
OPTIMIZING THE EFFICIENCY OF THE UNITED

STATES ORGAN ALLOCATION SYSTEM

THROUGH REGION REORGANIZATION

by

Nan Kong

BS, Tsinghua University, 1999

MEng, Cornell University, 2000

Submitted to the Graduate Faculty of

the School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2006

UNIVERSITY OF PITTSBURGH

SCHOOL OF ENGINEERING

This dissertation was presented

by

Nan Kong

It was defended on

November 18th 2005

and approved by

Andrew J. Schaefer, Assistant Professor, Departmental of Industrial Engineering

Brady Hunsaker, Assistant Professor, Department of Industrial Engineering

Prakash Mirchandani, Professor, Katz Graduate School of Business

Jayant Rajgopal, Associate Professor, Department of Industrial Engineering

Mark S. Roberts, Associate Professor, Department of Medicine

Dissertation Advisors: Andrew J. Schaefer, Assistant Professor, Departmental of Industrial

Engineering,

Brady Hunsaker, Assistant Professor, Department of Industrial Engineering

ii

ABSTRACT

OPTIMIZING THE EFFICIENCY OF THE UNITED STATES ORGAN

ALLOCATION SYSTEM THROUGH REGION REORGANIZATION

Nan Kong, PhD

University of Pittsburgh, 2006

Allocating organs for transplantation has been controversial in the United States for decades.

Two main allocation approaches developed in the past are (1) to allocate organs to patients

with higher priority at the same locale; (2) to allocate organs to patients with the greatest

medical need regardless of their locations. To balance these two allocation preferences,

the U.S. organ transplantation and allocation network has lately implemented a three-tier

hierarchical allocation system, dividing the U.S. into 11 regions, composed of 59 Organ

Procurement Organizations (OPOs). At present, a procured organ is offered first at the

local level, and then regionally and nationally. The purpose of allocating organs at the

regional level is to increase the likelihood that a donor-recipient match exists, compared to

the former allocation approach, and to increase the quality of the match, compared to the

latter approach. However, the question of which regional configuration is the most efficient

remains unanswered.

This dissertation develops several integer programming models to find the most efficient

set of regions. Unlike previous efforts, our model addresses efficient region design for the

entire hierarchical system given the existing allocation policy. To measure allocation effi-

ciency, we use the intra-regional transplant cardinality. Two estimates are developed in this

dissertation. One is a population-based estimate; the other is an estimate based on the

situation where there is only one waiting list nationwide. The latter estimate is a refinement

of the former one in that it captures the effect of national-level allocation and heterogeneity

iii

of clinical and demographic characteristics among donors and patients. To model national-

level allocation, we apply a modeling technique similar to spill-and-recapture in the airline

fleet assignment problem. A clinically based simulation model is used in this dissertation

to estimate several necessary parameters in the analytic model and to verify the optimal

regional configuration obtained from the analytic model.

The resulting optimal region design problem is a large-scale set-partitioning problem

in which there are too many columns to handle explicitly. Given this challenge, we adapt

branch and price in this dissertation. We develop a mixed-integer programming pricing

problem that is both theoretically and practically hard to solve. To alleviate this existing

computational difficulty, we apply geographic decomposition to solve many smaller-scale

pricing problems based on pre-specified subsets of OPOs instead of a big pricing problem.

When solving each smaller-scale pricing problem, we also generate multiple “promising”

regions that are not necessarily optimal to the pricing problem. In addition, we attempt to

develop more efficient solutions for the pricing problem by studying alternative formulations

and developing strong valid inequalities.

The computational studies in this dissertation use clinical data and show that (1) regional

reorganization is beneficial; (2) our branch-and-price application is effective in solving the

optimal region design problem.

Keywords: Integer Programming, Branch and Price, Column Generation, Set Partitioning,

Valid Inequality, Organ Transplantation and Allocation, Health Care Resource Alloca-

tion.

iv

TABLE OF CONTENTS

1.0 INTRODUCTION . 1

1.1 Current State of Organ Allocation in the U.S. 1

1.2 Current Liver Allocation System . 5

1.2.1 Membership . 5

1.2.2 Liver Allocation Process . 6

1.2.3 Problem Statement and Proposed Research Description 8

1.3 Contribution . 13

2.0 LITERATURE REVIEW . 15

2.1 Previous Research on Organ Transplantation and Allocation 15

2.1.1 Operations Research Literature . 16

2.1.2 Discrete-event Simulation Models . 18

2.1.3 Medical, Ethical, and Economic Literature 19

2.2 Integer Programming Applications in Health Care 21

2.2.1 Health Care Operations Management 22

2.2.2 Health Care Public Policy and Economic Analysis 23

2.2.3 Clinical Applications . 24

2.3 Branch and Price . 25

3.0 OPTIMIZING INTRA-REGIONAL TRANSPLANTATION THROUGH

EXPLICIT ENUMERATION OF REGIONS 34

3.1 Introduction . 34

3.2 A Set-Partitioning Formulation for Region Design 36

3.2.1 A Closed-Form Regional Benefit Estimation 37

v

3.2.2 Data Acquisition and Parameter Estimation 40

3.3 An Explicit Enumeration Approach to Region Design Solution 42

3.4 Incorporating Geographic Equity . 51

3.5 Deficiencies and Further Considerations . 62

4.0 OPTIMIZING INTRA-REGIONAL TRANSPLANTATION WITH TWO

MODEL REFINEMENTS THROUGH EXPLICIT ENUMERATION

OF REGIONS . 64

4.1 Critique of the First Model in Chapter 3 . 65

4.2 Refined Optimal Region Design Model . 67

4.3 Parameter Estimation for the Refined Model 72

4.3.1 Adaptation of a Clinically Based Simulation Model 73

4.3.2 Parameter Estimation . 74

4.4 Optimizing the Refined Model through Explicit Enumeration of Regions . . 79

4.5 Evaluating the Proposed Regions . 86

4.6 National-level Allocation Modeling . 88

4.6.1 Analogy between Region Design and Fleet Assignment 89

4.6.2 Estimating Spilled Cost and Recaptured Revenue 90

4.6.3 Estimating Spill and Recapture Likelihoods with the Simulation . . . 94

4.7 Summary of Assumptions . 95

5.0 A BRANCH-AND-PRICE APPROACH TO OPTIMAL REGION DE-

SIGN SOLUTION . 97

5.1 Adaptive Region Generation . 98

5.2 A Mixed-Integer Pricing Problem . 100

5.3 A Branch-and-Price Algorithmic Framework 106

5.4 Geographic Decomposition . 113

5.5 Branching on OPO pairs . 117

5.6 Implementation and Computational Experiments 119

5.6.1 Introduction to COIN/BCP . 120

5.6.2 Development of Our Branch-and-Price Application 120

5.6.3 Computational Results . 121

vi

6.0 IMPROVING THE SOLUTION OF THE PRICING PROBLEM . . . 137

6.1 Alternative Formulations . 138

6.2 Polyhedral Study . 144

6.2.1 Valid Inequality Class I . 144

6.2.1.1 Searching the Optimal Set Cardinality in a Special Case . . . 149

6.2.1.2 Cut Generation in the Branch-and-Bound Solution (Class I) . 153

6.2.2 Valid Inequality Class II . 154

6.2.2.1 A Pure Cutting-Plane Algorithm 159

6.2.2.2 Cut Generation in the Branch-and-Bound Solution (Class II) . 161

6.3 Computational Experiments . 163

6.3.1 Alternative Pricing Problem Formulation Comparison 163

6.3.2 Incorporating Valid Inequalities . 164

7.0 PROPORTIONAL ALLOCATION GENERALIZATION 168

7.1 Introduction . 168

7.1.1 Generic Set-Partitioning Formulation 169

7.1.2 Grouping Quantity Generalization . 169

7.1.3 An Alternative Interpretation of the Generalization 173

7.1.4 Organ Allocation as an Example . 173

7.1.5 1-Commodity Case . 174

7.2 Generalization of the Column Generation Approach 175

7.2.1 2-Commodity Grouping Case . 175

7.2.2 3-Commodity Grouping Case . 177

7.2.3 K-Commodity Grouping Case . 179

7.3 Generalization of a Class of Valid Inequalities 181

8.0 SUMMARY AND FUTURE RESEARCH 188

8.1 Summary . 188

8.2 Future Research . 190

8.2.1 Model Refinement and Extension . 190

8.2.2 Branch-and-Price Solution Improvement 193

8.2.3 Generalization . 195

vii

APPENDIX A. APPLICATIONS OF INTEGER PROGRAMMING COL-

UMN GENERATION . 197

APPENDIX B. A LIST OF ORGAN PROCUREMENT ORGANIZATIONS199

APPENDIX C. DETAILED DESCRIPTION OF THE BCP IMPLEMEN-

TATION . 202

APPENDIX D. COLUMN GENERATION EFFECT 207

APPENDIX E. COLUMN GENERATION EFFECT (CONTD.) 211

APPENDIX F. PRICING PROBLEM SOLUTION OPTION 215

APPENDIX G. STRENGTH OF CLASS I VALID INEQUALITY 222

APPENDIX H. A SPECIAL CASE OF RPP=(S): UNIMODALITY 226

BIBLIOGRAPHY . 228

viii

LIST OF TABLES

1 U.S. Liver Data between 1996 - 2004 . 2

2 Effect of Solution Space Reduction . 43

3 Connected Subgraph Enumeration . 44

4 Description of Data Sets Used in Computational Experiments 45

5 Relative Improvement on Intra-regional Transplant Cardinality 45

6 Discrepancy on Intra-regional Transplant Rate with Optimal Configuration . 51

7 The Value of ρc . 53

8 Relative Improvement on the Overall Objective 55

9 Reduction of Geographic Inequity when ρ = 103 62

10 OPO Service Areas with Population of Less than 9 Million 65

11 Difference in Clinical and Demographic Characteristics Pertaining to Liver

Transplantation . 66

12 Ratio of the Standard Deviation to the Average of Pure Distribution Likelihood 75

13 Improvement on Intra-regional Transplant Cardinality (max |r| = Maximum

Region Cardinality) . 80

14 Improvement on Intra-regional Transplant Cardinality (through Explicit Re-

gion Enumeration) . 86

15 Paired t Test: Optimal vs. Current (Linear) 88

16 Paired t Test: Optimal vs. Current (3rd-degree Polynomial) 89

17 Comparison between the Solutions through Branch and Price and Explicit

Region Enumeration . 123

18 Improvement on Intra-regional Transplant Cardinality (using Branch and Price)126

ix

19 Paired t Test: Branch and Price vs. Explicit Region Enumeration (Linear) . . 127

20 Paired t Test: Branch and Price vs. Explicit Region Enumeration (Polynomial) 127

21 Region Covers Design Characteristics . 129

22 Initialization Effect (Region Covers Design 20-12-1) 130

23 Column Generation Effect (20 covers and each cover with 12 OPOs) 132

24 Pricing Problem Solution Options: Design (20,12) 134

25 Rounding Heuristics: (p0 = 0.9) . 135

26 Rounding Heuristics: (p0 = 1.1) . 135

27 Comparison of the Four Equivalent Pricing Problem Formulations 164

28 Strength of Class I Valid Inequalities (RPP 0 0 2) 165

29 Strength of Class I Valid Inequalities (RPP 0 0 10; only consider CPU time) 166

30 Applications of Integer Programming Column Generation 198

31 A List of Organ Procurement Organizations 200

32 A List of Organ Procurement Organizations (Contd.) 201

33 Column Generation Effect (20 covers and each cover with 14 OPOs) 208

34 Column Generation Effect (20 covers and each cover with 10 OPOs) 208

35 Column Generation Effect (20 covers and each cover with 8 OPOs) 209

36 Column Generation Effect (30 covers and each cover with 10 OPOs) 209

37 Column Generation Effect (30 covers and each cover with 8 OPOs) 209

38 Column Generation Effect (25 covers and each cover with 12 OPOs) 210

39 Column Generation Effect (15 covers and each cover with 12 OPOs) 210

40 Pricing Problem Solution Options: Design (20,14) 216

41 Pricing Problem Solution Options: Design (20,10) 217

42 Pricing Problem Solution Options: Design (20,8) 218

43 Pricing Problem Solution Options: Design (30,10) 219

44 Pricing Problem Solution Options: Design (30,8) 220

45 Pricing Problem Solution Options: Design (25,12) 220

46 Pricing Problem Solution Options: Design (15,12) 221

47 Strength of Class I Valid Inequalities (RPP 0 0 2) 223

48 Strength of Class I Valid Inequalities (Contd.) (RPP 0 0 2) 224

x

49 Strength of Class I Valid Inequalities (RPP 0 0 10; only consider CPU time) 225

xi

LIST OF FIGURES

1 Organ Procurement Organization Service Areas 5

2 Current Regional Configuration . 7

3 Current Allocation Policy . 11

4 Primary non-function (PNF) vs. Cold-ischemia time (CIT) 41

5 Optimal Regional Configuration (PNF vs. CIT: Linear; The number of regions

is fixed to 11) . 47

6 Optimal Regional Configuration (PNF vs. CIT: 3rd-degree Polynomial; The

number of regions is fixed to 11) . 48

7 Optimal Regional Configuration (PNF vs. CIT: Linear; The number of regions

is unrestricted) . 49

8 Optimal Regional Configuration (PNF vs. CIT: 3rd-degree Polynomial; The

number of regions is unrestricted) . 50

9 Pareto Frontier – Geographic Equity vs. Allocation Efficiency (PNF vs. CIT:

Linear; The number of regions is fixed to 11) 56

10 Pareto Frontier – Geographic Equity vs. Allocation Efficiency (PNF vs. CIT:

3rd-degree Polynomial; The number of regions is fixed to 11) 57

11 Pareto Frontier – Geographic Equity vs. Allocation Efficiency (PNF vs. CIT:

Linear; The number of regions is unrestricted) 58

12 Pareto Frontier – Geographic Equity vs. Allocation Efficiency (PNF vs. CIT:

3rd-degree Polynomial; The number of regions is unrestricted) 59

13 Optimal Configuration vs. Current Configuration (The number of regions is

fixed to 11) . 60

xii

14 Optimal Configuration vs. Current Configuration (The number of regions is

unrestricted) . 61

15 Transplant Likelihood Matrix Distance (Simulation vs. Actual Data) 76

16 Statistical Analysis for the Rejection Probability Estimation 77

17 Statistical Analysis for the National Flow Likelihood Estimation 79

18 Optimal Regional Configuration (PNF vs. CIT: Linear; The maximum regional

cardinality is 7) . 82

19 Optimal Regional Configuration (PNF vs. CIT: 3rd-degree Polynomial; The

maximum regional cardinality is 7) . 83

20 Optimal Regional Configuration (PNF vs. CIT: Linear; The maximum regional

cardinality is 8) . 84

21 Optimal Regional Configuration (PNF vs. CIT: 3rd-degree Polynomial; The

maximum regional cardinality is 8) . 85

22 Branch-and-Bound Algorithm . 107

23 Illustration of Branch and Price . 108

24 Illustration of Geographic Decomposition . 114

25 Comparison of Branching on Variables and Branching on OPO Pairs 119

26 Optimal Regional Configuration Using Branch and Price 125

27 Optimal Regional Configuration Using Branch and Price (Contd.) 126

28 Column Generation Effect (20 covers and each cover with 12 OPOs) 133

29 Illustration of Unimodality (l0i = 1000, 500, and 300) 167

30 An Illustration of K-tuples Tδ and Ti . 170

31 Illustration of Proportional Allocation in K-grouping 171

32 Illustration of a Partial Grouping Process . 182

33 Column Generation Effect (20 covers and each cover with 14 OPOs) 211

34 Column Generation Effect (20 covers and each cover with 10 OPOs) 212

35 Column Generation Effect (20 covers and each cover with 8 OPOs) 212

36 Column Generation Effect (30 covers and each cover with 10 OPOs) 213

37 Column Generation Effect (30 covers and each cover with 8 OPOs) 213

38 Column Generation Effect (25 covers and each cover with 12 OPOs) 214

xiii

39 Column Generation Effect (15 covers and each cover with 12 OPOs) 214

40 Illustration of Unimodality (li0 = 200, 100, 50, 30, 20) 226

41 Illustration of Unimodality (li0 = 10, 5, 3, 2, 1) 227

xiv

To my wonderful parents, Yang Yi and Kong Qingwen

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor and mentor, Professor Andrew

Schaefer for directing my dissertation research as well as other studies in so many ways. No

words can describe how thankful to all he has done for me and how lucky I am to be able to

work with him. Without him, I would not be able to accomplish what I have accomplished.

I still vividly remember the first time we met during the new student orientation. Both of us

were new at Pitt. Throughout my five-year PhD studies, he has always been wholeheartedly

supporting me to steer through countless difficulties in all aspects of my life.

I would like to thank my co-advisor and mentor, Professor Brady Hunsaker for supporting

my dissertation research. He has spent an enormous amount of precious time with me

working through many challenges. He has taught me so much that I will benefit from

throughout my career. His intelligence and rigor has influenced me greatly in many ways.

I will cherish forever the time I have spent with both my advisors.

I would also like to thank my committee member, Professor Mark S. Roberts for his

valuable comments and enthusiasm throughout this research. I am also indebted to the

rest of my dissertation committee members, Professors Prakash Mirchandani and Jayant

Rajgopal for their valuable suggestions and insights. I would also like to thank Professor

Mainak Mazumdar for his guidance on my research and career. I truly enjoy our many deep

discussions. He has been a great personal friend of mine.

I am also grateful to my friends in the Computational Optimization Lab who mentally

and emotionally supported me throughout my research. Among them, special thanks to

Oguzhan Alagoz, Zhouyan Wang, Steven Shechter, and Jennifer Kreke for their valuable

insights and comments about my research. Many thanks also go to Mehmet Demirci for his

technical support.

I thank the wonderful staff of the Industrial Engineering Department, Lisa Bopp, Richard

Brown, Minerva Hubbard and Jim Segneff, for providing technical support throughout my

study.

xv

Finally, I am forever indebted to my wonderful parents Yang Yi and Kong Qingwen. I

would have never finished this dissertation without their endless love, encouragement and

unconditional support. I owe them too much!

xvi

1.0 INTRODUCTION

1.1 CURRENT STATE OF ORGAN ALLOCATION IN THE U.S.

According to the National Vital Statistics Report [86], end-stage liver disease (ESLD), i.e.,

chronic liver disease and cirrhosis, is the twelfth leading cause of death in the U.S., accounting

for nearly 30,000 deaths in 2003 alone. Unlike diseases caused by the failure or dysfunction

of some other organs for which patients can resort to alternative therapies, e.g, dialysis

for kidney patients, the only viable therapy for ESLD at present is liver transplantation.

Fortunately, patients at almost any stage of their liver disease receiving a liver transplant

can expect an 80% - 90% five-year survival [129, 197].

Unfortunately, liver transplantation is both costly and limited by the supply of viable

donor organs. The acute hospitalization cost alone has been estimated between $145,000

and $287,000 [83, 120, 179, 189, 192]. More importantly, the increased donation rate has

not kept pace with the demand from patients waiting for transplants (see Table 1). In the

last decade, we have seen the number of patients awaiting transplants doubled from nearly

8,500 at the end of 1996 to more than 17,800 at the end of 2004 whereas there was only a

slight increase regarding the number of yearly procured livers, from 4,522 in 1996 to 6,643.

We use liver transplantation and allocation as the specific example in this research. But

the transplantation and allocation of other types of organs that raises similar issues can also

be addressed using the discussed techniques.

A critical issue regarding liver transplantation and allocation is the efficiency of organ

sharing for cadaveric liver transplants, which constitute the majority of liver transplantation.

Because of poor matching, rejection by transplant centers, or allocation delays resulting in

1

the loss of organ viability, over 300 livers were disqualified for transplantation in 2003.

In addition, the quality of many transplanted livers were not good due to long transport

distance. This necessitates a more efficient allocation policy for organ sharing.

Table 1: U.S. Liver Data between 1996 - 2004 [203]

1996 1997 1998 1999 2000 2001 2002 2003 2004
Patient Waiting1 8,445 10,432 12,857 14,915 17,042 18,560 17,281 17,491 17,807
Patient Addition 8,055 8,618 9,534 10,518 10,750 10,740 9,327 10,041 10,640
Death 1,001 1,199 1,450 1,882 1,821 2,066 1,912 1,841 1,820
Donation2

All Donor Types 4,522 4,686 4,935 5,200 5,392 5,624 5,656 6,003 6,643
Deceased Donor 4,460 4,600 4,843 4,947 4,997 5,106 5,294 5,682 6,320
Living Donor 62 86 92 253 395 518 362 321 323

Transplantation
All Donor Types 4,082 4,186 4,516 4,750 4,989 5,188 5,331 5,671 6,169
Deceased Donor 4,020 4,100 4,424 4,497 4,594 4,670 4,969 5,350 5,846
Living Donor 62 86 92 253 395 518 362 321 323

Organ Wastage3 280 314 284 306 300 261 186 243 N/A
1. Waiting list registrations: a patient who is waiting at more than one transplant center would have
multiple registrations.
2. Recovered organs.
3. Non-used recovered organs: an organ, donated by a deceased donor, is not used for transplantation
before its viability is lost.

A computer-based organ matching system was implemented in the 1970s to increase

the efficiency of organ sharing. In 1984, the National Organ Transplantation Act (NOTA)

established the framework of a national system for organ transplantation, which later evolved

into the Organ Procurement and Transplantation Network (OPTN). Two years later, the

United Network for Organ Sharing (UNOS), a private, non-profit organization, received the

initial contract to operate OPTN. As part of the OPTN contract, UNOS has established

an organ sharing system that attempts to maximize the use of deceased organs through fair

and timely allocation; established a system for collection and analysis of data pertaining

to the patient waiting list, organ matching, and transplants; and provided information and

guidances to persons and organizations concerned with increasing the donation rate. Under

the current system, UNOS has implemented guidelines with which patients are given priority

for organ transplantation based first on their geographic location instead of their medical

need [88]. Once an organ becomes available, the system searches for a recipient within the

local geographic confine, allocating the organ to the patient who has the greatest medical

2

need. This organ will normally be sent to other regions only if no one in the original locale

accepts it. This system reflects the medical reality that organs remain viable only for a

limited amount of time prior to the transplants. Organ viability is commonly assessed by

the so-called “cold ischemia time,” i.e., the time interval between when the blood is stopped

to flow to the organ in the donor and when the blood flow is restored in the recipient.

Thus, it is generally not considered desirable to transport an organ of great distance due to

decreased organ viability. However, the most prominent criticism of the current system is

that the desired distribution to patients with greatest medical need has not been achieved

given the ischemic restraints [187].

With the advancement of medical technology, a plausible allocation system is advocated

by taking a more national perspective. Although the present organ preservation technology

does not ensure enough time to establish a true “national list” on which nationwide patients

are given priority truly based on their medical need, some do criticize the system for adhering

to the “local first” allocation policy, arguing that if the size of a local confine increases,

patients with greater need could receive organs without necessarily jeopardizing the organs’

viability. Since the enactment of NOTA, the Department of Health and Human Services

(DHHS) has exercised the federal oversight responsibilities that are assigned to it by NOTA.

In response to concerns expressed about possible inequalities in the existing system of organ

procurement and transplantation, DHHS has created new initiatives and published new

regulations that aim to ensure equity among patients based on medical urgency of patients,

not accidents of geography, in order to adjust the complex national organ allocation system

initiated in the 1970s. For example, on March 16, 2000, DHHS implemented the so-called

“Final Rule” [156], a comprehensive set of guidelines that would affect how organs are

allocated across the country.

Given the shortage of suitable organs, it is not surprising that organ allocation is a

controversial subject. Since the late 1990s a vigorous debate has been going on between the

federal government, which advocates a national system, and states that traditionally suffer

from loss of transplantable organs to other states, such as Louisiana, Wisconsin, Texas,

Arizona, Oklahoma, Tennessee, and South Carolina. These states have either sued the

federal government [204] or introduced legislation [1] in order to restrain the use of organs

3

outside their states. The debate over the organ allocation system became heated after the

publication, legislation, and enactment of the “Final Rule.” It reflects the ideological and

practical divide between the two key players, DHHS, and UNOS and its members, concerning

the procedure and criteria for allocating organs, as well as the procedure for reviewing the

organ allocation system. The root of the disagreement between UNOS and DHHS appears

to be how to address the scarcity of donated organs. Despite the hesitation and criticism

from both sides, a comprise was reached, i.e., the original Final Rule was amended, and

UNOS adopted “larger” geographic areas for allocating livers.

To summarize, the allocation of organs for transplantation is an increasingly contentious

issue in the U.S. and a major concern is allocation efficiency. Both UNOS and DHHS seek

the greatest survival rate for patients and the greatest utilization rate for organs used in

transplantation. Both of them try to increase organ donation, and attempt to limit costs to

health care providers and patients. However, their objectives may become quite disparate

at the operational level to which all above objectives are mutually related.

For liver allocation, the concern of allocation efficiency is based on the fact that the

advancement of organ preservation technology only partially supports the argument of people

who advocate the “national list.” The medically acceptable cold ischemia time (CIT) for

livers is 12 - 18 hours [158], which provides livers with the opportunity of being offered

nationally, in contrast with hearts or lungs, which must be transplanted immediately. On

the other hand, compared with kidneys whose medically acceptable cold ischemia time is

24 hours, a single “national list” certainly cannot guarantee the viability of donated livers.

A compromise between liver sharing locally and nationally is desired and reflected in the

current UNOS liver allocation system.

4

1.2 CURRENT LIVER ALLOCATION SYSTEM

1.2.1 Membership

Currently, every transplant hospital program, organ procurement organization, and histo-

compatibility laboratory in the U.S. is a UNOS member. Other UNOS members include:

voluntary health organizations, general public members, and medical professional and sci-

entific organizations. As of July, 2004, UNOS included 412 total members as follows: 258

transplant centers, 3 consortium members, 59 organ procurement organizations, 154 histo-

compatibility laboratories, 8 voluntary health organizations, 11 general public members, and

25 medical professional/scientific organizations [88] (note that several members are double

counted).

Figure 1: Organ Procurement Organization Service Areas as in 1997 [158]

Among these members, organ procurement organizations (OPOs) are the key component

in the allocation system, the following discussion thus focuses on their operation in the organ

allocation process (see Figure 1). OPOs are non-profit independent organizations authorized

by the federal government that serve as the vital link between the donor and recipient. The

current arrangement of 59 OPOs nationwide evolved gradually, reflecting improvements in

transplantation science, organ preservation, and other factors. Unlike early days when the

donor and recipient were often in the same building, OPOs attempt to match patients with

5

donated organs even if the procurement and transplant occur far apart geographically. Each

OPO is responsible for identifying donors and retrieving organs for transplantation in a

designated geographic area. The designated geographic area served by an OPO ranges in

size from part of a state, to a entire state, to multi-state areas covering part or all of several

states. OPOs are also in charge of preservation and distribution of organs for transplantation

within a reasonable time frame, as well as encouraging donation.

1.2.2 Liver Allocation Process

Once an organ of any kind is procured by an OPO, a complex allocation process starts with

the OPO seeking a recipient within the local area served by the OPO and then outside the

area. A sequence of matching efforts are made according to the current allocation policy

and based on medical and other criteria such as blood type, tissue type, size of the organ,

medical urgency of the patient, as well as time already spent on the waiting list, and distance

between the donor and patient. A computer program designed by UNOS ranks a list of

potential recipients with respect to medical urgency status and informs the procuring OPOs

accordingly. Each type of organ has a specific matching algorithm because of the difference

among organs in their cold ischemia time and donor-recipient compatibility requirements.

After obtaining the list of potential recipients, or candidates, the transplant coordinator

contacts the transplant surgeon caring for the top-ranked patient to offer the organ. If the

surgeon or the transplant center that conducts the transplant surgery declines the organ for

some clinical reasons or other considerations, then the surgeon caring for the next patient on

the list is contacted. Once the organ is accepted, its transportation arrangements are made

and the surgery is scheduled.

For livers, the list of candidates includes three segments: the local (or OPO), the regional,

and the national levels. To be specific, (1) at the local level, all matched “local” patients in

rank order by their medical urgency status; (2) at the regional level, all matched patients

outside the local area but within the area’s OPTN region in similar rank order; (3) at

the national level, all matched patients outside the region in rank order. This reflects the

three-tier hierarchy of the current liver allocation system introduced by UNOS that was

6

intended to facilitate organ sharing. At the regional level, the second tier of the hierarchy

in the organ allocation system, organs are matched with patients from other OPOs within

the same OPTN region. Intuitively, if the region is large, more organ-recipient matches are

likely to exist. However, an organ more likely needs to travel to a recipient OPO that is

far apart from the donor OPO. As a result, a longer cold ischemia time would occur and

the organ quality would further decay. On the other hand, if the region is small, the organ

quality is likely to be high since an organ is less likely to need to travel to a distant recipient

OPO. However, the recipient pool is small, and thus it may be less likely to find a donor-

recipient match. Therefore, the hierarchical system indicates the trade-off between organ

utilization and organ quality decay. Currently, the national UNOS membership is divided

into 11 geographic regions (see Figure 2).

Figure 2: Current Region Map [88]

Under the current UNOS allocation policy, adult patients are classified into groups ac-

cording to a point system designed by UNOS assessing medical urgency status. A simplified

classification of adult patients includes two groups: “Status 1” patients and “MELD” pa-

tients. Status 1 patients are defined to have fulminant liver failure with a life expectancy of

less than seven days [158]. They are assigned points based on their blood type compatibility

with the cadaveric liver and their waiting time. Two subgroups of Status 1 patients are

Status 1A and Status 1B. All other adult patients are assigned a “MELD” (Model for End-

7

Stage Liver Disease) score. MELD scores are integers ranging from 6 to 40, where higher

scores indicate more serious illness. MELD patients are ranked lexicographically by MELD

score, then blood type compatibility, and finally waiting time.

Livers will be offered to candidates with an assigned status of 1A and 1B in descend-

ing point sequence. Following Status 1, livers will be offered to candidates based upon

their MELD scores in descending point sequence. The current liver allocation algorithm is

presented as follows [88]:

1. Status 1A candidates at the local level in descending point order.

2. Status 1A candidates at the regional level in descending point order.

3. Status 1B candidates at the local level in descending point order.

4. Status 1B candidates at the regional level in descending point order.

5. Candidates with MELD scores ≥ 15 at the local level in descending point order.

6. Candidates with MELD scores ≥ 15 at the regional level in descending point order.

7. Candidates with MELD score < 15 at the local level in descending point order.

8. Candidates with MELD score < 15 at the regional level in descending point order.

9. Status 1A candidates at the national level in descending point order.

10. Status 1B candidates at the national level in descending point order.

11. All other candidates at the national level in descending point order.

1.2.3 Problem Statement and Proposed Research Description

In this section, we first summarize the current state of organ allocation in the U.S. and

describe our research problem. Then we will propose our research approach in the modeling

and solution aspects.

As we introduced earlier in this chapter, the allocation of organs for transplantation has

been a contentious issue in the United States for decades. One major concern is transplant

allocation efficiency. The ongoing debate focuses on what degree of organ sharing should

be allowed across geographic regions. As a result, two allocation approaches have been

developed in the past decades. One approach is to allocate organs to patients with the

greatest medical need regardless of their locations. The other one is to offer organs to patients

8

with higher priority at the same locale. There are biological reasons for using organs locally:

transplantable organs are perishable resources. Cold ischemia time reduces organ viability

and thus transplant success rate. To balance the two allocation approaches, UNOS uses

a three-tier hierarchical allocation system, dividing the U.S. into 11 regions, composed of

59 OPOs. The design of this hierarchy has a major effect on transplantation in the U.S.

Absent from the debate is the question of whether the current geographic organization of

the regions is optimal. This dissertation applies large-scale integer programming to

group OPOs into regions and find the most efficient set of regions.

This research concerns how to allocate and utilize organs in the most efficient way from

the system point of view. We believe that one way to accomplish this at the strategic planning

level is through designing geographic composition of service areas in the U.S. transplantation

and allocation system. The main idea is to balance the two main organ sharing approaches:

national sharing and local usage. Conceivably, as the allocation search area enlarges, the

likelihood that there exists a donor-recipient match increases. However, enlarging the search

area would increase the likelihood of a lower quality donor-recipient match as well. This is

due to the fact that it would incur more significant loss of organ viability after more likely

long-distance organ transport.

We use liver transplantation and the allocation of donated livers as the specific example

of this problem, but the transplantation and allocation of other types of organs raises similar

issues that will be addressed in the proposed research.

This research intends to increase organ utilization and decrease organ wastage by op-

timally grouping OPOs into regions. The direct impact of this research on the allocation

system is to close the gap between the numbers of transplants and donated organs. This

would also result in a patient profile change of the transplant waiting list so that patients

would have less waiting time and better organ offers. The indirect impact of this research is

to close the gap between the numbers of donated organs and patients awaiting transplants.

It provides a way in addition to increasing the awareness of organ donation because people

may be more willing to donate their organs if they know their organs would be used and not

wasted.

9

In this research, we present an integer programming modeling framework. Each decision

variable in the resulting integer programming models indicates whether the corresponding

potential region is chosen in the optimal set of regions. Our objective is to design a regional

configuration such that some outcome associated with allocation efficiency and/or equity

is maximized. We only address efficiency in the first model. As a result, the model is a

set-partitioning model with constraints restricting each OPO to be contained in exactly one

region in the optimal regional configuration. In the second model, we address both allocation

efficiency and geographic equity. Consequently, the model is a two-objective combinatorial

optimization problem with set-partitioning constraints as in the first model and one decision

variable modeling geographic equity. This dissertation focuses on the first model.

In our research, we need to estimate a specified outcome for each potential region regard-

ing allocation efficiency. Given a potential region, this specified outcome is the number of

transplants at the regional level where the organs are procured within the potential region.

Consequently, the outcome associated with geographic equity considered in this research is

defined as the likelihood that a transplant at the regional level would be received by a pa-

tient from a recipient OPO. Note that the integer programming framework presented in this

research is applicable to the region design problem considering many other system outcomes.

We simplify the current allocation policy by grouping Status 1A and Status 1B patients

as Status 1 patients and grouping all MELD patients together. This simplification can be

justified by the fact that the major difference among patients in terms of medical urgency

is between Status 1 patients and MELD patients. It should be noted that this simplified

version still maintains the three-tier hierarchy. The resulting six-phase allocation algorithm

is as follows and is shown in Figure 3.

Phase 1 Status 1 patients within the procuring OPO.

Phase 2 Status 1 patients within the procuring region.

Phase 3 MELD patients within the procuring OPO.

Phase 4 MELD patients within the procuring region.

Phase 5 Status 1 patients nationally.

Phase 6 MELD patients nationally.

10

Regional

National

St
at

us
 1

M
EL

D

Local (OPO)

1

2

3

4

5

6

Figure 3: Current Allocation Policy

The core of estimating this outcome is to estimate the likelihood that a candidate from

a recipient OPO would accept an organ from a donor OPO. To estimate the likelihood with

the societal perspective, we consider patients at each step of the allocation process as a whole

and introduce the notion of proportional allocation that simplifies the dynamic nature of the

system. In other words, we consider the measure of this outcome during a long run and in

the expected sense. Therefore, within the above simplified allocation policy, we do not rank

patients in descending point order at each phase of the allocation algorithm.

We develop two analytic estimates. In the first estimate, which is presented in Stahl et

al. [195], we use patient population to estimate the likelihood. In the second estimate, we

make two refinements to incorporate the national-level allocation impact on region design

and heterogeneity in donors’ and patients’ clinical and demographic characteristics. Since

the effect of national-level allocation depends on the regional configuration, it is impossible to

measure this effect in reality where the regional configuration is fixed. We adapt a clinically

based simulation model, LASM [188], that simulates the allocation process with real clinical

11

data from UNOS and several data sets. Using the simulation model, we can estimate the

impact of national-level allocation and estimate patient heterogeneity without the regional

effect.

Acknowledging the fact that the effect of national-level allocation may not be negligi-

ble, we incorporate spill-and-recapture techniques developed for the airline fleet assignment

problem. We also generalize the analysis to considering all levels of organ allocation.

To solve the two resulting integer programming models, our first approach is to solve the

models through explicit enumeration of potential regions. Each time a region is enumerated,

we need to estimate the associated benefit in the models analytically. Using this approach,

we solve the models with either analytic estimate described as above. With the first estimate,

we solve both models. Then we focus on the first model only addressing efficiency. Since

there are an enormous number of potential regions, enumerating all of them explicitly is

time-consuming. We adapt branch and price to generate columns dynamically if they are

necessary. We study several computational issues for the purpose of developing an efficient

branch-and-price solution for our problem. Various aspects in column generation are studied

and a specialized branching rule is also studied.

To develop an efficient solution, we also consider improving the solution of the mixed-

integer pricing problem. We study alternative formulations and develop two classes of valid

inequalities.

In our region design problem, we impose proportional allocation in the objective coeffi-

cient estimation. That is, organs are matched/grouped with patients based on the quantity

of an existing attribute. We generalize the notation of proportional allocation to multi-

ple commodity matching/grouping. We study the generalized objective coefficient estimate,

generalized column generation application, and generalized valid inequalities.

12

1.3 CONTRIBUTION

To the best of our knowledge, this research is the first one that considers facilitating organ

transplantation and allocation through optimally organizing geographic transplantation and

allocation service areas in the three-tier hierarchical allocation system. In this research, we

optimize the entire hierarchical system with the existing allocation policy.

In this dissertation, two major contributions are as follows. To design the optimal regional

configuration, we develop a modeling framework that, we believe, can assist policy makers in

refining the hierarchical system to facilitate organ sharing. To solve the resulting large-scale

integer program, we adapt branch and price. Our solution development provides insight into

algorithmic and computational issues regarding branch-and-price algorithms. It also shows

the potential of branch-and-price application in large-scale and complex health care delivery

systems.

The remainder of this dissertation is organized as follows: Chapter 2 first describes

many studies of organ transplantation and allocation in various aspects with emphasis on

operations research applications and simulation models, and the previous work related to

allocation region design. Chapter 2 then addresses some integer programming applications

in health care systems optimization and medical decision making. Chapter 2 also discusses

the literature related to column generation, and branch and price. Chapter 3 formulates

the integer programming models and presents the first objective coefficient estimate based

on patient population. Chapter 3 also discusses the solution of both models through ex-

plicit enumeration of regions. Chapter 4 refines the first objective coefficient estimate with

incorporation of the effect of national-level allocation and heterogeneity in patients’ clinical

and demographic characteristics. Chapter 4 also describes our adaptation of the simulation

model, estimation of parameters required in the analytic estimate, and validation of the

solution using the simulation model. Chapter 5 presents the branch-and-price application to

the regional design problem and discusses several inherent computational issues. Chapter 6

presents a few approaches to improve the pricing problem solution in the branch-and-price

application. Chapter 7 considers a generalization of the proportional allocation scheme in

13

several aspects including the objective coefficient estimation, the pricing problem construc-

tion, and the pricing problem solution improvement. Chapter 8 summarizes the conclusions

drawn in the previous chapters and gives possible future research directions.

14

2.0 LITERATURE REVIEW

In this chapter, we review the literature related to our study. In Section 2.1, we survey

studies regarding organ transplantation and allocation in various fields. The emphasis of

this section is those studies closely related to operations research. In Section 2.2, we describe

some integer programming applications to decision making in health care system planning

and management. In Section 2.3, we first briefly introduce branch and price with an emphasis

on column generation. We then summarize some computational considerations in branch and

price, particularly in column generation. We also list some applications of branch and price

(and more generally, integer programming column generation).

2.1 PREVIOUS RESEARCH ON ORGAN TRANSPLANTATION AND

ALLOCATION

In this section, we review previous work dealing with various issues arising in organ trans-

plantation and allocation. Due to its importance, organ transplantation and allocation has

drawn attention from a wide spectrum of research fields. In Section 2.1.1 we describe many

studies in the operations research literature that use a variety of OR tools to address many

problems with various scales and at different levels of the allocation system. In Section

2.1.2 we describe several simulation models of the liver allocation system and discuss their

contributions in developing organ allocation policies. In Section 2.1.3 we survey a number

of studies regarding medical, ethical, and economical issues related to organ transplantation

and allocation. We do not intend to present an exhaustive list here. Our objective is rather

to emphasize the vast research interest on organ transplantation and allocation.

15

2.1.1 Operations Research Literature

The application of operations research techniques to problems arising in organ transplanta-

tion and allocation started in the 1980s. The operations research literature includes several

studies that address various aspects of organ transplantation and allocation. In the last two

decades, the majority of the studies address donor-recipient matching for transplantation

to optimize some kind of conceptual matching reward or existing quantifiable metric. The

focus of these studies can be classified into two categories: those that consider the potential

recipient’s perspective in accepting or rejecting an organ offer, and those that consider the

centralized decision maker’s perspective, seeking global optimal strategies of allocating mul-

tiple organs to a set of candidates. For a comprehensive literature review of O.R. applications

in organ transplantation and allocation, we refer to Alagoz et al. [10].

One of the first papers modeling the recipient’s perspective is David and Yechiali [58],

who considered when a patient should accept or reject a liver for transplant. The authors first

assumed that organs arrive at fixed time intervals and provided a time-dependent control-

limit optimal policy. They then considered the case where the organ arrival is a renewal

process and assumed that patient health is always deteriorating. One shortcoming in this

paper is that the authors did not consider the actual matching criteria. In more recent stud-

ies that combined analytical and empirical research, Ahn and Hornberger [5] and Hornberger

and Ahn [111] developed a Markov decision process (MDP) model to design kidney accep-

tance policies for potential recipients that explicitly incorporate patient preference. They

demonstrated that some patients can afford to be selective when making transplant decisions.

Most recently, Alagoz et al. [7] developed a MDP model to design optimal control-limit liver

acceptance policies for living-donor transplantation based on abundant clinical data. The

empirical study in [9] applied the MELD scoring system and laboratory values to estimate

the progression of ESLD. Similar MDP models were developed in Alagoz [6] and Alagoz

et al. [8] to address the transplant timing issue for cadaveric donors. The former model

considers a waiting list whose full description is assumed to be available, whereas the latter

one considers an implicit waiting list. For an introduction to MDPs, we refer to Puterman

[168].

16

Most of the previous work modeling the centralized decision marker’s perspective consid-

ers multiple recipient candidates and organ offers given the stochastic nature of their arrivals

and status. Compared to the above single candidate case, this case treats many candidates

competing for the offers. It is more desirable and brings the analysis closer to reality. Righter

[176] formulated the problem as a stochastic sequential assignment problem [64] and devel-

oped properties of the optimal policy. David and Yechiali [59] studied one version of the

problem in infinite horizon and with simultaneous arrivals of candidates and offers. David

and Yechiali [60] considered another version of the problem where the offers arrive randomly.

They studied several cases with various assumptions on the problem parameters and derived

optimal matching policies that maximize the total (discount) reward.

It is well known that the conflict between efficiency and equity is at the root of the

allocation system and a trade-off has to be made due to the scarcity of organ supply. To

gain a better understanding of this trade-off, several researchers have attempted to address

it empirically or analytically. Zenios et al. [224] developed a Monte Carlo simulation model

to compare four alternative kidney allocation policies, accommodating the dynamics of re-

cipient and donor characteristics, patient and graft survival rates, and the quality of life.

The model simulated the operations of a single OPO and attempted to predict the evolution

of the waiting list in 10 years. The authors concluded that evidence-based organ allocation

strategies in cadaveric kidney transplantation would yield improved efficiency and equity

measures compared with the point system currently utilized by UNOS. However, the au-

thors limited the matching in the service area of a single OPO. Clearly the impact of organ

distribution to other OPOs and organ supply from other OPOs is not negligible, especially

in the currently existing liver allocation system. Zenios et al. [223] considered the kidney

allocation system more analytically. They used a fluid model to represent the organ alloca-

tion problem and formulated an objective function that captures both efficiency and equity

criteria. To maximize the objective, they developed a heuristic dynamic index policy. The

authors also used a simulation model to compare the developed policies with the existing

policy.

More recently, Su and Zenios [198] considered the cases where candidates do and do not

have autonomy — the right to refuse a kidney in anticipation of a superior future kidney.

17

For the case where candidates are non-autonomous, they represented the kidney allocation

problem as a sequential stochastic assignment problem. Each candidate is of his own type

that is determined with a snapshot of the waiting list. Kidney types are random and revealed

upon arrival. The reward from allocating a kidney to a particular candidate depends on both

their types. The objective is to allocate kidneys to candidates so that the total expected

reward is maximized. The authors focused on partition policies in which the spaces of

kidney and candidate types are divided into domains and a subset of kidneys in a particular

kidney domain is assigned with a subset of candidates in a matched candidate domain. The

authors also showed that the optimal partition policy performs poorly when candidates are

autonomous. Numerical studies were presented for both cases. There are several unrealistic

aspects in their model: first, the authors assumed that the number of kidneys are the same as

that of candidates, although it is well known that available transplantable organs are scarce

goods. Second, the authors in their model did not incorporate patient ranking in the waiting

list, which has been a basic criterion in the current UNOS matching algorithm. Third,

the authors derived an incentive compatibility condition to model candidate autonomy and

verified it indirectly by only checking the implications of the condition on partition policies,

obtained from the cases where candidate autonomy is not allowed. Unfortunately, this

condition may not actually be satisfied by most transplant candidates.

2.1.2 Discrete-event Simulation Models

Several researchers have attempted to clarify the existing issues in the organ transplantation

and allocation system by developing discrete-event simulation models that compare different

allocation policies. UNOS and Pritsker Corporation developed the UNOS Liver Allocation

Model (ULAM) that considers the patient listing process, organ availability, and UNOS

matching criteria [166, 167]. The primal goal of the model is to evaluate the effects of

creating a national waiting list. The CONSAD Research Corporation developed a simulation

model that assumes all patients are registered in the national waiting list [172]. The model

considers the progression of patient liver disease, including possible death while awaiting

transplants. It allows policy makers to project the impact of relevant important issues on

18

organ donation, organ allocation policy, geographic distribution of organs, and transplant

center proficiency. Recently, Shechter et al. [188] developed a clinically based discrete-event

simulation model, the Liver Allocation Simulation Model (LASM), to provide insight into

the effects of various organ allocation schemes on outcomes in liver transplantation. This

simulation was also intended to capture the regional effect in organ allocation by modeling

the currently effective UNOS liver matching algorithm and comparing outcomes with respect

to various potential regional configurations.

2.1.3 Medical, Ethical, and Economic Literature

Liver allocation is a complex process in which many factors may influence the outcomes

of transplants in different aspects. Along with transplantation technology advances, many

medical researchers have put enormous effort in detecting and understanding these factors

and in controlling them to increase organ allocation efficiency. These efforts provided guid-

ance for development and improvement of the current liver allocation system. We shall first

survey the literature on the effects of several factors, including donor-recipient blood type

similarity, cold ischemia time, and others.

It is evident that blood type matching plays a central role in the current UNOS allocation

system. Gordon et al. [102] reviewed liver allografts in 520 patients to determine the effect of

donor-recipient mismatch or incompatibility between different blood groups on graft survival.

They recommended that nonidentical or incompatible grafts be limited to some groups of

patients. English et al. [81] found that potential group O recipients waited significantly

longer than other groups for transplantation. AB, the group with the shortest waiting time,

however, was receiving mismatched grafts with the highest probability. de Meester et al. [61]

studied various blood type matching policies for highly urgent liver patients to determine the

effect of donor-recipient mismatch and showed that a restricted ABO-compatible matching

policy described those patients the highest probability of acquiring a liver transplant in

the Eurotransplant liver program. Bjoro et al. [30] observed that patients receiving ABO-

identical donor livers had significantly higher patient survival rates compared with those

receiving ABO-compatible donor livers.

19

Much of the debate on allocation preference indicates that cold-ischemia time and graft

transport distance are critical to outcomes in liver transplantation. With a logistic regression

model, Furukawa et al. [92] observed that the retransplantation rate and primary nonfunc-

tion rate rose significantly as the cold-ischemia time increased. Stahl et al. [196] drew a

similar conclusion through a meta-analytic review. Researchers have attempted to develop

new solutions to extend medically acceptable cold ischemia time. Adam et al. [3] studied the

use of the UW solution in liver transplantation. Their findings suggested that cold-ischemia

time in the UW solution for longer than 12 hours is a risk factor for graft function and patient

survival. Piratvisuth et al. [162] and Totsuka et al. [200] concluded that cold-ischemia time

is an important determinant of outcomes after liver transplantation. Totsuka et al. [200]

further recommended that long-distance graft transportation be avoided.

Nair et al. [152] and Yoo and Thuluvath [220] studied the impact of race and socioeco-

nomic status on liver transplantation. They reported that race is an independent predictor

of short- and long-term survival after liver transplantation. They also showed that socioeco-

nomic status (e.g., income, education, and insurance) may be associated with survival. The

empirical studies with respect to donor factors include Oh et al. [157] on donor age, Zeier

et al. [222] on donor gender, Zipfel et al. [225] on donor health status, and Yasutomi et al.

[219] on the size of donor livers.

As alluded earlier, not different from the allocation system of any scarce and/or expen-

sive health resource, conflicting issues, such as efficiency and equity, emerge in the liver

allocation system. Empirical evidence appeared in Rosen et al. [178] who observed that

liver transplant survival rates fell with advancing levels of urgency, resulting in a conflict

between efficiency and equity in organ allocation. Medical researchers, particularly health

economists, are interested in prioritizing these issues in the system. It is both an ethical

dilemma [36] and an economic dilemma [15]. Ubel and Loewenstein [201, 202] surveyed pub-

lic attitudes toward the trade-off between efficiency and equity. Koch [123, 126] provided

a comprehensive discussion on the ethical and economic considerations regarding organ al-

location and transplantation in the current system. The same author stated a preliminary

attempt to resolve the dilemma at the national level by the use of Geographic Information

System (GIS) tools [124]. In the paper, the author emphasized one factor that affects the

20

outcomes, the loss of organ viability. He sought better routing for the distribution of organs,

especially organs procured from remote areas. All his arguments are summarized in [125].

2.2 INTEGER PROGRAMMING APPLICATIONS IN HEALTH CARE

This section describes a few integer programming applications in health care. It is not meant

to be an inclusive survey but rather to bring attention to integer programming applications

in many areas in health care. Operations research techniques, tools, and theories have long

been applied to a wide range of issues and problems in health care. Brandeau et al. [35]

offered a vast collection of OR applications in health care, with particular emphasis on health

care delivery. This section will largely follow the perspective and treatment presented in [35]

on OR applications in health care.

In both rich and poor nations, public resources for health care are inadequate to meet

demand. Policy makers and health care providers must determine how to provide the most

effective health care to citizens using the limited resources that are available. Therefore,

policy makers need effective methods for planning, prioritization, and decision making, as

well as effective methods for management and improvement of health care systems [35]. The

planning and management decisions faced by health care policy makers are grouped into two

broad areas: health care planning and organizing, and health care delivery. The goals of

decision making in these two areas are the same although the problems arising in the two

areas may be of different natures. Good planning and organizing today is for good delivery

tomorrow. Three main areas of applications are: (1) health care operations management,

(2) public policy and economic analysis, and (3) clinical applications.

Integer programming has been well known for its application to planning, organizing, and

delivery. It has also been well known for its application to management and improvement

of systems in various sectors. This is no exception in the health care domain. Integer

programming applications can be found in all three application areas listed above.

21

2.2.1 Health Care Operations Management

In health care operations management, the majority of work has been done in locating health

care facilities. Daskin and Dean [55] reviewed various models for health care facility location

and surveyed their applications in various problems. There has been a great deal of research

on basic location models including the set covering model, the maximal covering model,

and the p-median model [54, 91, 103, 142]. The extensions of these three basic models plus

two others (the p-center problem and the uncapacitated fixed charge model) in health care

location research can be classified into three categories: accessibility models, adaptability

models, and availability models [55].

Accessibility means the ability of patients or clients to reach the health care facility, or

in some cases, the ability of the health care providers to reach patients. Accessibility models

normally tend to take a snapshot of the system and plan for those conditions. As such, they

are static models. For example, Eaton et al. [76] used the maximal covering model to assist

planners in selecting permanent bases for their emergency medical service. Jacobs et al. [115]

used a capacitated p-median model to optimize collection, testing and distribution of blood

products in Virginia and North Carolina. Other applications include Mehrez et al. [148]

and Sinuany-Stern et al. [190] for locating hospitals, McAleer and Naqvi [147] for relocating

ambulance, and Price and Turcotte [165] for locating a blood donor clinic. Adaptability

models are those considering future uncertainty on the conditions under which a system will

operate. As such, they tend to take a long-term view of the system. Carson and Batta

[41] considered the problem of locating an ambulance on university campus in response to

changing daily conditions. ReVelle et al. [173] proposed a number of variants of a conditional

covering model under emergency circumstances (e.g., an earthquake). Availability models

focus on the short-term balance between the ever-changing service supply and demand. Such

models are most applicable to emergency service systems. Several studies have presented

simple, but somewhat crude, deterministic models. The Hierarchical Objective Set Covering

[57] model first minimizes the number of facilities needed to cover all demand nodes. Then, it

selects the solution that maximizes the system-wide multiple coverage from all the alternate

optima to this problem. Work along this line can be found in Benedict [26], Eaton et al.

22

[77], and Hogan and ReVelle [109]. Other deterministic models include those developed

by Gendreau et al. [97], Narashimhan et al. [153], and Pirkul and Schilling [163]. Two

probabilistic approaches have been developed as well. The first approach is based on queueing

theory [34, 75, 85, 133] while the second is based on Bernoulli trials [53, 171].

Another interesting application of the location set covering model in health care is re-

ported in Laporte et al. [132] in which the authors determined the minimum number of

fields of view (FOV) needed to read a cytological sample (PAP test).

Daskin and Dean [55] projected that a potentially fertile area for future work would be

to apply adaptivity, reliability, and robustness modeling approaches to address uncertain

future conditions of the system.

Integer programming has been applied intensively in health care supply chain manage-

ment. Many models used in other supply chains can also be found in health care systems,

such as transportation-allocation [159] and delivery vehicle routing. Pierskalla [161] discussed

many issues concerning supply chain management of blood banks.

2.2.2 Health Care Public Policy and Economic Analysis

There have not been many integer programming applications addressing public policy and

economic issues in health care. This is due to the scale of existing problems in this area

as well as the perspective taken to address these problems. Jacobson et al. [117] reported

a pilot study that introduces an integer programming model to capture the first 12 years

of the childhood immunization schedule for immunization against any subset of childhood

diseases. In their integer programming model, the objective (cost) function includes the costs

of purchasing vaccines, clinic visits, vaccine preparation by medical staff, and administering

an injection. The constraints satisfy the recommended childhood immunization schedule and

several assumptions [186]. Hence, the model determines the lowest overall cost that satisfies

all the constraints. The integer programming approach was developed to support the needs of

various conventional vaccine purchasers. Jacobson et al. [117] believed that information from

the integer programming model would be of significant value to guide investment decisions

by vaccine manufacturers, and hence avoid large research and development expenditure that

23

may not be recouped. Sewell and Jacobson [185] applied reverse engineering to determine

the maximum price at which different combination vaccines provide an overall economic

advantage, and hence belong in a lowest overall cost formulary. An extension of the integer

programming model described above can be found in Jacobson and Sewell [116].

2.2.3 Clinical Applications

Most of the integer programming applications in clinical decision making focus on treatment

planning. It has been observed that although with medical technology advances, modern

treatment facilities have gained the capability to treat patients with extremely complicated

plans, designing plans, particularly on-line treatment plans, that take full advantage of

the capability, is tedious [110]. Although optimization techniques have been suggested for

decades, the vast majority of treatment plans in actual clinical practice are designed by

clinicians through trial-and-error. There is a need for applying optimization techniques in

clinical decision making.

Recently, several researchers have focused on intensity modulated radiotherapy treatment

(IMRT). IMRT design is the process of choosing how beams of radiation will travel through

a cancer patient so that they deliver a tumoricidal dose of radiation to the cancerous region.

At the same time, the critical structures surrounding the cancer are to receive a limited dose

of radiation so that they can survive the treatment. To be specific, in IMRT, the patient

is irradiated from several different directions. From each direction, one or more irregularly

shaped radiation beams of uniform intensity are used to deliver the treatment. Langer and

Leong [131] and Langer et al. [130] presented mixed-integer models to aid IMRT design.

Romeijn et al. [177] addressed the problem of designing a treatment plan for IMRT that

determines an optimal set of the irregular shapes (called apertures) and their corresponding

intensities. The problem was formulated as a large-scale convex programming problem and

a column generation approach was applied. The associated pricing problem determines one

or more apertures to be added. Several variants of this pricing problem were discussed, each

24

of which corresponds to a particular set of constraints that the apertures must satisfy in one

or more of the currently available commercial IMRT equipment. Polynomial-time algorithms

for solving each of these variants of the pricing problem to optimality were presented.

Another integer programming application is brachytherapy treatment planning [139].

In recent years, computer-aided iterative approaches and automated methods have been

developed to aid in brachytherapy treatment in the operating room [164, 191]. Lee et al.

have developed a state-of-the-art intra-operative plan optimization system for permanent

prostate implants [94, 135, 137, 138]. Treatment planning in brachytherapy means finding

a pattern of sources (or given strength) that is consistent with dosimetric constraints –

typically, a minimum dose for the target and a maximum dose for the healthy tissues adjacent

to the target. A mathematical model is usually developed which includes the essential

dosimetric constraints and a user-specific objective function that measures the quality of the

dose distribution. One possible decision made in brachytherapy treatment planning is to

determine if each possible source location should be implanted with a radioactive source or

not. With this objective, the problem was formulated as a mixed-integer program with a

dense constraint matrix. Details of this model can be found in [135, 136, 138, 221]. Branch-

and-bound algorithms were designed in [135, 138] to solve such a mixed-integer program.

2.3 BRANCH AND PRICE

As indicated in Chapter 1, branch and price is the core methodology used in this research

to solve our optimal region design problem, which is a large-scale set-partitioning problem.

In this section we will first motivate the basic idea of branch and price by making a com-

parison between the branch-and-price approach and the branch-and-cut approach. The idea

of branch and price is essentially embedding column generation techniques within a linear

programming based branch-and-bound framework. Therefore, we will then present the idea

of columnT generation. Numerous integer programming (IP) column generation applications

25

are listed in this section. We will provide descriptions and some discussion on a few appli-

cations that use techniques similar to those in our region design problem. This survey will

concentrate more on the algorithmic and computational aspects of branch and price.

When solving large-scale mixed-integer programming (MIP) problems, it is desirable to

construct formulations whose linear programming (LP) relaxation gives a good approxima-

tion to the convex hull of feasible solutions. In the last decade, a great deal of attention

has been given to the “branch-and-cut” and “branch-and-price” approaches to solving MIPs.

The essence of these two approaches is to embed successive convex hull approximation within

a branch-and-bound framework. The difference between these two is that the branch-and-

cut approach works with the original mixed-integer program whereas the branch-and-price

approach works with the dual problem. The following is a comparison between the basic

ideas of the two approaches, which can also be found in Barnhart et al. [22].

In branch and cut, classes of valid inequalities, preferably facets of the convex hull of

feasible solutions, are left out of the LP relaxation because there are too many constraints

to handle efficiently and most of them will not be binding in an optimal solution anyway. In

branch and price, classes of valid inequalities for the dual problem, preferably facets of the

convex hull of the dual feasible solutions, are left out of the LP relaxation due to the same

reason as above. The valid inequalities for the dual problem correspond to columns in the

primary problem. Therefore, the idea of branch and price is to ignore many columns when

solving the LP relaxation because too many columns make the LP relaxation hard to solve,

and most of them will not be in the optimal basis anyway. In branch and cut, if an optimal

solution is infeasible, a subproblem, called the separation problem, is solved to try to identify

violated inequalities. If one or more violated inequalities are found, some are added to the

LP to cut off the infeasible solution and then the LP is reoptimized. Branching occurs if

no violated inequalities are found to cut off the infeasible solution and the LP solution does

not satisfy the integrality conditions. In branch and price, to check the optimality of an LP

relaxation solution, a subproblem, called the pricing problem, which is a separation problem

for the dual LP, is solved to identify columns that price out favorably and can therefore enter

the basis. If such columns are found, some are added to the LP, which is then reoptimized.

Branching occurs if no columns price out favorably and the LP solution does not satisfy

26

the integrality conditions. Branch and cut, which is a generalization of branch and bound

with LP relaxations, allows separation and cut generation to be applied throughout the

branch-and-bound tree. Its procedure focuses on row generation. Branch and price, which

is also a generalization of branch and bound with LP relaxations, allows column generation

to be applied throughout the branch-and-bound tree. So its procedure focuses on column

generation. Hoffman and Padberg [108], and Marchand et al. [144], give general expositions

of branch and cut, and Barnhart et al. [22] and Desrosiers and Lübbecke [71] give general

expositions of branch and price.

Let us now introduce column generation, which is the core of branch and price. The

idea of column generation was first suggested by Ford and Fulkerson [89] to handle decision

variables implicitly in a multicommodity flow problem. Dantzig and Wolfe [52] pioneered this

fundamental idea by developing a strategy to expand a linear program columnwise as needed

in the solution process. This technique was first applied to the cutting-stock problem by

Gilmore and Gomory [99, 100] as part of an efficient heuristic algorithm. Column generation

is now a prominent method to cope with a huge number of decision variables.

Next, we present an outline of column generation framework. This introduction is

adapted from the column generation introduction in Desrosiers and Lübbecke [71]. Let

us call the following linear program the master problem (MP):

z∗ := max
∑

j∈J cjxj

s.t.
∑

j∈J ajxj ≤ b,

xj ≥ 0, j ∈ J.

(2.1)

In each iteration of the simplex method we look for a non-basic variable to price out favorably

and enter the basis. That is, the pricing step, given the dual vector π ≥ 0, we want to find

arg max{cj := cj − πT aj | j ∈ J}. (2.2)

An explicit search over J may be computationally prohibitive when |J | is huge. In practice,

one works with a restricted master problem (RMP), containing a reasonably small subset

27

J ′ ⊆ J of columns. Assuming that we have a feasible solution, let x and π be primal and dual

solutions to RMP, respectively. When columns aj, j ∈ J , are implicitly given as elements of

a set A 6= ∅, and the cost coefficient cj can be computed from aj, then the subproblem

c∗ := max{c(a)− πT a | a ∈ A} (2.3)

returns an answer to the pricing problem. If c∗ ≤ 0, no reduced cost coefficient cj is positive,

and x (embedded in IR
|J |) optimally solves the master problem as well. Otherwise, we add

to RMP a column derived from the subproblem’s answer and re-optimize RMP at the next

iteration. For its role in the algorithm, (2.3) is also called the column generation subproblem,

or the column generator.

The advantage of solving an optimization problem in (2.3) instead of an enumeration in

(2.2) becomes even more apparent when columns a ∈ A encode combinatorial objects such

as paths, sets, or permutations. Then A is naturally interpreted given these structures, and

thus we are provided with valuable information about what possible columns “look like.”

Consider the one-dimensional cutting stock problem, the classic example of column gener-

ation introduced by Gilmore and Gomory [99]. Given W , the width of rolls, and m demands

bi, i = 1, . . . ,m, for orders of width wi, the goal is to minimize the number of rolls to be cut

into orders such that the demands are satisfied. A standard formulation is

min{1T x | Ax ≥ b, x ∈ ZZ
|J |
+ }, (2.4)

where A encodes the set of |J | feasible cutting patterns, i.e., aij ∈ ZZ+ denotes how many units

of order i is obtained by cutting a roll according to pattern j. From the definition of feasible

patterns, the condition
∑m

i=1 aijwi ≤ W must hold for every j ∈ J and xj determines how

many rolls are cut according to cutting pattern j ∈ J . The linear programming relaxation of

(2.4) is then solved via column generation, where the pricing problem is a knapsack problem.

Branch and price is, sometimes, viewed as a class of IP column generation techniques for

solving large-scale integer programs. The idea of embedding column generation techniques

within a linear programming based branch-and-bound framework, introduced by Desrosiers

et al. [72] for solving a vehicle routing problem under time window constraints, was the

key step in the design of exact algorithms for a large class of integer programs. Generic

28

algorithms for solving problems by branch and price / IP column generation were presented

by Barnhart et al. [22], Vance [208] and Vanderbeck and Wolsey [214]. Several dissertations

(Ben Amor [25], Sol [193], Vance [208], Vanderbeck [212], Villeneuve [215]) provide rich

sources of computational testing and rich collections of applications. General reviews include

those by Desrosiers et al. [70], Desrosiers and Lübbecke [71], Soumis [194], and Wilhelm [218].

Column generation has long been linked to the Dantzig-Wolfe decomposition [52]. The

general idea behind the decomposition paradigm is to treat the linking structure as a coor-

dinating level and to independently address subsystem(s) at a subordinate level. Column

generation corresponds to the solution process used in the Dantzig-Wolfe decomposition. It

is an approach with which one can directly formulate the master problem and subproblems

rather than obtaining them by decomposing a global formulation of the problem. However,

for any column generation scheme, there exists a global formulation that can be decom-

posed by using a generalized Dantzig-Wolfe decomposition which results in the same master

problem and subproblems [69].

For linear programming column generation, there has been a great deal of research in the

solution aspect. In principle, it follows three directions: strategy development for obtaining

dual solutions to the restricted master problem (RMP), strategy development for pricing, and

solution acceleration (preventing bad convergence behavior). Most of the material discussed

next is based on Desrosiers and Lübbecke [71].

First let us discuss how to solve RMP efficiently. It is critical to obtain an initial feasible

basis to RMP. This step is called initialization. The well known simplex phase one carries

over to column generation [45]. It is more critical to obtain a good initial solution to RMP.

Poorly chosen initial columns lead the algorithm astray because they do not resemble the

structure of a possible optimal solution at all. Vanderbeck [212] showed that even an excellent

initial integer solution is detrimental to solving a linear program by column generation. On

the other hand, Ben Amor [25] and Valério de Carvalho [207] reported good computational

experience with bounds on meaningful linear combinations of dual variables. Another option

is a warm start [11, 25, 73]. Traditional approaches for general linear programs are simplex

methods and Barrier methods. Lasdon [134] commented on the suitability of various simplex

methods. An effective method, called sifting, was studied by Bixby et al. [29], Chu et al.

29

[44], and Anbil et al. [11]. Barrier methods are shown to be the most effective for some

linear programs [28]. Other approaches to solving RMP include subgradient algorithms

[39, 40, 217] and the volume algorithm [17]. When RMP is a set-partitioning problem, large

instances are difficult to solve due to massive degeneracy. Elhallaoui et al. [80] proposed a

dynamic row aggregation technique that allows a considerable reduction of the size of RMP.

This technique was originated in crew scheduling and vehicle routing applications.

Second let us discuss how to generate “promising” new columns. In other words, how

to choose a set of nonbasic variables that price out favorably and enter the basis. Various

schemes were proposed in the literature such as full, partial, or multiple pricing [45]. The

role of the pricing problem is to check the optimality of RMP and identify columns that

price out favorably if the iterative RMP is not optimal yet. It is important to see that any

column with negative reduced cost (for a minimization problem) contributes to this aim.

In particular, there is no need to solve the pricing problem exactly until the last iteration.

Many pricing rules have been developed [90, 101, 193, 212]. Sol [193] and Vanderbeck [212]

also discussed dominance and redundancy of columns, respectively.

Finally let us discuss the tailing-off effect in linear programming column generation.

Simplex-based column generation is known for its poor convergence. Although it could be

fast to obtain a near optimal solution, it may well be the case that only a little progress is

made per iteration afterwards to get closer to the optimal solution. Graphically, the solution

process exhibits a long tail [100]. Hence this phenomenon is called the tailing-off effect. There

is an intuitive assessment of the phenomenon, but a complete theoretical understanding is

still missing to this date. Notable contributions were made by Lasdon [134] and Nazareth

[154].

Now let us discuss the application of column generation to large-scale integer programs.

Some of the studies for linear programming column generation listed above are also applicable

to integer programming column generation. Hence, we only discuss the additional challenges

and considerations when applying column generation to integer programs. Most of the

material discussed next comes from Barnhart et al. [22].

Embedding column generation within the LP based branch-and-bound framework may

not seem as straightforward as it appears at first glance [14]. There are fundamental difficul-

30

ties in applying linear programming column generation techniques in integer programming

solution methods [118]. These are: (1) conventional integer programming branching on vari-

ables may not be effective since fixing variables can destroy the structure of the pricing

problem; (2) solving these LPs to optimality may not be efficient, in which case different

rules will apply for managing the branch-and-price tree. Barnhart et al. [22] attempted to

unify several specialized branch-and-price algorithms in the literature by presenting a general

methodology. The authors presented a general model that is suitable for column generation

and stated that their column generation approach is closely related to the Dantzig-Wolfe de-

composition [52] and the earlier work on path flows in networks by Ford and Fulkerson [89].

The authors emphasized the models for the set-partitioning problem with which many com-

binatorial optimization problems can be formulated [16]. Another reason for this emphasis,

stated by the author, is that most of the branch-and-price algorithms have been developed

for set partitioning based formulations.

An LP relaxation solved by column generation is not necessarily integral and applying a

standard branch-and-bound procedure to RMP with its existing columns will not guarantee

an optimal (or feasible) solution. After branching, it may be the case that there exists a

column that would price out favorably, but is not present in the current RMP. Therefore, to

find an optimal solution we must generate columns after branching. Ryan and Foster [181]

suggested a branching rule for set-partitioning problems. It has been supported by many

computational studies on set-partitioning problems that this branching rule would result

in a more balanced branch-and-bound search tree compared to branching on variables. A

theoretical justification for this branching can be found in Hoffman et al. [107]. Applications

of this branching strategy are presented for urban transit crew scheduling [68]; for airline

crew scheduling [12, 208, 211]; for vehicle routing [74]; for graph coloring [151]; for graph

partitioning [149, 150], and for the binary cutting stock problem [210].

Numerous IP column generation applications are described in the literature, as can be

seen in Appendix A.Here we only discuss three of them that are similar to the branch-and-

price application in our work. In a crew scheduling or pairing problem [13], sequences of

flights, called pairings, are assigned to crews so that each flight segment for a specific fleet

of aircrafts is assigned to exactly one crew. Pairings are subject to a number of constraints

31

resulting from safety regulations and contract terms. In addition, the cost of a pairing

is highly nonlinear. Therefore, it is not desirable to formulate a crew scheduling problem

with decision variables indicating the potential assignment of each crew to each segment.

An alternative approach is to implicitly enumerate feasible pairings and to formulate a set-

partitioning problem in which each column or decision variable corresponds to a pairing and

the objective is to partition all of the segments into a set of minimum cost pairings. Branch

and price can implicitly consider all of the pairings. It is possible to represent pairings

as suitable constrained paths in a network, and then evaluate their costs, i.e., price out

nonbasic columns in a simplex algorithm, using a multilabel shortest path or multistate

dynamic programming algorithm, see [19, 68, 208]. In a vehicle routing problem [70], routes

are assigned to vehicles so that each customer is assigned to exactly one vehicle. Routes are

subject to a number of constraints such as limited vehicle capacities, multiple commodities,

time windows, etc. In addition, the cost of each route may be difficult to evaluate. Hence it is

desirable to apply column generation to enumerate feasible routes for vehicles implicitly and

to formulate a set-partitioning problem in which each column corresponds to the delivery

assignment of a vehicle to customers and the objective is to partition all of the customers

into a set of minimum cost routes. For detailed discussion on applying branch and price to

the crew scheduling problem, we refer to Vance [208] and Vance et al. [211]. For detailed

discussion on applying branch and price to the vehicle routing problem, we refer to Löbel

[140] and Sol [193].

Branch and price has also been applied in the graph coloring problem. The problem is

used to solve problems in school timetabling [63], computer register allocation [42, 43], elec-

tronic bandwidth allocation [96], and many other areas. Mehrotra and Trick [151] developed

the independent set formulation of the graph coloring problem. In this formulation, each

decision variable represents a maximal independent set in the graph. The objective is to

minimize the number of labeled maximal independent sets. The authors suggested a column

generation approach with which maximal independent sets are generated adaptively at each

node of the branch-and-bound tree. The authors also developed a sophisticated branching

32

rule to ensure integrality. Two subproblems are generated based on two selected nodes. In

one of them, these two nodes are restricted to have the same color. While in the other, the

two have to have different colors.

33

3.0 OPTIMIZING INTRA-REGIONAL TRANSPLANTATION THROUGH

EXPLICIT ENUMERATION OF REGIONS

3.1 INTRODUCTION

In this chapter, we present two mixed-integer programming models that improve the allo-

cation process at the regional level. An earlier version of this work is presented in Stahl et

al. [195]. In our first model, we develop a set of regions that maximizes the total number

of intra-regional transplants with consideration of organ viability loss. We call this system

outcome intra-regional transplant cardinality. In our second model, we examine the effect of

optimizing regions with respect to both intra-regional transplant cardinality and minimum

intra-regional transplant cardinality per patient across OPOs.

Transplant cardinality at each level of the allocation hierarchy is a simplistic outcome to

measure transplant allocation efficiency at that level. Since the main purpose of this research

is to provide a basic modeling framework for improving transplant allocation efficiency,

we believe that intra-regional transplant cardinality serves well as a proxy of transplant

allocation efficiency and thus we focus on this measure in our models. For other outcomes

directly related to cold ischemia time (CIT) and thus regional configuration, they can also

be incorporated in our model as long as the analytic relationship between the outcomes and

organ transport distance is known. We use the minimum intra-regional transplant cardinality

per patient across OPOs as a measure of geographic equity. In addition to improving intra-

regional transplant cardinality, the other objective in our second model is to maximize the

intra-regional transplant cardinality per patient of the worst-off OPO, i.e., the one with

the lowest cardinality per patient. Therefore, we consider the trade-off between allocation

efficiency and geographic equity in the second model.

34

In the current liver transplantation and allocation system, there are very few Status

1 patients relative to MELD patients (Status 1 patients constitute less than 0.1% of the

total ESLD patient population). Therefore, we ignore the existence of Status 1 patients in

our modeling and therefore only consider Phases 3, 4, and 6. The reasons we choose to

model the allocation hierarchy only at the regional level are the following: 1) intra-OPO

transplantation is independent of region design; 2) there are few transplants that occur at

the national level compared to those at the regional level. Hence, to design an optimal set

of regions, we only need to consider Phase 4 in the allocation process, which is matching

donors and MELD patients at the regional level.

As stated in Chapter 1, we believe it is appropriate to consider OPOs as the smallest

units for designing regions. This also reflects on the design of the UNOS hierarchical organ

allocation network in which OPOs are the lowest level. Consequently, we make our first

assumption:

(A3.1) Organ procurement and patient listing are aggregated over transplant centers within

each OPO.

An alternative way to interpret this assumption is that there is only one transplant center.

Note that this assumption simplifies parameter estimation, but the model to be presented is

still valid without the assumption.

Since our goal is to develop an optimal regional configuration with respect to the above

stated system outcome, any partition of the country over OPOs is a feasible solution to the

optimization problem. This requires that each OPO is contained in exactly one region in

any feasible regional configuration. Hence, our first model is formulated as a set-partitioning

formulation. In our second model, we add an additional objective and a set of constraints

to formulate a two-objective combinatorial optimization problem.

In Sections 3.2, we will present the set-partitioning model and discuss how to estimate

the intra-regional transplant cardinality for each potential region. Then we will discuss a

straightforward solution approach in Section 3.3. In Section 3.4, we will present our second

model. We complete this chapter with briefly discussing the deficiencies of the models and

stating refinement directions.

35

3.2 A SET-PARTITIONING FORMULATION FOR REGION DESIGN

Let I be the set of OPOs in the U.S. and R be the set of all potential regions. Let xr be a

binary decision variable for each r ∈ R, where xr = 1 means that region r is chosen in the

solution and xr = 0 means that it is not. The problem is then a set-partitioning problem:

choose the best set of regions such that each OPO is in exactly one region. Let the coefficient

air = 1 if OPO i is contained in region r, and let air = 0 otherwise. Then each OPO i has

the associated set-partitioning constraint

∑

r∈R

airxr = 1.

The objective coefficient of the set-partitioning model for region r is denoted as cr for all

r ∈ R. To be general, we call cr the regional benefit for region r. The set-partitioning model

is thus presented as follows:

max
∑

r∈R crxr

s.t.
∑

r∈R airxr = 1, for all i ∈ I

xr ∈ {0, 1}, for all r ∈ R.

(3.1)

The graphic representation of the problem is stated as follows. We define a complete

graph G(I, E) where I is the set of OPOs and E is the set of edges indicating if organs can be

shared between pairs of OPOs. Since it is possible that organs are shared between any pair

of OPOs, set E contains edges connecting any pair of OPOs and thus graph G is a complete

graph. It is also possible that there are restrictions on E. Hence G could be an incomplete

graph as well. Our objective is to find a collection of subsets of I, i.e., R = {r1, r2, . . . , rK}

where ri ⊆ I and ri ∈ R, i = 1, . . . , K, such that
∑

r∈R cr is maximized. Note that R is a

node partition of the graph and R is the potential region set. The set-partitioning constraints

require that for i, j, 1 ≤ i < j ≤ K, ri ∩ rj = ∅.

Note that given our objective discussed here, cr measures the intra-regional transplant

cardinality. Currently, the entire country is divided into 11 regions. Hence we also consider

the possibility of fixing the cardinality of the set of regions to 11 or some other constants.

This is done by adding the constraint
∑

r∈R xr = C, where C is a constant.

36

3.2.1 A Closed-Form Regional Benefit Estimation

To estimate the regional benefit in a closed-form expression for designing an optimal regional

configuration, we make the following two assumptions:

(A3.2) Both organ procurement and patient listing are geographically homogeneous.

(A3.3) The allocation process is in steady state.

Assumption A3.2 ensures that the distributions of organ/patient arrivals are identical with

respect to clinical and demographic characteristics across OPOs. This essentially means

that organs would not prefer to be matched and offered to some OPOs than other OPOs

due to clinical or demographic considerations, and that patients would not prefer to receive

organ offers from some OPOs than other OPOs due to the same type of considerations. It

is equivalent to saying that OPOs, donors, physicians, and patients have no preference on

the location of organ procurement or patient listing. With Assumption A3.3, we can take a

snapshot of waiting lists at the time of each organ arrival and accumulate the regional benefit

over organ acceptance for transplantation in the considered period. Since the regional benefit

generated by the acceptance of each individual organ remains unchanged, the expected

system benefit over a period of time is simply the product of the number of accepted organs

and the benefit generated by the acceptance of each individual offer. Thus, we can focus

on the regional benefit of one individual accepted offer. We call it individual-organ benefit.

The above two assumptions allow us to take a macro-level viewpoint in organ allocation.

Therefore, instead of matching individual organs with individual patients, we consider all

organs as a whole and all patients as a whole, and match all organs with all patients based

on a macro-level allocation scheme, proportional allocation, that will be described next. Now

let us elaborate on the proportional allocation scheme by making the following assumption.

(A3.4) Any procured organ is accepted for either OPO-level transplantation or regional-

level transplantation.

(A3.5) The likelihood that an organ procured at an OPO becomes available for intra-

regional transplantation is constant across OPOs.

37

(A3.6) For intra-regional transplantation, the likelihood that an organ procured at one

OPO is accepted by a patient at each other OPO within the same potential region, is

proportional to the patient population of each other OPO.

Assumption A3.4 assumes that no organs would be considered for national-level trans-

plantation, which simplifies the allocation process. Together with Assumption A3.5, it

allows us to focus on intra-regional transplantation. In some sense, Assumption A3.5 is an

implication of Assumption A3.3. It allows us to study the relative improvement of optimal

region design by using organ procurement numbers as input instead of actual numbers of

available organs at Phase 4 of the allocation process. With Assumption A3.3 we consider

that the patient population at an OPO is fixed at any time point. Hence the likelihood of an

organ being transplanted at the OPO-level is fixed. Assumption A3.5 further assumes that

this likelihood is constant across OPOs. Assumption A3.6 ensures proportional allocation.

The more patients an OPO has, the more intra-regional transplants occur at that OPO. In

some sense, Assumption A3.6 is an implication of Assumption A3.2.

Once an intra-regional transplant organ offer is accepted and the organ travels to the

recipient site, it may be wasted due to a number of reasons as described in Chapter 1. Even

after an organ offer is transplanted, various reasons may cause postoperative organ failure.

Because UNOS has limited data available on the reasons that a surgeon or transplant center

wastes an organ or an organ fails after transplant, we make the simplifying assumption that

the probability of pre-transplant organ wastage and post-transplant organ failure, measured

by the organ’s viability, is solely dependent on its CIT. Because the probability of organ

viability loss is positively correlated with CIT and CIT is positively correlated with the

distance an organ must travel [200], organ transport distance (OTD) affects its viability and

the probability that it is rejected or it fails, and in turn the size and configuration of regions

ultimately affects its viability. Now we are ready to introduce the estimate of intra-regional

transplant cardinality. Define

38

• oi to be the number of organs, procured at OPO i ∈ I over a period of time.

• o′i to be the number of organs, procured at OPO i ∈ I over a period of time, that are

available at Phase 4 of the allocation process. Then o′i = oiβ, where β is the proportion

of organs procured at any OPO that are available at Phase 4.

• pi to be the number of patients who register on the waiting list at OPO i ∈ I. To ease

exposition, let us assume that pi > 0 for all i ∈ I.

• αij to be the probability that an organ is acceptable before the transplant and does not

fail after the transplant based on its viability, which is in turn affected by the organ

transport distance between the two OPO service areas (donor OPO i and recipient OPO

j).

Given a potential region r ∈ R, let us define Ir ⊆ I to be the set of OPOs in region r. It

is clear that if |Ir| = 1, cr = 0. Otherwise, cr is estimated as follows:

cr =
∑

i∈Ir

∑

j∈Ir,j 6=i

oi · β ·
pj

∑

k∈Ir,k 6=i pk

· αij. (3.2)

To explain the derivation of (3.2), let us first discuss how to estimate an individual-organ

benefit. Given an organ procured at OPO i that is available at Phase 4 of the allocation

process, the likelihood it would be accepted by a matched patient at OPO j, is

zij =
pj

∑

k∈Ir,k 6=i pk

,

where r is the considered potential region. Once the organ is transported to OPO j, the

probability that it would neither be rejected before the transplant nor fail after the transplant

is αij. Hence, an individual-organ benefit is estimated as: zijαij. We also know that the

number of organs procured at OPO i that would be accepted by matched patients at OPO

j is oi · β · zij. Thus the intra-regional contribution from organs procured at OPO i is

oi · β ·
∑

j∈Ir,j 6=i

(

pj
P

k∈Ir,k 6=i pk
· αij

)

. Summing up the contribution from each OPO i ∈ Ir

yields cr as:
∑

i∈Ir

oi · β ·
∑

j∈Ir,j 6=i

(

pj
∑

k∈Ir,k 6=i pk

· αij

)

. (3.3)

Note that the estimate presented in (3.3) implies that all organs are accepted by matched

patients after Phase 4 and no organs are made available to the national level. This implication

39

is consistent with Assumption A3.4. An underlying assumption is that at Phase 4, the

patient population is abundant everywhere so that any organ can always find a matched

patient who would accept it. With the assumption that β is a constant, we can ignore it in

the regional benefit estimate without knowing its value as we consider relative improvement

from region design. Then the modified estimate of cr is as:

cr =
∑

i∈Ir

∑

j∈Ir,j 6=i

oi ·
pj

∑

k∈Ir,k 6=i pk

· αij. (3.4)

With the assumption that pi is positive for all i ∈ I, cr can always be evaluated in (3.4).

In reality, there exists some region r such that
∑

k∈Ir,k 6=i pk = 0. In that case, we know

pj = 0 and then set zij = 0. This is valid because there would be no transplants at OPO j

with no patients waiting there.

3.2.2 Data Acquisition and Parameter Estimation

In this section, we first describe our data acquisition for several parameters in (3.4). The

organ and patient numbers are publicly available on the UNOS website [88]. To acquire

organ numbers, we use yearly organ procurement numbers. To acquire patient numbers, we

use patient waiting list registration numbers at the end of a year. We collect organ and

patient numbers from 1999 to 2002.

As described earlier, organ viability loss occurs at two stages: pre-transplant and post-

transplant. Due to data insufficiency, we assume that organ viability loss does not occur

at the pre-transplant stage. This means that once an organ is matched and accepted by a

patient, the organ will be transplanted to the patient. Post-transplant organ viability loss

(postoperative organ failure) includes several causes. Here we only consider the main cause,

primary non-function (PNF). The functional relationship of primary non-function to organ

transport distance comprises two parts: the relationship of primary non-function to cold

ischemia time and the relationship of cold ischemia time to organ transport distance. For

the first part, we use two functions: linear and 3rd-degree polynomial (see Figure 4) obtained

through a meta-analytic review of over 30 medical articles on transplantation [196] (search

terms: liver transplant, cold-ischemia time, graft dysfunction, patient and graft survival,

40

etc. Medline - 1966 to 2003). These functional forms are felt, by expert opinion, to be both

clinically reasonable and would bound the true function modeling the relationship between

PNF and CIT. For the relationship between CIT and OTD, we use CIT (in hours) = 9.895

+ 0.003 × OTD (in miles) [200]. Denote f and g to be the first and second functional

relationships.

Figure 4: Primary non-function (PNF) vs. Cold-ischemia time (CIT) (PNF1 = 0.905 +

0.433 × CIT; PNF2 = -1.5545 + 1.17799 × CIT - 0.03451 × CIT2 + 0.0004 × CIT3)

As a result of Assumption A3.1, we use the straight line distance between the locations

of two OPOs (For example, OPO “Alabama Organ Center” is located at Birmingham, AL)

to estimate the OTD between two OPO service areas. Let D(i, j) to be the OTD between

OPOs i and j. Therefore, αij = 1 − f(g(D(i, j))). Note that our model can handle αij of

more general forms. For other causes of organ viability loss, as long as they are influenced

by prolonged CIT/OTD, we can take them into account in the same manner.

41

3.3 AN EXPLICIT ENUMERATION APPROACH TO REGION DESIGN

SOLUTION

Once potential region r is generated and cr is estimated for all r ∈ R, the set-partitioning

problem is obtained. We can solve this problem in a commercial mixed-integer programming

solver such as the CPLEX MIP solver. The total number of potential regions is 2|I|−1. With

|I| = 59, it is even impossible to load the entire set-partitioning problem although generating

each potential region is relatively less time-consuming. Therefore, we only consider a subset

of potential regions that is likely to contain the optimal solution.

To reduce the number of potential regions that are explicitly enumerated, we limit our

attention to those that are “promising.” As discussed earlier, a region should be geographi-

cally compact. So we apply the notion of contiguity. If two OPO service areas are adjacent,

then the two OPOs are contiguous. For the OPOs in Hawaii and Puerto Rico, we select a

few OPOs on the west coast and in Florida that, we believe, it may be beneficial to group

Hawaii or Puerto Rico with, and thus set them to be contiguous to Hawaii or Puerto Rico

(i.e., Hawaii is contiguous to all OPOs in California but the one based in San Diego; Puerto

Rico is contiguous to the OPO based in Miami). Consequently, we define a subgraph of G,

G′ = (I, E ′) where E ′ is the set of edges indicating if two OPOs are contiguous. If OPOs i

and j are contiguous, we set mij = 1 in the |I|×|I| node-node adjacency matrixM = {mij}.

A region r is contiguous if any OPO in r is contiguous to at least one other OPO in r. Note

that r must be a connected subgraph in G′.

Given the node-node adjacency matrixM, we only identify connected subgraphs r ∈ R′

on G and estimate cr for r ∈ R′, where R′ ⊆ R is the set containing all connected subgraphs.

We then generate all r ∈ R′ to construct the set-partitioning problem. Since M in our

region design problem is not too dense, only generating r ∈ R′ greatly reduces the size of

the set-partitioning problem (see Table 2). Given the maximum number of OPOs included

in any region, denoted as max |r|, the heading “Cols” in Table 2 refers to the number of

connected subgraphs that have OPOs no more than max |r|. We call max |r| the maximum

region cardinality. The heading “NZs” refers to the number of non-zero coefficients in the

resulting constraint matrix.

42

Table 2: Effect of Solution Space Reduction

Max Region with Contiguity w/o Contiguity

Cardinality Cols NZs Cols NZs

3 578 1485 3.42× 104 1.01× 105

4 1888 6725 4.89× 105 1.92× 106

5 6643 3.05× 104 5.50× 106 2.70× 107

6 2.45× 104 1.38× 105 5.06× 107 2.97× 108

7 9.20× 104 6.10× 105 3.92× 108 2.69× 109

8 3.44× 105 2.63× 106 2.61× 109 2.04× 1010

9 1.27× 106 1.10× 107 1.52× 1010 1.34× 1011

10 4.61× 106 4.44× 107 7.80× 1010 7.62× 1011

11 1.64× 107 1.74× 108 5.52× 1012 6.99× 1013

In Table 2, it should be noted that there are still an enormous number of columns that

need to be stored in computer memory even if one only generates all contiguous potential

regions. Enumerating such regions can be done using a number of connected subgraph enu-

meration algorithms, the best of which achieves asymptotic running time of O(|I|V) where

V is the number of connected subgraphs [121]. In our actual implementation, we use depth-

first search. Table 3 reports the CPU time of explicitly enumerating all connected subgraphs

with a certain region cardinality on a PC with a 2.4 GHz Pentium IV processor and 2GB

RAM. As the region cardinality value increases, creating and solving the set-partitioning

problem considering all explicitly enumerated contiguous regions becomes computationally

prohibitive. Therefore we decide to solve the problem with explicit enumeration of all con-

tiguous regions that have no more than 8 OPOs. This decision limits the number of potential

regions to be considered in the region design problem and thus it does not guarantee to find

43

the optimal regional configuration. However, we are able to justify that the current regional

configuration is suboptimal even though there is a region in the southeast that contains 12

OPOs in the current configuration.

Table 3: Connected Subgraph Enumeration

Region Cardinality 5 6 7 8 9 10 11 12

of Regions 4.8e3 1.8e4 6.7e4 2.5e5 9.3e5 3.3e6 1.2e7 ??

Enumeration Time (s) 12 114 931 6302 39008 > 2 days > 10 days ??

We design two sets of experiments where the number of regions in the optimal regional

configuration is fixed to 11 in one set and not restricted in the other set. In each experiment

set, we use 6 data sets to construct instances. With each data set, we consider the two

optional functional relationships between PNF and CIT, i.e., linear and 3rd-degree poly-

nomial. Besides solving an optimal region design instance with one of the two functional

relationships and with organ and patient numbers from a particular year between 1999 and

2002, we design two additional experiments given a set of organ arrival and patient listing

data over multiple years. One experiment is using weighted organ arrival and patient listing

numbers over a 4-year period between 1999 and 2002. The weights assigned to those years

are 0.1 to 1999, 0.2 to 2000, 0.3 to 2001, and 0.4 to 2002. The other one is using the averages

of predicted organ arrival and patient listing numbers over the next 10 years (2006 - 2015).

We fit organ and patient numbers from the past in a linear regression model and predict

those numbers in the next 10 years. Table 4 lists the description of each data set.

Given each data set and one functional relationship between PNF and CIT, we solve the

resulting instance and report in Table 5 the relative system benefit improvement through

region reorganization, compared with the current regional configuration. It also reports the

number of regions in each optimal regional configuration for the second set of experiments.

Table 5 indicates that the relative improvement is similar among various data set and the

number of regions in the optimal regional configuration is almost constant. The table shows

modest gains resulting from reorganizing the regions. Part of the reason is that primary

non-function is insensitive to the change of cold ischemia time. Only a small proportion of

44

Table 4: Description of Data Sets Used in Computational Experiments

Data Set Organ Data Patient Data

1 Arrival Number during Year 1999 Listing Number at the end of Year 1999

2 Arrival Number during Year 2000 Listing Number at the end of Year 2000

3 Arrival Number during Year 2001 Listing Number at the end of Year 2001

4 Arrival Number during Year 2002 Listing Number at the end of Year 2002

Weighted Arrival Number between Weighted Listing Number at the end of

5 Year 1999 and Year 2002 Years 1999 - 2002

Average of Predicted Arrival Numbers Average of Predicted Listing Numbers

6 from Year 2006 to Year 2015 at the end of Years 2006 - 2015

Table 5: Relative Improvement on Intra-regional Transplant Cardinality

Data PNF vs. CIT Number of Regions Fixed Number of Regions Not Fixed
Set Function Relative Increase Relative Increase Number of Regions

Linear 0.10% 0.20% 23
1 Polynomial 0.14% 0.27% 23

Linear 0.11% 0.21% 23
2 Polynomial 0.15% 0.28% 23

Linear 0.11% 0.21% 23
3 Polynomial 0.14% 0.28% 23

Linear 0.11% 0.21% 23
4 Polynomial 0.14% 0.28% 23

Linear 0.11% 0.21% 23
5 Polynomial 0.14% 0.28% 23

Linear 0.12% 0.21% 22
6 Polynomial 0.15% 0.27% 22

organs (less than 10%) fail after transplant even if the cold ischemia time exceeds 18 hours,

the largest medically acceptable cold ischemia time in liver transplantation. This results

in insignificant gains. In addition, we have yet considered causes of organ wastage prior to

transplant. As other causes of organ failure and organ wastage being considered, the gains

45

should enlarge. Even modest gains, however, may substantially change the transplantation

environment. Annually, there are approximately 1200 end-stage liver disease patients in

the most urgent clinical categories on the waiting lists nationwide and less than 400 with a

projected life expectancy of less than 1 month. On any given day there are typically less

than 20 patients in this most urgent category [106]. This has been relative stable for the

past several years. An additional 10 or so (0.2 – 0.3% improvement) transplants/year could

save the lives of 2.5% of those in most urgent need category. Consequently, it could shift the

profile of the overall transplant waiting list towards the less ill and start reducing the length

of the waiting list.

We show optimal configurations in various instances in Figures 5 – 8. The first two sets

of figures show various optimal regional configurations in our first experiment set. The other

two sets of figures show the optimal configurations in our second experiment set. These

figures show that the regional configuration does not change or sightly changes given various

data sets. For a given set of organ and patient numbers, the optimal regional configuration

remains the same regardless of the analytic function of PNF vs. CIT. This suggests that

regional reconfiguration is insensitive to the relationship between organ viability loss and

organ transport distance. Another observation is that most of the regions consist of 2 or

3 OPOs in all optimal regional configurations when the number of regions in an optimal

configuration is not fixed.

Figures 7 - 8 indicate that in this model, the optimal regional configuration tend to

group densely populated areas. For example, unlike the current configuration, all optimal

configurations have the New England area, the New York/New Jersey metropolitan area,

and the Philadelphia/Baltimore/DC metropolitan area appear in three separate regions,

respectively, without inclusion of any other area. When the number of regions in the optimal

configuration is fixed to 11, Figures 5 - 6 show that all optimal configurations group the New

England area, the states of New York and New Jersey, and eastern Pennsylvania together

whereas most of the northern portion of central U.S. is in one region. This suggests that the

benefit of grouping more densely populated areas, i.e., the resulting increase of intra-regional

transplants in more densely populated areas, tends to outweigh any losses from having large,

46

Figure 5: Optimal Regional Configuration (PNF vs. CIT: Linear; The number of regions is

fixed to 11)

47

Figure 6: Optimal Regional Configuration (PNF vs. CIT: 3rd-degree Polynomial; The

number of regions is fixed to 11)

48

Figure 7: Optimal Regional Configuration (PNF vs. CIT: Linear; The number of regions is

unrestricted)

49

Figure 8: Optimal Regional Configuration (PNF vs. CIT: 3rd-degree Polynomial; The

number of regions is unrestricted)

50

less densely populated areas. This also implies that there is inequitable distribution of organs

in terms of organ viability across OPOs, which is one phenomenon of geographic inequity.

In the next section, we address the issue of geographic equity.

3.4 INCORPORATING GEOGRAPHIC EQUITY

Table 6: Discrepancy on Intra-regional Transplant Rate with Optimal Configuration

Data PNF vs. CIT Number of Regions Fixed Number of Regions Not Fixed
Set Function Max : Min Max OPO∗ Min OPO∗∗ Max : Min Max OPO∗ Min OPO∗∗

Linear 258 : 1 CAGS CADN 405 : 1 CTOP CADN
1 Polynomial 258 : 1 CAGS CADN 405 : 1 CAGS CADN

Linear 190 : 1 CAGS CADN 223 : 1 CTOP CADN
2 Polynomial 190 : 1 CAGS CADN 223 : 1 CTOP CADN

Linear 305 : 1 CAGS CADN 577 : 1 NMOP CADN
3 Polynomial 305 : 1 CAGS CADN 577 : 1 NMOP CADN

Linear 198 : 1 CAGS CADN 277 : 1 NMOP CADN
4 Polynomial 198 : 1 CAGS CADN 277 : 1 NMOP CADN

Linear 218 : 1 CAGS CADN 292 : 1 NMOP CADN
5 Polynomial 218 : 1 CAGS CADN 292 : 1 NMOP CADN

Linear 388 : 1 CAGS CADN 589 : 1 OHOV CADN
6 Polynomial 388 : 1 CAGS CADN 589 : 1 OHOV CADN

*: OPO with the largest value of the geographic equity measure nationwide.
**: OPO with the smallest value of the geographic equity measure nationwide.

As discussed above, geographic inequity reflects on the disparity of organ transport

distances across OPOs. More importantly, geographic inequity reflects on the difference of

intra-regional transplant rates between OPOs. To be specific, on average, patients in some

OPOs have a higher chance to receive intra-regional transplants than in other OPOs. Here,

the intra-regional transplant rate at each OPO is defined as the intra-regional transplant

cardinality of that OPO divided by the total number of patients in that OPO. We refer it as

the geographic equality measure of the OPO. In Table 6, we present the ratio between the

largest and smallest values of the geographic equity measure given various data sets. The

table shows that there is a big discrepancy between the largest and smallest values. The

table also reports the codes of OPOs with the largest and smallest values of the geographic

equity measure. The OPO with the smallest geographic equity value is identical irrespective

to the functional relationship between PNF and CIT and the considered data set. The OPO

with the largest geographic equity value is also insensitive to the change of the functional

51

relationship and the data set. CADN labels an OPO in the San Francisco Bay Area where the

waiting list is much longer than those in neighbor OPOs. CAGS, CTOP, NMOP, and OHOV

label OPOs in Sacramento, CA, Connecticut, New Mexico, and Cincinnati, OH, respectively.

A prevailing observation of these OPOs is that there are very few patients listed on their

waiting lists. In addition, it is evident that they are likely to be grouped with nearby OPOs

with a large amount of organ donation. For example, CAGS is grouped with CADN in

the current configuration and all optimal configurations. For a complete list of OPO codes,

see Appendix B. To summarize, the major cause of geographic inequity is the imbalance

of organ procurement and patient listing across OPOs, especially the significant unbalance

among neighbor OPOs. Therefore, we propose a two-objective combinatorial optimization

model to address both allocation efficiency and geographic equity.

The intra-regional transplant rate for OPO i, denoted by γi, for i ∈ I, is defined as

the intra-regional transplant cardinality per patient at OPO i. We let γ = mini∈I γi and

thus γ is the minimum intra-regional transplant rate across OPOs. Hence, the objective of

geographic equity analysis is to maximize γ. We incorporate this objective to our first model

and formulate the two-objective combinatorial optimization problem as:

max
∑

r∈R crxr + ργ

s.t.
∑

r∈R airxr = 1, for all i ∈ I
∑

r∈R firxr − γ ≥ 0, for all i ∈ I

xr ∈ {0, 1}, for all r ∈ R.

(3.5)

In Formulation (3.5), there are two types of decision variables. Besides x determining the

optimal regional configuration, γ represents the smallest geographic equity measure across

OPOs. There is a trade-off between allocation efficiency and geographic equity. Improving

one often comes at the expense of the other. To quantify the trade-off, the objective function

coefficient ρ is introduced to construct a linear combination of the two objectives. It provides

a mathematical means of balancing the two conflicting factors. The value assigned to ρ is

52

based on how much importance we place on geographic equity versus allocation efficiency.

In the formulation, the intra-regional transplant rate of OPO i given i ∈ Ir, denoted by fir,

is defined as:

fir =
∑

j∈Ir,j 6=i

oj ·
1

∑

k∈Ir,k 6=j pk

· αji. (3.6)

If a potential region r is chosen, γi = fir for i ∈ Ir. With the assumption that pi is positive

for all i ∈ I, we know γi is positive. In reality, we set γi to be 0 if (3.6) cannot be evaluated.

In Formulation (3.5), constraints
∑

r∈R firxr − γ ≥ 0 for all i ∈ I, restrict γ to be equal to

the smallest value of γi for all i ∈ I. In the same manner as for the first model, we design

two sets of experiments where the number of regions in the optimal regional configuration

is fixed to 11 in one set and not restricted in the other set. We consider the same six

sets of organ procurement and patient listing data. We assign the value of ρ to be 100k,

k = 0, 1, . . . , 10. Note that Formulation (3.1) is a special case of Formulation (3.5). In

the case where k = 0, Formulation (3.5) is reduced to Formulation (3.1). We define ρc

to be the total intra-regional transplant cardinality divided by the minimum intra-regional

transplant rate, given the current regional configuration. The value of ρc in various cases are

recorded in Table 7. It can be understood as a value with which a decision maker under the

current condition would be indifferent between increasing the total intra-regional transplant

cardinality by 1 and increasing the minimum intra-regional transplant rate by 1
ρc

. We also

run experiments where ρ = ρc.

Table 7: The Value of ρc

PNF Data Set
vs. CIT 1 2 3 4 5 6
Linear 1.742 ×105 1.310 ×105 1.659 ×105 1.270 ×105 1.425 ×105 1.749 ×105

Polynomial 1.740 ×105 1.309 ×105 1.657 ×105 1.269 ×105 1.423 ×105 1.749 ×105

Table 8 reports the relative improvement on the overall objective in Formulation (3.5).

For the cases where the number of regions in the optimal configuration is not restricted, it

also reports that number. Figures 9 - 12 present Pareto frontiers in four different cases. In

53

these figures, we also show the allocation efficiency and geographic equity measures with the

current regional configuration. Figures 13 and 14 compare two objectives separately between

the optimal and current regional configurations in the case where we use data set 5.

We can see from Table 8 that in all cases, the relative improvement on the overall ob-

jective increases with the increase of ρ. Figures 9 - 12 show that with some ρ, the optimal

regional configuration dominates the current configuration in terms of both objectives. Fig-

ures 13 and 14 show that as ρ increases, the allocation efficiency measure decreases and

the geographic equity measure increases. These observations are verified in Theorem 3.1.

In addition, Table 8 shows that the number of regions in the optimal configuration likely

decreases as ρ increases. This suggests that the regions in an optimal design become bigger

as we place more importance on geographic equity.

Let us define (x∗, γ∗) to be an optimal solution to Problem (3.5) and the optimal objective

value, denoted by z∗, is
∑

r∈R crx
∗
r + ργ∗. For ease of exposition, we use short-hand notation

and let z∗ = cT x∗ + ργ∗. We also use (xc, γc) to represent the current configuration and let

zc = cT xc + ργc.

Theorem 3.1. As ρ increases,

(i) z∗ is monotonically increasing;

(ii) z∗−zc

zc
is monotonically increasing;

(iii) γ∗ is monotonically nondecreasing; and

(iv) cT x∗ is monotonically nonincreasing.

Proof. First prove (i). Arbitrarily choose ρ1 and ρ2 with ρ1 < ρ2, let us define (x∗
i , γ

∗
i) to be

the optimal solution to Problem (3.5) with respect to ρi, i = 1, 2. Let z∗i = cT x∗
i + ρiγ

∗
i . We

have

z∗1 < cT x∗
1 + ρ2γ

∗
1 ≤ z∗2 .

The first inequality is due to the fact that ρ2 > ρ1 and γ∗ > 0 for any ρ. The second

inequality follows that (x∗
1, γ

∗
1) is a feasible solution to Problem (3.5) given ρ = ρ2. It is easy

to see that (ii) follows from (i).

54

Table 8: Relative Improvement on the Overall Objective

Data PNF vs. # of Optimal Weight on Geographic Equity (ρ)

Set CIT∗ Regions Solution 0 100 200 300 400 500 600 700 800 900 1000 ρc

fixed Rel. Imp. 0.10 % 0.34 % 0.69% 1.11 % 1.56% 2.00 % 2.45% 2.90% 3.36% 3.81% 4.27% 401%

a not Rel. Imp. 0.20% 0.38% 0.68% 1.07% 1.53% 2.00% 2.46% 2.92% 3.38% 3.84% 4.30% 404%

fixed # Reg. 23 17 14 10 10 10 10 10 10 10 10 10

1 fixed Rel. Imp. 0.14% 0.36% 0.69% 1.06% 1.48% 1.91% 2.35% 2.78% 3.21% 3.65% 4.10% 394%

b not Rel. Imp. 0.27 % 0.41% 0.71% 1.03% 1.46% 1.89% 2.35% 2.81% 3.28% 3.74% 4.20% 406%

fixed # Reg. 23 18 15 15 11 11 9 9 9 9 9 9

fixed Rel. Imp. 0.11 % 0.35% 0.65% 0.96% 1.28% 1.62% 1.97% 2.32% 2.67% 3.01% 3.37% 233%

a not Rel. Imp. 0.21 % 0.38% 0.67% 0.97% 1.27% 1.61% 1.96% 2.31% 2.66% 3.02% 3.37% 233%

fixed # Reg. 23 16 15 15 15 11 11 11 11 11 11 11

2 fixed Rel. Imp. 0.15 % 0.36% 0.66% 0.96% 1.28% 1.60% 1.94% 2.29% 2.63% 2.98% 3.33% 232%

b not Rel. Imp. 0.28 % 0.41% 0.69% 0.99% 1.28% 1.59% 1.93% 2.28% 2.63% 2.98% 3.32% 229%

fixed # Reg. 23 19 15 15 15 11 11 11 11 11 11 11

fixed Rel. Imp. 0.11 % 0.33% 0.62% 0.90% 1.18% 1.52% 1.86% 2.19% 2.53% 2.87% 3.20% 281%

a not Rel. Imp. 0.21 % 0.36% 0.63% 0.91% 1.19% 1.52% 1.86% 2.20% 2.53% 2.87% 3.21% 281%

fixed # Reg. 23 16 16 16 14 10 10 10 10 10 10 10

3 fixed Rel. Imp. 0.14 % 0.34% 0.63% 0.91% 1.19% 1.48% 1.82% 2.15% 2.49% 2.83% 3.16% 281%

b not Rel. Imp. 0.28 % 0.41% 0.66% 0.94% 1.22% 1.50% 1.82% 2.15% 2.49% 2.83% 3.16% 281%

fixed # Reg. 23 21 16 15 15 15 10 10 10 10 10 10

fixed Rel. Imp. 0.11 % 0.34% 0.62% 0.89% 1.18% 1.49% 1.82% 2.14% 2.47% 2.80% 3.13% 211%

a not Rel. Imp. 0.21 % 0.37% 0.64% 0.92% 1.21% 1.49% 1.82% 2.15% 2.48% 2.81% 3.14% 211%

fixed # Reg. 23 16 16 16 16 14 14 14 14 14 14 14

4 fixed Rel. Imp. 0.14 % 0.35% 0.63% 0.91% 1.19% 1.46% 1.77% 2.10% 2.43% 2.76% 3.09% 211%

b not Rel. Imp. 0.28 % 0.40% 0.67% 0.95% 1.23% 1.51% 1.79% 2.12% 2.53% 2.78% 3.10% 211%

fixed # Reg. 23 22 15 16 16 16 14 14 14 14 14 14

fixed Rel. Imp. 0.11 % 0.35% 0.65% 0.94% 1.25% 1.56% 1.90% 2.24% 2.58% 2.92% 3.26% 245%

a not Rel. Imp. 0.21 % 0.38% 0.67% 0.97% 1.26% 1.57% 1.90% 2.24% 2.58% 2.92% 3.26% 245%

fixed # Reg. 23 15 15 15 15 14 11 11 11 11 11 11

5 fixed Rel. Imp. 0.14 % 0.37% 0.66% 0.95% 1.25% 1.54% 1.86% 2.20% 2.54% 2.88% 3.22% 244%

b not Rel. Imp. 0.28 % 0.41% 0.70% 0.99% 1.28% 1.58% 1.90% 2.22% 2.54% 2.88% 3.22% 244%

fixed # Reg. 23 19 15 15 15 14 14 14 11 11 11 11

fixed Rel. Imp. 0.12 % 0.21% 0.33% 0.50% 0.67% 0.84% 1.00% 1.17% 1.33% 1.50% 1.67% 156%

a not Rel. Imp. 0.21 % 0.26% 0.38% 0.50% 0.65% 0.81% 0.97% 1.14% 1.30% 1.46% 1.62% 143%

fixed # Reg. 22 18 18 18 13 13 13 13 13 13 13 13

6 fixed Rel. Imp. 0.15 % 0.23% 0.34% 0.50% 0.65% 0.80% 0.95% 1.10% 1.26% 1.42% 1.59% 151%

b not Rel. Imp. 0.27 % 0.30% 0.42% 0.53% 0.72% 0.91% 1.09% 1.28% 1.47% 1.66% 1.84% 165%

fixed # Reg. 22 19 18 16 16 16 16 16 16 16 16 16

a. Linear; b. 3rd-degree Polynomial

55

Figure 9: Pareto Frontier – Geographic Equity vs. Allocation Efficiency (PNF vs. CIT:

Linear; The number of regions is fixed to 11)

56

Figure 10: Pareto Frontier – Geographic Equity vs. Allocation Efficiency (PNF vs. CIT:

3rd-degree Polynomial; The number of regions is fixed to 11)

57

Figure 11: Pareto Frontier – Geographic Equity vs. Allocation Efficiency (PNF vs. CIT:

Linear; The number of regions is unrestricted)

58

Figure 12: Pareto Frontier – Geographic Equity vs. Allocation Efficiency (PNF vs. CIT:

3rd-degree Polynomial; The number of regions is unrestricted)

59

Figure 13: Optimal Configuration vs. Current Configuration (The number of regions is fixed

to 11)

60

Figure 14: Optimal Configuration vs. Current Configuration (The number of regions is

unrestricted)

61

Let us now prove (iii) and (iv). By the definition of (x∗
1, γ

∗
1) and (x∗

2, γ
∗
2), we have the

following two inequalities:

cT x∗
1 + ρ2γ

∗
1 ≤ z∗2 = cT x∗

2 + ρ2γ
∗
2 and

cT x∗
1 + ρ1γ

∗
1 = z∗1 ≥ cT x∗

2 + ρ1γ
∗
2 .

(iii) and (iv) follow from obtaining the difference of two left-hand sides and the difference of

two right-hand sides in the above inequalities.

Finally in this section, we show the reduction of geographic inequity in Table 9. Theorem

3.1 states that the geographic equity measure does not decrease as ρ increases. Hence, we

report the case where ρ = 1000. Table 9 is set up in the same way as Table 6. From the

table, it is clear that the discrepancy on geographic inequity is significantly reduced. In

addition, the OPOs with the largest or smallest geographic equity values tend to differ more

among the data sets.

Table 9: Reduction of Geographic Inequity when ρ = 103

PNF vs. CIT Number of Regions Fixed Number of Regions Not Fixed
Function Max : Min Max OPO∗ Min OPO∗∗ Max : Min Max OPO∗ Min OPO∗∗

Year Linear 5.57 : 1 FLWC CAOP 4.43 : 1 TNMS ILIP
1999 Polynomial 5.23 : 1 FLWC ILIP 2.90 : 1 FLWC CAOP
Year Linear 7.11 : 1 TNMS MAOB 7.09 : 1 TNMS ILIP
2000 Polynomial 7.12 : 1 TNMS CAOP 4.31 : 1 OHOV CAOP
Year Linear 5.92 : 1 TNMS CAOP 4.11 : 1 NCCM CAOP
2001 Polynomial 8.37 : 1 TNMS CAOP 4.12 : 1 NCCM CAOP
Year Linear 3.87 : 1 OHOV PADV 7.29 : 1 TNMS CAOP
2002 Polynomial 6.21 : 1 OKOP CAOP 7.30 : 1 TNMS CAOP

Weighted Linear 6.91 : 1 TNMS PADV 5.10 : 1 OHOV CAOP
1999-2002 Polynomial 8.22 : 1 TNMS CAOP 5.11 : 1 OHOV CAOP
Average Linear 14.4 : 1 OHOV CAOP 12.3 : 1 NCCM ILIP

2006-2015 Polynomial 14.2 : 1 MWOB PADV 12.0 : 1 TNMS ILIP
*: OPO with the largest value of the geographic equity measure nationwide.
**: OPO with the smallest value of the geographic equity measure nationwide.

3.5 DEFICIENCIES AND FURTHER CONSIDERATIONS

Table 5 indicates that most of the regions consist of few OPOs in the optimal regional con-

figuration if the number of regions is not restricted. This implies that the effect of having

62

large regions on transplantable organ utilization is not fully realized. On the other hand,

the effect of having small regions on preventing organ viability loss is noticeable. The reason

for this is twofold. First, in Stahl et al. [195] all organs are considered to be accepted at

the end of Phase 4. The organs are either transplanted or wasted due to quality decay. In

other words, no organ is made available at the national level. Second, the individual-organ

benefit would decrease as the recipient OPO is farther away from the procurement OPO.

Hence, there is no incentive for an OPO to either seek many other OPOs to group with

or seek another OPO somewhere far away to group with. To some extend, the solution is

seeking a maximum weighted matching solution. A further consideration is to refine the

estimation presented in this chapter to incorporate organ usage at the national level so that

larger regions may be more beneficial, which is consistent with the recommendation made by

experts on organ procurement and transplantation policy in the DHHS Final Rule. Incorpo-

rating national-level usage in the estimation will potentially lead to larger improvement in

transplant allocation efficiency as well. Stahl et al. [195] modeled procured organs and listed

patients as homogeneous groups. However, the clinical and demographic characteristics of

donors and patients vary greatly across the country. A further consideration is to refine the

estimation presented in this chapter to reflect this fact. We will discuss a refined estimation

model in Chapter 4.

When constructing the input of the set-partitioning problem, we explicitly enumerate

potential regions. Therefore, in our straightforward solution of the region design problem, we

have to limit the number of considered potential regions by only selecting contiguous regions

with no more than a certain number of OPOs. Obviously, the obtained optimal regional

configuration cannot be proved optimal over all potential configurations. This motivates us

to apply more sophisticated solution methods. We will present an application of branch and

price in Chapter 5.

In the following chapters, we will only consider the set-partitioning model and won’t

further address the issue of geographic equity. From a modeling point of viewpoint, it is

straightforward to incorporate the equity measure into the modeling framework. However,

the incorporation will present additional challenge in solution that cannot be resolved with

the branch-and-price algorithm presented in Chapter 5.

63

4.0 OPTIMIZING INTRA-REGIONAL TRANSPLANTATION WITH TWO

MODEL REFINEMENTS THROUGH EXPLICIT ENUMERATION OF

REGIONS

As briefly stated in Chapter 3.5 “Deficiencies and Further Considerations,” the models in

Chapter 3 assume that all organs are transplanted or wasted at the end of Phase 4. In other

words, we do not address the effect of national-level allocation on regional-level allocation.

Those models also assume that all organs and patients are from the same homogeneous

groups. It is, however, evident that neither organ procurement nor patient listing follows the

same distribution across OPOs. In Section 4.1, we first elaborate on the critique of these two

assumptions and motivate two corresponding refinements of the first model from Chapter 3.

Then we present a refined model in Section 4.2 that attempts to address the effect of national-

level allocation and heterogeneity of organ procurement and patient listing. Our purpose in

this chapter is to develop a more accurate and realistic analytic model for the optimal region

design problem. The refined model requires parameter estimation using a clinically based

organ transplantation and allocation simulation model developed in Shechter et al. [188].

We discuss issues related to our parameter estimation in Section 4.3. After constructing the

model, we solve various instances using the explicit region enumeration method described in

Chapter 3 and present our solutions in Section 4.4. We then verify the solutions in Section

4.5 based on the same simulation model. In Section 4.6, we attempt to apply a modeling

technique borrowed from airline fleet assignment [104] to model the allocation at the national

level within the framework we have presented. At the end of this chapter, we summarize all

necessary assumptions made in the latest model.

64

4.1 CRITIQUE OF THE FIRST MODEL IN CHAPTER 3

An observation made from the solutions of the first model in Chapter 3 (Stahl et al. [195])

is that there are many small regions in the optimal regional configuration if the number of

regions in the optimal solution is not restricted. The reason that small regions are preferable

in that model is because the model does not fully capture the benefit that larger regions

would create a larger organ donation pool and a larger patient waiting pool. It is evident

that as the region size grows, more donor-recipient pairs would exist, more transplants would

occur at the regional level, and it would be more likely that a patient accepts an organ offer.

Furthermore, the model provides solutions that conflict with the one recommendation made

in the DHHS Final Rule [158] that suggests Organ Allocation Areas be established to serve a

population base of at least 9 million people. There are approximately 30% of regions that do

not satisfy the recommendation (Populations in OPO service areas are estimated based on

U.S Census 2000 [38]). Here are a few regions from an optimal regional configuration, based

on the regional benefit estimate in Chapter 3 (see (3.2)), that consist of a population less than

9 million: New Mexico and Arizona (NMOP & AZOB), 7 millions; Iowa and Missouri (IAOP

& MOMA), 8.5 million; Kansas and Nebraska (MWOB & NEOR), 4.4 million; and Colorado,

Utah, and Southern Idaho (CORS & UTOP), 7.2 million. See Table 10 for population in

the selected OPO service areas.

Table 10: OPO Service Areas with Population of Less than 9 Million

OPO Code NMOP AZOB IAOP MOMA MWOB NEOR CORS UTOP
Population (in millions) 1.8 5.2 2.9 5.6 2.7 1.7 4.3 2.9

To capture the benefit accrued with the increase of region size, we need to incorporate

the effect of national-level allocation on the allocation at the regional level. The simplest way

to model the national effect is to set a fraction of organs that will not be accepted or wasted

by any patient and will be made available at the national level. This fraction is conceivably

dependent upon the donor OPO and what region is chosen to contain the OPO. This idea

65

is analogous to spill and recapture [122] considered in the airline fleet assignment problem

[104] to address the issue of an assigned aircraft for a flight not being able to accommodate

every passenger.

Previously we modeled that organ procurement and patient listing are geographically

homogeneous. However, the clinical and demographic characteristics of donors and patients

vary greatly across the country. A more realistic model must reflect this fact. To see how

modeling the clinical and demographic characteristics can influence the selection of regions,

we refer to Table 11, in which we compare a few clinical and demographic characteristics

of deceased liver donors and liver disease patients in four selected OPOs. In the table, the

deceased donor data are based on UNOS data from year 2004 and the patient data are based

on UNOS data as of October 20, 2005.

Table 11: Difference in Clinical and Demographic Characteristics Pertaining to Liver Trans-

plantation

Deceased Donor OPO Patient OPO
Characteristics Classification HIOP1 GALL2 CAOP3 MAOB4 HIOP GALL CAOP MAOB

White 33.3% 63.0% 36.9% 78.7% 34.4% 83.3% 49.7% 87.2%
Black 0 30.1% 11.8% 5.8% 0 12.5% 3.8% 3.2%

Ethnicity Hispanic 0 5.6% 37.6% 12.9 % 3.1% 1.9% 36.4% 6.4%
Others 66.7% 1.4% 13.6% 2.6% 62.5% 2.3% 10.1% 3.2%

O 50.0% 50.0% 50.2% 52.6% 59.4% 49.0% 53.1% 48.0%
Blood A 33.3% 32.9% 31.9% 34.9% 18.8% 39.3% 33.2% 37.4%
Type B 16.7% 13.4% 15.4% 9.7% 15.6% 9.7% 11.2% 12.6%

AB 0 3.7% 2.5% 2.9% 6.3% 1.9% 2.6% 2.0%
Status 1 0 0 0.1% 0.1%

MELD 25+ 3.1% 0.4% 3.1% 2.1%
Urgency MELD 19-24 N/A 6.3% 7.4% 6.2% 4.4%
Medical MELD 11-18 56.3% 52.5% 31.2% 19.8%

MELD < 10 21.9% 28.0% 42.1% 26.0%
Status 7 12.5% 11.7% 17.3% 47.5%

1. An OPO serving Hawaii.
2. An OPO serving Georgia.
3. An OPO serving Southern California.
4. An OPO serving Massachusetts.

Table 11 indicates that deceased liver donors and liver disease patients do not have the

same distributions across OPOs with respect to these clinical and demographic characteris-

tics. Different parts of the country, have markedly different racial compositions and blood

type breakdowns. For example, over 30% of donors and patients in Southern California are

Hispanic whereas Hispanic donors and patients constitute less than 6% in all other three

OPO service areas. Another example is that the proportion of African-American donors in

66

Georgia is at least twice as much as the proportion in any of other three OPOs. We can

also see in the table that the proportion of blood type A patients in Hawaii is significantly

less than that in other OPOs. Interestingly, a noticeably large proportion of patients listed

on the waiting lists in Massachusetts are inactive (Status 7) compared to other three OPOs.

This could be due to the leading transplantation facilities and personnel in that area.

To model clinical and demographic characteristics more accurately in our regional benefit

estimate, we consider the distribution of various clinical and demographic characteristics

across OPOs, such as gender, age, blood type, disease group, etc. We also apply a natural

history model of end-stage liver disease embedded in the simulation model to consider the

dynamics of disease progression.

4.2 REFINED OPTIMAL REGION DESIGN MODEL

In this section, we refine the optimal region design model presented in Chapter 3 from

two aspects motivated as above. In one aspect, we consider organ and patient flows to

the national level. With this refinement, the model is able to capture the accrued benefit of

having relatively large regions. In the other aspect, we consider geographic differences among

organs and patients. In the refined model, we only modify the regional benefit estimate and

do not change the set-partitioning framework. Since incorporating geographic equity in the

second model of Chapter 3 is independent of the regional benefit estimation, we thereby only

present the refinements for the first model in Chapter 3.

Next let us discuss how to model intra-regional organ distribution and organ flow to

the national level, for any regional configuration. Given a regional configuration, if certain

regional preference exists, a higher priority is given to organ distribution that occurs from a

donor OPO in some particular region to recipient OPOs within the same region. On the other

hand, there is a possibility that an organ will not be accepted or wasted at the regional level

and will become available at the national level. It is conceivable that different region designs

lead to different probabilities that an organ will be available at the national level. Therefore,

to develop a regional benefit estimate appropriate for any potential region, we first need to

67

exclude the effect of regional preference and thus consider organ distribution solely based on

clinical and demographic characteristics of donors and patients. This is, in fact, the situation

where the entire country has only one national waiting list for all patients. With the above

discussion regarding more accurate modeling at the regional level, we discard Assumption

A3.4 in Chapter 3, and replace Assumption A3.6, stating proportional allocation, with

assumptions as follows.

(A4.1) For intra-regional transplantation, the likelihood that an organ procured at one

OPO is accepted by a patient at each other OPO within the same potential region, is

proportional to the likelihood of organ distribution from the donor OPO to a recipient

OPO that is in the same region, where there is only a single national waiting list.

(A4.2) For organ flow to the national level, the likelihood that an organ procured at one

OPO is not accepted or wasted at the regional level (and thus made available at the

national level), is proportional to the likelihood of organ distribution to recipient OPOs

that are not included in the same region and organ wastage, when there is only a single

national waiting list.

(A4.3) Given any potential region design, the likelihood that an organ procured at one

OPO is not accepted or wasted at the regional level (and thus made available at the

national level), depends only upon the donor OPO.

Under the condition where there is a single national waiting list, we call the likelihood

of organ distribution pure distribution likelihood, and the likelihood of organ wastage and

organ distribution to all recipient OPOs that are not included in a given potential region

pure national flow likelihood. Assumptions A4.1 and A4.2 ensure proportional allocation.

Assumption A4.1 states that the higher the pure distribution likelihood is from a particular

donor OPO to a particular recipient OPO, the more intra-regional transplants occur between

the two OPOs. Assumption A4.2 states that the higher the national flow likelihood is,

the more organs procured at the donor OPO will be made available at the national level.

Assumption A4.3 is a simplifying assumption that is primarily for application of our branch-

and-price solution, which will be discussed in Chapter 5. It is conceivable that a national-level

68

flow likelihood should not depend only upon the donor OPO but also the region chosen in

the regional configuration that contains it. For a summary of necessary assumptions, we

refer forward to Section 4.7.

In Chapter 3, we assume in Assumption A3.5 that the likelihood that an organ is avail-

able for intra-regional transplantation is fixed. After observing the clinical and demographic

differences among OPOs, this likelihood is presumably dependent upon the OPO. Note that

it should still be insensitive to any region design since there are very few Status 1 patients

at Phase 2 of the allocation process.

Here is some new notation in addition to the organ number oi and organ viability measure

αij, for all i, j ∈ I. Define

• lij to be the pure distribution likelihood from donor OPO i ∈ I to recipient OPO j ∈ I.

• l0i to be the pure national flow likelihood from donor OPO i ∈ I.

• βi to be the likelihood that an organ procured at donor OPO i ∈ I is available for MELD

patients at the regional level.

Given a potential region r ∈ R, let us define Ir ⊆ I to be the set of OPOs in region r. It

is clear that if |Ir| = 1, cr = 0. Otherwise, cr is estimated as follows:

cr =
∑

i∈Ir

∑

j∈Ir,j 6=i

oi · βi ·
lij

∑

k∈Ir,k 6=i lik + l0i
· αij. (4.1)

The explanation of the derivation of (4.1) is similar to the one in Chapter 3. Given an

organ procured at OPO i that is available at Phase 4 of the allocation process, the likelihood

it would be accepted by a matched patient at OPO j is

zij =
lij

∑

k∈Ir,k 6=i lik + l0i
.

Similarly, the likelihood that the organ would not be accepted or wasted at the regional level

and thus made available at the national level, denoted by z0
i , is

z0
i =

l0i
∑

k∈Ir,k 6=i lik + l0i
.

69

Let us call zij and z0
i intra-regional transplant likelihood and national-level flow likelihood,

respectively. We discuss several properties of zij and z0
i in the following section that help us

verify our beliefs on how the set of optimal regions looks like and demonstrate the trade-off

between larger regions and smaller regions in a region design.

Properties of Intra-regional Transplant and National-level Flow Likelihoods

In this section, we discuss how zij and z0
i would behave as the pure distribution likelihood

lij increases or more OPOs are included in a region. For ease of exposition, we assume that

lij ≥ 0 and l0i > 0 for all i, j ∈ I, i 6= j.

Proposition 4.1. Given Ir ⊆ I and lij for all i, j ∈ Ir. Let zij(lij) : IR+ 7→ IR+ be a

continuous function modeling the relationship between the intra-regional transplant likelihood

and the pure distribution likelihood between donor OPO i and recipient OPO j in a considered

region, i.e.,
lij

P

k∈Ir\{i} lik+l0i
. Then

∑

j∈Ir\{i} zij(lij) is nondecreasing.

Proof. We know
∑

j∈Ir\{i} zij(lij) =
P

j∈Ir\{i} lij
P

j∈Ir\{i} lij+l0i
. The result follows from the fact that given

i, j ∈ I, lij is nonnegative, and l0i is fixed and positive.

Corollary 4.1. Given Ir ⊆ I and lij for all i, j ∈ Ir. Let z0
i (lij) : IR+ 7→ IR+ be a continuous

function modeling the relationship between the national-level transplant likelihood from donor

OPO i and the pure distribution likelihood between donor OPO i and recipient OPO j in a

considered region, i.e.,
l0i

P

k∈Ir\{i} lik+l0i
. Then z0

i (lij) is nonincreasing.

Proposition 4.1 and Corollary 4.1 imply that as the pure distribution likelihood increases,

the likelihood that an organ would be accepted by a matched patient at the regional level

increases and the likelihood that it would be available at the national level decreases. In

other words, the more likely a transplant occurs between two OPOs at the regional level

where there is only a single national waiting list, the more likely that it would also occur at

the regional level when distribution is given a higher priority to the regional level than to the

national level. This is because it is easier to find donor-recipient matches at the regional level,

and thus more organs are likely to be accepted by matched patients regionally. Proposition

4.1 and Corollary 4.1 are consistent with our belief. Note that to increase the likelihood that

an organ is accepted at the regional level, it can also be achieved by forming a larger region

that includes more OPOs. This result is presented and proved in the following proposition.

70

Definition 4.1. Define fi(S) to be the function modeling the intra-regional transplantation

contribution from OPO i with respect to S such that i ∈ S ⊆ I, i.e., fi(S) =
∑

j∈S\{i} zij =
P

j∈S\{i} lij
P

j∈S\{i} lij+l0i
.

Definition 4.2. [155] Let N be a finite set, and let f be a real-valued function on the subsets

of N .

a. A function f(S) is submodular if f(S)+f(T) ≥ f(S∪T)+f(S∩T) for S, T ⊆ N .

b. A function f(S) is supermodular if −f is submodular.

Proposition 4.2. Given S ⊆ I, fi(S) is nondecreasing for any i ∈ S. Furthermore, if

lij = lik for all j, k ∈ I\S, j 6= k, then fi is submodular.

Proof. Let us consider a function with the following generic form f ′
i(x) : IR+ 7→ [0, 1], where

x =
∑

j∈S,j 6=i lij. We know

f ′
i(x) =

x

x + l0i

is a continuous function. Let us define S ′ = S∪{k1} and S ′′ = S ′∪{k2} where k1 and k2 are

additional OPOs to be included in S. At discrete points x1 =
∑

j∈S\{i} lij, x2 =
∑

j∈S′\{i} lij,

and x3 =
∑

j∈S′′\{i} lij, f ′
i(·) coincides with fi(·). Clearly, f ′

i(x) is a nondecreasing and

concave function on [0, +∞) given that lij ≥ 0 and l0i > 0 for all i, j ∈ I, i 6= j. Therefore,

fi(x3)− fi(x2) ≤ fi(x2)− fi(x1) for x1 ≤ x2 ≤ x3 and x2−x1 = x3−x2, and the proposition

follows.

Definition 4.3. Define f 0
i (S) to be the function modeling the national-level flow from OPO

i with respect to S such that i ∈ S ⊆ I, i.e., f 0
i (S) = z0

i =
l0i

P

j∈S\{i} lij+l0i
.

Corollary 4.2. Given S ⊆ I, f 0
i (S) is nonincreasing for any i ∈ S. Furthermore, if lij = lik

for all j, k ∈ I\S, j 6= k, then f 0
i (S) is supermodular.

Remark 4.1. In both Proposition 4.2 and Corollary 4.2, the condition lij = lik for all

i, j ∈ I\S is a strong sufficient condition. In most of the cases, we are only interested in a

particular S ⊆ I. Therefore, weaker sufficient conditions can be derived when the purpose is

to study the relationship between the increase rate of intra-regional transplant contribution

or national-level flow and the region size.

71

Proposition 4.2 and Corollary 4.2 imply that as the number of OPOs in the chosen

region increases, the likelihood that an organ would be accepted by a matched patient at

the regional level increases and the likelihood that it would be available at the national

level decreases. In other words, the larger the region is, the more likely an organ would be

accepted by a matched patient at the regional level. However, in general the increase of

intra-regional transplantation contribution from one OPO would diminish as the region size

increases. Proposition 4.2 and Corollary 4.2 also match our belief.

When considering the regional benefit, we incorporate the parameter αij. Since αij is

negatively correlated to organ transport distance, it decreases as i and j are farther apart. As

derived earlier, cr =
∑

i∈Ir

∑

j∈Ir,j 6=i oiβizijαij. Hence, cr may be a concave function whose

maximizer is reached as region r is of appropriate size. To summarize, the refined analytic

estimate of the regional benefit is able to capture the trade-off between organ utilization

at the regional level and organ quality decay due to transporting the organ. As a result,

most of the regions in an optimal regional configuration would appear to be compact and

middle-size.

4.3 PARAMETER ESTIMATION FOR THE REFINED MODEL

To estimate any regional benefit, the estimation of several parameters, such as organ viability

loss, and the acquisition of required data, such as the organ numbers, has been discussed in

Chapter 3. There are three other parameters in (4.1) that need to be estimated. They are

the pure distribution likelihood, lij, the pure national flow likelihood, l0i , and the likelihood

that an procured organ is available at Phase 4, βi. To estimate these parameters, we adapt

a clinically based discrete-event simulation model developed by Shechter et al. [188]. In

this section, we first describe the simulation model and how we adapt it to estimate the

necessary parameters in the model. Then we discuss our parameter estimation procedure

using the simulation model. Additional data collection will be described as the corresponding

parameter estimation is discussed.

72

4.3.1 Adaptation of a Clinically Based Simulation Model

Shechter et al. [188] designed a clinically based discrete-event simulation model to test

proposed changes in allocation policies. The authors used data from multiple sources to

simulate end-stage liver disease and the complex allocation system that includes donor and

patient generation, and organ-recipient matching.

Since their objective was to build a clinically based simulation model to test various allo-

cation policies, a discrete-event simulation model was created at the top to simulate various

matching algorithms and a Monte Carlo microsimulation model was embedded to closely

simulate the progression of various end-stage liver diseases and reflect organ procurement

and patient listing at different time points and geographic locations. The model has five core

modules: the patient generator, organ generator, pretransplant natural history, matching al-

gorithm, and posttransplant survival. For the purpose of model validation, the authors also

included several data statistical summary functions [188].

In our process of adapting the simulation model, we first update the list of OPOs since

a few OPOs became inactive after 1999. We then update several data sets in the simulation

model. They are yearly organ procurement and MELD patient listing rates, geographic

distributions of organ procurement and MELD patient listing. These updates are based on

several publicly available data sets [88]. We use data from the beginning of 1996 through

the end of 2002 whereas the model previously used data from the beginning of 1991 through

the end of 1996. To have the simulated allocation process reach steady state, we specify the

warm-up period to be from the beginning of 1996 through the end of 1998. This is based

on the consideration that we collect many other data for the period between 1999 and 2002.

By doing this, roughly the same amount of patients are generated in the simulation model

by the end of 1998, as the real patient listing data shows. There are a number of data sets

that are unable to be updated due to relevant data not being available. For the sources of

other data, see [188].

In our adaptation process, we also update the set of data statical summary functions.

We design functions that count transplants once they occur and record the year they occur

and the associated donor and recipient OPOs.

73

4.3.2 Parameter Estimation

To estimate the pure distribution likelihood, we set the matching algorithm to be such that

there is only one waiting list in the entire country and all clinically and demographically

matched patients are offered with organs based on their medical urgency. This means that

no regional preference is imposed. Thus, we believe the proportions of organs procured at

a donor OPO that are accepted by matched patients at a recipient OPO would faithfully

reflect the transplant likelihood that is solely dependent upon clinical and demographic char-

acteristics of donors and patients. In the simulation, we record the numbers of transplants

from any donor OPO to any recipient OPO. Therefore, we create an |I|×|I| matrix in which

the cell in the ith row and jth column estimates pure distribution likelihood lij.

After the above specification, we run the simulation model with 100 replications and

compute the average and standard deviation of pure distribution likelihoods over the repli-

cations. We address the statistical significance issue when determining the number of repli-

cations needed. For each pure distribution likelihood, we compute the ratio of the standard

deviation to the average over the replications. Tables 12 reports the relative frequency of the

above ratio data set. From this table, we can see that for most of the elements in the pure

distribution likelihood matrix, the ratio is less than 10%. The table also includes the largest

number on the diagonal of the matrix containing all the ratios. For some OPO pairs, the

occurrence of transplants is very rare. So their associated ratios of the standard deviation

to the average over the replications normally have large variation. But since transplants be-

tween such pairs of OPOs do not make much contribution, we do not think reducing variance

of those pairs is necessary. Therefore, running the simulation model with 100 replications

would provide conclusions with necessary statistical significance.

To estimate the pure national flow likelihood, we set the matching algorithm to be such

that certain region preference is imposed. This is done by setting some regional configuration

as input. In the simulation model, we specify a single parameter to incorporate patient

autonomy on organ acceptance/rejection. This parameter measures the probability that an

individual patient would reject an organ offer. Once an organ is generated, the simulation

follows the matching algorithm to match the organ and patients awaiting transplant. After a

74

Table 12: Ratio of the Standard Deviation to the Average of Pure Distribution Likelihood

Frequency Range Diagonal

Year < 5% 5 - 10% 10 - 20% > 20% Maximum

1999 43.95% 43.38% 11.86% 0.80% 0.394

2000 42.34% 46.74% 12.67% 0.75% 0.394

2001 46.80% 40.74% 11.46% 1.01% 0.394

2002 45.59% 39.93% 13.70% 0.78% 0.289

matched pair of organ and patient is identified, the simulated patient accepts/rejects the offer

according to the parameter measuring patient rejection probability. Once the patient rejects

the organ offer, the organ is made available to other matched patients on the list. Note that

all matched patients are equally likely to accept or reject any organ offer. This assumption

is a simplifying assumption. In reality, the acceptance/rejection probability varies by the

organ-patient pair.

We input the current regional configuration and use the transplant likelihood matrix from

the current system as a reference. Our objective is to search for the value of the parameter

such that the transplant likelihood matrix is as close as possible to the transplant likelihood

matrix based on transplant data collected by UNOS from 1999 to 2002 [37]. The closeness

is measured by the distance of two matrices that is defined as follows. The distance between

two m× n matrices A = [aij] and B = [bij] is
√

∑m
i=1

∑n
j=1(aij − bij)2.

We apply a binary search to determine the value of the parameter measuring patient

rejection probability with a 10−3 degree of accuracy. Figure 15 plots values of the distance

between the transplant likelihood matrix obtained from the simulation model and the trans-

plant likelihood matrix based on UNOS data, with respect to the value of the parameter

measuring patient rejection probability. We run the simulation for each hypothetical rejec-

tion probability with 10 replications and calculate the average over the 10 replications for

each element in the transplant likelihood matrix. We then set the best rejection probability

75

Figure 15: Transplant Likelihood Matrix Distance (Simulation vs. Actual Data)

to be the probability that gives the smallest matrix distance between the transplant likeli-

hood matrices from the simulation and based on UNOS data. The best rejection probability

is 0.979.

Note that one reason that the best rejection probability is close to 1 is that we assume

that all patients have the identical probability to accept or reject an organ. Therefore, the

matching process modeled in the adapted simulation follows, in some sense, a geometric

distribution with 1 − p = 0.979. With such a high rejection probability, some portion

of generated organs would flow through the allocation process to the national level even

though the number of patients awaiting transplants is big. In reality, most of organ offers

are accepted by patients at the top or close to the top of the waiting list and such patients are

more likely to accept organ offers. If we stratify patients according to their medical urgency,

we anticipate to obtain a much lower rejection probability in the simulation for patients

with more severe conditions. This is consistent with several analyses of real liver transplant

data [6, 112]. The other reason that the best rejection probability is close to 1 is that

patient’s acceptance/rejection decision is assumed to be made instantly in the simulation

model. Therefore, one organ could be offered to all matched patients on the waiting list

76

without any organ quality decay. In reality, an organ can only be offered to at most 5 - 10

patients before its viability is lost. If we consider in the simulation model the time taken by

each physician/patient to decide if accepting an organ offer when simulating the matching

process, we anticipate to obtain a much lower rejection probability.

We address the statistical significance issue when determining the number of replications

needed. For each hypothetical rejection probability, we compute a 95% confidence interval

for each average transplant likelihood and the ratio of the half width of the CI to the sample

average. Suppose x and s are the sample average and standard deviation of each transplant

likelihood, respectively. The ratio of the half width of the CI to the sample average is

t0.025,n−1 ·
s√
n
/x. Figure 16 presents the maximum ratio on the diagonal of the transplant

likelihood matrix, with respect to the rejection probability value p = 0.970 + 0.001k, where

k = 0, . . . , 25. This figure shows that for all tested hypothetical rejection probability values,

the above defined ratio is below 0.3. For the chosen rejection probability, the ratio is below

0.2. The reason that we only consider ratios on the diagonal is the same as mentioned before.

Hence, we conclude that it suffices to run the simulation for 10 iterations in order to draw

statistically significant conclusions.

Figure 16: Statistical Analysis for the Rejection Probability Estimation

77

As mentioned earlier, the matching process follows, in some sense, a geometric dis-

tribution when assuming all MELD patients at the regional level have the same accep-

tance/rejection probability. We can extend this idea to analyze the entire allocation process.

We can determine each acceptance/rejection probability analytically or through simulation

for the transition at each phase. Given this probability and the number of patients await-

ing transplants at each phase, we can compute the probability that an organ will be made

available at the next phase. If an organ is used at one phase in the probabilistic sense, the

conditional regional benefit accrues accordingly. Therefore, we can compute the expected

regional benefit by summing up the 6 conditional regional benefits at all 6 phases throughout

the allocation process.

Since allocation at the regional and national levels of the allocation process is dependent

upon the regional configuration, we choose 20 potential regional configurations whose number

of regions ranges from 5 to 14. This selection is random. Our belief is that there should be

5 - 14 regions in the optimal set of regions. We set the rejection probability to be 0.979 in

the simulation and input each of the 20 regional configurations. For each configuration, we

run the simulation with 30 replications and obtain a transplant likelihood matrix. Hence for

each OPO, we have a sample of the likelihood that an organ, procured from the OPO, is

available at the national level. We then calculate the sample average over the replications

to estimate the pure national flow likelihood, l0i . To test whether using the obtained sample

average would lead to statistically significant conclusions, we compute the ratio of the sample

standard deviation to the sample average of the national flow likelihood for each OPO with

respect to a regional configuration. We report the largest ratio among OPOs in Figure 17.

The figure shows that for any chosen regional configuration, the largest ratio is below 0.1.

Hence, we conclude that it is valid to use the above pure national flow likelihood estimate

in order to draw statistically significant conclusions.

Now let us discuss how to estimate the likelihood of an organ being offered to MELD

patients at the regional level. Since this parameter does not vary much by the region design,

we calculate the proportion of organs procured at each OPO that are not transplanted to

either Status 1 patients or at the local level. In other words, we calculate the likelihood

that organs are available at Phase 4. The data set we use is generated from transplant data

78

Figure 17: Statistical Analysis for the National Flow Likelihood Estimation

collected by UNOS from 1999 to 2002 [37]. The parameter being insensitive to the region

design is supported by the simulation runs given the 20 different potential region designs.

4.4 OPTIMIZING THE REFINED MODEL THROUGH EXPLICIT

ENUMERATION OF REGIONS

Once all required parameters are estimated, we are ready to estimate cr for any given po-

tential region r ∈ R. In this section, we again explicitly enumerate all contiguous regions,

estimate cr for each region, and generate the set-partitioning problem. This procedure is the

same as the one in Chapter 3 except the estimate of cr. As discussed in Chapter 3, creating

and solving the set-partitioning problem containing all explicitly enumerated contiguous re-

gions becomes computationally prohibitive when the maximum regional cardinality exceeds

8. Hence, we solve the problem with explicit enumeration of all contiguous regions with no

more than 8 OPOs. In Chapter 5, we will adapt branch and price, an advanced large-scale

integer programming solution technique, with which we are able to consider regions that

contain an arbitrary number of OPOs.

79

When contiguous regions with no more than 8 OPOs are explicitly enumerated, prelimi-

nary computational results show that the solution terminates prematurely in some instances

due to memory limitation. Therefore, we also solve the problem with all contiguous regions

with no more than 7 OPOs. In all these instances, we do not impose any constraint on

the number of regions in the optimal solution. Table 13 presents the absolute increase of

intra-regional transplant cardinality and the number of regions in the optimal regional con-

figuration. These results are consistent and encouraging. In Table 13, we also report the

Table 13: Improvement on Intra-regional Transplant Cardinality (max |r| = Maximum Re-

gion Cardinality)

max |r| = 7 max |r| = 8
Data PNF vs. CIT Absolute Num. of CPU Time (s) / Absolute Num. of CPU Time (s) /
Set Function Increase Regions Final LP Gap Increase Regions Final LP Gap

Linear 55.0 9 3720 69.7 8 0.37%
1 Polynomial 53.4 9 5093 67.3 8 0.43%

Linear 58.8 9 11049 78.2 8 8437
2 Polynomial 57.2 9 8439 75.9 8 9488

Linear 57.8 9 2437 71.6 8 9196
3 Polynomial 56.0 9 1689 73.2 8 9900

Linear 58.0 9 6408 76.7 8 0.38%
4 Polynomial 57.0 9 1035 68.9 8 0.88%

Linear 56.6 9 1026 73.6 8 0.34%
5 Polynomial 54.8 9 7683 71.3 8 0.34%

Linear 86.0 9 1190 111.3 8 0.22%
6 Polynomial 83.3 9 1672 109.9 8 2378

running time if CPLEX solves the instance or the terminating LP gap in branch and bound

if CPLEX terminates the solution prematurely. An integer number in the column “CPU

Time (s) / Final LP Gap” indicates an optimal solution is found and the number is the

solution time in seconds whereas a percentage indicates the solution terminates prematurely

and the number is the terminating LP gap. For all instances, the absolute increase is larger

if we allow no more than 8 OPOs in any region compared with the case where max |r| = 7.

In most of the instances, the solution time is, however, longer in the former case. There

are a few instances that CPLEX cannot solve to optimality in the former case whereas all

instances can be solved to optimality in the latter case.

One prevalent observation among the instances is that the number of regions in any

optimal regional configuration is relatively small compared to the optimal configurations

obtained from our model in Chapter 3. Figures 18 - 21 also illustrate this. Most importantly,

80

these figures show that the regions in the optimal configurations are large. Unlike the current

regional configuration, the entire Northeast is one compact region including approximately 6

- 7 OPOs in almost all instances. This implies that in an area as small as the Northeast, it is

beneficial to group more OPOs and have larger regions. Similar cases are the regions in the

Mid-Atlantic and Southeast. In almost all instances, the OPOs in California, excluding the

one serving Los Angeles and its surrounding areas (CAOP), are grouped together. The above

observations suggest that adjacent densely populated areas should be grouped together. In

almost all instances, a large region is formed in the Northwest. In some instances, this

region even contains OPOs in the Midwest. Some of the regions are not really compact as

our intuition suggests. Our explanation is as follows. First, grouping net organ supplier and

net recipient OPOs may be more critical in terms of maximizing intra-regional transplants.

Therefore, compactness becomes a secondary consideration in the solution. Second, the

locations we choose for many OPOs are not in the center of their service areas. Therefore, a

geographically less compact region does not necessarily mean fewer intra-regional transplants.

Third, gains from having some geographically compact regions may outweigh any loss from

having other geographically less compact regions together in the configuration. Note that

when inspecting Figures 18 - 21, keep in mind that we set the OPOs in Arizona and Nevada

(AZOB and NVLV) to be contiguous to the OPO in California serving Los Angeles and its

surrounding area (CAOP) and all three OPOs in Texas (TXSB, TXSA, and TXGC) to be

contiguous.

Figures 18 - 21 show that many regions in an optimal regional configuration have exactly

the same number of OPOs as the maximum number allowed in a region. For example, in

the instances where we use 1999 data and the linear function for the functional relationship

between PNF and CIT, 7 out of 9 regions have 7 OPOs when 7 is the maximum number

allowed and 5 out of 8 regions have 8 OPOs when 8 is the maximum number allowed. This

suggests that if we allow regions with even more OPOs, the regions in an optimal configura-

tion may potentially contain even more OPOs. However, as we discussed earlier, explicitly

enumerating regions becomes computationally prohibitive as the maximum regional cardi-

nality increases. Even in some cases where no more than 8 OPOs are allowed, we are able to

enumerate all potential regions and generate the set-partitioning instances but the CPLEX

81

Figure 18: Optimal Regional Configuration (PNF vs. CIT: Linear; The maximum regional

cardinality is 7)

82

Figure 19: Optimal Regional Configuration (PNF vs. CIT: 3rd-degree Polynomial; The

maximum regional cardinality is 7)

83

Figure 20: Optimal Regional Configuration (PNF vs. CIT: Linear; The maximum regional

cardinality is 8)

84

Figure 21: Optimal Regional Configuration (PNF vs. CIT: 3rd-degree Polynomial; The

maximum regional cardinality is 8)

85

Table 14: Improvement on Intra-regional Transplant Cardinality (through Explicit Region

Enumeration)

Data Set 1 2 3 4

Simulation 23.5 34.1 39.2 30.4

Linear Analytic 69.7 78.2 71.6 73.2

Simulation 29.7 33.2 37.0 26.6

Polynomial Analytic 67.3 75.9 73.2 68.9

branch-and-bound solution has to terminate prematurely due to memory limitation on its

branch-and-bound tree. These instances are labeled with asterisk in Figures 20 and 21.

Given the solution difficulty discussed in this chapter, we will present our application of

branch and price to improve the solution in Chapter 5.

4.5 EVALUATING THE PROPOSED REGIONS

After obtaining optimal regional configurations, we use the simulation to verify these so-

lutions. To some extend, this serves the purpose of validating the analytic model. With

some modification, the simulation model provides us the flexibility to input any regional

configuration. We run the simulation with 30 replications for each optimal regional config-

uration. The simulated time period is the same as described in Section 4.3. That is, from

the beginning of year 1996 to the end of year 2002, with the warm-up period being the first

3 years. For comparison, we also run the simulation with 30 replications for the current

regional configuration. A justification of the number of replications will be given later in

this section.

Table 14 reports the average yearly improvement on intra-regional transplant cardinality

over 30 replications from 1999 to 2002. In Table 14, we compare the improvement obtained

86

in the simulation model with that obtained in the analytic model. For example, one input

to the simulation model is the optimal regional configuration associated with data set 1.

Since data set 1 includes organ and patient numbers from 1999, we run the simulation

model over year 1999. We then compare the improvements obtained in the simulation model

and the analytic model. Similarly, we use data sets 2-4 for comparisons during years 2000,

2001, and 2002, respectively. Although the corresponding improvement numbers are not

too comparable, the simulation model verifies the improvement with the optimal regional

configuration obtained from the analytic model. To understand the different between the

two corresponding improvement numbers from the simulation and the analytic models, we

need to take a closer look at the allocation process modeled in the simulation model. The

simulation model considers the dynamics in the allocation process, particularly in the first

three phases. At Phase 3 of the allocation process, MELD patients at the local level are

assumed to reject any organ offer with a constant probability. This probability is 0.979, the

same as the rejection probability estimated earlier. As described earlier, with incorporation

of the rejection probability, we attempt to represent the transition from the regional level

to the national level in the allocation process (Phase 4 to 5) faithfully. Its estimation is

not intended to represent the transition from the local level to the regional level (Phase

3 to 4). Furthermore, since we only use one parameter to model patient autonomy, the

allocation process is sensitive to the value of the rejection probability. This creates difficulty

in estimating the parameter. The simulation result indicates that our estimate is low for the

latter transition. Thus more organs are accepted in Phase 3 than indicated by the UNOS

data [37] and thus fewer organs are made available at the regional level.

To further verify our claim that the optimal configuration increases intra-regional trans-

plant cardinality, we run paired t tests to compare the optimal regional configuration corre-

sponding to each data set and the current configuration in terms of the annual intra-regional

transplant cardinality outcome within a 4-year span (1999 - 2002). The null hypothesis of

these tests is the average numbers of intra-regional transplants are equal between the optimal

configuration and the current configuration. Tables 15 and 16 report the paired t test

87

Table 15: Paired t Test: Optimal vs. Current (Linear)

Paired Differences

Data Std. Std. Error 95% CI of the Diff.

Set Mean Deviation Mean Lower Upper t Sig.

1 138.4 47.08 8.60 120.8 155.9 16.10 .000

2 125.2 51.87 9.47 105.8 144.6 13.22 .000

3 109.6 42.55 7.77 93.7 125.5 14.11 .000

4 122.6 42.96 7.84 106.6 138.7 15.64 .000

results. Since the p value is 0 for each year, we conclude that the output data from the

simulation model give strong support to the conclusion that the optimal configuration results

in an increase in intra-regional transplant cardinality.

4.6 NATIONAL-LEVEL ALLOCATION MODELING

In this section, we incorporate the modeling of national-level allocation within the set-

partitioning framework. Stahl et al. [195] did not address the national-level allocation

effect. Unfortunately, extending their model to include national-level allocation exactly is

difficult. Therefore, we only consider an approximation of the national-level allocation effect

on region design.

To approximate this effect while maintaining the set partitioning framework, we adapt

the spill-and-recapture modeling technique, used in airline fleet assignment. To introduce

spill and recapture, we briefly describe the fleeting assignment problem here. This description

can be found in Barnhart et al. [23]. We assume that readers are familiar with common

terminologies used in airline industry. The objective of the fleeting assignment problem is to

assign fleet types to flight legs, subject to an available number of aircrafts and conservation

88

Table 16: Paired t Test: Optimal vs. Current (3rd-degree Polynomial)

Paired Differences

Data Std. Std. Error 95% CI of the Diff.

Set Mean Deviation Mean Lower Upper t Sig.

1 216.8 46.61 8.51 199.4 234.2 25.47 .000

2 209.9 53.43 9.76 189.9 229.8 21.52 .000

3 188.0 42.06 7.68 172.3 203.7 24.49 .000

4 191.6 51.51 9.41 172.3 210.8 20.37 .000

of aircraft flow requirements, such that the fleeting contribution is maximized. In most basic

fleet assignment models, the fleeting contribution is defined as unconstrained revenue less

assignment cost. Unconstrained revenue of a flight leg, a constant, is the maximum attainable

revenue for that particular flight regardless of assigned capacity. Assignment cost, a function

of the assigned fleet type, includes the flight operating cost, passenger carrying related cost

and spill cost. The spill cost on a flight is the revenue lost when the assigned aircraft for that

flight cannot accommodate every passenger. The result is that either the airline spills some

passengers to other flights in its own network (in which case these passengers are recaptured

by the airline), or they are spilled to other airlines. To summarize, the idea of spill and

recapture is that certain passengers will be spilled if they are denied a particular flight due

to insufficient capacity. However, some of them will be recaptured in the sense that they

will simply book another flight flown by the same airline. For an detailed description of the

fleet assignment problem and the basic fleet assignment model, we refer to Hane et al. [104].

Others have extended the basic fleet assignment model [2, 18, 27, 46, 51, 56, 180, 199].

4.6.1 Analogy between Region Design and Fleet Assignment

First let us discuss the analogy between our region design problem arising in the organ

transplantation and allocation network and the fleeting assignment problem arising in airline

89

transportation networks. The decision made in the fleet assignment problem is to determine

the type of aircraft, or the fleet, that should be used on each flight leg. We want to decide

which region should be used to cover each OPO. Each OPO should be covered by exactly

one region. This is ensured by partitioning constraints. Similar partitioning constraints

ensure that each flight leg is covered once and only once by a fleet. The objective in the fleet

assignment problem is to maximize the fleeting contribution. In comparison, the objective

of the regional design problem is to maximize the contribution of reorganizing regions in

the transplantation and allocation system. Unconstrained revenue in the fleeting assignment

problem is analogous to the regional benefit in our problem assuming that all organs are

accepted at the regional level in which case we call the regional benefit ideal regional benefit.

In the current region design problem, there is no analogous cost to any cost in the fleet

assignment problem other than the spill cost. The spill cost in our problem can be interpreted

as the benefit loss in an OPO when we cannot find matched patients to accept organs within

the region containing that OPO. The result is that either the region spills some organs to

other regions in the system (in which case these organs are recaptured by the system) or

they are wasted. Even if there could be some other types of analogous costs incurred in

the transplantation network, we assume that they can be ignored. In the following section,

we review the spill cost and recaptured revenue estimation approaches used in the basic

fleet assignment model and propose an alternative approach to estimate the spill cost and

recaptured revenue. In our case, the cost is incurred by organ flow to the national level, and

the revenue is generated by organ transplant at the national level.

4.6.2 Estimating Spilled Cost and Recaptured Revenue

To estimate the spill cost and recaptured revenue in our region design problem, we propose an

alternative approach. The approach essentially specify a spill likelihood ηs
i and a recapture

likelihood ηr
i for each i ∈ I and use them to estimate the numbers of spilled and recaptured

organs. Let us first revisit the regional benefit estimate. The regional benefit of region r is

as:

cr =
∑

i∈Ir

∑

j∈Ir,j 6=i

oiβizijαij =
∑

i∈Ir

oi × βi ×

(

∑

j∈Ir,j 6=i lijαij
∑

j∈Ir,j 6=i lij + l0i

)

.

90

For an i ∈ Ir, oi ·βi · (
∑

j∈Ir,j 6=i zij) is the number of organs that are accepted at the regional

level, and thus oi · βi · (
∑

j∈Ir,j 6=i(1 − zij)) the number of organs that are made available at

the national level. Then the number of spilled organs from OPO i is

SOi = oi × βi ×
l0i

∑

j∈Ir,j 6=i lij + l0i
,

and the number of spilled organs from region r is

SOr =
∑

i∈Ir

oi × βi ×
l0i

∑

j∈Ir,j 6=i lij + l0i
.

Let ηs
i = l0i . We call it national spill likelihood. The spill cost incurred in region r, denoted

by cs
r, is computed as the benefit generated if all spilled organs are distributed inside the

region based on proportion allocation. That is,

cs
r =

∑

i∈Ir

SOi ·

(

∑

j∈Ir,j 6=i

lijαij
∑

k∈Ir,k 6=i lik

)

.

To estimate the number of organs accepted for transplantation at the national level, we make

the following assumption.

(A4.4) For organ recapture, the likelihood that an organ procured at one OPO is accepted

at the national level, is proportional to the likelihood of organ distribution to recipient

OPOs that are not included in the same region, when there is only a single national

waiting list.

Note that the only difference between Assumption A4.4 and Assumption A4.2 is that we

only consider the likelihood of national-level organ acceptance in Assumption A4.4. With

the assumption, we further divide national-level flow into two parts, organs that are accepted

and wasted at the national level. Under the condition where there is a single national waiting

list, we call the likelihood of organ acceptance at all recipient OPOs that are not included

91

in the given potential region national recapture likelihood. Denote ηr
i to be the national

recapture likelihood for OPO i. With Assumption A4.4, we estimate the recaptured organs

procured at OPO i as:

ROi = oi × βi ×
ηr

i
∑

j∈Ir,j 6=i lij + ηs
i

,

and the number of recapture organs from region r is

ROr =
∑

i∈Ir

oi × βi ×
ηr

i
∑

j∈Ir,j 6=i lij + ηr
i

.

It is clear that the number of recaptured organs procured at each OPO is approximated as

a fraction of organs spilled from the OPO. For each OPO i, the fraction is
ηr

i

ηs
i
. Following

proportional allocation, we can interpret organ spill and recapture at the national level as

follows. For an OPO i ∈ Ir, suppose there are two additional OPOs associated with OPO i

besides OPOs in the same region r. We call the two additional OPOs, the recapture OPO

and the wastage OPO, and assume that their pure distribution likelihoods are ηr
i and ηs

i −ηr
i ,

respectively. Then the national-level allocation from region r is equivalent to intra-regional

allocation with proportional distribution being imposed in the region including all OPOs in

r and the two additional OPOs.

With incorporation of national-level allocation modeling, the benefit accrued from poten-

tial region r is, in fact, the sum of the intra-regional transplant cardinality and the national-

level transplant cardinality. For the national-level transplant cardinality, we present two

estimates. In the first estimate, we use an average transplant success probability. Given

r and i ∈ Ir, the average transplant success probability, denoted by αir, is computed as

the average over αij for all j ∈ I\Ir. Then the national-level transplant cardinality is

cN
r = ROr · (

∑

i∈r αir). In the second estimate, we impose proportional distribution on

spilled organs. It means that spilled organs from OPO i are distributed proportionally to

OPO j, j ∈ I\Ir according to pure distribution likelihood lij. Therefore, the national-level

transplant cardinality is

cN
r =

∑

i∈Ir

(

oi × βi ×
ηr

i
∑

j∈Ir,j 6=i lij + ηr
i

×
likαik

∑

j∈I\Ir
lij

)

.

92

To differentiate intra-regional transplant cardinality in region r and overall transplant cardi-

nality at both regional and national levels, we use cR
r to represent the former cardinality and

cr to represent the latter. Then the overall benefit generated by region r through regional-

level and national-level allocation is cr = cR
r + cN

r .

At the end of this section, we discuss generalization of the spill likelihood ηs
i and the

recapture likelihood ηr
i . It is more realistic to assume that ηs

i and ηr
i are dependent upon

the potential region that contains r. Therefore, we can replace ηs
i and ηr

i with ηs
i,r and

ηr
i,r, respectively. This generalization does not affect the applicability of the set-partitioning

problem. In fact, in most basic fleeting assignment models, the decision variables are binary

variables indicating whether a flight leg is assigned to a fleet type. It is straightforward to

change our set-partitioning formulation (see Formulation (3.1) in Chapter 3.2) to a formula-

tion in which decision variables are indexed by both OPO and region. One reason of using ηs
i

and ηr
i instead of ηs

i,r and ηr
i,r is for the applicability of our branch-and-price solution, which

will be discussed in Chapter 5. This is also the reason why we make Assumption A4.3. The

other reason is due to the fact that we estimate the likelihoods using the simulation. More

discussion regarding this reason will be provided in the next section.

Using either ηs
i and ηr

i or ηs
i,r and ηr

i,r in the region design model does not capture

national-level allocation interdependency or network effects. This is because the number of

national-level transplants within each region depends on what other regions are chosen along

with it, thus violating the linearity property of the set-partitioning problem. To see this,

consider a particular region r. The number of transplants at the national level to patients

in r will be large if the other regions are net suppliers of organs at the national level than

if the other regions are net recipients at the national level. As a summary, organs to spill

from one region should be a function of the demands and supplies of other regions. Without

knowing the entire partition of the network, the above spill-and-recapture estimation step is

inexact.

93

4.6.3 Estimating Spill and Recapture Likelihoods with the Simulation

To estimate the spill likelihood ηs
i and recapture likelihood ηr

i , we use the simulation model

LASM. Before presenting our estimation, we review two spill and recapture estimation ap-

proaches used in the basic fleet assignment problem. These two approaches can be found in

[23].

As described earlier, spill costs in the basic fleet assignment model are estimated for each

flight leg and each possible fleet assignment to that leg. There are two major approaches to

spill estimation. The first approach is a deterministic approach that determines the spill for

each flight leg based on its capacity, which is independent of other flight legs. It begins by

listing the passengers in the order of decreasing revenue contribution and then offering seats

to those on the list, in order, until all passengers are processed or capacity is fully utilized.

Lower ranked passengers are spilled and the total revenue of these spilled passengers is the

estimated spill cost for flight leg i. The second spill estimation approach is a probabilistic

approach that the expected spill cost of assigning fleet type k to leg i is computed as the

product of average spill fare, SFk,i, and expected number of spilled passengers, E[tk,i]. The

expected number of spilled passengers, E[tk,i] is estimated by assuming that the flight leg

level demand follows a Gaussian distribution with mean Qi, the average number of passengers

traveling on flight leg i, and standard deviation K ×Qi, where K is between 0.2 and 0.5, or

Z ×
√

(Qi), where Z is between 1.0 and 2.5. The details of these estimates can be found in

Kniker [122].

Recaptured revenue is the portion of the spill costs that are recovered by transporting

passengers on itineraries other than their desired itineraries. If spill is only approximated as

in basic fleeting assignment models, then recapture is at best approximate.

Earlier in Section 4.3, we describe the procedure of estimating the pure national flow

likelihood. It is, in fact, the procedure of estimating ηs
i . To estimate ηr

i , we follow the same

procedure. In the simulation model, we set the matching algorithm to be such that certain

regional preference is imposed and record every organ that is identified to be made available

and every one that is wasted at the national level, respectively. For a given regional

94

configuration, a number of replications will be run to guarantee the conclusion to be drawn

is of statistical significance. A number of regional configurations are sampled randomly, and

ηs
i and ηr

i are point estimates over the sample for each OPO i ∈ I.

Now let us compare our estimation approach with the two approaches used in the basic

fleeting assignment model. Similar to those two approaches, our estimate for each OPO

is independent of other OPOs. Organs are spilled and recaptured based on whether or

not donor-recipient matching exists, which is determined in the simulation model. The

simulation model lists patients in the order of decreasing medical urgency and donor-recipient

compatibility and considers patient autonomy on organ acceptance/rejection. Then it offers

organs to other on the list in order. To some extend, this is similar to considering the

capacity according to the passenger ranking in the above deterministic approach. In our

estimation, we compute the point estimates of ηs
i and ηr

i , which is similar to the expected

number of spilled passengers, estimated in the above probabilistic approach.

4.7 SUMMARY OF ASSUMPTIONS

At the end of this chapter, we list all necessary modeling assumptions in the presented

modeling framework and demonstrate the current state of modeling efficiency improvement

of the organ transplant and allocation system through region reorganization.

1. Organ procurement and patient listing are aggregated over transplant centers within

each OPO. (Assumption A3.1)

2. The allocation process is in steady state. (Assumption A3.3)

3. For intra-regional transplantation, the likelihood that an organ procured at one OPO is

accepted by a patient at each other OPO within the same potential region, is proportional

to the likelihood of organ distribution from the donor OPO to a recipient OPO that is in

the same region, where there is only a single national waiting list. (Assumption A4.1)

95

4. For organ flow to the national level, the likelihood that an organ procured at one OPO

is not accepted or wasted at the regional level (and thus made available at the national

level), is proportional to the likelihood of organ distribution to recipient OPOs that are

not included in the same region and organ wastage, when there is only a single national

waiting list. (Assumption A4.2)

5. Given any potential region design, the likelihood that an organ procured at one OPO

is not accepted or wasted at the regional level (and thus made available at the national

level), depends only upon the donor OPO. (Assumption A4.3)

6. For organ recapture, the likelihood that an organ procured at one OPO is accepted at the

national level, is proportional to the likelihood of organ distribution to recipient OPOs

that are not included in the same region, when there is only a single national waiting

list. (Assumption A4.4)

Assumption A3.1 assumes all transplant centers within an OPO service area are ag-

gregated. From the methodological point of view, the modeling framework can be easily

extended to consider improving system efficiency through regrouping transplant centers.

Due to political and administrative reasons, it is, however, unlikely that transplant centers

will be free to choose what other transplant centers are preferable to group with in terms

of allocation efficiency. Assumption A3.3 allows us to study the long-term expected system

performance. It is critical to the applicability of the presented deterministic integer pro-

gramming modeling framework. It also leads the way for us to make assumptions on how

organs are allocated with a macro viewpoint. Relaxing this assumption would allow us to

address system dynamics and uncertainty when estimating the regional benefit but many

additional modeling challenges would surface. Assumptions A4.1 - A4.2 are proportional

allocation assumptions. They are the core assumptions in this dissertation. Assumption

A4.3 is primarily made to ensure the applicability of our branch-and-price solution. It does

not effect the modeling framework. Therefore, the solution through explicit region enumera-

tion would still be valid even if this assumption is relaxed. Assumption A4.4 is an additional

proportional allocation assumption for national-level allocation modeling.

96

5.0 A BRANCH-AND-PRICE APPROACH TO OPTIMAL REGION

DESIGN SOLUTION

As shown in Chapter 4, solving the organ region design problem has presented a great chal-

lenge. An important characteristic of these problems is that each of them has an enormous

number of decision variables, all of which are required to be integral. Due to this, we con-

sider a branch-and-price approach with which we adaptively generate potential regions and

apply a specialized branching rule to balance the search tree. In branch and price, sets of

columns are left out of the LP relaxation because there are too many columns to handle

explicitly and most of them will have their associated variables equal to zero in an optimal

solution anyway. By applying column generation, only “promising” columns are included

in the restricted LP master problem. In our region design problem, each column represents

a potential region. As a result, we iteratively solve the LP master problem of manageable

size. To check the optimality of an LP solution, a subproblem, called the pricing problem,

which is a separation problem for the dual LP, is solved to try to identify columns to enter

the basis. Therefore, in each iteration, we also solve one or many MIP pricing problems to

generate one or many “promising” columns. Once the LP relaxation of the problem over

a set of generated columns is solved, a fractional solution may be obtained. Therefore,

branching is required. It occurs when no columns price out favorably to enter the basis and

the LP solution does not satisfy some integrality condition. A commonly used branching

rule is branching on variables. Many computational studies, however, have shown that it

does not perform well in set-partitioning instances due to an resulting unbalanced search

tree. Therefore, we consider application of a specialized branching rule for our region design

problem.

97

In Section 5.1, we revisit the set-partitioning formulation and present the restricted

master problem. In Section 5.2, we present our subproblem and prove its NP-hardness.

Once both the master problem and subproblem are discussed, we propose a branch-and-

price framework in the context of the region design problem in Section 5.3. Sections 5.4 and

5.5 specify our branch-and-price algorithm given considerations for specific computational

challenges existing in our problem. Section 5.4 addresses issues related to column generation.

Section 5.5 discusses the specialized branching rule. We describe the implementation of our

branch-and-price algorithm and report our computational experiments in Section 5.6.

5.1 ADAPTIVE REGION GENERATION

Let us revisit the set-partitioning problem (3.1) and consider its LP relaxation as follows:

RMP(R) : max
∑

r∈R crxr

s.t.
∑

r∈R airxr = 1, for all i ∈ I;

0 ≤ xr ≤ 1, for all r ∈ R.

(5.1)

As stated earlier, since the number of potential regions, |R|, is exponentially large with

respect to the number of OPOs, RMP(R) has an exponential number of columns. Note that

|R| = 2|I| − 1 if contiguity is completely ignored. Hence it is not practical to enumerate all

potential regions. Instead, we consider the LP relaxation of the set-partitioning problem over

a subset of the potential regions, R′ ⊆ R, and add associated columns to the LP relaxation

on an “as needed” basis. Note that each region in this subset is not necessarily contiguous.

RMP(R′) : max
∑

r∈R′ crxr

s.t.
∑

r∈R′ airxr = 1, for all i ∈ I; (πi)

0 ≤ xr ≤ 1, for all r ∈ R′,

(5.2)

where

cr =
∑

i∈Ir

∑

j∈Ir\{i}

oiβilijαij
∑

k∈Ir\{i} lik + l0i
, for all r ∈ R′. (5.3)

98

Such a linear relaxation is called a “restricted master problem” in the context of column

generation. We assign an optimal dual variable, denoted by πi, to each set-partitioning

constraint in RMP(R′) (see Problem 5.2) corresponding to OPO i. Given a potential region

r, the reduced cost cr is then as:

cr = cr −
∑

i∈I

airπi = cr −
∑

i∈Ir

πi. (5.4)

It is clear that an optimal solution to RMP(R′) is a feasible solution to the unrestricted

master problem (LP relaxation of the original set-partitioning problem) RMP(R). To deter-

mine if this feasible solution is optimal to RMP(R), we need to check if there are columns in

R\R′ that price out favorably. This is done by solving the following pricing problem given

the current dual variables π: maxr∈R cr = maxr∈R{cr −
∑

i∈Ir
πi}. Define yi = 1 if i ∈ Ir;

yi = 0, otherwise. Then cr in (5.3) can be rewritten as:

cr =
∑

i∈I

[
∑

j∈I\{i} oiβiαijlijyj
∑

j∈I\{i} lijyj + l0i yi

]

· yi.

Consequently, the pricing problem is rewritten as:

RPP(π) : max
∑

i∈I

[
∑

j∈I\{i} oiβiαijlijyj
∑

j∈I\{i} lijyj + l0i yi

]

· yi −
∑

i∈I

πiyi (5.5)

subject to

yi ∈ {0, 1}, for all i ∈ I. (5.6)

If the optimal objective value is less than or equal to 0, then an optimal solution to

RMP(R) is found. Otherwise, a new column is generated as follows. An OPO i is included

in the newly generated region if and only if yi = 1.

RPP may be formulated as an unconstrained nonlinear pure 0-1 program. To be more

specific, its objective function is a pseudo-Boolean function, i.e., f : IB
|I| 7→ IR. A standard

procedure of linearizing nonlinear pure 0-1 programs is to represent the pseudo-Boolean

objective function as a posiform, i.e, a polynomial expression in terms of all the literals and

their negations that correspond to decision variables [32]. Unfortunately, in our problem,

the equivalent posiform includes one term for each potential region. Thus, the resulting

problem after the linearization is to pick the decision variable which gives the most favorable

99

objective value. This is not different than explicitly enumerating regions. Hence we present

a mixed-integer 0-1 formulation in the next section that provides a more efficient way of

generating “promising” regions.

5.2 A MIXED-INTEGER PRICING PROBLEM

In this section, we present a mixed-integer pricing problem. Let us first revisit our macro-

level allocation scheme, proportional allocation. Given OPOs i, j, k ∈ Ir and consider the

allocation of organs procured at OPO i. With Assumptions A4.1 - A4.3, we have

zij

lij
=

zik

lik
=

z0
i

l0i
,

where zij is the likelihood of an organ procured at OPO i that is allocated to OPO j at the

regional level, and z0
i is the likelihood of an organ procured at OPO i that is available to

national-level allocation. Note that without loss of generality, we assume that lij ≥ 0 and

l0i > 0 for all i, j ∈ Ir. For any given potential region r, proportional allocation from OPO

i to OPO j and from OPO i to the national level occurs only if i, j ∈ Ir, i.e., zij > 0 and

z0
i > 0 if i, j ∈ Ir. Hence, given a potential region r, proportional allocation can be modeled

as:

zij =







lij
P

k∈I\{i} likyk+l0i
, if yi = yj = 1;

0, otherwise.

A similar result holds for z0
i . It should be noted that in the original pricing problem, decision

variables z and z0 are uniquely determined once y becomes known.

If the likelihoods zij are decision variables in the pricing problem, the relationship between

decision variables z and y is clearly nonlinear. The same implication holds for the relationship

between decision variables z0 and y. Hence let us discuss next how to model proportional

allocation in a mixed-integer program. We introduce wij and w0
ij to maintain feasibility in

100

the mixed-integer pricing problem. Given that OPO i is included in the selected potential

region r, if two other OPOs j and k are also included in r, the proportional allocation

between j and k must be enforced. That is,

likzij ≤ lijzik + likwjk; (5.7)

lijzik ≤ likzij + lijwjk; (5.8)

wjk ≤ 2− yj − yk. (5.9)

Similarly, we develop the proportionality constraints between organ distribution to an OPO

at the regional level and that to the national level as follows:

lijz
0
i ≤ l0i zij + lijw

0
ji; (5.10)

l0i zij ≤ lijz
0
i + l0i w

0
ji; (5.11)

w0
ji ≤ 2− yj − yi. (5.12)

Note that decision variables zij and zi
0, for all i, j ∈ I, are continuous variables bounded

between 0 and 1 since they measure the allocation likelihood. Note also that decision vari-

ables wij and w0
ij, for all i, j ∈ I, are also continuous variables bounded between 0 and 1. If

both OPOs j and k are included in the selected potential region r, Inequality (5.9) implies

wjk = 0 and thus Inequalities (5.7) and (5.8) are satisfied with equality. Hence, proportional

allocation of organs procured at OPO i to OPOs j and k is enforced. If one or both OPOs

are not selected, Inequality (5.9) is not tight and thus Inequalities (5.7) - (5.8) do not impose

any additional restriction on zij and zik. A similar implication can be seen in Inequalities

(5.10) - (5.12).

Next we present the pricing problem as:

RPP MIP(π) : max
∑

i∈I

∑

j∈I\{i}
oiβiαijzij −

∑

i∈I

πiyi (5.13)

subject to
∑

j∈I\{i}
zij + z0

i = yi,∀i ∈ I; (5.14)

zij ≤ yj,∀i, j ∈ I, i 6= j; (5.15)

101

likzij ≤ lijzik + likwjk,∀i, j, k ∈ I, i 6= j, k, j < k; (5.16)

lijzik ≤ likzij + lijwjk,∀i, j, k ∈ I, i 6= j, k, j < k; (5.17)

wjk ≤ 2− yj − yk,∀j, k ∈ I, j < k; (5.18)

l0i zij ≤ lijz
0
i + likw

0
ji,∀i, j ∈ I, i 6= j; (5.19)

lijz
0
i ≤ l0i zij + lijw

0
ji,∀i, j ∈ I, i 6= j; (5.20)

w0
ji ≤ 2− yj − yi,∀i, j ∈ I, i 6= j; (5.21)

yi ∈ IB, 0 ≤ z0
i ≤ 1,∀i ∈ I; 0 ≤ wij ≤ 1,∀i, j ∈ I, i < j; (5.22)

0 ≤ zij, w
0
ij ≤ 1,∀i, j ∈ I, i 6= j. (5.23)

The objective function (5.13) is equivalent to (5.5), the objective function of RPP(π).

Constraints (5.14) ensure that organs procured at OPO i are allocated at the regional level

only if OPO i is included in the selected region. Constraints (5.15) ensure that organs

procured at OPO i are allocated to OPO j only if OPO j is included in the selected region.

For an OPO i in the selected region r, if both OPOs j and k are also included in r,

yj = yk = 1, Constraints (5.16) - (5.18) enforce proportional allocation between i to j and

i to k. Hence, we call these constraints proportionality constraints. If OPO j is included

and OPO k is excluded in r, yk = 0, and thus zik = 0 by Constraint (5.15). Similarly, we

know zij = zik = 0 if neither OPO is included in r, i.e., yj = yk = 0. Therefore, given

any OPO i ∈ Ir, we enforce proportional allocation on any other two OPOs j, k ∈ Ir. Note

that by introducing additional decision variables, we model proportional allocation with

linear constraints. In the same manner, given any OPO i in the selected region r, we model

proportional allocation between any other OPO j ∈ Ir and the national level, as shown in

Constraints (5.19) - (5.21). In these constraints, decision variables w0
ij, similar to wij, are

introduced to maintain feasibility in RPP MIP.

To summarize, the first class of proportionality constraints enforces proportional alloca-

tion between OPOs and the second class enforces proportional allocation between an OPO

102

and the national level. Note that the mixed-integer pricing problem (5.13) - (5.23) can be

simplified by combining similar decision variables and replacing variables with their com-

plements. Therefore, various mixed-integer programming formulations are derived. We will

study several alternative formulations in the next chapter.

A characteristic of this pricing problem is that if proportionality constraints are relaxed,

the problem is similar to a facility location problem where each variable yj indicates whether

location j should be selected to build a warehouse and each variable zij indicates what pro-

portion of the commodity in the warehouse at location j should be shipped to the customer

at location i. However, the decision at the operational level is fixed after knowing the deci-

sion at the strategic level due to the proportional allocation requirement, i.e., if y variables

are determined, z variables are uniquely determined due to proportional allocation.

Some pricing problems arising in integer programming column generation, such as the

shortest path pricing problem for the multi-commodity flow problem and the integer knap-

sack pricing problem for the cutting stock problem, are easy to solve practically and/or

theoretically. For example, when applying column generation to the multi-commodity flow

problem, the pricing problem is a shortest path problem that possesses the integrality prop-

erty. In other words, the pricing problem is polynomial solvable. The integrality property

means that the convex hull of the feasible solution set of the pricing problem is an integral

polyhedron. Hence its natural formulation gives integral optimal solutions. When applying

column generation to the cutting stock problem, the pricing problem is an integer knapsack

problem whose LP relaxation can be strengthened. Although the integer knapsack problem is

NP-hard, there are exact pseudo-polynomial algorithms in practice. Other column generation

applications where the pricing problem is easy to solve, include graph partitioning problems

[62, 149] (e.g., minimum cut clustering [119, 212]), bin packing problems [205, 206], and the

multi-item lot-sizing problem [212]. Although the maximum weighted independent set prob-

lem, the pricing problems for graph coloring problems [151], is NP-hard, the problem is well

studied in graph theory and combinatorial optimization, and various solution approaches

have been tried. Column generation applications to many vehicle routing and crew schedul-

ing problems have the structure that the master problem results in set-partitioning/covering

type problems and the subproblem is strongly NP-hard (see Barnhart et al. [18], Desaulniers

103

et al. [66], Desrochers et al. [67], Desrochers and Soumis [68], Desrosiers et al. [72], and

Erdmann et al. [82]). Our region design problem is a set-partitioning problem. It is thus

not surprising to see that the resulting pricing problem is NP-hard. In addition, it is clear

that the pricing problem is hard to solve practically since it does not belong to a class of

problems that have been well studied. In the following section, we prove NP-hardness of the

pricing problem.

NP-hardness Proof of the Pricing Problem

To prove NP-hardness of the pricing problem, we show how to reduce the maximum

facility location problem [48] to the pricing problem by restriction. We first present the

Maximum Facility Location feasibility problem as follows:

INSTANCE: Given two sets I and J , cij for all i ∈ I, j ∈ J , and dj for all j ∈ J .

QUESTION: Is there a solution that satisfies the following constraints:

∑

j∈J

zij = 1, ∀i ∈ I, (5.24)

zij ≤ yj, ∀i ∈ I, j ∈ J ; (5.25)

yj ∈ IB,∀j ∈ J, 0 ≤ zij ≤ 1,∀i ∈ I, j ∈ J, (5.26)

and the total cost given by
∑

i∈I

∑

j∈J

cijzij −
∑

j∈J

djyj (5.27)

is at least k?

Lemma 5.1. The Maximum Facility Location feasibility problem is NP-complete (Corneu-

jols et al. 1997).

The Proportional Region Design Pricing problem is defined as follow.

INSTANCE: Given a set I ′ = I ∪ J , coefficients oi, βi, πj, αij, lij, l0i for i, j ∈ I ′, and the

pricing problem defined on I ′.

QUESTION: Is there a feasible solution to the pricing problem such that its objective value

is at least k?

104

Theorem 5.1. The Proportional Region Design Pricing problem is NP-hard.

Proof. We show that the Proportional Region Design Pricing problem contains the

Maximum Facility Location feasibility problem as a special case by restriction. We

specify the restrictions to be placed on the instances of the Proportional Region Design

Pricing problem so that the resulting restricted master problem will be identical to the

Maximum Facility Location feasibility problem.

Given an instance of the Maximum Facility Location feasibility problem, we specify

coefficients of the Proportional Region Design Pricing problem as follows. Let oi =

βi = 1 for all i ∈ I; 0, otherwise. Let πj = dj ≥ 0 for all j ∈ J and πj = 0 for all j ∈ I. Let

lij = l0i = 0 and z0
i = zii for all i, j ∈ I ′. Let αij = cij ≥ 0 if i ∈ I, j ∈ J ; αij = 0, otherwise.

Therefore the input instance is presented as:

max
∑

i∈I

∑

j∈J

cijzij −
∑

j∈J

djyj (5.28)

subject to
∑

j∈I

zij +
∑

j∈J

zij = yi,∀i ∈ I ′; (5.29)

zij ≤ yj,∀i, j ∈ I ′; (5.30)

yi ∈ IB,∀i ∈ I ′, 0 ≤ zij ≤ 1,∀i, j ∈ I ′. (5.31)

Note that the objective function (5.28) is identical to the one in the maximum facility

location problem. Suppose (ẑ, ŷ) is a feasible solution to the maximum facility location

problem. Let us define (z, y) ∈ IR
|I′|×|I′| × IB

|I′| to be such that zij = ẑij,∀i ∈ I, j ∈ J ;

zij = ŷi

|I| , ∀i ∈ J, j ∈ I; zij = 0, otherwise, and yj = ŷj,∀j ∈ J ; yj = 1,∀j ∈ I. It is easy to

verify (z, y) is a feasible solution to the pricing problem. The above restriction is clearly

polynomial. It follows that the pricing problem is NP-hard.

105

5.3 A BRANCH-AND-PRICE ALGORITHMIC FRAMEWORK

In this section, we present an overview of our branch-and-price algorithmic framework. Sev-

eral relevant topics will be discussed with more details in later sections.

As discussed in Chapter 2, branch and price involves combining well known ideas of

applying column generation to large-scale linear programs and applying branch and bound

to integer programs. First, let us discuss our application of branch and bound. A branch-

and-bound algorithm [155] partitions the solution space into subproblems and then optimizes

individually over each subproblem. Using branch and bound, we initially examine the entire

solution space S and seek a feasible solution ŝ ∈ S. In the bounding phase, we relax the

problem. In so doing, we admit solutions that are not necessarily integer feasible. Solving

this relaxation yields an upper bound on the value of an optimal solution. If the solution

to this relaxation is integer feasible, we are done. Otherwise, we identify n subsets S1, . . . ,

Sn of S, such that ∪n
i=1Si = S. Each of these subsets is called a subproblem; S1, . . . , Sn are

sometimes called the children of S. We add S1, . . . , Sn to the list of candidate subproblems.

This is called branching. In our case, these subsets S1, . . . , Sn are subsets of potential regions

with some restrictions modeling relationships between OPOs.

To continue the algorithm, we select one of the candidate subproblems and process it.

There are four possible results. If we find a feasible solution better than ŝ, then we replace ŝ

with the new solution and continue. We may also find that the subproblem has no solutions,

in which case we prune it. Otherwise, we compare the upper bound for the subproblem to our

global lower bound, given by the value of the best feasible solution found so far. If it is less

than or equal to our current lower bound, then we may again prune the subproblem. Finally,

if we cannot prune the subproblem, we are forced to branch and add the children of this

subproblem to the list of active candidates. We continue this way until the list of candidate

subproblems is empty, at which point our current best solution is, in fact, optimal. The

general branch-and-bound algorithmic procedure is also reviewed in the following flowchart

(see Figure 22), where glb and lub represent the global lower bound and local upper bound

for a considered subproblem, respectively.

106

Figure 22: Branch-and-Bound Algorithm

107

Figure 23: Illustration of Branch and Price

Next we discuss our application of column generation. Each subproblem encountered

throughout the branch-and-bound solution can be represented as a node in a search tree.

In our application, the bounding operation is accomplished by using the tools of linear

programming [108]. In other words, at each node of the branch-and-bound tree, an LP

solution is required. Therefore, our algorithm is an LP-based branch-and-price algorithm.

In our large-scale set-partitioning problem, solving such LP relaxations of subproblems with

an enormous number of columns becomes one of the bottlenecks. However, some of the

columns (decision variables and their corresponding constraint matrix coefficients) can be

defined implicitly. Let the set of the columns be R. If column r ∈ R is not present in the

current constraint matrix, then variable xr is implicitly taken to have value zero. Pricing

is necessary before a search tree node can be fathomed. Its purpose is to check if the LP-

solution computed over a subset of decision variables R′ ⊂ R is valid for R, i.e., all non-active

variables “price out” correctly. The process of dynamically generating variables is called

pricing. Hence, our proposed LP-based branch-and-bound algorithm in which variables are

generated dynamically is known as a branch-and-price algorithm (see Figure 23).

108

Before presenting the algorithmic framework, we introduce some notation used in the

presentation. Let F(SR′) be the feasible solution set of subproblem SR′ given that R′ is the

set of considered decision variables. Then the feasible set of RMP(R), the LP relaxation

of the original set-partitioning problem, is represented by F(SI
R), where SI is the initial

subproblem, the problem at the root node of the search tree. For a review of the general

branch-and-price algorithm, we refer to Vance [208].

Algorithm 5.1. (A Branch-and-Price Algorithm)

Input: An optimal region design problem instance.

Output: An optimal solution x∗ and its corresponding optimal regional configuration R∗ to

the problem instance.

Step 1. Generate a “good” feasible solution x̂ corresponding to regional configuration R̂.

Set α←
∑

r∈R̂ cr.

Step 2. Generate the initial subproblem SI
R′ by constructing R̂ ⊆ R′ ⊂ R, a small set of

potential regions. Set B ← {SI
R′} and L′ ← ∅.

Step 3. If B = ∅, STOP and output x̂ as the global optimum x∗ and R̂ as the optimal

configuration R∗. Otherwise, choose some S ∈ B. Set B ← B\{S}. Apply the bounding

operation to S (see Algorithm 5.2).

Step 4. If the result of Step 3 is a feasible solution x corresponding to regional configuration

R and
∑

r∈R cr >
∑

r∈R̂ cr. Set R̂ ← R and α ←
∑

r∈R cr and go to Step 3. If the

subproblem was pruned, go to Step 3. Otherwise, go to Step 5.

Step 5. Perform the branching operation (see Algorithm 5.3). Add the set of generated

subproblems to B and go to Step 3.

Algorithm 5.2. (Bounding Operation)

Input: A subproblem S, described in terms of a subset of potential regions, R′ ⊆ R and a set

of additional constraints L′ modeling relationships between OPOs such that F(SR′) = {x ∈

IR
|R′|
+ :

∑

r∈R′ airxr = 1,∀i ∈ I, ax ≤ β, (a, β) ∈ L′} and α, an lower bound on the optimal

objective value.

109

Output: Either (1) an integer optimal solution x̂ to the subproblem S, (2) an upper bound

on the optimal value of the subproblem and the corresponding relaxed solution x̂LP , or (3) a

message pruned indicating that the subproblem should not be considered further.

Step 1. If F(SR) = ∅, then STOP and output pruned. This subproblem has no feasible

solutions.

Step 2. Otherwise, construct the initial feasible set of columns R̂ such that R′ ⊆ R̂ and

F(SR̂) 6= ∅.

Step 3. Solve the LP max{
∑

r∈R̂ crxr |
∑

r∈R̂ airxr = 1,∀i ∈ I; ax ≤ β, (a, β) ∈ L′; xr ≥

0,∀r ∈ R̂} and obtain the primal solution x̂ and dual solution π̂.

Step 4. Apply heuristics and separation algorithms to π̂, i.e., solve RPP(π̂) given a set of

constraints on y variables corresponding to L′, to obtain a set of new columns R̂′ that price

out favorably. If R̂′ 6= ∅, set R̂← R̂ ∪ R̂′ and go to Step 3.

Step 5. Otherwise, x̂ is an optimal solution to S. If x̂ ∈ IB
|R̂|
+ , let R̂ be the corresponding

regional configuration and go to Step 6. Otherwise, go to Step 7.

Step 6. If
∑

r∈R̂ cr > α, STOP and output x̂. Otherwise, STOP and output pruned.

Step 7. If
∑

r∈R̂ crxr > α, set x̂LP ← x̂. STOP and output x̂LP . Otherwise, STOP and

output pruned.

Algorithm 5.3. (Branching Operation)

Input: A subproblem S, described in terms of a subset of potential regions, R′ ⊆ R, and

x′ ∈ F(SR′), the LP solution yielding the upper bound.

Output: S1,S2, two children subproblems of S.

Step 1: Determine sets L1 and L2 of inequalities such that ∩2
i=1{x ∈ F(SR′) : ax ≤

β,∀(a, β) ∈ Li} = ∅ and x′ /∈ ∪2
i=1{x ∈ F(SR′) : ax ≤ β,∀(a, β) ∈ Li},

Step 2: Set F(S i
R′) = {x ∈ IR

|R′|
+ :

∑

r∈R′ airxr = 1,∀i ∈ I; ax ≤ β,∀(a, β) ∈ Li ∪L
′}, where

L′ is the set of additional inequalities used to describe S.

The above presentation is a generic framework of the branch-and-price application to

the optimal region design problem. We will next discuss a few specific considerations in our

application. To start any column generation scheme, an initial restricted master problem

has to be provided. In our problem, the basis formed by regions with a single OPO is

110

already feasible. Therefore, an easily constructed initial restricted master problem contains

|I| columns, each of which has objective coefficient ci = 0 and unit vector ar = ei in the initial

constraint matrix. In this way, we can easily ensure the existence of an initial feasible basis

in constructing the restricted master problem. However, since the initial restricted master

problem determines the initial dual variables that will be passed to the pricing problem, a

“good” initial restricted master problem can be important. Two alternatives in initialization

of our column generation are to generate a subset of regions a priori and to generate a pre-

determined regional configuration. For the first alternative, an easy approach is to generate

all contiguous regions that only contain a few OPOs. It is easy to ensure the existence of a

feasible LP-relaxation when generating a large enough set of columns. More importantly, a

large set of initial columns would presumably lead to “good” initial dual variables. However,

generating a large set may be quite time-consuming. Hence, a trade-off is presented in terms

of the number of initially generated columns. For the second alternative, an easy approach is

to use the current regional configuration to construct the initial restricted master problem.

To get a warm start, we can also use some optimal configuration obtained from solving the

region design problem through explicit region enumeration as described in Chapter 4. In

Section 5.6.3, we will discuss with more details the initialization issue in our problem based

on our computational experiments. To summarize, it is straightforward to guarantee the

existence of an initial feasible basis in our problem. However, it is challenging to obtain a

“good” initial feasible basis.

The most computationally intensive component of our branch-and-price algorithm is

solving the pricing problem. Given this fact, we develop our pricing scheme and pricing

problem solution strategies to alleviate this computational bottleneck. We will then elaborate

Steps 3 and 4 of Algorithm 5.2 in our branch-and-price application as follows.

In the pricing problem, we are free to choose a subset of non-basic variables, and a cri-

terion according to which column is selected from the chosen set. According to the classic

largest-coefficient rule [52], one chooses among all columns the one with the most nega-

tive reduced cost (for a minimization problem). However, Sol [193] showed that not using

the largest-coefficient method rule may be theoretically advantageous for set-partitioning

restricted master problems. Our pricing scheme is to generate a set of feasible columns en-

111

countered in the pricing problem solution process. In one extreme case, this set of feasible

columns may just contain the optimal solution. Then our scheme is equivalent to the largest-

coefficient rule. In the other extreme case, this set contains all feasible columns encountered

in the pricing problem solution. Given the fact that our pricing problem is hard to solve,

generating only one column from the solution may not be effective. Our consideration here

is to utilize the dual information provided by multiple columns that are potentially opti-

mal or near optimal. Some alternative pricing rules in the literature include lambda pricing

[29],steepest-edge pricing [90, 101], and dual pendant deepest-cut pricing [212]. Sol [193]

reported that steepest-edge pricing performs particularly well for set-partitioning restricted

master problems.

Therefore the efficiency of column generation hinges on the issue how to price our both

theoretically and practically hard pricing problem efficiently and generate “promising” fea-

sible columns effectively. To address this issue, we develop a decomposition approach that

constructs and solves smaller-scale pricing problems over subsets of the OPO set. This pro-

vides a set of “promising” columns, which coincides with our pricing scheme discussed above

and makes good pricing more achievable. More importantly, these “promising” columns can

be quite distinct since they are generated from various subsets of the OPO set. Along with

our pricing scheme, this approach can be viewed as multiple column generation, a class of

IP column generation acceleration techniques. More details regarding the decomposition

approach are presented in Section 5.4. Many pricing problems in the literature are easy

to solve because either they are well studied or they possess integrality property, i.e., the

convex hull of the feasible solution set of the pricing problem is an integral polyhedron. The

integer knapsack pricing problem of the cutting stock problem falls into the first category

[212] whereas the shortest path pricing problem for the multi-commodity flow problem falls

into the second [98]. Unlike those pricing problems, our problem is not well studied nor pos-

sess the integrality property. We study the polyhedral structure of the problem and develop

several valid inequalities. The polyhedral study is presented in Chapter 6.

At Step 1 of Algorithm 5.3, the branching scheme is presented generically. For large-scale

set-partitioning problems, the branching strategy suggested by Ryan and Foster [181] has

been shown very effective. We adapt their approach and develop a specialized branching

112

scheme. We call our branching scheme branching on OPO pairs. Compared to the standard

branching scheme, branching on variables, this branching scheme results in a more balanced

search tree. We will discuss this scheme in Section 5.5.

Barnhart et al. [22] provided a thorough review of branch-and-price algorithms. For

detailed discussion in the algorithmic aspect of branch and price, we refer to Elf et al.

[79] and Ladányi et al. [128]. Many selected topics in column generation were covered in

Desrosiers and Lübbecke [71].

5.4 GEOGRAPHIC DECOMPOSITION

In order to alleviate the difficulty in solving our mixed-integer pricing problem, we design

a set of region covers to cover the entire country and construct smaller-scale mixed-integer

pricing problems over these region covers. In the pricing problem, there are O(n3) constraints.

Considering poor scalability of integer programming, our idea here is that we would rather

solve a number of smaller pricing problems. To ensure that we are still capable of identifying

“promising” regions in the column generation, we solve smaller pricing problems over a set

of overlapping region covers as follows.

Figure 24 provides an illustration of geographic decomposition. There are four region

covers specified by blue, light green, and pink lines. We call them the “blue”, “light green”,

“pink”, and “brown” covers, respectively. For example, the “blue” cover contains all OPOs

in the west half of the U.S, and the “brown” cover contains all OPOs in the northeast.

The most important feature of our geographic decomposition is that these designed covers

overlap. In Figure 24, the “blue” and “light green” covers overlap in Minnesota, Iowa,

Nebraska, etc. The “brown” cover overlaps with the “pink” cover in Virginia and overlaps

with the “light green” cover in Northeast Ohio.

113

Figure 24: Illustration of Geographic Decomposition

Let us define RPP MIP(π, I ′) to be the pricing problem over I ′ ⊂ I. The objective

function and all constraints are constructed accordingly. An illustration using the objective

function is presented as:

RPP MIP(π, I ′) : max
∑

i∈I′

∑

j∈I′\{i}
oiβiαijzij −

∑

i∈I′

πiyi.

The optimal solution to RPP MIP(π, I ′) generates a column that has the largest reduced

cost over I ′. It is unlikely to be an optimal solution to RPP MIP(π, I). However, we can

add multiple feasible solutions by solving smaller pricing problems over subsets of I. On the

one hand, we want to design these region covers to be big enough so that it is more likely to

identify “promising” regions that are potentially in the optimal basis of the LP relaxation of

the original set-partitioning problem, RMP(R). Conceivably, the more region covers there

are and the larger a region cover is (the more OPOs it contains), the less likely we would miss

a “promising” region. On the other hand, undesirable solution of pricing problems could be

caused by too many region covers or that some region covers are too large. An extreme case

is to let I ′ = I, i.e., have each region cover cover the entire country. Another undesirable

feature of having large region covers is that they may result in similar pricing problem. To

114

overcome this difficulty, one can apply partial column generation, another IP column gener-

ation acceleration technique, in which not all pricing problems are solved at each iteration

to generate new columns [95].

Given a region covers design I ′, we solve a set of smaller-scale pricing problems RPP MIP(π, I ′)

over I ′
i ⊂ I and I ′

i ∈ I
′ for all i = 1, . . . , |I ′|. Once no additional columns can price out

favorably with respect to any I ′
i, we obtain a feasible solution to RMP(R). Let R′

i be the

set of potential regions given I ′
i for all i = 1, . . . , |I ′|. Consider a complete graph G = (I, E)

induced by the set of OPOs I, then R′
i is the set of cliques where all nodes are in I ′

i. With

geographic decomposition, we in fact solve the problem RMP(∪|I′|
i=1R

′
i). Clearly, ∪|I′|

i=1R
′
i ⊆ R.

Since it is possible that a “promising” region crosses two region covers, this solution is not

provably optimal if we do not check the existence of positive reduced costs in RPP MIP(π, I).

However, proving the optimality of RMP(R) requires us to solve RMP(R) at least once,

which is undesirable. A trade-off is presented between solution time and solution quality

when solving the restricted master problem at each node in the search tree. Next we state

the bounding operation with incorporation of geographic decomposition. Given a region

covers design I ′, we modify Steps 4 and 5 of Algorithm 5.2 as follows.

Alternative Subroutine of Algorithm 5.2 (Incorporating Geographic Decompo-

sition)

Step 4. Apply separation algorithms to π̂ over a subset I ′
i ⊂ I and I ′

i ∈ I
′ for all

i = 1, . . . , |I ′|, i.e., solve RPP MIP(π, I ′
i) given the set of constraints on variables yi, i ∈ I ′,

corresponding to a subset of L′, to obtain a set of new columns R̂′
i,∀i = 1, . . . , |I ′|, that

price out favorably. If R̂′
i = ∅, ∀i, then the incumbent solution x̂ is the optimal solution to

RMP(∪
|I′|
i=1R

′
i) and go to Step 6.

Step 5. Otherwise, set R̂← R̂ ∪ (∪
|I′|
i=1R̂

′
i) and go to Step 3.

Step 6. Check if x̂ is also optimal to RMP(R). If not, apply column generation to x̂

over I, i.e., solve RPP MIP(π).

Note that Step 6 in the above subroutine is optional. This reflects the consideration of the

trade-off stated above. With each region cover, Algorithm 5.2 has more flexibility in terms

of the pricing scheme. We consider generating multiple columns encountered throughout

115

the solution of RPP MIP(π, I ′
i). Therefore, with incorporation of geographic decomposition,

our pricing scheme is to generate multiple columns over each region cover in a region covers

design and thus the total number of columns generated at each iteration is
∑|I′|

i=1 |R̂
′
i|.

From above, we know designing region covers is critical to the efficiency of column gener-

ation and consequently the success of applying branch and price. There are two parameters

to measure a region covers design. One is the number of region covers. The other one is

the size of each region cover. Intuitively, they are two main factors determining the solution

time and quality of the column generation. Poor scalability of integer programming suggests

that the latter is more critical.

Even if two region covers designs have the same number of region covers and the same

number of OPOs in each region cover, they may lead to significantly different solutions in

terms of both the solution quality and solution time. To design good region covers, one may

use regions in the optimal regional configuration obtained through explicit enumeration of

contiguous regions. Besides applying geographic decomposition to alleviate the difficulty in

solving the pricing problem, we explore various column generation strategies with respect

to the number of columns allowed to generate at each iteration. Our considerations are

whether we can prematurely terminate the column generation process at each node and how

important it is to find an optimal solution in solving the pricing problem. In addition, we test

a number of MIP solution parameters used in solving the pricing problem. More discussion

will be presented in Section 5.6 on both the effect of geographic decomposition and other

considerations on the solution of the optimal region design problem. Two rounding heuristic

algorithms are also considered in solving our pricing problem. Solving the LP-relaxation

of the pricing problem RPP MIP(π) provides a LP-relaxation solution, denoted as (ŷ, ẑ).

Let C be the set of dimensions i where yi is fractional. The first heuristic is to round

yi componentwise to the nearest integer for all i ∈ C. If this integer solution prices out

favorably, a new column is added to the restricted master problem accordingly. Otherwise,

we check whether a column that prices out favorably can be generated in the pricing problem

based on other region covers. We terminate column generation at each search tree node when

no integer solution can be found that prices out favorably at the current iteration. Using the

second heuristic, we first compare the reduced costs of neighboring integer solutions to the

116

LP solution on all dimensions in C. Then we select the one with the most positive reduced

cost and add it to the restricted master problem. The heuristic terminates at each search

tree node when no neighboring integer solution yields a positive reduced cost at the current

iteration. Clearly, both heuristics cannot ensure to generate all columns that are needed to

form the optimal basis and thus they do not have finite termination guarantee.

5.5 BRANCHING ON OPO PAIRS

An LP relaxation solved by column generation is not necessarily integral and applying a stan-

dard branch-and-bound procedure to the restrict master problem with its existing columns

will not guarantee an optimal (or feasible) solution to the original problem. After branching,

it may be the case that there exists a column that would price out favorably but is not

present in the current restricted master problem. Therefore, to find an optimal solution, we

must generate columns after branching.

Ryan and Foster [181] suggested a branching strategy for set-partitioning problems based

on the following proposition. Although they were not considering column generation, it turns

out that their branching rule is very useful in this context [22]. We adapt their branching

strategy in our branch-and-price algorithm.

Proposition 5.1. [22, 145] If A is a 0-1 matrix, and a basic solution to Ax = 1 is fractional,

i.e., at least one of the components of x is fractional, then there exist two rows s and t of

the master problem such that

0 <
∑

k:ask=1,atk=1

xk < 1.

Note that the constraint matrix {aij} of any restricted set-partitioning master problem

RMP is a 0-1 matrix. Hence, in the branch-and-price search tree, we apply this branching

scheme when solving the restricted master problem yields a fractional solution. That is, the

pair s and t gives the pair of branching constraints

∑

k:ask=1,atk=1

xk = 1 and
∑

k:ask=1,atk=1

xk = 0,

117

i.e., the rows s and t have to be covered by the same column on the first (left) branch and by

different columns on the second (right) branch. In our case, this branching scheme provides

a natural interpretation. Each row corresponds to an OPO. On the left branch, we force

two OPOs (OPOs s and t) to group together; on the right branch, we force two OPOs to

be separate. Therefore, we call this specialized branching strategy Branching on OPO pairs.

We call the first (left) branch, the “together” branch, and the second (right) branch, the

“separate” branch.

Proposition 5.1 implies that such a branching pair can always be identified as long as the

basic solution to the master problem is fractional. The branch-and-bound algorithm must

terminate after a finite number of branches since there are only a finite number of pairs of

rows.

The standard branching strategy branches on a selected variable. In our case, on the

branch fixing the selected variable to 1, a huge number of possible regions are eliminated

from consideration. However, on the branch fixing the selected variable to 0, only a few

regions are eliminated. Thus, this results in an unbalanced search tree. On the contrary,

the strategy branching on OPO pairs eliminates an approximately equally large number

of regions on both branches. A bit more regions are eliminated on the “together branch”

than the “separate branch”. Thus, this results in a much more balanced search tree. In

addition, more regions are eliminated at earlier stage with branching on OPO pairs. The

above comparison between the two branching strategies is illustrated in Figure 25.

As interpreted earlier, branching on OPO pairs requires that two OPOs are grouped

together on the left branch and separated on the right branch. Thus on the left branch, all

feasible columns must have ask = atk = 0 or ask = atk = 1, while on the right branch all

feasible columns must have ask = atk = 0 or ask = 0, atk = 1 or ask = 1, atk = 0. In our

implementation, we enforce the branching constraints in the pricing problem, i.e., for the

left branch, we add ys = yt to force OPOs s and t together, and for the right branch, we

add ys + yt ≤ 1 to force the two OPOs to be separate. Rather than adding the branching

constraints to the master problem explicitly, the infeasible columns in the master problem

can be eliminated. On the left branch, this is identical to combining rows r and s (OPOs r

118

Figure 25: Comparison of Branching on Variables and Branching on OPO Pairs

and s are combined) in the master problem, giving a smaller set partitioning problem. On

the right branch, rows r and s are restricted to be disjoint (OPOs r and s are separated),

which may yield an easier master problem since set partitioning problems with disjoint

rows(sets) are more likely to be integral. Not adding the branching constraints explicitly

has the advantage of not introducing new dual variables that have to be dealt with in the

pricing problem. We add the above branching constraints in the pricing problem. This is

fairly easy to accomplish. Note that these branching constraints corresponding to the set of

additional constraints L′ discussed in Algorithms 5.2 and 5.3.

5.6 IMPLEMENTATION AND COMPUTATIONAL EXPERIMENTS

We develop our branch-and-price application within the COIN/BCP framework [87]. Before

reporting our actual implementation and computational experiments, we briefly introduce

COIN/BCP.

119

5.6.1 Introduction to COIN/BCP

COIN/BCP is a open-source branch, cut, and price project under the auspices of the COm-

putational INterface for Operations Research (COIN-OR) [87]. It is an object-oriented C++

class library developed at IBM beginning in 1998. The following introduction is an excerpt

from the COIN/BCP User’s manual [169].

COIN/BCP was designed with three major goals in mind – portability, effectiveness, and
ease of use. With respect to portability, the developers aimed not only for it to be used
in a wide variety of settings and on a wide variety of hardware, but also for it to perform
efficiently in all these conditions. The primary measure of effectiveness is how well the
framework performs compared to problem-specific (or hardware-specific) implementation
developed from scratch. In terms of ease of use, the developers aimed for a “black box”
design, whereby the user would not need to know anything about the implementation of
the library, but only about the interface.

COIN/BCP’s functions are currently grouped into four independent computational mod-
ules. This module implementation not only facilitates code maintenance, but also allows
easy and highly configurable parallelization. Depending on the computational setting,
COIN/BCP’s modules can be complied as either a single sequential code or separate pro-
cesses running over a distributed network. The four computational modules are the tree
manager module (TM), the linear programming module (LP), the cut generator module
(CG), the variable generator module (VG). The tree manager module first performs problem
initialization and I/O and then becomes the master process controlling the overall execution
of the algorithm. It tracks the status of all processes, as well as that of the search tree, and
distributes the subproblems to be processed to the LP module(s). The linear programming
module is the most complex and computationally intensive among the four modules. Its
job is to perform the bounding and branching operations. The cut generator performs only
one function – generating valid inequalities violated by the current fractional solutions and
sending them back to the requesting LP process. The function of the variable generator is
dual to that of the cut generator. Given a dual solution, the variable generator attempts to
generate variables with negative reduced cost (for a minimization problem) and send them
back to the requesting LP process. Currently, COIN/BCP is known as a single-pool BCP
algorithm that maintains a single central list of candidates subproblems to be processed in
the tree manager module.

For more information regarding COIN/BCP, we refer to [47, 169, 170].

5.6.2 Development of Our Branch-and-Price Application

Our branch-and-price application in the region design problem is developed in C++. It

adapts a branch-and-price application to solving the axial assignment problem using COIN/BCP

[93]. We develop all core functions in the tree manager module and the linear programming

120

module, specifically for this application, and borrow source codes for some other functions in

the COIN/BCP implementation for solving the axial assignment problem, which is available

from the COIN-OR website [87].

We specify COIN/BCP and user-defined parameters and problem data (organ data file,

pure distribution likelihood data file, pure national flow data file, cold ischemia time vs. organ

transport distance data file, etc.) for the tree manager module. In the linear programming

module, we use the CPLEX MIP solver [113] to solve the mixed-integer pricing problem.

We implement geographic decomposition, callbacks for several CPLEX MIP solver options,

branching on OPO pairs in the linear programming module. We do not need cut generation

and thus do not develop any user-specific source code in the cut generator module. We let

COIN/BCP control actual column generation and branching, and let it maintain the list of

candidate subproblems in the search tree.

For a detailed description of the implementation of our branch-and-price application, see

Appendix C.

5.6.3 Computational Results

Our computational experiments consists of two sets of experiments. In the first set, we

solve the optimal region design problem with various types of transplant likelihood specified

through the simulation. Our purpose is to show the improvement gained by applying branch

and price. In the second set, we solve many other instances of the optimal region design

problem and investigate the computational performance with various parameter settings

related to geographic decomposition and pricing problem solution. Our purpose is to gain

a better understanding of computational issues in applying branch and price to large-scale

combinatorial optimization problems where the pricing problem is hard to solve. It should

be noted that we terminate the solution once an integer optimal solution is found for the

region design problem based on the union of region covers with geographic decomposition,

and do not check whether the solution is also optimal for the region design problem based on

all potential regions. We call the regional configuration corresponding to such a solution the

terminating regional configuration. In the first computational experiment set, we conduct

121

experiments similar to those reported in Chapter 4. We first solve five instances associated

with the first 5 data sets. We design a collection of 12 region covers in which each cover

consists of 20 OPOs. This collection of region covers is designed partially based on some

optimal regional configurations through explicit region enumeration. We then input the

terminating regional configurations obtained from these instances to the simulation model

to verify our results.

First in Table 17, we report the absolute increase of intra-regional transplant cardinal-

ity, the number of regions in the terminating regional configuration, the maximum number

of OPOs that a region contains in the terminating configuration, and the two measure re-

garding the solution time. The first three columns associated with branch and price are

self-explanatory. They correspond to the first three results. Hence we explain the next two

columns here. When solving the instances, we impose a 7-hour CPU time restriction. For

instances that terminate within 7 hours, we record both the CPU times when the solution

terminates and the terminating regional configuration is found. For other instances that do

not terminate within 7 hours, we only record the CPU time when the terminating regional

configuration is found. As a comparison, we also in the table report results related to solution

quality and solution time through explicit region enumeration with no more than 8 OPOs in

a region. The first three columns associated with explicit region enumeration are identical

to the first three columns associated with branch and price. Hence we only explain the last

two columns here. As discussed in Chapter 4, the solutions of several instances terminate

prematurely due to memory limitation. Thus we record the final LP gap. For the instances

where optimality is reached, the LP gap is simply 0%.

From Table 17, we can see that using branch and price, a better regional configuration

is found compared to the one obtained through explicit region enumeration. Such a config-

uration also has fewer regions and each region is larger. Another observation is that several

regions in such a regional configuration consist of 12 OPOs, which is the number of OPOs

included in each region cover. This suggests that even larger regions may be more desirable.

A simple test in the following supports this statement. In each of the three instances (Lin-

ear, Data Set 1; 3rd-degree Polynomial, Data Set 1, and 3rd-degree Polynomial, Data Set

3), there is a region formed by a single OPO. In all three instances, the OPO forming the

122

Table 17: Comparison between the Solutions through Branch and Price and Explicit Region

Enumeration

Branch and Price Explicit Region Enumeration (max |r| = 8)

PNF Absolute Number Max # of Term. Term. Absolute Number Max # of Term. Final

Data vs. Card. of OPOs in CPU Config. Card. of OPOs in CPU LP

Set CIT Improv. Regions a Region Time Found Improv. Regions a Region Time Gap

a 96.1 8 12 > 7hrs 04:38:21 69.7 8 8 03:21:29 0.37%

1 b 93.3 8 12 > 7hrs 03:52:37 75.9 8 8 04:07:27 0.43%

a 104.5 7 12 02:15:18 01:21:41 78.2 8 8 03:50:45 0%

2 b 103.7 7 12 02:15:53 01:01:50 75.9 8 8 04:07:59 0%

a 108.4 6 12 > 7hrs 03:29:35 71.6 8 8 04:02:47 0%

3 b 101.1 8 12 > 7hrs 04:26:09 73.2 8 8 04:14:31 0%

a 113.5 6 12 03:07:42 01:49:33 76.7 8 8 03:22:22 0.38%

4 b 101.6 7 12 06:46:30 02:11:40 68.9 8 8 03:43:52 0.88%

a 107.3 7 12 > 7 hrs 02:49:50 73.5 8 8 03:17:27 0.34%

5 b 104.4 7 12 > 7 hrs 01:59:36 71.3 8 8 03:17:27 0.34%

a. Linear; b. 3rd-degree Polynomial

single-OPO region is NEOR, the one serving Nebraska. We merge NEOR into a nearby big

region containing 12 OPOs. The resulting regional configurations turn out to be better in

all three cases. The improvements are 2.5, 25.9, and 3.1. This test also implies that local

search may be beneficial after the terminating regional configuration is constructed through

branch and price.

From the table, we also can see that in instances where both an terminating regional

configuration is found and the solution reaches optimality, a large proportion of the solution

time is spent between finding the terminating configuration and reaching optimality. During

this length of time, no progress is made. Even if optimality is not reached in other instances,

we suspect that the terminating configuration is a good suboptimal solution. It means

that little or no progress would be made after finding the terminating configuration. This

phenomenon is called the tailing-off effect, which possibly has two sources. One is column

generation and the other one is branch and bound. Given the fact that the branch-and-

price search tree usually does not have many levels and nodes for the considered instances,

column generation is likely to be the major source of the tailing-off effect, i.e., requiring a

large number of iterations to prove LP optimality. This effect has been exhibited in our

column generation scheme. Clearly, there is a trade-off between the computational effort

associated with computing strong bounds and evaluating small trees and computing weaker

bounds and evaluating bigger trees. In our problem, the tailing-off effect becomes more

123

significant as the pricing problem is hard to solve. Instead of solving the restricted master

problem at each node of the search tree to optimality, one can prematurely terminate the

column generation process and work with bounds on the final LP value. Farley [84], Lasdon

[134], and Vanderbeck and Wolsey [214] described simple and relatively easy to compute

bounds on the final LP value. It is necessary to further investigate the tailing-off effect in

our problem.

Figures 26 and 27 show the regional configurations obtained through branch and price. In

these figures, we can see that there are several regions with many OPOs in each configuration.

In addition, there are a few regions with few OPOs. Some of them are even not contiguous.

This refutes the belief that organ allocation regions should be contiguous. It also suggests

that as the allocation system becomes more efficient, the allocation may well be increasingly

inequitable.

To verify these regional configurations, we input them to the simulation model. We

run the simulation with 30 replications for each input. The justification of the number of

replications needed is identical to the one provided in Chapter 4. Table 18 reports the average

yearly increase of intra-regional transplant cardinality. The same argument as in Chapter 4

applies to explain why the corresponding improvement numbers between the simulation and

analytic models are not too comparable. We also compare the results with those obtained

from the simulation with input of optimal regional configurations through explicit region

enumeration. The comparison is presented in Tables 19 and 20. In all instances but one

(Linear, Data Set 4), the output data from the simulation model give strong support to the

conclusion that the optimal configuration results in an increase of intra-regional transplant

cardinality.

In our second set of experiments, we investigate computational performance of the imple-

mentation of our branch-and-price algorithm using COIN/BCP. We generate two instances

with the following coefficient specification. We only consider linear as the functional rela-

tionship between primary nonfunction and cold ischemia time. We set the pure distribution

likelihood lij to be pj, the number of patients awaiting transplant at OPO j, for all i, j ∈ I,

the likelihood that an organ procured at donor OPO i is available for MELD patients at

the regional level, βi = 1 for all i ∈ I, and the pure national flow likelihood l0i to be one

124

Figure 26: Optimal Regional Configuration Using Branch and Price

125

Figure 27: Optimal Regional Configuration Using Branch and Price (Contd.)

Table 18: Improvement on Intra-regional Transplant Cardinality (using Branch and Price)

Data Set 1 2 3 4

Simulation 37.3 39.5 52.3 31.9

Linear Analytic 96.1 104.5 108.4 113.5

Simulation 42.7 50.2 55.5 44.6

Polynomial Analytic 93.3 103.7 101.1 101.6

126

Table 19: Paired t Test: Branch and Price vs. Explicit Region Enumeration (Linear)

Paired Differences

Data Std. Std. Error 95% CI of the Diff.

Set Mean Deviation Mean Lower Upper t Sig.

1 36.95 53.29 9.73 17.05 56.84 3.797 .001

2 50.08 49.64 9.06 31.55 68.62 5.526 .000

3 90.48 48.53 8.86 72.36 108.6 10.21 .000

4 2.71 47.57 8.68 -15.05 20.48 0.313 .757

Table 20: Paired t Test: Branch and Price vs. Explicit Region Enumeration (Polynomial)

Paired Differences

Data Std. Std. Error 95% CI of the Diff.

Set Mean Deviation Mean Lower Upper t Sig.

1 47.27 53.11 9.70 27.44 67.10 4.875 .000

2 76.56 54.46 9.94 56.23 96.90 7.700 .000

3 82.21 47.26 8.63 64.56 99.85 9.527 .000

4 94.89 37.63 6.87 80.83 108.9 13.81 .000

127

of two constants, 0.9 or 1.1. Therefore, one instance corresponds to 0.9 and the other one

corresponds to 1.1. Recall that these notations are introduced in Chapters 3 and 4. In gen-

eral, these instances are easier than the real instance. The following tables of computational

results show this. An intuitive explanation is that national allocation has relatively little

effect, i.e.,
l0i
lij

is relatively small for all i, j ∈ I, and thus the pricing problem tends to be

easy.

Geographic Decomposition

We test the effect of geographic decomposition by designing various collections of region

covers. We solve the region design problem with the above coefficient specification based

on those region covers designs. For each design, we solve the region design problem by

applying column generation in which each pricing problem is constructed based on one

cover of the design and all integer feasible columns encountered in the pricing problem

solution process are added to the restricted master problem. Consequently, we obtain an

optimal regional configuration associated with the design. As a mnemonic, the region covers

designs are named m-n-k, where m is the number of region covers, n is the number of

OPOs in each region cover, and k is the region covers design index. Table 21 reports the

characteristics of region covers designs. In the table, we present three metrics in columns

“Total # Duplicates”, “Average # Duplicates”, and “# Appearance Max & Min”. Their

explanations are as follows. The total number of duplicates is m×n that measures how much

overlapping the covers are in a design. The average number of duplicates is the division of

the total number of duplicates by the number of OPOs. It measures how frequently an OPO

appears in a design. The maximum and minimum numbers of appearance are the maximum

and minimum numbers of times that an OPO appears in a design. These three metrics help

assess the design a priori. It is worth noting that in some designs, we intentionally exclude

one OPO. Table 21 also reports the objective value associated with each terminating regional

configuration and the best CPU time taken to obtain each terminating configuration. From

the table, we can see that the objective value tends to be larger as m or n increases. Between

two designs with the same m and n, a better solution is likely to be provided by a design

with larger maximum and minimum numbers of OPO appearance. On the other hand, as m

and n increase, the solution time increases. This is because more pricing problems need to

128

be solved at each iteration, and each pricing problem is larger and thus harder to solve. To

summarize, a tradeoff is presented between solution quality and solution time with respect

to m and n, two parameters in region covers design. In addition, even when both m and n

are fixed, the region covers design is still critical to solution quality and solution time. In

general, the more overlapping a design is, the higher quality the solution is. The above three

metrics measure how much overlapping a design is. Consequently, they are associated with

the solution quality.

Table 21: Region Covers Design Characteristics

OPOs Total # Average # # Appearance Term. Sol. CPU Time (s)
Label Covers per Cover Duplicates Duplicates Max Min p = 0.9 p = 1.1 p= 0.9 p = 1.1

20-14-1 20 14 280 4.75 10 1 5660.82 5659.56 3357 4859
20-14-2 20 14 280 4.75 8 2 5660.76 5659.4 3528 3909
20-12-1 20 12 240 4.07 8 0 5641.71 5640.44 960 1139
20-12-2 20 12 240 4.07 7 2 5660.54 5659.15 775 924
20-10-1 20 10 200 3.39 7 0 5639.41 5637.91 209 205
20-10-2 20 10 200 3.39 6 0 5578 5576.31 123 157
20-8-1 20 8 160 2.72 6 0 5106.11 5104.64 53.5 89.4
20-8-2 20 8 160 2.72 5 1 5659.28 5657.53 52.6 53.9
30-10-1 30 10 300 5.08 9 2 5660.65 5659.18 311 659
30-10-2 30 10 300 5.08 11 2 5660.47 5659.03 291 363
30-8-1 30 8 240 4.07 8 1 5659.09 5657.51 82.7 92.4
25-12-1 25 12 300 5.08 9 2 5660.8 5659.52 1225 1319
15-12-1 15 12 180 3.05 7 0 5293.71 5292.45 1051 1049

Initialization

We use region cover design 20-12-1 to study the initialization issue of column generation

in the region design problem. We consider a number of initialization schemes. In previous

computational experiments, the initial set of feasible columns represent all 59 single-OPO

regions. We call this scheme the “singleton” scheme. In addition to that, we consider

including all 3-OPO regions or 4-OPO regions as the initial feasible column set. We call

these two schemes the “3-OPO” and “4-OPO” schemes, respectively. It is easy to see that

there exists a feasible basis in the set of all 3-OPO regions or 4-OPO regions. The current

regional configuration is also considered as the initial set of columns. Finally, we consider

using two optimal regional configurations obtained by solving the region design problem

through explicit region enumeration. The two optimal configurations are selected among all

potential regions with no more than 7 OPOs and 8 OPOs, respectively. We call the last 3

initialization schemes the “current”, “cardi 7”, and “cardi 8” schemes.

129

Table 22 presents the related computational results including the optimal objective value,

the number of regions in the optimal configuration, the maximum and minimum numbers of

OPOs in a region. For each run, we impose a 1-hour CPU time limit. If the run terminates

within 1 hour, we record the solution time and the CPU time taken to find the optimal

solution. If the run does not terminate within 1 hour, we only record the latter result. All

CPU times are recorded in seconds.

Table 22: Initialization Effect (Region Covers Design 20-12-1)

Term. Number # of OPOs Term. Term.
Initialization Sol. of in a Region CPU Config.

Instance Scheme Obj. Regions Max Min Time Found
singleton 5641.71 12 9 1 960 505
current 5660.07 11 9 3 1095 761
3-OPO 5660.36 11 8 2 > 1 hr 421

p0 = 0.9 4-OPO 5660.48 11 8 2 > 1 hr 312
cardi 7 5661.05 11 8 2 922 496
cardi 8 5661.11 10 8 2 > 1 hr 0

singleton 5640.44 11 8 1 1139 686
current 5658.83 10 8 3 909 823
3-OPO 5659.05 11 8 2 2210 1169

p0 = 1.1 4-OPO 5659.19 11 8 2 1403 900
cardi 7 5659.66 11 8 2 > 1 hr 1101
cardi 8 5659.89 10 8 2 1080 0

Table 22 indicates that improvement is obtained when considering alternative initializa-

tion schemes. Note that for region covers design 20-12-1, the optimal regional configuration

obtained by selecting the best set of regions with no more than 8 OPOs, is still optimal after

applying column generation. But it takes a large amount of time to prove it. Comparing

the “3-OPO” and “4-OPO” schemes, we observe that the latter one yields larger objective

value. Comparing the “cardi 7” and ”cardi 8” schemes, we make the same observation. This

observation is desirable since the latter initialization scheme in each comparison includes

more regions and it has been shown that the number of OPOs in several regions in an opti-

mal configuration should be relatively large. Enumerating all potential 4-OPO regions only

takes a few seconds. Including them in the initial restricted master problem improves the

130

solution significantly. One experiment left for future work is to see if enumerating all potential

regions with more OPOs would be benefit both in terms of the solution time and solution

quality since enumerating all 5-OPO regions or 6-OPO regions is still not too time-consuming.

Column Generation Strategy

For each region covers design, we consider a number of column generation strategies.

Strategy i, i = 1, . . . , 6, add at most first n feasible solutions per iteration to the iterative

restricted master problem (If there are fewer than n feasible solutions at any iteration, we

add all of them). Strategy “A” (“A” refers to all) adds all solutions per iteration (feasible

and optimal) to the iterative restricted master problem. Strategy “B” (“B” refers to best)

adds the optimal solution per iteration to the iterative restricted master problem. We present

related computational results for region covers designs 20-12-1 and 20-12-2 in Table 23. In

the column “CPU Time (s)” corresponding to each instance, we underscore the best CPU

time among the column generation strategies. In the next 2 columns corresponding to each

instance, we report the number of restricted master problems solved at the root node of the

search tree and the number of columns needed to solve the LP relaxation at the root node.

We also calculate the average numbers of columns generated at each iteration and for each

region cover. It is worth noting that most of computational effort is spent at the root node

for almost all instances. Related computational results for other region covers designs are

included in Appendix D. Among the various column generation strategies, Strategies 1, 2,

and “B” are always inferior with respect to the solution time. Strategy 3 is the best in 4

cases in terms of the solution time and Strategies 4, 5, 6, and “A” are the best in 8, 5, 8,

and 4 cases, respectively, in terms of the solution time. For almost all cases, the solution

time is comparable across the latter 4 strategies.

Strategies “A” and 1 normally take the fewest and most iterations, respectively. Strategy

“B” generates the fewest columns in most of the instances. However, Strategy 1 usually

generates the fewest columns on average per iteration. With Strategies 1 and 2, the average

number of columns added at each iteration is approximately proportional to the number of

columns allowed to generate per iteration. For instance, in case 20-12-1 with p0 = 1.1, the

average number of columns per iteration is 13.3 with Strategy 1, and the average number is

28.6 with Strategy 2. This indicates that allowing 3 or more columns per iteration would more

131

Table 23: Column Generation Effect (20 covers and each cover with 12 OPOs)

p0 = 0.9 p0 = 1.1

Covers CPU Num Num Avg Cols Avg Cols CPU Num Num Avg Cols Avg Cols

Design Strategy Time (s) Iters Cols per Iter per Cover Time (s) Iters Cols per Iter per Cover

1 2506 62 782 12.6 39.1 2305 57 756 13.3 37.8

2 1175 33 826 25.0 41.3 942 29 828 28.6 41.4

3 973 25 811 32.4 40.6 1270 28 842 30.1 42.1

20 12 1 4 996 24 838 34.9 41.9 1012 23 861 37.4 43.1

5 852 22 870 39.5 43.5 1046 22 855 38.9 42.8

6 1028 23 869 37.8 43.5 890 21 877 41.8 43.9

A 960 22 903 41.0 45.2 1139 23 913 39.7 45.7

B 1163 26 441 17.0 22.1 1682 30 469 15.6 23.5

1 1392 57 839 14.7 42.0 1647 52 732 14.1 36.6

2 917 32 840 26.3 42.0 967 32 838 26.2 41.9

3 903 27 874 32.4 43.7 831 25 827 33.1 41.4

20 12 2 4 877 25 878 35.1 43.9 767 22 807 36.7 40.4

5 951 25 946 37.8 47.3 806 22 839 38.1 42.0

6 990 26 964 37.1 48.2 1194 25 911 36.4 45.6

A 775 22 904 41.1 45.2 924 22 945 43.0 47.3

B 1484 32 490 15.3 24.5 1426 29 470 16.2 23.5

likely generate the iterative optimal column and/or potentially important columns at every

iteration. This justifies the statement that Strategies 3, 4, 5, 6, and “A” are computationally

comparable.

Figure 28 plots the solution times with different column generation strategies in cases

20-12-1 and 20-12-2. The figure shows that there is not a clear convex trend that as the

number of columns allowed to generate per iteration increases, the solution time decreases

first and then increases. Similar to Table 23, it also suggests that the solution time tends

to be insensitive to the column generation strategy when the number of columns allowed to

generate per iteration is no less than 3. Similar figures associated with other region covers

designs are included in Appendix E.

MIP Pricing Problem Solution Option

We select three CPLEX MIP solver parameters and test their effects on the pricing

problem solution. These parameters are:

• CPX PARAM MIPEMPHASIS: MIP emphasis indicator;

• CPX PARAM HEURISTICFREQ: B&B tree node heuristic frequency; and

• CPX PARAM EPGAP: MIP relative tolerance.

Detailed description of these parameters can be found in the CPLEX user’s manual [113].

For CPX PARAM MIPEMPHASIS, we test two options, “balance”: balance optimality and feasi-

132

Figure 28: Column Generation Effect (20 covers and each cover with 12 OPOs)

bility; and “feasibility”: emphasis on feasibility over optimality. For CPX PARAM HEURFREQ,

we test four options: “none”: not use the node heuristic; “automatic”: use it automatically

1: use it every iteration, “10”: use it every 10 iterations. We also choose the MIP relative

tolerance as 10−4, 5%, and 10%. Therefore, for each instance and a specified region covers

design, there are totally 24 pricing problem solution options. We run these experiments with

Strategy “A”, adding all solutions (feasible and optimal) to the restricted master problem

at each iteration. In Tables 24, we report the solution time, the number of restricted master

problems solved at the root node of the search tree, and the number of columns needed to

solve the LP relaxation at the root node. We underline the best solution time among the

24 options for each instance given a region covers design. Related computational results for

other region covers designs are included in Appendix F.

Among the 4 CPX PARAM HEURFREQ options, the option “none” is always the dominant

one. This strongly argues that applying the node heuristic is not effective. The computa-

tional results also show that for other two parameters, there is no evidence that one option

133

Table 24: Pricing Problem Solution Options: Design (20,12)

Solution Options p0 = 0.9 p0 = 1.1

MIP Heuristic MIP # # # #

Instance Emphasis Frequency Gap CPU (s) Iters Cols CPU (s) Iters Cols

feasibility none 10−4 781 20 944 1044 21 993

feasibility none 5% 803 20 904 1142 21 937

feasibility none 10% 764 19 908 899 19 928

feasibility automatic 10−4 1172 23 952 913 19 892

feasibility automatic 5% 816 20 790 1389 22 898

feasibility automatic 10% 839 19 797 1180 22 954

feasibility 1 10−4 2421 21 882 3355 22 947

feasibility 1 5% 2714 22 849 3595 24 835

feasibility 1 10% 3162 23 848 3579 22 912

feasibility 10 10−4 997 21 947 1413 22 952

feasibility 10 5% 1162 22 808 1266 22 874

20 12 1 feasibility 10 10% 1019 20 830 1257 21 945

balance none 10−4 833 22 729 914 23 754

balance none 5% 872 23 738 867 22 774

balance none 10% 957 24 760 971 23 759

balance none 10−4 973 22 903 1130 23 913

balance automatic 5% 985 22 820 1177 24 889

balance automatic 10% 1033 23 835 1434 25 855

balance 1 10−4 1907 21 903 2588 22 892

balance 1 5% 1968 21 875 2454 22 860

balance 1 10% 2236 21 795 2593 23 913

balance 10 10−4 911 22 822 1140 22 895

balance 10 5% 823 20 834 1058 21 830

balance 10 10% 1052 22 904 959 20 743

feasibility none 10−4 691 20 1045 710 19 873

feasibility none 5% 655 19 943 814 19 957

feasibility none 10% 783 21 972 1039 24 966

feasibility automatic 10−4 807 21 945 929 22 987

feasibility automatic 5% 804 22 802 926 22 958

feasibility automatic 10% 898 22 834 962 22 896

feasibility 1 10−4 2100 21 947 2176 20 944

feasibility 1 5% 2482 22 916 3080 24 976

feasibility 1 10% 1966 21 902 2986 23 857

feasibility 10 10−4 850 21 961 817 19 883

feasibility 10 5% 913 22 894 1029 21 908

20 12 2 feasibility 10 10% 1027 23 958 783 23 781

balance none 10−4 562 21 737 739 22 738

balance none 5% 562 21 737 739 22 738

balance none 10% 648 22 726 703 22 740

balance automatic 10−4 776 22 904 926 22 945

balance automatic 5% 786 22 874 924 23 879

balance automatic 10% 877 23 874 1042 24 849

balance 1 10−4 1778 22 888 2003 22 953

balance 1 5% 1713 22 904 2277 23 881

balance 1 10% 2011 23 865 1994 22 883

balance 10 10−4 928 24 961 934 22 909

balance 10 5% 814 21 849 947 22 816

balance 10 10% 804 22 875 812 21 811

134

Table 25: Rounding Heuristics: (p0 = 0.9)

Best Available Heuristic I Heuristic II

Instance Solution CPU (s) Tree Size Solution CPU (s) Tree Size Gap Solution CPU (s) Tree Size Gap

20 14 1 5660.82 3191 0,1 5654.18 218.9 16,35 1.17e-3 5660.1 196 1,3 1.27e-4

20 14 2 5660.76 3318 0,1 Did not terminate n/a 5660.61 139.3 1,3 2.65e-5

20 12 1 5641.71 852 0,1 5636.55 86.3 8,17 9.15e-4 5641.67 93.1 0,1 7.09e-6

20 12 2 5660.54 775 0,1 5654.67 271.8 40,81 1.04e-3 Did not terminate n/a

20 10 1 5639.41 167 0,1 5632.68 67.1 17,35 1.19e-3 5638.08 32.6 5,11 2.36e-4

20 10 2 5578 123 0,1 5571.71 74.9 23,47 1.13e-3 5577.29 29.2 3,7 1.27e-4

20 8 1 5106.11 43.5 0,1 5104.28 22.7 14,29 3.58e-4 5105.36 18.5 1,3 1.47e-4

20 8 2 5659.28 40.7 0,1 5657.7 10.4 4,9 2.79e-4 5657.79 8.6 1,3 2.63e-4

30 10 1 5660.65 300 0,1 5656.8 99.3 18,37 6.66e-4 5660.38 26.6 0,1 4.77e-5

30 10 2 5660.63 291 0,1 5656.93 57.9 9,19 6.25e-4 5660.63 28.6 0,1 0

30 8 1 5659.09 65.7 0,1 Did not terminate n/a Did not terminate n/a

25 12 1 5660.8 967 0,1 5653.01 70.6 6,13 1.38e-03 5660.27 47.5 0,1 9.36e-5

15 12 1 5293.71 794 0,1 5287.27 307.9 57,115 1.22e-3 5292.97 348.3 4,9 1.40e-4

Table 26: Rounding Heuristics: (p0 = 1.1)

Best Available Heuristic I Heuristic II

Instance Solution CPU (s) Tree Size Solution CPU (s) Tree Size Gap Solution CPU (s) Tree Size Gap

20 14 1 5659.56 3632 0,1 5653.85 198.7 16,33 1.01e-3 5659.07 79.2 0,1 8.66e-5

20 14 2 5659.4 3568 0,1 5652.73 901.5 91,183 1.18e-3 5659.18 577.8 33,67 3.89e-5

20 12 1 5640.44 890 0,1 5636.06 210.4 19,53 7.77e-4 5640.25 49.3 1,3 3.37e-5

20 12 2 5659.15 767 0,1 5653.63 445.9 26,133 9.75e-4 5659.01 53.9 0,1 2.47e-5

20 10 1 5637.91 199 0,1 5633.6 90.8 22,45 7.64e-4 5636.78 25.1 1,3 2.00e-4

20 10 2 5576.31 157 0,1 5571.76 41 12,25 8.16e-4 5576.31 41.5 2,5 0

20 8 1 5104.64 85.6 0,1 5103.04 10 4,9 3.13e-4 5103.19 9.4 3,7 2.84e-4

20 8 2 5657.53 41.8 0,1 5656.83 4.7 0,1 1.24e-4 5656.14 14.7 4,9 2.46e-4

30 10 1 5659.18 608 0,1 5657.09 31.3 3,7 3.69e-4 5659.06 169.7 10,29 2.12e-5

30 10 2 5659.03 288 0,1 5655.41 160.2 28,57 6.40e-4 5659.01 50.3 1,3 3.53e-6

30 8 1 5657.51 63.7 0,1 Did not terminate n/a 5656.87 206.9 3,9 1.13e-4

25 12 1 5659.52 1190 0,1 5653.66 361.7 31,83 1.04e-03 5658.4 84.1 3,7 1.98e-4

15 12 1 5292.45 942 0,1 5284.38 144.6 22,45 1.52e-3 Did not terminate n/a

is clearly better than others. For the parameter CPX PARAM MIPEMPHASIS, the option “bal-

ance” is slightly better, especially when the region cover is relatively small. For the parameter

CPX PARAM EPGAP, the tolerances of 5% and 10% seem to be better.

Rounding Heuristic

We apply the two heuristic methods described in Section 5.3 to the optimal region design

instances along with various region covers designs. Tables 25 and 26 report relevant compu-

tational results. As a comparison, we present the best available objective value with respect

to a given region covers design. The column “gap” associated with either heuristic lists the

relative gap between the objective value obtained by the heuristic and the best available

objective value. We observe some cases where the solution could not terminate until out of

memory. Note that, as discussed earlier, neither heuristic has finite termination guarantee.

135

Tables 25 and 26 show that both heuristics are fast. It is also intuitive that the second

heuristic is faster than the first one in most of the instances since with the second heuristic,

the columns generated per iteration should be much more likely “promising”. The tables

also show that both heuristics yield high-quality suboptimal solutions. In all instances,

the second heuristic provides a larger suboptimal solution. Another observation is that the

branch-and-price tree size could be large when applying these heuristics.

136

6.0 IMPROVING THE SOLUTION OF THE PRICING PROBLEM

From the analysis in Chapter 5, we know that our mixed-integer pricing problem does not

possess the integrality property. It is both theoretically and practically hard to solve. Hence,

the most computationally intensive component of the branch-and-price algorithm is the

solution of the pricing problem. In Chapter 5, we make several attempts to mitigate this

major bottleneck in the branch-and-price algorithm. For example, we apply geographic

decomposition to solve smaller-scale pricing problems. However, all these attempts do not

fundamentally improve the pricing problem solution. In this chapter, we will discuss how

to make the solution of the pricing problem more efficient using the following two ideas.

The first idea is to study various formulations of the pricing problem and ultimately find

an alternative that achieves more efficient solution. The second one is to study the pricing

problem polyhedron and add strong valid inequalities for the pricing problem to achieve

more efficient solution.

In Section 6.1, we present three alternative formulations in addition to the one presented

in Chapter 5. We analyze and compare these alternatives. These alternative formulations

are obtained by either replacing or combining existing decision variables. It turns out that

together with the original formulation, they are theoretically equivalent, meaning that among

the four formulations, the optimal objective value is identical and there exists an identical

optimal set of OPOs. However, computationally the four formulations perform differently.

In Section 6.2, we develop two classes of valid inequalities. Our objective is to improve the

solution of the pricing problem with incorporation of these valid inequalities. We present

related theoretical results and explore the possibility of embedding them in a branch-and-

bound solution. We report our computational findings in Section 6.3. In this chapter, we

137

consider the pricing problem of the generic form. That is, the problem is abstractly con-

structed on a complete graph G = (I, E). In our region design problem, I is the set of

OPOs.

6.1 ALTERNATIVE FORMULATIONS

Let us first revisit our original pricing problem formulation.

RPP1 w1 : max
∑

i∈I

∑

j∈I\{i}
oiβiαijzij −

∑

i∈I

πiyi (6.1)

subject to
∑

j∈I\{i}
zij + z0

i = yi,∀i ∈ I; (6.2)

zij ≤ yj,∀i, j ∈ I, i 6= j; (6.3)

likzij ≤ lijzik + likwjk,∀i, j, k ∈ I, i 6= j, k, j < k; (6.4)

lijzik ≤ likzij + lijwjk,∀i, j, k ∈ I, i 6= j, k, j < k; (6.5)

wjk ≤ 2− yj − yk,∀j, k ∈ I, j < k; (6.6)

l0i zij ≤ ljz
0
i + lkw

0
ji,∀i, j ∈ I, i 6= j; (6.7)

lijz
0
i ≤ l0i zij + lijw

0
ji,∀i, j ∈ I, i 6= j; (6.8)

w0
ji ≤ 2− yj − yi,∀i, j ∈ I, i 6= j; (6.9)

yi ∈ IB, 0 ≤ z0
i ≤ 1,∀i ∈ I; 0 ≤ zij ≤ 1,∀i, j ∈ I, i 6= j; (6.10)

0 ≤ wij ≤ 1,∀i, j ∈ I, i < j; 0 ≤ w0
ij ≤ 1,∀i, j ∈ I, i 6= j. (6.11)

For the description of decision variables, objective function, and constraints, we refer

back to the exposition in Chapter 5. As modeled in Constraints (6.4) - (6.6), when both

138

nodes j and k are selected, i.e., yj = yk = 1, wjk = 0, and thus a proportionality constraint

is imposed for flow from node i to nodes j and k. On the other hand, at most one node being

selected between j and k implies that there is no additional restriction on wjk other than its

upper bound. A similar argument applies to w0
jk and w0

kj. To summarize, when yj = yk = 1,

wjk = w0
jk = w0

kj = 0; when yjyk = 0, 0 ≤ wjk, w
0
jk, w

0
kj ≤ 1.

Proposition 6.1. Assume that oj, βj, αjk ≥ 0 for all j, k ∈ I. If yj = 0 or yk = 0 for any j

and k, there exists some optimal solution to RPP w1 such that ŵjk = ŵ0
jk = ŵ0

kj = 1.

Proof. Let us prove this result by contradiction. Suppose that in any optimal solution to

RPP w1, there exists a node j ∈ I such that ŷj = 0, ŵjk < 1 or ŵ0
jk < 1 or ŵ0

kj < 1 for some

node k ∈ I, k 6= j. Without loss of generality, let us assume that in an optimal solution

(ŷ, ẑ, ẑ0, ŵ, ŵ0), there exists a node j such that ŷj = 0, we have ŵjk < 1 for some node k.

Therefore, Constraint (6.6) is not tight regardless of the value of ŷk. In addition, we know

ẑij = 0 for any i ∈ I. Let us arbitrarily pick an i, ẑij = 0 implies that Constraint (6.4)

is not tight and Constraint (6.5) becomes ẑik ≤ ŵjk. Let ŵ′
jk = ŵjk + ǫ = 1. It is easy

to verify that both Constraints (6.4) and (6.5) are satisfied by the solution (ŷ, ẑ, ẑ0, ŵ′, ŵ0)

where we replace ŵjk with ŵ′
jk. The condition that oi, βi, αij, αik ≥ 0 for all i ∈ I implies

that (ŷ, ẑ, ẑ0, ŵ′, ŵ0) is also an optimal solution. Hence, a contradiction occurs and the result

follows.

Proposition 6.1 provides a way to modify the pricing problem formulation. From the

proposition, we know there exists some optimal solution to RPP w1 such that ŵjk = ŵ0
jk =

ŵ0
kj = 1 if ŷj ŷk = 0 or ŷj + ŷk ≤ 1. Note that the above proof also indirectly indicates that

increasing the value of ŵjk does not affect ŷj or ŷk. Since our pricing problem solution is

139

to provide an optimal set of nodes (forming a column that prices out favorably) to the

restricted master problem, we can replace wjk, w0
jk, and w0

kj with one variable wjk. The

modified formulation is presented as:

RPP w2 : max
∑

i∈I

∑

j∈I\{i}
oiβiαijzij −

∑

i∈I

πiyi (6.12)

subject to

(6.2), (6.3), (6.10);

likzij ≤ lijzik + likwjk,∀i, j, k ∈ I, i 6= j, k, j < k; (6.13)

lijzik ≤ likzij + lijwjk,∀i, j, k ∈ I, i 6= j, k, j < k; (6.14)

l0i zij ≤ lijz
0
i + l0i wij,∀i, j ∈ I, i < j; (6.15)

lijz
0
i ≤ l0i zij + lijwij,∀i, j ∈ I, i < j; (6.16)

l0jzji ≤ ljiz
0
j + l0jwij,∀i, j ∈ I, i < j; (6.17)

ljiz
0
j ≤ l0jzji + ljiwij,∀i, j ∈ I, i < j; (6.18)

wij ≤ 2− yi − yj,∀i, j ∈ I, i < j; (6.19)

0 ≤ wij ≤ 1,∀i, j ∈ I, i < j. (6.20)

Note that RPP w2 does not change flow constraints (6.2) and (6.3), and bounding con-

straint (6.10). We therefore use their equation numbers in RPP w2 as well as other alter-

native formulations presented later in this section. Let ujk = 1 − wjk and u0
jk = 1 − w0

jk.

Then when yj = yk = 1, ujk = u0
jk = u0

kj = 1 and when yjyk = 0, ujk = u0
jk = u0

kj = 0. We

consider the following alternative formulation where we substitute wjk with 1− ujk and w0
jk

with 1− u0
jk in RPP w1.

RPP u1 : max
∑

i∈I

∑

j∈I\{i}
oiβiαijzij −

∑

i∈I

πiyi (6.21)

subject to

(6.2), (6.3), (6.10);

140

likzij + likujk ≤ lijzik + lik,∀i, j, k ∈ I, i 6= j, k, j < k; (6.22)

lijzik + lijujk ≤ likzij + lij,∀i, j, k ∈ I, i 6= j, k, j < k; (6.23)

ujk ≥ yj + yk − 1,∀i, j ∈ I, i < j; (6.24)

ujk ≤ yj,∀i, j ∈ I, i < j; (6.25)

ujk ≤ yk,∀i, j ∈ I, i < j; (6.26)

l0i zij + l0i u
0
ji ≤ lijz

0
i + l0i ,∀i, j ∈ I, i 6= j; (6.27)

lijz
0
i + liju

0
ji ≤ l0i zij + lij,∀i, j ∈ I, i 6= j; (6.28)

u0
ji ≥ yi + yj − 1,∀i, j ∈ I, j 6= i; (6.29)

u0
ji ≤ yi,∀i, j ∈ I, j 6= i; (6.30)

u0
ji ≤ yj,∀i, j ∈ I, j 6= i; (6.31)

0 ≤ uij ≤ 1,∀i, j ∈ I, i < j; 0 ≤ u0
ji ≤ 1,∀i, j ∈ I, j 6= i. (6.32)

Given the relationship between wjk and ujk, Constraints (6.22) - (6.24) and (6.27) - (6.29)

in RPP u1 correspond to Constraints (6.4) - (6.6) and (6.7) - (6.9), respectively.

Corollary 6.1. Assume that oj, βj, αjk ≥ 0 for all j, k ∈ I. If yj = 0 or yk = 0 for any

j, k ∈ I, there exists some optimal solution to RPP u1 such that ûjk = û0
jk = û0

kj = 0.

Proof. The results follows directly from Proposition 6.1.

Proposition 6.2. Assume that oj, βj, αjk ≥ 0 for all j, k ∈ I. Let v be the optimal objective

value of RPP u1 and v′ be the optimal objective value of RPP u1 without Constraints (6.25)

- (6.26) and (6.30) - (6.31). Then v = v′.

Proof. It is clear that v ≤ v′. Now let us prove that v ≥ v′. Let (ŷ, ẑ, ẑ0, û, û0) be an optimal

solution to RPP u1 excluding Constraints (6.25) - (6.26) and (6.30) - (6.31). If ŷj = ŷk = 1

for any pair j, k ∈ I, ûjk = 1, which can be obtained by Constraint (6.24) and the associated

bounding constraint. A similar argument applies to û0
ji. In this case, Constraints (6.25)

- (6.26) and (6.30) - (6.31) are identical to the upper bounds on the variables. Hence,

141

(ŷ, ẑ, ẑ0, û, û0) is feasible to RPP u1. If ŷj = 0 or ŷk = 0 for any pair j, k ∈ I, the condition

that oi, αij, αik ≥ 0 for all i ∈ I implies that there exists a ûjk such that ûjk = 0. A similar

argument applies to û0
ji. Therefore, there exists an optimal solution (ŷ, ẑ, ẑ0, û, û0) that is

feasible to RPP u1 and thus v ≥ v′. The result follows.

Corollary 6.1 implies that there exists some optimal solution to RPP u1 such that ujk =

yjyk and u0
ji = yjyi. A standard way to linearize these nonlinear relationships is shown in

Constraints (6.24) - (6.26) and (6.29) - (6.31). This provides an alternative way to modify

the pricing problem formulation. Proposition 6.2 implies that Constraints (6.25) - (6.26) and

(6.30) and (6.31) are not necessary with respect to optimal objective value. Hence, we can

either include or exclude them for our purpose of identifying the column that prices out the

most favorably. When those constraints are excluded, the resulting formulation only differ

from RPP w1 in that we replace wij and w0
ij with uij and u0

ij, respectively. The reason we

include those constraints is that our computational experimentation shows that the inclusion

is computationally beneficial.

Corollary 6.1 and Proposition 6.2 offer two alternative ways to modify the pricing problem

formulation. Combining the two modifications described above, we obtain the following

alternative formulation.

RPP u2 : max
∑

i∈I

∑

j∈I\{i}
oiβiαijzij −

∑

i∈I

πiyi (6.33)

subject to

(6.2), (6.3), (6.10);

likzij + likujk ≤ lijzik + lik,∀i, j, k ∈ I, i 6= j, k, j < k; (6.34)

lijzik + lijujk ≤ likzij + lij,∀i, j, k ∈ I, i 6= j, k, j < k; (6.35)

142

l0i zij + l0i uij ≤ lijz
0
i + l0i ,∀i, j ∈ I, i < j; (6.36)

lijz
0
i + lijuij ≤ l0i zij + lij,∀i, j ∈ I, i < j; (6.37)

l0jzji + l0juij ≤ ljiz
0
j + l0j ,∀i, j ∈ I, i < j; (6.38)

ljiz
0
j + ljiuij ≤ l0jzji + lji,∀i, j ∈ I, i < j; (6.39)

uij ≥ yi + yj − 1,∀i, j ∈ I, i < j; (6.40)

uij ≤ yi,∀i, j ∈ I, i < j; (6.41)

uij ≤ yj,∀i, j ∈ I, i < j; (6.42)

0 ≤ uij ≤ 1,∀i, j ∈ I, i < j. (6.43)

With Propositions 6.1 and 6.2, and Corollary 6.1, we are ready to show the equivalence

of the above four alternative formulations in terms of the optimal objective value.

Theorem 6.1. Let z∗w1, z∗w2, z∗u1, and z∗u2 be the optimal objective values of RPP w1,

RPP w2, RPP u1, and RPP u2, respectively. Then we have

z∗w1 = z∗w2 = z∗u1 = z∗u2.

Furthermore, there exists an optimal solution to each problem in which decision variables y

are identical among the four formulations.

Proof. The equivalence of RPP w1 and RPP w2 follows from Proposition 6.1. The equiva-

lence of RPP u1 and RPP u2 follows from Corollary 6.1. The equivalence of RPP w1 and

RPP u1 is established by Proposition 6.2 and the fact that it is a simple relation linking wij

with uij and w0
ij with u0

ij for all i, j ∈ I. We can establish the equivalence between RPP w2

and RPP u2 in the same manner.

Corollary 6.2. Let zLP
w1 , zLP

w2 , zLP
u1 , zLP

u2 be the optimal objective values of the LP relaxation

of RPP w1, RPP w2, RPP u1, and RPP u2, respectively. Then we have

zLP
w1 = zLP

w2 = zLP
u1 = zLP

u2 .

143

Let us use RPP u2 to explain the above results intuitively. With the assumption that

oi, βi, αij ≥ 0 for all i, j ∈ I, there is no incentive to increase uij and u0
ij in any above

formulation. Hence, there exists an optimal solution such that both Constraint (6.40) and

the lower bounding constraint on uij or u0
ij are tight for all i, j ∈ I. It is clear that none of

our formulation modifications affects this fact.

To summarize, various alternative formulations are induced by using w variables or u

variables, setting wij = w0
ij = w0

ji or uij = u0
ij = u0

ji, and including Constraints (6.41) and

(6.42). These formulations yield the same optimal objective value in their respective LP

relaxations. However, the solution times and initial LP gaps of these LP relaxations may

differ a lot when using the CPLEX MIP solver. In Section 6.3.1 we will compare these

alternative formulations computationally. Our computational results indicate that solving

RPP u2 tends to take the least amount of time. Therefore, we conduct a polyhedral study

on RPP u2 in the next section.

6.2 POLYHEDRAL STUDY

In this section, we consider two classes of valid inequalities for RPP u2. For ease of expo-

sition, we drop the label u2 in RPP u2. Note that with all three constraints (6.40) - (6.42)

included in RPP u2, we have the complete linearization of uij = yiyj for all i, j ∈ I. This

means that each uij can be viewed as a binary variable.

6.2.1 Valid Inequality Class I

For this class of valid inequalities, we study three mixed-integer programs derived from the

pricing problem RPP. We restrict RPP by adding constraints associated with the cardinality

of the optimal node set, i.e.,
∑

i∈I y∗
i = s,

∑

i∈I y∗
i ≥ s,

∑

i∈I y∗
i ≤ s, where y∗ is the incidence

vector of the optimal node set and s is given. Hence, such restrictions provides three mixed-

integer programs. With a given cardinality value s, we call the three resulting problems

RPP=(s), RPP≥(s), and RPP≤(s). A formal definition will be given later in this section.

144

We add valid inequalities for the resulting mixed-integer programs to make their solutions

more efficient. The main idea here is to solve many resulting mixed-integer programs instead

of dealing with RPP directly or its subproblems in a branch-and-bound solution. In this

way, we have to search for an cardinality which is the optimal cardinality of the node set.

In general, only a näıve approach is applicable that solves many of RPP=(s), RPP≥(s), and

RPP≤(s) for various s, which would not be desirable. However, often times we have some

idea on how many nodes are likely included in the optimal node set. Furthermore, some

efficient algorithmic procedures often exist in practice to search for the optimal cardinality

in our region design pricing problems. In this section, we will first present relevant theoretical

results for deriving the valid inequalities. Then we will discuss the special case and describe

three algorithmic procedures. At the end of this section, we consider how to incorporate

these valid inequalities in the branch-and-bound solution for RPP. For each i ∈ I, let us

rank {lij}, ∀j ∈ I, j 6= i, in ascending and descending orders, and denote {laij} and {ldij}

to be the sequences in ascending and descending orders, respectively. Define La
i (s,D) and

Ld
i (s,D) to be the indices of the first s elements of D ⊆ I in the respective sequences. This

implies that 0 ≤ s ≤ |I| − 2. We assume that for any D ⊂ I, La
i (s,D) = Ld

i (s,D) = ∅ if

s = 0.

Proposition 6.3. Denote S ⊆ I to be the node set corresponding to a selected region. Let

s = |S| − 2. If i, j ∈ S, then

lij
lij +

∑

k∈Ld
i (s,I\{i,j}) lik + l0i

≤ zij ≤
lij

lij +
∑

k∈La
i (s,I\{i,j}) lik + l0i

.

Proof. Let us assume that S = {i, j, k1, k2, . . . , ks}. Then zij =
lij

P

k∈S\{i,j} lik+lij+l0i
. By def-

inition, we have
∑

k∈La
i (s,I\{i,j}) lij ≤

∑

k∈S\{i,j} lik ≤
∑

k∈Ld
i (s,I\{i,j}) lij. Hence the result

follows.

Proposition 6.3 states that given a selected region, the intra-regional transplant likelihood

zij is bounded from above and below. The upper bound is obtained by selecting a number of

OPOs with the smallest transplant likelihoods from OPO i excluding lii and lij. The lower

bound is obtained by selecting a number of OPOs with the largest transplant likelihoods

from OPO i excluding lii and lij.

145

Proposition 6.4. Let RPP≥(s) be RPP with imposition of the following additional con-

straint:
∑

i∈I yi ≥ s for s = 2, . . . , |I|. Then the following inequality is valid for RPP≥(s):

zij ≤
lijuij

lij +
∑

k∈La
i (s−2,I\{i,j}) lik + l0i

, (6.44)

for all i, j ∈ I, i 6= j.

Proof. It is easy to see the result in the case where uij = yiyj = 0. In the case where uij = 1,

i.e., yi = yj = 1, the result follows directly from Proposition 6.3 as s − 2 =
∑

i∈I yi − 2 =

|S| − 2. If
∑

i∈I yi = s′ > s, we have

zij ≤
lij

lij +
∑

k∈La
i (s′−2,I\{i,j}) lik + l0i

≤
lij

lij +
∑

k∈La
i (s−2,I\{i,j}) lik + l0i

.

The first inequality is due to Proposition 6.3. The second inequality holds for s′ > s and

uij = 1.

Proposition 6.5. Let RPP≤(s) be RPP with imposition of the following additional con-

straint:
∑

i∈I yi ≤ s for s = 2, . . . , |I|. Then the following inequality is valid for RPP≤(s):

zij ≥
lijuij

lij +
∑

k∈Ld
i (s−2,I\{i,j}) lik + l0i

, (6.45)

for all i, j ∈ I, i 6= j.

Proof. This proof is similar to the one in Proposition 6.4. It is easy to see the result in the

case where uij = yiyj = 0. In the case where uij = 1, i.e., yi = yj = 1, the result follows

directly from Proposition 6.3 as s− 2 =
∑

i∈I yi − 2 = |S| − 2. If
∑

i∈I yi = s′ < s, we have

zij ≥
lij

lij +
∑

k∈Ld
i (s′−2,I\{i,j}) lik + l0i

≥
lij

lij +
∑

k∈Ld
i (s−2,I\{i,j}) lik + l0i

.

The first inequality is due to Proposition 6.3. The second inequality holds for s′ < s and

uij = 1.

With respect to variable zij, we call Inequality (6.44) the upper bounding valid inequality

and call Inequality (6.45) the lower bounding valid inequality.

146

Corollary 6.3. The following inequality is valid for RPP:

lijuij
∑

k∈I\{i} lik + l0i
≤ zij ≤

lijuij

lij + l0i
.

Proof. The upper bounding valid inequality follows from Propositions 6.4 as s = 2 and the

lower bounding valid inequality follows from Proposition 6.5 as s = |I|.

Theorem 6.2. Let RPP=(s) be RPP with imposition of the following additional constraint:
∑

i∈I yi = s for s = 2, . . . , |I|. Then the following inequality is valid for RPP=(s):

lijuij

lij +
∑

k∈Ld
i (s−2,I\{i,j}) lik + l0i

≤ zij ≤
lijuij

lij +
∑

k∈La
i (s−2,I\{i,j}) lik + l0i

, and (6.46)

ljiuij

lji +
∑

k∈Ld
j (s−2,I\{i,j}) ljk + l0j

≤ zji ≤
ljiuij

lji +
∑

k∈La
j (s−2,I\{i,j}) ljk + l0j

, (6.47)

for all i, j ∈ I, i 6= j.

Proof. It is easy to see the result in the case where uij = 0. In the case where uij = 1, i.e.,

yi = yj = 1, the results follows directly from Proposition 6.3. The argument is the same as

in Propositions 6.4 and 6.5.

Remark 6.1. Let us denote P≥
s and P≤

s to be the feasible solution regions of RPP≥(s) and

RPP≤(s), respectively. It is clear that P≥
s+1 ⊆ P≥

s and P≤
s ⊆ P≤

s+1, ∀s = 0, . . . , |I| − 1.

Remark 6.2. Any feasible solution to RPP=(s) is both a feasible solution to RPP≥(s) and

RPP≤(s).

Remark 6.3. Let us denote P=
s to be the feasible solution region of RPP=(s). When s = |I|,

zij =
pj

P

k∈I\{i} pk+p0
i

, and P=
s becomes one point (all z and u variables are uniquely deter-

mined). This corresponds to the case where all y variables are fixed to 1.

Results similar to those in Propositions 6.4 and 6.5 and Theorem 6.2 can also be applied

to impose valid bounding inequalities for variables z0
i and yi. For example, Corollary 6.4 is

analogous to Theorem 6.2.

147

Corollary 6.4. For any s = 1, . . . , |I|, The following inequality is valid for RPP=(s):

l0i yi

l0i +
∑

k∈Ld
i (s−1,I\{i}) lik

≤ z0
i ≤

l0i yi

l0i +
∑

k∈La
i (s−1,I\{i}) lik

, (6.48)

for all i ∈ I.

Proof. It is easy to see the result in the case where yi = 0. Let us consider the case where

yi = 1. Denote S ⊆ I to be the node set corresponding to the selected region. Let s′ = |S|−1.

We assume that S = {i, k1, . . . , k
′
s}. Similar to Proposition 6.3, we have the following

statement. If i ∈ S, then

l0i
l0i +

∑

k∈Ld
i (s′,I\{i}) lik

≤ z0
i ≤

l0i
l0i +

∑

k∈La
i (s′,I\{i}) lik

. (6.49)

Let s = |S|. Since i ∈ S is equivalent to yi = 1, the result follows from (6.49).

Corollary 6.5. The following valid inequality is valid for RPP:

l0i yi
∑

k∈I\{i} lik + l0i
≤ z0

i ≤ yi.

Proof. Similar to the proof for Corollary 6.3, the result follows directly from Corollary 6.4.

Remark 6.4. Consider any OPO i, if we view the national level as an artificial OPO with

pure distribution likelihood l0i , Corollary 6.4 becomes a special case of Theorem 6.2 addressing

proportional allocation between this artificial OPO and other OPOs.

We explain the specification in Remark 6.4 as follows. Since uij = yiyj, we can replace

uij with yiyj. Whether zij is equal to 0 is dependent upon the value of uij, or in other words,

both yi and yj. Its physical interpretation in RPP is that allocation at the region level

from OPO i to j occurs only if both i and j are included in the selected region. Whether

z0
i is equal to 0 is dependent upon the value of yi. Its physical interpretation in RPP is

that national-level allocation occurs at OPO i only if i is included in the selected region.

Note that an artificial OPO is associated with each OPO. Let y0
i be the binary variable

representing the artificial OPO associated with OPO i. It is always true that y0
i = yi and

thus yiy
0
i = yi.

148

So far, we have derived a class of valid inequalities. Unfortunately, most of them are

for the problems with additional set cardinality constraints:
∑

i∈I yi ≥ s or
∑

i∈I yi ≤ s. In

Corollaries 6.3 and 6.5, we present two inequalities that are valid for RPP. However, they are

not strong. Before solving the pricing problem, if we have some idea or restriction on how the

cardinality of the optimal set would be, we would impose stronger valid inequalities based

on Theorem 6.2 and Corollary 6.4. This procedure can be viewed as formulation tightening.

Johnson et al. [119] showed encouraging results when adding strong valid inequalities for

the pricing problem of the min-cut clustering problem [119] after a thorough investigation

of the pricing problem polytope.

In a special case regarding the pricing problem, we derive several algorithmic procedures

to search the optimal set cardinality by utilizing the relation among RPP≥(s) and RPP≤(s)

with various s. To compute RPP≥(s) and RPP≤(s), we add valid inequalities (6.46) - (6.47)

and (6.48) with respect to a specified s. In Section 6.2.1.1 we first present relevant general

theoretical results and then discuss several algorithmic procedures for a special case. More

generally, we use branch and bound to solve the orginal pricing problem. As the branch-

and-bound tree is developed, we can impose stronger valid inequalities at search tree nodes

besides the root node. Cut generation in a branch-and-bound solution framework is discussed

in Section 6.2.1.2.

6.2.1.1 Searching the Optimal Set Cardinality in a Special Case We define f≥(s)

and f≤(s) to be the optimal objective function values of RPP≥(s) and RPP≤(s), respectively.

We define f ∗ to be the optimal objective function value of RPP. Let us also define S∗ to

be the set that contains the number of nodes selected in an optimal solution to the pricing

problem (optimal cardinality set). For any s∗ ∈ S∗, we call s∗ optimal set cardinality. First

let us show monotonicity of f≥(·) and f≤(·) as functions.

149

Lemma 6.1. Let s∗ be an optimal set cardinality, i.e., s∗ ∈ S∗, f≥(s∗) = f≤(s∗) = f ∗.

Proof. For any s ∈ S∗, since RPP≥(s) has an additional constraint compared to RPP, we

have f≥(s) ≤ f ∗. We also know that f≥(s) ≥ f ∗ since
∑

i∈I yi = s implies that the optimal

solution to RPP is a feasible solution to RPP≥(s). Similarly we can prove f≤(s) = f ∗ for

any s ∈ S∗.

Proposition 6.6. Let smin = min{s|s ∈ S∗} and smax = max{s|s ∈ S∗}. For s = 0, . . . , |I|,

• f≥(s) : ZZ+ 7→ IR is a monotonically nonincreasing function. Moreover, it is constant in

S≥ := {0, 1, . . . , smax}, i.e., f≥(s) = f ∗, ∀s ∈ S≥.

• f≤(s) : ZZ+ 7→ IR is a monotonically nondecreasing function. Moreover, it is constant in

S≤ := {smin, . . . , |I| − 1, |I|}, i.e., f≤(s) = f ∗, ∀s ∈ S≤.

Proof. We only prove the first part here. The second part can be proved in the same manner.

Following from the fact that P≥
s+1 ⊆ P≥

s , we have f≥(s + 1) ≤ f≥(s), ∀s = 0, . . . , |I| − 1.

Suppose f≥(s) is not constant when s ∈ S≥. Due to its monotonicity, there must exist an

s′ ∈ S≥ such that f≥(s′) > f≥(s∗) for an s∗ ∈ S∗. However, for any s∗ ∈ S∗, f≥(s∗) = f ∗ ≥

f≥(s′) by Lemma 6.1. Thus the result is implied by the contradiction.

Proposition 6.6 shows that f≥(s) and f≤(s) are monotonically nonincreasing and non-

decreasing, respectively. A special case we consider here includes two assumptions:

(A6.1) The optimal cardinality set S∗ is an integrally continuous set, i.e., S∗ = [smin, smax]∩

ZZ+.

(A6.2) f≥(s) is monotonically decreasing over s = smax + 1, . . . , |I| and f≤(s) is monoton-

ically increasing over s = 0, . . . , smin − 1.

Define f=(s) to be the optimal objective value of RPP=(s). With the above further spec-

ification, the function f=(s) presents properties that are suitable for application of some

efficient algorithms that search the optimal set cardinality. Our computational experiments

suggest that the pricing problem in the region design problem is likely in this special case.

150

Proposition 6.7. Suppose both Assumptions A6.1 and A6.2 are valid for a RPP. That is,

1) the optimal cardinality set S∗ is an integrally continuous set, and 2) f≥(s) is monotonically

decreasing in [smax+1, |I|] and f≤(s) is monotonically increasing in [0, smin−1]. Then either

f=(s) = f≥(s) or f=(s) = f≤(s) for s = 0, . . . , |I|.

Proof. Since S∗ is integrally continuous, Lemma 6.1 implies that f=(s) = f≥(s) = f≤(s) =

f ∗ for s ∈ [smin, smax]. Without loss of generality, we assume that smin ≥ 1 and smax ≤ |I|−1.

It suffices to prove that f=(s) = f≤(s) for s = 0, . . . , smin − 1 and f=(s) = f≥(s) for

s = smax + 1, . . . , |I|. The second assumption as above states that f≤(s) is monotonically

increasing for s = 0, . . . , smin−1. It follows that there exists an optimal solution to RPP≤(s)

such that
∑

i∈I y∗
i = s where y∗ is the y component of the optimal solution. Note that y∗

is the incidence vector of an optimal node set. Clearly, this optimal solution is feasible

to RPP=(s). Hence, f=(s) ≥ f≤(s). It is easy to see that f=(s) ≤ f≤(s). Therefore,

f=(s) = f≤(s) for s = 0, . . . , smin − 1. A similar argument applies to show f=(s) = f≥(s)

for s = smax + 1, . . . , |I|.

Theorem 6.3. Suppose both Assumptions A6.1 and A6.2 hold for RPP. Then f=(s) is a

unimodal function or a monotonically nondecreasing function or nonincreasing function for

s = 0, . . . , |I|.

Proof. Proposition 6.7 implies that if smin ≥ 1 and smax ≤ |I| − 1, f=(s) is monotonically

increasing over s ∈ [0, smin − 1], constant over s ∈ [smin, smax], and f=(s) is monotonically

decreasing over s ∈ [smax + 1, |I|]. This implies that f=(s) is a unimodal function. Other

two cases are easy to show.

Corollary 6.6. Suppose both Assumptions A6.1 and A6.2 hold for a RPP. Let s∗ be an

optimal set cardinality, i.e., s∗ ∈ S∗. Then s∗ ∈ arg maxs min{f≥(s), f≤(s)}.

Proof. Proposition 6.7 implies that f(s) = min{f≥(s), f≤(s)} for all s. Then the result

follows from Theorem 6.3.

Remark 6.5. Let a ∈ {=,≥,≤}. The additional constraint
∑

i∈I yi a s is a linear transform

from IB
|I| to ZZ+, with which we aggregate the solution space in terms of the optimal set

151

cardinality. This constraint can be viewed as a bundle constraint specifying the number of

nodes selected in the optimal solution. More importantly, it allows us to add valid inequalities

for the restricted pricing problem.

When Assumptions A6.1 and A6.2 are satisfied, Corollary 6.6 provides an optional

algorithmic procedure for finding the optimal set cardinality. Let us denote S∗
a(s) to be the

set that contains the number of nodes selected in the optimal solution to RPPa(s), a is ≥

or ≤. We also define ς∗a(s) ∈ S∗
a(s) to be the optimal set cardinality obtained by solving

RPPa(s), a is ≥ or ≤. At the end of this section, we propose three alternative algorithmic

procedures to solve RPP in the special case. Let ς∗ be an optimal set cardinality. It is part

of the output in each of the procedures.

Approach 1: Arbitrarily pick a cardinality value s, solve RPP≥(s) and RPP≤(s). If

ς∗≥(s) = s, then output ς∗ = ς∗≤(s) and f ∗ = f≤(s). If ς∗≤(s) = s, then output

ς∗ = ς∗≥(s) and f ∗ = f≥(s). If s 6= ς∗≤(s) and s 6= ς∗≥(s), then S∗ includes s, ς∗≥(s),

and ς∗≤(s). Hence output ς∗ ∈ {s, ς∗≥(s), ς∗≤(s)} and f ∗ = f≥(s) = f≤(s).

Approach 2: Arbitrarily pick two consecutive cardinality values, s and s + 1, 0 ≤ s <

s + 1 ≤ |I|, solve RPP=(s) and RPP=(s + 1). If f=(s) > f=(s + 1), then solve

RPP≤(s) and output ς∗ = ς∗≤(s) and f ∗ = f≤(s). If f=(s) < f=(s + 1), then solve

RPP≥(s + 1) and output ς∗ = ς∗≥(s + 1) and f ∗ = f≥(s + 1). If f=(s) = f=(s + 1),

then output either ς∗ = s or ς∗ = s + 1 and f ∗ = f=(s) = f=(s + 1).

Approach 3: Set sl = 0 and su = |I|.

Step 1. If su − sl > 1, arbitrarily pick two consecutive cardinality values, s and s + 1

from [sl, su], and solve RPP=(s) and RPP=(s + 1). Otherwise, go to Step 4.

Step 2. If f=(s) = f=(s + 1), DONE and output either ς∗ = s or ς∗ = s + 1 and

f ∗ = f=(s) = f=(s + 1).

Step 3. Otherwise, if f=(s) > f=(s + 1), set sl = 0 and su = s, and go to Step 1; if

f=(s) < f=(s + 1), set sl = s + 1 and su = |I|, and go to Step 1.

Step 4. If f=(su) ≥ f=(sl), output ς∗ = su and f ∗ = f=(su); otherwise, output ς∗ = sl

and f ∗ = f=(sl).

152

In each of these three algorithms, we can also output the optimal solution together

with ς∗. In Approach 1, the optimal solution is obtained by solving either a RPP≥(s) or a

RPP≤(s) depending on ς∗≤(s) and ς∗≥(s). In Approaches 2 and 3, it is obtained by solving

either a RPP≤(s) or a RPP≥(s) depending on the comparison between f=(s) or f=(s + 1).

For Approach 3, many search techniques can be applied for selecting the two consecutive

cardinality values such as binary search and Fibonacci search [146]. Now let us compare

the three algorithmic approaches listed above. It may not be obvious which one is the best

choice. In either RPP≤(s) or RPP≥(s), we can add valid inequalities to bound zij and z0
i

from only one direction. As a comparison, we can add valid inequalities to bound zij and z0
i

in RPP=(s) from both directions. It is thus true that RPP=(s) is easier to solve compared

to RPP≥ and RPP≤. Therefore, intuitively, Approaches 1 and 2 may be preferable when

solving RPP≥ and RPP≤ are not significantly time-consuming whereas Approach 3 may be

preferable when solving them is much more time-consuming and the node set I is not too

big.

6.2.1.2 Cut Generation in the Branch-and-Bound Solution (Class I) At any

node of the branch-and-bound tree for solving RPP, a subset of variables are fixed to 0 or 1.

Knowing the fixed variables at a node, we can generate inequalities that are valid for that

node and its children.

Corollary 6.7. Denote I0 and I1 to be the sets of variables in RPP that are fixed to 0 or

1. Let I ′ = I\(I0 ∪ I1). Define RPP=(s, I1) to be RPP with imposition of the following

additional constraint:
∑

i∈I yi = s + |I1|, s = 2, . . . , |I| − |I ′|. Then the following inequality

is valid for RPP=(s, I1):

lijuij

lij +
∑

k∈Ld
i (s−2,I′\{i,j}) lik + l0i

≤ zij ≤
lijuij

lij +
∑

k∈La
i (s−2,I′\{i,j}) lik + l0i

, and (6.50)

ljiuij

lji +
∑

k∈Ld
j (s−2,I′\{i,j}) ljk + l0j

≤ zji ≤
ljiuij

lji +
∑

k∈La
j (s−2,I′\{i,j}) ljk + l0j

, (6.51)

for all i, j ∈ I ′, i 6= j.

153

Results similar to Propositions 6.4 and 6.5 can also be derived. Results similar to Corol-

lary 6.4 can be derived as well to bound z0.

By Corollary 6.7, we can add valid inequalities (6.50) and (6.51) to every node in the

brand-and-bound tree for solving RPP. Some valid inequalities with respect to z0 can also

be generated.

Knowing the fixed variables, we can design an alternative branching scheme that uses

more general constraints to create subproblems. Define ŷ to be the fractional solution at a

node. Given ŷ, two alternative branches are
∑

i∈I yi ≤ ⌊
∑

i∈I ŷi⌋ and
∑

i∈I yi ≥ ⌊
∑

i∈I ŷi⌋+1.

In this way, valid inequalities are generated at each node of the branch-and-bound tree

according to Propositions 6.4 and 6.5. This branching scheme is more general that would

result in more balanced branching [145] due to the fact that the optimal set cardinality value

has been found to be approximately 10 whereas the total number of variables is 59. This

means that a lot of variables would eventually be fixed to 0 as the branch-and-bound tree

grows. This branching scheme can be viewed as an example of branching on hyperplanes

[216].

If the branching strategy is branching on variables, stronger valid inequalities are added

but an unbalanced search tree may result. If the more general branching scheme is chosen,

weaker valid inequalities are added but a more balanced search tree may lead to considerably

less enumeration. The associated computational trade-off needs computational investigation,

which is left for future work.

6.2.2 Valid Inequality Class II

The class of valid inequalities discussed in Section 6.2.1 is developed without considering

the pricing problem objective function. By contrast, the class of valid inequalities presented

in this section is developed with consideration of the objective function. In other words, in

Section 6.2.1, we try to obtain a polyhedral description of the entire pricing problem convex

hull whereas in this section we are only interested in deriving cuts for cutting-plane algo-

rithms. The main idea here is to design separating hyperplanes in lower-dimensional spaces

(separating hyperplanes involving a subsets of decision variables) to cut off the fractional

154

solution obtained by solving the LP relaxation of RPP. In our case, verifying the validity of

a separating hyperplane in the full-dimensional space (a cutting plane involving all decision

variables) is equivalent to solving RPP. Performing the verification in a lower-dimensional

space, however, may be computationally beneficial. In this section, we will first present

relevant theoretical results for deriving this class of valid inequalities and those for develop-

ment of a cutting-plane algorithm. Then we will present a pure cutting plane algorithmic

procedure. At the end of this section, we consider incorporating these cutting planes in the

branch-and-bound solution for RPP. Denote (ŷ, ẑ) to be an LP-relaxation solution to RPP.

Let us define If , Il, and Iu to be the subsets of nodes such that each variable ŷi is fractional,

0, and 1, for i ∈ If , Il, and Iu, respectively. Note that I = If ∪Il∪Iu. For ease of exposition,

we present the objective function in a more generic form, as

∑

i∈I

∑

j∈I

cijzij −
∑

i∈I

diyi,

where di ≥ 0 for all i ∈ I and cij > 0 for all i, j ∈ I. Note that in RPP, di = πi ≥ 0 and

cii = 0 for all i ∈ I.

Denote RPP(A) to be the pricing problem constructed by nodes A ⊆ I (A is a subset

of OPOs in RPP). Let L(A) be the optimal objective value of RPP(A). For any (y, z) ∈

IR
|A|
+ × IR

|A|2
+ , let lA(y, z) =

∑

i∈A

∑

j∈A cijzij−
∑

i∈A diyi. For example, RPP(I) is the original

pricing problem, L(I) is the optimal objective value of RPP(I), and lI(ŷ, ẑ) is the optimal

objective value of the LP relaxation of RPP(I).

Theorem 6.4. As defined earlier, L(If ∪ Iu) is the optimal objective value of RPP(If ∪ Iu).

The following inequality

∑

i∈If∪Iu

∑

j∈If∪Iu

cijzij −
∑

i∈If∪Iu

diyi ≤ L(If ∪ Iu), (6.52)

is a violated inequality for the original pricing problem RPP(I) that cuts off the fractional

LP-relaxation solution to RPP(I).

155

Proof. For ease of exposition, let L = L(If ∪ Iu). Given If , Il, and Iu, the objective value
∑

i∈I

∑

j∈I cijzij −
∑

i∈I diyi can be rewritten as:

∑

i∈If∪Iu

∑

j∈If∪Iu

cijzij +
∑

i∈If∪Iu

∑

j∈Il

cijzij +
∑

i∈Il

∑

j∈If∪Iu

cijzij +
∑

i∈Il

∑

j∈Il

cijzij−
∑

i∈If∪Iu

diyi−
∑

i∈Il

diyi.

Let L0 = lI(ŷ, ẑ), where (ŷ, ẑ), as defined earlier, is an optimal solution to the LP relaxation

of RPP(I). Since ŷi = 0 for all i ∈ Il, ẑij = 0 if i ∈ Il or j ∈ Il or both. Therefore,

L0 =
∑

i∈If∪Iu

∑

j∈If∪Iu
cij ẑij −

∑

i∈If∪Iu
diŷi = lIf∪Iu

(ŷ, ẑ).

Suppose (y∗, z∗) ∈ ZZ
(|If |+|Iu|)
+ × IR

(|If |+|Iu|)2
+ is an optimal solution to RPP(If ∪ Iu), then

for any feasible solution (y, z) ∈ ZZ
(|If |+|Iu|)
+ × IR

(|If |+|Iu|)2
+ to RPP(If ∪ Iu), lIf∪Iu

(y, z) ≤

lIf∪Iu
(y∗, z∗) = L.

For any feasible solution (y, z) ∈ ZZ
(|If |+|Iu|)
+ × IR

(|If |+|Iu|)2
+ , we construct vector (y, z) ∈

ZZ
|I|
+ × IR

|I|2
+ such that yi = yi for all i ∈ If ∪ Iu, zij = zij for all i, j ∈ If ∪ Iu; and yi = 0 for

all i ∈ Il, zij = 0 for all i ∈ Il or j ∈ Il or both. Hence, lIf∪Iu
(y, z) = IIf∪Iu

(y, z). Note that

in any integer feasible solution (y, z), once y are known, z are uniquely determined. It can

be easily shown that (y, z) ∈ ZZ
|I|
+ × IR

|I|2
+ is an integer feasible solution to RPP(I).

Let us consider the integer feasible solution (y, z) ∈ ZZ
|I|
+ × IR

|I|2
+ . We claim that it is

true that lIf∪Iu
(y′, z′) ≤ lIf∪Iu

(y, z) for any integer feasible solution (y′, z′) ∈ ZZ
|I|
+ × IR

|I|2
+ to

RPP(I) with y′
i = 1 for at least one i ∈ Il and y′ = y for all i ∈ If ∪ Iu, . For any i ∈ Il

with y′
i = 1, it is clear that z′ij ≤ zij and z′ji ≤ zji for i, j ∈ If ∪ Iu. This follows that

lIf∪Iu
(y′, z′) ≤ lIf∪Iu

(y, z) since cij ≥ 0, ∀i, j ∈ I and di ≥ 0, ∀i ∈ I.

Therefore, for any integer feasible solution (y′, z′) to RPP(I), lIf∪Iu
(y′, z′) ≤ lIf∪Iu

(y, z) =

lIf∪Iu
(y, z) ≤ lIf∪Iu

(y∗, z∗) = L. The above inequality shows that (6.52) is not violated by

any integer feasible solution to the original pricing problem. Note that for (y∗, z∗), we can

construct vector (y∗, z∗) ∈ ZZ
|I|
+ × IR

|I|2
+ in the way described earlier in the proof. That is,

y∗
i = y∗

i for all i ∈ If ∪ Iu, z∗ij = z∗ij for all i, j ∈ If ∪ Iu; and y∗
i = 0 for all i ∈ Il, z∗ij = 0 for

all i ∈ Il or j ∈ Il or both. Since lIf∪Iu
(y∗, z∗) = lIf∪Iu

(y∗, z∗) = L and (y∗, z∗) is a feasible

solution to RPP(I), we show that L = lIf∪Iu
(y∗, z∗) ≤ lIf∪Iu

(ŷ, ẑ) = L0, and L = L0 only if

(y∗, z∗) is an optimal solution to the LP relaxation of RPP(I). This implies that (6.52) is

156

violated by the fractional LP-relaxation to the pricing problem. Therefore, (6.52) is a valid

inequality that does cut off the optimal LP-relaxation solution of the original pricing problem.

It is easy to see that the hyperplane, defined by (6.52), intersects (y∗, z∗). Note that

to cut off the fractional LP-relaxation solution (ŷ, ẑ), we can generate any cut of this class

whose right hand side is in [L,L0). The potential drawback of these valid inequalities is that

the number of variables that are used to construct them may be huge, i.e., |If ∪ Iu| is large.

The following theorem attempts to lower the dimension of the cutting plane.

Theorem 6.5. Recall that (ŷ, ẑ) is an optimal solution to the LP relaxation of RPP(I) and

L(A) is the optimal objective value of RPP(A). Let L0(A) =
∑

i∈A

∑

j∈A cij ẑij −
∑

i∈A diŷi.

The following inequality
∑

i∈A

∑

j∈A

cijzij −
∑

i∈A

diyi ≤ L(A), (6.53)

is a valid inequality for the original pricing problem RPP(I) that cuts off the fractional

LP-relaxation solution to RPP(I) if and only if L(A) < L0(A).

Proof. It is easy to prove the “only if” direction. Let us prove the “if” direction in the

following. As in the proof of Theorem 6.4, we need to show that (6.53) is satisfied by all

integer feasible solutions to the original pricing problem and violated by an optimal LP-

relaxation solution. The same argument applies to show that (6.53) is satisfied by all integer

feasible solutions. The additional condition L(A) < L0(A) implies that (6.53) cuts off the

fractional LP-relaxation solution.

Theorem 6.5 can be viewed as a generalization of Theorem 6.4. It provides flexibility

to generate valid inequalities of this class based on various subsets of I once the additional

condition is satisfied.

In general, we need to impose stronger conditions to further reduce the dimension of

the cutting plane. Corollary 6.8 provides such a condition with which a subset of I can

be precluded from consideration because it is equivalent to generate cutting planes with

considering that subset and without considering the subset.

157

Lemma 6.2. L(·) : S 7→ IR is a monotonically nondecreasing function, i.e, if S1 ⊂ S2 ⊆ I,

L(S1) ≤ L(S2).

Proof. Suppose (y∗, z∗) ∈ ZZ
|S1|
+ × IR

|S1|2
+ is an optimal solution to RPP(S1), we construct

vector (y, z) ∈ ZZ
|S2|
+ × IR

|S2|2
+ such that yi = y∗

i for all i ∈ S1, zij = z∗ij for all i, j ∈ S1;

and yi = 0 for all i ∈ S2\S1, zij = 0 for all i ∈ S2\S1 or j ∈ S2\S1 or both. It is

easy to verify that (y, z) is an integer feasible solution to RPP(S2). It is also clear that

L(S1) = lS1(y
∗, z∗) = lS1(y, z) = lS2(y, z) ≤ L(S2). Hence, the result follows.

Lemma 6.3. Recall that given an LP-relaxation solution to RPP(I), denoted by (ŷ, ẑ), Il is

defined as the subset of nodes such that each variable ŷi is 0 for i ∈ Il. For any set A ⊆ I

such that A ∩ Il 6= ∅, L0(A\Il) = L0(A).

Proof. Given the fractional LP-relaxation solution to the original pricing problem (ŷ, ẑ), we

have ŷi = 0 for all i ∈ A∩Il and ẑij = 0 for all i ∈ A∩Il or j ∈ A∩Il or both. Hence, L0(A) =

lA(ŷ, ẑ) = lA\Il
(ŷ, ẑ)+

∑

i∈A∩Il

∑

i∈A\Il
cij ẑij+

∑

i∈A\Il

∑

j∈A∩Il
cij ẑij+

∑

i∈A∩Il

∑

j∈A∩Il
cij ẑij−

∑

i∈A∩Il
diyi = li∈A\Il

(ŷ, ẑ) = L0(A\Il).

Corollary 6.8. Given a set A ⊆ I such that Inequality (6.53) generated based on A is valid

and cuts off the fractional LP-relaxation solution to the original pricing problem RPP(I),

if A ∩ Il 6= ∅, Inequality (6.53) generated based on A\Il is also valid and cuts off the same

fractional LP-relaxation solution.

Proof. To show that
∑

i∈A\Il

∑

j∈A\Il
cijzij −

∑

i∈A\Il
diyi is a valid inequality, it suffices to

show that L(A\Il) < L0(A\Il). By Theorem 6.5, if
∑

i∈A

∑

j∈A cijzij −
∑

i∈A diyi ≤ L(A)

is a valid inequality and cuts off the fractional LP-relaxation solution, then L(A) < L0(A).

Lemma 6.2 implies that L(A\Il) ≤ L(A). Lemma 6.3 implies that L0(A\Il) = L0(A). Hence,

L(A\Il) ≤ L(A) < L0(A) = L0(A\Il).

Corollary 6.8 indicates that computationally, we should generate cuts that involve y

variables whose values are nonzero in the LP-relaxation solution, i.e., from an A ⊆ If ∪ Iu,

and there is no need to generate cuts that involve y variables from Il, i.e., for an A such that

A ∩ Il 6= ∅.

158

Remark 6.6. Suppose L(If) < L0(If), then the inequality
∑

i∈If

∑

j∈If
cijzij −

∑

i∈If
diyi ≤

L(If) is a valid inequality that cuts off the fractional LP-relaxation solution to RPP(I).

6.2.2.1 A Pure Cutting-Plane Algorithm It is easy to see that any of the above

theoretical results is still valid with slight modification when additional cutting planes are

added to the LP relaxation of RPP. Theorem 6.4 ensures that before reaching optimality, a

cutting plane can always be generated by solving RPP(If ∪ Iu). Hence a pure cutting-plane

algorithmic framework is presented as follows. For ease of exposition, we use Ayy + Azz +

Az0z0 + Auu = b to represent all constraints in the LP relaxation of RPP.

Algorithm 6.1. (A Pure Cutting-Plane Algorithm)

Initialization: Set t = 1, S1
R = {l0 ∈ IR

1, (y, z, z0, u) ∈ IR
|I|
+ × IR

|I|2
+ × IR

|I|
+ × IR

|I|2/2
+ :

l0 − (
∑

i∈I

∑

j∈I cijzij −
∑

i∈I diyi) = 0, Ayy + Azz + Az0z0 + Auu = b}.

Iteration t:

Step 1: Solution of the LP relaxation. Solve

(RPP LPt) max{l0 : (l0, y, z, z0, u) ∈ St
R}.

Suppose the optimal solution of RPP LPt is (lt0, y
t, zt, (z0)t, ut). Set I t

f and I t
u to be

the sets of yt and zt variables in which the values of yt variables are fractional and

1.

Step 2: Optimality test. If yt ∈ ZZ
|I|
+ , then yt is part of an optimal solution. Deter-

mine the values of other decision variables. DONE and output the optimal solution.

Otherwise, select At ⊆ If ∪ Iu.

Step 3: Cut generation. If L(At) < L0(At), go to Step 4. Otherwise, go to Step

5.
Step 4: Addition of a cut. Set

St+1
R = St

R∩







l0 ∈ IR
1, (y, z, z0, u) ∈ IR

|I|
+ × IR

|I|2
+ × IR

|I|
+ × IR

|I|2/2
+ :

∑

i∈At

∑

j∈At

cijzij −
∑

i∈At

diyi ≤ L(At)







.

Go to Step 6.

159

Step 5: Addition of a node subset. At ← At ∪ A, where A ⊆ I and A ∩ At = ∅.

Go to Step 3.

Step 6: Set t← t + 1.

We now show the presented pure cutting-plane algorithm is correct and converges finitely.

Theorem 6.6. Algorithm 6.1 terminates finitely at iteration t where yt is the optimal set of

nodes.

Proof. At each iteration t, Algorithm 6.1 solves RPP(At) finitely many times and obtains the

final optimal objective value L(At) for generating cutting planes. Let us consider the integer

hull of RPP. It is clear that it is [0, 1]|I| since every corner point of the |I|-dimensional binary

hypercube is an integer feasible solution to RPP. By Theorem 6.5, Step 4 of the algorithm

at iteration t obtains an extreme point on the projection of the integer hull onto IR
|At|
+ . The

projection is the binary hypercube [0, 1]|At|. It thus generates a face of the integer hull of

RPP and the associated cutting plane cuts off all fractional solutions that project into the

hypercube. This also implies that such a cutting plane would not be generated repeatedly.

Hence finite convergence follows from that there are finitely many faces on the integer hull of

RPP. It is easy to see lt0, t = 1, . . . , k, is a decreasing sequence and lt0 ≥ L(I) for all t. The

algorithm terminates when an integer feasible solution is found, then lk0 ≤ L(I). Therefore,

lk0 = L(I).

To summarize, Theorem 6.5 ensures that before reaching optimality, a separating hy-

perplane can always be generated to separate integer feasible solutions and the incumbent

optimal solution to the LP relaxation. The convergence follows from the fact that there

are finitely many faces of the integer hull of RPP that one has to generate before reaching

optimality.

Theorem 6.5 indicates the potential that we could greatly reduce the size of the solved

pricing problem in cut generation to speed up the pricing problem solution. Intuitively,

however, the more y decision variables are excluded when selecting At, the less likely that

a cutting plane of this class indeed exists in the lower-dimensional space induced by At.

This is because it is less likely to satisfy the condition L(At) < L0(At) when |At| is small.

Hence a computational trade-off is presented in size selection of the solved pricing problem.

160

If At is of higher dimension, stronger cuts tend to be generated although each solution of

the pricing problem is more time-consuming; if At is of lower dimension, weaker cuts tend

to be generated although each solution of the pricing problem takes less time. One more

disadvantage of choosing lower-dimensional At is that it may be difficult to find an A such

that L(At) < L0(At). Theorem 6.4 indicates when using a subset of I, If ∪ Iu, the condition

L(If ∪ Iu) < L0(If ∪ Iu) does not need to be checked. In fact, If ∪ Iu is the smallest such

subset of I. It is not clear how to select At. A good starting point may be I t
f since it

contains all fractional dimensions in the current LP-relaxation solution. If we start from I t
f ,

we may not be able to generate a cutting plane at the beginning. It is not clear which y

variables in Iu should be added to At and what order in which they should be checked. It is

also not clear how to compute L(At). Two options in terms of solving the pricing problem

constructed based on At are: one, solve the problem in a mixed-integer programming solver

after constructing the problem; two, enumerate possible integer solutions (integer solutions

that are neighbor to the projection of the fractional optimal solution onto the space induced

by At) and select the one that gives the largest objective value. Overall, the best algorithmic

choice is not obvious and thus computational investigation is needed, which is left for future

work.

Some preliminary computational experiments show that this pure cutting-plane algo-

rithm tends to require an exorbitant number of cuts. Each cutting plane appears to be not

strong. It is likely that we have to generate a cutting plane in the space induced by I. This

means that one has to solve RPP, which is obviously undesirable.

6.2.2.2 Cut Generation in the Branch-and-Bound Solution (Class II) Similar

to the cut generation of Class I valid inequalities in the branch-and-bound solution, we add

Class II valid inequalities for each node in the branch-and-bound tree where some variables

are already fixed to 0 or 1 and others are still fractional.

At any node of the branch-and-bound tree s, let us define Is
0 and Is

1 to be the sets of

variables in RPP that are already fixed to 0 and 1. Let us also define Is
f , Is

l , Is
u to be the

161

sets of variables whose values are fractional, 0, and 1, in an LP-relaxation to RPP with

restriction of Is
0 and Is

1 . Theorem 6.7 shows that a result similar to Theorem 6.4 can be

derived at other nodes in the branch-and-bound tree besides the root node.

Theorem 6.7. Denote RPPs(A) to the pricing problem that is at node s of the branch-and-

bound tree and is constructed by A ⊆ Is := I\(Is
0 ∪ Is

1) = Is
f ∪ Is

l ∪ Is
u. Let Ls(A) be the

optimal objective value of RPPs(A). The following inequality

∑

i∈Is
f
∪Is

u

∑

j∈Is
f
∪Is

u

cijzij −
∑

i∈Is
f
∪Is

u

diyi ≤ Ls(Is
f ∪ Is

u), (6.54)

is violated by the fractional LP-relaxation solution to the pricing problem RPPs(I
s), but

satisfied by all integer feasible solutions to RPPs(I
s).

Proof. The proof is the same to that in Theorem 6.4 except that the argument is applied

here for Is := I\(Is
0 ∪ Is

1).

Denote Ls
0(I

s
f∪Is

u) to be the optimal objective value of the LP relaxation of RPPs(I
s
f∪Is

u).

Note that if Ls(Is
f ∪ Is

u) = Ls
0(I

s
f ∪ Is

u), then node s in the branch-and-bound tree can be

fathomed due to integrality.

Theorem 6.7 presents an inequality that is valid at a particular node of the branch-and-

bound tree. A result similar to Theorem 6.5 can also be derived for any arbitrary set A

once the condition Ls(A) < Ls
0(A) is given. Remark 6.7 shows that at any node in the any

branch-and-bound tree, we can also add inequalities that are valid for all nodes in the tree.

Remark 6.7. As defined earlier, L(Is
f ∪ Is

u ∪ Is
1) is the optimal objective value of RPP(Is

f ∪

Is
u ∪ Is

1). The following inequality

∑

i∈Is
f
∪Is

u∪Is
1

∑

j∈Is
f
∪Is

u∪Is
1

cijzij −
∑

i∈Is
f
∪Is

u∪Is
1

diyi ≤ L(Is
f ∪ Is

u ∪ Is
1), (6.55)

is valid for RPP(I).

162

Remark 6.7 is, in fact, a special case of Theorem 6.4. To have Inequality (6.55) cut off

any fractional solution, stronger conditions need to be imposed.

Now let us summarize the two classes of valid inequalities. Both of them may help before

using branch and bound to solve RPP. Both of them may also help within the branch-

and-bound framework. We are, however, unable to draw any sophisticated and decisive

conclusions on algorithmic selection for solving RPP. This leads to a need for comprehensive

computational investigation. Some attempts have been made and preliminary results are

presented in the next section.

6.3 COMPUTATIONAL EXPERIMENTS

Two sets of computational experiments are conducted. In the first set, we study the compu-

tational performance of four theoretically equivalent formulations presented in Section 6.1.

In the second set, we study the strength of valid inequalities in the first class derived in Sec-

tion 6.2. As in Chapter 5.6, we only consider linear as the functional relationship between

primary nonfunction and cold ischemia time in these experiments. We still set the pure

distribution likelihood lij to be pj, the number of patients awaiting transplant at OPO j,

for all i, j ∈ I, the likelihood that an organ procured at donor OPO i is available for MELD

patients at the regional level, βi = 1 for all i ∈ I, and the pure national flow likelihood l0i to

be constant for all i ∈ I. Other coefficient specifications are different from Chapter 5.6 and

will be given later in respective sections.

6.3.1 Alternative Pricing Problem Formulation Comparison

In this set of computational experiments, we construct an instance based on 30 OPOs indexed

by 1 to 30 (see Appendix B). We set l0i = 1000 for all i ∈ I and randomly generate a set

of duals. We solve the four alternative formulations using the CPLEX MIP solver on a PC

with 797MHz Pentium III processor and 256MB of RAM. All the CPLEX parameter settings

are default. We report in Table 27 several measures associated with the CPLEX branch-

163

and-bound solution. The columns “Init. Gap”, “Num. Iter.”, “Num. Nodes” list the initial

LP gap, the cumulative number of simplex tableau iterations, and the number of nodes in

the branch-and-bound tree, respectively. The CPLEX MIP solver automatically adds cuts

in the branch-and-bound solution. Three types of cuts are generated in the solutions. They

are implied bound cuts, flow cuts, and Gomory fractional cuts. In the table we also present

several characteristics of these four formulations including the numbers of decision variables,

constraints, and nonzero coefficients in the constraint matrix.

Table 27: Comparison of the Four Equivalent Pricing Problem Formulations

Formulation Characteristics Computational Performance
Num. Num. Num. CPU Init. Num. Num. Cuts in B&B Solution
Var. Con. Nonzero Time (s) Gap Iter. Nodes Imp. Bound Flow Gomory

RPP w1 2235 28305 7.24e4 5101 13.2% 3.1e5 1521 0 1062 2
RPP u1 2222 30915 6.72e4 4522 13.0% 1.2e5 66 8082 355 0
RPP w2 1365 27435 6.46e4 37409 13.3% 2.0e6 8746 0 1315 1
RPP u2 1365 28305 6.64e4 3606 13.3% 9.4e4 64 6854 98 0

From this table, we can see that solving RPP u2 is the most computational beneficial.

Many interesting observations need further investigation.

6.3.2 Incorporating Valid Inequalities

In this set of computational experiments, we select two 14-OPO pricing problems generated

in the branch-and-price solution where we apply geographic decomposition with a region

covers design that contains 20 covers with 14 OPOs in each cover. Both pricing prob-

lems are generated at the root node of the search tree. One pricing problem, labeled as

RPP 0 0 2, is obtained at the second iteration of column generation and the other one,

labeled as RPP 0 0 10, is at the tenth iteration.

Since we use RPP w1 as the pricing problem formulation in the branch-and-price solu-

tion, the first step in this experimentation is to convert it to RPP u2. We vary the value

of l0i in a wide range in these experiments, which is different from the specification on l0i

in Chapter 5.6. Given each l0i value, we solve the instance RPP= u2(s) for s = 3, . . . , 13

with the above four options on a PC machine with 2.39GHz Pentium IV process and 2GB

of RAM. We specify the four options in terms of incorporating valid inequalities of the first

164

Table 28: Strength of Class I Valid Inequalities (RPP 0 0 2)

National Cardinality LP Duality Gap (%) CPU Time (s)
Flow li0 Value O1 O2 O3 O4 O1 O2 O3 O4

3 68.2 39.6 32.9 19.7 2.67 0.87 2.43 1.11
4 47.2 24.8 15.8 10.7 2.50 1.57 1.89 1.42
5 40.4 20.9 11.7 9.5 2.62 1.48 2.14 0.95
6 40.7 22.2 11.7 9.7 2.88 3.09 2.43 2.16
7 39.2 21.8 11.4 9.6 4.25 2.57 3.42 3.31

1000 8 38.0 21.0 11.2 9.1 4.86 5.24 3.27 4.46
9 37.3 20.2 11.3 8.7 5.57 5.64 3.17 3.41
10 36.3 18.0 10.8 8.2 6.19 5.21 3.05 3.51
11 22.5 10.6 5.3 2.9 0.74 1.28 1.76 0.96
12 38.8 11.7 2.5 2.0 0.60 1.65 0.40 0.72
13 133.3 19.9 3.2 2.8 0.86 0.78 0.44 1.12
3 40.3 31.9 24.1 18.3 1.68 0.97 1.94 1.07
4 25.0 19.5 10.0 7.8 1.71 1.32 1.42 1.45
5 20.3 15.4 7.0 6.4 2.62 2.57 2.22 0.65
6 21.0 15.3 7.0 6.4 2.88 5.46 3.02 1.71
7 20.1 14.5 6.7 6.1 4.25 5.21 3.45 2.74

500 8 19.3 13.1 6.6 5.8 4.86 5.80 2.78 4.94
9 18.9 12.1 6.5 5.6 5.57 5.60 3.32 5.18
10 18.4 11.0 6.2 5.0 6.19 6.00 3.75 5.29
11 6.8 1.6 1.6 0.5 0.74 1.86 0.75 1.70
12 12.9 0.9 1.0 0.6 0.60 3.45 0.35 1.75
13 40.1 1.0 1.0 0.8 0.86 3.71 1.83 1.47
3 28.2 25.0 19.1 16.1 1.41 1.43 1.23 1.22
4 15.7 12.3 6.9 5.2 1.39 1.44 1.31 0.42
5 11.9 8.7 4.5 4.0 1.89 1.40 1.51 0.81
6 12.8 8.7 4.6 4.0 2.05 2.07 1.77 1.65
7 12.3 8.3 4.4 3.8 2.47 1.85 2.06 3.32

300 8 11.7 7.4 4.2 3.6 3.26 2.04 1.70 2.16
9 11.4 6.8 4.2 3.3 2.79 2.04 2.42 1.99
10 11.0 6.1 3.9 3.0 2.86 2.47 2.48 3.01
11 0.5 0.0 0.0 0.0 0.73 0.55 0.38 0.59
12 3.9 0.1 0.4 0.0 0.42 0.95 0.39 0.50
13 18.1 0.3 0.5 0.3 1.27 0.97 0.54 0.76

class. Option “O1” is not adding any valid inequalities. Option “O2” is adding all valid

inequalities associated with variables z and u in (6.46) and (6.47). Option “O3” is adding

all valid inequalities associated with variables z0 and u in (6.48). Option “O4” is adding

all valid inequality from Options 2 and 3. With each option, we record the CPU time and

duality gap and report the results in Tables 28 and 29.

165

Table 29: Strength of Class I Valid Inequalities (RPP 0 0 10; only consider CPU time)

National Cardinality Value
Flow li0 Option 3 4 5 6 7 8 9 10 11 12 13

O1 7.7 27.2 42.1 47.1 38.9 30.0 30.1 30.8 33.1 30.8 24.6
O2 7.0 14.9 31.3 56.8 75.7 62.1 56.9 36.3 32.4 27.5 14.8

1000 O3 17.2 18.8 24.7 19.6 27.0 21.5 27.6 24.5 22.3 19.3 11.9
O4 4.2 10.3 10.4 16.3 23.2 20.7 22.1 19.3 22.1 15.6 10.3
O1 7.9 26.9 39.8 54.4 70.8 67.9 57.2 48.7 42.1 31.4 21.4
O2 8.2 34.4 27.6 160.7 187.9 75.0 66.5 52.6 36.6 28.6 18.8

500 O3 18.7 26.4 40.9 53.5 67.2 57.5 115.1 50.0 27.7 23.3 11.3
O4 10.1 15.0 25.4 31.0 27.6 49.8 55.8 39.8 25.3 17.1 14.16
O1 7.9 25.7 56.3 73.1 124.1 65.1 45.9 51.2 46.7 37.1 24.5
O2 8.7 21.7 68.3 123.7 169.8 109.3 77.8 58.7 50.6 35.8 22.2

300 O3 13.3 37.3 52.9 66.6 56.7 74.9 60.1 51.3 25.4 20.8 11.9
O4 17.5 30.5 54.6 66.8 54.9 133.3 79.3 75.2 44.7 21.3 12.8

The reason that Table 29 only presents CPU times is because the optimal objective

value to pricing problem RPP 0 0 10 is close to 0 and thus the optimal objective value to

its LP relaxation is potentially negative. As a result, the initial duality gap is usually big or

negative. Therefore, we do not consider it in this case.

Several observations are made in this set of experiments. First, it is intuitive that the

pricing problem becomes harder to solve as the solution applying column generation proceeds.

This is verified by comparing the results in Tables 28 and 29. Second, Table 28 clearly

indicates that Option 1 results in the least tight formulation among the four whereas Option

4 leads to the tightest one. This is a desirable observation since the formulation associated

with Option 4 is obtained by adding all Class I valid inequalities. A similar observation is

unlikely made in terms of the CPU time. In general, Option 4 provides the least CPU time

in more cases than any other option. However, Option 4 cannot be considered as a dominant

option. Another observation is made when comparing Options 2 and 3. The results in both

tables suggest that Option 3 tends to be preferable as l0i decreases or the cardinality value

increases and Option 2 tends to be preferable when the opposite condition holds. This

preference reflects on both formulation tightness and solution time.

166

Figure 29: Illustration of Unimodality (l0i = 1000, 500, and 300)

We also test other l0i values. They are 1, 2, 3, 5, 10, 20, 30, 50, 100, and 200. We include

the related computational results in several tables similar to Tables 28 and 29 in Appendix

G. A comparison of computational results associated with various l0i values suggests that it

is less likely to be clear which option is the best choice as the value of l0i deceases.

Figure 29 shows the optimal objective value of RPP=(s) as a function of the cardinality

value s. Note that the instance is RPP 0 0 2. First, the figure indicates that when s is fixed,

the optimal objective value decreases as l0i increases. It strongly argues that this decrease is

monotonic. Second, the figure shows that for all three l0i values, unimodality holds in terms

of the relationship between the optimal objective value of RPP=(s) and the cardinality value

s. As s increases, the optimal objective value first increases and then decreases. A few more

figures that are included in Appendix H further suggest that the relationship, in general,

tends to be unimodal or monotonically nondecreasing or monotonically nonincreasing, for

RPP=(s). This observation confirms the applicability of the three algorithmic approaches

to finding the optimal set cardinality in the pricing problem of our region design problem.

167

7.0 PROPORTIONAL ALLOCATION GENERALIZATION

As we have presented in Chapters 4 and 5, the estimate of the regional benefit for each

potential region is based on the proportional allocation scheme. In this chapter, we attempt

to generalize the estimation along the direction of conducting the allocation through multiple

steps, at each of which proportional allocation is imposed.

7.1 INTRODUCTION

Let us describe organ allocation in a more general way. Once an organ is procured at a

procurement site, it is proportionally allocated to various recipient sites, and thus a benefit

of the procured organ occur. For the objective function coefficient estimate in our region

design problem, the benefit of an individual organ is dependent upon the geographic dis-

tance between the procurement and recipient sites. We call this benefit an individual-organ

benefit. The regional benefit is obtained by accumulating the individual-organ benefit over

all procured organs in the region. So it is also dependent upon the allocation quantity of

organs besides the factor affecting the individual-organ benefit. In organ allocation, organs

are allocated to patients proportionally and then transplants occurs. Therefore, it is one-step

allocation. A natural way to generalize the estimate is to consider there are multiple steps

through the allocation process. When considering the likelihood of allocation at each step,

the proportional allocation scheme is still imposed.

168

7.1.1 Generic Set-Partitioning Formulation

Since we only attempt to generalize the estimate of the regional benefit, the set-partitioning

formulation does not change. Here we first present a generic set-partitioning formulation.

Given a set I, one can construct the set containing all subsets of I that should be

considered. Let us denote this set to be A. Note that A may not contain all possible subsets

of I given some restriction. For instance, in Stahl et al. [195], we defined the problem on

a graph G = (I, E) and only considered connected subgraphs given the node-arc adjacency

matrix of the graph that indicates adjacency of any two OPOs. Let us define c(A) for A ∈ A

to be the benefit function induced by A, i.e., c(·) : S 7→ IR. Let us also define ai,A = 1 if

i ∈ A; 0, otherwise.

Then the generic set-partitioning formulation is presented as:

max

{

∑

A∈A
c(A)xA

∑

A∈A
ai,AxA = 1,∀i ∈ I; xA ∈ IB,∀A ∈ A

}

. (7.1)

7.1.2 Grouping Quantity Generalization

In this section, we discuss the essence of the proportional allocation generalization. Let us

first introduce several relevant concepts. Suppose there are K commodities associated with

each procurement site i (we use “node” in the following presentation) and the procurement

quantity of each commodity is known as qk
i for i ∈ I and 1 ≤ k ≤ K.

In a commodity matching network, various commodities at different nodes are grouped in

the subnetwork induced by these nodes. This action can be done by matching in various real-

world settings. For example, in the organ transplantation and allocation network, there are

two commodities, organ and patient. One physical interpretation of grouping is that organs

and patients are matched between two OPOs, the procurement OPO and the recipient OPO.

Let us define a pair of K-tuples Tδ = (δ1, δ2, . . . , δK) and Ti = (i1, i2, . . . , iK) to represent

the matching motivated above. Such a pair indicates that the group comprises commodity

δ1 from node i1, commodity δ2 from node i2, up to commodity δK from node iK . We call

such a grouping a K-grouping. In Figure 30, there are four commodities and three nodes.

K = 4 and two 4-groupings are specified. They are T 1
δ = (1, 2, 3, 4) and T 1

i = (1, 1, 2, 1), and

169

T 2
δ = (1, 2, 3, 4) and T 2

i = (3, 3, 3, 3). The first group, represented by the pair of 4-tuples T 1
δ

and T 1
i , comprises commodity 1 from node 1, commodity 2 from node 1, commodity 3 from

node 2, and commodity 4 from node 1. The second group, represented by the pair of 4-tuples

T 2
δ and T 2

i , comprises commodity 1 from node 3, commodity 2 from node 3, commodity 3

from node 3, and commodity 4 from node 3.

j

j

j

j

j

j

j

j

j

j

j

j- HHHHHHHHHHHj �����������*

- - -

(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(3,3)

(4,1)

(4,2)

(4,3)

Figure 30: An Illustration of K-tuples Tδ and Ti (In a pair (a, b) underneath a node, a

represents the commodity and b represents the node, e.g., (2,3) represents commodity 2

from node 3)

We generalize the proportional allocation scheme as follows. Arbitrarily select K com-

modities from N nodes (one node can be selected more than once), and then order the K

commodities to construct Tδ and then construct Ti in the same order. We group items of

commodity δ1 at node i1 with items of commodity δ2 at node i2 proportionally based on the

quantity of commodity δ2 at each node in A. Hence the proportion of items of commodity

δ1 at node i1 that are grouped with items of commodity δ2 at node i2 is
q

δ2
i2

P

i∈A q
δ2
i

. Once

2-tuple (δ1, δ2) is formed together with (i1, i2), we group items of the 2-tuple with items of

commodity δ3 at i3. We can keep grouping commodities sequentially until K-tuple Tδ is

formed together with Ti. Therefore, consider a pair of K-tuples Tδ and Ti, the quantity of

commodity group Tδ where commodity δs is from node is ∈ A, 1 ≤ s ≤ K, is

q(Tδ, Ti, A) = qδ1
i1
×

(

qδ2
i2

∑

i∈A qδ2
i

)

× · · · ×

(

qδK

iK
∑

i∈A qδK

i

)

. (7.2)

170

j

j

j

j

j

j

j

j

j

j

j

j

- - -

- - -

- - -

�����������*

�����������*

�����������*
�����������*

�����������*

�����������*

HHHHHHHHHHHj

HHHHHHHHHHHj

HHHHHHHHHHHj

HHHHHHHHHHHj

HHHHHHHHHHHj

HHHHHHHHHHHj

@
@

@
@

@
@

@
@

@
@

@R

@
@

@
@

@
@

@
@

@
@

@R

@
@

@
@

@
@

@
@

@
@

@R�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

��

�
�

�
�

�
�

�
�

�
�

��(1,1)

(1,2)

(1,3)

(2,1)

(2,2)

(2,3)

(3,1)

(3,2)

(3,3)

(4,1)

(4,2)

(4,3)

q1
1

q1
2

q1
3

q2
1

q2
2

q2
3

q3
1

(q3
2

q3
3

q4
1

q4
2

q4
3

q1
1·

q2
1

q2
1+q2

2+q2
3

q1
1·

q2
3

q2
1+q2

2+q2
3

q1
1·

q2
1

q2
1+q2

2+q2
3
·

q3
1

q2
1+q2

2+q2
3

Figure 31: Illustration of Proportional Allocation in K-grouping

We generalize the calculation of grouping quantity through a list of nodes in a subnetwork

in (7.2). Figure 31 illustrates the grouping process. For example, we can see in the figure

that commodity 1 at node 1 is proportionally allocated to nodes 1, 2, and 3. Therefore, the

quantity of commodity 1 at node 1 grouped with commodity 2 at node 1 is q1
1 ·

q2
1

q2
1+q2

2+q2
3

and

the quantity of commodity 1 at node 1 grouped with commodity 2 at node 3 is q1
1 ·

q2
3

q2
1+q2

2+q2
3
.

Here is another example. If Tδ = (1, 2, 3, 4), Ti = (1, 1, 1, 1), and A = {1, 2, 3}, then

q(Tδ, Ti, A) = q1
1 ·

q2
1

q2
1 + q2

2 + q2
3

·
q3
1

q3
1 + q3

2 + q3
3

·
q4
1

q4
1 + q4

2 + q4
3

.

The first two steps of the grouping process are illustrated on Figure 31.

Now let us focus on the allocation at one step in the grouping process. Suppose we have

grouped the first s commodities in Tδ. It is easy to see that the quantity of this s-commodity

group at node is ∈ A is

qs(is) =
∑

i1∈A

∑

i2∈A

· · ·
∑

is−1∈A

qδ1
i1
×

(

qδ2
i2

∑

i∈A qδ2
i

)

× · · · ×

(

qδs

is
∑

i∈A qδs

i

)

.

The items of the s-commodity group are then proportionally grouped with the (s + 1)th

commodity in Tδ to form a (s + 1)-commodity group. An implicitly stated condition here

is that all items of the s-commodity group are able to find matches at this step. In other

words, the (s + 1)th commodity is abundant relative to the s-commodity group in the sense

that the quantity of the (s + 1)th commodity at any node is greater than or equal to the

171

allocation quantity of the s-commodity group to that node. Mathematically, it is presented

as: qs+1
i ≥

∑

j∈A qs(j) ·
q

δs+1
i

P

k∈A q
δs+1
k

= qs+1(i) for all i ∈ A. This condition needs to hold at

each step of the grouping process. If we view the first s components in Ti as a supplier and

the (s + 1)th component as a client, the condition implies that demand exceeds supply to

every client in this supply-demand setting. Note that due to the fact that organs are scarce

resources, it is the case in the organ transplantation and allocation network, in which organs

are commodity 1 and patients are commodity 2.

Now we are ready to discuss the generalized regional benefit estimation. Let us assume

that all grouping items based on a pair of K-tuples Tδ and Ti, namely following the same

lists of commodities and nodes in the subnetwork, are identical in terms of benefit generation

and call the benefit generated by an individual grouping item the individual-group benefit,

denoted as α(Tδ, Ti, A). Note that one should know the list of commodities Tδ beforehand.

We also assume that the regional benefit given Tδ is obtained in an additive manner. That

is, it is simply the sum of the individual-group benefit over all grouping items, i.e.,

c(A) =
∑

Ti∈Ti

c(Tδ, Ti, A) =
∑

Ti∈Ti

q(Tδ, Ti, A) · α(Tδ, Ti, A), (7.3)

where Ti is the set containing all possible K-tuples chosen from A with replacement. Here

the regional benefit c(A) should be represented as c(A, Tδ), which is dependent upon the

commodity list. Since as mentioned earlier, the commodity list is known a priori, we drop

Tδ in the exposition. More discussion on the order of commodity grouping appears later in

this section.

Now let us specify (7.3) by substituting (7.2) in and assuming the individual-group benefit

is only dependent upon the node list, i.e., α(Tδ, Ti, A) = α(Ti). Then the regional benefit

c(A) =

∑

i1∈A

∑

i2∈A

· · ·
∑

iK∈A

qδ1
i1
×

(

qδ2
i2

∑

i∈A qδ2
i

)

× · · · ×

(

qδK

iK
∑

i∈A qδK

i

)

× α(i1, i2, . . . , iK). (7.4)

Previously, we state that one should know the list of commodities, Tδ, beforehand. Now

let us discuss the effect of different lists of commodities. We will construct an example as

follows to show different Tδ cause different regional benefits and different optimal regional

172

configurations obtained by solving the set-partitioning problem. Suppose we consider a 2-

node network with 2 commodities. The input parameters are (q1
1, q

1
2, q

2
1, q

2
2) = (1, 1, 1, 2) and

(α11, α12, α21, α22) = (4
3
, 1, 2

3
, 1

3
). Note that α(Tδ, Ti, A) is assumed to be independent of Tδ

and αij = α(i, j). There are only two regional configurations: two nodes in the same region

or two nodes in different regions, i.e., {1, 2} and {{1}, {2}}. In the case where Tδ = (1, 2),

c({1, 2}) = 14
9

and c({1}) + c({2}) = 5
3
. In the case where Tδ = (2, 1), c({1, 2}) = 13

6
and

c({1}) + c({2}) = 2. Thus {{1}, {2}} is the optimal configuration when Tδ = (1, 2), whereas

{1, 2} is the optimal configuration when Tδ = (2, 1).

7.1.3 An Alternative Interpretation of the Generalization

Earlier in this section, we provide an interpretation of the generalization during its derivation.

That is, multiple commodities are grouped based on the proportional allocation scheme. We

present an alternative interpretation in the following.

In a single commodity sharing network, items of the commodity are distributed through

a channel that consists of a set of nodes A. This distribution is proportional based on the

value of an attribute associated with each step. Therefore, we replace the K-tuple Tδ with

Ta = (a1, a2, . . . , aK−1), a (K − 1)-tuple representing a list of attributes. Arbitrarily select

a list of nodes Ti and a list of attributes Ta. In the first step, we distribute qi1 items of the

commodity at node i1 proportionally to all nodes in A based on the value of attribute a1 at

each node. In step s, we distribute items of the commodity at one node to all nodes in A

based on the value of attribute as. After K − 1 steps, the distribution process is completed.

Define qi1 to be the initial quantity of the commodity at node i1. Define vas

is+1
to be the value

of the attribute associated with step s at node is+1, s = 1, . . . K − 1. We present a formula

similar to (7.2) to calculate the distribution quantity as:

q(Ta, Ti, A) = qi1 ·

(

va1
i2

∑

i∈A va1
i

)

· · · · ·

(

v
aK−1

iK
∑

i∈A v
aK−1

i

)

. (7.5)

7.1.4 Organ Allocation as an Example

In Stahl et al. [195], we considered a pair of 2-tuples (o, p) and (i1, i2), where i1 is the procure-

ment OPO and i2 is the recipient OPO. Hence, we considered two commodities, organ as com-

173

modity 1 and patient as commodity 2. We captured the effect of organ transport distance on

organ quality decay, and let α(i, j) = αij, which is only dependent upon the distance between

OPOs i and j and independent of the selected region. We also neglected intra-OPO trans-

plantation. Thus we can specify αii = 0 for all i ∈ I in the generalized estimation. Therefore,

the regional benefit c(A) =
∑

i∈A

∑

j∈A qo
i ·

qp
j

P

k∈A qp
k

·α(i, j) =
∑

i∈A

∑

j∈A\{i} oi ·
pj

P

k∈A\{i} pk
·αij.

Following the alternative interpretation in Section 7.1.3, organs, as the commodity, are

distributed proportionally from procurement OPOs to recipient OPOs based on the value

of an attribute, patient population in Chapter 3, and pure distribution likelihood and pure

national flow likelihood in following chapters.

7.1.5 1-Commodity Case

At the end of this section, let us consider a special case where neither interpretation applies

since matching/distribution does not occur. We call it the 1-commodity case. The generic

set-partitioning problem can be formulated as:

max
∑

A∈A

∑

i∈A

qiα(i, A)xA (7.6)

subject to
∑

A∈A
ai,AxA = 1,∀i ∈ I; (7.7)

xA ∈ IB,∀A ∈ A. (7.8)

In (7.6), we use qi, the original quantity at each node since no distribution occurs. If we

assume α(i, A) = α(i) as in (7.4), any regional configuration is an optimal solution and thus

the problem becomes trivial.

In the remainder of this chapter, we assume that the individual-group benefit is only

dependent upon the node list, i.e, α(Tδ, Ti, A) = α(Ti) = α(i1,i2,...,iK). Throughout the expo-

sition, we only follow the first interpretation. We will discuss how to solve the generalized

set-partitioning problem. Our approach is to explore the possibility of generalizing the col-

umn generation method discussed earlier for solving our region design problem and put

174

emphasis on the generalized pricing problem. The remainder is organized as follows: Section

7.2 first discusses how to adapt column generation in two special cases and then general-

izes the column generation procedure. We mainly discuss the generalization of the pricing

problem. Section 7.3 generalizes the first class of valid inequalities presented in Chapter 6.

7.2 GENERALIZATION OF THE COLUMN GENERATION APPROACH

Once the regional benefits c(A) are computed for all A ∈ A, one can construct and solve

the set-partitioning problem to obtain the optimal partition directly with an MIP solver.

However, the set-partitioning problem with the generalized regional benefit estimate has

potentially an enormous number of columns. Therefore, we develop a generalization of the

column generation method presented in Chapter 5. Before presenting the generalization,

let us first discuss two special cases, the 2-commodity grouping case and the 3-commodity

grouping case.

7.2.1 2-Commodity Grouping Case

In the 2-commodity grouping case, we want to group two commodities in the only step of

the grouping process based on proportional allocation. The set-partitioning problem can be

formulated as:

max
∑

A∈A

(

∑

i∈A

∑

j∈A

qδ1
i ·

qδ2
j

∑

k∈A qδ2
k

· αij

)

· xA (7.9)

subject to

(7.7), (7.8).

Clearly, our region design problem is a 2-commodity grouping problem. Now let us

discuss the application of column generation in this special case. Given π, the dual obtained

by solving the restricted master problem, the associated pricing problem is:

RPP NLP(π) : max

{

∑

i∈I

∑

j∈I

qδ1
i yi ·

qδ2
j yj

∑

k∈I qδ2
k yk

· αij −
∑

i∈I

πiyi yi ∈ IB,∀i ∈ I

}

. (7.10)

175

In general, the above pricing problem is a nonlinear 0-1 program. Let zij = yi ·
q2
j yj

P

k∈I q2
k
yk

for all i, j ∈ I. We call zij the grouping likelihood between i and j. That is, zij is the

proportion that commodity 1 from i is grouped with commodity 2 from j. If nodes i, j,

and k are all selected, i.e., yi = yj = yk = 1, we need to impose a proportional allocation

constraint as:
zii

qδ2
i

=
zij

qδ2
j

=
zik

qδ2
k

.

If either yi = 0 or yj = 0, then zij = 0. Hence,

zij =







q
δ2
j

P

k∈I q
δ2
k

yk

, if yi = yj = 1;

0, otherwise,

and the pricing problem can be formulated as a mixed-integer 0-1 program by linearizing

proportional allocation constraints as:

RPP MIP(π) : max
∑

i∈I

∑

j∈I

qδ1
i αijzij −

∑

i∈I

πiyi (7.11)

subject to
∑

j∈I

zij = yi,∀i ∈ I; (7.12)

zij ≤ yj,∀i, j ∈ I; (7.13)

qδ2
k zij ≤ qδ2

j zik + qδ2
k (1− ujk),∀i, j, k ∈ I, j ≤ k; (7.14)

qδ2
j zik ≤ qδ2

k zij + qδ2
j (1− ujk),∀i, j, k ∈ I, j ≤ k; (7.15)

ujk ≥ yj + yk − 1,∀j, k ∈ I, j ≤ k; (7.16)

yi ∈ IB,∀i ∈ I, 0 ≤ zij ≤ 1,∀i, j ∈ I, 0 ≤ uij ≤ 1,∀i, j ∈ I, i ≤ j. (7.17)

The objective function (7.11) is equivalent to that in (7.10). Constraints (7.12) ensure that

commodity 1 at node i is grouped with commodity 2 only if node i is selected. Constraints

(7.13) ensure that commodity 1 at node i is grouped with commodity 2 at node j only if

node j is selected. Constraints (7.14) - (7.16) model the proportional allocation scheme.

Note that the above formulation is also explained in Chapter 5 in the context of the region

design problem.

176

7.2.2 3-Commodity Grouping Case

In the 3-commodity grouping case, we want to group three commodities in two steps of the

grouping process based on proportional distribution. The set-partitioning problem can be

formulated as:

max
∑

A∈A

(

∑

i∈A

∑

j∈A

∑

k∈A

qδ1
i ·

qδ2
j

∑

m∈A qδ2
m

·
qδ3
k

∑

n∈A qδ3
n

· αijk

)

· xA (7.18)

subject to

(7.7), (7.8).

Given the dual π, the nonlinear 0-1 pricing problem is presented as:

RPP NLP(π) : max

{

∑

i∈I

∑

j∈I

∑

k∈I

qδ1
i yi ·

qδ2
j yj

∑

m∈I qδ2
mym

·
qδ3
k yk

∑

n∈I qδ3
n yn

· αijk −
∑

i∈I

πiyi yi ∈ IB,∀i ∈ I

}

.

(7.19)

Let zij = yi ·
q

δ2
j yj

P

m∈I q
δ2
m ym

for all i, j ∈ I and zijk = yi ·
q

δ2
j yj

P

m∈I q
δ2
m ym

·
q

δ3
k

yk
P

n∈I q
δ3
n yn

for all i, j, k ∈ I.

We call zij the first one-step grouping likelihood between i and j, and zijk the first two-

step grouping likelihood between (i, j) and k. Note that zijk = zij ·
q

δ3
k

yk
P

n∈I q
δ3
n yn

. This can be

interpreted as follows. After forming the commodity group (1,2), we focus on some items

of this commodity group where commodity 1 is from node i and commodity 2 is from node

j. We then group these items with commodity 3 based on the set of quantities qδ3 . We can

thus define yj ·
q

δ3
k

yk
P

n∈I q
δ3
n yn

as the second one-step grouping likelihood. It differs from the first

one-step grouping likelihood in that the proportional allocation constraint imposed here is

based on a different set of quantities. If nodes i, j, k, m, n are all selected, we need to

impose a proportional allocation constraint at each step of the grouping process as:

zij

qδ2
j

=
zik

qδ2
k

and
zijm

qδ3
m

=
zijn

qδ3
n

.

177

If either yi = 0 or yj = 0, then zij = 0. If either zij = 0 or yk = 0, then zijk = 0. Hence,

zij =







q
δ2
j

P

k∈I q
δ2
k

yk

, if yi = yj = 1;

0, otherwise,

and

zijk =







q
δ2
j

P

m∈I q
δ2
m ym

·
q

δ3
k

P

n∈I q
δ3
n yn

, if yi = yj = yk = 1;

0, otherwise.

Therefore, we can alternatively develop a mixed-integer 0-1 program as:

RPP MIP(π) : max
∑

i∈I

∑

j∈I

∑

k∈I

qδ1
i αijkzijk −

∑

i∈I

πiyi (7.20)

subject to
∑

j∈I

zij = yi,∀i ∈ I; (7.21)

zij ≤ yj,∀i, j ∈ I; (7.22)

∑

k∈I

zijk = zij,∀i, j ∈ I; (7.23)

zijk ≤ yk,∀i, j, k ∈ I; (7.24)

qδ2
k zij ≤ qδ2

j zik + qδ2
k (1− ujk),∀i, j, k ∈ I, j ≤ k; (7.25)

qδ2
j zik ≤ qδ2

k zij + qδ2
j (1− ujk),∀i, j, k ∈ I, j ≤ k; (7.26)

qδ3
n zijm ≤ qδ3

mzijn + qδ3
n (1− umn),∀i, j,m, n ∈ I,m ≤ n; (7.27)

qδ3
mzijn ≤ qδ3

n zijm + qδ3
m(1− umn),∀i, j,m, n ∈ I,m ≤ n; (7.28)

ujk ≥ yj + yk − 1,∀j, k ∈ I, j ≤ k; (7.29)

yi ∈ IB,∀i ∈ I, 0 ≤ zij, zijk ≤ 1,∀i, j, k ∈ I, 0 ≤ uij ≤ 1,∀i, j ∈ I, i ≤ j. (7.30)

178

In the objective function (7.20), qδ1
i zijk is the quantity of commodity group (δ1, δ2, δ3) that

is realized given that commodity δ1 is from node i, commodity δ2 is from node j, and

commodity δ3 is from node k. Constraints (7.21) - (7.22) can be explained as in the 2-

commodity grouping case. Constraints (7.23) ensure that commodity group (δ1, δ2) from

node list (i, j) can be realized only if both i and j are selected. Constraints (7.24) ensure that

commodity pair (δ1, δ2) can be grouped with commodity δ3 from node k only if k is selected.

Constraints (7.25) - (7.26) and (7.29), which are similar to Constraints (7.14) - (7.16) in

the 2-commodity grouping case, modeling proportional allocation between commodities δ1

and δ2. Constraints (7.27) - (7.29) model proportional allocation between commodity group

(δ1, δ2) and commodity δ3.

7.2.3 K-Commodity Grouping Case

In this section, we present the general case when applying column generation. Suppose there

are K commodities. The LP-relaxation of the set-partitioning problem is as:

RMP(A) : max
∑

A∈A c(A)xA

s.t.
∑

A∈A ai,AxA = 1, for all i ∈ I;

0 ≤ xA ≤ 1, for all A ∈ A,

(7.31)

where c(A) is defined in (7.3).

Then the restricted master problem with respect to a column set A′ is then presented

as:

RMP(A′) : max
∑

A∈A′ c(A)xA

s.t.
∑

A∈A′ ai,AxA = 1, for all i ∈ I; (πi)

0 ≤ xA ≤ 1, for all A ∈ A′,

(7.32)

Denote z(i1,i2,...,iK) to be the grouping likelihood with respect to a Ti = (i1, i2, . . . , iK).

We present the generalized mixed-integer 0-1 pricing problem as follows. Let zL and αL be

179

the shorthand notations of z(i1,i2,...,iK) and α(i1,i2,...,iK) in the following formulation. We also

let zL\{iK} = z(i1,i2,...,iK−1), the first (K − 1)-step grouping likelihood with respect to the

partial node list (i1, i2, . . . , iK−1).

GRPP(π) : max
∑

i1∈I

∑

i2∈I

· · ·
∑

iK∈I

qδ1
i1

αLzL −
∑

i∈I

πiyi (7.33)

subject to
∑

i2∈I

z(i1,i2) = yi1 ,∀i1 ∈ I; (7.34)

z(i1,i2) ≤ yi2 ,∀i1, i2 ∈ I; (7.35)

∑

i3∈I

z(i1,i2,i3) = z(i1,i2),∀i1, i2 ∈ I; (7.36)

z(i1,i2,i3) ≤ yi3 ,∀i1, i2, i3 ∈ I; (7.37)

...

∑

iK∈I

zL = zL\{iK},∀i1, i2, . . . , iK−1 ∈ I; (7.38)

zL ≤ yiK ,∀i1, i2, . . . , iK ∈ I; (7.39)

qδ2
k z(i1,j) ≤ qδ2

j z(i1,k) + qδ2
k (1− ujk),∀i1, j, k ∈ I, j ≤ k; (7.40)

qδ2
j z(i1,k) ≤ pδ2

k z(i1,j) + qδ2
j (1− ujk),∀i1, j, k ∈ I, j ≤ k; (7.41)

qδ3
k z(i1,i2,j) ≤ qδ3

j z(i1,i2,k) + qδ3
k (1− ujk),∀i1, i2, j, k ∈ I, j ≤ k; (7.42)

qδ3
j z(i1,i2,k) ≤ qδ3

k z(i1,i2,j) + qδ3
j (1− ujk),∀i1, i2, j, k ∈ I, j ≤ k; (7.43)

...

qδK

k z(i1,...,iK−1,j) ≤ qδK

j z(i1,...,iK−1,k) + qδK

k (1− ujk),∀i1, i2, . . . , iK−1, j, k ∈ I, j ≤ k;(7.44)

qδK

j z(i1,...,iK−1,k) ≤ qδK

k z(i1,...,iK−1,j) + qδK

j (1− ujk),∀i1, i2, . . . , iK−1, j, k ∈ I, j ≤ k;(7.45)

180

ujk ≥ yj + yk − 1,∀j, k ∈ I, j ≤ k; (7.46)

yi ∈ IB,∀i ∈ I, 0 ≤ uij ≤ 1,∀i, j ∈ I, i ≤ j. (7.47)

0 ≤ zij ≤ 1,∀i, j ∈ I, 0 ≤ zijk ≤ 1,∀i, j, k ∈ I, . . . , 0 ≤ zL ≤ 1,∀i1, i2, . . . , iK ∈ I. (7.48)

In the objective function (7.33), qδ1
i1

zL is the quantity of commodity group Tδ that is realized

given Ti. All the constraints can be explained similarly to some constraint in the pricing

problem of the 2-commodity grouping case or the 3-commodity group case.

In the column generation procedure, we repeatedly solve the pricing problem to generate

column(s) that price out favorably at each iteration. We also solve the restricted master

problem iteratively to obtain the duals π. The procedure terminates when there is no pricing

favorable column.

Since the pricing problem (7.33) - (7.48) is a generalization of the pricing problem for

our region design problem, it is clearly NP-hard. Solving the generalized pricing problem

presents big computational challenges. In the next section, we discuss a few ideas that could

potentially lead to a more efficient solution of the generalized pricing problem.

7.3 GENERALIZATION OF A CLASS OF VALID INEQUALITIES

For the region design pricing problem, a class of valid inequalities (class I) is developed

in Chapter 6.2.1 in order to bound transplant likelihoods. Here we generalize this valid in-

equality class to bound grouping likelihoods at each step of the grouping process. In Chapter

6.2.1, we order the pure distribution likelihood given the donor OPO. In this generalization,

we order generalized quantities qδk

i , ∀i ∈ I given some k.

Consider a segment of the grouping process (see Figure 32). It starts from grouping the

(k + 1)th commodity with the already formed commodity group (δ1, δ2, . . . , δk). It ends at

181

grouping the (k + l)th with the already formed commodity group (δ1, δ2, . . . , δk+l−1). Let us

assume that l > 0. Define Ti(k, l) to be the partial node list of Ti starting at the kth element

and ending at the (k+ l)th element, i.e., Ti(k, l) = (ik, ik+1, . . . , ik+l). Let us define z(Ti(k, l))

to be the kth l-step grouping likelihood given Ti(k, l). For example, in the 2-commodity

grouping case, k = 1, l = 1. Suppose Ti(1, 1) = (i, j), then z(Ti(1, 1)) = zij as defined in

Section 7.2.1. We call zij the grouping likelihood between i and j in that section because

the grouping process consists of only one step. In the 3-commodity grouping case, if k = 1,

l = 1, and Ti(1, 1) = (i, j), we call z(Ti(1, 1)) = zij the first one-step grouping likelihood

in Section 7.2.2; if k = 1, l = 2, and Ti(1, 2) = (i, j, k), we call z(Ti(1, 2)) = zijk the first

two-step grouping likelihood in the same section. In that section, we also define yj ·
q

δ3
k

yk
P

n∈I q
δ3
n yn

as the second one-step grouping likelihood. Here we can use z(Ti(2, 1)) to represent it where

Ti(2, 1) = (j, k).

j

j

j

j

j

j

j

j

j

j

j

j

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

����*

����*

����*

����*

����*

����*

����*

����*

����*

����*

����*

����*

HHHHj

HHHHj

HHHHj

HHHHj

HHHHj

HHHHj

HHHHj

HHHHj

HHHHj

HHHHj

HHHHj

HHHHj

�
�

���

�
�

���

�
�

���

�
�

���

�
�

���

�
�

���
@

@
@@R

@
@

@@R

@
@

@@R

@
@

@@R

@
@

@@R

@
@

@@Rr r r

r r r

r r r

r r r

r r r

r r r

r r r

r r r

r r r

r r r

r r r

r r r

r r r

r r r

r r r

r r r

r r r

r r r

r r r

r r r

r r r

r
r

r

r
r

r

r
r

rr
r

r

r
r

r

r
r

r

(1,1)

(1,2)

(1,3)

(k,1)

(k,2)

(k,3)

(k + l,1)

(k + l,2)

(k + l,3)

(K,1)

(K,2)

(K,3)

Figure 32: Illustration of a Partial Grouping Process

Lemma 7.1. Given k, l, Tδ, and Ti, the kth l-step grouping likelihood

z(Ti(k, l)) = yik · Π
l
s=1(q

δk+s

ik+s
yik+s

/
∑

i∈I

q
δk+s

i yi). (7.49)

Proof. Consider Ti(k, l), it is clear that z(Ti(k, l)) = 0 if there exists yik+s
= 0 for any

s = 0, 1, . . . , l. On the other hand, yik+s
= 1 for all s = 0, 1, . . . , l, implies that z(Ti(k, l)) =

Πl
s=1(q

δk+s

ik+s
/
∑

i∈I q
δk+s

i yi). Therefore, (7.49) can be verified.

182

Next we will study the relationship among grouping likelihoods with respect to different

segments of the grouping process with a given node list. For ease of exposition, we provide

the following definitions.

Definition 7.1. Suppose there are two lists T1 = (t1,1, t1,2, . . . , t1,K1) and T2 = (t2,1, t2,2, . . . , t2,K2)

with t1,K1 = t2,1. Operation “⊕” between two lists is defined as T1⊕T2 = (t1,1, t1,2, . . . , t1,K1 , t2,2,

. . . , t2,K2).

Definition 7.2. Suppose there are lists T1, T2, . . . , TS such that any two adjacent lists satisfy

the condition in Definition 7.1. Operation “
∑

” among these lists is defined as
∑S

i=1 Ti =

T1 ⊕ T2 ⊕ · · · ⊕ TS.

Operation “⊕” essentially links two lists with a specified order and requires that the last

element of the first list is identical to the first element of the second list. Thus, this operation

is not commutative. Operation “
∑

” can be viewed as a shorthand notation of operation

“⊕” among several lists.

Lemma 7.2. Given a node list Ti = (i1, i2, . . . , iK). Suppose it can be partitioned such that

Ti =
∑S

s=1 T s
i , then z(Ti) = ΠS

s=1z(T s
i). Note that for any s = 1, . . . , S− 1, partial node lists

T s
i and T s+1

i overlap by one element, i.e., if the last element of T s
i is i, then the first element

of T s+1
i is also i.

Proof. Suppose T s
i = (is0, . . . , i

s
ls
) and the corresponding partial list of Tδ is T s

δ = (δs
0, . . . , δ

s
ls
)

for s = 1, . . . , S. Then z(T s
i) is the (is0)

th ls-step grouping likelihood. By Lemma 7.1,

z(T s
i) = yis0

· Πls
t=1(q

δs
t

ist
yist

/
∑

i∈I q
δs
t

i yi). Then

ΠS
s=1z(T s

i) = yi10
·Πl1

t=1





q
δ1
t

i1t
yi1t

∑

i∈I q
δ1
t

i yi



 ·yi20
·Πl2

t=1





q
δ2
t

i2t
yi2t

∑

i∈I q
δ2
t

i yi



 · · · · ·yiS0
·ΠlS

t=1





q
δS
t

iSt
yiSt

∑

i∈I q
δS
t

i yi



 .

For s = 1, . . . , S − 1, isls = is+1
0 implies that yis

ls
yis+1

0
= yis

ls
. Hence,

ΠS
s=1z(T s

i) = yi10
·Πl1

t=1





q
δ1
t

i1t
yi1t

∑

i∈I q
δ1
t

i yi



 ·Πl2
t=1





q
δ2
t

i2t
yi2t

∑

i∈I q
δ2
t

i yi



 · · · · ·ΠlS
t=1





q
δS
t

iSt
yiSt

∑

i∈I q
δS
t

i yi



 = z(Ti).

The second equality follows from Lemma 7.1.

183

Remark 7.1. In the 3-commodity grouping case, given Ti = (i, j, k), we have specified three

grouping likelihoods: the first one-step grouping likelihood zij; the second one-step grouping

likelihood zjk; and the first two-step grouping likelihood zijk. Note that there is only one two-

step grouping likelihood in a 3-commodity grouping process. It is clear that Ti = (i, j)⊕ (j, k)

and zijk = zijzjk.

So far we have considered a segment of the grouping process and defined the partial

grouping likelihood. For any segment of the grouping process, a partial node list is con-

structed. For example, Ti(k, l) = (ik, ik+1, . . . , ik+l) is a partial node list. Now let us consider

the set that contains all nodes in a partial node list. We define I(k, l) to be the set contain-

ing all nodes in Ti(k, l). Note that |I(k, l)| ≤ l + 1 since the same node may be selected at

different grouping steps.

For each k, 1 ≤ k ≤ K, let us rank {qδk

i }, ∀i ∈ I, in ascending and descending orders.

We construct the ascending and descending sequences, and denote {λδk

i } and {υδk

i }, ∀i ∈ I,

to be the corresponding index sequences, respectively. Define Λδk
s (D) and Υδk

s (D) to be the

first s elements of D ⊆ I in the respective sequences.

Proposition 7.1. Denote S ⊆ I to be the node set corresponding to the selected region.
Given a partial node list Ti(k, l) and I(k, l), the set containing all nodes in Ti(k, l). If
I(k, l) ⊆ S, then

Πl
t=1





q
δk+t

ik+t

∑

i∈I(k,l) q
δk+t

i +
∑

i∈Υ
δk+t
s (I\I(k,l))

q
δk+t

i



 ≤ z(Ti(k, l)) ≤ Πl
t=1





q
δk+t

ik+t

∑

i∈I(k,l) q
δk+t

i +
∑

i∈Λ
δk+t
s (I\I(k,l))

q
δk+t

i



 ,

where s = |S| − |I(k, l)|.

Proof. Let us assume that S = I(k, l) ∪ {k1, k2, . . . , ks}. Then by Lemma 7.1,

z(Ti(k, l)) = Πl
t=1

(

q
δk+t

ik+t

∑

i∈I(k,l) q
δk+t

i +
∑

i∈S\I(k,l) q
δk+t

i

)

.

By definition, we have

∑

i∈Λ
δk+t
s (I\I(k,l))

q
δk+t

i ≤
∑

i∈S\I(k,l)

q
δk+t

i ≤
∑

i∈Υ
δk+t
s (I\I(k,l))

q
δk+t

i ,

for t = 1, . . . , l. Hence, the result follows.

184

Remark 7.2. In the 2-commodity grouping case, we know that k = 1, l = 1. Suppose

I(k, l) = {i, j} ⊆ S, where S is the node set corresponding to the selected region. Let

s = |S| − 2 and thus the grouping likelihood between i and j, zij, can be bounded as:

qδ2
j

qδ2
i + qδ2

j +
∑

k∈Υ
δ2
s (S\{i,j}) qδ2

k

≤ zij ≤
qδ2
j

qδ2
i + qδ2

j +
∑

k∈Λ
δ2
s (S\{i,j}) qδ2

k

, if i 6= j, and

qδ2
i

qδ2
i +

∑

k∈Υ
δ2
s+1(S\{i}) qδ2

k

≤ zij ≤
qδ2
i

qδ2
i +

∑

k∈Λ
δ2
s+1(S\{i}) qδ2

k

, if i = j.

This result is reduced to Theorem 6.2 and Corollary 6.4 in Chapter 6.2.1 when commodity

δ1 is organ, commodity δ2 is patient. Given a donor OPO id, qδ2
i is the pure distribution

likelihood if i 6= id and the national-level flow likelihood if i = id. In Corollary 6.4 of Chapter

6.2.1, we use z0
i instead of zii for each i ∈ I.

Proposition 7.2. Given k and l, let GRPP≥(s) be GRPP with imposition of the following

additional constraint:
∑

i∈I yi ≥ s for s = |I(k, l)|, . . . , |I|. Then the following inequality is

valid for GRPP≥(s):

z(Ti(k, l)) ≤ yik · Π
l
t=1







q
δk+t

ik+t
yik+t

∑

i∈I(k,l) q
δk+t

i +
∑

i∈Λ
δk+t
s−|I(k,l)|

(I\I(k,l))
q

δk+t

i






. (7.50)

Proof. It is easy to see the result in the case where there exists a t = 0, 1, . . . , l such that
yik+t

= 0. If yik+t
= 1 for all t = 0, 1, . . . , l, the result follows directly from Proposition 7.1

as s− |I(k, l)| =
∑

i∈I yi − |I(k, l)| = |S| − |I(k, l)|. If
∑

i∈I yi = s′ > s, we have

z(Ti(k, l)) ≤ Πl
t=1

0

B

B

@

q
δk+t

ik+t

P

i∈I(k,l) q
δk+t

i +
P

i∈Λ
δk+t

s′−|I(k,l)|
(I\I(k,l))

q
δk+t

i

1

C

C

A

≤ yik
·Πl

t=1

0

B

B

@

q
δk+t

ik+t
yik+t

P

i∈I(k,l) q
δk+t

i +
P

i∈Λ
δk+t

s−|I(k,l)|
(I\I(k,l))

q
δk+t

i

1

C

C

A

.

The first inequality is due to Proposition 7.1. The second inequality holds for s′ > s and

yik+t
= 1, t = 0, . . . , l.

Proposition 7.3. Given k and l, let GRPP≤(s) be GRPP with imposition of the following

additional constraint:
∑

i∈I yi ≤ s for s = |I(k, l)|, . . . , |I|. Then the following inequality is

valid for GRPP≤(s):

yik · Π
l
t=1







q
δk+t

ik+t
yik+t

∑

i∈I(k,l) q
δk+t

i +
∑

i∈Υ
δk+t
s−|I(k,l)|

(I\I(k,l))
q

δk+t

i






≤ z(Ti(k, l)). (7.51)

185

Proof. It is easy to see the result in the case where there exists a t = 0, 1, . . . , l such that
yik+t

= 0. If yik+t
= 1 for all t = 0, 1, . . . , l, the result follows directly from Proposition 7.1

as s− |I(k, l)| =
∑

i∈I yi − |I(k, l)| = |S| − |I(k, l)|. If
∑

i∈I yi = s′ < s, we have

z(Ti(k, l)) ≥ Πl
t=1

0

B

B

@

q
δk+t

ik+t

P

i∈I(k,l) q
δk+t

i +
P

i∈Υ
δk+t

s′−|I(k,l)|
(I\I(k,l))

q
δk+t

i

1

C

C

A

≥ yik
·Πl

t=1

0

B

B

@

q
δk+t

ik+t
yik+t

P

i∈I(k,l) q
δk+t

i +
P

i∈Υ
δk+t

s−|I(k,l)|
(I\I(k,l))

q
δk+t

i

1

C

C

A

.

The first inequality is due to Proposition 7.1. The second inequality holds for s′ < s and

yik+l
= 1, t = 0, . . . , l.

Theorem 7.1. Given k and l, let GRPP=(s) be GRPP with imposition of the following
additional constraint:

∑

i∈I yi = s for s = |I(k, l)|, . . . , |I|. Then the following inequality is
valid for GRPP=(s):

yik
·Πl

t=1

0

B

B

@

q
δk+t

ik+t
yik+t

P

i∈I(k,l) q
δk+t

i +
P

i∈Υ
δk+t

s−|I(k,l)|
(I\I(k,l))

q
δk+t

i

1

C

C

A

≤ z(Ti(k, l)) ≤ yik
·Πl

t=1

0

B

B

@

q
δk+t

ik+t
yik+t

P

i∈I(k,l) q
δk+t

i +
P

i∈Λ
δk+t

s−|I(k,l)|
(I\I(k,l))

q
δk+t

i

1

C

C

A

.

(7.52)

Proof. It is easy to see the result in the case where there exists a t = 0, 1, . . . , l such that

yik+t
= 0. If yik+t

= 1 for all t = 0, 1, . . . , l, the result follows directly from Proposition

7.1.

Corollary 7.1. For any Ti(k, l), the following bounding constraint is valid for the generalized

pricing problem GRPP:

yik · Π
l
t=1

(

q
δk+t

ik+t
yik+t

∑

i∈I q
δk+t

i

)

≤ z(Ti(k, l)) ≤ yik · Π
l
t=1

(

q
δk+t

ik+t
yik+t

∑

i∈I(k,l) q
δk+t

i

)

.

Proof. The upper bound follows from Proposition 7.2 as s = |I(k, l)| and the lower bound

follows from Proposition 7.3 as s = |I|.

Corollary 7.2. Define T ′
i (k, l) to be any permutation of Ti(k, l). The same bounding in-

equality (7.52) for Ti(k, l) also holds for z(T ′
i (k, l)).

Remark 7.3. In the 2-commodity grouping case, Propositions 7.2 and 7.3, and Corollary

7.1 are reduced to Propositions 6.4 and 6.5, and Corollary 6.3 in Section 6.2, respectively,

when each u(i1,i2) is restricted as a binary variable, i.e., u(i1,i2) = yi1yi2 ,∀i1, i2 ∈ I.

186

Remark 7.4. The generalization of Corollaries 6.4 and 6.5 in Section 6.2 is included in

the results presented in Theorem 7.1 and Corollary 7.1 as those for Ti(1, 1) = (i1, i2) where

i1 = i2. Note that yi1yi2 = yi1 = yi2 in that case.

Remark 7.5. Given k and l, let us denote P=
s to be the feasible solution region of GRPP=(s)

for s = |I(k, l)|, . . . , |I|. When s = |I|, z(Ti(k, l)) = Πl
t=1(q

δk+t

ik+t
/
∑

i∈I q
δk+t

i), and P=
s becomes

one point (all z variables are uniquely determined). This corresponds to the case where all

y variables have been fixed to 1.

Remark 7.6. Let us denote P≥
s and P≤

s to be the feasible solution regions of GRPP≥(s) and

GRPP≤(s), respectively. It is clear that P≥
s+1 ⊆ P≥

s and P≤
s ⊆ P≤

s+1, ∀s = 0, 1, . . . , |I| − 1.

187

8.0 SUMMARY AND FUTURE RESEARCH

8.1 SUMMARY

This dissertation addresses the issue of facilitating organ sharing in the U.S. organ transplan-

tation and allocation network. It focuses on the aspect of organizing geographic transplan-

tation and allocation service areas in the hierarchical allocation system. To the best of our

knowledge, our work is the first considering this problem. The majority of previous research

has taken the individual patient’s perspective and attempted to answer the question whether

an ESLD patient should accept or reject an organ offer. Much of the previous work that

sought global allocation strategies proposed a complete redesign of the allocation policy only

at the local level. Unlike these previous efforts, we optimize the entire hierarchical system

with the existing allocation policy. This means that the political barriers to implementing

the results of our research are reduced. Furthermore, it could create potential impact on the

entire allocation network.

This dissertation is intended to develop a modeling framework to assist policy makers in

refining the geographic composition of the hierarchical network to facilitate organ sharing.

The framework we develop is a set-partitioning framework in which we estimate a certain

allocation efficiency related outcome, which is associated with each potential region, and

select the best set of potential regions such that the total welfare of the entire system is

maximized. To estimate the outcome, we take a macro-level viewpoint and introduce the

notion of proportional allocation. Chapters 4 and 5 consider two estimates for the intra-

regional donor-recipient pairing likelihood: the estimate based on patient population, in

which we assume the pairing likelihood is proportional to the patient population of the

donor OPO; and the single national list based estimate, in which we assume the pairing

188

likelihood is proportional to the probability that organs are distributed in the network when

all patients are awaiting transplants on one single national waiting list. The latter estimate

is more accurate than the former one in that (1) it incorporates patient heterogeneity in

terms of clinical and demographic characteristics; (2) it considers the effect of national-level

allocation.

In Chapter 3, an extension from the set-partitioning formulation addresses both alloca-

tion efficiency and geographic equity. The resulting model is a two-objective combinatorial

optimization model with an additional decision variable measuring equity and a class of

constraints restricting the considered equity measure.

In Chapter 4, to use the single national list based estimate, we need to estimate a few

parameters in the situation that all patients are on the same national waiting list. However,

this situation does not exist in reality because of the current three-tier hierarchical structure

of the network. To estimate parameters that are meaningful in such a situation, we adapt a

clinically based organ transplantation and allocation simulation model in Chapter 4. Using

the same simulation model, we also compare the geographic partition obtained from our set-

partitioning model with the current regional configuration to verify the benefit of optimal

region design. In Chapter 4, we also present a model that addresses the effect of national-level

allocation by borrowing the spill-and-recapture technique from the airline fleet assignment

problem.

With either estimate, we solve the region design problem through explicit enumeration

of regions. Since it is computationally prohibitive to solve instances with all possible regions

constructed based on the 59 OPOs, we reduce the solution space by only consider contiguous

regions with no more than 8 OPOs. We report the improvement on allocation efficiency

by using this approach in Chapters 3 and 4. This improvement is also verified through

simulation.

Given the computational challenge presented in Chapters 3 and 4, we apply branch and

price in Chapter 5 to solve the optimal region design problem. We adaptively generate

“promising” regions at each node of the branch-and-bound search tree. We derive a mixed-

189

integer programming pricing problem that is proved to be NP-hard. Compared to results

reported in Chapter 4, further improvement is obtained within a reasonable amount of time.

This demonstrates the applicability of our branch-and-price solution.

Knowing that solving the pricing problem is the most computationally intensive compo-

nent of the solution, we explore various ideas to alleviate this computational burden. One

main idea is geographic decomposition that attempts to solve many smaller-scale pricing

problems instead of a big problem. Various computational issues are discussed to select the

best solution. The other main idea, presented in Chapter 6, is to study the pricing problem

more closely, which includes analyzing alternative formulations of the pricing problem and

deriving strong valid inequalities for the pricing problem.

In Chapter 7, we generalize the notion of proportional allocation. Consequently, we

generalize the column generation approach and a class of valid inequalities.

8.2 FUTURE RESEARCH

This research consists of two parts, the modeling part and the solution part. Therefore, two

directions of future research are model refinement and extension, and solution improvement.

Section 8.2.1 presents several ideas to refine and extend the model. Section 8.2.2 discusses

a few approaches to improve the branch-and-price solution. We will also discuss a few

generalization ideas in Section 8.2.3.

8.2.1 Model Refinement and Extension

Combining various modeling perspectives. This work takes a societal perspective to

answer the question whether the current geographic organization is optimal. To model the

complex allocation system in a more sophisticated way, we need to consider the patient’s

perspective and integrate the two perspectives. The following are three potential directions

for the integration. First in the current model, we treat patient autonomy, i.e., patient’s

right to accept/reject an organ offer, in a relatively crude way by assuming identical accep-

190

tance/rejection probability among patients. Therefore, one direction of future work is to

refine the current model to capture patient preferences. Our objective is still to maximize

the social welfare of the entire system. Second, addressing the social welfare of the system

and each individual’s benefit simultaneously may be necessary. This may lead to a multi-

objective optimization problem, which is an extension of the current modeling framework

with incorporation of objectives measuring individual benefit. It is clear that there is a

conflict among patients in terms of their benefits. Third, due to patient autonomy, a patient

would evaluate her decision based on the information she is able to access regarding her

position on the waiting list as well as the composition of the waiting list. Hence, there is a

question of to what extent she should be allowed to access the information. The goal along

this direction is to understand the impact of information accessibility and, as a result, to

develop a better allocation policy to facilitate organ sharing.

Modeling system dynamics and uncertainty. In our current model, we take a macro-

level viewpoint to estimate the specified outcome associated with either allocation efficiency

or equity. Essentially, we study the group behavior of patients and organs. Given the

highly dynamic and stochastic nature of the allocation system, incorporating dynamics and

stochasticity is necessary in future work. First of all, organ procurement and patient listing

occur dynamically. Clinical and demographic characteristics of procured organs and listed

patients are uncertain in nature. Second, when an OPO matches patients with organs or

a patient accepts/rejects an organ offer, the decision is made based on the ever-changing

composition of the waiting list, and clinical and demographic characteristics of organs and

patients. Finally, for each decision that an OPO or a patient makes, risk is involved. Our

objective in the future is to build a robust and reliable allocation decision model.

Addressing both efficiency and equity. Although this work largely focuses on allocation

efficiency, we make an attempt to address allocation equity as well. In fact, efficiency and

equity are considered in almost every social welfare system. In each outcome category, there

are many associated attributes. For each attribute, there may also be many associated

subattributes. For efficiency, we may consider transplant quantity, transplant survival rate,

191

or transplant waiting time as attributes. For each efficiency attribute, subattributes are

specified at various time points. For example, for the attribute transplant survival rate,

subattributes could be 1-year survival rate, 3-year survival rate, and 5-year survival rate. For

equity, we may consider geographic equity, racial/ethnic equity, socioeconomic equity, etc.

For each equity attribute, subattributes are specified among various stratified subgroups. For

example, for the attribute racial/ethnic equity, subattributes could be the identical system

outcomes associates with African-Americans and Hispanics. As a result, we need to make

decisions with respect to multiple criteria. Multi-objective optimization, or in a broader

sense, multicriteria decision making will be considered.

Modeling the entire hierarchy. In our current model, we only estimate allocation ef-

ficiency at the regional level. To capture the impact of the three-tier transplantation and

allocation system, we need to estimate allocation efficiency at all three levels. This means

that we need to estimate potential allocation efficiency accumulated at various steps in the

allocation algorithm as a transplantable organ proceeds through the allocation process. The

most critical part in modeling allocation efficiency throughout the entire hierarchy is model-

ing the allocation at the national level. In this work, we present an estimate for the effect of

national-level allocation on regional-level allocation. However, the estimate does not allow

network interdependency. In our case, it means that national-level allocation in one region is

not dependent upon the composition of other regions. Barnhart et al. [23] described a new

modeling and algorithmic approach for fleeting assignment that models spill and recapture

as a function of assigned capacity across an entire airline network and not just a single flight

leg. Similarly, we may develop a new model for our problem that models spill and recapture

as a function of all OPOs in the network and not just a single OPO.

Integrating simulation and optimization. In our current model, we use the intra-

regional transplant cardinality to measure allocation efficiency analytically. This estimate

is, at best, a good proxy. The main reason we use this estimate is that almost all medically

realistic outcomes are hard to express analytically. One possible research topic is to integrate

simulation into the column generation framework. The simulation model will give us a more

192

faithful representation of the real-world system. Once a column is generated, we input it

to the simulation model to estimate the system outcome associated with it. However, it is

time-consuming to even estimate the outcome for one potential region. Therefore, this future

research direction will primarily focus on how to obtain useful information and evaluate the

pricing problem with simulation. Another possible research topic is to develop simulation-

based metaheuristic methods.

Extension to other types of organs. In this work, we use liver transplantation and

allocation as an example of the region design problem. The modeling framework we build

and techniques we apply in this research can be used to address the transplantation and

allocation of other types of organs that raises similar issues. For example, heart disease has

been consistently ranked the No. 1 cause of death in the United States [86], accounting

for nearly 700,000 deaths in 2002 alone. Many patients with heart diseases require heart

transplants. A future research topic will be how to organize OPO service areas for heart

transplantation and allocation. Furthermore, it is conceivable that the best set of OPOs

would vary among different types of organs. An interesting research question is what is the

best set of OPOs considering all types of organs.

8.2.2 Branch-and-Price Solution Improvement

To solve our optimal region design problem using an exact algorithm, we show the need for

branch and price, which embeds column generation within a branch-and-bound framework.

There are many important computational issues that need to be considered in our problem.

Some of them are commonly encountered in all branch-and-price applications. Some others

are unique in our problem.

Initial Solution. To start the column generation scheme, an initial restricted master prob-

lem has to be provided. In our case, it is easy to provide an initial restricted master. However,

it is not obvious which one is good. In this work, we compare a few initial restricted master

problems. There is a need for more computational investigation.

193

Column Management. In a maximization linear program, any column with positive re-

duced cost is a candidate to enter the basis. Therefore, we do not always have to solve

the pricing problem to optimality to find a column with the highest reduced cost. In this

work, knowing the pricing problem is computationally intensive, we apply geographic de-

composition, which is an approximation algorithm in a loose sense. As long as it produces

a column with positive reduced cost, that column will be added to the restricted master. It

has been observed that designing region covers is critical. Consequently, we want to predict

the impact of each region cover on the construction of the optimal solution a priori and

redesign region covers dynamically throughout the solution procedure. This may require us

to understand the dual solution better at each iteration. With geographic decomposition,

we may generate more than one column with positive reduced cost. For each region cover,

we also test a number of column generation strategies in terms of the number of columns

to be generated at each iteration. Generating fewer columns will reduce the computation

time per iteration. However, the number of iterations may increase. In addition, we do not

continue to prove optimality of the entire restricted master after geographic decomposition

fails to produce a column with positive reduced cost. Such a scheme results in a trade-off

between the solution quality and solution time.

To summarize, we will study the selection of a subset of “good” regions. The following

is some previous work from which we may obtain some insights. Vanderbeck [212] discussed

many relevant issues and suggested that using approximation algorithms and adding multiple

columns works best when the pricing problem is computationally intensive. Savelsbergh and

Sol [184] described a fast heuristic approach for generating columns with positive reduced

costs. They took existing columns with reduced cost equal to zero and employed fast local

improvement algorithms to construct columns with a positive reduced cost. To draw a

more decisive conclusion on the best algorithmic choice for our problem, a more thorough

computational investigation is required.

The tailing-off effect. We have observed the tailing-off effect that many column gener-

ation schemes exhibit, i.e., requiring a large number of iterations to prove LP optimality.

194

Clearly, there is a trade-off between the computational effort associated with computing

strong bounds and evaluating small trees and computing weaker bounds and evaluating big-

ger trees. Naturally, one future research topic will be to explore this trade-off, especially

considering our pricing problem is hard to solve. Instead of solving the linear program to

optimality, i.e., we can choose to prematurely terminate the column generation process and

work with bounds on the final LP value. The following is some previous work from which

we may gain some insights. Farley [84], Lasdon [134], and Vanderbeck and Wolsey [214]

described simple and relatively easy-to-compute bounds on the final LP value based on the

LP value of the current restricted master problem and the current reduced costs.

Pricing Integer Programs. Given the fact that our pricing problem is hard to solve theo-

retically and practically, we also need to improve the pricing problem solution fundamentally

beyond algorithmic improvements in column generation. One possible future research is to

study computational performance of the two classes of valid inequalities derived in Chapter

6.

Other possible improvement directions. First, we may want to study alternative dual

solutions associated with the restricted master problem. Second, we may want to study

primal heuristics to find a good integer feasible solution when proving optimality is of lesser

or no importance. Moreover, an effective heuristic algorithm may help the branch-and-price

solution. Third, we may want to combine column and row generations especially when we

consider applying branch and price to the second model presented in Chapter 3 addressing

both efficiency and equity.

8.2.3 Generalization

Chapter 7 generalizes the proportional allocation scheme in terms of the number of group-

ing commodities in a network. Three other possible generalizations are included as follows.

When considering how to allocate commodities from one node to various nodes in a network,

proportional allocation is one of many schemes. It assumes that items of a commodity are

195

allocated proportionally based on some quantity associated with each node. An alternative

allocation scheme is to allocate items of a commodity such that the accrued benefit is max-

imized. This means that we solve a transportation problem once the allocation region is

known. For each region, there is an embedded transportation problem. The second possible

direction of generalization is on hierarchical allocation with an arbitrary number of levels in

the hierarchy. We may consider commodity flow throughout the hierarchy. In the current

model, we only consider the flow from Phase 4 to Phase 5 of the allocation process. The last

possible direction of generalization is to consider multiple types of commodities instead of

one. In our case, we may want to consider multiple types of organs or patients with different

diseases. Presumably, the allocation of multicommodities between nodes is restricted due

to arc capacity. We believe that all these possible directions of generalization will pave the

way for a better understanding of issues arising in the organ transplantation and allocation

network.

196

APPENDIX A

APPLICATIONS OF INTEGER PROGRAMMING COLUMN

GENERATION

197

Table 30: Applications of Integer Programming Column Generation

Applications References

vehicle routing problems [4, 66, 67, 140, 141, 175]

crew scheduling problems [31, 66, 68]

multiple traveling salesman problem with time windows [72]

real-time dispatching of automobile service units [127]

multiple pickup and delivery problem with time windows [143, 193]

airline crew pairing [11, 49]

air network design for express shipment service [24]

airline scheduling generation [82]

fleet assignment and aircraft routing and scheduling [18, 65, 114]

job grouping for flexible manufacturing systems [50]

grouping and packaging of electronic circuits [78]

bandwidth packing in telecommunication networks [160]

traffic assignment in satellite communication systems [174]

course registration at a business school [182]

graph partitioning in VLSI and compiler design [212]

graph partitioning in political redistricting [150]

single-machine multi-item lot-sizing [212]

bin packing and cutting stock problems [205, 206, 207, 209, 210, 213]

integer multicommudity flows [20, 21]

maximum stable set problem [33]

probabilistic maximum satisfiability problem [105]

minimum cut clustering [119]

graph coloring [151]

generalized assignment problem [183]

198

APPENDIX B

A LIST OF ORGAN PROCUREMENT ORGANIZATIONS

199

Table 31: A List of Organ Procurement Organizations [88]

Label Name Location∗ Region
ALOB Alabama Organ Center Birmingham, AL 3
AROR Arkansas Regional Organ Recovery Agency Little Rock, AR 3
AZOB Donor Network of Arizona Phoenix, AZ 5
CADN California Transplant Donor Network Oakland, CA 5
CAGS Golden State Donor Services Sacramento, CA 5
CAOP OneLegacy Los Angeles, CA 5
CASD Lifesharing Community Organ & Tissue Donation San Diego, CA 5
CORS Donor Alliance Denver, CO 8
CTOP LifeChoice Donor Services Windsor, CT 5
DCTC Washington Regional Transplant Consortium Falls Church, VA 2
FLFH TransLife Orlando, FL 3
FLMP Life Alliance Organ Recovery Agency Miami, FL 3
FLSW LifeLink of Southwest Florida Fort Myers, FL 3
FLUF LifeQuest Organ Recovery Services Gainesville, FL 3
FLWC LifeLink of Florida Tampa, FL 3
GALL LifeLink of Georgia Atlanta, GA 3
HIOP Organ Donor Center of Hawaii Honolulu, HI 6
IAOP Iowa Donor Network Iowa City, IA 8
ILIP Gift of Hope Organ & Tissue Donor Network Elmhurst, IL 7
INOP Indiana Organ Procurement Organization Indianapolis, IN 10
KYDA Kentucky Organ Donor Affiliates Louisville, KY 11
LAOP Louisiana Organ Procurement Agency Metairie, LA 3
MAOB New England Organ Bank Newton, MA 1
MDPC Transplant Resource Center of Maryland Baltimore, MD 2
MIOP Gift of Life Michigan Ann Arbor, MI 10
MNOP LifeSource Upper Midwest Organ Procurement Organization St. Paul, MN 7
MOMA Mid-America Transplant Services St Louis, MO 8
MSOP Mississippi Organ Recovery Agency Jackson, MS 3
MWOB Midwest Transplant Network Westwood, KS 8
NCCM Lifeshare of the Carolinas Charlotte, NC 11
NCNC Carolina Donor Services Greenville, NC 11
NEOR Nebraska Organ Recovery System Omaha, NE 8
NJTO New Jersey Organ and Tissue Sharing Network OPO Springfield, NJ 2
NMOP New Mexico Donor Services Albuquerque, NM 5
*: The location of each OPO is as in July 2003. There have been a few changes lately.

200

Table 32: A List of Organ Procurement Organizations (Contd.)

Label Name Location∗ Region
NVLV Nevada Donor Network Las Vegas, NV 5
NYAP Center for Donation and Transplant Albany, NY 9
NYFL Finger Lakes Donor Recovery Program Rochester, NY 9
NYRT New York Organ Donor Network New York, NY 9
NYWN Upstate New York Transplant Services Inc Buffalo, NY 9
OHLB LifeBanc Cleveland, OH 10
OHLC Life Connection of Ohio Dayton, OH 10
OHLP Lifeline of Ohio Columbus, OH 10
OHOV LifeCenter Organ Donor Network Cincinnati, OH 10
OKOP LifeShare Transplant Donor Services of Oklahoma Oklahoma City, OK 4
ORUO Pacific Northwest Transplant Bank Portland, OR 6
PADV Gift of Life Donor Program Philadelphia, PA 2
PATF Center for Organ Recovery and Education Pittsburgh, PA 2
PRLL LifeLink of Puerto Rico Guaynabo, PR 3
SCOP LifePoint Charleston, SC 11
TNDS Tennessee Donor Services Nashville, TN 11
TNMS Mid-South Transplant Foundation Memphis, TN 11
TXGC LifeGift Organ Donation Center Houston, TX 4
TXSA Texas Organ Sharing Alliance San Antonio, TX 4
TXSB Southwest Transplant Alliance Dallas, TX 4
UTOP Intermountain Donor Services Salt Lake City, UT 5
VATB LifeNet Virginia Beach, VA 11
WALC LifeCenter Northwest Donor Network Bellevue, WA 6
WISE Wisconsin Donor Network Milwaukee, WI 7
WIUW Organ Procurement Organization at the University of Wisconsin Madison, WI 7
*: The location of each OPO is as in July 2003. There have been a few changes lately.

201

APPENDIX C

DETAILED DESCRIPTION OF THE BCP IMPLEMENTATION

This appendix describes the detailed implementation of our branch-and-price application

using BCP. Since our implementation adapts the one for the axial assignment problem (AAP)

in Galati [93], we do not repeat the description that appears in that paper. we call the region

design problem RSP in this appendix for ease of exposition.

In order to implement a branch-and-price algorithm using BCP, there are a minimal set

of functions that must be written by the user. In this section we will describe each of these

functions as they have been used in applying branch and price to solve the region design

problem. The application source code is divided into the following directories:

• LP: functions used by the linear programming process,

• TM: functions used by the tree manager process,

• Member: functions used to input instances,

• Data: most of the data used to define instances,

• Run: a run directory including parameter files.

Data Structure

• Member/RSP.cpp

The RSP class simply defines a storage container for an instance of RSP. This includes the

organ data oi, the pure distribution likelihood lij, and the pure national flow likelihood

l0i , and the cold ischemia time, denoted as tij.

202

• include/RSP user data.hpp

The RSP user data class, derived from BCP user data, stores some additional infor-

mation related to branching. In our case, we have implemented two branching rules,

branching on variables and branching on OPO pairs.

• include/RSP var.hpp

The RSP var class, derived from BCP var algo, stores solution information including

the indices of OPOs contained in each region in the optimal configuration and the regional

benefit of each region.

Initialization

• Member/RSP init.cpp

In order to initialize the interface to BCP, we need to create an instance of each process

that will be used. In our case we need to initialize:

– BCP user init(): the user interface,

– lp init(): the LP process, and

– tm init(): the TM process.

In tm init(), in addition to initializing the TM process, we read in data files that

describe a RSP instance.

Parameters

• Parameters

In the Run directory, we specify a list of parameters used for our application in a param-

eter file. This list includes three types of parameters, BCP parameters, RSP parameters,

and solution parameters.

A description of the various BCP parameters used for the LP process and the TM

process is available in the Doxygen note on the COIN-OR website [87]. In the class of

RSP parameters, we specify the input files that describe the instance, the region covers

design, and the set of initial columns. Most of solution parameters are used to specify

all solution options discussed in Chapter 5.6.3. They are listed as follows:

203

– regionSP subprob use smallones indicates if we use geographic decomposition.

– regionSP subprob use callback indicates if we use CPLEX callback to add to the

restricted master problem not only the column that prices out the most favorably

but also other columns generated in the pricing problem solution process.

– regionSP subprob numCols perIter specifies the number of feasible columns added

to the restricted master problem.

– regionSP subprob epgap corresponds to the CPLEX MIP solution parameter

CPX PARAM EPGAP that specifies the relative mipgap tolerance in CPLEX.

– regionSP subprob heurfreq specifies the CPLEX MIP solution parameter

CPX PARAM HEURFREQ that specifies the MIP heuristic frequency in CPLEX.

– regionSP subprob mipemphasis specifies the CPLEX MIP solution parameter

CPX PARAM MIPEMPHASIS that specifies the MIP emphasis indicator in CPLEX.

In addition to the above solution parameters, Parameter regionSP subprob branch type

indicates which branching rule we use, branching on variables or branching on OPO pairs.

For more information on the CPLEX related solution parameters, we refer to the CPLEX

user’s manual [113].

• TM/RSP tm param.cpp specifies variables that corresponding to parameters used in the

TM module. It includes the specification of data files describing the RSP instance. This

file serve the purpose of linking the parameter file with other source codes in the TM

directory.

• LP/RSP lp param.cpp specifies variables that corresponding to parameters used in the

LP module. It includes the specification of all solution parameters. This file also serves

the purpose of linking the parameter file with other source codes in the LP directory.

Tree Manager

• TM/RSP tm.cpp::initialize core():

In this function, we describe which decision variables and which constraints are core. If

a decision variable or constraint is the core, it can never be removed from the restricted

master problem once the problem is created. We have no core decision variables. The

core constraints are all set-partitioning constraints.

204

• TM/RSP tm.cpp::create root():

In this function, we initialize the root node of the branch-and-price tree. To achieve this,

we can either load all single-OPO regions or read an initial set of columns from a file. For

the initial set of columns, we consider several column generation initialization schemes.

Linear Program

• LP/RSP lp.cpp::compute lower bound(): In this function, we implement the two op-

tions with respect to geographic decomposition. If we use geographic decomposition,

we call function readin divisions() to input the region covers design. In addition, if

we use geographic decomposition, we also call function generate vars multiple() or

generate vars single() to generate multiple columns with positive reduced costs or a

single column with the most positive reduced cost for each region cover. If we do not

use geographic decomposition, the two above functions generate multiple columns with

positive reduced costs or a single column with the most positive reduced cost for the

entire country. At the end of this function, if we cannot find any column(s) with positive

reduced cost, we terminate the execution.

• LP/RSP lp.cpp::generate vars in lp():

In this function, we look for column(s) with positive reduced cost and add such column(s)

to the restricted master. The identification of positive reduced cost has already been done

in computer lower bound().

• LP/RSP lp.cpp::generate vars multiple() and

LP/RSP lp.cpp::generate vars single():

In each of these two functions, we call function construct cost() and actually generate

columns that price out favorably.

• LP/RSP lp.cpp::construct cost():

In this function, we compute the objective coefficient (regional benefit) for each generated

column.

• LP/RSP lp.cpp::solve pricing problem multicols(),

LP/RSP lp.cpp::solve pricing problem singlecol mostrc(), and

LP/RSP lp.cpp::solve pricing problem rounding():

205

In each of these three functions, we construct the basic pricing problem and then add

constraints fixing variables and modeling relationships between variables in the solution

process. Each function has the option to construct the pricing problem based on the entire

country or a region cover. For the pricing problem solution, we specify several CPLEX

MIP solution parameters in the first two functions. For the pricing problem solution,

we also use CPLEX callback in the first two functions to specify the number of columns

generated at each iteration of column generation. We only solve the LP relaxation of the

pricing problem in the third function and apply two rounding heuristics.

• LP/RSP lp branch.cpp::select branching candidates():

This function creates candidate branching objects using branching on OPO pairs or

branching on variables.

• LP/RSP lp branch.cpp::set user data for children():

This function stores information about which pair of OPOs is selected or which variables

are fixed.

• LP/RSP lp branch.cpp::branch on OPOpair():

This function specifies the node pair selection rule. That is, choose a pair of OPOs s and

t such that
∑

r∈Is∩It
xr is closest to 0.5.

• LP/RSP lp branch.cpp::appending branching pairs():

In this function, branching candidates are constructed as a BCP lp branching object

with a number of arguments. This function applies to both branching rules that are

considered.

There are several utility functions in the LP module, e.g., computing the objective coef-

ficient for a given column, computing the objective value for a given regional configuration,

and converting a cold ischemia time tij to an organ acceptance probability αij.

206

APPENDIX D

COLUMN GENERATION EFFECT

207

Table 33: Column Generation Effect (20 covers and each cover with 14 OPOs)

p0 = 0.9 p0 = 1.1

CPU Num Num Avg Cols Avg Cols CPU Num Num Avg Cols Avg Cols

Instance Strategy Time (s) Iters Cols per Iter per Cover Time (s) Iters Cols per Iter per Cover

1 9248 73 997 13.7 49.9 9082 68 994 14.6 49.7

2 5076 37 948 25.6 47.4 11940 58 1068 18.4 53.4

3 3977 31 1107 35.7 55.4 4453 32 1101 34.4 55.1

20 14 1 4 4284 29 1055 36.4 52.8 4009 27 1086 40.2 54.3

5 3191 24 1018 42.4 50.9 3632 24 1114 46.4 55.7

6 3602 24 1088 45.3 54.4 4004 25 1173 46.9 58.7

A 3357 23 1095 47.6 54.8 4859 25 1167 46.7 58.4

B 6435 36 541 15.0 27.1 6172 33 546 16.5 27.3

1 7503 77 1052 13.7 52.6 9708 85 1059 12.5 53.0

2 4346 41 1051 25.6 52.6 4234 40 1069 26.7 53.5

3 3928 34 1100 32.4 55.0 4082 31 1029 33.2 51.5

20 14 2 4 3522 28 1057 37.8 52.9 3568 27 1067 39.5 53.4

5 3395 26 1070 41.2 53.5 3998 27 1046 38.7 52.3

6 3318 24 1094 45.6 54.7 4159 26 1042 40.1 52.1

A 3528 24 1072 44.7 53.6 3909 24 1098 45.8 54.9

B 5768 37 578 15.6 28.9 6532 36 550 15.3 27.5

Table 34: Column Generation Effect (20 covers and each cover with 10 OPOs)

p0 = 0.9 p0 = 1.1

CPU Num Num Avg Cols Avg Cols CPU Num Num Avg Cols Avg Cols

Instance Strategy Time (s) Iters Cols per Iter per Cover Time (s) Iters Cols per Iter per Cover

1 471 52 653 12.6 32.7 906 52 587 11.3 29.4

2 317 31 640 20.6 32.0 229 25 574 23.0 28.7

3 221 23 640 27.8 32.0 235 23 689 30.0 34.5

20 10 1 4 187 20 603 30.2 30.2 235 21 652 31.1 32.6

5 186 20 663 33.2 33.2 202 20 663 33.2 33.2

6 167 18 628 34.9 31.4 199 19 629 33.1 34.6

A 209 20 660 33.0 33.0 205 19 653 34.4 32.7

B 346 30 437 14.6 21.9 262 24 382 15.9 19.1

1 294 43 596 13.9 29.8 329 43 591 13.7 29.6

2 235 28 647 23.1 32.4 243 27 632 23.4 31.6

3 167 21 644 30.7 32.2 173 20 613 30.7 30.7

20 10 2 4 190 22 653 29.7 32.7 172 20 669 33.5 33.5

5 159 19 676 35.6 33.8 202 21 665 31.7 33.3

6 189 21 649 30.9 32.5 205 21 683 32.5 34.2

A 123 16 622 38.9 31.1 157 18 592 32.9 29.6

B 206 24 398 16.6 19.9 266 26 410 15.8 20.5

208

Table 35: Column Generation Effect (20 covers and each cover with 8 OPOs)

p0 = 0.9 p0 = 1.1

CPU Num Num Avg Cols Avg Cols CPU Num Num Avg Cols Avg Cols

Instance Strategy Time (s) Iters Cols per Iter per Cover Time (s) Iters Cols per Iter per Cover

1 90.7 36 388 10.8 19.4 138 26 379 14.6 19.0

2 57.2 22 405 18.4 20.3 88.9 18 398 22.1 19.9

3 52.8 20 427 21.4 21.4 96.4 18 427 23.7 21.4

20 8 1 4 43.5 17 466 27.4 23.3 97.4 18 431 23.9 21.6

5 53.4 19 447 23.5 22.4 85.6 16 426 26.6 21.3

6 52.8 19 447 23.5 22.4 87.4 18 436 24.2 21.8

A 53.5 19 447 23.5 22.4 89.4 16 447 27.9 22.4

B 85.1 28 319 11.4 16.0 127.8 23 304 13.2 15.2

1 61 29 414 14.3 20.7 72.7 32 398 12.4 19.9

2 45 19 388 20.4 19.4 43.8 20 420 21.0 21.0

3 40 18 422 23.4 21.1 49.6 20 445 22.3 22.3

20 8 2 4 46.3 18 413 22.9 20.7 58.4 22 445 20.2 22.3

5 39.4 17 399 23.5 20.0 50.7 19 442 23.3 22.1

6 39.8 17 445 26.2 22.3 40.9 17 441 25.9 22.1

A 36.5 16 438 27.4 21.9 49.1 19 437 23.0 21.9

B 57.2 21 313 14.9 15.7 69.5 24 315 13.1 15.8

Table 36: Column Generation Effect (30 covers and each cover with 10 OPOs)

p0 = 0.9 p0 = 1.1

CPU Num Num Avg Cols Avg Cols CPU Num Num Avg Cols Avg Cols

Instance Strategy Time (s) Iters Cols per Iter per Cover Time (s) Iters Cols per Iter per Cover

1 733 46 715 15.5 23.8 1945 49 787 16.1 26.2

2 406 26 765 29.4 25.5 864 27 815 30.2 27.2

3 300 20 783 39.2 26.1 830 23 780 33.9 26.1

30 10 1 4 351 21 811 38.6 27.0 608 19 784 41.3 26.1

5 340 21 910 43.3 30.3 667 21 897 42.7 29.9

6 309 19 841 44.3 28.0 627 22 845 38.4 28.2

A 311 19 884 46.5 29.5 659 22 845 38.4 28.2

B 449 26 563 21.7 18.8 1007 25 539 21.6 18.0

1 411 34 783 23.0 26.1 954 49 748 15.3 37.4

2 334 22 739 33.6 24.6 418 24 726 30.3 36.3

3 316 20 791 39.6 26.4 288 18 762 42.3 38.1

30 10 2 4 296 18 809 44.9 27.0 372 19 811 42.7 40.6

5 351 19 813 42.8 27.1 316 17 760 44.7 38.0

6 291 18 853 47.4 28.4 356 19 786 41.4 39.3

A 291 17 863 50.8 28.8 363 18 843 46.8 42.2

B 440 23 509 22.1 17.0 441 22 503 22.9 25.2

Table 37: Column Generation Effect (30 covers and each cover with 8 OPOs)

p0 = 0.9 p0 = 1.1

CPU Num Num Avg Cols Avg Cols CPU Num Num Avg Cols Avg Cols

Instance Strategy Time (s) Iters Cols per Iter per Cover Time (s) Iters Cols per Iter per Cover

1 142.1 28 490 17.5 24.5 117.2 26 501 19.3 25.1

2 79.5 18 564 31.3 28.2 82.8 18 576 32.0 28.8

3 76.2 16 560 35.0 28.0 63.7 14 520 37.1 26.0

30 8 1 4 94.5 18 597 33.2 29.9 88.1 17 523 30.8 26.2

5 65.7 19 813 42.8 27.1 73.7 15 505 33.7 25.3

6 82.7 18 853 47.4 28.4 88.5 17 524 30.8 26.2

A 82.7 17 863 50.8 28.8 92.4 17 525 30.9 26.3

B 100.6 23 509 22.1 17.0 121.1 21 397 18.9 19.9

209

Table 38: Column Generation Effect (25 covers and each cover with 12 OPOs)

p0 = 0.9 p0 = 1.1

CPU Num Num Avg Cols Avg Cols CPU Num Num Avg Cols Avg Cols

Instance Strategy Time (s) Iters Cols per Iter per Cover Time (s) Iters Cols per Iter per Cover

1 2963 61 890 14.6 35.6 3000 54 811 15.0 40.6

2 1409 30 855 28.5 34.2 1588 31 924 29.8 46.2

3 1081 23 884 38.4 35.4 1278 24 950 39.6 47.5

25 12 1 4 967 21 903 43.0 36.1 1663 26 1004 38.6 50.2

5 1073 21 966 46.0 38.6 1317 22 943 42.9 47.2

6 979 20 897 44.9 35.9 1190 21 1016 48.4 50.8

A 1225 22 924 42.0 37.0 1319 21 966 46.0 48.3

B 1419 26 514 19.8 20.6 2663 36 543 15.1 27.2

Table 39: Column Generation Effect (15 covers and each cover with 12 OPOs)

p0 = 0.9 p0 = 1.1

CPU Num Num Avg Cols Avg Cols CPU Num Num Avg Cols Avg Cols

Instance Strategy Time (s) Iters Cols per Iter per Cover Time (s) Iters Cols per Iter per Cover

1 1900 67 758 11.3 50.5 1851 68 777 11.4 38.9

2 1153 39 783 20.1 52.2 1183 38 734 19.3 36.7

3 1081 23 884 38.4 35.4 1365 34 792 23.3 39.6

15 12 1 4 794 29 757 26.1 50.5 942 27 783 29.0 39.2

5 1048 27 747 27.7 49.8 1044 27 757 28.0 37.9

6 852 25 677 27.1 45.1 1195 27 782 29.0 39.1

A 1051 27 712 26.4 47.5 1049 26 739 28.4 37.0

B 1450 34 424 12.5 28.3 1822 38 435 11.4 21.8

210

APPENDIX E

COLUMN GENERATION EFFECT (CONTD.)

Figure 33: Column Generation Effect (20 covers and each cover with 14 OPOs)

211

Figure 34: Column Generation Effect (20 covers and each cover with 10 OPOs)

Figure 35: Column Generation Effect (20 covers and each cover with 8 OPOs)

212

Figure 36: Column Generation Effect (30 covers and each cover with 10 OPOs)

Figure 37: Column Generation Effect (30 covers and each cover with 8 OPOs)

213

Figure 38: Column Generation Effect (25 covers and each cover with 12 OPOs)

Figure 39: Column Generation Effect (15 covers and each cover with 12 OPOs)

214

APPENDIX F

PRICING PROBLEM SOLUTION OPTION

215

Table 40: Pricing Problem Solution Options: Design (20,14)

Solution Options p0 = 0.9 p0 = 1.1

MIP Heuristic MIP # # # #

Instance Emphasis Frequency Gap CPU (s) Iters Cols CPU (s) Iters Cols

feasibility none 10−4 4702 23 1245 4071 20 1207

feasibility none 5% 3654 22 1218 3947 22 1257

feasibility none 10% 3355 21 1231 4178 22 1282

feasibility automatic 10−4 3800 20 1100 4412 21 1176

feasibility automatic 5% 3497 21 1163 4939 22 1164

feasibility automatic 10% 4841 24 1210 4592 22 1061

feasibility 1 10−4 12014 23 1170 14102 23 1127

feasibility 1 5% 12663 24 1202 10996 22 1114

feasibility 1 10% 11073 23 1157 13444 25 1140

feasibility 10 10−4 4831 23 1134 4637 21 1141

feasibility 10 5% 4734 23 1245 4450 21 1045

20 14 1 feasibility 10 10% 5247 24 1241 6227 24 1135

balance none 10−4 3448 26 934 3939 27 1060

balance none 5% 3022 24 988 2557 22 984

balance none 10% 2719 24 939 3300 24 966

balance automatic 10−4 3383 23 1095 4835 25 1167

balance automatic 5% 3254 23 1084 4773 26 1133

balance automatic 10% 3357 23 1094 4027 26 1135

balance 1 10−4 7334 22 1184 9517 23 1205

balance 1 5% 8595 24 1156 9657 25 1159

balance 1 10% 8351 24 1159 9031 24 1208

balance 10 10−4 3561 23 1078 4123 24 1145

balance 10 5% 3455 26 934 5505 27 1124

balance 10 10% 3850 23 1057 5021 26 1143

feasibility none 10−4 3175 22 1276 3480 22 1264

feasibility none 5% 3086 21 1153 3537 22 1241

feasibility none 10% 3071 21 1198 3864 23 1136

feasibility automatic 10−4 3570 21 1246 5221 24 1128

feasibility automatic 5% 4183 24 1094 4164 23 1109

feasibility automatic 10% 5168 26 1198 4409 24 1155

feasibility 1 10−4 10512 22 1065 12839 25 1178

feasibility 1 5% 10443 23 1200 13304 25 1225

feasibility 1 10% 14373 26 1146 13406 25 1089

feasibility 10 10−4 3902 22 1099 5004 22 1096

feasibility 10 5% 3177 22 1276 5010 23 1126

20 14 2 feasibility 10 10% 4672 23 1212 3890 22 1099

balance none 10−4 2970 26 1014 3197 24 944

balance none 5% 2959 26 977 2892 24 959

balance none 10% 2884 24 959 3398 25 993

balance automatic 10−4 3514 24 1072 3923 24 1098

balance automatic 5% 3289 24 1080 3723 25 1052

balance automatic 10% 3866 26 1137 3734 25 1135

balance 1 10−4 9665 25 1158 9321 24 1208

balance 1 5% 8505 25 1189 10697 27 1253

balance 1 10% 7713 25 1144 8590 24 1124

balance 10 10−4 3559 25 1098 4505 25 1142

balance 10 5% 2964 26 1014 3969 24 1142

balance 10 10% 3334 24 1196 4310 25 1149

216

Table 41: Pricing Problem Solution Options: Design (20,10)

Solution Options p0 = 0.9 p0 = 1.1

MIP Heuristic MIP # # # #

Instance Emphasis Frequency Gap CPU (s) Iters Cols CPU (s) Iters Cols

feasibility none 10−4 129 18 748 163 19 695

feasibility none 5% 110 17 694 162 20 667

feasibility none 10% 129 18 731 151 19 671

feasibility automatic 10−4 185 20 646 162 18 655

feasibility automatic 5% 184 21 628 159 19 687

feasibility automatic 10% 173 20 683 168 19 660

feasibility 1 10−4 429 19 609 381 18 665

feasibility 1 5% 464 21 644 479 21 682

feasibility 1 10% 503 23 667 576 22 651

feasibility 10 10−4 235 21 691 198 19 704

feasibility 10 5% 173 19 645 205 21 653

20 10 1 feasibility 10 10% 211 21 709 197 20 635

balance none 10−4 167 23 595 219 23 565

balance none 5% 152 20 525 215 25 590

balance none 10% 158 21 572 158 21 576

balance automatic 10−4 209 20 660 206 19 653

balance automatic 5% 244 23 650 214 22 709

balance automatic 10% 225 21 633 223 21 620

balance 1 10−4 376 19 653 582 22 689

balance 1 5% 483 21 619 527 22 671

balance 1 10% 435 21 671 572 24 677

balance 10 10−4 223 21 671 203 18 596

balance 10 5% 214 21 662 269 24 717

balance 10 10% 193 20 608 268 23 665

feasibility none 10−4 123 19 675 126 18 673

feasibility none 5% 93 17 648 126 19 627

feasibility none 10% 157 22 7336 133 18 652

feasibility automatic 10−4 126 18 639 147 18 659

feasibility automatic 5% 117 18 706 157 19 642

feasibility automatic 10% 122 18 614 162 20 608

feasibility 1 10−4 388 20 675 349 18 632

feasibility 1 5% 354 20 626 427 20 632

feasibility 1 10% 411 21 644 526 23 645

feasibility 10 10−4 163 19 684 162 18 635

feasibility 10 5% 169 20 642 174 19 582

20 10 2 feasibility 10 10% 156 19 600 157 19 623

balance none 10−4 142 21 577 167 23 566

balance none 5% 149 22 547 141 19 506

balance none 10% 144 21 572 154 20 528

balance automatic 10−4 121 16 622 154 18 592

balance automatic 5% 180 20 613 151 18 577

balance automatic 10% 195 21 650 185 21 614

balance 1 10−4 348 19 696 326 19 669

balance 1 5% 399 21 669 334 19 619

balance 1 10% 303 19 624 437 23 677

balance 10 10−4 205 21 697 175 19 596

balance 10 5% 204 22 662 173 19 599

balance 10 10% 197 21 584 210 22 637

217

Table 42: Pricing Problem Solution Options: Design (20,8)

Solution Options p0 = 0.9 p0 = 1.1

MIP Heuristic MIP # # # #

Instance Emphasis Frequency Gap CPU (s) Iters Cols CPU (s) Iters Cols

feasibility none 10−4 26.8 16 458 61.5 17 509

feasibility none 5% 32.3 18 518 66.9 19 483

feasibility none 10% 24.8 15 476 61.5 16 473

feasibility automatic 10−4 30.4 16 442 64.9 17 426

feasibility automatic 5% 41.8 20 445 72.7 17 452

feasibility automatic 10% 39.9 19 441 69.3 17 431

feasibility 1 10−4 71.4 17 469 156 18 461

feasibility 1 5% 71.3 17 492 178 18 437

feasibility 1 10% 68.6 17 421 173 17 433

feasibility 10 10−4 34.7 16 444 90.1 17 456

feasibility 10 5% 39.6 18 465 71.6 17 463

20 8 1 feasibility 10 10% 45 19 447 82.4 16 395

balance none 10−4 37.5 19 421 57.5 17 394

balance none 5% 34.7 18 387 66.2 17 415

balance none 10% 32.6 17 376 63.9 17 384

balance automatic 10−4 52.5 19 447 88 16 447

balance automatic 5% 51.7 19 462 92 17 426

balance automatic 10% 37.3 16 413 92.6 19 416

balance 1 10−4 101 20 455 155 17 450

balance 1 5% 102 20 466 161 16 404

balance 1 10% 78 18 454 150 16 412

balance 10 10−4 48 18 458 100 18 444

balance 10 5% 44.5 17 417 85.7 18 425

balance 10 10% 37.7 16 413 92.7 17 423

feasibility none 10−4 29 17 453 30.7 17 483

feasibility none 5% 28.7 17 461 30.3 17 431

feasibility none 10% 25.7 16 463 29.8 17 501

feasibility automatic 10−4 32.2 17 431 30.8 17 450

feasibility automatic 5% 33.9 18 429 40.2 19 436

feasibility automatic 10% 31.2 17 446 33 17 378

feasibility 1 10−4 59.6 16 429 65.6 17 445

feasibility 1 5% 66.3 17 436 61.2 16 412

feasibility 1 10% 73.5 18 435 68.5 17 400

feasibility 10 10−4 35.5 17 447 45.6 20 448

feasibility 10 5% 36.8 18 423 44.8 19 431

20 8 2 feasibility 10 10% 32.6 16 400 33.6 16 376

balance none 10−4 34.6 19 399 33.9 18 413

balance none 5% 28.8 18 411 29.2 17 397

balance none 10% 33.1 19 405 29 17 378

balance automatic 10−4 36.6 16 438 48.9 19 437

balance automatic 5% 47.9 19 427 44.5 18 408

balance automatic 10% 40.7 17 418 46.8 18 387

balance 1 10−4 67.5 17 418 63.2 16 448

balance 1 5% 82.4 18 420 87.4 19 439

balance 1 10% 82.1 19 482 65.2 16 390

balance 10 10−4 41.2 17 443 49.5 19 437

balance 10 5% 40.8 17 405 42.5 17 390

balance 10 10% 38.8 17 433 42.8 17 395

218

Table 43: Pricing Problem Solution Options: Design (30,10)

Solution Options p0 = 0.9 p0 = 1.1

MIP Heuristic MIP # # # #

Instance Emphasis Frequency Gap CPU (s) Iters Cols CPU (s) Iters Cols

feasibility none 10−4 193 18 973 432 19 984

feasibility none 5% 184 17 906 399 19 923

feasibility none 10% 203 18 946 467 20 900

feasibility automatic 10−4 191 16 789 585 17 906

feasibility automatic 5% 227 18 905 549 20 845

feasibility automatic 10% 225 18 816 513 16 776

feasibility 1 10−4 710 20 882 1331 20 904

feasibility 1 5% 569 18 735 1456 21 865

feasibility 1 10% 646 19 839 1454 19 802

feasibility 10 10−4 287 19 865 714 21 910

feasibility 10 5% 257 18 820 617 18 900

30 10 1 feasibility 10 10% 247 18 830 603 18 787

balanced none 10−4 215 19 707 491 19 696

balanced none 5% 235 20 763 396 18 751

balanced none 10% 260 21 780 542 23 793

balanced automatic 10−4 310 19 884 659 22 845

balanced automatic 5% 218 17 795 601 18 826

balanced automatic 10% 262 19 808 639 21 783

balanced 1 10−4 664 20 888 1447 19 849

balanced 1 5% 522 18 857 1376 20 848

balanced 1 10% 619 20 887 1407 21 837

balanced 10 10−4 305 19 843 682 20 832

balanced 10 5% 278 19 778 578 17 780

balanced 10 10% 280 19 783 609 19 808

feasibility none 10−4 212 17 943 273 18 966

feasibility none 5% 169 15 897 189 15 925

feasibility none 10% 208 17 929 238 17 883

feasibility automatic 10−4 238 17 908 268 17 909

feasibility automatic 5% 224 17 870 275 18 961

feasibility automatic 10% 225 17 878 242 16 802

feasibility 1 10−4 869 20 848 724 18 829

feasibility 1 5% 699 19 822 641 16 753

feasibility 1 10% 597 17 863 822 19 862

feasibility 10 10−4 270 17 921 280 16 862

feasibility 10 5% 278 18 832 279 16 872

30 10 2 feasibility 10 10% 317 19 873 290 17 862

balanced none 10−4 207 16 629 298 20 737

balanced none 5% 241 18 720 276 19 747

balanced none 10% 224 17 730 211 16 678

balanced automatic 10−4 286 17 863 362 18 843

balanced automatic 5% 302 18 838 323 17 849

balanced automatic 10% 295 18 892 307 17 838

balanced 1 10−4 665 18 867 843 19 894

balanced 1 5% 664 19 862 712 17 858

balanced 1 10% 579 17 832 727 18 879

balanced 10 10−4 324 18 872 279 16 834

balanced 10 5% 325 18 833 387 19 808

balanced 10 10% 283 17 841 375 19 842

219

Table 44: Pricing Problem Solution Options: Design (30,8)

Solution Options p0 = 0.9 p0 = 1.1

MIP Heuristic MIP # # # #

Instance Emphasis Frequency Gap CPU (s) Iters Cols CPU (s) Iters Cols

feasibility none 10−4 49.7 15 663 59.2 16 653

feasibility none 5% 52.3 16 642 48 15 596

feasibility none 10% 50.9 16 606 53.8 16 665

feasibility automatic 10−4 55.9 15 567 63.6 16 544

feasibility automatic 5% 51.8 15 504 53.9 15 556

feasibility automatic 10% 51.3 15 548 71.1 18 549

feasibility 1 10−4 156 17 617 116 14 564

feasibility 1 5% 137 16 505 157 17 521

feasibility 1 10% 108 14 549 110 14 491

feasibility 10 10−4 61 15 650 64.1 15 550

feasibility 10 5% 63.7 16 520 54.1 14 522

30 8 1 feasibility 10 10% 52.8 14 522 55.2 14 492

balance none 10−4 60.6 16 476 64.1 17 484

balance none 5% 59.9 17 475 55.2 15 457

balance none 10% 62.6 17 488 64.8 17 490

balance automatic 10−4 82.5 16 575 91.5 17 525

balance automatic 5% 92 18 506 67.3 15 534

balance automatic 10% 78.1 16 548 97.8 18 529

balance 1 10−4 119 14 556 136 15 547

balance 1 5% 113 14 490 145 16 530

balance 1 10% 116 14 514 127 15 501

balance 10 10−4 107 19 566 65.6 14 522

balance 10 5% 69.3 15 498 69.4 15 534

balance 10 10% 71.8 15 576 70.9 15 517

Table 45: Pricing Problem Solution Options: Design (25,12)

Solution Options p0 = 0.9 p0 = 1.1

MIP Heuristic MIP # # # #

Instance Emphasis Frequency Gap CPU (s) Iters Cols CPU (s) Iters Cols

feasibility none 10−4 928 19 1200 867 17 1055

feasibility none 5% 901 19 1058 1033 19 1105

feasibility none 10% 809 18 1049 781 17 1111

feasibility automatic 10−4 1162 20 1037 1247 19 1036

feasibility automatic 5% 911 19 1000 1213 20 1024

feasibility automatic 10% 1069 20 955 1247 19 919

feasibility 1 10−4 2720 20 952 3779 20 1002

feasibility 1 5% 2658 20 1023 3432 21 1042

feasibility 1 10% 3303 22 1009 3458 22 1085

feasibility 10 10−4 998 20 956 1381 19 1065

feasibility 10 5% 1322 21 1020 1303 20 962

25 12 1 feasibility 10 10% 1133 19 1022 1325 20 999

balance none 10−4 887 21 880 902 20 874

balance none 5% 932 22 909 937 20 849

balance none 10% 869 21 857 1049 22 827

balance automatic 10−4 1214 22 924 1315 21 966

balance automatic 5% 1028 20 970 1345 22 968

balance automatic 10% 999 19 980 1241 22 1017

balance 1 10−4 2410 20 936 2568 20 1069

balance 1 5% 2265 20 994 2067 18 934

balance 1 10% 1938 19 964 3236 22 979

balance 10 10−4 1193 22 961 1290 21 979

balance 10 5% 972 19 971 1241 21 927

balance 10 10% 1406 23 997 1484 23 958

220

Table 46: Pricing Problem Solution Options: Design (15,12)

Solution Options p0 = 0.9 p0 = 1.1

MIP Heuristic MIP # # # #

Instance emphasis frequency gap CPU (s) Iters Cols CPU (s) Iters Cols

feasibility none default 920 23 797 712 21 788

feasibility none 5% 784 23 802 1046 24 833

feasibility none 10% 863 23 809 793 22 781

feasibility automatic default 846 23 690 861 23 734

feasibility automatic 5% 1201 27 792 967 23 735

feasibility automatic 10% 899 24 733 989 24 790

feasibility 1 default 2723 25 747 2998 25 707

feasibility 1 5% 2920 26 810 2958 25 695

feasibility 1 10% 3134 25 724 3354 26 705

feasibility 10 default 1213 26 766 1015 23 742

feasibility 10 5% 1014 24 737 1344 26 743

15 12 1 feasibility 10 10% 955 23 724 1098 24 794

optimality none default 959 28 694 1063 28 677

optimality none 5% 687 25 640 885 26 687

optimality none 10% 811 28 707 911 27 626

optimality automatic default 1050 27 712 1062 26 739

optimality automatic 5% 909 25 746 889 24 688

optimality automatic 10% 1061 27 757 1077 27 728

optimality 1 default 1867 23 773 2383 25 754

optimality 1 5% 2394 26 801 2326 27 789

optimality 1 10% 2137 26 783 2745 27 807

optimality 10 default 859 25 739 1137 26 717

optimality 10 5% 757 23 702 1176 27 749

optimality 10 10% 1155 27 789 1058 24 709

221

APPENDIX G

STRENGTH OF CLASS I VALID INEQUALITY

222

Table 47: Strength of Class I Valid Inequalities (RPP 0 0 2)

National Cardinality LP Duality Gap (%) CPU Time (s)
Flow li0 Value O1 O2 O3 O4 O1 O2 O3 O4

3 21.8 20.1 16.0 14.2 1.22 1.18 1.21 1.23
4 10.9 8.1 5.1 3.8 1.83 1.09 1.34 0.39
5 7.6 4.9 3.0 2.6 1.38 0.68 1.16 0.61
6 8.6 5.0 3.2 2.7 1.70 1.45 1.35 1.25
7 8.2 4.7 3.0 2.5 1.64 1.52 1.49 1.39

200 8 7.8 4.1 2.9 2.3 1.86 1.77 0.93 1.38
9 7.5 3.6 2.8 2.0 2.67 1.97 1.83 1.93
10 7.3 3.0 2.6 1.7 2.30 3.31 1.92 3.62
11 0 0 0 0 0.23 0.39 0.25 0.38
12 0.8 0 0.1 0 0.31 0.33 0.37 0.37
13 8.9 0.1 0.2 0 0.70 0.54 0.61 0.53
3 14.9 13.6 12.3 11.0 1.15 1.47 1.24 1.17
4 5.9 3.9 3.1 2.1 1.10 1.08 0.35 0.37
5 3.1 1.6 1.4 1.0 0.73 0.35 0.22 0.37
6 4.3 1.7 1.7 1.2 1.02 0.66 1.19 0.72
7 4.1 1.6 1.6 1.1 1.38 0.65 0.81 0.88

100 8 3.8 1.2 1.5 0.8 1.46 0.82 1.33 0.96
9 3.6 0.8 1.4 0.6 1.27 1.08 1.75 0.91
10 3.5 0.5 1.3 0.4 1.61 1.28 0.64 1.10
11 0 0 0 0 0.22 0.44 0.19 0.44
12 0 0 0 0 0.16 0.29 0.17 0.37
13 0.7 0 0 0 1.62 0.25 1.49 0.33
3 7.6 6.5 6.6 5.7 0.89 0.94 1.37 0.74
4 3.3 1.8 1.9 1.2 0.78 0.51 0.33 0.66
5 0.9 0.2 0.5 0.2 0.38 0.28 0.22 0.26
6 2.1 0.5 0.8 0.4 0.50 0.47 0.74 0.40
7 2.0 0.5 0.8 0.4 0.52 0.63 0.66 0.53

50 8 1.8 0.3 0.7 0.2 0.63 0.55 0.80 0.57
9 1.6 0.1 0.6 0.1 1.08 0.58 0.62 0.53
10 1.6 0.1 0.5 0.1 0.47 0.63 0.33 0.63
11 0 0 0 0 0.18 0.33 0.18 0.33
12 0 0 0 0 0.18 0.24 0.18 0.23
13 0 0 0 0 0.19 0.28 0.20 0.28
3 2.7 1.9 2.3 1.7 0.26 0.21 0.3 0.2
4 2.2 1.1 1.4 0.9 0.31 0.96 0.7 0.4
5 0.2 0 0.1 0 0.21 0.13 0.2 0.1
6 1.3 0.2 0.5 0.2 0.38 0.32 0.8 0.3
7 1.2 0.2 0.4 0.2 0.43 0.40 0.9 0.4

30 8 1.0 0.1 0.4 0.1 0.45 0.40 0.6 0.4
9 0.8 0.0 0.3 0.0 0.71 0.30 0.3 0.3
10 0.8 0.0 0.3 0.0 0.32 0.51 0.3 0.5
11 0 0 0 0 0.16 0.31 0.2 0.3
12 0 0 0 0 0.17 0.21 0.2 0.2
13 0 0 0 0 0.19 0.38 0.2 0.2
3 0.6 0.3 0.5 0.3 0.17 0.18 0.16 0.20
4 1.7 0.9 1.2 0.8 0.67 0.41 0.32 0.34
5 0 0 0 0 0.11 0.13 0.11 0.12
6 0.8 0.1 0.3 0.1 0.38 0.30 0.43 0.29
7 0.8 0.1 0.3 0.1 0.39 0.36 0.57 0.35

20 8 0.6 0.0 0.2 0.0 0.26 0.32 0.38 0.32
9 0.4 0 0.1 0 0.28 0.22 0.32 0.21
10 0.4 0.0 0.1 0.0 0.33 0.26 0.35 0.25
11 0 0 0 0 0.17 0.31 0.17 0.29
12 0 0 0 0 0.17 0.21 0.18 0.20
13 0 0 0 0 0.20 0.22 0.20 0.22

223

Table 48: Strength of Class I Valid Inequalities (Contd.) (RPP 0 0 2)

National Cardinality LP Duality Gap (%) CPU Time (s)
Flow li0 Value O1 O2 O3 O4 O1 O2 O3 O4

3 0 0 0 0 0.08 0.11 0.09 0.11
4 1.2 0.9 0.9 0.8 0.72 0.37 0.32 0.74
5 0 0 0 0 0.11 0.12 0.12 0.11
6 0.4 0.1 0.1 0.1 0.25 0.29 0.41 0.29
7 0.3 0.0 0.1 0.0 0.27 0.21 0.46 0.21

10 8 0.1 0.0 0.1 0.0 0.26 0.20 0.35 0.20
9 0 0 0 0 0.12 0.16 0.13 0.15
10 0.0 0 0.0 0 0.19 0.19 0.20 0.19
11 0 0 0 0 0.15 0.23 0.16 0.23
12 0 0 0 0 0.17 0.20 0.18 0.20
13 0 0 0 0 0.18 0.23 0.20 0.22
3 0 0 0 0 0.08 0.11 0.09 0.11
4 0.5 0.4 0.4 0.4 0.20 0.25 0.22 0.25
5 0 0 0 0 0.10 0.12 0.11 0.12
6 0.2 0.0 0.0 0.0 0.24 0.18 0.32 0.18
7 0.1 0 0.0 0 0.26 0.16 0.37 0.15

5 8 0 0 0 0 0.12 0.15 0.12 0.14
9 0 0 0 0 0.13 0.16 0.13 0.15
10 0 0 0 0 0.13 0.20 0.14 0.19
11 0 0 0 0 0.14 0.19 0.15 0.19
12 0 0 0 0 0.18 0.21 0.17 0.20
13 0 0 0 0 0.18 0.22 0.19 0.21
3 0 0 0 0 0.08 0.11 0.09 0.11
4 0.1 0.1 0.1 0.1 0.20 0.26 0.21 0.11
5 0 0 0 0 0.09 0.12 0.10 0.12
6 0.1 0 0.0 0 0.23 0.14 0.27 0.12
7 0.1 0 0.0 0 0.24 0.15 0.31 0.15

3 8 0 0 0 0 0.13 0.16 0.12 0.15
9 0 0 0 0 0.13 0.15 0.12 0.15
10 0 0 0 0 0.13 0.18 0.14 0.17
11 0 0 0 0 0.15 0.18 0.15 0.18
12 0 0 0 0 0.17 0.20 0.17 0.20
13 0 0 0 0 0.18 0.20 0.19 0.21
3 0 0 0 0 0.08 0.11 0.08 0.11
4 0 0 0 0 0.09 0.11 0.09 0.10
5 0 0 0 0 0.09 0.12 0.09 0.12
6 0.0 0 0.0 0 0.23 0.12 0.20 0.12
7 0.0 0 0.0 0 0.25 0.15 0.17 0.14

2 8 0 0 0 0 0.11 0.15 0.11 0.14
9 0 0 0 0 0.12 0.15 0.13 0.15
10 0 0 0 0 0.13 0.17 0.13 0.17
11 0 0 0 0 0.14 0.18 0.15 0.18
12 0 0 0 0 0.16 0.20 0.16 0.20
13 0 0 0 0 0.17 0.21 0.19 0.20
3 0 0 0 0 0.08 0.10 0.09 0.10
4 0 0 0 0 0.10 0.11 0.09 0.11
5 0 0 0 0 0.09 0.12 0.10 0.11
6 0.0 0 0.0 0 0.22 0.12 0.14 0.12
7 0.0 0 0.0 0 0.15 0.14 0.16 0.13

1 8 0 0 0 0 0.11 0.15 0.11 0.14
9 0 0 0 0 0.12 0.16 0.12 0.15
10 0 0 0 0 0.13 0.17 0.13 0.16
11 0 0 0 0 0.14 0.19 0.15 0.19
12 0 0 0 0 0.15 0.19 0.15 0.18
13 0 0 0 0 0.19 0.21 0.18 0.21

224

Table 49: Strength of Class I Valid Inequalities (RPP 0 0 10; only consider CPU time)

National Cardinality Value
Flow li0 Option 3 4 5 6 7 8 9 10 11 12 13

O1 8.0 25.4 59.3 77.1 72.1 53.8 61.0 49.6 53.1 23.8 24.9
O2 16.0 45.6 71.1 62.6 87.4 101.2 67.2 65.4 24.0 18.5 17.0

200 O3 8.8 21.8 39.7 84.5 116.3 93.3 87.1 86.7 50.8 27.4 18.8
O4 17.6 34.3 58.0 76.5 138.2 89.6 91.4 61.7 46.6 23.4 13.9
O1 8.4 26.8 55.5 67.7 64.8 59.4 68.0 50.7 59.3 29.1 23.6
O2 17.7 38.9 77.4 79.9 132.1 162.9 92.3 57.4 25.7 22.7 18.0

100 O3 8.6 21.2 58.4 76.0 112.4 82.4 63.3 91.5 54.5 33.4 24.7
O4 19.7 42.9 55.7 140.8 159.0 134.0 79.9 68.0 51.1 23.4 16.3
O1 7.9 24.3 50.8 92.7 138.8 53.2 51.9 48.8 41.5 31.6 27.1
O2 20.2 40.6 86.0 83.7 131.0 89.2 84.0 99.5 30.5 21.7 26.2

50 O3 9.0 20.9 41.5 76.6 87.1 74.9 102.3 69.3 53.0 37.4 21.2
O4 19.7 43.4 71.0 97.3 99.9 124.3 85.8 70.2 49.7 25.7 20.1
O1 8.7 31.3 46.7 100.0 48.1 42.5 43.6 42.5 52.1 32.5 27.2
O2 18.5 37.5 89.2 75.6 74.0 80.8 61.4 46.3 33.3 25.3 21.6

30 O3 8.5 24.1 45.3 83.7 64.5 59.6 54.3 143.2 55.1 37.4 24.9
O4 23.9 48.6 59.4 73.9 69.4 53.1 52.7 47.0 41.9 23.9 16.0
O1 7.1 30.7 35.9 48.2 46.1 40.0 41.9 42.0 33.4 26.0 24.0
O2 18.7 47.2 62.4 87.2 50.0 48.3 51.3 46.5 28.6 28.5 22.1

20 O3 9.4 18.5 39.7 64.4 56.7 52.0 46.5 77.2 44.0 33.6 23.5
O4 24.9 51.9 63.8 67.8 61.2 65.9 53.4 39.6 34.4 22.1 17.2
O1 8.0 21.9 28.6 40.0 47.1 35.7 36.9 41.1 32.1 24.9 20.5
O2 19.8 40.5 48.2 47.7 38.0 43.5 41.4 36.9 37.9 26.8 23.3

10 O3 9.2 16.3 32.4 47.9 45.9 45.1 39.8 42.0 36.9 36.0 19.4
O4 26.8 33.3 52.2 34.9 31.9 46.9 37.1 34.5 34.4 24.6 20.2
O1 6.3 16.9 19.6 49.5 61.6 27.9 30.5 35.9 30.6 25.0 19.3
O2 16.3 28.0 30.5 33.4 34.0 44.5 32.8 35.3 29.8 30.5 20.2

5 O3 5.6 15.2 33.3 20.3 28.8 26.0 30.4 36.0 44.7 33.6 17.6
O4 17.9 28.4 34.9 29.6 24.6 33.7 32.6 35.1 28.1 24.9 21.3
O1 5.2 12.9 16.8 20.8 21.4 20.5 24.4 32.7 24.9 28.6 20.8
O2 14.1 22.7 30.4 27.1 21.5 27.6 29.4 33.4 25.9 21.9 10.0

3 O3 4.6 13.0 16.9 24.8 15.2 20.9 30.5 33.0 31.0 22.0 17.8
O4 10.3 18.3 26.3 20.2 23.5 29.2 41.0 33.2 19.0 15.0 12.0
O1 3.9 8.6 16.8 20.5 24.8 27.8 25.4 28.1 22.4 22.2 20.7
O2 8.5 15.0 23.1 25.0 21.7 23.3 28.8 24.3 17.8 11.2 10.7

2 O3 4.3 6.0 10.5 19.6 24.7 25.3 25.2 23.4 27.8 18.7 17.1
O4 8.2 15.4 15.8 23.8 26.0 24.3 28.2 23.2 16.9 14.3 11.0
O1 3.0 5.2 9.1 13.5 22.5 19.7 22.6 19.6 19.7 23.6 20.4
O2 7.2 12.5 10.9 17.9 15.7 16.2 21.5 15.1 11.1 7.2 8.8

1 O3 3.6 3.9 8.8 11.9 24.6 16.8 17.7 20.6 19.4 13.2 12.6
O4 7.9 11.3 12.6 19.5 18.5 17.1 18.7 15.4 14.1 11.3 8.3

225

APPENDIX H

A SPECIAL CASE OF RPP=(S): UNIMODALITY

Figure 40: Illustration of Unimodality (li0 = 200, 100, 50, 30, 20)

226

Figure 41: Illustration of Unimodality (li0 = 10, 5, 3, 2, 1)

227

BIBLIOGRAPHY

[1] Bill 921. South Carolina General Assembly (112th Session, 1997 - 1998).

[2] J. Abara. Applying integer linear programming to the fleet assignment problem. In-
terfaces, 19(4):20–28, 1989.

[3] R. Adam, H. Bismuth, T. Diamond, B. Ducot, M. Morino, I. Astarcioglu, M. Johann,
D. Azoulay, L. Chiche, and Y. M. Bao. Effect of extended cold ischaemia with UW
solution on graft function after liver transplantation. Lancet, 340:1373–1376, 1992.

[4] Y. Agarwal, K. Mathur, and H. M. Salkin. A set-partitioning-based exact algorithm
for the vehicle routing problem. Networks, 19:731–749, 1989.

[5] J. H. Ahn and J. C. Hornberger. Involving patients in the cadaveric kidney transplant
allocation process: A decision-theoretic perspective. Management Science, 42(5):629–
641, 1996.

[6] O. Alagoz. Optimal Policies for the Acceptance of Living- and Cadaveric-Donor Livers.
PhD thesis, University of Pittsburgh, Pittsburgh, PA, 2004.

[7] O. Alagoz, L. M. Maillart, A. J. Schaefer, and M. S. Roberts. The optimal timing of
living-donor liver transplantation. Management Science, 50(10):1420–1430, 2004.

[8] O. Alagoz, L. M. Maillart, A. J. Schaefer, and M. S. Roberts. Determining the accep-
tance of cadaveric livers using an implicit model of the waiting list, 2005. Conditionally
accepted at Operations Research.

[9] O. Alagoz, M. S. Roberts, C. L. Bryce, A. J. Schaefer, J. Chang, and D. C. Angus.
Incorporating biological natural history in simulation models: Empiric estimates of the
progression of end-stage liver disease. Medical Decision Making, 25(6):620–632, 2005.

[10] O. Alagoz, A. J. Schaefer, and M. S. Roberts. Optimization in organ allocation, 2005.
To appear in Handbook of Optimization in Medicine, P. Pardalos and E. Romeijn, eds.
Kluwer Academic Publishers.

[11] R. Anbil, J. J. Forrest, and W. R. Pulleyblank. Column generation and the airline
crew pairing problem. In Proceedings of the International Congress of Mathematics,
Berlin, Germany, pages 677–686, 1998.

228

[12] R. Anbil, R. Tanga, and E. L. Johnson. A global approach to crew-pairing optimization.
IBM Systems Journal, 31:71–78, 1992.

[13] E. Andersson, E. Housos, N. Kohl, and D. Wedelin. Crew pairing optimization. In
G. Yu, editor, Operations Research in the Airline Industry, pages 228 – 258. Kluwer
Academic Publishers, Boston, MA, 1997.

[14] L. H. Appelgren. A column generation algorithm for a ship scheduling problem. Trans-
portation Science, 3:53–68, 1969.

[15] M. A. Bailey. Economic issues in organ substitution technology. In D. Mathieu, edi-
tor, Organ Substitution Technology: Ethical, Legal and Public Policy Issues. Westview
Press, Boulder, CO, 1988.

[16] E. Balas and M. Padberg. Set partitioning: A survey. SIAM Review, 18:710–760, 1976.

[17] F. Barahona and R. Anbil. The volume algorithm: Producing primal solutions with a
subgradient method. Mathematical Programming, 87(3):385–399, 2000.

[18] C. Barnhart, N. Boland, L. W. Clarke, E. L. Johnson, G. L. Nemhauser, and R. G.
Shenoi. Flight string models for aircraft routing and scheduling. Transportation Sci-
ence, 32(3):208–220, 1998.

[19] C. Barnhart, C. A. Hane, E. L. Johnson, and G. Sigismondi. An alternative formulation
and solution strategy for multi-commodity network flow problems. Telecommunications
Systems, 3:239–258, 1995.

[20] C. Barnhart, C. A. Hane, and P. H. Vance. Integer multicommodity flow problems.
Lecture Notes in Economics and Mathematical Systems, 450:17–31, 1997.

[21] C. Barnhart, C. A. Hane, and P. H. Vance. Using branch-and-price-and-cut to solve
origin-destination integer multicommodity network flow problems. Operations Re-
search, 48(3):318–326, 2000.

[22] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance.
Branch-and-price: Column generation for solving huge integer programs. Operations
Research, 46(3):316–329, 1998.

[23] C. Barnhart, T. S. Kniker, and M. Lohatepanont. Itinerary-based airline fleet assign-
ment. Transportation Science, 36(2):199–217, 2002.

[24] C. Barnhart and R. R. Schneur. Air network design for express shipment service.
Operations Research, 44(6):852–863, 1996.

[25] H. Ben Amor. Stabilisation de l’Algorithme de Génération de Colonnes. PhD thesis,
École Polytechnique de Montréal, Montréal, Canada, 2002.

229

[26] J. M. Benedict. Three Hierarchical Objective Models Which Incorporate the Concept
of Excess Coverage to Locate EMS Vehicles or Hospitals. PhD thesis, Northwestern
University, Evanston, IL, 1983.

[27] M. A. Berge and C. Hopperstad. Demand driven dispatch: A method for dynamic
aircraft capacity assignment, models, and algorithms. Operations Research, 41(1):153–
168, 1993.

[28] R. E. Bixby. Solving real-world linear programs: A decade and more of progress.
Operations Research, 50(1):3–15, 2002.

[29] R. E. Bixby, J. W. Gregory, I. J. Lustig, R. E. Marsten, and D. F. Shano. Very
large-scale linear programming: A case study in combining interior point and simplex
methods. Operations Research, 40(5):885–897, 1992.

[30] K. Bjoro, B. G. Ericzon, P. Kirkegaard, K. Hockerstedt, G. Soderdahl, M. Olausson,
A. Foss, L. E. Schmidt, H. Isoniemi, B. Brandsaeter, and S. Friman. Highly urgent liver
transplantation: Possible impact of donor-recipient ABO matching on the outcome
after transplantation. Transplantation, 75(3):347–353, 2003.

[31] R. Borndörfer, M. Grötschel, and A. Löbel. Duty scheduling in public transit. In
W. Jäger and H.-J. Krebs, editors, Mathematics – Key Technology for the Future,
pages 653–674. Springer-Verlag, Berlin, Germany, 2003.

[32] E. Boros and P. Hammer. Pseudo-boolean optimization. Discrete Applied Mathematics,
123(1-3):155–225, 2002.

[33] J.-M. Bourjolly, G. Laporte, and H. Mercure. A combinatorial column generation
algorithm for the maximum stable set problem. Operations Research Letters, 20(1):21–
29, 1997.

[34] M. L. Brandeau and R. C. Larson. Extending and applying the hypercube queueing
model to deploy ambulances in Boston. In E. Ignall and Swersey A. J., editors, Man-
agement Science and the Delivery of Urban Service, TIMS Studies in the Management
Sciences Series. North-Holland/Elsevier, Amsterdam, The Netherlands, 1986.

[35] M. L. Brandeau, F. Sainfort, and W. P. Pierskalla. Operations Research and Health
Care: A Handbook of Methods and Applications. Kluwer Academic Publishers, Boston,
MA, 2005.

[36] D. W. Brock. Ethical issues in recipient selection for organ transplantation. In D. Math-
ieu, editor, Organ Substitution Technology: Ethical, Legal and Public Policy Issues.
Westview Press, Boulder, CO, 1988.

[37] C. L. Bryce. Supplementary UNOS data set, 2005. Personal Correspondence.

[38] U.S. Census Bureau. GCT-PH1. Population, Housing Unit, Area, and Density: 2000.
Available from http://www.census.gov.

230

[39] A. Caprara, M. Fischetti, and P. Toth. A heuristic method for the set covering problem.
Operations Research, 47:730–743, 1999.

[40] A. Caprara, M. Fischetti, and P. Toth. Algorithms for the set covering problem. Annals
of Operations Research, 98:353–371, 2000.

[41] Y. M. Carson and R. Batta. Locating an ambulance on the Amherst campus of the
State University of New York at Buffalo. Interfaces, 20:43–49, 1990.

[42] F. C. Chow and J. L. Hennessy. Register allocation by priority-based coloring. In
Proceedings of the ACM SIGPLAN 84 Symposium on Complier Construction, pages
222–232, New York, NY, 1984. ACM.

[43] F. C. Chow and J. L. Hennessy. The priority-based coloring approach to register
allocation. ACM Transactions on Programming Languages and Systems, 12(4):501–
536, 1990.

[44] H. D. Chu, E. Gelman, and E. L. Johnson. Solving large scale crew scheduling problems.
European Journal of Operational Research, 97:260–268, 1997.

[45] V. Chvátal. Linear Programming. W. H. Freeman and Company, New York, NY, 1983.

[46] L. Clarke, C. Hane, E. Johnson, and G. Nemhauser. Maintenance and crew consider-
ation in fleet assignment. Transportation Science, 30:249–260, 1996.

[47] COIN-OR. COIN-OR Documentation: Branch-Cut-Price Framework. Available from
http://www.coin-or.org/documentation.html.

[48] G. Cornuejols, M. Fisher, and G. Nemhauser. Location of bank accounts to optimize
float: An analytic study of exact and approximation algorithms. Management Science,
23:789–810, 1977.

[49] T. G. Crainic and J.-M. Rousseau. The column generation principle and the airline
crew pairing problem. IFOR, 25(2):136–151, 1987.

[50] Y. Crama and A. G. Oerlemans. A column generation approach to job grouping for
flexible manufacturing systems. European Journal of Operational Research, 78(1):58–
80, 1994.

[51] G. B. Dantzig and A. R. Ferguson. The problem of routing – A mathematical solution.
Technical Report AD604395, Federal Clearinghouse, Washington, D.C., 1954.

[52] G. B. Dantzig and P. Wolfe. Decomposition principle for linear programs. Operations
Research, 8:101–111, 1960.

[53] M. S. Daskin. Application of an expected covering model to EMS system design.
Decision Sciences, 13:416–439, 1982.

231

[54] M. S. Daskin. Network and Discrete Location: Models, Algorithms and Applications.
Wiley, New York, NY, 1995.

[55] M. S. Daskin and L. K. Dean. Locations of health care facilities. In M. L. Brandeau,
F. Sainfort, and W. P. Pierskalla, editors, Operations Research and Health Care: A
Handbook of Methods and Applications. Kluwer Academic Publishers, Boston, MA,
2005.

[56] M. S. Daskin and N. D. Panayotopoulos. A Lagrangian relaxation approach to assigning
aircraft to routes in hub and spoke networks. Transportation Science, 23:91–99, 1989.

[57] M. S. Daskin and E. Stern. A hierarchical objective set covering model for EMS vehicle
deployment. Transportation Science, 15:137–152, 1981.

[58] I. David and U. Yechiali. A time-dependent stopping problem with application to live
organ transplants. Operations Research, 33(3):491–504, 1985.

[59] I. David and U. Yechiali. Sequential assignment match processes with arrivals of can-
didates and offers. Probability in Engineering and Information Sciences, 4(4):413–430,
1990.

[60] I. David and U. Yechiali. One-attribute sequential assignment match processes in
discrete time. Operations Research, 43(5):879–884, 1995.

[61] J. de Meester, M. Bogers, H. de Winter, J. Smits, L. Meester, M. Dekking, F. Lootsma,
G. Persijn, and F. Muhlbacher. Which ABO-matching rule should be the decisive
factor in the choice between a highly urgent and an elective patient? Transplantation
International, 15(8):431–435, 2002.

[62] C. C. de Souza. The Graph Equipartition Problem: Optimal Solutions, Extensions
and Applications. PhD thesis, Université Catholique de Louvain, Louvain-la-Neuve,
Belgium, 1993.

[63] D. de Werra. An introduction to timetabling. European Journal of Operational Re-
search, 19(2):151–162, 1985.

[64] C. Derman, G. J. Lieberman, and S. M. Ross. A sequential stochastic assignment
problem. Management Science, 18:349–355, 1972.

[65] G. Desaulniers, J. Desrosiers, Y. Dumas, M. M. Solomon, and F. Soumis. Daily aircraft
routing and scheduling. Management Science, 43(6):841–855, 1997.

[66] G. Desaulniers, J. Desrosiers, and M. M. Solomon. Accelerating strategies in column
generation methods for vehicle routing and crew scheduling problems. In C. C. Ribeiro
and P. Hansen, editors, Essays and Surveys in Metaheuristics, pages 309–324. Kluwer,
Boston, MA, 2001.

232

[67] M. Desrochers, J. Desrosiers, and M. M. Solomon. A new optimization algorithm for
the vehicle routing problem with time windows. Operations Research, 40(2):342–354,
1992.

[68] M. Desrochers and F. Soumis. A column generation approach to urban transit crew
scheduling. Transportation Science, 23:1–13, 1989.

[69] J. Desrosiers. An overview of column generation. Talk in Seminar on “Discrete
Mathematics and Applications” in the Department of Discrete Mathematics at Leib-
niz Laboratory, Leibniz, France, on April 15th, 1999. Available from http://www-
leibniz.imag.fr/DMD/sem/1999/indexe.html.

[70] J. Desrosiers, Y. Dumas, M. M. Solomon, and F. Soumis. Time constrained routing and
scheduling. In M. O. Ball, T. L. Magnanti, C. L. Monma, and G. L. Nemhauser, edi-
tors, Handbooks in Operations Research and Management Science, Volumn 8: Network
Routing, pages 35–139. Elsevier, Amsterdam, The Netherlands, 1995.

[71] J. Desrosiers and M. E. Lübbecke. Selected topics in column generation. Operations
Research, 53(6), 2005. In print.

[72] J. Desrosiers, F. Soumis, and M. Desrochers. Routing with time windows by column
generation. Networks, 14:545–565, 1984.

[73] O. du Merle, D. Villeneuve, J. Desrosiers, and P. Hansen. Stabilized column generation.
Discrete Mathematics, 194(1-3):229–237, 1999.

[74] Y. Dumas, J. Desrosiers, and F. Soumis. The pickup and delivery problem with time
windows. European Journal of Operational Research, 54:7–22, 1991.

[75] D. J. Eaton. Location techniques for emergency medical service vehicles: Volume I
– An analytical framework for Austin, Texas. Technical report, University of Texas,
Austin, Texas, 1979.

[76] D. J. Eaton, M. S. Daskin, D. Simmons, B. Bulloch, and G. Jansma. Determining
emergency medical service vehicle deployment in Austin, Texas. Interfaces, 15:96–108,
1985.

[77] D. J. Eaton, H. M. Sanchez, R. R. Lantigua, and Morgan J. Determining ambu-
lance deployment in Santo Domingo, Dominican Republic. Journal of the Operations
Research Society, 37:113–126, 1986.

[78] M. Eben-Chaime, C. A. Tovey, and J. C. Ammons. Circuit partitioning via set parti-
tioning and column generation. Operations Research, 44(1):65–76, 1996.

[79] M. Elf, C. Gutwenger, M. Jünger, and G. Rinaldi. Branch-and-cut algorithms for
combinatorial optimization and their implementation in ABACUS. In M. Jünger
and D. Naddef, editors, Computational Combinatorial Optimization, pages 157 – 222.
Springer-Verlag, Berlin, Germany, 2001.

233

[80] I. Elhallaoui, D. Villeneuve, F. Soumis, and G. Desaulniers. Dynamic aggregation of
set-partitioning constraints in column generation. Operations Research, 53(4):632–645,
2005.

[81] H. English, S. Pollard, C. Flamank, M. Belger, and R. Calne. The use of ABO-
compatible mismatched in the UK. Transplantation International, 7(S1):S102–103,
1994.

[82] A. Erdmann, A. Nolte, A. Noltemeier, and R. Schrader. Modeling and solving an airline
schedule generation problem. Annals of Operations Research, 107:117–142, 2001.

[83] R. W. Evans, D. L. Manninen, and F. B. Dong. An economic analysis of liver trans-
plantation: Costs, insurance coverage and reimbursement. Gastroenterology Clinics of
North America, 22(2):451–473, 1993.

[84] A. A. Farley. A note on bounding a class of linear programming problems, including
cutting stock problems. Operations Research, 38(5):922–923, 1990.

[85] J. A. Fitzsimmons. A methodology for emergency ambulance. Management Science,
19:627–636, 1973.

[86] National Center for Health Statistics (NCHS). National Vital Statistics Report –
Deaths: Preliminary Data for 2002, 2004. NVSR Vol. 52, No. 13. Available from
http://www.cdc.gov/nchs/products/pubs/pubd/nvsr/nvsr.htm.

[87] COmputational INterface for Operations Research (COIN-OR). Available from
http://www.coin-or.org.

[88] United Network for Organ Sharing (UNOS). Available from http://www.unos.org.

[89] L. R. Ford and D. R. Fulkerson. A suggested computation for maximal multicommodity
network flows. Management Science, 5:97–101, 1958.

[90] J. J. Forrest and D. Goldfarb. Steepest-edge simplex algorithms for linear program-
ming. Mathematical Programming, 57:341–374, 1992.

[91] R. L. Francis, L. F. McGinnis, and J. A. White. Facility Layout and Location: An
Analytical Approach. Prentice Hall, Englewood Cliffs, NJ, 1992.

[92] H. Furukawa, S. Todo, O. Imventarza, A. Casavilla, Y. M. Wu, C. Scotti-Foglieni,
B. Broznick, J. Bryant, R. Day, and T. E. Starzl. Effect of cold ischemia time on the
early outcome of human hepatic allografts preserved with UW solution. Transplanta-
tion, 51(5):1000–1004, 1991.

[93] M. Galati. AAP BP: A COIN/BCP branch and price example. Technical re-
port, Lehigh University, Bethlehem, PA, 2003. Available from http://www.coin-
or.org/download.html.

234

[94] R. J. Gallagher and E. K. Lee. Mixed integer programming optimization models for
brachytherapy treatment planning. In Proceedings of the 1997 American Medical In-
formatics Association Annual Fall Symposium, pages 278–282, 1997.

[95] M. Gamache, F. Soumis, G. Marquis, and J. Desrosiers. A column generation approach
for large-scale aircrew rostering problems. Operations Research, 47(2):247–263, 1999.

[96] A. Gamst. Some lower bounds for a class of frequency assignment problems. IEEE
Transactions of Vehicular Technology, 35(1):8–14, 1986.

[97] M. Gendreau, G. Laporte, and F. Semet. Solving an ambulance location model by
tabu search. Location Science, 5(2):75–88, 1997.

[98] A. M. Geoffrion. Lagrangean relaxation for integer programming. Mathematical Pro-
gramming Study, 2:82–114, 1974.

[99] P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-stock
problem. Operations Research, 9:849–859, 1961.

[100] P. C. Gilmore and R. E. Gomory. A linear programming approach to the cutting-stock
problem – part II. Operations Research, 11:863–888, 1963.

[101] D. Goldfarb and J. K. Reid. A practical steepest-edge simplex algorithm. Mathematical
Programming, 12(1):361–371, 1977.

[102] R. D. Gordon, S. Iwatsuki, C. O. Esquivel, A. Tzakis, S. Todo, and T. E. Starzl. Liver
transplantation across ABO blood groups. Surgery, 100(2):342–348, 1986.

[103] G. Y. Handler and P. B. Mirchandani. Location on Networks: Theory and Algorithms.
MIT Press, Cambridge, MA, 1979.

[104] C. A. Hane, C. Barnhart, E. L. Johnson, R. E. Marsten, G. L. Nemhauser, and G. Sigis-
mondi. The fleet assignment problem: Solving a large-scale integer program. Mathe-
matical Programming, 70:211–232, 1995.

[105] P. Hanse, B. Jaumard, and M. Poggi de Aragão. Mixed-integer column generation
algorithms and the probabilistic maximum satisfiability problem. European Journal of
Operational Research, 108:671–683, 1998.

[106] HHS/HRSA/OSP/DOT and UNOS. Annual report of the U.S. scientific registry of
transplant recipients and the organ procurement and transplantation network: Trans-
plant data 1997-1998, 2001. February 16, 2001. Rockville, MD and Richmond, VA.

[107] A. J. Hoffman, A. Kolen, and M. Sakarovitch. Totally balanced and greedy matrices.
SIAM Journal on Algebraic and Discrete Methods, 6:721–730, 1985.

[108] K. Hoffman and M. Padberg. LP-based combinatorial problem solving. Annals of
Operations Research, 4(1):145–194, 1985.

235

[109] K. Hogan and C. ReVelle. Concepts and applications of backup coverage. Management
Science, 32(11):1434–1444, 1986.

[110] A. Holder. Radiotherapy treatment decision and linear programming. In M. L. Bran-
deau, F. Sainfort, and W. P. Pierskalla, editors, Operations Research and Health Care:
A Handbook of Methods and Applications. Kluwer Academic Publishers, Boston, MA,
2005.

[111] J. C. Hornberger and J. H. Ahn. Deciding eligibility for transplantation when a donor
kidney becomes available. Medical Decision Making, 17(2):160–170, 1997.

[112] D. H. Howard. Why do transplant surgeons turn down organs? A model of the
accept/reject decision. Journal of Health Economics, 21(6):957–969, 2002.

[113] ILOG. CPLEX 9.0 user’s manual.

[114] I. Ioachim, J. Desrosiers, F. Soumis, and N. Bélanger. Fleet assignment and routing
with schedule synchronization constraints. European Journal of Operational Research,
119(1):75–90, 1999.

[115] D. A. Jacobs, M. N. Silan, and B. A. Clemson. An analysis of alternative locations
and service areas of American Red Cross blood facilities. Interfaces, 26:40–50, 1996.

[116] S. H. Jacobson and E. C. Sewell. Designing pediatric formularies for childhood immu-
nization using inter programming models. In M. L. Brandeau, F. Sainfort, and W. P.
Pierskalla, editors, Operations Research and Health Care: A Handbook of Methods and
Applications. Kluwer Academic Publishers, Boston, MA, 2005.

[117] S. H. Jacobson, E. C. Sewell, R. Deuson, and B. G. Weniger. An integer programming
model for vaccine procurement and delivery for childhood immunization: a pilot study.
Health Care Management Science, 2:1–9, 1999.

[118] E. L. Johnson. Modeling and strong linear programs for mixed-integer programming.
In S. W. Wallace, editor, Algorithms and Model Formulations in Mathematical Pro-
gramming. NATO ASI Series F, Computer and Systems Science, pages 1–41. Springer-
Verlag, New York, NY, 1989.

[119] E. L. Johnson, A. Mehrotra, and G. L. Nemhauser. Min-cut clustering. Mathematical
Programming, 62(1-3):133–151, 1993.

[120] J. Kankaanpaa. Cost-effectiveness in liver transplantations: How to apply the results
in resource allocation. Preventive Medicine, 19(6):700–704, 1990.

[121] S. Kapoor and H. Ramesh. Algorithms for enumerating all spanning trees of undirected
and weighted graphs. SIAM Journal on Computing, 24:247–265, 1995. Available at
http://citeseer.ist.psu.edu/kapoor95algorithms.html.

236

[122] T. S. Kniker. Itinerary-based Airline Fleet Assignment. PhD thesis, Massachusetts
Institute of Technology, Cambridge, MA, 1998.

[123] T. Koch. The organ transplant dilemma: What is fair and equitable? OR/MS Today,
26(1):22–28, 1999.

[124] T. Koch. National transplant system: What’s fair and what’s possible? OR/MS
Today, 28(5), 2001.

[125] T. Koch. Scarce Goods: Justice, Fairness, and Organ Transplantation. Praeger Pub-
lishers, Westport, CT, 2002.

[126] T. Koch and K. Denike. Equality vs. Efficiency: The geography of solid organ distri-
bution in the USA. Ethics, Place and Environment, 4(1):45–56, 2001.

[127] S. O. Krumke, J. Rambau, and L. M. Torres. Real-time dispatching of guided and
unguided automobile service units with soft time windows. In Proceedings of 10th
Annual European Symposium on Algorithms, Rome, Italy. Springer, Berlin Germany,
2002. volume 2461 of Lecture Notes in Computer Science.

[128] L. Ladányi, T. K. Ralphs, and L. E. Trotter Jr. Branch, cut, and price: Sequential
and parallel. In M. Jünger and D. Naddef, editors, Computational Combinatorial
Optimization, pages 223 – 260. Springer-Verlag, Berlin, Germany, 2001.

[129] J. Lake. Changing indications for liver transplantation. Gastroenterology Clinics of
North America, 22(2):213–229, 1993.

[130] M. Langer, R. Brown, M. Urie, J. Leong, M. Stracher, and J. Shapiro. Large scale
optimization of beam weights under does-volume restrictions. International Journal of
Radiation Oncology, Biology, Physics, 18(4):887–893, 1990.

[131] M. Langer and J. Leong. Optimization of beam weights under dose-volume restrictions.
International Journal of Radiation Oncology, Biology, Physics, 13(8):1255–1260, 1987.

[132] G. Laporte, F. Semet, V. V. Dadeshidze, and L. J. Olsson. A tiling and routing
heuristic for the screening of cytological samples. Journal of the Operational Research
Society, 49:1233–1238, 1998.

[133] R. C. Larson. A hypercube queueing model to facility location and redistricting in
urban emergency services. Computers and Operations Research, 1:67–95, 1974.

[134] L. S. Lasdon. Optimization Theory for Large Systems. MacMillan, New York, NY,
1970.

[135] E. K. Lee, R. J. Gallagher, D. Silvern, C. S. Wuu, and M. Zaider. Treatment plan-
ning for brachytherapy. An integer programming model, two computational approaches
and experiments with permanent implant planning. Physics in Medicine and Biology,
44(1):145–165, 1999.

237

[136] E. K. Lee and M. Zaider. Determining an effective planning volume for permanent
prostate implants. International Journal of Radiation Oncology, Biology, Physics,
49(4):1197–1206, 2001.

[137] E. K. Lee and M. Zaider. Intra-operative dynamic dose optimization in permanent
prostate implants. International Journal of Radiation Oncology, Biology, Physics,
56(3):854–861, 2003.

[138] E. K. Lee and M. Zaider. Mixed integer programming approaches to treatment planning
for brachytherapy – application to permanent prostate implants. Annals of Operations
Research, Optimization in Medicine, 119:147–163, 2003.

[139] E. K. Lee and M. Zaider. Optimization and decision support in brachytherapy treat-
ment planning. In M. L. Brandeau, F. Sainfort, and W. P. Pierskalla, editors, Oper-
ations Research and Health Care: A Handbook of Methods and Applications. Kluwer
Academic Publishers, Boston, MA, 2005.

[140] A. Löbel. Optimal Vehicle Scheduling in Public Transit. PhD thesis, Technische Uni-
versität Berline, Berlin, Germany, 1997.

[141] A. Löbel. Vehicle scheduling in public transit and Lagrangean pricing. Management
Science, 44(12):1637–1649, 1998.

[142] R. F. Love, J. G. Morris, and G. O. Wesolowsky. Facilities Location: Models and
Methods. North Holland, New York, NY, 1988.

[143] M. E. Lübbecke and U. T. Zimmermann. Engine routing and scheduling at industrial
in-plant railroads. Transportation Science, 37(2):183–197, 2003.

[144] H. Marchand, A. Martin, R. Weismantel, and L. Wolsey. Cutting planes in integer and
mixed-integer programming. Discrete Applied Mathematics, 123(1-3):397–446, 2002.

[145] R. K. Martin. Large Scale Linear and Integer Optimization. Kluwer Academic Publi-
cations, Boston, MA, 1999.

[146] J. H. Mathews. Numerical Methods: for Mathematics, Science and Engineering.
Prentice-Hall, Englewood Cliffs, NJ, 1992.

[147] W. E. McAleer and I. A. Naqvi. The relocation of ambulance stations: A successful
case study. European Journal of Operational Research, 75:582–588, 1994.

[148] A. Mehrez, Z. Sinuany-Stern, A.-G. Tal, and B. Shemuel. On the implementation of
quantitative facility location models: The case of a hospital in a rural region. Journal
of the Operational Research Society, 47:612–625, 1996.

[149] A. Mehrotra. Constrained Graph Partitioning: Decomposition, Polyhedral Structure
and Algorithms. PhD thesis, Georgia Institute of Technology, Atlanta, GA, 1992.

238

[150] A. Mehrotra, E. L. Johnson, and G. L. Nemhauser. An optimization based heuristic
for political districting. Management Science, 44(8):1100–1114, 1998.

[151] A. Mehrotra and M. A. Trick. A column generation approach for graph coloring.
INFORMS Journal on Computing, 8(4):344–354, 1996.

[152] S. Nair, J. Eustace, and P. J. Thuluvath. Effect of race on outcome of orthotopic liver
transplantation. Lancet, 359:287–293, 2002.

[153] S. Narashimhan, H. Pirkul, and D. A. Schilling. Capacitated emergency facility siting
with multiple levels of backup. Annals of Operations Research, 40:323–337, 1992.

[154] J. L. Nazareth. Computer Solution of Linear Programs. Oxford University Press,
Oxford, UK, 1987.

[155] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. Wiley,
New York, NY, 1988.

[156] Department of Health and Human Services. The DHHS proposal, 42 CFR Part 121,
Organ Procurement and Transplantation Network, Final Rule.

[157] C. K. Oh, H. A. Sanfey, S. J. Pelletier, R. G. Sawyer, C. S. McCullough, and T. L.
Pruett. Implication of advanced donor age on the outcome of liver transplantation.
Clinical Transplantation, 14:386–390, 2000.

[158] Committee on Organ Procurement and Transplantation Policy. Institute of Medicine.
Organ Procurement and Transplantation. National Academy Press, Washington, DC,
1999.

[159] I. Or and W. P. Pierskalla. A transportation location-allocation model for regional
blood banking. AIIE Transactions, 11:86–95, 1979.

[160] K. Park, S. Kang, and S. Park. An integer programming approach to the bandwidth
packing problem. Management Science, 42(9):1277–1291, 1996.

[161] W. P. Pierskalla. Supply chain management of blood banks. In M. L. Brandeau,
F. Sainfort, and W. P. Pierskalla, editors, Operations Research and Health Care: A
Handbook of Methods and Applications. Kluwer Academic Publishers, Boston, MA,
2005.

[162] T. Piratvisuth, J. M. Tredger, K. A. Hayllar, and R. Williams. Contribution of true
cold and rewarming ischemia times to factors determining outcome after orthotopic
liver transplantation. Liver Transplantation and Surgery, 1(5):296–301, 1995.

[163] H. Pirkul and D. A. Schilling. The siting of emergency service facilities with workload
capacities and backup service. Management Science, 34:896–908, 1988.

239

[164] J. Pouliot, D. Tremblay, J. Roy, and S. Filice. Optimization of permanent I-125 prostate
implants using fast simulated annealing. International Journal of Radiation Oncology,
Biology, Physics, 36:711–720, 1996.

[165] W. L. Price and M. Turcotte. Locating a blood bank. Interfaces, 16:17–26, 1986.

[166] A. A. B. Pritsker. Life and death decisions: Organ transplantation allocation policy
analysis. OR/MS Today, 25(4):22–28, 1998.

[167] A. A. B. Pritsker, D. L. Martin, J. S. Reust, M. A. Wagner, J. R. Wilson, , M. D.
Allen, O. P. Daily, A. M. Harper, E. B. Edwards, L. E. Bennett, J. P. Roberts, and
J. F. Burdick. Organ transplantation policy evaluation. In WSC ’95: Proceedings
of the 1995 Winter Simulation Conference, Crystal City, Virginia, pages 1314–1323.
ACM Press, New York, NY, 1995.

[168] M. L. Puterman. Markov Decision Processes. Wiley, New York, NY, 1994.

[169] T. K. Ralph and L. Ladányi. COIN/BCP user’s manual. Technical report, IBM T.J.
Watson Research Center, Yorktown Heights, NY, 2001.

[170] T. K. Ralph, L. Ladányi, and M. J. Saltzman. Parallel branch, cut and price for
large-scale discrete optimization. Mathematical Programming, 98(1-3):253–280, 2003.

[171] J. F. Repende and J. J. Bernardo. Developing and validating a decision support system
for locating emergency medical vehicles in Louisville, Kentucky. European Journal of
Operational Research, 75:567–581, 1994.

[172] CONSAD Research Corporation. An Analysis of Alternative National Policies for Allo-
cating Donor Livers for Transplantation. CONSAD Research Corporation, Pittsburgh,
PA, 1995.

[173] C. ReVelle, J. Schweitzer, and S. Snyder. The maximal conditional covering problem.
INFOR, 34(2):77–91, 1994.

[174] C. C. Ribeiro, M. Minoux, and M. C. Penna. An optimal column-generation-with-
ranking algorithm for very large scale set partitioning problems in traffic assignment.
European Journal of Operational Research, 41:232–239, 1989.

[175] C. C. Ribeiro and F. Soumis. A column generation approach to the multiple-depot
vehicle scheduling problem. Operations Research, 42(1):41–52, 1994.

[176] R. Righter. A resource allocation problem in a random environment. Operations
Research, 37:329–338, 1989.

[177] H. E. Romeijn, R. K. Ahuja, J. F. Dempsey, and A. Kumar. A column generation
approach to radiation therapy treatment planning using aperture modulation. SIAM
Journal on Optimization, 15(3):838–862, 2005.

240

[178] H. R. Rosen, C. R. Shackleton, and P. Martin. Indication for and timing of liver
transplantation. Medical Clinics North America, 80(5):1069–1102, 1996.

[179] P. Rufat, F. Fourquet, F. Conti, C. Le Gales, D. Houssin, and J. Coste. Costs and
outcomes of liver transplantation in adults: A prospective, 1-year, follow-up study.
GRETHECO study group. Transplantation, 68(1):76–83, 1999.

[180] R. A. Rushmeier and S. A. Kontogiorgis. Advances in the optimization of airline fleet
assignment. Transportation Science, 31:159–169, 1997.

[181] D. M. Ryan and A. B. Foster. An integer programming approach to scheduling. In
A. Wren, editor, Computer Scheduling of Public Transport Urban Passenger Vehicle
and Crew Scheduling, pages 269 – 280. North-Holland, Amsterdam, The Netherlands,
1991.

[182] J. K. Sankaran. Column generation applied to linear programming in course registra-
tion. European Journal of Operational Research, 87(2):328–342, 1995.

[183] M. W. P. Savelsbergh. A branch-and-price algorithm for the generalized assignment
problem. Operations Research, 45(6):831–841, 1997.

[184] M. W. P. Savelsbergh and M. Sol. DRIVE: Dynamic routing of independent vehicles.
Operations Research, 46(4):474–490, 1998.

[185] E. C. Sewell and S. H. Jacobson. Using an integer programming model to determine
the price of combination vaccines for childhood immunization. Annals of Operations
Research, 119:261–284, 2003.

[186] E. C. Sewell, S. H. Jacobson, and B. G. Weniger. Reverse engineering a formulary
selection algorithm to determine the economic value of pentavalent and hexavalent
combination vaccines. Pediatric Infectious Disease Journal, 20:S45–S56, 2001.

[187] D. E. Shalala. Letter from scretary of Health and Human Services to members of
Congress, 1998.

[188] S. M. Shechter, C. L. Bryce, O. Alagoz, J. E. Kreke, J. E. Stahl, A. J. Schaefer, D. C.
Angus, and M. S. Roberts. A clinically based discrete-event simulation of end-stage
liver disease and the organ allocation process. Medical Decision Making, 25(2):199–209,
2005.

[189] Blue Cross Blue Shield. The final report of the task force on liver transplantation in
Massachusetts, 1983.

[190] Z. Sinuary-Stern, A. Mehrez, A.-G. Tal, and B. Shemuel. The location of a hospital in
a rural region: The case of the Negev. Location Science, 3(4):255–266, 1995.

[191] R. S. Sloboda. Optimization of brachytherapy dose distribution by simulated annealing.
Medical Physics, 19:964, 1992.

241

[192] D. G. Smith, K. S. Henley, C. S. Remmert, S. L. Hass, D. A. Campbell Jr., and I. D.
McLaren. A cost analysis of alprostadil in liver transplantation. Pharmacoeconomics,
9(6):517–524, 1996.

[193] M. Sol. Column Generation Techniques for Pickup and Delivery Problems. PhD thesis,
Eindhoven University of Technology, Eindhoven, The Netherlands, 1994.

[194] F. Soumis. Decomposition and column generation. In M. Dell’Amico, F. Maffioli, and
S. Martello, editors, Annotated Bibliographies in Combinatorial Optimization, pages
115–126. Wiley, Chichester, UK, 1997.

[195] J. E. Stahl, N. Kong, S. M. Shechter, A. J. Schaefer, and M. S. Roberts. A methodolog-
ical framework for optimally reorganizing liver transplant regions. Medical Decision
Making, 25(1):35–46, 2005.

[196] J. E. Stahl, J. E. Kreke, F. Abdullah, A. J. Schaefer, and J. Vacanti. The effect of cold-
ischemia time on primary nonfunction, patient and graft survival in liver transplanta-
tion: A systematic review. Technical report, University of Pittsburgh, Pittsburgh, PA,
2004.

[197] T. E. Starzl, A. J. Demetris, and D. V. Thiel. Liver transplantation. New England
Journal of Medicine, 329:1014–1022, 1989.

[198] X. Su and S. A. Zenios. Patient choice in kidney allocation: A sequential stochastic
assignment model. Operations Research, 53(3):443–455, 2005.

[199] K. T. Talluri. Swapping applications in a daily airline fleet assignment. Transportation
Science, 30:237–248, 1996.

[200] E. Totsuka, J. J. Fung, M. C. Lee, T. Ishii, M. Umehara, Y. Makino, T. H. Chang,
Y. Toyoki, S. Narumi, K. Hakamada, and M. Sasaki. Influence of cold ischemia time
and graft transport distance on postoperative outcome in human liver transplantation.
Surgery Today, 32(9):792–799, 2002.

[201] P. A. Ubel and G. Loewenstein. The efficacy and equity of retransplantation: An
experimental survey of public attitudes. Medical Clinics North America, 34(2):145–
151, 1995.

[202] P. A. Ubel and G. Loewenstein. Distributing scarce livers: The moral reasoning of the
general public. Social Science and Medicine, 42(7):1049–1055, 1996.

[203] UNOS Data Collection: UNetsm. Available from http://www.unos.org/data.

[204] Louisiana v. Shalala M. D. LA. Civic Action No. 98-802-C-M3. 1998.

[205] J. M. Valério de Carvalho. Exact solution of bin-packing problems using column gen-
eration and branch-and-bound. Annals of Operations Research, 86:629–659, 1999.

242

[206] J. M. Valério de Carvalho. LP models for bin-packing and cutting stock problems.
European Journal of Operational Research, 141(2):253–273, 2002.

[207] J. M. Valério de Carvalho. Using extra dual cuts to accelerate column generation.
INFORMS Journal on Computing, 17(2):175–182, 2005.

[208] P. H. Vance. Crew Scheduling, Cutting Stock, and Column Generation: Solving Huge
Integer Programs. PhD thesis, Georgia Institute of Technology, Atlanta, GA, 1993.

[209] P. H. Vance. Branch-and-price algorithms for the one-dimensional cutting stock prob-
lem. Computational Optimization and Applications, 9(3):211–228, 1998.

[210] P. H. Vance, C. Barnhart, E. L. Johnson, and G. L. Nemhauser. Solving binary
cutting stock problems by column generation and branch-and-bound. Computational
Optimization and Applications, 3(2):111–130, 1994.

[211] P. H. Vance, C. Barnhart, E. L. Johnson, and G. L. Nemhauser. Airline crew scheduling:
A new formulation and decomposition algorithm. Operations Research, 45:188–200,
1997.

[212] F. Vanderbeck. Decomposition and Column Generation for Integer Programs. PhD
thesis, Université Catholoique de Louvain, Louvain, Belgium, 1994.

[213] F. Vanderbeck. Computational study of a column generation algorithm for bin packing
and cutting stock problems. Mathematical Programming, 86(3):565–594, 1999.

[214] F. Vanderbeck and L. A. Wolsey. An exact algorithm for IP column generation. Op-
erations Research Letters, 19(4):151–159, 1996.

[215] D. Villeneuve. Logiciel de Génération de Colonnes. PhD thesis, École Polytechnique
de Montréal, Montréal, Canada, 1999.

[216] J. von zur Gathen and M. Sieveking. A bound on solutions of linear integer equalities
and inequalities. Proceedings of the American Mathematical Society, 72:155–158, 1978.

[217] D. Wedelin. An algorithm for large scale 0-1 integer programming with application to
airline crew scheduling. Annals of Operational Research, 57:283–301, 1995.

[218] W. E. Wilhelm. A technical review of column generation in integer programming.
Optimization and Engineering, 2(2):159–200, 2001.

[219] M. Yasutomi, S. Harmsmen, F. Innocenti, N. DeSouza, and R. A. Krom. Outcome of
the use of pediatric donor livers in adult recipients. Liver Transplantation, 7(1):38–40,
2001.

[220] H. Y. Yoo and P. J. Thuluvath. Outcome of liver transplantation in adult recipients:
influence of neighborhood income, education, and insurance. Liver Transplantation,
10(2):235–243, 2004.

243

[221] M. Zaider, M. Zelefsky, E. K. Lee, K. Zakian, H. A. Amols, J. Dyke, and J. Koutcher.
Treatment planning for prostate implants using MR spectroscopy imaging. Interna-
tional Journal of Radiation Oncology, Biology, Physics, 47:1085–1096, 2000.

[222] M. Zeier, B. Dohler, G. Opelz, and E. Ritz. The effect of donor gender on graft survival.
Journal of the American Society of Nephrology, 13(10):2570–2576, 2002.

[223] S. A. Zenios, G. M. Chertow, and L. M. Wein. Dynamic allocation of kidneys to
candidates on the transplant waiting list. Operations Research, 48(4):549–569, 2000.

[224] S. A. Zenios, L. M. Wein, and G. M. Chertow. Evidence-based organ allocation.
American Journal of Medicine, 107(1):52–61, 1999.

[225] A. Zipfel, M. Schenk, M. S. You, W. Lauchart, C. Bode, and R. Viebahn. Endotox-
emia in organ donors: Graft function following liver transplantation. Transplantation
International, 13(S1):S286–S287, 2000.

244

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	U.S. Liver Data between 1996 - 2004
	Effect of Solution Space Reduction
	Connected Subgraph Enumeration
	Description of Data Sets Used in Computational Experiments
	Relative Improvement on Intra-regional Transplant Cardinality
	Discrepancy on Intra-regional Transplant Rate in Optimal Configurations
	The Value of ρ_c
	Relative Improvement on the Overall Objective
	Reduction of Geographic Inequality when $\rho = 10^3$
	OPO Service Areas with Population of Less than 9 Million
	Difference in Clinical and Demographic Characteristics Pertaining to Liver Transplantation
	Ratio of the Standard Deviation to the Average of Pure Distribution Likelihood
	Improvement on Intra-regional Transplant Cardinality (\max|r| = Maximum Region Cardinality)
	Improvement on Intra-regional Transplant Cardinality (through Explicit Region Enumeration)
	Paired t Test: Optimal vs. Current (Linear)
	Paired t Test: Optimal vs. Current (3rd-degree Polynomial)
	Comparison between the Solutions through Branch and Price and Explicit Region Enumeration
	Improvement on Intra-regional Transplant Cardinality (using Branch and Price)
	Paired t Test: Branch and Price vs. Explicit Region Enumeration (Linear)
	Paired t Test: Branch and Price vs. Explicit Region Enumeration (Polynomial)
	Region Covers Design Characteristics
	Initialization Effect (Region Covers Design 20-12-1)
	Column Generation Effect (20 covers and each cover with 12 OPOs)
	Pricing Problem Solution Option: Design (20,12)
	Rounding Heuristics: ($p_0 = 0.9$)
	Rounding Heuristics: ($p_0 = 1.1$)
	Comparison of the Four Equivalent Pricing Problem Formulations
	Strength of Class I Valid Inequalities (RPP_0_0_2)
	Strength of Class Valid Inequalities (RPP_0_0_10; only consider CPU time)
	Applications of Integer Programming Column Generation
	A List of Organ Procurement Organizations
	A List of Organ Procurement Organizations (Contd.)
	Column Generation Effect (20 covers and each cover with 14 OPOs)
	Column Generation Effect (20 covers and each cover with 10 OPOs)
	Column Generation Effect (20 covers and each cover with 8 OPOs)
	Column Generation Effect (30 covers and each cover with 10 OPOs)
	Column Generation Effect (30 covers and each cover with 8 OPOs)
	Column Generation Effect (25 covers and each cover with 12 OPOs)
	Column Generation Effect (15 covers and each cover with 12 OPOs)
	Pricing Problem Solution Option: Design (20, 14)
	Pricing Problem Solution Option: Design (20, 10)
	Pricing Problem Solution Option: Design (20, 8)
	Pricing Problem Solution Option: Design (30, 10)
	Pricing Problem Solution Option: Design (30, 8)
	Pricing Problem Solution Option: Design (25, 12)
	Pricing Problem Solution Option: Design (15, 12)
	Strength of Class I Valid Inequalities (RPP_0_0_2)
	Strength of Class I Valid Inequalities (Contd.) (RPP_0_0_2)
	Strength of Class I Valid Inequalities (RPP_0_0_10; only consider CPU time)

	LIST OF FIGURES
	Organ Procurement Organization Service Areas
	Current Regional Configuration
	Current Allocation Policy
	Primary non-function (PNF) vs. Cold-ischemia time (CIT)
	Optimal Regional Configurations (PNF vs. CIT: Linear; The number of regions is fixed to 11)
	Optimal Regional Configurations (PNF vs. CIT: 3rd-degree Polynomial; The number of regions is fixed to 11)
	Optimal Regional Configurations (PNF vs. CIT: Linear; The number of regions is unrestricted)
	Optimal Regional Configurations (PNF vs. CIT: 3rd-degree Polynomial; The number of regions is unrestricted)
	Pareto Frontier - Geographic Equity vs. Allocation Efficiency (PNF vs. CIT: Linear; The number of regions is fixed to 11)
	Pareto Frontier - Geographic Equity vs. Allocation Efficiency (PNF vs. CIT: 3rd-degree Polynomial; The number of regions is fixed to 11)
	Pareto Frontier - Geographic Equity vs. Allocation Efficiency (PNF vs. CIT: Linear; The number of regions is unrestricted)
	Pareto Frontier - Geographic Equity vs. Allocation Efficiency (PNF vs. CIT: 3rd-degree Polynomial; The number of regions is unrestricted)
	Optimal Configuration vs. Current Configuration (The number of regions is fixed to 11)
	Optimal Configuration vs. Current Configuration (The number of regions is unrestricted)
	Transplant Likelihood Matrix Distance (Simulation vs. Actual Data)
	Statistical Analysis for the Rejection Probability Estimation
	Statistical Analysis for the National Flow Likelihood Estimation
	Optimal Regional Configurations (PNF vs. CIT: Linear; The maximum regional cardinality is 7)
	Optimal Regional Configurations (PNF vs. CIT: 3rd-degree Polynomial; The maximum regional cardinality is 7)
	Optimal Regional Configurations (PNF vs. CIT: Linear; The maximum regional cardinality is 8)
	Optimal Regional Configurations (PNF vs. CIT: 3rd-degree Polynomial; The maximum regional cardinality is 8)
	Branch-and-Bound Algorithm
	Illustration of Branch and Price
	Illustration of Geographic Decomposition
	Comparison of Branching on Variables and Branching on OPO Pairs
	Optimal Regional Configurations using Branching and Price
	Optimal Regional Configurations using Branching and Price (Contd.)
	Column Generation Effect (20 covers and each cover with 12 OPOs)
	Illustration of Unimodality (l_i^0 = 1000, 500, and 300)
	An Illustration of K-tuples T_{δ} and T_i
	Illustration of Proportional Allocation in K-grouping
	Illustration of a Partial Grouping Process
	Column Generation Effect (20 covers and each cover with 14 OPOs)
	Column Generation Effect (20 covers and each cover with 10 OPOs)
	Column Generation Effect (20 covers and each cover with 8 OPOs)
	Column Generation Effect (30 covers and each cover with 10 OPOs)
	Column Generation Effect (30 covers and each cover with 8 OPOs)
	Column Generation Effect (25 covers and each cover with 12 OPOs)
	Column Generation Effect (15 covers and each cover with 12 OPOs)
	Illustration of Unimodality (l_0^i = 200, 100, 50, 30, 20)
	Illustration of Unimodality (l_0^i = 10, 5, 3, 2, 1)

	ACKNOWLEDGMENTS
	1.0 INTRODUCTION
	1.1 Current State of Organ Allocation in the U.S.
	1.2 Current Liver Allocation System
	Membership
	Liver Allocation Process
	Problem Statement and Proposed Research Description

	1.3 Contribution

	2.0 LITERATURE REVIEW
	2.1 Previous Research on Organ Transplantation and Allocation
	2.1.1 Operations Research Literature
	2.1.2 Discrete-event Simulation Models
	2.1.3 Medical, Ethical, and Economic Literature

	2.2 Integer Programming Applications in Health Care
	2.2.1 Health Care Operations Management
	2.2.2 Health Care Policy and Economic Analysis
	2.2.3 Clinical Applications

	2.3 Branch and Price

	3.0 OPTIMIZING INTRA-REGIONAL TRANSPLANTATION THROUGH EXPLICIT ENUMERATION OF REGIONS
	3.1 Introduction
	3.2 A Set-Partitioning Formulation for Region Design
	3.2.1 A Closed-Form Regional Benefit Estimation
	3.2.2 Data Acquisition and Parameter Estimation

	3.3 An Explicit Enumeration Approach to Region Design Solution
	3.4 Incorporating Geographic Equity
	3.5 Deficiencies and Further Considerations

	4.0 OPTIMIZING INTRA-REGIONAL TRANSPLANTATION WITH TWO MODEL REFINEMENTS THROUGH EXPLICIT ENUMERATION OF REGIONS
	4.1 Critique of the First Model in Chapter 3
	4.2 Refined Optimal Region Design Model
	4.3 Parameter Estimation for the Refined Model
	4.3.1 Adaptation of a Clinically Based Simulation Model
	4.3.2 Parameter Estimation

	4.4 Optimizing the Refined Model through Explicit Enumeration of Regions
	4.5 Evaluating the Proposed Regions
	4.6 National-level Allocation Modeling
	4.6.1 Analogy between Region Design and Fleet Assignment
	4.6.2 Estimating Spilled Cost and Recaptured Revenue
	4.6.3 Estimating Spill and Recapture Likelihoods with the Simulation

	4.7 Summary of Assumptions

	5.0 A BRANCH-AND-PRICE APPROACH TO OPTIMAL REGION DESIGN SOLUTION
	5.1 Adaptive Region Generation
	5.2 A Mixed-Integer Pricing Problem
	5.3 A Branch-and-Price Algorithmic Framework
	5.4 Geographic Decomposition
	5.5 Branching on OPO Pairs
	5.6 Implementation and Computational Experiments
	5.6.1 Introduction to COIN/BCP
	5.6.2 Development of Our Branch-and-Price Application
	5.6.3 Computational Results

	6.0 IMPROVING THE SOLUTION OF THE PRICING PROBLEM
	6.1 Alternative Formulations
	6.2 Polyhedral Study
	6.2.1 Valid Inequality Class I
	6.2.1.1 Searching the Optimal Set Cardinality in a Special Case
	6.2.1.2 Cut Generation in the Branch-and-Bound Solution (Class I)

	6.2.2 Valid Inequality Class II
	6.2.2.1 A Pure Cutting-Plane Algorithm
	6.2.2.2 Cut Generation in the Branch-and-Bound Solution (Class II)

	6.3 Computational Experiments
	6.3.1 Alternative Pricing Problem Formulation Comparison
	6.3.2 Incorporating Valid Inequalities

	7.0 PROPORTIONAL ALLOCATION GENERATION
	7.1 Introduction
	7.1.1 Generic Set-Partitioning Formulation
	7.1.2 Grouping Quantity Generalization
	7.1.3 An Alternative Interpretation of the Generalization
	7.1.4 Organ Allocation as an Example
	7.1.5 1-Commodity Case

	7.2 Generalization of the Column Generation Approach
	7.2.1 2-Commodity Grouping Case
	7.2.2 3-Commodity Grouping Case
	7.2.3 K-Commodity Grouping Case

	7.3 Generalization of a Class of Valid Inequalities

	8.0 SUMMARY AND FUTURE RESEARCH
	8.1 Summary
	8.2 Future Research
	8.2.1 Model Refinement and Extension
	8.2.2 Branch-and-Price Solution Improvement
	8.2.3 Generalization

	APPENDIX A. APPLICATIONS OF INTEGER PROGRAMMING COLUMN GENERATION
	APPENDIX B. A LIST OF ORGAN PROCUREMENT ORGANIZATIONS
	APPENDIX C. DETAILED DESCRIPTION OF THE BCP IMPLEMENTATION
	APPENDIX D. COLUMN GENERATION EFFECT
	APPENDIX E. COLUMN GENERATION EFFECT (CONTD.)
	APPENDIX F. PRICING PROBLEM SOLUTION OPTION
	APPENDIX G. STRENGTH OF CLASS I VALID INEQUALITY
	APPENDIX H. A SPECIAL CASE OF $\mathrm{RPP}^{=}(S)$: UNIMODALITY
	BIBLIOGRAPHY

