSE. In [37], Layton and Neda found a similar result for the Stolz-Adams

approximate deconvolution model (ADM) of turbulence. Such results give physical relevance

to the solutions of the Leray model and the ADM.

Energy is not the only physical quantity meaningful in fluid flow. It has recently been

discovered that helicity, which is defined to be the scalar product of the velocity and vorticity

integrated over the domain Ω,

H =

∫

Ω

u · (∇× u) (1.4)

is a physical quantity whose importance in understanding turbulent flow has a status com-

parable to energy [46]. The physical interpretation of helicity is the degree to which the

vortex lines of a flow are tangled and intertwined. Like energy, helicity is also a conserved

quantity of inviscid flow. Also like energy, the NSE has a helicity spectrum [15],[19]; the

cascades of energy and helicity have been dubbed a joint cascade since both quantities travel

through the inertial range of wave numbers at the same rate. Helicity also has a topological

interpretation: H = 0 if and only if the turbulent field is rotationally symmetric [46]. Thus

the importance of helicity is evident, and hence it should not simply be ignored in turbulence

modeling.

However, what is known about helicity has only recently been discovered. Helicity’s

inviscid invariance was discovered by Moreau in 1961 [47], its topological interpretation by

Moffatt and Tsoniber in 1992 [46], and the joint helicity-energy cascade was only proposed

by Ditlevson and Guiliani in 2001 [19] - and is still being studied; the size of the smallest

length scale containing helicity was being debated in 2003 [15]. With such new and powerful

results concerning helicity in fluid flow, an examination of the treatment of helicity in existing

turbulence models should be performed. For a model to have physical fidelity, it should at

least conserve helicity for inviscid flow, and to match the true physics a model’s helicity

spectrum should match that of the NSE.

Since helicity conservation is a first and necessary step in showing a helicity spectrum,

we investigate helicity conservation in several popular turbulence models in Chapter 2. For

inviscid flow, we show that of the ADM, Leray, Leray-deconvolution, and Bardina models,

3



only the ADM conserves a model helicity, and thus only for the ADM should an exam-

ination of a helicity spectrum be done. Chapter 2 also investigates the conservation of

other integral invariants of these models: energy, and for two dimensional flow, enstrophy

(Ens = 1
2

∫
Ω
|∇ × u|2 is a conserved rotational quantity in two dimensions only). We find

that of the four models, only the Bardina model does not conserve a model energy. Fur-

thermore, the ADM and Leray model both conserve a model enstrophy in two dimensions

[52].

Since it was found that the ADM conserves a model helicity for inviscid flow, we investi-

gate the helicity spectrum in the ADM in Chapter 3. Since we know that a model energy is

cascaded up to a filter-dependent length scale in the ADM [37], we study the possibility of a

joint cascade of model energy and helicity in the ADM. We find that, indeed, model energy

and helicity are cascaded by the ADM through the inertial range at the same rate as in true

fluid flow - up to a filter-dependent length scale. After this length scale, the spectrums decay

at a faster rate than that of true fluid flow [36].

In turbulence simulations, the discretization, in addition to the model used, is also im-

portant for physical relevance of solutions. For example, the backward Euler Galerkin direct

implementation of the NSE does not conserve energy, whereas the trapezoidal Galerkin (i.e.

Crank-Nicholson) implementation does. For reasons such as this, care must be taken in

choosing a discretization to give the solution as much physical relevance as possible.

To determine the impact of the helicity treatment in the continuous forms of the tur-

bulence models from Chapter 2 on the treatment of helicity in their discretizations, we

implement (model) energy conserving trapezoidal Galerkin schemes for the Leray, Leray-

deconvolution, and ADM turbulence models. We developed code in MATLAB to test these

three dimensional models. We find that none of these implementations conserve helicity for

periodic, inviscid flow. However, we also implement similar schemes for the NSE, we find

these do not conserve helicity either. Hence it is also the discretizations which can prevent

helicity conservation. These results are given in Chapter 4. It is clear from these numerical

experiments that it is the discrete form of the nonlinearity which is creating and dissipating

helicity in the simulations. Hence for a scheme to conserve both energy and helicity, a usual

trapezoidal Galerkin needs to be improved upon.
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It is not surprising that these schemes do not conserve helicity. The first scheme to

conserve both energy and helicity was discovered in 2004 by Liu and Wang [42], and is for

axisymmetric flow. Conserving both of these quantities in a scheme is important for several

reasons. First, true fluid flow conserves them; for a scheme to do so also provides physical

relevance for its solutions. This also means that the nonlinearity is not creating or dissipating

helicity. In the NSE, the nonlinearity is responsible only for moving helicity through wave

space, not for creating or destroying it. Since the nonlinearity is not creating small errors

by altering helicity, it is possible to achieve better accuracy in longer time intervals (versus

schemes that do not conserve helicity). This is because there are no small errors (from helic-

ity) that can eventually cause significant error in a helicity conserving scheme. Analogously

in two dimensions, where the rotational quantity enstrophy is conserved, schemes such as

the Arakawa scheme [6] that conserve both energy and enstrophy are widely believed to be

more accurate in long time intervals than other schemes that conserve only energy.

The scheme of Liu and Wang (known as EHPS) is for axisymmetric flow only, and is

derived from the vorticity-stream function formulation of the Navier-Stokes equations. In

Chapter 5, we present an energy and helicity conserving finite element scheme for more gen-

eral flows [50]. For periodic flows, we prove inviscid conservation, stability and convergence

of the scheme. Some of the analysis is similar to that in [51]. We also present numerical

examples comparing the scheme to more typical NSE finite element schemes.

In Chapter 6, we give a numerical analysis of a trapezoidal Galerkin implementation of

the (new,[34]) Leray-deconvolution model. We also present numerical experiments to verify

proven convergence rates and to compare the scheme to the classical Leray scheme, which is

the 0th order Leray-deconvolution model.

We end this thesis with conclusions and a discussion of possible future work.
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Figure 1: Turbulence is chaotic, three dimensional and rotational! The picture shows flow

in a box, where inside are streamtubes, and the sides of the box are colored with velocity

magnitude (magnitude scale given on the right) overlayed with streamlines.
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2.0 CONSERVATION LAWS OF TURBULENCE MODELS

2.1 INTRODUCTION

A major difficulty in turbulence modeling is selecting a model from among the plethora of

turbulence models in existence. It is rarely known à priori if a particular model will perform

well for a given flow setting. However, there are other ways to compare turbulence models.

For example, determining the physical relevance of a model’s solution can give insight into

a model’s accuracy. It is well known that kinetic energy, (E =
∫
Ω
|u|2 dx), is critical in

the organization of a flow, and hence if a model is to accurately predict turbulent flow, it

must also accurately predict the flow’s kinetic energy. Enstrophy (Ens =
∫
Ω
|∇ × u|2 dx)

and helicity (H =
∫

Ω
u · (∇× u)dx) are rotational quantities which play critical roles in the

organization of two and three dimensional fluid flow, respectively. An accurate turbulence

model must also predict these quantities correctly. This chapter compares four popular

turbulence models based on the analysis of their treatment of kinetic energy, enstrophy, and

helicity.

Conservation of kinetic energy in turbulence models has been extensively studied for

many years [22],[25],[20],[24]. Kinetic energy conservation in a model yields stability, is the

key step in an existence theory, and is the first step in proving a model’s energy cascades

from large to small scales. The conservation of enstrophy for two dimensional turbulence has

also been extensively studied [22][25], and models such as the classical Arakawa scheme [6]

have been developed that preserve both energy and enstrophy for inviscid flow. Enstrophy

is not conserved in three dimensions because of vortex stretching, a quantity which vanishes

in two dimensions but not necessarily in three dimensions.

Many turbulence models, by their construction, cannot conserve energy, helicity, or en-
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strophy. Large Eddy Simulation (LES) models of turbulence, for example, solve for approxi-

mate averages of flows. These models are often used where fine scale detail is not necessary.

To illustrate their development, consider the NSE in an L-periodic box Ω ⊂ R3 or R2.

ut +∇ · (uu) +∇p− ν∆u = f, ∇ · u = 0, (2.1)

u(0, x) = u0(x),

∫

Ω

p dx = 0, and u(x + Lei) = u(x), (2.2)

where ei is any of the three standard basis vectors in R3.

Note that from these equations, in absence of dissipation (ν = 0) and external force

(f = 0), one can derive for every t ≥ 0, the conservation of

• mass: ∇ · u(x, t) = 0 ∀x ∈ Ω,

• momentum:
∫

Ω
u(x, t) =

∫
Ω

u0(x),

• energy: E(t) = 1
2

∫
Ω
|u(x, t)|2 = 1

2

∫
Ω
|u0(x)|2 = E(0),

• helicity: H(t) =
∫

Ω
u(t) · (∇× u(t)) =

∫
Ω

u0 · (∇× u0) = H(0),

• and enstrophy: Ens(t) = 1
2

∫
Ω
|∇ × u(t)|2 = 1

2

∫
Ω
|∇u0|2 = Ens(0).

See, for example, [22] or [25].

An LES model can be derived from the NSE as follows. Let φ denote a spacial average

of φ where the operator ( · ) is a differential filter (defined precisely in Section 2). Then the

spacially filtered NSE (SFNSE) are

ut +∇ · uu +∇p− ν∆u = f, ∇ · u = 0, (2.3)

u(0, x) = u0(x),

∫

Ω

p dx = 0, and u(x + Lei) = u(x) (2.4)

A closure problem arises in the SFNSE; the uu term must be modeled, and each different way

of modeling this term leads to a different LES model. Since uu 6= ūū, not every LES model

will conserve energy, helicity or enstophy. However, LES models can conserve naturally
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arising model quantities analogous to energy, helicity, or enstrophy. In the Navier-Stokes-

alpha (NSα) model studied by Foias, Holm and Titi in [21], a model energy and a model

helicity were found to be conserved for inviscid flow:

ENSα =

∫

Ω

v · v̄, HNSα =

∫

Ω

v · (∇× v),

where v is the model’s velocity solution and v̄ is a spacial average of the solution. In the

N th order Stolz-Adams approximate deconvolution model (ADM) studied in [20], a model

energy EADM , defined in Section 2, was found to be conserved for inviscid flow under periodic

boundary conditions.

The work of Foias, Holm, Titi, et al. [21],[17] motivated this work. The fact that model

quantities can have cascades is shown in [17], where an energy cascade for the Leray model

is discussed, and [21] shows model quantities other than energy can be conserved. Since a

cascade theory must begin with inviscid conservation, showing the inviscid conservation of

energy, helicity, and enstrophy in a turbulence model would be an essential first step toward

finding the cascades of these quantities in a model. Furthermore, for a turbulence model,

conservation of quantities analogous to the five conserved in the NSE is highly desirable; it

can provide a diagnostic check for stability and accuracy of a model, and in practice, the

presence of conserved quantities in a model allows solutions to be monitored for physical

relevance (e.g. any model of the NSE or filtered NSE, without external forces, should never

have energy grow above the energy level at the starting time). In addition, as LES models

are often used for modeling large scale rotational flows, such as in geophysics or oceanic

modeling, they should exhibit the conservation of rotational quantities as well as energy.

Hence in this chapter we present a study of conservation laws in four popular LES models

to determine if they also conserve quantities analogous to those conserved in the NSE. The

models we study are: the ADM [3] [2], the Leray model [17], the Bardina scale-similarity

model [8], and a new alteration of the Leray model proposed by A. Dunca and studied

by Layton and Lewandowski [34] which we will refer to as the Leray deconvolution model.

Formal definitions of these models will be given in Section 2.
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The rest of this chapter is arranged as follows. Section 2 will give notation and prelim-

inaries, Section 3 will present the conservation laws of the models, and Section 4 presents

comparisons and conclusions.

2.2 NOTATION AND PRELIMINARIES

The domain Ω used throughout this chapter will be a box: Ω = (0, L)d, d = 2 or 3, with

periodic boundary conditions. All results except for that of enstrophy will hold for either

d = 2 or d = 3, but conservation of enstrophy (as explained above) is restricted in these

models, as well as in the NSE, to only two dimensions.

We shall assume that solutions are smooth enough to justify each manipulation used.

The usual L2 norm and inner product will be denoted by ‖·‖ and (·, ·), respectively:

(v, w) =

∫

Ω

v · w, ‖v‖ = (v, v)
1
2

Definition 2.1. (The differential filter · ) Given φ ∈ L2(Ω) and a filtering radius δ, define

the average of φ, φ, to be the unique L-periodic solution of

−δ2∆φ + φ = φ (2.5)

This filtering operation will also be denoted by φ = A−1φ for ease of notation. Note

A = (−δ2∆ + I) is self adjoint.

This is a popular filter used in analysis of LES models [21],[20],[10],[17], although its

practicality is sometimes called into question. The use of this specific filter is essential for

all results in this chapter with two exceptions: the Leray and Leray-deconvolution models

conserve energy for inviscid flow regardless of the filter choice, provided filtered quantities

remain in H1. Specifying a filter is necessary when showing cascades for model quantities,

and thus the results found here can be considered a first step in developing cascade theory

for quantities which are exactly conserved in a model. However, for a general filter with an

explicit inverse, the analysis used would take the same general form as that found in this

chapter, although any specific results would be filter dependent.
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Definition 2.2. (The approximate deconvolution operator DN) For a fixed finite N , define

the N th approximate deconvolution operator by

DNφ =
N∑

n=0

(I − A−1)nφ

Note that since A is self adjoint, DN is also. DN was shown to be an O(δ2N+2) approxi-

mate inverse to the filter operator in [20].

Corollary 2.1. DN is compact, positive, and is an asymptotic inverse to the filter A−1: for

very smooth φ and as δ → 0,

φ = DNφ + (−1)(N+1)δ2N+2∆N+1A−(N+1)φ

The proof of Corollary 2.1 is found in [20].

Lemma 2.1. ‖·‖N defined by ‖v‖N = (v,DNv) is a norm on Ω equivalent to the L2(Ω)

norm, and (·, ·)N defined by (v, w)N = (v,DNw) is an inner product on Ω.

Proof. See [10], Lemma 8.2 for proof that ‖·‖DN
is a norm. This fact coupled with the

linearity of GN immediately implies (·, ·)GN
is an inner product.

The next lemma gives four useful vector identities which are used throughout this chapter.

Lemma 2.2. For sufficiently smooth u,

u · ∇u =
1

2
∇u2 − u× (∇× u) (2.6)

For sufficiently smooth, periodic u, v,

(u,∇× v) = (∇× u, v) (2.7)

For sufficiently smooth, periodic u, v with v divergence free,

(u, ∆v) = −(∇× u,∇× v) (2.8)

For sufficently smooth, periodic, two dimensional divergence free u,

(u · ∇u, ∆u) = 0 (2.9)

For proofs, see, for example, [22],[25].

Note that u2 is a commonly used notation for u · u.
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2.2.1 The Models Considered

We have now provided enough preliminaries to define the four LES models considered as

well as the respective models’ energies, helicities and enstrophies. As discussed in the in-

troduction, inviscid conservation of a quantity is essential for the quantity to be cascaded

accurately through the inertial range. This is the motivation for our definitions of model

quantities similar to the usual energy, helicity, and enstrophy.

In the ADM, due to the complexity of the model, finding conservation of the usual

quantities is difficult, and may not even be possible. However, the model quantities we

define are conserved, and thus an analysis of their cascades may be possible. What gives

these quantities physical relavance is the fact that, with assumptions on solution smoothness,

the quantities are all “close” to the usual ones – and thus the usual quantities are at least

close to being conserved.

Similarly in the Leray model, we give two different definitions of enstrophy. The first is

the usual one, but this quantity was found only to be asymptotically conserved. The second

definition, with smoothness assumptions, is similar to the usual one, but yields an exactly

conserved quantity.

Note that we present the models without the “corrections” typically used with them (i.e.

relaxation term with the ADM, mixed models, etc.) which add necessary dissipation. This

is done because our interest here is for conservation in the inertial range.

Definition 2.3. The Stolz-Adams ADM:

The ADM is given by

vt + DNv · ∇DNv +∇q − ν∆v = 0, ∇ · v = 0. (2.10)

Definition 2.4. The Leray/Leray-α model:

The Leray model is given by

vt + v · ∇v +∇q − ν∆v = 0, ∇ · v = 0. (2.11)

The name Leray-alpha corresponds to the Leray model with the use of the filter (2.5).

Our analysis is restricted to this so-called Leray-alpha model, although the Leray model

itself has been used with a number of different filters.
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Definition 2.5. The Bardina scale similarity model

The Bardina scale similarity model is given by

vt + v · ∇v +∇q − ν∆v +∇ · (vv − v̄v̄) = 0, ∇ · v = 0. (2.12)

Definition 2.6. (Leray-deconvolution Model)

The Leray devonvolution model is defined to be

vt + DNv · ∇v +∇q − ν∆v = 0, ∇ · v = 0. (2.13)

The model energies, helicities, and enstrophies defined in a usual form are

ELeray, ELD, EBard :=
1

2
‖v‖2,

HLeray, HLD, HBard := (v,∇× v),

EnsLeray, EnsLD, EnsBard :=
1

2
‖∇ × v‖2,

where v is a solution to a respective model. As stated above, the model energy, helicity

and enstrophy for the ADM take a slightly different form, as does a definition for a filtered

enstrophy for the Leray model. These quantities are important because it is these which are

exactly conserved, and hence it is these quantities for which cascades can be considered. We

define them as

EADM = ‖v‖2N + δ2‖∇v‖N ,

HADM = (v, ∇× v)N +
δ2

2

(∇× v, (∇×)2v
)

N
,

EnsADM =
1

2
‖∇ × v‖2N +

δ2

2
‖∆v‖N ,

vEnsLeray =
1

2
‖∇ × v‖2 +

δ2

2
‖∆v‖2,
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2.3 CONSERVATION LAWS

We develop conservation laws for the models considered together for momentum, mass,

energy, helicity and enstrophy. The conservation laws are presented for inviscid flow (i.e.

ν = 0 or the Euler equations) and without external force (f = 0). However, we leave ν

arbitrarily non-negative until the final step of each proof, as the case when dissipation is

present is also be of interest because it gives a clue about the decay of these quantities in

the presence of dissipation.

Also note that throughout the analysis in this Chapter, we extensively use the fact that

under periodic boundary conditions, differential operators commute.

2.3.1 Momentum and Mass

Solutions to each of the models conserve momentum and mass. The conservation of a

model mass comes directly from ∇ · v = 0. Conservation of momentum follows for each

model because each term in all the models, except for the time derivative term, is a spatial

derivative (the nonlinear terms all can be expressed as spatial derivatives because of the

commutation of differential operators under periodic boundary conditions coupled with the

constraint that v be divergence free). Hence, integrating the first equation of each model

over Ω vanishes all terms except the time derivative. Hence if v is a solution to any of the

models, we have the relation

d

dt

∫

Ω

v = 0

for that model. Thus integrating this equation from 0 to T yields

∫

Ω

v(T, x) =

∫

Ω

v(0, x),

which establishes conservation of model momentum.
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2.3.2 Energy

The ADM, Leray and Leray deconvolution models exactly conserve a model energy, whereas

the Bardina model conserves a model energy only approximately (asymptotically as δ →
0). For smooth flows and as δ → 0, the energy estimate for the Bardina model of three

dimensional flow is O(δ2), and for two dimensional flow is O(δ4). However, for flows with

chaotic behavior or when large δ is required, a blow up to infinity of EBardina cannot be ruled

out.

Theorem 2.1. The following energy conservation laws hold, ∀T > 0, when ν = f = 0.

EADM(T ) = EADM(0)

ELeray(T ) = ELeray(0)

ELD(T ) = ELD(0)

The Bardina model satisfies

E3d
Bardina(T ) = E3d

Bardina(0)−
∫ T

0

{2δ2(v · ∇v, ∆v)− δ4((∆v) · ∇v, ∆v)}dt

E2d
Bardina(T ) = E2d

Bardina(0) + δ4

∫ T

0

{((∆v) · ∇v, ∆v)}dt

Proof. For the ADM, multiplying (2.10) by its solution ADNv and integrating over Ω, we

obtain

(vt, ADNv) + (DNv · ∇DNv, ADNv) + (∇q, ADNv)− ν(∆v, ADNv) = 0. (2.14)

As the operator A is self adjoint, the nonlinear term in (2.14) vanishes.

(DNv · ∇DNv, ADNv) = (DNv · ∇DNv, DNv) = 0

The pressure term also vanishes, which can be seen by applying Green’s Theorem, and using

commutativity of the differential operators under periodic boundary conditions.

(∇q, ADNv) = −(q,∇ · ADNv) = (q, ADN(∇ · v)) = 0

15



The time derivative and dissipation terms do not vanish, and so we rewrite (9) and simplify

by decomposing A.

−δ2(vt, ∆DNv) + (vt, DNv) + δ2ν(∆v, ∆DNv)− ν(∆v, DNv) = 0

Green’s Theorem and the fact that ∆ and DNv commute under periodic boundary conditions

allows this to be written as

1

2

d

dt
‖v‖2N +

δ2

2

d

dt
‖∇v‖2N = −ν‖∇v‖2N − δ2ν‖∆v‖2N . (2.15)

Setting ν = 0 and integrating over time in (10) gives the stated result.

For Leray and Leray deconvolution energy, the stated laws follow immediately by simply

multiplying each model by its respective solution, integrating over the domain, setting ν = 0,

and integrating over time. Note that we do not use any properties of the filter for these

results.

For Bardina, we begin by multiplying (2.12) by v, where v solves (2.12), and integrate

over the domain. As with the other models, the pressure term vanishes, leaving

1

2

d

dt
‖v‖2 + ν‖∇ × v‖2 + (v · ∇v, v) + (v · ∇v, v) = 0.

Repeatedly applying the identity v = Av and the fact that under periodic boundary condi-

tions the filter commutes with differential operators, followed by simplifying allows this to

be written as

d

dt
EBard + ν‖∇ × v‖2 + 2δ2(v · ∇v, ∆v)− δ4((∆v) · ∇v, ∆v) = 0

Setting ν = 0 and integrating over time now gives the 3d result. In 2d, note that by Lemma

2.2, (v · ∇v, ∆v) = 0. Making this substitution gives the 2d result.
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2.3.3 Helicity

We now present the helicity conservation of the models. Only the ADM was found to

exactly conserve a model helicity. The other three models were found to only approximately

(asymptotically as δ → 0) conserve a model helicity. For each of these other three models,

a blow up of helicity cannot be ruled out in this analysis.

Theorem 2.2. For ν = f = 0, the ADM conserves a model helicity: ∀T > 0.

HADM(T ) = HADM(0)

The remaining models satisfy, ∀T > 0,

HLeray(T ) = HLeray(0) + 2δ2

∫ T

0

((v · ∇v,∇∆v) + (v · ∇(∆v),∇× v)) dt

HBardina(T ) = HBardina(0)− 2δ2

∫ T

0

((v + v) · ∇(∇× v),∇×∆v) dt

HLD(T ) = HLD(0) + (−2)Nδ2N+2

∫ T

0

(∆N+1A−(N+1)v · ∇v,∇× v) dt

Proof. The proof for ADM helicity is similar to that of ADM energy. Multiply (2.10) by

(∇× ADNv), where v solves (2.10), and integrate over Ω.

(vt,∇× ADNv) + (DNv · ∇DNv,∇× ADNv)+

(∇q,∇× ADNv)− ν(∆v,∇× ADNv) = 0 (2.16)

As in the energy proof, the nonlinear term vanishes. To show this, we use the commutativity

of differential operators under periodic boundary conditions, the fact that A is self adjoint,

and apply Lemma 2.2.

(DNv · ∇DNv,∇× ADNv)

= (DNv · ∇DNv,∇×DNv)

= (
1

2
∇((DNv)2),∇×DNv)− (DNv × (∇×DNv),∇×DNv)

=
1

2
(∇×∇((DNv)2), DNv)− 0

= 0
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The pressure term also vanishes.

(∇q,∇× ADNv) = (∇× (∇q), ADNv) = 0

The time derivative term is simplified using commutativity of the differential operators after

decomposing A and applying Lemma 2.2.

(vt,∇× (−δ2∆ + I)DNv) = −δ2(vt,∇×∆(DNv)) + (vt,∇×DNv)

= δ2((∇× v)t,∇×DN(∇× v)) + (vt,∇×DNv)

=
δ2

2

d

dt

(∇× v, ∇×)2v
)

N
+

1

2

d

dt
(v, ∇× v)N

The dissipation term simplifies by decomposing A and applying Lemma 2.2.

− ν(∆v,∇× ADNv) = δ2ν(∆v,∇× (∆Gnv))− ν(∆v,∇×DNv)

= δ2ν
(
(∇×)2v, (∇×)3v

)
N

+ ν
(∇v, (∇×)2v

)
N

(2.17)

Recombining all the terms and setting ν = 0 gives

δ2

2

d

dt

(∇× v, ∇×)2v
)

N
+

1

2

d

dt
(v, ∇× v)N = 0 (2.18)

Integrating over time give the stated conservation law.

For the Leray helicity relation, we multiply (2.11) by the curl of its solution, (∇ × v),

and integrate over the domain. After simplifying, this yields

1

2

d

dt
(v,∇× v) = −ν(∇× v, (∇×)2v)− (v · ∇v,∇× v) (2.19)

Expand the nonlinear term by using the identity v = Av and simplifying.

(v · ∇v,∇× v) = (v · ∇v,∇× Av)

= −δ2(v · ∇v,∇×∆v) + (v · ∇v,∇× v)

= −δ2(v · ∇v,∇×∆v)− δ2(v · ∇(∆v),∇× v)

Recombing terms and setting ν = 0 gives

1

2

d

dt
= δ2(v · ∇v,∇×∆v) + δ2(v · ∇(∆v),∇× v) (2.20)
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Integrating over time will now give the stated Leray helicity conservation.

For Bardina, multiply (2.12) by (∇ × v), where v solves (2.12), and integrate over the

domain. Then using Lemma 2.2 to decompose the nonlinearity and simplifying gives

1

2

d

dt
(v,∇× v) + ν(∇× v,∇×∇× v)

− (v × (∇× v),∇× v) + (v × (∇× v),∇× v) = 0. (2.21)

Using the identity v = Av and properties of the cross product, (2.21) becomes

1

2

d

dt
(v,∇× v) + ν(∇× v,∇×∇× v)

+ δ2(v × (∇×∆v),∇× v)− δ2(v × (∇× v),∇×∆v) = 0. (2.22)

Thus combining the two trilinear terms and setting ν = 0 gives

d

dt
HBard = −2δ2((v + v)× (∇×∆v),∇× v).

Integrating over time now gives the Bardina helicity result.

For the Leray deconvolution model, the analysis is exactly the same as the Leray model

except for the nonlinear term, after multiplying (2.13) by the curl of its solution. The

nonlinear term can be written as

(DNv · ∇v,∇× v) = ((v − (−1)N+1δ2N+2∆N+1A−(N+1)v) · ∇v,∇× v). (2.23)

Thus we have the stated result, since (v · ∇v,∇× v) = 0.
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2.3.4 Enstrophy

The ADM exactly conserves a 2d model enstrophy. Although the Leray model does not

exactly conserve a “usual” model enstrophy, a quantity similar to enstrophy is exactly con-

served. As in the helicity case, the other models have approximate laws which may not be

useful without restrictive assumptions on the size of higher derivatives and the size of δ.

Theorem 2.3. The ADM conserves enstrophy in 2d, and the Leray model conserves a quan-

tity similar to enstrophy: ∀T > 0 and for ν = f = 0,

EnsADM(T ) = EnsADM(0)

vEnsLeray(T ) = vEnsLeray(0)

The remaining models, in 2d, satisfy

EnsBard(T ) = EnsBard(0) + δ2

∫ T

0

(
(v · v, ∆2v)− (∆v · ∇v, ∆v)

)
dt

EnsLD(T ) = EnsLD(0) + (−1)Nδ2N+2

∫ T

0

(∆N+1A−(N+1)v · ∇v, , ∆v) dt

EnsLeray(T ) = EnsLeray(0)−
∫ T

0

( δ2(v · ∇v, ∆2v)− δ4(v · ∇(∆v), ∆2v) )dt

Proof. To prove the (2d) ADM enstrophy relation, we multiply (2.10) by ∆ADNv where v

solves (2.10) and integrate over Ω.

(vt, ∆ADNv) + (DNv · ∇DNv, ∆ADNv) + (∇q, ∆ADNv)

− ν(∆v, ∆ADNv) = 0 (2.24)

The nonlinear term is handled differently than in any of the previous proofs, and it is this

term which makes the stated enstrophy relation hold only in two dimensions (it does not

necessarily vanish in 3d). We use that A is self adjoint, A and ∆ commute, and that DNv

is two dimensional.

(DNv · ∇DNv, ∆ADNv) = (DNv · ∇DNv, ∆DNv)

= 0
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The pressure vanishes.

(∇q, ∆ADNv) = −(∇×∇q,∇× ADNv) = 0

For the time derivative, decompose A, apply Lemma 2.2, and simplify.

(vt, ∆ADNv) = −δ2(vt, ∆∆DNv) + (vt, ∆DNv)

= −δ2((∆v)t, ∆v)− ((∇× v)t,∇× v)

= −δ2

2

d

dt
‖∆v‖2N −

1

2

d

dt
‖∇ × v‖2N

The dissipation term also requires decomposition of A and Lemma 2.2.

− ν(∆v, ∆ADNv) = −δ2ν(∇×∆v,∇×∆DNv) + ν(∇×∆DNv,∇×DNv)

= −δ2ν‖∇ ×∆v‖2N − ν‖∆DNv‖N (2.25)

Recombining the terms and setting ν = 0 gives

1

2

d

dt
‖∇ × v‖2N +

δ2

2

d

dt
‖∆v‖2N = 0. (2.26)

Integrating over time now gives the stated ADM 2d enstrophy conservation law.

For the Leray vEnsLeray enstrophy result, multiply (2.11) by ∆v, where v solves (2.11),

integrate over the domain, and write v = Av in the time derivative and viscosity terms.

((Av)t, ∆v) + (v · ∇(Av), ∆v) + (q, ∆v)− ν(∆(Av), ∆v) = 0

Next decompose each A, and simplify. The pressure term vanishes by applying Lemma 2.2.

(vt, ∆v)− δ2(∆vt, ∆v)− δ2(v · ∇(∆v), ∆v) + (v · ∇v, ∆v)

− νδ2‖∇ × (∆v)‖2 − ν‖∆v‖2 = 0

Since both trilinear terms vanish, this expression can be simplified and rewritten as

1

2

d

dt
‖∇ × v‖2 + δ2‖∆v‖2 = −ν‖∆v‖2 − δ2‖∇ ×∆v‖2

Setting ν = 0 and integrating over time gives the result.
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For the Leray-deconvolution enstrophy, multiply (2.13) by ∆v, where v solves (2.13),

integrate over the domain, and simplify. This gives

1

2

d

dt
‖∇v‖2 = −ν‖∆v‖2 + (DNv · ∇v, ∆v) (2.27)

For the nonlinear term, we reduce by expanding the DNv term.

(DNv · ∇v, ∆v) = (v − (−1)N+1δ2N+2∆N+1A−(N+1)v · ∇v, ∆v) (2.28)

Applying Lemma 2.2, setting ν = 0 and integrating over time will then give the desired

result.

For the Bardina model, multiply (2.12) by ∆v, where v solves (2.12), and integrate over

the domain. Since the pressure term and first nonlinear term vanish, we have

1

2

d

dt
‖∇ × v‖2 + ν‖∆v‖2 = (v · ∇v, ∆v)− (v · ∇v, ∆v). (2.29)

In the first trilinear term, we substitute ∆v = ∆Av = A∆v, and use the fact that A is self

adjoint. This gives

1

2

d

dt
‖∇ × v‖2 + ν‖∆v‖2 = (v · ∇v, ∆v)− (v · ∇v, ∆v) (2.30)

Repeatedly using the identity v = Av and using Lemma 2.2 reduces (2.30) to

d

dt
EnsBard = δ2

(
(∆v · ∇v, ∆v)− (v · ∇v, ∆2v)

)− ν‖∆v‖2 (2.31)

Setting ν = 0 and integrating over time now yields the stated Bardina enstrophy result.

For the usual Leray enstrophy, multiply (2.11) by ∆v, where v solves (2.11), and integrate

over the domain. Since the pressure term drops, we have

d

dt
EnsLeray + ν‖∆v‖2 = (v · ∇v, ∆v). (2.32)

Use of Lemma 2.2 and repeated substitutions of v = Av gives

d

dt
EnsLeray = −δ2(v · v, ∆2v) + δ4(v · ∇(∆v), ∆2v)− ν‖∆v‖2. (2.33)

Setting ν = 0 and integrating over time gives the result for the usual Leray enstrophy.
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2.4 CONCLUSIONS

This chapter studied conservation laws in the Bardina, ADM, Leray and Leray deconvolution

models in an effort to establish which of these models had conservation laws analogous to

those of the Navier Stokes equations. Only the ADM was found to exactly conserve a model

helicity, and only the ADM and Leray models exactly conserved a model enstrophy. The

Bardina model was the only model found to not conserve a model energy. The Leray and

Leray-deconvolution results for the conservation of energy are not limited to the filter used

throughout this chapter, and hold for any smoothing filter.

Since inviscid conservation is a first and necessary step for a quantity to cascade through

the inertial range, our results show that new cascade theories may be possible for the ADM

model quantities, and for an enstrophy-like quantity in the Leray model. The next chapter

is an examination of the joint helicity-energy cascade in the ADM.
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3.0 THE JOINT ENERGY-HELICITY CASCADE IN THE ADM

3.1 INTRODUCTION

We consider in this chapter aspects of flow statistics and the physical fidelity related to

the coherent rotational structures and integral invariants (helicity and helicity statistics)

predicted by a family of parameter free large eddy simulation models of turbulence. Broadly

speaking, if δ is the (user-selected) filter length scale and overbar denotes the associated

local, spacial averaging, the true averages, u, p, of an incompressible viscous fluid satisfy the

well known Space Filtered Navier-Stokes equations given by

ut +∇ · (uu)− ν∆u +∇p = f and ∇ · u = 0. (3.1)

The closure problem (which occurs since u u 6= u u) leads to the deconvolution problem:

givenu, findu (approximately). (3.2)

Calling this approximate deconvolution of u, D(u):

approximation to u = D(u),

an approximate solution to the closure problem is then uu ≈ D(u) D(u). The LES model

induced is to find (v, q) (sought to approximate (u, p)) satisfying

vt +∇ · (D(v) D(v))− ν∆v +∇q = f and ∇ · v = 0 (3.3)

with initial condition v(x, 0) = v0(x). Here we take Ω = (0, L)3 and impose periodic bound-

ary conditions on all variables (with the usual normalization condition of the periodic case
∫
Ω

φ = 0, φ = v, v0, f and q)
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The deconvolution problem (3.2) is typically ill-posed and any method for approximate

solution of an ill-posed problem can be tested as a Large Eddy Simulation (LES) model in

(3.3). We study herein the family (N = 0, 1, 2, . . .) of Approximate Deconvolution Models

(ADM), introduced in LES by Stolz and Adams [2], [3], based on the van Cittert algorithm,

see Bertero and Boccacci [11]. This deconvolution operator, DN , which we define in (2.2)

satisfies the consistency condition (for N = 0, 1, 2, . . .):

u = DN(u) + O(δ2N+2) for smooth u,

and thus uu = DN(u) DN(u) + O(δ2N+2). This model has remarkable mathematical prop-

erties and its accuracy has been established in the tests of Stolz and Adams [2] ,[3] and the

theoretical studies in the work of Dunca and Epshteyn [20] and [35].

In this chapter, we study the joint energy-helicity cascade for homogeneous, isotropic

turbulence generated by the Stolz-Adams approximate deconvolution models (ADM). Our

goal is to give a comparison of the energy and helicity statistics of ADM’s to the true flow

statistics and a comparison of their respective energy and helicity cascades.

Both energy,

E(t) :=
1

2L3

∫

Ω

|u(x, t)|2 dx, (3.4)

and helicity,

H(t) :=
1

L3

∫

Ω

u(x, t) · (∇× u(x, t))dx, (3.5)

are conserved by the Euler equations and dissipated (primarily at the small scales) by vis-

cosity. It is widely believed that both cascades, André and Lesieur [5], and the details of

their respective cascades are intertwined. Recent studies of Bourne and Orszag in [12] have

suggested that for homogeneous, isotropic turbulence averaged fluid velocities exhibit a joint

energy and helicity cascade through the inertial range of wave numbers given by

E(k) = CEε2/3k−5/3, H(k) = CHγε−1/3k−5/3, (3.6)

where k is wave number, ε the mean energy dissipation, and γ the mean helicity dissipation,

see also Q. Chen, S. Chen and Eyink [15], Q. Chen, S. Chen, Eyink and Holm [16], Ditlevsen
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and Giuliani [19]. The cascades are referred to as “joint” because they travel with the same

speed through wave space (i.e. the exponents of k are equal). The energy cascade given in

(3.6) is the famous Kolmogorov cascade, and the work of Q. Chen, S. Chen and Eyink [15]

showed that the helicity cascade in (3.6) is consistent for wave numbers up to the standard

Kolmogorov wave number, kE = ν−3/4ε1/4, where ν is the fluid viscosity. Herein, we explore

the existence and details of a comparable joint cascade in the ADM (3.3), to examine if this

qualitative feature of the NSE is matched in the ADM.

Exact conservation of helicity for a turbulence model, a first and necessary step for correct

helicity cascade statistics, was studied in [52] for the ADM, Leray, Leray-deconvolution, and

the Bardina LES models. This work shows that all these models exactly conserve a model

mass and model momentum. However, of these only the ADM exactly conserves helicity in

the absence of viscosity and external forces, implying that the existence of a helicity cascade

is possible.

Other authors have compared LES model energy cascades to energy cascades of the NSE.

This was pioneered by Muschinsky [48] for the Smagorinsky model. In [17] by Cheskidov,

Holm, Olson and Titi the energy cascade of the Leray-α model was explored, as was the

energy cascade of the ADM (3.3) in [37] and associated regularization in [38]. The work in

[37] found that, with some key assumptions, the energy cascade in the ADM is identical to

that of the NSE up to the cutoff length scale of δ, and begins to truncate scales like k−11/3

for length scales < δ, until viscosity takes over at a length scale larger than ηKolmogorov. The

effects of time relaxation on scale truncation was explored using similar tools in [38]. There

are many other applications of K41 phenomenology to understanding LES models, Sagaut

[53].

The study of helicity in fluid flow and turbulence has only recently begun. It was not

until 1961 that helicity’s inviscid invariance was discovered by Moreau [47], and two decades

later Moffatt gave the topological interpretation of helicity [45]: helicity is nonzero if and

only if the flow is not reflectionally symmetric. This topological interpretation leads to the

commonly accepted interpretation of helicity: it is the degree to which the vortex lines are

knotted and intertwined. Another interesting and important feature of helicity is that it is

a rotationally meaningful quantity that can be checked for accuracy in a simulation. Moffat
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and Tsoniber gave a good summary of the early results on helicity in [46].

In this study, we show that solutions of the ADM possess a joint energy/helicity cascade

that is asymptotically (in the filter width δ) equivalent to that of the NSE. In [37], it is

shown that there exists a piecewise cascade for energy in the ADM; that is, up to wave

number 1
δ
, i.e., over the resolved scales, the ADM cascades energy in the same manner as

in the NSE (k−5/3). However, after this wave number and up to the model’s microscale, the

ADM cascades energy at a faster rate (k−11/3). Interestingly, the results for helicity in the

ADM are analogous; helicity is cascaded at the correct rate of k−5/3 for wave numbers less

than 1
δ
, and for higher wave numbers up to the model’s microscale, helicity is cascaded at

a rate of k−11/3. This k−11/3 rate of enhanced decay is filter dependent, Section 3.6.1. We

deduce the microscale helicity in the ADM and we also show that the helicity cascade is

consistent (in the sense introduced by Q. Chen, S. Chen and Eyink [15]) up to the model’s

energy microscale.

Section 2 gives notation and preliminaries and shows how the deconvolution operator

renormalizes the energy. Section 3 gives properties of the ADM, Section 4 derives the joint

cascade of energy and helicity in the ADM, Section 5 shows how the ADM truncates scales

for helicity, and Section 6 presents conclusions.

3.2 NOTATION AND PRELIMINARIES

The L2(Ω) norm is denoted (as usual) by ‖φ‖ = (
∫
Ω
|φ(x)|2 dx)1/2 and the deconvolution

weighted L2-norm is denoted by ‖φ‖N := (φ, DNφ)1/2, where DN is defined precisely in

Section 3.2.2. Every other norm will be explicitly indicated. The space L2
0(Ω) contains

functions in L2(Ω) with zero mean.

Given two real quantities A, B (such as energy and helicity) we shall write

A ' B

if there are positive constants C1, C2 depending only on N (which is fixed) with

C1(N)A ≤ B ≤ C2(N)A.
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For example, in Section 3.2.2 we show that

||φ|| ≤ ‖φ‖N ≤
√

N + 1||φ||, ∀φ ∈ L2(Ω),

which is written as ||φ|| ' ||φ||N .

3.2.1 Nomenclature

The nomenclature used is standard and defined where first used herein. We briefly give a

summary of it next.

u, p : The true velocity and pressure, solutions of the underlying Navier-Stokes equations.

v, q : The continuum velocity and pressure predicted by the LES model.

δ : The averaging radius of the filter used in the LES model.

v̂ : The Fourier transform of the function v for the Cauchy problem and the Fourier

coefficient of v for the periodic problem.

k, k : The dual variable or wave number vector and wave number, respectively;

k = |k| = (k2
1 + k2

2 + k2
3)

1
2 .

||v|| : The L2 norm of the indicated function, ‖v‖ = (
∫

Ω
|v(·, t)|2 dx)1/2.

||v||N : The deconvolution norm of the indicated function, ‖v‖N = (v(·, t), DNv(·, t))1/2.

E(v)(t) : The true, total kinetic energy of the indicated velocity field at time t:

E(v)(t) := 1
2L3 ||v(·, t)||2.

H(v)(t) : The true, total helicity of the indicated velocity field at time t:

H(v)(t) := 1
L3

∫
Ω

v(·, t) · (∇× v(·, t))dx.

Emodel(v)(t): The kinetic energy of the LES model at time t, given by:

Emodel(v)(t) := 1
2L3{||v(·, t)||2N + δ2||v(·, t)||2N}.

Hmodel(v)(t): The helicity of the LES model at time t, given by:

Hmodel(v)(t) := 1
L3{v(·, t),∇× v(·, t))N + δ2(∇× v(·, t), (∇×)2v(·, t))N}.

E(v)(k): The distribution of the kinetic energy of the time average of the indicated flow

field by wave number.

H(v)(k): The distribution of the helicity of the time average of the indicated flow field

by wave number.
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Emodel(v)(k) : The distribution by wave number of the LES model’s kinetic energy of

time or ensemble averages of the indicated flow field.

Hmodel(v)(k) : The distribution by wave number of the LES model’s helicity of time or

ensemble averages of the indicated flow field.

< · >: Time averaging of the indicated function,

< v >= lim supT→∞
1
T

∫ T

0
v(t) dt.

ε(v)(t) : The (non-averaged) energy dissipation rate,

ε(v)(t) := ν
L3 ||∇v(·, t)||2.

γ(v)(t) : The (non-averaged) helicity dissipation rate,

γ(v)(t) := 2ν
L3 (∇× v(·, t), (∇×)2v(·, t)).

ε : The mean (time-averaged) energy dissipation rate of the true, Navier-Stokes velocity.

ε :=< ε(v)(t) > .

γ : The mean (time-averaged) energy dissipation rate of the true, Navier-Stokes velocity.

γ :=< γ(v)(t) > .

εmodel(v)(t) : The (non-averaged) LES model’s energy dissipation rate, given by:

εmodel(v)(t) := ν
L3 (||∇v(·, t)||2N + δ2||∆v(·, t)||2N).

γmodel(v)(t) : The (non-averaged) LES model’s helicity dissipation rate, given by:

γmodel(v)(t) := 2ν
L3 ((∇× v(·, t), (∇×)2v(·, t))N + δ2((∇×)2v(·, t), (∇×)3v(·, t))N).

εmodel : The mean (time-averaged) energy dissipation rate of the LES model.

εmodel :=< εmodel(v)(t) > .

γmodel : The mean (time-averaged) helicity dissipation rate of the LES model.

γmodel :=< γmodel(v)(t) > .

P (v)(t) : Power input

P (v)(t) := 1
L3 (f(·, t), v(·, t)).

Pmodel(v)(t) : Power input of the LES model

Pmodel(v)(t) := 1
L3 (f(·, t), v(·, t))N .

Re : The Reynolds number.

ρ, µ, ν : Respectively, the fluids density, viscosity and kinematic viscosity.

U,L : The large scales characteristic velocity and length scale used to define the Reynolds

number.
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A : The differential operator that defines the differential filter, Av := (−δ2∆ + I)v.

G : The filter G = A−1.

DN : The approximate deconvolution operator.

v : Overbar denotes the average of the indicated function, v = Gv.

ηKolmogorov : The length scale of the smallest persistent eddies; the Kolmogorov mi-

croscale.

kE : The wave number of the smallest persistent eddies.

ηH : The length scale of the smallest persistent helical structures; analogous to the

Kolmogorov microscale for helicity.

kH : The wave number of the smallest persistent helical structures.

ηE
model : The model’s energy microscale being the length scale of the model’s smallest

persistent eddies.

kEmodel
: The model’s energy wave number being the wave number of the model’s smallest

persistent eddies.

ηH
model : The model’s helicity microscale being the length scale of the model’s smallest

persistent helical structures.

kHmodel
: The model’s helicity wave number being the wave number of the model’s smallest

persistent helical structures.

wsmall : The velocity scale of the smallest persistent eddies in the model’s solution.

[·] : The units or dimensions.

Resmall, Relarge : A Reynolds number based on the scales of the smallest/largest persistent

eddies.

Remark 3.1. For notational compactness, we frequently omit explicit reference to the in-

dicated velocity field. We may write, for instance, E(t) instead of E(v)(t), H(t) instead of

H(v)(t), and so on.
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3.2.2 Norm Equivalence

We focus on the case where averaging is performed by differential filters, Germano [23].

Specifically, given φ, φ is the unique L-periodic solution of

− δ2∆φ + φ = φ, in Ω, (3.7)

where δ is the selected filter length scale. Differential filters are used, for example, in Q.

Chen, S. Chen, Eyink [15], Q. Chen, S. Chen, Eyink and Holm [16], Cheskidov, Holm, Olson,

and Titi [17], Dunca and Epshteyn [20], [37], [43], and [52].

Let the averaging operator be denoted by G (so φ = Gφ := (−δ2∆ + I)−1φ). The basic

problem in approximate deconvolution is thus: given φ = Gφ find useful approximations of

φ. In other words,

Gφ = φ, solve for φ.

For most averaging operators, G is symmetric, positive semi-definite and not stably invert-

ible. Thus, the deconvolution problem is generically ill-posed.

The approximate deconvolution algorithm we consider was studied by van Cittert in 1931.

For each N = 0, 1, ..., it computes an approximate solution φN to the above deconvolution

equation by N steps of a fixed point iteration, Bertero and Boccacci [11]. Rewrite the above

deconvolution equation as the fixed point problem:

given φ solve φ = φ + (φ−Gφ) for φ.

The deconvolution approximation is then computed as follows.

Algorithm 3.1 (van Cittert approximate deconvolution algorithm). φ0 = φ, where

for n=1,2,...,N-1, perform

φn+1 = φn + (φ−Gφn)

φN = DNφ
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By eliminating the intermediate steps, the N th deconvolution operator DN is

DNφ :=
N∑

n=0

(I −G)nφ. (3.8)

For example, the approximate deconvolution operators corresponding to N = 0, 1, 2 are

D0φ = φ, and D1φ = 2φ− φ, and D2φ = 3φ− 3φ + φ.

Lemma 3.1 (Stability of approximate deconvolution). Let averaging be defined by the

differential filter (3.7). Then DN is a self-adjoint, positive semi-definite operator on L2(Ω)

with norm

||DN || := sup
φ∈L2(Ω)

‖DNφ‖
‖φ‖ = N + 1.

Proof. We summarize the proof from [10] for completeness. Note that G := (−δ2∆ + I)−1 is

a self-adjoint positive definite operator with eigenvalues between zero and one, accumulating

at zero. Since DN :=
∑N

n=0(I−G)n, is a function of G, it is also self-adjoint. By the spectral

mapping theorem

λ(DN) =
N∑

n=0

λ(I −G)n =
N∑

n=0

(1− λ(G))n.

Thus, λ(DN) ≥ 0 and DN is also positive semi-definite. Since DN is self-adjoint, the operator

norm ||DN || is also easily bounded by the spectral mapping theorem by

||DN || =
N∑

n=0

λmax(I −G)n =
N∑

n=0

(1− λmin(G))n = N + 1. (3.9)

Definition 3.1. The deconvolution weighted norm and inner product are

‖φ‖N =
√

(φ,DNφ) and (φ,ψ)N := (φ, DNψ).

for φ,ψ ∈ L2(Ω).

Lemma 3.2. We have

||φ||2 ≤ ‖φ‖2N ≤ (N + 1)||φ||2, ∀φ ∈ L2(Ω) . (3.10)
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Proof. As in (3.9), 1 ≤ λ(DN) ≤ N + 1 since

λ(DN) =
N∑

n=0

λ(I −G)n =
N∑

n=0

(1− λ(G))n, and

0 < λ(G) ≤ 1.

Since DN is a self-adjoint operator, this proves the above equivalence of norms.

It is insightful to consider the Cauchy problem or the periodic problem and visualize

the approximate deconvolution operators DN in wave number space (re-scaled by k ← δk

). This shows how the N norm reweights the usual L2(Ω) norm. The transfer function or

symbol of the first three are

D̂0 = 1,

D̂1 = 2− 1

k2 + 1
=

2k2 + 1

k2 + 1
, and

D̂2 = 1 +
k2

k2 + 1
+ (

k2

k2 + 1
)2.

Their transfer functions are plotted in Figure 2 below.

Note that the plot of D̂N(k) is consistent with (3.10): the transfer functions are bounded

below by 1, positive and uniformly bounded by N +1. Figure 2 also reveals that the weighted

norm is very close to the usual norm on the largest spacial scales but then overweights (by

at most N + 1) smaller scales.

The large scales are associated with the smooth components and with the wave numbers near

zero (i.e., |k| small). Thus, the fact that DN is a very accurate solution of the deconvolution

problem for the large scales is reflected in the above graph in that the transfer functions

D̂N(k) have high order contact with 1
1+k2 near k = 0.

Lemma 3.3 (Error in approximate de-convolution). For any φ ∈ L2(Ω),

φ−DNφ = (I − A−1)N+1φ

= (−1)N+1δ2N+24N+1A−(N+1)φ,

i.e., for smooth φ, φ = DNφ + O(δ2N+2).
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Figure 2: Approximate de-convolution operators, N=0,1,2.

Proof. See Dunca and Epshteyn [20].

Proposition 3.1. For φ smooth and N fixed,

‖φ‖2N = ‖φ‖2 + O(δ2).

Proof. Using φ− φ = O(δ2) and φ−DNφ = O(δ2N+2):

(φ,DNφ) = (φ, φ) + (φ,DNφ− φ) + (φ,DN(φ− φ)) = ‖φ‖2 + O(δ2N+2) + O(δ2).
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3.3 PROPERTIES OF APPROXIMATE DECONVOLUTION LES MODELS

The following proposition recalls from Dunca and Epstheyn [20] and [52], respectively, the

energy and helicity balances of the ADM (3.3).

Proposition 3.2 (Model energy and helicity balance). Consider the ADM (3.3). The

unique strong solution v of (3.3) satisfies

1

2
[‖v(t)‖2N + δ2‖∇v(t)‖2N ] +

∫ t

0

ν‖∇v(t′)‖2N + νδ2‖4v(t′)‖2N dt′ =

=
1

2
[‖v0‖2N + δ2‖∇v0‖2N ] +

∫ t

0

(f(t′), v(t′))N dt′. (3.11)

(v(t),∇× v(t))N + δ2(∇× v(t), (∇×)2v(t))N

+ 2ν

∫ t

0

(∇× v(t′), (∇×)2v(t′))N + δ2((∇×)2v(t′), (∇×)3v(t′))N dt′

= (v0,∇× v0)N + δ2(∇× v0, (∇×)2v0)N +

∫ t

0

(f(t′), v(t′))N dt′ (3.12)

Proof. Both (3.11) and (3.12) can easily be proven by multiplying (3.3) by ADNw (or A(∇×
DNw) for helicity), and integrating by parts.

Remark 3.2. From this proposition, we can clearly identify the analogs in the ADM (3.3) of

the physical quantities of kinetic energy, energy dissipation rate, helicity, helicity dissipation

rate, and power input, given next.

Definition 3.2.

Emodel(t) :=
1

2L3
(||v(t)||2N + δ2||∇v(t)||2N) (3.13)

εmodel(t) :=
ν

L3
(||∇v(t)||2N + δ2||4v(t)||2N) (3.14)

Hmodel(t) :=
1

L3

(
v(t),∇× v(t))N + δ2(∇× v(t), (∇×)2v(t))N

)
(3.15)

γmodel(t) :=
2ν

L3
((∇× v(t), (∇×)2v(t))N + δ2((∇×)2v(t), (∇×)3v(t))N) (3.16)

Pmodel(t) :=
1

L3
(f(t), v(t))N (3.17)
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Proposition 3.3. For smooth v,

Emodel(w)(t) = E(w)(t) + O(δ2), εmodel(t) = ε(t) + O(δ2),

Hmodel(w)(t) = H(w)(t) + O(δ2), γmodel(t) = γ(t) + O(δ2)

Pmodel(w)(t) = P (w)(t) + O(δ2).

Proof. This follows directly from the Definition 3.2, Proposition 3.1 and Lemma 3.3.

Remark 3.3. The energy dissipation in the model

ε model(t) :=
ν

L3
‖∇v(t)‖2N +

ν

L3
δ2‖4v(t)‖2N (3.18)

is enhanced by the extra term (which is equivalent to νδ2‖4v(t)‖2 ). This term acts as an

irreversible energy drain localized at large local fluctuations. The kinetic energy of the model

has an extra term: δ2‖∇w(t)‖2N which is uniformly equivalent to δ2‖∇w(t)‖2.

E model(t) :=
1

2L3
[‖v(t)‖2N + δ2‖∇v(t)‖2N ] (3.19)

3.3.1 Spectral Representation of the Kinetic Energy

In order to represent the true kinetic energy and the model’s kinetic energy spectrally, we

expand the velocity field v(x, t) in Fourier series as follows:

v(x, t) =
∑

k

∑

|k|=k

v̂(k, t)eik·x, (3.20)

where k ∈ Z3 is the wave number and

v̂(k, t) =
1

L3

∫

Ω

v(x, t)e−ik·x dx

are the Fourier coefficients.

Using Parseval’s equality

1

2 L3
‖v(t)‖2 =

∑

k

∑

|k|=k

1

2
|v̂(k, t)|2 .

36



The above formula is equivalent to writing

E(t) =
2π

L

∑

k

E(k, t),

where

E(k, t) :=
L

2π

∑

|k|=k

1

2
|v̂(k, t)|2 .

Then, the time averaged kinetic energy is

E =< E(t) >, or E =
2π

L

∑

k

E(k),

where E(k) =< E(k, t) >.

The model’s kinetic energy (3.13) and energy dissipation rate (3.14) can also be decom-

posed in Fourier modes.

Proposition 3.4. In Fourier space, (3.13) corresponds to

Emodel(t) =
∑

k

D̂N(k) (1 + δ2k2)E(k, t), (3.21)

or equivalently,

Emodel(t) =
2π

L

∑

k

Emodel(k, t), (3.22)

where

Emodel(k, t) := D̂N(k) (1 + δ2k2)E(k, t). (3.23)

Proof. Using Parseval’s equality again, we get

1

2 L3
‖v(t)‖N =

∑

k

∑

|k|=k

1

2
D̂N(k) |v̂(k, t)|2 (3.24)

and

1

2 L3
‖∇v(t)‖N =

∑

k

∑

|k|=k

1

2
k2 D̂N(k) |v̂(k, t)|2 . (3.25)

Adding (3.24) and (3.25) proves the claim.
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Lemma 3.4. In wave number space, we can rewrite (3.14), the model’s energy dissipation:

εmodel(t) = ν
2π

L

∑

k

D̂N(k) k2(1 + δ2k2)E(k, t). (3.26)

Using (3.23), equation (3.26) can be further simplified to

εmodel(t) = ν
2π

L

∑

k

k2Emodel(k, t). (3.27)

Proof. Beginning with (3.14), the proof of (3.26) follows similarly to that for Proposition

3.4.

Next, we turn our attention to the spectral representation of helicity.

3.3.2 Helical Mode Decomposition

Definition 3.3. The helical modes h± are orthonormal eigenvectors of the curl operator,

i.e. ik× h± = ±kh±.

Since v is incompressible, k·v̂(k, t) = 0 and we can write v̂(k, t) = a+(k, t)h++a−(k, t)h−.

For the spectral decomposition of helicity, we follow Q. Chen, S. Chen and Eyink [15] and

Waleffe [56] and expand v̂(k, t) in a basis of helical modes. Therefore, velocity and vorticity

can be expanded as

v(x, t) =
∑

k

∑

|k|=k

∑
s=±

as(k, t)hs(k)eik·x, (3.28)

∇× v(x, t) =
∑

k

∑

|k|=k

∑
s=±

s k as(k, t)hs(k)eik·x (3.29)

Similarly,

(∇×)nv(x, t) =
∑

k

∑

|k|=k

∑
s=±

snknas(k, t)hs(k)eik·x. (3.30)

Recall first the definition of helicity, equation (3.5), for the model’s velocity v. Expanding

v in helical modes, we get

H(t) =
2π

L

∑

k

H(k, t),

where

H(k, t) := s k
L

2π

∑

|k|=k

∑
s=±
|as(k, t)|2.
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Proposition 3.5. The model’s helicity spectrum, Hmodel(k, t) is related to the true helicity

spectrum, H(k, t), as

Hmodel(k, t) = D̂N(k)(1 + δ2k2)H(k, t). (3.31)

Proof. Using (3.28)-(3.30), we have

1

L3
(v(t),∇× v(t))N =

∑

k

∑

|k|=k

∑
s=±

sD̂N(k)k |a(k, t)|2

and

1

L3
(∇× v(t), (∇×)2v(t))N =

∑

k

∑

|k|=k

∑
s=±

sD̂N(k)k3 |a(k, t)|2

so that

Hmodel(t) =
2π

L

∑

k

Hmodel(k, t) =
2π

L

∑

k

D̂N(k)(1 + δ2k2)H(k). (3.32)

Lemma 3.5. In wave number space, we can rewrite (3.16), the model’s helicity dissipation:

γmodel(t) = ν
∑

k

∑

|k|=k

∑
s=±

D̂N(k) sk3(1 + δ2k2) |as(k, t)|2 . (3.33)

Using (3.32), equation (3.33) can be further simplified to

γmodel(t) = ν
2π

L

∑

k

k2Hmodel(k, t). (3.34)

Proof. Use (3.28)-(3.30) to write (3.16) in helical modes.
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3.4 PHENOMENOLOGY OF THE ADM JOINT ENERGY AND

HELICITY CASCADE

Since helicity plays a key role in organizing three dimensional flows, it is important to

understand the extent to which statistics of helicity predicted by an LES model are correct.

We answer that question in this section by extending the similarity theory of approximate

deconvolution models (begun in [37]) to elucidate the details of the model’s helicity cascade

and its connection to the model’s energy. Inspired by the earlier work on helicity cascades

in the Navier-Stokes equations done by Brissaud, Frisch, Leorat, Lesieur and Mazure [14],

Ditlevsen and Giuliani [19, 18], Q. Chen, S. Chen and Eyink [15], we investigate the existence

and details of the joint cascade of energy and helicity for the family of ADM’s adapting a

dynamic argument of Kraichnan, [32].

Let Πmodel(k) and Σmodel(k) denote the total energy and helicity transfer from all wave

numbers < k to all wave numbers > k.

Definition 3.4. We say that the model exhibits a joint cascade of energy and helicity if

in some inertial range, Πmodel(k) and Σmodel(k) are independent of the wave number, i.e.,

Πmodel(k) = εmodel and Σmodel(k) = γmodel.

Following Kraichnan’s formulation of Kolmogorov’s ideas of localness of interaction in k

space, we assume the following.

Remark 3.1. Πmodel(k) (Σmodel(k)) is proportional to the ratio of the total energy ∼
kEmodel(k) ( total helicity ∼ kHmodel(k)) available in wave numbers of order k and to some

effective rate of shear σ(k) which acts to distort flow structures of scale 1/k.

The distortion time τ(k) of flow structures of scale 1/k due to the shearing action σ(k)

of all wave numbers ≤ k is given by:

τ(k) ∼ 1

σ(k)
with σ(k)2 ∼

∫ k

0

p2Emodel(p)dp. (3.35)

The conjecture of joint linear cascades of energy and helicity is based on the idea (sup-

ported in numerical experiments of Bourne and Orszag [12]) that since energy and helicity
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are both dissipated by the same mechanism (of viscosity), they relax over comparable time

scales.

Remark 3.2. τ(k) and σ(k) are the same for energy and helicity of the model.

We therefore write

Πmodel(k) ∼ kEmodel(k)/τ(k) and Σmodel(k) ∼ kHmodel(k)/τ(k). (3.36)

In the definition of mean-square shear (3.35) the major contribution is from p ∼ k, in

accord with Kolmogorov’s localness assumption. This gives

τ(k) ∼ k−3/2E
−1/2
model(k). (3.37)

Putting (3.36) and (3.37) together with the fact that Σmodel(k) = γmodel, it follows that the

ADM model helicity spectrum is given by:

Hmodel(k) ∼ γmodelk
−5/2E

−1/2
model(k)

i.e.,

Hmodel(k) ∼ γmodelε
−1/3
modelk

−5/3. (3.38)

Using relation (3.31), we write

H(k) ∼ γmodelε
−1/3
modelk

−5/3

1 + δ2k2
,

which shows that the true helicity spectrum is cut by this family of models as

H(k) ∼ γmodelε
−1/3
modelk

−5/3, for k ≤ 1

δ
, (3.39)

H(k) ∼ γmodelε
−1/3
modelδ

−2k−11/3 , for k ≥ 1

δ
. (3.40)

The above result is depicted in Figure 3.

The energy spectrum Emodel(k) follows analogously [37]:

Emodel(k) ∼ ε
2/3
modelk

−5/3. (3.41)
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Further,

E(k) ∼ ε
2/3
modelk

−5/3, for k ≤ 1

δ
, (3.42)

E(k) ∼ ε
2/3
modelδ

−2k−11/3 , for k ≥ 1

δ
. (3.43)

Thus, down to the cutoff length scale (or up to the cutoff wave number) the ADM predicts

the correct energy and helicity cascades.

3.5 MODEL’S HELICITY MICROSCALE AND CONSISTENCY OF THE

CASCADE

On a small enough scale, viscosity grinds down all the flow’s organized structures (including

helicity) and ends all cascades (including the helicity cascade). The length scale, ηH , at

which helical structures do not persist and begin to decay exponentially fast is called the

helicity microscale (in analogy with the Kolmogorov microscale for kinetic energy). The

correct estimate of the helicity microscale for the NSE is unclear: two estimates with strong

arguments in favor of each appear in the literature. The microscale has been estimated

for isotropic turbulence by Ditlevsen and Giuliani in [19] to be different (larger) from the

Kolmogorov scale ηKolmogorov: ηH ∼ ν−3/7γ3/7ε−2/7 based on the decomposition of helicity

flux in ± helical modes. On the other hand, Q. Chen, S. Chen and Eyink in [15] show that

the net helicity flux is constant up to ηKolmogorov(= k−1
E ), so there is no shorter inertial range

for helicity cascade.

In this section, we find that the same occurs when one computes the model’s helicity

microscale. Based on the equilibrium of the helicity flux, we derive a model’s helicity mi-

croscale, ηH
model, whereas we show that the model’s helicity cascade derived in Section 3.4

is consistent up to kEmodel
(= (ηE

model)
−1), in the sense introduced by Q. Chen, S. Chen and

Eyink in [15]. These two results do not contradict each other.
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3.5.1 Model’s Helicity Microscale

Using ideas in [37] from the derivation of the energy microscale, ηE
model, we estimate the

ADM’s helicity microscale to be:

ηH
model ∼ Re−3/11δ6/11L5/11, if δ < ηH

model

ηH
model ∼ Re−3/5L, if δ > ηH

model

Let the reference velocity and length scale for the large scales be U,L, and wsmall, η
H
model,

for the small scales. From [37] the analog of the small scales and large scales Reynolds

number of the model. Recall that these are given by

Relarge ∼ |nonlinearity|
|viscous terms|

∣∣∣∣
large scales

, Resmall ∼ |nonlinearity|
|viscous terms|

∣∣∣∣
small scales

.

Definition 3.5. The effective Reynolds numbers at large and small scales (analogous to the

usual NSE Re=UL
ν

) in the model are given by

Remodel−Large =
UL

ν(1 + ( δ
L
)2)

and Remodel−Small =
wsmallη

H
model

ν(1 + ( δ
ηH

model
)2)

(3.44)

The ADM’s energy and helicity cascade are halted by viscosity grinding down eddies

exponentially fast. This occurs when Remodel−Small ∼ O(1), that is, when

wsmallη
H
model

ν(1 + ( δ
ηH

model
)2)
∼ 1. (3.45)

Equation (3.45) determines wsmall

wsmall ∼
ν(1 + ( δ

ηH
model

)2)

ηH
model

. (3.46)

The next important equation to determine the helicity microscale comes from statistical

equilibrium of the helicity flux: the helicity input at the large scales must match helicity

dissipation at the microscale. The rate of helicity input to the largest scales is the total

helicity over the associated time scales

Hmodel

(L
U
)

=
U2

L
(1 + ( δ

L
)2)

(L
U
)

=
U3

L2

(
1 +

(
δ

L

)2
)

. (3.47)
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Helicity dissipation at the model’s microscale scales as

γsmall ∼ ν

(
w2

small

(ηH
model)

3

(
1 +

(
δ

ηH
model

)2
))

.

This must match the helicity input. There are three cases with the third being the only

important one: δ = O(ηKolmogorov), δ = O(L) and the typical case of δ in the inertial range:

ηKolmogorov << δ << L. If δ ∼ O(ηKolmogorov), then the simulation reduces to a direct

numerical simulation of the NSE. If δ ∼ O(L), then we do not have LES, but VLES (Very

Large Eddy Simulation). In the case of VLES, results follow similarly to those below, but

are omitted here.

In the case δ = O(ηKolmogorov), we have

(1 +

(
δ

L

)2

) ∼ 1 and (1 +

(
δ

ηN
model

)2

) ∼ 1.

Thus, at statistical equilibrium,

U3

L2
∼ ν

w2
small

(ηH
model)

3
.

Since wsmall simplifies to ν/ηH
model, we get

ηH
model ∼ Re−3/5L.

In the most important case,

ηH
model << δ << L

we have

(1 +

(
δ

L

)2

) ∼ 1 and (1 +

(
δ

ηH
model

)2

) ∼
(

δ

ηH
model

)2

.

Matching helicity microscale dissipation to large scale input thus simplifies in this case to

U3

L2
∼ ν

w2
smallδ

2

(ηH
model)

3(ηH
model)

2
. (3.48)

Further, when ηKolmogorov << δ << L, the small scale velocity in (3.46) reduces to

wsmall ∼ νδ2

(ηH
model)

3
. (3.49)
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Substituting (3.49) into (3.48) gives

U3

L2
∼ ν3δ6

(ηH
model)

11
. (3.50)

Solving (3.50) for ηH
model, and using Re = LU/ν gives the model’s helicity microscale,

ηH
model ∼ Re−3/11δ6/11L5/11. (3.51)

The ADM helicity microscale is slightly larger than the ADM energy microscale (found in

[37]): ηE
model ∼ Re−3/10L4/10δ6/10. Hence, capturing wave numbers up to the highest energetic

wave number will also capture all wave numbers containing significant helicity.

3.5.2 Consistency of the ADM Joint Cascade

The model’s energy and helicity dissipation rates are given by equations (3.27) and (3.34)

above, which are equivalent to

εmodel(t) = ν

∫ ∞

0

k2Emodel(k, t)dk. (3.52)

and

γmodel(t) = ν

∫ ∞

0

k2Hmodel(k, t)dk. (3.53)

Lemma 3.6. The wave number of the energy microscale of the ADM model (3.3) is given

by

kEmodel
∼ ν−3/4ε

1/4
model.

Proof. Based on (3.52), the mean (time-averaged) energy dissipation equals to

< εmodel(t) >= ν

∫ kEmodel

0

k2Emodel(k)dk,

where the upper limit of the integral is kEmodel
, the wave number of the smallest persistent

scales in the model’s solution. Using also (3.41) we derive the estimate for kEmodel
in the

usual way as kE was derived for NSE.

< εmodel(t) >∼ νk3
Emodel

Emodel(kEmodel
) ∼ νk3

Emodel
(ε

2/3
modelk

−5/3
Emodel

) ∼ εmodel.

Solving for kEmodel
gives the result.
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Since we have < γmodel(t) >= γmodel and the RHS can be calculated by spectral integra-

tion through the inertial range, checking this equality is a way to test if the estimate derived

for the end of the inertial range is correct (or consistent).

Lemma 3.7. Provided the largest wave number containing helicity is no larger than kEmodel:

< γmodel(t) >= γmodel.

Proof. Substituting the helicity cascade result (3.38) and evaluating the integral (3.53) up

to kEmodel gives

< γmodel(t) > ∼ νγmodelε
−1/3
model(k

4/3
Emodel)

∼ νγmodelε
−1/3
modelν

−1ε
1/3
model

∼ γmodel

Remark 3.1. We want to stress out that < γmodel(t) >= γmodel only if we integrate up to

kEmodel
, i.e. only if the end of the inertial range for helicity is the same as the end of the

inertial range of energy.

3.6 CONCLUSIONS

A joint energy and helicity cascade has been shown to exist for homogeneous, isotropic turbu-

lence generated by approximate deconvolution models. The energy and helicity both cascade

at the correct O(k−5/3) rate for inertial range wave numbers up to the cutoff wave number

of O(1
δ
), and at O(k−11/3) afterward until the model’s energy and helicity microscale. This

establishes consistency of the model’s helicity and energy cascades with the true cascades of

the true, underlying turbulent flow.

Furthermore, a microscale for helicity dissipation has been identified for flows predicted

by ADMs. As expected, it is larger than the Kolmogorov scale (i.e. the ADM truncates

scales) and the microscale for energy dissipation in the ADM (i.e. capturing all scales

containing energy will also capture all scales containing helicity).

46



3.6.1 Other Filters

With the differential filter (3.7), scales begin to be truncated by the model at the lengthscale

l = O(δ) by an enhanced decay of the energy and helicity cascade of k−11/3. Examining the

derivation, the exponent −11/3 (= −5/3 + (−2)) occurs because the filter decays as k−2.

With a fourth order differential filter, these results would be modified to k−14/3 (−14/3 =

−5/3 + (−4)) between the cutoff wave number and the microscale. Continuing, it is clear

that with the Gaussian filter (which decay exponentially after kC = 1/δ), exponential decay

begins at kC = 1/δ. In other words, with the Gaussian filter, kC = 1/δ = 1/ηH
model = 1/ηE

model.
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Figure 3: The helicity spectrum of Approximate Deconvolution Models
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4.0 HELICITY CONSERVATION IN TRAPEZOIDAL GALERKIN

DISCRETIZATIONS

This chapter is an investigation of helicity conservation for inviscid periodic flow in

energy conserving, three-dimensional, trapezoidal schemes for the ADM and the NSE. In

Chapter 2, it was shown that the ADM conserves a model energy and a model helicity.

Similarly, the NSE conserves both energy and helicity. However, conservation in a contin-

uous model does not imply conservation in a discretization of the model. It can be shown

analytically that trapezoidal Galerkin schemes (which are designed to conserve energy) do

not conserve helicity, as the nonlinearity will not vanish when the test function is chosen

such that helicity appears in the resulting equation. However, it is not known to what ex-

tent these discretizations do not conserve helicity. In other words, we wish to know how

significantly the nonlinearity in the NSE can create and dissipate helicity in these discrete

schemes. We perform numerical experiments for perioidic, inviscid, helical flow to shed light

on this matter.

In the numerical experiments presented below, an initial condition of

u0 =< cos(2πz), sin(2πz), sin(2πx) > (4.1)

was chosen. A uniform mesh with h = 1
16

and Taylor-Hood elements (Xh, Qh) = (P2, P1)

(piecwise continuous polynomials of degree 2 and 1 respectively) was used to discretize the

periodic box (0, 1)3, and solutions were computed at times in (0, 1] with ∆t = 0.01 and

ν = f = 0. All computations were performed on a desktop machine using MATLAB. u0
h is

chosen to be the interpolant of u0 in Xh.
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For the NSE, we implemented two schemes: the usual nonlinear trapezoidal Galerkin

scheme (note the one-half time step is an average: wn+1/2 := wn+wn+1

2
,

1

∆t
(un+1

h − un, v) +
1

2
(u

n+1/2
h · ∇u

n+1/2
h , v)− 1

2
(u

n+1/2
h · ∇v, u

n+1/2
h )

+ ν(∇u
n+1/2
h ,∇v)− (pn+1/2,∇ · v) = (f, v) ∀v ∈ Xh, (4.2)

(∇ · un+1
h , q) = 0, ∀q ∈ Qh (4.3)

and the linear extrapolated trapezoidal Galerkin scheme of Baker (where u−1
h := u0

h) [7]

1

∆t
(un+1

h − un, v) +
1

2
((

3

2
un

h −
1

2
un−1

h ) · ∇u
n+1/2
h , v)− 1

2
((

3

2
un

h −
1

2
un−1

h ) · ∇v, u
n+1/2
h )

+ ν(∇u
n+1/2
h ,∇v)− (pn+1/2,∇ · v) = (f, v) ∀v ∈ Xh, (4.4)

(∇ · un+1
h , q) = 0. ∀q ∈ Qh (4.5)

Figure 4 shows the results: Helicity is not conserved for either of these NSE energy-conserving

schemes. Both schemes seem to approximately conserve helicity on (0, .5], but then lose

conservation afterward. It is interesting to note how close these two schemes helicities are

up until about t = .7. We also give Figure 5, which shows that energy is conserved in this

algorithm, and the solution is at least stable.

For the ADM, we implement the 0th order model in an ADM-energy conserving scheme.

This model does not conserve energy, but conserves an energy-like quantity EADM0 =

1
2
(‖w‖2 + δ2‖∇ × w‖) in the periodic, inviscid setting (see Chapter 2). Hence for stabil-

ity of the discretization, it is EADM0, and not the usual energy that should be conserved (see

[44]). Thus the scheme we use is

1

∆t
(wn+1

h − wn
h , v) + (w

n+1/2
h · ∇w

n+1/2
h +

1

2
(∇ · wn+1/2

h )w
n+1/2
h , v) + (∇p

n+1/2
h , v)

+ ν(∇wn+1/2,∇v) = (f, v) ∀v ∈ Xh, (4.6)

(∇ · wn+1
h , q) = 0 ∀q ∈ Qh. (4.7)

50



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−8

−6

−4

−2

0

2

4

6

t

H
e

lic
it
y

Helicity vs Time for CN and CNLE at ν=f=0 and h=1/16

CNLE
Usual Crank−Nicholson

Figure 4: Helicity vs Time for inviscid periodic flow with trapezoidal Galerkin and linearly

extrapolated trapezoidal Galerkin schemes for the NSE

Figure 6 shows both helicity and (an approximation of) ADM-helicity,

∫

Ω

(
w · (∇× w) + δ2(∇× w) · (∇× (Ih(∇× w)))

)
(4.8)

(where Ih is the interpolation operator onto Xh), versus time for the given discretization.

The figure shows that neither helicity nor the approximation of ADM-helicity of the solution

are conserved. From these plots it is clear that the nonlinearity in the schemes adds and

dissipates helicity to the discrete solution. This is purely non-physical, as both the NSE and

ADM cascade helicity through wave space via the nonlinear term; i.e. the nonlinearity in the

continuous case does not add or dissipate helicity. Hence we can conclude that these schemes,

designed for energy conservation and stability, in fact do not accurately treat helicity.
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Figure 5: Energy vs Time for inviscid periodic flow with trapezoidal Galerkin and linearly

extrapolated trapezoidal Galerkin schemes for the NSE

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−7.6

−7.4

−7.2

−7

−6.8

−6.6

−6.4

−6.2

−6

−5.8

Time

H
e

lic
it
y

Usual and ADM Helicity for 0th order model and ν=f=0 at h=1/16

Usual Helicity
ADM0 Helicity

Figure 6: Helicity and ADM-Helicity vs Time for inviscid periodic flow for a trapezoidal

Galerkin scheme for the ADM
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5.0 AN ENERGY AND HELICITY CONSERVING FINITE ELEMENT

SCHEME FOR THE NAVIER-STOKES EQUATIONS

5.1 INTRODUCTION

For two dimensional flows, schemes such as the classical Arakawa scheme [6] have existed

for over forty years which conserve both energy and enstrophy (this and all future references

to E/H/Ens conservation implicitly refer to the case of no viscosity or external force). For

three dimensional flows, however, it was not until 2004 that Liu and Wang developed the first

scheme that conserves both energy and helicity. In [42], they present an energy and helicity

preserving scheme for axisymmetric flows, and show this dual conservation eliminates the

need for excessive numerical viscosity. It is their work which motivated this chapter.

This chapter presents a new finite element scheme that globally conserves both energy and

helicity for general flows. Our development of the scheme herein is for periodic boundaries

(and hence we use a box for the domain Ω). The key features that allow the scheme to

conserve both energy and helicity is the use of the projection of the vorticity in the scheme,

and a new variational formulation of the nonlinearity that vanishes when tested against

either the velocity or projected vorticity. For non-periodic boundary conditions, helicity

is not necessarily globally conserved. On the other hand, helicity generation and helicity

flux are equally important for non-periodic problems, and a numerical method should not

generate spurious helicity through its discretization of the nonlinear term.

Remark 5.1. Helicity is not necessarily globally conserved for more general boundary con-

ditions. Consider the Euler equations on Ω = (0, L)3. Multiply by the vorticity w := (∇×u),
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decompose the nonlinearity using (2.6) and integate over the domain:

∫

Ω

ut · w +

∫

Ω

(
1

2
∇u2 − u× w) · w +

∫

Ω

∇p · w = 0, (5.1)

This reduces via integration by parts, and the fact the cross product of two vectors is perpen-

dicular to each of them, to

∫

Ω

ut · w +

∫

∂Ω

(p +
1

2
∇u2)(w · n) = 0. (5.2)

The boundary integral in (5.2) can vanish without periodicity (e.g. if w · n = 0 is imposed),

but the resulting equation,
∫

Ω
ut ·w = 0, still does not imply the conservation of helicity since

integrating by parts with u decomposed as u :=< u1, u2, u3 > shows

H(T )−H(0) =

∫ T

0

d

dt
H(t) =

∫ T

0

d

dt

∫

Ω

u · w =

∫ T

0

∫

Ω

(ut · w + u · wt) =

(∫ L

0

∫ L

0

((
u1u3|y=L

y=0 dz dx
)

+
(
u1u2|z=L

z=0 dy dx
)

+
(
u2u3|x=L

x=0 dz dy
)))
|t=T
t=0 (5.3)

Thus we see that helicity is conserved for periodic or zero boundary conditions, but not

necessarily conserved in general.

This chapter is arranged as follows: We present the energy and helicity conserving scheme

in Section 3, after providing the necessary notation in Section 2. Section 4 gives a rigorous

numerical analysis for the scheme, Section 5 presents numerical results, and Section 6 presents

conclusions.
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5.2 NOTATION AND PRELIMINARIES

Let (·, ·) and ‖·‖ denote the usual L2 inner product and norm, respectively, and ‖·‖k the

Hk(Ω) norm. ‖·‖∞ will denote the usual L∞(Ω) norm, and all other norms that appear in

this chapter will be clearly labeled with subscripts. The domain Ω we use is the box (0, L)3.

Definition 5.1. The Hilbert space H1
#(Ω) will be defined as

H1
# := (v ∈ H1 : v periodic on Ω,

∫

Ω

v dx = 0).

This is the natural velocity space for the NSE with periodic boundary conditions, as dis-

cussed in [40] and [41]. Note that velocities in this space automatically conserve momentum

(
∫

Ω
u), i.e. if u ∈ H1

#, d
dt

∫
Ω

u = 0. This is physically important because the Navier-Stokes

equations (with periodic boundary conditions) also conserve momentum [25].

Let T h = T h(Ω) be a conforming finite element mesh on Ω. Define the spaces (Xh, Qh) ⊂
(H1

#, L2
0) to be conforming velocity, pressure finite element spaces (see, e.g. [13],[24] or [26]

for examples) that satisfy the discrete inf-sup condition (also known as the LBB condition)

0 < β ≤ inf
q∈Qh

sup
v∈Xh

(q,∇ · v)

‖v‖1‖q‖ . (5.4)

Define V h to be the space of discretely divergence free, zero-mean, periodic functions.

V h = {v ∈ Xh : (∇ · v, q) = 0 ∀q ∈ Qh},

V h,∗ will denote the dual space of V h.Since V h is a closed subspace of H1
#(Ω), we have also

that V h is a Hilbert space, and thus the following result.

Lemma 5.1. Let uh ∈ V h. Then there exists a unique wh ∈ V h satisfying

(wh, v) = (∇× uh, v) ∀v ∈ V h (5.5)

Proof. Since uh ∈ V h ⊂ H1(Ω), it follows that ∇ × uh ∈ L2(Ω). Since V h is a closed

subset of the Hilbert space L2(Ω), the Riesz representation theorem implies the existence

and uniqueness of a solution wh to (5.5).
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The next lemma shows how an elementary property of the cross product can be used for

“double” skew symmetry of a trilinear term (i.e. a form of the nonlinearity that will vanish

for two different choices of test elements).

Lemma 5.2. Let uh, wh ∈ Xh. Then

(uh × wh, uh) = (uh × wh, wh) = 0.

Proof. This follows from an elementary property of the cross product; the cross product of

two vectors is perpendicular to each of them.

The significance of this lemma is that in a finite element scheme, the trilinear form

(uh × wh, vh) will vanish when vh = uh or wh. Such a trilinear form has significance in the

NSE if the rotational form of the nonlinearity is used (see, e.g. [25] p.461 or [49]). Our

scheme uses this form, and exploits the double skew symmetry to show the scheme conserves

both energy and helicity.

The discrete Gronwall lemma will also be an essential tool in the error analysis; we

present it now.

Lemma 5.3. (Discrete Gronwall) Let ∆t, H, and an, bn, cn, dn (for integers n ≥ 0) be

nonnegative numbers such that

al + ∆t

l∑
n=0

bn ≤ ∆t

l∑
n=0

dnan + ∆t

l∑
n=0

cn + H for l ≥ 0. (5.6)

Suppose that ∆tdn < 1 ∀n. Then,

al + ∆t

l∑
n=0

bn ≤ exp

(
∆t

l∑
n=0

dn

1−∆tdn

)(
∆t

l∑
n=0

cn + H

)
for l ≥ 0. (5.7)

Proof. See [28], for example, for proof of this well known lemma.

Another important tool in this analysis is the Poincare-Freidrich’s inequality on the space

H1
# (and thus V h):

Lemma 5.4. There exists a constant C, dependent only on Ω, such that for φ ∈ H1
#,

‖φ‖H1 ≤ ‖∇φ‖ (5.8)
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Proof. See [13].

We end this section with definitions for discrete energy and helicity.

Definition 5.2. We define the discrete energy E and helicity H to be, at time tk,

Eh(t
k) =

1

2
‖uk

h‖2,
Hh(t

k) = (uk
h,∇× uk

h).

We are now ready to present the scheme.

5.3 AN ENERGY AND HELICITY CONSERVING SCHEME FOR

PERIODIC FLOWS

The energy and helicity preserving finite element scheme we study is composed of a trape-

zoidal time discretization with a nonlinearity that is doubly skew-symmetic. The viscous

term is split for stability into two pieces: one is the usual form arising from Green’s theorem,

and the other comes from (2.8) and uses the projected vorticity. Let ∆t denote the timestep,

tk = k∆t, tk+1/2 = (k + 1
2
)∆t, and uk

h the approximation to u(x, tk). u
k+1/2
h will denote

u
k+1/2
h :=

1

2
(uk+1

h + uk
h),

and fn+1/2(x) := f(tn+1/2, x) ∈ V h,∗. T = Nk denotes the final time. Given u0
h ∈ V h, define

w0
h to be the (unique in V h by Lemma 2.2) solution of (w0

h, v) = (∇× u0
h, v) ∀v ∈ V h, and

find (uk
h; w

k
h; p

k
h) ∈ Xh × Vh ×Qh for k = 1..N , satisfying

1

∆t
(un+1

h , v) + (u
n+1/2
h × w

n+1/2
h , v)− (p

n+1/2
h ,∇ · v) +

ν

2
(∇u

n+1/2
h ,∇v)

+
ν

2
(w

n+1/2
h ,∇× v) = (fn+1/2, v) +

1

∆t
(un

h, v) ∀v ∈ Xh (5.9)

(∇ · un+1
h , q) = 0 ∀q ∈ Qh (5.10)

(wn+1
h −∇× un+1

h , χ) = 0 ∀χ ∈ V h (5.11)

We now prove the conservation properties of the scheme: energy and helicity are exactly

conserved in the absence and viscosity and external force.
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Lemma 5.5. The scheme (5.9)-(5.11) conserves energy and helicity in the absence of vis-

cosity and body force, that is, Eh(t
n) = Eh(t

0) and Hh(t
n) = Hh(t

0) ∀n ≤ N provided

ν = f = 0.

Proof. For the conservation of energy, set v = u
n+1/2
h and ν = f = 0 in (5.9). This gives

(un+1
h , u

n+1/2
h ) = (un

h, u
n+1/2
h ). (5.12)

By expanding the u
n+1/2
h terms in (5.12), we have

1

2
‖un+1

h ‖2 +
1

2
(un+1

h , un
h) =

1

2
‖un

h‖2 +
1

2
(un

h, un+1
h ), (5.13)

Eh(t
n+1) = Eh(t

n), (5.14)

which implies that Eh(t
n) = Eh(t

0).

For helicity conservation, set v = w
n+1/2
h in (5.9). The pressure term vanishes since

wn
h , wn+1

h ∈ V h, and so after setting ν = f = 0, we are left with

1

2
(un+1

h , wn+1
h ) +

1

2
(un+1

h , wn
h) =

1

2
(un

h, wn
h) +

1

2
(un

h, w
n+1
h ). (5.15)

Using equation (5.11) and integrating by parts, we have the following identities for the terms

in (5.15).

(un+1
h , wn+1

h ) = (un+1
h ,∇× un+1

h ) = Hh(t
n+1) (5.16)

(un
h, w

n
h) = (un

h,∇× un
h) = Hh(t

n) (5.17)

(un+1
h , wn

h) = (un
h, w

n+1
h ) (5.18)

Thus (5.15) can be rewritten as

Hh(t
n+1) = Hh(t

n), (5.19)

which implies that Hh(t
n) = Hh(t

0).

The following lemma shows that the energy and helicity conserving scheme is also stable.
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Lemma 5.6. Solutions to the discrete scheme (5.9)-(5.11) satisfy

‖uN
h ‖2 + ∆t

N−1∑
n=0

(ν

2
‖∇u

n+1/2
h ‖2 + ν‖wn+1/2

h ‖2
)
≤ ‖u0

h‖2 +
2∆t

ν

N−1∑
n=0

‖fn+1/2‖2∗ (5.20)

Proof. Set v = u
n+1/2
h in (5.9), q = p

n+1/2
h in (5.10) and add the equations. This gives

1

2∆t
‖un+1

h ‖2 +
1

2∆t
(un+1

h , un
h) +

ν

2
‖∇u

n+1/2
h ‖2 +

ν

2
(w

n+1/2
h ,∇× un+1/2)

= (fn+1/2, u
n+1/2
h ) +

1

2∆t
‖un

h‖2 +
1

2∆t
(un

h, un+1
h ). (5.21)

Note that (w
n+1/2
h ,∇ × u

n+1/2
h ) = ‖wn+1/2

h ‖2 since (5.11) must hold for (n + 1) replaced by

(n), and thus also for (n + 1) replaced by (n + 1/2). By making this substitution, (5.21)

reduces to

1

2∆t
‖un+1

h ‖2 +
ν

2
‖∇u

n+1/2
h ‖2 +

ν

2
‖wn+1/2

h ‖2 = (fn+1/2, u
n+1/2
h ) +

1

2∆t
‖un

h‖2. (5.22)

Next we use the bound (fn+1/2, u
n+1/2
h ) ≤ ν

4
‖∇u

n+1/2
h ‖2 + 1

ν
‖fn+1/2‖2∗, and sum from n =

0..(N − 1), yielding

1

2∆t
‖uN

h ‖2 +
1

2

N−1∑
n=0

(ν

2
‖∇u

n+1/2
h ‖2 + ν‖wn+1/2

h ‖2
)
≤ 1

2∆t
‖u0

h‖2 +
1

ν

N−1∑
n=0

‖fn+1/2‖2∗ (5.23)

Now multiplying both sides by (2∆t) proves the lemma.
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5.3.1 Existence of Solutions for the Scheme

Given un
h, w

n
h ∈ V h, a nonlinear system must be solved for the approximations at time

level n + 1. The question arises: does that system have a solution? In other words, does

imposing two integral invariants overdetermine the system for un+1
h , wn+1

h ? The answer is

that solutions to (5.9)-(5.11) do exist, as we will show in this section.

For clarity, we show existence for the equivalent nonlinear problem: Given ν, ∆t > 0,

fn+1/2 ∈ V h,∗, and un
h ∈ V h, find (uh; wh) ∈ V h × V h satisfying

2

∆t
(uh, v) + (uh × wh, v) +

ν

2
(∇uh,∇v)

+
ν

2
(wh,∇× v) = (fn+1/2, v) +

2

∆t
(un

h, v) ∀v ∈ V h, (5.24)

(wh −∇× uh, χ) = 0 ∀χ ∈ V h. (5.25)

This form of the scheme is derived from (5.9)-(5.11) by defining uh := u
n+1/2
h , wh := w

n+1/2
h ,

and restricting the test functions to V h. The equations (5.24)-(5.25) are equivalent (5.9)-

(5.11). To show solutions exist, we formulate (5.24)-(5.25) as a fixed point problem, y = F (y),

and use the Leray-Schauder fixed point theorem. We will first prove several preliminary

lemmas, followed by a theorem which proves a solution to (5.24)-(5.25) exist.

Lemma 5.7. For ν, ∆t > 0, there exists a unique solution uh, wh ∈ V h × V h to: Given

g ∈ V h,∗, find (uh; wh) ∈ V h × V h satisfying

2

∆t
(uh, v) +

ν

2
(∇uh,∇v) +

ν

2
(wh,∇× v) = (g, v) ∀v ∈ V h, (5.26)

(wh −∇× uh, χ) = 0 ∀χ ∈ V h. (5.27)

Proof. We will prove uniqueness of solutions to (5.26)-(5.27) by showing only the trivial

solution solves the homogeneous problem, which will also imply the existence of solutions

to the finite dimensional problem. Since the space V h includes only zero-mean functions,

functions and operators are uniquely solvable and thus we need not consider the adjoint

problem. However, in V h ⊂ H1
#, the curl operator is self-adjoint and thus the adjoint
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problem is the same (5.26)-(5.27). Choose v = uh in (5.26), χ = wh in (5.27) and substitute

(5.27) into (5.26). This gives

2

∆t
‖uh‖2 +

ν

2
‖∇uh‖2 +

ν

2
‖wh‖2 = 0, (5.28)

which implies uh = wh = 0, i.e. uniqueness.

This lemma allows us to define a solution operator to (5.26)-(5.27).

Definition 5.3. We define the solution operator T : V h,∗ → (V h × V h), to be the solution

operator of (5.26)-(5.27): if g ∈ V h,∗, T (g) = (uh; wh) solves (5.26)-(5.27).

We have that T is well defined by the previous lemma, and we now prove it is also

bounded and linear.

Lemma 5.8. The solution operator T is linear, bounded, and continuous.

Proof. The linearity of T follows from the fact that T is a solution operator to a linear

problem. To see that T is bounded (and thus continuous since it is linear), we let v =

uh, χ = wh in (5.26)-(5.27), multiply (5.27) by ν
2
, and add the equations. This gives

2‖uh‖2
∆t

+
ν

4
‖∇uh‖2 +

ν

2
‖wh‖2 ≤ 1

ν
‖g‖2∗

Then since uh, wh are finite dimensional, ‖uh, wh‖V h×V h ≤ C‖g‖∗. Hence,

‖T‖ = sup
g∈V h,∗

‖T (g)‖
‖g‖∗ = sup

g∈V h,∗

‖uh, wh‖V h×V h

‖g‖∗ ≤ C.

We next define the operator N . The function F that will be used in the formulation of

the fixed point problem will be a composition of T and N .

Definition 5.4. We define the operator N on (V h × V h) by

N(v, w) := fn+1/2 +
2

∆t
un

h + v × w

We now prove properties for N necessary for use in Leray-Schauder.
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Lemma 5.9. For the nonlinear operator N , we have that N : V h×V h → V h,∗, N is bounded,

and N is continuous.

Proof. To show N maps as stated, we let (uh, wh) ∈ V h × V h and write

‖N(uh; wh)‖∗ = sup
v∈V h

(N(uh; wh), v)

‖v‖1 .

From the definition of N , we have that
(fn+1/2,v)+(2(∆t)−1un

h ,v)

‖v‖1 ≤ ‖f‖∗ + C1‖un
h‖ ≤ C2, and

that
(uh × wh, v)

‖v‖1 ≤ ‖uh‖∞‖wh‖ ≤ C3

since uh and wh are given to be in V h, and all norms are equivalent in finite dimension.

Hence ‖N(uh, wh)‖∗ < C, and so N maps as stated. Note we have also proven that N is

bounded.

The equivalence of norms in finite dimension is also key in showing N is continuous, as

‖N(u; w)−N(uk; wk)‖∗ ≤ C(‖u× (w − wk)‖∗ + ‖(u− uk)× wk‖∗), (5.29)

≤ C(‖u‖∞‖w − wk‖+ ‖wk‖∞‖u− uk‖), (5.30)

and thus → 0 as ‖(u; w)− (uk; wk)‖ → 0.

We are now ready to define the operator F , which will formulate (5.24)-(5.25) as a fixed

point problem.

Definition 5.5. Define the operator F : (V h × V h) → (V h × V h) to be composition of T

and N : F (y) = T (N(y)).

Lemma 5.10. F is well defined and compact, and a solution to y = F (y) solves (5.24)-

(5.25).

Proof. F is well defined because N and T are. The fact that F is compact follows from

the fact that both N and T are continuous and bounded operators on a fimite dimensional

space. It can easily be seen that a fixed point of F solves (5.24)-(5.25) by expanding F .

We are now ready to prove the existence of a solution to (5.24)-(5.25).

62



Theorem 5.1. Let yλ = (uλ; wλ) ∈ V h× V h and consider the family of fixed point problems

yλ = λF (yλ), 0 ≤ λ ≤ 1. A solution yλ to any of these fixed point problems satisfies

‖yλ‖ < K, independent of λ. Since F is compact, and fixed points of F solve (5.24)-(5.25),

by the Leray-Schauder theorem there exist solutions to (5.24)-(5.25).

Proof. All we have to show to prove this theorem is that solutions to yλ = λF (yλ) are

bounded independent of λ. Using the definition of F and the linearity of T we have that

yλ = λF (yλ) = λT (N(yλ)) = T (λN(yλ)) = T (λ(fn+1/2 +
2

∆t
un

h + uλ × wλ)),

which implies that

2

∆t
(uλ, v)− λ(uλ × wλ, v) +

ν

2
(∇uλ,∇v)

+
ν

2
(wλ,∇× v) = (λfn+1/2, v) +

2λ

∆t
(un

h, v) ∀v ∈ V h, (5.31)

(wλ −∇× uλ, χ) = 0 ∀χ ∈ V h. (5.32)

Multiply (5.32) by ν
2
, let χ = wλ in (5.32), v = uλ in (5.31), and add the equations. Similar

to the stability estimate, this gives

1

∆t
‖uλ‖2 +

ν

4
‖∇uλ‖2 +

ν

2
‖wλ‖2

≤ λ2

(
1

ν
‖fn+1/2‖2 +

1

∆t
‖un

h‖2
)
≤

(
1

ν
‖fn+1/2‖2 +

1

∆t
‖un

h‖2
)
≤ C (5.33)

which is a bound independent of λ. Thus the theorem is proven.

We have now shown that the scheme (5.9)-(5.11) preserves energy and helicity when

ν = f = 0, is stable, and admits solutions. The final step is an error analysis for the scheme.
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5.4 ERROR ANALYSIS OF THE SCHEME

This section presents a theorem for the convergence of the scheme, followed by the proof. The

restriction that the theorem places on the time step is for the use of the discrete Gronwall

lemma. Although we found its use necessary in the proof, it is widely believed that it gives a

gross underestimate of the largest timestep one can use and expect the same asymptotic error.

Without the projection step, the proof of the theorem is fairly standard; the smoothness

assumptions we make are also fairly standard and are similar to those found in, for example,

[30],[55].

Theorem 5.2. For u ∈ L∞(0, T ; W k+1
4 )∩W 3

2 (0, T ; L2)∩W 2
4 (0, T,W 1

2 ), p ∈ L4(0, T ; W k), f ∈
L2(0, T, V h,∗) satisfying the Navier-Stokes equations on the periodic box Ω = (0, L)3, (un

h; wn
h)

given by (5.9)-(5.11) with velocity-pressure spaces chosen as Pk, Pk−1 (k > 1) and time step

∆t sufficiently small (for Gronwall’s inequality), we have that

‖u(T )− uN
h ‖2 +

3ν∆t

4

N−1∑
n=0

(
1

2
‖∇(un+1/2 − u

n+1/2
h )‖2 + ‖wn+1/2 − w

n+1/2
h ‖2

)

≤ C(u, p, ν, Ω)(∆t4 + h2k) (5.34)

Proof. The proof of the theorem is divided into the following parts. We first develop the error

equations by subtracting our scheme from the NSE. The error is then split into parts in and

out of the finite element spaces. This is followed by bounding the error in the finite element

space by interpolation error, and the proof concludes by bounding the total error. Note we

require that the spaces Xh, Qh satisfy the discrete inf-sup condition; with such spaces, and

since (w0
h−∇× u0

h, v) = 0 ∀v ∈ V h, the energy and helicity conserving scheme is equivalent

to finding solutions un, wn ∈ V h, n = 0..N satisfying

1

∆t
(un+1

h − un
h, v)− (u

n+1/2
h × w

n+1/2
h , v) +

ν

2
(∇u

n+1/2
h ,∇v) +

ν

2
(w

n+1/2
h ,∇× v)

= (fn+1/2, v) ∀v ∈ V h, (5.35)

(w
n+1/2
h −∇× u

n+1/2
h , χ) = 0 ∀χ ∈ V h. (5.36)
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Using a splitting of the viscous term, the identity u · ∇u = 1
2
∇(u2) − u × (∇ × u), and

grouping the usual pressure gradient with the 1
2
∇(u2) term to form the Bernoulli pressure,

a periodic solution (u; p) and w := ∇× u of the NSE satisfies

1

∆t
(un+1 − un, v)− (un+1/2 × wn+1/2, v) +

ν

2
(∇un+1/2,∇v) +

ν

2
(wn+1/2,∇× v)

− (p(tn+1/2),∇ · v) = (fn+1/2, v) + (
un+1 − un

∆t
− ut(t

n+1/2), v)

− (un+1/2 × wn+1/2 − u(tn+1/2)× w(tn+1/2), v) +
ν

2
(∇(un+1/2 − u(tn+1/2)),∇v)

+
ν

2
(wn+1/2 − w(tn+1/2),∇× v) ∀v ∈ V h. (5.37)

Define ei := ui−ui
h and Ei := wi−wi

h for i = n, n+1, n+1/2, and form the error equations

by subtracting the scheme (5.35),(5.36) from (5.37) and w = ∇× u to get

1

∆t
(en+1 − en, v)− (un+1/2 × En+1/2, v)− (en+1/2 × w

n+1/2
h , v) +

ν

2
(∇en+1/2,∇v)

+
ν

2
(En+1/2,∇× v)− (p(tn+1/2),∇ · v) = IERR(un; wn; v) ∀v ∈ V h, (5.38)

(En+1/2, χ)− (∇× en+1/2, χ) = 0 ∀χ ∈ V h, (5.39)

where the interpolation error in time, IERR, is defined by

IERR(un, wn, v) := (
un+1 − un

∆t
− ut(t

n+1/2), v)

− (un+1/2 × wn+1/2 − u(tn+1/2)× w(tn+1/2), v) +
ν

2
(∇(un+1/2 − u(tn+1/2)),∇v)

+
ν

2
(wn+1/2 − w(tn+1/2),∇× v). (5.40)

Next we split the error terms into pieces in and out of V h. Let U i and W i be the projections

of ui and wi, respectively, into V h. Then the error terms can be decomposed as

ei = (ui − U i)− (ui
h − U i) =: ηi − φi

h, (5.41)

Ei = (wi −W i)− (wi
h −W i) =: ri − si

h. (5.42)
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Note that (ηi, v) = 0 for v ∈ V h by the definition of ηi. Rewriting (5.38),(5.39) with this

decomposition gives

1

∆t
(φn+1

h − φn
h, v)− (φ

n+1/2
h × w

n+1/2
h , v) +

ν

2
(∇φ

n+1/2
h ,∇v)

+
ν

2
(s

n+1/2
h ,∇× v) = (un+1/2 × s

n+1/2
h , v)− (un+1/2 × rn+1/2, v)

− (ηn+1/2 × w
n+1/2
h , v) +

ν

2
(∇ηn+1/2,∇v) +

ν

2
(rn+1/2,∇× v)− (p(tn+1/2),∇ · v)

+ IERR(un; wn; v) ∀v ∈ V h, (5.43)

(∇× φn+1
h , χ) = (s

n+1/2
h , χ)− (rn+1/2, χ) + (∇× ηn+1/2, χ) = 0 ∀χ ∈ V h. (5.44)

Let v = φ
n+1/2
h and χ = s

n+1/2
h and combine (5.43) and (5.44) to get

1

2∆t
(‖φn+1

h ‖2 − ‖φn
h‖2) +

ν

2
‖∇φ

n+1/2
h ‖2 +

ν

2
‖sn+1/2

h ‖2

= (un+1/2 × s
n+1/2
h , φ

n+1/2
h )− (un+1/2 × rn+1/2, φ

n+1/2
h )

− (ηn+1/2 × w
n+1/2
h , φ

n+1/2
h ) +

ν

2
(∇ηn+1/2,∇φ

n+1/2
h )

+
ν

2
(rn+1/2,∇× φ

n+1/2
h ) +

ν

2
(rn+1/2, s

n+1/2
h ) +

ν

2
(∇× ηn+1/2, s

n+1/2
h )

− (p(tn+1/2),∇ · φn+1/2
h ) + IERR(un; wn; φ

n+1/2
h ). (5.45)

The terms on the right hand side of (5.45) are now majorized in the usual way, using Cauchy-

Schwarz and Young’s inequalities, and the bound (u × w, v) ≤ C‖u‖0‖v‖1‖w‖1/2. Note in

this inequality holds no matter the order of u,w, v (provided the norms exist) due to a well

known vector identity from Calculus. We first bound the following right hand side terms:

ν

2

∣∣∣(∇ηn+1/2,∇φ
n+1/2
h )

∣∣∣ ≤ ν

32
‖∇φ

n+1/2
h ‖2 + Cν‖∇ηn+1/2‖2, (5.46)

ν

2

∣∣∣(rn+1/2,∇× φ
n+1/2
h )

∣∣∣ ≤ ν

32
‖∇φ

n+1/2
h ‖2 + Cν‖rn+1/2‖2, (5.47)

ν

2

∣∣∣(rn+1/2, s
n+1/2
h )

∣∣∣ ≤ ν

32
‖sn+1/2

h ‖2 + Cν‖rn+1/2‖2, (5.48)

ν

2

∣∣∣(∇ηn+1/2, s
n+1/2
h )

∣∣∣ ≤ ν

32
‖sn+1/2

h ‖2 + Cν‖∇ηn+1/2‖2, (5.49)
∣∣∣(p(tn+1/2),∇ · φn+1/2

h )
∣∣∣ ≤ ν

32
‖∇φ

n+1/2
h ‖2 + Cν−1 inf

q∈Qh
‖p(tn+1/2)− q‖2. (5.50)
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The first of the trilinear terms is bounded by

∣∣∣(un+1/2 × s
n+1/2
h , φ

n+1/2
h )

∣∣∣ ≤ C‖∇un+1/2‖‖sn+1/2
h ‖‖φn+1/2

h ‖1/2‖∇φ
n+1/2
h ‖1/2

≤ ν

32
‖sn+1/2

h ‖2 +
ν

32
‖∇φ

n+1/2
h ‖2 + Cν−3‖∇un+1/2‖4‖φn+1/2

h ‖2. (5.51)

Similarly, the second of the trilinear terms is bounded by

∣∣∣(un+1/2 × rn+1/2, φ
n+1/2
h )

∣∣∣ ≤ ν

32
‖rn+1/2‖2 +

ν

32
‖∇φ

n+1/2
h ‖2

+ Cν−3‖∇un+1/2‖4‖φn+1/2
h ‖2. (5.52)

The third of the trilinear terms is expanded by adding and subtracting wn+1/2 to w
n+1/2
h

to form wn+1/2 − En+1/2, followed by decomposing En+1/2, and bounding each of the three

resulting trilinear terms to get

∣∣∣(ηn+1/2 × w
n+1/2
h , φ

n+1/2
h )

∣∣∣ ≤ 3ν

32
‖∇φ

n+1/2
h ‖2 +

ν

32
‖sn+1/2

h ‖2

+ Cν−1‖rn+1/2‖2‖∇ηn+1/2‖2 +
1

2
‖∇ηn+1/2‖2‖wn+1/2‖2 + Cν−1‖φn+1/2

h ‖2

+ Cν−3‖∇ηn+1/2‖4‖φn+1/2
h ‖2. (5.53)

Three of the four terms in IERR(un; wn; φ
n+1/2
h ) are majorized as

∣∣∣∣(
un+1 − un

∆t
− ut(t

n+1/2), φ
n+1/2
h )

∣∣∣∣ ≤
1

2
‖φn+1/2

h ‖2 +
1

2
‖u

n+1 − un

∆t
− ut(t

n+1/2)‖2, (5.54)

∣∣∣ν
2
(∇(un+1/2 − u(tn+1/2)),∇φ

n+1/2
h )

∣∣∣ ≤ ν

32
‖∇φ

n+1/2
h ‖2+Cν‖∇(un+1/2−u(tn+1/2))‖2, (5.55)

∣∣∣ν
2
(wn+1/2 − w(tn+1/2),∇× φ

n+1/2
h )

∣∣∣ ≤ ν

32
‖∇φ

n+1/2
h ‖2 + Cν‖wn+1/2 − w(tn+1/2)‖2, (5.56)

with the remaining term bounded by

(un+1/2 × wn+1/2 − u(tn+1/2)× w(tn+1/2), φ
n+1/2
h ) ≤

2ν

32
‖∇φ

n+1/2
h ‖2 + Cν−1‖∇un+1/2‖2‖wn+1/2 − w(tn+1/2)‖2

+ Cν−1‖w(tn+1/2)‖2‖∇(un+1/2 − u(tn+1/2))‖2. (5.57)
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We may now rewrite (5.45) as

1

2∆t
(‖φn+1

h ‖2 − ‖φn
h‖2) +

3ν

32
‖∇φ

n+1/2
h ‖2 +

12ν

32
‖sn+1/2

h ‖2 ≤

Cν‖∇ηn+1/2‖2 + Cν‖rn+1/2‖2 + Cν−1 inf
q∈Qh
‖p(tn+1/2)− q‖2

+ Cν−3‖∇un+1/2‖4‖φn+1/2
h ‖2 + Cν−1‖rn+1/2‖2‖∇ηn+1/2‖2

+
1

2
‖∇ηn+1/2‖2‖wn+1/2‖2 + Cν−3‖∇ηn+1/2‖4‖φn+1/2

h ‖2

+ Cν−1‖φn+1/2
h ‖2 +

1

2
‖u

n+1 − un

∆t
− ut(t

n+1/2)‖2 + Cν‖∇(un+1/2 − u(tn+1/2))‖2

+ Cν‖wn+1/2 − w(tn+1/2)‖2 + Cν−1‖∇un+1/2‖2‖wn+1/2 − w(tn+1/2)‖2

+ Cν−1‖w(tn+1/2)‖2‖∇(un+1/2 − u(tn+1/2))‖2. (5.58)

Taylor series can be used to bound the interpolation in time terms, and thus (5.58) can be

reduced to

1

2∆t
(‖∇φn+1

h ‖2 − ‖∇φn
h‖2) +

3ν

32
‖∇φ

n+1/2
h ‖2 +

12ν

32
‖sn+1/2

h ‖2 ≤

Cν−1‖∇ηn+1/2‖2 + C(ν−1 + ν)‖rn+1/2‖2 + Cν−1 inf
q∈Qh
‖pn+1/2 − q‖2

+ Cν−1‖rn+1/2‖2‖∇ηn+1/2‖2 +
1

2
‖∇ηn+1/2‖2‖wn+1/2‖2

+ C(∆t)3

∫ tn+1

tn
‖uttt‖2 dt + Cν(∆t)3

∫ tn+1

tn
‖∇utt‖2 dt

+ Cν(∆t)3

∫ tn+1

tn
‖wtt‖2 dt + Cν−1(∆t)3‖∇un+1/2‖2

∫ tn+1

tn
‖wtt‖2 dt

+ Cν−1(∆t)3‖w(tn+1/2)‖2
∫ tn+1

tn
‖∇utt‖2 dt

+ C(ν−1 + ν−3)‖∇un+1/2‖4 + Cν−3‖∇ηn+1/2‖4)‖φn+1/2
h ‖2. (5.59)

Next we sum from n = 0..N − 1, multiply both sides by 2∆t, recall φ0
h = 0 and the smooth-

ness assumptions, and simplify. With the choice of Pk, Pk−1 velocity-pressure spaces, (5.59)
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reduces to

‖φN
h ‖2 +

N−1∑
n=0

(
3ν∆t

16
‖∇φ

n+1/2
h ‖2 +

3ν∆t

4
‖sn+1/2

h ‖2
)
≤

C((∆t)4 + ν−1h2k + (ν−1 + ν)h2k+2 + ν−1h2k + h4k+2)

+ ∆t

N−1∑
n=0

‖∇ηn+1/2‖2‖wn+1/2‖2 + Cν−1(∆t)4

N−1∑
n=0

‖∇un+1/2‖2
∫ tn+1

tn
‖wtt‖2 dt

+ Cν−1(∆t)4

N−1∑
n=0

‖w(tn+1/2)‖2
∫ tn+1

tn
‖∇utt‖2 dt

+ C∆t

N−1∑
n=0

(ν−1 + ν−3)‖∇un+1/2‖4 + ν−3‖∇ηn+1/2‖4)‖φn+1/2
h ‖2 (5.60)

Since w = ∇× u, we reduce (5.60) to

‖φN
h ‖2 +

N−1∑
n=0

(
3ν∆t

16
‖∇φ

n+1/2
h ‖2 +

3ν∆t

4
‖sn+1/2

h ‖2
)
≤

C((∆t)4 + ν−1h2k + (ν−1 + ν)h2k+2 + ν−1h2k + h4k+2)

+ ∆t

N−1∑
n=0

‖∇ηn+1/2‖2‖∇un+1/2‖2 + Cν−1(∆t)4

N−1∑
n=0

‖∇u(tn+1/2)‖2
∫ tn+1

tn
‖∇utt‖2 dt

+ C∆t

N−1∑
n=0

(ν−1 + ν−3)‖∇un+1/2‖4

+ ν−3‖∇ηn+1/2‖4)‖φn+1/2
h ‖2. (5.61)

We bound the third and second to last terms with Holder’s inequality and the smoothness

assumptions, then reduce by assuming ∆t, ν ≤ 1. This yields

‖φN
h ‖2 +

N−1∑
n=0

(
3ν∆t

16
‖∇φ

n+1/2
h ‖2 +

3ν∆t

4
‖sn+1/2

h ‖2
)
≤

C((∆t)4 + ν−1h2k)

+ C∆t

N−1∑
n=0

(ν−1 + ν−3‖∇un+1/2‖4 + ν−3‖∇ηn+1/2‖4)‖φn+1/2
h ‖2. (5.62)
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Now with ∆t chosen sufficiently small, we use the discrete Gronwall inequality to get

‖φN
h ‖2 +

N−1∑
n=0

(
3ν∆t

16
‖∇φ

n+1/2
h ‖2 +

3ν∆t

4
‖sn+1/2

h ‖2
)
≤

C(u, p, ν, Ω)(∆t)4 + h2k). (5.63)

Using the triangle inequality with equation (5.63) completes the proof.

5.5 NUMERICAL EXPERIMENTS

We now present numerical experiments for the energy and helicity conserving scheme. This

section makes several comparisons between this scheme and the usual convective form of the

trapezoidal (Crank-Nicholson) scheme for the NSE

1

∆t
(un+1

h − un
h, v) +

1

2
(u

n+1/2
h · ∇u

n+1/2
h , v)− 1

2
(u

n+1/2
h · ∇v, u

n+1/2
h )

+ ν(∇u
n+1/2
h ,∇v) = (fn+1/2, v) ∀v ∈ V h, (5.64)

and the rotational form

1

∆t
(un+1

h − un
h, v)− (u

n+1/2
h × (∇× u

n+1/2
h ), v) + ν(∇u

n+1/2
h ,∇v)

= (fn+1/2, v) ∀v ∈ V h. (5.65)

All of the schemes were implemented in MATLAB using Taylor Hood elements and periodic

boundary conditions and uniform meshes on the unit cube. Simple fixed point iterations

were used to solve the nonlinear problem in each time step.
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5.5.1 Computational Cost

The energy and helicity conserving scheme is more computationally expensive than the usual

trapezoidal schemes (5.64) and (5.65). It solves for velocity and a projected vorticity, both

in V h, and results in linear systems that are double the size of those arising in the usual

schemes. Hence, the energy and helicity conserving scheme would be more practical if a

linearization or decoupling of the system could be found that would still conserve both

energy and helicity. At this point, we do not know if such a linearization can be found.

It is possible that an (effective and reliable) iteration between decoupled equations could

be discovered. Since the energy and helicity conserving scheme, when decoupled, will take

a form much like that of (5.65), one may even be able to take advantage of more efficient

solvers designed for rotational form Navier-Stokes schemes such as those described by Benzi

and Jia Liu in [9].

5.5.2 Experiment 1: Helicity Conservation for ν = f = 0

The first numerical experiment is a comparison of helicity treatment in the three schemes

when ν = f = 0. This is the case where helicity is exactly conserved in the true physics, and

thus for physical fidelity should also be conserved in the numerical schemes. Using

u0 =< cos(2πz), sin(2πz), sin(2πx) > (5.66)

for the initial condition (since it is simple and has nonzero helicity), we set ν = f = 0 in

each scheme and computed from (0, 1] on the (periodic) unit cube. The energy and helicity

conserving scheme was run on an h = 1/8 uniform mesh, and the other two schemes were

run on h = 1/8 and h = 1/16 uniform meshes. Timesteps were chosen to be 0.025 and 0.01

for the two meshes, respectively. Figure 5.5.2 shows a plot of each solution’s helicity on [0, 1].

It is clear that the usual trapezoidal schemes do not conserve helicity and the energy and

helicity conserving scheme, as expected, does. All schemes conserved energy.
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Figure 7: Helicity Conservation in different trapezoid schemes for the NSE with ν = f = 0

and u0 = (cos(2πz), sin(2πz), sin(2πx))

5.5.3 Experiment 2: Accuracy Comparison for a Known Solution

For the known solution

u = ((2− t) cos(2πz), (1 + t) sin(2πz), (1− t) sin(2πx)), (5.67)

we implemented each of the schemes on a h = 1/8 mesh with T = 2, ∆t = 0.025, and ν = 1.

Figures 8,9, and 10 are the plots of helicity error, L2 error, and H1 error vs. time for the three

schemes. We see from the plots that the usual trapezoidal schemes (5.64) and (5.65) give

nearly identical results, and that these schemes have a better H1 error but worse L2 error

and helicity error than the energy and helicity conserving scheme. We believe that the initial

osciallations that appear in the plots of the energy-helicity conserving schemes do not arise

from incompatibility of the initial data, but from the use of a vorticity projection on such

a coarse mesh coupled with the fact that the scheme is Crank-Nicholson. It is interesting

to note that the helicity error in both schemes goes to zero as t approaches 2. The true

helicity goes to zero here also, and it is interesting that both schemes were able to predict
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this correctly. We expect that if continued, we would see the absolute helicity error in the

energy and helicity conserving scheme again be less than in the other schemes.
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Figure 8: Helicity error in the schemes

5.6 CONCLUSIONS

In an effort to find more physically relevant solutions to the Navier-Stokes equations, we have

developed an energy and helicity conserving finite element scheme for periodic flows which is

second order in time and converges optimally in space. The scheme is able to conserve two

inviscid invariants by using the rotational form of the nonlinearity with a projected vorticity.

The scheme retains the asymptotic velocity convergence rates of the usual trapezoidal finite

element method. Numerical evidence suggests that the scheme can predict helicity more

accurately than the usual trapezoidal scheme. However, each linear system that needs to be

solved is double the size of those in usual trapezoidal scheme, and thus further work must

be done to make this promising scheme more practical.
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Figure 9: L2 error in the schemes
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Figure 10: H1 error in the schemes
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6.0 A NUMERICAL STUDY OF A HIGHER-ORDER

LERAY-DECONVOLUTION TURBULENCE MODEL

6.1 INTRODUCTION

The Leray-deconvolution (LerayDC) fluid flow model is a recently developed, high accu-

racy regularization of the Navier-Stokes equations (NSE). In 1934, J. Leray introduced the

following regularization of the NSE (now known as the Leray model) as a theoretical tool:

ut + u · ∇u− ν4u +∇p = f and ∇ · u = 0 , in Ω× (0, T ). (6.1)

He chose u = gδ ? u, where gδ is a Gaussian associated with a length scale δ and proved

existence and uniqueness of strong solutions to (6.1) and convergence (modulo a subsequence)

to a weak solution of the NSE. If that weak solution is a smooth, strong solution it is not

difficult to prove additionally that ||uNSE − uLerayModel||L2 = O(δ2) using only ||u− u||L2 =

O(δ2).

These and other good theoretical properties have sparked a re-examination of the Leray

model (6.1) as a regularized model for simulations of turbulent flows with the modification

that the gaussian filter is replaced by a less expensive approximation, u := (−δ24 + 1)−1u

[17]. Further mathematical properties of the resulting Leray-alpha model (6.1) are derived

by Geurts and Holm [29] test in turbulent flow simulations that reveal

1. the accuracy of the model (6.1) is strictly limited to O(δ2), and

2. without additional terms added, simulations of the model can result in an accumulation

of energy around the cutoff length scale (i.e. wiggles), Guerts and Holm [29]
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In this chapter we consider a related, higher order accurate family, the Leray deconvolu-

tion models:

ut + DN(u) · ∇u− ν4u +∇p = f and ∇ · u = 0 , in Ω× (0, T ). (6.2)

where DN satisfies, for smooth u,

DNu = u + O(δ2N+2) N = 0, 1, 2, . . .

This family of models is an idea of A. Dunca 1. It has the following attractive properties:

• for N = 0 they include the Leray-alpha model as the lowest order special case.

• their accuracy is very high, O(δ2N+2) for arbitrary N = 0, 1, 2, · · · .
• they share the attractive theoretical properties of the Leray model, e.g., convergence

(modulo a subsequence) as δ → 0 to a weak solution of the NSE and ||uNSE−uLerayDCM || =
O(δ2) for a smooth, strong solution uNSE, [34].

• given u the computation of DNu is computationally attractive.

• the higher order models (for N > 1) give dramatic improvement of accuracy and physical

fidelity over the N = 0 case (see section 6.4).

• increasing model accuracy can be done in two ways: (i) cutting δ → δ/2 increases

accuracy by ' 1/4 but requires remeshing with ' 8× as many unknowns, and (ii)

increasing N → N + 1 increases accuracy from O(δ2N+2) to O(δ2N+4) and requires one

more Poisson solve ((−δ24+ 1)−1φ) per time step.

• although our analysis of (6.2) is for differential filters, the model is independent of this

filter choice and the analysis is extensible to many other filters with only technical mod-

ifications.

1Private communication.
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This chapter has two goals. First, we perform a numerical analysis of a stable algorithm

for (6.2). We test this method carefully and delineate some of its advantages and disadvan-

tages beyond the usual error analysis. Second, we test the family of models themselves for

accuracy and physical fidelity (Section 6.4) and draw tentative conclusions about the Leray

deconvolution family.

The ideas we test are outgrowths of the seminal work of J. Leray [39], the recent work on

the Leray-alpha model [17], the early work of G. Baker [7] on extrapolated Crank-Nicolson

methods and the development of the deconvolution approach to large eddy simulation. The

deconvolution approach to modeling turbulence is an ingenious idea of Stolz and Adams

with Kleiser [3], [54] which has interesting and extensive mathematical justification for its

accuracy and effectiveness, e.g., [1],[2],[4].

We will formally present the scheme in Section 2 after giving the notation and defini-

tions necessary for the scheme and for the analysis used throughout this chapter. Section

3 develops the theory for the scheme, showing stability, unique existence of solutions, and

convergence analysis. Numerical experiments are presented in Section 4, followed by conclu-

sions.

6.2 NOTATION AND PRELIMINARIES

This section summarizes the notation, definitions and preliminary lemmas needed. We start

by introducing the following notation. The L2(Ω) norm and inner product will be denoted

by ‖·‖ and (·, ·). Likewise, the Lp(Ω) norms and the Sobolev W k
p (Ω) norms are denoted by

‖ · ‖Lp and ‖ · ‖W k
p
, respectively. For the semi-norm in W k

p (Ω) we use | · |W k
p
. Hk is used to

represent the Sobolev space W k
2 , and ‖ · ‖k denotes the norm in Hk. For functions v(x, t)

defined on the entire time interval (0, T ), we define

‖v‖∞,k := sup
0<t<T

‖v(t, ·)‖k , and ‖v‖m,k :=

(∫ T

0

‖v(t, ·)‖mk dt

)1/m

.
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We consider both the periodic case and the case of internal flow with no slip boundary

conditions. (There is mainly only small notational differences between these two cases in the

analysis.)

In the periodic case, Ω = (0, L)d, d = 2, 3 and the velocity pressure spaces are

X := H1
# := {v ∈ H1(Ω) ∩ L2

0(Ω) : v is L periodic } , Q := L2
0(Ω) , (6.3)

which in the case of internal flow Ω is a regular, bounded domain in Rd and

X := H1
0 (Ω) , Q := L2

0(Ω) . (6.4)

We denote the dual space of X as X?, with the norm ‖ · ‖?.
The space of divergence free functions is

V := {v ∈ X, (∇ · v, q) = 0 ∀q ∈ Q} . (6.5)

The velocity-pressure finite element spaces Xh ⊂ X, Qh ⊂ Q are assumed to be con-

forming and satisfy the LBBh condition. The discretely divergence free subspace of Xh is,

as usual

V h = {vh ∈ Xh, (∇ · vh, qh) = 0 ∀qh ∈ Qh} . (6.6)

Taylor-Hood elements (see e.g. [13]) are one common example of such a choice for

(Xh, Qh), and are also the elements we use in our numerical experiments.

We employ the usual skew-symmetrization used in many finite element discretizations

for fluid flow problems. Using this trilinear form ensures stability of the method.

Definition 6.1 (Skew Symmetric operator b∗). Define the skew-symmetric trilinear

operator b∗ : X ×X ×X → R as

b∗(u, v, w) :=
1

2
(u · ∇v, w)− 1

2
(u · ∇w, v) (6.7)
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We now list important estimates for the b∗ operator necessary in Section 3.

Lemma 6.1. For u, v, w ∈ X, and also v ∈ L∞(Ω) for the first estimate, the trilinear term

b∗(u, v, w) can be bounded in the following ways

b∗(u, v, w) ≤ 1

2
(‖u‖‖∇v‖∞‖w‖+ ‖u‖‖v‖∞‖∇w‖) . (6.8)

b∗(u, v, w) ≤ C0(Ω)‖∇u‖‖∇v‖‖∇w‖ , (6.9)

b∗(u, v, w) ≤ C0(Ω)‖u‖1/2‖∇u‖1/2‖∇v‖‖∇w‖ . (6.10)

Proof. The result of the first bound follows immediately from the definition of b∗. The proof

of the other two bounds can be found, for example, in [33].

Definition 6.2 (Continuous differential filter). For periodic φ ∈ L2(Ω), denote the

filtering operation on φ by φ, where φ is the unique periodic solution of

−δ2∆φ + φ = φ. (6.11)

We denote by A := (−δ2∆ + I), so A−1v = v.

We define next the discrete differential filter following, Manica and Kaya Merdan [43].

Definition 6.3 (Discrete differential filter). Given v ∈ Xh, for a given filtering radius

δ > 0, vh = A−1
h v is the unique solution in Xh of

δ2(∇vh,∇χ) + (vh, χ) = (v, χ) ∀χ ∈ Xh. (6.12)

Definition 6.4. Define the L2 projection Πh : X → Xh and discrete Laplacian operator

∆h : X → Xh in the usual way by

(Πhv − v, χ) = 0 , (∆hv, χ) = −(∇v,∇χ) ∀χ ∈ Xh. (6.13)

With 4h, we can write vh
h

= (−δ24h + Πh)−1vh and Ah = (−δ24h + Πh).

We now define the van Cittert approximate deconvolution operators.
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Definition 6.5. The continuous and discrete van Cittert deconvolution operators DN and Dh
N

are

DNv :=
N∑

n=0

(I − A−1)nv , Dh
Nv :=

N∑
n=0

(I − A−1
h )nv . (6.14)

Our numerical experiments use N = 0, 1, 2, 3 for which we have

Dh
0v = v, (6.15)

Dh
1v = 2v − vh, (6.16)

Dh
2v = 3v − 3vh + vh

h
, (6.17)

Dh
3v = 4v − 6vh + 4vh

h − vh
h

h

. (6.18)

DN was shown to be an O(δ2N+2) approximate inverse to the filter operator A−1 in

Lemma (2.1) of [20].

Lemma 6.2. DN is a bounded, self-adjoint, positive operator that is an O(δ2N+2) asymptotic

inverse to the filter A−1 for very smooth φ and as δ → 0,

φ = DNφ + (−1)(N+1)δ2N+2∆N+1A−(N+1)φ

We begin by recalling from [10], [43] some basic facts about discrete differential filters

and deconvolution operators.

Lemma 6.3. For v ∈ X, we have the following bounds for the discretely filtered and approx-

imately deconvolved v

‖vh‖ ≤ ‖v‖ (6.19)

‖Dh
Nvh‖ ≤ C(N)‖v‖ (6.20)

‖∇vh‖ ≤ ‖∇v‖ (6.21)

‖∇Dh
Nvh‖ ≤ C(N)‖∇v‖ (6.22)
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Proof. The proof of (6.19) follows from choosing χ = vh in (6.12), and applying Young’s

inequality. (6.20) follows exactly as in [10].

To prove (6.21), we note that the filter definition can be rewritten using ∆h as

−δ2(∆hvh, χ) + (vh, χ) = (v, χ) ∀χ ∈ Xh.

Choosing χ = ∆hvh and using the definition of ∆h gives

δ2‖∆hvh‖2 + ‖∇vh‖2 = (∇v,∇vh)

Now Young’s inequality proves (6.21). (6.22) follows immediately from (6.21) and the defi-

nition of Dh
N .

Lemma 6.4. For smooth φ the discrete approximate deconvolution operator applied using

Pk elements satisfies

‖φ−Dh
Nφ

h‖ ≤ Cδ2N+2‖φ‖H2N+2 + C(δhk + hk+1)(
N∑

n=1

| (A−1)nφ |k+1 ) . (6.23)

and

‖∇(φ−Dh
Nφ

h
)‖ ≤ Cδ2N+2‖φ‖H2N+3 + C(hk + δ−1hk+1)(

N∑
n=1

| (A−1)nφ |k+1 ) . (6.24)

Proof. We start the proof by splitting the error

‖φ−Dh
Nφ

h‖ ≤ ‖φ−DNφ‖+ ‖DNφ−Dh
Nφ‖+ ‖Dh

Nφ−Dh
Nφ

h‖ . (6.25)

Lemma 6.2 gives

‖φ−DNφ‖ ≤ C δ2N+2‖φ‖H2N+2 . (6.26)

Lemma 6.3 gives for the third term in (6.25) that ‖Dh
Nφ−Dh

Nφ
h‖ ≤ C‖φ− φ

h‖. Then, by

using standard finite element techniques (i.e. subtracting (6.12) from the continuous scheme

of (6.11) and using standard inequalities) we have

‖φ− φ
h‖ ≤ C(δhk + hk+1)|φ|k+1 . (6.27)
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and

‖∇(φ− φ
h
)‖ ≤ C(hk + δ−1hk+1)|φ|k+1 . (6.28)

It is left to bound the second term from (6.25). First, note that for N = 0, ‖D0φ
h −

Dh
0φ

h‖ = 0. Based on the Definition 6.5 of continuous and discrete deconvolution operators

and their expansion (see (6.15)- (6.18)), the second term in (6.25) is rewritten as

‖DNφ−Dh
Nφ‖ = ‖

N∑
n=0

αn

(
(A−1)nφ− (A−1

h )nφ
) ‖ ≤

N∑
n=0

αn‖(A−1)nφ− (A−1
h )nφ‖ . (6.29)

For N = 1, the results (6.28) and (6.19) give

‖(A−1)φ− (A−1
h )φ‖ = ‖φ− φ

h
h

‖
≤ ‖φ− φ

h‖+ ‖φh − φ
h

h

‖
≤ ‖φ− φ

h‖+ ‖φ− φ
h‖

≤ C(δhk + hk+1) (|φ|k+1 + |φ|k+1) . (6.30)

Inductively,

‖(A−1)Nφ− (A−1
h )Nφ‖ ≤ C(δhk + hk+1)(

N∑
n=1

| (A−1)Nφ |k+1 ) . (6.31)

The proof is completed by putting together the derived bounds for the terms in (6.25). The

proof for the bound of the gradient follows similarly.

Recall that a strong solution of the Navier Stokes equations satisfies u ∈ L2(0, T ; X) ∩
L∞(0, T ; L2(Ω)) ∩ L4(0, T ; X), p ∈ L2(0, T ; Q) with ut ∈ L2(0, T ; X

′
) such that

(ut, v) + (u · ∇u, v) − (p,∇ · v) + ν(∇u,∇v) = (f, v) , ∀v ∈ X , (6.32)

(q,∇ · u) = 0 , ∀q ∈ Q . (6.33)

For the ease of notation in discussion we let v(tn+1/2) = v((tn+tn+1)/2) for the continuous

variable and vn+1/2 = (vn + vn+1)/2 for both, continuous and discrete variables.
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Algorithm 6.1. [Crank-Nicholson Finite Element Scheme for Leray-deconvolution] Let ∆t >

0, (w0, q0) ∈ (Xh, Qh), f ∈ X∗ and M := T
∆t

For n = 0, 1, 2, · · · ,M − 1, find (wh
n+1, q

h
n+1) ∈

(Xh, Qh) satisfying

1

∆t
(wh

n+1 − wh
n, vh) + b∗(Dh

Nwh
n+1/2

h
, wh

n+1/2, v
h)− (qh

n+1/2,∇ · vh)

+ ν(∇wh
n+1/2,∇vh) = (fn+1/2, v

h) ∀ vh ∈ Xh (6.34)

(∇ · wh
n+1, χ

h) = 0 ∀χh ∈ Qh (6.35)

Remark 6.1. Since (Xh, Qh) satisfies the LBBh condition, (6.34)-(6.35) is equivalent to

1

∆t
(wh

n+1 − wh
n, vh) + b∗(Dh

Nwh
n+1/2

h
, wh

n+1/2, v
h) + ν(∇wh

n+1/2,∇vh)

= (fn+1/2, v
h) ∀ vh ∈ V h. (6.36)

We define the following additional norms:

‖|v|‖∞,k := max
0≤n≤NT

‖vn‖k , ‖|v1/2|‖∞,k := max
1≤n≤NT

‖vn−1/2‖k ,

‖|v|‖m,k :=

(
NT∑
n=0

‖vn‖mk 4t

)1/m

, ‖|v1/2|‖m,k :=

(
NT∑
n=1

‖vn−1/2‖mk 4t

)1/m

.

In addition, we make use of the following approximation properties,[13]:

inf
v∈Vh

‖u− v‖ ≤ Chk+1‖u‖k+1, u ∈ Hk+1(Ω)d,

inf
v∈Vh

‖u− v‖1 ≤ Chk‖u‖k+1, u ∈ Hk+1(Ω)d,

inf
r∈Ph

‖p− r‖ ≤ Chs+1‖p‖s+1, p ∈ Hs+1(Ω).

(6.37)
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6.3 ANALYSIS OF THE SCHEME

In this section, we show that solutions of the scheme (6.36), equivalently (6.34)-(6.35) are

unconditionally stable, well defined and optimally convergent to solutions of the NSE.

Lemma 6.5. For the approximation scheme (6.34),(6.35) we have that a solution wh
l , l =

1, . . .M , exists at each iteration and satisfies the following a priori bound:

‖wh
M‖2 + ν∆t

M−1∑
n=0

‖∇wh
n+1/2‖2 ≤ ‖wh

0‖2 +
∆t

ν

M−1∑
n=0

‖fn+1/2‖2∗. (6.38)

Proof. : The existence of a solution wn
h to (6.34),(6.35) follows from the Leray-Schauder

Principle [58]. Specifically, with A : Zh → Zh, defined by y = A(z)

(y, v) := −4tb∗(Dh
N(z + wh

n)/2
h
, (z + wh

n)/2, v)−4tν(∇(z + wh
n)/2,∇v)

+(wh
n−1, v) +4t(fn+1/2, v).

The operator A is compact and any solution of u = sA(u) , for 0 ≤ s < 1 , satisfied the

bound ‖u‖ ≤ γ, where γ is independent of s.

To obtain the a priori estimate set vh = wh
n+1/2 in (6.36)

1

2∆t
(‖wh

n+1‖2 − ‖wh
n‖2) + ν‖∇wh

n+1/2‖2 ≤
1

2ν
‖fn+1/2‖2∗ +

ν

2
‖∇wh

n+1/2‖2 for every n,

i.e.,
1

∆t
(‖wh

n+1‖2 − ‖wh
n‖2) + ν‖∇wh

n+1/2‖2 ≤
1

ν
‖fn+1/2‖2∗, for every n.

Summing from n = 0 . . . M − 1 gives the desired result.

Theorem 6.1. Let (u(t), p(t)) be a smooth, zero-mean solution on Ω to the NSE. Suppose

(wh
0 , qh

0 ) are chosen to be the interpolants of (u(0), p(0)), respectively. Then there is a constant

C = C(u, p) such that

‖|u − wh|‖∞,0 ≤ F (4t, h, δ) + Chk+1‖|u|‖∞,k+1 , (6.39)
(

ν4t

M−1∑
n=0

‖∇(un+1/2 − (wh
n+1 + wh

n)/2)‖2
)1/2

≤ F (4t, h, δ) + Cν1/2(4t)2‖∇utt‖2,0

+ Cν1/2hk‖|u|‖2,k+1 . (6.40)
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where

F (4t, h, δ) := Cν−1/2 hk+1/2
(‖|u|‖24,k+1 + ‖|∇u|‖24,0

)
+ Cν1/2hk‖|u|‖2,k+1

+Cν−1/2hk
(‖|u|‖24,k+1 + ν−1/2(‖wh

0‖+ ν−1/2‖|f |‖2,?)
)

+ Cν−1/2hs+1‖|p1/2|‖2,s+1

+ Cν−1/2δ2N+2‖u‖2,2N+2 + Cν−1/2(δhk + hk+1)(
N∑

n=1

‖ (A−1)Nu ‖2,k+1 )

+ C(∆t)2
(‖uttt‖2,0 + ν−1/2‖ptt‖2,0 + ‖ftt‖2,0

+ν1/2‖∇utt‖2,0 + ν−1/2‖∇utt‖24,0

+ν−1/2‖|∇u|‖24,0 + ν−1/2‖|∇u1/2|‖24,0

)
. (6.41)

Corollary 6.1. Suppose that in addition to the assumptions made in Theorem (6.1), the

finite element spaces Xh and Qh are composed of Taylor-Hood elements. Then the error in

the extrapolated trapezoidal finite element scheme for Leray-deconvolution is of the order

‖|u− wh|‖∞,0 +

(
ν∆t

M∑
n=1

‖∇(un+1/2 − wh
n+1/2)‖2

)1/2

= O(h2 + ∆t2 + δ2N+2). (6.42)

Proof of Theorem 6.1. Note that for u, v, w, ∈ X, with
∫
Ω

q∇·u dA = 0 , for all q ∈ Q,

b∗(u, v, w) = b(u, v, w) := (u · ∇v, w) .

Then, at time tn+1/2, u given by (6.32)-(6.33) satisfies, for all vh ∈ V h,

(
un+1 − un

∆t
, vh) + b∗(Dh

Nun+1/2
h, un+1/2, v

h) + ν(∇un+1/2,∇vh)− (pn+1/2,∇ · vh)

= (fn+1/2, v
h) + Intp(un, pn; vh), (6.43)

for all vh ∈ V h, where Intp(un, pn; vh), representing the interpolating error, denotes

Intp(un, pn; vh) =

(
un+1 − un

∆t
− ut(tn+1/2), v

h

)
+ ν(∇un+1/2 − ∇u(tn+1/2),∇vh)

+b∗(un+1/2, un+1/2, v
h)− b∗(u(tn+1/2), u(tn+1/2), v

h)

−b∗(un+1/2 −Dh
Nun+1/2

h, un+1/2, v
h)

−(pn+1/2 − p(tn+1/2),∇ · vh) + (f(tn+1/2)− fn+1/2, v
h) . (6.44)
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Subtracting (6.36) from (6.43) and letting en = un − wh
n we have

1

∆t
(en+1 − en, v

h) + b∗(Dh
Nun+1/2

h, un+1/2, v
h)− b∗(Dh

Nwh
n+1/2

h
, wh

n+1/2, v
h)+

ν(∇en+1/2,∇vh) = (pn+1/2,∇ · vh) + Intp(un, pn; vh) ∀vh ∈ V h. (6.45)

Decompose the error as en = (un − Un) − (wh
n − Un) := ηn − φh

n where φh
n ∈ V h. Setting

vh = φh
n+1/2 in (6.45) and using (q,∇ · φn+1/2) = 0 for all q ∈ V h we obtain

(φh
n+1 − φh

n, φh
n+1/2) + ν4t‖∇φh

n+1/2‖+4t b∗(Dh
Nwh

n+1/2

h
, en+1/2, φ

h
n+1/2)

+4t b∗(Dh
Nen+1/2

h, un+1/2, φ
h
n+1/2) = (ηn+1 − ηn, φ

h
n+1/2) +4tν(∇ηn+1/2,∇φh

n+1/2)

+4t(pn+1/2 − q,∇ · φh
n+1/2) +4t Intp(un, pn; vh) . (6.46)

i.e.,

1

2
(‖φh

n+1‖ − ‖φh
n‖) + ν4t‖∇φh

n+1/2‖ = (ηn+1 − ηn, φh
n+1/2) +4tν(∇ηn+1/2,∇φh

n+1/2)

−4t b∗(Dh
Nηn+1/2

h, un+1/2, φ
h
n+1/2) +4t b∗(Dh

Nφh
n+1/2

h
, un+1/2, φ

h
n+1/2)

−4t b∗(Dh
Nwh

n+1/2

h
, ηn+1/2, φ

h
n+1/2) +4t(pn+1/2 − q,∇ · φh

n+1/2)

+4t Intp(un, pn; vh) . (6.47)

We now bound the terms in the RHS of (6.46) individually.

(ηn+1 − ηn, φh
n+1/2) = 0 since U is the L2 projection of u in V h.

Cauchy-Schwarz and Young’s inequalities give

ν4t(∇ηn+1/2,∇φh
n+1/2) ≤ ν4t‖∇ηn+1/2‖ ‖∇φh

n+1/2‖
≤ ν∆t

12
‖∇φh

n+1/2‖2 + Cν∆t‖∇ηn+1/2‖2. (6.48)

4t(pn+1/2 − q,∇ · φh
n+1/2) ≤ C4t‖pn+1/2 − q‖ ‖∇φh

n+1/2‖
≤ ν∆t

12
‖∇φh

n+1/2‖2 + C4tν−1‖pn+1/2 − χh‖2 . (6.49)
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Lemmas 6.1, 6.3 and applying Cauchy-Schwarz and Young give

4t b∗(Dh
Nηn+1/2

h, un+1/2, φ
h
n+1/2)

≤ C∆t‖Dh
Nηn+1/2

h‖1/2 ‖∇Dh
Nηn+1/2

h‖1/2 ‖∇un+1/2‖ ‖∇φh
n+1/2‖

≤ ν4t

12
‖φh

n+1/2‖2 + C4t ν−1‖ηn+1/2‖ ‖∇ηn+1/2‖‖∇un+1/2‖2 . (6.50)

4t b∗(Dh
Nφh

n+1/2

h
, un+1/2, φ

h
n+1/2)

≤ C4t‖Dh
Nφh

n+1/2

h‖1/2 ‖∇Dh
Nφh

n+1/2

h‖1/2 ‖∇un+1/2‖ ‖∇φh
n+1/2‖

≤ C4t‖φh
n+1/2‖1/2 ‖∇φh

n+1/2‖3/2 ‖∇un+1/2‖
≤ ν4t

12
‖∇φh

n+1/2‖2 + C4t ν−3‖φh
n+1/2‖2 ‖∇un+1/2‖4 . (6.51)

4t b∗(Dh
Nwh

n+1/2

h
, ηn+1/2, φ

h
n+1/2)

≤ C‖Dh
Nwh

n+1/2

h‖1/2 ‖∇Dh
Nwh

n+1/2

h‖1/2 ‖∇ηn+1/2‖ ‖∇φh
n+1/2‖

≤ ν4t

12
‖∇φh

n+1/2‖2 + C4t ν−1‖wh
n+1/2‖ ‖∇wh

n+1/2‖ ‖∇ηn+1/2‖2 . (6.52)

Combining (6.49), (6.48), (6.50), (6.51), (6.52) and summing from n = 0 to M − 1

(assuming that ‖φh
0‖ = 0) reduces (6.47) to

‖φh
M‖2 + ν4t

M−1∑
n=0

‖∇φh
n+1/2‖2

≤ 4t

M−1∑
n=0

Cν−3‖∇un+1/2‖4 ‖φh
n+1/2‖2 +4t

M−1∑
n=0

Cν‖∇ηn+1/2‖2

+4t

M−1∑
n=0

Cν−1‖ηn+1/2‖ ‖∇ηn+1/2‖‖∇un+1/2‖2

+4t

M−1∑
n=0

Cν−1‖wh
n+1/2‖ ‖∇wh

n+1/2‖ ‖∇ηn+1/2‖2

+4t

M−1∑
n=0

Cν−1‖pn+1/2 − q‖2 +4t

M−1∑
n=0

C|Intp(un, pnφ
h
n+1/2)| . (6.53)
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Now, we continue to bound the terms on the RHS of (6.53). We have that

4t

M−1∑
n=0

Cν‖∇ηn+1/2‖2 ≤ 4tCν

M∑
n=0

‖∇ηn‖2 ≤ 4tCν

M∑
n=0

h2k|un|2k+1

≤ Cνh2k‖|u|‖22,k+1 . (6.54)

For the term

4t

M−1∑
n=0

Cν−1‖ηn+1/2‖ ‖∇ηn+1/2‖ ‖∇un+1/2‖2

≤ Cν−14t

M−1∑
n=0

(‖ηn+1‖ ‖∇ηn+1‖+ ‖ηn‖ ‖∇ηn‖

+ ‖ηn‖ ‖∇ηn+1‖+ ‖ηn+1‖ ‖∇ηn‖) ‖∇un+1/2‖2

≤ C ν−1 h2k+1

(
4t

M−1∑
n=0

|un+1|2k+1 ‖∇un+1/2‖2 +4t

M−1∑
n=0

|un+1|k+1|un|k+1 ‖∇un+1/2‖2

+ 4t

M−1∑
n=0

|un|2k+1 ‖∇un+1/2‖2
)

≤ Cν−1 h2k+1

(
4t

M∑
n=0

|un|4k+1 +4t

l∑
n=0

‖∇un‖4
)

= Cν−1 h2k+1
(‖|u|‖44,k+1 + ‖|∇u|‖44,0

)
. (6.55)

Using the a priori estimate for ‖wh
n‖, (6.38),

4t

M−1∑
n=0

Cν−1
(‖wh

n+1/2‖ ‖∇wh
n+1/2‖ ‖∇ηn+1/2‖2

)

≤ Cν−14t

M−1∑
n=0

‖∇wh
n+1/2‖ ‖∇ηn+1/2‖2

≤ Cν−14t

M−1∑
n=0

(‖∇ηn+1‖2 + ‖∇ηn‖2
) ‖∇wh

n+1/2‖

≤ Cν−1h2k4t

M−1∑
n=0

(|un+1|2k+1 + |un|2k+1

) ‖∇uh
n+1/2‖

≤ Cν−1h2k

(
4t

M∑
n=0

|un|4k+1 +4t

M∑
n=0

‖∇uh
n+1/2‖2

)

≤ Cν−1h2k
(‖|u|‖44,k+1 + ν−1(‖wh

0‖2 + ν−1‖|f |‖22,?)
)

. (6.56)
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Using the triangle inequality and Taylor expansion,

4t

M−1∑
n=0

Cν−1‖pn+1/2 − q‖2 ≤ Cν−14t

M−1∑
n=0

‖p(tn+1/2)− q‖2 + ‖pn+1/2 − p(tn+1/2)‖2

≤ Cν−1

(
h2s+24t

M−1∑
n=0

‖p(tn+1/2)‖2s+1 +4t

M−1∑
n=0

1

48
(4t)3

∫ tn+1

tn

‖ptt‖2 dt

)

≤ Cν−1
(
h2s+2‖|p1/2|‖22,s+1 + (4t)4‖ptt‖22,0

)
(6.57)

We now bound the terms in Intp(un, pn; φh
n+1/2). Using Taylor series expansion and

Lemma 6.4,

(
un+1 − un

∆t
− ut(tn+1/2), φ

h
n+1/2

)

≤ 1

2
‖φh

n+1/2‖2 +
1

2
‖u

n+1 − un

∆t
− ut(tn+1/2)‖2

≤ 1

2
‖φh

n+1‖2 +
1

2
‖φh

n‖2 +
1

2

(∆t)3

1280

∫ tn+1

tn

‖uttt‖2 dt , (6.58)

(pn+1/2 − p(tn+1/2),∇ · φh
n+1/2)

≤ ε1ν‖∇φh
n+1/2‖2 + C ν−1‖pn+1/2 − p(tn+1/2)‖2

≤ ε1ν‖∇φh
n+1/2‖2 + C ν−1 (∆t)3

48

∫ tn+1

tn

‖ptt‖2 dt , (6.59)

(f(tn+1/2)− fn+1/2, φ
h
n+1/2)

≤ 1

2
‖φh

n+1/2‖2 +
1

2
‖f(tn+1/2)− fn+1/2‖2

≤ 1

2
‖φh

n+1‖2 +
1

2
‖φh

n‖2 +
(∆t)3

48

∫ tn+1

tn

‖ftt‖2 dt , (6.60)

(∇un+1/2 − ∇u(tn+1/2),∇φh
n+1/2)

≤ ε2ν ‖∇φh
n+1/2‖2 + C ν‖∇un+1/2 − ∇u(tn+1/2)‖2

≤ ε2ν ‖∇φh
n+1/2‖2 + C ν

(∆t)3

48

∫ tn+1/2

tn

‖∇utt‖2 dt , (6.61)
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b∗(un+1/2, un+1/2, φ
h
n+1/2)− b∗(u(tn+1/2), u(tn+1/2), φ

h
n+1/2)

= b∗(un+1/2 − u(tn+1/2), un+1/2, φ
h
n+1/2)− b∗(u(tn+1/2), un+1/2 − u(tn+1/2), φ

h
n+1/2)

≤ C ‖∇(un+1/2 − u(tn+1/2))‖ ‖∇φh
n+1/2‖

(‖∇un+1/2‖ + ‖∇u(tn+1/2)‖
)

≤ C ν−1
(‖∇un+1/2‖2 + ‖∇u(tn+1/2)‖2

) (∆t)3

48

∫ tn+1

tn

‖∇utt‖2 dt + ε3ν‖∇φh
n+1/2‖2

≤ C ν−1 (∆t)3

48

(∫ tn+1

tn

2(‖∇un+1/2‖4 + ‖∇u(tn+1/2)‖4) dt

+

∫ tn+1

tn

‖∇utt‖4 dt

)
+ ε3ν‖∇φh

n+1/2‖2

≤ C ν−1 (∆t)4(‖∇un+1/2‖4 + ‖∇u(tn+1/2)‖4)

+C ν−1 (∆t)3

∫ tn+1

tn

‖∇utt‖4 dt + ε3ν‖∇φh
n+1/2‖2 . (6.62)

b∗(un+1/2 −Dh
Nun+1/2

h, un+1/2, φ
h
n+1/2)

≤ 1

2

(‖un+1/2 −Dh
Nun+1/2

h‖ ‖∇un+1/2‖∞ ‖φh
n+1/2‖

+‖un+1/2 −Dh
Nun+1/2

h‖ ‖un+1/2‖∞ ‖∇φh
n+1/2‖

)

≤ C ‖un+1/2 −Dh
Nun+1/2

h‖ ‖∇φh
n+1/2‖

≤ ε4ν‖∇φh
n+1/2‖+ Cν−1‖un+1/2 −Dh

Nun+1/2
h‖2

≤ ε4ν‖∇φh
n+1/2‖+ Cν−1δ4N+4‖u‖2H2N+2

+Cν−1(δ2h2k + h2k+2)(
N∑

n=1

| (A−1)Nu |2k+1 ) . (6.63)

Combine (6.58)-(6.63) to obtain

∆t

M−1∑
n=0

|Intp(un, pn; φh
n+1/2)| ≤ ∆t C‖φh

n+1‖2 + (ε1 + ε2 + ε3 + ε4)∆t ν‖∇φh
n+1/2‖2

+ Cν−1δ4N+4‖u‖22,2N+2

+Cν−1(δ2h2k + h2k+2)(
N∑

n=1

‖ (A−1)Nu ‖22,k+1 )

+ C(∆t)4
(‖uttt‖22,0 + ν−1‖ptt‖22,0 + ‖ftt‖22,0

+ν‖∇utt‖22,0 + ν−1‖∇utt‖44,0

+ν−1‖|∇u|‖44,0 + ν−1‖|∇u1/2|‖44,0

)
. (6.64)
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Let ε1 = ε2 = ε3 = ε4 = 1/12 and with (6.54)-(6.57), (6.64), from (6.53) we obtain

‖φh
M‖2 + ν4t

M−1∑
n=0

‖∇φh
n+1/2‖2

≤ 4t

M−1∑
n=0

C(ν−3‖∇un+1/2‖4 + 1) ‖φh
n+1/2‖2 + Cνh2k‖|u|‖22,k+1

+Cν−1 h2k+1
(‖|u|‖44,k+1 + ‖|∇u|‖44,0

)

+Cν−1h2k
(‖|u|‖44,k+1 + ν−1(‖wh

0‖2 + ν−1‖|f |‖22,?)
)

+ Cν−1h2s+2‖|p1/2|‖22,s+1

+ Cν−1δ4N+4‖u‖22,2N+2 + Cν−1(δ2h2k + h2k+2)(
N∑

n=1

‖ (A−1)Nu ‖22,k+1 )

+ C(∆t)4
(‖uttt‖22,0 + ν−1‖ptt‖22,0 + ‖ftt‖22,0

+ν‖∇utt‖22,0 + ν−1‖∇utt‖44,0

+ν−1‖|∇u|‖44,0 + ν−1‖|∇u1/2|‖44,0

)
. (6.65)

Hence, with 4t sufficiently small, i.e. 4t < C(ν−3‖|∇u|‖4∞,0 +1)−1, from Gronwall’s Lemma

(see (5.3), we have

‖φh
M‖2 + ν4t

M−1∑
n=0

‖∇φh
n+1/2‖2

≤ Cν−1 h2k+1
(‖|u|‖44,k+1 + ‖|∇u|‖44,0

)
+ Cνh2k‖|u|‖22,k+1

+Cν−1h2k
(‖|u|‖44,k+1 + ν−1(‖wh

0‖2 + ν−1‖|f |‖22,?)
)

+ Cν−1h2s+2‖|p1/2|‖22,s+1

+ Cν−1δ4N+4‖u‖22,2N+2 + Cν−1(δ2h2k + h2k+2)(
N∑

n=1

‖ (A−1)Nu ‖22,k+1 )

+ C(∆t)4
(‖uttt‖22,0 + ν−1‖ptt‖22,0 + ‖ftt‖22,0

+ν‖∇utt‖22,0 + ν−1‖∇utt‖44,0

+ν−1‖|∇u|‖44,0 + ν−1‖|∇u1/2|‖44,0

)
. (6.66)

Estimate (6.39) then follows from the triangle inequality and (6.66).

To obtain (6.40), we use (6.66) and
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‖∇ (
u(tn+1/2)− (wh

n+1 + wh
n)/2

) ‖2

≤ ‖∇(u(tn+1/2)− un+1/2)‖2 + ‖∇ηn+1/2‖2 + ‖∇φh
n+1/2‖2

≤ (4t)3

48

∫ tn+1

tn

‖∇utt‖2 dt + Ch2k|un+1|2k+1 + Ch2k|un|2k+1 + ‖∇φh
n+1/2‖2 .

6.4 NUMERICAL EXPERIMENTS

We now present numerical results for the linear extrapolated Algorithm 6.1, i.e., instead of

b∗(Dh
Nwh

n+1/2

h
, wh

n+1/2, v
h) we implement b∗(Dh

N
3
2
wh

n − 1
2
wh

n−1)
h
, wh

n+1/2, v
h). The linear ex-

trapolation algorithm for Navier-Stokes equations is investigated in [7] by Baker. It is still

second order in time and requires only one solution of a linear system per time, therefore

it is useful to connect it with Crank-Nicholson scheme. The code was written in MATLAB

and run on desktop machines. The first computations used Taylor-Hood elements on the

periodic box Ω = (0, 1)3. The averaging radius δ = O(h) in all performed computations.

Because of memory limitation, the 3d computations used meshes only as fine as h = 1/32, i.e.

112,724 degrees of freedom. While this is not sufficient for many applications, it is adequate

for verifying convergence rates and comparing errors between models. The 3d code utilized

MATLAB’s conjugate gradient squared method (CGS) to solve the resulting linear systems

from both the filtering and the schemes themselves.

6.4.1 3d Convergence Rate Verification

Our first experiment verifies the predicted error rates proven in Section 3 at Re = 1 for the

extrapolated trapezoidal Leray-deconvolution schemes N = 0, 1, 2, 3. For (P2, P1) elements,

all four schemes are second order accurate in the H1 norm. The N = 0 scheme is only second

order accurate in the L2 norm, and the other three higher order (in N) schemes are third
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order accurate in the L2 norm. Thus one conclusion is that higher order (N ≥ 1) Leray-

deconvolution models provide better practical accuracy, even after discretization, than the

N = 0 case of the Leray-alpha model.

Table 1 contains errors and convergence rates for the schemes’ approximations to the

true solution

u =




cos(2π(z + t))

sin(2π(z + t))

sin(2π(x + t))


 , p = sin(2π(x + t)). (6.67)

This particular solution was chosen because it is a simple periodic function with at least a

somewhat complex structure: A quick calculation by hand shows that the helicity H = −2π

for any t, and hence we know there is at least some tangledness and knottedness of vortex

lines. For these calculations, we set δ = h and ∆t < h3/2 (approximately h3/2, but a multiple

of .005 so that all times coincide). Results are given at t = 0.5.

Table 1: L2 and H1 errors and rates at Re = 1 and t=0.5

h ‖u− uh
LD0‖L2 cvg ‖u− uh

LD1‖L2 cvg ‖u− uh
LD2‖L2 cvg ‖u− uh

LD3‖L2 cvg

1/8 0.0280 - 0.0245 - 0.0240 - 0.239 -

1/16 0.0061 2.19 0.0032 2.91 0.0032 2.91 0.0032 2.91

1/32 0.0015 2.01 0.0004 2.94 0.0004 2.91 0.0004 2.91

h ‖u− uh
LD0‖H1 ratio ‖u− uh

LD1‖H1 ratio ‖u− uh
LD2‖H1 ratio ‖u− uh

LD3‖H1 ratio

1/8 0.6904 - 0.6789 - 0.6772 - 0.6769 -

1/16 0.1809 1.93 0.1750 1.96 0.1749 1.95 0.1748 1.95

1/32 0.0459 1.98 0.0441 1.99 0.0441 1.99 0.0441 1.99

6.4.2 3d Error Comparisons at Re=5000

The goal of the second experiment is to test if the regularizing effect of the Leray-deconvolution

model is really advantageous in practical computing. Thus we consider Baker’s extrapolated

Crank-Nicolson method (called CNLE) for the NSE and the Leray-deconvolution regulariza-

tion of the NSE.
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Figure 11 and 12 presents graphs of the L2 and H1 errors for the methods vs. time for

Re = 5000 on our finest mesh h = 1/32 and timestep ∆t = 0.005. From these graphs it is

clear that the extrapolated trapezoidal Leray-deconvolution schemes with N = 1, 2, 3 are all

much more accurate than both CNLE and the discrete Leray-alpha model (N = 0 case) in

the L2 and H1 norms. Furthermore, the graphs indicate that over longer time intervals, the

higher order Leray-deconvolution schemes can remain more accurate than CNLE and the

Leray-alpha model (LerayDC0).
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Figure 11: L2 Error vs. Time for CNLE and LDLE with N=0,1,2,3

6.4.3 Underresolved flows in 2d

Regularization and stabilization can often affect transitional flows negatively. The simplest

test of this is to see if the stabilization in the Algorithm 6.1 retards separation of vortices

behind a blunt body near the critical Reynolds number. To do so, we study underresolved

flow with recirculation, i.e., the flow across a step. The most distinctive feature of this flow

is a recirculating vortex behind the step, see Figure 13 for illustration.
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Figure 12: H1 Error vs. Time for CNLE and LDLE with N=0,1,2,3

We investigate this flow at ν = 1/600 since about this value of ν the flow is in the

transition from equilibrium to time dependent, via shedding of eddies behind the step. In

our simulations we used Leray Deconvolution Models, i.e. (6.1) with N = 0 (LerayDC0),

N = 1 (LerayDC1) and N = 2 (LerayDC2). We will compare these models with often used

for underresolved flow simulation - the Smagorinsky model. The only difference between the

Navier-Stokes equations (NSE) and the Smagorinsky model (SMA) is in the viscous term,

which has the following form:

∇ · ((2ν + csδ
2||D(u)||F )D(u)) .

Here, cs is a positive constant (cs ∼ 0.01, see [53]), D(u) is the deformation tensor and || · ||F
denotes the Frobenius norm. Although the Smagorinsky model is widely used, it has some

drawbacks. These are well documented in the literature, e.g. see [57]. For instance, the

Smagorinsky model constant cs is an á priori input and this single constant is not capable
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Figure 13: NSE at ν = 1/600, 41,538 d.o.f. grid

of representing correctly various turbulent flows. Another drawback of this model is that it

introduces too much diffusion into the flow, e.g., see Figure 14.

The domain of the two-dimensional flow across a step is presented in Figure 15. We

present results for a parabolic inflow profile, which is given by u = (u1, u2)
T , with u1 =

y(10 − y)/25, u2 = 0. No-slip boundary condition is prescribed on the top and bottom

boundary as well as on the step. At the outflow we also imposed the ”do nothing” boundary

condition: this is a relatively new outflow boundary condition in CFD that is equivalent to

a zero traction (no normal stress) boundary condition except that the Laplacian form of the

viscous term is used instead of the stress tensor form.

The computations were performed on various grids. For instance, for the fully resolved

NSE simulation, which is our “truth” solution, we used a fine grid (41,538 degrees of freedom)

whereas much coarser grids (5,845 d.o.f., and 1,537 d.o.f.) has been used for LerayDC0,

LerayDC1, LerayDC2 and SMA. The point is to compare the performance of the various

models in underresolved simulations by comparison against a “truth”/fully-resolved solution,

Figure 13.
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Figure 14: SMA at ν = 1/600, δ = 1.5 and 5,845 d.o.f. grid

The 2d computations were performed with the software FreeFem++, [27]. The 2d models

were discretized using the nonlinear Algorithm 6.1 (i.e. without linear extrapolation) with

Taylor Hood finite elements. Computations for this experiment using linear extrapolation

failed: eddies would not shed behind the step.
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Figure 15: Boundary conditions

Comparing the Figures 14, 17, 18, 19 on the 5845 d.o.f. mesh with 13 we conclude

that the LerayDC0, LerayDC1 and LerayDC2 tests replicate the shedding of eddies and

the Smagorinsky eddy remains attached. Clearly, the Smagorinsky model is too stabilizing:

eddies which should separate and evolve remain attached and attain steady state. On the

coarsest mesh, Figure 20 shows none of the models exhibits a shedding behavior.

However, regarding the main point of study, Leray Deconvolution Models improved the

simulation results for this transition problem. On the coarsest grid (1,537 d.o.f.), LerayDC0

failed to shed eddies behind the step but LerayDC1 and LerayDC2 (see Figure 20) still give

a successful shedding.
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Figure 16: Grid with 1,537 d.o.f.

6.5 CONCLUSIONS

The van Cittert deconvolution algorithm requires only a few Poisson solves. The condition

number of the linear system associated with each solve of (−δ24 + 1) is O(δ2/h2 + 1), i.e.

O(1) if δ = O(h). Thus, the extra complexity of differential filtering and deconvolution is

negligable over solving the NSE.

On the other hand, the regularization the higher order Leray-deconvolution models give

has remarkable and positive effects on the results of the computations. Errors are observed

to be much better over much larger time intervals and the transition from one type of flow

to another is not retarded in our experiments as well.

The higher order Leray-deconvolution models had greater accuracy and physical fidelity

than the N = 0 case (Leray-alpha model).

The experiments we have given were limited by time and resources but their results have

consistently showed that: higher order is to be strongly preferred to lower order, i.e. LerayDC
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Figure 17: LerayDC0 at ν = 1/600, δ = 1.5 and 5,845 d.o.f. grid

for higher N to Leray-alpha (the N=0 case).

The form of the Leray-deconvolution model allows an efficient and unconditionally stable

timestepping scheme to be used. We have given a convergence analysis which was also verified

in 3d calculations. Naturally, we believe that further explorations would reveal that higher

order extrapolation (e.g. quadratic) would perform even better than the linear extrapolation

tested herein.
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Figure 18: LerayDC1 at ν = 1/600, δ = 1.5 and 5,845 d.o.f. grid
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Figure 19: LerayDC2 at ν = 1/600, δ = 1.5 and 5,845 d.o.f. grid
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Figure 20: LerayDC0, LerayDC1, LerayDC2, respectively at T = 40, ν = 1/600, δ = 3.0

and 1,537 d.o.f. grid
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7.0 CONCLUSIONS AND FUTURE WORK

7.1 CONCLUSIONS

There are three main conclusions to this thesis: The ADM is a turbulence model with

excellent physical fidelity in terms of its helicity treatment, the Leray-deconvolution tur-

bulence model is a higher order and more accurate generalization of the Leray model, and

the energy and helicity conserving (trapezoidal Galerkin) scheme for the NSE presented in

Chapter 5 more accurately accounts for helicity than the usual trapezoidal Galerkin scheme.

We found in Chapter 2 that the ADM conserves a model helicity, whereas the Leray,

Leray-deconvolution and Bardina models do not. Moreoever, in Chapter 3, we showed that

this ADM-helicity is cascaded through wave space at the same rate as helicity in true fluid

flow, up to a length scale dependent on the filtering radius and choice of filter (the ADM

truncates scales). Thus not only is the ADM one of just a few models that conserve helicity

for inviscid flow (i.e. the model itself does not add or dissipate helicity), the ADM is the

first turbulence model known to accurately cascade a quantity other than energy (which the

ADM also accurately cascades). We believe this sets the ADM apart from other models in

terms of the physical fidelity of its solutions.

Discretizations of the NSE and of turbulence models typically do not account for helicity.

In Chapter 5, we presented an energy and helicity conserving finite element scheme for the

Navier-Stokes equations in an effort to have more physically relevant solutions in simula-

tions. If a scheme for the NSE conserves helicity for inviscid flow, then the nonlinearity in

the scheme does not add or dissipate helicity. The presented scheme is a trapezoidal Galerkin

scheme that uses a combination of the convective and rotational forms of the nonlinearity,

along with a projected vorticity. It is the second energy and helicity conserving approxima-
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tion scheme developed; the first scheme was for axisymmetric flow, whereas this scheme is

for general flows. We prove stability, conservation, and convergence of the scheme, as well as

present numerical experiments that show the schemes’s treatment of helicity is better than

that of the usual trapezoidal Galerkin method. More efficient implementation of the scheme

remains an open problem.

The last conclusion of this thesis is that the higher order Leray-deconvolution model

is a more accurate extension of the classical Leray model (which is the 0th order Leray-

deconvolution model). We have analyzed a numerical scheme for the Leray-deconvolution

model, showing stability and convergence. We also presented numerical experiments which

verified convergence rates and showed higher order is better for eddy shedding on the step

problem using underresolved meshes.

7.2 FUTURE WORK

There are several natural extensions of this thesis. I intend to study the following in the

near future:

• More efficient solver for Energy and Helicity conserving scheme: Although the scheme

presented in Chapter 5 has shown promising results, the linear systems that need to be

solved in it are twice the size of the linear systems for usual schemes. The possibility of

decoupling the equations and finding a reliable iteration to solve the equations should be

investigated.

• Helicity dissipation rates in the NS-α turbulence model: Recent work of Prof. Layton

has shown helicity dissipation rates in the ADM are analogous to those predicted by

dimensional analysis for homogeneous, isotropic turbulence. At first glance it seems that

helicity conservation is the essential ingredient for such a proof. Hence, we can investigate

the helicity dissipation rate in the NS-α model, another helicity conserving turbulence

model.

• Development of an energy and helicity conserving scheme for the ADM and NS-α: For a

scheme such as the one in Chapter 5 to conserve both energy and helicity, the continuous

104



version of the model must also conserve energy and helicity. Both the ADM and NS-α

models conserve model energies and helicities, so an extension of the work in Chapter 5

to these two models may be possible. Also, a study of the joint energy/helicity cascade

in the NS-alpha model should be done.

• Development and investigation of the NS-α-deconvolution model.

• Stabilized Linear Extrapolated Trapezoidal Galerkin Scheme for the NSE: Work cur-

rently underway with W. Layton, A. Labovsky, C. Manica, M. Neda to study this NSE

discretization.
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