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Increases in network traffic volume and transmission speeds have given rise to the need for 

extremely fast packet processing. Many traditional processor-based network devices are no 

longer sufficient to handle tasks such as packet analysis and intrusion detection at multi-Gigabit 

rates. This thesis proposes two novel pipelined hardware architectures to relieve the 

computational load of a processor within network switches and routers. First, the Embedded 

Protocol Analyzer Pre-Processor (ePAPP) is capable of taking an unclassified packet byte stream 

directly off of a network cable at line speed and separating the data into individually classified 

protocol fields. Second, the CAM-Assisted Signature-Matching Architecture (CASMA) uses 

ternary content-addressable memory to perform the task of stateless intrusion detection 

signature-matching. The Snort open-source software network intrusion detection system is used 

as a model for intrusion detection functionality. Structured ASIC synthesis results show that 

ePAPP supports speeds of 2.89 Gb/s using less than 1% of available logic cells. CASMA is 

shown to support 1.25 Gb/s using less than 6% of available logic cells. The CASMA architecture 

is demonstrated to be able to implement 1729 of 1993 or 86.8% of the attack signatures, or rules, 

packaged with Snort version 2.1.2. 
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1.0 INTRODUCTION 

 

There are few areas in the contemporary computing technology industry that have received as 

much attention as cyber security. Rapidly increasing network transmission speeds have marked 

the computationally heavy task of network packet inspection as a conspicuous bottleneck in the 

processing and forwarding of information across the network. The need for this function, 

however, cannot be ignored. Consider the typical local network pictured in Figure 1. Once an 

infected email attachment has entered the network, there is no protection in a typical switch or 

router to stop the spread of malicious behavior. 
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Figure 1. Typical Network Before and After Infection from a Malicious Email Attachment 

 
 

Now consider the network in Figure 2. The routers and switches in this network have 

been fortified, which is to say they are capable of detecting and dropping malicious traffic. Even 
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if a single host on the network becomes infected, in this example by an email attachment, the 

attack will not be allowed to spread. 
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he 

eed for such a solution and introduces the challenges of cyber security, with particular respect 

to packet classification and intrusion detection. Snort [21], an open-source intrusion detection 

software solution, is introduced as a benchmark against which this original work is compared. 

1.1  IMPORTANCE OF CYBER SECURITY 

 

Figure 2. Network Incorporating Routers and Switches with Packet Inspection Capabilities 

 

This research has developed a packet classification and intrusion detection methodology 

that will demonstrate performance advantages over comparable conventional solutions and allow 

for incorporation into high-speed network devices such as switches. This chapter clarifies t

n

 

The most evident indication of the importance of cyber security is the staggering amount of 

money industry must devote to it. The market research firm IDC predicts that a total of $14 
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billion will be spent for companies and organizations to protect themselves from network attacks 

by 2005, an increase from $5 billion in 2000 [2]. Furthermore, IDC predicts that the Intrusion 

Detecti

numbers do not seem so unwieldy when one considers that a single malicious 

attack, 

equired to launch a successful network attack have decreased significantly, 

hile the sophistication of such attacks has grown [9, 10]. Despite these facts, companies 

continue to migrate important information and resources to the Internet for reasons of 

accessibility [9]. 

 

1.2  EFFECTS OF INCREASES IN NETWORK 

TRAFFIC AND TRANSMISSION SPEEDS 

k, every packet sent or received must be considered 

potenti

on market (including Vulnerability Assessment) alone will have total revenue of more 

than $1 billion in 2003, with a Compound Annual Growth Rate of 34% during 1999-2004 [3, 4, 

5]. 

These 

the Code Red worm, caused $2.62 billion in losses worldwide [6]. In one poll of primarily 

large corporations and government agencies, 80% acknowledged financial loss due to computer 

breaches [7]. 

Network intrusion can be defined as “any set of actions that attempt to compromise the 

integrity, confidentiality, or availability of a resource” [8]. As the financial figures show, cyber 

intrusions have created a serious problem that continues to grow. In the past ten years, the 

technical skills r

w

In order to ensure the security of a networ

ally harmful until proven otherwise. But as network traffic loads become heavier and 

transmission speeds increase, it becomes more difficult to adequately inspect every bit of 

information that passes through a network. 
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The Internet, for example, has seen a spectacular annual growth factor of 4- to 10-times 

in traffic volumes [1]. Such rapid rates of growth have created a great deal of interest in 

expanding network transmission bandwidth and increasing transmission speed. As a result, 10 

Mb/s networks have been replaced by 100 Mb/s, 1 Gb/s, and even 10 Gb/s networks. With the 

rise of optical technology, network speeds on the order of 1 Tb/s have been developed and are 

expecte

decreases. As shown in Table 1, a small 

4-byte packet can arrive every 51,200 ns for a 10 Mb/s network under peak traffic loads. This 

provides a 512 ns to 

spond and at 10 Gb/s there are only 51 ns to respond. 

 

Tabl to Respond to a N  Pack rious P ssion Speeds 

 
e to Respond (Nanosecon

d to eventually reach a theoretical limit of about 50 Tb/s [1]. While these developments 

are exciting for network technology, they have created in their wake another problem for modern 

networks. 

As the speeds of local networks increase, the amount of time available for a network 

device (such as a switch) to respond to a single packet 

6

mple time to respond to each packet. At 1 Gb/s, however, there are only 

re

e 1. Time etwork et at Va eak Transmi

Tim ds) 
Peak ork 

Transmission Speed 
Max. # of 64 Byte 
Packets / Second Total Time Per Snort Rule, 

given 1700 rules 

# of 5 ns 
Mem ry 
Accesses 

 Netw
o

10 Mb/s 19,531 51,200 30 ns 6 

100 Mb/s 195,313 5,120 3 ns < 1 

Gb/s 1,953,125 512 .3 ns 0 

10 Gb/s 19,531,250 51 .03 ns 0 

 

Consider, now, that we wish to check each of the incoming packets to see if it matche

any of an extensive set of attack signatures – patterns found within a packet that could indicate 

s 

4 



 

malicious traffic. Snort [8], for example, is a software-based intrusion detection system (IDS) 

that has over 1700 attack signatures, or rules, that must be compared against each incoming 

packet. Assuming a memory access takes 5 ns, the execution time per rule we wish to check our 

packet against drops to 30 ns per rule for 10 Mb/s and to 0.03 ns per rule for 10 Gb/s. Given that 

a 1 GHz processor requires 1 ns per instruction, this is quite infeasible. 

 

1.3 THE NEED TO REDESIGN NETWORK SWITCHES 

TO FACILITATE INTRUSION DETECTION 

ated. According to a CSI/FBI 

security

tently report that more than half of all incidents are insider attacks. Many 

security

There are some who mistakenly believe that cyber security can be achieved strictly by 

controlling what leaves and enters the private network. One popular solution is a firewall [11], 

which serves as a gateway between the private network and the outside world. By relying 

entirely on a gateway, however, a single point-of-failure is cre

 report, 90% of attacks bypass firewalls [7]. Obviously, firewall protection alone is not 

sufficient. Without any additional protection within the network, one compromised machine 

could attack other hosts within the enterprise without deterrence. 

Even if firewalls and other similar measures were enough to prevent all malicious traffic 

from entering the network, nothing prevents an attack that is launched from within. Information 

security surveys consis

 professionals refer to the “80/20 Rule” to describe the relative probability that a problem 

was caused by insiders as opposed to outsiders [13]. Some form of internal protection must 

therefore be provided. 

One proposed solution is to let each host tackle the task of intrusion detection 

individually. Host-based intrusion detection software can be installed on every machine on a 
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network in order to inspect all traffic to and from that host [14]. To be effective, this solutions 

requires not only that every network device (including laptops and wireless devices) have the 

IDS software installed, but also that every device is configured properly and safe from being 

turned off or disabled by an authorized user. In a large enterprise network, the sheer volume of 

system

st: the network switch. In fact, many cases exist where malicious 

traffic w

ing at 10% 

of maximum load, the monitoring port would see (48 x 100) x 0.1 = 480 Mb/s of traffic. This is 

no problem for the monitoring port. But if the load at the switch increased to 50%, the aggregate 

switch traffic would reach 2.4 Gb/s, much more than the monitoring port can handle. 

s to be monitored may make this solution impractical. Furthermore, since only the 

individual machines and not the network itself are protected, any renegade laptop or wireless 

device that joins the network can be a source of malicious activity. 

It is clear that leaving intrusion detection and prevention to the host is unwise, and that a 

gateway between the internal network and the outside world is not sufficient protection. There is 

one network device, however, that resides within the local network and sees all of the traffic 

traveling to and from a ho

ithin a network is seen only by the attack computer, the victim computer, and the switch 

that connects them. This makes the switch an ideal location to perform intrusion detection and 

intrusion prevention tasks. 

Network switches, however, tend to see a lot of traffic, often at rapid transmission rates. 

Some switches attempt to use a monitoring port that sees an aggregate of traffic from all of the 

other ports on the switch [31]. This is a good solution as long as the aggregate switch bandwidth 

is less than that of the monitoring port. Under heavy loads, however, the monitoring port may be 

unable to keep up with all of the traffic coming through the switch. Consider, for example, a 48-

port 100 Mb/s switch with a single Gb/s monitoring port. If the switch is only operat
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Most network devices, such as switches, rely on network processors to perform packet 

classification and forwarding. The network processor market has emerged as the fastest growing 

segment of the microprocessor industry [12]. Most network processors (NPs) utilize multiple 

channel processors to perform packet inspection and data extraction for each network link, 

typically using 32- or 64-bit RISC architectures but in some instances using VLIW processors. 

One of the most fundamental tasks these network processors perform is protocol 

analysis. This is the process by which individual fields within a packet are classified and the 

protocols within the packet are identified. RISC processors utilize, by definition, a small subset 

of instructions that, when combined in a program, can execute complex tasks. The problem is 

that packet processing requires a large amount of bit manipulation to extract particular data 

fields. For example, the source and destination of an IP packet are octets 13 through 16 and 

octets 17 through 20, respectively. For a RISC processor, these fields must be placed in a 32- or 

64-bit register before processing can take place. To achieve this protocol analysis task by 

software can be quite complex just to extract a few fields from a packet header. Many proposed 

network processors exist which use specialized, non-RISC architectures to support multi-gigabit 

speeds [15, 16]. These solutions are still constrained by the cycle-rich nature of processor 

architectures. 

Application-specific integrated circuits (ASICs) are used in many network nodes to 

improve packet-processing speeds, however they are rarely flexible enough for rapid adaptation 

to protocol or standards changes [1]. However, if one were able to generalize the hardware 

1.4 PACKET ANALYSIS 
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architecture so that protocol classification information could be periodically updated in a 

structure such as a ROM, use of ASIC designs would become more feasible. 

 

1.5 USING CONTENT-ADDRESSABLE MEMORY 

TO ASSIST IN INTRUSION DETECTION 

e to speedup search times using hierarchical 

searchi

e data stored within the CAM needs to 

match 

Significant research has been done on intrusion detection methodologies. Perhaps the most 

common approach is signature-based, which is centered on the assumption that intrusion 

attempts can be characterized by the comparison of user activities against a database of known 

attacks that lead to compromised system states [17]. Signature-based intrusion detection is the 

basis for Snort [8], the software IDS solution previously referenced in Table 1. In order to 

identify potentially harmful packets, Snort must search its ruleset to find any rules that match the 

packet under inspection. As previously discussed, faster networks and heavy traffic loads make 

this approach insufficient. Attempts have been mad

ng and faster pattern matching algorithms [18, 19], however improvements have not been 

significant enough to handle gigabit network rates. 

One possible solution to the delays associated with linear rule searching is the use of 

ternary content-addressable memory. A content-addressable memory (CAM) chip is 

fundamentally different than a standard RAM. Whereas a standard RAM returns data based on 

an address given as input, a CAM is capable of returning one or more addresses where the given 

input search data can be found. A ternary CAM is even more beneficial in that it allows for mask 

bits to be specified so that only a specified portion of th

the input data. Most importantly, CAM searches occur in a fixed amount of time, 

regardless of the amount of data within the CAM itself.  

8 



 

Consider, for example, a 9 Mb Network Search Engine provided by Integrated Device 

Technologies [20]. This device contains a ternary content-addressable memory (tCAM) that 

supports 16,000 576-bit entries, all of which can be searched in a fixed amount of cycles. To 

compare, suppose that 2000 patterns need to be searched and that each pattern is only 32-bits 

long. Current IDS systems are processor-based and utilize GHz high-performance Pentium 

processors. We will conservatively assume that all data is located within L1 cache at 1ns per 

access. Under such assumptions, the pattern matching would require 2000 memory accesses just 

to read the patterns.  Thus, the time-per-packet is 2,000 ns. For a CAM, all 2000 patterns are 

searched in parallel and the total execution time is 20ns, which is 100 times faster. Now suppose 

that our patterns are 320 bits wide. This would require 10 times the number of memory 

references on the part of the processor, making the CAM 1,000 times faster. Clearly, content-

addressable memory has a benefit to the pattern-matching nature of intrusion detection. 

 

1.6 OVERVIEW OF ARCHITECTURE 

itecture 

resented in this thesis. The ePAPP component performs the task of pipelined protocol analysis, 

while the CASMA component performs stateless intrusion detection signature matching. 

 

This thesis provides a novel approach to the problems of packet classification and stateless 

signature-matching to enable intrusion detection. Figure 3 shows an overview of the arch

p
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Figure 3. Overview of the Presented Architecture 

 
 
1.6.1 ePAPP: An Embedded Protocol Analyzer Pre-Processor 

To perform

 ePAPP is to take the unclassified byte stream coming from the PHY and 

partition and classify the data blocks into co

payload size, header checksum). Because not all protocol fields are exactly 32 bits in length, 

field data output is zero-padded as necessary to ensure valid output. Fields that may be larger 

 the task of packet classification through protocol analysis, the Embedded Protocol 

Analyzer Pre-Processor (ePAPP) is presented. ePAPP connects directly to the PHY interface, 

which is responsible for capturing bits off of the transmission line and outputting them in fixed-

width chunks. A 100 Mb/s PHY, for example, produces a 4-bit datapath operating at 25 MHz, 

while a 1 Gb/s PHY produces an 8-bit datapath operating at 125 MHz. Since the goal of this 

work is to facilitate protocol analysis at a multi-gigabit switch, ePAPP is optimized to work with 

an 8-bit datapath. However, a simple 4-to-8-bit shift register can be used to convert a 4-bit 

stream operating at 25 MHz to an 8-bit, 12.5 Mhz stream, providing support for traditional Fast 

Ethernet networks. 

The goal of

rresponding protocol fields. These include header 

information fields such as source and destination addresses, header and payload sizes, and 

protocol flags, as well as the payload fields themselves. The partitioned data fields are output on 

a 32-bit bus, accompanied simultaneously by a unique 8-bit field type to identify not only the 

field’s context (its associated protocol) but also its particular relevance (e.g., source address, 

10 



 

than 32

igurable 

FPGA 

 the field types themselves. By placing this 

informa

 to the contents of the ROM. 

 bits in length, such as payloads, are divided and output over the necessary amount of 32-

bit increments. 

While many protocol field types have a fixed length associated with them, others such as 

payload and optional fields can be of variable lengths. The widths of these fields must be 

dynamically determined based on information within the protocol header itself. ePAPP is 

designed to detect and use relevant information within a packet header to calculate and apply 

these variable widths. 

ePAPP utilizes a pipelined hardware architecture to achieve the aforementioned 

functionality in a fixed number of cycles. Hardware architectures confined to ASIC solutions, 

however, are typically very static and extremely cost-prohibitive to change. Reconf

solutions are not as inflexible to change, but due to size and cost are ill-suited to 

implementation in a network device. Therefore, a time-, cost-, and space-efficient protocol 

analysis solution in hardware must be adaptable to changes in protocol without frequent 

redesign. To solve this problem, ePAPP uses a “protocol memory” to enumerate possible 

protocol field types as well as information about

tion in a loadable component, such as a ROM, the functionality of ePAPP can be 

modified to meet protocol changes without necessitating a complete hardware redesign. 

The ePAPP design proposed in this thesis currently supports the following protocols: 

Ethernet (IEEE 802.3), Ipv4, ARP, TCP, and UDP. While these provided a sufficient base for 

functional testing and synthesis results, it should be noted that the generalized nature of the 

ePAPP architecture is expandable to include additional protocols (e.g., ICMP, IPv6) with little 

more than an addition
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Since ePAPP classifies every field in an incoming packet, it is adaptable to virtually any 

application that requires protocol analysis. Its general, multi-use nature makes it quite cost-and 

space-efficient in a network device. One potential application for ePAPP processing is intrusion 

detection. Signature-based intrusion detection, in particular, relies on both a wealth of header 

information and on packet payloads. This thesis utilizes the ePAPP as a tool to present an 

associated intrusion detection architecture with the information it needs to perform content 

signature-matching. 

1.6.2 A CAM-Assisted Signature-Matching Architecture 

To perform the task of stateless intrusion detection, this thesis presents a CAM-Assisted 

Signature-Matching Architecture (CASMA). As previously discussed, the parallel-searching 

nature of content-addressable memory is a good fit to the search-intensive task of signature-

matching. In order to establish the requirements of the CASMA architecture, we chose to use 

Snort a

 pipelined hardware solution. 

s our model and performance benchmark [21]. As previously mentioned, Snort is open-

source network intrusion detection software widely used and supported in industry. While newer 

versions of Snort are packaged with various pre-processors that provide additional services such 

as stateful matching, Snort’s primary role is rule-based packet signature matching. Stateful 

inspection considers packets within a larger context that evaluates packets with respect to the 

current connection state. This requires the storage of connection state information, which is 

beyond the scope of this work. CASMA has been developed as an attempt to replicate the 

stateless signature matching capability of Snort in a

Snort rules are comprised of a number of different elements, including the type of traffic 

the rule pertains to (IP, TCP, UDP, ICMP), the source and destination addresses and ports for 

which the rule is valid, and a bevy of rule options (rules and rule options are discussed in detail 
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in Chapter 4). Furthermore, each of these rule options can be classified as pertaining to some 

characteristic of either packet header information or packet payload information. This gives way 

to a na

e, the source address and port number match specific values), the 

packet 

 that, instead of trying to 

simultaneously match a number of header field values in a single combined search, the payload 

tural delineation between “header rules” and “payload rules,” which is exploited by 

CASMA. While Snort handles both of these types in a single rule, the proposed design will 

address header rules and payload rules separately. 

Separating header searches from payload searches has several advantages. First, since 

header information will arrive from ePAPP before the payload, header searching can be initiated 

while the packet payload is still being buffered. Secondly, combining header and payload 

information into a single search string can make the size of the string impractical for use in a 

CAM. 

Matching header information is generally a simpler process than payload content 

matching. If header information in an incoming packet meets all of the header requirements of a 

given Snort rule (for instanc

is tagged as a possible hit (contingent upon a corresponding payload match). For most 

rules, it is this simple. There are, however, some exceptions that do not merely require an exact 

match. Some rules require that a value fall within a certain range (for instance, the source port 

must be less than 1024). Other rules specify that a piece of header information must not be a 

particular value (for instance, the destination port cannot be 80). Presently, ternary CAMs do not 

have the ability to do range or inequality checking. Therefore, each of these exceptional header 

search requirements are performed with hardware preprocessing and incorporated into the header 

search string as a 1-bit flag. 

Payload searches are different from header searches in

13 



 

search 

d signature matches. Fortunately, a 

payload

 is proposed 

d payload searches must be correlated by a post-

process

, intrusion detection). 

Figure 5 shows a network switch that has been augmented with the ePAPP and CASMA 

architectures. ePAPP accepts unclassified bytes of packet data directly from the PHY and 

is attempting to match certain strings that appear at certain locations within a packet. 

Since the entire payload must be searched in the CAM, and since many payloads are larger than 

the maximum CAM width, payloads must be incrementally shifted and searched at pre-defined 

offsets. For reasons discussed in Chapter 4, CASMA performs a CAM search at each 8-byte 

offset within a payload. Therefore, a payload of n bytes will require ((n-1) / 8) + 1 CAM searches 

in order to sufficiently check a payload for all possible payloa

 of n bytes requires n cycles to arrive from the ePAPP unit. 

Certain rules specify that a payload signature to be matched be regarded as a hit only if 

the signature string is found at a certain range of depths within the payload. In order to 

incorporate this functionality into a standard CAM search, a novel encoding scheme

that specifies within a CAM entry at which depths payload string matches are valid. By inputting 

into the CAM as part of the search string the depth associated with the payload content being 

searched, payload string depth requirements can be enforced. 

Results from associated header an

or to determine any and all rule matches, as well as determine the threat severity of the 

detected traffic. The specific nature of this correlation is beyond the scope of this research, 

however generic result outputs are provided to more easily enable rapid processing. 

Figure 4 shows the general architecture of a typical switch. Packets are captured by the PHY and 

undergo MAC-layer processing. Packets are then passed on to a network processor that performs 

any processing that is required on the packet, which may include some form of packet inspection 

(e.g., packet filtering
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classifies them through protocol analysis. The formatted packet fields are forwarded to the 

CASMA unit, which performs header and payload CAM searches to find potential attack 

signature matches. Result data is passed to the network processor to be correlated. Thus, the 

entire burden of packet inspection is removed from the network processor through the addition of 

pipelined hardware. 
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Figure 4. Traditional Network Switch Architecture 
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Chapter Two will examine research related to the goals of this thesis. Chapter Three will 

discuss the or. Chapter 

our will discuss the design, performance, and issues related to the CAM-Assisted Signature-

Matching Architecture. Chapter Five will examine conclusions and future directions for this 

research. 
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2.0 RELATED WORK 

 

A hardware-based TCP/IP content scanning system is proposed in [22]. This work combines 

protocol processing engine, a per-flow state store, and content scanning engine into a single 

hardware architecture. Of primary i

 

 

nterest to this research is the content scanning engine. 

Incomi

 Prasanna 

[25]. S

in reconfigurable hardware on an FPGA. The research is based on an early version of Snort 

ng TCP packets are streamed through the content scanner, a hardware model that is 

capable of scanning the payload of packets for a set of regular expressions using Deterministic 

Finite Automata (DFAs), as proposed in [23]. The content scanner claims speeds of up to 2.5 

Gb/s. This design, however, supports only TCP flows, which is quite incomplete for intrusion 

detection purposes. Also, the design is targeted to an FPGA, which is cost- and size-prohibitive 

for use in a network device. 

The work in [24] uses JHDL, a Java-based programmatic structural design tool, to create 

a module capable of generating circuits that match arbitrarily large regular expressions. The 

overall goal of this work is to prove the feasibility of using such a module on an FPGA to 

accelerate the task of string matching for network security applications. The work is based on the 

groundbreaking efforts on FPGA-based regular expression searching by Sidhu and

earch data is streamed through the match circuit one character at a time. Testing results 

indicate a throughput of one search character per clock cycle using the proposed method, 

irrespective of the length of the search string. This solution, as before, is impractical because of 

its dependence on a reconfigurable FPGA platform. 

The method proposed in [26] attempts to implement the Snort intrusion detection engine 
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(v.1.8.7) that supported 1239 rules. The proposed architecture performs first a header search 

based on source and destination ports and addresses as well as protocol type, and then a 

subsequent payload search based on the results of the header search. The proposal suggests the 

use of CAMs to perform the necessary header and payload searches. While the work proposes 

many o

Citing the expensive nature of high-density ternary CAMs, 128 bit-wide ternary CAM-like 

memories (CLMs) are proposed which function like individual CAM entries but are touted as 

more cost-effective. The research focuses on classification of IPv6 packets based on IP source 

and destination addresses, source and destination ports, and protocol type. Each of the five field 

f the same fundamental concepts as this thesis, there are no design details or results 

available to support a proof of concept. Again, the choice of an FPGA as a target for the 

architecture is an impractical choice. 

The architecture proposed in [28] is another attempt to map Snort rules directly into 

reconfigurable hardware. The design features content pattern-matching engines that match 

payload chunks in 4 byte increments against a given rule. Each rule, represented by its own 

generated structural VHDL, is searched in parallel. Initially, packet header information (source 

and destination ports and addresses, protocol type) is checked against the header requirements 

corresponding to a given rule. If there is a match, 4 byte shifts of payload information are fed 

into the rule’s individual content pattern-matching engine. If a match is found, the corresponding 

packet is flagged and potentially dropped. Only 105 Snort rules are implemented in this design, 

and no explanation is given how these rules are mapped to VHDL. By its own admission, this 

contribution relies on frequent reconfiguration to account for new rules, hence its FPGA target. 

This suffers from the same drawbacks as much of the previously mentioned research. 

The goal of [29] is to speed up multi-field packet classification using CAM-like memory. 
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types is searched individually in parallel with the other field types, and results are correlated with 

specialized combinational logic to produce a rule match index uniquely identifying a rule hit. 

The pr ion to 

v6 packet classification does not satisfy the larger scope of the thesis effort. 

e mapping of the rules themselves into hardware are not clearly defined. 

oposed architecture has elements in common with this thesis, however its restrict

IP

The Granidt (Gigabit Rate Network Intrusion Detection Technology) architecture is 

proposed in [27]. This work proposes an integrated hardware/software solution that improves 

Snort performance by performing rule matching in custom hardware using CAMs. The software 

“rule compiler” is responsible for accepting a subset of Snort rule syntax and producing a 

hardware representation of the rule fields to be matched. The rule compiler creates several tables 

that are used to initialize the search CAMs, as well as an internal representation of the rules that 

links fields specified by the rules to the CAM tables and range tables. The “rule processor” 

software component initializes the hardware CAMs and initiates packet processing. Header and 

payload searches are performed separately, each facilitating a number of individual CAMs. A 

match vector that indicates the results of the CAM searches is correlated to the internal rule 

database to determine the appropriate action for a matched rule. Since the rule compiler is in 

software, new rules can be added to the design without resynthesis. This design is flawed, 

however, in that it requires several individual CAMs, which is cost-prohibitive. Also, the 

maximum supported signature size is 20 bytes, which is not sufficient for a large number of 

Snort rules. Details of th
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3.0 ePAPP: AN EMBEDDED PROTOCOL ANALYZER PRE-PROCESSOR 

 

This ch

 configuration in the protocol 

memor

As the speeds of local networks increase, the amount of time available for a network device 

(such as a switch) to respond to a single packet decreases. To improve upon traditional software 

apter presents a hardware Embedded Protocol Analyzer Pre-Processor (ePAPP) that 

performs the protocol analysis of network packets at line speeds of at least 1 Gb/s using only a 

small amount of area on a structured ASIC technology. The device fits between the physical 

network interface and an upstream processor or additional hardware pipeline (CASMA) and 

replaces the software protocol analysis program typically run on a processor, achieving a 

significant performance increase. The presented solution is additionally advantageous in that 

every protocol field of a network packet is classified. The particular protocols being analyzed 

can be configured in an internal memory within the pre-processor, allowing easy protocol 

upgrades and product versatility in different applications. A single

y can handle hundreds of protocols without reprogramming. A prototype of ePAPP that 

supports various protocols including Ethernet, IPv4, ARP, TCP, and UDP has been designed in 

VHDL and synthesized for a 130 nm a structured ASIC technology. Results show that 2.89 Gb/s 

can be achieved when implemented on a structured ASIC, using less than 1% of available logic 

cells. The prototype is also demonstrated to have a decoding latency 75 times faster than the 

conventional software. 

 

3.1 INTRODUCTION 
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solutions, network processors have been developed which are capable of performing packet 

classification and forwarding at higher speeds. Most network processors (NPs) utilize multiple 

channe

n a packet are classified and the 

protoco

For a RISC processor, these fields must be placed in a 32- or 64-bit 

register

a 100 Mb/s PHY is a 4-bit wide 

ata path that operates at 25 MHz and a 1 Gb/s PHY is an 8-bit wide data path that operates at 

125 MHz. This thesis presents a hardware Embedded Protocol Analyzer Pre-Processor (ePAPP) 

that resides between the PHY and the channel processor to replace the protocol analysis work 

l processors to perform packet inspection and data extraction for each network link, 

typically using 32- or 64-bit RISC architectures but in some instances using VLIW processors. 

One of the most fundamental tasks these network processors perform is protocol 

analysis. This is the process by which individual fields withi

ls within the packet are identified. RISC processors are by definition a small subset of 

instructions that, when combined in a program, can execute complex tasks. The problem is that 

packet processing requires a large amount of bit manipulation to extract particular data fields. 

For example, the source and destination of an IP packet are octets 13 through 16 and octets 17 

through 20, respectively. 

 before processing can take place. To achieve this protocol analysis task by software can 

be quite complex just to extract a few fields from a packet header. 

The physical layer interface (PHY) to a network cable translates analog signal levels into 

a stream of fixed width digital data. For example, the interface to 

d

that is usually done by software in the processor, with a great performance improvement over 

software solutions. The objective is to assemble and output the individual protocol fields of a 

packet at line speeds, augmenting the field data output with a field type that is unique to the 

particular protocol and field description. Moving the protocol analysis work from software to the 
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hardware ePAPP drastically reduces the execution time for protocol analysis, as well as removes 

software overhead in the Channel Processor. 

Many proposed network processors exist which use specialized, non-RISC architectures 

to support multi-gigabit speeds [15,16]. These solutions are still constrained by the cycle-rich 

nature of processor architectures. We propose a design that will be able to separate and classify 

every field of a network packet in a minimal number of cycles. 

Application-specific integrated circuits (ASICs) are used in many network nodes to 

improv

protoco

d Protocol Analyzer that will receive a fixed width stream of packet 

data fro

ed hardware unit, such as CASMA. The Field Type is a unique number that 

specifies a particular field of a particular protocol. It is used to classify the data that is 

simultaneously presented on the Field Data bus. 

e packet processing speeds, however they are rarely flexible enough for rapid adaptation 

to protocol or standards changes [1]. By utilizing a ROM to store protocol classification 

information, our proposed design allows for incorporation of new standards and designs without 

complete ASIC redesign. 

In this chapter, Section 3.2 presents the reconfigurable architecture for mapping the 

protocols into hardware. Section 3.3 presents a circuit implementation of a prototype supporting 

ls including Ethernet, IPv4, ARP, UDP, and TCP. Section 3.4 introduces performance of 

the design and performance benefits over conventional software. 

 

3.2 ARCHITECTURE FOR PROTOCOL MAPPING 

ePAPP is a hardware-base

m the PHY and output a stream of organized data by forwarding the Field Type and Field 

Data values. As shown in Figure 6, values can be forwarded to an upstream network processor or 

another pipelin
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Figure 6. The Protocol Analyzer Pre-Processor 

 

f pre-processing an upstream processor would have to 

Cable

 

 

The width of the Field Data bus is the same as the register widths inside the upstream 

processor. Field Data is gathered directly from the incoming stream of packet data and is zero-

padded depending on the width of the associated protocol field. Thus, rather than seeing a stream 

of 4- or 8-bit values, an upstream processor would see a stream of packet field information. This 

would drastically reduce the amount o

perform before it could determine the proper packet handling.  

Field widths in data packets vary a great deal, and many fields will not consume the 

entire register width. This will not reduce the efficiency of the upstream processor as long as the 

average field width is larger than the fixed width stream coming off of the PHY. In most cases, 

the field width will be significantly larger and, in some cases, may need to be broken into two or 

more separate fields, as with packet payloads. This is beneficial to the upstream processor as it 

better fits its architecture. 

Due to the continuing development of Internet protocols, we store the definition of 

protocol types in a Protocol Memory, which makes it easy for protocol updates, reconfiguration, 

or expansion. 
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Apart from the Protocol Memory, there are two other parts assisting with the protocol 

field classification: a “Jump T )” with a “Jump Register” to 

andle diff cording to the und in 

packet and a “Lengt

fields e, a paylo

describe in detail of how to ma  these three blocks. 

3.2.1 

The Pr c  the protocol field information used for classification, 

provides protocol information to the Protocol Analyzer. A unique number is assigned to each 

field type of each supported prot plex, involving 

multiple headers of dyna r and demanding branches 

between encapsulated protocol layers.  

 An example using the IPv4, UDP, and TCP protocols is shown here. The associated 

protocol field descriptions are given in Tables 2 through 4, respectively. The Protocol Field 

ctet 10) of the Internet Protocol defines which protocol is used above the Network layer. 

Specifically, th IPv4 he IP packet, 

octets 21 and eith s  Table 3, or the TCP 

format showed in Table 4. Furthermo  the T  of the IP packet, 

from which can we derive the length of IP payload. The Internet Header Length can be gathered 

from the secon tence onal octets 21 through 

24. Thus, the data within a packet header determines how the packet is to be interpreted. This 

traditional layering scheme requires that the Protocol Analyzer have a decision tree to determine 

how it should interpret the stream of data. 

ranslation Look-aside Buffer (TLB

h branches between erent layers of protocols ac information fo

headers; h Block” to get length information for variable length protocol 

(for exampl ad field) according to packet headers. The following sections 

p protocols into

Protocol Memory 

otocol Memory, whi h stores

ocol. The current Internet protocols are very com

mic lengths (one fo  each layer of abstraction) 

(o

e Protocol Field of  defines the format of the Data fields within t

greater, which can er be the UDP format as hown in

re, octet 3 and 4 define otal Length

d nibble of octet 1, which will dictate the exis  of opti
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Table 2. IP Protocol Field Description 

 
OCTET POSITION IP FIELD DESCRIPTION  ABREVIATION
OCTET 1 Version (4 bit)+IHL (4 bit) (VER, IHL) 
OCTET 2 Type of service (TOS) 
OCTET 3,4 Total Length (TOL) 
OCTET 5,6 Identification (ID) 
OCTET 7,8 Flags (3 bit)+Fragment Offset (13 bit) (FLG, FRO) 
OCTET 9 Time to Live (TTL) 
OCTET 10 Protocol (PRO) 
OCTET 11,12 Header Checksum (IP_SUM) 
OCTET 13,14,15,16 Source Address (SRC) 
OCTET 17,18,19,20 Destination Address (DEST) 
(OCTET 21,22,23,24) (Options + Padding) (OPT) 

OCTET 21, 22… Data  
 

Table 3. UDP Protocol Field Description 

 
OCTET POSITION UDP FIELD DESCRIPTION
OCTET 1,2 Source Port 
OCTET 3,4 Destination Port 
OCTET 5,6 Length 
OCTET 7,8  Checksum 
OCTET 9,10….. Data 

 

Table 4. TCP Protocol Field Description 

 
OCTET POSITION TCP FIELD DESCRIPTION ABBREVIATION 
OCTET 1,2 Source Port (SRC_PORT) 
OCTET 3,4 Destination Port (DEST_PORT) 
OCTET 5,6,7,8 Sequence Number (SEQ) 
OCTET 9,10,11,12 Acknowledgement Number (ACK) 
OCTET 13,14 Data Offset(4 bit)+ 

Reserved(6 bit)+ 
(DTO, FLG) 

Control Flags(6 bit) 
OCTET 15,16 Window (WIN) 
OCTET 17,18 Checksum (TCP_SUM) 
OCTET 19,20  Urgent Pointer (URP) 
(OCTET 21,22,23,24) (Options + Padding) (OPT) 
OCTET 21,22… Data  
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For clarity and generality, we graph a packet containing layered protocol fields A through 

J be w

determ

differen

The co

example, the protocol CD is used if B=20 and protocol EF is used if B=40. However, in the EF 

pro o

start un

random

GH, an

lo  (Figure 7). In this packet, fields A and B are in a lower layer protocol and the value of B 

ines the protocol and the meaning of the data fields that follow. Figure 7 shows the three 

t protocol stacks that are possible. The first protocol layer contains the fields A and B. 

ntents of B determine which protocol is used at the next layer up the stack. In this 

toc l, the E field is used to determine the next protocol layer but the next protocol does not 

til after F. Protocol GH is used if E is 71 and IJ is used if E is 72. The field values were 

ly selected for this example. DT1, DT2, DT3 are payload data fields for protocols CD, 

d IJ, respectively. 

 

 

Figure 7. An Example of a Layered Protocol Description 

Most of the protocol fields have con

 
 

stant widths that are defined by the protocol format 

and e

length 

DT2 and DT3 have variable lengths that depend on the values of fields G and J, which define the 

tal length of protocol GH and protocol IJ, respectively.  

The following characteristics of each protocol field type are stored in the Protocol Memory: 

 ar  labeled as W(A), W(B),…,W(DT1) in this example. Some other fields have a variable 

that is calculated from a length field appearing earlier in the same packet. For example, 

to
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• Field Type, a unique num otocol field. No two fields inside 

the l ry av m y  r

protocols. This simplifies the processing of  packet s the F d Type umber also 

defines the context (i.e. protocol layer) in which the field exists.  

• Field Width, de es the w th of th ield if i  of cons t length

• Protocol Indicator, a one-bit value that indicates whether the contents of the field are 

indicative of the next protocol layer to be used. If Protocol Indicator is set to ‘1’, the 

field’s contents are used by the “Jump TLB o determ e the in al Fiel ype of the 

next protocol. This value is stored in the “Jump Register” until a jum to the next 

protocol is indicated.  

• n 

If the value of Branch 

pe used is the current Field Type incremented by one. If 

• 

ber identifying the particular pr

 Protoco Memo may h e the sa e Field T pe, even if they a e from different 

the s a iel  n

fin id e f t is tan .  

” t in iti d T

p 

Branch Indicator, a one-bit value that indicates whether there should be a branch to a

upper layer protocol immediately following the current field. 

Indicator is ‘0’, the next Field Ty

the value of Branch Indicator is ‘1’, the next Field Type is taken from the “Jump 

Register,” as stored by the “Jump TLB.”   

• Length Indicator, a one-bit value that indicates whether the current field contains any 

length information for an upcoming variable length protocol field. If the value of Length 

Indicator is ‘1’, the field contains length-related information and should be passed to the 

“Length Block” to be used in the appropriate calculations. 

Variable Length, a one-bit value that indicates whether the current field is of variable 

length. If the value of Variable Length is ‘1’, the field is of a variable length that must be 

retrieved from the “Length Block.”  
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• 

 Width Indicator Indicator Indicator Length Done 

Packet Done, a one-bit value that indicates whether the previous field was the last of the 

packet. If the value of Packet Done is ‘1’, the Protocol Analyzer halts until a new packet 

is received from the PHY. 

 

Table 5. The Protocol RAM Data 

 
Protocol 

Field 
Field 
Type

Field Branch Protocol Length Variable Packet 

A 0 W(A) 0 0 0 0 0 
B 1 W(B) 1 1 0 0 0 
C 2 W(C) 0 0 0 0 0 
D 3 W(D) 0 0 0 0 0 

DT1 4 W(DT1) 0 0 0 0 0 
EOF1 5 0 0 0 0 0 1     

E 6 W(E) 0 1 0 0 0 
F 7 W(F) 1 0 0 0 0 
G 8 W(G) 0 0 1 0 0 
H 9 W(H) 0 0 0 0 0 

DT2 10 0 0 0 0 1 0 
EOF2 11 0 0 0 0 0 1 

I 12 W(I) 0 0 0 0 0 
J 13 W(J) 0 0 1 0 0 

DT3 14 0 0 0 0 1 0 
EOF3 15 0 0 0 0 0 1 

 

 Additional key field e d cture. Table 5 shows the 

hypothetical Protocol RAM co or the ex ple shown in Figure 7. 

3.2.2 Jump Register and Jump TLB 

The Jump Register and the Jump Translation Look-aside Buffer (TLB) handle the branches 

between different protocols. The Jump Register contains the Field Type of the next encapsulated 

protocol layer, as set when triggered by the “Protocol Indicator” field of the Protocol Memory. 

The Jump TLB is a look-up table that determines which upper layer protocol to use based on the 

current Field Type and Field Data when the “Protocol Indicator” signal is asserted. Table 6 

shows the Jump TLB for the protocol example shown in Figure 7. 

s may also b  incorporate  into this archite

ntent f am
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When the current Field Type and Field Data match a row in the TLB and Protocol 

is 20, the Jump Address is 2, which is the start of the CD protocol. If the Field 

Data is

 get either 8 or 12 as the 

Jump Address. This value is stored in the Jump Register until the completion of field F, which 

indicates a branch to the next protocol. 

 

Field Type Field Data Jump Address

Indicator is ‘1’, the value in the “Jump Address” column is stored in the Jump Register. This 

value is used for the next Field Type when “Branch Indicator” is set to ‘1’, effectively branching 

to a new protocol.  

In the protocol example shown in Figure 7, the “B” field’s Protocol Memory entry has a 

value of ‘1’ in both its “Branch Indicator” and “Protocol Indicator” fields. Thus, the Field Type 

for B (1) and the current Field Data (either 20 or 40) are used to determine the Jump Address. If 

the Field Data 

 40, however, the Jump Address is 6, which is the start of the EF protocol. Since protocol 

field B has a ‘1’ in its “Branch Indicator” field, the Jump Address is immediately used to indicate 

the next protocol after B. 

For the EF protocol, the E field has a ‘1’ in its “Protocol Indicator” entry and thus is used 

to determine the next encapsulated protocol in the stack. The Field Data corresponding to 

protocol field E (either 71 or 72) is matched with the Field Type (6), to

Table 6. The Jump Translation Look-Aside Buffer 

 

1 (B) 20 2 
1 (B) 40 6 
6 (E) 71 8 
6 (E) 72 12 
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3.2.3 Length Block 

The Length Block is responsible for calculating and storing the lengths of variable length 

rotocol fields. Such fields include optional fields, alignment padding, and payloads. The lengths 

of these fields are determined by utilizing length information contained in previous protocol 

fields. For instance, the specified header length for a protocol header may be used to determine 

how many option and padding bytes the header contains. In another case, the header length of a 

protocol layer may be subtracted from the total length of that layer to determine the number of 

payload bytes. 

In the example in Table 5, field G defines the total length of the GH protocol layer, which 

includes field G, field H, and payload field DT2. Since field DT2 is not fixed in length, as 

indicted by a ‘1’ in its “Variable Length” entry, its length must be calculated in the Length 

lock. Knowing that G contains the total length of the GH layer, the width of the payload field 

Field Type and a 32-bit line for the Field Data, as well as a single 

Valid bit to indicate valid output. The structure of the Protocol Analyzer Pre-Processor is shown 

in Figure 8, consisting of the Protocol Memory and Protocol Address Register, the Jump TLB, 

the Length Block, the Assembler, and a FIFO. The FIFO is at the beginning stage of ePAPP, 

p

B

DT2 is G – W(G) – W(H), where W(x) is the fixed width of protocol field x. This value is stored 

in the Length Register until the width of the payload field is requested. 

 

3.3 CIRCUIT IMPLEMENTATION OF EPAPP 

A prototype system supporting protocols Ethernet, IPv4, ARP, TCP, and UDP is implemented 

with the ability to process packets coming from a 1 Gb/s Ethernet PHY. Therefore, the input is a 

parallel stream of 8 bits from the 1 Gb/s PHY and the outputs are parallel streams of bits 

including an 8-bit line for the 
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connecting directly to the oming data to the rest of 

ePAPP. 
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cor t lo ata re ster. In b  is a sh

al co he widt of the c ent proto l field a

Me ry. The contents of the Protocol Memory are shown in Table 7. 

 Th f four 8-bit registers to assem  the inco ing blocks of 8 bits into 

8-, 16-, 24-, or 32-bit chunks, as determined by the field width. A 2-to-1 multiplexer is utilized to 

allow the selection of a fixed field width (from e Protoc  Memory) or a variable field width 

(from the Length Block). For fields that do not contain 32 bits worth of data, the most significant 

bits will be padded with zero. 

Figure 8. The Inte ch f t ol A re r 

e Assemble ara str  t an  th int

rec cation of the Field D gi  essence, the Assem ler ifter that has an 

intern unter loaded with t h urr co s indicated by the Protocol 

mo

e shifter consists o ble m

 th ol
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Table 7. Current Content Inside Protocol Memory 

ss Description Field 
Width 

Branch 
Indicator 

Protocol 
Indicator 

Length 
Indicator 

Variable 
Length 

Count 
Don

Addre
e 

Ethernet 
0 Preamble 0 0 0 0 0  _high 3  
1 Preamble_low 0 0 0 0 0  3  
2 Destination_high 3 0 0 0 0 0 

3 D 0 0 0 0 0  estination_low 1  
4 Source_high 3 0 0 0 0 0  
5 Source_low 0 0 0 0 0  1  
6 T 1 1 0 0 0  ype 1  

ARP 
7 H 0 0 0 0 0  ardware 1  
8 Protocol 0 0 0 0 0 1  
9 Hardware Address Length 0 0 0 0 0 0 
A Protocol Address Length 0 0 0 0 0  0 
B Operation 0 0 0 0 0  1  
C Sender Hardware Address 

(H
0 0 0 0 0  

igh bits) 
3  

D Sender Hardware Address 
(Low bits) 

0 0 0 0 0  1  

E Sender Internet Address 3 0 0 0 0 0 
F Target Hardware Address 

(High bits) 
3 0 0 0 0 0 

10 Target Hardware Address 
(Low bits) 

1 0 0 0 0 0 

11 Target Internet Address 3 0 0 0 0 0 
12 Data Padding 3 0 0 0 0 0 
13 Data Padding 3 0 0 0 0 0 
14 Data Padding 3 0 0 0 0 0 
15 Data Padding 1 0 0 0 0 0 
16 (Ethernet)Frame Checksum 3 0 0 0 0 0 
17 End of Frame 0 1 1 0 0 0 

IP 
18 Version+Header Length 0 0 0 1 0 0 
19 Type of service 0 0 0 0 0 0 
1A Total Length 1 0 0 1 0 0 
1B Identification 1 0 0 0 0 0 
1C Flags (3 bit)+Fragment 

Offset (13 bit) 
1 0 0 0 0 0 

1D Time to Live 0 0 0 0 0 0 
1E Protocol 0 0 1 0 0 0 
1F Header Checksum 1 0 0 0 0 0 
20 Source Address 3 0 0 0 0 0 
21 Destination Address 3 1 0 0 0 0 
22 (Options + padding) X 1 0 0 1 0 
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Table 7 (continued) 

TCP 
23 Source Port Number 1 0 0 0 0 0 
24 Destination Port Number 1 0 0 0 0 0 
25 Sequence Number 3 0 0 0 0 0 
26 Acknowledgement 

Number 
3 0 0 0 0 0 

27 Header Length, Reserve, 1 0 0 1 0 0 
URG… 

28 Window Size 1 0 0 0 0 0 
29 TCP Check Sum 1 0 0 0 0 0 
2A Urgent Pointer 1 0 1 0 0 0 
2B (Options + paddings) X 0 0 0 1 0 
2C Data X 1 1 0 1 0 

UDP 
2D Source Port 1 0 0 0 0 0 
2E Destination Port 1 0 0 0 0 0 
2F UDP length 1 0 0 1 0 0 
30 Checksum 1 0 0 0 0 0 
31 Data X 1 1 0 1 0 
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The shifter consists of four 8-bit registers to assemble the incoming blocks of 8 bit

8-, 16-, 24-, or 32-bit chunks, as determined by the field width. A 2-to-1 multiplexer is uti

allow the selection of a fixed field width (from the Protocol Memory) or a variable field w

(from the Length Block). For fields that do not contain 32 bits worth of data, the most sig

bits will be padded with zero. 

The Protocol Address Register is a register that saves the current address of the Protoc

Memory. This register is actually a loadable counter that can either be incremented by one to 

move to the next field within a protocol, or can be loaded with the value of the Jump Add

from the Jump TLB. This loading capability allows for branches between protocols within the

Protocol Memory.  

s into 

lized to 

idth 

nificant 

ol 

ress 

 

 

 

Figure 9. Simulation Waveform for ePAPP 

reenshot of a simulation waveform for ePAPP when processing a 

UDP p

 

 Figure 9 shows a sc

acket. The inputs to and outputs from ePAPP are shown. The “data_in” signal is 

representative of data arriving on an 8-bit PHY. Note that, due to FIFO and queuing delays, there 

is a three cycle delay between arrival of data on the PHY and its appearance in the “field_data” 

output signal. 
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The “field_data” and utput “data_valid” is high. 

ple, when the Field Type is 0x06 and “dat lue of “field_data” 

is 0x00000800. Field Type 0x06 corresponds to the protoc

data value 0x00000 e IP protocol. tly, one can observe a branch to 

Field Type 0x18. Logically, 0x18 corresponds to the first field of an IP header. 

nal architecture of the Protocol 

nalyzer utilizes only a small memory and TLB, both of which can reside internal to the chip, 

allowing a high clock rate

 “field_type” outputs are valid when the o

For exam a_valid” is asserted, the va

ol field of an Ethernet header, and the 

800 indicates th  Consequen

One significant benefit of this design is the generic nature of the field classification 

outputs. Most probably, the outputs would be buffered and made accessible to a channel 

processor through memory-mapped registers. This provides a very general architecture that 

leaves the use of the classification information to the specific processor implementation. 

Consider this implementation running at 250 MHz, which would support a 2 Gb/s peak rate. 

Further consider a network processor running at 2 GHz. If one aggressively estimates that on 

average a valid field is classified every two cycles, one is left with an average of 16 processor 

cycles per packet field. The processor would simply need to execute a set of instructions 

corresponding to a particular field type, lifting a significant pre-processing burden off of the 

network processor itself. 

 

3.4 DESIGN RESULTS AND PERFORMANCE 

The performance of the Protocol Analyzer must be sufficient to keep pace with the incoming 

data. For Gigabit Ethernet, the PHY transmits 8 bits every cycle at 125 MHz, thus requiring the 

same clock rate for the Protocol Analyzer. Fortunately, the inter

A

.  
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It is expected that the fin Pro inside of a 

Network Processor using standard ASIC tec

performan nd size, the desig d at a 130 IC solution. To do 

this, VHDL was created for the Protocol Analyzer and sim ernet PHY. 

The synth n in

 

Table 8. Performance Results After Synthesis 

al implementation of the tocol Analyzer will be 

hnology. However, to gauge this architecture’s 

ce a n has been targete nm structured AS

ulated for a Gigabit Eth

esis result is show  Table 8. 

 
 130 nm Structured ASIC 
Standard-cell Instance Count 2530 / 1.7M 
Size as a % of Total Cells < 1% 
Speed in MHz 360 MHz 
Throughput 2.8 Gb/s 

 

Table 9 compares the performance of the hardware ePAPP with the software-based 

decoder inside the “Snort” Intrusion  software-based decoder in Snort 

captures packets utilizing the widely-used libpcap sniffing interface, a public domain library of 

the pipelined protocol analysis in ePAPP br

Detection System. The

packet capturing utilities. The decoder program in Snort version 1.9.0 needs more than 1700 

lines in C code and an average of 1245 ns execution time when running on a Dell Power-

Edge 4400 server which has dual 866MHz Pentium III Xeon processors, 1GB RAM, and is 

running the Redhat 7.2 OS. The hardware-based ePAPP uses less than 1% of a structured ASIC 

target and processes packets at line speeds. Protocol analysis is performed in parallel with the 

capturing process, and most of the processing time overlaps with the capturing process, with a 

maximum input to valid output latency of 6 clock cycles (less than 17 ns when circuit operates at 

360 Hz). Assuming the capturing times for software and hardware are the same, we found that 

ings a 75x performance improvement (1245 ns / 17 

ns) in the latency for getting analysis results after capturing a packet. This presents ePAPP with 
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greater processing capability in high-speed networks. ePAPP and Snort support the same 

protocol group, with the exception of ICMP, however analysis shows that ICMP could be 

implemented without an appreciable effect on processing speed. 

 

Table 9. Performance Comparison With Software 

 
 Software-Based (Part of the Hardware-Based ePAPP 

Decoder in Snort IDS)  
Execution Type Sequential Six-stage Pipeline 
Architecture Dual 866MHz Pentium III Xeon 

Processors 
130 nm structured ASIC 

Size 1700 lines in C code < 1% of target area 
Protocol Support Fixed based on available 

software instructions 
Expandable by adding to or 
updating the Protocol RAM 

Processing Speed 0.8 million packets per second Line speed 
Decoding Latency  (Average) 1245 ns 17 ns (6 clock cycles)  
Speedup  75x Latency Decrease 

 

In addition, Hardware ePAPP can connect directly to a physical layer interface (PHY), 

avoiding the use of time-consuming capturing software (including libpcap, which is reported to 

be a possible bottleneck of network monitoring process). The hardware solution may become 

indispensable to replace conventional software solutions in the network security area as faster 

networks are developed. 

 

3.5 CONCLUSIONS 

This chapter has introduced the Embedded Protocol Analyzer Pre-Processor (ePAPP) and shown 

that it performs protocol analysis pre-processing for packet processors by augmenting and 

transforming the data stream from the PHY to a stream of 8-bit and 32-bit words that uniquely 

identify individual protocol fields and their corresponding data, respectively. Currently, ePAPP 

supports protocols Ethernet, ARP, IPv4, UDP, and TCP, with a performance improvement of 75 
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times over the conventional functionally-equivalent software. Furthermore, by targeting this 

rchitecture at structured ASIC technology it has been shown that ePAPP uses less than 1% of 

the chip logic c bit Ethernet.  

Future directions include using the protocol analyzer in conjunction with embedded 

firewalls and network attached devices. In one implementation, this design would be paired with 

hardware using a ternary content-addressable memory (tCAM) to perform intrusion detection 

signature-matching as described in Chapter 5. Support will be added for additional protocols 

such as ICMP and IPv6, which should require only a trivial amount of redesign. Field length 

calculation information could be moved to a ROM in order to make protocol additions and 

changes involving length more easily reprogrammable. For Ethernet applications, ARP and 

RARP packets could be handled automatically from within the hardware and thus not burden the 

embedded processor. 

a

ells and executes at 361.5 MHz, and thus can be used for multi-Giga
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4.0 CASMA: A CAM-ASSISTED SIGNATURE-MATCHING 
ARCHITECTURE FOR INTRUSION DETECTION 

 

As transmission speeds and the amount of network traffic produced increase within modern 

networks, the amount of potentially harmful traffic grows as well. More than ever before, it is 

essential to continuously monitor internets and intranets for packets that are of suspicious origin 

or intent. The firewall has been a traditional solution to network protection, however simple 

packet-filtering firewalls on the incoming edge of a network are not a sufficient guard against 

network attacks for several reasons. One reason is that packet-filtering firewalls do not examine 

packet payload information, which could contain signatures instrumental in detecting malicious 

traffic. And even if a simple firewall could prevent any attack from entering the network, it 

would be helpless against an attack launched from within. 

Intrusion detection systems (IDSs) have proven to be an improved measure of 

supplemental protection. Operating in a passive mode, intrusion detection systems analyze all 

traffic arrive through a specific network interface or network interfaces. Host-based IDSs can be 

an effective measure rge can still fall 

victim to an unnoticed attack originating from a single unprotected host. Therefore, network 

intrusion detection systems (NIDSs) are the optimal choice to evaluate all traffic traveling 

through a network. 

The question of where to position the NIDS on the network is an important consideration. 

Standalone NIDS devices have been made available, however adding additional devices to a 

network infrastructure can be costly and produce unwanted latency. Embedding the NIDS in the 

 of protection for a single device, however the network at la
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firewall is effective for traffic leaving and entering the network but useless for traffic traveling 

between internal hosts. In fact, an optimal location for intrusion detection on a local network is 

within 

d with minimal change to the network infrastructure. 

has 

continued to grow. Stateful processing, anomaly or statistical-based detection, and packet 

decryption features have become available in many off-the-shelf IDS products. The aim of this 

research is to accelerate one critical aspect of the intrusion detection process: stateless packet 

sign u sed detection is at the root of almost all IDSs. As the number of 

Snort i

preprocessors as defined by the current Snort configuration. These perform tasks such as stateful 

the network switch. Any and all traffic sent to or from a host within a local network must 

travel through the network switch. Therefore, by augmenting traditional switching hardware with 

a hardware-based intrusion detection architecture, intrusion detection functionality can be 

achieve

The list of technical capabilities falling under the umbrella of intrusion detection 

at re matching. Signature-ba

attack signatures to be searched grows, so does the latency required to perform a sequential 

search. Through the use of custom combinational logic and ternary content addressable memory 

(tCAMs), this work will attempt to demonstrate a clear performance improvement over Snort, a 

comparable software IDS solution. 

 

4.1 THE SNORT INTRUSION DETECTION SYSTEM 

s an open source network intrusion detection system, based entirely in software. To 

capture packets directly from the network card, Snort uses the libpcap library [30]. libpcap is a 

system-independent C interface for low-level packet capture. Captured packets are passed to a 

packet decode engine, which serves much of the same purpose as ePAPP does in this work. Once 

packet capture and classification has been completed, Snort exposes packets to a series of 
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analysis, packet stream reassembly, performance monitoring, and other functions beyond the 

scope of this thesis. 

Once packet preprocessing has been completed, the task of rule-matching begins. Snort 

rules are text-based, and lists of rules are typically stored in files to be read by Snort at startup. 

Each rule is its own line of text and can be broken into two sections: the rule header, and the rule 

 Information 

The e a 

wever, it is the rule body that provides detail to a rule and 

differentiates the capa upports a number of 

ptions), and still others that specify response 

haracteristics or provide additional information or direction when a rule is matched (meta-data 

and post-detection options).

lth n ay in to rt o

packet, it is useful to identify and separate the parts of a e tha  info n, 

payload information, or how to respond to a rule hit. Inherently, these rule options function in 

body. 

The information contained within a rule header can be divided into four main categories: 

• Rule action 

• Protocol 

• Source Information 

• Destination

 rule body is comprised of the rule options. A Snort rule does not require a rule body to b

complete rule. In most cases, ho

bilities of Snort from a simple packet filter. Snort s

rule options, some of which deal with protocol header information (non-payload options), others 

that deal with payload content (payload o

c

 

A ough a si gle Snort rule m  contain formation match any pa r parts of a 

r io rul t deal with header mat

different ways. Header data is found at fixed locations within a packet, and therefore matching 

header data against a rule is fairly straightforward. Finding a certain data string within a payload, 
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however, is much more difficult, since in many cases the data can appear at any byte offset 

within the payload. Response to a rule hit is not relevant until after a match has occurred. Section 

4.1.1 d s 

hat 

h. 

4.1.1 nort Packet Header Rule Options 

As previously discussed, Snort s: the rule header and the rule 

portant that the term  be confused with the 

that enable packet header to oc ptions to assist in p  packe er 

matching are found in both the rule header and the rule body. Snort rule headers appear in the 

alert tcp 111.222.111.222 80  222.111.222.111 80 

or the purposes of clarity, example rule headers will, in the future, be shown in table format. 

For example, the above rule wou

Ta . Example  Header T Form

 
Rule Protocol Source Address Source Direction Destination Destination 

iscusses aspects of Snort rules pertaining to packet header searching. Section 4.1.2 focuse

on rule options pertaining to packet payload searching. Section 4.1.3 considers rule options t

dictate how to respond following a rule matc

S

rules are comprised of two part

body. It is im  “rule header” not

matching 

parts of a Snort rule 

cur. O erforming t head

following format: 

rule_action protocol source_addr source_port direction destination_addr destination_port 

Consider the following example: 

F

ld appear as: 

 

ble 10  Rule able at 

Action Port Address Port 
alert tcp 111.222.111.222 80  222.111.222.111 80 

 

The protocol portion of the rule header is used to specify to what protocol a rule pertains. 

Currently, Snort supports four protocol types: IP, TCP, UDP, and ICMP. Because certain attack 
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behaviors apply only to traffic of a particular protocol type, specifying a protocol in the rule 

header significantly lowers the number of false positives triggered by Snort. 

The source information and destination information portions of the rule header are used 

to apply rules to specific source and destination IP addresses and port numbers. Consider the 

followi

Table 11. Rule Header Example #1 

 
Rule Action Protocol Source 

Address 
Source Direction Destination 

Address 
Destination 

Port 

ng rule header example in Table 11: 

 

Port 
alert tcp an 136.142.42.14 80 y any  

 

The above example specifies t form ert action any time T  is dete

from any IP address and port to port 80 at IP address 136.142.42.14. The “any” keyword is used 

le Header Example #2 

 
Rule Action Protocol Source 

Address 
Source 

Port 
Direction Destination 

Address 
Destination 

Port 

hat we per  an al CP traffic cted 

as a wildcard to specify a “don’t care” value for a port or IP address. Now consider the example 

in Table 12: 

 

Table 12. Ru

alert udp any any <> $HOME_NET 0 
 

In this example, the “ ” operator is replaced by the “<>” operator. “ ” indicates that a rule 

applies only to traffic in a particular direction. The previous example in Table 11, for instance, 

does not apply to traffic originating from port 80 at IP address 136.142.42.14. The “<>” 

operator, however, indicates that a rule is applicable regardless of the directionality of the traffic 

flow. “$HOME_NET” is a Snort variable. In fact, any rule entry beginning with a “$” is a 
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variable. Variables can represent either a specific IP address or port, or a range of IP address or 

port. In this case, $HOME_NET refers to any IP address on the local network that Snort is 

monitoring. Therefore, the significance of the rule above is as follows: alert on any UDP traffic 

ge of supported IP addresses, much as one would by using a subnet mask. 

Consider Table 13: 

Table 13. Rule Header Example #3 

 
Rule 

Action 
PROTOCO

Address Port 
tination 

Address 
Destination 

Port 

that is destined for or being sent from port 0 on any internal IP address. 

Snort rules also support Classless Inter Domain Routing (CIDR). This makes it much 

easier to specify a ran

 

L Source Source Direction Des

alert ip  a any any 192.168.0.0/16 ny 
 

This rule alerts on any IP traffic destined for an IP address beginning with “192.168.” The 

to be 

 also provides an easy way of specifying ranges of ports, as in Table 14: 

Address Port Address Port 

number following the “/” character indicates the number of bits of the IP address that are 

considered, counting from the most significant bit. If, for instance, an IP packet were destined for 

“192.168.1.1,” an alert would be produced. 

Snort

 

Table 14. Rule Header Example #4 

 
Rule 

Action 
PROTOCOL Source Source Direction Destination Destination 

alert tcp $HOME_NET 21:23  any any 
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The rule above triggers on any l IP address that is from ports 

1 23. Certain rules apply only to traditio mon 

t 4”

The Snort rule body also contains options used to match packet header information. These 

options are known as the “non-payload” options and are summarized in Table 16. Consider the 

ex le 

 any any  any any (ack:0; seq:0; fragbits:M;) 

The options specified in this rule are separated in Table 15: 

 

 
Ru

Act
Prot s

traffic originating from an interna

2 , 22, or nally “privileged” ports, so it is not uncom

o see “:102  specified in a rule, which implies any port from 0 to 1024. 

ample ru below: 

alert tcp

Table 15. Snort Rule Header and Body Example #1 

le 
ion 

ocol Source Source Dir. Destination Destination ACK Seq Fragb
Address Port Address Port # # 

it

alert tcp M any any  any any 0 0 
 

Thi will 

num

t y 

semi-colon. 

4.1.2 Snort 

The Snort rule body contains another set of options known as “payload” options. Predictably, 

these are options that deal with matching packet payload data. These options are summarized in 

Table 17. 

s rule match a TCP packet with any source and destination in which the TCP ACK 

ber is 0, the TCP Sequence number is 0, and the More Fragments flag is set. The contents of 

he rule bod are always within parentheses, and each rule option is always terminated by a 

Packet Payload Rule Options 
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Ta s ble 16. Non-Payload Rule Option

 
Option Description 

fragoffset This option compares the fragment offset field of an IP packet with a specified numeric value. 

ttl This option compares the time-to-live field of an IP packet with a specified 
numeric value. 

tos This option compares the type of service field of an IP packet with a specified 
value. 

id his option compares ID field of an IP packet with a specified numeric value. T
ipopts his option checks to see if  been set. T  any specific IP options have

fragbits This option checks to see if certain fragmentation and reserve bits have been set in 
the IP header. 

dsize This option compares the size of the packet payload with a specified numeric 
value. 

flags This option checks to see if certain TCP flag bits have been set in the TCP header. 
flow This option is used in conjunction with a Snort preprocessor to add some 

information about the state of connection to a Snort rule. This implies some level 
of stateful analysis, and therefore the flow keyword is ignored for the purposes of 
this research. 

seq The options compares the TCP sequence number with a specified numeric value. 
ack This option compares the TCP acknowledge number with a specified numeric 

value. 
window This option compares the TCP window size with a specified numeric value. 

itype This option compares the type value of an ICMP packet with a specified numeric 
value. 

icode This option compares the code value of an ICMP packet with a specified numeric 
value. 

icmp_id This option compares the ICMP ID number with a specified numeric value. 
Icmp_seq This option compares the ICMP sequence number with a specified numeric value. 

rpc This option searches for particular information in SUNRPC CALL requests. This 
rule relies on a preprocessor, and will not be supported in this thesis. 

ip_proto This option looks for a particular value in the IP protocol field, such as those 
corresponding to ICMP, TCP, UDP, and others. 

sameip This option checks to see if the source IP address is the same as the destination IP 
address. 
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Tabl ions e 17. Payload Rule Opt

 
Option Description 
content 

content:“hello|00 00|hello” 
 
The content string above would match a binary string containing the ASCII 
representation of “hello” followed by sixteen 0’s, followed immediately by the 
ASCII representation of “hello” once again. The content keyword has several 
modifier keywords that can be used to make content matches more specific. Note 
that multiple content rules can be specified within a single Snort rule. 

The content keyword is the option that enables payload content matching. The 
content keyword precedes a string encapsulated in quotation marks, which is the 
content to be searched for in the payload. Not all data to be matched, however, can 
be nicely represented with ASCII characters. Everything else is specified in 
bytecode enclosed within pipe characters (|). For example: 
 

nocase This keyword modifies the content keyword and specifies that matches are to be 
case-insensitive. 

rawbytes This keyword modifies the content keyword and specifies that matches should 
ignore all changes to the payload performed by Snort preprocessors. Since 
preprocessing is not being considered in this thesis, the rawbytes keyword is 
ignored. 

depth This keyword modifies the content keyword and specifies the maximum depth for 
which Snort should continue looking for a content match. A depth value of five 
would tell Snort to look for the start of a content match only in the first five bytes 
of a payload. Depth may be specified from the start of the payload or from some 
offset. 

offset This keyword modifies the content keyword and specifies the minimum depth for 
which Snort should start looking for a content match. An offset of five would tell 
Snort to look for the start of a content match only after the first five bytes of a 
payload. 

distance This keyword modifies the content keyword and specifies the minimum depth for 
which Snort should continue looking for a content match relative to the end of the 
previous pattern match. The distance keyword is like the offset keyword, however 
it must be preceded by another content string. 

within This keyword makes sure at least N bytes are between pattern matches. It should 
be used in conjunction with the distance keyword. 

uricontent This keyword works the same as content, except only the URI section of a packet 
is searched as opposed to the entire payload. Snort uses a preprocessor to 
normalize the URI content before searching, however this work will not focus on 
performing normalization. 

isdataat This options verifies that data exists at a specified location, optionally relative to 
the end of a content match. 

pcre This option allows rules to be written using perl-compatible regular expressions. 
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Table 17 (continued) 

 
byte_test T n the payload, 

pares it to a specified value. The 
can be relative to the start of the 

payload or a previous content match. 

his option reads a set amount of data from a specified location i
converts it to its numerical equivalent, and com
location to get the data within the payload 

byte_jump This option is the same as byte_test, except instead of comparing the value read to 
another specified value, the value read is used to jump a relative amount within the 
payload. Th to account values found 
in the payload itself. 

is allows for relative pattern matches to take in
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Consider the example rule below: 

alert ip any any ffset:2; depth:3;) 

h s specified in this rule are separated in 

 

 
Ru

Act
Prot

 any any (content:“VIRUS”; o

T e option Table 18: 

Table 18. Snort Rule Header and Body Example #2 

le 
ion 

ocol Source 
Address 

Source
Port 

Dir. Dest. 
Address 

Dest. 
Port 

Content 
String 

Offset Depth

alert ip any any  any any “VIRUS” 2 3 
 

Th ill 

the string “VIRUS”. Specifically, the string must be begin in the third, fourth, or fifth byte of the 

payload. 

4. rt Post-Match Rule Options 

The only com he “rule action”. 

The  cur

log, , dyn

and analysis s

for future analysis. Alert indicates that a packet should be logged and that some form of alert 

 the rule match. Dynamic rules remain dormant until triggered 

is rule w match an IP packet with any source and destination in which the payload contains 

1.3 Sno

ponent of a Snort rule header that has not yet been described is t

re are rently five rule actions defined that can be specified as part of a Snort rule: pass, 

 alert amic, activate. Pass indicates that if a rule is matched, the packet should be ignored 

hould continue onto the next packet. Log specifies that a packet should be logged 

should be generated in response to 

on by an activate action. Activate rules behave like alert rules but have the additional ability to 

enable dynamic rules. This thesis focuses exclusively on alert rule types. 

There are two additional categories of Snort rule options not yet discussed. “Meta-data” 

options contain information about the rule, such as its origin and severity. “Post-detection” 

options provide detail about how the rule hit should be handled. These options are summarized in 

Table 19 and Table 20, respectively: 
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Table 19. Meta-data Rule Options 

 
Option Description 

msg This is the message that accompanies the alert that fires when the corresponding rule is matched. 

reference This identifies the source of additional information about the attack the rule 
addresses. 

sid The sid keyword is used to uniquely identify a Snort rule. It serves as the primary 
key for the rule. 

rev This keyword is used to specify the revision of a particular rule, and must be 
proceeded by an sid. 

classtype This defines the classification of the attack the rule addresses. Snort defines a 
default list of classtypes, each of which is assigned a priority. 

priority This assigns the rule an explicit priority. If a classtype is also present, the 
verridden. classtype’s default priority is o

 

Table 20. Post-detection Rule Options 

 
Option Description 
logto This option tells Snort to log the corresponding packet to a special output log file. 

session This option is used to extra data from user TCP sessions to a log. 
resp This option is used to attempt to close an open session when an alert is triggered. 
react This option allows for a flexible, customizable response to the appearance of a 

certain traffic type. 
tag This option allows rules to more than just the packet that matched the rule. Future 

packets with the same source or destination addresses are also logged to facilitate 
better post-attack analysis. 

 

4.1.4 Summary of Snort Rules 

Mapping Snort rules into content-addressable memory entries is not a trivial task. There are 

obviously quite a few Snort rule options to take into consideration. Because CAM entries are of a 

limited finite length, it is infeasible to attempt to encapsulate an entire Snort rule into a single 

CAM entry. The need arises to distinguish more than one type of search. As previously 

discussed, every option applies either to information found in the protocol headers of a packet, to 

formation found within a packet’s payload, or to a post-match response. Therefore, it is a in
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logical choice to from searches 

attempting to match payload content. This design decision is further reinforced by the nature of 

the ePAPP component, which classifies and outputs all of the header information before any 

payload data is produced. Post-match behavior will be left to post-processing of the CAM search 

results, so these options will not be considered in the CASMA architecture. 

For the purposes of this thesis, the Snort rules being evaluated for adaptation to the 

CASMA architecture are those that were supplied with Snort version 2.1.2. In total, this 

amounted to 1993 individual Snort rules. Figure 10 shows a breakdown of the number of times 

each rule option appears within the ruleset. 

 

separate searches dealing with packet header information 

Number of Occurances of Each Option in a 1,993-Rule Snort Rules
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Figure 10. Number of Occurrences of Each Option in the Entire 1,993-Rule Snort Ruleset 
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4.2 TERNARY CONTENT-ADDRESSABLE MEMORY 

The ever-increasing numbers of network attacks necessitate a corresponding rise in the number 

of intrusion detection rule signatures. Software-based and even specialized processor IDS 

solutions rely on sequential searching techniques, and therefore increases in the amount of rules 

to be searched adversely affect search times. Thus, an architecture that lends parallelism to the 

search process will achi erformance, but also a 

performance increase that will grow relative to future increases in the length of the ruleset. 

This is the motivation behind the use of content-addressable memory (CAMs) in the 

search architecture. CAMs are capable of accepting a search string as input and producing search 

results in a fixed amount of time that is irrespective of the number of CAM entries (confined, of 

course, to the maximum depth of the CAM component.) Specifically, this design uses a ternary 

content-addressable memory (tCAM) to perform signature matching. tCAMs have the added 

ability to specify mask bits for each individual CAM entry, indicating which of the entry’s bits 

are to be used in searching and which are “don’t care” values. A mask bit value of ‘0’ indicates a 

“don’t care,” while a value of ‘1’ indicates a bit that will be used for searching. Consider the 

following 8-bit example, where an ‘x’ represents a “don’t care” value in the string represented: 

CAM data entry: 0 1 0 1 0 1 0 1 

  Associated mask entry: 1 1 1 1 0 0 0 0

eve not only an immediate increase in search p

 

 Resulting string: 0 1 0 1 x x x x 

Thus, only the first four bits of the CAM entry are to be considered when performing a search. A 

search using search string “0 1 0 1 1 1 1 1” would result in a match, for instance, while a string 

such as “1 1 1 1 0 1 0 1” would not. 
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Figure 11 shows an example with a populated CAM. A search performed using the input 

shown would produce hits on addresses three and five. Remember that each entry is actually 

comprised of a data component and a mask component. 

 

Search String
0 0 1 1 0 1 1 1

0 1 1 0 x x x x

1 1 x x 1 1 x x

1 1 1 1 0 0 0 0

0 x x x 0 x x x

x x 0 0 0 0 x x

0 x 1 1 0 x 1 1

0 1 x x 1 0 1 x
.
.
.

0

1

2

3

4

5

6
.
.
.

Address 3, Address 5, . . .

C
A
M

Results

 

Figure 11. Example of a Search on a Populated CAM 

 

For the purposes of this specific design, the 9Mb Network Search Engine provided by 

Integrated Device Technologies is used as the tCAM component. Capable of operating at clock 

speeds up to 200 MHz, a single instance of the NSE can hold 16,384 576-bit entries. A single 

576-bit search that produces no result can be completed in 20 clock cycles. A single 576-bit 

search that produces hits requires 22 clock cycles, plus 8 additional cycles for every match found 

in the CAM. 
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4.3 PACKET HEADER SEARCHING 

 few c ts of a Snort rule that pertain to information found in the 

protocol s of a packe ecau

y can be addressed with is section demonstrates that all 

pa option ithi

 to s  for 

rt of a S  rule

par tifies t ourc

por being r renc affic flow. All of this 

informat exposed in p ocol lso dependent on 

info n protoco ead gbits, dsize, flags, seq, 

ack, window, itype, icode, icmp_id,

Table 2 zed by proto  hea rch CAM entry. 

Th hese fi  com re using a CAM entry 

width of 576 bits, and that 1 bit is used to indicate whether the CAM entry is a header search rule 

le, ther re: 

(576

Also, in order to facilitate th size  the payload. In 

the case of TCP, the payload size is equal to t inus the sum of the IP 

eader and TCP header lengths. In the case of UDP, the payload size is equal to the IP total 

length field minus the sum of the IP header and UDP header lengths. Assuming that the 

maximum packet size is 1500 bytes, the length of the maximum Ethernet frame, the payload size 

an be represented with 11 bits. Therefore: 

There are quite a omponen

 header t. B se packet headers are found in a static location within the 

 a single CAM search. Thpacket, the

cket header-related s w n a Snort rule can be encoded into a single CAM entry for 

that rule, with entry bits pare future rule expansion. 

The first pa nort , as discussed in Section 4.1, is the Snort rule header. This 

t of the rule iden he s e and destination IP addresses, the source and destination 

ts, the protocol efe ed, and the directionality of the tr

ion is rot headers. The following rule options are a

rmation found i l h ers: fragoffset, ttl, tos, id, ipopts, fra

 icmp_seq, ip_proto, and same_ip. Thus, the fields listed in 

1, organi col der type, must be included in a header sea

e widths of all of t elds bined totals 312 bits. Assuming we a

or a payload search ru e a

 – 1) – 312 = 263 unused bits 

e d  rule option, we must calculate the length of

he IP total length field m

h

c
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Table 21. Protocol Header Fields Incl ded in a Header Search CAM Entry 

 
Protocol Field Width  Description 

u

Field
(in bits) 

Ethernet Header 
Type 16 This is required to identify an IP packet. Other packet types 

that travel over Ethernet, such as ARP and RARP, should 
not trigger any Snort rules. 

IP Header 
Source IP Address 32 This is used to match against a source IP address specified 

in a rule. 
Destination IP Address 32 This is used to match against a destination IP address 

specified in a rule. 
Source Port 16 This is used to match against a source port specified in a 

rule. 
Destination Port 16 This is used to match against a destination port specified in 

a rule. 
Type of Service 8 This is used with the tos rule option 
Identification 16 This is used with the id rule option. 

Flags 3 This is used with the fragbits rule option. 
Fragment Offset 13 This is used with the fragoffset rule option. 
Time-To-Live 8 This is used with the ttl rule option. 

Protocol 8 This is used with the ip_proto rule option. This will also be 

that correspond to each respective protocol. 
used to match TCP, UDP, and ICMP packets with the rules 

Options 8 This is used with the ipopts rule option. 
TCP Header 

Sequence Number 32 le option. This is used with the seq ru
Acknowledge Number 32 This is used with the ack rule option. 

TCP Flags 8 This is used with the flags rule option. 
TCP Window Size 16 This is used with the window rule option. 

ICMP Header 
ICMP Type 8 This is used with the itype rule option. 
ICMP  Code 8 This is used with the icode rule option. 

ICMP ID 16 This is used with the icmp_id rule option. 
ICMP SEQ 16 This is used with the icmp_seq rule option. 
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263 – 11 = 252 unused bits 

If header searching were as simple as matching header field values extracted from a packet 

against values stored in CAM entry, there would be nothing left to do for header searching. 

Unfortunately, it is not that simple. Many of the Snort rule options support “greater than” (>), 

there ar

“less than” (<), and “not equal to” (!) operations. While tCAMs are excellent for performing 

exact matches, they offer no assistance with range checking or negation operations. We must 

instead use customized combinational logic to pre-compute all of the special rule cases that 

require a “>”, “<”, or “!” operation. Within the 1993 rules packaged with Snort version 2.1.2, 

there are 35 special cases that must be accounted for. Each can be represented by a 1-bit flag 

within the header search CAM entries. If the special case must be true to satisfy a rule, the 

header search CAM entry that corresponds to the rule will have a ‘1’ in the bit position that 

corresponds to the special case flag. Otherwise, the bit will be set to ‘0’. To accommodate these 

flags, 35 more bits of the CAM entry must be used: 

252 – 35 = 217 unused bits 

The remainder of these unused bits will be reserved for special case flags that will be added to 

accommodate future additions to the ruleset. 

It is worthwhile to note that there will be many rules with the same header search 

requirements, so the number of header search CAM entries will be significantly less than the 

total number of entries. Several rules require, for instance, only that the destination port be port 

80 for the rule to be applicable. Only one entry enforcing this requirement is necessary. Also, if 

e one or more rules that require a condition A, and one or more rules that require a 

condition B, there is no need to create a separate entry for a rule that requires conditions A and 
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B. Each of these conditions will be matched individually during a CAM search, and search 

results can be correlated by a post-processor to indicate a rule hit. 

 

4.4 PACKET PAYLOAD SEARCHING 

While h

ds are greater than 72 bytes, the maximum width of a 

CAM entry, there is no way to avoi oad searches. Fortunately, payload 

searching can begin as soon as the d to fill an entire search string, in 

many cases before the entire payload

The fact that a content string offset within a payload complicates 

the payload search issue and gives rise to an portant performance trade-off. Consider, for 

 would be to create a 

single CAM entry “HELLOxxxxx” where ‘x’ indicates

searched at every byte offset. With this method, a payload of length n would require n searches. 

“xHELLOxxxx”, “xxHELLOxxx”, “xxxHELLOxx”, “xxxxHELLOx”, and “xxxxxHELLO”. 

Using this method, the payload would only have to be searched at every six-byte offset as 

eader searches attempt to find a match for information that spans several fields of several 

protocol headers, payload searches pertain to a single field: the packet payload. And while a 

packet’s header information can be checked for matches with a single search, many payloads 

will require a number of separate CAM searches to ensure an exhaustive search for content 

matches. This is because a content string that matches a rule can be found at any byte offset 

within a payload. Considering many payloa

d performing multiple payl

re is enough data buffere

 has been buffered. 

 can be found at any byte 

im

example, the content string “HELLO”. For the purposes of this example, assume that the width 

of a CAM entry is 10 bytes. One solution to the payload search problem

 a “don’t care” value. The payload could 

be searched 10 bytes at a time, shifting one byte after every search until the payload had been 

Another solution would be to create six different CAM entries: “HELLOxxxxx”, 
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opposed t of length 

. Clearly, the second method is m ore effici e – there is a six-fold 

d red s of s  ther

in the num r of CAM entries requ d. A balance must be chosen which combines a reasonable 

amount of search time with acceptable space requirements. 

Consider, now, that CAM entries are 72 bytes wide. Two of the 72 bytes are reserved for 

offset and depth information (explained later). This leaves 70 bytes with which to encode content 

match strings. Assume that payloads are searched at 8-byte offsets. This means that each content 

string would necessitate eight CAM entries, with the content string appearing zero bytes to seven 

bytes deep in the entry, respectively. Consider once again the content string “HELLO”. The 

following CAM entries would be required: 

“HELLOxxxxxxxx . . . “ 
“xHELLOxxxxxxx . . .” 
“xxHELLOxxxxxx . . .” 
“xxxHELLOxxxxx . . .” 
“xxxxHELLOxxxx . . .” 
“xxxxxHELLOxxx . . .” 
“xxxxxxHELLOxx . . .” 
“xxxxxxxHELLOx . . .” 

 
In the worst case, the content string begins seven bytes deep into the CAM entry. Therefore, a 

single CAM entry can support a content string of maximum length: 

70 – 7 = 63 bytes 

able 22 shows a relationship between the length of the payload (n), the number of payload 

content strings requiring CAM entries (c), and the number of resulting CAM entries for a shift 

amount of s bytes. This relationship is graphically represented in Figure 12. 

o every byte offset. Only (n-1)/6 + 1 searches would be required by a payload 

n uch m

 for searching. In term

ent in terms of tim

ecrease in time requi pace, however, e is a six-fold increase 

be ire

T
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Table 22. Effects on Time and Space Requirement for Varying Payload Shift Amounts 

 
Shift Amount 

Between Searches, s 
# of Searches 

Required for Payload 
# of Resulting 
CAM Entries 

Maximum Supported
Content String Length

(in Bytes) ((n-1)/s + 1) (70 – (s-1)) 
1 n c 70 
2 ((n-1)/2 + 1) 2c 69 
4 ((n-1)/4 + 1) 4c 67 
8 ((n-1)/8 + 1) 8c 63 
35 ((n-1)/35 + 1) 35c 36 
70 ((n-1)/70 + 1) 70c 1 
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Figure 12. Shift Amount Between Searches vs. CAM Entries Required 
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Of the 1742 content and 873 uricontent strings specified by the Snort ruleset being used, 

only three strings are longer than 63 bytes. The ability to fit entire content strings in a single 

CAM entry reduces the amount of result correlation that must be performed by a post-processor, 

as well as limits the number of false positive CAM matches. This is the justification behind the 

design

le. For instance, consider a rule where the strings “HELLO” 

and “GOODBY ther. Encoding 

ngs within a Snort rule are related through a content modifier 

keywo

body example: 

(content:“HELLO”; content:“GOODBYE”; within:5;) 

This rule states that a paylo and “GOODBYE”, and that 

“GOODBYE” must start e end of “HELLO”. To 

 decision to search payload data at 8-byte offsets. 

Some Snort rules contain several content strings. (Note that from this point forward, the 

term “content string” will be used interchangeably to refer strings found after a content or 

uricontent keyword within a Snort rule. The methodology to handle each keyword type is 

identical.) In the case where the relative positions of the strings within the payload are unrelated, 

each is regarded as a separate sub-ru

E” must both be present, but with no particular relation to one ano

this into a single CAM rule would be quite infeasible, considering that a unique CAM entry 

would be required for each possible spacing of the strings within a payload. Furthermore, this 

method would not work if the strings appeared more than the width of a CAM entry apart. 

Instead, each unrelated content string is regarded as a separate sub-rule. Post-processing can be 

used to correlate search results on related sub-rules. 

In some cases, content stri

rd, such as distance, or within. In this case, all of the content strings that are related in 

some way must be considered in the same CAM rule, since the spacing between the strings 

within a payload is critical to discerning a rule hit. Consider the following rule 

ad must contain “HELLO” 

within five characters (bytes) of th
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accommodate this rule, five new content strings can be developed to represent these 

requirements: “HELLOGOODBYE”, “HELLOxGOODBYE”, “HELLOxxGOODBYE”, 

“HELLOxxxGOODBYE”, “HELLOxxxxGOODBYE”. Obviously, as the within value becomes 

larger, more CAM entries will be required. Consider this example: 

(content:“HELLO”; content:“GOODBYE”; within:5; content:“HOWDY”; within:5;) 

This rule contains three content strings related to one another in a chain. To allow for all possible 

combinations within a payload, 25 contents strings must be considered in the CAM, ranging 

from “ “HELLOxxxxGOODBYExxxxHOWDY”. Remember, 

also, that each content string s to account for every byte-

care” values be added after the “HELLO” string. The following 

content strings would result: “HELLOxxGOODBYE”, “HELLOxxxGOODBYE”, 

“HELLOxxxxGOODBYE”, “HELLOxxxxxGOODBYE”, “HELLOxxxxxxGOODBYE”. The 

distance keyword mandates a minim  of a content match from which to 

search for the next content string. 

None of the examples consi ed a restriction upon where in the 

payload a content string or group of ust be found. The depth and offset 

Snort rule options do exactly that, however. Consider the following examples: 

(content:“HELLO”; depth:4;) 

(content:“HELLO”; offset:3; depth:4;) 

HELLOGOODBYEHOWDY” to 

 will result in eight separate CAM entrie

offset. Now consider this example: 

(content:“HELLO”; content:“GOODBYE”; distance:2; within:5;) 

This is virtually the same as the first example considered, except that the distance keyword 

requires that two extra “don’t 

um offset from the end

dered thus far have plac

 related content strings m

(content:“HELLO”; offset:3;) 
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In the first example, a match is on nd beyond the first three bytes of 

 some way of indicating the current depth of the payload information being 

searche

epth:4;) 

One ca

“HELLOxxxxxxxx . . . “ 

“xxHELLOxxxxxx . . .” 

“xxxxxxHELLOxx . . .” 

“xxxxxxxHELLOx . . .” 

IJ . . .”, the first payload search would search 

the following string: 

HIJ. . .” 

The second payload search would use this string: 

ly valid if “HELLO” is fou

the payload. In the second example, a match is only valid if “HELLO” is found within the first 

four bytes of payload. In the third example, “HELLO” must be found within the four bytes 

following the first three bytes (bytes four through seven). When a payload search is performed, 

there must be

d. There must also be some way of indicating within a CAM rule entry at which payload 

depths the rule applies. 

Consider the following example: 

(content:“HELLO”; offset:10; d

n extract from the rule that “HELLO” must be found within bytes 11 to 14. It is also 

known that eight payload byte offsets are checked every payload search. Therefore, we know 

that bytes 11 through 14 would be checked during the second payload search. Our CAM entries 

for this rule are the following: 

“xHELLOxxxxxxx . . .” 

“xxxHELLOxxxxx . . .” 

“xxxxHELLOxxxx . . .” 

“xxxxxHELLOxxx . . .” 

 

 If our payload were “HELLOABCDEHELLOFGH

“HELLOABCDEHELLOFG
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“DEHELLOKLMNO . . .” 

One can see that there would be a match during each payload search. According to the content 

rule, however, only the second match should be valid. By specifying during which payload 

searches a CAM entry is valid based on the current search depth, we can achieve this 

functionality. 

This paper proposes a one-hot encoding scheme to indicate search depth within a CAM 

rule entry. Fifteen bits of a CAM entry are employed, the least significant of which corresponds 

to the f

d in the CAM bit that corresponds to that depth. If the content string is not 

valid at a given depth, a ‘0 it position. In the example 

When a payload sear rrent 8-byte offset) 

are appended to 15 b  and 1 bit set to ‘1’ 

to indicate that the p ad search iteration, 

the 15 encoded bits would be: 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

For the fifth search iteration, the 15 bits would be: 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

For search iterations 15 and above, the 15 bits would be: 

irst payload search iteration, the most significant of which corresponds to search iterations 

15 or greater. These bits will be referred to as “depth bits”. 

If the content string in a CAM rule is valid at a certain payload search depth, a “don’t 

care” value is place

’ value is placed in the corresponding b

above, matches are valid only during the second payload search iteration, so the 15 depth bits 

would be set as follows: 

0 0 0 0 0 0 0 0 0 0 0 0 0 x 0 

ch is performed, 70 bytes of payload (beginning at the cu

its that are one-hot encoded to indicate the current depth

resent search type is payload search. For the first paylo
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1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

When a CAM search is performed, the 15 bits that indicate the current search iteration are 

compared against the depth bits specified in the CAM entry. If the bit indicating the search depth 

lines up with a “don  match is found. If, 

however, the bit indi icates that a content 

match is not valid a rdless of a content 

match. 

Recall that each content string derived from a Snort rule requires eight CAM entries, each 

beginning at a different byte-offset. The fact that one of these offsets is valid for a certain search 

iteration not does guarantee that all of them are valid for the same iteration. Consider again our 

previous example: 

(content:“HELLO”; offset:10; depth:4;) 

A content match is only valid if “HELLO” is found beginning at bytes 11 through 14. Below are 

the eight content string offsets and their corresponding depth bit values: 

“HELLOxxxxxxxx . . .”  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

“xxHELLOxxxxxx . . .”  0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

“xxxxHELLOxxxx . . .”  0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 

“xxxxxxHELLOxx . . .”  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
“xxxxxxxHELLOx . . .”  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
Four of the eight values are actually never valid and for optimization purposes can be left out of 

the CAM completely. Consider another example: 

’t care” value, then the CAM entry is valid if a content

cating the search depth lines up with a ‘0’ value, this ind

t this depth and a CAM hit will not be produced rega

“xHELLOxxxxxxx . . .”  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

“xxxHELLOxxxxx . . .”  0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

“xxxxxHELLOxxx . . .”  0 

(content:“HELLO”; offset:10; depth:26;) 
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In this case, the depth at which a match is valid spans several search iterations, so all of the 

content string offsets will be valid. Below are the eight offsets and their corresponding depth bit 

values: 

“HELLOxxxxxxxx . . .”  0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 

“xxHELLOxxxxxx . . .”  0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 

“xxxxHELLOxxxx . . .”  0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 

“xxxxxxHELLOxx . . .”  0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 

“xHELLOxxxxxxx . . .”  0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 

“xxxHELLOxxxxx . . .”  0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 

“xxxxxHELLOxxx . . .”  0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 

“xxxxxxxHELLOx . . .”  0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 
 

Because 15 bits are employed for this scheme and because each payload search employs an 8-

byte offset, o ll that if an 

offset and a depth value are specified, the sum of these values must be less than 140. 

When the distance keyword when not used in conjunction with within, it is difficult to 

encode in a CAM entry. The distance keyword works the same as offset, but begins counting 

from the end of a previous content match, which is unknown ahead of time. Content strings 

related only by the distance keyword should be treated as separate content strings. By passing the 

current search iteration value to the post-processor that is performing result correlation, it can be 

determined how deep into a packet a match occurred and, more importantly, whether one match 

occurred at an appropriate distance from another. 

 

Thi es 

are 576 bits (72 bytes) wide, and will be displayed in eight rows of 72 bits each. Header 

info ce 

ffset and depth values of less than 8 * 15, or 140, can be encoded. Reca

4.5 SNORT RULE ENCODING EXAMPLES 

s section will demonstrate some sample encodings of representative Snort rules. CAM entri

rmation will be encoded in the following order: source address, destination address, sour
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port, destination port, type of service, identifica on, IP flags, fragmentation offset, time-to-live, 

protocol, IP options, TCP sequence number, TCP ACK number, TCP flags, TCP window size, 

ICM nd 

spe ry 

“do he 

CA st 

t 8,233.0.0.0/8,239.0.0.0/8] any (msg:"BAD-TRAFFIC syn to 
multicast address"; flags:S+; classtype:bad-unknown; sid:1431; rev:6;) 

 

This rule is triggered when packets with the SYN flag set are sent to multicast addresses. The 

rule contains no content or uricontent keywords, so no payload search CAM entries will be 

necessary. Three header rules will be necessary, however, one for each of the three destination 

address subnets specified. Four pieces of information must be encoded into each header rule: 

• The Ethernet type must be set to IP. 

• The IP protocol field must be set to TCP. 

• The destination IP address must be specified. 

• The TCP SYN flag must be set as on. 

The following is the header search CAM entry for source IP address 232.0.0.0/8: 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx0 

ti

P type, ICMP code, ICMP id, ICMP sequence number, Ethernet type, payload size, a

cial-case flags. Each CAM entry is shown with its corresponding mask entry. CAM ent

n’t care” values will be annotated with an ‘x’ character, but must actually be entered into t

M as a ‘1’ or ‘0’. The last bit of a header search CAM entry is always set to ‘0’, and the la

bit of a payload search CAM entry is always set to ‘1’, to differentiate the search types. 

4.5.1 Snort Rule Example #1 

aler  tcp any any -> [232.0.0.0/

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx11101000xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
00000110xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxx1xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxx0000100000000000xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
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The corresponding mask entry is: 

000000000000000000000000000000000000000000000000000000000000000000000001 

The other two required header search CAM entries would be identical, except for the change in 

the destination IP address part of the entry. 

4.5

Thi nd 

ssible malicious file. The rule will require one header search 

CA s. 

Thr

• The destination port must be specified. 

The following is the header search CAM entry: 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

00010001xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

xxxxxxxx0000100000000000xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

 

000000000000000000000000000000001111111100000000000000000000000000000000 
000000000000000000000000000000000000000000000000000000000000000000000000 
111111110000000000000000000000000000000000000000000000000000000000000000 
000000000000001000000000000000000000000000000000000000000000000000000000 
000000001111111111111111000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000000000000000000000000000 

 

.2 Snort Rule Example #2 

alert udp any any -> any 69 (msg:"TFTP GET nc.exe"; content: "|0001|"; offset:0; depth:2; 
content:"nc.exe"; offset:2; classtype:successful-admin; sid:1441; rev:2;) 

 
s Snort rule pertains to Trivial FTP traffic, and triggers when filename “nc.exe” is fou

within the payload, indicating a po

M entry and payload search CAM entries corresponding to two unrelated content string

ee pieces of information must be encoded into the header search CAM entry:  

• The Ethernet type must be set to IP. 

• The IP protocol field must be set to UDP. 

xxxxxxxx0000000001000101xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

xxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx0 
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The

111111110000000000000000000000000000000000000000000000000000000000000000 
00000000000000000000000000000000000000000000000 

000000001111111111111111000000000000000000000000000000000000000000000000 

 
The o 

CA  

xxxxxxxx0000000000000001xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx00000000000000x1 

000000000000000000000000000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000000000000000000 
00 

000000000000000000000000000000000000000000000000000000000011111111111101 
 

The second content string, "nc.exe", can be matched anywhere after the second byte of the 

payload. Eight CAM entries are required to represent this rule, the first of which is shown below 

(note that “011011100110001100101110011001010111100001100101” is the binary equivalent 

of “nc.exe”): 

011011100110001100101110011001010111100001100101xxxxxxxxxxxxxxxxxxxxxxxx 
x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

 corresponding mask entry is: 

000000000000000000000000000000000000000000000000000000000000000000000000 
000000001111111111111111000000000000000000000000000000000000000000000000 

0000000000000000000000000

000000000000000000000000000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000000000000000000000000001 

 first content string, "|0001|", must be found within the first two bytes of payload. Only tw

M entries will be necessary to represent this rule. The second of these two entries is shown:

xx xxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

The corresponding mask entry is: 

000000001111111111111111000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000000000000000000 

0000000000000000000000000000000000000000000000000000000000000000000000

xx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx xxxxxxxxxxxxxxxxxxxxxxxxxx
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xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

xxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx01 

The

000000000000000000000000000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000000000000000000000000000 

      000000000000000000000000000000000000000000000000000000000000000000000011 

4.5.3 Snort Rule Example #3 

aler  ff 
f

 

Thi en 

etected. The rule will require two header search CAM entries and payload search CAM entries 

corresponding to two related content strings. Two header search CAM entries are required 

because the rule is bi-directional, and therefore the source and destination addresses must be 

swapped. Five pieces of information must be encoded into the header search CAM entry:  

• The Ethernet type must be set to IP. 

le 

to 

ort must be set. 

 
 corresponding mask entry is: 

111111111111111111111111111111111111111111111111000000000000000000000000 
000000000000000000000000000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000000000000000000000000000 

t tcp any any <> $HOME_NET 179 (msg:"MISC BGP invalid type (0)"; content:"|ff ff ff ff
f ff ff ff ff ff ff ff ff ff ff|"; offset:0; depth:16; content:"|00|"; distance:2; within:1; dsize:>1; 

classtype:bad-unknown; sid:2159; rev:4;) 

s rule triggers when a Border Gateway Protocol (BGP) packet with an invalid type has be

d

• The IP protocol field must be set to TCP. 

• The source or destination address must be specified. In this case, a variab

($HOME_NET) is used, which for the purposes of this example corresponds 

123.123.0.0/16. 

• The source or destination p

• The “dsize>1” flag must be set. 
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The ce 

add

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
x 0xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx1xxxxxxxxxxxx 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx0 

 

The corresponding mask entry is: 

111111111111111100000000000000000000000000000000000000000000000011111111 

111111110000000000000000000000000000000000000000000000000000000000000000 

000000001111111111111111000000000000000000000000000000000001000000000000 

000000000000000000000000000000000000000000000000000000000000000000000000 

 

on of a distance vale of 2 and a within value of 1 simply means that 

the con

xxxxxxxxxxxxxxxxxxxxx1111111111111111 
111111111111111111111111111111111111111111111111111111111111111111111111 
1111111111111111111111111111111111111111xxxxxxxxxxxxxxxx00000000xxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

000000000000000000000000000000000000000000000000000000001111111111111111 

 following is the header search CAM entry which corresponds to $HOME_NET as the sour

ress: 

0111101101111011xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx00000000 
10110011xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
00000110xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

xx xxxxx000000001000000

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

 

111111110000000000000000000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000000000000000000 

000000000000000000000000000000000000000000000000000000000000000000000001 

Despite the apparent complexity of this rule, only content search string must be converted to 

CAM entries. The combinati

tent string must begin exactly three bytes after the other the other match ends. Eight CAM 

entries are needed to represent this rule, and the last of the eight is shown: 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx0000000000000xx1 
 
The corresponding mask entry is: 
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111111111111111111111111111111111111111111111111111111111111111111111111 

00000000000000000
111111111111111111111111111111111111111100000000000000001111111100000000 

0000000000000000000000000000000000000000000000000000000 
000000000000000000000000000000000000000000000000000000000000000000000000 
000
000000000000000000000000000000000000000000000000000000000000000000000000 

 the scope of this thesis. The nocase 

ption would require pipelined case-conversion of the payload. This work has already been 

accomplished elsewhere and is not addressed in this paper. The isdataat option cannot be 

performed within ing whether the 

ata being input for a search is valid. The byte_test and byte_jump function based on values read 

. These rules are unpredictably dynamic and do not feasibly port to 

ternary content-addressable memory 

entries.

4.6 THE CASMA ARCHITECTURE 

000000000000000000000000000000000000000000000000000000000000000000000 

      000000000000000000000000000000000000000000000000000000001111111111111001 

4.5.4 Snort Rule Exceptions 

There are a few Snort rule options that are not compatible with the suggested architecture. The 

flow option requires stateful processing which is beyond

o

a CAM, since content-addressable memory has way of know

d

from within the payload itself

CAM entries. Finally, the pcre option supports perl-compatible regular expressions. These 

expressions do not convert well to static CAM entries, and therefore the pcre option is not 

implemented in this design. 

Of the entire 1993-rule Snort ruleset packaged with Snort version 2.1.2, the architecture 

presented is capable of encoding 1729 of the rules into 

 Thus, 86.8% of the rule are supported. 

 

This section describes the actual architecture used to prove the validity of the methodologies 

discussed earlier in this chapter. The 9Mb Network Search Engine provided by Integrated Device 

Technologies is used as the tCAM component. This device has the capacity to support 16,348 
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addressable entries, each of which supports a 576 bit (72 byte) data component and a 576-bit (72 

byte) mask component. 

 Figure 13 recaps the position of the CASMA architecture within the pipelined switch 

architecture presented by this thesis. CASMA accepts packet data parsed into protocol fields 

from ePAPP and uses this data to perform stateless intrusion detection signature-matching, the 

results of which are passed to an upstream processor. Thus, the processor is relieved of the 

resource-consuming task of performing pattern matching. 

 

PHY ePAPP
Unclassifed
Byte Stream

CASMA

Classif ied
Packet Info

Signature
Match Info

Upstream
Processing

Netw ork
Cable

Network Switch

CAM

 

Figure 13. Position of CASMA in the Presented Switch Architecture 

 

4.6.1 CASMA Data Flow 

Data arrives to CASMA from the preceding ePAPP component in the form of a FieldData input, 

machine (FSM), to initiate a packet header CAM search. Because the width of the tCAM 

a FieldType input, and a Valid input. FieldData is a 32-bit bus that delivers chunks of packet 

data, separated into individual packet fields. FieldType is an 8-bit bus that concurrently identifies 

the type of packet field being delivered by FieldData. The Valid input is high whenever the data 

on the FieldData bus is a properly offset valid packet field. 

Data on the FieldData bus that is identified as a packet header field by FieldType is 

stored in the Packet Header Register. Once all header information for a packet has been received 

from ePAPP, the HeaderReady signal is asserted. This alerts the Controller, a finite state 
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component being used is 576 bits, this must also be the length of the search string passed from 

the Controller to the tCAM. The packet header search string is assembled with information from 

the Packet Header Register as specifically described in Section 4.5. Extra search string bits that 

acket 

ayload search. As payload data is received a byte at a time, it is stored in a byte-wide FIFO. The 

depth of the FIFO must be such that the maximum payload size can be accommodated, in this 

case 1472 bytes. This is derived by subtracting the minimum IP header size (20 bytes) and the 

minimum UDP header size (8 bytes) from the maximum Ethernet frame size (1500 bytes). 

 The output of the FIFO is connected to a chain of 70 1-byte registers. There is also a 

single valid bit corresponding to each register that specifies whether or not the register contains 

valid payload data. On each cycle, the valid bit of the register farthest from the FIFO is checked. 

If it is set to ‘0’, a byte is read out of the FIFO into the first register, and all other registers and 

valid bits shift their values to the next register. This is done until the valid bit of the last register

is set to  data is 

passed to the Controller to be used as the data part of the packet payload search string. 

 After each payload search iteration, the entire payload must be shifted eight bytes. This is 

achieved by clearing the valid bits associated with the last eight registers in the payload register 

chain. This requires eight FIFO reads to repopulate eight invalidated bytes, and thus an eight-

byte shift results. 

are currently unused are padded with zeros. The Controller passes the search string to the tCAM 

in eight consecutive 72-bit chunks. The final bit of the final chunk is always set to ‘0’ to indicate 

that the search string contains header information. 

 While a packet header search is occurring, CASMA continues to receive data from 

ePAPP. This remaining data is payload data and must be buffered for future use in a p

p

 

‘1’, indicating that 70 bytes of valid data have been retrieved from the FIFO. This
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 Two counters are kept to keep track of the payload buffering status. Both counters begin 

counting when the first byte of payload data is received. The first counter is initialized to the 

length of the payload and counts down. When it reaches zero, payload buffering is complete and 

will not occur again until a new packet payload arrives from ePAPP. The second counter counts 

up from zero and triggers the PayloadReady signal when enough bytes have been buffered to 

egin performing packet payload searches. 

 An internal “Remaining” signal is kept which is initialized to the length of the payload. 

Each time the payload is sh emaining. If Remaining is 

reater than one, the SearchAgain signal is set to ‘1’. When Remaining dips below zero, 

SearchA

b

ifted eight bytes, eight is subtracted from R

g

gain is set to ‘0’ to indicate that no more searches need to be performed on the current 

payload. Figure 14 is a visual overview of the internal design of the CASMA architecture. 
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Figure 14. Internal Circuit Design of the CAM-Assisted Signature-Matching Architecture 

 

The flow of the Controller state machine is shown in Figure 15. Each of the super-states 

shown contains a sub-hierarchy that performs the tasks associated with the super-state label. The 
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Controller remains dormant until the header information of the first packet received has been 

completely buffered. When this occurs, the PacketReady signal is asserted and the header search 

begins. If the search results in a match (HitAck=’1’), the Controller proceeds to the “Scroll” 

state. The state machine within the hierarchical Scroll state will continue to output search 

matches until there are no more to report (MatchOut=’0’). If a packet header search produces no 

hits, the Controller moves from “Header Search” to “Extra Cycles”. This is because a tCAM 

search that produces no results requires a few extra cycles before it is able to perform a 

subsequent search. 
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Payload
Search

Ex
C

tra
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Figure 15. Flo  State Machine 

75 



 

Regardless of whether a packet header search completes in the Extra Cycles or Scroll 

state, the same con pply to initiate packet payload searching: PacketReady must 

equal ‘1’. This indicates that enough payload information has been buffered to start a packet 

payload search. The “Payload Search” super-state works virtually the same as Header Search. 

The primary difference is that while only one header search can be performed per packet, 

multiple payload searches can be performed back to back. This is controlled by the 

“SearchAgain” signal. If SearchAgain is equal to ‘1’ at the conclusion of a packet payload 

search, the Controller returns to the Payload Search super-state and initiates a new CAM search. 

4.6.2 CASMA Timing 

This section discusses the timing and output that results for two consecutive search scenarios. 

These examples assume that the tCAM has been pre-loaded with the example rules discussed in 

Section 4.5. In total, mapping these three Snort rules to the tCAM required 24 tCAM entries and 

corresponding mask entries. Six of these entries are used for packet header searching, while the 

other 18 contain payload content strings to be matched. 

 To demonstrate the flow and associated timing of the CASMA architecture as it accepts 

packet data and performs CAM searching, two packets are sequentially passed to CASMA from 

ePAPP, and critical pieces of their simulation outputs are shown. The first packet is an example 

of benign network traffic, which should comprise a majority of the packets that pass through a 

switch on typical network. The second packet is a specially constructed malicious packet that 

matches all or part of each of the three rules. 

Table 23 shows the relevant fields of the first packet that is being classified by the ePAPP unit

and passed to CASMA 03 bytes long. Since 

PAPP produces packet data at a rate of 1 byte/cycle, it will take 103 clock cycles for CASMA 

dition must a

 

.  The packet, including the Ethernet preamble, is 1

e
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to buff

 

er the entire packet. This packet represents typical port 80 HTTP traffic and should not 

trigger any of the rules in the CAM and therefore will demonstrate minimal search times. 

 

Table 23. Test Packet #1 

Field Type Value 
Ethernet Type 0x0800 (IP) 

IP Header Length 8 (in 32-bit words) 
IP Type of Service 0x00 

IP Total Length 77 bytes 
Identification 0xA28A 

IP Flags None 
IP Offset 0 

IP Time-to-Live 0x80 
Protocol 0x06 (TCP) 

Source IP Address 136.142.42.14 
Destination IP Address 64.233.161.99 

IP Options None 
TCP Source Port 80 

TCP Destination Port 80 
TCP Sequence Number 0x41DA6AEE 

TCP Acknowledge Number 0xBBB59568 
TCP Header Length 5 (in 32-bit words) 

TCP Flags SYN 
TCP Window Size 30 

TCP Data (Payload) “|01 02 03 04 05 06 07|Index of /cgi-bin/” 
Payload Size 25 bytes 

 

 Consider that the cycle in which the first byte of a packet is received from ePAPP is cycle 

0. It takes 74 cycles to read in all of the packet header information, which means that packe

payload information begins arriving in cycl

t 

e 74. Subsequently, since the entire packet header has 

been registered, packet header searching begins in cycle 75. Figure 16 shows the packet header 

search beginning. Note that the CAMStrobe signal goes high for one cycle, indicating that the 

first of eight 72-bit chunks of the search string is on CAMDataBus. The other seven chunks are 

laced on CAMDataBus over the next seven cycles. Note that CAMStrobe goes high one cycle p
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after FieldType changes to “2C”, indicating that the payload is now being received and all packet 

header information has been registered. Eight cycles after the final piece of the search string is 

placed on CAMDataBus, SearchValid goes high for two cycles. When this signal goes high but 

SearchHit does not, it indicates that a search has completed successfully but returned no results. 

 

 

Figure 16. Header Searching Beginning for Test Packet #1 

 

Thus, it takes eight cycles to feed the search data to the CAM, and eight cycles more to 

return a result. The SearchValid signal goes high for cycles 90 and 91. When a search returns no 

results, subsequent searches may not begin until 20 cycles after the first search began. Since the 

first search began at cycle 74, another CAM search could not begin until cycle 94.  

At cycle 94, however, 70 bytes of payload have not yet been buffered, so payload 

searching is not ready to begin. Payload searching does not begin, in fact, until cycle 147. This is 

a current weakness of the design, that a short payload such as the one in the first test packet mus

still wait 70 cycles before payload searching can begin, even though it takes much less time than 

that to buffer the entire payload. 

t 
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Figure 17 shows the beginning of a packet payload search. Again, the CAMStrobe signal 

goes high for a cycle and data is placed on CAMDataBus for eight consecutive cycles. Although 

ed for one cycle to indicate that 

e payload should be shifted eight bytes to prepare for the next search iteration. Several cycles 

later ShiftCount is increased to reflec . Again, it takes eight cycles to feed 

e search CAM and another eight before results played, so SearchValid goes 

high for cycles 163 and 164. A new search can begin at cycle 167, and indeed does, as there are 

more payload search iterations to perform. 

 

not pictured, one can assume that the PacketReady signal has been asserted to allow the payload 

search to start. Note that the cycle after the payload search begins, SearchType changes from ‘0’ 

to ‘1’ to indicate that a packet payload search is taking place. Also, after the eight chunks of 

search string have been fed to the tCAM, ShiftPayload is assert

th

t the shift in the payload

th string to the  are dis

 

Figure 17. P

 
ayload Searching Beginning for Test Packet #1 

In total, four iterations of payload searching are needed for this packet. Figure 18 shows 

the final search iteration of the packet payload. Observe that the SearchAgain signal goes low 

one cycle after the last piece of the search string has been placed on CAMDataBus. At the far 
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right of the waveform, one can observe that the FieldType changes to “00”, which indicates that 

a new packet is incoming from the ePAPP. The final search iteration begins at cycle 207, and 

thus payload searching is complete and the CAM is ready to perform a new search 20 cycles 

rching of every packet. Again, this number could be lowered significantly 

y not requiring 70 cycles to buffer a payload that is much shorter than 70 bytes. 

 

later (cycle 227). Packet header searching began at cycle 75, and therefore it took 152 cycles 

from the beginning of the first packet header search to the end of the final packet payload search. 

As discussed previously, the packet was 103 bytes in total length and would require 103 cycles 

to be received from ePAPP. Thus, for this packet, 49 cycles would be required between packet 

arrivals to sustain sea

b

 

Figure 18. Payload Searching Concluding for Test Packet #1 

 

Table 24 shows the relevant fields of the next packet that is being classified by the 

ePAPP unit and passed to CASMA. This packet is chock full of suspicious content and should 

match against several header and payload rules. Note that this packet has been specially crafted 

to match against several rules and may not make much sense as an actual network packet. 
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 This packet will match Snort rule example #1, as described in Section 4.5.1. This is 

because the packet is of protocol type TCP, the SYN flag is set, and the destination IP address 

falls with the subnet 239.0.0.0/8. onent to the first rule example, a 

Table 24. Test Packet #2 

 
Field Type Value 

Since there is payload comp

header search match is enough to declare an entire rule match. 

 

Ethernet Type 0x0800 (IP) 
IP Header Length 8 (in 32-bit words) 
IP Type of Service 0x00 

IP Total Length 79 bytes 
Identification 0xA28A 

IP Flags None 
IP Offset 0 

IP Time-to-Live 0x80 
Protocol 0x06 (TCP) 

Source IP Address 123.123.16.8 
Destination IP Address 239.24.16.8 

IP Options None 
TCP Source Port 179 

TCP Destination Port 80 
TCP Sequence Number 0x41DA6AEE 

TCP Acknowledge Number 0xBBB59568 
TCP Header Length 5 (in 32-bit words) 

TCP Flags SYN 
TCP Window Size 30 

TCP Data (Payload) “|00 01 ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff 00 00 00|nc.exe” 
Payload Size 27 bytes 

 

This packet will also match Snort rule example #3, as described in Section 4.5.3. The 

header search will return a match because the packet is of protocol type TCP, the payload size 

(dsize) is greater than 1, the source port is 179, and the source IP address falls with the 

123.123.0.0/16 subnet defined as $HOME_NET. The example rule also has two distance related 
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payload content strings, both of which are found at acceptable depths within the payload of test 

packet #2. 

Snort rule example #2, as described in Section 4.5.2, is a little more interesting. The 

header 

 

part of the rule does not match against the test packet, however both of the content strings 

specified by the rule are found in the packet payload. These are examples of CAM search hits 

that would have to be thrown out when they could not be correlated to a header search hit by an 

upstream processor. 

 

 

Figure 19. Header Searching Beginning for Test Packet #2 

e same time, CAMStrobe goes high for a cycle 

and a “scroll” instruction is sent to the tCAM to check for additional search hits. A new scroll 

 
Figure 19 shows the next packet header search beginning. Again, we will consider cycle 

0 to be the cycle in which the first byte of the packet arrives from ePAPP. This packet is two 

bytes longer than the first test packet, so the packet will require 105 cycles to be buffered. As in 

the previous example, the search begins a cycle after FieldType changes to “2C”, which is once 

again cycle 75. SearchType reverts to ‘0’ to indicate a header search. This time around, the 

packet header search produces two hits. The first hit is indicated by the SearchValid and 

SearchHit signals going high for two cycles. At th
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instruction is issued every eight cycles until there are no more hits to output. The address that 

identifies the location of a hit within the CAM becomes available from the CAM when 

SearchHit goes high and is available on the HitAddress output a cycle later. As before it takes 

eight cycles to feed search data to the CAM and eight to wait for results. If there are matches, 

ight additional cycles are required for each match, plus eight additional cycles before the next 

search can begin. Therefore

8 + 8 + 2*8 + 6 = 38 cycles 

Thus, header searching begins in cycle 75 and completes in cycle 113, which is when the next 

search could take pla

 

e

, a search with two matches requires: 

ce. 

 

Figure 20. Payload Searching Beginning for Test Packet #2 

 

The payload is ready to begin packet payload searching in cycle 147. Figure 20 shows the

beginning of packet payload searching for the second packet. As shown in the waveform, 

first search iteration produces two CAM hits. As before, a search with two CAM hits will require 

38 cycles to complete, so the second search iteration will be able to begin at cycle 185. Figure 2

shows the third search iteration taking place. One can tell that it is the third iteration by

 

the 

1 

 

observing SearchCount, which is one-hot encoded. The first iteration is represented by 
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“0x0001”, the second iteration by “0x0002”, the third iteration by “0x0004”, and so o

shown, the 

n. As is 

third iteration produces a single match. A CAM search that produces a single match 

will take 30 cycles to complete. 

 

 

Figure 21. Payload Searching Concluding for Test Packet #2 

 

As seen in Figures 20 and 20, there were two payload search CAM hits in the first search 

iteration and one in the third iteration. These three matches correspond to the payload content 

rules discussed earlier in this section. In total, this packet required four payload search iterations. 

The final iteration begins in cycle 235 and produces no hits, which means that searching for 

another packet could begin 20 cycles later at cycle 255. Packet header searching began at cycle 

75, and therefore it took 180 cycles from the beginning of the first packet header search to the 

end of the final packet payload search.  As discussed previously, the packet was 105 bytes in 

total length and would require 105 cycles to be received from ePAPP. Thus, for this packet, 75 

cycles would be required between packet arrivals to sustain searching of every packet. As before, 

this number could be lowered significantly by not requiring 70 cycles to buffer a payload that is 

much shorter than 70 bytes. 
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4.6.3 CASMA Testing Methodology 

he presented CASMA design was tested through simulation in conjunction with the ePAPP 

module. A behavior  Integrated Device 

chnologies was populated with a subset of diverse Snort rules, including the Snort rule 

ng on the CASMA architecture. 

4.6.

The ev ses of 

this e

which t

shown 

 

 

T

 model of the 9Mb Network Search Engine provided by

te

examples described in Section 4.5. A simulation input file was created that fed a byte of packet 

data to the FIFO of the ePAPP module on the rising edge of every clock cycle. Use of the a 

simulation input file allowed for easy changes to packet lengths and protocol field values in 

order to perform diverse testi

4 CASMA Technology Mapping Results 

entual target of the CASMA architecture is a standard ASIC platform. For the purpo

 th sis, however, the design was targeted at a 130 nm structured ASIC, the same target upon 

he ePAPP architecture was synthesized. The results of design synthesis  for CASMA are 

in Table 25. 

Table 25. Performance Results After Synthesis 

 130 nm Structured ASIC 
Standard-cell Instance Count 99045 / 1.7M 
Size as a % of Total Cells 5.9% 
Speed in MHz 157.1 MHz 
Throughput 1.25 Gb/s 

 

The design is relatively expensive in terms of area due to the fact that entire incoming 

pac ts

ways. 

CASM cket fields not used in 

intrusion detection could be ignored upon input. Another future optimization would be to 

ke  of up to 1500 bytes are buffered. This problem could be somewhat alleviated in several 

Currently, for example, all header information is currently buffered upon input to 

A, regardless of whether it is used in the header search string. Pa
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sign c

searchi

would 

  ePAPP would need to operate at a clock speed of 125 MHz to 

sus

also ser

present

the tCA ports a maximum clock frequency of 200 MHz. Future work involving 

ifi antly reduce the depth of the payload FIFO. As long payloads are buffered, packet 

ng will have already begun, thereby reducing the maximum amount of data the FIFO 

be required to hold from the maximum payload length. 

As discussed in Chapter 3,

tain 1 Gb/s traffic. Assuming that CASMA uses the same clock as ePAPP, this rate would 

ve as the minimum requirement for CASMA. Synthesis results show that the architecture 

ed exceeds this requirement. Currently, the 9Mb Network Search Engine being used as 

M component sup

design and synthesis optimization could yield significant increases in sustainable clock 

frequency. 
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chitecture, a pipelined design 

ASIC implementation that could be feasibly added 

ied. 

Network intrusion detection is one such application. 

• The CAM-Assisted Signature-Matching Architecture (CASMA), a pipelined design that 

uses ternary content-addressable memory to aid in stateless intrusion detection signature-

matching. 

• A novel approach for encoding Snort intrusion detection rules into 576-bit CAM entries. 

This includes separate encoding techniques for entries pertaining to packet header 

information and entries pertaining to packet payload information. 

 

5.0 CONCLUSIONS AND FUTURE DIRECTIONS 

 

Increases in network transmission speeds and traffic loads have created a need for cost-effective, 

low-latency network security solutions. Packet protocol analysis and stateless intrusion detection 

signature-matching are critical components of this need. This thesis provides the following 

contributions to these areas: 

• The Embedded Protocol Analyzer Pre-Processor (ePAPP) ar

that classifies every protocol field of an incoming packet as the packet is captured. 

• The ability to update the protocol information used by ePAPP in a loadable memory 

without changing the circuit implementation. Since frequent circuit redesign is not 

needed, ePAPP can be targeted for an 

to a network device, such as a switch. 

• The generic nature of the ePAPP output, allowing it to be used with any number of 

applications that require packets to be parsed and protocol fields to be identif
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• A novel approach for restricting the depth within a payload that a content string match is 

considered a rule hit. Without this, false positives would be generated for content 

matches that occur in a part of the payload that is not indicative of unwanted traffic as 

specified by a Snort rule. 

• The ability to add new rules to the CAM without the frequent need for redesign of the 

CASMA circuit design. Since frequent circuit redesign is not needed, CASMA can be 

targeted for an ASIC implementation that could be feasibly added to a network device, 

ly supports the IEEE 802.3 (Ethernet), IPv4, ARP, TCP, and UDP 

support for more protocols, such as IPv6 

 protocol length fields 

lengths of other variable width fields are currently performed in combinational 

able to certain protocol changes. Future work should attempt to 

alculations to be updated with other protocol changes. 

 was designed, for reasons of cost, to use only a single CAM 

 devices falls, future efforts should consider multi-CAM 

nificantly by overlapping header 

re, since more CAM space would be available, payload 

arches could be performed at greater shift-increments. This thesis proposes a payload shift of 

ight bytes between every search. Increasing the shift amount to 16 bytes would cut the search 

d. If additional CAM 

ricting factor, this could be a worthwhile design adjustment. 

such as a switch. 

While ePAPP current

protocols, the design would benefit from the addition of 

and ICMP. Furthermore, internal calculations that use information found in

to determine the 

logic, and may not be adapt

permit the nature of these c

The CASMA architecture

component. As the cost for these

implementations. Additional CAMs could speed the pipeline sig

and payload searching. Furthermo

se

e

time required in half, while doubling the amount of CAM entries require

space is not a rest
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The current CASMA design requires combinational logic to calculate special header 

checking, functions not able to be performed by 

ory. The addition of a new rule to the CAM may require a 

 been included in the circuit design. This is a design 

 indicate key threshold values for which special case 

edict relevant special cases could 

odification. Furthermore, the 

for table-based additions to the 

. 

ssed within the scope of this 

 problem. This work could 

ries searched based on the results 

cket. 

ding byte_test, byte_jump, isdataat, and pcre are not 

 Future work should explore options that could use 

 implement these options. 

search cases that require range or negation 

ternary content-addressable mem

special case calculation that has not yet

weakness, however traffic analysis may

calculations may become necessary. Future attempts to pr

minimize the number of new rules that would require a circuit m

addition of programmable ALUs to the design could allow 

special case calculations, eliminating the need for circuit redesign

The task of correlating CAM search results is not addre

work. Future work should address methodologies to assist with this

include a method of restricting the subset of payload CAM ent

of a header CAM search for the same pa

Several Snort rule options, inclu

compatible with a CAM-based approach.

CAM searching in conjunction with pre- and/or post-processing to
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_TOP ENTITY 

 
 

his appendix contains the VHDL code for the analyzer_top entity of ePAPP. This was the top-

ntities. Specific details about the code can be found as comments 
code itself. 

nalyzer_top.symbol 

1 (Build 399) 

(7 DOWNTO 0); 

eset          : IN     std_logic; 
    std_logic_vector (31 DOWNTO 0); 

    field_type_out : OUT    std_logic_vector (7 DOWNTO 0); 

L Designer(TM) 2003.1 (Build 399) 

 
APPENDIX A 

 

 
VHDL CODE FOR THE ANALYZER

 

T
level entity used by ePAPP, and contains instances of the assembler, protocol_memory, 
jump_tlb, and length_block e
within the 
 
-- VHDL Entity ProtocolAnalyzer.a
-- Created by Jacob J. Repanshek 
-- Generated by Mentor Graphics' HDL Designer(TM) 2003.
-- 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
USE ieee.std_logic_arith.all; 
 
ENTITY analyzer_top IS 
   PORT(  
      clock          : IN     std_logic; 
      line_in        : IN     std_logic_vector 
      line_in_valid  : IN     std_logic; 
      r
      field_data_out : OUT
  
      valid_out      : OUT    std_logic 
   ); 
 
END analyzer_top ; 
 
-- VHDL Architecture ProtocolAnalyzer.analyzer_top.struct 
-- Generated by Mentor Graphics' HD
-- 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
USE ieee.std_logic_arith.all; 
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LIBRARY ProtocolAnalyzer; 
 
ARCHITECTURE struct OF analyzer_top IS 

logic; 
 almost_valid       : std_logic; 

d_logic; 
logic; 

ic_vector(7 DOWNTO 0); 
); 

d_logic_vector(31 DOWNTO 0); 
ic; 

 
NAL field_width        : std_logic_vector(15 DOWNTO 0); 

      : std_logic_vector(7 DOWNTO 0); 
IGNAL jump_addr_cur      : std_logic_vector(7 DOWNTO 0); 

ogic_vector(7 DOWNTO 0); 
 jump_addr_next_reg : std_logic_vector(7 DOWNTO 0); 

ogic_vector(7 DOWNTO 0); 
vector(15 DOWNTO 0); 

; 

; 
gic; 

vector(7 DOWNTO 0); 
 

ctor(15 DOWNTO 0); 
NAL var_len_field      : std_logic; 

.0) for instance 'I0' of 'fifo' 
RAY (8 DOWNTO 0) OF std_logic_vector(7 DOWNTO 0); 

 
   -- Internal signal declarations 
   SIGNAL aempty             : std_
   SIGNAL
   SIGNAL branch_indicator   : st
   SIGNAL count_done         : std_
   SIGNAL enable             : std_logic; 
   SIGNAL ffout              : std_log
   SIGNAL field_data         : std_logic_vector(31 DOWNTO 0
   SIGNAL field_data_early   : st
   SIGNAL field_data_valid   : std_log
   SIGNAL field_type         : std_logic_vector(7 DOWNTO 0);
   SIG
   SIGNAL jump_addr    
   S
   SIGNAL jump_addr_n        : std_logic_vector(7 DOWNTO 0); 
   SIGNAL jump_addr_next     : std_l
   SIGNAL
   SIGNAL jump_addr_reg      : std_l
   SIGNAL len_in             : std_logic_
   SIGNAL len_indicator      : std_logic
   SIGNAL load_addr          : std_logic; 
   SIGNAL new_valid          : std_logic; 
   SIGNAL no_optional        : std_logic
   SIGNAL not_empty          : std_lo
   SIGNAL not_empty_late     : std_logic; 
   SIGNAL packet_done        : std_logic; 
   SIGNAL protocol_addr      : std_logic_
   SIGNAL protocol_indicator : std_logic;
   SIGNAL read_en            : std_logic; 
   SIGNAL valid              : std_logic; 
   SIGNAL valid_byte         : std_logic; 
   SIGNAL var_len            : std_logic_ve
   SIG
 
 
   -- ModuleWare signal declarations(v1
   TYPE mw_I0sreg IS AR
   SIGNAL mw_I0caddr : INTEGER RANGE 0 TO 8; 
   SIGNAL mw_I0naddr : INTEGER RANGE 0 TO 8; 
   SIGNAL mw_I0creg : mw_I0sreg; 
   SIGNAL mw_I0nreg : mw_I0sreg; 
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   -- ModuleWare signal declarations(v1.0) for instance 'I4' of 'mux' 
 SIGNAL mw_I4din0 : std_logic_vector(7 DOWNTO 0); 

L mw_I4din1 : std_logic_vector(7 DOWNTO 0); 

 -- ModuleWare signal declarations(v1.0) for instance 'I7' of 'mux' 
NTO 0); 

IGNAL mw_I7din1 : std_logic_vector(15 DOWNTO 0); 

ent Declarations 

d in Appendix B. 
ONENT assembler 

IN     std_logic_vector (7 DOWNTO 0); 
     std_logic ; 

N     std_logic_vector (15 DOWNTO 0); 
     std_logic ; 

      reset            : IN     std_logic ; 
IN     std_logic ; 

: OUT    std_logic ; 
d_logic ; 

 OUT    std_logic_vector (31 DOWNTO 0); 
: OUT    std_logic_vector (31 DOWNTO 0); 

data_valid : OUT    std_logic ; 
: OUT    std_logic ; 

UT    std_logic  

NENT; 

ump_tlb entity, described in Appendix C.  
 COMPONENT jump_tlb 

    field_data         : IN     std_logic_vector (31 DOWNTO 0); 
     std_logic ; 

col_addr      : IN     std_logic_vector (7 DOWNTO 0); 
     std_logic ; 

    std_logic_vector (7 DOWNTO 0); 
_logic_vector (7 DOWNTO 0); 

_logic_vector (7 DOWNTO 0); 

  
   SIGNA
 
  
   SIGNAL mw_I7din0 : std_logic_vector(15 DOW
   S
 
   -- ModuleWare signal declarations(v1.0) for instance 'I8' of 'mux' 
   SIGNAL mw_I8din0 : std_logic_vector(7 DOWNTO 0); 
   SIGNAL mw_I8din1 : std_logic_vector(7 DOWNTO 0); 
 
   -- Compon
 
   -- This is the component declaration for the assembler entity, describe
   COMP
   PORT ( 
      byte_in          : 
      clock            : IN
      enable           : IN     std_logic ; 
      len_in           : I
      load_len         : IN

      valid_in         : 
      almost_done      
      count_done       : OUT    st
      field_data       :
      field_data_early 
      field_
      new_valid        
      valid_byte       : O
   ); 
   END COMPO
 
   -- This is the component declaration for the j
  
   PORT ( 
      clock              : IN     std_logic ; 
      enable             : IN     std_logic ; 
  
      protocol           : IN
      proto
      reset              : IN
      jump_addr_cur      : OUT
      jump_addr_next     : OUT    std
      jump_addr_next_reg : OUT    std
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      jump_addr_reg      : OUT    std_logic_vector (7 DOWNTO 0) 

 END COMPONENT; 

 This is the component declaration for the length_block entity, described in Appendix D. 

 PORT ( 
td_logic ; 

le        : IN     std_logic ; 
   std_logic_vector (31 DOWNTO 0); 

ector (7 DOWNTO 0); 
td_logic ; 

c ; 
c_vector (15 DOWNTO 0) 

component declaration for the protocol_memory entity, described in Appendix E. 
 COMPONENT protocol_memory 
 PORT ( 

    enable             : IN     std_logic ; 

NTO 0); 
    jump_addr_next     : IN     std_logic_vector (7 DOWNTO 0); 

    branch_indicator   : OUT    std_logic ; 
WNTO 0); 

    std_logic ; 
 std_logic ; 

l_addr      : OUT    std_logic_vector (7 DOWNTO 0); 
tor (7 DOWNTO 0); 

 std_logic ; 

ONENT; 

 Optional embedded configurations 

L : assembler USE ENTITY ProtocolAnalyzer.assembler; 
E ENTITY ProtocolAnalyzer.jump_tlb; 

k USE ENTITY ProtocolAnalyzer.length_block; 
tocolAnalyzer.protocol_memory; 

   ); 
  
    
   --
   COMPONENT length_block 
  
      clock         : IN     s
      enab
      field_data    : IN  
      length        : IN     std_logic ; 
      protocol_addr : IN     std_logic_v
      reset         : IN     s
      no_optional   : OUT    std_logi
      var_len_reg   : OUT    std_logi
   ); 
   END COMPONENT; 
    
   -- This is the 
  
  
      clock              : IN     std_logic ; 
  
      incr_addr          : IN     std_logic ; 
      jump_addr          : IN     std_logic_vector (7 DOW
  
      load_addr          : IN     std_logic ; 
      reset              : IN     std_logic ; 
  
      field_width        : OUT    std_logic_vector (15 DO
      len_indicator      : OUT
      packet_done        : OUT   
      protoco
      protocol_addr_reg  : OUT    std_logic_vec
      protocol_indicator : OUT   
      var_len_field      : OUT    std_logic  
   ); 
   END COMP
 
   --
   -- pragma synthesis_off 
   FOR AL
   FOR ALL : jump_tlb US
   FOR ALL : length_bloc
   FOR ALL : protocol_memory USE ENTITY Pro
   -- pragma synthesis_on 
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BEGIN 

 enable_block  

 monitor the state of the  
 signal. It is assumed that once a packet begins to arrive, 

e FIFO. Once a packet is complete, 
ed off until a new packet arrives. Upon new packet 

 must be enable a cycle before the rest of the  

        
et_done,line_in_valid,not_empty,not_empty_late) 

en 

<='0'; 
ty='0') then 

    read_en<='0'; 
"00010110") then 

empty='1') then 

'1'; 

en<='0'; 

; 

g 

t not_empty_late will always equal 
. 

lock) 

 
='0'; 

   -- Architecture concurrent statements 
 
   -- HDL Embedded Text Block 1
    
   -- This block is primarily used to
   -- enable
   -- it can be streamed through th
   -- enable is turn
   -- arrival, the FIFO
   -- design. 
                           
   process(reset,pack
   begin 
      if(reset='1') th
         enable<='0'; 
         read_en
      elsif(packet_done='1' and line_in_valid='0' and not_emp
         enable<='0'; 
     
      elsif(not_empty_late='1' OR field_type=
         enable<='1'; 
         read_en<='1'; 
      elsif(not_
         enable<='0'; 
         read_en<=
      else 
         enable<='0'; 
         read_
      end if; 
   end process
 
   -- HDL Embedded Text Block 2 empty_re
 
   -- This block assigns the value of not_empty to not_empty_late  
   -- on a rising clock edge, so tha
   -- what not_empty did a cycle earlier
 
   process(reset,c
   begin 
      if(reset='1') then
         not_empty_late<
      elsif(rising_edge(clock)) then 
         not_empty_late<=not_empty; 
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      end if; 
   end process; 
 
   -- HDL Embedded Text Block 3 output_reg 

gisters output values on the rising clock edge. 

,reset) 

000000000000000000000000"; 

; 

s; 

s ModuleWare code for a FIFO. 

eWare code(v1.0) for instance 'I6' of 'and' 
or AND no_optional; 

de(v1.0) for instance 'I10' of 'and' 
ld_data_valid AND new_valid AND enable; 

r instance 'I0' of 'fifo' 

 I0seq1: PROCESS (clock) 

_I0creg(i)(7 DOWNTO 0) <= mw_I0nreg(i)(7 DOWNTO 0); 

SS (clock, reset) 

ck='1') THEN 
       mw_I0caddr <= mw_I0naddr; 

    
   -- This process re
 
   process(clock
   begin 
      if(reset='1') then 
         field_data_out<="00000000
         field_type_out<="00000000"; 
         valid_out<='0'; 
      elsif(rising_edge(clock)) then 
         field_data_out<=field_data; 
         field_type_out<=field_type
         valid_out<=valid; 
      end if; 
   end proces
 
 
   -- The code below i
 
   -- Modul
   load_addr <= branch_indicat
 
   -- ModuleWare co
   valid <= fie
 
   -- ModuleWare code(v1.0) fo
   ffout <= mw_I0creg(0); 
  
   BEGIN 
      IF (clock'EVENT AND clock='1') THEN 
         FOR i IN 0 TO 8 LOOP 
            mw
         END LOOP; 
      END IF; 
   END PROCESS I0seq1; 
    
   I0seq2: PROCE
   BEGIN 
      IF (reset = '1') THEN 
         mw_I0caddr <= 0; 
      ELSIF (clock'EVENT AND clo
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      END IF; 
   END PROCESS I0seq2; 
    
   I0combo: PROCESS (reset, read_en, line_in_valid, mw_I0caddr, mw_I0creg, line_in) 

gic; 

 8) THEN 

0) THEN 
       tfull := '0'; 

ty := '0'; 

 NOT(tempty); 
 AND NOT(tfull); 

' OR twena = 'H') THEN 
= 'H') THEN 
0caddr; 

r + 1; 
       END IF; 

a = 'H') THEN 
r <= mw_I0caddr - 1; 

caddr; 

 'H') THEN 
HEN 

WNTO 0) <= mw_I0creg(8)(7 DOWNTO 0); 

 0) <= line_in; 

 mw_I0creg(i+1)(7 DOWNTO 0); 

'L') THEN 
  mw_I0nreg(0)(7 DOWNTO 0) <= mw_I0creg(0)(7 DOWNTO 0); 

   VARIABLE trena : std_lo
   VARIABLE twena : std_logic; 
   VARIABLE tfull : std_logic; 
   VARIABLE tempty : std_logic; 
   BEGIN 
      IF (mw_I0caddr =
         tfull := '1'; 
         tempty := '0'; 
      ELSIF (mw_I0caddr = 
  
         tempty := '1'; 
      ELSE 
         tfull := '0'; 
         temp
      END IF; 
      trena := NOT(reset) AND read_en AND
      twena := NOT(reset) AND line_in_valid
    
      IF (twena = '1
         IF (trena = '1' OR trena 
            mw_I0naddr <= mw_I
         ELSE 
            mw_I0naddr <= mw_I0cadd
  
      ELSIF (trena = '1' OR tren
         mw_I0nadd
      ELSE 
         mw_I0naddr <= mw_I0
      END IF; 
    
      IF (twena = '1' OR twena =
         IF (trena = '1' OR trena = 'H') T
            mw_I0nreg(8)(7 DO
            FOR i IN 0 TO 7 LOOP 
               IF (mw_I0caddr = i) THEN 
                  mw_I0nreg(i)(7 DOWNTO
               ELSE 
                  mw_I0nreg(i)(7 DOWNTO 0) <=
               END IF; 
            END LOOP; 
         ELSIF (trena = '0' OR trena = 
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            FOR i IN 0 TO 7 LOOP 
0caddr = i) THEN 

DOWNTO 0) <= line_in; 

) <= mw_I0creg(i+1)(7 DOWNTO 0); 

 

w_I0creg(i+1)(7 DOWNTO 0); 
  END LOOP; 

(8)(7 DOWNTO 0) <= mw_I0creg(8)(7 DOWNTO 0); 
 = '0' OR trena = 'L') THEN 

OP 
WNTO 0) <= mw_I0creg(i)(7 DOWNTO 0); 

DOWNTO 0) <= (OTHERS => 'X'); 

SE 
OOP 

(i)(7 DOWNTO 0) <= (OTHERS => 'X'); 

for instance 'I4' of 'mux' 
1, protocol_indicator) 

r(7 DOWNTO 0); 

 
1; 

 'X'); 

p_addr <= dtemp; 
 END PROCESS I4combo; 

 <= jump_addr_reg; 
   mw_I4din1 <= jump_addr_cur; 
 

               IF (mw_I
                  mw_I0nreg(i+1)(7 
               ELSE 
                  mw_I0nreg(i+1)(7 DOWNTO 0
               END IF; 
            END LOOP; 
         END IF; 
      ELSIF (twena = '0' OR twena = 'L') THEN
         IF (trena = '1' OR trena = 'H') THEN 
            FOR i IN 0 TO 7 LOOP 
               mw_I0nreg(i)(7 DOWNTO 0) <= m
          
               mw_I0nreg
         ELSIF (trena
            FOR i IN 0 TO 8 LO
               mw_I0nreg(i)(7 DO
            END LOOP; 
         ELSE 
            FOR i IN 0 TO 8 LOOP 
               mw_I0nreg(i)(7 
            END LOOP; 
         END IF; 
      EL
         FOR i IN 0 TO 8 L
            mw_I0nreg
         END LOOP; 
      END IF; 
      not_empty <= NOT(tempty); 
      aempty <= NOT(tempty); 
   END PROCESS I0combo; 
 
   -- ModuleWare code(v1.0) 
   I4combo: PROCESS(mw_I4din0, mw_I4din
   VARIABLE dtemp : std_logic_vecto
   BEGIN 
      CASE protocol_indicator IS 
      WHEN '0'|'L' => dtemp := mw_I4din0;
      WHEN '1'|'H' => dtemp := mw_I4din
      WHEN OTHERS => dtemp := (OTHERS =>
      END CASE; 
      jum
  
   mw_I4din0
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   -- ModuleWare code(v1.0) for instance 'I7' of ' ux' 
   I7combo: PROCESS(mw_I7din0, mw_I7din1, var_len_field) 
   VARIABLE dtemp : std_logic_vector(15 DOWNTO 0); 
   BEGIN 
      CASE var_len_field IS 
      WHEN '0'|'L' => dtemp := mw_I7din0; 
      WHEN '1'|'H' => dtemp := mw_I7din1; 
      WHEN OTHERS => dtemp := (OTHERS => 'X'); 
      END CASE; 
      len_in <= dtemp; 
   END PROCESS I7combo; 
   mw_I7din0 <= field_width; 

din1, protocol_indicator) 
 VARIABLE dtemp : std_logic_vector(7 DOWNTO 0); 

    WHEN '1'|'H' => dtemp := mw_I8din1; 
RS => dtemp := (OTHERS => 'X'); 

 END PROCESS I8combo; 
addr_next_reg; 

n1 <= jump_addr_next; 

  field_data_early => field_data_early, 
       field_data_valid => field_data_valid, 

     => new_valid, 
       valid_byte       => valid_byte 

m

   mw_I7din1 <= var_len; 
 
   -- ModuleWare code(v1.0) for instance 'I8' of 'mux' 
   I8combo: PROCESS(mw_I8din0, mw_I8
  
   BEGIN 
      CASE protocol_indicator IS 
      WHEN '0'|'L' => dtemp := mw_I8din0; 
  
      WHEN OTHE
      END CASE; 
      jump_addr_n <= dtemp; 
  
   mw_I8din0 <= jump_
   mw_I8di
 
   -- Instance port mappings. 
   I1 : assembler 
      PORT MAP ( 
         byte_in          => ffout, 
         clock            => clock, 
         enable           => enable, 
         len_in           => len_in, 
         load_len         => count_done, 
         reset            => reset, 
         valid_in         => line_in_valid, 
         almost_done      => almost_valid, 
         count_done       => count_done, 
         field_data       => field_data, 
       
  
         new_valid   
  
      ); 
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   I3 : jump_tlb 
      PORT MAP ( 

    => clock, 
, 
data_early, 

       protocol           => protocol_indicator, 
       protocol_addr      => protocol_addr, 

       jump_addr_cur      => jump_addr_cur, 
mp_addr_next, 

       jump_addr_next_reg => jump_addr_next_reg, 

l, 

 I2 : protocol_memory 

       enable             => enable, 
       incr_addr          => almost_valid, 

       reset              => reset, 
       branch_indicator   => branch_indicator, 

d_width        => field_width, 

       packet_done        => packet_done, 

       protocol_addr_reg  => field_type, 

         clock          
         enable             => enable
         field_data         => field_
  
  
         reset              => reset, 
  
         jump_addr_next     => ju
  
         jump_addr_reg      => jump_addr_reg 
      ); 
   I5 : length_block 
      PORT MAP ( 
         clock         => clock, 
         enable        => enable, 
         field_data    => field_data_early, 
         length        => len_indicator, 
         protocol_addr => protocol_addr, 
         reset         => reset, 
         no_optional   => no_optiona
         var_len_reg   => var_len 
      ); 
  
      PORT MAP ( 
         clock              => clock, 
  
  
         jump_addr          => jump_addr, 
         jump_addr_next     => jump_addr_n, 
         load_addr          => load_addr, 
  
  
         fiel
         len_indicator      => len_indicator, 
  
         protocol_addr      => protocol_addr, 
  
         protocol_indicator => protocol_indicator, 
         var_len_field      => var_len_field 
      ); 
 
END struct; 
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PP. As described in 
sponsible for receiving bytes from a FIFO and assembling them 

pecified by the protocol_memory. Specific details about the code can be 

olAnalyzer.assembler.symbol 

Graphics' HDL Designer(TM) 2003.1 (Build 399) 

 
.std_logic_1164.all; 

sembler IS 

    byte_in          : IN     std_logic_vector (7 DOWNTO 0); 

    reset            : IN     std_logic; 

UT    std_logic; 
t_done       : OUT    std_logic; 

UT    std_logic_vector (31 DOWNTO 0); 
T    std_logic_vector (31 DOWNTO 0); 

d : OUT    std_logic; 
ic; 

    std_logic 

tecture ProtocolAnalyzer.assembler.struct 

 
 

APPENDIX B 
 

VHDL CODE FOR THE ASSEMBLER ENTITY 
 

This appendix contains the VHDL code for the assembler entity of ePA
Section 3.3, this component is re
into packet fields as s
found as comments within the code itself. 
 
-- VHDL Entity Protoc
-- Created by Jacob J. Repanshek 
-- Generated by Mentor 
 
LIBRARY ieee;
USE ieee
USE ieee.std_logic_arith.all; 
 
ENTITY as
   PORT(  
  
      clock            : IN     std_logic; 
      enable           : IN     std_logic; 
      len_in           : IN     std_logic_vector (15 DOWNTO 0); 
      load_len         : IN     std_logic; 
  
      valid_in         : IN     std_logic; 
      almost_done      : O
      coun
      field_data       : O
      field_data_early : OU
      field_data_vali
      new_valid        : OUT    std_log
      valid_byte       : OUT
   ); 
 
END assembler ; 
 
-- VHDL Archi
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-- Generated by Mentor Graphics' HDL Designer(TM) 2003.1 (Build 399) 

.std_logic_1164.all; 
rith.all; 

bler IS 

declarations 

ignal declarations 
count       : std_logic_vector(15 DOWNTO 0); 

_temp   : std_logic_vector(31 DOWNTO 0); 
 SIGNAL full        : std_logic; 

or(15 DOWNTO 0); 
std_logic; 

L q0          : std_logic_vector(7 DOWNTO 0); 
 std_logic_vector(7 DOWNTO 0); 

_logic_vector(7 DOWNTO 0); 
   : std_logic_vector(7 DOWNTO 0); 

_logic; 
      : std_logic; 

uffer signal declarations 
count_done_internal : std_logic; 

0) for instance 'I5' of 'cntr' 
t : std_logic_vector(15 DOWNTO 0); 

L mw_I5c_cnt : std_logic_vector(15 DOWNTO 0); 

ents 

ded Text Block 1 data_out_select 

k determines how to output field_data based on the 
d width of the protocol field. This is done by observing 

lue on the count bus. If more than four bytes remain, 
 -- a payload or extended options field is being output and four bytes 

n four bytes are specified, that number 
   -- of bytes are put on the field_data bus, padded with zeros accordingly. 
 

 
LIBRARY ieee; 
USE ieee
USE ieee.std_logic_a
 
 
ARCHITECTURE struct OF assem
 
   -- Architecture 
 
   -- Internal s
   SIGNAL 
   SIGNAL data
  
   SIGNAL len_delayed : std_logic_vect
   SIGNAL max         : 
   SIGNA
   SIGNAL q1          :
   SIGNAL q2          : std
   SIGNAL q3       
   SIGNAL valid1      : std_logic; 
   SIGNAL valid2      : std
   SIGNAL valid3
 
   -- Implicit b
   SIGNAL 
 
 
   -- ModuleWare signal declarations(v1.
   SIGNAL mw_I5n_cn
   SIGNA
 
 
BEGIN 
   -- Architecture concurrent statem
 
   -- HDL Embed
 
   -- This bloc
   -- specifie
   -- the va
  
   -- of data are valid. If less tha
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   begin 
  

 process(len_delayed, data_temp, count) 

    if(count(15 downto 2)="00000000000000" AND  
ND len_delayed(1)='0') AND  

(count(1 downto 0)="11" AND len_delayed(1 downto 0)="10") AND  
nto 0)="01" AND len_delayed(1 downto 0)="00")) then 

0000000000000000000" & data_temp(7 downto 0); 
d length is 2 bytes 

n "01" => 
data <= "0000000000000000" & data_temp(15 downto 0); 

          -- field length is 3 bytes 

             field_data <= "00000000" & data_temp(23 downto 0); 

          when "11" => 
; 

hen others => 

ngth is more than 4 bytes -> indicates payload or optional field 
data <= data_temp; 

 end process; 

 -- The “reg” blocks that follow are a chain of registers that hold  
e registers are enabled, 

 -- value from the FIFO is read into the first register and all of the  
ght. 

clock) 

(rising_edge(clock)) then 
en 

_in; 
lid_in; 

         not(count(1)='1' A
         not
         not(count(1 dow
         case len_delayed(1 downto 0) is 
            -- field length is 1 byte 
            when "00" => 
               field_data <= "00000
            -- fiel
            whe
               field_
  
            when "10" => 
  
            -- field length is 4 bytes 
  
               field_data <= data_temp
            w
               field_data <= data_temp; 
         end case; 
      else 
         -- remaining field le
         field_
      end if; 
  
 
  
   -- the bytes incoming from the FIFO. When th
  
   -- register values are shifted one register to the ri
 
   -- HDL Embedded Text Block 2 reg 
   process(reset,
   begin 
      if(reset='1') then 
         q3<="00000000"; 
         valid3<='0'; 
      elsif 
         if(enable='1') th
            q3<=byte
            valid3<=va
         end if; 
      end if; 
   end process; 
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   -- HDL Embedded Text Block 3 reg1 

k) 

_edge(clock)) then 
en 

dded Text Block 4 reg2 
et,clock) 

 then 
       q1<="00000000"; 
       valid1<='0'; 

       if(enable='1') then 

       end if; 

mbedded Text Block 5 reg3 

_edge(clock)) then 
e='1') then 

f; 

   process(reset,cloc
   begin 
      if(reset='1') then 
         q2<="00000000"; 
         valid2<='0'; 
      elsif (rising
         if(enable='1') th
            q2<=q3; 
            valid2<=valid3; 
         end if; 
      end if; 
   end process; 
 
   -- HDL Embe
   process(res
   begin 
      if(reset='1')
  
  
      elsif (rising_edge(clock)) then 
  
            q1<=q2; 
            valid1<=valid2; 
  
      end if; 
   end process; 
 
   -- HDL E
   process(reset,clock) 
   begin 
      if(reset='1') then 
         q0<="00000000"; 
         valid_byte<='0'; 
      elsif (rising
         if(enabl
            q0<=q1; 
            valid_byte<=valid1; 
         end i
      end if; 
   end process; 
 
   -- HDL Embedded Text Block 6 len_delay 
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   -- The len_delayed signal is always equal to the value of len_in the cycle before. 

elayed<="0000000000000000"; 
g_edge(clock)) then 

yed<=len_in; 
 

 -- If a packet field is one cycle from being complete, almost_done is asserted. 

 begin 
00000000000000" and load_len='1')) then 

    else 

    end if; 

 new_valid<=valid1; 

   -- HDL Embedded Text Block 10 full_count 
 
   -- For fields of more than 32 bits, there must be 
   -- a way to indicate that a 32-bit chunk is ready to 
   -- be put in the output FIFO. That is what this block 
   -- does.         
   --                                
   process(clock,reset) 
   variable cnt : std_logic_vector(1 downto 0); 
   variable go : std_logic; 
   begin 
      if(reset='1') then 
         full <= '0'; 
         cnt := "11"; 
         go := '0'; 
      elsif(rising_edge(clock)) then 
         if(enable='1') then 

 
   process(reset,clock) 
   begin 
      if(reset='1') then 
         len_d
      elsif (risin
         if(enable='1') then 
            len_dela
         end if;
      end if; 
   end process; 
 
   -- HDL Embedded Text Block 7 almost 
 
  
 
   process(count,len_in,load_len) 
  
      if(count="0000000000000001" OR (len_in="00
         almost_done<='1'; 
  
         almost_done<='0'; 
  
   end process; 
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            if(load_len='1') then 
               cnt := "10"; 
               full<='0'; 
               go := '1'; 
            elsif(go='1') then 
               if(cnt = "00") then 
                  full<='1'; 
               else 
                  full<='0'; 
               end if; 
               if(cnt = "00") then 
                  cnt := "11"; 

       end if; 

e below is inserted by the use of ModuleWare components. 

or instance 'I0' of 'and' 
 count_done_internal <= max AND enable; 

eWare code(v1.0) for instance 'I5' of 'cntr' 

nable, mw_I5n_cnt) 

N 

ck='1') THEN 

D PROCESS I5clock; 
 I5combo: PROCESS (load_len, len_in, mw_I5c_cnt) 

 IF (load_len = '1' OR load_len = 'H') THEN 

    IF (mw_I5c_cnt = "0000000000000000") THEN 
= "1111111111111111"; 

               else 
                  cnt := (unsigned(cnt) - '1'); 
               end if; 
            end if; 
  
      end if; 
   end process; 
 
 
   -- All of the cod
 
   -- ModuleWare code(v1.0) f
  
 
   -- Modul
   count <= mw_I5c_cnt; 
   I5clock: PROCESS (clock, reset, e
   BEGIN 
      IF (reset = '1' OR reset = 'H') THE
         mw_I5c_cnt <= "0000000000000100"; 
      ELSIF (clock'EVENT AND clo
         IF (enable = '1' OR enable = 'H') THEN 
            mw_I5c_cnt <= mw_I5n_cnt; 
         END IF; 
      END IF; 
   EN
  
   BEGIN 
  
      mw_I5n_cnt <= len_in; 
   ELSE 
  
      mw_I5n_cnt <
      ELSE 
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         mw_I5n_cnt <= (unsigned(mw_I5c_cnt) - '1'); 
    END IF; 
 END IF; 

 I5max_drive: PROCESS (mw_I5c_cnt) 
; 

 BEGIN 

 END IF; 
 temp; 

I4' of 'merge' 
 q3; 

ne <= count_done_internal; 

  
  
   END PROCESS I5combo; 
  
   VARIABLE temp : std_logic
  
   temp := '0'; 
   IF (mw_I5c_cnt = "0000000000000000") THEN 
      temp := '1'; 
  
   max <=
   END PROCESS I5max_drive; 
 
   -- ModuleWare code(v1.0) for instance '
   data_temp <= q0 & q1 & q2 &
 
   -- ModuleWare code(v1.0) for instance 'I6' of 'merge' 
   field_data_early <= q1 & q2 & q3 & byte_in; 
 
   -- ModuleWare code(v1.0) for instance 'I1' of 'or' 
   field_data_valid <= full OR count_done_internal; 
 
   -- Instance port mappings. 
 
   -- Implicit buffered output assignments 
   count_do
 
END struct; 
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APPENDIX C 

 
 

 
 

 code for the jump_tlb entity of ePAPP. As described in 
onsible for determining which higher-layer protocol is 

 the code can be found as comments within the code itself. 

L Designer(TM) 2003.1 (Build 399) 

; 

; 
c_vector (7 DOWNTO 0); 

_logic_vector (7 DOWNTO 0); 
ogic_vector (7 DOWNTO 0); 

_logic_vector (7 DOWNTO 0) 

 

 

VHDL CODE FOR THE JUMP_TLB ENTITY 

 
This appendix contains the VHDL
Section 3.2.2, this component is resp
encapsulated by the current protocol layer and to inform the protocol_memory to branch 
accordingly. Specific details about
 
-- VHDL Entity ProtocolAnalyzer.jump_tlb.symbol 
-- Created by Jacob J. Repanshek 
-- Generated by Mentor Graphics' HD
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
USE ieee.std_logic_arith.all; 
 
ENTITY jump_tlb IS 
   PORT(  
      clock              : IN     std_logic
      enable             : IN     std_logic; 
      field_data         : IN     std_logic_vector (31 DOWNTO 0); 
      protocol           : IN     std_logic
      protocol_addr      : IN     std_logi
      reset              : IN     std_logic; 
      jump_addr_cur      : OUT    std
      jump_addr_next     : OUT    std_l
      jump_addr_next_reg : OUT    std_logic_vector (7 DOWNTO 0); 
      jump_addr_reg      : OUT    std
   ); 
 
END jump_tlb ; 
 
-- VHDL Architecture ProtocolAnalyzer.jump_tlb.struct 
-- Generated by Mentor Graphics' HDL Designer(TM) 2003.1 (Build 399) 
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
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USE ieee.std_logic_arith.all; 
 
 
ARCHITECTURE struct OF jump_tlb IS 

l signal declarations 
_vector(7 DOWNTO 0); 

vector(7 DOWNTO 0); 

EGIN 

 -- HDL Embedded Block 1 jump_table 

  
cket. 

nd on the field_data bus while a certain field type 
 -- is being specified by the protocol_memory, jump_addr and jump_addr_n 

 always jump_addr plus one. 

-------------------------------------------------- 
able_truth_process: PROCESS(field_data, protocol_addr) 

---------------------------------------------------- 

0") AND (field_data(7 downto 0) = "00000000") 
HEN 

dr_n <= "00011001"; 
field_data(15 downto 8) = "00001000") AND (field_data(7 downto 0) = 

ND (protocol_addr = "00000110") THEN 
       jump_addr <= "00000111"; 
       jump_addr_n <= "00001000"; 

eld_data(7 downto 0) = "00000110") AND (protocol_addr = "00011110") THEN 
         jump_addr <= "00100011"; 
         jump_addr_n <= "00100100"; 
      ELSIF (field_data(7 downto 0) = "00010001") AND (protocol_addr = "00011110") THEN 
         jump_addr <= "00101101"; 
         jump_addr_n <= "00101110"; 
      ELSIF (field_data(7 downto 0) = "00000001") AND (protocol_addr = "00011110") THEN 
         jump_addr <= "00110010"; 
         jump_addr_n <= "00110011"; 
      ELSIF (protocol_addr = "00101010") THEN 

 
   -- Architecture declarations 
 
   -- Interna
   SIGNAL jump_addr   : std_logic
   SIGNAL jump_addr_n : std_logic_
 
B
   -- Architecture concurrent statements 
 
  
   -- Non hierarchical truthtable 
 
   -- This truth table specifies the protocol_memory address to jump
   -- to based on information found within a field of the current pa
   -- If certain data is fou
  
   -- are assigned. jump_addr_n is
 
   -------------------------
   jump_t
   -----------------------
   BEGIN 
      -- Block 1 
      IF (field_data(15 downto 8) = "0000100
AND (protocol_addr = "00000110") T
         jump_addr <= "00011000"; 
         jump_ad
      ELSIF (
"00000110") A
  
  
      ELSIF (fi
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         jump_addr <= "00101100"; 
         jump_addr_n <= "00101101"; 
      ELSIF (field_data(7 downto 0) = "00000000") AND (protocol_addr = "00110010") THEN 
         jump_addr <= "00110101"; 
         jump_addr_n <= "00110110"; 
      ELSIF (field_data(7 downto 0) = "00001000") AND (protocol_addr = "00110010") THEN 
         jump_addr <= "00110101"; 
         jump_addr_n <= "00110110"; 
      ELSIF (field_data(7 downto 0) = "00000011") AND (protocol_addr = "00110010") THEN 
         jump_addr <= "00111000"; 
         jump_addr_n <= "00111001"; 
      ELSIF (field_data(7 downto 0) = "00000100") AND (protocol_addr = "00110010") THEN 

       jump_addr_n <= "00111001"; 
(protocol_addr = "00110010") THEN 

    ELSIF (field_data(7 downto 0) = "00001001") AND (protocol_addr = "00110010") THEN 
= "00111101"; 

110"; 
to 0) = "00001010") AND (protocol_addr = "00110010") THEN 

       jump_addr <= "01000001"; 
000010"; 

(field_data(7 downto 0) = "00001100") AND (protocol_addr = "00110010") THEN 
 
"; 

tocol_addr = "00110010") THEN 
 

 0) = "00001110") AND (protocol_addr = "00110010") THEN 

LSIF (field_data(7 downto 0) = "00001111") AND (protocol_addr = "00110010") THEN 
       jump_addr <= "01001010"; 

 "01001011"; 
    ELSIF (field_data(7 downto 0) = "00010000") AND (protocol_addr = "00110010") THEN 

    ELSIF (field_data(7 downto 0) = "00010001") AND (protocol_addr = "00110010") THEN 
= "01001100"; 

101"; 
to 0) = "00010010") AND (protocol_addr = "00110010") THEN 

       jump_addr <= "01001100"; 

         jump_addr <= "00111000"; 
         jump_addr_n <= "00111001"; 
      ELSIF (field_data(7 downto 0) = "00001011") AND (protocol_addr = "00110010") THEN 
         jump_addr <= "00111000"; 
  
      ELSIF (field_data(7 downto 0) = "00000101") AND 
         jump_addr <= "00111011"; 
         jump_addr_n <= "00111100"; 
  
         jump_addr <
         jump_addr_n <= "00111
      ELSIF (field_data(7 down
  
         jump_addr_n <= "01
      ELSIF 
         jump_addr <= "01000010";
         jump_addr_n <= "01000011
      ELSIF (field_data(7 downto 0) = "00001101") AND (pro
         jump_addr <= "01000101";
         jump_addr_n <= "01000110"; 
      ELSIF (field_data(7 downto
         jump_addr <= "01000101"; 
         jump_addr_n <= "01000110"; 
      E
  
         jump_addr_n <=
  
         jump_addr <= "01001010"; 
         jump_addr_n <= "01001011"; 
  
         jump_addr <
         jump_addr_n <= "01001
      ELSIF (field_data(7 down
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         jump_addr_n <= "01001101"; 
N 

       jump_addr <= "00010110"; 
11"; 

    ELSIF (protocol_addr = "00110001") THEN 
; 

p_addr_reg 

 and jump_addr_n signals  
at they can be used when a 

       jump_addr_reg<="00000000"; 
(rising_edge(clock)) then 

n 
          jump_addr_reg<=jump_addr; 

; 
       end if; 

ND struct; 

      ELSIF (protocol_addr = "00101100") THE
  
         jump_addr_n <= "000101
  
         jump_addr <= "00010110"
         jump_addr_n <= "00010111"; 
      ELSE 
         jump_addr <= "00000000"; 
         jump_addr_n <= "00000001"; 
      END IF; 
 
   END PROCESS jump_table_truth_process; 
 
 
   -- HDL Embedded Text Block 2 jum
 
   -- This block registers the jump_addr
   -- set in the above truth table, so th
   -- branch is to occur. 
 
   jump_addr_cur<=jump_addr; 
   jump_addr_next<=jump_addr_n; 
   process(reset,clock) 
   begin 
      if(reset='1') then 
  
      elsif 
         if(enable='1' AND protocol='1') the
  
            jump_addr_next_reg<=jump_addr_n
  
      end if; 
   end process; 
 
 
E
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E FOR THE LENGTH_BLOCK ENTITY 

 
 
 

HDL code for the length_block entity of ePAPP. As described in 
sponsible for calculating dynamic field lengths based on 

r fields (i.e. payload lengths). Specific details about 
nd as comments within the code itself. 

k.symbol 
J. Repanshek 
tor Graphics' HDL Designer(TM) 2003.1 (Build 399) 

     std_logic; 
_logic; 

WNTO 0); 
gic; 

ector (7 DOWNTO 0); 

OUT    std_logic; 
   std_logic_vector (15 DOWNTO 0) 

colAnalyzer.length_block.struct 
) 2003.1 (Build 399) 

4.all; 

APPENDIX D 

 

VHDL COD

This appendix contains the V
Section 3.2.3, this component is re
information contained within packet heade
the code can be fou
 
-- VHDL Entity ProtocolAnalyzer.length_bloc
-- Created by Jacob 
-- Generated by Men
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
USE ieee.std_logic_arith.all; 
 
ENTITY length_block IS 
   PORT(  
      clock         : IN
      enable        : IN     std
      field_data    : IN     std_logic_vector (31 DO
      length        : IN     std_lo
      protocol_addr : IN     std_logic_v
      reset         : IN     std_logic; 
      no_optional   : 
      var_len_reg   : OUT 
   ); 
 
END length_block ; 
 
-- VHDL Architecture Proto
-- Generated by Mentor Graphics' HDL Designer(TM
 
LIBRARY ieee; 
USE ieee.std_logic_116
USE ieee.std_logic_arith.all; 
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ARCHITECTURE struct OF length_block IS 

rations 
_len     : std_logic_vector(5 DOWNTO 0); 

or(5 DOWNTO 0); 
er_len_reg : std_logic_vector(5 DOWNTO 0); 
eg        : std_logic_vector(15 DOWNTO 0); 

len_tmp        : std_logic_vector(15 DOWNTO 0); 
             : std_logic_vector(15 DOWNTO 0); 

IGNAL a_out             : std_logic_vector(15 DOWNTO 0); 
 : std_logic_vector(15 DOWNTO 0); 

L b_out             : std_logic_vector(15 DOWNTO 0); 
ogic; 

s_out         : std_logic; 
ero          : std_logic; 

d_logic; 

out      : std_logic; 
ogic; 

_logic; 
var_len           : std_logic_vector(15 DOWNTO 0); 

len_out       : std_logic_vector(15 DOWNTO 0); 
 SIGNAL var_len_reg_tmp   : std_logic_vector(15 DOWNTO 0); 

EGIN 

 1 len_calc 

 bus indicates what packet field is currently coming  
 field_data. If the field contains information that will be used to 

ic field length, the information is registered and/or used 

, protocol_addr)                                         

m IP header length (in 32 bit words, so add "00") 
ld_data(3 downto 0)) - 5)&"00"; 

 field_data(3 downto 0)&"00"; 
= '1'; 

 
   -- Architecture declarations 
 
   -- Internal signal decla
   SIGNAL IP_header
   SIGNAL IP_header_len_out : std_logic_vect
   SIGNAL IP_head
   SIGNAL IP_len_r
   SIGNAL IP_
   SIGNAL a    
   S
   SIGNAL b                
   SIGNA
   SIGNAL minus             : std_l
   SIGNAL minu
   SIGNAL not_z
   SIGNAL opt               : st
   SIGNAL opt_next          : std_logic; 
   SIGNAL opt_next_
   SIGNAL opt_out           : std_l
   SIGNAL opt_reg           : std
   SIGNAL 
   SIGNAL var_
  
 
B
   -- Architecture concurrent statements 
 
   -- HDL Embedded Text Block
 
   -- The protocol_addr
   -- in on
   -- calculate a dynam
   -- in calculations accordingly. 
 
   process(field_data
   begin 
      case protocol_addr is 
         when "00011000" => 
            -- subtract 5 fro
            var_len <= "0000000000"&(unsigned(fie
            IP_header_len <=
            opt <
            opt_next <= '0'; 
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            a <= a_out; 
_out; 

us <= minus_out; 
11010" => 

          -- subtract IP header length from total IP packet length 

          b <= "0000000000"&IP_header_len_reg; 

          var_len <= var_len_out; 
P_header_len_out; 

pt <= opt_out; 

 optional IP field is next 
"; 

<= '0'; 
t <= '1'; 

          IP_header_len <= IP_header_len_out; 

          b <= b_out; 

       when "00100111" => 
m TCP header length (in 32 bits words, so add "00") 

ar_len <= "0000000000"&(unsigned(field_data(15 downto 12)) - 5)&"00"; 
eg; 

downto 12)&"00"; 

ader_len <= IP_header_len_out; 
"00101010" => 

al TCP field is next 
          var_len <= "0000000000000000"; 

          opt_next <= '1'; 

          a <= a_out; 

inus <= minus_out; 
1" => 

th (in bytes) 
nsigned(field_data(7 downto 0)) - 8); 

ader_len <= IP_header_len_out; 
 a_out; 

            b <= b
            min
         when "000
  
            a <= field_data(15 downto 0); 
  
            minus <= '1'; 
  
            IP_header_len <= I
            o
            opt_next <= opt_next_out; 
         when "00100001" => 
            --
            var_len <= "0000000000000000
            opt 
            opt_nex
  
            a <= a_out; 
  
            minus <= minus_out; 
  
            -- subtract 5 fro
            v
            a <= IP_len_r
            b <= "0000000000"&field_data(15 
            minus <= '1'; 
            opt <= '1'; 
            opt_next <= '0'; 
            IP_he
         when 
            -- option
  
            opt <= '0'; 
  
            IP_header_len <= IP_header_len_out; 
  
            b <= b_out; 
            m
         when "0010111
            -- subtract 8 from the UDP leng
            var_len <= "00000000"&(u
            opt <= '0'; 
            opt_next <= '0'; 
            IP_he
            a <=

113 



 

            b <= b_out; 
          minus <= minus_out; 

          var_len <= "0000000000000000"; 

          opt_next <= '0'; 

P_header_len <= IP_header_len_out; 

ck,reset) 

ge(clock)) then 
       a_out<=a; 
       b_out<=b; 

       opt_out<=opt; 
t; 

       var_len_out<=var_len; 

   end process; 
 
   -- HDL Embedded Text Block 2 length_reg 
 
   -- This process registers a dynamic field width value to be output 
   -- from length_block. Also, this block identifies whether the dynamic 
   -- length is a non-zero value. 
 
   process(reset,clock) 
   begin 
      if(reset='1') then 
         var_len_reg_tmp<="0000000000000000"; 
         not_zero<='0'; 
         opt_reg<='0'; 
      elsif (rising_edge(clock)) then 
         if(enable='1' AND length='1' and protocol_addr/="00011010") then 
            var_len_reg_tmp<=(unsigned(var_len)-'1'); 
            opt_reg<=opt; 
            if(var_len/="0000000000000000") then 
               not_zero<='1'; 
            else 
               not_zero<='0'; 

  
         when others => 
  
            opt <= '0'; 
  
            minus <= '0'; 
            I
            a <= a_out; 
            b <= b_out; 
      end case; 
   end process; 
    
   process(clo
   begin 
      if(rising_ed
  
  
         minus_out<=minus; 
         IP_header_len_out<=IP_header_len; 
  
         opt_next_out<=opt_nex
  
      end if; 
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            end if; 
         end if; 
      end if; 
   end process; 
 
   -- HDL Embedded Text Block 3 rename 
 
   -- This blocks specifies the output of length_block. 
 
   process(protocol_addr) 
   begin 
      if(protocol_addr="00101100") then       

 end process; 

IP_len_reg 

 -- This process registers the length of the IP portion of packet. 

    if(reset='1') then 
0000000"; 

sing_edge(clock)) then 
dr="00011011") then 

P_header_len 

  if(enable='1' AND length='1') then 
          IP_header_len_reg<=IP_header_len; 

    end if; 

         var_len_reg<=(unsigned(IP_len_tmp)-1); 
      else 
         var_len_reg<=var_len_reg_tmp; 
      end if; 
  
 
   -- HDL Embedded Text Block 4 
 
  
 
   process(reset,clock) 
   begin 
  
         IP_len_reg<="000000000
      elsif (ri
         if(enable='1' AND protocol_ad
            IP_len_reg<=IP_len_tmp; 
         end if; 
      end if; 
   end process; 
 
   -- HDL Embedded Text Block 5 I
 
   -- This process registers the value of the IP header length. 
 
   process(reset,clock) 
   begin 
      if(reset='1') then 
         IP_header_len_reg<="000000"; 
      elsif (rising_edge(clock)) then 
       
  
         end if; 
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   end process; 

rforms subtraction on two 16-bit inputs. 

 begin 

       IP_len_tmp <= "0000000000000000"; 
en 

    if(minus='1') then 
(a) - unsigned(b)); 

 end process; 

 'I0' of 'nand' 
g AND opt_next); 

 -- Instance port mappings. 

 
   -- HDL Embedded Text Block 6 subtractor 
 
   -- This block pe
 
   process(reset,clock) 
  
      if(reset='1') then 
  
      elsif(rising_edge(clock)) th
     
            IP_len_tmp <= (unsigned
         end if; 
      end if; 
  
 
 
   -- ModuleWare code(v1.0) for instance
   no_optional <= NOT(not_zero AND opt_re
 
  
 
END struct; 
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ENDIX E 
 
 
 

DE FOR THE PROTOCOL_MEMORY ENTITY 
 
 
 

 VHDL code for the protocol_memory entity of ePAPP. As described 
nent keeps track of the current part of a packet being classified and 

hat field type is next. Specific details about the code can be 
 the code itself. 

zer.protocol_memory.symbol 

aphics' HDL Designer(TM) 2003.1 (Build 399) 

all; 
 

_logic; 
ic; 

 std_logic; 
td_logic_vector (7 DOWNTO 0); 

td_logic_vector (7 DOWNTO 0); 

_logic; 
T    std_logic; 

_logic_vector (15 DOWNTO 0); 
    std_logic; 

   std_logic; 
std_logic_vector (7 DOWNTO 0); 

ctor (7 DOWNTO 0); 
T    std_logic; 
    std_logic 

APP

VHDL CO

This appendix contains the
in Section 3.2.1, this compo
uses a truth table to determine w
found as comments within
 
-- VHDL Entity ProtocolAnaly
-- Created by Jacob J. Repanshek 
-- Generated by Mentor Gr
 
LIBRARY ieee; 
USE ieee.std_logic_1164.
USE ieee.std_logic_arith.all;
 
ENTITY protocol_memory IS 
   PORT(  
      clock              : IN     std
      enable             : IN     std_log
      incr_addr          : IN    
      jump_addr          : IN     s
      jump_addr_next     : IN     s
      load_addr          : IN     std_logic; 
      reset              : IN     std
      branch_indicator   : OU
      field_width        : OUT    std
      len_indicator      : OUT
      packet_done        : OUT 
      protocol_addr      : OUT    
      protocol_addr_reg  : OUT    std_logic_ve
      protocol_indicator : OU
      var_len_field      : OUT
   ); 
 
END protocol_memory ; 
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-- VHDL Architecture ProtocolAnalyzer.protocol_memory.struct 

aphics' HDL Designer(TM) 2003.1 (Build 399) 

; 

F protocol_memory IS 

ns 

tor(7 DOWNTO 0); 

nt statements 
 protocol_table 

 

hich contains information about all  
pported by ePAPP. This information is 

 current part of a packet being read in, 
he packet field and whether or not it contains 

ssifying future fields, such as length information. 

----------------------- 
cess: PROCESS(protocol_addr_int) 
--------------------------------------------- 

 IS 

000000000011"; 

= '0'; 

000000000011"; 

-- Generated by Mentor Gr
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all
USE ieee.std_logic_arith.all; 
 
ARCHITECTURE struct O
 
   -- Architecture declarations 
    
   -- Internal signal declaratio
   SIGNAL clk_en : std_logic; 
   SIGNAL protocol_addr_int : std_logic_vec
 
 
BEGIN 
   -- Architecture concurre
   -- HDL Embedded Block 1
   -- Non hierarchical truthtable
 
   -- This is the truth table w
   -- of the protocol fields su
   -- used not only to identify the
   -- but also the width of t
   -- information useful to cla
 
   ----------------------------------------------------
   protocol_table_truth_pro
   ------------------------------
   BEGIN 
      -- Block 1 
      CASE protocol_addr_int
      WHEN "00000000" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '1'; 
      WHEN "00000001" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
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         protocol_indicator <= '0'; 

000000000011"; 

= '0'; 

000000000001"; 

= '0'; 

000000000011"; 

= '0'; 

000000000001"; 

= '0'; 

000000000001"; 

= '1'; 

000000000001"; 

= '0'; 

         packet_done <= '0'; 
      WHEN "00000010" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00000011" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00000100" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00000101" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00000110" => 
         branch_indicator <= '1'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00000111" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00001000" => 
         branch_indicator <= '0'; 
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         field_width <= "0000000000000001"; 

= '0'; 

000000000000"; 

= '0'; 

000000000000"; 

= '0'; 

000000000001"; 

= '0'; 

000000000011"; 

= '0'; 

000000000001"; 

= '0'; 

000000000011"; 

= '0'; 

         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00001001" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00001010" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00001011" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00001100" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00001101" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00001110" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <

120 



 

         packet_done <= '0'; 
      WHEN "00001111" => 
         branch_indicator <= '0'; 
         field_width <= "0000000000000011"; 

= '0'; 

000000000001"; 

= '0'; 

000000000011"; 

= '0'; 

000000000011"; 

= '0'; 

000000000011"; 

= '0'; 

000000000011"; 

= '0'; 

000000000001"; 

         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00010000" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00010001" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00010010" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00010011" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00010100" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00010101" => 
         branch_indicator <= '0'; 
         field_width <= "0000
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         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <= '0'; 

000000000011"; 

= '0'; 

000000000000"; 

= '1'; 

000000000000"; 

= '0'; 

000000000000"; 

= '0'; 

000000000001"; 

= '0'; 

000000000001"; 

= '0'; 

         packet_done <= '0'; 
      WHEN "00010110" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00010111" => 
         branch_indicator <= '1'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00011000" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '1'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00011001" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00011010" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '1'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00011011" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 

122 



 

      WHEN "00011100" => 
         branch_indicator <= '0'; 
         field_width <= "0000000000000001"; 

= '0'; 

000000000000"; 

= '0'; 

000000000000"; 

= '1'; 

000000000001"; 

= '0'; 

000000000011"; 

= '0'; 

000000000011"; 

= '0'; 

111111111111"; 

         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00011101" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00011110" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00011111" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00100000" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00100001" => 
         branch_indicator <= '1'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00100010" => 
         branch_indicator <= '1'; 
         field_width <= "1111
         len_indicator <= '0'; 
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         var_len_field <= '1'; 
         protocol_indicator <= '0'; 

000000000001"; 

= '0'; 

000000000001"; 

= '0'; 

000000000011"; 

= '0'; 
 <= '0'; 

    WHEN "00100110" => 

       field_width <= "0000000000000011"; 

       var_len_field <= '0'; 

       packet_done <= '0'; 

       branch_indicator <= '0'; 
001"; 

'1'; 
_len_field <= '0'; 

tor <= '0'; 

 '0'; 

icator <= '0'; 
n_field <= '0'; 

indicator <= '0'; 
       packet_done <= '0'; 

         packet_done <= '0'; 
      WHEN "00100011" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00100100" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done <= '0'; 
      WHEN "00100101" => 
         branch_indicator <= '0'; 
         field_width <= "0000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <
         packet_done
  
         branch_indicator <= '0'; 
  
         len_indicator <= '0'; 
  
         protocol_indicator <= '0'; 
  
      WHEN "00100111" => 
  
         field_width <= "0000000000000
         len_indicator <= 
         var
         protocol_indica
         packet_done <= '0'; 
      WHEN "00101000" => 
         branch_indicator <=
         field_width <= "0000000000000001"; 
         len_ind
         var_le
         protocol_
  
      WHEN "00101001" => 
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         field_width <= "0000000000000001"; 
         len_indicator <= '0'; 
         var_len_field <= '0'; 
  

       branch_indicator <= '0'; 

       protocol_indicator <= '0'; 
0'; 

nch_indicator <= '1'; 
"0000000000000001"; 

 

 

111111"; 
icator <= '0'; 

101100" => 

 <= "1111111111111111"; 
tor <= '0'; 

_field <= '1'; 
ol_indicator <= '1'; 

ne <= '0'; 
    WHEN "00101101" => 
       branch_indicator <= '0'; 

       var_len_field <= '0'; 
'; 

       packet_done <= '0'; 
0101110" => 

         branch_indicator <= '0'; 
         field_width <= "0000000000000001"; 
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <= '0'; 
         packet_done <= '0'; 
      WHEN "00101111" => 
         branch_indicator <= '0'; 
         field_width <= "0000000000000001"; 
         len_indicator <= '1'; 
         var_len_field <= '0'; 

         packet_done <= '
      WHEN "00101010" => 
         bra
         field_width <= 
         len_indicator <= '0'; 
         var_len_field <= '0';
         protocol_indicator <= '1'; 
         packet_done <= '0';
      WHEN "00101011" => 
         branch_indicator <= '0'; 
         field_width <= "1111111111
         len_ind
         var_len_field <= '1'; 
         protocol_indicator <= '0'; 
         packet_done <= '0'; 
      WHEN "00
         branch_indicator <= '1'; 
         field_width
         len_indica
         var_len
         protoc
         packet_do
  
  
         field_width <= "0000000000000001"; 
         len_indicator <= '0'; 
  
         protocol_indicator <= '0
  
      WHEN "0
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         protocol_indicator <= '0'; 
         packet_done <= '0'; 
      WHEN "00110000" => 
         branch_indicator <= '0'; 
         field_width <= "000000000000000
         len_indicator <= '0'; 
         var_len_field <= '0'; 
         protocol_indicator <= '0'; 
         packet_done <=
      WHEN "00110001" => 
         branch_indicator <= '1'; 
         field_width <= "1111111111111111"; 

    WHEN OTHERS => 

111111"; 

       var_len_field <= '0'; 
icator <= '0'; 

ol_table_truth_process; 

reg 

t protocol address. 

0"; 

addr_int; 

1"; 

 '0'; 

         len_indicator <= '0'; 
         var_len_field <= '1'; 
         protocol_indicator <= '1'; 
         packet_done <= '0'; 
  
         branch_indicator <= '0'; 
         field_width <= "1111111111
         len_indicator <= '0'; 
  
         protocol_ind
         packet_done <= '0'; 
      END CASE; 
 
   END PROCESS protoc
 
   -- Architecture concurrent statements  
 
   -- HDL Embedded Text Block 2 addr_
 
   -- This process registers the curren
 
   protocol_addr<=protocol_addr_int; 
   process(reset,clock) 
   begin 
      if(reset='1') then 
         protocol_addr_reg<="0000000
      elsif(rising_edge(clock)) then 
         if(enable='1') then 
            protocol_addr_reg<=protocol_
         end if; 
      end if; 
   end process; 
 
   -- HDL Embedded Text Block 3 counter 
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   -- This process keeps a loadable counter that keeps track of 

ocol_memory. A branch is enabled 
to the counter. 

; 

p_addr; 

nstance 'I1' of 'and' 
; 

   -- the current location in the prot
   -- by loading a value from jump_tlb in
 
   process(clock,reset) 
   variable cnt : std_logic_vector(7 downto 0); 
   begin 
      if(reset='1') then 
         protocol_addr_int <= "00000000"
         cnt := "00000001"; 
      elsif(rising_edge(clock)) then 
         if(clk_en='1') then 
            if(load_addr='1') then 
               protocol_addr_int <= jum
               cnt := jump_addr_next; 
            else 
               protocol_addr_int <= cnt; 
               if(cnt = "11111111") then 
                  cnt := "00000000"; 
               else 
                  cnt := (unsigned(cnt) + '1'); 
               end if; 
            end if; 
         end if; 
      end if; 
   end process; 
 
 
   -- ModuleWare code(v1.0) for i
   clk_en <= enable AND incr_addr
 
   -- Instance port mappings. 
 
END struct; 
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ENDIX F 
 
 
 

_CAM ENTITY 
 
 
 

ndix contains the VHDL code for the snort_cam entity of CASMA. This entity 
all of the VHDL code responsible for everything from receiving data from ePAPP to 

 CAM to retrieving results from the CAM and outputting them. Specific 
bout the code can be found as comments within the code itself. 

L Entity CAMmodel.snort_CAM.symbol 
ed by Jacob J. Repanshek 
rated by Mentor Graphics' HDL Designer(TM) 2003.1 (Build 399) 

Y ieee; 
.std_logic_1164.all; 

e.std_logic_arith.all; 

 snort_CAM IS 
  
k_cam       : OUT    std_logic_vector (5 DOWNTO 0); 

init        : IN     std_logic_vector (2 DOWNTO 0); 
_b_cam     : OUT    std_logic; 
_b_init    : IN     std_logic; 
_b          : IN     std_logic; 

cam         : OUT    std_logic_vector (2 DOWNTO 0); 
cam         : OUT    std_logic_vector (2 DOWNTO 0); 
init        : IN     std_logic_vector (2 DOWNTO 0); 
k_init      : IN     std_logic_vector (5 DOWNTO 0); 

ck          : IN     std_logic; 
one        : IN     std_logic; 
cam        : OUT    std_logic_vector (10 DOWNTO 0); 
init       : IN     std_logic_vector (10 DOWNTO 0); 
am          : OUT    std_logic; 
nit         : IN     std_logic; 
am          : OUT    std_logic; 
it         : IN     std_logic; 
ut_b         : IN     std_logic; 

hIn_cam     : OUT    std_logic_vector (6 DOWNTO 0); 

APP

VHDL CODE FOR THE SNORT

This appe
contains 
sending data to the
details a
 
-- VHD
-- Creat
-- Gene
 
LIBRAR
USE ieee
USE iee
 
ENTITY
   PORT(
      Gmas
      Crb_
      Burst
      Burst
      CeOe
      Crb_
      Dev_
      Dev_
      Gmas
      HitA
      InitD
      Inst_
      Inst_
      LC_c
      LC_i
      LS_c
      LS_in
      MMO
      Matc
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      MatchIn_init    : IN     std_logic_vector (6 DOWNTO 0); 
hOut        : IN     std_logic; 
r          : IN     std_logic; 
n_cam      : OUT    std_logic; 
n_init     : IN     std_logic; 
k           : IN     std_logic; 
ata         : INOUT  std_logic_vector (71 DOWNTO 0); 
tb_cam      : OUT    std_logic; 
tb_init     : IN     std_logic; 
_cam       : OUT    std_logic; 
_init      : IN     std_logic; 

cam         : OUT    std_logic; 
init        : IN     std_logic; 
am         : OUT    std_logic; 

 : IN     std_logic; 
do             : IN     std_logic; 

    Tms_cam         : OUT    std_logic; 
_logic; 

c; 

    We_b            : IN     std_logic; 
    clock_cam       : OUT    std_logic; 

    Phasen          : IN     std_logic; 
    clock           : IN     std_logic; 

c_vector (31 DOWNTO 0); 
c_vector (7 DOWNTO 0); 

r (1 DOWNTO 0) 

M.struct 
ner(TM) 2003.1 (Build 399) 

      Matc
      ParEr
      Phase
      Phase
      RdAc
      ReqD
      ReqS
      ReqS
      Rst_b
      Rst_b
      Tck_
      Tck_
      Tdi_c
      Tdi_init       
      T
  
      Tms_init        : IN     std
      Trst_b_cam      : OUT    std_logi
      Trst_b_init     : IN     std_logic; 
  
  
      clock_init      : IN     std_logic; 
      indx            : IN     std_logic_vector (23 DOWNTO 0); 
      valid           : IN     std_logic; 
  
  
      field_data      : IN     std_logi
      field_type      : IN     std_logi
      reset           : IN     std_logic; 
      valid_in        : IN     std_logic; 
      ReqDataOut      : OUT    std_logic_vector (71 DOWNTO 0); 
      address_valid   : OUT    std_logic; 
      hit_address     : OUT    std_logic_vector (16 DOWNTO 0); 
      search_type_out : OUT    std_logic_vecto
   ); 
 
END snort_CAM ; 
 
 
-- VHDL Architecture CAMmodel.snort_CA
-- Generated by Mentor Graphics' HDL Desig
 
LIBRARY ieee; 
USE ieee.std_logic_1164.all; 
USE ieee.std_logic_arith.all; 
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USE ieee.STD_LOGIC_UNSIGNED.all; 
 
LIBRARY CAMmodel; 
 
ARCHITECTURE struct OF snort_CAM IS 
 
   -- Architecture declarations 
-- Non hierarchical state machine declarations 
TYPE CSM1_CURRENT_STATE_STATE_TYPE IS ( 
      s0, 
      extra_start, 
      s48, 
      s49, 
      s50, 
      header_start1, 
      h2, 
      s6, 
      s7, 
      s8, 
      s9, 
      s10, 
      s11, 
      s12, 
      s3, 
      s4, 
      s43, 
      s44, 
      s45, 
      s46, 
      s47, 
      s51, 
      s29, 
      s27, 
      s26, 
      s25, 
      s24, 
      s23, 
      s22, 
      s21, 
      s20, 
      s19, 
      s18, 
      s17, 
      s16, 
      s15, 
      s14, 
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      payload_start1, 
      s42, 
      s41, 
      s40, 
      s39, 
      s38, 
      s30, 
      s37, 
      s36, 
      s35, 
      s34, 
      s33, 
      s32, 
      s31, 
      scroll_start 
   ); 
 
-- State vector declaration 
ATTRIBUTE state_vector : string; 
ATTRIBUTE state_vector OF struct : ARCHITECTURE IS "csm1_current_state" ; 

NT_STATE_STATE_TYPE ; 
STATE_STATE_TYPE ; 

NTO 0); 
(2 DOWNTO 0); 

5 DOWNTO 0); 
(10 DOWNTO 0); 

c_vector(15 DOWNTO 0); 
 0); 

_vector(7 DOWNTO 0); 

 
 
-- Declare current and next state signals 
SIGNAL csm1_current_state : CSM1_CURRE
SIGNAL csm1_next_state : CSM1_CURRENT_
 
 
   -- Internal signal declarations 
   -- Internal signal declarations 
   SIGNAL Burst_b                       : std_logic; 
   SIGNAL Crb                           : std_logic_vector(2 DOW
   SIGNAL Dev                           : std_logic_vector
   SIGNAL Gmask                         : std_logic_vector(
   SIGNAL Inst                          : std_logic_vector
   SIGNAL LC                            : std_logic; 
   SIGNAL LS                            : std_logic; 
   SIGNAL MatchIn                       : std_logic_vector(6 DOWNTO 0); 
   SIGNAL ReqStb                        : std_logic; 
   SIGNAL Rst_b                         : std_logic; 
   SIGNAL Tck                           : std_logic; 
   SIGNAL Tdi                           : std_logic; 
   SIGNAL Tms                           : std_logic; 
   SIGNAL Trst_b                        : std_logic; 
   SIGNAL arp_hardware                  : std_logi
   SIGNAL arp_hw_dest                   : std_logic_vector(47 DOWNTO
   SIGNAL arp_hw_len                    : std_logic
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   SIGNAL arp_hw_src                    : std_logic_vector(47 DOWNTO 0); 
ic_vector(15 DOWNTO 0); 

_vector(7 DOWNTO 0); 
 SIGNAL arp_protocol                  : std_logic_vector(15 DOWNTO 0); 
 SIGNAL count_up                      : std_logic_vector(10 DOWNTO 0); 

); 

WNTO 0); 

3199   : std_logic; 
_34000 : std_logic; 

 SIGNAL dest_port_between_32772_34000 : std_logic; 
ic; 

 SIGNAL dest_port_gt_1023             : std_logic; 
 SIGNAL dest_port_gt_499              : std_logic; 

L dest_port_not_80              : std_logic; 
logic; 
_logic; 

 : std_logic; 
 SIGNAL dsize_gt_1023                 : std_logic; 

gic; 
 SIGNAL dsize_gt_800                  : std_logic; 

ogic_vector(31 DOWNTO 0); 
 ethernet_dest                 : std_logic_vector(47 DOWNTO 0); 

L ethernet_src                  : std_logic_vector(47 DOWNTO 0); 
GNAL ethernet_type                 : std_logic_vector(15 DOWNTO 0); 

 header_search_done            : std_logic; 
string          : std_logic_vector(575 DOWNTO 0); 

    : std_logic_vector(7 DOWNTO 0); 
_gt_0                : std_logic; 

ic; 
_logic; 

 SIGNAL icmp_code_gt_3                : std_logic; 
mp_id                       : std_logic_vector(15 DOWNTO 0); 

 SIGNAL icmp_seq                      : std_logic_vector(15 DOWNTO 0); 
ctor(7 DOWNTO 0); 

   SIGNAL arp_opcode                    : std_log
   SIGNAL arp_prot_len                  : std_logic
  
  
   SIGNAL ctrl_bus                      : std_logic_vector(40 DOWNTO 0
   SIGNAL curr_shift                    : std_logic_vector(7 DOWNTO 0); 
   SIGNAL dest_port                     : std_logic_vector(15 DO
   SIGNAL dest_port_between_1000_1300   : std_logic; 
   SIGNAL dest_port_between_3127_
   SIGNAL dest_port_between_32771
  
   SIGNAL dest_port_between_6666_7000   : std_log
  
  
   SIGNA
   SIGNAL dsize_gt_1                    : std_
   SIGNAL dsize_gt_100                  : std
   SIGNAL dsize_gt_1000                
  
   SIGNAL dsize_gt_128                  : std_logic; 
   SIGNAL dsize_gt_1445                 : std_logic; 
   SIGNAL dsize_gt_156                  : std_logic; 
   SIGNAL dsize_gt_200                  : std_logic; 
   SIGNAL dsize_gt_500                  : std_logic; 
   SIGNAL dsize_gt_512                  : std_logic; 
   SIGNAL dsize_gt_6                    : std_logic; 
   SIGNAL dsize_gt_720                  : std_lo
  
   SIGNAL dsize_lt_25                   : std_logic; 
   SIGNAL ethernet_checksum             : std_l
   SIGNAL
   SIGNA
   SI
   SIGNAL header_ready                  : std_logic; 
   SIGNAL
   SIGNAL header_search_
   SIGNAL icmp_code                 
   SIGNAL icmp_code
   SIGNAL icmp_code_gt_1                : std_logic; 
   SIGNAL icmp_code_gt_15               : std_log
   SIGNAL icmp_code_gt_2                : std
  
   SIGNAL ic
  
   SIGNAL icmp_type                     : std_logic_ve
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   SIGNAL init_bus                      : std_logic_vector(40 DOWNTO 0); 
0); 

ctor(2 DOWNTO 0); 
_header_checksum            : std_logic_vector(15 DOWNTO 0); 

eader_len                 : std_logic_vector(3 DOWNTO 0); 
ion             : std_logic_vector(15 DOWNTO 0); 

t                     : std_logic_vector(12 DOWNTO 0); 
ns                    : std_logic_vector(7 DOWNTO 0); 

o_gt_134               : std_logic; 
otocol                   : std_logic_vector(7 DOWNTO 0); 

GNAL ip_src                        : std_logic_vector(31 DOWNTO 0); 
 0); 

 ip_ttl                        : std_logic_vector(7 DOWNTO 0); 
  : std_logic; 

                       : std_logic_vector(7 DOWNTO 0); 
ic_vector(3 DOWNTO 0); 

            : std_logic; 
 : std_logic_vector(217 DOWNTO 0); 

count                 : std_logic_vector(15 DOWNTO 0); 
   : std_logic_vector(15 DOWNTO 0); 

ready                 : std_logic; 
           : std_logic; 

search_string         : std_logic_vector(575 DOWNTO 0); 

ic; 
O 0); 

_vector(13 DOWNTO 0); 
gic; 
_vector(15 DOWNTO 0); 

rc_port_between_1000_1300    : std_logic; 
6_7000    : std_logic; 

port_gt_1023              : std_logic; 
o_23         : std_logic; 

: std_logic; 
       : std_logic_vector(31 DOWNTO 0); 

p_checksum                  : std_logic_vector(15 DOWNTO 0); 
c_vector(7 DOWNTO 0); 

header_len                : std_logic_vector(3 DOWNTO 0); 
_num                   : std_logic_vector(31 DOWNTO 0); 

         : std_logic_vector(15 DOWNTO 0); 
dow_size               : std_logic_vector(15 DOWNTO 0); 

         : std_logic_vector(15 DOWNTO 0); 
                       : std_logic_vector(15 DOWNTO 0); 

 : std_logic; 
                     : std_logic_vector(7 DOWNTO 0); 

  : std_logic; 

   SIGNAL ip_dest                       : std_logic_vector(31 DOWNTO 
   SIGNAL ip_flags                      : std_logic_ve
   SIGNAL ip
   SIGNAL ip_h
   SIGNAL ip_identificat
   SIGNAL ip_offse
   SIGNAL ip_optio
   SIGNAL ip_prot
   SIGNAL ip_pr
   SI
   SIGNAL ip_total_len                  : std_logic_vector(15 DOWNTO
   SIGNAL
   SIGNAL ip_ttl_gt_220               
   SIGNAL ip_type
   SIGNAL ip_version                    : std_log
   SIGNAL max_shift         
   SIGNAL padding                      
   SIGNAL payload_
   SIGNAL payload_len                
   SIGNAL payload_
   SIGNAL payload_search_done
   SIGNAL payload_
   SIGNAL same_ip                       : std_logic; 
   SIGNAL search_again                  : std_log
   SIGNAL search_type                   : std_logic_vector(1 DOWNT
   SIGNAL shift_count                   : std_logic
   SIGNAL shift_payload                 : std_lo
   SIGNAL src_port                      : std_logic
   SIGNAL s
   SIGNAL src_port_between_666
   SIGNAL src_
   SIGNAL src_port_not_21_t
   SIGNAL src_port_not_80               
   SIGNAL tcp_ack_num            
   SIGNAL tc
   SIGNAL tcp_flags                     : std_logi
   SIGNAL tcp_
   SIGNAL tcp_seq
   SIGNAL tcp_urgent_pointer   
   SIGNAL tcp_win
   SIGNAL udp_checksum         
   SIGNAL udp_len
   SIGNAL wena                         
   SIGNAL ffout    
   SIGNAL empty                       
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   SIGNAL rena                          : std_logic; 
td_logic; 

                      : std_logic; 

ns(v1.0) for instance 'I1' of 'fifo' 
 IS ARRAY (1500 DOWNTO 0) OF std_logic_vector(7 DOWNTO 0); 

ER RANGE 0 TO 1500; 
naddr : INTEGER RANGE 0 TO 1500; 

reg; 
nreg : mw_I1sreg; 

std_logic_vector(13 downto 0); 

current statements 
troller 

l state machine 

ine flows from one search type to the other as packets are buffered. A packet  
e first header information of a packet is completely registered.  

rch returns results, the flow shifts to the scroll super-state, in which all of the  
t. When all matches have been specified and enough of a payload  

rching, the flow moves to the payload search super- 
en all the results for one payload search have been output, the flow either goes to  

load left to be searched, or back to header searching if a  
 header has been buffered. 

------------------------------------------- 
S( 

----------------------------- 

HEN 

s 
lock = '1') THEN 

state <= csm1_next_state; 
ternals 

state_clocked; 

   SIGNAL full                          : s
   SIGNAL aempty  
 
 
   -- ModuleWare signal declaratio
   TYPE mw_I1sreg
   SIGNAL mw_I1caddr : INTEG
   SIGNAL mw_I1
   SIGNAL mw_I1creg : mw_I1s
   SIGNAL mw_I1
 
signal temp_count : 
 
 
BEGIN 
   -- Architecture con
   -- HDL Embedded Block 1 con
   -- Non hierarchica
 
   -- This state mach
   -- header search begins when th
   -- If the header sea
   -- search matches are outpu
   -- has been buffered to start payload sea
   -- state. Wh
   -- another payload search if there is pay
   -- new packet
 
   ---------------------------------
   csm1_current_state_clocked : PROCES
      clock, 
      reset 
   ) 
   -----------------------------------------------
   BEGIN 
      IF (reset = '1') T
         csm1_current_state <= s0; 
         -- Reset Value
      ELSIF (clock'EVENT AND c
         csm1_current_
         -- Default Assignment To In
 
      END IF; 
 
   END PROCESS csm1_current_
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   ---------------------------------------------------------------------------- 

e_nextstate : PROCESS ( 

-------------------------------------- 

r_start1; 
rt => 

ad_ready='1'))) THEN 
 

((search_type="01")) THEN 
r_start1; 

tate <= s50; 

tart1 => 
N 

tate <= h2; 

tate <= header_start1; 

_next_state <= s8; 

ext_state <= s9; 

   csm1_current_stat
      HitAck, 
      MatchOut, 
      csm1_current_state, 
      header_ready, 
      payload_ready, 
      search_again, 
      search_type 
   ) 
   --------------------------------------
   BEGIN 
      CASE csm1_current_state IS 
      WHEN s0 => 
            csm1_next_state <= heade
      WHEN extra_sta
            csm1_next_state <= s48; 
      WHEN s48 => 
            csm1_next_state <= s49; 
      WHEN s49 => 
            csm1_next_state <= s50; 
      WHEN s50 => 
         IF (((search_type="00") AND (paylo
            csm1_next_state <= payload_start1;
         ELSIF (search_again='1' AND payload_ready='1') THEN 
            csm1_next_state <= payload_start1; 
         ELSIF 
            csm1_next_state <= heade
         ELSE 
            csm1_next_s
         END IF; 
      WHEN header_s
         IF ((header_ready='1')) THE
            csm1_next_s
         ELSE 
            csm1_next_s
         END IF; 
      WHEN h2 => 
            csm1_next_state <= s6; 
      WHEN s6 => 
            csm1_next_state <= s7; 
      WHEN s7 => 
            csm1
      WHEN s8 => 
            csm1_n

135 



 

      WHEN s9 => 
            csm1_next_state <= s10; 
      WHEN s10 => 
            csm1_next_state <= s11; 
      WHEN s11 => 
            csm1_next_state <= s12; 
      WHEN s12 => 
            csm1_next_state <= s3; 
      WHEN s3 => 
            csm1_next_state <= s4; 
      WHEN s4 => 
            csm1_next_state <= s43; 
      WHEN s43 => 
            csm1_next_state <= s44; 
      WHEN s44 => 
            csm1_next_state <= s45; 

 
          csm1_next_state <= s46; 

          csm1_next_state <= s47; 

51 => 
k='1') THEN 

<= scroll_start; 

 extra_start; 

 
state <= scroll_start; 

ch_again='1') THEN 
t_state <= extra_start; 

      csm1_next_state <= extra_start; 

 s27 => 
 s29; 

state <= s27; 

= s26; 

ext_state <= s25; 
 => 

24; 

      WHEN s45 =>
  
      WHEN s46 => 
  
      WHEN s47 => 
            csm1_next_state <= s51; 
      WHEN s
         IF (HitAc
            csm1_next_state 
         ELSE 
            csm1_next_state <=
         END IF; 
      WHEN s29 => 
         IF (HitAck='1') THEN
            csm1_next_
         ELSIF (sear
            csm1_nex
         ELSE 
      
         END IF; 
      WHEN
            csm1_next_state <=
      WHEN s26 => 
            csm1_next_
      WHEN s25 => 
            csm1_next_state <
      WHEN s24 => 
            csm1_n
      WHEN s23
            csm1_next_state <= s
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      WHEN s22 =
            csm1_next_state <= s23; 
      WHEN s21 =

> 

> 
state <= s22; 

 
xt_state <= s21; 

 => 
xt_state <= s20; 

 
 

= s18; 

          csm1_next_state <= s17; 

 

=> 
tate <= s14; 

again='1') AND (payload_ready='1'))) THEN 
d_start1; 

te <= header_start1; 
") AND (payload_ready='1'))) THEN 

 => 
1; 

; 

38; 
 => 

t='1')) THEN 
roll_start; 

state <= s30; 

            csm1_next_
      WHEN s20 =>
            csm1_ne
      WHEN s19
            csm1_ne
      WHEN s18 =>
            csm1_next_state <= s19;
      WHEN s17 => 
            csm1_next_state <
      WHEN s16 => 
  
      WHEN s15 => 
            csm1_next_state <= s16; 
      WHEN s14 =>
            csm1_next_state <= s15; 
      WHEN payload_start1 
            csm1_next_s
      WHEN s42 => 
         IF (((search_type="01" AND search_
            csm1_next_state <= payloa
         ELSIF ((search_type="01")) THEN 
            csm1_next_sta
         ELSIF (((search_type="00
            csm1_next_state <= payload_start1; 
         ELSE 
            csm1_next_state <= s42; 
         END IF; 
      WHEN s41 => 
            csm1_next_state <= s42; 
      WHEN s40
            csm1_next_state <= s4
      WHEN s39 => 
            csm1_next_state <= s40; 
      WHEN s38 => 
            csm1_next_state <= s39
      WHEN s30 => 
            csm1_next_state <= s
      WHEN s37
         IF ((MatchOu
            csm1_next_state <= sc
         ELSE 
            csm1_next_
         END IF; 
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      WHEN s36 => 
            csm1_next_state <= s37; 

 
5; 

state <= s34; 

2; 

tate <= s31; 

1_current_state_nextstate; 

------------------------------------------------------------ 
e_output : PROCESS ( 

earch_string, 

dy, 
string, 

------------------------------------------------------ 

00"; 

      WHEN s35 => 
            csm1_next_state <= s36; 
      WHEN s34 =>
            csm1_next_state <= s3
      WHEN s33 => 
            csm1_next_
      WHEN s32 => 
            csm1_next_state <= s33; 
      WHEN s31 => 
            csm1_next_state <= s3
      WHEN scroll_start => 
            csm1_next_s
      WHEN OTHERS => 
         csm1_next_state <= s0; 
      END CASE; 
 
   END PROCESS csm
 
   ----------------
   csm1_current_stat
      HitAck, 
      MatchOut, 
      csm1_current_state, 
      header_ready, 
      header_s
      max_shift, 
      payload_rea
      payload_search_
      search_again, 
      search_type, 
      shift_count, 
      temp_count 
   ) 
   ----------------------
   BEGIN 
      -- Default Assignment 
      Burst_b <= '1'; 
      Crb <= "000"; 
      Dev <= "000"; 
      Gmask <= "0000
      Inst <= "00000000000"; 
      LC <= '1'; 
      LS <= '1'; 
      MatchIn <= "0000000"; 
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      ReqData <= 
"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

= '0'; 
 '0'; 

ns 
S 

 (payload_ready='1'))) THEN 

-bit lookup on a snort payload rule 

<=payload_search_string(575 downto 504); 
_again='1' AND payload_ready='1') THEN 

on a snort payload rule 

<=payload_search_string(575 downto 504); 

')) THEN 
rm 576-bit lookup on header information 

qStb<='1'; 
          Inst<="00000111000"; 

wnto 504); 
          search_type<="00"; 

    WHEN h2 => 
; 

       ReqData<=header_search_string(503 downto 432); 

       Inst<="00000111000"; 

ZZZZZZZZZ"; 
      ReqStb <= '0'; 
      Rst_b <= '1'; 
      Tck <= '0'; 
      Tdi <= '0'; 
      Tms <= '0'; 
      Trst_b <= '0'; 
      header_search_done <= '0'; 
      payload_search_done <
      shift_payload <=
      -- Default Assignment To Internals 
 
      -- Combined Actio
      CASE csm1_current_state I
      WHEN s0 => 
         shift_count<="00000000000001"; 
         search_type<="00"; 
      WHEN s50 => 
         IF (((search_type="00") AND
            shift_count<="00000000000001"; 
            header_search_done<='1'; 
            -- perform 576
            ReqStb<='1'; 
            Inst<="00000111000"; 
            ReqData
         ELSIF (search
            -- perform 576-bit lookup 
            ReqStb<='1'; 
            Inst<="00000111000"; 
            ReqData
         END IF; 
      WHEN header_start1 => 
         IF ((header_ready='1
            -- perfo
                        Re
  
            ReqData<=header_search_string(575 do
  
         END IF; 
  
         Inst<="00000111000"
  
      WHEN s6 => 
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         ReqData<=header_search_string(431 downto 360); 
      WHEN s7 => 
         Inst<="00000111000"; 

59 downto 288); 
 s8 => 

st<="00000111000"; 
r_search_string(287 downto 216); 

215 downto 144); 

43 downto 72); 

; 

001"; 
 

nto 0)&'0'; 

ng(71 downto 16)&max_shift&shift_count&'1'; 

ring(143 downto 72); 
=> 

st<="00000111000"; 
payload_search_string(215 downto 144); 

    WHEN s16 => 
         Inst<="00000111000"; 

         ReqData<=header_search_string(3
      WHEN
         In
         ReqData<=heade
      WHEN s9 => 
         Inst<="00000111000"; 
         ReqData<=header_search_string(
      WHEN s10 => 
         Inst<="00000111000"; 
         ReqData<=header_search_string(1
      WHEN s11 => 
         Inst<="00000111000"; 
         ReqData<=header_search_string(71 downto 0)
      WHEN s51 => 
         IF (HitAck='1') THEN 
            ReqStb<='1'; 
            Inst<="00000111001"; 
         END IF; 
      WHEN s29 => 
         IF (HitAck='1') THEN 
            ReqStb<='1'; 
            Inst<="00000111
         ELSIF (search_again='1') THEN
         ELSE 
            payload_search_done<='1'; 
         END IF; 
      WHEN s27 => 
         shift_count<=temp_count(12 dow
      WHEN s26 => 
         temp_count<=shift_count; 
      WHEN s20 => 
         shift_payload<='1'; 
      WHEN s19 => 
         Inst<="00000111000"; 
         ReqData<=payload_search_stri
      WHEN s18 => 
         Inst<="00000111000"; 
         ReqData<=payload_search_st
      WHEN s17 
         In
         ReqData<=
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         ReqData<=payload_search_string(287 downto 
  
         Inst<="00000111000"; 
  

216); 
    WHEN s15 => 

       ReqData<=payload_search_string(359 downto 288); 

="00000111000"; 
d_search_string(431 downto 360); 

nto 432); 

arch_again='1') AND (payload_ready='1'))) THEN 
 snort payload rule 

1'; 
0001"; 

 on a snort payload rule 

search_string(575 downto 504); 

ux 

      WHEN s14 => 
         Inst<
         ReqData<=payloa
      WHEN payload_start1 => 
         Inst<="00000111000"; 
         ReqData<=payload_search_string(503 dow
         search_type<="01"; 
      WHEN s42 => 
         IF (((search_type="01" AND se
            -- perform 576-bit lookup on a
            ReqStb<='1'; 
            Inst<="00000111000"; 
            ReqData<=payload_search_string(575 downto 504); 
         ELSIF ((search_type="01")) THEN 
            payload_search_done<='1'; 
         ELSIF (((search_type="00") AND (payload_ready='1'))) THEN 
            header_search_done<='
            shift_count<="0000000000
            -- perform 576-bit lookup
            ReqStb<='1'; 
            Inst<="00000111000"; 
            ReqData<=payload_
         END IF; 
      WHEN s37 => 
         IF ((MatchOut='1')) THEN 
            ReqStb<='1'; 
            Inst<="00000111001"; 
         END IF; 
      WHEN scroll_start => 
         Inst<="00000111001"; 
      WHEN OTHERS => 
         NULL; 
      END CASE; 
 
   END PROCESS csm1_current_state_output; 
 
   -- Concurrent Statements 
 
   ReqDataOut<=ReqData; 
 
   -- HDL Embedded Text Block 4 CAM_m
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   -- This process serves as a mux that controls what signals reach the CAM:  
 signals from within the snort_CAM entity. 

us(25 downto 19); 
 downto 26); 

downto 32); 

s(37); 

); 

; 
); 

 

); 

 

   -- signals from the initialization unit, or
 
      process(InitDone,ctrl_bus,init_bus) 
      begin 
          
         case InitDone is 
            when '1' => 
               clock_cam <= ctrl_bus(0); 
               Phasen_cam <= ctrl_bus(1); 
               Dev_cam <= ctrl_bus(4 downto 2); 
               Rst_b_cam <= ctrl_bus(5); 
               Burst_b_cam <= ctrl_bus(6); 
               ReqStb_cam <= ctrl_bus(7); 
               Inst_cam <= ctrl_bus(18 downto 8); 
               MatchIn_cam <= ctrl_b
               Gmask_cam <= ctrl_bus(31
               Crb_cam <= ctrl_bus(34 
               Tms_cam <= ctrl_bus(35); 
               Tdi_cam <= ctrl_bus(36); 
               Tck_cam <= ctrl_bu
               Trst_b_cam <= ctrl_bus(38); 
               LC_cam <= ctrl_bus(39
               LS_cam <= ctrl_bus(40); 
            when others => 
               clock_cam <= init_bus(0); 
               Phasen_cam <= init_bus(1); 
               Dev_cam <= init_bus(4 downto 2); 
               Rst_b_cam <= init_bus(5); 
               Burst_b_cam <= init_bus(6)
               ReqStb_cam <= init_bus(7
               Inst_cam <= init_bus(18 downto 8); 
               MatchIn_cam <= init_bus(25 downto 19);
               Gmask_cam <= init_bus(31 downto 26); 
               Crb_cam <= init_bus(34 downto 32
               Tms_cam <= init_bus(35); 
               Tdi_cam <= init_bus(36); 
               Tck_cam <= init_bus(37); 
               Trst_b_cam <= init_bus(38);
               LC_cam <= init_bus(39); 
               LS_cam <= init_bus(40); 
         end case; 
          
      end process; 
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   -- HDL Embedded Text Block 4 packet_field_reg 
 
   -- This process registes packet header information as it is read in on the field_data bus. 

00000000000000000000000000000000000000000"; 
0000000000000000000000"; 

000000000"; 

000000000"; 

0"; 

0000000000000000000000000000000000000000"; 
000000000000000000000000"; 

0000000000000000000"; 
000"; 

000000000000000000000000000000"; 

00000000"; 

000000000000000"; 

000000"; 
0000000000"; 

00000000"; 
; 

0000000000000"; 

00000000000000"; 

00000000000"; 

; 

000000"; 

 
   process(clock,reset) 
      begin 
         if(reset='1') then 
            ethernet_dest <= "0000000
            ethernet_src <= "00000000000000000000000000
            ethernet_type <= "0000000
            arp_hardware <= "0000000000000000"; 
            arp_protocol <= "0000000
            arp_hw_len <= "00000000"; 
            arp_prot_len <= "0000000
            arp_opcode <= "0000000000000000"; 
            arp_hw_src <= "00000000
            arp_hw_dest <= "000000000000000000000000
            ip_src <= "0000000000000
            ip_dest <= "00000000000000000000000000000
            ethernet_checksum <= "00
            ip_version <= "0000"; 
            ip_header_len <= "0000"; 
            ip_type <= "00000000"; 
            ip_total_len <= "00000000
            ip_identification <= "0000000000000000"; 
            ip_flags <= "000"; 
            ip_offset <= "0000000000000"; 
            ip_ttl <= "00000000"; 
            ip_protocol <= "00000000"; 
            ip_header_checksum <= "0
            src_port <= "0000000000000000"; 
            dest_port <= "0000000000
            tcp_seq_num <= "0000000000000000000000
            tcp_ack_num <= "000000000000000000000000
            tcp_header_len <= "0000"
            tcp_flags <= "00000000"; 
            tcp_window_size <= "000
            tcp_checksum <= "0000000000000000"; 
            tcp_urgent_pointer <= "00
            udp_len <= "0000000000000000"; 
            udp_checksum <= "00000
            ip_options <= "00000000"; 
            icmp_type <= "00000000"; 
            icmp_code <= "00000000"
            icmp_id <= "0000000000000000"; 
            icmp_seq <= "0000000000
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         elsif(rising_edge(clock)) then 
            if(header_search_done='1') then 

000000000000000000"; 
000000000000000000000000000000000000000000"; 

0000000000"; 
00000000000"; 

00000000"; 
00"; 

 <= "000000000000000000000000000000000000000000000000"; 
000000000000000000000000000000000000000000"; 

0000000"; 
0000000000000000000000"; 

00000000000000000"; 

000"; 
0000000000000"; 

 "0000000000000000"; 

00000000"; 
0000"; 

000000000000000000000000000"; 

; 
; 

000000000000"; 
0"; 

0000000"; 

00000"; 
 <= "00000000"; 

code <= "00000000"; 

q <= "0000000000000000"; 
          elsif(valid_in='1') then 

                when "00000010" => 

                  when "00000011" => 

               ethernet_dest <= "000000000000000000000000000000
               ethernet_src <= "000000
               ethernet_type <= "000000
               arp_hardware <= "00000
               arp_protocol <= "00000000
               arp_hw_len <= "000000
               arp_prot_len <= "00000000"; 
               arp_opcode <= "0000000000000000"; 
               arp_hw_src
               arp_hw_dest <= "000000
               ip_src <= "0000000000000000000000000
               ip_dest <= "0000000000
               ethernet_checksum <= "000000000000000
               ip_version <= "0000"; 
               ip_header_len <= "0000"; 
               ip_type <= "00000000"; 
               ip_total_len <= "0000000000000
               ip_identification <= "000
               ip_flags <= "000"; 
               ip_offset <= "0000000000000"; 
               ip_ttl <= "00000000"; 
               ip_protocol <= "00000000"; 
               ip_header_checksum <=
               src_port <= "0000000000000000"; 
               dest_port <= "00000000
               tcp_seq_num <= "0000000000000000000000000000
               tcp_ack_num <= "00000
               tcp_header_len <= "0000"; 
               tcp_flags <= "00000000"
               tcp_window_size <= "0000000000000000"
               tcp_checksum <= "0000
               tcp_urgent_pointer <= "000000000000000
               udp_len <= "000000000
               udp_checksum <= "0000000000000000"; 
               ip_options <= "000
               icmp_type
               icmp_
               icmp_id <= "0000000000000000"; 
               icmp_se
  
               case field_type is 
  
                     ethernet_dest(47 downto 16) <= field_data; 
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                     ethernet_dest(15 downto 0) <= field_data(15 downto 0)
  

; 
                when "00000100" => 

rc(47 downto 16) <= field_data; 

a(15 downto 0); 
    when "00000110" => 

_type <= field_data(15 downto 0); 

_data(15 downto 0); 

ta(15 downto 0); 

en "00001010" => 
(7 downto 0); 

arp_opcode <= field_data(15 downto 0); 
when "00001100" => 

_hw_src(47 downto 16) <= field_data; 
                when "00001101" => 

ata(15 downto 0); 
                when "00001110" => 

                   ip_dest <= field_data; 
10" => 

_data; 
 when "00011000" => 

 <= field_data(7 downto 4); 
= field_data(3 downto 0); 

> 
d_data(7 downto 0); 

       ip_total_len <= field_data(15 downto 0); 

 when "00011100" => 
a(15 downto 13); 

(12 downto 0); 
> 

_ttl <= field_data(7 downto 0); 
> 

                     ethernet_s
                  when "00000101" => 
                     ethernet_src(15 downto 0) <= field_dat
              
                     ethernet
                  when "00000111" => 
                     arp_hardware <= field
                  when "00001000" => 
                     arp_protocol <= field_da
                  when "00001001" => 
                     arp_hw_len <= field_data(7 downto 0); 
                  wh
                     arp_prot_len <= field_data
                  when "00001011" => 
                     
                  
                     arp
  
                     arp_hw_src(15 downto 0) <= field_d
  
                     ip_src <= field_data; 
                  when "00001111" => 
                     arp_hw_dest(47 downto 16) <= field_data; 
                  when "00010000" => 
                     arp_hw_dest(15 downto 0) <= field_data(15 downto 0); 
                  when "00010001" => 
  
                  when "000101
                     ethernet_checksum <= field
                 
                     ip_version
                     ip_header_len <
                  when "00011001" =
                     ip_type <= fiel
                  when "00011010" => 
              
                  when "00011011" => 
                     ip_identification <= field_data(15 downto 0); 
                 
                     ip_flags <= field_dat
                     ip_offset <= field_data
                  when "00011101" =
                     ip
                  when "00011110" =
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                     ip_protocol <= field_data(7 downto 0); 
n "00011111" => 

    ip_header_checksum <= field_data(15 downto 0); 

> 
_dest <= field_data; 

    when "00100010" => 
") then 

1 downto 24); 

=> 
_port <= field_data(15 downto 0); 

    when "00100100" => 
ownto 0); 

ield_data; 
=> 

_ack_num <= field_data; 
    when "00100111" => 

tcp_header_len <= field_data(15 downto 12); 
flags <= field_data(7 downto 0); 

                when "00101000" => 
 downto 0); 

                when "00101001" => 

                   tcp_urgent_pointer <= field_data(15 downto 0); 
01" => 

    src_port <= field_data(15 downto 0); 
1110" => 

 downto 0); 

(15 downto 0); 

ownto 0); 

5 payload_len_reg 

e length of the payload by subtracting the IP header length  

                  whe
                 
                  when "00100000" => 
                     ip_src <= field_data; 
                  when "00100001" =
                     ip
              
                     if(ip_options = "00000000
                        ip_options <= field_data(3
                     end if; 
                  when "00100011" 
                     src
              
                     dest_port <= field_data(15 d
                  when "00100101" => 
                     tcp_seq_num <= f
                  when "00100110" 
                     tcp
              
                     
                     tcp_
  
                     tcp_window_size <= field_data(15
  
                     tcp_checksum <= field_data(15 downto 0); 
                  when "00101010" => 
  
                  when "001011
                 
                  when "0010
                     dest_port <= field_data(15
                  when "00101111" => 
                     udp_len <= field_data
                  when "00110000" => 
                     udp_checksum <= field_data(15 d
                  when others => 
               end case; 
            end if; 
         end if; 
      end process; 
 
   -- HDL Embedded Text Block 
 
   -- The process calculates th
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   -- and TCP or UDP header length from the total IP packet length. 

ector(5 downto 0); 
_vector(5 downto 0); 

00000000000"; 
then 

0110") then 
n&"00"; 
len&"00"; 
ned(ip_total_len) - (unsigned(iplen) + unsigned(tcplen)); 

010001") then 
(udp_len) - 8; 

 Embedded Text Block 6 search_status 

s, which is to say what kind of search is 
, one  

 registering, and header_ready is asserted. When 70 bytes  
 the case of shorter payloads, the payload has been  

 and padded with enough zeros to fill 70 bytes), payload_ready is asserted. These  
search or payload search completes, respectively. 

ss(clock,reset) 

r_ready <= '0'; 

yload := '0'; 
f(rising_edge(clock)) then 

mation 
 field_type="00101100") then 

_payload='0') then 
    header_ready<='1'; 

 
   process(clock,reset) 
      variable iplen : std_logic_v
      variable tcplen : std_logic
   begin 
      if(reset='1') then 
         payload_len <= "00000
      elsif(rising_edge(clock)) 
         if(ip_protocol="0000
            iplen := ip_header_le
            tcplen := tcp_header_
            payload_len <= unsig
         end if; 
         if(ip_protocol="00
            payload_len <= unsigned
         end if; 
      end if; 
   end process; 
 
   -- HDL
 
   -- This process keeps track of the current search statu
   -- occurring or about to occur. Once payload information begins to arrive from ePAPP
   -- knows that the header must be done
   -- of payload have been buffered (or, in
   -- buffered
   -- signals are turned off when a header 
 
      proce
         variable curr_payload : std_logic; 
      begin 
         if(reset='1') then 
            heade
            payload_ready <= '0'; 
            curr_pa
         elsi
             
            -- if currently receiving payload infor
            if(field_type="00110001" OR
                
               -- set header_ready flag 
               if(curr
              
               else 
                  header_ready<='0'; 
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               end if; 
            end if; 

l when 72 bytes of payload have been buffered or payload information is done 
(count_up="00001000111") then 

der search has completed 

r_ready<='0'; 
 curr_payload := '1'; 

load_search_done='1') then 

ayload := '0'; 
nd if; 

 block uses data registered in the packet_field_reg block to calculate  

t_not_21_to_23 <= '0'; 
c_port_gt_1023 <= '0'; 

port_between_3127_3199 <= '0'; 

rt_between_6666_7000 <= '0'; 
est_port_between_32772_34000 <= '0'; 

port_gt_499 <= '0'; 

t_1 <= '0'; 

                
            -- signa
            if
               payload_ready<='1'; 
            end if; 
             
            -- hea
            if(header_search_done='1') then 
               heade
              
            end if; 
             
            -- payload search has completed 
            if(pay
               payload_ready<='0'; 
               curr_p
            e
             
         end if; 
      end process; 
 
   -- HDL Embedded Text Block 8 logic_block 
 
   -- This
   -- all the special cases needed for packet header searching. 
 
      process(clock,reset) 
      begin 
         if(reset='1') then 
            src_por
            sr
            dest_port_gt_1023 <= '0'; 
            src_port_between_1000_1300 <= '0'; 
            dest_port_between_1000_1300 <= '0'; 
            dest_
            src_port_between_6666_7000 <= '0'; 
            dest_po
            d
            dest_port_between_32771_34000 <= '0'; 
            src_port_not_80 <= '0'; 
            dest_port_not_80 <= '0'; 
            dest_
            ip_ttl_gt_220 <= '0'; 
            dsize_g
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            dsize_gt_6 <= '0'; 

_gt_512 <= '0'; 

t_720 <= '0'; 
size_gt_100 <= '0'; 

_gt_156 <= '0'; 

_gt_134 <= '0'; 
me_ip <= '0'; 

_code_gt_3 <= '0'; 

f(rising_edge(clock)) then 
 23 

0101" OR src_port="0000000000010110" OR 
")) then 

_port_not_21_to_23 <= '1'; 

rt_not_21_to_23 <= '0'; 
nd if; 

 than 1023 
 > 1023) then 

_port_gt_1023 <= '1'; 

rt_gt_1023 <= '0'; 
nd if; 

eater than 1023 
t) > 1023) then 

t_port_gt_1023 <= '1'; 

ort_gt_1023 <= '0'; 
            end if; 

000 and 1300 (inclusive) 
999) AND (unsigned(src_port) < 1301)) then 

            dsize_gt_1445 <= '0'; 
            dsize_gt_1023 <= '0'; 
            dsize_gt_1000 <= '0'; 
            dsize
            dsize_gt_128 <= '0'; 
            dsize_g
            d
            dsize_gt_800 <= '0'; 
            dsize_lt_25 <= '0'; 
            dsize_gt_500 <= '0'; 
            dsize
            dsize_gt_200 <= '0'; 
            ip_proto
            sa
            icmp_code_gt_0 <= '0'; 
            icmp_code_gt_15 <= '0'; 
            icmp_code_gt_2 <= '0'; 
            icmp
            icmp_code_gt_1 <= '0'; 
             
         elsi
            -- trigger if the source port is not 21, 22, or
            if(not(src_port="000000000001
src_port="0000000000010111
               src
            else 
               src_po
            e
             
            -- trigger if the source port is greater
            if(unsigned(src_port)
               src
            else 
               src_po
            e
             
            -- trigger if the destination port is gr
            if(unsigned(dest_por
               des
            else 
               dest_p

             
            -- trigger if the source port is between 1
            if((unsigned(src_port) > 
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               src_port_between_1000_1300 <= '1'; 

rt_between_1000_1300 <= '0'; 
nd if; 

en 1000 and 1300 (inclusive) 
 999) AND (unsigned(dest_port) < 1301)) then 

t_port_between_1000_1300 <= '1'; 

ort_between_1000_1300 <= '0'; 
nd if; 

en 3127 and 3199 (inclusive) 
 3126) AND (unsigned(dest_port) < 3200)) then 

t_port_between_3127_3199 <= '1'; 

ort_between_3127_3199 <= '0'; 
nd if; 

6666 and 7000 (inclusive) 
 6665) AND (unsigned(src_port) < 7001)) then 

_port_between_6666_7000 <= '1'; 

rt_between_6666_7000 <= '0'; 
nd if; 

een 6666 and 7000 (inclusive) 
 > 6665) AND (unsigned(dest_port) < 7001)) then 

t_port_between_6666_7000 <= '1'; 

ort_between_6666_7000 <= '0'; 
nd if; 

een 32772 and 34000 (inclusive) 
 > 32771) AND (unsigned(dest_port) < 34001)) then 

t_port_between_32772_34000 <= '1'; 

ort_between_32772_34000 <= '0'; 
nd if; 

een 32771 and 34000 (inclusive) 
 > 32770) AND (unsigned(dest_port) < 34001)) then 

t_port_between_32771_34000 <= '1'; 

ort_between_32771_34000 <= '0'; 
nd if; 

            else   
               src_po
            e
             
            -- trigger if the destination port is betwe
            if((unsigned(dest_port) >
               des
            else 
               dest_p
            e
             
            -- trigger if the destination port is betwe
            if((unsigned(dest_port) >
               des
            else 
               dest_p
            e
             
            -- trigger if the source port is between 
            if((unsigned(src_port) >
               src
            else   
               src_po
            e
             
            -- trigger if the destination port is betw
            if((unsigned(dest_port)
               des
            else 
               dest_p
            e
             
            -- trigger if the destination port is betw
            if((unsigned(dest_port)
               des
            else 
               dest_p
            e
             
            -- trigger if the destination port is betw
            if((unsigned(dest_port)
               des
            else 
               dest_p
            e
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            -- trigger if the source port is not port 80 

001010000") then 
_port_not_80 <= '1'; 

rt_not_80 <= '0'; 
nd if; 

 port 80 
00001010000") then 

t_port_not_80 <= '1'; 

ort_not_80 <= '0'; 
nd if; 

er than 499 
 499) then 

t_port_gt_499 <= '1'; 

ort_gt_499 <= '0'; 
nd if; 

20 
0) then 

ttl_gt_220 <= '1'; 

gt_220 <= '0'; 
nd if; 

n) > 1) then 
ze_gt_1 <= '1'; 

gt_1 <= '0'; 
nd if; 

 6) then 
ze_gt_6 <= '1'; 

gt_6 <= '0'; 
nd if; 

eater than 1445 
d_len) > 1445) then 

ze_gt_1445 <= '1'; 

            if(src_port /= "0000000
               src
            else 
               src_po
            e
             
            -- trigger if the destination port is not
            if(dest_port /= "00000
               des
            else 
               dest_p
            e
             
            -- trigger if the destination port is great
            if(unsigned(dest_port) >
               des
            else 
               dest_p
            e
             
            -- trigger if the IP TTL is greater than 2
            if(unsigned(ip_ttl) > 22
               ip_
            else 
               ip_ttl_
            e
             
            -- trigger if DSIZE is greater than 1 
            if(unsigned(payload_le
               dsi
            else 
               dsize_
            e
             
            -- trigger if DSIZE is greater than 6 
            if(unsigned(payload_len) >
               dsi
            else 
               dsize_
            e
             
            -- trigger if DSIZE is gr
            if(unsigned(payloa
               dsi
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            else 
               dsize_gt_1445 <= '0'; 

nd if; 

023 
 1023) then 

ze_gt_1023 <= '1'; 

gt_1023 <= '0'; 
nd if; 

00 
1000) then 

ze_gt_1000 <= '1'; 

gt_1000 <= '0'; 
nd if; 

12 
 512) then 

ze_gt_512 <= '1'; 

gt_512 <= '0'; 
nd if; 

28 
 128) then 

ze_gt_128 <= '1'; 

gt_128 <= '0'; 
nd if; 

20 
 720) then 

ze_gt_720 <= '1'; 

gt_720 <= '0'; 
f; 

if DSIZE is greater than 100 
          if(unsigned(payload_len) > 100) then 

          else 

            e
             
            -- trigger if DSIZE is greater than 1
            if(unsigned(payload_len) >
               dsi
            else 
               dsize_
            e
             
            -- trigger if DSIZE is greater than 10
            if(unsigned(payload_len) > 
               dsi
            else 
               dsize_
            e
             
            -- trigger if DSIZE is greater than 5
            if(unsigned(payload_len) >
               dsi
            else 
               dsize_
            e
             
            -- trigger if DSIZE is greater than 1
            if(unsigned(payload_len) >
               dsi
            else 
               dsize_
            e
             
            -- trigger if DSIZE is greater than 7
            if(unsigned(payload_len) >
               dsi
            else 
               dsize_
            end i
             
            -- trigger 
  
               dsize_gt_100 <= '1'; 
  
               dsize_gt_100 <= '0'; 
            end if; 
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            -- trigger if DSIZE is greater than 800 
            if(unsigned(payload_len) > 800) then 
               dsize_gt_800 <= '1'; 

    -- trigger if DSIZE is less than 25 
nsigned(payload_len) < 25) then 

= '1'; 

s greater than 500 
ad_len) > 500) then 
 '1'; 

lse 

56 
) then 

6 <= '1'; 

'0'; 

 greater than 200 

 '1'; 

ter than 134 
signed(ip_protocol) > 134) then 

_gt_134 <= '1'; 
 

       -- trigger if source and dest IPs are the same 
=ip_dest) then 

 same_ip <= '1'; 

            else 
               dsize_gt_800 <= '0'; 
            end if; 
             
        
            if(u
               dsize_lt_25 <
            else 
               dsize_lt_25 <= '0'; 
            end if; 
             
            -- trigger if DSIZE i
            if(unsigned(paylo
               dsize_gt_500 <=
            e
               dsize_gt_500 <= '0'; 
            end if; 
             
            -- trigger if DSIZE is greater than 1
            if(unsigned(payload_len) > 156
               dsize_gt_15
            else 
               dsize_gt_156 <= 
            end if; 
             
            -- trigger if DSIZE is
            if(unsigned(payload_len) > 200) then 
               dsize_gt_200 <=
            else 
               dsize_gt_200 <= '0'; 
            end if; 
             
            -- trigger if IP protocol is grea
            if(un
               ip_proto
            else
               ip_proto_gt_134 <= '0'; 
            end if; 
             
     
            if(ip_src
              
            else 
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               same_ip <= '0'; 
            end if; 
             
            -- trigger if icmp code is greater than 0 

p_code_gt_0 <= '0'; 

 trigger if icmp code is greater than 15 

p_code_gt_15 <= '0'; 

ger if icmp code is greater than 2 
d(icmp_code) > 2) then 

             icmp_code_gt_2 <= '1'; 

             icmp_code_gt_2 <= '0'; 

           
e is greater than 3 

(unsigned(icmp_code) > 3) then 
gt_3 <= '1'; 

f icmp code is greater than 1 
signed(icmp_code) > 1) then 

code_gt_1 <= '1'; 
          else 

          end if; 

       end if; 

xt Block 8 payload_counter 

 much payload has been registers and/or searched at a given  
nitialized to the size of the payload and counts down to zero to  

as been buffered. count_up is initialized to zero and counts  

            if(unsigned(icmp_code) > 0) then 
               icmp_code_gt_0 <= '1'; 
            else 
               icm
            end if; 
             
            --
            if(unsigned(icmp_code) > 15) then 
               icmp_code_gt_15 <= '1'; 
            else 
               icm
            end if; 
             
            -- trig
            if(unsigne
  
            else 
  
            end if; 
  
            -- trigger if icmp cod
            if
               icmp_code_
            else 
               icmp_code_gt_3 <= '0'; 
            end if; 
             
            -- trigger i
            if(un
               icmp_
  
               icmp_code_gt_1 <= '0'; 
  
                   
  
      end process; 
 
   -- HDL Embedded Te
 
   -- This block keeps track of how
   -- time. payload_count is i
   -- indicate that the entire payload h
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   -- up with every new payload byte registered. remaining is initialized to the size of the payload  
 every time an eight-byte payload shift occurs. 

ctive : std_logic; 
 remaining : std_logic_vector(15 downto 0); 

rt_count : std_logic; 
     

       if(reset='1') then 

       start_count := '0'; 

rmation is arriving, start counting 
       if(active='0' AND (field_type="00101100" OR field_type="00110001")) then 

ad_len-2; 
000"; 

len+8; 

000000000000000") then 

yload_count-1; 

1; 

1; 

th remaining by 8 bytes 

   -- is decremented by eight
  
      process(clock,reset) 
         variable a
         variable
         variable sta
  
      begin 
  
            payload_count<="0000000000000000"; 
            count_up<="00000000000"; 
            active := '0'; 
            remaining := "0000000000000000"; 
            search_again<='0'; 
            max_shift<='0'; 
     
             
         elsif(rising_edge(clock)) then 
            -- if first byte of payload info
     
               payload_count<=paylo
               count_up<="00000000
               active:='1'; 
               remaining := payload_
               start_count:='1'; 
            -- continue to count 
            else 
               if(active='1') then 
                  if(payload_count="0
                     active:='0'; 
                  else 
                     payload_count<=pa
                  end if; 
                   
                  count_up<=count_up+
                   
               end if; 
                
               if(start_count='1') then 
                  count_up<=count_up+
               end if; 
    
            end if; 
             
            -- decrement payload leng
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            if(shift_payload='1') then 
 - 8); 

s, search again 
)="0000000000000") then 

f offset or depth shifts has occured 
000000") then 

9 payload_check 

load FIFO to read incoming bytes of payload data. 

OR field_type="00101100") then 

10 result_reg 

s from the CASMA unit. 

000000000"; 

en 

               remaining := (remaining
            end if; 
             
            -- if some payload remain
            if(remaining(15 downto 3
               search_again<='0'; 
            else 
               search_again<='1'; 
            end if; 
             
            -- trigger if max number o
            if(shift_count="00000000
               max_shift<='1'; 
            else 
               max_shift<='0'; 
            end if; 
         end if; 
      end process; 
 
   -- HDL Embedded Text Block 
 
   -- This process enables the pay
 
   process(reset,field_type) 
   begin 
      if(reset='1') then 
         wena<='0'; 
      elsif(field_type="00110001" 
         wena<='1'; 
      else 
         wena<='0'; 
      end if; 
   end process; 
 
   -- HDL Embedded Text Block 
 
   -- This process registers output
 
      process(clock,reset) 
      begin 
         if(reset='1') then 
            hit_address<="00000000
            search_type_out<="00"; 
            address_valid<='0'; 
         elsif(rising_edge(clock)) th
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            address_valid<=HitAck; 
            if(HitAck='1') then 

ach hold a byte of payload information. As a  
o these registers until they are all full, at  
a valid bit associated with each of these  
alid data. When an eight-byte shift is to  
t eight more bytes will be shifted out of the  

               hit_address<=indx(16 downto 0); 
               search_type_out<=search_type; 
            end if; 
         end if; 
      end process; 
 
   -- HDL Embedded Text Block 12 payload_reg 
 
   -- The process contains 70 1-byte registers that e
   -- payload is buffered, bytes of data are shifted int
   -- which point payload searching begins. There is 
   -- registers to specify whether the register holds v
   -- occur, the last eight valid bits are cleared so tha
   -- FIFO into the registers. 
    
   process(clock,reset) 
      variable cnt : std_logic_vector(1 downto 0); 
      variable empty_late : std_logic; 
    
      variable valid1 : std_logic; 
      variable valid2 : std_logic; 
      variable valid3 : std_logic; 
      variable valid4 : std_logic; 
      variable valid5 : std_logic; 
      variable valid6 : std_logic; 
      variable valid7 : std_logic; 
      variable valid8 : std_logic; 
      variable valid9 : std_logic; 
      variable valid10 : std_logic; 
      variable valid11 : std_logic; 
      variable valid12 : std_logic; 
      variable valid13 : std_logic; 
      variable valid14 : std_logic; 
      variable valid15 : std_logic; 
      variable valid16 : std_logic; 
      variable valid17 : std_logic; 
      variable valid18 : std_logic; 
      variable valid19 : std_logic; 
      variable valid20 : std_logic; 
      variable valid21 : std_logic; 
      variable valid22 : std_logic; 
      variable valid23 : std_logic; 
      variable valid24 : std_logic; 
      variable valid25 : std_logic; 
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      variable valid26 : std_logic; 
      variable valid27 : std_logic; 
      variable valid28 : std_logic; 
      variable valid29 : std_logic; 
      variable valid30 : std_logic; 
      variable valid31 : std_logic; 
      variable valid32 : std_logic; 
      variable valid33 : std_logic; 
      variable valid34 : std_logic; 
      variable valid35 : std_logic; 
      variable valid36 : std_logic; 
      variable valid37 : std_logic; 
      variable valid38 : std_logic; 
      variable valid39 : std_logic; 
      variable valid40 : std_logic; 
      variable valid41 : std_logic; 
      variable valid42 : std_logic; 
      variable valid43 : std_logic; 
      variable valid44 : std_logic; 
      variable valid45 : std_logic; 
      variable valid46 : std_logic; 
      variable valid47 : std_logic; 
      variable valid48 : std_logic; 
      variable valid49 : std_logic; 
      variable valid50 : std_logic; 
      variable valid51 : std_logic; 
      variable valid52 : std_logic; 
      variable valid53 : std_logic; 
      variable valid54 : std_logic; 

ble valid55 : std_logic; 
 std_logic; 

8 : std_logic; 
9 : std_logic; 

_logic; 
iable valid61 : std_logic; 

 : std_logic; 
 : std_logic; 
 : std_logic; 
 : std_logic; 
 : std_logic; 
 : std_logic; 
 : std_logic; 
 : std_logic; 
 : std_logic; 
: std_logic; 

      varia
      variable valid56 :
      variable valid57 : std_logic; 
      variable valid5
      variable valid5
      variable valid60 : std
      var
      variable valid62
      variable valid63
      variable valid64
      variable valid65
      variable valid66
      variable valid67
      variable valid68
      variable valid69
      variable valid70
      variable valid71 
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      variable valid72 : std_logic; 

d_logic_vector(7 downto 0); 
d_logic_vector(7 downto 0); 
d_logic_vector(7 downto 0); 
d_logic_vector(7 downto 0); 
d_logic_vector(7 downto 0); 
d_logic_vector(7 downto 0); 
d_logic_vector(7 downto 0); 
d_logic_vector(7 downto 0); 
d_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 

    
      variable reg1 : st
      variable reg2 : st
      variable reg3 : st
      variable reg4 : st
      variable reg5 : st
      variable reg6 : st
      variable reg7 : st
      variable reg8 : st
      variable reg9 : st
      variable reg10 : s
      variable reg11 : s
      variable reg12 : s
      variable reg13 : s
      variable reg14 : s
      variable reg15 : s
      variable reg16 : s
      variable reg17 : s
      variable reg18 : s
      variable reg19 : s
      variable reg20 : s
      variable reg21 : s
      variable reg22 : s
      variable reg23 : s
      variable reg24 : s
      variable reg25 : s
      variable reg26 : s
      variable reg27 : s
      variable reg28 : s
      variable reg29 : s
      variable reg30 : s
      variable reg31 : s
      variable reg32 : s
      variable reg33 : s
      variable reg34 : s
      variable reg35 : s
      variable reg36 : s
      variable reg37 : s
      variable reg38 : s
      variable reg39 : s
      variable reg40 : s
      variable reg41 : s
      variable reg42 : s
      variable reg43 : s
      variable reg44 : s
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      variable reg45 : std_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 
td_logic_vector(7 downto 0); 

iable reg61 : std_logic_vector(7 downto 0); 
 downto 0); 

tor(7 downto 0); 
_logic_vector(7 downto 0); 
_logic_vector(7 downto 0); 
_logic_vector(7 downto 0); 
_logic_vector(7 downto 0); 
_logic_vector(7 downto 0); 
_logic_vector(7 downto 0); 
_logic_vector(7 downto 0); 
_logic_vector(7 downto 0); 

std_logic_vector(7 downto 0); 

 

ring <= (others => '0'); 

      variable reg46 : s
      variable reg47 : s
      variable reg48 : s
      variable reg49 : s
      variable reg50 : s
      variable reg51 : s
      variable reg52 : s
      variable reg53 : s
      variable reg54 : s
      variable reg55 : s
      variable reg56 : s
      variable reg57 : s
      variable reg58 : s
      variable reg59 : s
      variable reg60 : s
      var
      variable reg62 : std_logic_vector(7
      variable reg63 : std_logic_vec
      variable reg64 : std
      variable reg65 : std
      variable reg66 : std
      variable reg67 : std
      variable reg68 : std
      variable reg69 : std
      variable reg70 : std
      variable reg71 : std
      variable reg72 : 
    
   begin
      if(reset='1') then 
         payload_search_st
         rena <= '0'; 
         cnt := "00"; 
         empty_late := '0'; 
          
         valid1 := '0'; 
         valid2 := '0'; 
         valid3 := '0'; 
         valid4 := '0'; 
         valid5 := '0'; 
         valid6 := '0'; 
         valid7 := '0'; 
         valid8 := '0'; 
         valid9 := '0'; 
         valid10 := '0'; 
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         valid11 := '0'; 
         valid12 := '0'; 
         valid13 := '0'; 
         valid14 := '0'; 
         valid15 := '0'; 
         valid16 := '0'; 
         valid17 := '0'; 
         valid18 := '0'; 
         valid19 := '0'; 
         valid20 := '0'; 
         valid21 := '0'; 
         valid22 := '0'; 
         valid23 := '0'; 
         valid24 := '0'; 
         valid25 := '0'; 
         valid26 := '0'; 
         valid27 := '0'; 
         valid28 := '0'; 
         valid29 := '0'; 
         valid30 := '0'; 
         valid31 := '0'; 
         valid32 := '0'; 
         valid33 := '0'; 
         valid34 := '0'; 
         valid35 := '0'; 
         valid36 := '0'; 
         valid37 := '0'; 
         valid38 := '0'; 
         valid39 := '0'; 
         valid40 := '0'; 
         valid41 := '0'; 
         valid42 := '0'; 
         valid43 := '0'; 
         valid44 := '0'; 
         valid45 := '0'; 
         valid46 := '0'; 
         valid47 := '0'; 
         valid48 := '0'; 
         valid49 := '0'; 
         valid50 := '0'; 
         valid51 := '0'; 
         valid52 := '0'; 
         valid53 := '0'; 
         valid54 := '0'; 
         valid55 := '0'; 
         valid56 := '0'; 
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         valid57 := '0'; 
         valid58 := '0'; 
         valid59 := '0'; 
         valid60 := '0'; 
         valid61 := '0'; 
         valid62 := '0'; 
         valid63 := '0'; 
         valid64 := '0'; 
         valid65 := '0'; 
         valid66 := '0'; 
         valid67 := '0'; 
         valid68 := '0'; 
         valid69 := '0'; 
         valid70 := '0'; 
         valid71 := '0'; 
         valid72 := '0'; 
          
      elsif(rising_edge(clock)) then       

            valid70 := '0'; 

nt="10") then 

         if(shift_payload = '1') then 

            valid69 := '0'; 
            valid68 := '0'; 
            valid67 := '0'; 
            valid66 := '0'; 
            valid65 := '0'; 
            valid64 := '0'; 
            valid63 := '0'; 
            rena <= '1'; 
    
          
         elsif(valid70='0' and c
            reg72 := reg71; 
            valid72 := valid71; 
            reg71 := reg70; 
            valid71 := valid70; 
            reg70 := reg69; 
            valid70 := valid69; 
            reg69 := reg68; 
            valid69 := valid68; 
            reg68 := reg67; 
            valid68 := valid67; 
            reg67 := reg66; 
            valid67:= valid66; 
            reg66 := reg65; 
            valid66 := valid65; 
            reg65 := reg64; 
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            valid65 := valid64; 
            reg64 := reg63; 
            valid64 := valid63; 
            reg63 := reg62; 
            valid63 := valid62; 
            reg62 := reg61; 
            valid62 := valid61; 
            reg61 := reg60; 
            valid61 := valid60; 
            reg60 := reg59; 
            valid60 := valid59; 
            reg59 := reg58; 
            valid59 := valid58; 
            reg58 := reg57; 
            valid58 := valid57; 
            reg57 := reg56; 
            valid57:= valid56; 
            reg56 := reg55; 

 
; 

; 
; 

; 
; 

2; 
; 

; 
; 

; 
; 

; 
; 

; 
; 

; 
g47 := reg46; 

45; 
 := reg44; 

 
 := valid43; 

g43 := reg42; 

            valid56 := valid55;
            reg55 := reg54
            valid55 := valid54
            reg54 := reg53
            valid54 := valid53
            reg53 := reg52
            valid53 := valid5
            reg52 := reg51
            valid52 := valid51
            reg51 := reg50
            valid51 := valid50
            reg50 := reg49
            valid50 := valid49
            reg49 := reg48
            valid49 := valid48
            reg48 := reg47
            valid48 := valid47
            re
            valid47:= valid46; 
            reg46 := reg45; 
            valid46 := valid
            reg45
            valid45 := valid44; 
            reg44 := reg43;
            valid44
            re
            valid43 := valid42; 
            reg42 := reg41; 
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            valid42 := valid41; 
            reg41 := reg40; 
            valid41 := valid40; 
            reg40 := reg39; 
            valid40 := valid39; 
            reg39 := reg38; 

; 
38 := valid37; 

; 
:= valid36; 

g36 := reg35; 

34; 
id34; 

g34 := reg33; 
id34 := valid33; 

32; 
3 := valid32; 

 reg32 := reg31; 

1 := reg30; 
:= valid30;          

          reg30 := reg29; 

          reg29 := reg28; 

          reg27 := reg26; 

          valid26 := valid25; 

          reg24 := reg23; 

            valid39 := valid38; 
            reg38 := reg37
            valid
            reg37 := reg36
            valid37
            re
            valid36 := valid35; 
            reg35 := reg
            valid35 := val
            re
            val
            reg33 := reg
            valid3
           
            valid32 := valid31; 
            reg3
            valid31 
  
            valid30 := valid29; 
  
            valid29 := valid28; 
            reg28 := reg27; 
            valid28 := valid27; 
  
            valid27:= valid26; 
            reg26 := reg25; 
  
            reg25 := reg24; 
            valid25 := valid24; 
  
            valid24 := valid23; 
            reg23 := reg22; 
            valid23 := valid22; 
            reg22 := reg21; 
            valid22 := valid21; 
            reg21 := reg20; 
            valid21 := valid20;           
            reg20 := reg19; 
            valid20 := valid19; 
            reg19 := reg18; 
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            valid19 := valid18; 
            reg18 := reg17; 
            valid18 := valid17; 
            reg17 := reg16; 
          valid17:= valid16; 

id15 := valid14; 

alid12; 
:= reg11; 

       reg11 := reg10; 

10 := reg9; 

 := valid7; 

            valid7:= valid6; 

            valid5 := valid4; 

id4 := valid3; 

            valid3 := valid2; 
            reg2 := reg1; 

e='1') then 
               reg1 := ffout; 

= '1'; 

               reg1 := "00000000"; 

        
            payload_search_string <= reg70 & reg69 & reg68 & reg67 & reg66 & reg65 & reg64 & 

 reg58 & reg57 & reg56 & reg55 & reg54 & reg53 & 

  
            reg16 := reg15; 
            valid16 := valid15; 
            reg15 := reg14; 
            val
            reg14 := reg13; 
            valid14 := valid13; 
            reg13 := reg12; 
            valid13 := v
            reg12 
            valid12 := valid11; 
     
            valid11 := valid10; 
            reg
            valid10 := valid9; 
            reg9 := reg8; 
            valid9 := valid8; 
            reg8 := reg7; 
            valid8
            reg7 := reg6; 

            reg6 := reg5; 
            valid6 := valid5; 
            reg5 := reg4; 

            reg4 := reg3; 
            val
            reg3 := reg2; 

            valid2 := valid1; 
             
            if(empty_lat

               valid1 :
            else 

               valid1 := '0'; 
            end if; 
     

reg63 & reg62 & reg61 & reg60 & reg59 &
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reg52 & reg51 & reg50 & reg49 & reg48 & reg47 & reg46 & reg45 & reg44 & reg43 & reg42 & 
0 & reg39 & reg38 & reg37 & reg36 & reg35 & reg34 & reg33 & reg32 & reg31 & 

 reg25 & reg24 & reg23 & reg22 & reg21 & reg20 & 
& reg17 & reg16 & reg15 & reg14 & reg13 & reg12 & reg11 & reg10 & reg9 & 

reg2 & reg1 & "00000000" & "00000000"; 

alid70='0') then 

          rena <= '0'; 

 Crb_init & 
hIn_init & Inst_init & ReqStb_init & Burst_b_init & Rst_b_init & Dev_init 

k_init; 

 Tms & Crb & Gmask & MatchIn & Inst & 
n & clock; 

gister and all of 
t into a search string that will be used for header searching. 

rc_port & dest_port & ip_type & 
set & ip_ttl & ip_protocol & ip_options & tcp_seq_num & 

 icmp_id & 
type & payload_len(10 downto 0) & src_port_not_21_to_23 & 

_80 & dest_port_not_80 & dest_port_gt_499 & src_port_gt_1023 & 
en_1000_1300 & dest_port_between_1000_1300 & 

0 & 
66_7000 & dest_port_between_32772_34000 & 

een_32771_34000 & ip_ttl_gt_220 & ip_proto_gt_134 & same_ip & dsize_gt_1 
_6 & dsize_lt_25 & dsize_gt_100 & dsize_gt_128 & dsize_gt_156 & dsize_gt_200 & 

reg41 & reg4
reg30 & reg29 & reg28 & reg27 & reg26 &
reg19 & reg18 
reg8 & reg7 & reg6 & reg5 & reg4 & reg3 & 
             
            if(v
               rena <= '1'; 
            else 
     
            end if; 
             
         elsif(empty='1' and valid70='0') then 
            rena <= '1'; 
            cnt := cnt+1; 
             
         else 
            rena <= '0'; 
         end if; 
          
         empty_late := empty; 
      end if; 
   end process; 
 
   -- HDL Embedded Text Block 13 header_cam_mux 
 
   init_bus <= LS_init & LC_init & Trst_b_init & Tck_init & Tdi_init & Tms_init &
Gmask_init & Matc
& Phasen_init & cloc
 
   ctrl_bus <= LS & LC & Trst_b & Tck & Tdi &
ReqStb & Burst_b & Rst_b & Dev & Phase
 
   -- This concurrent statement assembles information from the packet_field_re
the special case outpu
 
   header_search_string <= ip_src & ip_dest & s
ip_identification & ip_flags & ip_off
tcp_ack_num & tcp_flags & tcp_window_size & icmp_type & icmp_code &
icmp_seq & ethernet_
src_port_not
dest_port_gt_1023 & src_port_betwe
dest_port_between_3127_3199 & src_port_between_6666_700
dest_port_between_66
dest_port_betw
& dsize_gt
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dsize_gt_500 & dsize_gt_512 & dsize_gt_720 & dsize_gt_800 & dsize_gt_1000 & 
code_gt_1 & icmp_code_gt_2 & 

icmp_code_gt_15 & padding; 

or instance 'I1' of 'fifo' 

 BEGIN 

 
          mw_I1creg(i)(7 DOWNTO 0) <= mw_I1nreg(i)(7 DOWNTO 0); 

    END IF; 
ESS I1seq1; 

    
   I1seq2: PROCESS (clock, reset) 
   BEGIN 
      IF (reset = '1') THEN 
         mw_I1caddr <= 0; 
      ELSIF (clock'EVENT AND clock='1') THEN 
         mw_I1caddr <= mw_I1naddr; 
      END IF; 
   END PROCESS I1seq2; 
    
   I1combo: PROCESS (reset, rena, wena, mw_I1caddr, mw_I1creg, field_data(7 DOWNTO 0)) 
   VARIABLE trena : std_logic; 
   VARIABLE twena : std_logic; 
   VARIABLE tfull : std_logic; 
   VARIABLE tempty : std_logic; 
   BEGIN 
      IF (mw_I1caddr = 1500) THEN 
         tfull := '1'; 
         tempty := '0'; 
      ELSIF (mw_I1caddr = 0) THEN 
         tfull := '0'; 
         tempty := '1'; 
      ELSE 
         tfull := '0'; 
         tempty := '0'; 
      END IF; 
      trena := NOT(reset) AND rena AND NOT(tempty); 
      twena := NOT(reset) AND wena AND NOT(tfull); 
    
      IF (twena = '1' OR twena = 'H') THEN 
         IF (trena = '1' OR trena = 'H') THEN 

dsize_gt_1023 & dsize_gt_1445 & icmp_code_gt_0 & icmp_
icmp_code_gt_3 & 
 
 
   -- ModuleWare code(v1.0) f
   ffout <= mw_I1creg(0); 
   I1seq1: PROCESS (clock) 
  
      IF (clock'EVENT AND clock='1') THEN 
         FOR i IN 0 TO 1500 LOOP
  
         END LOOP; 
  
   END PROC
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            mw_I1naddr <= mw_I1caddr; 
         ELSE 
            mw_I1naddr <= mw_I1caddr + 1; 
         END IF; 
      ELSIF (trena = '1' OR trena = 'H') 
       mw_I1naddr <= mw_I1caddr - 1; 
    ELSE 
       mw_I1naddr <= mw_I1caddr; 

    
      IF ( ena = 'H') THEN 
       IF (trena = '1' OR trena = 'H') THEN 

           
           addr = i) THEN 
                mw_I1nreg(i)(7 DOWNTO 0) <= field_data(7 DOWNTO 0); 

           ); 
           
          END LOOP; 

           
          FOR i IN 0 TO 1499 LOOP 

           
           
           WNTO 0) <= mw_I1creg(i+1)(7 DOWNTO 0); 
             END IF; 

         E
    ELSIF (twena = '0' OR twena = 'L') THEN 

            FOR i IN 0 TO 1499 LOOP 
             mw_I1nreg(i)(7 DOWNTO 0) <= mw_I1creg(i+1)(7 DOWNTO 0); 

            DOWNTO 0); 
       ELSIF (trena = '0' OR trena = 'L') THEN 

           
           
       ELSE 

           
           
       END IF; 

THEN 
  
  
  
      END IF; 

twena = '1' OR tw
  
            mw_I1nreg(1500)(7 DOWNTO 0) <= mw_I1creg(1500)(7 DOWNTO 0); 

 FOR i IN 0 TO 1499 LOOP 
    IF (mw_I1c

  
               ELSE 

       mw_I1nreg(i)(7 DOWNTO 0) <= mw_I1creg(i+1)(7 DOWNTO 0
    END IF; 

  
         ELSIF (trena = '0' OR trena = 'L') THEN 

 mw_I1nreg(0)(7 DOWNTO 0) <= mw_I1creg(0)(7 DOWNTO 0); 
  
               IF (mw_I1caddr = i) THEN 

       mw_I1nreg(i+1)(7 DOWNTO 0) <= field_data(7 DOWNTO 0); 
    ELSE 
       mw_I1nreg(i+1)(7 DO

  
            END LOOP; 

ND IF; 
  
         IF (trena = '1' OR trena = 'H') THEN 

  
            END LOOP; 

    mw_I1nreg(1500)(7 DOWNTO 0) <= mw_I1creg(1500)(7
  
            FOR i IN 0 TO 1500 LOOP 

    mw_I1nreg(i)(7 DOWNTO 0) <= mw_I1creg(i)(7 DOWNTO 0); 
 END LOOP; 

  
            FOR i IN 0 TO 1500 LOOP 

    mw_I1nreg(i)(7 DOWNTO 0) <= (OTHERS => 'X'); 
 END LOOP; 

  
      ELSE 
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         FOR i IN 0 TO 1500 LOOP 

         END LOOP; 
    END IF; 

ll
      em
    aempty <= NOT(tempty); 

 
 -- ModuleWare code(v1.0) for instance 'I4' of 'gnd' 

 
   -- Ins

            mw_I1nreg(i)(7 DOWNTO 0) <= (OTHERS => 'X'); 

  
      fu  <= tfull; 

pty <= NOT(tempty); 
  
   END PROCESS I1combo; 

  
   padding <= (OTHERS => '0'); 

tance port mappings. 
 
END struct; 
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