

A MULTI-GIGABIT NETWORK PACKET INSPECTION AND ANALYSIS
ARCHITECTURE FOR INTRUSION DETECTION AND PREVENTION
UTILIZING PIPELINING AND CONTENT-ADDRESSABLE MEMORY

by

Jacob J. Repanshek

BS, University of Pittsburgh, 2003

Submitted to the Graduate Faculty of the

School of Engineering in partial fulfillment

of the requirements for the degree of

Master of Science in Electrical Engineering

University of Pittsburgh

2004

UNIVERSITY OF PITTSBURGH

SCHOOL OF ENGINEERING

This thesis was presented

by

Jacob J. Repanshek

It was defended on

September 9, 2004

James T. Cain, Professor, Electrical Engineering Department

Alex Jones, Assistant Professor, Electrical Engineering Department

Thesis Advisor: Raymond R. Hoare, Assistant Professor, Electrical Engineering Department

 ii

A MULTI-GIGABIT NETWORK PACKET INSPECTION AND ANALYSIS
ARCHITECTURE FOR INTRUSION DETECTION AND PREVENTION
UTILIZING PIPELINING AND CONTENT-ADDRESSABLE MEMORY

Jacob J. Repanshek, MS

University of Pittsburgh, 2004

Increases in network traffic volume and transmission speeds have given rise to the need for

extremely fast packet processing. Many traditional processor-based network devices are no

longer sufficient to handle tasks such as packet analysis and intrusion detection at multi-Gigabit

rates. This thesis proposes two novel pipelined hardware architectures to relieve the

computational load of a processor within network switches and routers. First, the Embedded

Protocol Analyzer Pre-Processor (ePAPP) is capable of taking an unclassified packet byte stream

directly off of a network cable at line speed and separating the data into individually classified

protocol fields. Second, the CAM-Assisted Signature-Matching Architecture (CASMA) uses

ternary content-addressable memory to perform the task of stateless intrusion detection

signature-matching. The Snort open-source software network intrusion detection system is used

as a model for intrusion detection functionality. Structured ASIC synthesis results show that

ePAPP supports speeds of 2.89 Gb/s using less than 1% of available logic cells. CASMA is

shown to support 1.25 Gb/s using less than 6% of available logic cells. The CASMA architecture

is demonstrated to be able to implement 1729 of 1993 or 86.8% of the attack signatures, or rules,

packaged with Snort version 2.1.2.

 iii

TABLE OF CONTENTS

1.0 INTRODUCTION .. 1

1.1 IMPORTANCE OF CYBER SECURITY.. 2

1.2 EFFECTS OF INCREASES IN NETWORK TRAFFIC AND TRANSMISSION

 SPEEDS.. 3

1.3 THE NEED TO REDESIGN NETWORK SWITCHES TO FACILITATE

 INTRUSION DETECTION.. 5

1.4 PACKET ANALYSIS .. 7

1.5 USING CONTENT-ADDRESSABLE MEMORY TO ASSIST IN INTRUSION

 DETECTION ... 8

1.6 OVERVIEW OF ARCHITECTURE.. 9

1.6.1 ePAPP: An Embedded Protocol Analyzer Pre-Processor..................................... 10

1.6.2 A CAM-Assisted Signature-Matching Architecture... 12

2.0 RELATED WORK ... 17

3.0 ePAPP: AN EMBEDDED PROTOCOL ANALYZER PRE-PROCESSOR................... 20

3.1 INTRODUCTION .. 20

3.2 ARCHITECTURE FOR PROTOCOL MAPPING .. 22

3.2.1 Protocol Memory .. 24

3.2.2 Jump Register and Jump TLB... 28

3.2.3 Length Block... 30

 iv

3.3 CIRCUIT IMPLEMENTATION OF EPAPP... 30

3.4 DESIGN RESULTS AND PERFORMANCE ... 35

3.5 CONCLUSIONS... 37

4.0 CASMA: A CAM-ASSISTED SIGNATURE-MATCHING ARCHITECTURE FOR

 INTRUSION DETECTION... 39

4.1 THE SNORT INTRUSION DETECTION SYSTEM.. 40

4.1.1 Snort Packet Header Rule Options ... 42

4.1.2 Snort Packet Payload Rule Options .. 45

4.1.3 Snort Post-Match Rule Options .. 49

4.1.4 Summary of Snort Rules... 50

4.2 TERNARY CONTENT-ADDRESSABLE MEMORY... 52

4.3 PACKET HEADER SEARCHING.. 54

4.4 PACKET PAYLOAD SEARCHING... 57

4.5 SNORT RULE ENCODING EXAMPLES.. 65

4.5.1 Snort Rule Example #1 ... 66

4.5.2 Snort Rule Example #2 ... 67

4.5.3 Snort Rule Example #3 ... 69

4.5.4 Snort Rule Exceptions... 71

4.6 THE CASMA ARCHITECTURE .. 71

4.6.1 CASMA Data Flow... 72

4.6.2 CASMA Timing.. 76

4.6.3 CASMA Testing Methodology... 85

4.6.4 CASMA Technology Mapping Results .. 85

 v

5.0 CONCLUSIONS AND FUTURE DIRECTIONS.. 87

APPENDIX A... 90

VHDL CODE FOR THE ANALYZER_TOP ENTITY .. 90

APPENDIX B ... 100

VHDL CODE FOR THE ASSEMBLER ENTITY.. 100

APPENDIX C ... 107

VHDL CODE FOR THE JUMP_TLB ENTITY.. 107

APPENDIX D... 111

VHDL CODE FOR THE LENGTH_BLOCK ENTITY.. 111

APPENDIX E ... 117

VHDL CODE FOR THE PROTOCOL_MEMORY ENTITY .. 117

APPENDIX F.. 128

VHDL CODE FOR THE SNORT_CAM ENTITY ... 128

BIBLIOGRAPHY... 170

 vi

LIST OF TABLES

Table 1. Time to Respond to a Network Packet at Various Peak Transmission Speeds 4

Table 2. IP Protocol Field Description ... 25

Table 3. UDP Protocol Field Description ... 25

Table 4. TCP Protocol Field Description.. 25

Table 5. The Protocol RAM Data ... 28

Table 6. The Jump Translation Look-Aside Buffer.. 29

Table 7. Current Content Inside Protocol Memory .. 32

Table 8. Performance Results After Synthesis ... 36

Table 9. Performance Comparison With Software ... 37

Table 10. Example Rule Header Table Format .. 42

Table 11. Rule Header Example #1 .. 43

Table 12. Rule Header Example #2 .. 43

Table 13. Rule Header Example #3 .. 44

Table 14. Rule Header Example #4 .. 44

Table 15. Snort Rule Header and Body Example #1 .. 45

Table 16. Non-Payload Rule Options ... 46

Table 17. Payload Rule Options ... 47

Table 18. Snort Rule Header and Body Example #2 .. 49

Table 19. Meta-data Rule Options .. 50

 vii

Table 20. Post-detection Rule Options ... 50

Table 21. Protocol Header Fields Included in a Header Search CAM Entry 55

Table 22. Effects on Time and Space Requirement for Varying Payload Shift Amounts............ 59

Table 23. Test Packet #1... 77

Table 24. Test Packet #2... 81

Table 25. Performance Results After Synthesis ... 85

 viii

LIST OF FIGURES

Figure 1. Typical Network Before and After Infection from a Malicious Email Attachment........ 1

Figure 2. Network Incorporating Routers and Switches with Packet Inspection Capabilities 2

Figure 3. Overview of the Presented Architecture.. 10

Figure 4. Traditional Network Switch Architecture ... 15

Figure 5. Network Switch Augmented with the ePAPP and CASMA Architectures 16

Figure 6. The Protocol Analyzer Pre-Processor ... 23

Figure 7. An Example of a Layered Protocol Description.. 26

Figure 8. The Internal Architecture of the Protocol Analyzer Pre-Processor............................... 31

Figure 9. Simulation Waveform for ePAPP ... 34

Figure 10. Number of Occurrences of Each Option in the Entire 1,993-Rule Snort Ruleset....... 51

Figure 11. Example of a Search on a Populated CAM... 53

Figure 12. Shift Amount Between Searches vs. CAM Entries Required 59

Figure 13. Position of CASMA in the Presented Switch Architecture... 72

Figure 14. Internal Circuit Design of the CAM-Assisted Signature-Matching Architecture 74

Figure 15. Flow of the Controller State Machine ... 75

Figure 16. Header Searching Beginning for Test Packet #1... 78

Figure 17. Payload Searching Beginning for Test Packet #1 ... 79

Figure 18. Payload Searching Concluding for Test Packet #1 ... 80

Figure 19. Header Searching Beginning for Test Packet #2... 82

 ix

Figure 20. Payload Searching Beginning for Test Packet #2 ... 83

Figure 21. Payload Searching Concluding for Test Packet #2 ... 84

 x

1.0 INTRODUCTION

There are few areas in the contemporary computing technology industry that have received as

much attention as cyber security. Rapidly increasing network transmission speeds have marked

the computationally heavy task of network packet inspection as a conspicuous bottleneck in the

processing and forwarding of information across the network. The need for this function,

however, cannot be ignored. Consider the typical local network pictured in Figure 1. Once an

infected email attachment has entered the network, there is no protection in a typical switch or

router to stop the spread of malicious behavior.

Routers

Workgroup

Mail

Server

Server

Work Statations

Switches...

Internet

Routers

Workgroup

Mail

Server

Server

Work Statations

Switches...

Email Attachment

Internet

Figure 1. Typical Network Before and After Infection from a Malicious Email Attachment

Now consider the network in Figure 2. The routers and switches in this network have

been fortified, which is to say they are capable of detecting and dropping malicious traffic. Even

1

if a single host on the network becomes infected, in this example by an email attachment, the

attack will not be allowed to spread.

Fortified
Routers

Workgroup
Server

Mail
Server

Work Statations

Fortified
Switches...

Internet

he

eed for such a solution and introduces the challenges of cyber security, with particular respect

to packet classification and intrusion detection. Snort [21], an open-source intrusion detection

software solution, is introduced as a benchmark against which this original work is compared.

1.1 IMPORTANCE OF CYBER SECURITY

Figure 2. Network Incorporating Routers and Switches with Packet Inspection Capabilities

This research has developed a packet classification and intrusion detection methodology

that will demonstrate performance advantages over comparable conventional solutions and allow

for incorporation into high-speed network devices such as switches. This chapter clarifies t

n

The most evident indication of the importance of cyber security is the staggering amount of

money industry must devote to it. The market research firm IDC predicts that a total of $14

2

billion will be spent for companies and organizations to protect themselves from network attacks

by 2005, an increase from $5 billion in 2000 [2]. Furthermore, IDC predicts that the Intrusion

Detecti

numbers do not seem so unwieldy when one considers that a single malicious

attack,

equired to launch a successful network attack have decreased significantly,

hile the sophistication of such attacks has grown [9, 10]. Despite these facts, companies

continue to migrate important information and resources to the Internet for reasons of

accessibility [9].

1.2 EFFECTS OF INCREASES IN NETWORK

TRAFFIC AND TRANSMISSION SPEEDS

k, every packet sent or received must be considered

potenti

on market (including Vulnerability Assessment) alone will have total revenue of more

than $1 billion in 2003, with a Compound Annual Growth Rate of 34% during 1999-2004 [3, 4,

5].

These

the Code Red worm, caused $2.62 billion in losses worldwide [6]. In one poll of primarily

large corporations and government agencies, 80% acknowledged financial loss due to computer

breaches [7].

Network intrusion can be defined as “any set of actions that attempt to compromise the

integrity, confidentiality, or availability of a resource” [8]. As the financial figures show, cyber

intrusions have created a serious problem that continues to grow. In the past ten years, the

technical skills r

w

In order to ensure the security of a networ

ally harmful until proven otherwise. But as network traffic loads become heavier and

transmission speeds increase, it becomes more difficult to adequately inspect every bit of

information that passes through a network.

3

The Internet, for example, has seen a spectacular annual growth factor of 4- to 10-times

in traffic volumes [1]. Such rapid rates of growth have created a great deal of interest in

expanding network transmission bandwidth and increasing transmission speed. As a result, 10

Mb/s networks have been replaced by 100 Mb/s, 1 Gb/s, and even 10 Gb/s networks. With the

rise of optical technology, network speeds on the order of 1 Tb/s have been developed and are

expecte

decreases. As shown in Table 1, a small

4-byte packet can arrive every 51,200 ns for a 10 Mb/s network under peak traffic loads. This

provides a 512 ns to

spond and at 10 Gb/s there are only 51 ns to respond.

Tabl to Respond to a N Pack rious P ssion Speeds

e to Respond (Nanosecon

d to eventually reach a theoretical limit of about 50 Tb/s [1]. While these developments

are exciting for network technology, they have created in their wake another problem for modern

networks.

As the speeds of local networks increase, the amount of time available for a network

device (such as a switch) to respond to a single packet

6

mple time to respond to each packet. At 1 Gb/s, however, there are only

re

e 1. Time etwork et at Va eak Transmi

Tim ds)
Peak ork

Transmission Speed
Max. # of 64 Byte
Packets / Second Total Time Per Snort Rule,

given 1700 rules

of 5 ns
Mem ry
Accesses

 Netw
o

10 Mb/s 19,531 51,200 30 ns 6

100 Mb/s 195,313 5,120 3 ns < 1

Gb/s 1,953,125 512 .3 ns 0

10 Gb/s 19,531,250 51 .03 ns 0

Consider, now, that we wish to check each of the incoming packets to see if it matche

any of an extensive set of attack signatures – patterns found within a packet that could indicate

s

4

malicious traffic. Snort [8], for example, is a software-based intrusion detection system (IDS)

that has over 1700 attack signatures, or rules, that must be compared against each incoming

packet. Assuming a memory access takes 5 ns, the execution time per rule we wish to check our

packet against drops to 30 ns per rule for 10 Mb/s and to 0.03 ns per rule for 10 Gb/s. Given that

a 1 GHz processor requires 1 ns per instruction, this is quite infeasible.

1.3 THE NEED TO REDESIGN NETWORK SWITCHES

TO FACILITATE INTRUSION DETECTION

ated. According to a CSI/FBI

security

tently report that more than half of all incidents are insider attacks. Many

security

There are some who mistakenly believe that cyber security can be achieved strictly by

controlling what leaves and enters the private network. One popular solution is a firewall [11],

which serves as a gateway between the private network and the outside world. By relying

entirely on a gateway, however, a single point-of-failure is cre

 report, 90% of attacks bypass firewalls [7]. Obviously, firewall protection alone is not

sufficient. Without any additional protection within the network, one compromised machine

could attack other hosts within the enterprise without deterrence.

Even if firewalls and other similar measures were enough to prevent all malicious traffic

from entering the network, nothing prevents an attack that is launched from within. Information

security surveys consis

 professionals refer to the “80/20 Rule” to describe the relative probability that a problem

was caused by insiders as opposed to outsiders [13]. Some form of internal protection must

therefore be provided.

One proposed solution is to let each host tackle the task of intrusion detection

individually. Host-based intrusion detection software can be installed on every machine on a

5

network in order to inspect all traffic to and from that host [14]. To be effective, this solutions

requires not only that every network device (including laptops and wireless devices) have the

IDS software installed, but also that every device is configured properly and safe from being

turned off or disabled by an authorized user. In a large enterprise network, the sheer volume of

system

st: the network switch. In fact, many cases exist where malicious

traffic w

ing at 10%

of maximum load, the monitoring port would see (48 x 100) x 0.1 = 480 Mb/s of traffic. This is

no problem for the monitoring port. But if the load at the switch increased to 50%, the aggregate

switch traffic would reach 2.4 Gb/s, much more than the monitoring port can handle.

s to be monitored may make this solution impractical. Furthermore, since only the

individual machines and not the network itself are protected, any renegade laptop or wireless

device that joins the network can be a source of malicious activity.

It is clear that leaving intrusion detection and prevention to the host is unwise, and that a

gateway between the internal network and the outside world is not sufficient protection. There is

one network device, however, that resides within the local network and sees all of the traffic

traveling to and from a ho

ithin a network is seen only by the attack computer, the victim computer, and the switch

that connects them. This makes the switch an ideal location to perform intrusion detection and

intrusion prevention tasks.

Network switches, however, tend to see a lot of traffic, often at rapid transmission rates.

Some switches attempt to use a monitoring port that sees an aggregate of traffic from all of the

other ports on the switch [31]. This is a good solution as long as the aggregate switch bandwidth

is less than that of the monitoring port. Under heavy loads, however, the monitoring port may be

unable to keep up with all of the traffic coming through the switch. Consider, for example, a 48-

port 100 Mb/s switch with a single Gb/s monitoring port. If the switch is only operat

6

Most network devices, such as switches, rely on network processors to perform packet

classification and forwarding. The network processor market has emerged as the fastest growing

segment of the microprocessor industry [12]. Most network processors (NPs) utilize multiple

channel processors to perform packet inspection and data extraction for each network link,

typically using 32- or 64-bit RISC architectures but in some instances using VLIW processors.

One of the most fundamental tasks these network processors perform is protocol

analysis. This is the process by which individual fields within a packet are classified and the

protocols within the packet are identified. RISC processors utilize, by definition, a small subset

of instructions that, when combined in a program, can execute complex tasks. The problem is

that packet processing requires a large amount of bit manipulation to extract particular data

fields. For example, the source and destination of an IP packet are octets 13 through 16 and

octets 17 through 20, respectively. For a RISC processor, these fields must be placed in a 32- or

64-bit register before processing can take place. To achieve this protocol analysis task by

software can be quite complex just to extract a few fields from a packet header. Many proposed

network processors exist which use specialized, non-RISC architectures to support multi-gigabit

speeds [15, 16]. These solutions are still constrained by the cycle-rich nature of processor

architectures.

Application-specific integrated circuits (ASICs) are used in many network nodes to

improve packet-processing speeds, however they are rarely flexible enough for rapid adaptation

to protocol or standards changes [1]. However, if one were able to generalize the hardware

1.4 PACKET ANALYSIS

7

architecture so that protocol classification information could be periodically updated in a

structure such as a ROM, use of ASIC designs would become more feasible.

1.5 USING CONTENT-ADDRESSABLE MEMORY

TO ASSIST IN INTRUSION DETECTION

e to speedup search times using hierarchical

searchi

e data stored within the CAM needs to

match

Significant research has been done on intrusion detection methodologies. Perhaps the most

common approach is signature-based, which is centered on the assumption that intrusion

attempts can be characterized by the comparison of user activities against a database of known

attacks that lead to compromised system states [17]. Signature-based intrusion detection is the

basis for Snort [8], the software IDS solution previously referenced in Table 1. In order to

identify potentially harmful packets, Snort must search its ruleset to find any rules that match the

packet under inspection. As previously discussed, faster networks and heavy traffic loads make

this approach insufficient. Attempts have been mad

ng and faster pattern matching algorithms [18, 19], however improvements have not been

significant enough to handle gigabit network rates.

One possible solution to the delays associated with linear rule searching is the use of

ternary content-addressable memory. A content-addressable memory (CAM) chip is

fundamentally different than a standard RAM. Whereas a standard RAM returns data based on

an address given as input, a CAM is capable of returning one or more addresses where the given

input search data can be found. A ternary CAM is even more beneficial in that it allows for mask

bits to be specified so that only a specified portion of th

the input data. Most importantly, CAM searches occur in a fixed amount of time,

regardless of the amount of data within the CAM itself.

8

Consider, for example, a 9 Mb Network Search Engine provided by Integrated Device

Technologies [20]. This device contains a ternary content-addressable memory (tCAM) that

supports 16,000 576-bit entries, all of which can be searched in a fixed amount of cycles. To

compare, suppose that 2000 patterns need to be searched and that each pattern is only 32-bits

long. Current IDS systems are processor-based and utilize GHz high-performance Pentium

processors. We will conservatively assume that all data is located within L1 cache at 1ns per

access. Under such assumptions, the pattern matching would require 2000 memory accesses just

to read the patterns. Thus, the time-per-packet is 2,000 ns. For a CAM, all 2000 patterns are

searched in parallel and the total execution time is 20ns, which is 100 times faster. Now suppose

that our patterns are 320 bits wide. This would require 10 times the number of memory

references on the part of the processor, making the CAM 1,000 times faster. Clearly, content-

addressable memory has a benefit to the pattern-matching nature of intrusion detection.

1.6 OVERVIEW OF ARCHITECTURE

itecture

resented in this thesis. The ePAPP component performs the task of pipelined protocol analysis,

while the CASMA component performs stateless intrusion detection signature matching.

This thesis provides a novel approach to the problems of packet classification and stateless

signature-matching to enable intrusion detection. Figure 3 shows an overview of the arch

p

9

PHY ePAPP
Unclassifed
Byte Stream

CASMA

Classif ied
Packet Info

Signature
Match Info

Upstream
Processing

Netw ork
Cable

Network Switch

CAM

Figure 3. Overview of the Presented Architecture

1.6.1 ePAPP: An Embedded Protocol Analyzer Pre-Processor

To perform

 ePAPP is to take the unclassified byte stream coming from the PHY and

partition and classify the data blocks into co

payload size, header checksum). Because not all protocol fields are exactly 32 bits in length,

field data output is zero-padded as necessary to ensure valid output. Fields that may be larger

 the task of packet classification through protocol analysis, the Embedded Protocol

Analyzer Pre-Processor (ePAPP) is presented. ePAPP connects directly to the PHY interface,

which is responsible for capturing bits off of the transmission line and outputting them in fixed-

width chunks. A 100 Mb/s PHY, for example, produces a 4-bit datapath operating at 25 MHz,

while a 1 Gb/s PHY produces an 8-bit datapath operating at 125 MHz. Since the goal of this

work is to facilitate protocol analysis at a multi-gigabit switch, ePAPP is optimized to work with

an 8-bit datapath. However, a simple 4-to-8-bit shift register can be used to convert a 4-bit

stream operating at 25 MHz to an 8-bit, 12.5 Mhz stream, providing support for traditional Fast

Ethernet networks.

The goal of

rresponding protocol fields. These include header

information fields such as source and destination addresses, header and payload sizes, and

protocol flags, as well as the payload fields themselves. The partitioned data fields are output on

a 32-bit bus, accompanied simultaneously by a unique 8-bit field type to identify not only the

field’s context (its associated protocol) but also its particular relevance (e.g., source address,

10

than 32

igurable

FPGA

 the field types themselves. By placing this

informa

 to the contents of the ROM.

 bits in length, such as payloads, are divided and output over the necessary amount of 32-

bit increments.

While many protocol field types have a fixed length associated with them, others such as

payload and optional fields can be of variable lengths. The widths of these fields must be

dynamically determined based on information within the protocol header itself. ePAPP is

designed to detect and use relevant information within a packet header to calculate and apply

these variable widths.

ePAPP utilizes a pipelined hardware architecture to achieve the aforementioned

functionality in a fixed number of cycles. Hardware architectures confined to ASIC solutions,

however, are typically very static and extremely cost-prohibitive to change. Reconf

solutions are not as inflexible to change, but due to size and cost are ill-suited to

implementation in a network device. Therefore, a time-, cost-, and space-efficient protocol

analysis solution in hardware must be adaptable to changes in protocol without frequent

redesign. To solve this problem, ePAPP uses a “protocol memory” to enumerate possible

protocol field types as well as information about

tion in a loadable component, such as a ROM, the functionality of ePAPP can be

modified to meet protocol changes without necessitating a complete hardware redesign.

The ePAPP design proposed in this thesis currently supports the following protocols:

Ethernet (IEEE 802.3), Ipv4, ARP, TCP, and UDP. While these provided a sufficient base for

functional testing and synthesis results, it should be noted that the generalized nature of the

ePAPP architecture is expandable to include additional protocols (e.g., ICMP, IPv6) with little

more than an addition

11

Since ePAPP classifies every field in an incoming packet, it is adaptable to virtually any

application that requires protocol analysis. Its general, multi-use nature makes it quite cost-and

space-efficient in a network device. One potential application for ePAPP processing is intrusion

detection. Signature-based intrusion detection, in particular, relies on both a wealth of header

information and on packet payloads. This thesis utilizes the ePAPP as a tool to present an

associated intrusion detection architecture with the information it needs to perform content

signature-matching.

1.6.2 A CAM-Assisted Signature-Matching Architecture

To perform the task of stateless intrusion detection, this thesis presents a CAM-Assisted

Signature-Matching Architecture (CASMA). As previously discussed, the parallel-searching

nature of content-addressable memory is a good fit to the search-intensive task of signature-

matching. In order to establish the requirements of the CASMA architecture, we chose to use

Snort a

 pipelined hardware solution.

s our model and performance benchmark [21]. As previously mentioned, Snort is open-

source network intrusion detection software widely used and supported in industry. While newer

versions of Snort are packaged with various pre-processors that provide additional services such

as stateful matching, Snort’s primary role is rule-based packet signature matching. Stateful

inspection considers packets within a larger context that evaluates packets with respect to the

current connection state. This requires the storage of connection state information, which is

beyond the scope of this work. CASMA has been developed as an attempt to replicate the

stateless signature matching capability of Snort in a

Snort rules are comprised of a number of different elements, including the type of traffic

the rule pertains to (IP, TCP, UDP, ICMP), the source and destination addresses and ports for

which the rule is valid, and a bevy of rule options (rules and rule options are discussed in detail

12

in Chapter 4). Furthermore, each of these rule options can be classified as pertaining to some

characteristic of either packet header information or packet payload information. This gives way

to a na

e, the source address and port number match specific values), the

packet

 that, instead of trying to

simultaneously match a number of header field values in a single combined search, the payload

tural delineation between “header rules” and “payload rules,” which is exploited by

CASMA. While Snort handles both of these types in a single rule, the proposed design will

address header rules and payload rules separately.

Separating header searches from payload searches has several advantages. First, since

header information will arrive from ePAPP before the payload, header searching can be initiated

while the packet payload is still being buffered. Secondly, combining header and payload

information into a single search string can make the size of the string impractical for use in a

CAM.

Matching header information is generally a simpler process than payload content

matching. If header information in an incoming packet meets all of the header requirements of a

given Snort rule (for instanc

is tagged as a possible hit (contingent upon a corresponding payload match). For most

rules, it is this simple. There are, however, some exceptions that do not merely require an exact

match. Some rules require that a value fall within a certain range (for instance, the source port

must be less than 1024). Other rules specify that a piece of header information must not be a

particular value (for instance, the destination port cannot be 80). Presently, ternary CAMs do not

have the ability to do range or inequality checking. Therefore, each of these exceptional header

search requirements are performed with hardware preprocessing and incorporated into the header

search string as a 1-bit flag.

Payload searches are different from header searches in

13

search

d signature matches. Fortunately, a

payload

 is proposed

d payload searches must be correlated by a post-

process

, intrusion detection).

Figure 5 shows a network switch that has been augmented with the ePAPP and CASMA

architectures. ePAPP accepts unclassified bytes of packet data directly from the PHY and

is attempting to match certain strings that appear at certain locations within a packet.

Since the entire payload must be searched in the CAM, and since many payloads are larger than

the maximum CAM width, payloads must be incrementally shifted and searched at pre-defined

offsets. For reasons discussed in Chapter 4, CASMA performs a CAM search at each 8-byte

offset within a payload. Therefore, a payload of n bytes will require ((n-1) / 8) + 1 CAM searches

in order to sufficiently check a payload for all possible payloa

 of n bytes requires n cycles to arrive from the ePAPP unit.

Certain rules specify that a payload signature to be matched be regarded as a hit only if

the signature string is found at a certain range of depths within the payload. In order to

incorporate this functionality into a standard CAM search, a novel encoding scheme

that specifies within a CAM entry at which depths payload string matches are valid. By inputting

into the CAM as part of the search string the depth associated with the payload content being

searched, payload string depth requirements can be enforced.

Results from associated header an

or to determine any and all rule matches, as well as determine the threat severity of the

detected traffic. The specific nature of this correlation is beyond the scope of this research,

however generic result outputs are provided to more easily enable rapid processing.

Figure 4 shows the general architecture of a typical switch. Packets are captured by the PHY and

undergo MAC-layer processing. Packets are then passed on to a network processor that performs

any processing that is required on the packet, which may include some form of packet inspection

(e.g., packet filtering

14

classifies them through protocol analysis. The formatted packet fields are forwarded to the

CASMA unit, which performs header and payload CAM searches to find potential attack

signature matches. Result data is passed to the network processor to be correlated. Thus, the

entire burden of packet inspection is removed from the network processor through the addition of

pipelined hardware.

PHY/
MAC

Network
Processor

Netw ork
Cable

B
A
C
K
P
L

E

Network Switch

A
NPHY/

MAC
Network

Processor
Netw ork

Figure 4. Traditional Network Switch Architecture

Cable

.

.
.
.

.

.

.

Chapter Two will examine research related to the goals of this thesis. Chapter Three will

discuss the or. Chapter

our will discuss the design, performance, and issues related to the CAM-Assisted Signature-

Matching Architecture. Chapter Five will examine conclusions and future directions for this

research.

. .

design and performance of the Embedded Protocol Analyzer Pre-Process

F

15

PHY Network
Processor

Netw ork
Cable

Augmented Network Switch

B
A
C

P
L
A
N
E

K

PHY Network
Processor

Netw ork

.

.
.
.

.

.

Cable

. ..

ePAPP/
CASMA

ePAPP/
CASMA

.

.

Pre-Processor

.

Embedded
Protocol
Analyzer

Unclassif ied
Byte Stream
From PHY

FieldData

FieldType
Header
Register

Valid Payload
Register

CAM-Assisted Signature
Matching Architecture

Special Cases

CAM
M
U
X

RuleID

SearchType

Figure 5. Network Switch Augmented with the ePAPP and CASMA Architectures

16

2.0 RELATED WORK

A hardware-based TCP/IP content scanning system is proposed in [22]. This work combines

protocol processing engine, a per-flow state store, and content scanning engine into a single

hardware architecture. Of primary i

nterest to this research is the content scanning engine.

Incomi

 Prasanna

[25]. S

in reconfigurable hardware on an FPGA. The research is based on an early version of Snort

ng TCP packets are streamed through the content scanner, a hardware model that is

capable of scanning the payload of packets for a set of regular expressions using Deterministic

Finite Automata (DFAs), as proposed in [23]. The content scanner claims speeds of up to 2.5

Gb/s. This design, however, supports only TCP flows, which is quite incomplete for intrusion

detection purposes. Also, the design is targeted to an FPGA, which is cost- and size-prohibitive

for use in a network device.

The work in [24] uses JHDL, a Java-based programmatic structural design tool, to create

a module capable of generating circuits that match arbitrarily large regular expressions. The

overall goal of this work is to prove the feasibility of using such a module on an FPGA to

accelerate the task of string matching for network security applications. The work is based on the

groundbreaking efforts on FPGA-based regular expression searching by Sidhu and

earch data is streamed through the match circuit one character at a time. Testing results

indicate a throughput of one search character per clock cycle using the proposed method,

irrespective of the length of the search string. This solution, as before, is impractical because of

its dependence on a reconfigurable FPGA platform.

The method proposed in [26] attempts to implement the Snort intrusion detection engine

17

(v.1.8.7) that supported 1239 rules. The proposed architecture performs first a header search

based on source and destination ports and addresses as well as protocol type, and then a

subsequent payload search based on the results of the header search. The proposal suggests the

use of CAMs to perform the necessary header and payload searches. While the work proposes

many o

Citing the expensive nature of high-density ternary CAMs, 128 bit-wide ternary CAM-like

memories (CLMs) are proposed which function like individual CAM entries but are touted as

more cost-effective. The research focuses on classification of IPv6 packets based on IP source

and destination addresses, source and destination ports, and protocol type. Each of the five field

f the same fundamental concepts as this thesis, there are no design details or results

available to support a proof of concept. Again, the choice of an FPGA as a target for the

architecture is an impractical choice.

The architecture proposed in [28] is another attempt to map Snort rules directly into

reconfigurable hardware. The design features content pattern-matching engines that match

payload chunks in 4 byte increments against a given rule. Each rule, represented by its own

generated structural VHDL, is searched in parallel. Initially, packet header information (source

and destination ports and addresses, protocol type) is checked against the header requirements

corresponding to a given rule. If there is a match, 4 byte shifts of payload information are fed

into the rule’s individual content pattern-matching engine. If a match is found, the corresponding

packet is flagged and potentially dropped. Only 105 Snort rules are implemented in this design,

and no explanation is given how these rules are mapped to VHDL. By its own admission, this

contribution relies on frequent reconfiguration to account for new rules, hence its FPGA target.

This suffers from the same drawbacks as much of the previously mentioned research.

The goal of [29] is to speed up multi-field packet classification using CAM-like memory.

18

types is searched individually in parallel with the other field types, and results are correlated with

specialized combinational logic to produce a rule match index uniquely identifying a rule hit.

The pr ion to

v6 packet classification does not satisfy the larger scope of the thesis effort.

e mapping of the rules themselves into hardware are not clearly defined.

oposed architecture has elements in common with this thesis, however its restrict

IP

The Granidt (Gigabit Rate Network Intrusion Detection Technology) architecture is

proposed in [27]. This work proposes an integrated hardware/software solution that improves

Snort performance by performing rule matching in custom hardware using CAMs. The software

“rule compiler” is responsible for accepting a subset of Snort rule syntax and producing a

hardware representation of the rule fields to be matched. The rule compiler creates several tables

that are used to initialize the search CAMs, as well as an internal representation of the rules that

links fields specified by the rules to the CAM tables and range tables. The “rule processor”

software component initializes the hardware CAMs and initiates packet processing. Header and

payload searches are performed separately, each facilitating a number of individual CAMs. A

match vector that indicates the results of the CAM searches is correlated to the internal rule

database to determine the appropriate action for a matched rule. Since the rule compiler is in

software, new rules can be added to the design without resynthesis. This design is flawed,

however, in that it requires several individual CAMs, which is cost-prohibitive. Also, the

maximum supported signature size is 20 bytes, which is not sufficient for a large number of

Snort rules. Details of th

19

3.0 ePAPP: AN EMBEDDED PROTOCOL ANALYZER PRE-PROCESSOR

This ch

 configuration in the protocol

memor

As the speeds of local networks increase, the amount of time available for a network device

(such as a switch) to respond to a single packet decreases. To improve upon traditional software

apter presents a hardware Embedded Protocol Analyzer Pre-Processor (ePAPP) that

performs the protocol analysis of network packets at line speeds of at least 1 Gb/s using only a

small amount of area on a structured ASIC technology. The device fits between the physical

network interface and an upstream processor or additional hardware pipeline (CASMA) and

replaces the software protocol analysis program typically run on a processor, achieving a

significant performance increase. The presented solution is additionally advantageous in that

every protocol field of a network packet is classified. The particular protocols being analyzed

can be configured in an internal memory within the pre-processor, allowing easy protocol

upgrades and product versatility in different applications. A single

y can handle hundreds of protocols without reprogramming. A prototype of ePAPP that

supports various protocols including Ethernet, IPv4, ARP, TCP, and UDP has been designed in

VHDL and synthesized for a 130 nm a structured ASIC technology. Results show that 2.89 Gb/s

can be achieved when implemented on a structured ASIC, using less than 1% of available logic

cells. The prototype is also demonstrated to have a decoding latency 75 times faster than the

conventional software.

3.1 INTRODUCTION

20

solutions, network processors have been developed which are capable of performing packet

classification and forwarding at higher speeds. Most network processors (NPs) utilize multiple

channe

n a packet are classified and the

protoco

For a RISC processor, these fields must be placed in a 32- or 64-bit

register

a 100 Mb/s PHY is a 4-bit wide

ata path that operates at 25 MHz and a 1 Gb/s PHY is an 8-bit wide data path that operates at

125 MHz. This thesis presents a hardware Embedded Protocol Analyzer Pre-Processor (ePAPP)

that resides between the PHY and the channel processor to replace the protocol analysis work

l processors to perform packet inspection and data extraction for each network link,

typically using 32- or 64-bit RISC architectures but in some instances using VLIW processors.

One of the most fundamental tasks these network processors perform is protocol

analysis. This is the process by which individual fields withi

ls within the packet are identified. RISC processors are by definition a small subset of

instructions that, when combined in a program, can execute complex tasks. The problem is that

packet processing requires a large amount of bit manipulation to extract particular data fields.

For example, the source and destination of an IP packet are octets 13 through 16 and octets 17

through 20, respectively.

 before processing can take place. To achieve this protocol analysis task by software can

be quite complex just to extract a few fields from a packet header.

The physical layer interface (PHY) to a network cable translates analog signal levels into

a stream of fixed width digital data. For example, the interface to

d

that is usually done by software in the processor, with a great performance improvement over

software solutions. The objective is to assemble and output the individual protocol fields of a

packet at line speeds, augmenting the field data output with a field type that is unique to the

particular protocol and field description. Moving the protocol analysis work from software to the

21

hardware ePAPP drastically reduces the execution time for protocol analysis, as well as removes

software overhead in the Channel Processor.

Many proposed network processors exist which use specialized, non-RISC architectures

to support multi-gigabit speeds [15,16]. These solutions are still constrained by the cycle-rich

nature of processor architectures. We propose a design that will be able to separate and classify

every field of a network packet in a minimal number of cycles.

Application-specific integrated circuits (ASICs) are used in many network nodes to

improv

protoco

d Protocol Analyzer that will receive a fixed width stream of packet

data fro

ed hardware unit, such as CASMA. The Field Type is a unique number that

specifies a particular field of a particular protocol. It is used to classify the data that is

simultaneously presented on the Field Data bus.

e packet processing speeds, however they are rarely flexible enough for rapid adaptation

to protocol or standards changes [1]. By utilizing a ROM to store protocol classification

information, our proposed design allows for incorporation of new standards and designs without

complete ASIC redesign.

In this chapter, Section 3.2 presents the reconfigurable architecture for mapping the

protocols into hardware. Section 3.3 presents a circuit implementation of a prototype supporting

ls including Ethernet, IPv4, ARP, UDP, and TCP. Section 3.4 introduces performance of

the design and performance benefits over conventional software.

3.2 ARCHITECTURE FOR PROTOCOL MAPPING

ePAPP is a hardware-base

m the PHY and output a stream of organized data by forwarding the Field Type and Field

Data values. As shown in Figure 6, values can be forwarded to an upstream network processor or

another pipelin

22

Physical
Layer

Interface
(PHY)

Byte Stream
from PHY

Buffer

Processor

Pipeline
(CASMA)

FieldType FieldType

FieldDataFieldData

Protocol

Pre-Processor

Unclassif ied Upstream

or HardwareAnalyzerNetw ork

Figure 6. The Protocol Analyzer Pre-Processor

f pre-processing an upstream processor would have to

Cable

The width of the Field Data bus is the same as the register widths inside the upstream

processor. Field Data is gathered directly from the incoming stream of packet data and is zero-

padded depending on the width of the associated protocol field. Thus, rather than seeing a stream

of 4- or 8-bit values, an upstream processor would see a stream of packet field information. This

would drastically reduce the amount o

perform before it could determine the proper packet handling.

Field widths in data packets vary a great deal, and many fields will not consume the

entire register width. This will not reduce the efficiency of the upstream processor as long as the

average field width is larger than the fixed width stream coming off of the PHY. In most cases,

the field width will be significantly larger and, in some cases, may need to be broken into two or

more separate fields, as with packet payloads. This is beneficial to the upstream processor as it

better fits its architecture.

Due to the continuing development of Internet protocols, we store the definition of

protocol types in a Protocol Memory, which makes it easy for protocol updates, reconfiguration,

or expansion.

23

Apart from the Protocol Memory, there are two other parts assisting with the protocol

field classification: a “Jump T)” with a “Jump Register” to

andle diff cording to the und in

packet and a “Lengt

fields e, a paylo

describe in detail of how to ma these three blocks.

3.2.1

The Pr c the protocol field information used for classification,

provides protocol information to the Protocol Analyzer. A unique number is assigned to each

field type of each supported prot plex, involving

multiple headers of dyna r and demanding branches

between encapsulated protocol layers.

 An example using the IPv4, UDP, and TCP protocols is shown here. The associated

protocol field descriptions are given in Tables 2 through 4, respectively. The Protocol Field

ctet 10) of the Internet Protocol defines which protocol is used above the Network layer.

Specifically, th IPv4 he IP packet,

octets 21 and eith s Table 3, or the TCP

format showed in Table 4. Furthermo the T of the IP packet,

from which can we derive the length of IP payload. The Internet Header Length can be gathered

from the secon tence onal octets 21 through

24. Thus, the data within a packet header determines how the packet is to be interpreted. This

traditional layering scheme requires that the Protocol Analyzer have a decision tree to determine

how it should interpret the stream of data.

ranslation Look-aside Buffer (TLB

h branches between erent layers of protocols ac information fo

headers; h Block” to get length information for variable length protocol

(for exampl ad field) according to packet headers. The following sections

p protocols into

Protocol Memory

otocol Memory, whi h stores

ocol. The current Internet protocols are very com

mic lengths (one fo each layer of abstraction)

(o

e Protocol Field of defines the format of the Data fields within t

greater, which can er be the UDP format as hown in

re, octet 3 and 4 define otal Length

d nibble of octet 1, which will dictate the exis of opti

24

Table 2. IP Protocol Field Description

OCTET POSITION IP FIELD DESCRIPTION ABREVIATION
OCTET 1 Version (4 bit)+IHL (4 bit) (VER, IHL)
OCTET 2 Type of service (TOS)
OCTET 3,4 Total Length (TOL)
OCTET 5,6 Identification (ID)
OCTET 7,8 Flags (3 bit)+Fragment Offset (13 bit) (FLG, FRO)
OCTET 9 Time to Live (TTL)
OCTET 10 Protocol (PRO)
OCTET 11,12 Header Checksum (IP_SUM)
OCTET 13,14,15,16 Source Address (SRC)
OCTET 17,18,19,20 Destination Address (DEST)
(OCTET 21,22,23,24) (Options + Padding) (OPT)

OCTET 21, 22… Data

Table 3. UDP Protocol Field Description

OCTET POSITION UDP FIELD DESCRIPTION
OCTET 1,2 Source Port
OCTET 3,4 Destination Port
OCTET 5,6 Length
OCTET 7,8 Checksum
OCTET 9,10….. Data

Table 4. TCP Protocol Field Description

OCTET POSITION TCP FIELD DESCRIPTION ABBREVIATION
OCTET 1,2 Source Port (SRC_PORT)
OCTET 3,4 Destination Port (DEST_PORT)
OCTET 5,6,7,8 Sequence Number (SEQ)
OCTET 9,10,11,12 Acknowledgement Number (ACK)
OCTET 13,14 Data Offset(4 bit)+

Reserved(6 bit)+
(DTO, FLG)

Control Flags(6 bit)
OCTET 15,16 Window (WIN)
OCTET 17,18 Checksum (TCP_SUM)
OCTET 19,20 Urgent Pointer (URP)
(OCTET 21,22,23,24) (Options + Padding) (OPT)
OCTET 21,22… Data

25

For clarity and generality, we graph a packet containing layered protocol fields A through

J be w

determ

differen

The co

example, the protocol CD is used if B=20 and protocol EF is used if B=40. However, in the EF

pro o

start un

random

GH, an

lo (Figure 7). In this packet, fields A and B are in a lower layer protocol and the value of B

ines the protocol and the meaning of the data fields that follow. Figure 7 shows the three

t protocol stacks that are possible. The first protocol layer contains the fields A and B.

ntents of B determine which protocol is used at the next layer up the stack. In this

toc l, the E field is used to determine the next protocol layer but the next protocol does not

til after F. Protocol GH is used if E is 71 and IJ is used if E is 72. The field values were

ly selected for this example. DT1, DT2, DT3 are payload data fields for protocols CD,

d IJ, respectively.

Figure 7. An Example of a Layered Protocol Description

Most of the protocol fields have con

stant widths that are defined by the protocol format

and e

length

DT2 and DT3 have variable lengths that depend on the values of fields G and J, which define the

tal length of protocol GH and protocol IJ, respectively.

The following characteristics of each protocol field type are stored in the Protocol Memory:

 ar labeled as W(A), W(B),…,W(DT1) in this example. Some other fields have a variable

that is calculated from a length field appearing earlier in the same packet. For example,

to

26

• Field Type, a unique num otocol field. No two fields inside

the l ry av m y r

protocols. This simplifies the processing of packet s the F d Type umber also

defines the context (i.e. protocol layer) in which the field exists.

• Field Width, de es the w th of th ield if i of cons t length

• Protocol Indicator, a one-bit value that indicates whether the contents of the field are

indicative of the next protocol layer to be used. If Protocol Indicator is set to ‘1’, the

field’s contents are used by the “Jump TLB o determ e the in al Fiel ype of the

next protocol. This value is stored in the “Jump Register” until a jum to the next

protocol is indicated.

• n

If the value of Branch

pe used is the current Field Type incremented by one. If

•

ber identifying the particular pr

 Protoco Memo may h e the sa e Field T pe, even if they a e from different

the s a iel n

fin id e f t is tan .

” t in iti d T

p

Branch Indicator, a one-bit value that indicates whether there should be a branch to a

upper layer protocol immediately following the current field.

Indicator is ‘0’, the next Field Ty

the value of Branch Indicator is ‘1’, the next Field Type is taken from the “Jump

Register,” as stored by the “Jump TLB.”

• Length Indicator, a one-bit value that indicates whether the current field contains any

length information for an upcoming variable length protocol field. If the value of Length

Indicator is ‘1’, the field contains length-related information and should be passed to the

“Length Block” to be used in the appropriate calculations.

Variable Length, a one-bit value that indicates whether the current field is of variable

length. If the value of Variable Length is ‘1’, the field is of a variable length that must be

retrieved from the “Length Block.”

27

•

 Width Indicator Indicator Indicator Length Done

Packet Done, a one-bit value that indicates whether the previous field was the last of the

packet. If the value of Packet Done is ‘1’, the Protocol Analyzer halts until a new packet

is received from the PHY.

Table 5. The Protocol RAM Data

Protocol

Field
Field
Type

Field Branch Protocol Length Variable Packet

A 0 W(A) 0 0 0 0 0
B 1 W(B) 1 1 0 0 0
C 2 W(C) 0 0 0 0 0
D 3 W(D) 0 0 0 0 0

DT1 4 W(DT1) 0 0 0 0 0
EOF1 5 0 0 0 0 0 1

E 6 W(E) 0 1 0 0 0
F 7 W(F) 1 0 0 0 0
G 8 W(G) 0 0 1 0 0
H 9 W(H) 0 0 0 0 0

DT2 10 0 0 0 0 1 0
EOF2 11 0 0 0 0 0 1

I 12 W(I) 0 0 0 0 0
J 13 W(J) 0 0 1 0 0

DT3 14 0 0 0 0 1 0
EOF3 15 0 0 0 0 0 1

 Additional key field e d cture. Table 5 shows the

hypothetical Protocol RAM co or the ex ple shown in Figure 7.

3.2.2 Jump Register and Jump TLB

The Jump Register and the Jump Translation Look-aside Buffer (TLB) handle the branches

between different protocols. The Jump Register contains the Field Type of the next encapsulated

protocol layer, as set when triggered by the “Protocol Indicator” field of the Protocol Memory.

The Jump TLB is a look-up table that determines which upper layer protocol to use based on the

current Field Type and Field Data when the “Protocol Indicator” signal is asserted. Table 6

shows the Jump TLB for the protocol example shown in Figure 7.

s may also b incorporate into this archite

ntent f am

28

When the current Field Type and Field Data match a row in the TLB and Protocol

is 20, the Jump Address is 2, which is the start of the CD protocol. If the Field

Data is

 get either 8 or 12 as the

Jump Address. This value is stored in the Jump Register until the completion of field F, which

indicates a branch to the next protocol.

Field Type Field Data Jump Address

Indicator is ‘1’, the value in the “Jump Address” column is stored in the Jump Register. This

value is used for the next Field Type when “Branch Indicator” is set to ‘1’, effectively branching

to a new protocol.

In the protocol example shown in Figure 7, the “B” field’s Protocol Memory entry has a

value of ‘1’ in both its “Branch Indicator” and “Protocol Indicator” fields. Thus, the Field Type

for B (1) and the current Field Data (either 20 or 40) are used to determine the Jump Address. If

the Field Data

 40, however, the Jump Address is 6, which is the start of the EF protocol. Since protocol

field B has a ‘1’ in its “Branch Indicator” field, the Jump Address is immediately used to indicate

the next protocol after B.

For the EF protocol, the E field has a ‘1’ in its “Protocol Indicator” entry and thus is used

to determine the next encapsulated protocol in the stack. The Field Data corresponding to

protocol field E (either 71 or 72) is matched with the Field Type (6), to

Table 6. The Jump Translation Look-Aside Buffer

1 (B) 20 2
1 (B) 40 6
6 (E) 71 8
6 (E) 72 12

29

3.2.3 Length Block

The Length Block is responsible for calculating and storing the lengths of variable length

rotocol fields. Such fields include optional fields, alignment padding, and payloads. The lengths

of these fields are determined by utilizing length information contained in previous protocol

fields. For instance, the specified header length for a protocol header may be used to determine

how many option and padding bytes the header contains. In another case, the header length of a

protocol layer may be subtracted from the total length of that layer to determine the number of

payload bytes.

In the example in Table 5, field G defines the total length of the GH protocol layer, which

includes field G, field H, and payload field DT2. Since field DT2 is not fixed in length, as

indicted by a ‘1’ in its “Variable Length” entry, its length must be calculated in the Length

lock. Knowing that G contains the total length of the GH layer, the width of the payload field

Field Type and a 32-bit line for the Field Data, as well as a single

Valid bit to indicate valid output. The structure of the Protocol Analyzer Pre-Processor is shown

in Figure 8, consisting of the Protocol Memory and Protocol Address Register, the Jump TLB,

the Length Block, the Assembler, and a FIFO. The FIFO is at the beginning stage of ePAPP,

p

B

DT2 is G – W(G) – W(H), where W(x) is the fixed width of protocol field x. This value is stored

in the Length Register until the width of the payload field is requested.

3.3 CIRCUIT IMPLEMENTATION OF EPAPP

A prototype system supporting protocols Ethernet, IPv4, ARP, TCP, and UDP is implemented

with the ability to process packets coming from a 1 Gb/s Ethernet PHY. Therefore, the input is a

parallel stream of 8 bits from the 1 Gb/s PHY and the outputs are parallel streams of bits

including an 8-bit line for the

30

connecting directly to the oming data to the rest of

ePAPP.

Width

Datalength

FIFO

Protocol Addr

Jump Address

FieldData

FieldTyp

M
U
X

Next
Addr

Loadable
ster

Ju TLB
Length
Block

 Ethernet PHY as a buffer to transfer the inc

Assembler

e

Counter Regi

mp

FieldData

Protocol
Memory

FieldData

Dat tValid Data alid

FieldType

aou outV

Unclassified Byte
St from

C
ou

nt

Le
ng

th

P
ro

to
co

l

ream PHY

B
ra

nc
h

rnal Ar itecture o he Protoc nalyzer P -Processo

 Th r receives the p llel bit eam from he FIFO d places e bits o the

cor t lo ata re ster. In b is a sh

al co he widt of the c ent proto l field a

Me ry. The contents of the Protocol Memory are shown in Table 7.

 Th f four 8-bit registers to assem the inco ing blocks of 8 bits into

8-, 16-, 24-, or 32-bit chunks, as determined by the field width. A 2-to-1 multiplexer is utilized to

allow the selection of a fixed field width (from e Protoc Memory) or a variable field width

(from the Length Block). For fields that do not contain 32 bits worth of data, the most significant

bits will be padded with zero.

Figure 8. The Inte ch f t ol A re r

e Assemble ara str t an th int

rec cation of the Field D gi essence, the Assem ler ifter that has an

intern unter loaded with t h urr co s indicated by the Protocol

mo

e shifter consists o ble m

 th ol

31

Table 7. Current Content Inside Protocol Memory

ss Description Field
Width

Branch
Indicator

Protocol
Indicator

Length
Indicator

Variable
Length

Count
Don

Addre
e

Ethernet
0 Preamble 0 0 0 0 0 _high 3
1 Preamble_low 0 0 0 0 0 3
2 Destination_high 3 0 0 0 0 0

3 D 0 0 0 0 0 estination_low 1
4 Source_high 3 0 0 0 0 0
5 Source_low 0 0 0 0 0 1
6 T 1 1 0 0 0 ype 1

ARP
7 H 0 0 0 0 0 ardware 1
8 Protocol 0 0 0 0 0 1
9 Hardware Address Length 0 0 0 0 0 0
A Protocol Address Length 0 0 0 0 0 0
B Operation 0 0 0 0 0 1
C Sender Hardware Address

(H
0 0 0 0 0

igh bits)
3

D Sender Hardware Address
(Low bits)

0 0 0 0 0 1

E Sender Internet Address 3 0 0 0 0 0
F Target Hardware Address

(High bits)
3 0 0 0 0 0

10 Target Hardware Address
(Low bits)

1 0 0 0 0 0

11 Target Internet Address 3 0 0 0 0 0
12 Data Padding 3 0 0 0 0 0
13 Data Padding 3 0 0 0 0 0
14 Data Padding 3 0 0 0 0 0
15 Data Padding 1 0 0 0 0 0
16 (Ethernet)Frame Checksum 3 0 0 0 0 0
17 End of Frame 0 1 1 0 0 0

IP
18 Version+Header Length 0 0 0 1 0 0
19 Type of service 0 0 0 0 0 0
1A Total Length 1 0 0 1 0 0
1B Identification 1 0 0 0 0 0
1C Flags (3 bit)+Fragment

Offset (13 bit)
1 0 0 0 0 0

1D Time to Live 0 0 0 0 0 0
1E Protocol 0 0 1 0 0 0
1F Header Checksum 1 0 0 0 0 0
20 Source Address 3 0 0 0 0 0
21 Destination Address 3 1 0 0 0 0
22 (Options + padding) X 1 0 0 1 0

32

Table 7 (continued)

TCP
23 Source Port Number 1 0 0 0 0 0
24 Destination Port Number 1 0 0 0 0 0
25 Sequence Number 3 0 0 0 0 0
26 Acknowledgement

Number
3 0 0 0 0 0

27 Header Length, Reserve, 1 0 0 1 0 0
URG…

28 Window Size 1 0 0 0 0 0
29 TCP Check Sum 1 0 0 0 0 0
2A Urgent Pointer 1 0 1 0 0 0
2B (Options + paddings) X 0 0 0 1 0
2C Data X 1 1 0 1 0

UDP
2D Source Port 1 0 0 0 0 0
2E Destination Port 1 0 0 0 0 0
2F UDP length 1 0 0 1 0 0
30 Checksum 1 0 0 0 0 0
31 Data X 1 1 0 1 0

33

The shifter consists of four 8-bit registers to assemble the incoming blocks of 8 bit

8-, 16-, 24-, or 32-bit chunks, as determined by the field width. A 2-to-1 multiplexer is uti

allow the selection of a fixed field width (from the Protocol Memory) or a variable field w

(from the Length Block). For fields that do not contain 32 bits worth of data, the most sig

bits will be padded with zero.

The Protocol Address Register is a register that saves the current address of the Protoc

Memory. This register is actually a loadable counter that can either be incremented by one to

move to the next field within a protocol, or can be loaded with the value of the Jump Add

from the Jump TLB. This loading capability allows for branches between protocols within the

Protocol Memory.

s into

lized to

idth

nificant

ol

ress

Figure 9. Simulation Waveform for ePAPP

reenshot of a simulation waveform for ePAPP when processing a

UDP p

 Figure 9 shows a sc

acket. The inputs to and outputs from ePAPP are shown. The “data_in” signal is

representative of data arriving on an 8-bit PHY. Note that, due to FIFO and queuing delays, there

is a three cycle delay between arrival of data on the PHY and its appearance in the “field_data”

output signal.

34

The “field_data” and utput “data_valid” is high.

ple, when the Field Type is 0x06 and “dat lue of “field_data”

is 0x00000800. Field Type 0x06 corresponds to the protoc

data value 0x00000 e IP protocol. tly, one can observe a branch to

Field Type 0x18. Logically, 0x18 corresponds to the first field of an IP header.

nal architecture of the Protocol

nalyzer utilizes only a small memory and TLB, both of which can reside internal to the chip,

allowing a high clock rate

 “field_type” outputs are valid when the o

For exam a_valid” is asserted, the va

ol field of an Ethernet header, and the

800 indicates th Consequen

One significant benefit of this design is the generic nature of the field classification

outputs. Most probably, the outputs would be buffered and made accessible to a channel

processor through memory-mapped registers. This provides a very general architecture that

leaves the use of the classification information to the specific processor implementation.

Consider this implementation running at 250 MHz, which would support a 2 Gb/s peak rate.

Further consider a network processor running at 2 GHz. If one aggressively estimates that on

average a valid field is classified every two cycles, one is left with an average of 16 processor

cycles per packet field. The processor would simply need to execute a set of instructions

corresponding to a particular field type, lifting a significant pre-processing burden off of the

network processor itself.

3.4 DESIGN RESULTS AND PERFORMANCE

The performance of the Protocol Analyzer must be sufficient to keep pace with the incoming

data. For Gigabit Ethernet, the PHY transmits 8 bits every cycle at 125 MHz, thus requiring the

same clock rate for the Protocol Analyzer. Fortunately, the inter

A

.

35

It is expected that the fin Pro inside of a

Network Processor using standard ASIC tec

performan nd size, the desig d at a 130 IC solution. To do

this, VHDL was created for the Protocol Analyzer and sim ernet PHY.

The synth n in

Table 8. Performance Results After Synthesis

al implementation of the tocol Analyzer will be

hnology. However, to gauge this architecture’s

ce a n has been targete nm structured AS

ulated for a Gigabit Eth

esis result is show Table 8.

 130 nm Structured ASIC
Standard-cell Instance Count 2530 / 1.7M
Size as a % of Total Cells < 1%
Speed in MHz 360 MHz
Throughput 2.8 Gb/s

Table 9 compares the performance of the hardware ePAPP with the software-based

decoder inside the “Snort” Intrusion software-based decoder in Snort

captures packets utilizing the widely-used libpcap sniffing interface, a public domain library of

the pipelined protocol analysis in ePAPP br

Detection System. The

packet capturing utilities. The decoder program in Snort version 1.9.0 needs more than 1700

lines in C code and an average of 1245 ns execution time when running on a Dell Power-

Edge 4400 server which has dual 866MHz Pentium III Xeon processors, 1GB RAM, and is

running the Redhat 7.2 OS. The hardware-based ePAPP uses less than 1% of a structured ASIC

target and processes packets at line speeds. Protocol analysis is performed in parallel with the

capturing process, and most of the processing time overlaps with the capturing process, with a

maximum input to valid output latency of 6 clock cycles (less than 17 ns when circuit operates at

360 Hz). Assuming the capturing times for software and hardware are the same, we found that

ings a 75x performance improvement (1245 ns / 17

ns) in the latency for getting analysis results after capturing a packet. This presents ePAPP with

36

greater processing capability in high-speed networks. ePAPP and Snort support the same

protocol group, with the exception of ICMP, however analysis shows that ICMP could be

implemented without an appreciable effect on processing speed.

Table 9. Performance Comparison With Software

 Software-Based (Part of the Hardware-Based ePAPP

Decoder in Snort IDS)
Execution Type Sequential Six-stage Pipeline
Architecture Dual 866MHz Pentium III Xeon

Processors
130 nm structured ASIC

Size 1700 lines in C code < 1% of target area
Protocol Support Fixed based on available

software instructions
Expandable by adding to or
updating the Protocol RAM

Processing Speed 0.8 million packets per second Line speed
Decoding Latency (Average) 1245 ns 17 ns (6 clock cycles)
Speedup 75x Latency Decrease

In addition, Hardware ePAPP can connect directly to a physical layer interface (PHY),

avoiding the use of time-consuming capturing software (including libpcap, which is reported to

be a possible bottleneck of network monitoring process). The hardware solution may become

indispensable to replace conventional software solutions in the network security area as faster

networks are developed.

3.5 CONCLUSIONS

This chapter has introduced the Embedded Protocol Analyzer Pre-Processor (ePAPP) and shown

that it performs protocol analysis pre-processing for packet processors by augmenting and

transforming the data stream from the PHY to a stream of 8-bit and 32-bit words that uniquely

identify individual protocol fields and their corresponding data, respectively. Currently, ePAPP

supports protocols Ethernet, ARP, IPv4, UDP, and TCP, with a performance improvement of 75

37

times over the conventional functionally-equivalent software. Furthermore, by targeting this

rchitecture at structured ASIC technology it has been shown that ePAPP uses less than 1% of

the chip logic c bit Ethernet.

Future directions include using the protocol analyzer in conjunction with embedded

firewalls and network attached devices. In one implementation, this design would be paired with

hardware using a ternary content-addressable memory (tCAM) to perform intrusion detection

signature-matching as described in Chapter 5. Support will be added for additional protocols

such as ICMP and IPv6, which should require only a trivial amount of redesign. Field length

calculation information could be moved to a ROM in order to make protocol additions and

changes involving length more easily reprogrammable. For Ethernet applications, ARP and

RARP packets could be handled automatically from within the hardware and thus not burden the

embedded processor.

a

ells and executes at 361.5 MHz, and thus can be used for multi-Giga

38

4.0 CASMA: A CAM-ASSISTED SIGNATURE-MATCHING
ARCHITECTURE FOR INTRUSION DETECTION

As transmission speeds and the amount of network traffic produced increase within modern

networks, the amount of potentially harmful traffic grows as well. More than ever before, it is

essential to continuously monitor internets and intranets for packets that are of suspicious origin

or intent. The firewall has been a traditional solution to network protection, however simple

packet-filtering firewalls on the incoming edge of a network are not a sufficient guard against

network attacks for several reasons. One reason is that packet-filtering firewalls do not examine

packet payload information, which could contain signatures instrumental in detecting malicious

traffic. And even if a simple firewall could prevent any attack from entering the network, it

would be helpless against an attack launched from within.

Intrusion detection systems (IDSs) have proven to be an improved measure of

supplemental protection. Operating in a passive mode, intrusion detection systems analyze all

traffic arrive through a specific network interface or network interfaces. Host-based IDSs can be

an effective measure rge can still fall

victim to an unnoticed attack originating from a single unprotected host. Therefore, network

intrusion detection systems (NIDSs) are the optimal choice to evaluate all traffic traveling

through a network.

The question of where to position the NIDS on the network is an important consideration.

Standalone NIDS devices have been made available, however adding additional devices to a

network infrastructure can be costly and produce unwanted latency. Embedding the NIDS in the

 of protection for a single device, however the network at la

39

firewall is effective for traffic leaving and entering the network but useless for traffic traveling

between internal hosts. In fact, an optimal location for intrusion detection on a local network is

within

d with minimal change to the network infrastructure.

has

continued to grow. Stateful processing, anomaly or statistical-based detection, and packet

decryption features have become available in many off-the-shelf IDS products. The aim of this

research is to accelerate one critical aspect of the intrusion detection process: stateless packet

sign u sed detection is at the root of almost all IDSs. As the number of

Snort i

preprocessors as defined by the current Snort configuration. These perform tasks such as stateful

the network switch. Any and all traffic sent to or from a host within a local network must

travel through the network switch. Therefore, by augmenting traditional switching hardware with

a hardware-based intrusion detection architecture, intrusion detection functionality can be

achieve

The list of technical capabilities falling under the umbrella of intrusion detection

at re matching. Signature-ba

attack signatures to be searched grows, so does the latency required to perform a sequential

search. Through the use of custom combinational logic and ternary content addressable memory

(tCAMs), this work will attempt to demonstrate a clear performance improvement over Snort, a

comparable software IDS solution.

4.1 THE SNORT INTRUSION DETECTION SYSTEM

s an open source network intrusion detection system, based entirely in software. To

capture packets directly from the network card, Snort uses the libpcap library [30]. libpcap is a

system-independent C interface for low-level packet capture. Captured packets are passed to a

packet decode engine, which serves much of the same purpose as ePAPP does in this work. Once

packet capture and classification has been completed, Snort exposes packets to a series of

40

analysis, packet stream reassembly, performance monitoring, and other functions beyond the

scope of this thesis.

Once packet preprocessing has been completed, the task of rule-matching begins. Snort

rules are text-based, and lists of rules are typically stored in files to be read by Snort at startup.

Each rule is its own line of text and can be broken into two sections: the rule header, and the rule

 Information

The e a

wever, it is the rule body that provides detail to a rule and

differentiates the capa upports a number of

ptions), and still others that specify response

haracteristics or provide additional information or direction when a rule is matched (meta-data

and post-detection options).

lth n ay in to rt o

packet, it is useful to identify and separate the parts of a e tha info n,

payload information, or how to respond to a rule hit. Inherently, these rule options function in

body.

The information contained within a rule header can be divided into four main categories:

• Rule action

• Protocol

• Source Information

• Destination

 rule body is comprised of the rule options. A Snort rule does not require a rule body to b

complete rule. In most cases, ho

bilities of Snort from a simple packet filter. Snort s

rule options, some of which deal with protocol header information (non-payload options), others

that deal with payload content (payload o

c

A ough a si gle Snort rule m contain formation match any pa r parts of a

r io rul t deal with header mat

different ways. Header data is found at fixed locations within a packet, and therefore matching

header data against a rule is fairly straightforward. Finding a certain data string within a payload,

41

however, is much more difficult, since in many cases the data can appear at any byte offset

within the payload. Response to a rule hit is not relevant until after a match has occurred. Section

4.1.1 d s

hat

h.

4.1.1 nort Packet Header Rule Options

As previously discussed, Snort s: the rule header and the rule

portant that the term be confused with the

that enable packet header to oc ptions to assist in p packe er

matching are found in both the rule header and the rule body. Snort rule headers appear in the

alert tcp 111.222.111.222 80 222.111.222.111 80

or the purposes of clarity, example rule headers will, in the future, be shown in table format.

For example, the above rule wou

Ta . Example Header T Form

Rule Protocol Source Address Source Direction Destination Destination

iscusses aspects of Snort rules pertaining to packet header searching. Section 4.1.2 focuse

on rule options pertaining to packet payload searching. Section 4.1.3 considers rule options t

dictate how to respond following a rule matc

S

rules are comprised of two part

body. It is im “rule header” not

matching

parts of a Snort rule

cur. O erforming t head

following format:

rule_action protocol source_addr source_port direction destination_addr destination_port

Consider the following example:

F

ld appear as:

ble 10 Rule able at

Action Port Address Port
alert tcp 111.222.111.222 80 222.111.222.111 80

The protocol portion of the rule header is used to specify to what protocol a rule pertains.

Currently, Snort supports four protocol types: IP, TCP, UDP, and ICMP. Because certain attack

42

behaviors apply only to traffic of a particular protocol type, specifying a protocol in the rule

header significantly lowers the number of false positives triggered by Snort.

The source information and destination information portions of the rule header are used

to apply rules to specific source and destination IP addresses and port numbers. Consider the

followi

Table 11. Rule Header Example #1

Rule Action Protocol Source

Address
Source Direction Destination

Address
Destination

Port

ng rule header example in Table 11:

Port
alert tcp an 136.142.42.14 80 y any

The above example specifies t form ert action any time T is dete

from any IP address and port to port 80 at IP address 136.142.42.14. The “any” keyword is used

le Header Example #2

Rule Action Protocol Source

Address
Source

Port
Direction Destination

Address
Destination

Port

hat we per an al CP traffic cted

as a wildcard to specify a “don’t care” value for a port or IP address. Now consider the example

in Table 12:

Table 12. Ru

alert udp any any <> $HOME_NET 0

In this example, the “ ” operator is replaced by the “<>” operator. “ ” indicates that a rule

applies only to traffic in a particular direction. The previous example in Table 11, for instance,

does not apply to traffic originating from port 80 at IP address 136.142.42.14. The “<>”

operator, however, indicates that a rule is applicable regardless of the directionality of the traffic

flow. “$HOME_NET” is a Snort variable. In fact, any rule entry beginning with a “$” is a

43

variable. Variables can represent either a specific IP address or port, or a range of IP address or

port. In this case, $HOME_NET refers to any IP address on the local network that Snort is

monitoring. Therefore, the significance of the rule above is as follows: alert on any UDP traffic

ge of supported IP addresses, much as one would by using a subnet mask.

Consider Table 13:

Table 13. Rule Header Example #3

Rule

Action
PROTOCO

Address Port
tination

Address
Destination

Port

that is destined for or being sent from port 0 on any internal IP address.

Snort rules also support Classless Inter Domain Routing (CIDR). This makes it much

easier to specify a ran

L Source Source Direction Des

alert ip a any any 192.168.0.0/16 ny

This rule alerts on any IP traffic destined for an IP address beginning with “192.168.” The

to be

 also provides an easy way of specifying ranges of ports, as in Table 14:

Address Port Address Port

number following the “/” character indicates the number of bits of the IP address that are

considered, counting from the most significant bit. If, for instance, an IP packet were destined for

“192.168.1.1,” an alert would be produced.

Snort

Table 14. Rule Header Example #4

Rule

Action
PROTOCOL Source Source Direction Destination Destination

alert tcp $HOME_NET 21:23 any any

44

The rule above triggers on any l IP address that is from ports

1 23. Certain rules apply only to traditio mon

t 4”

The Snort rule body also contains options used to match packet header information. These

options are known as the “non-payload” options and are summarized in Table 16. Consider the

ex le

 any any any any (ack:0; seq:0; fragbits:M;)

The options specified in this rule are separated in Table 15:

Ru

Act
Prot s

traffic originating from an interna

2 , 22, or nally “privileged” ports, so it is not uncom

o see “:102 specified in a rule, which implies any port from 0 to 1024.

ample ru below:

alert tcp

Table 15. Snort Rule Header and Body Example #1

le
ion

ocol Source Source Dir. Destination Destination ACK Seq Fragb
Address Port Address Port # #

it

alert tcp M any any any any 0 0

Thi will

num

t y

semi-colon.

4.1.2 Snort

The Snort rule body contains another set of options known as “payload” options. Predictably,

these are options that deal with matching packet payload data. These options are summarized in

Table 17.

s rule match a TCP packet with any source and destination in which the TCP ACK

ber is 0, the TCP Sequence number is 0, and the More Fragments flag is set. The contents of

he rule bod are always within parentheses, and each rule option is always terminated by a

Packet Payload Rule Options

45

Ta s ble 16. Non-Payload Rule Option

Option Description

fragoffset This option compares the fragment offset field of an IP packet with a specified numeric value.

ttl This option compares the time-to-live field of an IP packet with a specified
numeric value.

tos This option compares the type of service field of an IP packet with a specified
value.

id his option compares ID field of an IP packet with a specified numeric value. T
ipopts his option checks to see if been set. T any specific IP options have

fragbits This option checks to see if certain fragmentation and reserve bits have been set in
the IP header.

dsize This option compares the size of the packet payload with a specified numeric
value.

flags This option checks to see if certain TCP flag bits have been set in the TCP header.
flow This option is used in conjunction with a Snort preprocessor to add some

information about the state of connection to a Snort rule. This implies some level
of stateful analysis, and therefore the flow keyword is ignored for the purposes of
this research.

seq The options compares the TCP sequence number with a specified numeric value.
ack This option compares the TCP acknowledge number with a specified numeric

value.
window This option compares the TCP window size with a specified numeric value.

itype This option compares the type value of an ICMP packet with a specified numeric
value.

icode This option compares the code value of an ICMP packet with a specified numeric
value.

icmp_id This option compares the ICMP ID number with a specified numeric value.
Icmp_seq This option compares the ICMP sequence number with a specified numeric value.

rpc This option searches for particular information in SUNRPC CALL requests. This
rule relies on a preprocessor, and will not be supported in this thesis.

ip_proto This option looks for a particular value in the IP protocol field, such as those
corresponding to ICMP, TCP, UDP, and others.

sameip This option checks to see if the source IP address is the same as the destination IP
address.

46

Tabl ions e 17. Payload Rule Opt

Option Description
content

content:“hello|00 00|hello”

The content string above would match a binary string containing the ASCII
representation of “hello” followed by sixteen 0’s, followed immediately by the
ASCII representation of “hello” once again. The content keyword has several
modifier keywords that can be used to make content matches more specific. Note
that multiple content rules can be specified within a single Snort rule.

The content keyword is the option that enables payload content matching. The
content keyword precedes a string encapsulated in quotation marks, which is the
content to be searched for in the payload. Not all data to be matched, however, can
be nicely represented with ASCII characters. Everything else is specified in
bytecode enclosed within pipe characters (|). For example:

nocase This keyword modifies the content keyword and specifies that matches are to be
case-insensitive.

rawbytes This keyword modifies the content keyword and specifies that matches should
ignore all changes to the payload performed by Snort preprocessors. Since
preprocessing is not being considered in this thesis, the rawbytes keyword is
ignored.

depth This keyword modifies the content keyword and specifies the maximum depth for
which Snort should continue looking for a content match. A depth value of five
would tell Snort to look for the start of a content match only in the first five bytes
of a payload. Depth may be specified from the start of the payload or from some
offset.

offset This keyword modifies the content keyword and specifies the minimum depth for
which Snort should start looking for a content match. An offset of five would tell
Snort to look for the start of a content match only after the first five bytes of a
payload.

distance This keyword modifies the content keyword and specifies the minimum depth for
which Snort should continue looking for a content match relative to the end of the
previous pattern match. The distance keyword is like the offset keyword, however
it must be preceded by another content string.

within This keyword makes sure at least N bytes are between pattern matches. It should
be used in conjunction with the distance keyword.

uricontent This keyword works the same as content, except only the URI section of a packet
is searched as opposed to the entire payload. Snort uses a preprocessor to
normalize the URI content before searching, however this work will not focus on
performing normalization.

isdataat This options verifies that data exists at a specified location, optionally relative to
the end of a content match.

pcre This option allows rules to be written using perl-compatible regular expressions.

47

Table 17 (continued)

byte_test T n the payload,

pares it to a specified value. The
can be relative to the start of the

payload or a previous content match.

his option reads a set amount of data from a specified location i
converts it to its numerical equivalent, and com
location to get the data within the payload

byte_jump This option is the same as byte_test, except instead of comparing the value read to
another specified value, the value read is used to jump a relative amount within the
payload. Th to account values found
in the payload itself.

is allows for relative pattern matches to take in

48

Consider the example rule below:

alert ip any any ffset:2; depth:3;)

h s specified in this rule are separated in

Ru

Act
Prot

 any any (content:“VIRUS”; o

T e option Table 18:

Table 18. Snort Rule Header and Body Example #2

le
ion

ocol Source
Address

Source
Port

Dir. Dest.
Address

Dest.
Port

Content
String

Offset Depth

alert ip any any any any “VIRUS” 2 3

Th ill

the string “VIRUS”. Specifically, the string must be begin in the third, fourth, or fifth byte of the

payload.

4. rt Post-Match Rule Options

The only com he “rule action”.

The cur

log, , dyn

and analysis s

for future analysis. Alert indicates that a packet should be logged and that some form of alert

 the rule match. Dynamic rules remain dormant until triggered

is rule w match an IP packet with any source and destination in which the payload contains

1.3 Sno

ponent of a Snort rule header that has not yet been described is t

re are rently five rule actions defined that can be specified as part of a Snort rule: pass,

 alert amic, activate. Pass indicates that if a rule is matched, the packet should be ignored

hould continue onto the next packet. Log specifies that a packet should be logged

should be generated in response to

on by an activate action. Activate rules behave like alert rules but have the additional ability to

enable dynamic rules. This thesis focuses exclusively on alert rule types.

There are two additional categories of Snort rule options not yet discussed. “Meta-data”

options contain information about the rule, such as its origin and severity. “Post-detection”

options provide detail about how the rule hit should be handled. These options are summarized in

Table 19 and Table 20, respectively:

49

Table 19. Meta-data Rule Options

Option Description

msg This is the message that accompanies the alert that fires when the corresponding rule is matched.

reference This identifies the source of additional information about the attack the rule
addresses.

sid The sid keyword is used to uniquely identify a Snort rule. It serves as the primary
key for the rule.

rev This keyword is used to specify the revision of a particular rule, and must be
proceeded by an sid.

classtype This defines the classification of the attack the rule addresses. Snort defines a
default list of classtypes, each of which is assigned a priority.

priority This assigns the rule an explicit priority. If a classtype is also present, the
verridden. classtype’s default priority is o

Table 20. Post-detection Rule Options

Option Description
logto This option tells Snort to log the corresponding packet to a special output log file.

session This option is used to extra data from user TCP sessions to a log.
resp This option is used to attempt to close an open session when an alert is triggered.
react This option allows for a flexible, customizable response to the appearance of a

certain traffic type.
tag This option allows rules to more than just the packet that matched the rule. Future

packets with the same source or destination addresses are also logged to facilitate
better post-attack analysis.

4.1.4 Summary of Snort Rules

Mapping Snort rules into content-addressable memory entries is not a trivial task. There are

obviously quite a few Snort rule options to take into consideration. Because CAM entries are of a

limited finite length, it is infeasible to attempt to encapsulate an entire Snort rule into a single

CAM entry. The need arises to distinguish more than one type of search. As previously

discussed, every option applies either to information found in the protocol headers of a packet, to

formation found within a packet’s payload, or to a post-match response. Therefore, it is a in

50

logical choice to from searches

attempting to match payload content. This design decision is further reinforced by the nature of

the ePAPP component, which classifies and outputs all of the header information before any

payload data is produced. Post-match behavior will be left to post-processing of the CAM search

results, so these options will not be considered in the CASMA architecture.

For the purposes of this thesis, the Snort rules being evaluated for adaptation to the

CASMA architecture are those that were supplied with Snort version 2.1.2. In total, this

amounted to 1993 individual Snort rules. Figure 10 shows a breakdown of the number of times

each rule option appears within the ruleset.

separate searches dealing with packet header information

Number of Occurances of Each Option in a 1,993-Rule Snort Rules

1153

1000

1200

1400

1742

873

465 437

300
265

213

4 3 1 1 0 0 0

400

600

800

1600

1800

2000

uri d by
t by

t i i ip icm
f fra

Figure 10. Number of Occurrences of Each Option in the Entire 1,993-Rule Snort Ruleset

130 128
96 80 54 34 32 16 11 7 7 6 6 6

0

200

co
nte

nt

no
ca

se

co
nte

nt

de
pth

off
se

t

ist
an

ce
with

in

e_
jum

p
ity

pe pc
re

e_
tes

t
ico

de

sd
ata

at
ds

ize fla
gs

cm
p_

id se
q

_p
rot

o
p_

se
q id

rag
bit

s
ac

k
ipo

pts ttl

wind
ow

sa
meip

go
ffs

et tos rpc

51

4.2 TERNARY CONTENT-ADDRESSABLE MEMORY

The ever-increasing numbers of network attacks necessitate a corresponding rise in the number

of intrusion detection rule signatures. Software-based and even specialized processor IDS

solutions rely on sequential searching techniques, and therefore increases in the amount of rules

to be searched adversely affect search times. Thus, an architecture that lends parallelism to the

search process will achi erformance, but also a

performance increase that will grow relative to future increases in the length of the ruleset.

This is the motivation behind the use of content-addressable memory (CAMs) in the

search architecture. CAMs are capable of accepting a search string as input and producing search

results in a fixed amount of time that is irrespective of the number of CAM entries (confined, of

course, to the maximum depth of the CAM component.) Specifically, this design uses a ternary

content-addressable memory (tCAM) to perform signature matching. tCAMs have the added

ability to specify mask bits for each individual CAM entry, indicating which of the entry’s bits

are to be used in searching and which are “don’t care” values. A mask bit value of ‘0’ indicates a

“don’t care,” while a value of ‘1’ indicates a bit that will be used for searching. Consider the

following 8-bit example, where an ‘x’ represents a “don’t care” value in the string represented:

CAM data entry: 0 1 0 1 0 1 0 1

 Associated mask entry: 1 1 1 1 0 0 0 0

eve not only an immediate increase in search p

 Resulting string: 0 1 0 1 x x x x

Thus, only the first four bits of the CAM entry are to be considered when performing a search. A

search using search string “0 1 0 1 1 1 1 1” would result in a match, for instance, while a string

such as “1 1 1 1 0 1 0 1” would not.

52

Figure 11 shows an example with a populated CAM. A search performed using the input

shown would produce hits on addresses three and five. Remember that each entry is actually

comprised of a data component and a mask component.

Search String
0 0 1 1 0 1 1 1

0 1 1 0 x x x x

1 1 x x 1 1 x x

1 1 1 1 0 0 0 0

0 x x x 0 x x x

x x 0 0 0 0 x x

0 x 1 1 0 x 1 1

0 1 x x 1 0 1 x
.
.
.

0

1

2

3

4

5

6
.
.
.

Address 3, Address 5, . . .

C
A
M

Results

Figure 11. Example of a Search on a Populated CAM

For the purposes of this specific design, the 9Mb Network Search Engine provided by

Integrated Device Technologies is used as the tCAM component. Capable of operating at clock

speeds up to 200 MHz, a single instance of the NSE can hold 16,384 576-bit entries. A single

576-bit search that produces no result can be completed in 20 clock cycles. A single 576-bit

search that produces hits requires 22 clock cycles, plus 8 additional cycles for every match found

in the CAM.

53

4.3 PACKET HEADER SEARCHING

 few c ts of a Snort rule that pertain to information found in the

protocol s of a packe ecau

y can be addressed with is section demonstrates that all

pa option ithi

 to s for

rt of a S rule

par tifies t ourc

por being r renc affic flow. All of this

informat exposed in p ocol lso dependent on

info n protoco ead gbits, dsize, flags, seq,

ack, window, itype, icode, icmp_id,

Table 2 zed by proto hea rch CAM entry.

Th hese fi com re using a CAM entry

width of 576 bits, and that 1 bit is used to indicate whether the CAM entry is a header search rule

le, ther re:

(576

Also, in order to facilitate th size the payload. In

the case of TCP, the payload size is equal to t inus the sum of the IP

eader and TCP header lengths. In the case of UDP, the payload size is equal to the IP total

length field minus the sum of the IP header and UDP header lengths. Assuming that the

maximum packet size is 1500 bytes, the length of the maximum Ethernet frame, the payload size

an be represented with 11 bits. Therefore:

There are quite a omponen

 header t. B se packet headers are found in a static location within the

 a single CAM search. Thpacket, the

cket header-related s w n a Snort rule can be encoded into a single CAM entry for

that rule, with entry bits pare future rule expansion.

The first pa nort , as discussed in Section 4.1, is the Snort rule header. This

t of the rule iden he s e and destination IP addresses, the source and destination

ts, the protocol efe ed, and the directionality of the tr

ion is rot headers. The following rule options are a

rmation found i l h ers: fragoffset, ttl, tos, id, ipopts, fra

 icmp_seq, ip_proto, and same_ip. Thus, the fields listed in

1, organi col der type, must be included in a header sea

e widths of all of t elds bined totals 312 bits. Assuming we a

or a payload search ru e a

 – 1) – 312 = 263 unused bits

e d rule option, we must calculate the length of

he IP total length field m

h

c

54

Table 21. Protocol Header Fields Incl ded in a Header Search CAM Entry

Protocol Field Width Description

u

Field
(in bits)

Ethernet Header
Type 16 This is required to identify an IP packet. Other packet types

that travel over Ethernet, such as ARP and RARP, should
not trigger any Snort rules.

IP Header
Source IP Address 32 This is used to match against a source IP address specified

in a rule.
Destination IP Address 32 This is used to match against a destination IP address

specified in a rule.
Source Port 16 This is used to match against a source port specified in a

rule.
Destination Port 16 This is used to match against a destination port specified in

a rule.
Type of Service 8 This is used with the tos rule option
Identification 16 This is used with the id rule option.

Flags 3 This is used with the fragbits rule option.
Fragment Offset 13 This is used with the fragoffset rule option.
Time-To-Live 8 This is used with the ttl rule option.

Protocol 8 This is used with the ip_proto rule option. This will also be

that correspond to each respective protocol.
used to match TCP, UDP, and ICMP packets with the rules

Options 8 This is used with the ipopts rule option.
TCP Header

Sequence Number 32 le option. This is used with the seq ru
Acknowledge Number 32 This is used with the ack rule option.

TCP Flags 8 This is used with the flags rule option.
TCP Window Size 16 This is used with the window rule option.

ICMP Header
ICMP Type 8 This is used with the itype rule option.
ICMP Code 8 This is used with the icode rule option.

ICMP ID 16 This is used with the icmp_id rule option.
ICMP SEQ 16 This is used with the icmp_seq rule option.

55

263 – 11 = 252 unused bits

If header searching were as simple as matching header field values extracted from a packet

against values stored in CAM entry, there would be nothing left to do for header searching.

Unfortunately, it is not that simple. Many of the Snort rule options support “greater than” (>),

there ar

“less than” (<), and “not equal to” (!) operations. While tCAMs are excellent for performing

exact matches, they offer no assistance with range checking or negation operations. We must

instead use customized combinational logic to pre-compute all of the special rule cases that

require a “>”, “<”, or “!” operation. Within the 1993 rules packaged with Snort version 2.1.2,

there are 35 special cases that must be accounted for. Each can be represented by a 1-bit flag

within the header search CAM entries. If the special case must be true to satisfy a rule, the

header search CAM entry that corresponds to the rule will have a ‘1’ in the bit position that

corresponds to the special case flag. Otherwise, the bit will be set to ‘0’. To accommodate these

flags, 35 more bits of the CAM entry must be used:

252 – 35 = 217 unused bits

The remainder of these unused bits will be reserved for special case flags that will be added to

accommodate future additions to the ruleset.

It is worthwhile to note that there will be many rules with the same header search

requirements, so the number of header search CAM entries will be significantly less than the

total number of entries. Several rules require, for instance, only that the destination port be port

80 for the rule to be applicable. Only one entry enforcing this requirement is necessary. Also, if

e one or more rules that require a condition A, and one or more rules that require a

condition B, there is no need to create a separate entry for a rule that requires conditions A and

56

B. Each of these conditions will be matched individually during a CAM search, and search

results can be correlated by a post-processor to indicate a rule hit.

4.4 PACKET PAYLOAD SEARCHING

While h

ds are greater than 72 bytes, the maximum width of a

CAM entry, there is no way to avoi oad searches. Fortunately, payload

searching can begin as soon as the d to fill an entire search string, in

many cases before the entire payload

The fact that a content string offset within a payload complicates

the payload search issue and gives rise to an portant performance trade-off. Consider, for

 would be to create a

single CAM entry “HELLOxxxxx” where ‘x’ indicates

searched at every byte offset. With this method, a payload of length n would require n searches.

“xHELLOxxxx”, “xxHELLOxxx”, “xxxHELLOxx”, “xxxxHELLOx”, and “xxxxxHELLO”.

Using this method, the payload would only have to be searched at every six-byte offset as

eader searches attempt to find a match for information that spans several fields of several

protocol headers, payload searches pertain to a single field: the packet payload. And while a

packet’s header information can be checked for matches with a single search, many payloads

will require a number of separate CAM searches to ensure an exhaustive search for content

matches. This is because a content string that matches a rule can be found at any byte offset

within a payload. Considering many payloa

d performing multiple payl

re is enough data buffere

 has been buffered.

 can be found at any byte

im

example, the content string “HELLO”. For the purposes of this example, assume that the width

of a CAM entry is 10 bytes. One solution to the payload search problem

 a “don’t care” value. The payload could

be searched 10 bytes at a time, shifting one byte after every search until the payload had been

Another solution would be to create six different CAM entries: “HELLOxxxxx”,

57

opposed t of length

. Clearly, the second method is m ore effici e – there is a six-fold

d red s of s ther

in the num r of CAM entries requ d. A balance must be chosen which combines a reasonable

amount of search time with acceptable space requirements.

Consider, now, that CAM entries are 72 bytes wide. Two of the 72 bytes are reserved for

offset and depth information (explained later). This leaves 70 bytes with which to encode content

match strings. Assume that payloads are searched at 8-byte offsets. This means that each content

string would necessitate eight CAM entries, with the content string appearing zero bytes to seven

bytes deep in the entry, respectively. Consider once again the content string “HELLO”. The

following CAM entries would be required:

“HELLOxxxxxxxx . . . “
“xHELLOxxxxxxx . . .”
“xxHELLOxxxxxx . . .”
“xxxHELLOxxxxx . . .”
“xxxxHELLOxxxx . . .”
“xxxxxHELLOxxx . . .”
“xxxxxxHELLOxx . . .”
“xxxxxxxHELLOx . . .”

In the worst case, the content string begins seven bytes deep into the CAM entry. Therefore, a

single CAM entry can support a content string of maximum length:

70 – 7 = 63 bytes

able 22 shows a relationship between the length of the payload (n), the number of payload

content strings requiring CAM entries (c), and the number of resulting CAM entries for a shift

amount of s bytes. This relationship is graphically represented in Figure 12.

o every byte offset. Only (n-1)/6 + 1 searches would be required by a payload

n uch m

 for searching. In term

ent in terms of tim

ecrease in time requi pace, however, e is a six-fold increase

be ire

T

58

Table 22. Effects on Time and Space Requirement for Varying Payload Shift Amounts

Shift Amount

Between Searches, s
of Searches

Required for Payload
of Resulting
CAM Entries

Maximum Supported
Content String Length

(in Bytes) ((n-1)/s + 1) (70 – (s-1))
1 n c 70
2 ((n-1)/2 + 1) 2c 69
4 ((n-1)/4 + 1) 4c 67
8 ((n-1)/8 + 1) 8c 63
35 ((n-1)/35 + 1) 35c 36
70 ((n-1)/70 + 1) 70c 1

Shift Amount Between Searches vs. CAM Entries Required

0

10

40

50

60

70

Sh
ift

 A
m

ou
nt

 B
et

w
ee

n
Se

ar
ch

es
 (B

yt
es

)

20

30

80

0 10 20 30 40 50 60 70 80

Relative # of Required CAM Entries Max Supported Content String Length (Based on 70 byte w idth)

Figure 12. Shift Amount Between Searches vs. CAM Entries Required

59

Of the 1742 content and 873 uricontent strings specified by the Snort ruleset being used,

only three strings are longer than 63 bytes. The ability to fit entire content strings in a single

CAM entry reduces the amount of result correlation that must be performed by a post-processor,

as well as limits the number of false positive CAM matches. This is the justification behind the

design

le. For instance, consider a rule where the strings “HELLO”

and “GOODBY ther. Encoding

ngs within a Snort rule are related through a content modifier

keywo

body example:

(content:“HELLO”; content:“GOODBYE”; within:5;)

This rule states that a paylo and “GOODBYE”, and that

“GOODBYE” must start e end of “HELLO”. To

 decision to search payload data at 8-byte offsets.

Some Snort rules contain several content strings. (Note that from this point forward, the

term “content string” will be used interchangeably to refer strings found after a content or

uricontent keyword within a Snort rule. The methodology to handle each keyword type is

identical.) In the case where the relative positions of the strings within the payload are unrelated,

each is regarded as a separate sub-ru

E” must both be present, but with no particular relation to one ano

this into a single CAM rule would be quite infeasible, considering that a unique CAM entry

would be required for each possible spacing of the strings within a payload. Furthermore, this

method would not work if the strings appeared more than the width of a CAM entry apart.

Instead, each unrelated content string is regarded as a separate sub-rule. Post-processing can be

used to correlate search results on related sub-rules.

In some cases, content stri

rd, such as distance, or within. In this case, all of the content strings that are related in

some way must be considered in the same CAM rule, since the spacing between the strings

within a payload is critical to discerning a rule hit. Consider the following rule

ad must contain “HELLO”

within five characters (bytes) of th

60

accommodate this rule, five new content strings can be developed to represent these

requirements: “HELLOGOODBYE”, “HELLOxGOODBYE”, “HELLOxxGOODBYE”,

“HELLOxxxGOODBYE”, “HELLOxxxxGOODBYE”. Obviously, as the within value becomes

larger, more CAM entries will be required. Consider this example:

(content:“HELLO”; content:“GOODBYE”; within:5; content:“HOWDY”; within:5;)

This rule contains three content strings related to one another in a chain. To allow for all possible

combinations within a payload, 25 contents strings must be considered in the CAM, ranging

from “ “HELLOxxxxGOODBYExxxxHOWDY”. Remember,

also, that each content string s to account for every byte-

care” values be added after the “HELLO” string. The following

content strings would result: “HELLOxxGOODBYE”, “HELLOxxxGOODBYE”,

“HELLOxxxxGOODBYE”, “HELLOxxxxxGOODBYE”, “HELLOxxxxxxGOODBYE”. The

distance keyword mandates a minim of a content match from which to

search for the next content string.

None of the examples consi ed a restriction upon where in the

payload a content string or group of ust be found. The depth and offset

Snort rule options do exactly that, however. Consider the following examples:

(content:“HELLO”; depth:4;)

(content:“HELLO”; offset:3; depth:4;)

HELLOGOODBYEHOWDY” to

 will result in eight separate CAM entrie

offset. Now consider this example:

(content:“HELLO”; content:“GOODBYE”; distance:2; within:5;)

This is virtually the same as the first example considered, except that the distance keyword

requires that two extra “don’t

um offset from the end

dered thus far have plac

 related content strings m

(content:“HELLO”; offset:3;)

61

In the first example, a match is on nd beyond the first three bytes of

 some way of indicating the current depth of the payload information being

searche

epth:4;)

One ca

“HELLOxxxxxxxx . . . “

“xxHELLOxxxxxx . . .”

“xxxxxxHELLOxx . . .”

“xxxxxxxHELLOx . . .”

IJ . . .”, the first payload search would search

the following string:

HIJ. . .”

The second payload search would use this string:

ly valid if “HELLO” is fou

the payload. In the second example, a match is only valid if “HELLO” is found within the first

four bytes of payload. In the third example, “HELLO” must be found within the four bytes

following the first three bytes (bytes four through seven). When a payload search is performed,

there must be

d. There must also be some way of indicating within a CAM rule entry at which payload

depths the rule applies.

Consider the following example:

(content:“HELLO”; offset:10; d

n extract from the rule that “HELLO” must be found within bytes 11 to 14. It is also

known that eight payload byte offsets are checked every payload search. Therefore, we know

that bytes 11 through 14 would be checked during the second payload search. Our CAM entries

for this rule are the following:

“xHELLOxxxxxxx . . .”

“xxxHELLOxxxxx . . .”

“xxxxHELLOxxxx . . .”

“xxxxxHELLOxxx . . .”

 If our payload were “HELLOABCDEHELLOFGH

“HELLOABCDEHELLOFG

62

“DEHELLOKLMNO . . .”

One can see that there would be a match during each payload search. According to the content

rule, however, only the second match should be valid. By specifying during which payload

searches a CAM entry is valid based on the current search depth, we can achieve this

functionality.

This paper proposes a one-hot encoding scheme to indicate search depth within a CAM

rule entry. Fifteen bits of a CAM entry are employed, the least significant of which corresponds

to the f

d in the CAM bit that corresponds to that depth. If the content string is not

valid at a given depth, a ‘0 it position. In the example

When a payload sear rrent 8-byte offset)

are appended to 15 b and 1 bit set to ‘1’

to indicate that the p ad search iteration,

the 15 encoded bits would be:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

For the fifth search iteration, the 15 bits would be:

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

For search iterations 15 and above, the 15 bits would be:

irst payload search iteration, the most significant of which corresponds to search iterations

15 or greater. These bits will be referred to as “depth bits”.

If the content string in a CAM rule is valid at a certain payload search depth, a “don’t

care” value is place

’ value is placed in the corresponding b

above, matches are valid only during the second payload search iteration, so the 15 depth bits

would be set as follows:

0 0 0 0 0 0 0 0 0 0 0 0 0 x 0

ch is performed, 70 bytes of payload (beginning at the cu

its that are one-hot encoded to indicate the current depth

resent search type is payload search. For the first paylo

63

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

When a CAM search is performed, the 15 bits that indicate the current search iteration are

compared against the depth bits specified in the CAM entry. If the bit indicating the search depth

lines up with a “don match is found. If,

however, the bit indi icates that a content

match is not valid a rdless of a content

match.

Recall that each content string derived from a Snort rule requires eight CAM entries, each

beginning at a different byte-offset. The fact that one of these offsets is valid for a certain search

iteration not does guarantee that all of them are valid for the same iteration. Consider again our

previous example:

(content:“HELLO”; offset:10; depth:4;)

A content match is only valid if “HELLO” is found beginning at bytes 11 through 14. Below are

the eight content string offsets and their corresponding depth bit values:

“HELLOxxxxxxxx . . .” 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

“xxHELLOxxxxxx . . .” 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

“xxxxHELLOxxxx . . .” 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0

“xxxxxxHELLOxx . . .” 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
“xxxxxxxHELLOx . . .” 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Four of the eight values are actually never valid and for optimization purposes can be left out of

the CAM completely. Consider another example:

’t care” value, then the CAM entry is valid if a content

cating the search depth lines up with a ‘0’ value, this ind

t this depth and a CAM hit will not be produced rega

“xHELLOxxxxxxx . . .” 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

“xxxHELLOxxxxx . . .” 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

“xxxxxHELLOxxx . . .” 0

(content:“HELLO”; offset:10; depth:26;)

64

In this case, the depth at which a match is valid spans several search iterations, so all of the

content string offsets will be valid. Below are the eight offsets and their corresponding depth bit

values:

“HELLOxxxxxxxx . . .” 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

“xxHELLOxxxxxx . . .” 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

“xxxxHELLOxxxx . . .” 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

“xxxxxxHELLOxx . . .” 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

“xHELLOxxxxxxx . . .” 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0

“xxxHELLOxxxxx . . .” 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

“xxxxxHELLOxxx . . .” 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

“xxxxxxxHELLOx . . .” 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0

Because 15 bits are employed for this scheme and because each payload search employs an 8-

byte offset, o ll that if an

offset and a depth value are specified, the sum of these values must be less than 140.

When the distance keyword when not used in conjunction with within, it is difficult to

encode in a CAM entry. The distance keyword works the same as offset, but begins counting

from the end of a previous content match, which is unknown ahead of time. Content strings

related only by the distance keyword should be treated as separate content strings. By passing the

current search iteration value to the post-processor that is performing result correlation, it can be

determined how deep into a packet a match occurred and, more importantly, whether one match

occurred at an appropriate distance from another.

Thi es

are 576 bits (72 bytes) wide, and will be displayed in eight rows of 72 bits each. Header

info ce

ffset and depth values of less than 8 * 15, or 140, can be encoded. Reca

4.5 SNORT RULE ENCODING EXAMPLES

s section will demonstrate some sample encodings of representative Snort rules. CAM entri

rmation will be encoded in the following order: source address, destination address, sour

65

port, destination port, type of service, identifica on, IP flags, fragmentation offset, time-to-live,

protocol, IP options, TCP sequence number, TCP ACK number, TCP flags, TCP window size,

ICM nd

spe ry

“do he

CA st

t 8,233.0.0.0/8,239.0.0.0/8] any (msg:"BAD-TRAFFIC syn to
multicast address"; flags:S+; classtype:bad-unknown; sid:1431; rev:6;)

This rule is triggered when packets with the SYN flag set are sent to multicast addresses. The

rule contains no content or uricontent keywords, so no payload search CAM entries will be

necessary. Three header rules will be necessary, however, one for each of the three destination

address subnets specified. Four pieces of information must be encoded into each header rule:

• The Ethernet type must be set to IP.

• The IP protocol field must be set to TCP.

• The destination IP address must be specified.

• The TCP SYN flag must be set as on.

The following is the header search CAM entry for source IP address 232.0.0.0/8:

xxx0

ti

P type, ICMP code, ICMP id, ICMP sequence number, Ethernet type, payload size, a

cial-case flags. Each CAM entry is shown with its corresponding mask entry. CAM ent

n’t care” values will be annotated with an ‘x’ character, but must actually be entered into t

M as a ‘1’ or ‘0’. The last bit of a header search CAM entry is always set to ‘0’, and the la

bit of a payload search CAM entry is always set to ‘1’, to differentiate the search types.

4.5.1 Snort Rule Example #1

aler tcp any any -> [232.0.0.0/

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx11101000xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xx
00000110xx
xxxxxxxxxxxxxx1xxx
xxxxxxxx0000100000000000xx
xx
xx

66

The corresponding mask entry is:

0001

The other two required header search CAM entries would be identical, except for the change in

the destination IP address part of the entry.

4.5

Thi nd

ssible malicious file. The rule will require one header search

CA s.

Thr

• The destination port must be specified.

The following is the header search CAM entry:

xx

00010001xx
xxx

xxxxxxxx0000100000000000xx

000000000000000000000000000000001111111100000000000000000000000000000000
00
1111111100
000000000000001000
00000000111111111111111100
00
00

.2 Snort Rule Example #2

alert udp any any -> any 69 (msg:"TFTP GET nc.exe"; content: "|0001|"; offset:0; depth:2;
content:"nc.exe"; offset:2; classtype:successful-admin; sid:1441; rev:2;)

s Snort rule pertains to Trivial FTP traffic, and triggers when filename “nc.exe” is fou

within the payload, indicating a po

M entry and payload search CAM entries corresponding to two unrelated content string

ee pieces of information must be encoded into the header search CAM entry:

• The Ethernet type must be set to IP.

• The IP protocol field must be set to UDP.

xxxxxxxx0000000001000101xx

xxxxxxxxx

xx
xx
xxx0

67

The

1111111100
000

00000000111111111111111100

The o

CA

xxxxxxxx0000000000000001xx
x xx

xx

xx
xx
xx00000000000000x1

00

00

00
00

0011111111111101

The second content string, "nc.exe", can be matched anywhere after the second byte of the

payload. Eight CAM entries are required to represent this rule, the first of which is shown below

(note that “011011100110001100101110011001010111100001100101” is the binary equivalent

of “nc.exe”):

011011100110001100101110011001010111100001100101xxxxxxxxxxxxxxxxxxxxxxxx
x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx
x xxx

 corresponding mask entry is:

00
00000000111111111111111100

0000000000000000000000000

00
00
0001

 first content string, "|0001|", must be found within the first two bytes of payload. Only tw

M entries will be necessary to represent this rule. The second of these two entries is shown:

xx xxxxxxxxxxxxxxxxxxxxx

xx
xx

The corresponding mask entry is:

00000000111111111111111100

00

00

00

xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx xxxxxxxxxxxxxxxxxxxxxxxxxx

68

xx

xxxxx
xx

xxx
xx01

The

00
00

 0011

4.5.3 Snort Rule Example #3

aler ff
f

Thi en

etected. The rule will require two header search CAM entries and payload search CAM entries

corresponding to two related content strings. Two header search CAM entries are required

because the rule is bi-directional, and therefore the source and destination addresses must be

swapped. Five pieces of information must be encoded into the header search CAM entry:

• The Ethernet type must be set to IP.

le

to

ort must be set.

 corresponding mask entry is:

11000000000000000000000000
00
00
00
00

t tcp any any <> $HOME_NET 179 (msg:"MISC BGP invalid type (0)"; content:"|ff ff ff ff
f ff ff ff ff ff ff ff ff ff ff|"; offset:0; depth:16; content:"|00|"; distance:2; within:1; dsize:>1;

classtype:bad-unknown; sid:2159; rev:4;)

s rule triggers when a Border Gateway Protocol (BGP) packet with an invalid type has be

d

• The IP protocol field must be set to TCP.

• The source or destination address must be specified. In this case, a variab

($HOME_NET) is used, which for the purposes of this example corresponds

123.123.0.0/16.

• The source or destination p

• The “dsize>1” flag must be set.

69

The ce

add

xx
x 0xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxx

xx

xxx0

The corresponding mask entry is:

11111111111111110011111111

1111111100

000000001111111111111111000000000000000000000000000000000001000000000000

00

on of a distance vale of 2 and a within value of 1 simply means that

the con

xxxxxxxxxxxxxxxxxxxxx1111111111111111
11
11xxxxxxxxxxxxxxxx00000000xxxxxxxx
xx
xx
xx
xx

001111111111111111

 following is the header search CAM entry which corresponds to $HOME_NET as the sour

ress:

0111101101111011xx00000000
10110011xx
00000110xx

xx xxxxx000000001000000

xx

1111111100

00

00

0001

Despite the apparent complexity of this rule, only content search string must be converted to

CAM entries. The combinati

tent string must begin exactly three bytes after the other the other match ends. Eight CAM

entries are needed to represent this rule, and the last of the eight is shown:

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx0000000000000xx1

The corresponding mask entry is:

70

11

00000000000000000
1100000000000000001111111100000000

000
00
000
00

 the scope of this thesis. The nocase

ption would require pipelined case-conversion of the payload. This work has already been

accomplished elsewhere and is not addressed in this paper. The isdataat option cannot be

performed within ing whether the

ata being input for a search is valid. The byte_test and byte_jump function based on values read

. These rules are unpredictably dynamic and do not feasibly port to

ternary content-addressable memory

entries.

4.6 THE CASMA ARCHITECTURE

000

 001111111111111001

4.5.4 Snort Rule Exceptions

There are a few Snort rule options that are not compatible with the suggested architecture. The

flow option requires stateful processing which is beyond

o

a CAM, since content-addressable memory has way of know

d

from within the payload itself

CAM entries. Finally, the pcre option supports perl-compatible regular expressions. These

expressions do not convert well to static CAM entries, and therefore the pcre option is not

implemented in this design.

Of the entire 1993-rule Snort ruleset packaged with Snort version 2.1.2, the architecture

presented is capable of encoding 1729 of the rules into

 Thus, 86.8% of the rule are supported.

This section describes the actual architecture used to prove the validity of the methodologies

discussed earlier in this chapter. The 9Mb Network Search Engine provided by Integrated Device

Technologies is used as the tCAM component. This device has the capacity to support 16,348

71

addressable entries, each of which supports a 576 bit (72 byte) data component and a 576-bit (72

byte) mask component.

 Figure 13 recaps the position of the CASMA architecture within the pipelined switch

architecture presented by this thesis. CASMA accepts packet data parsed into protocol fields

from ePAPP and uses this data to perform stateless intrusion detection signature-matching, the

results of which are passed to an upstream processor. Thus, the processor is relieved of the

resource-consuming task of performing pattern matching.

PHY ePAPP
Unclassifed
Byte Stream

CASMA

Classif ied
Packet Info

Signature
Match Info

Upstream
Processing

Netw ork
Cable

Network Switch

CAM

Figure 13. Position of CASMA in the Presented Switch Architecture

4.6.1 CASMA Data Flow

Data arrives to CASMA from the preceding ePAPP component in the form of a FieldData input,

machine (FSM), to initiate a packet header CAM search. Because the width of the tCAM

a FieldType input, and a Valid input. FieldData is a 32-bit bus that delivers chunks of packet

data, separated into individual packet fields. FieldType is an 8-bit bus that concurrently identifies

the type of packet field being delivered by FieldData. The Valid input is high whenever the data

on the FieldData bus is a properly offset valid packet field.

Data on the FieldData bus that is identified as a packet header field by FieldType is

stored in the Packet Header Register. Once all header information for a packet has been received

from ePAPP, the HeaderReady signal is asserted. This alerts the Controller, a finite state

72

component being used is 576 bits, this must also be the length of the search string passed from

the Controller to the tCAM. The packet header search string is assembled with information from

the Packet Header Register as specifically described in Section 4.5. Extra search string bits that

acket

ayload search. As payload data is received a byte at a time, it is stored in a byte-wide FIFO. The

depth of the FIFO must be such that the maximum payload size can be accommodated, in this

case 1472 bytes. This is derived by subtracting the minimum IP header size (20 bytes) and the

minimum UDP header size (8 bytes) from the maximum Ethernet frame size (1500 bytes).

 The output of the FIFO is connected to a chain of 70 1-byte registers. There is also a

single valid bit corresponding to each register that specifies whether or not the register contains

valid payload data. On each cycle, the valid bit of the register farthest from the FIFO is checked.

If it is set to ‘0’, a byte is read out of the FIFO into the first register, and all other registers and

valid bits shift their values to the next register. This is done until the valid bit of the last register

is set to data is

passed to the Controller to be used as the data part of the packet payload search string.

 After each payload search iteration, the entire payload must be shifted eight bytes. This is

achieved by clearing the valid bits associated with the last eight registers in the payload register

chain. This requires eight FIFO reads to repopulate eight invalidated bytes, and thus an eight-

byte shift results.

are currently unused are padded with zeros. The Controller passes the search string to the tCAM

in eight consecutive 72-bit chunks. The final bit of the final chunk is always set to ‘0’ to indicate

that the search string contains header information.

 While a packet header search is occurring, CASMA continues to receive data from

ePAPP. This remaining data is payload data and must be buffered for future use in a p

p

‘1’, indicating that 70 bytes of valid data have been retrieved from the FIFO. This

73

 Two counters are kept to keep track of the payload buffering status. Both counters begin

counting when the first byte of payload data is received. The first counter is initialized to the

length of the payload and counts down. When it reaches zero, payload buffering is complete and

will not occur again until a new packet payload arrives from ePAPP. The second counter counts

up from zero and triggers the PayloadReady signal when enough bytes have been buffered to

egin performing packet payload searches.

 An internal “Remaining” signal is kept which is initialized to the length of the payload.

Each time the payload is sh emaining. If Remaining is

reater than one, the SearchAgain signal is set to ‘1’. When Remaining dips below zero,

SearchA

b

ifted eight bytes, eight is subtracted from R

g

gain is set to ‘0’ to indicate that no more searches need to be performed on the current

payload. Figure 14 is a visual overview of the internal design of the CASMA architecture.

Packet
Header

Register

Packet
Payload

Registers

FieldData
FieldType
Valid

Controller

HeaderSearchString

PayloadSearchString

CAMSearchString

Packet
Payload
Counters

CurrShiftIteration

ShiftPayload

ShiftPayloadSpecial

strobe

SearchAgain

CurrShiftIteration

SearchType

SearchResults

Cases

. . .

HeaderReady

PayloadReady

HeaderSearchDone
PayloadSearchDone

FIFO

SearchAgain
PayloadReady

ShiftPayload

PayloadSearchString

Figure 14. Internal Circuit Design of the CAM-Assisted Signature-Matching Architecture

The flow of the Controller state machine is shown in Figure 15. Each of the super-states

shown contains a sub-hierarchy that performs the tasks associated with the super-state label. The

74

Controller remains dormant until the header information of the first packet received has been

completely buffered. When this occurs, the PacketReady signal is asserted and the header search

begins. If the search results in a match (HitAck=’1’), the Controller proceeds to the “Scroll”

state. The state machine within the hierarchical Scroll state will continue to output search

matches until there are no more to report (MatchOut=’0’). If a packet header search produces no

hits, the Controller moves from “Header Search” to “Extra Cycles”. This is because a tCAM

search that produces no results requires a few extra cycles before it is able to perform a

subsequent search.

start Header
Search

Payload
Search

Ex
C

tra
ycles

Scroll

HeaderReady=‘1’

PayloadRe
T

ady=‘1’ AND
ype=‘0’ OR

hAgain=‘1’)
(Search

Searc

SearchType=‘1’ AND
HeaderReady=‘1’

HitAck=‘1’

HitAck=‘0’

HitAck=‘

SearchType=‘1’ AN

1’

HitAck=‘0’

PayloadR ND
(SearchType=‘0’ OR

Search)

eady=‘1’ A

Again=‘1’

D
HeaderReady=‘1’

MatchOut=‘1’

w of the Controller

Figure 15. Flo State Machine

75

Regardless of whether a packet header search completes in the Extra Cycles or Scroll

state, the same con pply to initiate packet payload searching: PacketReady must

equal ‘1’. This indicates that enough payload information has been buffered to start a packet

payload search. The “Payload Search” super-state works virtually the same as Header Search.

The primary difference is that while only one header search can be performed per packet,

multiple payload searches can be performed back to back. This is controlled by the

“SearchAgain” signal. If SearchAgain is equal to ‘1’ at the conclusion of a packet payload

search, the Controller returns to the Payload Search super-state and initiates a new CAM search.

4.6.2 CASMA Timing

This section discusses the timing and output that results for two consecutive search scenarios.

These examples assume that the tCAM has been pre-loaded with the example rules discussed in

Section 4.5. In total, mapping these three Snort rules to the tCAM required 24 tCAM entries and

corresponding mask entries. Six of these entries are used for packet header searching, while the

other 18 contain payload content strings to be matched.

 To demonstrate the flow and associated timing of the CASMA architecture as it accepts

packet data and performs CAM searching, two packets are sequentially passed to CASMA from

ePAPP, and critical pieces of their simulation outputs are shown. The first packet is an example

of benign network traffic, which should comprise a majority of the packets that pass through a

switch on typical network. The second packet is a specially constructed malicious packet that

matches all or part of each of the three rules.

Table 23 shows the relevant fields of the first packet that is being classified by the ePAPP unit

and passed to CASMA 03 bytes long. Since

PAPP produces packet data at a rate of 1 byte/cycle, it will take 103 clock cycles for CASMA

dition must a

. The packet, including the Ethernet preamble, is 1

e

76

to buff

er the entire packet. This packet represents typical port 80 HTTP traffic and should not

trigger any of the rules in the CAM and therefore will demonstrate minimal search times.

Table 23. Test Packet #1

Field Type Value
Ethernet Type 0x0800 (IP)

IP Header Length 8 (in 32-bit words)
IP Type of Service 0x00

IP Total Length 77 bytes
Identification 0xA28A

IP Flags None
IP Offset 0

IP Time-to-Live 0x80
Protocol 0x06 (TCP)

Source IP Address 136.142.42.14
Destination IP Address 64.233.161.99

IP Options None
TCP Source Port 80

TCP Destination Port 80
TCP Sequence Number 0x41DA6AEE

TCP Acknowledge Number 0xBBB59568
TCP Header Length 5 (in 32-bit words)

TCP Flags SYN
TCP Window Size 30

TCP Data (Payload) “|01 02 03 04 05 06 07|Index of /cgi-bin/”
Payload Size 25 bytes

 Consider that the cycle in which the first byte of a packet is received from ePAPP is cycle

0. It takes 74 cycles to read in all of the packet header information, which means that packe

payload information begins arriving in cycl

t

e 74. Subsequently, since the entire packet header has

been registered, packet header searching begins in cycle 75. Figure 16 shows the packet header

search beginning. Note that the CAMStrobe signal goes high for one cycle, indicating that the

first of eight 72-bit chunks of the search string is on CAMDataBus. The other seven chunks are

laced on CAMDataBus over the next seven cycles. Note that CAMStrobe goes high one cycle p

77

after FieldType changes to “2C”, indicating that the payload is now being received and all packet

header information has been registered. Eight cycles after the final piece of the search string is

placed on CAMDataBus, SearchValid goes high for two cycles. When this signal goes high but

SearchHit does not, it indicates that a search has completed successfully but returned no results.

Figure 16. Header Searching Beginning for Test Packet #1

Thus, it takes eight cycles to feed the search data to the CAM, and eight cycles more to

return a result. The SearchValid signal goes high for cycles 90 and 91. When a search returns no

results, subsequent searches may not begin until 20 cycles after the first search began. Since the

first search began at cycle 74, another CAM search could not begin until cycle 94.

At cycle 94, however, 70 bytes of payload have not yet been buffered, so payload

searching is not ready to begin. Payload searching does not begin, in fact, until cycle 147. This is

a current weakness of the design, that a short payload such as the one in the first test packet mus

still wait 70 cycles before payload searching can begin, even though it takes much less time than

that to buffer the entire payload.

t

78

Figure 17 shows the beginning of a packet payload search. Again, the CAMStrobe signal

goes high for a cycle and data is placed on CAMDataBus for eight consecutive cycles. Although

ed for one cycle to indicate that

e payload should be shifted eight bytes to prepare for the next search iteration. Several cycles

later ShiftCount is increased to reflec . Again, it takes eight cycles to feed

e search CAM and another eight before results played, so SearchValid goes

high for cycles 163 and 164. A new search can begin at cycle 167, and indeed does, as there are

more payload search iterations to perform.

not pictured, one can assume that the PacketReady signal has been asserted to allow the payload

search to start. Note that the cycle after the payload search begins, SearchType changes from ‘0’

to ‘1’ to indicate that a packet payload search is taking place. Also, after the eight chunks of

search string have been fed to the tCAM, ShiftPayload is assert

th

t the shift in the payload

th string to the are dis

Figure 17. P

ayload Searching Beginning for Test Packet #1

In total, four iterations of payload searching are needed for this packet. Figure 18 shows

the final search iteration of the packet payload. Observe that the SearchAgain signal goes low

one cycle after the last piece of the search string has been placed on CAMDataBus. At the far

79

right of the waveform, one can observe that the FieldType changes to “00”, which indicates that

a new packet is incoming from the ePAPP. The final search iteration begins at cycle 207, and

thus payload searching is complete and the CAM is ready to perform a new search 20 cycles

rching of every packet. Again, this number could be lowered significantly

y not requiring 70 cycles to buffer a payload that is much shorter than 70 bytes.

later (cycle 227). Packet header searching began at cycle 75, and therefore it took 152 cycles

from the beginning of the first packet header search to the end of the final packet payload search.

As discussed previously, the packet was 103 bytes in total length and would require 103 cycles

to be received from ePAPP. Thus, for this packet, 49 cycles would be required between packet

arrivals to sustain sea

b

Figure 18. Payload Searching Concluding for Test Packet #1

Table 24 shows the relevant fields of the next packet that is being classified by the

ePAPP unit and passed to CASMA. This packet is chock full of suspicious content and should

match against several header and payload rules. Note that this packet has been specially crafted

to match against several rules and may not make much sense as an actual network packet.

80

 This packet will match Snort rule example #1, as described in Section 4.5.1. This is

because the packet is of protocol type TCP, the SYN flag is set, and the destination IP address

falls with the subnet 239.0.0.0/8. onent to the first rule example, a

Table 24. Test Packet #2

Field Type Value

Since there is payload comp

header search match is enough to declare an entire rule match.

Ethernet Type 0x0800 (IP)
IP Header Length 8 (in 32-bit words)
IP Type of Service 0x00

IP Total Length 79 bytes
Identification 0xA28A

IP Flags None
IP Offset 0

IP Time-to-Live 0x80
Protocol 0x06 (TCP)

Source IP Address 123.123.16.8
Destination IP Address 239.24.16.8

IP Options None
TCP Source Port 179

TCP Destination Port 80
TCP Sequence Number 0x41DA6AEE

TCP Acknowledge Number 0xBBB59568
TCP Header Length 5 (in 32-bit words)

TCP Flags SYN
TCP Window Size 30

TCP Data (Payload) “|00 01 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff 00 00 00|nc.exe”
Payload Size 27 bytes

This packet will also match Snort rule example #3, as described in Section 4.5.3. The

header search will return a match because the packet is of protocol type TCP, the payload size

(dsize) is greater than 1, the source port is 179, and the source IP address falls with the

123.123.0.0/16 subnet defined as $HOME_NET. The example rule also has two distance related

81

payload content strings, both of which are found at acceptable depths within the payload of test

packet #2.

Snort rule example #2, as described in Section 4.5.2, is a little more interesting. The

header

part of the rule does not match against the test packet, however both of the content strings

specified by the rule are found in the packet payload. These are examples of CAM search hits

that would have to be thrown out when they could not be correlated to a header search hit by an

upstream processor.

Figure 19. Header Searching Beginning for Test Packet #2

e same time, CAMStrobe goes high for a cycle

and a “scroll” instruction is sent to the tCAM to check for additional search hits. A new scroll

Figure 19 shows the next packet header search beginning. Again, we will consider cycle

0 to be the cycle in which the first byte of the packet arrives from ePAPP. This packet is two

bytes longer than the first test packet, so the packet will require 105 cycles to be buffered. As in

the previous example, the search begins a cycle after FieldType changes to “2C”, which is once

again cycle 75. SearchType reverts to ‘0’ to indicate a header search. This time around, the

packet header search produces two hits. The first hit is indicated by the SearchValid and

SearchHit signals going high for two cycles. At th

82

instruction is issued every eight cycles until there are no more hits to output. The address that

identifies the location of a hit within the CAM becomes available from the CAM when

SearchHit goes high and is available on the HitAddress output a cycle later. As before it takes

eight cycles to feed search data to the CAM and eight to wait for results. If there are matches,

ight additional cycles are required for each match, plus eight additional cycles before the next

search can begin. Therefore

8 + 8 + 2*8 + 6 = 38 cycles

Thus, header searching begins in cycle 75 and completes in cycle 113, which is when the next

search could take pla

e

, a search with two matches requires:

ce.

Figure 20. Payload Searching Beginning for Test Packet #2

The payload is ready to begin packet payload searching in cycle 147. Figure 20 shows the

beginning of packet payload searching for the second packet. As shown in the waveform,

first search iteration produces two CAM hits. As before, a search with two CAM hits will require

38 cycles to complete, so the second search iteration will be able to begin at cycle 185. Figure 2

shows the third search iteration taking place. One can tell that it is the third iteration by

the

1

observing SearchCount, which is one-hot encoded. The first iteration is represented by

83

“0x0001”, the second iteration by “0x0002”, the third iteration by “0x0004”, and so o

shown, the

n. As is

third iteration produces a single match. A CAM search that produces a single match

will take 30 cycles to complete.

Figure 21. Payload Searching Concluding for Test Packet #2

As seen in Figures 20 and 20, there were two payload search CAM hits in the first search

iteration and one in the third iteration. These three matches correspond to the payload content

rules discussed earlier in this section. In total, this packet required four payload search iterations.

The final iteration begins in cycle 235 and produces no hits, which means that searching for

another packet could begin 20 cycles later at cycle 255. Packet header searching began at cycle

75, and therefore it took 180 cycles from the beginning of the first packet header search to the

end of the final packet payload search. As discussed previously, the packet was 105 bytes in

total length and would require 105 cycles to be received from ePAPP. Thus, for this packet, 75

cycles would be required between packet arrivals to sustain searching of every packet. As before,

this number could be lowered significantly by not requiring 70 cycles to buffer a payload that is

much shorter than 70 bytes.

84

4.6.3 CASMA Testing Methodology

he presented CASMA design was tested through simulation in conjunction with the ePAPP

module. A behavior Integrated Device

chnologies was populated with a subset of diverse Snort rules, including the Snort rule

ng on the CASMA architecture.

4.6.

The ev ses of

this e

which t

shown

T

 model of the 9Mb Network Search Engine provided by

te

examples described in Section 4.5. A simulation input file was created that fed a byte of packet

data to the FIFO of the ePAPP module on the rising edge of every clock cycle. Use of the a

simulation input file allowed for easy changes to packet lengths and protocol field values in

order to perform diverse testi

4 CASMA Technology Mapping Results

entual target of the CASMA architecture is a standard ASIC platform. For the purpo

 th sis, however, the design was targeted at a 130 nm structured ASIC, the same target upon

he ePAPP architecture was synthesized. The results of design synthesis for CASMA are

in Table 25.

Table 25. Performance Results After Synthesis

 130 nm Structured ASIC
Standard-cell Instance Count 99045 / 1.7M
Size as a % of Total Cells 5.9%
Speed in MHz 157.1 MHz
Throughput 1.25 Gb/s

The design is relatively expensive in terms of area due to the fact that entire incoming

pac ts

ways.

CASM cket fields not used in

intrusion detection could be ignored upon input. Another future optimization would be to

ke of up to 1500 bytes are buffered. This problem could be somewhat alleviated in several

Currently, for example, all header information is currently buffered upon input to

A, regardless of whether it is used in the header search string. Pa

85

sign c

searchi

would

 ePAPP would need to operate at a clock speed of 125 MHz to

sus

also ser

present

the tCA ports a maximum clock frequency of 200 MHz. Future work involving

ifi antly reduce the depth of the payload FIFO. As long payloads are buffered, packet

ng will have already begun, thereby reducing the maximum amount of data the FIFO

be required to hold from the maximum payload length.

As discussed in Chapter 3,

tain 1 Gb/s traffic. Assuming that CASMA uses the same clock as ePAPP, this rate would

ve as the minimum requirement for CASMA. Synthesis results show that the architecture

ed exceeds this requirement. Currently, the 9Mb Network Search Engine being used as

M component sup

design and synthesis optimization could yield significant increases in sustainable clock

frequency.

86

chitecture, a pipelined design

ASIC implementation that could be feasibly added

ied.

Network intrusion detection is one such application.

• The CAM-Assisted Signature-Matching Architecture (CASMA), a pipelined design that

uses ternary content-addressable memory to aid in stateless intrusion detection signature-

matching.

• A novel approach for encoding Snort intrusion detection rules into 576-bit CAM entries.

This includes separate encoding techniques for entries pertaining to packet header

information and entries pertaining to packet payload information.

5.0 CONCLUSIONS AND FUTURE DIRECTIONS

Increases in network transmission speeds and traffic loads have created a need for cost-effective,

low-latency network security solutions. Packet protocol analysis and stateless intrusion detection

signature-matching are critical components of this need. This thesis provides the following

contributions to these areas:

• The Embedded Protocol Analyzer Pre-Processor (ePAPP) ar

that classifies every protocol field of an incoming packet as the packet is captured.

• The ability to update the protocol information used by ePAPP in a loadable memory

without changing the circuit implementation. Since frequent circuit redesign is not

needed, ePAPP can be targeted for an

to a network device, such as a switch.

• The generic nature of the ePAPP output, allowing it to be used with any number of

applications that require packets to be parsed and protocol fields to be identif

87

• A novel approach for restricting the depth within a payload that a content string match is

considered a rule hit. Without this, false positives would be generated for content

matches that occur in a part of the payload that is not indicative of unwanted traffic as

specified by a Snort rule.

• The ability to add new rules to the CAM without the frequent need for redesign of the

CASMA circuit design. Since frequent circuit redesign is not needed, CASMA can be

targeted for an ASIC implementation that could be feasibly added to a network device,

ly supports the IEEE 802.3 (Ethernet), IPv4, ARP, TCP, and UDP

support for more protocols, such as IPv6

 protocol length fields

lengths of other variable width fields are currently performed in combinational

able to certain protocol changes. Future work should attempt to

alculations to be updated with other protocol changes.

 was designed, for reasons of cost, to use only a single CAM

 devices falls, future efforts should consider multi-CAM

nificantly by overlapping header

re, since more CAM space would be available, payload

arches could be performed at greater shift-increments. This thesis proposes a payload shift of

ight bytes between every search. Increasing the shift amount to 16 bytes would cut the search

d. If additional CAM

ricting factor, this could be a worthwhile design adjustment.

such as a switch.

While ePAPP current

protocols, the design would benefit from the addition of

and ICMP. Furthermore, internal calculations that use information found in

to determine the

logic, and may not be adapt

permit the nature of these c

The CASMA architecture

component. As the cost for these

implementations. Additional CAMs could speed the pipeline sig

and payload searching. Furthermo

se

e

time required in half, while doubling the amount of CAM entries require

space is not a rest

88

The current CASMA design requires combinational logic to calculate special header

checking, functions not able to be performed by

ory. The addition of a new rule to the CAM may require a

 been included in the circuit design. This is a design

 indicate key threshold values for which special case

edict relevant special cases could

odification. Furthermore, the

for table-based additions to the

.

ssed within the scope of this

 problem. This work could

ries searched based on the results

cket.

ding byte_test, byte_jump, isdataat, and pcre are not

 Future work should explore options that could use

 implement these options.

search cases that require range or negation

ternary content-addressable mem

special case calculation that has not yet

weakness, however traffic analysis may

calculations may become necessary. Future attempts to pr

minimize the number of new rules that would require a circuit m

addition of programmable ALUs to the design could allow

special case calculations, eliminating the need for circuit redesign

The task of correlating CAM search results is not addre

work. Future work should address methodologies to assist with this

include a method of restricting the subset of payload CAM ent

of a header CAM search for the same pa

Several Snort rule options, inclu

compatible with a CAM-based approach.

CAM searching in conjunction with pre- and/or post-processing to

89

_TOP ENTITY

his appendix contains the VHDL code for the analyzer_top entity of ePAPP. This was the top-

ntities. Specific details about the code can be found as comments
code itself.

nalyzer_top.symbol

1 (Build 399)

(7 DOWNTO 0);

eset : IN std_logic;
 std_logic_vector (31 DOWNTO 0);

 field_type_out : OUT std_logic_vector (7 DOWNTO 0);

L Designer(TM) 2003.1 (Build 399)

APPENDIX A

VHDL CODE FOR THE ANALYZER

T
level entity used by ePAPP, and contains instances of the assembler, protocol_memory,
jump_tlb, and length_block e
within the

-- VHDL Entity ProtocolAnalyzer.a
-- Created by Jacob J. Repanshek
-- Generated by Mentor Graphics' HDL Designer(TM) 2003.
--
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

ENTITY analyzer_top IS
 PORT(
 clock : IN std_logic;
 line_in : IN std_logic_vector
 line_in_valid : IN std_logic;
 r
 field_data_out : OUT

 valid_out : OUT std_logic
);

END analyzer_top ;

-- VHDL Architecture ProtocolAnalyzer.analyzer_top.struct
-- Generated by Mentor Graphics' HD
--
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

90

LIBRARY ProtocolAnalyzer;

ARCHITECTURE struct OF analyzer_top IS

logic;
 almost_valid : std_logic;

d_logic;
logic;

ic_vector(7 DOWNTO 0);
);

d_logic_vector(31 DOWNTO 0);
ic;

NAL field_width : std_logic_vector(15 DOWNTO 0);

 : std_logic_vector(7 DOWNTO 0);
IGNAL jump_addr_cur : std_logic_vector(7 DOWNTO 0);

ogic_vector(7 DOWNTO 0);
 jump_addr_next_reg : std_logic_vector(7 DOWNTO 0);

ogic_vector(7 DOWNTO 0);
vector(15 DOWNTO 0);

;

;
gic;

vector(7 DOWNTO 0);

ctor(15 DOWNTO 0);
NAL var_len_field : std_logic;

.0) for instance 'I0' of 'fifo'
RAY (8 DOWNTO 0) OF std_logic_vector(7 DOWNTO 0);

 -- Internal signal declarations
 SIGNAL aempty : std_
 SIGNAL
 SIGNAL branch_indicator : st
 SIGNAL count_done : std_
 SIGNAL enable : std_logic;
 SIGNAL ffout : std_log
 SIGNAL field_data : std_logic_vector(31 DOWNTO 0
 SIGNAL field_data_early : st
 SIGNAL field_data_valid : std_log
 SIGNAL field_type : std_logic_vector(7 DOWNTO 0);
 SIG
 SIGNAL jump_addr
 S
 SIGNAL jump_addr_n : std_logic_vector(7 DOWNTO 0);
 SIGNAL jump_addr_next : std_l
 SIGNAL
 SIGNAL jump_addr_reg : std_l
 SIGNAL len_in : std_logic_
 SIGNAL len_indicator : std_logic
 SIGNAL load_addr : std_logic;
 SIGNAL new_valid : std_logic;
 SIGNAL no_optional : std_logic
 SIGNAL not_empty : std_lo
 SIGNAL not_empty_late : std_logic;
 SIGNAL packet_done : std_logic;
 SIGNAL protocol_addr : std_logic_
 SIGNAL protocol_indicator : std_logic;
 SIGNAL read_en : std_logic;
 SIGNAL valid : std_logic;
 SIGNAL valid_byte : std_logic;
 SIGNAL var_len : std_logic_ve
 SIG

 -- ModuleWare signal declarations(v1
 TYPE mw_I0sreg IS AR
 SIGNAL mw_I0caddr : INTEGER RANGE 0 TO 8;
 SIGNAL mw_I0naddr : INTEGER RANGE 0 TO 8;
 SIGNAL mw_I0creg : mw_I0sreg;
 SIGNAL mw_I0nreg : mw_I0sreg;

91

 -- ModuleWare signal declarations(v1.0) for instance 'I4' of 'mux'
 SIGNAL mw_I4din0 : std_logic_vector(7 DOWNTO 0);

L mw_I4din1 : std_logic_vector(7 DOWNTO 0);

 -- ModuleWare signal declarations(v1.0) for instance 'I7' of 'mux'
NTO 0);

IGNAL mw_I7din1 : std_logic_vector(15 DOWNTO 0);

ent Declarations

d in Appendix B.
ONENT assembler

IN std_logic_vector (7 DOWNTO 0);
 std_logic ;

N std_logic_vector (15 DOWNTO 0);
 std_logic ;

 reset : IN std_logic ;
IN std_logic ;

: OUT std_logic ;
d_logic ;

 OUT std_logic_vector (31 DOWNTO 0);
: OUT std_logic_vector (31 DOWNTO 0);

data_valid : OUT std_logic ;
: OUT std_logic ;

UT std_logic

NENT;

ump_tlb entity, described in Appendix C.
 COMPONENT jump_tlb

 field_data : IN std_logic_vector (31 DOWNTO 0);
 std_logic ;

col_addr : IN std_logic_vector (7 DOWNTO 0);
 std_logic ;

 std_logic_vector (7 DOWNTO 0);
_logic_vector (7 DOWNTO 0);

_logic_vector (7 DOWNTO 0);

 SIGNA

 SIGNAL mw_I7din0 : std_logic_vector(15 DOW
 S

 -- ModuleWare signal declarations(v1.0) for instance 'I8' of 'mux'
 SIGNAL mw_I8din0 : std_logic_vector(7 DOWNTO 0);
 SIGNAL mw_I8din1 : std_logic_vector(7 DOWNTO 0);

 -- Compon

 -- This is the component declaration for the assembler entity, describe
 COMP
 PORT (
 byte_in :
 clock : IN
 enable : IN std_logic ;
 len_in : I
 load_len : IN

 valid_in :
 almost_done
 count_done : OUT st
 field_data :
 field_data_early
 field_
 new_valid
 valid_byte : O
);
 END COMPO

 -- This is the component declaration for the j

 PORT (
 clock : IN std_logic ;
 enable : IN std_logic ;

 protocol : IN
 proto
 reset : IN
 jump_addr_cur : OUT
 jump_addr_next : OUT std
 jump_addr_next_reg : OUT std

92

 jump_addr_reg : OUT std_logic_vector (7 DOWNTO 0)

 END COMPONENT;

 This is the component declaration for the length_block entity, described in Appendix D.

 PORT (
td_logic ;

le : IN std_logic ;
 std_logic_vector (31 DOWNTO 0);

ector (7 DOWNTO 0);
td_logic ;

c ;
c_vector (15 DOWNTO 0)

component declaration for the protocol_memory entity, described in Appendix E.
 COMPONENT protocol_memory
 PORT (

 enable : IN std_logic ;

NTO 0);
 jump_addr_next : IN std_logic_vector (7 DOWNTO 0);

 branch_indicator : OUT std_logic ;
WNTO 0);

 std_logic ;
 std_logic ;

l_addr : OUT std_logic_vector (7 DOWNTO 0);
tor (7 DOWNTO 0);

 std_logic ;

ONENT;

 Optional embedded configurations

L : assembler USE ENTITY ProtocolAnalyzer.assembler;
E ENTITY ProtocolAnalyzer.jump_tlb;

k USE ENTITY ProtocolAnalyzer.length_block;
tocolAnalyzer.protocol_memory;

);

 --
 COMPONENT length_block

 clock : IN s
 enab
 field_data : IN
 length : IN std_logic ;
 protocol_addr : IN std_logic_v
 reset : IN s
 no_optional : OUT std_logi
 var_len_reg : OUT std_logi
);
 END COMPONENT;

 -- This is the

 clock : IN std_logic ;

 incr_addr : IN std_logic ;
 jump_addr : IN std_logic_vector (7 DOW

 load_addr : IN std_logic ;
 reset : IN std_logic ;

 field_width : OUT std_logic_vector (15 DO
 len_indicator : OUT
 packet_done : OUT
 protoco
 protocol_addr_reg : OUT std_logic_vec
 protocol_indicator : OUT
 var_len_field : OUT std_logic
);
 END COMP

 --
 -- pragma synthesis_off
 FOR AL
 FOR ALL : jump_tlb US
 FOR ALL : length_bloc
 FOR ALL : protocol_memory USE ENTITY Pro
 -- pragma synthesis_on

93

BEGIN

 enable_block

 monitor the state of the
 signal. It is assumed that once a packet begins to arrive,

e FIFO. Once a packet is complete,
ed off until a new packet arrives. Upon new packet

 must be enable a cycle before the rest of the

et_done,line_in_valid,not_empty,not_empty_late)

en

<='0';
ty='0') then

 read_en<='0';
"00010110") then

empty='1') then

'1';

en<='0';

;

g

t not_empty_late will always equal
.

lock)

='0';

 -- Architecture concurrent statements

 -- HDL Embedded Text Block 1

 -- This block is primarily used to
 -- enable
 -- it can be streamed through th
 -- enable is turn
 -- arrival, the FIFO
 -- design.

 process(reset,pack
 begin
 if(reset='1') th
 enable<='0';
 read_en
 elsif(packet_done='1' and line_in_valid='0' and not_emp
 enable<='0';

 elsif(not_empty_late='1' OR field_type=
 enable<='1';
 read_en<='1';
 elsif(not_
 enable<='0';
 read_en<=
 else
 enable<='0';
 read_
 end if;
 end process

 -- HDL Embedded Text Block 2 empty_re

 -- This block assigns the value of not_empty to not_empty_late
 -- on a rising clock edge, so tha
 -- what not_empty did a cycle earlier

 process(reset,c
 begin
 if(reset='1') then
 not_empty_late<
 elsif(rising_edge(clock)) then
 not_empty_late<=not_empty;

94

 end if;
 end process;

 -- HDL Embedded Text Block 3 output_reg

gisters output values on the rising clock edge.

,reset)

000000000000000000000000";

;

s;

s ModuleWare code for a FIFO.

eWare code(v1.0) for instance 'I6' of 'and'
or AND no_optional;

de(v1.0) for instance 'I10' of 'and'
ld_data_valid AND new_valid AND enable;

r instance 'I0' of 'fifo'

 I0seq1: PROCESS (clock)

_I0creg(i)(7 DOWNTO 0) <= mw_I0nreg(i)(7 DOWNTO 0);

SS (clock, reset)

ck='1') THEN
 mw_I0caddr <= mw_I0naddr;

 -- This process re

 process(clock
 begin
 if(reset='1') then
 field_data_out<="00000000
 field_type_out<="00000000";
 valid_out<='0';
 elsif(rising_edge(clock)) then
 field_data_out<=field_data;
 field_type_out<=field_type
 valid_out<=valid;
 end if;
 end proces

 -- The code below i

 -- Modul
 load_addr <= branch_indicat

 -- ModuleWare co
 valid <= fie

 -- ModuleWare code(v1.0) fo
 ffout <= mw_I0creg(0);

 BEGIN
 IF (clock'EVENT AND clock='1') THEN
 FOR i IN 0 TO 8 LOOP
 mw
 END LOOP;
 END IF;
 END PROCESS I0seq1;

 I0seq2: PROCE
 BEGIN
 IF (reset = '1') THEN
 mw_I0caddr <= 0;
 ELSIF (clock'EVENT AND clo

95

 END IF;
 END PROCESS I0seq2;

 I0combo: PROCESS (reset, read_en, line_in_valid, mw_I0caddr, mw_I0creg, line_in)

gic;

 8) THEN

0) THEN
 tfull := '0';

ty := '0';

 NOT(tempty);
 AND NOT(tfull);

' OR twena = 'H') THEN
= 'H') THEN
0caddr;

r + 1;
 END IF;

a = 'H') THEN
r <= mw_I0caddr - 1;

caddr;

 'H') THEN
HEN

WNTO 0) <= mw_I0creg(8)(7 DOWNTO 0);

 0) <= line_in;

 mw_I0creg(i+1)(7 DOWNTO 0);

'L') THEN
 mw_I0nreg(0)(7 DOWNTO 0) <= mw_I0creg(0)(7 DOWNTO 0);

 VARIABLE trena : std_lo
 VARIABLE twena : std_logic;
 VARIABLE tfull : std_logic;
 VARIABLE tempty : std_logic;
 BEGIN
 IF (mw_I0caddr =
 tfull := '1';
 tempty := '0';
 ELSIF (mw_I0caddr =

 tempty := '1';
 ELSE
 tfull := '0';
 temp
 END IF;
 trena := NOT(reset) AND read_en AND
 twena := NOT(reset) AND line_in_valid

 IF (twena = '1
 IF (trena = '1' OR trena
 mw_I0naddr <= mw_I
 ELSE
 mw_I0naddr <= mw_I0cadd

 ELSIF (trena = '1' OR tren
 mw_I0nadd
 ELSE
 mw_I0naddr <= mw_I0
 END IF;

 IF (twena = '1' OR twena =
 IF (trena = '1' OR trena = 'H') T
 mw_I0nreg(8)(7 DO
 FOR i IN 0 TO 7 LOOP
 IF (mw_I0caddr = i) THEN
 mw_I0nreg(i)(7 DOWNTO
 ELSE
 mw_I0nreg(i)(7 DOWNTO 0) <=
 END IF;
 END LOOP;
 ELSIF (trena = '0' OR trena =

96

 FOR i IN 0 TO 7 LOOP
0caddr = i) THEN

DOWNTO 0) <= line_in;

) <= mw_I0creg(i+1)(7 DOWNTO 0);

w_I0creg(i+1)(7 DOWNTO 0);
 END LOOP;

(8)(7 DOWNTO 0) <= mw_I0creg(8)(7 DOWNTO 0);
 = '0' OR trena = 'L') THEN

OP
WNTO 0) <= mw_I0creg(i)(7 DOWNTO 0);

DOWNTO 0) <= (OTHERS => 'X');

SE
OOP

(i)(7 DOWNTO 0) <= (OTHERS => 'X');

for instance 'I4' of 'mux'
1, protocol_indicator)

r(7 DOWNTO 0);

1;

 'X');

p_addr <= dtemp;
 END PROCESS I4combo;

 <= jump_addr_reg;
 mw_I4din1 <= jump_addr_cur;

 IF (mw_I
 mw_I0nreg(i+1)(7
 ELSE
 mw_I0nreg(i+1)(7 DOWNTO 0
 END IF;
 END LOOP;
 END IF;
 ELSIF (twena = '0' OR twena = 'L') THEN
 IF (trena = '1' OR trena = 'H') THEN
 FOR i IN 0 TO 7 LOOP
 mw_I0nreg(i)(7 DOWNTO 0) <= m

 mw_I0nreg
 ELSIF (trena
 FOR i IN 0 TO 8 LO
 mw_I0nreg(i)(7 DO
 END LOOP;
 ELSE
 FOR i IN 0 TO 8 LOOP
 mw_I0nreg(i)(7
 END LOOP;
 END IF;
 EL
 FOR i IN 0 TO 8 L
 mw_I0nreg
 END LOOP;
 END IF;
 not_empty <= NOT(tempty);
 aempty <= NOT(tempty);
 END PROCESS I0combo;

 -- ModuleWare code(v1.0)
 I4combo: PROCESS(mw_I4din0, mw_I4din
 VARIABLE dtemp : std_logic_vecto
 BEGIN
 CASE protocol_indicator IS
 WHEN '0'|'L' => dtemp := mw_I4din0;
 WHEN '1'|'H' => dtemp := mw_I4din
 WHEN OTHERS => dtemp := (OTHERS =>
 END CASE;
 jum

 mw_I4din0

97

 -- ModuleWare code(v1.0) for instance 'I7' of ' ux'
 I7combo: PROCESS(mw_I7din0, mw_I7din1, var_len_field)
 VARIABLE dtemp : std_logic_vector(15 DOWNTO 0);
 BEGIN
 CASE var_len_field IS
 WHEN '0'|'L' => dtemp := mw_I7din0;
 WHEN '1'|'H' => dtemp := mw_I7din1;
 WHEN OTHERS => dtemp := (OTHERS => 'X');
 END CASE;
 len_in <= dtemp;
 END PROCESS I7combo;
 mw_I7din0 <= field_width;

din1, protocol_indicator)
 VARIABLE dtemp : std_logic_vector(7 DOWNTO 0);

 WHEN '1'|'H' => dtemp := mw_I8din1;
RS => dtemp := (OTHERS => 'X');

 END PROCESS I8combo;
addr_next_reg;

n1 <= jump_addr_next;

 field_data_early => field_data_early,
 field_data_valid => field_data_valid,

 => new_valid,
 valid_byte => valid_byte

m

 mw_I7din1 <= var_len;

 -- ModuleWare code(v1.0) for instance 'I8' of 'mux'
 I8combo: PROCESS(mw_I8din0, mw_I8

 BEGIN
 CASE protocol_indicator IS
 WHEN '0'|'L' => dtemp := mw_I8din0;

 WHEN OTHE
 END CASE;
 jump_addr_n <= dtemp;

 mw_I8din0 <= jump_
 mw_I8di

 -- Instance port mappings.
 I1 : assembler
 PORT MAP (
 byte_in => ffout,
 clock => clock,
 enable => enable,
 len_in => len_in,
 load_len => count_done,
 reset => reset,
 valid_in => line_in_valid,
 almost_done => almost_valid,
 count_done => count_done,
 field_data => field_data,

 new_valid

);

98

 I3 : jump_tlb
 PORT MAP (

 => clock,
,
data_early,

 protocol => protocol_indicator,
 protocol_addr => protocol_addr,

 jump_addr_cur => jump_addr_cur,
mp_addr_next,

 jump_addr_next_reg => jump_addr_next_reg,

l,

 I2 : protocol_memory

 enable => enable,
 incr_addr => almost_valid,

 reset => reset,
 branch_indicator => branch_indicator,

d_width => field_width,

 packet_done => packet_done,

 protocol_addr_reg => field_type,

 clock
 enable => enable
 field_data => field_

 reset => reset,

 jump_addr_next => ju

 jump_addr_reg => jump_addr_reg
);
 I5 : length_block
 PORT MAP (
 clock => clock,
 enable => enable,
 field_data => field_data_early,
 length => len_indicator,
 protocol_addr => protocol_addr,
 reset => reset,
 no_optional => no_optiona
 var_len_reg => var_len
);

 PORT MAP (
 clock => clock,

 jump_addr => jump_addr,
 jump_addr_next => jump_addr_n,
 load_addr => load_addr,

 fiel
 len_indicator => len_indicator,

 protocol_addr => protocol_addr,

 protocol_indicator => protocol_indicator,
 var_len_field => var_len_field
);

END struct;

99

PP. As described in
sponsible for receiving bytes from a FIFO and assembling them

pecified by the protocol_memory. Specific details about the code can be

olAnalyzer.assembler.symbol

Graphics' HDL Designer(TM) 2003.1 (Build 399)

.std_logic_1164.all;

sembler IS

 byte_in : IN std_logic_vector (7 DOWNTO 0);

 reset : IN std_logic;

UT std_logic;
t_done : OUT std_logic;

UT std_logic_vector (31 DOWNTO 0);
T std_logic_vector (31 DOWNTO 0);

d : OUT std_logic;
ic;

 std_logic

tecture ProtocolAnalyzer.assembler.struct

APPENDIX B

VHDL CODE FOR THE ASSEMBLER ENTITY

This appendix contains the VHDL code for the assembler entity of ePA
Section 3.3, this component is re
into packet fields as s
found as comments within the code itself.

-- VHDL Entity Protoc
-- Created by Jacob J. Repanshek
-- Generated by Mentor

LIBRARY ieee;
USE ieee
USE ieee.std_logic_arith.all;

ENTITY as
 PORT(

 clock : IN std_logic;
 enable : IN std_logic;
 len_in : IN std_logic_vector (15 DOWNTO 0);
 load_len : IN std_logic;

 valid_in : IN std_logic;
 almost_done : O
 coun
 field_data : O
 field_data_early : OU
 field_data_vali
 new_valid : OUT std_log
 valid_byte : OUT
);

END assembler ;

-- VHDL Archi

100

-- Generated by Mentor Graphics' HDL Designer(TM) 2003.1 (Build 399)

.std_logic_1164.all;
rith.all;

bler IS

declarations

ignal declarations
count : std_logic_vector(15 DOWNTO 0);

_temp : std_logic_vector(31 DOWNTO 0);
 SIGNAL full : std_logic;

or(15 DOWNTO 0);
std_logic;

L q0 : std_logic_vector(7 DOWNTO 0);
 std_logic_vector(7 DOWNTO 0);

_logic_vector(7 DOWNTO 0);
 : std_logic_vector(7 DOWNTO 0);

_logic;
 : std_logic;

uffer signal declarations
count_done_internal : std_logic;

0) for instance 'I5' of 'cntr'
t : std_logic_vector(15 DOWNTO 0);

L mw_I5c_cnt : std_logic_vector(15 DOWNTO 0);

ents

ded Text Block 1 data_out_select

k determines how to output field_data based on the
d width of the protocol field. This is done by observing

lue on the count bus. If more than four bytes remain,
 -- a payload or extended options field is being output and four bytes

n four bytes are specified, that number
 -- of bytes are put on the field_data bus, padded with zeros accordingly.

LIBRARY ieee;
USE ieee
USE ieee.std_logic_a

ARCHITECTURE struct OF assem

 -- Architecture

 -- Internal s
 SIGNAL
 SIGNAL data

 SIGNAL len_delayed : std_logic_vect
 SIGNAL max :
 SIGNA
 SIGNAL q1 :
 SIGNAL q2 : std
 SIGNAL q3
 SIGNAL valid1 : std_logic;
 SIGNAL valid2 : std
 SIGNAL valid3

 -- Implicit b
 SIGNAL

 -- ModuleWare signal declarations(v1.
 SIGNAL mw_I5n_cn
 SIGNA

BEGIN
 -- Architecture concurrent statem

 -- HDL Embed

 -- This bloc
 -- specifie
 -- the va

 -- of data are valid. If less tha

101

 begin

 process(len_delayed, data_temp, count)

 if(count(15 downto 2)="00000000000000" AND
ND len_delayed(1)='0') AND

(count(1 downto 0)="11" AND len_delayed(1 downto 0)="10") AND
nto 0)="01" AND len_delayed(1 downto 0)="00")) then

0000000000000000000" & data_temp(7 downto 0);
d length is 2 bytes

n "01" =>
data <= "0000000000000000" & data_temp(15 downto 0);

 -- field length is 3 bytes

 field_data <= "00000000" & data_temp(23 downto 0);

 when "11" =>
;

hen others =>

ngth is more than 4 bytes -> indicates payload or optional field
data <= data_temp;

 end process;

 -- The “reg” blocks that follow are a chain of registers that hold
e registers are enabled,

 -- value from the FIFO is read into the first register and all of the
ght.

clock)

(rising_edge(clock)) then
en

_in;
lid_in;

 not(count(1)='1' A
 not
 not(count(1 dow
 case len_delayed(1 downto 0) is
 -- field length is 1 byte
 when "00" =>
 field_data <= "00000
 -- fiel
 whe
 field_

 when "10" =>

 -- field length is 4 bytes

 field_data <= data_temp
 w
 field_data <= data_temp;
 end case;
 else
 -- remaining field le
 field_
 end if;

 -- the bytes incoming from the FIFO. When th

 -- register values are shifted one register to the ri

 -- HDL Embedded Text Block 2 reg
 process(reset,
 begin
 if(reset='1') then
 q3<="00000000";
 valid3<='0';
 elsif
 if(enable='1') th
 q3<=byte
 valid3<=va
 end if;
 end if;
 end process;

102

 -- HDL Embedded Text Block 3 reg1

k)

_edge(clock)) then
en

dded Text Block 4 reg2
et,clock)

 then
 q1<="00000000";
 valid1<='0';

 if(enable='1') then

 end if;

mbedded Text Block 5 reg3

_edge(clock)) then
e='1') then

f;

 process(reset,cloc
 begin
 if(reset='1') then
 q2<="00000000";
 valid2<='0';
 elsif (rising
 if(enable='1') th
 q2<=q3;
 valid2<=valid3;
 end if;
 end if;
 end process;

 -- HDL Embe
 process(res
 begin
 if(reset='1')

 elsif (rising_edge(clock)) then

 q1<=q2;
 valid1<=valid2;

 end if;
 end process;

 -- HDL E
 process(reset,clock)
 begin
 if(reset='1') then
 q0<="00000000";
 valid_byte<='0';
 elsif (rising
 if(enabl
 q0<=q1;
 valid_byte<=valid1;
 end i
 end if;
 end process;

 -- HDL Embedded Text Block 6 len_delay

103

 -- The len_delayed signal is always equal to the value of len_in the cycle before.

elayed<="0000000000000000";
g_edge(clock)) then

yed<=len_in;

 -- If a packet field is one cycle from being complete, almost_done is asserted.

 begin
00000000000000" and load_len='1')) then

 else

 end if;

 new_valid<=valid1;

 -- HDL Embedded Text Block 10 full_count

 -- For fields of more than 32 bits, there must be
 -- a way to indicate that a 32-bit chunk is ready to
 -- be put in the output FIFO. That is what this block
 -- does.
 --
 process(clock,reset)
 variable cnt : std_logic_vector(1 downto 0);
 variable go : std_logic;
 begin
 if(reset='1') then
 full <= '0';
 cnt := "11";
 go := '0';
 elsif(rising_edge(clock)) then
 if(enable='1') then

 process(reset,clock)
 begin
 if(reset='1') then
 len_d
 elsif (risin
 if(enable='1') then
 len_dela
 end if;
 end if;
 end process;

 -- HDL Embedded Text Block 7 almost

 process(count,len_in,load_len)

 if(count="0000000000000001" OR (len_in="00
 almost_done<='1';

 almost_done<='0';

 end process;

104

 if(load_len='1') then
 cnt := "10";
 full<='0';
 go := '1';
 elsif(go='1') then
 if(cnt = "00") then
 full<='1';
 else
 full<='0';
 end if;
 if(cnt = "00") then
 cnt := "11";

 end if;

e below is inserted by the use of ModuleWare components.

or instance 'I0' of 'and'
 count_done_internal <= max AND enable;

eWare code(v1.0) for instance 'I5' of 'cntr'

nable, mw_I5n_cnt)

N

ck='1') THEN

D PROCESS I5clock;
 I5combo: PROCESS (load_len, len_in, mw_I5c_cnt)

 IF (load_len = '1' OR load_len = 'H') THEN

 IF (mw_I5c_cnt = "0000000000000000") THEN
= "1111111111111111";

 else
 cnt := (unsigned(cnt) - '1');
 end if;
 end if;

 end if;
 end process;

 -- All of the cod

 -- ModuleWare code(v1.0) f

 -- Modul
 count <= mw_I5c_cnt;
 I5clock: PROCESS (clock, reset, e
 BEGIN
 IF (reset = '1' OR reset = 'H') THE
 mw_I5c_cnt <= "0000000000000100";
 ELSIF (clock'EVENT AND clo
 IF (enable = '1' OR enable = 'H') THEN
 mw_I5c_cnt <= mw_I5n_cnt;
 END IF;
 END IF;
 EN

 BEGIN

 mw_I5n_cnt <= len_in;
 ELSE

 mw_I5n_cnt <
 ELSE

105

 mw_I5n_cnt <= (unsigned(mw_I5c_cnt) - '1');
 END IF;
 END IF;

 I5max_drive: PROCESS (mw_I5c_cnt)
;

 BEGIN

 END IF;
 temp;

I4' of 'merge'
 q3;

ne <= count_done_internal;

 END PROCESS I5combo;

 VARIABLE temp : std_logic

 temp := '0';
 IF (mw_I5c_cnt = "0000000000000000") THEN
 temp := '1';

 max <=
 END PROCESS I5max_drive;

 -- ModuleWare code(v1.0) for instance '
 data_temp <= q0 & q1 & q2 &

 -- ModuleWare code(v1.0) for instance 'I6' of 'merge'
 field_data_early <= q1 & q2 & q3 & byte_in;

 -- ModuleWare code(v1.0) for instance 'I1' of 'or'
 field_data_valid <= full OR count_done_internal;

 -- Instance port mappings.

 -- Implicit buffered output assignments
 count_do

END struct;

106

APPENDIX C

 code for the jump_tlb entity of ePAPP. As described in
onsible for determining which higher-layer protocol is

 the code can be found as comments within the code itself.

L Designer(TM) 2003.1 (Build 399)

;

;
c_vector (7 DOWNTO 0);

_logic_vector (7 DOWNTO 0);
ogic_vector (7 DOWNTO 0);

_logic_vector (7 DOWNTO 0)

VHDL CODE FOR THE JUMP_TLB ENTITY

This appendix contains the VHDL
Section 3.2.2, this component is resp
encapsulated by the current protocol layer and to inform the protocol_memory to branch
accordingly. Specific details about

-- VHDL Entity ProtocolAnalyzer.jump_tlb.symbol
-- Created by Jacob J. Repanshek
-- Generated by Mentor Graphics' HD

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

ENTITY jump_tlb IS
 PORT(
 clock : IN std_logic
 enable : IN std_logic;
 field_data : IN std_logic_vector (31 DOWNTO 0);
 protocol : IN std_logic
 protocol_addr : IN std_logi
 reset : IN std_logic;
 jump_addr_cur : OUT std
 jump_addr_next : OUT std_l
 jump_addr_next_reg : OUT std_logic_vector (7 DOWNTO 0);
 jump_addr_reg : OUT std
);

END jump_tlb ;

-- VHDL Architecture ProtocolAnalyzer.jump_tlb.struct
-- Generated by Mentor Graphics' HDL Designer(TM) 2003.1 (Build 399)

LIBRARY ieee;
USE ieee.std_logic_1164.all;

107

USE ieee.std_logic_arith.all;

ARCHITECTURE struct OF jump_tlb IS

l signal declarations
_vector(7 DOWNTO 0);

vector(7 DOWNTO 0);

EGIN

 -- HDL Embedded Block 1 jump_table

cket.

nd on the field_data bus while a certain field type
 -- is being specified by the protocol_memory, jump_addr and jump_addr_n

 always jump_addr plus one.

--
able_truth_process: PROCESS(field_data, protocol_addr)

--

0") AND (field_data(7 downto 0) = "00000000")
HEN

dr_n <= "00011001";
field_data(15 downto 8) = "00001000") AND (field_data(7 downto 0) =

ND (protocol_addr = "00000110") THEN
 jump_addr <= "00000111";
 jump_addr_n <= "00001000";

eld_data(7 downto 0) = "00000110") AND (protocol_addr = "00011110") THEN
 jump_addr <= "00100011";
 jump_addr_n <= "00100100";
 ELSIF (field_data(7 downto 0) = "00010001") AND (protocol_addr = "00011110") THEN
 jump_addr <= "00101101";
 jump_addr_n <= "00101110";
 ELSIF (field_data(7 downto 0) = "00000001") AND (protocol_addr = "00011110") THEN
 jump_addr <= "00110010";
 jump_addr_n <= "00110011";
 ELSIF (protocol_addr = "00101010") THEN

 -- Architecture declarations

 -- Interna
 SIGNAL jump_addr : std_logic
 SIGNAL jump_addr_n : std_logic_

B
 -- Architecture concurrent statements

 -- Non hierarchical truthtable

 -- This truth table specifies the protocol_memory address to jump
 -- to based on information found within a field of the current pa
 -- If certain data is fou

 -- are assigned. jump_addr_n is

 jump_t

 BEGIN
 -- Block 1
 IF (field_data(15 downto 8) = "0000100
AND (protocol_addr = "00000110") T
 jump_addr <= "00011000";
 jump_ad
 ELSIF (
"00000110") A

 ELSIF (fi

108

 jump_addr <= "00101100";
 jump_addr_n <= "00101101";
 ELSIF (field_data(7 downto 0) = "00000000") AND (protocol_addr = "00110010") THEN
 jump_addr <= "00110101";
 jump_addr_n <= "00110110";
 ELSIF (field_data(7 downto 0) = "00001000") AND (protocol_addr = "00110010") THEN
 jump_addr <= "00110101";
 jump_addr_n <= "00110110";
 ELSIF (field_data(7 downto 0) = "00000011") AND (protocol_addr = "00110010") THEN
 jump_addr <= "00111000";
 jump_addr_n <= "00111001";
 ELSIF (field_data(7 downto 0) = "00000100") AND (protocol_addr = "00110010") THEN

 jump_addr_n <= "00111001";
(protocol_addr = "00110010") THEN

 ELSIF (field_data(7 downto 0) = "00001001") AND (protocol_addr = "00110010") THEN
= "00111101";

110";
to 0) = "00001010") AND (protocol_addr = "00110010") THEN

 jump_addr <= "01000001";
000010";

(field_data(7 downto 0) = "00001100") AND (protocol_addr = "00110010") THEN

";

tocol_addr = "00110010") THEN

 0) = "00001110") AND (protocol_addr = "00110010") THEN

LSIF (field_data(7 downto 0) = "00001111") AND (protocol_addr = "00110010") THEN
 jump_addr <= "01001010";

 "01001011";
 ELSIF (field_data(7 downto 0) = "00010000") AND (protocol_addr = "00110010") THEN

 ELSIF (field_data(7 downto 0) = "00010001") AND (protocol_addr = "00110010") THEN
= "01001100";

101";
to 0) = "00010010") AND (protocol_addr = "00110010") THEN

 jump_addr <= "01001100";

 jump_addr <= "00111000";
 jump_addr_n <= "00111001";
 ELSIF (field_data(7 downto 0) = "00001011") AND (protocol_addr = "00110010") THEN
 jump_addr <= "00111000";

 ELSIF (field_data(7 downto 0) = "00000101") AND
 jump_addr <= "00111011";
 jump_addr_n <= "00111100";

 jump_addr <
 jump_addr_n <= "00111
 ELSIF (field_data(7 down

 jump_addr_n <= "01
 ELSIF
 jump_addr <= "01000010";
 jump_addr_n <= "01000011
 ELSIF (field_data(7 downto 0) = "00001101") AND (pro
 jump_addr <= "01000101";
 jump_addr_n <= "01000110";
 ELSIF (field_data(7 downto
 jump_addr <= "01000101";
 jump_addr_n <= "01000110";
 E

 jump_addr_n <=

 jump_addr <= "01001010";
 jump_addr_n <= "01001011";

 jump_addr <
 jump_addr_n <= "01001
 ELSIF (field_data(7 down

109

 jump_addr_n <= "01001101";
N

 jump_addr <= "00010110";
11";

 ELSIF (protocol_addr = "00110001") THEN
;

p_addr_reg

 and jump_addr_n signals
at they can be used when a

 jump_addr_reg<="00000000";
(rising_edge(clock)) then

n
 jump_addr_reg<=jump_addr;

;
 end if;

ND struct;

 ELSIF (protocol_addr = "00101100") THE

 jump_addr_n <= "000101

 jump_addr <= "00010110"
 jump_addr_n <= "00010111";
 ELSE
 jump_addr <= "00000000";
 jump_addr_n <= "00000001";
 END IF;

 END PROCESS jump_table_truth_process;

 -- HDL Embedded Text Block 2 jum

 -- This block registers the jump_addr
 -- set in the above truth table, so th
 -- branch is to occur.

 jump_addr_cur<=jump_addr;
 jump_addr_next<=jump_addr_n;
 process(reset,clock)
 begin
 if(reset='1') then

 elsif
 if(enable='1' AND protocol='1') the

 jump_addr_next_reg<=jump_addr_n

 end if;
 end process;

E

110

E FOR THE LENGTH_BLOCK ENTITY

HDL code for the length_block entity of ePAPP. As described in
sponsible for calculating dynamic field lengths based on

r fields (i.e. payload lengths). Specific details about
nd as comments within the code itself.

k.symbol
J. Repanshek
tor Graphics' HDL Designer(TM) 2003.1 (Build 399)

 std_logic;
_logic;

WNTO 0);
gic;

ector (7 DOWNTO 0);

OUT std_logic;
 std_logic_vector (15 DOWNTO 0)

colAnalyzer.length_block.struct
) 2003.1 (Build 399)

4.all;

APPENDIX D

VHDL COD

This appendix contains the V
Section 3.2.3, this component is re
information contained within packet heade
the code can be fou

-- VHDL Entity ProtocolAnalyzer.length_bloc
-- Created by Jacob
-- Generated by Men

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

ENTITY length_block IS
 PORT(
 clock : IN
 enable : IN std
 field_data : IN std_logic_vector (31 DO
 length : IN std_lo
 protocol_addr : IN std_logic_v
 reset : IN std_logic;
 no_optional :
 var_len_reg : OUT
);

END length_block ;

-- VHDL Architecture Proto
-- Generated by Mentor Graphics' HDL Designer(TM

LIBRARY ieee;
USE ieee.std_logic_116
USE ieee.std_logic_arith.all;

111

ARCHITECTURE struct OF length_block IS

rations
_len : std_logic_vector(5 DOWNTO 0);

or(5 DOWNTO 0);
er_len_reg : std_logic_vector(5 DOWNTO 0);
eg : std_logic_vector(15 DOWNTO 0);

len_tmp : std_logic_vector(15 DOWNTO 0);
 : std_logic_vector(15 DOWNTO 0);

IGNAL a_out : std_logic_vector(15 DOWNTO 0);
 : std_logic_vector(15 DOWNTO 0);

L b_out : std_logic_vector(15 DOWNTO 0);
ogic;

s_out : std_logic;
ero : std_logic;

d_logic;

out : std_logic;
ogic;

_logic;
var_len : std_logic_vector(15 DOWNTO 0);

len_out : std_logic_vector(15 DOWNTO 0);
 SIGNAL var_len_reg_tmp : std_logic_vector(15 DOWNTO 0);

EGIN

 1 len_calc

 bus indicates what packet field is currently coming
 field_data. If the field contains information that will be used to

ic field length, the information is registered and/or used

, protocol_addr)

m IP header length (in 32 bit words, so add "00")
ld_data(3 downto 0)) - 5)&"00";

 field_data(3 downto 0)&"00";
= '1';

 -- Architecture declarations

 -- Internal signal decla
 SIGNAL IP_header
 SIGNAL IP_header_len_out : std_logic_vect
 SIGNAL IP_head
 SIGNAL IP_len_r
 SIGNAL IP_
 SIGNAL a
 S
 SIGNAL b
 SIGNA
 SIGNAL minus : std_l
 SIGNAL minu
 SIGNAL not_z
 SIGNAL opt : st
 SIGNAL opt_next : std_logic;
 SIGNAL opt_next_
 SIGNAL opt_out : std_l
 SIGNAL opt_reg : std
 SIGNAL
 SIGNAL var_

B
 -- Architecture concurrent statements

 -- HDL Embedded Text Block

 -- The protocol_addr
 -- in on
 -- calculate a dynam
 -- in calculations accordingly.

 process(field_data
 begin
 case protocol_addr is
 when "00011000" =>
 -- subtract 5 fro
 var_len <= "0000000000"&(unsigned(fie
 IP_header_len <=
 opt <
 opt_next <= '0';

112

 a <= a_out;
_out;

us <= minus_out;
11010" =>

 -- subtract IP header length from total IP packet length

 b <= "0000000000"&IP_header_len_reg;

 var_len <= var_len_out;
P_header_len_out;

pt <= opt_out;

 optional IP field is next
";

<= '0';
t <= '1';

 IP_header_len <= IP_header_len_out;

 b <= b_out;

 when "00100111" =>
m TCP header length (in 32 bits words, so add "00")

ar_len <= "0000000000"&(unsigned(field_data(15 downto 12)) - 5)&"00";
eg;

downto 12)&"00";

ader_len <= IP_header_len_out;
"00101010" =>

al TCP field is next
 var_len <= "0000000000000000";

 opt_next <= '1';

 a <= a_out;

inus <= minus_out;
1" =>

th (in bytes)
nsigned(field_data(7 downto 0)) - 8);

ader_len <= IP_header_len_out;
 a_out;

 b <= b
 min
 when "000

 a <= field_data(15 downto 0);

 minus <= '1';

 IP_header_len <= I
 o
 opt_next <= opt_next_out;
 when "00100001" =>
 --
 var_len <= "0000000000000000
 opt
 opt_nex

 a <= a_out;

 minus <= minus_out;

 -- subtract 5 fro
 v
 a <= IP_len_r
 b <= "0000000000"&field_data(15
 minus <= '1';
 opt <= '1';
 opt_next <= '0';
 IP_he
 when
 -- option

 opt <= '0';

 IP_header_len <= IP_header_len_out;

 b <= b_out;
 m
 when "0010111
 -- subtract 8 from the UDP leng
 var_len <= "00000000"&(u
 opt <= '0';
 opt_next <= '0';
 IP_he
 a <=

113

 b <= b_out;
 minus <= minus_out;

 var_len <= "0000000000000000";

 opt_next <= '0';

P_header_len <= IP_header_len_out;

ck,reset)

ge(clock)) then
 a_out<=a;
 b_out<=b;

 opt_out<=opt;
t;

 var_len_out<=var_len;

 end process;

 -- HDL Embedded Text Block 2 length_reg

 -- This process registers a dynamic field width value to be output
 -- from length_block. Also, this block identifies whether the dynamic
 -- length is a non-zero value.

 process(reset,clock)
 begin
 if(reset='1') then
 var_len_reg_tmp<="0000000000000000";
 not_zero<='0';
 opt_reg<='0';
 elsif (rising_edge(clock)) then
 if(enable='1' AND length='1' and protocol_addr/="00011010") then
 var_len_reg_tmp<=(unsigned(var_len)-'1');
 opt_reg<=opt;
 if(var_len/="0000000000000000") then
 not_zero<='1';
 else
 not_zero<='0';

 when others =>

 opt <= '0';

 minus <= '0';
 I
 a <= a_out;
 b <= b_out;
 end case;
 end process;

 process(clo
 begin
 if(rising_ed

 minus_out<=minus;
 IP_header_len_out<=IP_header_len;

 opt_next_out<=opt_nex

 end if;

114

 end if;
 end if;
 end if;
 end process;

 -- HDL Embedded Text Block 3 rename

 -- This blocks specifies the output of length_block.

 process(protocol_addr)
 begin
 if(protocol_addr="00101100") then

 end process;

IP_len_reg

 -- This process registers the length of the IP portion of packet.

 if(reset='1') then
0000000";

sing_edge(clock)) then
dr="00011011") then

P_header_len

 if(enable='1' AND length='1') then
 IP_header_len_reg<=IP_header_len;

 end if;

 var_len_reg<=(unsigned(IP_len_tmp)-1);
 else
 var_len_reg<=var_len_reg_tmp;
 end if;

 -- HDL Embedded Text Block 4

 process(reset,clock)
 begin

 IP_len_reg<="000000000
 elsif (ri
 if(enable='1' AND protocol_ad
 IP_len_reg<=IP_len_tmp;
 end if;
 end if;
 end process;

 -- HDL Embedded Text Block 5 I

 -- This process registers the value of the IP header length.

 process(reset,clock)
 begin
 if(reset='1') then
 IP_header_len_reg<="000000";
 elsif (rising_edge(clock)) then

 end if;

115

 end process;

rforms subtraction on two 16-bit inputs.

 begin

 IP_len_tmp <= "0000000000000000";
en

 if(minus='1') then
(a) - unsigned(b));

 end process;

 'I0' of 'nand'
g AND opt_next);

 -- Instance port mappings.

 -- HDL Embedded Text Block 6 subtractor

 -- This block pe

 process(reset,clock)

 if(reset='1') then

 elsif(rising_edge(clock)) th

 IP_len_tmp <= (unsigned
 end if;
 end if;

 -- ModuleWare code(v1.0) for instance
 no_optional <= NOT(not_zero AND opt_re

END struct;

116

ENDIX E

DE FOR THE PROTOCOL_MEMORY ENTITY

 VHDL code for the protocol_memory entity of ePAPP. As described
nent keeps track of the current part of a packet being classified and

hat field type is next. Specific details about the code can be
 the code itself.

zer.protocol_memory.symbol

aphics' HDL Designer(TM) 2003.1 (Build 399)

all;

_logic;
ic;

 std_logic;
td_logic_vector (7 DOWNTO 0);

td_logic_vector (7 DOWNTO 0);

_logic;
T std_logic;

_logic_vector (15 DOWNTO 0);
 std_logic;

 std_logic;
std_logic_vector (7 DOWNTO 0);

ctor (7 DOWNTO 0);
T std_logic;
 std_logic

APP

VHDL CO

This appendix contains the
in Section 3.2.1, this compo
uses a truth table to determine w
found as comments within

-- VHDL Entity ProtocolAnaly
-- Created by Jacob J. Repanshek
-- Generated by Mentor Gr

LIBRARY ieee;
USE ieee.std_logic_1164.
USE ieee.std_logic_arith.all;

ENTITY protocol_memory IS
 PORT(
 clock : IN std
 enable : IN std_log
 incr_addr : IN
 jump_addr : IN s
 jump_addr_next : IN s
 load_addr : IN std_logic;
 reset : IN std
 branch_indicator : OU
 field_width : OUT std
 len_indicator : OUT
 packet_done : OUT
 protocol_addr : OUT
 protocol_addr_reg : OUT std_logic_ve
 protocol_indicator : OU
 var_len_field : OUT
);

END protocol_memory ;

117

-- VHDL Architecture ProtocolAnalyzer.protocol_memory.struct

aphics' HDL Designer(TM) 2003.1 (Build 399)

;

F protocol_memory IS

ns

tor(7 DOWNTO 0);

nt statements
 protocol_table

hich contains information about all
pported by ePAPP. This information is

 current part of a packet being read in,
he packet field and whether or not it contains

ssifying future fields, such as length information.

cess: PROCESS(protocol_addr_int)

 IS

000000000011";

= '0';

000000000011";

-- Generated by Mentor Gr

LIBRARY ieee;
USE ieee.std_logic_1164.all
USE ieee.std_logic_arith.all;

ARCHITECTURE struct O

 -- Architecture declarations

 -- Internal signal declaratio
 SIGNAL clk_en : std_logic;
 SIGNAL protocol_addr_int : std_logic_vec

BEGIN
 -- Architecture concurre
 -- HDL Embedded Block 1
 -- Non hierarchical truthtable

 -- This is the truth table w
 -- of the protocol fields su
 -- used not only to identify the
 -- but also the width of t
 -- information useful to cla

 --
 protocol_table_truth_pro

 BEGIN
 -- Block 1
 CASE protocol_addr_int
 WHEN "00000000" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '1';
 WHEN "00000001" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';

118

 protocol_indicator <= '0';

000000000011";

= '0';

000000000001";

= '0';

000000000011";

= '0';

000000000001";

= '0';

000000000001";

= '1';

000000000001";

= '0';

 packet_done <= '0';
 WHEN "00000010" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00000011" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00000100" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00000101" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00000110" =>
 branch_indicator <= '1';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00000111" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00001000" =>
 branch_indicator <= '0';

119

 field_width <= "0000000000000001";

= '0';

000000000000";

= '0';

000000000000";

= '0';

000000000001";

= '0';

000000000011";

= '0';

000000000001";

= '0';

000000000011";

= '0';

 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00001001" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00001010" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00001011" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00001100" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00001101" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00001110" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <

120

 packet_done <= '0';
 WHEN "00001111" =>
 branch_indicator <= '0';
 field_width <= "0000000000000011";

= '0';

000000000001";

= '0';

000000000011";

= '0';

000000000011";

= '0';

000000000011";

= '0';

000000000011";

= '0';

000000000001";

 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00010000" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00010001" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00010010" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00010011" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00010100" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00010101" =>
 branch_indicator <= '0';
 field_width <= "0000

121

 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <= '0';

000000000011";

= '0';

000000000000";

= '1';

000000000000";

= '0';

000000000000";

= '0';

000000000001";

= '0';

000000000001";

= '0';

 packet_done <= '0';
 WHEN "00010110" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00010111" =>
 branch_indicator <= '1';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00011000" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '1';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00011001" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00011010" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '1';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00011011" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';

122

 WHEN "00011100" =>
 branch_indicator <= '0';
 field_width <= "0000000000000001";

= '0';

000000000000";

= '0';

000000000000";

= '1';

000000000001";

= '0';

000000000011";

= '0';

000000000011";

= '0';

111111111111";

 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00011101" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00011110" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00011111" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00100000" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00100001" =>
 branch_indicator <= '1';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00100010" =>
 branch_indicator <= '1';
 field_width <= "1111
 len_indicator <= '0';

123

 var_len_field <= '1';
 protocol_indicator <= '0';

000000000001";

= '0';

000000000001";

= '0';

000000000011";

= '0';
 <= '0';

 WHEN "00100110" =>

 field_width <= "0000000000000011";

 var_len_field <= '0';

 packet_done <= '0';

 branch_indicator <= '0';
001";

'1';
_len_field <= '0';

tor <= '0';

 '0';

icator <= '0';
n_field <= '0';

indicator <= '0';
 packet_done <= '0';

 packet_done <= '0';
 WHEN "00100011" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00100100" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done <= '0';
 WHEN "00100101" =>
 branch_indicator <= '0';
 field_width <= "0000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <
 packet_done

 branch_indicator <= '0';

 len_indicator <= '0';

 protocol_indicator <= '0';

 WHEN "00100111" =>

 field_width <= "0000000000000
 len_indicator <=
 var
 protocol_indica
 packet_done <= '0';
 WHEN "00101000" =>
 branch_indicator <=
 field_width <= "0000000000000001";
 len_ind
 var_le
 protocol_

 WHEN "00101001" =>

124

 field_width <= "0000000000000001";
 len_indicator <= '0';
 var_len_field <= '0';

 branch_indicator <= '0';

 protocol_indicator <= '0';
0';

nch_indicator <= '1';
"0000000000000001";

111111";
icator <= '0';

101100" =>

 <= "1111111111111111";
tor <= '0';

_field <= '1';
ol_indicator <= '1';

ne <= '0';
 WHEN "00101101" =>
 branch_indicator <= '0';

 var_len_field <= '0';
';

 packet_done <= '0';
0101110" =>

 branch_indicator <= '0';
 field_width <= "0000000000000001";
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <= '0';
 packet_done <= '0';
 WHEN "00101111" =>
 branch_indicator <= '0';
 field_width <= "0000000000000001";
 len_indicator <= '1';
 var_len_field <= '0';

 packet_done <= '
 WHEN "00101010" =>
 bra
 field_width <=
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <= '1';
 packet_done <= '0';
 WHEN "00101011" =>
 branch_indicator <= '0';
 field_width <= "1111111111
 len_ind
 var_len_field <= '1';
 protocol_indicator <= '0';
 packet_done <= '0';
 WHEN "00
 branch_indicator <= '1';
 field_width
 len_indica
 var_len
 protoc
 packet_do

 field_width <= "0000000000000001";
 len_indicator <= '0';

 protocol_indicator <= '0

 WHEN "0

125

 protocol_indicator <= '0';
 packet_done <= '0';
 WHEN "00110000" =>
 branch_indicator <= '0';
 field_width <= "000000000000000
 len_indicator <= '0';
 var_len_field <= '0';
 protocol_indicator <= '0';
 packet_done <=
 WHEN "00110001" =>
 branch_indicator <= '1';
 field_width <= "1111111111111111";

 WHEN OTHERS =>

111111";

 var_len_field <= '0';
icator <= '0';

ol_table_truth_process;

reg

t protocol address.

0";

addr_int;

1";

 '0';

 len_indicator <= '0';
 var_len_field <= '1';
 protocol_indicator <= '1';
 packet_done <= '0';

 branch_indicator <= '0';
 field_width <= "1111111111
 len_indicator <= '0';

 protocol_ind
 packet_done <= '0';
 END CASE;

 END PROCESS protoc

 -- Architecture concurrent statements

 -- HDL Embedded Text Block 2 addr_

 -- This process registers the curren

 protocol_addr<=protocol_addr_int;
 process(reset,clock)
 begin
 if(reset='1') then
 protocol_addr_reg<="0000000
 elsif(rising_edge(clock)) then
 if(enable='1') then
 protocol_addr_reg<=protocol_
 end if;
 end if;
 end process;

 -- HDL Embedded Text Block 3 counter

126

 -- This process keeps a loadable counter that keeps track of

ocol_memory. A branch is enabled
to the counter.

;

p_addr;

nstance 'I1' of 'and'
;

 -- the current location in the prot
 -- by loading a value from jump_tlb in

 process(clock,reset)
 variable cnt : std_logic_vector(7 downto 0);
 begin
 if(reset='1') then
 protocol_addr_int <= "00000000"
 cnt := "00000001";
 elsif(rising_edge(clock)) then
 if(clk_en='1') then
 if(load_addr='1') then
 protocol_addr_int <= jum
 cnt := jump_addr_next;
 else
 protocol_addr_int <= cnt;
 if(cnt = "11111111") then
 cnt := "00000000";
 else
 cnt := (unsigned(cnt) + '1');
 end if;
 end if;
 end if;
 end if;
 end process;

 -- ModuleWare code(v1.0) for i
 clk_en <= enable AND incr_addr

 -- Instance port mappings.

END struct;

127

ENDIX F

_CAM ENTITY

ndix contains the VHDL code for the snort_cam entity of CASMA. This entity
all of the VHDL code responsible for everything from receiving data from ePAPP to

 CAM to retrieving results from the CAM and outputting them. Specific
bout the code can be found as comments within the code itself.

L Entity CAMmodel.snort_CAM.symbol
ed by Jacob J. Repanshek
rated by Mentor Graphics' HDL Designer(TM) 2003.1 (Build 399)

Y ieee;
.std_logic_1164.all;

e.std_logic_arith.all;

 snort_CAM IS

k_cam : OUT std_logic_vector (5 DOWNTO 0);

init : IN std_logic_vector (2 DOWNTO 0);
_b_cam : OUT std_logic;
_b_init : IN std_logic;
_b : IN std_logic;

cam : OUT std_logic_vector (2 DOWNTO 0);
cam : OUT std_logic_vector (2 DOWNTO 0);
init : IN std_logic_vector (2 DOWNTO 0);
k_init : IN std_logic_vector (5 DOWNTO 0);

ck : IN std_logic;
one : IN std_logic;
cam : OUT std_logic_vector (10 DOWNTO 0);
init : IN std_logic_vector (10 DOWNTO 0);
am : OUT std_logic;
nit : IN std_logic;
am : OUT std_logic;
it : IN std_logic;
ut_b : IN std_logic;

hIn_cam : OUT std_logic_vector (6 DOWNTO 0);

APP

VHDL CODE FOR THE SNORT

This appe
contains
sending data to the
details a

-- VHD
-- Creat
-- Gene

LIBRAR
USE ieee
USE iee

ENTITY
 PORT(
 Gmas
 Crb_
 Burst
 Burst
 CeOe
 Crb_
 Dev_
 Dev_
 Gmas
 HitA
 InitD
 Inst_
 Inst_
 LC_c
 LC_i
 LS_c
 LS_in
 MMO
 Matc

128

 MatchIn_init : IN std_logic_vector (6 DOWNTO 0);
hOut : IN std_logic;
r : IN std_logic;
n_cam : OUT std_logic;
n_init : IN std_logic;
k : IN std_logic;
ata : INOUT std_logic_vector (71 DOWNTO 0);
tb_cam : OUT std_logic;
tb_init : IN std_logic;
_cam : OUT std_logic;
_init : IN std_logic;

cam : OUT std_logic;
init : IN std_logic;
am : OUT std_logic;

 : IN std_logic;
do : IN std_logic;

 Tms_cam : OUT std_logic;
_logic;

c;

 We_b : IN std_logic;
 clock_cam : OUT std_logic;

 Phasen : IN std_logic;
 clock : IN std_logic;

c_vector (31 DOWNTO 0);
c_vector (7 DOWNTO 0);

r (1 DOWNTO 0)

M.struct
ner(TM) 2003.1 (Build 399)

 Matc
 ParEr
 Phase
 Phase
 RdAc
 ReqD
 ReqS
 ReqS
 Rst_b
 Rst_b
 Tck_
 Tck_
 Tdi_c
 Tdi_init
 T

 Tms_init : IN std
 Trst_b_cam : OUT std_logi
 Trst_b_init : IN std_logic;

 clock_init : IN std_logic;
 indx : IN std_logic_vector (23 DOWNTO 0);
 valid : IN std_logic;

 field_data : IN std_logi
 field_type : IN std_logi
 reset : IN std_logic;
 valid_in : IN std_logic;
 ReqDataOut : OUT std_logic_vector (71 DOWNTO 0);
 address_valid : OUT std_logic;
 hit_address : OUT std_logic_vector (16 DOWNTO 0);
 search_type_out : OUT std_logic_vecto
);

END snort_CAM ;

-- VHDL Architecture CAMmodel.snort_CA
-- Generated by Mentor Graphics' HDL Desig

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.std_logic_arith.all;

129

USE ieee.STD_LOGIC_UNSIGNED.all;

LIBRARY CAMmodel;

ARCHITECTURE struct OF snort_CAM IS

 -- Architecture declarations
-- Non hierarchical state machine declarations
TYPE CSM1_CURRENT_STATE_STATE_TYPE IS (
 s0,
 extra_start,
 s48,
 s49,
 s50,
 header_start1,
 h2,
 s6,
 s7,
 s8,
 s9,
 s10,
 s11,
 s12,
 s3,
 s4,
 s43,
 s44,
 s45,
 s46,
 s47,
 s51,
 s29,
 s27,
 s26,
 s25,
 s24,
 s23,
 s22,
 s21,
 s20,
 s19,
 s18,
 s17,
 s16,
 s15,
 s14,

130

 payload_start1,
 s42,
 s41,
 s40,
 s39,
 s38,
 s30,
 s37,
 s36,
 s35,
 s34,
 s33,
 s32,
 s31,
 scroll_start
);

-- State vector declaration
ATTRIBUTE state_vector : string;
ATTRIBUTE state_vector OF struct : ARCHITECTURE IS "csm1_current_state" ;

NT_STATE_STATE_TYPE ;
STATE_STATE_TYPE ;

NTO 0);
(2 DOWNTO 0);

5 DOWNTO 0);
(10 DOWNTO 0);

c_vector(15 DOWNTO 0);
 0);

_vector(7 DOWNTO 0);

-- Declare current and next state signals
SIGNAL csm1_current_state : CSM1_CURRE
SIGNAL csm1_next_state : CSM1_CURRENT_

 -- Internal signal declarations
 -- Internal signal declarations
 SIGNAL Burst_b : std_logic;
 SIGNAL Crb : std_logic_vector(2 DOW
 SIGNAL Dev : std_logic_vector
 SIGNAL Gmask : std_logic_vector(
 SIGNAL Inst : std_logic_vector
 SIGNAL LC : std_logic;
 SIGNAL LS : std_logic;
 SIGNAL MatchIn : std_logic_vector(6 DOWNTO 0);
 SIGNAL ReqStb : std_logic;
 SIGNAL Rst_b : std_logic;
 SIGNAL Tck : std_logic;
 SIGNAL Tdi : std_logic;
 SIGNAL Tms : std_logic;
 SIGNAL Trst_b : std_logic;
 SIGNAL arp_hardware : std_logi
 SIGNAL arp_hw_dest : std_logic_vector(47 DOWNTO
 SIGNAL arp_hw_len : std_logic

131

 SIGNAL arp_hw_src : std_logic_vector(47 DOWNTO 0);
ic_vector(15 DOWNTO 0);

_vector(7 DOWNTO 0);
 SIGNAL arp_protocol : std_logic_vector(15 DOWNTO 0);
 SIGNAL count_up : std_logic_vector(10 DOWNTO 0);

);

WNTO 0);

3199 : std_logic;
_34000 : std_logic;

 SIGNAL dest_port_between_32772_34000 : std_logic;
ic;

 SIGNAL dest_port_gt_1023 : std_logic;
 SIGNAL dest_port_gt_499 : std_logic;

L dest_port_not_80 : std_logic;
logic;
_logic;

 : std_logic;
 SIGNAL dsize_gt_1023 : std_logic;

gic;
 SIGNAL dsize_gt_800 : std_logic;

ogic_vector(31 DOWNTO 0);
 ethernet_dest : std_logic_vector(47 DOWNTO 0);

L ethernet_src : std_logic_vector(47 DOWNTO 0);
GNAL ethernet_type : std_logic_vector(15 DOWNTO 0);

 header_search_done : std_logic;
string : std_logic_vector(575 DOWNTO 0);

 : std_logic_vector(7 DOWNTO 0);
_gt_0 : std_logic;

ic;
_logic;

 SIGNAL icmp_code_gt_3 : std_logic;
mp_id : std_logic_vector(15 DOWNTO 0);

 SIGNAL icmp_seq : std_logic_vector(15 DOWNTO 0);
ctor(7 DOWNTO 0);

 SIGNAL arp_opcode : std_log
 SIGNAL arp_prot_len : std_logic

 SIGNAL ctrl_bus : std_logic_vector(40 DOWNTO 0
 SIGNAL curr_shift : std_logic_vector(7 DOWNTO 0);
 SIGNAL dest_port : std_logic_vector(15 DO
 SIGNAL dest_port_between_1000_1300 : std_logic;
 SIGNAL dest_port_between_3127_
 SIGNAL dest_port_between_32771

 SIGNAL dest_port_between_6666_7000 : std_log

 SIGNA
 SIGNAL dsize_gt_1 : std_
 SIGNAL dsize_gt_100 : std
 SIGNAL dsize_gt_1000

 SIGNAL dsize_gt_128 : std_logic;
 SIGNAL dsize_gt_1445 : std_logic;
 SIGNAL dsize_gt_156 : std_logic;
 SIGNAL dsize_gt_200 : std_logic;
 SIGNAL dsize_gt_500 : std_logic;
 SIGNAL dsize_gt_512 : std_logic;
 SIGNAL dsize_gt_6 : std_logic;
 SIGNAL dsize_gt_720 : std_lo

 SIGNAL dsize_lt_25 : std_logic;
 SIGNAL ethernet_checksum : std_l
 SIGNAL
 SIGNA
 SI
 SIGNAL header_ready : std_logic;
 SIGNAL
 SIGNAL header_search_
 SIGNAL icmp_code
 SIGNAL icmp_code
 SIGNAL icmp_code_gt_1 : std_logic;
 SIGNAL icmp_code_gt_15 : std_log
 SIGNAL icmp_code_gt_2 : std

 SIGNAL ic

 SIGNAL icmp_type : std_logic_ve

132

 SIGNAL init_bus : std_logic_vector(40 DOWNTO 0);
0);

ctor(2 DOWNTO 0);
_header_checksum : std_logic_vector(15 DOWNTO 0);

eader_len : std_logic_vector(3 DOWNTO 0);
ion : std_logic_vector(15 DOWNTO 0);

t : std_logic_vector(12 DOWNTO 0);
ns : std_logic_vector(7 DOWNTO 0);

o_gt_134 : std_logic;
otocol : std_logic_vector(7 DOWNTO 0);

GNAL ip_src : std_logic_vector(31 DOWNTO 0);
 0);

 ip_ttl : std_logic_vector(7 DOWNTO 0);
 : std_logic;

 : std_logic_vector(7 DOWNTO 0);
ic_vector(3 DOWNTO 0);

 : std_logic;
 : std_logic_vector(217 DOWNTO 0);

count : std_logic_vector(15 DOWNTO 0);
 : std_logic_vector(15 DOWNTO 0);

ready : std_logic;
 : std_logic;

search_string : std_logic_vector(575 DOWNTO 0);

ic;
O 0);

_vector(13 DOWNTO 0);
gic;
_vector(15 DOWNTO 0);

rc_port_between_1000_1300 : std_logic;
6_7000 : std_logic;

port_gt_1023 : std_logic;
o_23 : std_logic;

: std_logic;
 : std_logic_vector(31 DOWNTO 0);

p_checksum : std_logic_vector(15 DOWNTO 0);
c_vector(7 DOWNTO 0);

header_len : std_logic_vector(3 DOWNTO 0);
_num : std_logic_vector(31 DOWNTO 0);

 : std_logic_vector(15 DOWNTO 0);
dow_size : std_logic_vector(15 DOWNTO 0);

 : std_logic_vector(15 DOWNTO 0);
 : std_logic_vector(15 DOWNTO 0);

 : std_logic;
 : std_logic_vector(7 DOWNTO 0);

 : std_logic;

 SIGNAL ip_dest : std_logic_vector(31 DOWNTO
 SIGNAL ip_flags : std_logic_ve
 SIGNAL ip
 SIGNAL ip_h
 SIGNAL ip_identificat
 SIGNAL ip_offse
 SIGNAL ip_optio
 SIGNAL ip_prot
 SIGNAL ip_pr
 SI
 SIGNAL ip_total_len : std_logic_vector(15 DOWNTO
 SIGNAL
 SIGNAL ip_ttl_gt_220
 SIGNAL ip_type
 SIGNAL ip_version : std_log
 SIGNAL max_shift
 SIGNAL padding
 SIGNAL payload_
 SIGNAL payload_len
 SIGNAL payload_
 SIGNAL payload_search_done
 SIGNAL payload_
 SIGNAL same_ip : std_logic;
 SIGNAL search_again : std_log
 SIGNAL search_type : std_logic_vector(1 DOWNT
 SIGNAL shift_count : std_logic
 SIGNAL shift_payload : std_lo
 SIGNAL src_port : std_logic
 SIGNAL s
 SIGNAL src_port_between_666
 SIGNAL src_
 SIGNAL src_port_not_21_t
 SIGNAL src_port_not_80
 SIGNAL tcp_ack_num
 SIGNAL tc
 SIGNAL tcp_flags : std_logi
 SIGNAL tcp_
 SIGNAL tcp_seq
 SIGNAL tcp_urgent_pointer
 SIGNAL tcp_win
 SIGNAL udp_checksum
 SIGNAL udp_len
 SIGNAL wena
 SIGNAL ffout
 SIGNAL empty

133

 SIGNAL rena : std_logic;
td_logic;

 : std_logic;

ns(v1.0) for instance 'I1' of 'fifo'
 IS ARRAY (1500 DOWNTO 0) OF std_logic_vector(7 DOWNTO 0);

ER RANGE 0 TO 1500;
naddr : INTEGER RANGE 0 TO 1500;

reg;
nreg : mw_I1sreg;

std_logic_vector(13 downto 0);

current statements
troller

l state machine

ine flows from one search type to the other as packets are buffered. A packet
e first header information of a packet is completely registered.

rch returns results, the flow shifts to the scroll super-state, in which all of the
t. When all matches have been specified and enough of a payload

rching, the flow moves to the payload search super-
en all the results for one payload search have been output, the flow either goes to

load left to be searched, or back to header searching if a
 header has been buffered.

S(

HEN

s
lock = '1') THEN

state <= csm1_next_state;
ternals

state_clocked;

 SIGNAL full : s
 SIGNAL aempty

 -- ModuleWare signal declaratio
 TYPE mw_I1sreg
 SIGNAL mw_I1caddr : INTEG
 SIGNAL mw_I1
 SIGNAL mw_I1creg : mw_I1s
 SIGNAL mw_I1

signal temp_count :

BEGIN
 -- Architecture con
 -- HDL Embedded Block 1 con
 -- Non hierarchica

 -- This state mach
 -- header search begins when th
 -- If the header sea
 -- search matches are outpu
 -- has been buffered to start payload sea
 -- state. Wh
 -- another payload search if there is pay
 -- new packet

 csm1_current_state_clocked : PROCES
 clock,
 reset
)

 BEGIN
 IF (reset = '1') T
 csm1_current_state <= s0;
 -- Reset Value
 ELSIF (clock'EVENT AND c
 csm1_current_
 -- Default Assignment To In

 END IF;

 END PROCESS csm1_current_

134

 --

e_nextstate : PROCESS (

r_start1;
rt =>

ad_ready='1'))) THEN

((search_type="01")) THEN
r_start1;

tate <= s50;

tart1 =>
N

tate <= h2;

tate <= header_start1;

_next_state <= s8;

ext_state <= s9;

 csm1_current_stat
 HitAck,
 MatchOut,
 csm1_current_state,
 header_ready,
 payload_ready,
 search_again,
 search_type
)

 BEGIN
 CASE csm1_current_state IS
 WHEN s0 =>
 csm1_next_state <= heade
 WHEN extra_sta
 csm1_next_state <= s48;
 WHEN s48 =>
 csm1_next_state <= s49;
 WHEN s49 =>
 csm1_next_state <= s50;
 WHEN s50 =>
 IF (((search_type="00") AND (paylo
 csm1_next_state <= payload_start1;
 ELSIF (search_again='1' AND payload_ready='1') THEN
 csm1_next_state <= payload_start1;
 ELSIF
 csm1_next_state <= heade
 ELSE
 csm1_next_s
 END IF;
 WHEN header_s
 IF ((header_ready='1')) THE
 csm1_next_s
 ELSE
 csm1_next_s
 END IF;
 WHEN h2 =>
 csm1_next_state <= s6;
 WHEN s6 =>
 csm1_next_state <= s7;
 WHEN s7 =>
 csm1
 WHEN s8 =>
 csm1_n

135

 WHEN s9 =>
 csm1_next_state <= s10;
 WHEN s10 =>
 csm1_next_state <= s11;
 WHEN s11 =>
 csm1_next_state <= s12;
 WHEN s12 =>
 csm1_next_state <= s3;
 WHEN s3 =>
 csm1_next_state <= s4;
 WHEN s4 =>
 csm1_next_state <= s43;
 WHEN s43 =>
 csm1_next_state <= s44;
 WHEN s44 =>
 csm1_next_state <= s45;

 csm1_next_state <= s46;

 csm1_next_state <= s47;

51 =>
k='1') THEN

<= scroll_start;

 extra_start;

state <= scroll_start;

ch_again='1') THEN
t_state <= extra_start;

 csm1_next_state <= extra_start;

 s27 =>
 s29;

state <= s27;

= s26;

ext_state <= s25;
 =>

24;

 WHEN s45 =>

 WHEN s46 =>

 WHEN s47 =>
 csm1_next_state <= s51;
 WHEN s
 IF (HitAc
 csm1_next_state
 ELSE
 csm1_next_state <=
 END IF;
 WHEN s29 =>
 IF (HitAck='1') THEN
 csm1_next_
 ELSIF (sear
 csm1_nex
 ELSE

 END IF;
 WHEN
 csm1_next_state <=
 WHEN s26 =>
 csm1_next_
 WHEN s25 =>
 csm1_next_state <
 WHEN s24 =>
 csm1_n
 WHEN s23
 csm1_next_state <= s

136

 WHEN s22 =
 csm1_next_state <= s23;
 WHEN s21 =

>

>
state <= s22;

xt_state <= s21;

 =>
xt_state <= s20;

= s18;

 csm1_next_state <= s17;

=>
tate <= s14;

again='1') AND (payload_ready='1'))) THEN
d_start1;

te <= header_start1;
") AND (payload_ready='1'))) THEN

 =>
1;

;

38;
 =>

t='1')) THEN
roll_start;

state <= s30;

 csm1_next_
 WHEN s20 =>
 csm1_ne
 WHEN s19
 csm1_ne
 WHEN s18 =>
 csm1_next_state <= s19;
 WHEN s17 =>
 csm1_next_state <
 WHEN s16 =>

 WHEN s15 =>
 csm1_next_state <= s16;
 WHEN s14 =>
 csm1_next_state <= s15;
 WHEN payload_start1
 csm1_next_s
 WHEN s42 =>
 IF (((search_type="01" AND search_
 csm1_next_state <= payloa
 ELSIF ((search_type="01")) THEN
 csm1_next_sta
 ELSIF (((search_type="00
 csm1_next_state <= payload_start1;
 ELSE
 csm1_next_state <= s42;
 END IF;
 WHEN s41 =>
 csm1_next_state <= s42;
 WHEN s40
 csm1_next_state <= s4
 WHEN s39 =>
 csm1_next_state <= s40;
 WHEN s38 =>
 csm1_next_state <= s39
 WHEN s30 =>
 csm1_next_state <= s
 WHEN s37
 IF ((MatchOu
 csm1_next_state <= sc
 ELSE
 csm1_next_
 END IF;

137

 WHEN s36 =>
 csm1_next_state <= s37;

5;

state <= s34;

2;

tate <= s31;

1_current_state_nextstate;

--
e_output : PROCESS (

earch_string,

dy,
string,

--

00";

 WHEN s35 =>
 csm1_next_state <= s36;
 WHEN s34 =>
 csm1_next_state <= s3
 WHEN s33 =>
 csm1_next_
 WHEN s32 =>
 csm1_next_state <= s33;
 WHEN s31 =>
 csm1_next_state <= s3
 WHEN scroll_start =>
 csm1_next_s
 WHEN OTHERS =>
 csm1_next_state <= s0;
 END CASE;

 END PROCESS csm

 csm1_current_stat
 HitAck,
 MatchOut,
 csm1_current_state,
 header_ready,
 header_s
 max_shift,
 payload_rea
 payload_search_
 search_again,
 search_type,
 shift_count,
 temp_count
)

 BEGIN
 -- Default Assignment
 Burst_b <= '1';
 Crb <= "000";
 Dev <= "000";
 Gmask <= "0000
 Inst <= "00000000000";
 LC <= '1';
 LS <= '1';
 MatchIn <= "0000000";

138

 ReqData <=
"ZZZ

= '0';
 '0';

ns
S

 (payload_ready='1'))) THEN

-bit lookup on a snort payload rule

<=payload_search_string(575 downto 504);
_again='1' AND payload_ready='1') THEN

on a snort payload rule

<=payload_search_string(575 downto 504);

')) THEN
rm 576-bit lookup on header information

qStb<='1';
 Inst<="00000111000";

wnto 504);
 search_type<="00";

 WHEN h2 =>
;

 ReqData<=header_search_string(503 downto 432);

 Inst<="00000111000";

ZZZZZZZZZ";
 ReqStb <= '0';
 Rst_b <= '1';
 Tck <= '0';
 Tdi <= '0';
 Tms <= '0';
 Trst_b <= '0';
 header_search_done <= '0';
 payload_search_done <
 shift_payload <=
 -- Default Assignment To Internals

 -- Combined Actio
 CASE csm1_current_state I
 WHEN s0 =>
 shift_count<="00000000000001";
 search_type<="00";
 WHEN s50 =>
 IF (((search_type="00") AND
 shift_count<="00000000000001";
 header_search_done<='1';
 -- perform 576
 ReqStb<='1';
 Inst<="00000111000";
 ReqData
 ELSIF (search
 -- perform 576-bit lookup
 ReqStb<='1';
 Inst<="00000111000";
 ReqData
 END IF;
 WHEN header_start1 =>
 IF ((header_ready='1
 -- perfo
 Re

 ReqData<=header_search_string(575 do

 END IF;

 Inst<="00000111000"

 WHEN s6 =>

139

 ReqData<=header_search_string(431 downto 360);
 WHEN s7 =>
 Inst<="00000111000";

59 downto 288);
 s8 =>

st<="00000111000";
r_search_string(287 downto 216);

215 downto 144);

43 downto 72);

;

001";

nto 0)&'0';

ng(71 downto 16)&max_shift&shift_count&'1';

ring(143 downto 72);
=>

st<="00000111000";
payload_search_string(215 downto 144);

 WHEN s16 =>
 Inst<="00000111000";

 ReqData<=header_search_string(3
 WHEN
 In
 ReqData<=heade
 WHEN s9 =>
 Inst<="00000111000";
 ReqData<=header_search_string(
 WHEN s10 =>
 Inst<="00000111000";
 ReqData<=header_search_string(1
 WHEN s11 =>
 Inst<="00000111000";
 ReqData<=header_search_string(71 downto 0)
 WHEN s51 =>
 IF (HitAck='1') THEN
 ReqStb<='1';
 Inst<="00000111001";
 END IF;
 WHEN s29 =>
 IF (HitAck='1') THEN
 ReqStb<='1';
 Inst<="00000111
 ELSIF (search_again='1') THEN
 ELSE
 payload_search_done<='1';
 END IF;
 WHEN s27 =>
 shift_count<=temp_count(12 dow
 WHEN s26 =>
 temp_count<=shift_count;
 WHEN s20 =>
 shift_payload<='1';
 WHEN s19 =>
 Inst<="00000111000";
 ReqData<=payload_search_stri
 WHEN s18 =>
 Inst<="00000111000";
 ReqData<=payload_search_st
 WHEN s17
 In
 ReqData<=

140

 ReqData<=payload_search_string(287 downto

 Inst<="00000111000";

216);
 WHEN s15 =>

 ReqData<=payload_search_string(359 downto 288);

="00000111000";
d_search_string(431 downto 360);

nto 432);

arch_again='1') AND (payload_ready='1'))) THEN
 snort payload rule

1';
0001";

 on a snort payload rule

search_string(575 downto 504);

ux

 WHEN s14 =>
 Inst<
 ReqData<=payloa
 WHEN payload_start1 =>
 Inst<="00000111000";
 ReqData<=payload_search_string(503 dow
 search_type<="01";
 WHEN s42 =>
 IF (((search_type="01" AND se
 -- perform 576-bit lookup on a
 ReqStb<='1';
 Inst<="00000111000";
 ReqData<=payload_search_string(575 downto 504);
 ELSIF ((search_type="01")) THEN
 payload_search_done<='1';
 ELSIF (((search_type="00") AND (payload_ready='1'))) THEN
 header_search_done<='
 shift_count<="0000000000
 -- perform 576-bit lookup
 ReqStb<='1';
 Inst<="00000111000";
 ReqData<=payload_
 END IF;
 WHEN s37 =>
 IF ((MatchOut='1')) THEN
 ReqStb<='1';
 Inst<="00000111001";
 END IF;
 WHEN scroll_start =>
 Inst<="00000111001";
 WHEN OTHERS =>
 NULL;
 END CASE;

 END PROCESS csm1_current_state_output;

 -- Concurrent Statements

 ReqDataOut<=ReqData;

 -- HDL Embedded Text Block 4 CAM_m

141

 -- This process serves as a mux that controls what signals reach the CAM:
 signals from within the snort_CAM entity.

us(25 downto 19);
 downto 26);

downto 32);

s(37);

);

;
);

);

 -- signals from the initialization unit, or

 process(InitDone,ctrl_bus,init_bus)
 begin

 case InitDone is
 when '1' =>
 clock_cam <= ctrl_bus(0);
 Phasen_cam <= ctrl_bus(1);
 Dev_cam <= ctrl_bus(4 downto 2);
 Rst_b_cam <= ctrl_bus(5);
 Burst_b_cam <= ctrl_bus(6);
 ReqStb_cam <= ctrl_bus(7);
 Inst_cam <= ctrl_bus(18 downto 8);
 MatchIn_cam <= ctrl_b
 Gmask_cam <= ctrl_bus(31
 Crb_cam <= ctrl_bus(34
 Tms_cam <= ctrl_bus(35);
 Tdi_cam <= ctrl_bus(36);
 Tck_cam <= ctrl_bu
 Trst_b_cam <= ctrl_bus(38);
 LC_cam <= ctrl_bus(39
 LS_cam <= ctrl_bus(40);
 when others =>
 clock_cam <= init_bus(0);
 Phasen_cam <= init_bus(1);
 Dev_cam <= init_bus(4 downto 2);
 Rst_b_cam <= init_bus(5);
 Burst_b_cam <= init_bus(6)
 ReqStb_cam <= init_bus(7
 Inst_cam <= init_bus(18 downto 8);
 MatchIn_cam <= init_bus(25 downto 19);
 Gmask_cam <= init_bus(31 downto 26);
 Crb_cam <= init_bus(34 downto 32
 Tms_cam <= init_bus(35);
 Tdi_cam <= init_bus(36);
 Tck_cam <= init_bus(37);
 Trst_b_cam <= init_bus(38);
 LC_cam <= init_bus(39);
 LS_cam <= init_bus(40);
 end case;

 end process;

142

 -- HDL Embedded Text Block 4 packet_field_reg

 -- This process registes packet header information as it is read in on the field_data bus.

000";
0000000000000000000000";

000000000";

000000000";

0";

00";
000000000000000000000000";

0000000000000000000";
000";

000000000000000000000000000000";

00000000";

000000000000000";

000000";
0000000000";

00000000";
;

0000000000000";

00000000000000";

00000000000";

;

000000";

 process(clock,reset)
 begin
 if(reset='1') then
 ethernet_dest <= "0000000
 ethernet_src <= "00000000000000000000000000
 ethernet_type <= "0000000
 arp_hardware <= "0000000000000000";
 arp_protocol <= "0000000
 arp_hw_len <= "00000000";
 arp_prot_len <= "0000000
 arp_opcode <= "0000000000000000";
 arp_hw_src <= "00000000
 arp_hw_dest <= "000000000000000000000000
 ip_src <= "0000000000000
 ip_dest <= "00000000000000000000000000000
 ethernet_checksum <= "00
 ip_version <= "0000";
 ip_header_len <= "0000";
 ip_type <= "00000000";
 ip_total_len <= "00000000
 ip_identification <= "0000000000000000";
 ip_flags <= "000";
 ip_offset <= "0000000000000";
 ip_ttl <= "00000000";
 ip_protocol <= "00000000";
 ip_header_checksum <= "0
 src_port <= "0000000000000000";
 dest_port <= "0000000000
 tcp_seq_num <= "0000000000000000000000
 tcp_ack_num <= "000000000000000000000000
 tcp_header_len <= "0000"
 tcp_flags <= "00000000";
 tcp_window_size <= "000
 tcp_checksum <= "0000000000000000";
 tcp_urgent_pointer <= "00
 udp_len <= "0000000000000000";
 udp_checksum <= "00000
 ip_options <= "00000000";
 icmp_type <= "00000000";
 icmp_code <= "00000000"
 icmp_id <= "0000000000000000";
 icmp_seq <= "0000000000

143

 elsif(rising_edge(clock)) then
 if(header_search_done='1') then

000000000000000000";
00";

0000000000";
00000000000";

00000000";
00";

 <= "00";
00";

0000000";
0000000000000000000000";

00000000000000000";

000";
0000000000000";

 "0000000000000000";

00000000";
0000";

000000000000000000000000000";

;
;

000000000000";
0";

0000000";

00000";
 <= "00000000";

code <= "00000000";

q <= "0000000000000000";
 elsif(valid_in='1') then

 when "00000010" =>

 when "00000011" =>

 ethernet_dest <= "000000000000000000000000000000
 ethernet_src <= "000000
 ethernet_type <= "000000
 arp_hardware <= "00000
 arp_protocol <= "00000000
 arp_hw_len <= "000000
 arp_prot_len <= "00000000";
 arp_opcode <= "0000000000000000";
 arp_hw_src
 arp_hw_dest <= "000000
 ip_src <= "0000000000000000000000000
 ip_dest <= "0000000000
 ethernet_checksum <= "000000000000000
 ip_version <= "0000";
 ip_header_len <= "0000";
 ip_type <= "00000000";
 ip_total_len <= "0000000000000
 ip_identification <= "000
 ip_flags <= "000";
 ip_offset <= "0000000000000";
 ip_ttl <= "00000000";
 ip_protocol <= "00000000";
 ip_header_checksum <=
 src_port <= "0000000000000000";
 dest_port <= "00000000
 tcp_seq_num <= "0000000000000000000000000000
 tcp_ack_num <= "00000
 tcp_header_len <= "0000";
 tcp_flags <= "00000000"
 tcp_window_size <= "0000000000000000"
 tcp_checksum <= "0000
 tcp_urgent_pointer <= "000000000000000
 udp_len <= "000000000
 udp_checksum <= "0000000000000000";
 ip_options <= "000
 icmp_type
 icmp_
 icmp_id <= "0000000000000000";
 icmp_se

 case field_type is

 ethernet_dest(47 downto 16) <= field_data;

144

 ethernet_dest(15 downto 0) <= field_data(15 downto 0)

;
 when "00000100" =>

rc(47 downto 16) <= field_data;

a(15 downto 0);
 when "00000110" =>

_type <= field_data(15 downto 0);

_data(15 downto 0);

ta(15 downto 0);

en "00001010" =>
(7 downto 0);

arp_opcode <= field_data(15 downto 0);
when "00001100" =>

_hw_src(47 downto 16) <= field_data;
 when "00001101" =>

ata(15 downto 0);
 when "00001110" =>

 ip_dest <= field_data;
10" =>

_data;
 when "00011000" =>

 <= field_data(7 downto 4);
= field_data(3 downto 0);

>
d_data(7 downto 0);

 ip_total_len <= field_data(15 downto 0);

 when "00011100" =>
a(15 downto 13);

(12 downto 0);
>

_ttl <= field_data(7 downto 0);
>

 ethernet_s
 when "00000101" =>
 ethernet_src(15 downto 0) <= field_dat

 ethernet
 when "00000111" =>
 arp_hardware <= field
 when "00001000" =>
 arp_protocol <= field_da
 when "00001001" =>
 arp_hw_len <= field_data(7 downto 0);
 wh
 arp_prot_len <= field_data
 when "00001011" =>

 arp

 arp_hw_src(15 downto 0) <= field_d

 ip_src <= field_data;
 when "00001111" =>
 arp_hw_dest(47 downto 16) <= field_data;
 when "00010000" =>
 arp_hw_dest(15 downto 0) <= field_data(15 downto 0);
 when "00010001" =>

 when "000101
 ethernet_checksum <= field

 ip_version
 ip_header_len <
 when "00011001" =
 ip_type <= fiel
 when "00011010" =>

 when "00011011" =>
 ip_identification <= field_data(15 downto 0);

 ip_flags <= field_dat
 ip_offset <= field_data
 when "00011101" =
 ip
 when "00011110" =

145

 ip_protocol <= field_data(7 downto 0);
n "00011111" =>

 ip_header_checksum <= field_data(15 downto 0);

>
_dest <= field_data;

 when "00100010" =>
") then

1 downto 24);

=>
_port <= field_data(15 downto 0);

 when "00100100" =>
ownto 0);

ield_data;
=>

_ack_num <= field_data;
 when "00100111" =>

tcp_header_len <= field_data(15 downto 12);
flags <= field_data(7 downto 0);

 when "00101000" =>
 downto 0);

 when "00101001" =>

 tcp_urgent_pointer <= field_data(15 downto 0);
01" =>

 src_port <= field_data(15 downto 0);
1110" =>

 downto 0);

(15 downto 0);

ownto 0);

5 payload_len_reg

e length of the payload by subtracting the IP header length

 whe

 when "00100000" =>
 ip_src <= field_data;
 when "00100001" =
 ip

 if(ip_options = "00000000
 ip_options <= field_data(3
 end if;
 when "00100011"
 src

 dest_port <= field_data(15 d
 when "00100101" =>
 tcp_seq_num <= f
 when "00100110"
 tcp

 tcp_

 tcp_window_size <= field_data(15

 tcp_checksum <= field_data(15 downto 0);
 when "00101010" =>

 when "001011

 when "0010
 dest_port <= field_data(15
 when "00101111" =>
 udp_len <= field_data
 when "00110000" =>
 udp_checksum <= field_data(15 d
 when others =>
 end case;
 end if;
 end if;
 end process;

 -- HDL Embedded Text Block

 -- The process calculates th

146

 -- and TCP or UDP header length from the total IP packet length.

ector(5 downto 0);
_vector(5 downto 0);

00000000000";
then

0110") then
n&"00";
len&"00";
ned(ip_total_len) - (unsigned(iplen) + unsigned(tcplen));

010001") then
(udp_len) - 8;

 Embedded Text Block 6 search_status

s, which is to say what kind of search is
, one

 registering, and header_ready is asserted. When 70 bytes
 the case of shorter payloads, the payload has been

 and padded with enough zeros to fill 70 bytes), payload_ready is asserted. These
search or payload search completes, respectively.

ss(clock,reset)

r_ready <= '0';

yload := '0';
f(rising_edge(clock)) then

mation
 field_type="00101100") then

_payload='0') then
 header_ready<='1';

 process(clock,reset)
 variable iplen : std_logic_v
 variable tcplen : std_logic
 begin
 if(reset='1') then
 payload_len <= "00000
 elsif(rising_edge(clock))
 if(ip_protocol="0000
 iplen := ip_header_le
 tcplen := tcp_header_
 payload_len <= unsig
 end if;
 if(ip_protocol="00
 payload_len <= unsigned
 end if;
 end if;
 end process;

 -- HDL

 -- This process keeps track of the current search statu
 -- occurring or about to occur. Once payload information begins to arrive from ePAPP
 -- knows that the header must be done
 -- of payload have been buffered (or, in
 -- buffered
 -- signals are turned off when a header

 proce
 variable curr_payload : std_logic;
 begin
 if(reset='1') then
 heade
 payload_ready <= '0';
 curr_pa
 elsi

 -- if currently receiving payload infor
 if(field_type="00110001" OR

 -- set header_ready flag
 if(curr

 else
 header_ready<='0';

147

 end if;
 end if;

l when 72 bytes of payload have been buffered or payload information is done
(count_up="00001000111") then

der search has completed

r_ready<='0';
 curr_payload := '1';

load_search_done='1') then

ayload := '0';
nd if;

 block uses data registered in the packet_field_reg block to calculate

t_not_21_to_23 <= '0';
c_port_gt_1023 <= '0';

port_between_3127_3199 <= '0';

rt_between_6666_7000 <= '0';
est_port_between_32772_34000 <= '0';

port_gt_499 <= '0';

t_1 <= '0';

 -- signa
 if
 payload_ready<='1';
 end if;

 -- hea
 if(header_search_done='1') then
 heade

 end if;

 -- payload search has completed
 if(pay
 payload_ready<='0';
 curr_p
 e

 end if;
 end process;

 -- HDL Embedded Text Block 8 logic_block

 -- This
 -- all the special cases needed for packet header searching.

 process(clock,reset)
 begin
 if(reset='1') then
 src_por
 sr
 dest_port_gt_1023 <= '0';
 src_port_between_1000_1300 <= '0';
 dest_port_between_1000_1300 <= '0';
 dest_
 src_port_between_6666_7000 <= '0';
 dest_po
 d
 dest_port_between_32771_34000 <= '0';
 src_port_not_80 <= '0';
 dest_port_not_80 <= '0';
 dest_
 ip_ttl_gt_220 <= '0';
 dsize_g

148

 dsize_gt_6 <= '0';

_gt_512 <= '0';

t_720 <= '0';
size_gt_100 <= '0';

_gt_156 <= '0';

_gt_134 <= '0';
me_ip <= '0';

_code_gt_3 <= '0';

f(rising_edge(clock)) then
 23

0101" OR src_port="0000000000010110" OR
")) then

_port_not_21_to_23 <= '1';

rt_not_21_to_23 <= '0';
nd if;

 than 1023
 > 1023) then

_port_gt_1023 <= '1';

rt_gt_1023 <= '0';
nd if;

eater than 1023
t) > 1023) then

t_port_gt_1023 <= '1';

ort_gt_1023 <= '0';
 end if;

000 and 1300 (inclusive)
999) AND (unsigned(src_port) < 1301)) then

 dsize_gt_1445 <= '0';
 dsize_gt_1023 <= '0';
 dsize_gt_1000 <= '0';
 dsize
 dsize_gt_128 <= '0';
 dsize_g
 d
 dsize_gt_800 <= '0';
 dsize_lt_25 <= '0';
 dsize_gt_500 <= '0';
 dsize
 dsize_gt_200 <= '0';
 ip_proto
 sa
 icmp_code_gt_0 <= '0';
 icmp_code_gt_15 <= '0';
 icmp_code_gt_2 <= '0';
 icmp
 icmp_code_gt_1 <= '0';

 elsi
 -- trigger if the source port is not 21, 22, or
 if(not(src_port="000000000001
src_port="0000000000010111
 src
 else
 src_po
 e

 -- trigger if the source port is greater
 if(unsigned(src_port)
 src
 else
 src_po
 e

 -- trigger if the destination port is gr
 if(unsigned(dest_por
 des
 else
 dest_p

 -- trigger if the source port is between 1
 if((unsigned(src_port) >

149

 src_port_between_1000_1300 <= '1';

rt_between_1000_1300 <= '0';
nd if;

en 1000 and 1300 (inclusive)
 999) AND (unsigned(dest_port) < 1301)) then

t_port_between_1000_1300 <= '1';

ort_between_1000_1300 <= '0';
nd if;

en 3127 and 3199 (inclusive)
 3126) AND (unsigned(dest_port) < 3200)) then

t_port_between_3127_3199 <= '1';

ort_between_3127_3199 <= '0';
nd if;

6666 and 7000 (inclusive)
 6665) AND (unsigned(src_port) < 7001)) then

_port_between_6666_7000 <= '1';

rt_between_6666_7000 <= '0';
nd if;

een 6666 and 7000 (inclusive)
 > 6665) AND (unsigned(dest_port) < 7001)) then

t_port_between_6666_7000 <= '1';

ort_between_6666_7000 <= '0';
nd if;

een 32772 and 34000 (inclusive)
 > 32771) AND (unsigned(dest_port) < 34001)) then

t_port_between_32772_34000 <= '1';

ort_between_32772_34000 <= '0';
nd if;

een 32771 and 34000 (inclusive)
 > 32770) AND (unsigned(dest_port) < 34001)) then

t_port_between_32771_34000 <= '1';

ort_between_32771_34000 <= '0';
nd if;

 else
 src_po
 e

 -- trigger if the destination port is betwe
 if((unsigned(dest_port) >
 des
 else
 dest_p
 e

 -- trigger if the destination port is betwe
 if((unsigned(dest_port) >
 des
 else
 dest_p
 e

 -- trigger if the source port is between
 if((unsigned(src_port) >
 src
 else
 src_po
 e

 -- trigger if the destination port is betw
 if((unsigned(dest_port)
 des
 else
 dest_p
 e

 -- trigger if the destination port is betw
 if((unsigned(dest_port)
 des
 else
 dest_p
 e

 -- trigger if the destination port is betw
 if((unsigned(dest_port)
 des
 else
 dest_p
 e

150

 -- trigger if the source port is not port 80

001010000") then
_port_not_80 <= '1';

rt_not_80 <= '0';
nd if;

 port 80
00001010000") then

t_port_not_80 <= '1';

ort_not_80 <= '0';
nd if;

er than 499
 499) then

t_port_gt_499 <= '1';

ort_gt_499 <= '0';
nd if;

20
0) then

ttl_gt_220 <= '1';

gt_220 <= '0';
nd if;

n) > 1) then
ze_gt_1 <= '1';

gt_1 <= '0';
nd if;

 6) then
ze_gt_6 <= '1';

gt_6 <= '0';
nd if;

eater than 1445
d_len) > 1445) then

ze_gt_1445 <= '1';

 if(src_port /= "0000000
 src
 else
 src_po
 e

 -- trigger if the destination port is not
 if(dest_port /= "00000
 des
 else
 dest_p
 e

 -- trigger if the destination port is great
 if(unsigned(dest_port) >
 des
 else
 dest_p
 e

 -- trigger if the IP TTL is greater than 2
 if(unsigned(ip_ttl) > 22
 ip_
 else
 ip_ttl_
 e

 -- trigger if DSIZE is greater than 1
 if(unsigned(payload_le
 dsi
 else
 dsize_
 e

 -- trigger if DSIZE is greater than 6
 if(unsigned(payload_len) >
 dsi
 else
 dsize_
 e

 -- trigger if DSIZE is gr
 if(unsigned(payloa
 dsi

151

 else
 dsize_gt_1445 <= '0';

nd if;

023
 1023) then

ze_gt_1023 <= '1';

gt_1023 <= '0';
nd if;

00
1000) then

ze_gt_1000 <= '1';

gt_1000 <= '0';
nd if;

12
 512) then

ze_gt_512 <= '1';

gt_512 <= '0';
nd if;

28
 128) then

ze_gt_128 <= '1';

gt_128 <= '0';
nd if;

20
 720) then

ze_gt_720 <= '1';

gt_720 <= '0';
f;

if DSIZE is greater than 100
 if(unsigned(payload_len) > 100) then

 else

 e

 -- trigger if DSIZE is greater than 1
 if(unsigned(payload_len) >
 dsi
 else
 dsize_
 e

 -- trigger if DSIZE is greater than 10
 if(unsigned(payload_len) >
 dsi
 else
 dsize_
 e

 -- trigger if DSIZE is greater than 5
 if(unsigned(payload_len) >
 dsi
 else
 dsize_
 e

 -- trigger if DSIZE is greater than 1
 if(unsigned(payload_len) >
 dsi
 else
 dsize_
 e

 -- trigger if DSIZE is greater than 7
 if(unsigned(payload_len) >
 dsi
 else
 dsize_
 end i

 -- trigger

 dsize_gt_100 <= '1';

 dsize_gt_100 <= '0';
 end if;

152

 -- trigger if DSIZE is greater than 800
 if(unsigned(payload_len) > 800) then
 dsize_gt_800 <= '1';

 -- trigger if DSIZE is less than 25
nsigned(payload_len) < 25) then

= '1';

s greater than 500
ad_len) > 500) then
 '1';

lse

56
) then

6 <= '1';

'0';

 greater than 200

 '1';

ter than 134
signed(ip_protocol) > 134) then

_gt_134 <= '1';

 -- trigger if source and dest IPs are the same
=ip_dest) then

 same_ip <= '1';

 else
 dsize_gt_800 <= '0';
 end if;

 if(u
 dsize_lt_25 <
 else
 dsize_lt_25 <= '0';
 end if;

 -- trigger if DSIZE i
 if(unsigned(paylo
 dsize_gt_500 <=
 e
 dsize_gt_500 <= '0';
 end if;

 -- trigger if DSIZE is greater than 1
 if(unsigned(payload_len) > 156
 dsize_gt_15
 else
 dsize_gt_156 <=
 end if;

 -- trigger if DSIZE is
 if(unsigned(payload_len) > 200) then
 dsize_gt_200 <=
 else
 dsize_gt_200 <= '0';
 end if;

 -- trigger if IP protocol is grea
 if(un
 ip_proto
 else
 ip_proto_gt_134 <= '0';
 end if;

 if(ip_src

 else

153

 same_ip <= '0';
 end if;

 -- trigger if icmp code is greater than 0

p_code_gt_0 <= '0';

 trigger if icmp code is greater than 15

p_code_gt_15 <= '0';

ger if icmp code is greater than 2
d(icmp_code) > 2) then

 icmp_code_gt_2 <= '1';

 icmp_code_gt_2 <= '0';

e is greater than 3

(unsigned(icmp_code) > 3) then
gt_3 <= '1';

f icmp code is greater than 1
signed(icmp_code) > 1) then

code_gt_1 <= '1';
 else

 end if;

 end if;

xt Block 8 payload_counter

 much payload has been registers and/or searched at a given
nitialized to the size of the payload and counts down to zero to

as been buffered. count_up is initialized to zero and counts

 if(unsigned(icmp_code) > 0) then
 icmp_code_gt_0 <= '1';
 else
 icm
 end if;

 --
 if(unsigned(icmp_code) > 15) then
 icmp_code_gt_15 <= '1';
 else
 icm
 end if;

 -- trig
 if(unsigne

 else

 end if;

 -- trigger if icmp cod
 if
 icmp_code_
 else
 icmp_code_gt_3 <= '0';
 end if;

 -- trigger i
 if(un
 icmp_

 icmp_code_gt_1 <= '0';

 end process;

 -- HDL Embedded Te

 -- This block keeps track of how
 -- time. payload_count is i
 -- indicate that the entire payload h

154

 -- up with every new payload byte registered. remaining is initialized to the size of the payload
 every time an eight-byte payload shift occurs.

ctive : std_logic;
 remaining : std_logic_vector(15 downto 0);

rt_count : std_logic;

 if(reset='1') then

 start_count := '0';

rmation is arriving, start counting
 if(active='0' AND (field_type="00101100" OR field_type="00110001")) then

ad_len-2;
000";

len+8;

000000000000000") then

yload_count-1;

1;

1;

th remaining by 8 bytes

 -- is decremented by eight

 process(clock,reset)
 variable a
 variable
 variable sta

 begin

 payload_count<="0000000000000000";
 count_up<="00000000000";
 active := '0';
 remaining := "0000000000000000";
 search_again<='0';
 max_shift<='0';

 elsif(rising_edge(clock)) then
 -- if first byte of payload info

 payload_count<=paylo
 count_up<="00000000
 active:='1';
 remaining := payload_
 start_count:='1';
 -- continue to count
 else
 if(active='1') then
 if(payload_count="0
 active:='0';
 else
 payload_count<=pa
 end if;

 count_up<=count_up+

 end if;

 if(start_count='1') then
 count_up<=count_up+
 end if;

 end if;

 -- decrement payload leng

155

 if(shift_payload='1') then
 - 8);

s, search again
)="0000000000000") then

f offset or depth shifts has occured
000000") then

9 payload_check

load FIFO to read incoming bytes of payload data.

OR field_type="00101100") then

10 result_reg

s from the CASMA unit.

000000000";

en

 remaining := (remaining
 end if;

 -- if some payload remain
 if(remaining(15 downto 3
 search_again<='0';
 else
 search_again<='1';
 end if;

 -- trigger if max number o
 if(shift_count="00000000
 max_shift<='1';
 else
 max_shift<='0';
 end if;
 end if;
 end process;

 -- HDL Embedded Text Block

 -- This process enables the pay

 process(reset,field_type)
 begin
 if(reset='1') then
 wena<='0';
 elsif(field_type="00110001"
 wena<='1';
 else
 wena<='0';
 end if;
 end process;

 -- HDL Embedded Text Block

 -- This process registers output

 process(clock,reset)
 begin
 if(reset='1') then
 hit_address<="00000000
 search_type_out<="00";
 address_valid<='0';
 elsif(rising_edge(clock)) th

156

 address_valid<=HitAck;
 if(HitAck='1') then

ach hold a byte of payload information. As a
o these registers until they are all full, at
a valid bit associated with each of these
alid data. When an eight-byte shift is to
t eight more bytes will be shifted out of the

 hit_address<=indx(16 downto 0);
 search_type_out<=search_type;
 end if;
 end if;
 end process;

 -- HDL Embedded Text Block 12 payload_reg

 -- The process contains 70 1-byte registers that e
 -- payload is buffered, bytes of data are shifted int
 -- which point payload searching begins. There is
 -- registers to specify whether the register holds v
 -- occur, the last eight valid bits are cleared so tha
 -- FIFO into the registers.

 process(clock,reset)
 variable cnt : std_logic_vector(1 downto 0);
 variable empty_late : std_logic;

 variable valid1 : std_logic;
 variable valid2 : std_logic;
 variable valid3 : std_logic;
 variable valid4 : std_logic;
 variable valid5 : std_logic;
 variable valid6 : std_logic;
 variable valid7 : std_logic;
 variable valid8 : std_logic;
 variable valid9 : std_logic;
 variable valid10 : std_logic;
 variable valid11 : std_logic;
 variable valid12 : std_logic;
 variable valid13 : std_logic;
 variable valid14 : std_logic;
 variable valid15 : std_logic;
 variable valid16 : std_logic;
 variable valid17 : std_logic;
 variable valid18 : std_logic;
 variable valid19 : std_logic;
 variable valid20 : std_logic;
 variable valid21 : std_logic;
 variable valid22 : std_logic;
 variable valid23 : std_logic;
 variable valid24 : std_logic;
 variable valid25 : std_logic;

157

 variable valid26 : std_logic;
 variable valid27 : std_logic;
 variable valid28 : std_logic;
 variable valid29 : std_logic;
 variable valid30 : std_logic;
 variable valid31 : std_logic;
 variable valid32 : std_logic;
 variable valid33 : std_logic;
 variable valid34 : std_logic;
 variable valid35 : std_logic;
 variable valid36 : std_logic;
 variable valid37 : std_logic;
 variable valid38 : std_logic;
 variable valid39 : std_logic;
 variable valid40 : std_logic;
 variable valid41 : std_logic;
 variable valid42 : std_logic;
 variable valid43 : std_logic;
 variable valid44 : std_logic;
 variable valid45 : std_logic;
 variable valid46 : std_logic;
 variable valid47 : std_logic;
 variable valid48 : std_logic;
 variable valid49 : std_logic;
 variable valid50 : std_logic;
 variable valid51 : std_logic;
 variable valid52 : std_logic;
 variable valid53 : std_logic;
 variable valid54 : std_logic;

ble valid55 : std_logic;
 std_logic;

8 : std_logic;
9 : std_logic;

_logic;
iable valid61 : std_logic;

 : std_logic;
 : std_logic;
 : std_logic;
 : std_logic;
 : std_logic;
 : std_logic;
 : std_logic;
 : std_logic;
 : std_logic;
: std_logic;

 varia
 variable valid56 :
 variable valid57 : std_logic;
 variable valid5
 variable valid5
 variable valid60 : std
 var
 variable valid62
 variable valid63
 variable valid64
 variable valid65
 variable valid66
 variable valid67
 variable valid68
 variable valid69
 variable valid70
 variable valid71

158

 variable valid72 : std_logic;

d_logic_vector(7 downto 0);
d_logic_vector(7 downto 0);
d_logic_vector(7 downto 0);
d_logic_vector(7 downto 0);
d_logic_vector(7 downto 0);
d_logic_vector(7 downto 0);
d_logic_vector(7 downto 0);
d_logic_vector(7 downto 0);
d_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);

 variable reg1 : st
 variable reg2 : st
 variable reg3 : st
 variable reg4 : st
 variable reg5 : st
 variable reg6 : st
 variable reg7 : st
 variable reg8 : st
 variable reg9 : st
 variable reg10 : s
 variable reg11 : s
 variable reg12 : s
 variable reg13 : s
 variable reg14 : s
 variable reg15 : s
 variable reg16 : s
 variable reg17 : s
 variable reg18 : s
 variable reg19 : s
 variable reg20 : s
 variable reg21 : s
 variable reg22 : s
 variable reg23 : s
 variable reg24 : s
 variable reg25 : s
 variable reg26 : s
 variable reg27 : s
 variable reg28 : s
 variable reg29 : s
 variable reg30 : s
 variable reg31 : s
 variable reg32 : s
 variable reg33 : s
 variable reg34 : s
 variable reg35 : s
 variable reg36 : s
 variable reg37 : s
 variable reg38 : s
 variable reg39 : s
 variable reg40 : s
 variable reg41 : s
 variable reg42 : s
 variable reg43 : s
 variable reg44 : s

159

 variable reg45 : std_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);
td_logic_vector(7 downto 0);

iable reg61 : std_logic_vector(7 downto 0);
 downto 0);

tor(7 downto 0);
_logic_vector(7 downto 0);
_logic_vector(7 downto 0);
_logic_vector(7 downto 0);
_logic_vector(7 downto 0);
_logic_vector(7 downto 0);
_logic_vector(7 downto 0);
_logic_vector(7 downto 0);
_logic_vector(7 downto 0);

std_logic_vector(7 downto 0);

ring <= (others => '0');

 variable reg46 : s
 variable reg47 : s
 variable reg48 : s
 variable reg49 : s
 variable reg50 : s
 variable reg51 : s
 variable reg52 : s
 variable reg53 : s
 variable reg54 : s
 variable reg55 : s
 variable reg56 : s
 variable reg57 : s
 variable reg58 : s
 variable reg59 : s
 variable reg60 : s
 var
 variable reg62 : std_logic_vector(7
 variable reg63 : std_logic_vec
 variable reg64 : std
 variable reg65 : std
 variable reg66 : std
 variable reg67 : std
 variable reg68 : std
 variable reg69 : std
 variable reg70 : std
 variable reg71 : std
 variable reg72 :

 begin
 if(reset='1') then
 payload_search_st
 rena <= '0';
 cnt := "00";
 empty_late := '0';

 valid1 := '0';
 valid2 := '0';
 valid3 := '0';
 valid4 := '0';
 valid5 := '0';
 valid6 := '0';
 valid7 := '0';
 valid8 := '0';
 valid9 := '0';
 valid10 := '0';

160

 valid11 := '0';
 valid12 := '0';
 valid13 := '0';
 valid14 := '0';
 valid15 := '0';
 valid16 := '0';
 valid17 := '0';
 valid18 := '0';
 valid19 := '0';
 valid20 := '0';
 valid21 := '0';
 valid22 := '0';
 valid23 := '0';
 valid24 := '0';
 valid25 := '0';
 valid26 := '0';
 valid27 := '0';
 valid28 := '0';
 valid29 := '0';
 valid30 := '0';
 valid31 := '0';
 valid32 := '0';
 valid33 := '0';
 valid34 := '0';
 valid35 := '0';
 valid36 := '0';
 valid37 := '0';
 valid38 := '0';
 valid39 := '0';
 valid40 := '0';
 valid41 := '0';
 valid42 := '0';
 valid43 := '0';
 valid44 := '0';
 valid45 := '0';
 valid46 := '0';
 valid47 := '0';
 valid48 := '0';
 valid49 := '0';
 valid50 := '0';
 valid51 := '0';
 valid52 := '0';
 valid53 := '0';
 valid54 := '0';
 valid55 := '0';
 valid56 := '0';

161

 valid57 := '0';
 valid58 := '0';
 valid59 := '0';
 valid60 := '0';
 valid61 := '0';
 valid62 := '0';
 valid63 := '0';
 valid64 := '0';
 valid65 := '0';
 valid66 := '0';
 valid67 := '0';
 valid68 := '0';
 valid69 := '0';
 valid70 := '0';
 valid71 := '0';
 valid72 := '0';

 elsif(rising_edge(clock)) then

 valid70 := '0';

nt="10") then

 if(shift_payload = '1') then

 valid69 := '0';
 valid68 := '0';
 valid67 := '0';
 valid66 := '0';
 valid65 := '0';
 valid64 := '0';
 valid63 := '0';
 rena <= '1';

 elsif(valid70='0' and c
 reg72 := reg71;
 valid72 := valid71;
 reg71 := reg70;
 valid71 := valid70;
 reg70 := reg69;
 valid70 := valid69;
 reg69 := reg68;
 valid69 := valid68;
 reg68 := reg67;
 valid68 := valid67;
 reg67 := reg66;
 valid67:= valid66;
 reg66 := reg65;
 valid66 := valid65;
 reg65 := reg64;

162

 valid65 := valid64;
 reg64 := reg63;
 valid64 := valid63;
 reg63 := reg62;
 valid63 := valid62;
 reg62 := reg61;
 valid62 := valid61;
 reg61 := reg60;
 valid61 := valid60;
 reg60 := reg59;
 valid60 := valid59;
 reg59 := reg58;
 valid59 := valid58;
 reg58 := reg57;
 valid58 := valid57;
 reg57 := reg56;
 valid57:= valid56;
 reg56 := reg55;

;

;
;

;
;

2;
;

;
;

;
;

;
;

;
;

;
g47 := reg46;

45;
 := reg44;

 := valid43;

g43 := reg42;

 valid56 := valid55;
 reg55 := reg54
 valid55 := valid54
 reg54 := reg53
 valid54 := valid53
 reg53 := reg52
 valid53 := valid5
 reg52 := reg51
 valid52 := valid51
 reg51 := reg50
 valid51 := valid50
 reg50 := reg49
 valid50 := valid49
 reg49 := reg48
 valid49 := valid48
 reg48 := reg47
 valid48 := valid47
 re
 valid47:= valid46;
 reg46 := reg45;
 valid46 := valid
 reg45
 valid45 := valid44;
 reg44 := reg43;
 valid44
 re
 valid43 := valid42;
 reg42 := reg41;

163

 valid42 := valid41;
 reg41 := reg40;
 valid41 := valid40;
 reg40 := reg39;
 valid40 := valid39;
 reg39 := reg38;

;
38 := valid37;

;
:= valid36;

g36 := reg35;

34;
id34;

g34 := reg33;
id34 := valid33;

32;
3 := valid32;

 reg32 := reg31;

1 := reg30;
:= valid30;

 reg30 := reg29;

 reg29 := reg28;

 reg27 := reg26;

 valid26 := valid25;

 reg24 := reg23;

 valid39 := valid38;
 reg38 := reg37
 valid
 reg37 := reg36
 valid37
 re
 valid36 := valid35;
 reg35 := reg
 valid35 := val
 re
 val
 reg33 := reg
 valid3

 valid32 := valid31;
 reg3
 valid31

 valid30 := valid29;

 valid29 := valid28;
 reg28 := reg27;
 valid28 := valid27;

 valid27:= valid26;
 reg26 := reg25;

 reg25 := reg24;
 valid25 := valid24;

 valid24 := valid23;
 reg23 := reg22;
 valid23 := valid22;
 reg22 := reg21;
 valid22 := valid21;
 reg21 := reg20;
 valid21 := valid20;
 reg20 := reg19;
 valid20 := valid19;
 reg19 := reg18;

164

 valid19 := valid18;
 reg18 := reg17;
 valid18 := valid17;
 reg17 := reg16;
 valid17:= valid16;

id15 := valid14;

alid12;
:= reg11;

 reg11 := reg10;

10 := reg9;

 := valid7;

 valid7:= valid6;

 valid5 := valid4;

id4 := valid3;

 valid3 := valid2;
 reg2 := reg1;

e='1') then
 reg1 := ffout;

= '1';

 reg1 := "00000000";

 payload_search_string <= reg70 & reg69 & reg68 & reg67 & reg66 & reg65 & reg64 &

 reg58 & reg57 & reg56 & reg55 & reg54 & reg53 &

 reg16 := reg15;
 valid16 := valid15;
 reg15 := reg14;
 val
 reg14 := reg13;
 valid14 := valid13;
 reg13 := reg12;
 valid13 := v
 reg12
 valid12 := valid11;

 valid11 := valid10;
 reg
 valid10 := valid9;
 reg9 := reg8;
 valid9 := valid8;
 reg8 := reg7;
 valid8
 reg7 := reg6;

 reg6 := reg5;
 valid6 := valid5;
 reg5 := reg4;

 reg4 := reg3;
 val
 reg3 := reg2;

 valid2 := valid1;

 if(empty_lat

 valid1 :
 else

 valid1 := '0';
 end if;

reg63 & reg62 & reg61 & reg60 & reg59 &

165

reg52 & reg51 & reg50 & reg49 & reg48 & reg47 & reg46 & reg45 & reg44 & reg43 & reg42 &
0 & reg39 & reg38 & reg37 & reg36 & reg35 & reg34 & reg33 & reg32 & reg31 &

 reg25 & reg24 & reg23 & reg22 & reg21 & reg20 &
& reg17 & reg16 & reg15 & reg14 & reg13 & reg12 & reg11 & reg10 & reg9 &

reg2 & reg1 & "00000000" & "00000000";

alid70='0') then

 rena <= '0';

 Crb_init &
hIn_init & Inst_init & ReqStb_init & Burst_b_init & Rst_b_init & Dev_init

k_init;

 Tms & Crb & Gmask & MatchIn & Inst &
n & clock;

gister and all of
t into a search string that will be used for header searching.

rc_port & dest_port & ip_type &
set & ip_ttl & ip_protocol & ip_options & tcp_seq_num &

 icmp_id &
type & payload_len(10 downto 0) & src_port_not_21_to_23 &

_80 & dest_port_not_80 & dest_port_gt_499 & src_port_gt_1023 &
en_1000_1300 & dest_port_between_1000_1300 &

0 &
66_7000 & dest_port_between_32772_34000 &

een_32771_34000 & ip_ttl_gt_220 & ip_proto_gt_134 & same_ip & dsize_gt_1
_6 & dsize_lt_25 & dsize_gt_100 & dsize_gt_128 & dsize_gt_156 & dsize_gt_200 &

reg41 & reg4
reg30 & reg29 & reg28 & reg27 & reg26 &
reg19 & reg18
reg8 & reg7 & reg6 & reg5 & reg4 & reg3 &

 if(v
 rena <= '1';
 else

 end if;

 elsif(empty='1' and valid70='0') then
 rena <= '1';
 cnt := cnt+1;

 else
 rena <= '0';
 end if;

 empty_late := empty;
 end if;
 end process;

 -- HDL Embedded Text Block 13 header_cam_mux

 init_bus <= LS_init & LC_init & Trst_b_init & Tck_init & Tdi_init & Tms_init &
Gmask_init & Matc
& Phasen_init & cloc

 ctrl_bus <= LS & LC & Trst_b & Tck & Tdi &
ReqStb & Burst_b & Rst_b & Dev & Phase

 -- This concurrent statement assembles information from the packet_field_re
the special case outpu

 header_search_string <= ip_src & ip_dest & s
ip_identification & ip_flags & ip_off
tcp_ack_num & tcp_flags & tcp_window_size & icmp_type & icmp_code &
icmp_seq & ethernet_
src_port_not
dest_port_gt_1023 & src_port_betwe
dest_port_between_3127_3199 & src_port_between_6666_700
dest_port_between_66
dest_port_betw
& dsize_gt

166

dsize_gt_500 & dsize_gt_512 & dsize_gt_720 & dsize_gt_800 & dsize_gt_1000 &
code_gt_1 & icmp_code_gt_2 &

icmp_code_gt_15 & padding;

or instance 'I1' of 'fifo'

 BEGIN

 mw_I1creg(i)(7 DOWNTO 0) <= mw_I1nreg(i)(7 DOWNTO 0);

 END IF;
ESS I1seq1;

 I1seq2: PROCESS (clock, reset)
 BEGIN
 IF (reset = '1') THEN
 mw_I1caddr <= 0;
 ELSIF (clock'EVENT AND clock='1') THEN
 mw_I1caddr <= mw_I1naddr;
 END IF;
 END PROCESS I1seq2;

 I1combo: PROCESS (reset, rena, wena, mw_I1caddr, mw_I1creg, field_data(7 DOWNTO 0))
 VARIABLE trena : std_logic;
 VARIABLE twena : std_logic;
 VARIABLE tfull : std_logic;
 VARIABLE tempty : std_logic;
 BEGIN
 IF (mw_I1caddr = 1500) THEN
 tfull := '1';
 tempty := '0';
 ELSIF (mw_I1caddr = 0) THEN
 tfull := '0';
 tempty := '1';
 ELSE
 tfull := '0';
 tempty := '0';
 END IF;
 trena := NOT(reset) AND rena AND NOT(tempty);
 twena := NOT(reset) AND wena AND NOT(tfull);

 IF (twena = '1' OR twena = 'H') THEN
 IF (trena = '1' OR trena = 'H') THEN

dsize_gt_1023 & dsize_gt_1445 & icmp_code_gt_0 & icmp_
icmp_code_gt_3 &

 -- ModuleWare code(v1.0) f
 ffout <= mw_I1creg(0);
 I1seq1: PROCESS (clock)

 IF (clock'EVENT AND clock='1') THEN
 FOR i IN 0 TO 1500 LOOP

 END LOOP;

 END PROC

167

 mw_I1naddr <= mw_I1caddr;
 ELSE
 mw_I1naddr <= mw_I1caddr + 1;
 END IF;
 ELSIF (trena = '1' OR trena = 'H')
 mw_I1naddr <= mw_I1caddr - 1;
 ELSE
 mw_I1naddr <= mw_I1caddr;

 IF (ena = 'H') THEN
 IF (trena = '1' OR trena = 'H') THEN

 addr = i) THEN
 mw_I1nreg(i)(7 DOWNTO 0) <= field_data(7 DOWNTO 0);

);

 END LOOP;

 FOR i IN 0 TO 1499 LOOP

 WNTO 0) <= mw_I1creg(i+1)(7 DOWNTO 0);
 END IF;

 E
 ELSIF (twena = '0' OR twena = 'L') THEN

 FOR i IN 0 TO 1499 LOOP
 mw_I1nreg(i)(7 DOWNTO 0) <= mw_I1creg(i+1)(7 DOWNTO 0);

 DOWNTO 0);
 ELSIF (trena = '0' OR trena = 'L') THEN

 ELSE

 END IF;

THEN

 END IF;

twena = '1' OR tw

 mw_I1nreg(1500)(7 DOWNTO 0) <= mw_I1creg(1500)(7 DOWNTO 0);

 FOR i IN 0 TO 1499 LOOP
 IF (mw_I1c

 ELSE

 mw_I1nreg(i)(7 DOWNTO 0) <= mw_I1creg(i+1)(7 DOWNTO 0
 END IF;

 ELSIF (trena = '0' OR trena = 'L') THEN

 mw_I1nreg(0)(7 DOWNTO 0) <= mw_I1creg(0)(7 DOWNTO 0);

 IF (mw_I1caddr = i) THEN

 mw_I1nreg(i+1)(7 DOWNTO 0) <= field_data(7 DOWNTO 0);
 ELSE
 mw_I1nreg(i+1)(7 DO

 END LOOP;

ND IF;

 IF (trena = '1' OR trena = 'H') THEN

 END LOOP;

 mw_I1nreg(1500)(7 DOWNTO 0) <= mw_I1creg(1500)(7

 FOR i IN 0 TO 1500 LOOP

 mw_I1nreg(i)(7 DOWNTO 0) <= mw_I1creg(i)(7 DOWNTO 0);
 END LOOP;

 FOR i IN 0 TO 1500 LOOP

 mw_I1nreg(i)(7 DOWNTO 0) <= (OTHERS => 'X');
 END LOOP;

 ELSE

168

 FOR i IN 0 TO 1500 LOOP

 END LOOP;
 END IF;

ll
 em
 aempty <= NOT(tempty);

 -- ModuleWare code(v1.0) for instance 'I4' of 'gnd'

 -- Ins

 mw_I1nreg(i)(7 DOWNTO 0) <= (OTHERS => 'X');

 fu <= tfull;

pty <= NOT(tempty);

 END PROCESS I1combo;

 padding <= (OTHERS => '0');

tance port mappings.

END struct;

169

press/
984080961,95550,.shtml.

[4] 2004,” [Online document] Apr.19, 2001, Available
at HTTP: http://www.landfield.com/isn/mail-archive/2001/Apr/0123.html.

[5] e Intrusion Detection and Vulnerability Assessment Software
Revenues Will Exceed $1 billion in 2003,” Fitzgerald Communications Inc., [Online

[6] Computer Economics, [Online], [2004 Aug 31], Available at HTTP:

www.computereconomics.com.

[7] “CSI/FBI Computer Crime and Security Survey,” SI Computer Security Issues & Trends,

2002.

[8] S. Lodin. “Intrusion detection Product Evaluation Criteria,” Ernst & Young LLP, [Online

document] 1998, Available at HTTP: docshow.net/ids.htm.

[9] T. Heberlein, K. Levitt, B. Mukherjee. “A Method to Detect Intrusive Activity in a

Networked Environment,” Proceedings of the 14th National Computer Security
Conference, 1991, pp. 362-372.

[10] T. Heberlien, B. Mukherjee, K.N. Levitt, G. Dias, D..Mansur. “Towards Detecting

Intrusions in a Networked Environment,” Proceedings of the Fourteenth
Department of Energy Computer Security Group Conference, 1991, pp. 47-66.

[11] R. Zalenski. “Firewall technologies,” IEEE Potentials, Feb-Mar 2002, pp. 24-29.

BIBLIOGRAPHY

[1] W. Bux, W.E. Denzel, T. Engbersen, A. Herkersdorf, R.P. Luijten, “Technologies and
Building Blocks for Fast Packet Forwarding,” IEEE Communications Magazine, Jan.
2001, pp. 70-77.

[2] B. Acohido. “Agency raises the bar on tech security,” USA TODAY, [Online document]

Feb. 2002, Available at HTTP: http://www.usatoday.com/life/cyber/tech/2002/02/27/
security.htm.

[3] “IDC Names ISS Worldwide Leader in IDS,” Help Net Security, [Online document] June

28, 2001, Available at HTTP: http://www.net-security.org/text/

“Security software to total billions by

“IDC Forecasts Worldwid

document] Apr. 18, 2001, Available at HTTP: http://www.bindview.com/news/images/
IDCRelease041801.pdf.

170

171

[12] P. Glaskowsky. “Network Processors Multiply,” Microprocessor Report, Jan 2001, pp.

37.

[13] S. Cobb. “NCSA Firewall Policy Guide, Version 2.0,” [Online document], Available at

HTTP: http://cobb.com/firewalls/.

[14] T. Sato, M. Fukase. “Reconfigurable hardware implementation of host-based IDS,” Sept

2003, pp. 849-853.

[15] “Network Processor Designs for Next-Generation Networking Equipment,” White Paper,

[Online document], Available at HTTP: http://www.ezchip.com/html/
tech_nsppaper.html.

[16] M. S. Sheshadri, J. Bent, T. Kosar. “Intelligent Routing using Network Processors:

Guiding Design through Analysis,” Technical Report CS-TR-2003-1480, Computer
Sciences Department, University of Wisconsin, April 2003.

[17] F. Gong. “Next Generation Intrusion Detection Systems (IDS),” Network Associates

White Paper, March 2002.

[18] C.J. Coit, S. Staniford, J. McAlerney. “Towards faster string matching for intrusion

detection or exceeding the speed of Snort,” DARPA Information Survivability
Conference & Exposition II, 2001, DISCEX '01 Proceedings, Volume 1, 2001, pp. 367-
373.

[19] B. Yuebin, H. Kobayashi. “New string matching technology for network security,”

Advanced Information Networking and Applications, 2003, 17P

th
P International

Conference, March 27-29, 2003, pp. 198-201.

[20] “75K62100_NSE Datasheet Brief, Integrated Device Technologies”, [Online document]

June 24, 2003, Available at HTTP: http://www1.idt.com/pcms/tempDocs/
75K62100_DS_34483.pdf.

[21] Snort, [Online], [2004 Aug 31], Available at HTTP: http://www.snort.org.

[22] D. V. Schuehler, J. Moscola, J. Lockwood. “Architecture for a Hardware Based, TCP/IP

Content Scanning System,” Proceedings of the 11P

th
P Symposium on High Performance

Interconnects, 2003.

[23] J. Moscola, J. Lockwood, R.P. Loui, and M. Pachos. “Implementation of a content-

scanning module for an internet firewall,” IEEE Symposium on Field-Programmable
Custom Computing machines (FCCM), Napa, CA, April 2003.

172

[24] B.L. Hutchings, R. Franklin, D. Carver. “Assisting Network Intrusion Detection with
Reconfigurable Hardware,” Proceedings of the 10P

th
P Annual IEEE Symposium on Field-

Programmable Custom Computing Machines (FCCM), 20002.

[25] R. Sidhu, V.K. Prasanna. “Fast Regular Expression Matching Using FPGAs,”

Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines, Napa, CA,
April 2001.

[26] S. Li, J. Torresen, O. Soraasen. “Exploiting Reconfigurable Hardware for Network

Security,” Proceedings of the 11P

th
P Annual IEEE Symposium on Field-Programmable

Custom Computing Machines (FCCM), 2003.

[27] M. Gokhale, D. Dubois, A. Dubois, M. Boorman, S. Poole, V. Hogsett. “Granidt:

Towards Gigabit Rate Network Intrusion Detection Technolog,” FPL 2002, LNCS 2438,
pp. 404-413, 2002.

[28] Y.H. Cho, S. Navab, W.H. Mangione-Smith. “Specialized Hardware for Deep Network

Packet Filtering,” FPL 2002, LNCS 2438, pp. 452-461, 2002.

[29] N. Huang, W. Chen, J. Luo, J. Chen. “Design of Multi-field IPv6 Packet Classifiers

Using Ternary CAMs,” IEEE 2001.

[30] TCPDUMP Public Repository, [Online], [2004 Aug 31], Available at HTTP:

http://www.tcpdump.org.

[31] Talisker Switch Port Mirroring, [Online], [2004 Aug 31], Available at HTTP:

http://www.networkintrusion.co.uk/switch.htm.

	TITLE PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1.0 INTRODUCTION
	1.1 IMPORTANCE OF CYBER SECURITY
	Figure 1. Typical Network Before and After Infection from a
	Figure 2. Network Incorporating Routers and Switches with Pa

	1.2 EFFECTS OF INCREASES IN NETWORK TRAFFIC AND TRANSMISSION SPE
	Table 1. Time to Respond to a Network Packet at Various Peak

	1.3 THE NEED TO REDESIGN NETWORK SWITCHES TO FACILITATE INTRUSIO
	1.4 PACKET ANALYSIS
	1.5 USING CONTENT-ADDRESSABLE MEMORY TO ASSIST IN INTRUSION DETE
	1.6 OVERVIEW OF ARCHITECTURE
	Figure 3. Overview of the Presented Architecture
	1.6.1 ePAPP: An Embedded Protocol Analyzer Pre-Processor
	1.6.2 A CAM-Assisted Signature-Matching Architecture
	Figure 4. Traditional Network Switch Architecture
	Figure 5. Network Switch Augmented with the ePAPP and CASMA

	2.0 RELATED WORK
	3.0 ePAPP: AN EMBEDDED PROTOCOL ANALYZER PRE-PROCESSOR
	3.1 INTRODUCTION
	3.2 ARCHITECTURE FOR PROTOCOL MAPPING
	Figure 6. The Protocol Analyzer Pre-Processor
	3.2.1 Protocol Memory
	Table 2. IP Protocol Field Description
	Table 3. UDP Protocol Field Description
	Table 4. TCP Protocol Field Description
	Figure 7. An Example of a Layered Protocol Description
	Table 5. The Protocol RAM Data

	3.2.2 Jump Register and Jump TLB
	Table 6. The Jump Translation Look-Aside Buffer

	3.2.3 Length Block

	3.3 CIRCUIT IMPLEMENTATION OF EPAPP
	Figure 8. The Internal Architecture of the Protocol Analyzer
	Table 7. Current Content Inside Protocol Memory
	Table 7 (continued)
	Figure 9. Simulation Waveform for ePAPP

	3.4 DESIGN RESULTS AND PERFORMANCE
	Table 8. Performance Results After Synthesis
	Table 9. Performance Comparison With Software

	3.5 CONCLUSIONS

	4.0 CASMA: A CAM-ASSISTED SIGNATURE-MATCHING ARCHITECTURE FOR IN
	4.1 THE SNORT INTRUSION DETECTION SYSTEM
	4.1.1 Snort Packet Header Rule Options
	Table 10. Example Rule Header Table Format
	Table 11. Rule Header Example #1
	Table 12. Rule Header Example #2
	Table 13. Rule Header Example #3
	Table 14. Rule Header Example #4
	Table 15. Snort Rule Header and Body Example #1

	4.1.2 Snort Packet Payload Rule Options
	Table 16. Non-Payload Rule Options
	Table 17. Payload Rule Options
	Table 17 (continued)
	Table 18. Snort Rule Header and Body Example #2

	4.1.3 Snort Post-Match Rule Options
	Table 19. Meta-data Rule Options
	Table 20. Post-detection Rule Options

	4.1.4 Summary of Snort Rules
	Figure 10. Number of Occurrences of Each Option in the Entir

	4.2 TERNARY CONTENT-ADDRESSABLE MEMORY
	Figure 11. Example of a Search on a Populated CAM

	4.3 PACKET HEADER SEARCHING
	Table 21. Protocol Header Fields Included in a Header Search

	4.4 PACKET PAYLOAD SEARCHING
	Table 22. Effects on Time and Space Requirement for Varying
	Figure 12. Shift Amount Between Searches vs. CAM Entries Req

	4.5 SNORT RULE ENCODING EXAMPLES
	4.5.1 Snort Rule Example #1
	4.5.2 Snort Rule Example #2
	4.5.3 Snort Rule Example #3
	4.5.4 Snort Rule Exceptions

	4.6 THE CASMA ARCHITECTURE
	Figure 13. Position of CASMA in the Presented Switch Archite
	4.6.1 CASMA Data Flow
	Figure 14. Internal Circuit Design of the CAM-Assisted Signa
	Figure 15. Flow of the Controller State Machine

	4.6.2 CASMA Timing
	Table 23. Test Packet #1
	Figure 16. Header Searching Beginning for Test Packet #1
	Figure 17. Payload Searching Beginning for Test Packet #1
	Figure 18. Payload Searching Concluding for Test Packet #1
	Table 24. Test Packet #2
	Figure 19. Header Searching Beginning for Test Packet #2
	Figure 20. Payload Searching Beginning for Test Packet #2
	Figure 21. Payload Searching Concluding for Test Packet #2

	4.6.3 CASMA Testing Methodology
	4.6.4 CASMA Technology Mapping Results
	Table 25. Performance Results After Synthesis

	5.0 CONCLUSIONS AND FUTURE DIRECTIONS
	APPENDIX A
	APPENDIX B
	APPENDIX C
	APPENDIX D
	APPENDIX E
	APPENDIX F
	BIBLIOGRAPHY

