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THE DYNAMICS OF ACUTE INFLAMMATION

Rukmini Kumar, PhD

University of Pittsburgh, 2004

The acute inflammatory response is the non-specific and immediate reaction of the body

to pathogenic organisms, tissue trauma and unregulated cell growth. An imbalance in this

response could lead to a condition commonly known as “shock” or “sepsis”. This thesis

is an attempt to elucidate the dynamics of acute inflammatory response to infection and

contribute to its systemic understanding through mathematical modeling and analysis.

The models of immunity discussed use Ordinary Differential Equations (ODEs) to model

the variation of concentration in time of the various interacting species. Chapter 2 discusses

three such models of increasing complexity. Sections 2.1 and 2.2 discuss smaller models

that capture the core features of inflammation and offer general predictions concerning the

design of the system. Phase-space and bifurcation analyses have been used to examine the

behavior at various parameter regimes. Section 2.3 discusses a global physiological model

that includes several equations modeling the concentration (or numbers) of cells, cytokines

and other mediators. The conclusions drawn from the reduced and detailed models about

the qualitative effects of the parameters are very similar and these similarities have also been

discussed.

In Chapter 3, the specific applications of the biologically detailed model are discussed in

greater detail. These include a simulation of anthrax infection and an in silico simulation of

a clinical trial. Such simulations are very useful to biologists and could prove to be invaluable

tools in drug design.

Finally, Chapter 4 discusses the general problem of extinction of populations modeled

as continuous variables in ODEs is discussed. The average time to extinction and threshold
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are estimated based on analyzing the equivalent stochastic processes.

Keywords: Acute inflammation, ODE models, phase-space and bifurcation analyses, an-

thrax infection, in silico clinical trials, thresholds for extinction.
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1.0 INTRODUCTION

1.1 THE PROBLEM OF SYSTEMIC INFLAMMATION

The initial response of the body to an infection or to trauma is called the acute inflammatory

response. This is non-specific and is the first line of defense against danger. It consists

of a coordinated systemic and local mobilization of immune, endocrine and neurological

mediators (Janeway & Travers, 1997). In a healthy response, inflammation is activated,

clears the pathogen (in case of an infectious insult), begins a repair process and abates.

However, an improper immune response could result in prolonged uncontrolled systemic

inflammation that could lead to multiple organ dysfunction and death. In the case of an

infectious insult, this condition is known as “sepsis” and is the most prevalent cause of

mortality in Intensive Care Units (ICUs) (Tilney et al., 1973; Eiseman et al., 1977). Severe

sepsis is a common and frequently fatal condition with an estimated 750,000 cases annually

(1991) in the United States alone (Angus et al., 2001). Although much has been learnt about

the molecular and physiologic pathways of acute inflammation, this knowledge has not led

to many effective therapies (Cross & Opal, 2003).

1.1.1 Acute inflammation

The purpose of the acute inflammatory response is to clear the invading infectious agent,

dead and damaged tissue and to restore homeostasis, the normal state of the body. It often

starts off as a local response to the threat and if unresolved, spills over to result in systemic

inflammation. (Bone, 1996a).

Physiologically, acute inflammation consists of a web of interacting cells and mediators.
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Phagocytic cells that engulf and kill bacteria, signaling proteins that can up- or down-

regulate inflammation (pro- and anti- inflammatory cytokines (signaling proteins)), effector

molecules, coagulatory mediators all play a role in this process. The process of inflammation

can itself cause tissue damage, hypotension and hypoperfusion of major organs. These also

contribute to exacerbating inflammation. Dysregulated systemic inflammation could thus

result in excessive tissue damage, hypotension and could eventually lead to multiple organ

failure and death.

Inflammation has traditionally been associated with redness, edema, fever and malaise.

The clinical symptoms of systemic inflammation have been characterized in order to iden-

tify and treat patients effectively. Two or more of the symptoms such as fever(> 38oC) or

hypothermia (< 36oC), hypotension (< 30 mm Hg), increased heart rate etc. are diagnos-

tic of the Systemic Inflammatory Response Syndrome or SIRS (Bone et al., 1992). These

definitions have also been updated to reflect changes in the understanding of the process

(Levy et al., 2003). Systemic inflammation that arises from infectious causes is called sepsis

and sepsis accompanied by organ dysfunction is known as severe sepsis. Shock is defined as

persistent hypotension despite fluid resuscitation.

Systemic inflammation and the ensuing morbidities were thought to be the result of an

excessive pro-inflammatory response. Several immuno-modulatory therapies targeted the

major pro-inflammatory players but were found to be ineffective. Currently, it is acknowl-

edged that anti-inflammatory mediators also play an important role in the pathogenesis of

inflammation and the imbalance between these processes contributes to the condition (Bone,

1996b).

The pathways of systemic inflammation and the ensuing clinical symptoms are virtually

indistinguishable in the cases of varying instigators such as bacteria, viruses, tissue trauma,

hemorrhage or more than one of the above insults. Thus the ultimate cause of death is

thought to be the improper immune response rather than the original instigator (Alberti

et al., 2002). Moreover, the common clinical symptoms defined above also reflect more

than one underlying physiologic state - e.g. recurrent infection, an inadequate response that

leads to uncleared infection or an exuberant response that leads to cleared infection but

unalleivated symptoms - could all be clinically classified as SIRS.
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Systemic inflammation and the ensuing morbidities are very much a product of modern

medicine. Before the discovery of advanced resuscitation techniques, patients could not be

kept alive long enough for the condition to fully unfold. Patients often died from blood

loss and severe infections before uncontrolled inflammation arose. With the advent and

improvement of antibiotics and organ support therapy, the condition has become increas-

ingly relevant (Bone, 1996a). The incidence of systemic inflammation is also expected to

increase with further advancement of medical technology and the increase in the susceptible

population - such as the elderly and HIV infected patients (Angus et al., 2001).

1.1.2 Pathogenesis of systemic inflammation

In this section the processes and mediators of the acute inflammatory response to a bacterial

infection are described briefly (see for example, (Janeway & Travers, 1997)). The growing

bacteria and sterile bacterial products (such as its cell wall, toxins released, bacterial coat)

activate the circulating white blood cells or phagocytic cells (neutrophils and macrophages).

They are “chemo-attracted” to the site of the infection and transform from “resting” cells to

“activated” cells. Phagocytic cells in their activated form can engulf and destroy bacteria and

damaged tissue. They also release cytotoxic chemicals which can oxidize and kill bacteria.

The activation and chemo-attraction of the phagocytic cells stimulates the production

of pro-inflammatory cytokines such as TNF-α and IL-1. (Cytokines are proteins secreted by

certain cells that act as inter-cellular mediators.) These cytokines have a rapid initial burst

and are found to be cleared within the first few hours in animal models. Their production is

shut down by rapidly acting anti-inflammatory cytokines such as IL-10 which are released in

response to them (Bone, 1996b; Janeway & Travers, 1997). TNF-α and IL-1 promote recruit-

ment and activation of phagocytes and also result in the second wave of slower cytokines.

These include the pro-inflammatory cytokines such as IL-6 and anti-inflammatory cytokines

such as TGF-β. It is important to note that even if the major functions of cytokines are

delineated in-vitro, they are often pleiotropic and their systemic effects might be different

than the determined local effects.

These inflammatory processes result in the release of cytotoxic substances, such as super-
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oxide (O−−
2 ) and Nitric Oxide (NO), that aim to clear bacteria and dead tissue (Jaeschke

& Smith, 1997). It is postulated that the overwhelming release of these causes damage

to healthy tissues as well. The endothelial cells are thought to play a major role in the

pathogenesis of shock as they exacerbate inflammation and hypotension. Several other cas-

cades such as the complements and coagulatory mediators are activated in the process of

acute inflammation. It is hypothesized that the dysfunction in coagulation which results

in hypotension and hypoperfusion of major organs may contribute to death (Bone, 1996a).

The major mediators of the coagulation cascade are tissue factor, thrombin and activated

protein-C. Tissue factor is stimulated by bacterial toxins and IL-6 and causes the release

of thrombin, which is pro-inflammatory and contributes to tissue damage. Thrombin then

releases activated protein-C which is essentially anti-inflammatory and down-regulates the

coagulation cascade. The only FDA approved therapy for sepsis is Drotrecogin alpha which

adds activated protein-C to the body (Bernard et al., 2001).

In the case of a healthy outcome, inflammation results in the resolution of the original

insults and restoration of homeostasis. However, the processes of inflammation which cause

tissue damage, hypotension and hypoperfusion of major organs could lead to progressive

failure of major organs and eventually death. In fact, failure of the central nervous system,

lung and kidney failure and cardio-vascular shock are common causes of ultimate mortality

in ICUs (Alberti et al., 2002).

1.1.3 Therapies for systemic inflammation

The process of inflammation thus enhances and controls itself through a complex series of

redundant and pleiotropic systems which are delicately balanced. Current strategies in ICUs

are mainly supportive and include fluid resuscitation, vasopressors, blood transfusion and

mechanical ventilation (Vincent, 2002).

The search for the potential immune mediators to be modulated for alleviating the sepsis

syndrome has been ongoing for several years. Potential targets have included TNF-α, IL-

1, endotoxin and most recently activated protein-C. Of these, the sole target approved as

therapy for severe sepsis is activated protein-C, which reduced mortality by 6% compared
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with controls in clinical trials (Bernard et al., 2001).

Another major problem in tackling sepsis may lie in diagnosing the condition. In the clin-

ical setting, inflammatory states are defined by symptoms and few biological markers (Bone

et al., 1992). For example, Systemic Inflammatory Response Syndrome (SIRS) is a condition

characterized by elevated respiratory and heart rates, fever, and an abnormal white blood

cell count. The severity of sepsis is based on the presence of circulatory shock (low blood

perfusion) and organ failure (ACCP/SCC, 1992; Muckart & Bhagwanjee, 1997). Similarly,

treatment and support of these critically ill patients is largely based on clinical signs and a

few biochemical and hematological parameters.

The inflammatory response to an insult varies depending on several factors such as age,

co-existing morbidities, gender and genetic polymorphisms. The profile of cytokines in addi-

tion, depends on the time elapsed from the onset of infection. For the same insult in different

individuals, the response might be a healthy outcome and return to homeostasis, an insuffi-

cient response which suppresses but does not clear infection or overwhelming inflammation

and shock. The clinical symptoms for the negative outcomes might coincide but require

diverse treatment strategies. It is also possible that at different time points in the course of

disease, the same individual might be hyper-inflamed or immuno-suppressed. Therefore at

what time and to whom the therapy is administered are as important as what mediator is

being modulated.

Given the complexity of acute inflammation and the heterogeneity in its manifestation

in a population, it is highly unlikely that targeting a single mediator would prove to be an

effective strategy It is widely accepted that targeting a combination of mediators is likely to

be more successful (Bone, 1993; Cross & Opal, 2003). Also, different treatment strategies

might be required depending on the individual response to the insult.

1.2 MOTIVATION AND OUTLINE OF THE THESIS

The acute inflammatory response thus consists of a complex sequence of events that could

result in systemic inflammation and death. Despite a wealth of knowledge about the individ-

ual processes, treatment strategies are mostly supportive and effective targets for immune-
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modulation remain elusive. One reason for the lack of effective treatments against sepsis

may be that the complex nature of the inflammatory response renders the effect of targeting

isolated components of inflammation difficult to predict. The need for a systems based the-

oretical understanding of the sepsis syndrome has been emphasized (Tjardes & Neugebauer,

2002; Buchman et al., 2001) and such an understanding could be provided by mathematical

modeling.

Even simple dynamical models can capture essential features of the system and provide

intuition about its design. But predictions from such simple models are often too generic to

be useful to biologists. The strategy used in this thesis, is to study models of varying degrees

of complexity, each limited to answering a specific set of questions. The smaller models

provide qualitative understanding of the dynamics and also facilitate in understanding the

larger, more complex models. Such a complex model capturing the behavior of several specific

immune mediators has also been constructed. These models and the common dynamics

conserved among them are presented in Chapter 2.

The common dynamics and paths to “health” and “shock” are highlighted using a simple

Lotka-Volterra type 2-dimensional predator-prey model with a positive feed-back term in

the predator equation. This model is then expanded to 3 dimensions by adding another

equation to model the feed-back. The terms in the 3-d model are p, a growing pathogen,

m, the early immune response (predator) and l, the late immune response which forms a

positive feed-back loop with m. This model expands on the dynamics of the 2-d model and

simulations and bifurcation analyses reveal health, shock and additional negative outcomes

and the parameters that affect these outcomes. The reduced models were constructed to

understand the dynamics of the global model, which follows in detail the time-course of

several immune mediators and their interactions. This model is constructed based on well

established mechanisms of the pathogenesis of the disease and shows the health and the

negative outcomes shown by the 3-d model. Bifurcation analyses reveal similarities in going

from one outcome to the other. These models represent a new systematic understanding of

the mechanisms of acute inflammation and the pathways to shock. The important role that

later feed-back loops play in the pathogenesis of sepsis is emphasized.

Although the scope for analysis is limited in large models, simulations from them are very

7



useful in evaluating physiological hypotheses and for in silico experimentation when data

is otherwise scarce. In Chap. 3 two such applications of a biologically detailed model are

presented. A model reproducing the time course of immune-mediators in anthrax infection

is presented. This is essentially a modification of the model presented in Chap. 2 to account

for the specific effects of anthrax bacterium. Simulations predicting the effectiveness of

a vaccine therapy are discussed. In this case, the evaluation of such a vaccine in human

trials is clearly unethical and predictions from such a model are likely to be very useful.

The second application is an implementation of a clinical trial evaluating the efficacy of

an anti-TNF antibody as a therapy for sepsis. This therapy was attempted but failed to

meet standards of efficacy in a randomized clinical trial (Abraham et al., 1998). As our

study shows, several factors can influence the efficacy of a drug such as timing and dosage of

therapy and patient population to which the therapy is administered. In an in silico clinical

trial, there is complete control and knowledge of the variables involved and this could lead

to significant insight. Future trials can also be designed with knowledge gained from such

models and could result in more optimal use of resources. (Drs. Gilles Clermont and Yoram

Vodovotz were major contributors in the building and understanding of the global model

and the ensuing modifications.)

The models discussed above are deterministic ODE models and have limitations in cap-

turing the real stochastic process. In Chap. 4, the effect of fluctuations at low concentrations

is examined. In a deterministic equation, decaying populations cannot become extinct in

finite time. Chapter 4 attempts to use a stochastic description of the processes when the

population numbers are small and calculate a threshold of extinction, below which the pop-

ulation may be considered to be extinct. The strategy used is to predict an average time

to extinction from a simple one dimensional population decay and examine its usefulness

in a more complicated scenario of interacting populations (such as a predator-prey model).

Several other techniques have been used to understand extinction in deterministic models

and Chap. 4 attempts to provide yet another approach to study this problem.
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2.0 DYNAMICS OF ACUTE INFLAMMATION - 3 MODELS OF

INCREASING COMPLEXITY

This chapter attempts to understand the dynamics of the acute inflammatory response to in-

fection by using ODEs and the techniques of dynamical systems. Three models of increasing

complexity are presented. All the models obey mass-action kinetics in well-mixed volumes.

The simplest is a 2-dimensional model that captures only the essential bi-stability between

“healthy” and “septic” states and is followed by a 3-dimensional model that captures the bi-

stability and other clinically relevant negative outcomes as well. Bifurcation analysis on the

parameters of these models suggests the importance of the various interactions and provides

global understanding about the behavior of the system. A larger, more biologically accurate

model is also presented in Section 2.3. This model captures the detailed dynamics of various

mediators. However, the essential dynamics predicting the pathway to sepsis remains the

same in all three models.

Numerical simulations and bifurcation plots in this chapter were generated with XP-

PAUT (Ermentrout, 2002).

2.1 SEPSIS IN TWO DIMENSIONS

A minimal model of sepsis should have the following properties: for some insults, the

pathogen is completely eliminated and the system is returns to a “healthy” state and for

other insults the system reaches a a shock state where the immune mediators remain elevated

and never return to rest. Here, a two dimensional model is constructed that captures these

effects.
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In its most simplified description, the immune response to infection can be represented

by a Lotka-Volterra type predator-prey model where the prey represents for instance, the

bacteria that invade the system and the immune-cells are represented by the predator. This

yields the system

dp

dt
= kpp− kpmmp (2.1)

dm

dt
= kmpmp− kmm. (2.2)

This model represents a pathogen growing at rate kp and is ingested when it meets an

immune cell at rate kpmm. The immune cell is activated on contacting the pathogen at rate

kmpp and has a natural deactivation rate km. The behavior of this model can be explained

by phase-plane analysis. The fixed points are p = 0,m = 0 which is a saddle point and

p = km/kmp,m = kp/kpm which is a center. Irrespective of the parameters (as long as they

are all positive), any initial condition results in an oscillation around the center. Hence this

model cannot capture the dynamics of sepsis.

However, replacing (2.2) by

dm

dt
= kmpmp− kmm + kfm

2. (2.3)

results in a minimal model. This additional positive feedback introduces an additional fixed

point p = 0,m = km/kf which is a saddle if kf < (kpmkm)/kp and an unstable node otherwise.

The center of the previous system (2.1,2.2) becomes p = (1/kmp)(kfkp/kpm),m = kp/kpm and

is an unstable spiral (as long as 0 < kf < (kpmkm)/kp. See Appendix 2.5).

The phase-plane of this model with two sample trajectories is shown in Figure 2.1. One

of the trajectories loops around the unstable spiral point and remains close to p = 0 before

spiraling out to m = ∞ and the other trajectory goes directly out to m = ∞ without

spiraling. The latter is interpreted as the septic trajectory where immune mediators remain

elevated. The former is interpreted as healthy behavior. This is because when p gets small

enough, the approximation of p as a continuous variable breaks down. In this regime, the

discreteness of p is important and when p falls below a value representing a single pathogen

particle it can be considered to be eliminated. A stochastic model would be the correct

description for small particle numbers. For ODE models, p can never be reduced to zero
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in a finite time. Thus, for the models in this chapter, unstable spirals that take p close

to 0 are interpreted as healthy behavior. We propose that there is an effective threshold

representing a single pathogen particle below which, on average, the pathogen population

can be considered to be eliminated and this is discussed in detail in Chapter 4.

Thus, a positive feed-back in the m equation ensures the bi-stable behavior that we are

trying to capture. For large positive feed-back (kf ≥ (kpmkm)/kp), the unstable spiral is

no longer in the positive quadrant and no further oscillations are possible. Then all initial

conditions run away to m = ∞ or sepsis is the only possible outcome of the system. The

positive feed-back also ensures the complete elimination of the pathogen and avoids the

Lotka-Volterra oscillations seen in the system (2.1,2.2) which do not (in general) take p close

to 0. The claim made is that the pro-inflammatory positive feed-back is the crucial feature

of the acute inflammatory response that ensures elimination of pathogen and the strength of

this feed-back controls the predisposition of a system to sepsis. This very feature is observed

in the next two models as well.

Realistically, the pathogen is not expected to grow in an uncontrolled fashion in the

absence of immune cells. A competition for resources limits the growth and Equation (2.1)

is changed to reflect that.
dp

dt
= kpp− kpmmp− ksp

2 (2.4)

Now, the model system (2.4,2.3) has an additional fixed point p = kp/ks, m = 0 which is

stable when km > (kmpkp)/ks and a saddle otherwise (see Appendix 2.5). The unstable spiral

of the previous model is changed to a slightly different location, p = (km− kfm
∗)/kmp,m

∗ =

(kpkmp − kmks)/(kmpkpm − kfks), but its instability still depends only on kf .

The above analysis is motivated by reasonable biological assumptions and simplicity in

modeling. An interesting aside is that the simple predator-prey model (2.1,2.2) can also be

modified by adding a positive feed-back term to the p equation instead of logistic saturation:

dp

dt
= kpp− kpmmp + θp2. (2.5)

In this system (2.5,2.2), the only fixed point in the positive quadrant is p = km/kmp,m =

(1/kpm)(θkm/kmp + kp) which is an unstable spiral as long as θ > 0. In such a model, with

pathogen exhibiting extra growth on collisions (which is not usually observed biologically)

11



and no feed back in the immune system, all initial conditions lead to unstable spirals and

thus the pathogen is always eliminated and there is no risk of sepsis. However, in addition

to being implausible, pathogens with other growth characteristics would not be eliminated.

Appendix 2.5 discusses the behavior of the two dimensional model in greater detail.

In the above modeling scheme, unstable spirals in the phase-plane are interpreted as

healthy behavior. A model where healthy behavior is instead represented by a stable fixed

point can also be constructed. For instance,

dp

dt
= kpp− kpmmp− k1(p− p0)p + k2(p− ps)

3p (2.6)

dm

dt
= kmpmp− kmm + k3(m−m0)m− k4(m−ms)

3m (2.7)

is a system where (p0,m0) could be the stable healthy fixed point and (ps,ms) the stable

septic fixed point. This model requires the pathogen to have a very specific (and unrealistic

growth profile). The model that we have presented has simpler biological interpretations

and does not demand any special properties from pathogen other than what is considered

to be its essential behavior.

2.2 A 3-D MODEL OF ACUTE INFLAMMATION

In this section, a simple 3-dimensional model of the inflammatory response to infection is

discussed. This model includes a third variable to provide a saturating positive feed-back to

the early immune response replacing the kfm
2 term in the 2-d model. Although the essential

dynamics do not change, an independent variable modeling late immune response is a better

approximation of reality. Positive feed-back mechanisms that enhance the pro-inflammatory

environment (such as phagocytic cells activated by immune-mediators (macrophages, neu-

trophils activated by TNF-α,IL-1); early immune-mediators promoted by later mediators

(TNF-α promoted by HMGB-1 etc.) are well documented processes of the acute inflamma-

tory response (Janeway & Travers, 1997; Bone, 1996a; Wang et al., 2001). The 3-d model

also exhibits various states which can be more readily identified with clinically relevant be-

havior. The diverse scenarios that arise are clearly defined and the ambiguous terminology
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Figure 2.1: The phase-plane for the 2-d model (2.1,2.3) showing “healthy” and “shock”

trajectories and the stable manifold that separates them. The red curves (marked with

horizontal arrows) correspond to conditions when dp
dt

= 0 (p = 0 and m = kp/kpm) and the

black curves (marked with vertical arrows) correspond to conditions when dm
dt

= 0 (m = 0

and p = (km − kfm)/kmp). The fixed points are at the intersections of black and red curves

and the direction of flow along a curve reverses at fixed points. The phase-space for a typical

set (kp = 1.0, kpm = 1.0, kmp = 0.5, kf = 0.2, km = 1.0) of parameters is shown. The stable

and unstable manifolds are shown in thicker lines. A typical healthy trajectory and sepsis

trajectory shown in dotted lines.
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of “sepsis” is avoided in this section. The model can show the following behavior: a healthy

response where pathogen is cleared and the body returns to homeostasis, recurrent infection

where inflammation is inadequate and the pathogen cannot be completely eliminated, persis-

tent infectious inflammation where the pathogen levels and inflammation are high, persistent

non-infectious inflammation where pathogen is cleared but inflammation persists and severe

immuno-deficiency where pathogen has grown to saturation but the inflammatory response

is very low. The model suggests that “sepsis” is a multifaceted disease and narrowly targeted

interventions are unlikely to succeed.

The unstable spiraling trajectory which represents healthy behavior in the 2-d model

is also present here and the spiraling trajectories are formed through sub-critical Hopf bi-

furcations. The runaway persistent inflammation trajectory is controlled by a saturating

term and hence persistent inflammation is a stable fixed point in this model. Additionally,

immuno-suppressed and recurrent infections are exhibited in the 3-d model which have no

clear analog in the 2-d model. Through a systematic analysis of the influence of parameters,

more detailed conclusions can be drawn about the acute inflammatory response.

In acute inflammation, an infectious pathogen triggers early pro-inflammatory responders

which attempt to kill the pathogen. The early inflammatory mediators then activate later

inflammatory mediators which can further excite the early mediators. This is the basis

of the model which consists of three variables: 1) a pathogen p, which is an instigator

of the innate immune response; 2) an early pro-inflammatory mediator m, which can be

thought of as representing the combined effects of immune cells such as macrophages and

neutrophils together with early pro-inflammatory mediators such as TNF-α and IL-1; 3) a

late pro-inflammatory mediator l which represents a late pro-inflammatory feedback. This

is a combined effect of cytokines such as IL-6, HMGB-1 and stimulatory effects of tissue

damage and dysfunction.

The model is as follows:

dp

dt
= kpp(1− p)− kpmmp (2.8)

dm

dt
= (kmpp + l)m(1−m)−m (2.9)

dl

dt
= klmf(m)− kll (2.10)
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where

f(m) = 1 + tanh

(
m− θ

w

)
, (2.11)

θ is an activation threshold and w is an activation width. All the variables and parameters

are non-negative. The pathogen p obeys logistic growth and is killed when it interacts with

m. The presence of p or l and m will stimulate the growth of m which also has an intrinsic

death rate. This growth saturates as m increases towards unity mimicking the effects of cell

depletion and anti-inflammatory cytokines. The late mediator l is recruited by m through

a sigmoidal coupling function (2.11) and is cleared with the rate of kl. The parameters that

determine strength of the lm interaction term, the saturating parameters in the p and m

equation and the decay rate of m are used to scale p,m, l and t. In summary, the dynamics

obey predator-prey dynamics with a delayed response.

2.2.1 Dynamics of the model - Numerical examples

The model (2.8-2.10) exhibits behavior reminiscent of what is observed in clinical settings.

Given an initial condition of p > 0, m > 0 and l > 0, p grows, inducing m and l to grow

and attempt to eliminate p. Depending on initial conditions and parameters, the ensuing

orbits either approach stable fixed points or undergo oscillations, each having a physiological

interpretation. In (2.9) a non-zero positive initial value for m is necessary to generate an

inflammatory response. The background level of late mediators is given by l0 = (klm/kl)f(0)

and is non-zero for the present choice of parameters. Both these properties are consequences

of the particular choice for the form of the model and not essential for the qualitative results

found.

As discussed in the previous section, the unstable spiral is interpreted as healthy behavior

by introducing a threshold for pathogen level. When p falls below this threshold, it is

considered to be completely cleared. Numerical examples are considered for various values of

kpm, kmp, and klm. In Section 2.2.2, it is shown that these are natural bifurcation parameters

of the system. The other parameters are fixed at kpg = 3, kl = 1, θ = 1 and w = 0.5. The

effects of varying the parameters θ and w are shown in Appendix 2.6.2.1.

A healthy response to infection as seen in Figure 2.2 corresponds to an orbit that spi-
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rals outwards so that p falls below threshold during the oscillation. The pathogen is then

completely cleared which allows the inflammatory response to relax back to rest.

In Figure 2.3, the same parameters are used but the initial pathogen load is higher so

that instead of returning to background levels, the inflammatory mediators are over-excited

and remain elevated. This is related to a state of persistent non-infectious inflammation

where even though the pathogen is cleared, the inflammatory response does not abate. In

the model, this state is a fixed point but in a real organism if this condition continued, it

would eventually lead to multiple organ failure and death (Reyes et al., 1999).

Starting again from a healthy situation, if the pathogen susceptibility to the host’s de-

fenses (kpm) is decreased, persistent infectious inflammation is observed where the inflam-

matory response is high but the pathogen still cannot be cleared as seen in Figure 2.4. This

condition is equated with a severe septic state where both infection and inflammation are

uncontrolled. In this case the damage caused by both the pathogen and inflammation are

disrupting body function and if unabated death will result. Patients with systemic inflam-

mation, with and without documented infection, are observed in clinical settings (Alberti

et al., 2002).

If the recruitment rate of l (klm) is reduced, the healthy response can be turned into

one of recurrent infection as seen in Figure 2.5. (Changes in other parameters could also

lead to recurrent infection as seen in the next section). In this case, low levels of infection

persist indefinitely. This could be likened to infection with tuberculosis, yeast infections

or low-grade bacterial infections that persist for long periods of time (Beatty et al., 1994).

Although, a host could survive this state for a long duration it may eventually succumb.

Finally, in Figure 2.6, the activation rate of m due to p (kmp) is very weak, a state of

immuno-suppression or immuno-deficiency is observed where the pathogen grows to satura-

tion and does not elicit any response from the body. This could happen if the immune-system

had already been compromised by previous infection or trauma and then the organism is

re-infected. Opportunistic bacterial and fungal infections have been observed in immuno-

suppressed patient populations such as HIV infected patients, the elderly and those with

organ transplants (Schultz et al., 2001).

These five scenarios are the only possible outcomes in this 3-d model.
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Figure 2.2: Time courses of p, m and l for the healthy response. Orbits with the p elimination

threshold (solid line) and without (dotted line) are shown. With the threshold (set at

p0 = 0.0005), when p drops below p0, p is set to zero and m and l return to background values.

Without the threshold, the orbits spiral outwards. Parameters used are kpm = 30, kp =

3, kmp = 25, klm = 15, kl = 1. Initial conditions are p(0) = 0.01, m(0) = 0.05, l(0) = 0.539.
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Figure 2.3: In persistent non-infectious inflammation, p is eliminated but m and l remain

elevated. Parameters used are kpm = 30, kp = 3, kmp = 25, klm = 15, kl = 1. Initial conditions

are p(0) = 0.2,m(0) = 0.05, l(0) = 0.539.
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Figure 2.4: In persistent infectious inflammation, p cannot be eliminated and m and l remain

elevated (as in severe sepsis). Parameters used are kpm = 3, kp = 3, kmp = 25, klm = 15, kl =

1. Initial conditions are p(0) = 0.01,m(0) = 0.05, l(0) = 0.539.
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Figure 2.5: In recurrent infection, p is low and m and l remain above background values but

not very high (as in a low-grade infection). Parameters used are kpm = 30, kp = 3, kmp =

25, klm = 5, kl = 1. Initial conditions are p(0) = 0.01,m(0) = 0.05, l(0) = 0.179.
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Figure 2.6: In severe immuno-deficiency, p grows to saturation and m and l remain low or

absent. Parameters are kpm = 30, kp = 3, kmp = 0.4, klm = 15, kl = 1, p(0) = 0.01,m(0) =

0.05, l(0) = 0.539.

2.2.2 Dynamics of the model - Fixed Points and Bifurcations

These various regimes and transitions are best understood by examining the fixed points

and associated bifurcations of the model (2.8-2.10). The fixed points satisfy the following

conditions:

0 = p

[
p− 1 +

(
kpm

kp

)
m

]
(2.12)

0 = m

[
m− 1 +

(
1

kmpp + l

)]
(2.13)

l =
klm

kl

f(m) (2.14)

Substituting (2.14) into (2.13) and rearranging gives

0 = m

[
p− 1

kmp

(
1

1−m
− klm

kl

f(m)

)]
. (2.15)

Three natural parameters that appear in the fixed point conditions, (2.12) and (2.15) are

considered: a ≡ kpm/kp, kmp, and b ≡ klm/kl. These three parameter combinations represent

the pathogen susceptibility to m compared to its growth rate (i.e. inverse of the pathogen
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Figure 2.7: Projection of fixed-point conditions onto the p-m plane. Projected directions

of field-flow are also marked. The red curves (marked with horizontal arrows) correspond

to conditions when dp
dt

= 0 (p = 0 and (2.16)) and the black curves (marked with vertical

arrows) correspond to conditions when dm
dt

= 0 (m = 0 and (2.17)). The fixed points are

at the intersections of black and red curves and the direction of flow along a curve reverses

at fixed points. The projection of the phase-space for a typical set of parameters is shown.

FP 1 and FP 4 are saddles. FP 3 is a spiral which is stable or unstable based on the actual

values of the parameters. FP 5 is a stable fixed point. FP 2 (not shown) is also a saddle in

this case.
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virulence), the activation rate of early responders m due to p, and the effective recruitment

rate of l due to m, respectively.

The intersections of conditions (2.12) and (2.15) give the fixed points of the system. The

dependence of the fixed points with the parameters is best observed as a projection in the

p −m plane as shown in Figure 2.7 where the fixed point conditions (2.12) and (2.15) are

plotted. Lines p = 0 and m = 0 are unaffected by changes in parameters. The line

p = 1− am (2.16)

is affected only by a and sweeps across the p−m plane as a is decreased. The curve

p =
1

kmp

(
1

1−m
− bf(m)

)
. (2.17)

is affected only by the immune parameters b and kmp. It drops below p = 0 as b is increased.

Changing kmp affects the height and angle at which (2.17) intersects (2.16). Note that the

formation of FP 3 which undergoes Hopf bifurcations in Figure 2.7 is reminiscent of the

oscillations in the 2-d phase-plane in Figure 2.1. The p = 0 and m = 0 nullclines ensure that

all trajectories which start in the positive quadrant stay in it.

There are five fixed points which have been labeled from FP 1 to FP 5. FP 1 is given

by p = 0, m = 0, and l = (klm/kl)f(0). This fixed point is always unstable because the

pathogen is growing. FP 2 is given by p = 1, m = 0, l = (klm/kl)f(0) and may be interpreted

as a severely immuno-deficient state. Here the pathogen has grown to saturation, but there

is no early immune response and the late response remains at the background level. This

point is stable when the early immune response is very weak as shown in Appendix 2.6.1.2.

FP 4 and FP 5 arise from a saddle node bifurcation when p = 0 in (2.17). This can

be achieved by increasing b from zero as seen in the bifurcation plot in Figure 2.10. FP 4

is always unstable and never represents any physiologically relevant scenario. When stable,

FP 5 represents the persistent non-infectious inflammation fixed point. FP 3 is given by the

intersection of the line (2.16) with the curve (2.17). FP 3 could represent healthy, recurrent

infection or persistent infectious inflammation states, depending on parameter values. Below,

the three parameter combinations a, kmp and b are varied and the bifurcation plots are

examined.
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In the healthy scenario, a is large enough so that FP 3 is an unstable spiral and FP 5

is the only stable node (kpm = 20 in Figure 2.8). In this case, initial conditions close to

FP 3 undergo oscillations that take the pathogen below the elimination threshold and are

interpreted as healthy trajectories. A higher pathogen initial condition for the same set of

parameters takes the trajectories directly to FP 5 and this behavior is interpreted as persis-

tent non-infectious inflammation. This is similar to the trajectories seen in the phase-plane

of the 2-d model in Figure 2.1. When a is decreased, the slope of line (2.16) decreases and

it sweeps through FP 4 rendering it unstable through a transcritical bifurcation. However,

p is negative and thus FP 3 becomes unphysical (kpm = 10 in Figure 2.8). Hence FP 5 is the

only stable fixed point for all initial conditions in this regime. As a is decreased further FP

3 crosses FP 5 and they exchange stability through another transcritical bifurcation. FP 3

then becomes the only stable fixed point and is the global attractor for all initial conditions.

As expected, starting from a healthy scenario, the outcome of the system becomes more

and more severe with decreasing pathogen susceptibility (i.e. increasing effective pathogen

virulence). If we were to increase susceptibility a starting from the healthy scenario, FP

3 changes into a stable spiral surrounded by an unstable limit cycle through a subcritical

Hopf bifurcation. Now, trajectories within the unstable limit cycle spiral into the stable

fixed point FP 3 resulting in recurrent infection and unstable spiral trajectories outside the

unstable limit cycle will eventually dip below threshold and be interpreted as healthy. As FP

5 is still the attractor when the initial p or m is very high, this set of parameters could lead to

three different outcomes based on the initial conditions (kpm = 40 in Figure 2.8). Increasing

a further, increases the radius of the unstable limit cycle until it undergoes a homoclinic

bifurcation when it collides with FP 1. Here FP 3 is a stable spiral and only recurrent

infection is supported. The model therefore predicts that pathogen clearance is not possible

for a range of high pathogen susceptibility. However, as susceptibility is increased much

further, FP 3 gets closer to the origin so that oscillations around it take p below threshold

and may be interpreted as healthy.

Varying kmp, the strength of the early response, does not affect the stability or position

of FP 5, the persistent non-infectious inflammation point. Decreasing kmp takes a healthy

state to a state where healthy and recurrent infection co-exist and finally to one of recurrent
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infection only as shown in Figure 2.9. Decreasing kmp below 1 − (klm/kl)f(0) makes FP 3

collide with FP 2 (the severely immuno-deficient state where p grows to saturation and m

and l remain at background values). In a transcritical bifurcation, FP 2 becomes the stable

fixed point of the system and FP 3 becomes unphysical since m < 0. Increasing kmp from

the healthy value reduces the value of p in FP 3 - this reduces the range of initial conditions

for healthy behavior. However, for even very large values of kmp, FP 3 is an unstable spiral

with complex eigenvalues supporting healthy behavior for initial conditions starting close to

FP 3.

Varying the strength of the late response, b affects both FP 3 and FP 5. As b is decreased,

FP 3 undergoes a sub-critical Hopf followed by the homoclinic bifurcation of the unstable

limit cycle similar to the above cases (Figure 2.10). FP 4 and FP 5 are created in a saddle-

node bifurcation when the curve (2.17) intersects p = 0 by increasing b. However, there is

also an upper limit to b beyond which healthy behavior is not supported. The curve (2.17)

is below zero when it intersects (2.16) and FP 3 is unphysical. Thus when the late response

is too high, persistent non-infectious inflammation is the only possible outcome.

In the preceding, although the behavior of the system has been examined by mostly

varying only one parameter at a time, it gives us a picture of the global dynamics of the

system. Given the strong nonlinear saturation in the dynamics, orbits can either approach

a fixed point, a limit cycle, or a strange attractor. Given that FP 1 and FP 4 are always

unstable and FP 2 is stable only when kmp is very low, this leaves FP 3 (or stable limit

cycles around it) and FP 5 as the only candidates for global attractors. Ideally however,

FP 3 should be an unstable spiral or be surrounded by an unstable limit cycle, so that

oscillations around it can be interpreted as healthy behavior.

This gives an explanation for why healthy behavior always entails the risk of uncontrolled

inflammation. In order for the pathogen to be cleared, an unstable spiral that can take p

below threshold is required. However, if it were not for the (externally imposed) elimination

threshold the orbit would eventually end up at some attractor and persistent non-infectious

inflammation is the global attractor. Conversely, if the curve (2.17) has not yet intersected

p = 0 to form FP 4 and FP 5 (no persistent inflammation fixed point), FP 3 or a stable

limit cycle around it (recurrent infection) is the global attractor.
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There is a possibility that FP 3 could undergo a supercritical Hopf bifurcation (see

Appendix 2.6.1.3) which leads to a stable limit cycle around it. However, this is generically

interpreted as recurrent infection because fine tuning would be required to ensure that the

limit cycle takes p below threshold. Although, not possible in this model, a strange attractor

might occur in higher dimensional models. It is unlikely given the large amounts of negative

feedback and dissipation in the system. However, even if it were to exist, it may still not

lead to a healthy situation as p may never be eliminated or the early and late inflammatory

mediators could stay elevated albeit in a chaotic manner.

Physiologically, this implies that in order to completely rid the body of a pathogen, the

inflammatory response must respond strongly and remain elevated for a long enough time.

If it responds too weakly, then the pathogen persists. If it abates too quickly, then there will

be recurrent oscillatory infection. However, if it responds too strongly and too persistently

then there is a risk that it will be self-sustaining even after the pathogen is cleared. Thus,

there is a trade-off between being able to eliminate pathogens completely and risking non

abating inflammation. In Appendix 2.6.2, the parameter ranges where a healthy response is

possible are calculated.

In the next section, 2 parameter bifurcation plots are discussed which shed more light

on the dynamics of the model.

2.2.3 2 parameter bifurcations

The two bifurcations that are crucial in determining the behavior of the system are - the

saddle-node bifurcation which results in the creation of the persistent inflammation fixed

point and the sub-critical Hopf bifurcation which results in unstable oscillations which are

interpreted as healthy.

In this section, bifurcation plots varying the three main parameters, a, kmp and b(klm/kl)

are examined. The generic saddle-node and Hopf bifurcations are followed by varying two

parameters (a & b and kmp & b) at a time. It is noted that once the saddle-node bifurcation

creates the stable persistent inflammation fixed point, for all higher parameter values, the

system is susceptible to persistent inflammation. For a parameter range on either side of the
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Figure 2.8: Bifurcation plot showing outcome as kpm and hence a = kpm/kp is increased.

For low kpm, FP 3 interpreted as persistent infectious inflammation is the only fixed point of

the system. As kpm is increased to ≈ 2.7, FP 5 (persistent infectious inflammation) becomes

the attractor of the system. FP 3 becomes unphysical and moves leftward in the p-m plane

(see inset). At kpm ≈ 11, FP 3 undergoes a transcritical bifurcation with FP 4, becoming

physical again. It is an unstable spiral, oscillations around which are interpreted as healthy.

On further increasing kpm, FP 3 undergoes a subcritical Hopf bifurcation and is surrounded

by an unstable limit-cycle, oscillations around which are interpreted as healthy. Trajectories

within the limit-cycle, which spiral into FP 3, are interpreted as recurrent infection. Healthy

behavior is lost to a homoclinic bifurcation at kpm ≈ 57. For large kpm, FP 3 and FP 5

are bistable (i.e. recurrent infection and persistent non-infectious inflammation are possible

outcomes of the system). (Inset : In the p-m plane, line (2.16) sweeps across the plane

causing the above bifurcations.)
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Figure 2.9: Bifurcation plot showing outcome as kmp is increased. For very low kmp(< 0.5),

FP 2 is stable and is interpreted as the severely immuno-deficient state. As kmp is increased,

FP 3 becomes stable through a transcritical bifurcation and recurrent infection is a possible

outcome of the system. As kmp is increased further FP 3 undergoes a subcritical Hopf

bifurcation (kmp ≈ 22). Oscillations around the unstable limit cycle surrounding FP 3 are

interpreted as healthy and are lost through a homoclinic bifurcation (kmp ≈ 9). Trajectories

within the limit-cycle spiral into FP 3 and are interpreted as recurrent infection. Beyond

the Hopf bifurcation (kmp > 22), FP 3 remains an unstable spiral, up to very large kmp

(kmp ≈ 2000) and oscillations around FP 3 are interpreted as healthy. On varying kmp,

only the position and eigenvalues of FP 3 are changed. FP 5 remains unaffected which

is interpreted as persistent infectious inflammation and remains a possible outcome of the

system. If curve (2.17) is shallow enough (b was small enough) so that FP 5 is not yet

created, then FP 3 remains the stable global attractor through changes in kmp. (Inset :

In the p-m plane, FP 3 varies in position and stability as (2.17) varies, causing the above

bifurcations. FP 5 remains unaffected.)
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Figure 2.10: Bifurcation plot showing outcome as klm or b = klm/kl is increased. For low

klm, FP 3 is a stable spiral representing recurrent infection. As klm is increased, FP 4 and 5

are created through a saddle-node bifurcation at klm ≈ 7 and the persistent non-infectious

inflammation is now a possible outcome. At klm ≈ 14, FP 3 undergoes a subcritical Hopf

bifurcation and is surrounded by an unstable limit cycle. The oscillations around the unstable

limit cycle are interpreted as healthy behavior and trajectories inside the limit cycle spiral

into FP 3 and are interpreted as recurrent infection. Healthy behavior is lost at klm ≈ 10

due to a homoclinic bifurcation. Beyond the Hopf bifurcation, healthy oscillations are still

supported by FP 3 which is now an unstable spiral. At klm ≈ 21, FP 3 meets FP 4 and

becomes unphysical through a transcritical bifurcation (as its p < 0). Beyond this point, FP

5 is the only stable attractor and persistent non-infectious inflammation is the only possible

outcome of the system. (Inset : In p-m plane, (2.17) descends as klm is increased causing

the above bifurcations.)

27



sub-critical Hopf line, healthy behavior is supported. A homoclinic bifurcation at one end

and a transcritical bifurcation on the other end limit the range of healthy oscillations. Both

of these bifurcations are non-generic. This analysis reinforces some of the main conclusions

of the previous section. Bifurcation plots varying the parameters of the coupling curve θ and

w are also examined.

In Figs. 2.11, 2.12, the effect of varying the strength of early (kmp) and pathogen virulence

(kpm) with late response (b), on the saddle-node and Hopf bifurcations is shown. In both

cases, the saddle-node bifurcation that results in the creation of the persistent inflammation

fixed point is dependent only on the strength of late inflammation (b). The Hopf bifurcation

is influenced by all parameters. In Fig. 2.12, the line of Hopf bifurcations continues to the

“left” of the saddle-node bifurcations. These Hopf points (klm <≈ 7) are super-critical and

cannot be generically interpreted as healthy behavior. Thus, we still claim that the risk of

persistent inflammation is retained to ensure complete elimination of pathogen.

In the above analyses, the parameters that determine the shape of the coupling curve

between m and l, f(m) are kept fixed (θ = 1 and w = 0.5). These parameters affect both

the Hopf and saddle-node bifurcations. Parameter θ sets the threshold where l is activated

by m and parameter w gives the steepness of recruitment. Figure 2.14 shows the coupling

curves at various values of w and θ and the codim-2 saddle-hopf bifurcation obtained when

all other parameters are kept fixed. w and θ less than 1 result in the maximizing the range

of klm in which healthy behavior is observed as shown in Fig. 2.13.

2.2.4 Discussion of the 3-d model

This simple model of acute inflammatory response to infection shows the various negative

outcomes that arise from improper inflammatory response. These scenarios of persistent

inflammation (with and without infection), immuno-suppression and recurrent infection have

all been observed in critically ill patients (Alberti et al., 2002; Bone, 1996a). Vastly different

therapeutic strategies are called for to deal with the diverse negative outcomes. Although

strict correspondence with clinical reality is difficult to establish because of the simplicity of

the model, the model behavior is classified into the same broad categories.
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Figure 2.11: A 2 parameter bifurcation plot that varies the strength of early and late inflam-

matory mediators and follows the saddle-node bifurcation that gives rise to the persistent

inflammation fixed point. Only the strength of the late mediators (same b, as long as θ and

w remain the same) affects this bifurcation.
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Figure 2.12: A 2 parameter bifurcation plot that varies the strength of early and late inflam-

matory mediators and follows the saddle-node bifurcation that gives rise to the persistent

inflammation fixed point. Only the strength of the late mediators (same b, as long as θ and

w remain the same) affects the saddle-node bifurcation. The Hopf bifurcation is affected by

both parameters. The Hopf for parameter values klm <≈ 7 is super-critical.
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coupling curves, f(m) = 1 + tanh (m−θ)
w

for specific values of w and θ are shown in the inset

(Curve 1 w = 0.2, θ = 0.2; Curve 2 w = 0.5, θ = 1.0; Curve 3 w = 2.0, θ = 2.0). w = 0.5

and θ = 1.0 are the values used in the analysis.

32



The model has a rich bifurcation structure and exploring it allows us to understand how

changing parameters can take the system from one outcome to another. This model shows

that in order to have a healthy response to infection the virulence of the pathogen cannot

be too strong or too weak, the early pro-inflammatory response cannot be too weak, and the

late response cannot be too strong or too weak.

The effect of the strength of early and late pro-inflammatory responses is examined

and this model suggests that only the strength of the late pro-inflammatory wave governs

predisposition towards a state of persistent inflammation. This is similar to the predictions

from the even simpler 2-d model. No matter how exuberant the early wave may be, only

controlling the feedback from the late wave can determine whether the outcome is healthy

recovery or uncontrolled inflammation. Thus we predict that any therapy for persistent non-

infectious inflammation must target the slow pro-inflammatory mediators. In this model, as

in the 2-d model, a strong late-inflammatory response ensures elimination of pathogen but

introduces the risk of persistent inflammation.

Experiments have found that survival was improved in infected mice when the moderately

slow cytokine IL-6 was reduced (Riedemann et al., 2003). However, if too much IL-6 was

removed then there was a detrimental effect. This result is consistent with the predictions of

the 3-d model in that a small reduction lowered the possibility of a sustained inflammatory

response but lowering it too much precluded the possibility of eliminating the bacteria.

Evidence also has suggested that down-regulating HMGB-1, a late acting pro-inflammatory

mediator might be a potential target for anti-sepsis therapies (Wang et al., 2001). Activated

Protein-C which has been recently approved for treatment, is also partially a late anti-

inflammatory agent (Bernard et al., 2001). Previous therapeutic attempts have mostly

focused on down-regulating the early pro-inflammatory mediators and as predicted by the

model have not shown great effectiveness (Abraham et al., 1998; McCloskey et al., 1994).

On the other hand, if the patient is suffering from persistent infectious inflammation, then

therapies must be aimed at both reducing the pathogen load and the late pro-inflammatory

response. In this case, timing of the therapies may be important. It would be necessary to

reduce the bacterial load first before reducing the inflammation.

Conversely, low pathogen virulence or a weak immune response can lead to low level

33



persistent or recurrent infection. Other theoretical models of infection have similar predic-

tions. Persistence of the tuberculosis bacterium Mycobacterium tuberculosis at low densities

for extended periods has been suggested to be the result of slow growth rates (Antia et al.,

1996). Similarly, a down-regulated immune response to Helicobacter pylori bacteria has been

suggested to result in its persistent colonization of the human stomach (Kirschner & Blaser,

1995). In the clinical setting, patients in the ICU with decreased host defenses are suscep-

tible to hospital-acquired infections (Schultz et al., 2001). These infections which may be

easily resolved in a healthy individual might result in unresolved inflammation and prove

fatal to a compromised individual. Immuno-stimulatory therapy might be effective in such

a situation.

The model shows that sepsis should be considered as a set of distinct physiological

disorders that require separate therapies even though they may have overlapping symptoms.

Categorizing septic states based on levels of bio-markers rather than clinical symptoms would

be the first step in addressing this problem and effort is ongoing in that direction (Levy et al.,

2003; Marshall et al., 2003).

2.3 A GLOBAL MODEL OF ACUTE INFLAMMATION

The models discussed in the previous sections are simple and offer general predictions about

the design of the inflammatory response. Often, however, results from such models are not

specific enough to be of immediate use in understanding complex biological systems. Larger,

more complex models incorporating the biological details are being increasingly used to make

more specific predictions (Polidori & Trimmer, 2003; An, 2001). Detailed models are often

limited by the amount of accurate biological information and data available to design them.

However, they can still be used effectively to gain useful information.

The model discussed in this section is a detailed representation of the processes of acute

inflammation. The model reproduces time courses of immune mediators, qualitatively similar

to those found in literature. This model can be used to track the time course of specific

mediators in response to an insult and specific times and doses of interventions may be

suggested to optimize the effectiveness of a given therapy (Kumar et al., 2001; Vodovotz
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et al., 2002). Results from such a model are more valuable to biologists and clinicians than

reduced models as the predictions are specific and encompass a variety of mediators.

In this section, the model and its features are discussed and in Chapter 3, its specific

applications are elaborated upon.

2.3.1 Features of the model

The model consists of 17 equations and captures the behavior of several key mediators using

ordinary differential equations. Spatial homogeneity is assumed for simplicity and the medi-

ators are assumed to interact with each other based on the mean field approximation. The

underlying assumption is that the time courses of mediators shown by the model represent

their concentration in the bloodstream. The effect of systemic inflammation on individ-

ual organs or the binding of effectors on cell surfaces by receptors are not modeled and no

predictions of such details are made.

The initial instigators of the immune response are the growing pathogen or sterile

pathogen products. The model is based on a generic gram negative bacterium that releases

endotoxins. An unstable spiraling trajectory formed through Hopf bifurcations (Figs.2.20,

2.21) represents healthy behavior in the global model. Unlike the reduced models, in the

simulations of the global model, the oscillating trajectories are clamped using a Heaviside

function. The growing pathogen term (Eq.2.39 and Eq.3.3) is multiplied by H(p−p0) where

p0 is an arbitrarily set low threshold. This ensures that the pathogen does not re-grow from

very low quantities.

The components of the immune system that are modeled are: the first responders which

are the phagocytic cells (neutrophils and macrophages), generic early (similar to TNF-α)

and late pro-inflammatory cytokines (similar to IL-6), a generic anti-inflammatory cytokine

(similar to TGF-β), oxidizing molecules that can kill pathogen and also cause tissue damage

(nitric oxide NO and oxygen free radical O−−
2 ) and components of the coagulation cascade

(tissue factor, thrombin and activated protein-C). The model also includes equations for

global tissue dysfunction and blood pressure. Tissue dysfunction is caused by the pro-

inflammatory elements in the model and enhances inflammation itself. In general, elevated
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tissue dysfunction and low blood pressure are interpreted as a negative outcome whereas

background tissue dysfunction and blood pressure are interpreted as the healthy state. The

components of the model with brief descriptions are listed in Appendix 2.7.1.

The interactions modeled are as follows. Resting macrophages (Mr) are activated (ac-

tivated macrophages are represented by Ma) directly by growing pathogen (P ) and sterile

pathogen products (Pe). Neutrophils (N) also respond directly to these instigators. These

interactions occur at a systemic level where the stimuli enter the circulation and activate cir-

culating monocytes and neutrophils (Parker & Watkins, 2001). Activated neutrophils reach

compromised tissue by migrating along a chemoattractant gradient (Bellingan, 1999). Once

activated, macrophages and neutrophils enhance inflammation by producing and secreting

effectors that activate these same cells and also other cells, such as endothelial cells. Pro-

inflammatory cytokines - tumor necrosis factor (TNF ), interleukin (IL)-6 (IL6), promote

immune cell activation and pro-inflammatory cytokine production (Freeman & Natanson,

2000) These are included as the effects of the TNF and IL6 terms in the model.

The concurrent production of anti-inflammatory cytokines counterbalances the actions

of pro-inflammatory cytokines. In an ideal situation, these anti-inflammatory agents serve to

restore homeostasis. However, when over produced, they may lead to detrimental immuno-

suppression (Bone, 1996a; Pinsky, 2001; Volk et al., 2000). The model includes slow-acting

anti-inflammatory activity such as active transforming growth factor-β1 (TGF-β1), soluble

receptors for pro-inflammatory cytokines, and cortisol (Resting anti-inflammatory molecules

represented by Cr and activated molecules represented by Ca). It is noted that while acti-

vated TGF-β1 only has a lifetime of a few minutes, latent TGF-β1 is ubiquitous (Roberts &

Sporn, 1996) and can be activated either directly or indirectly by other slower agents such

as IL-6 or NO (Luckhart et al., 2003; Villiger et al., 1993; Vodovotz et al., 1999).

Pro-inflammatory cytokines also induce macrophages and neutrophils to produce free

radicals. In this model, NO derived from inducible NO synthase, iNOS (NOd) is directly

toxic to bacteria and indirectly to host tissue (Nathan & Hibbs, 1991; Babior, 2000; Johnson

& Billiar, 1998). The actions of superoxide (O−
2 ) and other oxidative mechanisms (Babior,

2000) of the pro-inflammatory agents are also accounted for. In the model, the actions of

these products can cause direct tissue dysfunction or damage and this induced damage can
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incite more inflammation by activating macrophages and neutrophils (Jaeschke & Smith,

1997). However, NO can also protect tissue from damage induced by shock (Florquin et al.,

1994; Harbrecht et al., 1992; Park et al., 1996), even though overproduction of this free

radical causes hypotension (Johnson & Billiar, 1998).

In endotoxemia, the model assumes that Lipopolysaccharide (LPS) (represented by Pe)

enters the bloodstream and incites a system-wide response (Beutler, 2000). LPS is cleared in

approximately one hour (Maitra et al., 1981; Ruiter et al., 1981). Circulating neutrophils are

activated directly and produce TNF (Djeu et al., 1990). The newly produced TNF combines

with LPS to activate macrophages that then secrete pro-inflammatory cytokines including

TNF, IL-6. (Cavaillon, 1994). Activated neutrophils, macrophages, and endothelial cells

produce NO through iNOS (Bogdan, 2001). The model assumes that locally produced NO

is eventually detected as the measured serum end products NO2-/NO3-, and this process

depends on the differential induction of eNOS and iNOS in various organs over time (Rees

et al., 1995; Santak et al., 1997). In order for TNF to rise and fall within a few hours as

it does in Fig. 2.15, the model required an inhibitory agent to suppress TNF production.

This was accounted for by saturating mechanisms (Bogdan et al., 1991; de Waal Malefyt

et al., 1991) and other slow anti-inflammatory cytokines including IL-6. Previous work has

indicated that IL-6 may exert both pro- and anti-inflammatory properties (Opal & DePalo,

2000). The anti-inflammatory action is assumed to be mediated by inducing or activating

TGF-β (Villiger et al., 1993) on the surface of neutrophils and macrophages, as has been

shown for cytokines such as interferon-γ (Chong et al., 1999).

This model is a very incomplete representation of all the processes of inflammation.

However, it captures many of the main features of acute inflammation, and can give new

insights into the complex interactions of the process. The interactions described in the model

are well documented and widely accepted in the biological literature. Their mathematical

forms are often based on estimates and documented relative strengths of interactions. There

are 100 rate constants or parameters in the model. Of these, 72 determine the strength

of interactions. 20 parameters are used to determine strengths and timings of intervention

which are not used to run the “base-line” case. 7 determine the thresholds and slopes for

hill- type interactions, 1 parameter is used to scale time to correspond to literature values.
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Of the 72 rate constants, some values and ranges of parameters are obtained directly from

literature and others are estimated based on relative strengths of interactions and in order to

satisfy base-line model behavior. There is uncertainty in the actual values of the parameters

that could influence the interpretations from the model. The values of the mediators are

not calibrated directly to data and only qualitatively follow expected behavior. Therefore

the units in which the mediators are expressed is arbitrary. However, time is marked in

hours. The set of mediators chosen to model is also subjective and arguably the role of early

anti-inflammatory cytokines has been underestimated. However, the variables chosen also

represent the major players which could not have been ignored.

Despite the various limitations explained above, the model is robust to small parameter

changes and is a useful systemic description of acute inflammation. Several meaningful

predictions, both intuitive and non-intuitive have been obtained from this model, some of

which are discussed below. This model can be used to test hypotheses about the interactions

and test the systemic effect of modulating specific mediators.

2.3.2 Simulations

The features for which this model was trained are summarized below. The healthy state,

persistent non-infectious inflammation and persistent infectious inflammation were required

to arise on increasing pathogen growth rate. Persistent inflammation was characterized by

elevated levels of immune mediators, tissue dysfunction and low blood pressure. The time

courses of early and late pro-inflammatory cytokines and nitric oxide were modeled according

to time courses obtained in the general biological literature. The response of the immune

system to sterile pathogen toxins was also used to determine some rate constants.

In the case of a moderate pathogen, healthy behavior is expected. In this model a

heaviside function is used to cut off pathogen growth when it falls below a threshold. On

increasing pathogen growth rate, the immune mediators stay elevated and persistent non-

infectious inflammation is observed. The concentrations of pathogen, early phagocytic cells,

cytokines, nitric oxide and tissue dysfunction in both these scenarios is shown in Figure 2.15

and Figure 2.16.
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2.3.3 Connections

The reduced models and the detailed models exhibit qualitatively similar behavior in terms

of the scenarios they are able to reproduce and the parameter changes that take the system

from one scenario to the other. Several features are conserved between the models and later

in this section, some simulations and bifurcation plots from the detailed models are compared

to those from the 3-d model.

The interactions of the 3-d model are obtained from reducing the global detailed model.

In the global model, an invading pathogen (initial condition of the variable P ) triggers an

immune response by activating the resting phagocytic cells (resting macrophages Mr) get

converted to activated forms. (activated macrophages Ma). These cells directly and through

cytotoxic products (NO and O2) clear the pathogen. This results in the production of toxic

pathogen products (endotoxin Pe) which further trigger immune response. This initial loop

is simplified in the 3-d model by assuming a growing pathogen p triggering a reaction from

a single immune mediator m which can directly clear pathogen.

In the global model, the early immune responses trigger further inflammatory products

such as the cytokines TNF-α and IL-6 and compensatory anti-inflammatory cytokines TGF-

β. Further downstream, the coagulation cascade (tissue factor Tf , thrombin Th and activated

protein-C Pc). These mechanisms along with increasing tissue dysfunction (D) and decreas-

ing blood pressure (B) further enhance inflammation. For instance, macrophages increase

rate of production TNF-α (at rate ktnfma) which in turn increase tissue factor (ktftnf ) which

increases thrombin (ktfth) and that increases IL-6 (k6th) which finally increases the activa-

tion rate of macrophages (km6). Such loops are simplified in the 3-d model through a single

late inflammatory mediator, l that enhances the early mediator m. The saturating effects

of anti-inflammatory agents such as TGF-β and activated protein-C are simulated through

saturating functions in the equations of both m and l.

All the scenarios that are possible in the 3-d model can be generated in the global model.

The variables in the larger model include more than one primary mediator (macrophages and

neutrophils), several secondary mediators and then another wave of pro- and anti inflamma-

tory mediators. So, scenarios not seen in the reduced model such as fixed points somewhere
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between clearly immuno-suppressed and clearly persistent infectious inflammation are also

possible in the global model. But going from one scenario to the other follows more or

less the same pattern in both models. The scenarios of persistent inflammation (infectious

and non-infectious), recurrent infection, immune-suppression as seen in the global model are

shown in Figs. 2.15 - 2.19. The structure of the phase space of the global model is clearly

complicated and is beyond the scope of detailed analysis. The persistent inflammation out-

comes are obtained by decreasing pathogen susceptibility (decreasing parameters kpm, kpno

and kp02) and the immuno-deficient outcomes are obtained by decreasing early immune re-

sponse to pathogen and pathogen products (decreasing parameters kmp, knp and ktfpe). The

bifurcation diagrams of the global model reveal the structure of fixed points which is very

similar or in some cases identical to that of the 3-d model (Figs. 2.21, 2.20).

The strength of the late inflammatory response in the 3-d model is crucial in determining

the predisposition of a system to persistent inflammation. More than one variable could

qualify as the strength of “late response” in the detailed model. Several parameters such as

k6m which governs the stimulation of IL-6 by macrophages or kdcp which governs the damage

caused by TNF-α can be changed and these result in qualitatively similar behavior as seen

in the reduced models: stable oscillations representing recurrent infection are followed by

unstable oscillations representing healthy behavior followed by the creation of a persistent

inflammation fixed point. In particular, the bifurcation plot of the parameter kdth, which

governs the strength at which thrombin stimulates damage, is shown in Figure 2.21. It can

be seen that it is very similar to Figure 2.10 which shows the variation of the strength of the

late inflammatory mediator in the reduced model.

The global model also shows similar dynamics when the early immune response is

changed. The parameter kmp which governs the pathogen stimulation of macrophages is

varied as shown in Figure 2.20. Low stimulation causes recurrent infection and higher stim-

ulation causes healthy behavior. However just as it is observed in the reduced model (Figure

2.9), even on increasing kmp to very large values, the possibility of a healthy outcome is never

lost.

Detailed results based on both the global and reduced models have been discussed. It

is expected that the validity of the above conclusions not change with small changes in the
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functional form of the model. This concept is formally referred to as “structural stability”.

The general idea is that similar dynamics (topological equivalence) is shown by a system

even when the functional forms (or parameters) of the system are slightly varied (Kuznetsov,

1998). Necessary and sufficient conditions for structural stability in 2 dimensions (Peixoto,

1962; Arrowsmith & Place, 1990) can be stated as follows. 1) All fixed points are hyperbolic

2) All closed orbits are hyperbolic 3) There are no orbits connecting saddles. While the local

conditions (1) and (2) are satisfied in the 2-d model (2.4-2.3), the global condition (3) is

not satisfied. So though local structural stability can be proved in compact sets in the 2-d

model, it is not globally structurally stable.

In dimensions higher than 2 only “sufficient” conditions for structural stability can be

stated (Garcia & Teixeira, 2004). These are the Morse-Smale conditions and the structural

stability of the system away from local bifurcations (such as the Hopf and saddle-node bifur-

cations seen in the 3-d (2.8-2.10) and global models (2.40)) can also be proved (Afrajmovich

et al., 1988). These conditions are stated as follows. 1) There is only a finite number of

fixed points and periodic trajectories 2) All such fixed points and periodic trajectories are

hyperbolic 3) the stable and unstable manifolds intersect transversally. While conditions (1)

and (2) are satisfied in the models (2.8-2.10) and (2.40), condition (3) can be proved formally

only on further analysis of the stable and unstable manifolds (Day, 2004).

It is noted however, that the specific nature of the interactions in the 3-d model are not

essential for the qualitative dynamics found. There is some flexibility in the functional form

chosen. As an example, the factor 1−m in (2.9) may be replaced by 1/(1 + m) or the form

of the coupling function (2.11) can be changed without affecting the conclusions. In this

study, we have shown qualitatively similar dynamics in the global and reduced models only

through simulations and similarities in bifurcation diagrams.

2.4 LIMITATIONS OF THE MODELS

The modeling approach has proven very useful in understanding the dynamics of acute

inflammation. However, there are certain limitations as discussed below.

In the models above, trajectories that were unstable spirals were interpreted as healthy
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Figure 2.15: Simulation of a healthy inflammatory response to Gram-negative bacterial infec-

tion: The system is infected by a low dose of Gram-negative bacteria (e.g. E. coli, Panel A),

which leads to activation of macrophages (Panel B). The macrophages elaborate cytokines

(Panel C), including rapidly produced pro-inflammatory cytokines (CP, e.g. TNF-α), more

slowly produced pro-inflammatory cytokines (CPL, e.g. IL-6), and anti-inflammatory cy-

tokines (Ca, e.g. TGF-β1). Tissue damage/dysfunction (Panel D) rises due to the actions

of pro-inflammatory cytokines and effectors, but then decreases due to the actions of anti-

inflammatory cytokines. Thus, homeostasis is restored after pathogens are cleared.
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Figure 2.16: Simulation of persistent non-infectious inflammation: The system is infected

by a high dose of Gram-negative bacteria (e.g. E. coli, Panel A), which leads to activa-

tion of macrophages (Panel B). The macrophages elaborate cytokines (Panel C), including

rapidly produced pro-inflammatory cytokines (CP, e.g. TNFα), more slowly produced pro-

inflammatory cytokines (CPL, e.g. IL-6), and anti-inflammatory cytokines (Ca, e.g. TGF-

β1). Tissue damage/dysfunction (Panel D) rises due to the actions of pro-inflammatory

cytokines and effectors, and unlike the case in Fig. 2.15 is not reduced. Thus, the inflam-

matory response is sustained, with ensuing adverse outcome.
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Figure 2.17: Simulation of persistent infectious inflammation: The system is infected by a

very fast growing Gram-negative bacteria (e.g. E. coli, Panel A), Macrophages are shown

in Panel B, Cytokines in Panel C and Tissue damage/dysfunction in Panel D. Unlike the

case in Fig. 2.15 inflammatory mediators are not reduced as the response elaborates. Also,

unlike Fig. 2.16, the pathogen load also does not reduce and active infection persists despite

severe inflammation. The inflammatory response and infection are sustained, with ensuing

adverse outcome.
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Figure 2.18: Simulation of recurrent infection: A virtual patient is infected by a slow growth

rate Gram-negative bacteria, (Panel B). Macrophages are shown in Panel B, Cytokines in

Panel C and Tissue damage/dysfunction in Panel D. The low growth rate infection does not

elicit a strong response and persistent low-grade inflammation exists.
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Figure 2.19: Simulation of severe immuno-deficiency: The system is infected by a moderate

dose of Gram-negative bacteria (Panel A). The immune response is very weak (Panels B,C

and D) and this results in unchecked pathogen growth and background levels of inflammatory

mediators. An adverse outcome is expected to ensue in the organism due to large amounts

of pathogen, even though the damage term of the model in Panel D remains low.
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Figure 2.20: The bifurcation plot varying the strength of macrophage and neutrophil response

to pathogen and tissue-factor response to endotoxin. Even on increasing the response to very

high values, healthy oscillations are always a possible outcome.
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Figure 2.21: The bifurcation plot varying the strength of thrombin stimulation of damage is

very similar to that of varying the strength of the late inflammatory response in the reduced

model.
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outcomes. In general, these trajectories do take the pathogen values very close to 0 very

soon, and can be interpreted as healthy outcomes. However, the trajectories of some initial

conditions might wind longer around the fixed point before reaching p = 0. Such trajectories

cannot be immediately interpreted as healthy behavior and might be considered closer to

recurrent infection behavior.

Another draw-back is that though the outcomes of the reduced and global models have

been correlated to clinical conditions, strict correspondence is difficult to establish. The

persistent inflammation fixed point is interpreted as being in the “shock” state and leading

to death, though the exact pathway to death is not clearly modeled.

Some important aspects of the immune response have also been ignored in the models

above. For instance, the role of anti-inflammatory mediators could be more clearly examined

by explicitly including such a variable in a reduced model. Elements of adaptive immunity

may also be added to the global model to understand its systemic effects. Effort is ongoing

in that direction (Day, 2004).

The effects of fluctuations at low numbers have been ignored by the above models and

arbitrary thresholds have been used to ensure elimination of pathogen. Chapter 4 discusses

a more fundamental approach to deal with this problem.
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2.5 APPENDIX TO THE 2-D MODEL

The most general 2-dimensional model with positive coefficients is described and the stability

properties of its fixed points are analyzed.

dp

dt
= kpp− kpmmp− ksp

2 (2.18)

dm

dt
= kmpmp− kmm + kfm

2. (2.19)

The nullclines of the most general model are

0 = p[p− kp − kpmm

ks

] (2.20)

0 = m[p− km − kfm

kmp

] (2.21)

and the fixed points (FP) are:

FP 1: p = 0, m = 0 (exists always)

FP 2: p = (km − kfm
∗)/kpm, m∗ = (kmks − kmpkp)/(kfks − kpmkmp) (exists always; when

kf = 0 is modified to p = km/kmp,m = (kpkmp − kmks)/(kpmkpm); when ks = 0 is modified

to p = (km − kf kp

kpm
)/kmp,m = kp/kpm; and is p = km/kmp,m = kp/kpm when both kf and ks

are 0)

FP 3: p = 0, m = km/kf (does not exist if kf = 0)

FP 4: p = kp/ks, m = 0 (does not exist if ks = 0).

The Jacobian of (2.18,2.19) can be written out to determine the stability of the fixed

points listed above.




kp − kpmm− 2ksp −kpmp

kmpm kmpp + 2kfm− km


 (2.22)

Plugging p = 0,m = 0 in the Jacobian, the eigen-values of FP 1 can be obtained as kp,−km

which is always a saddle. FP 3 has eigen-values kp − ((kpmkm)/kf ), km. So FP 3 is a saddle

if kf < (kpmkm)/kp and unstable otherwise. FP 4 has eigen-values −2kp, ((kmpkp)/ks)− km.

So FP 4 is stable if kmp/km < ks/kp and a saddle otherwise.
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For FP 2, the case where ks = 0 is examined first for simplicity and then generalized to

when ks 6= 0. When ks = 0, in order that FP 3 lie in the positive quadrant, kf < kpmkm/kp.

FP 3 can be plugged into the Jacobian (2.22) and a characteristic equation for its eigenvalues

can be obtained as follows: λ2 − (kfkp/kpm)λ + (kpkm − (k2
pkf )/kpm) = 0. To ensure an

unstable spiral, the real part of λ < 0 or kf < 0; to ensure that FP 2 is a spiral, λ should

be a complex number. The condition kf < kpmkm/kp is a stronger one and we retain that

for the behavior of interest i.e., unstable spiral in the positive quadrant. When there is a

positive saturation term for pathogen growth, ks > 0, the additional conditions kf > ks is

specified for the negative spiral to exist.

In the case where the term θp2 is added to the p equation rather than subtracting the

logistic term ksp
2, FP 2 is an unstable spiral unless kf < θ i.e. kf is a smaller negative

number than θ.

(kf , ks (ks being positive or negative) determine the slopes of the nullclines that intersect

to form FP 2. The stability of FP 2 depends on the angle at which the nullclines intersect

and hence on kf and ks. FP 2 is an unstable spiral as long as kf > ks and stable when

kf < ks and exhibits centers when kf = ks).

2.6 APPENDIX TO THE 3-D MODEL

In this section, a detailed phase-plane analysis of the 3 dimensional model of acute inflam-

mation is carried out.

2.6.1 Eigenvalues of Fixed Points

The Jacobian matrix of the model (2.8) - (2.10) is




kp(1− 2p)− kpmm −kpmp 0

kmpm(1−m) (kmpp + l)(1− 2m)− 1 m(1−m)

0 klm

w
sech2(m−θ

w
) −kl




(2.23)
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2.6.1.1 FP 1 For FP1: p = 0,m = 0, l = klm

kl
(1 + tanh(θ/w))(≡ l0), the Jacobian is




kp 0 0

0 l0 − 1 0

0 klm

w
sech2 θ

w
−kl




. (2.24)

This matrix is lower-triangular and the eigenvalues are kp, l
0 − 1,−kl. The fixed point is

never stable as one of the eigenvalues kp is always positive.

2.6.1.2 FP 2 For FP2: p = 1,m = 0, l = l0, the Jacobian is




−kp −kpm 0

0 (kmp + l0)− 1 0

0 klm

w
sech2 θ

w
−kl




. (2.25)

The characteristic polynomial for the eigenvalue λ is

(−kp − λ)(−kl − λ)(kmp + l0 − 1− λ) = 0

with roots: λ = −kp, λ = −kl and λ = kmp + l0 − 1. Thus the condition for stability of

FP2 is kmp < 1− l0 or kmp < 1− klm

kl
(1− tanh(θ/w)). The other two eigenvalues are always

negative.
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2.6.1.3 FP 3 FP3 is the solution of the following equations,

p = 1− am (2.26)

m = 1− 1

kmpp + l
(2.27)

l = bf(m) (2.28)

This may be reduced to a single transcendental equation for m:

m = 1−
(

1

kmp

(
1

1− am

)
+ bf(m)

)
. (2.29)

All the parameter combinations affect the position and eigenvalues of FP 3. Parameter

choices for which p or m of FP 3 is negative are unphysical. FP 3 could also have real or

complex eigenvalues. FP 3 has complex eigenvalues and can support oscillatory behavior

when (2.16) intersects (2.17) such that m of FP 3 is less than m of FP 4 (Fig. 2.7). FP 3 can

undergo Hopf bifurcations in this part of the phase-space - the subcritical Hopf bifurcations

on varying the three parameter combinations are shown in Figs. 2.8, 2.9, and 2.10.

A supercritical Hopf bifurcation occurs when we change the coupling curve (2.11) so

that θ is small (low threshold for activation) and w is large (shallow coupling curve). In this

case, for increasing b while keeping a and kmp fixed at moderate values, a state of persistent

non-infectious inflammation will follow recurrent infection and a small zone of stable limit

cycles. (Varying the other parameters, for small θ and large w, does not result in Hopf

bifurcations). In the case of small w (sharp coupling curve) and small θ (low threshold of

activation), it is possible that more than one fixed point satisfies the conditions for FP 3.

In this case, curve (2.17) intersects line (2.16) twice before dipping below zero. On varying

the parameter combinations, recurrent infection is bistable with persistent inflammation

and healthy behavior is never supported. These cases are discussed in greater detail in

Appendix 2.6.2.1. In our numerical examples, we have considered moderate w and large θ,

which result in subcritical Hopf bifurcations.
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2.6.1.4 FP 4 and FP 5 These fixed points are the solutions of the following equations,

p = 0 (2.30)

m = 1− (
1

kmpkpmp + l
) (2.31)

l =
klm

kl

f(m) (2.32)

This may be reduced to one transcendental equation

bf(m) =
1

1−m
(2.33)

Equation (2.33) may have 0, 1 or 2 solutions depending on the parameters. Approximate

solutions can be found for (2.33) by substituting a piece-wise linear function such as f(m) =

0,m < θ−w; f(m) = 1 + (m−θ)
w

, θ−w < m < θ + w; f(m) = 2,m > θ + w. Using the above

approximate function and assuming that FP 4 and 5 occur in region θ−w < m < θ + w, we

arrive at the following expressions for FP 4 and 5.

p = 0 (2.34)

m =
q ∓

√
q2 − 4w

b

2
(2.35)

l = bf(m) (2.36)

where q ≡ 1− θ + w.

This gives b > 4w/q2 as a lower limit on b for the existence of FP 4 and 5. When there

are two solutions, they are formed through a saddle-node bifurcation as shown in Fig. 2.10.

FP 4 is a saddle point and FP 5 is a stable node.

The eigenvalues of FP 4 and 5 can be found by substituting the solutions m = m0 of

(2.33) into the Jacobian (2.23). One of the eigenvalues is λ1 = kp − kpmm0 and the other

two are functions of the parameters kl, klm, θ and w. We note that kmp does not appear in

the expressions for the position or eigenvalues of FP 4 and 5.
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2.6.2 Regimes for healthy response

Trajectories can be interpreted as healthy when FP 3 supports unstable oscillations as an

unstable spiral or as a stable spiral surrounded by an unstable limit cycle. The unstable limit

cycle is lost when it undergoes a non-generic homoclinic bifurcation when it collides with

FP 1. The regimes of the various parameters (for fixed θ and w) which maintain healthy

behavior are discussed below.

For healthy behavior, a should be large enough so that FP 3 is to the left of FP 5 in

Fig. 2.7 or (1/a) < (q −
√

q2 − 4w/b)/2. Increasing kmp even over a large range, does not

make FP 3 unphysical, nor does FP 3 lose its complex eigenvalues - thus even for very large

kmp, healthy oscillations are supported. The upper limit for a and the lower limit for kmp

to maintain healthy oscillations are difficult to find in closed form as these variations result

in the radius of the limit cycle increasing and oscillations being lost through a non-generic

homoclinic bifurcation.

The strength of the late immune response b should not be too high or too low. If b is

too high, then FP 3 has p < 0 and hence healthy behavior cannot be supported. In order

for the late immune response to not be too high, we require that p of condition (2.17) be

positive so that FP 3 is not unphysical. Applying this to (2.17) gives the condition

b <
1

1− tanh(θ/w)
. (2.37)

If b is too low, FP 4 and 5 are not yet formed and (2.17) is well above p = 0 so FP 3 remains

the global attractor and is a stable spiral. To avoid too low of a response, we would like FP

4 and 5 to exist so that unstable oscillations from FP 3 are eventually attracted to FP 5.

Thus the condition for existence for FP 4 and 5, as calculated above in 2.6.1.4, is

b >
4w

(1− θ + w)2
. (2.38)
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2.6.2.1 Effect of varying the coupling curve The shape of the coupling curve (2.11)

(i.e. parameters θ and w) can alter the results. We used θ = 1 and w = 0.5 in our analysis.

Parameter θ sets the threshold where l is activated by m and parameter w gives the steepness

of recruitment.

From numerical simulations when θ = 1, we find that when w is too small, FP 3 never

undergoes a Hopf bifurcation, and as klm/kl is increased, recurrent infection and persistent

inflammation are bistable (For example, w = 0.005 with ’healthy’ parameter set in Fig. 2.2).

As discussed in Appendix 2.6.1.3, small w could result in a shallow enough curve (2.17) that

intersects line (2.16) more than once. The two fixed points replacing FP 3 arise in a saddle-

node bifurcation. The stable node is bistable with FP 5 implying that recurrent infection

is bistable with persistent non-infectious inflammation. When w is too large (w = 1), FP 3

is a stable spiral that becomes unphysical as klm/kl increases. Thus the system supports

recurrent infection followed by persistent inflammation and healthy behavior does not exist.

In summary, for w too small or large the subcritical Hopf bifurcation of FP 3 (and hence

healthy behavior) does not occur for any of the parameter combinations.

On keeping w fixed at 0.5 and varying θ, when θ is small (θ = 0.1), FP 3 undergoes a su-

percritical Hopf bifurcation as b is varied but this cannot be generically interpreted as healthy

behavior as oscillations about a stable limit cycle may not always take p below threshold.

As θ is increased, subcritical Hopf bifurcations are possible. The range of parameter b, given

by (2.37) and (2.38), where oscillatory behavior is observed also increases as θ is increased.

Thus, large θ and moderate w would maximize the region for healthy response. Figures 2.13

and 2.14 show bifurcation plots when these parameters are varied together.

In the above analysis, we have looked at varying parameter combinations rather than

individual parameters for conciseness of the discussion. Varying the parameters such as

kp and kpm individually does not change the bifurcation diagrams qualitatively and our

interpretations of the effect of pathogen susceptibility remain unchanged. Similarly, varying

klm and kl individually does not change our conclusions about the strength of late response.

The phase-space analyzed is restricted between 0 < m < 1 since condition (2.17) prevents

m from increasing beyond one. Using any other function such as 1/(1 + m) to saturate m

can change the upper bound of m but the same behavior is retained.
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2.7 APPENDIX TO THE GLOBAL MODEL

2.7.1 Table of mediators modeled

(Courtesy of Dr. G. Clermont)

Model component Symbol Comment

Pathogen P Generic Gram negative pathogen

Lipopolysaccharide Pe Immunostimulant derived from Gram-negative bacteria

Resting macrophage Mr Circulating monocyte or local macrophages that act

as a cellular pool for activated macrophages.

The total count of resting macrophages can

increase in proportion to the total inflammatory activity

Activated macrophage Ma Activation triggered by LPS, TNF, IL-6, tissue trauma

and tissue dysfunction. Activation is down regulated by

anti-inflammatory cytokines

Activated neutrophil N Activation triggered by LPS, TNF, IL-6

and tissue dysfunction

Nitric Oxide NOD Combines activities of constitutive & inducible

Synthase (NOS) NOS. Normally participates in blood pressure homeostasis

Increased by LPS, TNF in N & Ma

Decreased by anti-inflammatory cytokines

Circulating NO2/NO3 NO Measures correlating with cumulative NOS activity

Tissue necrosis factor Cp Major early pro-inflammatory cytokine secreted mainly

by activated Ma, but also by N

IL-6 IL6 A pro-inflammatory cytokine with additional

anti-inflammatory effects
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Generic anti- Ca, Cr Ca represents the combined long-lived

inflammatory anti-inflammatory activity of IL-10, steroids, TGF-β

soluble receptors to pro-inflammatory cytokines & intra-

cellular products with anti-inflammatory activity

such as heat-shock molecules. As a group, their

anti-inflammatory activity is triggered by TNF,

IL-6, and nitric oxide

Activated Protein C PC An anti-thrombotic and anti-inflammatory agent

Tissue factor Tf Promoted by pro-inflammation, increases dysfunction

Thrombin TH Represents global pro-coagulant/anti-coagulant balance

also participate in blood pressure and dysfunction

Blood pressure B At homeostasis depends mainly on NO. The B eqn. has

a “restoring” term for autonomic autoregulation

Tissue damage D Caused by hypotension, the action of pro-inflamm.

cytokines, tissue microthrombosis. NO is tissue-protective

and there is a slow natural repair process

2.7.2 Estimated values of parameters

The 72 parameters that determine reaction rates are given below.

kpg 0.1 kps 0.001 P0 0.0001 kpm 0.1 kpNO 0.5 kp02 1.0 kpe 0.2 kmp 0.5

kmpe 0.02 kmd 0.04 kmm 0.1 km6 0.8 kmr 0.05 Sm 0.1 kma 0.2 knp 0.2

knpe 1.5 kncp 0.4 kn6 2.0 knd 0.2 kns 0.1 knNO 1.0 knO2 6.0 kn 0.04

Sn 0.001 kNOn 0.25 kNOm 0.2 kNO6 0.05 kNOD 0.1 kNO 0.1 kO2n 0.2 kO2m 0.1

kO26 0.1 kO2np 0.01 kO2 0.5 kcpn 0.5 kcpmr 0.0005 kcpm 0.5 kcpcp 0.71 kcp 2.5

k6m 0.4 k6th 0.4 k6cp 1.0 k6 0.1 kcan 0.1 kcam 0.04 kcacp 0.1 kca6 0.04

kcaNO 0.1 kcaO2 0.1 kcar 0.5 kca 0.02 ktfpe 0.01 ktfcp 0.1 ktf6 0.1 ktf 0.1

kthl 0.05 kthn 0.004 kth 0.1 kpcth 0.1 kpc 0.1 kB 0.2 kbno 0.02 kbcp 0.02

kbth 0.2 kdb 0.1 kdcp 0.01 kdO2 0.02 kdNO 0.01 kdeq 0.1 kdth 0.05 kd 0.03
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The following 20 parameters are used only in the case of specific interventions and are

set to 0 in the base-line case.

Spe rate kab tab resist

kape tape katnf tiatnf tfatnf

dur Spc tpcon tpcoff kBh

tBon tBoff kds tdon tdoff

The various thresholds of activation are as follows.

θ 1.0 θcpca 1.0 θca 10.0 θ2 10.0 θcp6 1.0 1 θcp 1.0 θ6 1.0

2.7.3 The global model

dP

τdt
= kpgP (1− kpsP )H(P − P0)− kpmMa + kpNONO + kpO2O2 + kabH(t/τ − tab) (2.39)

dPe

τdt
= (kpmMa + kpNONO + kpO2O2 + kabH(t/τ − tab))P − kpePe

dMr

τdt
= −(kmpP + kmpePe + kmdD)(Sm + f2(Cp, θcp) + km6f2(IL6, θ6))fCa(Ca, θca)Ma

+ kmmf(Cp + NO + Pe, θ)− kmrMr + Sm

dMa

τdt
= (kmpP + kmpePe + kmdD)(f2(Cp, θcp) + km6f2(IL6, θ6))fca(Ca, θca)Mr − kmaMa

dN

τdt
= (knpf(P, θ2) + knpef(Pe, θ2) + kncpf(Cp, θcp) + kn6f(IL6, θ6) + kndf(D, θ2))N(1− knsN)

− (knNONO + knO2O2)N − kn(fs(Cp, θcp) + fs(IL6, θ6))N + Sn

dNOd

τdt
= (kNONN + kNOMMa)fca(Ca, θca)f(Cp, θcp) + kNO6f(IL6, θ6))− kNOd

NOd

dNO

τdt
= kNO(NOd −NO)

dO2

τdt
= ((kO2nN + kO2mMa)(f(Cp, θcp) + k026f(IL6, θ6)) + kO2npNf(P, θ))fca(Ca, θca)− kO2O2

dCp

τdt
= (kcpnN + kcpmrMr + kcpmMa)fca(Ca, θcpca)(1 + kcpcpf(Cp, θcp))

− kcpCp − katnfS(tatnf , tatnf+dur, τ)Cp

dIL6

τdt
= k6mMa(1 + k6thf(Th, θ))fca(Ca, θ2)− k6IL6
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dCr

τdt
= (kcanN + kcamMa)(kcacpf(Cp, θcp) + kca6f(IL6, θ6)

+ kcaNOf(NO, θ) + kcaO2f(O2, θ))− kcrcr

dCa

τdt
= Cr − kcaCa

dTf

τdt
= (ktfpePe + ktfcpCp + ktf6IL6)fs(Pc, θ)− ktfTf

dTh

τdt
= (kthlTf + kthnTh)− kthTh

dPc

τdt
= kpcthTh − kpcPc + SpcS(tcon, tcoff , τ)

dB

τdt
= (kB(1−B)− (kbNP NOfs(O2, θ) + kbcpCp + kbthTh)B − (B − kB)S(tBon, tBoff , τ)

dD

τdt
= (kdb(1−B) + kdcpCp + kdO2O2 + kdNONOfs(NO, θ2) + kdeqO2 exp(−10(NO −O2)

2)

+ kdthTh − kdD + kdsS(tdon, tdoff , τ) (2.40)

where, the functions are as follows:

f(v, θ) = θv/(v + θ)

f2(v, θ) = θv2/(v2 + θ)

fs(v, θ) = θ/(v + θ)

fca(v, θ) = θ/(v2 + θ)

S(ti, tf , τ) = H(t/τ − ti)−H(t/τ − tf )
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3.0 APPLICATIONS OF A GLOBAL MODEL OF ACUTE

INFLAMMATION - (I) ANTHRAX AND (II) CLINICAL TRIALS

In Section 2.3, a model of acute inflammation that incorporated some of its key features was

described. Some preliminary results from it were also listed. In this chapter, some more

detailed results from model simulations are discussed.

In the first section, the results from a modified version of the global model are discussed.

The properties of the invading pathogen are changed to represent those of the anthrax

bacterium bacillus anthracis. The typical time course of inhalational anthrax infection is re-

produced. Some predictions about treatment strategies are suggested (Kumar et al., 2004a).

In the second section, an attempt is made to understand the effects of genetic diversity in

a population by varying select parameters in the model (2.40). Based on such models, clinical

trials to test the effectiveness of therapies could be more effectively designed (Clermont et al.,

2004).

3.1 ANTHRAX

The history of human infection with anthrax is centuries old. More recently much has been

learned about the molecular pathology of this bacterium. These developments have been

spurred on by the potential and, more recently, actual use of this bacterium as a weapon of

bioterror (Dixon et al., 2004). Anthrax modulates the acute inflammatory response of the

host, and systemic anthrax infection is thought to result in a condition similar to sepsis and

septic shock.

Three basic routes of infection are known for anthrax: cutaneous, gastrointestinal, and in-
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halational. Cutaneous anthrax is introduced into the skin through cuts or abrasions, presents

as relatively nondescript skin lesions that turn a black-purplish color due to local inflamma-

tion, and resolves either on its own or with a 60-day course of antibiotics. Gastrointestinal

anthrax is caused by ingestion of meat contaminated with anthrax spores, which enter the

body through some break in the mucosal lining, causing fever, abdominal pain, diarrhea,

constipation, or vomiting, and can result in death from perforation of the intestine or from

sepsis. The third, and most lethal, form of anthrax infection is inhalational. The initial

symptoms are “flu-like”, caused by an exuberant inflammatory response: fever, coughing,

myalgia, and malaise. The disease becomes much more severe after 1-3 days, manifesting

with dyspnea, strident cough, chills, and eventually death. Though natural inhalational an-

thrax infection is considered rare, it is the most threatening form of anthrax infection from

the point of view of bioterrorism (Shahfazand et al., 1999).

Current therapeutic strategies for inhalational anthrax are no less complex than those

for sepsis and are limited in their effectiveness (Hotchkiss & Karl, 2003).

3.1.1 Pathogenesis of anthrax infection

The pathogenesis of anthrax is more involved than that of a standard gram negative bacterial

infection as discussed in Chapter 1. However, death from inhalational anthrax is thought to

occur through the common process of systemic inflammation and bacteremia (Shahfazand

et al., 1999; Abramova et al., 1993).

Anthrax infection is initiated by inhalation of aerosolized anthrax spores, which are inter-

nalized by monocytes/macrophages/dendritic cells. The spores can incubate for a period of

over 40 days (modal incubation period 0-10 days) during which time monocytes and imma-

ture dendritic cells may circulate and therefore spread latent anthrax infection throughout

the body. Given the appropriate temperature and/or CO2 levels (Dai & Koehler, 1997),

the spores germinate. The major toxins of B. anthracis are protective antigen, lethal factor,

and edema factor. These three exotoxins are synthesized and each form heterodimers that

result in bioactive molecules: edema toxin is a heterodimer of protective antigen and edema

factor, and lethal toxin consists of protective antigen bound to lethal factor (Shahfazand
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et al., 1999; Dixon et al., 2004).

Edema factor is a calmodulin-dependent adenylate cyclase, which causes elevations of the

intra-cellular second messenger cyclic adenosine mono phosphate (cAMP) (O’Brien et al.,

1985). Edema toxin attracts neutrophils to the site of infection, but suppresses the capac-

ity of these cells to phagocytose bacteria and to produce super-oxide in response to this

phagocytosis.

Lethal factor, a zinc metalloprotease, inactivates members of the mitogen-activated pro-

tein kinase family of signaling molecules, known to be involved in the responses to stress

and inflammation (Bonventre, 2003). In vitro evidence shows that lethal toxin in small

doses stimulates macrophages to produce IL-1β and TNF-α and in large doses causes lysis

of macrophages (Friedlander, 1986). In the process of macrophage death, it has been hy-

pothesized that there is an apparent rapid and overwhelming release of pro-inflammatory

cytokines which is thought to result in the ’sudden death’ seen in inhalational anthrax. Thus

lethal toxin through a macrophage dependent process is thought to be the principal cause

of death in anthrax infection (Hanna et al., 1993).

Protective antigen plays the important role of allowing intra-cellular entry of the other

two factors by binding to them. Even though it has no direct toxic effects, strains of bacteria

deficient in protective antigen production are far less virulent than the wild type bacterium

(Pezard et al., 1995; Brossier et al., 2000).

However, there has been evidence recently that suggests that mortality due to anthrax

is due to non-inflammatory mechanisms and due to hypoxia-induced liver failure where an

Fas-L dependent process has been implicated (Prince, 2003). Mice injected with anthrax

lethal toxin intra peritoneally have revealed no evidence of TNF production or symptoms

of systemic inflammation. Tissue hypoxia, liver necrosis and pleural edema and an initial

spike of IL-1β concomitant with macrophage lysis were observed (Moayeri et al., 2003).

However, these observations were based on i.p. injections of anthrax toxins and pathogenesis

of such a gastro-intestinal disease might well be different from that of inhalational anthrax

infection(Abramova et al., 1993).

The virulence of anthrax is enhanced by yet another factor. The vegetative bacteria is

enclosed in a anti-phagocytic poly-D-glutamic acid capsule. This makes the bacteria more
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difficult to phagocytose (Hanna et al., 1993). In fact, non-encapsulated versions of the strain

are attenuated enough that they are routinely used as vaccines in animals (Schneerson et al.,

2003).

3.1.2 Simulations from a model of anthrax infection

The equations ( 2.40) model the acute inflammatory response to a general gram negative

bacterium. This is modified to simulate the typical course of an anthrax infection by in-

troducing equations describing the specific properties of anthrax bacterium. Based on the

hypotheses of the pathogenesis, a variable for the sterile spore is introduced which gets in-

gested by patrolling resting macrophages. The macrophage is activated and the bacteria

start growing and these processes are modeled using the following equations.

dSPORE

τdt
= −kspSPORE ∗Mr (3.1)

dP

τdt
= kpgP (Mr + Ma − kpsP )H(P − P0) (3.2)

− (kpmMa + kpNONO + KpO2O2 + kabH(t− tab))P + kspSPOREMr(3.3)

dMa

τdt
= kmpP + kmdD)(f2(Cp, θcp) + Km6f2(IL6, θ6))

fca(Ca, θca)Mr − kmaMa + Kmlt(LT Mr − L2
T Ma) + kmspSPOREMr

(3.4)

The growing bacteria releases the edema factor, lethal factor and protective antigen which

are modeled as follows.

dEF

τdt
= kefpP − kefEF

dLF

τdt
= klfpP − klfLF

dPAF

τdt
= kpafpP − kpafPAF
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Edema factor combines with protective antigen to form edema toxin and lethal factor simi-

larly forms lethal toxin as follows.

dET

τdt
= kepafEF PAF − ketET

dLT

τdt
= klpafLF PAF − kltLT

The effects of these toxins are modeled by modifying the previously existing equations.

Lethal toxin gets absorbed by resting macrophages and in large quantities causes its lysis

and massive release of TNF. This is reflected as follows in the equations for TNF.

dCp

τdt
= (kcpnN + kcpmrMr + kcpmMa)fca(Ca, θcpca)(1 + kcpcpf(Cp, θcp)) + kcpBOMB(kmltMaL

2
T )

− kcpCp − katnfS(tatnf , tatnf+dur, τ)Cp

Edema toxin increases concentration of neutrophils but decreases their capacity to produce

O2 and NO which are the chemicals that are actually involved in phagocytosis as shown

below.

dN

τdt
= (knetET + knpf(P, θ2) + kncpf(Cp, θcp) + kn6f(IL6, θ6) + kndf(D, θ2))N(1− knsN)

− (knnoNO + kNO2O2)n− kn(fS(Cp, θcp) + fs(IL6, θ6))N + Sn

dO2

τdt
= (

kO2nN

1 + ET

+ kO2mMa)(f(Cp, θcp) + k026f(il6, θ6))

+ kO2npnf(P, θ))fca(Ca, θca)− kO2O2)

The anthrax bacteria is more difficult to phagocytose than a gram-negative bacteria

because of its capsule. Thus, anthrax infection leads to shock and large bacterial counts sys-

temically. These changes to the model of gram-negative sepsis are summarized in Appendix

3.3. However, the model’s immune parameters that were fixed using the model (2.40) were

not modified.

Simulations from the modified model for anthrax infection are shown in Figure 3.1 and

can be compared with the sepsis simulations from a generic gram negative bacterium in

Figure 2.16. Anthrax-mediated tissue damage/dysfunction (representative of organ damage
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and, presumably, lethality) remains elevated for several hours. Bacteria remain uncleared

despite high levels of inflammation. (In order to offer an unbiased comparison between Gram-

negative infection and anthrax, the number as well as intrinsic growth and death parameters

of all bacteria are kept the same.) Thus severe septic shock is the outcome of infection with

anthrax bacterium at an inoculum that is non-lethal in the case of regular gram negative

bacteria.

3.1.3 Treatment and prevention strategies: Current status

Below some of the most frequently used treatment strategies against anthrax are examined.

Though several have been developed to deal with the epidemic in animals, vaccination data

from humans is understandably difficult to come by. Analyzing the results from mathematical

models like these provides clinicians with vital clues about administration of therapies.

One of the most common treatment methods for all infections, including anthrax, is

antibiotic administration. Antibiotics may work for cutaneous and gastro-intestinal anthrax.

However, it has been widely accepted that by the time the symptoms of inhalation anthrax

are patent, it is too late for anti-microbial therapy to be effectual (Shahfazand et al., 1999;

Dixon et al., 2004).

Various types of vaccines have been suggested to be used in animals and susceptible

human populations. “Live” vaccines are preparations made from naturally occurring atten-

uated bacteria or genetically modified versions which are less virulent. Injecting such vaccines

has been shown to effectively protect most animals from anthrax. However, inherent risks

of live bacterial injections are associated with these vaccines (Pezard et al., 1995).

Consequently, recent vaccines prepared for use in humans consist of “cell-free” filtrates

of the bacilli produced to increase the content of protective antigen (PA). The preparation

is then alum-precipitated to form the vaccine. There are few human studies of effectiveness

of such vaccines. In a single-blind placebo controlled study based on tannery workers, the

vaccine was found to be 92.5% effective in preventing anthrax. However, this included cases

of cutaneous anthrax and protection from the more serious inhalational anthrax could not

be assessed (Shahfazand et al., 1999).
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Thus effective and safe treatment and prevention strategies against inhalational anthrax

for susceptible human populations have not been determined and possible vaccine mecha-

nisms are investigated using the mathematical model.

3.1.4 Predictions from the model

Vaccination alone or in combination with antibiotic administration in the setting of an

anthrax infection has been simulated. An antibiotic was simulated as a chemical that would

kill live bacteria on contact. The vaccine was simulated by changing the parameters of

production of Protective Antigen (kpafp and kpaf ) to result in reduced amounts of available

Protective Antigen.

3.1.4.1 Vaccine against protective antigen alone may protect The model suggests

that effective vaccination against protective antigen results in tissue dysfunction that is

somewhat mitigated. This is not immediately interpretable as “dead” or “alive”. Though,

tissue dysfunction may be low, pathogen load remains high. This is because in the vaccinated

individual, protective antigen which is one of the key stimulators of the immune response, is

down-regulated. This could result in uncontrolled bacterial growth which could also lead to

death (Fig. 3.2).

The results that have been presented so far are of a single set of genetic parameters.

However, the outcome of an infection depends on several factors including the virulence of

invading pathogen, the size of the inoculum, and the patients coexisting conditions, age, and

gene polymorphisms (Hotchkiss & Karl, 2003). Varying the response of the macrophages

and neutrophils and early cytokines (kmp,knp,kcpn etc.), varies the effectiveness of the vaccine.

There are reasonable parameter values where the administration of protective antigen alone

is sufficient in restoring health (Fig. 3.4).

Based on model simulations, we can predict that the strategy of using anti-protective

vaccine alone can work for some individuals. When circulating neutrophils respond strongly

to the bacterial coat, it effectively counteracts the immune suppression caused by smaller

amounts of protective antigen. Increased production of NO aids in clearing bacteria and
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does not cause damage downstream. However, a strong macrophage response is confounding

as, based on our hypotheses, it could result in large amounts of circulating cytokines which

could lead to septic shock.

3.1.4.2 Combination therapy is the most ideal In Fig. 3.3, a simulation of the

predicted efficacy of pre-existing antibodies to protective antigen, in the presence or absence

of antibiotics is shown. This simulation is of one set of genetic parameters. In all cases, tissue

dysfunction is shown: rising tissue dysfunction is equated with death, while dysfunction that

returns to baseline is synonymous with survival. Anthrax infection by itself is simulated first

(Case 1; Fig. 3.3), and this would results in rising tissue dysfunction that is interpreted

as a negative outcome. The administration of antibiotics at t = 0 (Case 2; Fig. 3.3; an

unlikely scenario in an anthrax outbreak) resolves the infection and results in survival (falling

tissue dysfunction). The administration of antibiotics at t = 48 h (Case 3; Fig. 3.3; a

likely clinical scenario in an anthrax outbreak) results in death (rising tissue dysfunction)

essentially identical to that of Case 1, again in agreement with published results showing lack

of efficacy of late antibiotic administration in anthrax-infected mice (Kalns et al., 2002). The

presence of pre-existing circulating antibodies to protective antigen (Case 4; Fig. 3.3; the

anthrax vaccine case) results in reduced dysfunction as compared to Cases 1 or 3, but this

effect is not as dramatic as that observed in Case 2. This result is not immediately classifiable

as death as discussed above. However, if a patient has pre-existing circulating antibodies to

protective antigen and receives antibiotics at t = 48 h (Case 5; Fig. 3.3; a case representing

a vaccinated individual that is infected with anthrax), improvement is seen relative to Cases

1, 3, and 4 (but not Case 2). Thus, the model predicts that a combination of pre-existing

circulating antibodies to protective antigen and timely administration of antibiotics is the

vaccine is a realistic and effective strategy to deal with sepsis caused by anthrax. This

combination strategy is supported by experimental evidence in monkeys (Friedlander et al.,

1993).
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Figure 3.1: Modification of mathematical model of sepsis to account for anthrax-specific

effects: Comparison of the predicted effect on tissue damage/dysfunction of release of pro-

inflammatory cytokines in anthrax infection. We observe that despite an exuberant immune

response the bacterial load remains high. (The bacterial growth parameters are the same as

that of the gram-negative infection in Fig. 2.15)
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Figure 3.2: Vaccination against protective antigen leads to a decrease in the stimulation of

the immune response. The primary stimulants are now the bacterial coats and that is not

enough to clear bacteria. Therefore, though a down-regulated immune response leads to

lower damage, it also results in unbounded growth of bacteria

3.1.5 Discussion of the anthrax model

The approach to the problem of anthrax infection in the above argument, is to consider the

sequelae of inhalational anthrax exposure to be a specialized form of septic shock, and to

model mathematically the response to infection. The mathematical model of general acute

inflammatory response to gram negative bacteria (2.40) has been modified (3.3) to capture

features specific to anthrax infection, including the anti-phagocytic capsule, the synthesis

of edema toxin and lethal toxin from their components, chemoattraction of neutrophils and

subsequent suppression of their oxidative burst, and activation and subsequent destruction

of macrophages. Anthrax infection simulated with the above properties results in septic

shock with increased levels of cytokines, damage, decreased blood pressure and uncleared

bacterial load and is interpreted as death.

This model simulates the efficacy of antibiotic administration. As observed in animal

experiments, the model suggests that antibiotics administered early in the course of infection

are useful in clearing it and restoring homeostasis. Late administration of antibiotics is not
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Figure 3.3: Simulation of the efficacy of antibiotics and vaccination in inhalational anthrax:

Simulation of tissue damage/dysfunction under the various circumstances. Case 1, anthrax

infection, no antibiotics. Case 2, anthrax infection, antibiotic administration at t = 0. Case

3, anthrax infection, antibiotic administration at t = 48 h. Case 4, anthrax infection in the

setting of vaccination leading to pre-existing circulating antibodies to protective antigen.

Case 5, anthrax infection in the presence of vaccination and antibiotic administration at t

= 48 h
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Figure 3.4: Simulation of a set of parameters where vaccination alone is sufficient in curing

anthrax (kpafp is set = 0.001; its base value = 0.015) : Varying the parameters in the

model could resemble the inherent variations in a population. In the above simulation,

pathogen and vaccine properties are kept the same, but immune response parameters are

changed.knp = 4 ( 8 times base value), kNOn = 3 (6 times base value). Tissue dysfunction,

in the presence of anti-protective antigen vaccine, in the case of the base parameter values

is compared with the modified set.
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useful as it cannot alter the course of the infection (Kalns et al., 2002).

The effect of administering vaccines against protective antigen can also be tested in the

model. Experimental evidence about the efficacy of the vaccine in humans is sparse. We

suggest that vaccines on their own may be effective in clearing anthrax infection only in

some cases. Clearing protective antigen implies less of a stimulation to the immune system.

The model suggests that in a generic case, this could lead to a slow immune response which

grows with the bacteria and is ultimately inadequate in clearing it. However, individuals

with strong initial immune response to the bacterial coat and a muted late inflammatory

wave may be cured with vaccination alone.

The presence of protective antigen in the sequence of anthrax infection incites a strong

pro-inflammatory response in the body pre-disposing it to tissue damage and eventually sep-

tic shock. Therefore, clearing protective antigen using the vaccine has an anti-inflammatory

effect systemically. Given favorable circumstances, such as low virulence pathogen, well cal-

ibrated dosage of vaccine, administration of the vaccine alone could be enough to take the

system to health. However, in the scenario of depleted protective antigen, the main insti-

gator of the immune response is the growing pathogen alone and chances of an inadequate

immune response resulting in persistent infection and subsequent systemic inflammation are

high. Late antibiotics actually help in clearing pathogen and restoring the system to health.

Hence a combination therapy to down-regulate inflammation and to later clear bacteria is

likely to be successful for a large population.

3.2 CLINICAL TRIALS

In this section, the effectiveness of anti-TNF-α therapy in preventing sepsis in a population

is explored using the model (2.40). As discussed in Chapter 1, TNF-α is one of the key me-

diators in the acute inflammatory response and could play a major role in taking a system

to sepsis. Supported by data from animal experiments, it was believed that targeting to

down-regulate TNF-α in a septic patient was likely to alleviate the condition. Large ran-

domized clinical trials were conducted to test the hypothesis and the therapy failed to meet

the criteria for efficacy and was not approved (Reinhart & Karzai, 2001; Abraham et al.,
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1998).

In this analysis, we attempt to carry this out “in silico” to gain insight into the actual

effectiveness of the therapy. A protocol to best simulate the setting of a clinical trial is

designed. The model generates information on the possible biological markers, the genetic

profile of those benefitted and harmed by the therapy and the best timing and dosage for

its administration. The complete analysis is available in (Clermont et al., 2004).

The behavior of a system with varying parameters can be understood, in principle,

through a complete bifurcation analysis. But in the case of complex models, such a sys-

tematic analysis is likely to be very complicated. Instead, in the following study, only the

parameter regimes of interest are probed in parts (“randomization”) and some useful con-

clusions are drawn.

3.2.1 Design of the clinical trial

The clinical trial was designed to focus on the consequences of the administration of a

neutralizing antibody directed against the pro-inflammatory cytokine tumor necrosis factor

(anti-TNF) to sepsis patients (Reinhart & Karzai, 2001). This was simulated in the model

by adding a term to reduce the amount of TNF-α and the strength of this clearance is

controlled by the parameter katnf . This clearance is implemented by a Heaviside function

between times ti and tf (see model 2.40).

The effect of anti-TNF therapy is evaluated by administering to a genetically diverse

population, that is exposed to different insults. A population of 1000 virtual patients differing

in their initial bacterial load (p(0)), bacterial virulence (bacterial growth parameter kpg and

time of initiation of intervention (ti) are generated. Pathogen characteristics (growth rate

and initial load) were chosen to result in a survival of approximately 60%. The delay before

medical consultation, and thus time of initiation of treatment was variable and depended on

pathogen load and virulence (i.e. sicker cases would generally consult earlier).

To simulate genetic diversity of the study population, individual propensity of immune

cells to generate effector molecules (pro-inflammatory [TNF and IL-6], anti-inflammatory

[CA], and nitric oxide [NO] activity) was randomly varied between ±25% of baseline param-
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eters as dictated by literature data (Louis et al., 1998). Those variations were sufficient to

explain wide swings in individual serum levels of effectors.

To identify optimal dosing and duration of administration strategies, the virtual cohort

of 1000 patients were treated with nine different interventions of anti-TNF. The duration

of administration of anti-TNF (6h, 24h, or 48h) was varied (i.e. tf − ti). Comparatively,

the half-life of anti-TNF antibodies in naive patients is 40 to 50 hours (Fisher et al., 1993).

Three different “doses” of anti-TNF (2, 10, and 20 arbitrary units) were used (i.e. katnf ).

Depending on dose, TNF neutralization varied from 18.6% to 55.5% of total TNF produced

in controls. It is difficult to obtain a clear correlation with published reports as these do not

typically report areas under the curve, and do not always distinguish between biologically

active TNF, TNF bound by antibody and TNF bound by specific soluble receptors (Fisher

et al., 1993) .

3.2.2 Results and Discussion

The simulations clearly separate cases with favorable and unfavorable outcomes based on

global tissue dysfunction as shown in Figure 3.5. Overall mortality was 37.1% as determined

by tissue dysfunction at 168 hours divided by maximal tissue dysfunction at any point during

the first 168 hours. This variable is chosen as a proxy to unfavorable outcome because there

was a clear bimodal distribution of this variable after 72 to 96 hours. Therefore, the model

offered a natural separation of favorable and unfavorable outcomes.

There is a logical physiological correlate to this observation: after reaching a maximum,

tissue dysfunction tended to improve significantly and rapidly in some cases (survivors), or

remained elevated at a substantial fraction of maximum in all other cases (non-survivors).

Mortality was higher with high bacterial load, high virulence, and high TNF production

potential by effector cells.

Depending on dose and duration of treatment, survival ranged from 57.1% to 80.8%.

Higher doses of anti-TNF, although effective, also resulted in considerable harm to patients.

Trial optimization involves selecting a dosing strategy that optimizes outcome in a cohort

of patients, and then selecting patients that would benefit from treatment while avoiding
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treating patients for which treatment would have either no effect or cause harm.

A saturation of the effect of anti-TNF on peak and cumulative concentration of mediators

and tissue dysfunction was observed. Survival is highest when the lowest dose of anti-TNF

is administered for 48 hours, and worst when the highest dose is administered for 48 hours.

A surprising, yet key, finding is that anti-TNF treatment helps a significant percentage of

individuals, but also harms many. Thus, the beneficial effect of this therapy is reduced

considerably if administered in a randomized fashion.

It is also possible to identify subgroups with high propensity for being helped or harmed

by the proposed intervention, and identify early serum markers for each of those subgroups

(see (Clermont et al., 2004)).

The relationship between gene polymorphism and outcome of patients with sepsis has

been difficult to document (Louis et al., 1998). Although models such as the one presented

provide clear predictions, these are difficult to confirm in the absence of consistent clinical

and epidemiological studies.
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Figure 3.5: The clear separation of positive and negative outcomes in terms of tissue dys-

function in a randomized clinical trial. The axis marked from 0 to 168 is the time from onset

of infection. The axis marked from 0 to 1 shows the ratio of dysfunction at that time to

maximal dysfunction. (Courtesy of Dr.G.Clermont)

76



3.3 APPENDIX: MODIFICATION OF THE DETAILED MODEL TO

SIMULATE ANTHRAX INFECTION

The general model (2.40) is modified to simulate anthrax infection, by removing the equation

for endotoxin pe and adding the following equations for the anthrax toxins. The mechanism

for the spore getting converted to active bacterium is also modeled. The susceptibility

parameters of the pathogen are decreased in comparison with (2.40) to model the anti-

phagocytic capsule. The effects of the toxins are captured by changing the equations for

neutrophils and TNF-α (represented by Cp in the model). Only the equations that have

been modified in some manner from (2.40) are presented here.

dSPORE

τdt
= −kspSPORE ∗Mr

dP

τdt
= kpgP (Mr + Ma − kpsP )H(P − P0)

− (kpmMa + kpNONO + KpO2O2 + kabH(t− tab))P + kspSPOREMr

dEF

τdt
= kefpP − kefEF

dLF

τdt
= klfpP − klfLF

dPAF

τdt
= kpafpP − kpafPAF

dET

τdt
= kepafEF PAF − ketET

dLT

τdt
= klpafLF PAF − kltLT

dMa

τdt
= kmpP + kmdD)(f2(Cp, θcp) + Km6f2(IL6, θ6))

fca(Ca, θca)Mr − kmaMa + Kmlt(LT Mr − L2
T Ma) + kmspSPOREMr

dN

τdt
= (knetET + knpf(P, θ2) + kncpf(Cp, θcp) + kn6f(IL6, θ6) + kndf(D, θ2))N(1− knsN)

− (knnoNO + kNO2O2)n− kn(fS(Cp, θcp) + fs(IL6, θ6))N + Sn

dO2

τdt
= (

kO2nN

1 + ET

+ kO2mMa)(f(Cp, θcp) + k026f(il6, θ6))

+ kO2npnf(P, θ))fca(Ca, θca)− kO2O2)

dCp

τdt
= (kcpnN + kcpmrMr + kcpmMa)fca(Ca, θcpca)(1 + kcpcpf(Cp, θcp)) + kcpBOMB(kmltMaL

2
T )

− kcpCp − katnfS(tatnf , tatnf+dur, τ)Cp
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3.3.1 Parameters varied

The rate constants that are varied from the model (2.40) are as follows.

kpno 0.2 kpO2 0.2 kpm 0.2 kepaf 1.0

kefp 0.15 kef 0.5 klfp 0.15 ket 0.5

klf 0.5 kpafp 0.015 kpaf 0.5 klpaf 1.0

klt0.5 kmlt 0.05 knet 0.5 kcpbomb=1.0
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4.0 THE THRESHOLD OF EXTINCTION OF DECAYING

POPULATIONS IN A DETERMINISTIC MODEL

Ordinary Differential Equations (ODEs) are often used to model interacting populations.

In such models, deterministic behavior of continuous populations and spatial homogeneity

are assumed. Although powerful results may be obtained from the analysis of ODE models,

models that explicitly account for stochasticity and spatial distribution could result in quali-

tatively different and often more fundamental understanding of the systems studied (Durrett

& Levin, 1994; Nasell, 1995; Gandhi et al., 1998).

In particular, the extinction of a population cannot be handled using differential equa-

tions. In the ODE models of acute inflammation discussed in Chapter 2 immune-cells respond

to an invading pathogen and attempt to eliminate it in a manner similar to a predator-prey

model (Kumar et al., 2004b). While the pathogen population can diminish exponentially

fast when acted on by the immune-cells, it can never become completely eliminated in a

finite time. Thus a consequence is that if the immune-cells return to rest after an inflam-

matory episode, then the pathogen will re-grow from an infinitesimal quantity. This is an

artifact that arises because the approximation of pathogen population as a continuous vari-

able breaks down when the population becomes small and the discreteness of the pathogen

number becomes important. In the continuous, deterministic model, populations never go

to 0 and thus unstable cycles are seen in the phase-plane. However, in a discrete, stochastic

model, the cycles are not expected to be sustained, as fluctuations will take the populations

to zero after which there is no possibility for further dynamics. Thus, in this regime, a

stochastic or agent based model where the pathogen can be completely eliminated is more

appropriate. This problem is encountered in several ecological and other population models

and is usually handled by introducing an arbitrary low threshold for the population in the
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ODE, below which it is considered to be extinct (Williams & Martinez, 2004; Abramson

& Zanette, 1998; Yodzis & Innes, 1992). Several studies have attempted to estimate times

to extinction in population models and a detailed survey of the various approaches can be

found in Nasell (2001). The earliest and most fundamental work (Bartlett, 1966) examines

the probability distribution of a population given a birth and death rate, and estimates the

chance to extinction based on parameters in such a probabilistic model. Another study (So-

lari & Natiello, 2003) approximates the probability distribution of a population model with

a product of probabilities of independent Poisson processes and then predicts the times to

extinction and other quantities of interest. A fully probabilistic 2-dimensional model of an

epidemic of infection is simplified using conditional probability distributions and the time

to extinction can be predicted (Nasell, 1999; Nasell, 2001). Nasell (1999), also compares the

time to extinction with previous predictions.

In this chapter, the average time to extinction for a decaying population is estimated

from the probabilistic analysis of a simple 1-dimensional decay (with varying decay rates).

Using this time, an effective threshold is obtained below which the pathogen is assumed to be

extinct. The goal is to retain the ODE description to the limit of its validity and terminate it

as the description breaks down at very small numbers. The effectiveness of this threshold in

deterministic models of interacting populations is also examined. A Fokker-Planck estimate

for a threshold is also derived and found to be unsatisfactory for this problem, as suggested

by other studies (Doering & Sander, 2004). Spatial homogeneity is assumed in this analysis

and further corrections may be necessary to understand extinction in interacting populations.

4.1 THRESHOLD FOR THE GENERAL DECAY PROCESS FROM THE

MASTER EQUATION AND GILLESPIE SIMULATION

Consider a general decay process represented by :

x + 1
k(t)→ x, (4.1)

where

k(t) ≥ 0 ∀ t. (4.2)
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Modeling this process by the differential equation dx/dt = −k(t)x, yields the solution

x(t) = x0 exp(−(g(t)− g(0))) (4.3)

where g(t) =
∫ t
0 k(t′) dt′. In such a model x is thought to represent the average of a large

number of ensembles and x is approximated by a continuous variable. This solution suggests

that the average of an ensemble goes to zero when t →∞.

However, a more accurate representation is to consider the population x to be discrete

and the decay to be a stochastic process. Then, in principle, the statistics of the decay

process can be obtained from solving its Master equation.

We propose that the average time at which a population decays can be found from such

a discrete, stochastic model and a threshold can be computed from it that can be used as

cut-off in the continuous, deterministic model.

The Master equation for the probability distribution of x in time t for the general decay

process is as follows

dP (x, t)

dt
= k(t)[(x + 1)P (x + 1, t)− xP (x, t)]. (4.4)

The above equation is discrete in x and continuous in t. The solution to this equation can be

found exactly using an iterative process and induction (Appendix 4.4.1) with the condition

that P (x, 0) = δ(x, x0) where x0 is the initial population. The solution is given by

P (x, t) =




x0

x


 exp(−(g(t)− g0))

x(1− exp(−(g(t)− g0))
(x0−x)). (4.5)

Now the average time this system takes to decay can be calculated as follows. P (0, t) is the

probability of the population being 0 at time t and from Equation 4.5, is given by

P (0, t) = (1− exp(−(g(t)− g0)))
x0 .

Then, we define the probability density Π(0, t) that describes the fraction of particles that

go from state ‘1’ to state ‘0’ between time t and t + dt as

dP (0, t)

dt
= Π(0, t) = k(t)x0 exp(−(g(t)− g0))(1− exp(−(g(t)− g0)))

x0−1

81



with the following properties:
∫ t2
t1

Π(t) dt is the fraction of particles that decay in the time

interval [t1, t2];
∫∞
0 Π(t) dt ≡ 1 because all the particles are expected to have decayed in

infinite time. In order for this normalization to be valid, we insist that

g(∞) = ∞. (4.6)

So the average time 〈T 〉 it takes for the particles to decay is given by the integral,

∫ ∞

0
tΠ(t) dt = 〈T 〉. (4.7)

This can be solved by expanding (1−exp(−(g(t)−g0)))
x0 in the integral as a binomial series

(Appendix 4.4.1) and 〈T 〉 is given as

〈T 〉 = x0

x0−1∑

j=0

(−1)j

j + 1




x0 − 1

j




∫ ∞

0
exp(−(j + 1)(g(t)− g0))dt (4.8)

Similarly an expression can be found for 〈T 2〉 from which the variance can be computed.

〈T 2〉 = 2x0

x0−1∑

j=0

(−1)j

j + 1




x0 − 1

j




∫ ∞

0
t exp(−(j + 1)(g(t)− g0))dt (4.9)

(The integral for the average time (4.7) may also be solved in an asymptotic expansion

in order to more easily determine the behavior as x → ∞ (Kumar & Chow, 2004). For

k(t) = 1, 〈T (x0 = ∞)〉 → Euler’s constant (0.5772..)) Thus the average time of extinction

and the standard deviation can be analytically calculated from the Master equation for a

general decay process with a time-dependent rate of decay. The threshold for extinction is

then the value of x in Eq. (4.3) at time t = 〈T 〉.
For instance, for the simple exponential decay process, the rate k(t) = 1, and its integral

g(t) = t satisfy conditions (4.2, 4.6). Thus the average time of extinction for this process

can be calculated from Eq. (4.8). This average time 〈T 〉 can now be used to calculate the

threshold of extinction, Θ in the solution for the continuous model, Θ(x0) = x0 exp(〈T 〉). In

Figure 4.1, thresholds computed for various rates of decay and with various initial conditions

are shown. It is interesting to note that the threshold value for different k(t) are all less than

one.
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Such stochastic processes can also be numerically simulated using the Gillespie algorithm

(Gillespie, 1977). Starting from t = 0 and x = x0, in the case of the general decay process,

the algorithm is used to generate the time at which the next particle decays based on the rate

at which the reaction can occur. A uniform random number between 0 and 1, r is generated

and the time of the next decay tn can be determined using, r = exp (−x
∫ tn
to

k(t)dt) where

to is the time at which the previous decay had occurred. The averaged results from several

Gillespie simulations are also shown in Fig. 4.1 and coincide with the predictions from the

Master equation.

We observe that in units of population [X], the threshold is a fraction (around 0.5) of a

particle and the stronger the killing rate, the higher the threshold. For instance, in Figure

4.1, the threshold for the strong exponential rate of killing is much higher than that for the

weak killing rate 1/(t + ε). Also, the threshold of extinction for oscillating rates is closer to

k(t) = 1, the higher the frequency of the oscillation.

4.2 THRESHOLD FOR THE SIMPLE DECAY PROCESS FROM THE

FOKKER-PLANCK AND LANGEVIN APPROXIMATIONS

4.2.1 Fokker-Planck Equation

In the case of the decay process, the Master equation is completely solvable. However,

in general, it is intractable and approximations are necessary to solve it. Fokker-Planck

equations are obtained by approximating the “jumps” in a Master equation to be infinitely

small (van Kampen, 2003). Results from a Fokker-Planck (F-P) approximation of the Master

equation are often used to obtain the statistics of a stochastic process (Kepler & Elston,

2001).

In the case of the simple decay process, the F-P equation can be derived from the Master

equation by a Taylor expansion up to the second order that considers x to be a continuous

variable. Consider the simple exponential decay process where the decay rate k(t) = 1.

Then, the F-P equation for the probability density of x varying in t is
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Figure 4.1: Threshold of extinction for various rates of decay - as predicted by the Master

equation and Gillespie simulations. The rates k(t) are marked on the right. The Gillespie

simulations are averages of 10000 runs. (Gillespie results are shown as dotted lines. For the

sinusoidal rates k(t) = 1− sin(t) and k(t) = 1− sin(10t), the average of 1000 Gillespie runs

is shown.)
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∂P (x, t|x0, 0)

∂t
=

∂

∂x
[xP (x, t|x0, 0)] +

1

2

∂2

∂x2
[xP (x, t|x0, 0)]. (4.10)

The goal again is to obtain the average time of extinction for a species obeying the

above equation and compare it to that obtained from the Master equation. In particular,

the problem can be thought of as a first passage time problem. First passage describes how

long a particle whose position x is described by the F-P remains in a region L. In this

problem, the question posed is, what is the time T it takes for a given experiment to decay

to 0 particles and what is the average time 〈T 〉 of several such experiments? Such a mean

first passage time describes the average time to extinction.

The problem can be defined thus. Consider a population obeying the F-P equation

(4.10), which has an absorbing boundary at x = 0. At x = b, b À 0, consider another

absorbing boundary. In this problem,if the initial condition is P (x, 0) = δ(x − x0) where

x0 < b, there is no probability for the population to increase and increase past x0 to x0 = b.

The only way to leave the region is to exit at x = 0. (In Appendix 4.4.2, the same results

are derived even if x0 = b is assumed to be a reflecting boundary as long as b À 0.) Under

these conditions, the probability at time t that the population is still in the interval (0, b) is
∫ b
0 dxP (x, t|x0, 0) ≡ G(x0, t)

G(x0, t) can also be thought of as the probability that the population leaves (0, b) at a

time 〈T 〉 ≥ t i.e., G(x0, t) =
∫ b
0 dx′P (x, t|x0, 0) = Prob(〈T 〉 ≥ t). Then the mean first passage

time out of the region (0, b) is given by 〈T (x0)〉 = − ∫∞
0 t∂tG(x0, t)dt =

∫∞
0 G(x0, t)dt. It

is possible to obtain an equation obeyed by G(x0, t) and hence 〈T (x0)〉 from the backward

F-P equation (with boundary condition P (x, 0|x0, 0) = δ(x− x0)) rather than from the Eq.

(4.10) (Gardiner, 1985). Such an equation for 〈T (x0)〉 can be solved with the appropriate

boundary conditions (in this case 〈T (0)〉 = 〈T (b)〉 = 0 (Appendix 4.4.2)) and an expression

can be obtained for the mean time for a population decaying at the rate k(t) = 1 to reach

x = 0. This is given by

〈T (x0)〉 = −2 exp(2x0)I(x0, b)− 2I(0, b), (4.11)

where I(p, q) is defined as
∫ q
p exp(−2x′) ln(x′)dx′.
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The above expression for 〈T (x0)〉, Eq. (4.11) can be computed numerically for vari-

ous initial conditions x0 (by assuming b to be a very large number). Results from such a

calculation are shown in Figure 4.2 and are compared with the thresholds obtained from

considering the full stochastic process using the Master equation. The threshold from the

F-P approximation is much higher than that of the Master equation. This indicates that the

F-P description is not a good approximation to determine extinction times.

4.2.2 Langevin Equation

Another simplification in capturing stochastic behavior is the Langevin approach. Here,

the macroscopic behavior of the process is assumed to be known and stochastic effects are

introduced by adding a ’noise source’ to the equation of motion (under the restriction that

the stationary solution reproduces the correct mean square fluctuations known from the

dynamics of the problem) (van Kampen, 2003). Though, in general, the Langevin equation

has to be derived systematically from the F-P equation, for the simple decay process the

equation is given by,

dx/dt = −x +
√

xL(t), (4.12)

where the properties of L(t) are: its mean
∫ L(t′)dt′ = 0 and its auto-correlation function

∫∞
−∞ L(t)L(t + τ)dτ = δ(τ). It can be proved that the statistics represented by Eq. (4.12)

are the same as those of Eq. (4.10) when the Itô rule is used to interpret Eq. (4.12) (Page.

230-236 (van Kampen, 2003)).

The stochastic differential equation (4.12), can be evolved numerically where L(t) is a

implemented by generating a random number with a Gaussian distribution (mean=0, vari-

ance=1). The average time to extinction can thus be obtained from the Langevin equation

and can be used to estimate a threshold as well. These results are also plotted in Figure

4.2. Thus converting the deterministic ODEs to Langevin equations by adding noise terms

is also not an accurate method to model stochastic processes.

Though the Langevin and F-P approximations are routinely used to obtain the statistics

of a stochastic process, they should be used cautiously, as these examples demonstrate.
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Figure 4.2: Time of extinction for decay process with rate k(t)=1 using the various methods.

(Results from Gillespie and Langevin methods are shown as dotted lines.)
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4.3 THRESHOLD OF EXTINCTION FOR LARGER MODELS

The aim of the above analysis was to predict an estimate for the threshold of extinction

for deterministic population models, below which the population may be considered to be

extinct. Can the threshold predicted by the general decay process be used as a “cut-off” for

a general population model?

We tested our predictions by implementing the numerical Gillespie simulation of the

modification of the 2 dimensional model (represented by the ODE system (2.1,2.3) in Chapter

2) that captures pathogen- immune-cell dynamics. The reactions which constitute the model

are as follows:

p
k1→ 2p (4.13)

p + m
k2→ 2m (4.14)

m
k3→ ∅ (4.15)

m + m
k4→ 3m (4.16)

This is a stochastic simulation that models the fate of individuals in a population - hence

p and m are measured as numbers of cells with dimensions, say [X] (pathogens or immune-

cells). The first reaction (4.13) describes a pathogen dividing into 2 at the rate k1. k1 has

the units of inverse time 1/[T ]. Reaction (4.14) describes the interaction between a pathogen

and an immune-cell. At the rate k2, when a p meets an m, the p dies and a new m is created.

The rate k2 has dimensions 1/([T ][X]). Reaction (4.15) describes an immune-cell decaying

at the rate k3 where the dimensions of k3 are also 1/[T ]. Reaction (4.16) represents the

positive feed-back of immune-cells at the rate k4 where k4 has units 1/([T ][X]).

In implementing a stochastic simulation of the above interactions, detailed balance is im-

plicitly assumed. (Technically detailed balance is defined as the condition that in stationary

state the probability of going from state n to n′ is the same as the probability of the opposite

transition from n′ to n i.e. p(n)W (n, n′) = p(n′)W (n′, n), where p(x) is the probability to

be in state x and W (x, x′) is the transition probability from x to x′ (van Kampen, 2003).

This is not necessarily the case in an ODE system).
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Another consideration while implementing a stochastic simulation is that outcomes that

are not expected deterministically can also occur. For instance, in the above simulation, the

pathogen is expected to grow, followed by growth in immune-cells. But chance fluctuations

could result in the initial population of immune-cells to decay and the pathogen to grow at an

exponential rate. Thus, although a deterministic model of the system predicts oscillations,

in stochastic simulations, the pathogen and immune-cells go through a growth-death cycle

at the end of which there is a high probability that the pathogen becomes extinct and the

immune-cells also decay away.

A Gillespie algorithm is set up to simulate (4.13-4.16) (Gillespie, 1977). A random

number is generated to determine the time of the next interaction and another random

number is generated to determine which of the interactions occurs (based on the rate of each

reaction). For the 2 random numbers r1 and r2, the time at which the next reaction occurs

is,

tn = to + (1/k0)ln(1/r1)

where to is the time at which the previous interaction has occurred and k0 is the sum of the

(time-independent) rates of the 4 reactions, k0 =
∑4

µ=1 kµ. The interaction to be simulated

is the µth interaction for which
∑µ−1

j=1 kj < r2k0 ≤ ∑µ
j=1 kj.

The simulations are carried out for various initial conditions and parameters (k1,k2,k3,k4)

and the times to extinction are recorded. Now, the question arises, how is this time translated

into a threshold for an ODE model? In the case of exponential decay, the predicted time of

extinction was simply plugged into the solution for the ODE and a threshold was obtained.

This should be done more carefully in the case of a more complicated model. The reactions

(4.13-4.16) can be modeled using the following equations.

dp

dt
= k1p− k2mp (4.17)

dm

dt
= k2mp− k3m + k4m

2, (4.18)

In general an ODE models the concentrations of the populations in question and it can

be scaled to different units. Thus, p and m have dimensions of particle/volume or [X]/[V ].
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The parameters k1 and k3 still have dimensions 1/[T ] and can be identified exactly with the

corresponding parameters in the discrete simulation (as long as the time scales are the same).

Parameters k2 and k4 however reflect the scale as they have dimensions [V ]/([T ][X]) and

have different numerical values depending on the scale at which the ODE model is chosen.

(Note that k2 is the rate at which the pathogens are killed and also the rate at which the

immune-cells are created as a consequence of detailed balance.)

So to connect the stochastic and the deterministic model, a volume scale [V ] is chosen,

say V = 1ml. The rate constants and initial conditions are scaled accordingly and supplied

to the Gillespie simulation, say p(0) = p0,m(0) = m0. Now, if a different scale were to be

chosen for the same ODE model, say V = 2ml, representing the same underlying biology

(same growth rates, initial concentrations, interactions etc.), then the scaled initial conditions

and parameters are supplied to the Gillespie algorithm (in this case, at double the volume

and the same concentration, the initial conditions are p(0) = 2p0,m(0) = 2m0 and k2 and

k4 are half that of the previous experiment.) As can be expected, stochastic simulations

performed in larger volumes more closely mimic continuous models. (The above argument

is not restricted even if the ODE does not model concentration but scales the population in

any other general dimension. [V ] could be an area, length or even non-dimensional).

Keeping the above considerations in mind, a threshold is calculated by plugging the

extinction times predicted by the Gillespie algorithm into the ODE. These thresholds are

then compared to those predicted from the general one dimensional decay processes (Figure

4.3). We observe that they tend to lie within the range of error of thresholds predicted by

the Master equation for a general decay process with decay rate k(t) = exp(t) in Section 4.1.

(The error from the Master equation is in the time of extinction and is expanded to first

order to find the error in the threshold.)

It is not entirely surprising that the thresholds of extinction for (4.17,4.18) tend to the

extinction threshold for k(t) = exp(t), as the rate at which p is killed is k2mp and m is growing

at an exponential rate when p is present. Thus a prediction from the Master equation of the

threshold of extinction of a general decay process is a good estimate to determine when the

population in a larger dimensional continuous model should be considered extinct.

The distribution of the thresholds of extinction, F(Θ) from the Master equation for a
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given rate of decay (k(t)) can be specified by the mean and standard deviation as in Fig. 4.3.

An algorithm can be devised, where the threshold is a random number θ, generated with a

(Gaussian) distribution F(Θ), for every time-step of an ODE evolution. If the population

value of the ODE is below θ, the evolution of the ODE is stopped and if not, the next

time step is computed. Such an algorithm could in principle capture extinction and even

oscillations that may occur stochastically.

In many respects, the conclusions of this analysis are fairly intuitive. Deterministic

models capture average behaviors of the actual stochastic process. We predict the time at

which more than half of the possible experiments would have become extinct from a stochastic

model and use that to cut off the deterministic simulation. Instead of choosing arbitrarily

low thresholds to cut-off simulations as is often done, if the scales in the ODE are understood,

simulations may be safely stopped when the population numbers are approximately 1/2 in

the scales chosen.
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Figure 4.3: Threshold from Gillespie simulation of 2-d models with varying parameters

compared with predicted values (for k(t) = 1 and k(t) = exp(t)) from the Master equation.

The inverted triangles represent the parameter set k1 = 0.5, k2 = 1.0, k3 = 0.1 and k4 = 0.01.

The circles represent the parameter set where there is no feed-back to m i.e. k4 = 0. The

other parameters are k1 = 1.0, k3 = 0.1 and k2 is 1.0 (filled) and 2.0 (unfilled). The scale

for all simulations: ODE is 1/500 times that of the Gillespie.
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4.4 APPENDIX

4.4.1 〈T 〉 from the Master Equation

The Master equation for a general decay process is given by Eq. 4.4,

dP (x, t)

dt
= k(t)[(x + 1)P (x + 1, t)− xP (x, t)]. (4.19)

This equation needs to be solved with the following boundary condition, P (x, 0) = δx,x0

and P (x0 + 1, t) = 0. From Eq. (4.19), P (x0, t) can be obtained as follows,

dP (x0, t)

dt
= −k(t)x0P (x0, t) ⇒ P (x0, t) = exp(−x0(g(t)− g0)),

where g(t) =
∫

k(t′)dt′. Now, from (4.19), the equation obeyed by P (x0 − 1, t) is as follows:

dP (x0 − 1, t)

dt
= k(t)[x0P (x0, t)− (x0 − 1)P (x0 − 1)

with solution

P (x0 − 1, t) = x0 exp((x0 − 1)(g(t)− g0))[1− exp(g(t)− g0)].

We can prove by induction that the solution of P (n, t) is

P (n, t) =




x0

n


 [exp(−(g(t)− g0))]

n[1− exp(−(g(t)− g0)]
x0−n, (4.20)

and show that the solution for P (n−1, t) has the same form as P (n, t). The equation obeyed

by P (n− 1, t) if Eq. (4.20) is true, is

dP (n− 1, t)

dt
=

k(t)[(n




x0

n


 [exp(−(g(t)− g0))]

n[1− exp(−(g(t)− g0))]
x0−n)− ((n− 1)P (n− 1, t))].
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Moving the P (n − 1, t) term to the left hand side, and multiplying both sides by the

integrating factor exp(g(t)(n− 1)) and combining, we get

d(P (n− 1, t)(exp(g(t)(n− 1))))

dt
=

k(t)(n




x0

n


 [exp(−(g(t)− g0))]

n[1− exp(−(g(t)− g0))]
x0−n) exp(g(t)(n− 1)).

Now, integrate both sides with respect to t. The right hand side can be integrated by

parts by assuming, say y = 1− exp(g(t)− g0), so the equation reduces to

P (n− 1, t) exp((g(t)(n− 1)) = n




x0

n


 exp((n− 1)g0)

∫
yx0−ndy.

Integrating and re-arranging, we get,

P (n− 1, t) =

n

x0 − n + 1




x0

n


 exp((n− 1)g0) exp(−(g(t)(n− 1)))[1− exp(−(g(t)− g0))]

x0−n+1

+ C exp(−g(t)(n− 1)),

where C is the constant from integration. Now, applying the boundary condition that

P (n− 1, 0) = 0 (because at t = 0, P (x, 0) = δ(x, x0)) ⇒ C = 0.

Simplifying, we get,

P (n− 1, t) =




x0

(n− 1)


 [exp(−(g(t)− g0))]

n−1[1− exp(−(g(t)− g0))]
x0−n−1

which is the same as the form for the solution of P (n, t), Eq. (4.20).

Now, that the solution for the Master equation is known, we proceed to find the average

time of extinction. The probability distribution that the population goes to 0 in the time

interval between t and t + dt, Π(t) is given by

Π(t) =
dP (0, t)

dt
=

x0k(t)[1− exp(−(g(t)− g0))]
x0−1 exp(−(g(t)− g0)).
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The average time to extinction is then given by
∫∞
0 t′Π(t′)dt′ under the condition that

∫∞
0 Π(t′)dt′ ≡ 1.

The normalization condition for Π(t) can be proved thus.

∫ ∞

0
Π(t′)dt′ =

∫ ∞

0
k(t′)[1− exp(−(g(t′)− g0))]

x0−1
exp(−(g(t′)− g0)).

Set y = 1− exp(−g(t′)− g0), then,

∫ ∞

0
Π(t′)dt′ = x0

∫ 1

0
yx0−1dy

= 1.

The limits can be set as above and the function normalized only under the following condi-

tion: g(∞) = ∞ as specified by Eq. (4.6).

Next, we derive an expression for average T , 〈T 〉 where

〈T 〉 =
∫ ∞

0
t′Π(t′)dt′.

Substituting the expression for Π(t), we get,

〈T 〉 = x0

∫ ∞

0
t′x0k(t′)[1− exp(−(g(t′)− g0))]

x0−1
exp(−(g(t′)− g0)).

Expanding [1− exp(−(g(t′)− g0))]
x0−1 as a binomial series and taking the summation sign

out of the integration sign,

〈T 〉 = x0

x0−1∑

j=0

−1j




x0 − 1

j




∫ ∞

0
t′k(t′) exp(−g(t′)− g0)dt′

Integrating by parts by setting t′ = u and k(t′) exp(−(j + 1)(g(t′) − g0))dt′ = dv, and

substituting the condition (4.6),

〈T 〉 = x0

x0−1∑

j=0

−1j

j + 1




x0 − 1

j




∫ ∞

0
exp(−(j + 1)(g(t′)− g0))dt′.

Similarly, integrating by parts twice, we get,

〈T 2〉 = 2x0

x0−1∑

j=0

(−1)j

j + 1




x0 − 1

j




∫ ∞

0
t′ exp(−(j + 1)(g(t′)− g0))dt′.
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4.4.2 〈T 〉 from the Fokker-Planck Equation

Calculating the average time of extinction from the F-P equation closely follows the method

explained in Page.136-138 of (Gardiner, 1985). The F-P equation obeyed by a population of

decaying particles is given by Equation 4.10,

∂P (x, t|x0, 0)

∂t
=

∂

∂x
[xP (x, t|x0, 0)] +

1

2

∂2

∂x2
[xP (x, t|x0, 0)].

Let the initial population at time t = 0 be x = x0. The question is how long does the

population remain in the interval (0, b) which contains x, such that 0 ≤ x0 ¿ b. We assume

that 0 and b are absorbing boundaries (for now). Under these conditions, the probability that

at time t, the particle is still in (0, b) is given by
∫ b
0 dxP (x, t|x0, 0) ≡ G(x0, t) (i.e. starting

at x = x0 at t = 0, integrate over the probability of being at any x such that 0 ≤ x ¿ b).

G(x0, t) can also be thought of as probability that the population leaves (0, b) at a time

T ≥ t i.e., G(x0, t) =
∫ b
0 dxP (x, t|x, 0) = Prob(T ≥ t). Since the system is homogeneous in

time, the backward F-P equation can be written using the same boundary (initial) condition

P (x, t|x0, 0) = P (x, 0|x0,−t) so that,

∂P (x, t|x0, 0)

∂t
= x0

∂P (x, t|x0, 0)

∂x0

+
1

2
x0

∂2P (x, t|x0, 0)

∂x0
2

.

Integrating the backward F-P with respect to x (which is not as trivial in the forward F-P),

we get
∂G(x0, t)

∂t
= x0

∂G(x0, t)

∂x0

+
1

2
x0

∂2G(x0, t)

∂x0
2

, (4.21)

obeyed by G(x0, t). Now, the boundary conditions are

P (x, 0|x0, 0) = δ(x− x0)

and hence,

G(x0, 0) = 1 when 0 ≤ x0 ≤ b

G(x0, 0) = 0 elsewhere and

G(0, t) = G(b, t) = 0.

Now, the mean first passage time out of the region (0, b) is given by

〈T (x0)〉 = −
∫ ∞

0
t∂tG(x0, t)dt =

∫ ∞

0
G(x0, t)dt,
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and obeys the following equation which is obtained by integrating 4.21 from 0 to ∞ with

respect to t:

x0
∂〈T (x0)〉

∂x0

+
1

2
x0

∂2〈T (x0)〉
∂x0

2
= −1. (4.22)

(This result uses the fact that G(x0,∞) = 0 and G(x0, 0) = 1.) Now for the absorbing

boundaries, T (0) = T (b) = 0.

Equation 4.22 can be re-arranged as

∂2〈T (x0)〉
∂x0

2
− 2

∂〈T (x0)〉
∂x0

= − 2

x0

.

⇒ 〈T (x0)〉 = −D exp(2x0)− 2 exp(2x0)I(0, x0) +
C

2
(exp(2x0 − 1))

where C and D are constants of integration and

I(p, q) ≡
∫ q

p
exp(2x′) ln(x′)dx′.

Applying boundary conditions,

〈T (0)〉 = 0 ⇒ D = 0

〈T (b)〉 = 0 ⇒ C =
4 exp(2b)I(0, b)

exp(2b)− 1

⇒ 〈T (x0)〉 = −2 exp(2x0)I(0, x0) +
2 exp(2b)I(0, b)

exp(2b)− 1
(exp(2x0 − 1)

Substituting I(0, b) = I(0, x0) + I(x0, b) and limb→∞
exp(2b)

exp(2b)−1
= 1,

〈T (x0)〉 = −2 exp(2x0)[I(0, b)− I(x0, b)] + 2I(0, b)(exp(2x0 − 1))

⇒ 〈T (x0)〉 = 2 exp(2x0)I(x0, b)− 2I(0, b)

The above analysis assumes two absorbing boundaries where the boundary at b is only an

approximation because physically there is no absorbing boundary. Here, we prove that even
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if b is assumed to be a reflecting boundary, the expression for 〈T 〉 remains the same. Equation

(4.22) is now solved with the boundary conditions 〈T (x0 = 0)〉 = 0 and ∂〈T (x0=b)〉
∂x0

= 0.

〈T (0)〉 = 0 ⇒ D = 0

∂〈T (x0 = b)〉
∂x0

= 0 ⇒ C = 4I(0, b) + 2 exp(−2b) ln(b)

⇒ 〈T (x0)〉 = −2 exp(2x0)I(0, x0) + (2I(0, b) + (exp(2x)− 1))

Substituting I(0, b) = I(0, x0) + I(x0, b) and limb→∞ exp(−2b) ln(b) = 0,

⇒ 〈T (x0)〉 = 2 exp(2x0)I(x0, b)− 2I(0, b).
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