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GAME THEORETIC TARGET ASSIGNMENT STRATEGIES  
IN COMPETITIVE MULTI-TEAM SYSTEMS 

 
 

Dr. David G. Galati, PhD 
 

University of Pittsburgh, 2004 
 
 

The task of optimally assigning military ordinance to enemy targets, often termed the Weapon 

Target Assignment (WTA) problem, has become a major focus of modern military thought.  

Current formulations of this problem consider the enemy targets as either passive or entirely 

defensive.  As a result, the assignment problem is solved purely as a one sided team optimization 

problem.  In practice, however, especially in environments characterized by the presence of an 

intelligent adversary, this one sided optimization approach has very limited use.  The presence of 

an adversary often necessitates incorporating its intended actions in the process of solving the 

weapons assignment problem.  In this dissertation, we formulate the weapon target assignment 

problem in the presence of an intelligent adversary within the framework of game theory.  We 

consider two teams of opposing units simultaneously targeting each other and examine several 

possible game theoretic solutions of this problem.  An issue that arises when searching for any 

solution is the dimensionality of the search space which quickly becomes overwhelming even for 

simple problems with a small number of units on each side.  To solve this scalability issue, we 

present a novel algorithm called Unit Level Team Resource Allocation (ULTRA), which is 

capable of generating approximate solutions by searching within appropriate subspaces of the 

search space. We evaluate the performance of this algorithm on several realistic simulation 

scenarios.  We also show that this algorithm can be effectively implemented in real-time as an 

automatic target assigning controller in a dynamic multi-stage problem involving two teams with 

large number of units in conflict.   
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1.0 INTRODUCTION 

 

Today’s modern military systems rely heavily on the use of smart and highly efficient weapons.  

To produce these weapons unprecedented levels of funds must be expended.  Due to the expense 

inherent in producing these weapons, their efficient use in a military engagement has become 

one of the driving forces in modern military thought.  The weapon target assignment (WTA) 

problem has consequently received a great deal of attention in recent years [1-11].  A form of the 

general non-linear assignment problem, the WTA problem is typically formulated as a single 

team of military units which must be optimally assigned enemy target units in such a way as to 

optimize some objective function related to the effectiveness of the assignment.  In this 

dissertation, we will focus on a more general formulation of the weapon target assignment 

problem.  This formulation considers a situation in which two or more teams of military units are 

involved, and when units in each team are simultaneously targeting units in the remaining teams.  

We will examine the single-team weapon target (ST-WTA) allocation problem.   

In the most general formulation of the WTA problem, a team of “weapons” must each be 

assigned to one of a series of targets in such a manner as to optimize some objective function.  

Typically, this objective function may represent a measure of destruction of the targets, although 

other measures, such as the cost of each weapon, may also be considered.  It should be noted that 

the term “weapons” need not be confined to missiles or bombs, although this is the most 

common interpretation.  A “weapon” may represent a higher level of military ordinance such as a 

tank, plane, destroyer or it may represent even larger groups such as entire battalions or fleets.  In 
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fact a “weapon” need not have any military connotation whatsoever.  It may be thought of as any 

entity related to each of the given targets by means of some non-decreasing probability function.  

Furthermore, while in a military situation the non-decreasing probability function relationship 

between weapon and target is typically defined as a probability of kill or a probability of 

damage, it may be thought of more generally as a probability of task achievement.  However, to 

maintain clarity, in this dissertation the military convention will be utilized.  A “team” will be 

defined as a group of entities having a common goal.  These entities will be denoted as “units”.  

A unit can best be thought of in terms of a military weapons platform.  Thus, depending on the 

application, a unit may be capable of deploying a number of weapons, or the unit itself may in 

fact be a weapon.   

The WTA problem comes in two flavors, the static weapon target assignment (SWTA) 

problem and the dynamic weapon target assignment (DWTA) problem.  The SWTA and the 

DWTA problem formulations differ in that the STWA problem assumes that all weapons are 

allocated to targets at only one time, while the DTWA problem assumes that this occurs in 

several discrete “battle-steps.”  As the SWTA problem is the simpler of the two, in order to 

illustrate the problem analytically, let us consider the case where a team (say team A) of N units 

is attacking another team (say team B) of M targets.   Let ,i jp represent the probability of the  

unit in team A destroying the  target in team B.  If 

thi

thj ,i jp  is a Bayesian probability of kill, then 

the probability that the  target will survive an attack by the  unit is given by  = thj thi ,i jq ,1 i jp− .  

Further, if these probabilities are assumed to be independent, then the probability  that the  

target will survive when attacked by more than one weapon, can be defined as the product of the 

jT thj
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probabilities of survival  of each of the units assigned to the given target, as described in the 

attrition model defined by Manne [1]. 

,i jq

( ),

,
1

i j
N

u
j i j

i

T q
=

⎡= ⎢⎣∏ ⎤
⎥⎦

M

          (1.1) 

Here  represents the number of weapons the  unit in team A assigns to the  target in 

team B.  Furthermore, the number of weapons carried on unit  is assumed to be limited by an 

upper bound .  This places the following restrictions upon (1.1): 

,i ju thi thj

i

iW

,
1

,  1, 2,...,
M

i j i
j

u W i N
=

≤ ∀ =∑         (1.2a) 

, 0 and is an integer 1, 2,..., ,  and 1,2,...,i ku i N j≥ ∀ = =     (1.2b) 

Each target j  is assumed to have some defined value to team A.  Let this be .  Thus an 

objective function  can be contrived as the sum of the scaled probabilities of survival, , 

over all possible targets.  Defining the vector  as follows: 

jc

( )J u j jc T

u

( )
( )

1 2

,1 ,2 ,

, , , '

, , ,
N

i i i i M

u u u u

u u u u

=

=

…

… '

j∑

         (1.3) 

yields the following maximization:  

( ) ( )
1 1

max 1 max
M M

j j ju uj j
J u c T c T

= =

= − ≈ −∑       (1.4) 

Consequently, (1.4) can be combined with (1.1) to yield the following possible complete 

description of the constraint optimization problem associated with the SWTA: 
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( ) ,
,

1 1

,
1

,

max       subject to:

,  1, 2,...,       and:

0 and is an integer 1, 2,..., ,  and 1, 2,...,

i j
NM

u
k i ju k i

M

i j i
j

i j

J u c q

u W i N

u i N j

= =

=

⎡ ⎤= − ⎣ ⎦

≤ ∀ =

≥ ∀ = =

∑ ∏

∑
M

    (1.5) 

It should be noted that (1.5) represents only a single possible objective function for SWTA 

problem.  In general  may be any monotonically decreasing function of u , and  may also be 

a function of .  Other terms may also be included in the objective function, such as a penalty 

for the cost of every weapon launched.   

jT jc

jT

While the SWTA has not been completely solved in general, a great deal of work has been 

done on generating possible solutions for special cases or approximate solutions for the general 

case.  One common approximate solution is to relax the constraints on the problem by removing 

(1.2b).  As non-integer solutions are then permitted, (1.5) can be solved exactly using non-linear 

programming techniques [3].  Various branch and bound techniques can then be used to reinstate 

(1.2b).  Many heuristic approaches in addition to neural networks [4] and genetic approaches [5] 

are also employed.  If all attacking units are assumed to have uniform (homogeneous) weapons 

(SWTA-U), a technique known as maximal marginal return has been proven to quickly arrive at 

an optimal solution [6].   In this technique, the attacking team is first assumed to consist of only a 

single unit.  Once this unit has been optimally assigned to a target, a second unit is added and 

assigned to the target which yields the largest objective function increase.  This process 

continues until all units have been assigned targets.  Another variation of this technique, the 

SWTA-U problem is solved by continually swapping targets for units that increase the overall 

objective function [7].  Other more complicated algorithms have been developed for the DTWA 
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problem [8, 9].  Several more extensive literature surveys are available on the subject of the 

WTA problem [9-11] and the more general non-linear assignment problem [12]. 

 

 

1.1 MOTIVATION FOR THIS DISSERTATION 

 

So far, the target assignment problem has been formulated only in terms of a single team of units 

with a given set of targets. This formulation is useful in cases where the adversary is assumed to 

be passive and not reacting to the actions of the attacking team. In most military combat 

situations, however, the adversary in reality could be active and intelligent.  Thus, it is important 

to consider an extension of the WTA problem to cases where there are at least two opposing 

teams, each having some offensive and/or defensive capabilities.  In this dissertation, we will 

refer to such problems as multi-team weapon target assignment problems (MT-WTA).  The 

attrition model in these types of problems, and therefore the objective function of each team, 

depends on the target assignment strategies of all teams engaged in the battle.  Consequently, the 

process of optimizing the target assignment strategy employed by one team must take into 

account the possible target assignments of all other teams.  The SWTA techniques discussed 

earlier are only capable of dealing with a single team having a single objective function.  As a 

result, approaches other than standard optimization methods are required to solve the MT-WTA 

problem.   

To illustrate why such a method is required, consider an example of a MT-DWTA.  A 

“Blue” team of  units is engaged in a multi-step combat against a “Red” team of  units.  

To generate a dynamic formulation of this problem it is necessary to separate the battle into 

BN RN
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steps.  If an attrition model similar to (1.4) is used, then the probability of a given unit destroying 

a target on the enemy team at a given battle step can be formulated as a function of the 

probability that the given unit survived the previous battle step in addition to the defined 

probability of kill.  One possible attrition model for this problem is obtained from the following 

modification of (1.1): 

( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( ) ( )

,

,

,
1

,
1

1 1

1 1

RR
j i

BB
i j

N u kR
i i j i j

j

N u kB
j j i j i

i

B k B k q k R k

R k R k q k B k

=

=

⎡ ⎤= − −⎢ ⎥⎣ ⎦

⎡ ⎤= − −⎢ ⎥⎣ ⎦

∏

∏
      (1.6) 

where ( )iB k  and ( )jR k  are the probabilities that the  and  blue and red units survive at 

the end of the  battle step.  The target assignment strategies 

thi thj

thk ( ),
B
i ju k  and  for the Blue 

and Red teams are also assumed to vary at each battle step .  Consequently, this added 

variability necessitates further restrictions on the target assignment strategies.  A unit may only 

launch a limited number of weapons per battle-step, and each unit has a finite number of 

weapons to launch over the course of the entire battle.  These two conditions results in the 

following three constraints: 

( ),
R
j iu k

k

( )

( )

B
,

1 1

R
,

1 1

,  1, 2,...,

,  1, 2,...,

R

B

NK
B
i j i B

k j

NK
R
j i j R

k i

u k W i N

u k W j N

= =

= =

≤ ∀ =

≤ ∀ =

∑∑

∑∑
       (1.7a) 

( )

( )

B
,

1

R
,

1

,  1, 2,...,

,  1, 2,...,

R

B

N
B
i j i B

j

N
R
j i j R

i

u k w i N

u k w j N

=

=

≤ ∀ =

≤ ∀ =

∑

∑
        (1.7b) 

( )
( )

,

,

0 and is an integer 1,2,..., ,  and 1,2,..., ,  and 1,2,...,

0 and is an integer 1,2,..., ,  and 1,2,..., ,  and 1,2,...,

B
i j B R

R
j i B R

u k i N j N k K

u k i N j N k K

≥ ∀ = = =

≥ ∀ = = =
 (1.7c) 
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where  and R
j  are the maximum number of weapons that may be launched by the thi  and 

thj  on the blue and red teams respectively, and

B
iw w

 K  is the total number of battle steps.  To further 

develop the MT-DWTA, we must consider the objective functions.  One possible set of 

objectives is that each team desires to destroy as many as possible of its opponent’s units and 

preserve as many as possible of its own.  Assuming that  and  represent the value placed 

by the Blue team on the  Blue and  Red units respectively, and  and  represent the 

corresponding values for the Red team, then the objective functions can be expressed as follows: 

B
Bic B

Rjc

thi thj R
Bic R

Rjc

( ) ( ) ( )

( ) ( ) ( )

1 1

1 1

B R

B R

N N
B B

B Bi i Ri j
i j

N N
R R

R Bi i Ri
i j

J k c B k c R k

J k c B k c R k

= =

= =

= −

= − +

∑ ∑

∑ ∑ j

.       (1.8) 

Because the state vectors ( )B k  and ( )R k  are dependent on the controls of each team it is clear 

that it is not possible to generate a team’s optimum target assignment strategy without first 

knowing the target assignment strategy of the other team. Game theory provides widely accepted 

tools and solution concepts [13, 14] to deal with problems of this nature.  In particular, the Nash 

strategy of game theory provides an equilibrium point among all of the objective functions which 

guarantees that no team will benefit from unilaterally modifying its given strategy.  These 

strategies have recently received considerable attention, especially in the context of teaming and 

tasking in cooperative control systems in the presence of an adversary [15-17].   
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1.2 ORGANIZATION OF THIS DISSERTATION 

 

This dissertation is comprised of 6 chapters.  In the first chapter we will introduce the weapon 

target assignment problem and define the problem considered in this research.  This chapter also 

contains the basic layout of the dissertation. In the second chapter we will review some of the 

basic concepts of game theory that are pertinent to the MT-WTA.  In particular, we will define 

and discuss several game theoretic solution concepts including the Nash and Stackelberg 

strategies.   

In the third chapter, we will consider a special case of the MT-WTA and we present a novel 

algorithm for determining the optimal target assignment strategy for one team when the target 

assignment strategy of the other team is known.  This algorithm, which we refer to as: ULTRA 

for unit level team resource allocation algorithm, is capable of being implemented in a game 

theoretic framework.  Issues such as convergence, computational complexity and accuracy are 

addressed and formulated into performance measures.  These performance measures are then 

used to evaluate the ULTRA algorithm in several representative WTA problems. 

In the fourth chapter, we plan to address the multi-team weapon target assignment problem.  

Here we will present the standard action - reaction Nash equilibrium search.  We then combine 

this method of generating target assignment strategies with the ULTRA algorithm to quickly 

generate Nash equilibrium type target assignment strategies for the case of the two team WTA 

problem.  We discuss the pros and cons of this method in various circumstances, including the 

cases of zero and multiple Nash equilibriums.  As another point of interest, we comment on how 

8 



 

this method could be expanded to a more general MT-DWTA where three or more teams are 

engaged in combat.  Lastly, we will evaluate the performance of this algorithm, comparing the 

MT-DWTA game theoretic approach to other target assignment strategy types. 

In the fifth chapter, we will describe an implementation of the MT-DWTA model into a 

realistic battle field simulation as part of a mixed initiative hierarchical controller.  Here we 

describe methods to incorporate distance and position into the MT-DWTA model including the 

distance discount factor.  We also present methods for determining battle step duration, 

countermeasure deployment and command initiative.  Lastly, in chapter six, we will summerize 

the main contributions of this dissertation and discuss possible future research directions.  
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2.0 INTRODUCTION TO GAME THEORY 

 

 

In the previous section, we discussed a class of multi-team weapon target allocation problems 

that was not capable of beings solved by standard WTA optimization techniques.  Standard 

WTA optimization techniques cannot incorporate the presence of an active intelligent adversarial 

team.  The interdependence of objective functions in the MT-WTA necessitates the use of 

solution concepts from game theory.   It is clear that a “good” strategy for any one team must 

take into account the possible target assignments of the opposing teams.  It can also be argued 

that such a strategy should also assume that the other teams are capable of doing the same when 

calculating their target assignment strategies.  The field of Game Theory was established to solve 

problems of this type.   Generally speaking, Game Theory strives to define the characteristics of 

a “good” strategy and to derive methods of obtaining such strategies.  As a result it provides a 

natural framework from which to solve the MT-DWTA.   

To give the reader a greater understanding of game theory, we will provide a brief overview 

of the two most common game theoretic solution concepts, the Nash and Stackelberg equilibrium 

strategies.  To illustrate the applicability of this theory, we solve a simple example of the MT-

DWTA problem using the Nash strategies.  We also discuss some possible obstacles that prevent 

these solution concepts from easily being applied to realistic, more complicated, problems. 

The concept of game theory has it origins in the work of three individuals, Agustin Cournot, 

Joseph Bertrand, and Heinrich von Stackelberg [18-20].  In 1838 Cournot introduced the concept 
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of a “demand” function to relate profit and quantity produced.  As a result, Cournot was able to 

derive models for monopolies, duopolies, and unlimited competition.  Using an equilibrium 

concept, Cournot was able to show that competition between the producers would naturally 

promote lower prices than that observed in the case of a monopoly [18].  The work by Cournot 

was later reviewed in 1883 by Joseph Bertrand [19].  Bertrand revised Cournot’s work to pertain 

to the pricing of a product rather than the production level.  He was then able to arrive at the 

same equilibrium concept.  Stackelberg examined this issue again in 1934 [20].  Stackelberg 

objected to the work of Cournot and Bertrand because companies seldom select prices at the 

same time.  In a true duopoly, one company sets the price for its products, and the second 

company is forced to react accordingly.  He reasoned that in a duopoly, if the first producer has 

all of the information given to the second producer, the first producer would be able to predict 

the prices that the second chooses.  As a result, by being first to announce a price, a producer has 

more control over its profits.   

While Cournot, Bertrand, and Von Stackelberg introduced many of the concepts inherent in 

game theory, it was not known as Game Theory unil the work of John von Neumann in 1928 and 

Oskar Morgenstern in 1944 [21,22].  In his work, Von Neumann introduced the “mini-max” 

strategy or the strategy of minimum risk.   In a mini-max strategy, a team selects the strategy 

with the best worst case scenario.  Von Neumann also described the zero sum game, in which the 

sum of both team objective functions always sum to zero.  He then proved that the mini-max 

strategy is an equilibrium strategy in a zero sum game.  This work was later generalized by John 

Nash.  Nash extended Neumann’s equilibrium concept to include non-zero sum games [13], a 

more general class of game in which the objective functions are not forced to sum to zero.  
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Today, nearly all the work done in Game Theory is dependent in some way upon the work of 

John Nash.   

 

 

2.1 NASH EQUILIBRIUM STRATEGIES 

 

The Nash equilibrium is one of the most important concepts in modern game theory.  Simply 

stated, a set of strategies are defined as Nash if no decision-maker (or player) has an incentive to 

unilaterally alter its Nash strategy.  To form a more mathematical expression, consider the 

general case of a two player game, between players A and B.  Each player desires to maximize 

an given objective function ( ),A A BJ u u  for player A and ( ),B A BJ u u  for player B, both of which 

depend on the strategies, Au  and  selected by each player where Bu A Au U∈  and .  A set 

of given strategies, (

Bu U∈ B

),N N
A Bu u , are defined as Nash strategies if they satisfy the inequalities: 

( ) ( )
( ) ( )

, ,    for all 

, ,    for all 

N N N
A A B A A B A A

N N N
B A B B A B B B

J u u J u u u U

J u u J u u u U

≥ ∈

≥ ∈
.      (2.1) 

In the class of games where the strategy spaces are finite (cases where the strategies are 

discrete), the Nash solution is typically determined through the use of a game matrix.  A game 

matrix is an array composed of columns and rows representing each possible strategy by each of 

the two sides.  Each entry in the game matrix is a pair of real numbers that represent the values 

of the two players’ objective functions for the given combination of strategies.  Once a game 

matrix has been created, the optimal strategies of each player for every possible strategy for the 

opposing player are marked.  These sets of optimal “reactions” are known as reaction sets.   A 
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Nash solution can then be determined by searching for intersections of the reaction sets.  To 

illustrate how a game matrix may be used to find a set of Nash strategies, consider the 

hypothetical game matrix shown in Table 2.1, in which players A and B must each choose from 

4 possible strategies numbered 1 through 4. 

 

Table 2.1 – Example of a Game Matrix 

 1Bu =  2Bu =  3Bu =  4Bu =  

1Au =  ( )
( )
1,1 5

1,1 15
A

B

J

J

=

=
 

( )
( )
1, 2 6

1, 2 4
A

B

J

J

=

=
 

( )
( )
1,3 14

1,3 1
A

B

J

J

=

=
 

( )
( )
1, 4 0

1, 4 20
A

B

J

J

=

=
 

2Au =  ( )
( )
2,1 1

2,1 7
A

B

J

J

=

=
 

( )
( )
2, 2 10

2, 2 8
A

B

J

J

=

=

( )
( )
2,3 4

2,3 4
A

B

J

J

=

=
 

( )
( )
2, 4 6

2, 4 2
A

B

J

J

=

=
 

3Au =  ( )
( )
3,1 4

3,1 6
A

B

J

J

=

=
 

( )
( )
3, 2 2

3, 2 7
A

B

J

J

=

=
 

( )
( )
3,3 20

3,3 3
A

B

J

J

=

=

( )
( )
3, 4 8

3, 4 3
A

B

J

J

=

=
 

4Au =  ( )
( )
4,1 3

4,1 10
A

B

J

J

=

=
 

( )
( )
4, 2 9

4, 2 2
A

B

J

J

=

=
 

( )
( )
4,3 16

4,3 5
A

B

J

J

=

=

( )
( )
4, 4 7

4, 4 5
A

B

J

J

=

=
 

 

 

The reaction sets can then be found by marking the optimal strategy for player A in each column 

and the optimal strategy for player B in each row.  This operation is illustrated in Table 2.2. 

Finally, according to (2.1), a set of Nash strategies can be defined as the strategies representative 

of an entry in the game matrix which is marked as an optimal reaction for both player A and 

player B.  In the case of table 2.2, such a set of strategies exists for  and 2Au = 2Bu =  

therefore ( ) . ( ), 2,N N
A Bu u = 2
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Table 2.2 – Reaction Sets of the Game Matrix 

 1Bu =  2Bu =  3Bu =  4Bu =  

1Au =  ( )* 1,1 5AJ =

( )1,1 15BJ =
 

( )
( )
1, 2 6

1, 2 4
A

B

J

J

=

=
 

( )
( )
1,3 14

1,3 1
A

B

J

J

=

=
 

( )
( )* 1, 4 2

1,4 0

0B

AJ

J =

=
 

2Au =  ( )
( )
2,1 1

2,1 7
A

B

J

J

=

=
 

( )* 2, 2 10AJ =

( )* 2, 2 8BJ =

( )
( )
2,3 4

2,3 4
A

B

J

J

=

=
 

( )
( )
2, 4 6

2, 4 2
A

B

J

J

=

=
 

3Au =  ( )
( )
3,1 4

3,1 6
A

B

J

J

=

=
 

( )
( )* 3, 2 7

3,2 2

B

A

J

J

=

=
 

( )* 3,3 20AJ

( )3,3 3BJ

=

=

( )* 3, 4 8AJ =

( )3,4 3BJ =
 

4Au =  ( )
( )* 4,1 1

4,1 3

0B

AJ

J =

=
 

( )
( )
4, 2 9

4, 2 2
A

B

J

J

=

=
 

( )
( )
4,3 16

4,3 5
A

B

J

J

=

=
 

( )
( )
4, 4 7

4, 4 5
A

B

J

J

=

=
 

 

 

This example illustrates one important property of the Nash strategies.  It shows that a set of 

Nash strategies are not necessarily globally optimal.  In fact, a Nash strategy is seldom a globally 

optimal strategy for either player.  The objective function result for player A at the Nash 

equilibrium is 10, but there are higher values of the objective function (14, 16 and 20) at other 

strategy pairs.  This discrepancy is even greater for player B, having an objective score at the 

Nash equilibrium that is 12 less than the most globally optimal value.  However, in each 

instance, these scores depend on the other player selecting a strategy which they would unlikely 

consider.   

It should also be noted that this hypothetical game has been carefully created.  Slight 

changes in the games illustrate a problem in which Game Theory falters.  This is because there is 

no guarantee that a game will have exactly one pair of Nash strategies.  A game may have more 

than a single Nash equilibrium.  Consider the game matrix shown in Table 2.3. 
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Table 2.3 – Example of a Game Matrix Having 2 Sets of Nash Strategies 

 1Bu =  2Bu =  3Bu =  4Bu =  

1Au =  ( )
( )
1,1 5

1,1 15
A

B

J

J

=

=
 

( )
( )
1, 2 6

1, 2 4
A

B

J

J

=

=
 

( )
( )
1,3 14

1,3 1
A

B

J

J

=

=
 

( )
( )* 1, 4 2

1,4 0

0B

AJ

J =

=
 

2Au =  ( )
( )
2,1 1

2,1 7
A

B

J

J

=

=
 

( )* 2, 2 10AJ =

( )* 2, 2 8BJ =

( )
( )
2,3 4

2,3 4
A

B

J

J

=

=
 

( )
( )
2, 4 6

2, 4 2
A

B

J

J

=

=
 

3Au =  ( )
( )
3,1 4

3,1 6
A

B

J

J

=

=
 

( )
( )* 3, 2 7

3,2 2

B

A

J

J

=

=
 

( )* 3,3 20AJ

( )3,3 3BJ

=

=

( )* 3, 4 8AJ =

( )3,4 3BJ =
 

4Au =   
( )
( )
4, 2 9

4, 2 2
A

B

J

J

=

=
 

( )
( )
4,3 16

4,3 5
A

B

J

J

=

=
 

( )
( )
4, 4 7

4, 4 5
A

B

J

J

=

=
 

( )* 4,1 8AJ =

( )* 4,1 10BJ =

 

 

Though this game differs from that given in table 2.2 by only a single value, , it 

possesses two distinct Nash equilibrium points.   The justification for selecting a Nash strategy is 

that it is the optimal strategy for a player when the other player also selects a Nash strategy.  

Having two Nash strategies creates the possibility that each player will select its strategy based 

on a different equilibrium.  In the game of Table 2.3 this corresponds to strategy pairs (4, 2) and 

(1, 7), each of which is considerably worse for at least one of the two players.  In such cases 

Nash equilibrium strategies lose some credibility as “good” strategies.  Nevertheless, it can still 

be argued that one’s opponent is unlikely to select a strategy that is not Nash.   

( )4,1 3 8AJ = ⇒

The other undesired possibility is that a game might not possesses a Nash equilibrium.   

Consider the game shown in Table 2.4.  
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Table 2.4 – Example of a Game Matrix Without a Set of Nash Strategies 

 1Bu =  2Bu =  3Bu =  4Bu =  

1Au =  ( )* 1,1 5AJ =

( )1,1 15BJ =
 

( )
( )
1, 2 6

1, 2 4
A

B

J

J

=

=
 

( )
( )
1,3 14

1,3 1
A

B

J

J

=

=
 

( )
( )* 1, 4 2

1,4 0

0B

AJ

J =

=
 

2Au =  ( )
( )
2,1 1

2,1 7
A

B

J

J

=

=
 

( )
( )* 2, 2 8

2,2 8

B

A

J

J

=

=
 

( )
( )
2,3 4

2,3 4
A

B

J

J

=

=
 

( )
( )
2, 4 6

2, 4 2
A

B

J

J

=

=
 

3Au =  ( )
( )
3,1 4

3,1 6
A

B

J

J

=

=
 

( )
( )* 3, 2 7

3,2 2

B

A

J

J

=

=
 

( )* 3,3 20AJ

( )3,3 3BJ

=

= 3,4 3BJ =

( )* 3, 4 8AJ =

( )
 

4Au =  ( )
( )* 4,1 1

4,1 3

0B

AJ

J =

=
  

( )
( )
4,3 16

4,3 5
A

B

J

J

=

=
 

( )
( )
4, 4 7

4, 4 5
A

B

J

J

=

=
 ( )* 4, 2 9AJ =

( )4,2 2BJ =

  

 

Again though this game matrix differs from that given in Table 2.2 by only a single objective 

value, ; this game matrix does not contain a single set of Nash strategies. 

Without such an equilibrium point, it is again difficult to determine a “good” strategy. 

( )2,2 10 8AJ = ⇒

 

 

2.2 STACKELBERG EQUILIBRIUM STRATEGIES 

 

Stackelberg type strategies are an alternative popular game theoretic equilibrium concept.  Recall 

that Stackelberg’s work examined the case in which one player, the leader, had the initiative 

while the other player, the follower, can only react.  Here the leader has the ability to choose its 

strategy before the follower.  Assuming both players are intelligent, only the leader is truly 

capable of deciding its destiny as the follower should naturally react optimally to the leaders 

16 



 

announced strategy.  Consequently, in cases where the leader knows the objective function of the 

follower, the leader is capable of determining the corresponding optimal strategy of the follower 

for each of the follower’s possible strategies.  This implies that the leader can determine the 

objective function value resulting from for each of its possible strategies and the corresponding 

optimal response of the follower.  The Stackelberg strategy can then be defined as the strategy 

which results in the best objective score for the leader, given an optimal reaction by the follower.  

A mathematical definition of the Stackelburg strategy was first given as follows [23]:  

( ) *
B A BR u u=�  such that ( ) ( )*, ,   B A B B A B B BJ u u J u u u U≥ ∀ ∈� �  and   (2.2a)  

( ) *
A B AR u u=�  such that ( ) ( )* , ,   A A B A A B A AJ u u J u u u U≥ ∀ ∈� �     (2.2b)  

then the Stackelberg strategies,  and  with Player A as leader and Player B as follower, can 

be defined as 

S
Au S

Bu

( )( ) ( )( ), ,   S S
A A B A A A B A A AJ u R u J u R u u U≥ ∀ ∈

∈

.      (2.2c) 

( )( ) ( )( ), ,   S S
B A B B B A B B B BJ R u u J R u u u U≥ ∀ .      (2.2d)  

In cases where the strategy spaces are finite, the Stackelberg strategy can also be found by 

means of a game matrix [23].  For example, consider the game matrix shown in Table 2.5 in 

which Player B is the leader.  To find a Stackelberg strategy, Player B must first find the optimal 

response of Player A for each possible strategy of team B.  For each of these strategies, Player B 

must then determine the resulting value of its own objective function.  In the case of Table 2.5 

these objective scores correspond to (15,2,3,3) if Player B’s strategies are scanned left to right.  

Consequently, the Stackelberg strategy is 1S
Bu = , as this strategy results in the best outcome for 

Player B given that Player A selects its optimal response. 
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Table 2.5 – Finding a Stackelberg Strategy Through the Use of a Game Matrix 

 1Bu =  2Bu =  3Bu =  4Bu =  

1Au =  ( )* 1,1 5AJ =

( )1,1 15BJ =
 

( )
( )
1, 2 6

1, 2 4
A

B

J

J

=

=
 

( )
( )
1,3 14

1,3 1
A

B

J

J

=

=
 

( )
( )
1, 4 0

1, 4 20
A

B

J

J

=

=
 

2Au =  ( )
( )
2,1 1

2,1 7
A

B

J

J

=

=
 

( )
( )
2, 2 8

2, 2 8
A

B

J

J

=

=
 

( )
( )
2,3 4

2,3 4
A

B

J

J

=

=
 

( )
( )
2, 4 6

2, 4 2
A

B

J

J

=

=
 

3Au =  ( )
( )
3,1 4

3,1 6
A

B

J

J

=

=
 

( )
( )
3, 2 2

3, 2 7
A

B

J

J

=

=
 ( )* 3,3 20AJ

( )3,3 3BJ

=

=

( )* 3, 4 8AJ =

( )3,4 3BJ =
 

4Au =  ( )
( )
4,1 3

4,1 10
A

B

J

J

=

=
  

( )
( )
4,3 16

4,3 5
A

B

J

J

=

=
 

( )
( )
4, 4 7

4, 4 5
A

B

J

J

=

=
 ( )* 4, 2 9AJ =

( )4,2 2BJ =

 

 

 

2.3 APPLYING GAME THEORETIC CONCEPTS TO A MT-DWTA EXAMPLE 

 

To illustrate the applicability of game theoretic strategy concepts to the MT-DWTA we will 

consider a simple example.  In particular, we will apply the concept of Nash equilibrium to a 

MT-WTA example of the type given in (1.6).  Consider a 2 battle-step problem involving a Red 

and a Blue team where both the Red and Blue teams are each composed of two non-

homogeneous units, i.e. .  Assume that the probabilities of kill relating each of the 

four units are as follows: 

2R BN N= =

1,1 1,2 1,1 1,2

2,1 2,2 2,1 2,2

1,1 1,2 1,1 1,2

2,1 2,2 2,1 2,2

.90 .80 .10 .20

.25 .15 .75 .85

.40 .75 .60 .25

.50 .80 .50 .20

R R R R

R R R R

B B B B

B B B B

p p q q
p p q q
p p q q
p p q q

= = = =
= = = =

∴
= = = =
= = = =

.     (2.3)
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Furthermore, assume that each of the two units on each team may only launch a single weapon 

per battle-step so that the constraints given in (1.7) become: 

( )

( )

2 2

,
1 1

2 2

,
1 1

2,  1, 2

2,  1, 2

B
i j

k j

R
j i

k i

u k i

u k j

= =

= =

≤ ∀ =

≤ ∀ =

∑∑

∑∑
,        (2.4a) 

( )

( )

2

,
1

2

,
1

1,  1, 2

1,  1, 2

R
j i

i

B
i j

j

u k i

u k j

=

=

≤ ∀ =

≤ ∀ =

∑

∑
     and        (2.4b) 

( )
( )

,

,

0 and is an integer 1,2,   1, 2 and 1,2

0 and is an integer 1,2,   1, 2 and 1,2

B
i j

B
j i

u k i j k

u k i j k

≥ ∀ = =

≥ ∀ = =

=

=
.    (2.4c) 

Because each unit may only target a single enemy unit per battle step, a target assignment 

strategy may be written more simply as ( )B
iv k  and ( )R

jv k , or the target of the  and  blue 

and red units respectively  battle step.  Thus the target assignment strategy of each team at 

each time can be written as: 

thi thj

thk

k

( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

1 2

1 2

, , ,

, , ,
B

R

B B B B
N

R R R R
N

v k v k v k v k

v k v k v k v k

=

=

…

…
       (2.5a) 

and likewise the target assignment strategy of each team can be written over all time  as: K

( ) ( ) ( ){ }
( ) ( ) ( ){ }
1 ; 2 ; ;

1 ; 2 ; ;

B B B B

R R R R

v v v v K

v v v v K

=

=

…

…
.        (2.5b) 

For the purpose of constructing a game matrix, first consider an expected outcome matrix 

composed of row indexes representing each blue target assignment strategy , eg {1,2;2,1}, and Bv
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each column index representing a red target assignment strategy  such that the expected 

utcome matrix contains all possible combinations of target assignment strategies.   

 

 

Rv

o

{1,1;1,1} {1,2;1,1} {2,1;1,1} {2,2;1,1} {1,1;1,2} {1,2;1,2} {2,1;1,2} {2,2;1,2} {1,1;2,1} {1,2;2,1} {2,1;2,1} {2,2;2,1} {1,1;2,2} {1,2;2,2} {2,1;2,2} {2,2;2,2}

0.15 0.17 0.19 0.16 0.15 0.17 0.19 0.16 0.15 0.17 0.19 0.16 0.15 0.17 0.19 0.16 Red 1
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Red 2
0.04 0.05 0.41 0.55 0.05 0.07 0.55 0.73 0.06 0.08 0.56 0.75 0.08 0.10 0.75 1.00 Blue 1
1.00 0.85 0.20 0.17 0.85 0.72 0.17 0.14 0.76 0.65 0.15 0.13 0.65 0.55 0.13 0.11 Blue 2
0.29 0.33 0.38 0.33 0.29 0.33 0.38 0.33 0.29 0.33 0.38 0.33 0.29 0.33 0.38 0.33 Red 1
0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 Red 2
0.03 0.04 0.33 0.44 0.03 0.05 0.35 0.46 0.07 0.10 0.71 0.95 0.08 0.10 0.75 1.00 Blue 1
1.00 0.85 0.20 0.17 0.97 0.82 0.19 0.16 0.52 0.44 0.10 0.09 0.50 0.43 0.10 0.09 Blue 2
0.24 0.28 0.32 0.27 0.24 0.28 0.32 0.27 0.24 0.28 0.32 0.27 0.24 0.28 0.32 0.27 Red 1
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 Red 2
0.04 0.05 0.39 0.52 0.04 0.06 0.41 0.55 0.07 0.09 0.70 0.94 0.08 0.10 0.75 1.00 Blue 1
1.00 0.85 0.20 0.17 0.96 0.82 0.19 0.16 0.60 0.51 0.12 0.10 0.58 0.49 0.12 0.10 Blue 2
0.49 0.55 0.63 0.55 0.49 0.55 0.63 0.55 0.49 0.55 0.63 0.55 0.49 0.55 0.63 0.55 Red 1
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 Red 2
0.01 0.01 0.07 0.10 0.01 0.01 0.08 0.10 0.07 0.10 0.74 0.99 0.08 0.10 0.75 1.00 Blue 1
1.00 0.85 0.20 0.17 0.99 0.84 0.20 0.17 0.20 0.17 0.04 0.03 0.20 0.17 0.04 0.03 Blue 2
0.29 0.29 0.21 0.18 0.29 0.29 0.21 0.18 0.29 0.29 0.21 0.18 0.29 0.29 0.21 0.18 Red 1
0.20 0.32 0.84 0.86 0.20 0.32 0.84 0.86 0.20 0.32 0.84 0.86 0.20 0.32 0.84 0.86 Red 2
0.04 0.05 0.41 0.55 0.05 0.07 0.55 0.73 0.06 0.08 0.56 0.75 0.08 0.10 0.75 1.00 Blue 1
1.00 0.85 0.20 0.17 0.85 0.72 0.17 0.14 0.76 0.65 0.15 0.13 0.65 0.55 0.13 0.11 Blue 2
0.58 0.58 0.42 0.36 0.58 0.58 0.42 0.36 0.58 0.58 0.42 0.36 0.58 0.58 0.42 0.36 Red 1
0.04 0.06 0.17 0.17 0.04 0.06 0.17 0.17 0.04 0.06 0.17 0.17 0.04 0.06 0.17 0.17 Red 2
0.03 0.04 0.33 0.44 0.03 0.05 0.35 0.46 0.07 0.10 0.71 0.95 0.08 0.10 0.75 1.00 Blue 1
1.00 0.85 0.20 0.17 0.97 0.82 0.19 0.16 0.52 0.44 0.10 0.09 0.50 0.43 0.10 0.09 Blue 2
0.49 0.48 0.35 0.30 0.49 0.48 0.35 0.30 0.49 0.48 0.35 0.30 0.49 0.48 0.35 0.30 Red 1
0.05 0.08 0.21 0.22 0.05 0.08 0.21 0.22 0.05 0.08 0.21 0.22 0.05 0.08 0.21 0.22 Red 2
0.04 0.05 0.39 0.52 0.04 0.06 0.41 0.55 0.07 0.09 0.70 0.94 0.08 0.10 0.75 1.00 Blue 1
1.00 0.85 0.20 0.17 0.96 0.82 0.19 0.16 0.60 0.51 0.12 0.10 0.58 0.49 0.12 0.10 Blue 2
0.97 0.96 0.70 0.60 0.97 0.96 0.70 0.60 0.97 0.96 0.70 0.60 0.97 0.96 0.70 0.60 Red 1
0.01 0.02 0.04 0.04 0.01 0.02 0.04 0.04 0.01 0.02 0.04 0.04 0.01 0.02 0.04 0.04 Red 2
0.01 0.01 0.07 0.10 0.01 0.01 0.08 0.10 0.07 0.10 0.74 0.99 0.08 0.10 0.75 1.00 Blue 1
1.00 0.85 0.20 0.17 0.99 0.84 0.20 0.17 0.20 0.17 0.04 0.03 0.20 0.17 0.04 0.03 Blue 2
0.15 0.17 0.27 0.27 0.15 0.17 0.27 0.27 0.15 0.17 0.27 0.27 0.15 0.17 0.27 0.27 Red 1
0.94 0.93 0.44 0.25 0.94 0.93 0.44 0.25 0.94 0.93 0.44 0.25 0.94 0.93 0.44 0.25 Red 2
0.04 0.05 0.41 0.55 0.05 0.07 0.55 0.73 0.06 0.08 0.56 0.75 0.08 0.10 0.75 1.00 Blue 1
1.00 0.85 0.20 0.17 0.85 0.72 0.17 0.14 0.76 0.65 0.15 0.13 0.65 0.55 0.13 0.11 Blue 2
0.30 0.35 0.54 0.55 0.30 0.35 0.54 0.55 0.30 0.35 0.54 0.55 0.30 0.35 0.54 0.55 Red 1
0.19 0.19 0.09 0.05 0.19 0.19 0.09 0.05 0.19 0.19 0.09 0.05 0.19 0.19 0.09 0.05 Red 2
0.03 0.04 0.33 0.44 0.03 0.05 0.35 0.46 0.07 0.10 0.71 0.95 0.08 0.10 0.75 1.00 Blue 1
1.00 0.85 0.20 0.17 0.97 0.82 0.19 0.16 0.52 0.44 0.10 0.09 0.50 0.43 0.10 0.09 Blue 2
0.25 0.29 0.45 0.46 0.25 0.29 0.45 0.46 0.25 0.29 0.45 0.46 0.25 0.29 0.45 0.46 Red 1
0.24 0.23 0.11 0.06 0.24 0.23 0.11 0.06 0.24 0.23 0.11 0.06 0.24 0.23 0.11 0.06 Red 2
0.04 0.05 0.39 0.52 0.04 0.06 0.41 0.55 0.07 0.09 0.70 0.94 0.08 0.10 0.75 1.00 Blue 1
1.00 0.85 0.20 0.17 0.96 0.82 0.19 0.16 0.60 0.51 0.12 0.10 0.58 0.49 0.12 0.10 Blue 2
0.50 0.58 0.90 0.92 0.50 0.58 0.90 0.92 0.50 0.58 0.90 0.92 0.50 0.58 0.90 0.92 Red 1
0.05 0.05 0.02 0.01 0.05 0.05 0.02 0.01 0.05 0.05 0.02 0.01 0.05 0.05 0.02 0.01 Red 2
0.01 0.01 0.07 0.10 0.01 0.01 0.08 0.10 0.07 0.10 0.74 0.99 0.08 0.10 0.75 1.00 Blue 1
1.00 0.85 0.20 0.17 0.99 0.84 0.20 0.17 0.20 0.17 0.04 0.03 0.20 0.17 0.04 0.03 Blue 2
0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 Red 1
0.19 0.30 0.37 0.22 0.19 0.30 0.37 0.22 0.19 0.30 0.37 0.22 0.19 0.30 0.37 0.22 Red 2
0.04 0.05 0.41 0.55 0.05 0.07 0.55 0.73 0.06 0.08 0.56 0.75 0.08 0.10 0.75 1.00 Blue 1
1.00 0.85 0.20 0.17 0.85 0.72 0.17 0.14 0.76 0.65 0.15 0.13 0.65 0.55 0.13 0.11 Blue 2
0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 Red 1
0.04 0.06 0.07 0.04 0.04 0.06 0.07 0.04 0.04 0.06 0.07 0.04 0.04 0.06 0.07 0.04 Red 2
0.03 0.04 0.33 0.44 0.03 0.05 0.35 0.46 0.07 0.10 0.71 0.95 0.08 0.10 0.75 1.00 Blue 1
1.00 0.85 0.20 0.17 0.97 0.82 0.19 0.16 0.52 0.44 0.10 0.09 0.50 0.43 0.10 0.09 Blue 2
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 Red 1
0.05 0.07 0.09 0.05 0.05 0.07 0.09 0.05 0.05 0.07 0.09 0.05 0.05 0.07

0.05 0.39 0.52 0.04 0.06 0.41 0.55 0.07 0.09 0.70 0.94 0.08 0.10
0.85 0.20 0.17 0.96 0.82 0.19 0.16 0.60 0.51 0.12 0.10 0.58 0.49

0.09 0.05 Red 2
0.04 0.75 1.00 Blue 1
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0.01 0.01 0.02 0.01 0.01 0.01 0.02 0. 0.01 0.01 0.02 0.01 0.01 0.01 0.02 0.01 Red 2
0.01 0.01 0.07 0.10 0.01 0.01 0.08 0. 0.07 0.10 0.74 0.99 0.08 0.10 0.75 1.00 Blue 1
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Figure 2.1 – Example of an Expected Outcome Matrix for a 2x2 MT-DWTA 

 (1.6).  Accordingly, each entry in the expected 

 

 

Each combination of target assignment strategies, in this case 16x16=256 possibilities, yields a 

probability of survival for each unit according to
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outcome matrix will have four different probabilities of survival, R1, R2, B1 and B2 as shown in 

Figure 2.1 and listed [ ]T1 2 1 2R R B B in each cell.  

 

{1,1;1,1} {1,2;1,1} {2,1;1,1} {2,2;1,1} {1,1;1,2} {1,2;1,2} {2,1;1,2} {2,2;1,2} {1,1;2,1} {1,2;2,1} {2,1;2,1} {2,2;2,1} {1,1;2,2} {1,2;2,2} {2,1;2,2} {2,2;2,2}

-0.74 -0.75 -0.23 0.02-0.74 -0.75 -0.24 0.01

0.75 0.23 -0.02

-0.15 -0.74 -0.74 -0.01 -0.16 -0.74 -0.74

0.75 0.24 -0.01 0.740.16 0.74 0.74 0.740.15 0.74 0.74 0.01

0.11 0.02 0.27 0.540.12 0.03 0.23 0.49

-0.02 -0.27 -0.54

0.33 -0.01 0.13 0.46 0.30 0.01 0.16

-0.03 -0.23 -0.49-0.30 -0.01 -0.16 -0.123 0.01 -0.13 -0.46 -0.11-0.3

-0.06 -0.13 0.18 0.44-0.05 -0.12 0.14 0.40

0.13 -0.18 -0.44

0.23 -0.15 -0.04 0.37 0.21 -0.13 -0.02

0.12 -0.14 -0.40 0.06-0.21 0.13 0.02 0.05-0.23 0.15 0.04 -0.37

0.23 0.05 0.21 0.590.33 0.13 0.05 0.36

-0.05 -0.21 -0.59

0.31 -0.06 0.20 0.42 0.20 0.05 0.36

-0.13 -0.05 -0.36 -0.23-0.20 -0.05 -0.36 -0.33-0.31 0.06 -0.20 -0.42

-0.27 -0.35 -0.13 0.11-0.27 -0.35 -0.14 0.09

0.35 0.13 -0.11

0.24 -0.65 -0.66 0.45 0.23 -0.65 -0.66

0.35 0.14 -0.09 0.27-0.23 0.65 0.66 0.27-0.24 0.65 0.66 -0.45

0.17 0.07 0.31 0.580.18 0.09 0.26 0.52

-0.07 -0.31 -0.58

0.38 0.03 0.17 0.52 0.35 0.05 0.19

-0.09 -0.26 -0.52 -0.17-0.35 -0.05 -0.19 -0.18-0.38 -0.03 -0.17 -0.52

0.09 0.00 0.22 0.490.10 0.01 0.19 0.44

0.00 -0.22 -0.49

0.36 -0.10 0.01 0.52 0.34 -0.09 0.03

-0.01 -0.19 -0.44 -0.09-0.34 0.09 -0.03 -0.10-0.36 0.10 -0.01 -0.52

-0.37 -0.45 0.17 0.59-0.28 -0.38 0.01 0.35

0.45 -0.17 -0.59

-0.19 -0.10 0.19 -0.19 -0.30 0.01 0.35

0.38 -0.01 -0.35 0.370.30 -0.01 -0.35 0.280.19 0.10 -0.19 0.19

-0.71 -0.71 0.05 0.39-0.71 -0.71 0.04 0.38

0.71 -0.05 -0.39

-0.12 -0.47 -0.37 0.02 -0.12 -0.47 -0.37

0.71 -0.04 -0.38 0.710.12 0.47 0.37 0.710.12 0.47 0.37 -0.02

0.12 0.03 0.31 0.580.14 0.04 0.26 0.52

-0.03 -0.31 -0.58

0.34 0.03 0.17 0.47 0.31 0.05 0.20

-0.04 -0.26 -0.52 -0.12-0.31 -0.05 -0.20 -0.14-0.34 -0.03 -0.17 -0.47

-0.04 -0.11 0.26 0.55-0.03 -0.10 0.23 0.51

0.11 -0.26 -0.55

0.25 -0.06 0.07 0.38 0.23 -0.05 0.09

0.10 -0.23 -0.51 0.04-0.23 0.05 -0.09 0.03-0.25 0.06 -0.07 -0.38

0.23 0.04 -0.17 0.070.33 0.11 -0.34 -0.16

-0.04 0.17 -0.07

0.30 -0.44 -0.33 0.41 0.19 -0.33 -0.17

-0.11 0.34 0.16 -0.23-0.19 0.33 0.17 -0.33-0.30 0.44 0.33 -0.41

-0.26 -0.33 0.11 0.43-0.26 -0.33 0.10 0.42

0.33 -0.11 -0.43

0.26 -0.41 -0.33 0.47 0.25 -0.41 -0.33

0.33 -0.10 -0.42 0.26-0.25 0.41 0.33 0.26-0.26 0.41 0.33 -0.47

0.16 0.06 0.30 0.570.18 0.08 0.26 0.52

-0.06 -0.30 -0.57

0.38 0.02 0.16 0.51 0.35 0.04 0.19

-0.08 -0.26 -0.52 -0.16-0.35 -0.04 -0.19 -0.18-0.38 -0.02 -0.16 -0.51

0.09 0.00 0.27 0.560.10 0.01 0.24 0.51

0.00 -0.27 -0.56

0.36 -0.05 0.08 0.51 0.34 -0.04 0.10

-0.01 -0.24 -0.51 -0.09-0.34 0.04 -0.10 -0.10-0.36 0.05 -0.08 -0.51

-0.42 -0.52 -0.31 -0.05-0.33 -0.44 -0.47 -0.29

0.52 0.31 0.05

-0.26 -0.58 -0.45 -0.24 -0.37 -0.47 -0.29

0.44 0.47 0.29 0.420.37 0.47 0.29 0.330.26 0.58 0.45 0.24
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Figure 2.2 – Example of a Game Matrix for the 2x2 MT-DWTA 

 

Next, evaluating t tive fu  given in (1.8) yields the game matrix for 

this problem.  For simplicity, we w  that each Red and Blue unit are of unit worth to 

1 2 1 2 1B B B B
B B R Rc c c c= = = = B Rc c= .  Figure 2.2 depicts the resulting game 
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matrix, with each entry in the form 
( )
( )

,
,

R B R

B B R

J v v
J v v

is possible to solve for the Nash strategies.  As in the example given in Table 2.2, the optimal 

target assignment strategy for Blue, highlighted in blue, is determined for each possible target 

assignment strategy of the Red team.  Similarly, this process is repeated to yield the optimal 

target assignment strategy for Red, highlighted in red, for each possible Blue target assignment 

strategy.   According to (2.1), matrix entries in the game matrix shown in Figure 2.2  that exist in 

both Red’s and Blue’s reaction s

.  Following the construction of the game matrix it 

ets, i.e. entries containing both red and blue highlights, are 

therefore Nash solutions.  Using this criterion to investigate the game matrix in shown in Figure 

2.2 discloses two Nash solutions, 

[ ] [ ]
[ ] [

1 1

2 2

2,1;1,1 , 2,1;1,2

2,1;1,1 , 2,1;2,1]

N
B

N N
R B

v

v v

= =

= =
         (2.6a) 

where 

am and the objective function outcomes are the same for each of the two blue Nash 

rategies, this problem is inconsequential.  This can be seen in the game matrix shown in Figure 

.3.   

 

 

N
Rv

( ) ( )
( ) ( )

1 1 1 1

2 2 2 2

, .03, , .03

, .03, , .03

N N N N
R R B B R B

R R B B R B

J v v J v v

J v v J v v

= − =

= − =
.       (2.6b) 

As previously discussed, a game matrix having two Nash solutions generates problems for 

game theoretic approaches as it becomes possible for each team to choose a different Nash 

solution.  Nevertheless, because there is only one distinct Nash target assignment strategy for the 

red te

N N N N

st

2
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{1,1;1,1} {1,2;1,1} {2,1;1,1} {2,2;1,1} {1,1;1,2} {1,2;1,2} {2,1;1,2} {2,2;1,2} {1,1;2,1} {1,2;2,1} {2,1;2,1} {2,2;2,1} {1,1;2,2} {1,2;2,2} {2,1;2,2} {2,2;2,2}

-0.74 -0.75 -0.23 0.02-0.74 -0.75 -0.24 0.01

0.75 0.23 -0.02

-0.15 -0.74 -0.74 -0.01 -0.16 -0.74 -0.74

0.75 0.24 -0.01 0.740.16 0.74 0.74 0.740.15 0.74 0.74 0.01

0.11 0.02 0.27 0.540.12 0.03 0.23 0.49

-0.02 -0.27 -0.54

0.33 -0.01 0.13 0.46 0.30 0.01 0.16

-0.03 -0.23 -0.49 -0.11-0.30 -0.01 -0.16 -0.12-0.33 0.01 -0.13 -0.46

-0.06 -0.13 0.18 0.44-0.05 -0.12 0.14 0.40

0.13 -0.18 -0.44

0.23 -0.15 -0.04 0.37 0.21 -0.13 -0.02

0.12 -0.14 -0.40 0.06-0.21 0.13 0.02 0.05-0.23 0.15 0.04 -0.37

0.23 0.05 0.21 0.590.33 0.13 0.05 0.36

-0.05 -0.21 -0.59

0.31 -0.06 0.20 0.42 0.20 0.05 0.36

-0.13 -0.05 -0.36 -0.23-0.20 -0.05 -0.36 -0.33-0.31 0.06 -0.20 -0.42

-0.27 -0.35 -0.13 0.11-0.27 -0.35 -0.14 0.09

0.35 0.13 -0.11

0.24 -0.65 -0.66 0.45 0.23 -0.65 -0.66

0.35 0.14 -0.09 0.27-0.23 0.65 0.66 0.27-0.24 0.65 0.66 -0.45

0.17 0.07 0.31 0.580.18 0.09 0.26 0.52

-0.07 -0.31 -0.58

0.38 0.03 0.17 0.52 0.35 0.05 0.19

-0.09 -0.26 -0.52 -0.17-0.35 -0.05 -0.19 -0.18-0.38 -0.03 -0.17 -0.52

0.09 0.00 0.22 0.490.10 0.01 0.19 0.44

0.00 -0.22 -0.49

0.36 -0.10 0.01 0.52 0.34 -0.09 0.03

-0.01 -0.19 -0.44 -0.09-0.34 0.09 -0.03 -0.10-0.36 0.10 -0.01 -0.52

-0.37 -0.45 0.17 0.59-0.28 -0.38 0.01 0.35

0.45 -0.17 -0.59

-0.19 -0.10 0.19 -0.19 -0.30 0.01 0.35

0.38 -0.01 -0.35 0.370.30 -0.01 -0.35 0.280.19 0.10 -0.19 0.19

-0.71 -0.71 0.05 0.39-0.71 -0.71 0.04 0.38

0.71 -0.05 -0.39

-0.12 -0.47 -0.37 0.02 -0.12 -0.47 -0.37

0.71 -0.04 -0.38 0.710.12 0.47 0.37 0.710.12 0.47 0.37 -0.02

0.12 0.03 0.31 0.580.14 0.04 0.26 0.52

-0.03 -0.31 -0.58

0.34 0.03 0.17 0.47 0.31 0.05 0.20

-0.04 -0.26 -0.52 -0.12-0.31 -0.05 -0.20 -0.14-0.34 -0.03 -0.17 -0.47

-0.04 -0.11 0.26 0.55-0.03 -0.10 0.23 0.51

0.11 -0.26 -0.55

0.25 -0.06 0.07 0.38 0.23 -0.05 0.09

0.10 -0.23 -0.51 0.04-0.23 0.05 -0.09 0.03-0.25 0.06 -0.07 -0.38

0.23 0.04 -0.17 0.070.33 0.11 -0.34 -0.16

-0.04 0.17 -0.07

0.30 -0.44 -0.33 0.41 0.19 -0.33 -0.17

-0.11 0.34 0.16 -0.23-0.19 0.33 0.17 -0.33-0.30 0.44 0.33 -0.41

-0.26 -0.33 0.11 0.43-0.26 -0.33 0.10 0.42

0.33 -0.11 -0.43

0.26 -0.41 -0.33 0.47 0.25 -0.41 -0.33

0.33 -0.10 -0.42 0.26-0.25 0.41 0.33 0.26-0.26 0.41 0.33 -0.47

0.16 0.06 0.30 0.570.18 0.08 0.26 0.52

-0.06 -0.30 -0.57

0.38 0.02 0.16 0.51 0.35 0.04 0.19

-0.08 -0.26 -0.52 -0.16-0.35 -0.04 -0.19 -0.18-0.38 -0.02 -0.16 -0.51

0.09 0.00 0.27 0.560.10 0.01 0.24 0.51

0.00 -0.27 -0.56

0.36 -0.05 0.08 0.51 0.34 -0.04 0.10

-0.01 -0.24 -0.51 -0.09-0.34 0.04 -0.10 -0.10-0.36 0.05 -0.08 -0.51
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-0.26 -0.58 -0.45 -0.24 -0.37 -0.47 -0.29
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Figure 2.3 – Illustration of 2 Nash Strategy Pairs for a 2x2 MT-DWTA 

 

 

2.4 SCALABILITY ISSUES INHERENT IN GAME THEORETIC APPROACHES 

 

The simple example shown in Section 3 demonstrates the effectiveness of game theoretic 

approaches to the multi-team dynamic weapon target assignment problem.  However, it also 
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illustrates that a game matrix approach to solving such problems can easily become unfeasible 

for even small numbers of units.  The previous example considered only two Red and two Blue 

units over two battle steps.  Nevertheless, this example generated 256 possible target assignment 

strategy combinations, 512 objective function scores and 1024 unit outcomes.   If a more 

permissive case is considered, in which a unit is not forced to select a target, these numbers 

become much higher.  Consider the general case of the MT-DWTA problem in which  units 

on team Blue are engaged with  units on team Red over  battle-steps.  It is assumed that 

each of the  units on team Blue may target any of the  unit on team Red or abstain from 

targeting altogether.   Hence each Blue unit may select from  

BN

RN K

BN RN

( )1RN +  possible target assignment 

strategies at each battle step.  This yields a total of ( )1 BN
RN +  target assignment strategies for the 

Blue team to consider at each battle step, or ( )1 BN K
RN +  target assignment strategies over the 

course of the entire battle.  Applying this result to the red team yields a total of ( )  

possible strategies.  This implies that the entire search space consists of a total of 

1 RN K
BN +

( ) ( )( 1 1R )B
KN N

B RN N+ +          (2.7) 

possible target assignment strategy combinations.  If (2.7) is examined for several values of , 

 and , as shown in Table 2.6,  it becomes apparent that it is not feasible to use a game 

matrix to solve for the Nash equilibrium strategies for even simple cases of the MT-DWTA.  

This scalability issue is the main deterrent to such approaches. 

RN

BN K
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Table 2.6 – Size of the Search Space for Various MT-DTWA Problems 

N B N R S Battle Size of Search Space N B N R S Battle Size of Search Space
2 2 1 8.1000E+01 2 2 2 6.5610E+03
2 4 1 2.0250E+03 2 4 2 4.1006E+06
4 4 1 3.9063E+05 4 4 2 1.5259E+11
4 8 1 2.5629E+09 4 8 2 6.5684E+18
8 8 1 1.8530E+15 8 8 2 3.4337E+30
8 16 1 1.2926E+25 8 16 2 1.6709E+50

16 16 1 2.3679E+39 16 16 2 5.6070E+78
45 45 1 4.4484E+149 45 45 2 1.9788E+299  

 

 

Though a game theoretic approach is a natural formulation from which to solve the multi-

team weapon target assignment problem, a more efficient Nash solution search procedure is 

required before such an approach can be applied to MT-WTA problems of even moderate size. 

Consequently, in this dissertation the author will present and evaluate such a method. This 

method is based largely on a WTA assignment algorithm entitled the Unit Level Team Resource 

Allocation Algorithm, or ULTRA, which will also be defined and evaluated.  The author will 

demonstrate that not only is the implementation of a game theoretic approach practical enough to 

be calculated real time, any team using such an approach will achieve a higher objective function 

score than a team considering a non-game, or “naive”, approach regardless of the method that 

team’s opponent uses to calculate its target assignment strategy. 
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3.0  FINDING AN OPTIMAL REACTION IN A MT-DWTA 

 

 

The MT-DWTA is an important problem when considering many military conflicts.  However, it 

is a difficult problem to implement in a practical manner.  As mentioned previously, the 

competitive nature of the MT-DWTA prohibits the use of typical optimization techniques for 

even simple cases of the MT-DWTA.  This is because the objective functions of each team are 

linked.  Consequently, certain game theoretic concepts need to be integrated into standard 

optimization techniques.  However, we previously demonstrated that it is computationally 

infeasible to solve the MT-DWTA using typical game theoretic methodology.  The MT-DWTA 

yields a far too large of a game matrix when to be computationally feasible when considering 

even a small number of units.  As a result, before the MT-DWTA problem can be practically 

applied to real world situations, an algorithm is needed that is capable of finding a game 

theoretic solution many orders of magnitude faster than by using a game matrix.   

One possible approach is to separate the problem into a game theoretic problem and a 

standard optimization problem.  To accomplish this, we will find the optimal target assignment 

strategy for a team when that team knows the target assignment strategies of its adversaries.  

While, this assumption is inherently untrue, it can be useful to solving the general problem. In 

chapter 4 we will show that it is possible to generate approximate target assignment strategies for 

MT-DWTA if a method is developed to quickly solve the general MT-DWTA when the target 

assignment strategies of all opposing teams are known.   
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In this chapter we first present a special case of the MT-DWTA, denoted the Single Team 

Response to the MT-DWTA (SMT-DWTA), in which a single team desires to find an optimal 

strategy knowing the target assignment strategies of the opposing teams.   This formulation is 

identical to that of the general MT-DWTA except that the target assignment strategies, ,  are 

known for all teams  except for the team in question, which we will refer to as team 

Xu

X A .  Then, 

we then describe a “good” target assignment strategy and derive performance measures to 

evaluate potential target assignment algorithms.  After this, we will present an algorithm, 

denoted the Unit Level Team Resource Allocation algorithm (ULTRA), capable of quickly 

generating an approximate solution to the ST-DWTA.  Finally, the performance of this algorithm 

will be evaluated using the previously defined performance measures.   

   

 

3.1 GENERAL FORMULATION OF THE SMT-DWTA 

 

In SMT-DWTA, we seek the optimal targets selection strategy for a team given the target 

assignment strategies of its adversaries, a certain attrition model and a particular objective 

function formulation.  The SMT-DWTA naturally decomposes into these three basic concepts, 

target assignment strategies, attrition models and objective functions.  These concepts are 

defined in this order.  This is because an objective function can not be formulated without 

knowing the attrition model and an attrition model can not be expressed without first expressing 

the form of the target assignment strategies.   

To formulate an expression for the target assignment strategies consider SMT-DWTA in its 

most general form.  In the most general formulation, the SMT-DWTA consists of two or more 
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independent teams, each composed of a number of heterogeneous units, engaged in a multi-stage 

conflict broken into discrete battle steps.  The units are each assumed to carry various numbers 

of non-homogeneous weapons that may be assigned to any unit on an opposing team according 

to that team’s target assignment strategy.  Consequently, a target assignment strategy is required 

to provide the number and types of weapons that each unit will expend as well as each of these 

weapon’s corresponding target at each battle-step.  These target assignment strategies are subject 

to a set of constraints representing the target assignment limitations inherent in the given 

conflict.  For example, these constraints may limit the number of weapons that a unit may 

expend and/or the number of distinct targets a unit may assign weapons to at any given battle 

step.  Certain units may also be unable to target certain opposing units due to range or sensor 

restrictions.   

Expressed mathematically, consider again the general case in which each team , 

where

X

{ }, , ,...X A B C∈ , present in a conflict lasting  battle-steps is composed of  units.  

Each unit 

K XN

x  on team  is armed with  types of weapons.  Furthermore, a unit X X
xW x  is assumed 

to have a quantity of the thω  type of weapon equal to ,
X

xW ω .  The number of the thω  type of 

weapon on unit x  assigned to any unit on any opposing team at a battle-step  is denoted 

through the use of a target assignment strategy,

k

( ),
X
xu kω .  This target assignment strategy ( ),

X
xu kω  

is a vector composed of an entry for each opposing unit present in the conflict where 

( ), , 0X
x yu kω ≥  for all units x , weapons ω , targets y  and battle-steps k .   

To further illustrate this concept, consider the case where the 2nd unit on team A possesses a 

quantity of the 3rd type of weapon at the 2nd battle-step.  If there are two other teams present, B 
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and C, having two and three units respectively, then a sample target assignment strategy for a 

single weapon might be 

( ) ( ) ( ) ( ) ( ) ( )
( ) [ ]

1 2 1 2 32,3 2,3, 2,3, 2,3, 2,3, 2,3,

2,3

2 2 , 2 ; 2 , 2 ,

2 0,3;1,0,1

A A A A A A
B B C C C

A

u u u u u u

u

⎡ ⎤= ⎣ ⎦
=

2

⎤
⎦

    (3.1) 

In this target assignment strategy, the second unit of team A will launch 3 weapons of type 3 at 

the third unit of team B and 1 weapon of type 3 at the first and third units of team C.  The target 

assignment strategy for a single weapon may be combined to form the target assignment strategy 

of a single unit: 

( ) ( ) ( ) ( ),1 ,2 ,, , , X
x

X X X X
x x x x Wu k u k u k u k⎡= ⎣ …        (3.2a) 

or the target assignment strategy of an entire team: 

( ) ( ) ( ) ( )1 2, , ,
X

X X X X
Nu k u k u k u k⎡= ⎣ … ⎤⎦

⎤⎦

       (3.2b) 

or even the target assignment strategy an entire team over all  battle-steps: K

( ) ( ) ( ) ( )1 , 2 , ,X X X Xu k u u u K⎡= ⎣ … .       (3.2c) 

These target assignment strategies are generally subject to a set of constraints.  For example the 

number of weapons of type ω  allocated by the thx  unit is limited to the total number equipped, 

.  Expressed mathematically: ,
X

x wW

( )
Opposing Units

, , ,
1

K
X
x y x

k y
u k W X

ω ω
=

≤∑ ∑ .        (3.3a) 

Additionally the number of weapons of a given type allocated by a single unit x  could be limited 

for a single time step such that 

( )
Opposing Units

, , ,   X X
x y x

y
u k wω ω≤ ∀∑ k .        (3.3b) 
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Another possible constraint is that a unit x  may target a limited number of distinct targets at 

each battle-step: 

( )( )
Opposing Units

, ,sgn   X X
x y x

y
u k tω ≤ ∀∑ k        (3.3c) 

Having developed a basic formulation for possible target assignment strategies it is now 

possible to consider a generalized formulation of the SMT-DWTA attrition model.  The attrition 

model is necessarily a state based process that relates the status of the units present in the conflict 

from one battle step to the next given a set of target assignment strategies.  The exact formulation 

of an attrition model is determined by the nature of the conflict but, in general the degradation of 

a given unit is a function of its capabilities, the capabilities of the attacking units, and the target 

assignment strategies of all teams present in the conflict.   

We will define this degradation according to the “health” of a unit at the end of a battle step.  

There are two possible interpretations of the term health. On one hand, a unit’s health may 

represent the probability that a unit it fully functional at the end of a battle-step.  It may also 

represent the remaining percentage of that unit’s initial capabilities.  Mathematically, we can 

represent the health of the  unit on team thi A  after the  battle-step as thk ( )iA k . Consequently, 

an attrition function can be generally defined as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 , , 1 , , 1 , ,A A B B
iA k A k u k B k u k C k u kα= − − − … .   (3.4) 

where  is a function of the target assignment strategies of all teams as well as the current 

measure of health for all units. 

( )Aα i

Each team present in the conflict must have an objective function based upon the attrition 

model which that team attempts to maximize by selecting a target assignment strategy.  Any 

team engaging in such a conflict would necessarily desire to preserve its units while eliminating 
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any opposition.  A team may also seek to preserve its own weapons and or to force an opponent 

to waste their arsenal.  As such an objective function can be broken into a summation of 

objective functions, each corresponding to the status of the units of a given team.   For example 

if a team  has weapons remaining at the end of a battle given by X ( )XW k , which is a function 

of that team’s target assignment strategies ,  then the portion of the objective function of team Xu

A  dependent on team ,  denoted X ,A XJ , can be written as a function of the remaining weapons 

and units of team, .  These partial objectives may be combined to form an 

overall objective function formulation as follows: 

( ) ( )(, , X
A XJ X k W k )

)k( ) ( )(
, , ....

, ,
B C D

X
A A X

X A
J J X k W

=

= ∑ .       (3.5a) 

This formulation can be also written in terms of each teams target assignment strategies, 

( ) ( ) ( ) ( ) ( ) ( )( )
, , ,...

, 1 , , 1 , , 1 , ,
B C D

A B B
A A X

X A
J J A k u k B k u k C k u k

=

= − − −∑ … .  (3.5b) 

Consequently, a general formulation of the SMT-DWTA in the case of team A  optimally 

responding to a set of target assignment strategies from each of its adversaries can be expressed 

as 

( ) ( ) ( ) ( ) ( ) ( )( )
, , ,...

,max 1 , , 1 , , 1 , ,
A

B C D
A B B

A X
u X A

J A k u k B k u k C k u k
=

− − −∑ …    (3.6a) 

subject to the set of constraints given in (3.3) 
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3.2 MEASURING THE PERFORMANCE OF SOLUTION METHODS 

 

The SMT-DWTA is not a game theoretic problem. Consequently, it is capable of being solved 

using optimization techniques.  Additionally, the SMT-DWTA is an approximate model of the 

realities of a conflict. These two properties make the SMT-DWTA solvable in two ways.  On one 

hand, we can employ an optimization algorithm which exactly solves a SMT-DWTA instance. 

The only method known to solve the SMT-DWTA exactly is an exhaustive search.  We could 

also utilize a much faster heuristic algorithm to generate an approximate solution.  The large 

contingent of standard optimization methods coupled with the permissibility of non-optimal 

solutions allows an infinite number of solution methods.  Consequently, we must establish valid 

solution guidelines in order to intelligently select an appropriate approach.  Here we will make 

use of measures that compare the two most important measurable qualities, the speed and the 

accuracy of a given algorithm.  

In any real life application of the MT-DWTA, a target assignment strategy must be found in 

a certain finite and limited amount of time.  The optimal strategy is useless if it can not be found 

within the specified amount of time.  This implies that processor time is the most important 

performance measure of any MT-DWTA algorithm.   Consequently, a suboptimal target 

assignment strategy available when needed is far superior to an optimal target assignment 

strategy available only after the time which it is needed.  When this property is coupled with the 

size, non-linearity and the number of constraints inherent in the STM-DWTA we can conclude 

that a heuristic approach may be preferable to an optimization based approach.   
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Another measure of great importance is the correctness of a given target assignment strategy. 

This is a measure of how close a given strategy is to the optimal strategy obtained by exhaustive 

search.  The accuracy of an algorithm, AlgorithmΑ ,  can be defined as the average of the resultant 

objective function value of its target assignment strategy, ,  divided by that of the 

exhaustive search,  as follows:  

AlgorithmJ

OptimalJ

Algorithm
Algorithm

Optimal

*100
J
J

Α = ,        (3.7) 

where ⋅  is the mean operator and represents the average value over all possible scenarios.  

Unfortunately, this measure implies that the optimal target assignment strategy be known a 

priori.  As proven earlier, the computational complexity of the MT-DWTA problem prohibits an 

exhaustive search for a moderate number of units.  Consequently, the accuracy of an algorithm 

can be found exactly only in instances of the SMT-DWTA involving small numbers of units.  

We need to extrapolate this data from problems involving a small number of units to generate 

accuracy values from more complicated problems. 

A last consideration of an algorithms performance that must be taken into consideration is 

consistency.  It is not always possible to determine the best algorithm for a given SMT-DWTA 

based solely upon the expected accuracy and number of objective function evaluations of each 

algorithm.  In some formulations, an algorithm might be preferred over another that is on 

average more accurate but less consistent.  Therefore, other important performance measures 

include the minimum, maximum and the variance of an algorithm’s accuracy as well as the 

corresponding number of objective function evaluations.  Another measure of consistency to 

consider is the threshold performance of an algorithm.  The threshold performance is can be 

defined as the probability that an algorithm achieves a given minimum accuracy.  In this 
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dissertation, we consider thresholds of 100, 99, 95 and 90 percent accuracy.  These combined 

measures provide a concise measure of the consistency of a given algorithm. 

 

 

3.3 UNIT LEVEL TEAM RESOURCE ALLOCATION ALGORITHM (ULTRA)  

 

One class of algorithms that have been successfully applied to complex non-linear problems such 

as the SMT-DWTA is a class of heuristic algorithms labeled as Large Scale Neighborhood 

Search algorithms (LSNS) [26].  LSNS algorithms define a class of algorithms that function by 

first selecting an initial feasible strategy.  Algorithms of this class then find the optimal strategy 

of a small subsection selection of feasible strategies related to the initial strategy.  These 

strategies are considered to be the “neighborhood” of the initial strategy.   Once a LSNS has 

found the optimal strategy in the given neighborhood, a new neighborhood is created around that 

optimal neighbor.  A LSNS algorithm then proceeds to iteratively find the optimal neighbors in a 

neighborhood until an optimal neighbor is the optimal neighbor in its own neighborhood.     

To solve the SMT-DWTA we introduce a LSNS algorithm which we call the Unit Level 

Team Resource Allocation algorithm (ULTRA).  As with all LSNS algorithms, the ULTRA 

algorithm can be decomposed into three separate modules.  First, ULTRA will begin by 

generating an initial feasible target assignment strategy.  Second, a variable sized neighborhood 

“surrounding” the initial target assignment strategy will be found according to a rule module.  

Third, ULTRA will proceed to locate the locally optimal strategy in the given neighborhood.   

ULTRA will then proceed, iteratively generating neighborhoods and locating locally optimal 

strategies until a strategy is found which is optimal in its given neighborhood.  Figure 3.1 
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provides a basic flowchart of the ULTRA algorithm.  It should be noted that it is not necessary to 

generate the entire neighborhood surrounding a given target assignment strategy providing that it 

is possible to consecutively scan through the entire neighborhood.  In this manner, the next 

neighbor can be generated from the previous neighbor. 
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Figure 3.1 – ULTRA Functional Overview 

 

 

3.3.1 ULTRA Neighborhood Search (F Degrees of Freedom) 
 

At the heart of any LSNS is the neighborhood search.   ULTRA uses a neighborhood search in 

which neighbors are defined according to the number of target assignment strategies differences.  

A difference occurs between two target assignment strategies when the same unit is allocated 
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different targets for at least one of its weapons for a given battle step.  Target assignment 

strategies having F  or fewer differences are assumed to be neighbors.  We refer to this 

neighborhood search as the F  degrees of freedom search.   A flowchart is shown in Figure 3.2.  
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Figure 3.2 – Neighborhood Search in ULTRA 

 

The F  degrees of freedom search exhibits two qualities which qualify it as a well rounded 

neighborhood search.  First, the F  degrees of freedom neighborhood search is of variable 

complexity, enabling it to be “tuned” to provide optimal performance according to the given 

application.  Second, the neighborhood can be constructed in such a manner as every neighbor 

can be generated sequentially, using only the previous neighbor.  This means that ULTRA may 
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be implemented efficiently, using only a small amount of memory. This is an important 

consideration in cases when dealing with scenarios that generate very large neighborhoods.  

As LSNS algorithms are typically non-deterministic, there is seldom any manner of 

determining whether or not the final local optimum strategy is equivalent to the global optimal 

strategy.  One way to increase the chance that the final strategy will coincide with the optimum 

or to ensure a more optimal final strategy is to increase the size of the neighborhood.  

Conversely, these increases in the size of the neighborhood negatively impact the speed of the 

LSNS algorithm.  If time is not of extreme importance, the degree of freedom coefficient, F , 

may be set high to achieve maximum accuracy.  However, F  may be set low for fastest results if 

the run time requirement of ULTRA is critical.  

Another important consideration when implementing a LSNS algorithm is memory usage.  

Storing an entire neighborhood in memory is often impractical as a neighborhood can easily run 

into the hundreds of thousands of individual strategies.  To resolve this problem, each neighbor 

can be generated from a previous neighbor in such a manner as to evaluate every neighbor once 

and only once.  ULTRA accomplishes this through the use of counting modules.  If each unit is 

labeled with a number from one to , where  is the number of units, then it is possible to 

create a vector of 

N N

F  values representing the units which may vary their strategy from the given 

initial strategy. Such an implementation is illustrated in Figure 3.3.   

To illustrate this search procedure further, consider an implementation of ULTRA on 5 units 

with a degree of freedom coefficient of 3.  It is then possible to generate every possible 

combination of 3 of the 5 units allowed to change their strategies by “counting” in the following 

manner.   

{ } { } { } { } { }
{ } { } { } { } { }
1, 2,3 , 1, 2,4 , 1,2,5 , 1,3, 4 , 1,3,5

1, 4,5 , 2,3, 4 , 2,3,5 , 2, 4,5 , 3, 4,5
      (3.8) 
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Such a counting method is achieved by first creating a vector of size F  to represent the units 

that may have their strategies changed as per the definition of an ULTRA neighbor.  This vector 

is initially filled with units one through F .  The counting algorithm then proceeds to increment 

by one the rightmost index having a value less than the total number of units minus F  plus that 

index.  Any indexes to the right of the index being updated are then set to one more than the 

index immediately left of itself.  Similar counting type algorithms can also be used to search 

through all of the combinations of weapons and targets capable of being considered by each unit 

allowed to change its strategy in the given iteration.  It can then be argued that by using such 

methods, all neighbors in a neighborhood can then be created and evaluated while only storing 

the initial strategy, the current best strategy in the given neighborhood and the current neighbor.  

This algorithm can be seen in Figure 3.3. 
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Figure 3.3 – F Degrees of Freedom Neighborhood Generation/Search 
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3.3.2 Iterative Best Neighbor Search 
 

The outer loop of ULTRA is defined as an iterative best neighbor search.  In this loop strategies 

are continuously improved by running a neighborhood search around a given strategy to find the 

neighborhood optimal strategy and then running a neighborhood optimality search around that 

strategy.  This procedure continues until a neighborhood is generated around a strategy in which 

that strategy is the neighborhood optimal strategy.   
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Figure 3.4 – Iterative Best Neighbor Search in ULTRA 

 
 

Three features of the iterative best neighbor search should be noted.  First, as the stopping 

criterion of the iterative best neighbor search requires that a strategy be optimal only in a 

neighborhood surrounding that strategy, this algorithm cannot be guaranteed to arrive at the 

globally optimal strategy in the general case.  Second, because the objective function score of the 
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strategies considered in this algorithm are ever increasing it can be argued that ULTRA is likely 

to arrive at a “good” approximation of the optimum.  Third, ULTRA is guaranteed to converge 

because the objective function value of the neighborhood strategy must increase from one 

iteration to the next and because there are assumed to be a finite number of possible strategies. 

 
 
 
3.3.3 ULTRA Initial Condition 
 

As with all LSNS algorithms the closer the initial strategy is to the globally optimal strategy, the 

better the chance that the LSNS algorithm will arrive at the global optimum.  A well chosen 

initial strategy further aids the performance of the algorithm as it can enable the algorithm to 

converge faster.  In this dissertation we will consider three different initial strategies, the zero 

strategy, the random strategy, and the unit greedy strategy.   
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Figure 3.5 – The Initial Strategy in ULTRA 
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a) Definition 1: A vector is called a zero target assignment strategy for Team A if 

each entry  of is selected from the set {0 .  Similarly, A vector is called a zero 

target assignment strategy for Team B if each entry 

z
Au U∈ A

B( )z
Aiu k z

Au } z
Bu U∈

( )z
Biu k  of is selected from the set {0 .   z

Bu }

 

b) Definition 2: A vector is called a unit random strategy for the Team A team if 

each entry  of is selected randomly from the set {  with a certain probability 

distribution. Similarly, a vector is called a unit random strategy for the Team B team if 

each entry  of is selected randomly from the set {  with a certain probability 

distribution.  

r
Au U∈ A

B

( )r
Aiu k r

Au 0,1,...., }BN

r
Bu U∈

( )r
Biu k r

Bu 0,1,...., }AN

 

c) Definition 3: A vector  is called a unit greedy strategy for the Team A if each 

entry  in 

g
Au U∈ A

( )g
Aiu k g

Au  is selected such that ( ) ( )ˆ ˆ( ,0, ) ( ,0,g g
A Ai A AiJ u k k J u k k≥

� �
) for  and 

for all , where 

1,2..., Ai N=

ˆ ( )Ai Au k U∈ ˆ [0,..,0, ,0,..,0]Ai Aiu u ′= . Similarly, a vector  is called a unit 

greedy strategy for Team B if each entry 

g
Bu U∈ B

( )g
Biu k  in g

Bu  is selected such that 

for ( ) ( )ˆ ˆ( ,0, ) ( ,0,g g
B Bi B BiJ u k k J u k k≥

� �
) N1,2..., Bi =  and for all , where 

.  

ˆ ( )Bi Bu k U∈

ˆ [0,..,0, ,0,..,0]Bi Biu u ′=

 

These definitions can be described as follows; the zero strategy assumes that each weapon on 

each team is initially not given a target.   In the case of the random strategy, a random task 

selection strategy is selected from the list of all feasible task selection strategies as the initial 

strategy.  Lastly, the unit greedy strategy sets an initial strategy in which each unit is assigned the 
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task selection strategy which maximizes that unit’s contribution to the overall team objective 

function assuming all other units are set to the zero strategy.   

 

 

3.3.4 Illustration of ULTRA with F=1 on a Sample Scenario 
 

To illustrate the mechanism of the ULTRA algorithm, we will walk through a simple example of 

the SMT-DTWA using a simple implementation of ULTRA with the degree of freedom 

coefficient set as 1.  Recall the sample game matrix for a combat scenario involving two teams of 

two units over two battle steps given in Figure 3.2.  To comply with the assumptions of the 

SMT-DWTA we will assume that the Blue team has already selected a task selection strategy, 

say for example the Nash strategy given by { }2,1;2,1Bu = .   Thus the game matrix can be 

reduced to the following Figure: 

 

{1,1;1,1} {1,2;1,1} {2,1;1,1} {2,2;1,1} {1,1;1,2} {1,2;1,2} {2,1;1,2} {2,2;1,2} {1,1;2,1} {1,2;2,1} {2,1;2,1} {2,2;2,1} {1,1;2,2} {1,2;2,2} {2,1;2,2} {2,2;2,2}

-0.55

0.55
{2,1;2,1}

Red Weapon Target Assignment Strategies

-0.38 -0.03 -0.17 -0.52 -0.35 -0.05 -0.19 -0.18 -0.09 -0.26 -0.52 -0.17 -0.07 -0.31 -0.58

0.38 0.03 0.17 0.52 0.35 0.05 0.19 0.18 0.09 0.26 0.52 0.17 0.07 0.31 0.58  

Figure 3.6 – Simple SMT-DWTA Example 

 

where the highlighted entry represents the previously determined optimal Red strategy.  It should 

be noted that the zero strategy has been omitted from this example due to spatial concerns.  

Continuing with this example, the first procedure undertaken by ULTRA is to select an initial 

strategy.  In this case we will set the initial strategy as { }1,1;1,1Ru .  Using this initial strategy, 
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ULTRA must now generate a neighborhood of strategies with a degree of freedom coefficient of 

one.  This operation generates the following five neighbors: 

{ } { } { } { } { }1,1;1,1 , 2,1;1,1 , 1,2;1,1 , 1,1;2,1 , 1,1;1,2 ,       (3.9) 

shown on the game matrix given in Figure 3.7: 

 

{1,1;1,1} {1,2;1,1} {2,1;1,1} {2,2;1,1} {1,1;1,2} {1,2;1,2} {2,1;1,2} {2,2;1,2} {1,1;2,1} {1,2;2,1} {2,1;2,1} {2,2;2,1} {1,1;2,2} {1,2;2,2} {2,1;2,2} {2,2;2,2}

0.31 0.580.26 0.52 0.17 0.07

-0.58

0.38 0.03 0.17 0.52 0.35 0.05 0.19 0.18 0.09

-0.52 -0.17 -0.07 -0.31-0.19 -0.18 -0.09 -0.26-0.55

0.55
{2,1;2,1}

Red Weapon Target Assignment Strategies

-0.38 -0.03 -0.17 -0.52 -0.35 -0.05

 

Figure 3.7 – ULTRA First Iteration 

 

Of these five choices, the target assignment strategy { }2,1;1,1Ru =  results in the highest 

objective function value. This strategy also happens to be the optimal strategy.  Because the 

initial strategy was not the optimal in its own neighborhood, ULTRA begins the second iteration 

by generating a neighborhood around the current best neighbor, { }2,1;1,1Ru = .  This second 

neighborhood is composed of the following 5 strategies: 

{ } { } { } { } { }2,1;1,1 , 1,1;1,1 , 2,2;1,1 , 2,1;2,1 , 2,1;1, 2       (3.10) 

in matrix form as shown in Figure 3.8: 

 

{1,1;1,1} {1,2;1,1} {2,1;1,1} {2,2;1,1} {1,1;1,2} {1,2;1,2} {2,1;1,2} {2,2;1,2} {1,1;2,1} {1,2;2,1} {2,1;2,1} {2,2;2,1} {1,1;2,2} {1,2;2,2} {2,1;2,2} {2,2;2,2}

0.31 0.580.26 0.52 0.17 0.07

-0.58

0.38 0.03 0.17 0.52 0.35 0.05 0.19 0.18 0.09

-0.52 -0.17 -0.07 -0.31-0.19 -0.18 -0.09 -0.26-0.55

0.55
{2,1;2,1}

Red Weapon Target Assignment Strategies

-0.38 -0.03 -0.17 -0.52 -0.35 -0.05

 

Figure 3.8 – ULTRA Second Iteration 
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In the second iteration, the best neighbor is the same as the best neighbor in the previous 

iteration.  This is the stopping criteria for ULTRA. Consequently, the target assignment strategy 

{ }2,1;1,1Ru =  is returned as ULTRA’s approximation of the globally optimal strategic response.   

To contrast this result, we will quickly step through the previous example with a different 

initial strategy. In this case we will assume an initial strategy { }1,2;2,2Ru = .  Generating the 

first neighborhood: 

{ } { } { } { } { }1,2;2,2 , 2,2;2,2 , 1,1;2,2 , 1,2;1,2 , 1,2;2,1 .     (3.11) 

Examining the SMT-DWTA matrix given in Figure 3.6 we find that the optimal neighbor in the 

set shown in (3.11) is the initial strategy { }1,2;2,2Ru = .  This implies that ULTRA has 

converged and will return { }1,2;2,2Ru =  as the ULTRA approximation.  Although this is not the 

globally optimal strategy it is a close approximation.  The two resulting objective function values 

are -.07 and -.03 respectively. This is a good approximation considering the other possible 

values.     

 

 

3.3.5 ULTRA Computational Complexity 
 

In many instances, a SMT-DWTA is formulated in such a way as to provide a set amount of time 

in which a target assignment strategy must be chosen.  In such cases it is implied that any target 

assignment algorithm should find the most optimal strategy possible given the provided amount 

of time.  Recall that when dealing with LSNS type optimization algorithms, a larger 

neighborhood typically implies a more optimal strategy.  Because ULTRA is “tunable,” the 

degree of freedom coefficient should be set to the highest value that permits ULTRA to converge 
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in a prescribed amount of time.  To determine the optimal value of F  given a maximum number 

of objective function evaluations we must first generate an expression that approximates the 

number of objective function evaluations to F  and the parameters of the SMT-DWTA.  

To determine the number of objective function evaluations as a function of F  and SMT-

DWTA parameters we will examine the computational requirements of ULTRA while 

considering a general example.  Consider a team of  units, each having W  weapons of which 

 may be launched in each of  battle-steps, engaged in a conflict with 

N

w K M adversarial targets.  

The first quantity that must be found is the number of possible target assignment strategies 

available to each unit.  It is assumed that every weapon on each unit may target each of the M  

targets or abstain from combat.  As such, each weapon scheduled to be launched during a given 

battle step has  possible target assignment strategies.  This implies that a set of  

weapons generates  strategies.  Every unit is capable of launching  weapons at each 

battle step implying that each unit may select from 

( 1M + )

)

w

( 1 wM + w

( )1 wM +  target assignment strategies for 

every possible permutation of selecting  of  weapons.  Thus the total number of target 

assignment strategies available to a given unit, ,  can be found using the well known 

statistical formulation  

w W

UTSS

( )
!

! !
W W
w W w w

⎛ ⎞
=⎜ ⎟ −⎝ ⎠

,         (3.12) 

implying that 

( )
( )

! 1
! !

w

U

W M
TSS

W w w
+

=
−

.         (3.13) 

It should be noted that (3.13) simplifies to   
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( 1 w
UTSS M= + )           (3.14) 

when W  and further to  when w= 1UTSS M= + 1W w= = .  To find the number of target section 

strategies in a given neighborhood, ,  first recall that a neighborhood is defined as the set of 

target assignment strategies differing from an initial target assignment strategy in the target 

assignments for 

NTSS

F  or fewer units.  If each of these units is allowed to change to any of  

possible target assignment strategies, then 

UTSS

F  units combine for a total of  

( )
( )

! 1
! !

FwW M
W w w

⎛ ⎞+
⎜
⎜ −⎝ ⎠

⎟
⎟

          (3.15) 

possible target assignment strategies.  The size of a neighborhood in a given best neighbor search 

can then be found by multiplying (3.15) by the total number of permutations possible selecting 

F  target assignment strategies from the number of units multiplied by the number of  battle-

steps, , as follows: NK

( )
( )

( )
! 1!

! ! ! !

Fw

N

W MNKTSS
NK F F W w w

⎛ ⎞⎛ ⎞ +
⎜= ⎜ ⎟⎜ ⎟⎜− −⎝ ⎠⎝ ⎠

⎟
⎟

.      (3.16) 

The final step to determining the number of objective function evaluations, OFE , required by 

ULTRA for a given set of parameters, is to multiply the size of the neighborhood evaluated 

during each neighborhood search by the total number of neighborhood searches.  As is typically 

the case for neighborhood search algorithms, it is not possible to exactly determine the total 

number of neighborhood searches.  This implies that it is not possible to determine the number of 

iterations required by ULTRA to find a target assignment strategy.  Nevertheless, it is possible to 

determine the minimum number of iterations required assuming that each unit must be assigned a 

target assignment strategy at each battle-step and no unit is initially assigned a strategy.  During 
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each best neighbor search only F  of the  total target assignment strategies may be assigned 

at each best neighbor search.  This necessitates a minimum of 

NK

NK
F  iterations.  Further 

assuming that the total number of iterations required for ULTRA to converge is on the order of 

this minimum, an expression can then be formed for the order of the number of objective 

function evaluations required as follows: 

{ } ( )
( )

( )
! 1!

! ! ! !

FwW MNK NKo OFE o
F NK F F W w w

⎧ ⎫⎛ ⎞⎛ ⎞ +⎪⎛ ⎞ ⎜= ⎜ ⎟⎨⎜ ⎟⎜ ⎟⎜− −⎝ ⎠⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭

⎪⎟ ⎬⎟
.     (3.17) 

Another quantity of interest is a factor representing the number of objective function 

evaluations ULTRA will save as compared to exhaustive search.  The size of the exhaustive 

search can be found by setting , thereby increasing the size of the neighborhood to the 

entire strategy space.  This assumption results in the following expression for the total size of the 

target assignment strategy space: 

F NK=

( )
( )

! 1
! !

NKw

E

W M
TSS

W w w

⎛ ⎞+
⎜=
⎜ −⎝ ⎠

⎟
⎟

.        (3.18) 

Using the previously derived expression for the number of objective function evaluations 

required by ULTRA shown in (3.17) as well as the expression given in (3.18), a ratio can be 

formed relating the exhaustive search and ULTRA. 

{ }

( )
( )

( )
( )

( )

! 1
! !

! 1!
! ! ! !

NKw

E
Fw

W M
W w wTSS

o OFE W MNK NKo
F NK F F W w w

⎛ ⎞+
⎜ ⎟
⎜ ⎟−⎝ ⎠=

⎧ ⎫⎛ ⎞⎛ ⎞ +⎪ ⎪⎛ ⎞ ⎜ ⎟⎜ ⎟⎨ ⎬⎜ ⎟⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠⎪ ⎪⎝ ⎠⎩ ⎭

.    (3.19a) 
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( )
( )

( )

! 1
! !

!
! !

NK Fw

E

W M
W w wTSSo o

OFE NK NK
F NK F F

−⎧ ⎫⎛ ⎞+⎪ ⎪⎜ ⎟
⎜ ⎟⎪ ⎪−⎪⎧ ⎫ ⎝ ⎠=⎨ ⎬ ⎨

⎛ ⎞⎩ ⎭ ⎛ ⎞⎪ ⎪⎜ ⎟⎜ ⎟⎜ ⎟⎪ ⎪−⎝ ⎠⎝ ⎠⎪ ⎪⎩ ⎭

⎪
⎬       (3.19b) 

If only one type of weapon is allotted to each unit and the number of units and targets are related 

such that , the ratio given in (3.19) can be reduced to the following: 1N M= +

( )

1!
!

!

NK F
ETSS FF No o

OFE NKK
NK F

− −

⎧ ⎫
⎪ ⎪
⎪⎧ ⎫ =⎨ ⎬ ⎨

⎛ ⎞⎩ ⎭ ⎪ ⎪⎜ ⎟⎜ ⎟⎪ ⎪−⎝ ⎠⎩ ⎭

⎪
⎬ ,       (3.20) 

This formulation is reasonable because substituting  for NK F  in (3.20) reduces the expression 

to one.  We can arrive at the following expressions given in (3.21) by substituting (3.17) for 

various values of F : 

( ) ( )

( ) ( )

( ) ( )

3

2

5

2

7

2

1

4
2

1

18
3

1 2

NK

E

NK

E

NK

E

NTSSo F o
OFE K

NTSSo F o
OFE K K

N

NTSSo F o
OFE K K K

N N

−

−

−

⎧ ⎫⎪ ⎪⎧ ⎫= =⎨ ⎬ ⎨ ⎬
⎩ ⎭ ⎪ ⎪⎩ ⎭

⎧ ⎫
⎪ ⎪⎪ ⎪⎧ ⎫= =⎨ ⎬ ⎨ ⎬

⎛ ⎞⎩ ⎭ ⎪ ⎪−⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
⎧ ⎫
⎪ ⎪⎪ ⎪⎧ ⎫= =⎨ ⎬ ⎨

⎛ ⎞⎛ ⎞⎩ ⎭ ⎪ ⎪− −⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎝ ⎠⎩ ⎭

⎬

.      (3.21)  

Because 1 K
N
�  for large , when  is large and N N F  is small the relationship given in (3.21) 

can be approximated as: 
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( ) ( )( ) 2 1

1

! NK F
E

F

F F NTSSo F o
OFE K

− −

+

⎧ ⎫⎪⎧ ⎫ ≈⎨ ⎬ ⎨
⎩ ⎭ ⎪ ⎪⎩ ⎭

⎪
⎬ .       (3.22) 

To further illustrate the reduction in the required number of objective function evaluations 

consider the following Figure which plots the objective function evaluations required to find a 

single reaction versus the number of units on the given team for a single battle step when each 

1M N+ =  and each unit possesses exactly one weapon. 
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Figure 3.9 – Objective Function Evaluations Comparison 
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3.4 PERFORMANCE OF ULTRA ON A SAMPLE SMT-DWTA 

 

In this section we will obtain valid performance measures for ULTRA. As we have previously 

mentioned, LSNS type algorithms are non-deterministic. While it often possible to 

mathematically bound the difference between the estimated and global optimum, this bound is 

not necessarily representative of actual algorithm performance.  Consequently, the results of a 

LSNS algorithm cannot be known exactly without actually implementing the algorithm. Thus, 

ULTRA needs to be implemented on simulated scenarios to obtain valid performance measures.  

As simulations can only generate relevant performance measurements on problems similar to 

those simulated, a good method to gather valid performance measures is to average performance 

measures over many instances of a general simulation with random parameters.  Thus, we will 

introduce a general scenario with random parameters. We will then simulate various instances of 

the general scenario, collecting aggregate measures.  

To test the performance of the ULTRA algorithm we propose the following scenario with 

random parameters.  Consider the case in which Team A, composed of  units is responding to 

a known strategy of Team B, composed of  units.  For the sake of simplicity, we will assume 

that the objective function model is of the type given in (1.8) and evaluated over a single battle 

step using the six criteria.  First, to generate aggregate performance measures, we will evaluate 

AN

BN
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this simulation 250001 times using both ULTRA and the exhaustive search.  Second, the 

probabilities of kill were randomized each individual run. At any given run we independently 

generated each probability of kill using uniformly distributed random numbers over the 

interval  and for Team A. It should be noted that it was not necessary to generate 

probability of kill values for Team B as the optimization is uncoupled for 

0, A
iP⎡⎣ ⎤⎦

1K = 2.  Third, we 

assume that the worth of each unit to each team is one, or 1 2 1 2 1B B B B
B B R Rc c c c= = = = .  Fourth, we 

conducted experiments for many different combinations of numbers of units on each team. 

Because we are comparing the ULTRA algorithm to the exhaustive search, we note that it not 

possible to consider more complicated situations than approximately six units versus six units.  

In such cases the exhaustive search becomes computationally unfeasible.  Fifth, we evaluated the 

performance of the ULTRA algorithm for several different values of the degree of freedom 

coefficient, { }1,2,3F ∈ .  Sixth, we considered three possible initial conditions for the ULTRA 

algorithm which we defined previously, the zero initial target assignment strategy, the random 

initial target assignment strategy and the unit greedy target assignment strategy.   

Using these criteria we conducted three experiments to calculate the performance measures 

given in Section 3.2 and to determine how these performance measures vary as the various 

parameters of the problem change.  In the first experiment, we examined how the performance of 

the algorithm varies with the number of units per side when each side has an equal number of 

units. In the second experiment we examined the effect that the initial target assignment strategy 

has on the overall performance of the ULTRA algorithm. In the third experiment we considered 

                                                 
1 We chose the number 25,000 experimentally; the aggregate values began to form smooth curves after on the order 
of 15,000 runs.  The extra 10,000 runs were completed to ensure a more accurate depiction of the algorithms 
performance. 
2 This relationship between coupled and uncoupled objective functions in the MT-DWTA is further explored in 
Chapter 5. 
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the effect of a dissimilar number of units on each team. This included varying the number of 

units on Team A while the number of units on Team B remain constant, varying the number of 

units on Team B while maintaining the same number of units on Team A and  varying the 

number of units on both teams simultaneously. Again we emphasize that in all cases all 

measurements refer to Team A’s optimization 

It should be noted that the simplified SMT-DWTA model tested in the following 

experiments represents a valid approximation to the overall SMT-DWTA problem for two 

reasons.  First, allowing units to fire a single weapon is a valid simplification because a unit with 

multiple weapons can be represented as multiple units with a single weapon when evaluated over 

a single battle step.  Second, due to the inherent limitation of the exhaustive search, it is not 

possible to evaluate cases of the SMT-DWTA composed of more than seven or eight units for 

more than a single battle step. 

 

 

3.4.1 Experiment I 
 

In the first experiment, we modeled the effect of the number of units per side when all sides have 

an equal number of units.  Here we assumed a zero target assignment strategy as the initial target 

assignment strategy.  Using the performance measures given in Section 3.2 we evaluated the test 

scenario for the cases when { }1,2,3,4,5,6A BN N= =  for { }1,2F = .  For each scenario 

considered, the model was simulated 25,000 times, with each instance having randomly 

generated probability of kill values such that { }1 1,2, ,B
i BP i N= ∀ ∈ … .   

One important performance measure mentioned earlier is the average accuracy. This 

measurement plots the average percentage of the objective function value returned by the 
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ULTRA algorithm as compared to the optimal objective function value.  Figure 3.10 plots the 

results of the average accuracy of the ULTRA algorithm versus the number of units per team. 

Figure 3.10 shows that when F=1, there is an exponentially asymptotic relationship between the 

number of units per side and the expected accuracy of the algorithm.  The smoothness of the 

curve allows for a reasonable interpolation that the average expected accuracy for very large 

numbers of units is approximately 94%.  Figure 3.10 also demonstrates that setting the degree of 

freedom coefficient to F=2 results in a considerable improvement in the expected accuracy of 

the algorithm. 

Another important characterization of any heuristic algorithm how well it performs in a 

worst case scenario. Figure 3.11 plots the worst accuracy measure encountered in the 25,000 

instances evaluated for each of the number of units and degrees of freedom listed previously. 
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Figure 3.10 – Average Accuracy of ULTRA vs. Number of Units per Team 
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Figure 3.11 – Minimum Accuracy of ULTRA vs. the Number of Units per Team. 

 

First, it should be noted that in the cases in which there is only one unit per side, or when 2F =  

and there are two units per side, ULTRA corresponds to the exhaustive search. Consequently, 

ULTRA can never do worse than the optimal target assignment strategy.  Second, the worst case 

performance of the ULTRA algorithm appears to improve asymptotically as the number of units 

increase.  This behavior can be explained in that in cases with a small number of units per side, a 

target assignment error can have a great effect on the performance of the target assignment 

strategy.  However, in a case with a large number of units per side, the effect of a single target 

assignment error is mitigated by the larger number of units.  This results in less of a performance 

decrease than in cases considering fewer numbers of units.  Third, the difference between a 

degree of freedom of one and a degree of freedom of two appears to be much smaller especially 
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at high numbers of units per side.  This is in contrast to what was seen in the average accuracy 

measurements.  However, the curves are not smooth so the discrepancy might be a result of 

random perturbations. 

A third set of accuracy measurements to consider is a threshold based performance measure. 

This measurement describes the probability that ULTRA will arrive at a target assignment 

strategy that results in a objective function value within a certain percentage of the optimal value. 

In this experiment we consider four different thresholds.  Figure 3.12 illustrates the probability of 

ULTRA achieving the exact optimal solution as the number of units per side varies.  
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Figure 3.12 – %Chance of ULTRA returning the Optimal Target Assignment Strategy 
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This shows that with F=1 the probability of ULTRA returning the exact optimal strategy falls 

quickly to zero.  Second, we measured the probability that the ULTRA algorithm returns a target 

assignment strategy resulting in an objective function value greater than or equal to 99 percent of 

the optimal value.  The results of these measurements are compiled in Figure 3.13.  It can be 

seen that these measurements are similar to those illustrated in Figure 3.12. 
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Figure 3.13 – Chance of ULTRA Obtaining a Target assignment Strategy > 99% Optimal 
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Third, we measured the probability that the ULTRA algorithm obtains a target assignment 

strategy resulting in an objective function value greater than or equal to 95% of the optimal 

value. This measurement is shown in Figure 3.14.  Unlike the previous two measurements, the 

curves for both F=1 and F=2 clearly appear to converge to a non-zero value. It can be 

extrapolated that when F=1, ULTRA will generate a target assignment strategy that is 95% of 

the optimal or better roughly 50% of the time for large numbers of units per team. When F=2 the 

results are even more definitive. ULTRA will generate a target assignment strategy better than 

95% of the optimal approximately 95% of the time for large numbers of units per team. 
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Figure 3.14 – Chance of ULTRA Obtaining a Target assignment Strategy > 95% Optimal  
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Fourth, in Figure 3.15 we measured the probability that the ULTRA algorithm returns a target 

assignment strategy resulting in an objective function score better than 90% of the global 

optimum.  Much like the worst case measurements, this measurement shows the peculiar 

property that when F=1 the probability of obtaining a target section strategy better than 90% of 

the optimum increases with higher numbers of units. 
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Figure 3.15 – Chance of ULTRA Obtaining a Target assignment Strategy > 90% Optimal 
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To better illustrate the differences between the four different threshold measurements considered 

we compiled them in a common Figure.  Figure 3.15 contains a compilation of the threshold 

measurements taken in Experiment I when F=1. 
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Figure 3.16 – Comparison of Threshold Measurements Considered when F=1 

 

 

Run time requirements are another important factor to consider when measuring the 

performance of an algorithm. The fourth performance measurement that we considered in 

Experiment I is the worst case run time of the ULTRA algorithm.  This data is given in Figure 

3.17.  
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Figure 3.17 – Maximum Number of Objective Function Evaluations 

 

We are able to draw several conclusions from Experiment I.  First, we have established that 

for large numbers of units on each side, on average the ULTRA algorithm is 94% accurate for 

F=1 and 98% accurate when the degree of freedom coefficient is set to two.  Second, when F=1, 

ULTRA is seemingly guaranteed to generate a target assignment strategy resulting in an 

objective function value better than 75% of the optimum.  Third, for large numbers of units per 

team, when F=1 the ULTRA algorithm will arrive at a target assignment that is better than 90% 

of the optimum approximately 90% of the time.  Additionally, when F=2 ULTRA will generate 

a target assignment strategy better than 95% of the optimum approximately 95% of the time. 
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3.4.2 Experiment II 
 

In LSNS type algorithms, the initial target assignment strategy can affect the overall performance 

of the algorithm.  In the second Experiment we examined the effect of the initial target 

assignment strategy on the performance of the ULTRA algorithm.  Here we compared the 

performance of the three previously mentioned target assignment strategies, the zero target 

assignment strategy, the random target assignment strategy, and the unit greedy target 

assignment strategy.  Setting the degree of freedom coefficient to one, we evaluated the ULTRA 

algorithm for each of the three initial strategies.  For each initial condition, as in Experiment I, 

we defined the number of units per side such that { }1,2,3,4,5,6A BN N= ∈ .  Additionally, for 

each scenario considered, the model was simulated 25,000 times, with each instance having 

randomly generated probability of kill values such that { }1 1,2, ,B
i BP i N= ∀ ∈ … .  

The first aggregate measurement considered is average accuracy.  Figure 3.18 shows the 

average percentage of the optimal objective function value returned for each of the three initial 

conditions.  Clearly, on average the unit greedy initial condition yields the most optimal target 

assignment strategies.  In fact, the unit greedy initial condition finds the exact optimal target 

assignment strategy in the case of two units per team.  The random target assignment strategy 

performs the worst of the three, about 4% worse than the zero target assignment strategy and 

about 7% worse than the unit greedy approach.   
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Figure 3.18 – Expected Accuracy for Various Initial Strategies 

 

 

Second, we compared the worst case accuracy of the three initial conditions.  This 

measurement is illustrated in Figure 3.19.  Again, the best results are obtained with the ULTRA 

algorithm when the unit greedy target assignment is used as the initial strategy.  When this initial 

strategy is used, ULTRA generates target assignment strategies better than 84% of optimal.  For 

scenarios with larger numbers of units per team, the zero initial target assignment strategy is a 

close second, with nearly 80% minimum accuracy.  Finally, the random target assignment 

strategy is again the worst performing of the three. 
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Figure 3.19 – Worst Case Accuracy for Various Initial Strategies 

 

 

Third we considered how the average run time requirements change as a function of the 

initial target assignment strategies.  A plot comparing the average number of objective function 

evaluations required for ULTRA to converge for each of the three initial strategies is shown in 

Figure 3.20.  These three curves appear to have a definite symmetry.   On average, the quickest 

of the three initial strategies is the unit greedy approach.  When the random approach is used the 

algorithm takes approximately 60% longer to terminate than when using the unit greedy 
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approach. Finally, the zero assignment approach takes the longest, requiring 50% more objective 

function evaluations than the random and 140% more than the unit greedy approach. 
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Figure 3.20 – Avg # of Obj Fn Evaluations for Various Initial Strategies 

 

 

A fourth consideration is the maximum run time requirements of the various initial 

conditions.  Figure 3.21 plots the maximum number of objective functions required for ULTRA 

to terminate over 25,000 random instances versus the number of units per team for the three 

initial strategies.  Two important points can be made from this measurement.  First, there appears 

to be no difference in the maximum number of objective function evaluations when ULTRA uses 

the random compared to the greedy target assignments as initial strategies.  This is an important 
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point because the random target assignment strategy encompasses all target assignment 

strategies. This implies that no other initial assignment strategy generates a higher maximum run 

time than the zero initial strategy.  Second, the maximum number of objective function 

evaluations required to converge when ULTRA uses the unit greedy target assignment as the 

initial strategy is approximately equal to the average number of objective function evaluations 

required by the zero initial assignment strategy.  
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Figure 3.21 – Maximum # of Obj Fn Evaluations for Various Initial Strategies 
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Fifth, we measured the minimum number of objective function evaluations required for 

ULTRA to converge as a function of the initial strategy and the number of units per side. This 

measurement is illustrated in Figure 3.22.  Again, two points can be made about this 

measurement. First, the ULTRA algorithm achieves the best possible convergence rates when 

either the random or the unit greedy target assignments are used as initial conditions.  This is 

expected as it is possible for either initial strategy to be optimal in its given neighborhood.  

 

 

1

10

100

1000

2 3 4 5 6
Number of Units Per Team

M
in

 #
 o

f O
bj

. F
n.

 E
va

lu
at

io
ns

Zero Target Assignment Strategy
Random Target Assignment Strategy
Unit Greedy Target Assignment Strategy

 

Figure 3.22 – Maximum # of Obj Fn Evaluations for Various Initial Strategies 
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Second, when ULTRA uses the zero target assignment as the initial strategy, the quickest 

instance of convergence appears to be only slightly faster than the average for the same initial 

strategy. 

Experiment II compared the performance of three different types of target assignments as 

they are used as the initial strategy of the ULTRA algorithm.  From the measurements taken, we 

are able to make three conclusions. First, the unit greedy target assignment strategy is the best 

target assignment strategy of the three in both accuracy and run time requirements. It presents a 

significant, roughly 60%, improvement over the zero strategy in average number of objective 

function evaluations and is roughly 4% more accurate.  Second, the zero target assignment 

strategy is the worst possible initial strategy in terms of maximum number of objective function 

evaluations.  Third, although the maximum number of objective function evaluations is much 

higher, there is very little difference between the minimum and the average number of objective 

functions required for convergence when ULTRA uses the zero initial target assignment strategy. 

 

 

3.4.3 Experiment III 
 

In the previous two experiments we have only considered cases in which Team A and Team B 

both have the same number of units. In general, this is not the case. In Experiment III we 

measured the performance of the ULTRA algorithm as the number of units on each team varies 

independently.  Here we assumed that ULTRA used the either the zero or the unit greedy initial 

target assignment strategy.  As in the previous two experiments, the model was simulated 25,000 

times for each scenario considered, each instance having randomly generated probability of kill 

values such that { }1 1,2, ,B
i BP i N= ∀ ∈ … . 
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First, we examined two cases. The first, in which the number of units on Team A varies 

from one to 6 while the number of units on Team B remains constant  at four and the second in 

which the number of units on Team B varies from one to 6 while the number of units on Team A 

remains constant.  We evaluated each of these scenarios using both the unit greedy assignment 

and the zero assignment as the initial strategy using four metrics. In the first metric, we measured 

how the average accuracy was affected by non-uniformly varying the number of units per team. 

The resulting data can be seen in Figure 3.23. 
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Figure 3.23 – Average Accuracy of ULTRA with Dissimilar Teams 
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Several interesting concepts are illustrated in Figure 3.23.  On one hand, the lowest average 

accuracy occurred when Teams A and B had an equal number of units, the case when both were 

composed of four units.  ULTRA appears to generate better strategies for situations involving 

teams of dissimilar numbers of units than for more balance situations.  On the other, when using 

the unit greedy target assignment strategy, the average accuracy of the strategy ULTRA 

calculates for Team A is approximately the same when there are many units on Team A and few 

on Team B as in the case when there are few units on Team A and many on Team B. This 

symmetry is not found when the zero target assignment strategy is used as the initial strategy. 

For example, the when the zero initial strategy is employed, on average ULTRA generates a 

better Strategy for Team A when 6AN =  and 4BN =  then when 4AN =  and .   6BN =

In the second metric we explored the manner in which having teams of dissimilar size effects 

the threshold performance of ULTRA. In particular we examined the probability that ULTRA 

returns an optimal strategy. These measurements are shown in Figure 3.24.  From Figure 3.24 we 

can conclude that ULTRA often yields an optimal target assignment strategy when there are few 

units on Team A and many units on Team B.  In contrast, ULTRA almost never yields an 

optimal target assignment strategy when there are many units on Team A and few units on Team 

B.  This makes sense as when there are few units on Team A and many on Team B each unit on 

Team A will often be assigned to the Unit on Team B it is most suited to attack. On the other, 

when there are many units on Team A and few units on Team B it can be very difficult to 

coordinate an optimal attack. 
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Figure 3.24 – Chance of ULTRA obtaining Optimal Strategy with Dissimilar Teams 

 

 

The third metric used to examine the effects of teams of dissimilar numbers of units is the 

run time requirements of ULTRA. In particular, we examined the average number of objective 

function evaluations required for ULTRA to converge.  This is shown in Figure 3.25.  Here we 

see that the number of units on Team A has a larger effect on the time required for ULTRA to 

calculate a target assignment strategy for Team A than the number of units on Team B. 
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Figure 3.25 – Avg. Number of Objective Function Evaluations Assuming Dissimilar Teams 

 

 

In the second part of Experiment III, instead of fixing the number of units on one team and 

varying the number of units on the other we examined all combination of number of units per 

team when { }1,2,3,4,5,6AN ∈  and { }1,2,3,4,5,6BN ∈ .  Every scenario we measured the 

average accuracy of the ULTRA algorithm for each of the three initial target assignment 

strategies presented earlier over 25,000 iterations.  Figure 3.26 illustrates the result of this 

simulation.  From these plots, we can conclude that the conclusions drawn previously in 
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Experiment III are applicable in a more general sense.  These conclusions seem to apply to all 

combinations of units on each side rather that the specific case when one team has four units. 

 

 

Figure 3.26 – Surface Plots of Avg Accuracy versus # of Units on Team A and B 
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4.0 FINDING A NASH SOLUTION IN MT-DWTA PROBLEMS 

 

 

In the previous chapter we discussed a special case of the multi-team dynamic weapon target 

assignment problem.  We presented a method for quickly generating a target assignment strategy 

when the strategies for all other teams are known a-priori.  Knowledge of this sort is seldom 

available in competitive target assignment scenarios.  Competitive target assignment scenarios 

typically contain some form of uncertainty about the intended target assignment strategy of a 

team’s opponents instead of direct knowledge about another teams intended strategy.  Teams 

seldom know more than estimates of their opponents’ objective functions and strategies.  This 

uncertainty makes it difficult to justify particular solution concepts.  On one hand the additional 

knowledge of an opponent’s intent can play a critical role in outcome of the scenario and should 

not be ignored.  Conversely, there is often a desire to employ a naïve approach, ignoring the 

consequences of an opponent’s possible actions to quickly generate a target assignment strategy.  

While the Nash equilibrium is an important solution concept when dealing with this type of 

uncertainty, it is computationally inefficient to calculate using standard approaches.  There is 

also no guarantee that a particular scenario has a Nash solution.   Any real world implementation 

using a Nash based approach must be computationally feasible, robust and must generate 

strategies that are statistically better than naïve approaches. 

Perhaps the largest determent to applying the MT-DWTA to model real world applications 

is the computational complexity resulting from finding Nash equilibrium strategies using 
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standard techniques.  The most common technique for finding such a strategy is through the use 

of a game matrix.  As we showed in Chapter 2, a game matrix is first formed by assigning an 

axis to each player in the game.  Each axis contains a single index for every possible strategy that 

the corresponding team may employ. This means that each entry in the game matrix represents a 

single combination of strategies from each team in the game and that the matrix contains every 

possible combination of strategies.  To fill the game matrix, the cost functions from each team 

are evaluated and the results are stored for each entry in the game matrix. As a result this game 

matrix becomes computationally intractable even for small problems.  Forming a game matrix to 

solve the MT-DWTA requires too many computations and too much memory to fill and store the 

game matrix entries.   

To solve the problem of computational feasibility we will examine the standard action 

reaction Nash equilibrium search.  This search enables a game theoretic problem to be solved 

using standard optimization technique. We also examine games which do not have a Nash 

solution.  To account for these cases we define a more robust game theoretic solution, extending 

the basic definition of a Nash solution to include the idea of fairness.  We will show that by 

incorporating this idea, our algorithm can robustly handle sufficiently large scenarios within an 

acceptable amount of time even though some scenarios may not have a Nash equilibrium point.    

The last topic covered in this chapter is the performance of the Nash strategies when compared to 

other non game theoretic or naïve strategies.  We will examine three other target assignment 

strategies, the random target assignment, the unit greedy target assignment and the team optimal 

target assignment. We show that although the Nash target assignment strategy is not optimal in 

the traditional sense, it performs better than any of the other strategies, regardless of the target 

assignment strategy of its adversary. 
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4.1 APPLYING THE ACTION - REACTION NASH SEARCH TO THE MT-DWTA 

 

Any algorithm that uses game theoretic solution concepts to solve the MT-DWTA must solve 

two distinct problems.  The algorithm must be fast, generating target assignment strategies 

quickly as the size of the problems are usually quite large.  Similarly, the algorithm must also 

make efficient use of memory.   One common way to efficiently find the Nash strategy is to use 

the standard action reaction search.   This search bears some similarity to certain decent type 

searches in which the search moves to a more optimal point along the optimal direction. 

To illustrate how the action - reaction search functions, consider a two player game with 

controls  and  and objective functions  and 

.  To begin the action - reaction search we first assign some strategy 

to Player A.  Player 2’s optimal response  is then calculated according to the 

following maximization: 

Player 1u Player 2u ( )Player 1 Player 1 Player 2,J u u

(Player 2 Player 1 Player 2,J u u )

∀

∀

                                                

0
Player 1u 0

Player 2u

( ) ( )0 0 0
Player 2 Player 1 Player 2 Player 2 Player 1 Player 2 Player 2, ,J u u J u u u≥ .    (4.1) 

Following this, Player 1 calculates the optimal response to Player 2’s strategy3  using a 

similar optimization: 

0
Player 2u

( ) ( )1 0 0
Player 1 Player 1 Player 2 Player 1 Player 1 Player 2 Player 1, ,J u u J u u u≥ .    (4.2) 

These expressions given in (4.1) and (4.2) can be generalized to the following representation of 

the action - reaction search: 

 
3 It should be noted that players do not actually announce their strategies in the game.  The concept of optimal 
responses to a given strategy is a computational tool used solely by the decision maker of a single player. 
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( ) ( )
( ) ( )

1 1
Player 1 Player 1 Player 2 Player 1 Player 1 Player 2 Player 1

Player 2 Player 1 Player 2 Player 2 Player 1 Player 2 Player 2

, ,

, ,

J u u J u u u

J u u J u u u

ι ι ι

ι ι ι

− −≥ ∀

≥ ∀
    (4.3) 

This process iterates until on of three possible conditions is reached: 

 

1.         (4.4) 1
Player 1 Player 1 Player 2 Player 2 or u u u uι ι ι ι−= 1−=

. Thi

The first condition represents the necessary conditions for a Nash equilibrium.  To 

illustrate this point, note that  implies that  and visa 

versa.  Since  is an optimal response to  and we can say 

that is also an optimal response to Player uι s means that  1
Player 2uι−  is a possible 

solution to (4.3) at iteration 

1
Player 1 Player 1u uι ι−= 1

Player 2 Player 2u uι ι−=

1
Player 2uι− 1

Player 1uι− 1
Player 1 Player 1u uι ι−=

1
Player 2uι−  2

ι .  Also recall the definition of the Nash equilibrium 

given in (2.1).  Applying this definition to the current example, we find that a pair of 

strategies ( Player 1 Player 2,N Nu u ir of strategies if: )  is a Nash pa

( ) ( )
( ) ( )

Player 1 Player 1 Player 2 Player 1 Player 1 Player 2 Player 1

Player 2 Player 1 Player 2 Player 2 Player 1 Player 2 Player 2

, ,

, ,

N N N

N N N

J u u J u u u

J u u J u u u

≥ ∀

≥ ∀
. 

This is equivalent to (4.3) when and  are substituted in for and 

. 

Player 1uι
Player 2uι 1

Player 1uι−

1
Player 2uι−

 

2.       (4.5) Player 1 Player 1 Player 2 Player 2 or  where 2u u u uι ι ϕ ι ι ϕ ϕ− −= = ≥

The second condition is difficult to classify.  It is a similar condition to that often 

seen in decent type algorithms where numerical errors cause the algorithm to 

continually cycle past the optimal solution.  Such solutions are easily justifiable in 
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standard optimization problems but not in Game Theoretic problems.  This is because 

it is much more difficult to evaluate “closeness” to a Nash solution in the same way 

as solution can be close to the optimal solution in a general optimization problem.  In 

a standard optimization problem, the solution space can usually be assumed to be 

convex around an optimum so that solutions that are similar to the optimal solution 

can be assumed to be near optimal; a property not shared by the Nash equilibrium 

 

3.  ι ≥ Ι where is the maximum number of iterations     (4.6) Ι

The third condition represents the case of non-convergence.  While we find that the 

action - reaction search typically converges in a few iterations in MT-DWTA type 

games and we know that it is guaranteed to converge to one of the previous 2 

conditions, the action - reaction search can theoretically require a number of iterations 

equal to the minimum number of strategies available to each team.   

For example, consider the worst case scenario where there are  strategies 

available to each team where  and  are the strategies selected by Player 

1 and Player 2 respectively.  These strategies are labeled 1,  such that 

S

Player 1u Player 2U

2, , S…

{ }Player 1 1, 2, ,u S∈ …  and  and ordered such that Player 1’s optimal 

reaction,  to a strategy  of Player 2 can be expressed: 

Player 2u

(*
Player 1 Player 2u u )

S

Player 2u

 ( ) Player 2 Player 2*
Player 1 Player 2

Player 2

1
1

u u
u u

u S
+ <⎧

= ⎨ =⎩
 

and likewise Player 2’s  optimal reaction ( )*
2 1s s  to a strategy  of Player 1 can be 

expressed: 

1s
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( ) Player 1 Player 1*
Player 2 Player 1

Player 1

1
1

u u
u u

u S
+ <⎧

= ⎨
S

=⎩
. 

In this example it is clear that the action - reaction search will require  iterations 

before either team repeats a given strategy.   

S

It should be noted that while such an example is theoretically possible, it means 

little to the action - reaction search. Not only is there no Nash equilibrium in such 

examples, it is not possible for a team to predict its opponent’s intended strategy.  In 

these types of problems a player should either employ a non-game theoretic strategy 

or a mixed strategy based on randomly selecting a strategy from a weighted set of 

strategies. 

 

To illustrate how the action reaction search works on a game, recall the simple game defined 

by the game matrix given in Table 2.2 and reprinted as follows: 

 

Table 4.1 – Sample Game Matrix with a Single Nash Solution 

 Player 2 1u =  Player 2 2u =  Player 2 3u =  Player 2 4u =  

Player 1 1u =  ( )
( )

* 1,1 5

1,1 15
A

B

J

J

=

=
 

( )
( )
1, 2 6

1, 2 4
A

B

J

J

=

=
 

( )
( )
1,3 14

1,3 1
A

B

J

J

=

=
 

( )
( )*

1,4 0

1,4 20
A

B

J

J

=

=
 

Player 1 2u =  ( )
( )
2,1 1

2,1 7
A

B

J

J

=

=
 

( )* 2, 2 10AJ =

( )* 2, 2 8BJ =

( )
( )
2,3 4

2,3 4
A

B

J

J

=

=
 

( )
( )
2, 4 6

2, 4 2
A

B

J

J

=

=
 

Player 1 3u =  ( )
( )
3,1 4

3,1 6
A

B

J

J

=

=
 

( )
( )*

3, 2 2

3,2 7
A

B

J

J

=

=
 

( )
( )

* 3,3 20

3,3 3
A

B

J

J

=

=

( )
( )

* 3, 4 8

3,4 3
A

B

J

J

=

=
 

Player 1 4u =  ( )
( )*

4,1 3

4,1 10
A

B

J

J

=

=

( )
( )
4, 2 9

4, 2 2
A

B

J

J

=

=
 

( )
( )
4,3 16

4,3 5
A

B

J

J

=

=
 

( )
( )
4, 4 7

4, 4 5
A

B

J

J

=

=
 

 

78 



 

Assume that the action - reaction search begins by setting Player 2’s initial strategy such 

that . Player 1 then calculates its optimal response to this strategy from Player 2.   In the 

game shown in Table 4.1, Player 1’s optimal response to Player 2’s strategy 

0
Player 2 1u =

0
Player 2 1u =  is 

strategy #1 making .  Then Player 2’s optimal response to Player 1’s strategy 

 is found to be strategy # 4 making  

1
Player 1 1u =

1
Player 1 1u = 1

Player 2 4u = .  This process then proceeds as follows: 

0
Player 2

1 1
Player 1 Player 2
2 2
Player 1 Player 2
3 3
Player 1 Player 2

1
1
3 2
2 2

u
u u
u u
u u

=
= =
= =
= =

4
         (4.6) 

Here we see that because Player 2 repeated strategies in consecutive steps, the action - reaction 

search has converged according to the first criteria, that of the Nash equilibrium. This process 

can be further shown on Table 4.2.  

 

Table 4.2 – Example of the Strategies considered in the Action - reaction Search 

 Player 2 1u =  Player 2 2u =  Player 2 3u =  Player 2 4u =  

Player 1 1u =  ( )
( )

* 1,1 5

1,1 15
A

B

J

J

=

=
 

( )
( )
1, 2 6

1, 2 4
A

B

J

J

=

=
 

( )
( )
1,3 14

1,3 1
A

B

J

J

=

=
 

( )
( )*

1,4 0

1,4 20
A

B

J

J

=

=
 

Player 1 2u =  ( )
( )
2,1 1

2,1 7
A

B

J

J

=

=
 

( )* 2, 2 10AJ

( )* 2, 2 8BJ

=

=

( )
( )
2,3 4

2,3 4
A

B

J

J

=

=
 

( )
( )
2, 4 6

2, 4 2
A

B

J

J

=

=
 

Player 1 3u =  ( )
( )
3,1 4

3,1 6
A

B

J

J

=

=
 

( )
( )*

3, 2 2

3,2 7
A

B

J

J

=

=
 

( )
( )

* 3,3 20

3,3 3
A

B

J

J

=

=

( )
( )

* 3, 4 8

3,4 3
A

B

J

J

=

=
 

Player 1 4u =  ( )
( )*

4,1 3

4,1 10
A

B

J

J

=

=

( )
( )
4, 2 9

4, 2 2
A

B

J

J

=

=
 

( )
( )
4,3 16

4,3 5
A

B

J

J

=

=
 

( )
( )
4, 4 7

4, 4 5
A

B

J

J

=

=
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In the action - reaction search we may use any strategy as the initial strategy4.  For example 

if we assume that  we converge at the Nash equilibrium at the end of the first iteration 

as  and .  The action - reaction search will also converge at the Nash 

equilibrium at the end of the 2

0
Player 2 2u =

1
Player 1 2u = 2

Player 1 2u =

nd iteration when 0
Player 2 3u =  and also when .  The action 

- reaction search also works when an initial strategy is chosen for Player 1.  .  In this 

example, no matter the initial strategy, the action - reaction search will always converge on the 

Nash equilibrium.   

0
Player 2 4u =

0
Player 2 4u =

In the previous example, there is little difference between the required complexity of the 

exhaustive search and the action - reaction search.  This is because of the small scale of the 

problem.  To illustrate the dramatic improvement in speed recall the example given in Figure 2.2 

reprinted in Figure 4.1.  Here we can see that the action - reaction search converges upon one of 

the two Nash equilibrium points before the end of the second iteration for any initial strategy on 

the Red Team and before the end of the third iteration for any initial strategy of the Blue Team.  

Clearly, this represents a tremendous improvement in the number of computations required to 

find a pair of Nash strategies.  

 

                                                 
4 This only applies to the player setting the initial strategy.  Because the second player will select its optimal 
response to the initial strategy of the first player in the action - reaction search, there is no need to ever assign the 
second player an initial strategy. 
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Figure 4.1 – Example of a Game Matrix for the 2x2 MT-DWTA 

 
 
 

In all previous examples, we considered scenarios that had Nash equilibrium points.  As we 

mentioned earlier, the MT-DWTA is not guaranteed to have any Nash strategies.  Consider the 

game matrix presented in Table 2.4 and reprinted in Table 4.3.  
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Table 4.3 – Example of a Game Matrix Without a Set of Nash Strategies 

 Player 2 1u =  Player 2 2u =  Player 2 3u =  Player 2 4u =  

Player 1 1u =  ( )
( )

*
1

2

1,1 5

1,1 15

J

J

=

=
 

( )
( )

1

2

1, 2 6

1, 2 4

J

J

=

=
 

( )
( )

1

2

1,3 14

1,3 1

J

J

=

=
 

( )
( )

1

*
2

1, 4 0

1,4 20

J

J

=

=
 

Player 1 2u =  ( )
( )

1

2

2,1 1

2,1 7

J

J

=

=
 

( )
( )

1

*
2

2, 2 8

2,2 8

J

J

=

=
 

( )
( )

1

2

2,3 4

2,3 4

J

J

=

=
 

( )
( )

1

2

2, 4 6

2, 4 2

J

J

=

=
 

Player 1 3u =  ( )
( )

1

2

3,1 4

3,1 6

J

J

=

=
 

( )
( )

1

*
2

3, 2 2

3,2 7

J

J

=

=
 

( )
( )

*
1

2

3,3 20

3,3 3

J

J

=

=
 

( )
( )

*
1

2

3, 4 8

3,4 3

J

J

=

=
 

Player 1 4u =  ( )
( )

1

*
2

4,1 3

4,1 10

J

J

=

=

( )
( )

*
1

2

4, 2 9

4,2 2

J

J

=

=
 

( )
( )

1

2

4,3 16

4,3 5

J

J

=

=
 

( )
( )

1

2

4, 4 7

4, 4 5

J

J

=

=
 

  

 

If the initial strategy for Player 2 is again assumed to be 0
Player 2 1u =  the following progression can 

be observed: 

0
Player 2

1 1
Player 1 Player 2
2 2
Player 1 Player 2

3 3
Player 1 Player 2

1
1 4
3

4 1

u
u u
u u

u u

=
= =
=

= =

2=
         (4.7) 

Here the action - reaction algorithm terminated because Player 2 repeated strategy #1 in the 0th 

and the 3rd iteration, satisfying the second convergence criteria.  It is difficult to justify any 

strategy in this case because a Nash strategy was not found.  The concept of a Nash equilibrium 

needs to be extended before the selection of a strategy can be justified. 
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4.2 A GENERALIZATION OF THE NASH EQUILIBRIUM 

 

Often, game theoretic scenarios do not have a precise Nash equilibrium.  Such problems would 

benefit from a more general concept of Nash equilibrium in the same manner that optimization 

problems benefit from the concept of optimality when an optimal solution cannot be found.  The 

largest impediment to such a concept is that Nash strategies are not optimal in the same sense of 

a standard optimization problem.  As mentioned earlier, strategies near the optimal strategy can 

be assumed to be near optimal in most cases, a property not shared by Nash equilibrium.  Many 

optimization problems can often be assumed to be convex in the area around the optimum while 

the Nash equilibrium is only defined for strategies that satisfy the Nash equilibrium criteria.  No 

concept of “closeness” to the Nash equilibrium exists in the typical Nash definition.  To solve 

this problem and generate a concept of closeness to the Nash Equilibrium we formulate the Nash 

equilibrium as a form of a general optimization problem. 

Recall the definition of the Nash equilibrium conditions given in section 2.1.  A pair of 

strategies  are Nash strategies if they satisfy the following two conditions: Player 1 Player 2,N Nu u

( ) ( )
( ) ( )

Player 1 Player 1 Player 2 Player 1 Player 2 Player 1 Player 1

Player 2 Player 1 Player 2 Player 1 Player 2 Player 2 Player 2

, ,    for all 

, ,    for all 

N N N
A

N N N
B

J u u J u u u U

J u u J u u u U

≥ ∈

≥ ∈
   (4.8) 

Writing Player 1’s optimal response to a given strategy of Player 2, say ,  as: Player 2u

( )( ) ( )
Player 1

*
Player 1 Player 1 Player 2 Player 2 Player 1 Player 1 Player 2, max ,

U
J u u u J u u=     (4.9a) 

and likewise writing  Player 2’s optimal response to a given strategy of  Player 1, say , as:  Player 1u

83 



 

( )( ) ( )
Player 2

*
Player 2 Player 1 Player 2 Player 1 Player 2 Player 1 Player 2, max

U
J u u u J u u= ,     (4.9b) 

yields the following when combined with (4.8): 

( )( ) ( )
( )( ) ( )

*
Player 1 Player 1 Player 2 Player 2 Player 1 Player 1 Player 2

*
Player 2 Player 1 Player 2 Player 1 Player 2 Player 1 Player 2

, ,

, ,

N N N N

N N N N

J u u u J u u

J u u u J u u

− =

− =

0

0
.    (4.10) 

The expressions in (4.10) simply state that no player can improve their objective score over that 

obtained at a Nash equilibrium assuming that their opponent also remains at a Nash equilibrium, 

the explicit definition of the Nash equilibrium. The expressions in (4.10) also suggest that a 

Nash-like strategy is one in which neither player can improve their objective significantly from a 

given set of strategies. Extending the framework of (4.10), we can formulate the Nash 

equilibrium as an optimization problem, minimizing the difference between a pair of strategies 

and their corresponding optimal responses.  For example consider the following minimization: 

( )( ) ( )

( )( ) ( )
Player 1 Player 2

2
*

Player 1 Player 1 Player 2 Player 2 Player 1 Player 1 Player 2,

2
*

Player 2 Player 1 Player 2 Player 1 Player 2 Player 1 Player 2

min , ,

, ,

u u
J u u u J u u

J u u u J u u

⎡ ⎤− +⎣ ⎦

⎡ ⎤−⎣ ⎦

  (4.11) 

Here we see that when  and , the case of a Nash equilibrium, the 

expression given in (4.11) reduces to 0, the lowest value possible.  That is to say that a pair of 

strategies is a Nash pair of strategies if neither player has an incentive to unilaterally alter their 

strategy.  The expression given in (4.11) also provides a basis for a game theoretic solution in 

scenarios which do not have a Nash equilibrium.  By finding a pair of strategies which minimize 

(4.11),  we find the pair of strategies which most closely resemble a Nash equilibrium. 

Player 1 Player 1
Nu u= Player 2 Player 2

Nu u=

While it is difficult to justify strategies found by minimizing (4.11) because such a process 

inherently relies on the assumption that one’s opponent is selecting a strategy in a similar 

manner, the same objections can be made of the Nash equilibrium.  There is no way to predict 
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the optimality of the outcome in a non-zero sum game if one player selects a Nash strategy and 

the other player selects a different strategy.  It is clear that the player who fails to select a Nash 

strategy will be penalized, but fate of that player’s opponent is uncertain.  The same holds true 

for strategies that are similar to Nash strategies only with greater uncertainty as to the outcome. 

We make use of this definition of the Nash equilibrium given in (4.11) to solve for cases in 

the action - reaction search such as (4.5) where the search converges to a series of individual 

strategies.  Using this measure, we employ the most “Nash-like” of the given strategies. The 

concept of closeness is also useful for applying the action - reaction search to game scenarios 

with more than two players.  Instead of alternating, Player 1, Player 2, Player 3, etc…., we can 

make use of the concept of closeness.  At every iteration we allow each team to vary its strategy 

using ULTRA, implementing the change which minimizes (4.11).  In that way, we obtain a set of 

strategies that is closer to a Nash equilibrium at ever iteration. 

 

 

4.3 JUSTIFYING THE NASH EQULIBRIUM IN A MT-DWTA GAME 

 

The Nash strategy in game theory has often been criticized as being ineffective in competitive 

multi-team target assignment problems, especially when compared to the random or greedy 

targeting strategies.  Using a set of experiments, we will show that this is not the case.  We 

consider an attrition model of two teams of non-homogeneous fighting units simultaneously 

targeting each other and we compare the outcomes when various combinations of four targeting 

strategies are employed by each team.  The four strategies are: (1) The Random strategy where 

each unit selects its target randomly,  (2) The Unit Greedy strategy where each unit chooses the 
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target that optimizes its own performance only, (3) The Team Optimal strategy where the units 

coordinate their choice of targets so as to optimize the overall team performance without 

considering the choice of strategies by the other team, and  (4) the Team Nash strategy where the 

units coordinate their choice of targets so as to optimize the overall team performance but now 

taking into consideration the choice of strategies by the other team.  We will then compare the 

results for all 16 possible combinations of these targeting strategies and show that for each team 

the Nash strategy outperforms all other strategies no matter what is the strategy employed by the 

other side. 

The multi-team target assignment problem considers two or more teams of fighting units.  

For simplicity, in the following experiments we will consider only the case of two teams.  To 

present a mathematical formulation for this structure, let the two teams be labeled as Blue and 

Red and let K denote the total number of time steps representing the duration of the battle.  Let 

the number of non-homogeneous fighting units at step , where k 0,1,...., 1k K= − , in each team be 

 and  respectively.  Recall the definition of the MT-DWTA given in (1.7).  If, at 

each battle step , a team chooses a strategy based upon an objective function, we assume that 

this objective function will take the form of a weighted sum, maximizing both the combined 

worth of the destroyed units in the other team and the combined worth of the remaining units in 

that team. Let these objective functions at step  be 

( )BN k ( )RN k

k

k ( )( ), ( ),B B RJ u k u k k   for the Blue team and 

( ( ), ( ),R B R )J u k u k k  for the Red team.  In our model, each unit may be valued differently by each 

team. Let B
ib denote the worth of the  Blue unit to the Blue team and let thi R

ib  denote the worth of 

that unit to the Red team.  Likewise, let B
jr  and R

jr  denote the worth of the  Red unit to the 

Blue and Red teams respectively.  Assume that the probability of kill of the Blue unit against 

thj

thi
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the Red unit isthj ,
B
i jp .  Similarly, let the probability of kill of the  Red unit against the  Blue 

unit be

thj thi

,
R
j ip . Finally, let ( )iB k  and ( )jR k denote the probabilities that the  Blue unit and  

Red unit are alive at the start of the  battle step. Using these notations we can express the 

probability of survival of the i

thi thj

thk

th Blue unit and jth Red unit as follows:  

( ) ( )( ) ( ),
1

( )

( ) 1 1 1
RN

R
i i j i Rj j

j

k

B k B k p i u k R kδ
=

= − − − −⎡⎣∏ ⎤⎦

⎤⎦

     (4.12a) 

( ) ( )( ) ( )
( )

,
1

( ) 1 1 1
BN k

B
j j i j Bi i

i

R k R k p u k j B kδ
=

⎡= − − − −⎣∏      (4.12b) 

The objective functions for the Blue and Red teams are expressed as follows: 

( ) ( )
1 1

( ) ( )

( , , )
B RN N

B B
B B R i i j j

i j

k k

J u u k b B k r R k
= =

= −∑ ∑       (4.13a) 

( ) ( )
1 1

( ) ( )

( , , )
B RN N

R R
R B R i i j j

i j

k k

J u u k b B k r R k
= =

= − +∑ ∑       (4.14b) 

Recall that the Random Target Assignment strategy and the Unit Greedy Target Assignment 

strategy were defined in Chapter 3.  We now define the remaining two strategies mentioned 

earlier: 

 

c) Definition 4: A strategy  is called a Team Optimal strategy for the Blue team 

at step  if it is selected such that 

( ) ( )o
B

o
Bu Uk ∈ k

k ( ) ( )( , 0, ) ( , 0,o
B B B B )J u k k J u k k≥

� �
 for all .  

Similarly, a vector  is called a Team Optimal strategy for the Red team if it is 

selected such that 

( ) ( )B
o
Bu Uk k∈

( ) ( )o
R

o
Ru Uk ∈ k

( ) ( )(0, , ) (0, , )o
R R R RJ u k k J u k k≥
� �

 for all . ( ) ( )R
o
Ru Uk k∈
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We note that the Team Optimal strategy is one that completely ignores the adversarial nature of 

the other team and considers it only as a set of target units. It represents the standard non-game 

based solution to the target assignment problem.   

The definition of the Team Nash strategies, however, is more complex.  This strategy 

requires that each team must make the assumption that its adversary is also using a Nash 

strategy, whether or not that its adversary actually uses this strategy.  Another consideration is 

that at the current battle step k, the two objective functions in (2) are decoupled in that each 

team’s objective function does not depend on the other team’s strategy.  Hence, their 

maximization at the current battle step k only will yield the Team Optimal strategies as defined 

earlier.  Consequently, a game in this problem can only be defined if the objective functions are 

projected over a horizon of two or more battle steps. That is, at each step k the teams will 

determine their strategies not only for step k but also for steps 1,  2,......,  1k k k d+ + + −  where d 

represents the depth of the look-ahead horizon.  As we mentioned earlier, a game will exist only 

if 2d ≥ . In this section, for the sake of simplicity, we will consider only Team Nash strategies 

defined over a look-ahead horizon 2d = . 

 

d) Definition 5: A pair of strategies { ,  ( 1)}( ) ( )N N
B B

N
Bu u k Uk k+ ∈  and 

( 1)}{ ( ),  ( )N N
R R

N
Rk Uu k u k+ ∈ defined over a look-ahead horizon 2d =  is called a Team Nash 

pair of strategies at step k if it satisfies the inequalities: 

( ) ( )

( ) ( )

( 1), ( 1), 1 ( 1), ( 1), 1

 { ( ),  ( 1)} ( )

( 1), ( 1), 1 ( 1), ( 1), 1

 { ( ),  ( 1)} ( )

N N N
B B R B B R

B B

N N
R B R R

R R

N
B

N
B R

N
R

J u k u k k J u k u k k

u k u k U k

J u k u k k J u k u k k

u k u k U k

+ + + + + +

∀ + ∈

+ + + + + +

∀ + ∈

≥

≥
    (4.15) 



 

It is important at this stage to make the following two remarks:  

1. As is clear from (4.15), at each stage k the teams’ objectives are to maximize the objective 

functions (4.14) at step k+1, which is the end of the look-ahead horizon.  The explicit 

dependence of these functions on both strategies at k and k+1 is evident from expression 

(4.13).   

 

2. Note that even though the Nash strategies are computed for the two consecutive steps k and 

k+1, only the strategies at step k are implemented and the process repeated at step k+1. 

 

In order to compare the effectiveness of the four different target selection strategies mentioned 

earlier, the Random, Unit Greedy, Team Optimal and Team Nash Target Assignment strategies, 

we consider the following scenario.  At , the Blue team consists of units and the 

Red team consists of  .  We will perform two experiments.  In the first we leave the 

problem unstructured, assuming the probabilities of kill and the unit worth values to be uniform 

random numbers.  In the second, we consider a more structured (i.e. more realistic) scenario and 

assign specific probabilities of kill and units worth values to emphasize different roles for 

different units in each team.  In both experiments, we use a Monte Carlo approach to determine 

battle damage.  For example, if a Blue unit i was assigned a Red targets j and the corresponding 

probability of kill is , then our simulator selects a random number in the interval [0, 1].  

If the number is greater than 0.7, the Red unit survives, if not the Red unit is destroyed. This 

process was implemented at every battle step, stopping only when all units in one team are 

completely destroyed or after 6 successive battle steps. Because of the dimensionalities of the 

search spaces for the Team Optimal and Team Nash strategies ( , ,and 

0k = 0 10BN =

0 10RN =

, 0.7B
i jp =

1011o
BS = 1011o

RS =
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4314.641 10N N
B RS S= = ×  respectively), we used the ULTRA algorithm with  to 

determine these strategies. For example: an exhaustive search would have required  times 

the computer time required by ULTRA.  Using a 2.2 GHz Pentium processor, the ULTRA 

algorithm took about 12 hours of computer time to determine the Nash strategies.  An exhaustive 

search would have required years! 

1F =

3510

274.5 10×

 

 

4.3.1 Experiment IV 
 
 
In this experiment, our objective is to get completely unbiased results.  We assume that the two 

 matrices of probabilities of kill of Blue against Red and Red against Blue have entries 

that are random numbers uniformly distributed in the interval [0, 1].   The objective functions for 

each team were structured as described in equations (4.13) and (4.14) and the unit worth values 

10 10×

, , ,B R B R
i i j jb b r r  were also randomly and independently selected in the range [0, 1] with uniform 

probability distributions.  To obtain valid aggregate results, we performed 30,000 runs for each 

of the 16 possible combinations of strategies and averaged the results. These runs differed in that 

all randomly generated parameters were selected for each run using a different seed.  The results 

of this experiment are tabulated in Table 4.4.  This table shows the average percentage of the 

initial force remaining at the end of the battle for each of the 16 combinations of strategies. As 

expected, the outcomes are balanced when both teams use the same strategy. The largest 

remaining force occurs if both sides use Unit Greedy strategies. The smallest remaining force 

occurs when both sides use Team Nash strategies.  However, when faced with not knowing the 

opponent’s strategy, the Unit Greedy strategy appears to be the worst and the Team Nash 
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strategy appears to be the smartest.  The Random and Team Optimal strategies are somewhere in 

between. For example, if unknown to Blue, the Red uses a Random strategy then, among all the 

choices that Blue has, the Team Nash strategy appears to be the best. These results indicate that 

the Team Nash strategy yields on average a superior outcome independent of the adversary’s 

strategy.   An interesting observation that can also be observed from Table 4.4 is that while the 

Team Nash is the best strategy in all cases, the Team Optimal strategy appears to provide almost 

as good results.  This is due to the total randomness of this scenario and the advantage of the 

Team Nash strategy should be more significant in a structured scenario as will be illustrated in 

the next experiment.  

 

Table 4.4 - Comparison of average percentage of initial force remaining  

per team (Blue over Red) at the end of battle for different  

strategies and for the scenario of Experiment IV 

Unit 
Random

Unit 
Greedy

Team 
Optimal

Team 
Nash

15% 3% 47% 50%

33% 18% 53% 54%

0% 0% 9% 12%

0% 0% 7% 9%

Red Strategy 

15% 33% 0% 0%

3% 17% 0% 0%

48% 53% 9% 7%

49% 54% 12% 9%

B
lue Strategy 

Unit 
Random

Unit 
Greedy
Team 

Optimal
Team 
Nash  

 

4.3.2 Experiment V 
 
 
In this experiment, we add considerable structure to the scenario.  We assume that the Blue team 

now consists of 3 Light, 3 Medium and 3 Heavy fighting units and that the Red team consists of 
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5 High Value (HV) units and 5 Defender units.  The probabilities of kill and unit worth now have 

specific values as indicated in Tables 4.5 and 4.6. Because of our use of a Monte Carlo approach 

to determine battle damage, we again performed 30,000 runs for each of the 16 possible 

combinations and averaged the results.  The average percentages of the initial force remaining at 

the end of the battle for each of the 16 combinations of strategies are shown in Table 4.7.   

 

Table 4.5 - Blue Team probabilities of kill against Red team 

 and unit worth to both Blue and Red. 

BLUE TEAM 
 Probability of Kill Unit Worth 

Type of Unit 
Against 
Red HV 

units 

Against 
Red 

Defenders 
To Blue To Red 

Light:      Units 1, 2, and3 0.5 0.4 5 9 
Medium:  Units 4, 5, and 6 0.4 0.5 10 10 
Heavy:    Units 7, 8,  9, and 10 0.5 0.6 15 11 

 
 

Table 4.6 – Red Team Probabilities of Kill against Blue Team  

and Unit Worth to both Blue and Red. 

RED TEAM 
 Probability of Kill Unit Worth 

Type of Unit 
Against 

Blue 
Light 

Against 
Blue 

Medium 

Against 
Blue 

Heavy 
To Red To 

Blue 

High Value: Units  1, 2, 3, 
                    4, and 5) 0.1 0.05 0 15 14 

Defenders: Units 6, 7, 8, 9, 
                   and 10 0.9 0.85 0.75 7 6 

 

 

First, we notice that the Unit Greedy strategy fares even worse in this more structured scenario 

than in the scenario of Experiment IV.  A team using the Unit Greedy strategy will be completely 
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destroyed unless its opponent also uses the Unit Greedy strategy.  This is so because it is highly 

likely that many units will share the same optimal target, resulting in many units attacking a 

single target while ignoring the rest.  Second, unlike the previous experiment, here we see that 

there is a significant gain for the Blue Team when it uses a Team Nash strategy as compared to a 

Team Optimal strategy.  In contrast, the Red Team gains very little by implementing a Team 

Nash strategy as compared to a Team Optimal strategy.  This illustrates that the Team Nash 

strategy is at least as good as the Team Optimal strategy and can provide a significant 

improvement depending on the scenario. 

  

Table 4.7  - Comparison of average percentage of initial force remaining  

per team (Blue over Red) at the end of battle for different strategies  

and for the scenario of Experiment V. 

Unit 
Random

Unit 
Greedy

Team 
Optimal

Team 
Nash

9% 0% 19% 21%

65% 41% 73% 74%

4% 0% 8% 10%

3% 0% 9% 10%

Red Strategy 

24% 71% 12% 11%

0% 36% 0% 0%

40% 78% 24% 27%

48% 80% 34% 35%

B
lue Strategy 

Unit 
Random

Unit 
Greedy
Team 

Optimal
Team 
Nash   

 
 

 

4.3.3 Experiment VI   
 

In the previous two experiments, we have established that our implementation of the Nash 

equilibrium, using the action - reaction search combined with ULTRA has resulted in a 
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statistically significant improvement over standard optimization techniques.  Due to the 

limitations of the exhaustive search however, we can not directly calculate or confirm that the 

strategies we employed were actually Nash equilibrium points in the previous.  It is inherently 

difficult if not impossible to even confirm that such equilibrium actually exists. To rectify this, in 

Experiment VI we sought to ascertain how closely the strategies we employed compared to Nash 

strategies. 

To evaluate how favorably the strategies we employed compared to Nash equilibrium 

points, we used a similar scenario to that in Experiment IV in that we again confined ourselves to 

two heterogeneous teams.  We assumed that the two matrices of probabilities of kill of Blue 

against Red and Red against Blue have entries that are random numbers uniformly distributed in 

the interval [0, 1] and that the unit worth values  were also randomly and 

independently selected in the range [0, 1], each with uniform probability distributions.  To obtain 

valid aggregate results, we performed 30,000 runs for each of the scenario and averaged the 

results. These runs differed in that all random numbers were selected for each run using a 

different seed. 

, , ,B R B R
i i j jb b r r

While Experiment IV was designed to compare the results when the two teams employ 

combinations of four different types of strategies, Experiment VI was designed to measure how 

closely the Nash strategies that we employed corresponded to the Nash equilibrium.  To measure 

this, we first calculated the Nash strategies for both teams and compiled the results.  We then 

calculated the Red team’s optimal reaction to a Nash strategy for the Blue Team.  By comparing 

these results with those obtained when both teams employed a Nash strategy it is possible to 

determine how closely our implementation to calculate a Nash strategy corresponds to the 
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definition of the Nash equilibrium.  Table 4.8 compiles these results for the case when there are 

10 units on both the Red and Blue teams. 

 

Table 4.8 – Measuring the closeness to a Nash strategy, 10 vs 10 when Blue uses a Nash 

Nash vs Nash (Re  Optimal 
Reaction (Red) 

 Team 
Optimal (Red)

Red 9% 10% 7%

d) Nash vs Nash vs

Blue 9% 8% 12%% 
Remain

Strategies Used

 

 

Table 4.8 illustrates that our implementation achieves results that are very near to that of a true 

Nash implementation.  When the Red Team is unfairly allowed to know the Blue Team’s 

strategy in advance, it manages to only destroy 1% more Blue Units and preserve 1% more of its 

own. In contrast, when Blue employs the best Naïve strategy, the Team Optimal Strategy, Red 

destroys 2% more Blue units and preserves 3% more of its own.  This is especially notable 

because it is strongly suspected that many instances of the above experiment did not actually 

have a unique Nash solution.  Consequently, it is likely that our implementation often arrives at a 

Nash strategy when such equilibrium exists, and generates a result similar to Nash equilibrium, 

as defined earlier, when such a Nash equilibrium does not exist.   
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5.0 USING THE MT-DWTA MODEL TO CREATE A TDT CONTROLLER 

 

 

Modern military conflict combines a near infinite number of strategies and command decisions, 

considerable heterogeneity and interdependency in unit attributes and pervasive uncertainty in 

regards to units on both sides.  The resulting complexity of military engagements creates 

problems far outside the human capacity to comprehend and process completely.  To cope with 

human limitations, military planners throughout the ages have broken battle management into 

hierarchical stages, with commanders planning the battle at varying degrees of abstraction.  By 

thus reducing the complexity of the command decisions, individual commanders are able to 

make intelligent decisions based upon the types of information necessary for their particular rung 

in the hierarchical ladder while ignoring mostly irrelevant data.  However, while the 

simplification of battle data does aid in the planning process, individual commanders are still 

required to process massive amounts of data and make decisions in highly uncertain 

environments.  Mistakes often occur when commanders are overloaded with data, stress and lack 

of sleep.  One promising method to reduce the number of mistakes and to increase the efficiency 

of commanders is to use mixed initiative automated controllers [27-30].  These computerized 

planners aid commanders by suggesting various possible strategies, estimating the outcome of a 

when a particular strategy is employed and directly controlling portions of the battle as the 

commander sees fit.  As an added benefit, because these controllers are often mixed initiative in 

nature, commanders can control the battle at any level of coarseness they deem appropriate, from 
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controlling individual units to setting global objectives.  Such advantages are further stressed by 

the impending immergence of unmanned vehicles, with automated planners reduce the support 

network required to manage large numbers of unmanned combat air vehicles (UCAVs). 

One recent attempt to produce a viable mixed initiative automated planner was undertaken 

by DARPA under the Mixed Initiative Control for Automa-teams (MICA) project [31].  The goal 

of this project was to create a robust automated battle planner with variable human initiative 

control designed to operate on the Boeing OEP, a realistic combat computer simulation.  This 

simulation package included full 3D coordinates including terrain effects, sensor data, weapon 

effectiveness and damage assessment.   
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Figure 5.1 – Hierarchical Architecture of SHARED 

 
 
One attempt to make such a controller was the Strategies for Human-Automaton Resource Entity 

Development (SHARED) project[32-35]. This project is significant because it used game 

theoretic solution concepts throughout the entirety of its control decisions. Modeled after actual 
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battlefield control procedures, the SHARED control scheme is hierarchical.  The overall 

architecture of the SHARED project is illustrated in Figure 5.1. 

The SHARED hierarchy operates by efficiently distributing information and command 

decisions where they are best handled.  Facilitating this is the SHARED Domain Model.  This is 

a database designed to retain and output all relevant information available from the OEP and 

employ control decisions made by the human and autonomous controllers. The SHARED 

domain model also serves another function as it allows for easy interfacing with other battlefield 

models. Instead of a complete software rewrite, it is only necessary to write an interface between 

any given battlefield database and the SHARED domain model.  Connected to the SHARED 

Domain Model is the Automated Interaction Design (AID) package[36] which examines the 

available data and the necessary tasks and presents human users with a customized user 

interface, allowing users to access the data and controls most appropriate to any task while 

excluding extraneous information and clutter.  Three autonomous controllers complete the 

SHARED architecture, the Team Composition and Tasking (TCT)[37] module, the Team 

Dynamics and Tactics (TDT)[35] module and the Cooperative Path Planning (CPP)[38,39] 

module.  Each of these three controllers handles different aspects of the overall automated 

aspects of mission planning and execution. 

The TCT is the highest level of abstraction decision maker.  Its primary responsibility is to 

apply the will of the commanding officers to the available knowledge of battlefield conditions in 

a game theoretic environment to produce a coherent overall plan.  In so doing, the TCT is 

responsible for optimally grouping the available units into teams, assigning tasks to each team 

and assigning ordinance to each unit.  The TCT level controller must also ensure that the tasks 

assigned to each team take into account both temporal and physical constraints.  The next level 
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reasoner in the hierarchical decision tree is the Team Dynamics and Tactics level.  While the 

TCT operates on the entire battle at once, a separate TDT is run for each team as composed by 

the TCT.  For each unit on team, the TDT is responsible for setting waypoints, commanding 

sensor sweeps, specifying weapon expenditures and target selections and countermeasure 

deployment.  To facilitate a maximum rate of success, the TDT is programmed to predict an 

opponent’s strategy using Nash equilibrium.  Adding to the overall complexity of the TDT 

module, in order to preserve a variable initiative command structure, special care must be taken 

to ensure that any individual commands issued by commanders must be followed and that 

commands issued by the TDT abide by the given rules of engagement (RoE). The lowest 

hierarchical level of detail, Cooperative Path Planning was separated into two different sections, 

CPPP and CPPS.  The CPPP controller controls movement, optimally moving each unit from 

waypoint to waypoint minimizing both the time to arrival and the danger incurred along the 

route.  In the other path planning module, the CPPS controls sensor sweep operations, 

maximizing the efficiency of a search over a large area. 

In this chapter, we will describe an implementation of a TDT level controller which uses an 

ULTRA based approach to the MT-DWTA problem, as discussed previously.  Our discussion 

will include approaches for modifying the target selection problem to include position.  Among 

the approaches considered are the distance discount factor (DDF) and the variable time step 

linear movement approach. A receding horizon feedback implementation of the ULTRA based 

TDT controller will be presented where we will illustrate the mechanics of our model with and 

without feedback.  We will discuss RoE adherence, including command initiative, and its 

relation to sensor scheduling, ensuring that targets are correctly identified and targeted without 
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compromising the target selection model.  To protect friendly units, we will describe methods for 

countermeasure deployment, including RADAR jamming and decoy deployment.  

 

 

5.1 INCORPERATING MOVEMENT IN THE MT-DWTA MODEL 

 

Previously in this dissertation, we have discussed the MT-DWTA problem and a game theoretic 

algorithm which generates approximate solutions quickly.  Recall that in a MT-DWTA scenario, 

teams of units simultaneously target each other, with every unit having the capacity to target 

every other unit.  While a useful approximation in some scenarios such as ICBM warfare, in 

general a units position, speed and weapon range are vital characteristics that must be taken into 

account in any reasonable battle plan.  A TDT reasoner must be capable of considering such 

variables when calculating a potential strategy.  In this section we will consider two methods of 

incorporating distance into the MT-DWTA model, the distance discount factor and the variable 

time step linear movement approach. 

5.1.1 The Distance Discount Factor 
 

Position and vehicle speed must be considered when implementing an intelligent target 

assignment strategy.  If neither property is taken into consideration, a strategy will often assign 

units to targets that are far away; an inefficient strategy that incorporates unnecessary delay and 

risk in the overall battle plan.  Clearly, any intelligent target assignment strategy must regard 

closer targets as more desirable and more threatening than those farther away.  One method of 

introducing such an incentive is the distance discount factor [40,41].  Recall that MT-DWTA 

objective function given in (4.13).  These objective functions formed through linear 
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combinations of the probability of units/targets survival multiplied by the corresponding value of 

that unit.  By discounting the value of targets that are far away we increase the probability that a 

unit will be assigned to a target in its vicinity.  Such a method provides a natural incentive for 

units to attack less valuable but possibly dangerous targets on the way to more valuable 

objectives. 

To form a mathematical definition of the distance discount factor consider the following.  A 

single Blue UAV unit (B1) is attacking a group of three targets on the Red Team composed two 

Surface to Air Missile (SAM) sites represented by triangles (R2, R3) and a High Value Target 

HVT represented by a star (R1) as shown in Figure 5.2.  Assume that the 2 dimensional locations 

of the Red units are given by , ( )
1Rl k ( )

2Rl k  and ( )
3Rl k  at time where each k ( )

jRl k  is a two 

dimensional vector containing a longitudinal and latitudinal value for each unit j .  Likewise, the 

position of the Blue UAV is given by a similar vector, ( )
1Bl k .  Each of the Euclidean distances 

{ }1 2 3, ,d d d  shown in Figure 5.2 can then be defined as a function of the position of the Blue unit 

and the corresponding Red unit as follows: 

( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

1 1

1 2

1 3

1

2

3

,

,

,

B R

B R

B R

d k d l k l k

d k d l k l k

d k d l k l k

=

=

=

, 

where  is the Euclidean norm between the  Blue unit and the  Red 

unit at time .   

( ) ( )( ,
i jB Rd l k l k ) thi thj

k
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Figure 5.2 – Scenario Illustrating Distance Discount Factor 

 

Given these assumptions and definitions we can define a distance discount factor ζ  for the 

given Blue unit and each Red unit such that: 

( )
( ) ( )( ) ( ) ( )( ){ }1 1

, min ,
, exp jB R B Rx

R

d l k l k d l k l k
j k

c
ζ

⎛ ⎞−
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

x

)

,    (5.1) 

where ( ) ( )({ }1
min ,

xB Rx
d l k l k  is the distance between the Blue unit and the closest Red unit5 and 

 is an adjustable positive constant.  An example of the DDF for each Red unit is shown in 

Figure 5.3.  Applying the expression given in (5.1) to the MT-DWTA objective functions given 

in (4.13) we obtain the following modified objective function for the Blue team which 

incorporates the distance discount factor: 

c

                                                 
5 This value corresponds to in the scenario shown in Figure 5.2 2d
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B
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= − ∑ ,      (5.2) 

where ( ), B
jR rj kζ  is the reduced worth of the thj Red unit.   

 

 

Distance Discount Factor

1 

Figure 5.3 – Normalized DDF values for the Scenario Shown in Figure 5.2 
 

Now consider a second scenario in which multiple Blue units are engaged with multiple Red 

units.  Here the DDF definition given in (5.1) no longer holds as there exists a different distance 

between each of the Blue units and each of the Red units.  To accommodate we will redefine the 

distance discount factor according geographic centre of a team’s position6.  Given units on 

Team Blue and  units on Team Red, with individual unit positions 

BN

RN ( )
iBl k  and  for ( )

jRl k

                                                 
6 While here we defined the distance discount factor according to the geographic centre of a team’s position, it 
would have been possible to define the DDF for between each unit. Because of the combinatorial nature of the 
ULTRA game theoretic implementation, such an implementation is possible. However, due to the complexity 
involved a simpler form was implemented. 
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each Blue and Red unit respectively, then a median position for the Blue Team, ( )Bl k , and a 

median position for the Red Team, ( )Rl k , can be defined as follows, keeping in mind that each 

position term is a two dimensional vector containing both a latitude and a longitude term: 

( )
( )

( )
( )

1

1

B

i

R

i

N

B
i

B
B

N

R
j

R
R

l k
l k

N

l k
l k

N

=

=

=

=

∑

∑
 .         (5.3) 

This is illustrated in Figure 5.4.  Substituting this average position term into (5.1) yields the 

following expressions for the DDF from both the Blue and Red Team’s perspective: 

( )
( ) ( )( ) ( ) ( )( ){ }

( )
( ) ( )( ) ( ) ( )( ){ }

, min ,
, exp

, min ,
, exp

j x

i i

B R B Rx
R

B R B Rx
B

d l k l k d l k l k
j k

c

d l k l k d l k l k
j k

c

ζ

ζ

⎛ ⎞−
⎜ ⎟= −
⎜ ⎟
⎝ ⎠
⎛ ⎞−
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

    (5.4) 

Having an expression for both the Blue and Red Team’s DDF, the overall objective functions 

can then be expressed as: 

( ) ( ) ( )

( ) ( ) ( )

1 1

1 1

( ) ( )
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Figure 5.4 – Illustration of DDF with Team Centre 
 

 

5.1.2 Experiment VII 
 

To illustrate the effect of the DDF on a realistic scenario we will implement a MT-DWTA game 

theoretic approach to a scenario described in Figure 5.5 on the previously described Boing OEP.  

Here the Blue Team consists of a limited number of UAVs initially located at the Blue Base, 

labeled “Blue Area 3” in Figure 5.5.  Unlike the Blue Team, the Red Team under consideration 

is essentially stationary7, consisting a limited number of long range and medium range, surface-

to-air missiles (SAMs) and high value Transport Erect launchers8 (TEls) located in the area “Red 

Area 3”.  It should be noted that neither all the Blue nor all of the Red units present in Figure 5.5 

are considered in Experiment VII. This is because the experiment details a possible assignment 

                                                 
7 The Red Team is stationary relative to the speed of the Blue units and the size and duration of the conflict. In 
general some units such as Mobile SAMs can be moved, but not over the duration of the experiment. 
8 A Transport Erect Launcher is a vehicle that launches large surface to surface missiles, similar to SCUDs.  Because 
these weapons are often used against civilian populations it is important to neutralize them as soon as possible. 
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from the TCT reasoner, assigning the Blue units in Blue Area 3 to the Red units in Red Area 3. 

The strategic objective given by the TCT to the Blue force is to neutralize the Transport Erector 

Launchers (TELs), which are carrying SSMs, and the integrated air defenses (IADs)9 in Red area 

3.  

Red Area 0 Red Area 1 

Blue Area 1 

Red Area 3 
Red Area 2 

Blue Area 2 

Blue Area 3 

 

Figure 5.5 – OEP Scenario for Experiment VII 

 
 
 
Of Red’s units, the TELs are the most critical targets units as they bring most risk to the Blue 

base.   Secondary to the main objective, Blue must destroy the defending IADs including long 

range and medium range SAM sites.  A more detailed overview of the deployment of Red forces 

in Red Area 3 is shown in Figure 5.6 with a complete description including the initial equipment, 

                                                 
9 IADs or Integrated Air Defenses are networks of SAM and Radar units. 
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the number of units, the worth of units, the weapon types and quantities for each Red unit given 

in Table 5.1.   

 

TEL 2
Medium SAM site  30 TEL 1

TEL3
TEL 4

Red Area 3 

Long SAM site 14 
Medium SAM site  29 

Medium SAM site  28Medium SAM site  27

Figure 5.6 – OEP Detail of Red Area 3 

 
 
It should be noted that the Red Team’s SAM sites completely surround the TELs.  Though the 

Blue units are never explicitly forced to attack their secondary targets, the SAMs, first a failure 

to do so will result in high loss of units. 
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Table 5.1 – Details of Red Units Present in Red Area 3 

Red Unit 
(Red Area 3) 

Number of 
Unit 

(total=12) 

Worth of 
each unit 

Pkill 
Vs 

UAVs 
Weapon Type 

Weapon 
Quantity 
Per Unit 

Long Range SAM sites 
(1 sites) 4 10 .45 long_SAM 4 

Medium Range SAM 
sites 

(4 sites) 
4 7.5 

.4 
medium_SAM 8 

Transporter Erector 
Launchers  4 75 .35 SSM 4 

 

 

To accomplish these goals, the Blue Team has been allotted a total of 5 UAVs equipped as 

described in Table 5.2. 

 

Table 5.2 - Details of Blue Units Initially Located in Blue Area 3 

Blue UAVs in 
Team  

(assigned to 
Red Area 3) 

Number 
of Unit 

(total=5) 

Worth of 
each UAV 

 
Weapon Type 

Pkill 
vs 

Tels 

Pkill  
vs  

SAMs 

Weapon 
Quantity Per 

Unit 

Large Weapon 1 20 seeker missile .9 .7 20 
Small Weapon 2 20 seeker missile .9 .7 8 
Small Combo 2 20 seeker missile .9 .7 4 

 

To calculate the controls for the case when DDF is included and when it is not in Blue’s 

TDT reasoner we will use two separate MT-DWTA objective functions. The objective functions 

without DDF, i.e.,  and , are given in (4.13) and the objective functions 

with DDF are given in (5.5).   For each case, the TDT controller will calculate a two step Nash 

( , , )B R
BJ u u k ( , , )B R

RJ u u k
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equilibrium strategy, implementing the first step10.  Upon the completion of the first step, the 

TDT controller will repeat this process, calculating a two step Nash equilibrium strategy and 

again implementing only the first step.   

The Blue Team’s TDT calculated target assignment strategies11 for the first four battle steps 

are given in Table 5.3 for the case when DDF is not considered.   It is not surprising that all Blue 

UAVs have been assigned to the most critical targets, the TELs, instead of first neutralizing the 

defending SAM sites.  Looking at the worth of the Red Units in Table 5.1, we see that each TEL 

is significantly more valuable than the other Red units.  Consequently, any target assignment 

strategy that does not incorporate movement and location will naturally assume the greatest 

reward comes from targeting the most valuable targets.  Because the Blue Team ignores the 

SAM sites on their way to the primary targets all but one are destroyed during the first stage of 

battle.   In the following rounds, having passed through Reds defensive perimeter, Small Combo 

2 proceeds to select one TEL as its target until it is ultimately destroyed.  

 

Table 5.3 - Blue Target Assignment Strategies without DDF 

Target Assignments (Control Output) Blue UAV 1st step 2nd step 3rd step 4th step 
Large 

Weapon 1 TEL 4 No Target No Target No Target 

Small 
Weapon 1 TEL 3 No Target No Target No Target 

Small 
Weapon 2 TEL 2 No Target No Target No Target 

Small Combo 
1 TEL 1 No Target No Target No Target 

Small Combo 
2 TEL 4 TEL 3 TEL 2 No Target 

 

                                                 
10 This Moving Horizon implementation is explained in more detail in section 5.2. 
11 Only the Blue Teams controls are given as the OEP internally provides the Red teams controls, making them 
essentially unknowable. 
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The target assignment strategies for the first four battle steps when the DDF given by (5.4) is 

used to reduce the relative importance of targets that are farther away is given in Table 5.4.  Here 

we see that while Blue’s primary objective remains the same, the first target assignments are to 

destroy the SAM sites defending the parameter of the Red Team’s high value TELs.    Similarly, 

at the second round, the Blue Team continues to weaken the defending units.  In the third and 

fourth round, having neutralized the Red Teams IAD and having moved closer to the high value 

TELs, the surviving Blue units attack the primary target.  Here we see an instance in which the 

DDF provides a substantial strategic benefit over a case where position is not considered.   

 
Table 5.4 - Blue Target Assignment Strategies with DDF 

Target Assignments (Control Output) Blue UAV 1st step 2nd step 3rd step 4th step 5th step 

Large 
Weapon 1 

Medium SAM 
Site 27 

Long SAM 
site 14 

launcher 4 
TEL 3 TEL 3 

 

No 
Target 

 
Small 

Weapon 1 
Medium SAM 

Site 27 No Target No Target No Target No 
Target 

Small 
Weapon 2 

Medium SAM 
Site 27 

Long SAM 
site 14 

launcher 3 
TEL 4 TEL 2 No 

Target 

Small 
 Combo 1 

Medium SAM 
Site 27 No Target No Target No Target 

No 
Target 

 

Small  
Combo 2 

Long SAM 14 
launcher 4 

Long SAM 
site 14 

launcher 2 
TEL 4 TEL 1 TEL 3 
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To compare the strategic benefits of the DDF, snap shots of the final outcomes after five 

battle steps using DDF and after four battle steps without the DDF12 are shown in Figure 5.7 and 

Table 5.5.  Note that with DDF, four Long-SAM-14 launchers, one medium SAM site, and four 

TELs are destroyed.  In addition, one Blue UAV is preserved.  In contrast, when the TDT 

reasoner fails to incorporate any position or movement details, only two TELs are destroyed and 

all of the Blue Teams units are destroyed.  The partial outcome for the battle is given in Table 5.  

 
  

 
MSAM

TELs

Blue UAVs

LSAMs

Figure 5.7 – Outcome of the Experiment VII w/ DDF (left) and without 

 

Table 5.5 – Compilation of the Outcome of Battle in Red Area 3 

Initial Number of Units Without DDF With DDF 
4 long sam launchers 0 destroyed 4 destroyed 
4 medium sam sites 0 destroyed 1 destroyed 

4 TELs 2 destroyed 4 destroyed 
5 UAVs 0 preserved 1 preserved 

                                                 
12 The scenario in which the TDT reasoner does not incorporate the DDF cannot be evaluated over five battle steps 
because all the units on the Blue Team are destroyed at the end of the fourth round of targeting. 
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Another way to contrast the outcomes of the battle is to consider the worth’s of remaining Red 

and Blue Teams at the end of each battle step when DDF is incorporated in the objective 

function and when it is excluded.  Using (4.13) as a basis, the total worth of the Red and Blue 

force at time can be expressed as follows:  k

1
( ) ( )

BN
B

B i
i

W k b B k
=

= ∑ i

j

                                                

 for the Blue Team at round k  and      (5.6a)                           

1
( ) ( )

RN
R

R j
j

W k r R k
=

=∑  for the Red Team at round k,                                   (5.6b)        

where the worth values of units and  are obtained from the third column of Table 5.1 and 

Table 5.2, which are also used as weighting coefficients

B
ib R

ir

13 used in the objective functions (5.5).  

We should note that the worth of the Red and Blue teams does not include the DDF, but rather 

the overall worth of the team.   These results are shown in Figure 5.8 and Figure 5.9, illustrating 

the Blue and Red Team’s worth respectively as a function of time.   

 

 
13 These values are obtained from Boeing as a part of the OEP battle simulator. 
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Worth of Red Team Deployed in Red Area 3 

 

Figure 5.8 – Worth of Red Team as a Function of k w/ and w/o DDF 

 

 

Note that the worth of the Red Team is initially much higher than when the DDF is used as 

opposed to when it is ignored.  The Blue Team initially scores much lower with the DDF than 

without.  However, more Red units are destroyed as the battle progresses when DDF is 

employed.  When the DDF is not employed all of the Blue units are destroyed, leaving many Red 

units unaccounted for.  This confirms our initial assessment.  The TDT reasoner attacks less 

valuable but more dangerous targets because they are close when the DDF is incorporated in the 

objective functions.  This weakens the Red Team’s IAD at the early stages of battle, allowing 

more Blue units to survive and neutralize and the high value critical targets later in the battle.    

 

0 
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Worth of Blue Team assigned to Red Area 3
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Without DDF

Figure 5.9 – Worth of Blue Team as a Function of k w/ and w/o DDF 

 

Similarly, more Blue UAVs are preserved when using the feedback controller with DDF.  

The plots contained in Figure 5.8 and Figure 5.9 can be combined to form another measure 

of performance. Consider the net performance according to the Blue Team at battle step k: 

( ) (( ) ( ) (0) ( ) (0)B B R RNet k W k W W k W= − − − )

                                                

,      (5.7) 

Essentially the total worth of the Red units destroyed minus the total worth of the Blue units 

destroyed.  The net performance of the Blue Team is shown in Figure 5.10.     As we expected, 

the net performance of the Blue Team is lower in the early rounds when using the DDF as 

opposed to not using the DDF.  This performance is sufficiently negative for Team Blue that it 

can be said that the Blue team looses14 for a time.  We also see that because the Blue Team 

destroyed the Red IAD when the DDF was incorporated, the surviving Blue units are more able 

to destroy the Red high value targets. 

 
 

14 The Blue Team has a negative net performance value. This would correspond to the Red Team having a positive 
net performance value. Since the Red Team would therefore have a higher net performance value then the Blue 
Team, we can conclude that the Blue Team is in effect “loosing” the battle. 
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Net Performance for Blue Team
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Figure 5.10 – Net Performance for the Blue Team as a Function of k w/ and w/o DDF 

 

 

5.1.3 Variable Time Step Linear Movement Approach 
 

While we have shown that the DDF is an effective method for incorporating position into a 

MT-DWTA model, it is not without problems.  One significant problem arises when the units of 

a team are spread out over a large distance.  In this case the distance from the centre of all units 

to a particular enemy unit can vary vastly from the distance of a given unit.  For example, 

consider the scenario shown in Figure 5.11.  Here we see that Blue unit 3 is very close to Red 

unit 3, yet Red 3 would be regarded as the most distant by the DDF.  Also, we see that the Blue 

units are very similar in distance to the Red Team’s centre meaning Red would likely assign a 

DDF value near 1 for each of the Blue units.  The end result being that the Red Team’s units 

would be assigned as if there was no DDF. 

 

115 



 

 

B1 
R1 R2

Centre of Red

Min Dist

Figure 5.11 – Illustration of the DDF for Two Dispersed Teams 
 

Another problem that arises when considering the DDF is the effects of planning a strategy over 

multiple battle steps.  Clearly, the DDF is defined at step k , but it is difficult to determine what 

the DDF should be at step  and higher.  This effect becomes problematic when planning 

battles over multiple battle steps.  While the DDF has a significant advantage over a MT-DWTA 

implementation that does not consider the effect of position, it is not suited to be used as the sole 

representation of distance when incorporating position into the MT-DWTA model.  A valid 

implementation must not only be capable of properly penalizing targets that are far away, it must 

also predict where units will be after a given battle step.  

1k +

To solve these problems we introduce the Variable Time Step Linear Movement approach.  

This method incorporates position, speed and weapon range using a rudimentary path planning 

algorithm.  Consider a case where Team Blue, composed of units is attacking Team Red, 

composed of  units. We assume that each battle step is defined over a duration of time 

BN

RN ( )t k .  

Centre of Blue 
R3 

B3 B2 
Min Dist

R4
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Now say that the  unit on Team Blue located at thi ( )
iBl k  and having maximum velocity of 

 is assigned to target the ( )B iϖ thj unit of Team Red at the battle step, with the thk thj Red unit 

located at.  This targeting will be carried out with the  Blue unit’sthi thω  weapon having a range 

of ( )
iBρ ω .  Depending on these values, the  Blue unit will behave in one of three possible 

ways: 

thi

1. If , or the case where the  unit on Team Blue can reach 

its target in allotted time , then 

( ) ( )( ) ( ) ( ),
i jB R Bd l k l k i t kϖ≤ thi

( )t k ( ) ( )1
iB Rl k l k+ =

j
.  This is to say that if possible, the 

 unit on Team Blue will move to the location of the thi thj  unit at battle step .  Upon 

reaching this position, the  unit on Team Blue will launch its 

k

thi thω  weapon upon the thj  

unit of Team Red. 

2. If  ( ) ( ) ( ) ( )( ) ( ) ( ) ( ),
i j iB B R Bi t k d l k l k i t k Bϖ ϖ ρ< ≤ + ω , or the case where the  unit on 

Team Blue can not reach its target in allotted time, but can move to within weapon range 

of its target, then 

thi

( ) ( ) ( )
( ) ( )( ) ( ) ( )(1

,i

i j

B
B R

B R

i t k
l k l k l k

d l k l k

ϖ
+ = − )j iB .  In this case, the Blue 

unit will move in a direct line to its target at maximum speed for the entire duration of the 

battle step.  At the end of the battle step, the Blue unit will launch its thω  weapon at the 

thj  Red unit. 

3. If ( ) ( )( ) ( ) ( ) ( ),
i j iB R B Bd l k l k i t kϖ ρ ω> + , or the case where the  Blue unit cannot 

reach the 

thi

thj  unit on Team Red nor arrive within range of its thω  weapon over the 

duration of the  battle step, then thk ( ) ( ) ( )
( ) ( )( ) ( ) ( )( )1

,i j

i j

B
B R

B R

i t k
l k l k l k

d l k l k

ϖ
+ = −

iB .  Much 
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like the previous case, the Blue unit will move in a direct line to the thj unit on Team 

Red’s location at battle step k .  The difference being that at the end of the battle step, the 

Blue unit will not launch any weapons as it is not within the necessary range.   

 

Several facts should now be noted about the above variable time step linear movement 

approach.  A battle step is divided into two distinct stages, a beginning and an ending. Movement 

occurs at the beginning of a battle step while sensing, weapon launches and battle damage 

calculation occurs at the end of a battle step.  This has the curious effect of assuming that units 

launch weapons from their position at the end of a battle step and take damage from their 

position at the beginning of the same battle step.  This can create problems when dealing with 

pursuit and evasion type scenarios as the pursuer will target the evader’s previous location while 

the evader won’t see any benefit from running away.  However, when considering this is a TDT 

level reasoner, the variable time step linear movement approach does have an advantage with 

regards to solution stability. If a unit were to be able to change its current position, the action - 

reaction search would not function. Units would always move toward units that were not 

targeting them while moving away from units that did target them.  This would have the effect of 

moving units out of the range of targeting units.  The other side would behave similarly.  The net 

effect would be a continuous loop of unintelligent strategies that were solely a result of modeling 

errors.  We should also note that it is not practically to compare the DDF approach to the 

variable time step linear movement approach.  When calculating the performance of the ULTRA 

algorithm, 10,000 to 20,000 runs were needed before the results stabilized enough to validate our 

results. However, where ULTRA is fast, capable of calculating solutions in fractions of a second, 

the OEP is slow, taking as much as an hour for a single run.  
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5.2 VARIABLE DURATION RECEDING HORIZON IMPLEMENTATION 

 

We have previously defined the Nash equilibrium over two15 battle step while conflicts may last 

over many battle steps.  Recalling the earlier discussions on computational complexity, we have 

shown that it is not possible to consider possible target assignments for all units over every battle 

step due to the exponential relationship between computational complexity of the ULTRA 

algorithm and number of battle steps considered.  Another factor that must also be taken into 

consideration is that battle damage assessment (BDA) information may or may not be available.  

Any implementation must therefore be able to operate in a full feedback, partial feedback or 

open loop operation.  To satisfy these problems, we employ a variable duration receding horizon 

type implementation. 

 

5.2.1 Receding Horizon implementation 
 

To ensure reasonable computation times, we use a receding horizon implementation of a Nash 

equilibrium based TDT level reasoner.  Instead of calculating the target assignments over 

duration of the conflict, battle steps { }0,1, , K… , we calculate the target assignments for step k  

by finding a Nash equilibrium over the steps { }, 1k k +  as defined in the definition of the Nash 

equilibrium in chapter 4.  Having found a Nash equilibrium target assignment for the battle steps 

                                                 
15 The Nash equilibrium may be defined over more than two battle steps in a MT-DWTA problem. However, it 
requires at least two battle steps, as mentioned in chapter 4, or the objective functions for the involved teams can be 
separated into a sum of objective functions, each based solely on the control of a single team. 
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{ }, 1k k + ,  we then assign the results of the .  We then simulate the battle through the  

battle step

thk thk

16, discarding the target assignments for the (  battle step.  It should be noted 

that while the (  target assignment strategy is part of the Nash equilibrium when calculated 

from the  battle step, it becomes a static optimization after the target assignments have been 

declared for the  battle step.  Consequently, to insure a non-coupled and hence relevant Nash 

equilibrium target assignment strategy, the strategy for each step  must be calculated for the 

pair  and . To illustrate the receding horizon implementation employed in the TDT 

reasoner, consider the timing chart shown in Figure 5.12.   

)1 thk +

)1 thk +

thk

thk

k

k 1k +

   

 

 

k

( ) ( )1t k t k+ +  

( ) ( )1 2t k t k+ + +( )t k  

( ) ( )2 3t k t k+ + +( 1t k + )  

( 2t k )+

 1k +  2k + 1K −  K
    

Figure 5.12 – Timing Diagram for the Variable Receding Horizon Implementation 
 

 

 

                                                 
16 This battle simulation is carried out by the attrition model on board the ULTRA TDT controller rather than the 
OEP. 
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5.2.2 Feedback / Open- Loop Implementation 
 

BDA feedback is another important item that must be considered when implementing a TDT 

reasoner.  The reasoner must be capable of providing a set of tasks for each unit over the 

duration of the entire battle to insure unit activity in the case of communications failure.  The 

TDT reasoner must also be capable of intelligently updating these tasks when additional 

information, in the form of BDA and sensor reports, is available.  To accommodate this we use a 

state estimator based on the internal ULTRA TDT attrition model.  We illustrate this controller 

implementation in Figure 5.13.  

  

 

Figure 5.13 – MT-DWTA Feedback/Open-loop Implementation of a TDT Reasoner 
 

The status of each unit at each battle step is first estimated with the MT-DWTA simulator.  For 

example, if the  Blue unit is assigned to target the thi thj  Red unit with a weapon that has a 

probability of kill  at battle step , then we assume that the , .8B
i jp = k thj  Red unit is 20% alive at 
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MT-DWTA 
Calculated 

Blue Strategy Estimated Blue 
Damage 

Estimated Red 
Damage

MT-DWTA 
Calculated Red 

Strategy 

MT-DWTA 
Simulated 
Battlefield 

ULTRA Controller 

 
Estimated status 
of Red and Blue 

Units 

121 



 

the  step.  This is changed when additional information is available from the blue sensor 

data.  Say that a Blue unit then detects that the 

( )1 thk +

thj  Red unit has survived the attack.  The state 

estimation of the Red unit is then changed from 20% to 100% and its position is updated.   

 

 

5.2.3 Dynamic Battle Step Duration 
 

An important consideration when implementing a MT-DWTA type model is the duration of 

the individual battle steps, .  The duration of each battle step must balance the accuracy of 

the simulation versus the computational complexity of smaller battle steps.  Setting the duration 

of a battle step too long negates the effect of incorporating distance in the MT-DWTA model.  

As  increases, a unit assumes it can target farther and farther enemy units in a single battle 

step.  Setting the duration of a battle step too small creates a different problem, overwhelming 

computational complexity.  Recall that an individual unit i  on Team Blue can travel at a 

maximum velocity of  and each weapon 

( )t k

( )t k

( )B iϖ ω  has a maximum range of ( )
iBρ ω .  The 

minimum time to target (MTT) required for the  unit on Team Blue to move in range and 

target the 

thi

thj  unit on Team read can then be calculated as follows: 

( )
( ) ( )( ) ( )

( )
,

, i j iB R B

B
B

d l k l k
MTT i j

i

ρ ω

ϖ

−
= .      (5.8) 

Recall that the ULTRA algorithm can only change individual target assignments per iteration 

and only calculates the Nash equilibrium over two battle steps

F

17.  A units target selection strategy 

                                                 
17 As defined in this dissertation, in general this may be set to any arbitrary number provided the resulting 
computational complexity is not overwhelming. 
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can only be calculated over φ , where { }min , 2Fφ = .  We can then say that the ULTRA 

algorithm will never have an incentive for the  Blue unit to target the thi thj  Red unit at battle 

step k if the following inequality does not hold true: 

( ) (
1

,
k

B
k

)MTT i j t
φ

κ

κ
+ −

=

≤ ∑ .         (5.9) 

Defining the minimum MTT (MMTT) as the minimum time for a unit to target any unit on its 

adversary’s team as: 

 

( ) ( )(min ,B Bj
)MMTT i MTT i j=  for Team Blue and     (5.10a) 

( ) ( )(min ,R Ri
)MMTT i MTT i j=  for Team Red      (5.10a) 

implies that if , then the Blue unit will not have an incentive to target 

any unit.  If this Blue unit is not assigned an initial target, it will choose to sit out of the battle as 

it cannot reach any enemy units.  We can therefore say that at any battle step ,  

( ) ( )
1k

B
k

MMTT i t
φ

κ

κ
+ −

=

> ∑ thi

k

( ) ( ) { }

( ) ( ) { }

1

1

1, 2, , and

1,2, ,

k

B B
k

k

R R
k

MMTT i t i N

MMTT j t j N

φ

κ

φ

κ

κ

κ

+ −

=

+ −

=

≤ ∀ ∈

≤ ∀ ∈

∑

∑

…

…
     (5.11) 

provided that each unit on Team Blue,  i , and each unit on Team Red, , are mobilej 18.  As we 

assume that all weapons act instantaneously, the minimum time to target only accounts for the 

movement of a unit.  Looking at (5.11), it is clear that if ( )t k  is set too small, then a greater 

                                                 
18 Mobile is relative to the speed of other units. A foot soldier can be thought of as stationary relative to the speed of 
a UAV. Consequently, mobility should be determined by means of a threshold of maximum velocity rather than an 
absolute.  
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degree of freedom coefficient will be required by ULTRA before the given unit will be assigned 

any target, greatly increasing the overall computational complexity.   

The nature of an air conflict should also be taken into account.  Take a typical long range 

bombing run for example.  Here the bombers can fly for as much as 12 hours essentially towards 

their primary targets and as little as only a few seconds towards their secondary targets.  It does 

not make sense to evaluate the battle in uniform battle steps.  Intelligently determining ( )t k  can 

greatly improve the performance of the TDT reasoner.  To this end we propose a novel algorithm 

for determining ( ) ( ) ( ){ }, 1 ,t k t k t K+ … .  Assume that the conflict has reached battle step . 

Here, we place all of Team Reds units in a list.  We then assign 

k

( ) (max Bi
t k MMTT i= ) , or the 

maximum amount of time for any unit on the Blue team to target the closest unit on the list Red 

units19.  We also ensure that ( )min maxt t k K t≤ ≤ ,  were  and  are user specified values.  

After this we search through list of Red units and remove any units that a Blue Unit can target 

within .  To calculate , we repeat this operation on the reduced list.  This operation 

is thus repeated for all 

mint maxt

( )t k ( 1t k + )

{ }1, 2, ,k K∈ … . 

 This algorithm has several advantages and disadvantages.  Consider a scenario like that 

given in the OEP, where both Red’s and Blue’s units are spatially grouped in several small 

clusters.  Our approach has the tendency to force Blue units towards the closest cluster even if 

this is not optimal, especially if all Blue units travel at roughly the same speed.  However, it does 

work well when the Blue units are significantly heterogeneous.  In this case, only the slowest 

Blue unit is forced towards the closest Red unit. The faster Blue units then decide if it is 

worthwhile to attack the closest Red units or to avoid them and move towards other targets. 
                                                 
19 Note that we can exclude Team Red’s units from this calculation as in the OEP problem specified; all Red units 
are essentially stationary relative to the speed of the Blue UAVs. 
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5.3 ROE, SENSORS, COMMAND INITIATIVE AND COUNTERMEASURES 

 

For a TDT reasoner to be practical, it must be capable of more than effective target selection.  

Many other factors must also be considered.  Military conflict is intrinsically hazardous, both to 

the participants and to non-combatants.  While a great deal of emphasis is placed on neutralizing 

enemy forces, commanders must also minimize collateral damage and friendly fire.  For this 

reason military operations are governed by rules of engagement (ROE).  In the military air 

operation specified by the OEP, the ROE are relatively simple.  Essentially, no weapons may be 

fired without first confirming the identity of a target within a certain probability.  In our model, 

this is governed by a probability of identity ( )RpID j , and a location radius of uncertainly, 

.  These values represent the probability that the  Red unit has been correctly 

identified and the radius of uncertainty as to its current position.  To determine the appropriate 

RoE constraints, the commander inputs a minimum probability of identity

( )RlocErr j thj

minpID , and a 

minimum location radius of uncertainty .  Accordingly, if Blue unit  is assigned to 

target Red unit , our fire control module will not fire if  

. 

minlocErr i

j

( )( ) ( )( )( )min minR RpID j pID or locErr j locErr> >

Because of the necessity of both ROE adherence and the necessity to neutralize enemy 

forces, it is imperative to successfully employ sensors.  Sensors are also needed to assess the 

effectiveness of an attack, by conducting a Battle Damage Assessment (BDA). The problem of 

incorporating sensing into the MT-DWTA model is complicated because we assume that all 
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units are heterogeneous.  That is to say that the sensing abilities on all units are not uniform.  For 

example, a reconnaissance UAV may contain many sensors but very few if any weapons while a 

heavy attack UAV may contain many weapons but little to no sensing ability.  This prevents a 

simple approach, where UAVs are assigned to aim their sensors at units before and after they 

attack.  To incorporate sensing, we introduced additional objective function values.  In the 

standard MT-DWTA model each unit is assigned two objective function values, for example the 

worth of a Blue unit to Team Blue and the worth of that same unit to Team Red.  We extended 

this to add a three more terms, a benefit for identifying an enemy unit, a benefit for locating an 

enemy unit, and a benefit for conducting a BDA.  When a UAV targets an enemy unit that is 

either not identified, not located or has recently been targeted and has not yet undergone a BDA, 

the TDT reasoner schedules a sensor run for that battle step. 

The TDT reasoner also has other responsibilities in addition to its own task scheduling 

algorithms.  The reasoner must be a mixed initiative controller.  That is to say that a commander 

must be capable of controlling any aspect of the final mission plan.  If a commander wants a 

given UAV to target a certain target, then that targeting must be enforced regardless of its 

optimality.  The ULTRA algorithm was designed with mixed initiative control in mind.  Recall 

that it is a neighborhood search algorithm, finding more optimal strategies by changing 

individual target assignments.  All that is needed to incorporate a mixed initiative control is to 

allow a commander to fix certain target assignments.  In this way, an ULTRA based MT-DWTA 

implementation can provide a commander with an optimal target assignment strategy given a set 

of fixed target assignments. 

Finally, countermeasures are also an important part of a coherent strategy.  The intelligent 

use of radar jamming and decoys can provide a significant advantage to a team in terms of the 
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survivability of its units. In our TDT reasoner, we make use of a simple jamming and 

countermeasure strategy.  We assume that units will jam any unit they target.  To illustrate our 

implementation of the effect of jamming, consider the following situation.  If the unit on Team 

Blue is assigned to target the  unit on Team Red and the  Blue unit has jamming ability, 

then the effectiveness of the Red unit against the  Blue unit will be reduced.  This is to say 

that the probability of kill,  will be reduced by some number.  In our case, we arbitrarily 

reduced  by ½ 

thi

thj thi

thj thi

,
R
j ip

,
R
j ip 20.  Decoy controls are calculated in an equally simple manner.  If a unit 

possesses a decoy and we predict that it will be targeted by a Red unit, the TDT reasoner will 

launch a decoy at the attacking Red unit. 

 

 

5.3.1 Experiment VIII 
 

To illustrate the effectiveness of our countermeasure implementation, consider the following 

scenario.  Assume that the Blue Team is engaged with the Red Team in a conflict simulated by 

the Boeing OEP.  Here the Red Team is composed of 38 units of 7 types as given in Table 5.6 

while the Blue Team is composed of 11 units of 3 types as given in Table 5.7. 

 

                                                 
20 This number is selected arbitrarily to simulate some of the effect of jamming.  In general, this value would have to 
be generated empirically in the same manner as the probability of kill matrices. 
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Table 5.6 – Composition of Team Red for Experiment VIII 

 
10 10 Tanks 

10 1 Communication Vans 

10 5 Personnel Carriers 

10 4 SPARTY  

12 4 Mobile SAM Sites 

7.5 6 Medium Range SAM Sites (6 sites) 

10 8 Long Range SAM Sites (2 sites)  

Worth of each unit* 
(refer to Boeing OEP) 

#  in Unit 
(total=38) 

Red Unit  
(in Red Area 2) 

 

Table 5.7 – Composition of the Team Red for Experiment VIII 

 
20 

20 

20 

Worth of each UAV* 
( refer to Boeing OEP) 

5 4 Small Combo 

5 4 Small Weapon 

5 3 Large Weapon 

Decoys #  in Unit 
(total=11) 

Blue UAVs TEAM 1 
(assigned to Red Area 2) 

We define the probability of kill matrices to be the same as given in Experiment VII with the 

Blue units having the same level of effectiveness against Tanks, SPARTYs, APCs and Comm 

Vans as previously given to Tels.  Finally, the Red Team is assumed to be deployed as shown in 

Figure 5.14. 
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Red Area 

Long SAM13 

Medi m SAM25 
Medium SAM24

Ground Troop  
& M bil SAM  

Figure 5.14 – Deployment of Team Red in Experiment VIII 

 

 

In this experiment, we evaluated the performance of four separate countermeasure controls using 

the ULTRA MT-DWTA TDT reasoner; no countermeasures, jamming only, decoy only and a 

combination of jamming and decoy.  Due to the temporal constraints, each of these experiments 

was only run a single time on the Boeing OEP.  The results of this experiment are shown in 

Table 5.8.  Here we see that a countermeasure controller can greatly improve the overall 

performance of the TDT controller.  We should also note that even though the TDT reasoner 

performed worse when both jamming and decoy controls were employed than just decoy alone, 

this is not reflective of actual performance.  The OEP platform is dependent on Monte’ Carlo 

129 



 

type evaluations to determine weapon hits and misses.  As such, running the experiment with a 

different random seed can have a moderate effect on the overall result of the battle.  

 

 

Table 5.8 – Experiment VIII Results 

Unit Names Initial Forces No Jamming 
or Decoy 

Jamming 
Only 

Decoy 
Only 

Jamming 
and 

Decoy 
Mobile SAM Sites 4 4 1 1 3 

Ground Forces 20 17 16 14 13 
Large Weapon 3 0 2 2 2 

Medium Weapon 4 0 0 3 3 
Small Weapon 4 0 0 2 1 
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6.0 CONCLUSION 

 

 

Much of modern military thought is aimed at increasing the efficiency of current weapon 

systems and decreasing the risk to battle participants.  As a result, the control of unmanned 

vehicles continues to be a main emphasis of current military research.  One method of improving 

the performance of unmanned vehicles is with the use of automated controllers.  These 

controllers are designed to either replace or assist the commander in battle planning and the 

control of unmanned vehicles.  To accomplish this, controllers model the battle space, generate 

an objective function to metric a team’s performance and then employ an algorithm to optimize 

this objective.  Often in these models, the outcome of the battle is dependent on the strategy of 

more than a single decision maker.  Although significant, this coupling is typically ignored in 

favor of simple naïve controllers as it is not possible to incorporate such interdependencies in 

standard optimization techniques. These types of competitive problems are best handled through 

the use of Game Theory.  However, traditional game theoretic methods are often 

computationally intractable, even for scenarios with small numbers of units.   

In this dissertation, our starting point is the standard weapon target assignment problem in 

which a single team of units is to be assigned to a set of targets.  While such model is appropriate 

for scenarios such as ICBM warfare in which a target assignment strategy can be assumed 

independent of the possible actions of the enemy, it is not well suited for scenarios that include 

an adversarial force.  To more realistically model combat, we extended this model to account for 

multiple teams of units targeting other teams of units.  Here, combat is modeled with the 
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rationale that each team has certain information regarding its own and its adversary’s units.  Any 

intelligent team target assignment strategy must therefore aim not just to destroy that team’s 

enemy’s units, but also to preserve its own.  Thus, each team must take into account the possible 

target assignment strategies of its adversaries.  Game theoretic solution concepts, the Nash 

equilibrium in particular, have proven to be effective in solving these kinds of competitive 

problems.  Typically, the game theoretic problems are solved by constructing a game matrix, 

with each index containing all of the possible strategies of a single decision maker and each entry 

containing the objective function values for each team given the corresponding strategies.  We 

showed that this game matrix approach becomes computationally intractable, even for small 

instances of the MT-DWTA.  For the MT-DWTA to be an effective model for military conflicts, 

an algorithm is required to quickly find Nash or near Nash equilibrium strategies. 

To solve the MT-DWTA we first examine a simple case (SMT-DWTA), one in which a 

team knows its adversary’s target assignment strategies a priori.  Here because a team knows the 

target assignment strategies of its adversaries, the effects of these strategies can essentially be 

removed from that team’s objective function.  This allows the problem to be solved through 

more conventional optimization methods.  To allow for maximum flexibility for implementing 

features such as command initiative, we use a large scale neighborhood search algorithm which 

we denote ULTRA.  In a large scale neighborhood search algorithm (LSNS), an initial strategy is 

chosen.  A neighborhood of similar strategies is then formed around this initial strategy.  A 

LSNS algorithm then finds a strategy in this neighborhood that is better than the initial strategy.  

Having completed the first step, a new neighborhood is generated around the second strategy. 

This continues until a strategy is optimal in its own neighborhood.  In the case of ULTRA, we 

assume that this neighborhood contains all target assignment strategies differing from the initial 
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target assignment strategy by no more than  units, where is the degree of freedom 

coefficient.  Because ULTRA yields a near optimal solution, we performed a series of 

experiments to determine its performance under various conditions.  We found that the best 

strategy to initialize the ULTRA algorithm is the unit greedy strategy, in which each unit is 

assigned to its optimal target independent of the other units of its team.  Using this initial 

strategy, we show that the ULTRA algorithm will generate a target assignment strategy that is on 

average 95% optimal when .  We also show that in this case, the ULTRA algorithm will 

perform better than 90% optimal more than 90% of the time and will perform no worse than 

approximately 75% optimal for large numbers of units. 

F F

1F =

Using the ULTRA algorithm, we are then able to efficiently solve the MT-DWTA in a two 

team problem numerically using the standard action - reaction search.  This search algorithm 

functions by iteratively calculating the optimal reaction of one team to a target assignment 

strategy of a second team and then in turn calculates the optimal target assignment strategy of the 

second to that target assignment strategy of the first.  We assume that a Nash equilibrium is 

found when neither team changes their target assignment strategies.  This method has the distinct 

advantage in that it will converge even if there is no Nash equilibrium.  While not immediately 

apparent, we argue that this algorithm will converge to strategies that are near Nash equilibrium 

when the Nash equilibrium does not exist.  We defend this concept by expanding the definition 

of the Nash equilibrium.  To prove that our target assignment method generates viable strategies, 

we consider experimental cases in which teams employ strategies other than the Nash 

equilibrium.  We compare four different strategies, the unit random, unit greedy, team optimal 

and the Nash equilibrium. We demonstrate that while our method produces strategies that are not 

guaranteed to be optimal in the traditional sense, the Nash equilibrium yields objective function 
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values that are consistently higher than any other strategy considered, regardless of the strategy 

employed by the adversary.  This is significant as a non-optimal strategy that takes into account 

the adversary’s strategy has been shown to perform better than an optimal team target 

assignment strategy that does not take into account the possible target assignments of its 

adversary.  Furthermore, we show that this effect can be quite marked, depending on the nature 

of the scenario.  Cases where the units on each team are significantly heterogeneous while the 

overall effectiveness of the aforementioned teams is balanced yield the largest difference 

between the team optimal and Nash equilibrium target assignment strategies.  In contrast, 

unbalanced scenarios yield little to no difference between the Nash equilibrium and the team 

optimal approach. 

Having generated a game theoretic combat model and presented an algorithm capable of 

efficiently generating solutions, we put forward a design for the controller at the Team Dynamics 

and Tactics level of a mixed initiative battlefield management system called SHARED.  After 

introducing the hierarchy of control, we begin to examine what is needed to realistically model a 

battle using the MT-DWTA.  We first examine the issue of position and movement.  Because the 

MT-DWTA makes a basic assumption that all units are capable of targeting all other units at any 

battle step, it can produce target assignments that pay little heed to the temporal constraints 

incurred when a target is far away.  To compensate for this we introduce two methods.  The first 

method, denoted distance discount factor (DDF), operates by reducing the value of targets that 

are far away.  This provides an incentive for units to target adversarial units that are nearby and 

thus more accessible.  While this method is effective, creating better performing targets 

assignment strategies then the MT-DWTA alone, the DDF does have several drawbacks that 

leave it incomplete.  We then introduce a second method to solve some of these shortcomings 
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using a rudimentary path planning algorithm to account for position and movement.  We also 

present methods for generating battle step durations, creating battle plans with and without 

feedback, accounting for command initiative, abiding by rules of engagement, assigning sensors 

and deploying countermeasures. 

 

6.1 FUTURE WORK 

 
We have presented a complete model that is useful for designing military command 

controllers; however this subject is by no means complete.  While the ULTRA algorithm is fast, 

it too becomes computationally intractable for very large systems.  This is especially true of 

instances in which large numbers of heuristics are required to evaluate the objective function 

values, as in the case of a TDT controller.  Another problem lies in the uncertainty which 

permeates the entire model.  The probability of kills matrices are seldom known exactly, the 

worth of friendly units and enemy units are generally arbitrarily valued, the values that an enemy 

unit ascribes to the units are assumed and subject to error, there is no guarantee that the opponent 

is using the same model and the fog of war all contribute to an extremely high level of 

uncertainty.  While we did show that Nash equilibrium type strategies can show a considerable 

advantage over naïve approaches in our model, the implicit uncertainty in the model combined 

with errors between the model and reality could offset any such improvement.  As such, there is 

a large body of work to be done in this field. 

One promising approach to account for the uncertainty inherent in a conflict is through the 

use of ordinal games [42, 43].   Ordinal games are games that do not use payoff functions.  

Instead the objective information is represented through a preferential ranking of all possible 

outcomes.  Instead of commanders arbitrarily fixing objective function coefficients, a 
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commander would subjectively rank a series of outcomes. This may alleviate some of the 

uncertainty caused by a commander arbitrarily selecting objective function coefficients.  

However, certain obstacles must be overcome to make an ordinal approach feasible.  The largest 

drawback to an ordinal approach is that a commander must rank all possible outcomes, a 

substantial feasibility issue for MT-DWTA type problems.  One possible solution is to build an 

automated expert system that could be trained to coarsely approximate the opinion of a 

commander, greatly reducing the actual number of comparisons required of the commander. 

Another method that could be used to remove an amount of uncertainty in the model and 

reduce the overall computational complexity is to switch from a target assignment based control 

structure to a network flow based approach [44].  Networks provide a very powerful system of 

techniques for dealing with combinatorial optimization problems.  A network flow is a system of 

nodes connected by arcs with “flow” traveling from source nodes to sink nodes.  More powerful 

than linear programming, networks allow minimum and maximum flow constraints and separate 

cost per unit flow to be placed on arcs.  However, while some work has been done regarding 

network games [45], more work is required to intelligently model competitive teams of 

heterogeneous units with distinct capabilities and a common goal. 

In this dissertation, we have confined the application of the MT-DWTA to teams of UAVs 

and teams of ground based units.  This has been done to promote clarity of concept and does not 

infer any lack of generality of the MT-DWTA model.  One promising application of mixed 

initiative battlefield controllers is as a part of the United States military’s future combat system 

(FCS).  Instead of providing guidance to commanders planning military air campaigns, such 

controllers may prove to be an invaluable asset to infantry engaged in urban combat.  Using 

game theoretic techniques, it is hoped that an intelligent system will be capable of determining 
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probable ambush locations, suggest possible plans of attack, optimally re-supply troops and 

retrieve casualties with the optimal balance of speed and risk avoidance.  As there is no 

theoretical reason why the techniques for generating a MT-DWTA strategy discussed in this 

dissertation would not apply to ground rather than air based combat, another avenue of future 

research is to modify the TDT controller described in Chapter 5 to operate on a ground based 

combat environment.  With research being funded by groups such as the DARPA RAID project, 

automated battle planners should continue to be a major emphasis of research and development 

for years to come. 
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