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DEVELOPMENT OF A DYNAMIC BALLOON VOLUME SENSOR SYSTEM FOR USE 

IN CHANGING HELIUM CONCENTRATIONS 

 
 
 

Timothy David Campbell Nolan, M.S. 
 

University of Pittsburgh, 2005 
 

A dynamic balloon volume sensor system (DBVSS) was designed for use with 

the intra-aortic balloon pump (IABP), a therapeutic device to assist heart recovery after 

cardiac dysfunction or cardiac trauma, and the Pittsburgh respiratory support catheter 

(RSC), an internally deployed gas exchange device which augments lung function. The 

DBVSS was designed to detect the degree of inflation of the balloons incorporated into 

each device as they pulse within a patient. Both devices require full inflation for optimal 

performance, and both will under-inflate during normal operation. The sensor system 

requirements were to measure volumes within 10% of the actual across the range of 

expected pulsation frequencies as well as in changing concentrations of helium. 

 The DBVSS employed a hot wire anemometer to detect the flow entering the 

balloon, combined with a computer algorithm to integrate the flow to find volume. The 

system compensated for the flow reading changes resulting from changing helium 

concentration by measuring gas properties during zero gas flow between pulsations, 

and used this data to correct the flow profile at each helium concentration. The volume 

from the DBVSS was compared to the volume standard as measured by water 

displacement in a plethysmograph. 

 iii



 The system was able to accurately measure delivered balloon volume under 

changing gas composition as well as detected volume loss from the balloon across 

helium concentrations. The DBVSS measured the volume within 10% across these 

tests, as well as under compression of the balloon, high resistance in the driveline and 

across frequencies up to 480 beats per minute. The DBVSS was proved to be within the 

design requirements for helium concentration and inflation methods for both the devices 

considered.  
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1.0 INTRODUCTION 

 

Several medical devices use pumping balloons inserted within the cardiovascular 

system of a patient. One such balloon system is the intra-aortic balloon pump (IABP), 

which is used on patients recovering from cardiac dysfunction or cardiac trauma. 

Cardiac trauma can come from multiple sources including cardiogenic shock, cardiac 

contusions, and unstable angina or following cardiac procedures such as angioplasty 

and stent insertion. IABP is also used as a bridge to either transplant or mechanical 

assist devices.1,2,3  It remains difficult to estimate how often IABP is used, but use after 

cardiac surgery and after cardiac arrest amounts to tens of thousands of insertions per 

year.2

The IABP device consists of a balloon inserted percutaneously (via a large gauge 

needle) into the femoral artery, through the abdominal and thoracic aorta and into the 

aortic arch. The balloon pulsates in counter synchrony to the heart, as shown in Figure 

1, timed to an external EKG measurement. 2, 3  

IABP treatment aids healing of the heart in two ways. The balloon inflation during 

diastole encourages coronary and periphery perfusion, which increases oxygenation 

and recovery of heart tissues. The balloon deflation during systole reduces the stroke 

load on the heart and increases ventricular ejection, reducing the strain on injured heart 

muscle during recovery. 
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non-pulsing device. 7 The pulsation also reduces the load on the patient’s heart caused 

by the resistance of the device to blood flow in the vena cava.  
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Figure 2. Schematic of Respiratory Support Catheter (RSC), showing the gas flow path 
and the integral pulsating balloon placed within the mat of hollow fiber membranes  

 

The RSC is designed to supplement the current treatment of lung dysfunction, 

mechanical ventilation, where high-pressure gas is forced into the lungs to maintain 

oxygenation of the blood and remove carbon dioxide from the patient. Mechanical 

ventilation has a survival rate of approximately 50%, as the therapy can cause more 

damage through barotrauma or volutrauma and slow or prevent recovery. 7 The 

respiratory support catheter would enable reduced pressures and volumes in the 

mechanical ventilator by reducing the gas exchange demand of the ventilator and 

therefore improve patient recovery. 7

Both the volume of the balloon and the frequency of pulsation control the gas 

exchange in the respiratory catheter. 5,6,7 Increasing the pulsation rate increases the gas 

3 



exchange up to a certain critical frequency of pulsation, dependant on balloon size and 

operating conditions, above which the balloon inflation and deflation is limited and gas 

exchange enhancement diminishes. 7  

Duty cycle, D, is the ratio of the duration of positive flow into the balloon to the 

duration of negative flow out of the balloon. Adjustments to the duty cycle are used to 

control degree of balloon inflation at a given frequency and become critical to the 

inflation of the balloon at higher frequencies. Deflation time limits the volume displaced 

by the balloon during each pulsation, as any residual volume reduces the next positive 

pulse by the same amount. Decreasing the duty cycle provides more time for emptying 

the balloon in each pulsation and increases balloon displaced volume at frequencies 

where balloon filling is limited.  

The effect of balloon filling and beat frequency is seen in the change in the 

average balloon generated flow, the amount of volume displaced by the balloon in a 

time period, calculated by multiplying balloon volume by the beat per minute frequency. 

The maximum gas exchange for the respiratory support catheter occurs at the 

maximum balloon generated flow. 7 The relationship between frequency, duty cycle, and 

balloon-generated flow is shown in Figures 3 and 4. Figure 3 shows three different 

inflation methods for the same size respiratory catheter, differentiated by the duty cycle 

of pulsation. There are three pulsation duty cycles plotted in the 12cc balloon, 50%, 

40% and 36%. 8 Figure 4 shows the calculated balloon generated flow for the pulsations 

in Figure 3 and the effect of duty cycle on the balloon-generated flow.  

At each duty cycle there is a maximum balloon-generated flow which 

corresponds to a specific balloon volume. For example, Figure 4 shows that for duty 

4 



cycle of 36 the maximum gas exchange is at 420 BPM, which corresponds to 11ml, 80-

90% of the maximum balloon volume. Lower pulsation rates fully inflate, and higher 

pulsation rates have lower filling volume, but in the 420 beats per minute region the 

volume and rate are balanced at the greatest balloon delivered volume as the loss in 

volume is balanced by the gain from frequency of pulsation. 

Loss of total drive gas in the system can also reduce gas exchange. A partially 

inflated balloon leads to greatly lowered gas exchange in the RSC, as shown in Figure 

4. 9 The Figure data shows that at zero beat rate the balloon filling has no effect, but 

with increasing frequency the under filling reduces blood gas transfer as the drive gas is 

unavailable to displace and mix the blood.  Even with the most ideal pulsation frequency 

and duty cycle, reduced system gas volume would limit the catheter gas transfer.  
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Figure 3 Decrease of balloon pulsation volume with increase of balloon frequency, 
showing different performance with duty cycle (D) at three levels, 36%, 40% and 50%. 
Arrows mark the frequencies corresponding to maximum balloon generated flow at each 
duty cycle 8
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Figure 4. Effect of balloon volume on balloon generated flow shown at three duty cycles 
(D); 36%, 40% and 50%. The peaks of these graphs demonstrate the loss of balloon 
generated flow both higher and lower than the frequency of maximum balloon filling 8
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Figure 5. Difference in carbon dioxide transfer between the partially filled respiratory 
support catheter and the fully filled device above 0 BPM 9
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Maintaining correct balloon volume in both IABP and the respiratory support 

catheter is necessary for the devices to achieve their maximum level of performance. 

An improperly inflated IABP system causes a weakened heart to work more than 

necessary, decreases peripheral perfusion and leads to reduced patient recovery. 1,2 

The current system for monitoring IABP filling volume depends on the backpressure of 

the system, which requires training to interpret and remains qualitative. Direct volume 

readout from a measurement system would provide a quantitative, easily read number 

to supplement the pressure monitoring method. 

An under-inflated respiratory support catheter has a limited balloon-generated 

flow and reduced mixing of blood, which therefore limits oxygen transfer to and carbon 

dioxide removal from the patient. 5,6,7 The RSC has yet to have an in vivo volume 

measurement, and would benefit from a volume measurement system as the delivered 

therapy in the RSC can often change in both beat frequency and duty cycle. Best 

patient treatment can be obtained by finding and maintaining optimal inflation through 

use of a volume sensor. 

 

1.1 STATEMENT OF PURPOSE 

 This research developed a system capable of measuring the volume of helium 

delivered to a pulsating balloon in a clinical situation, a dynamic balloon volume sensor 

system (DBVSS), with the goal of measuring volumes within 10% of the actual balloon 

volume. The aim of volume measurement was to maintain the two discussed balloon 

catheters at their optimal filling volume, through monitoring the degree of inflation. The 

9 



system was designed to operate in the catheter drive gas, across a number of balloon 

volumes, pulsation frequencies and expected clinical variations to the inflation methods.  

10 



 

 

2.0 BACKGROUND 

 

Measurement of the balloon volumes in IABP and RSC catheters is a challenging 

task, as the catheter placement within a patient makes the balloon inaccessible to most 

measurement techniques. Flow into the balloon can still be measured at the entrance 

point of the catheter tubing, and so flow is a logical method of monitoring catheter 

inflation. The flow signal can be used to calculate the volume delivered to the balloon, 

similar to spirography, a technique that measures both lung volume and breath tidal 

volume in respiration. 10 One method of spirography is to integrate the expired airflow, 

Qa, to determine the breath volume, Vbr, using: 

∫
+

=
τt

t
abr dttQV )(     (1) 

Where the period of one breath is the flow signal from time t to t+τ. 

The flow meter to be used in the DBVSS had a number of constraints based on 

the drive system properties. Typical pulsating balloon catheters use helium as the drive 

gas, due to the low inertial load and low internal friction of the gas. Helium 

concentrations of the drive gas for both IABP and the respiratory support catheter drive 

systems can change over time due to small leaks in the driveline and helium diffusion 

through the plastic components of the system. The leak rate of helium can be up to 

1cc/hour in IABP balloons, 1 and similar leak rates have also been observed for the 

respiratory support catheter. The leak causes room air to be a greater component of the 

11 



drive gas mixture as pulsation continues. This shift in concentration complicates flow 

measurement, as the flow meter must measure gas flow in which the physical 

properties change with time. 

The helium oscillates at high rates up to 600 beats per minute in some tests, 

which with a 40cc balloon is an average of 24 liters per minute, with expected 

maximums of 40 liters per minute. The system requires a flow meter with a time 

response fast enough to measure the flow pulses, which at 600 BPM has a flow pulse 

lasting only 50 milliseconds.  

A final constraint is the placement of the catheters in the patients themselves, 

which limits the geometry and location of any accessory volume measurement devices. 

The Dynamic Balloon Volume Sensor System would need to be an accessory to current 

therapeutic treatments (such as IABP), which demands the ability to add on to the 

system with minimal interference in the normal function of the devices. 

 

2.1 SELECTION OF FLOW METER 

The changing gas concentration during pulsing has an adverse affect upon flow 

meters intended to measure the gas flow. Loss of helium causes an increase in the fluid 

density, viscosity and momentum as well as a decrease in thermal conductivity. The 

gain in density and momentum complicates the conversion between mass and 

volumetric flow, as well as interfering with the function of rotameters, Pitot tubes, 

pneumotachometers, vortex shedding flow meters, and Venturi tubes. Rotameters 

suspend a float at a certain height in a vertically moving column of fluid, where the float 

has a potential energy equal to the momentum imparted by the fluid. The fluid 

12 



momentum in rotameters is a property of viscosity and density that would cause the 

rotameter to read incorrectly higher flow in lower concentrations of helium. Pitot tubes 

would also read higher flow, as they determine the weight of a column of gas stagnated 

by flow against a nozzle. The measured height would be then be higher, and seem to 

be a higher flow rate. Pneumotachometers depend on a known resistance to flow, which 

would increase as the viscosity of the fluid increased, contributing to erroneously higher 

flows. The vortex shedding flow meter would also be affected by change in viscosity, as 

the higher viscosity would lead to longer times between release of the vortex, which 

would result in lower flows read in lower concentrations of helium. A Venturi tube is 

calibrated for a certain flow profile and pressure drop that requires a known viscosity 

and density for the fluid, the changing helium concentration would render this calibration 

useless. 

Heat capacity and heat transfer would also change with gas concentration. The 

higher heat capacity and lower heat transfer coefficient would interfere with the 

operation of thermal flow meters such as capillary mass flow meters, and hot film or hot 

wire anemometers. A reduced heat loss in these devices may not be due to reduced 

flow, but instead due to lower helium concentration in the drive gas. 

As helium leaks and gas concentration changes in the driveline, all these flow 

meters all have potential for error in measuring flow, and therefore balloon volume. A 

compensation method for helium leakage is a requirement for these flow meters to be 

used in a balloon volume sensor, while some flow meters must be excluded due to their 

slow time response, such as bubble flow meters, capillary flow meters and rotameters. 

11
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There also remain flow meters that are unaffected by gas concentration changes, 

but would not be feasibly implemented in this application. Bubble flow meters are very 

accurate and independent of gas concentration, but they require non-oscillating, one-

way flow and they are used mostly for steady flow, as the average flow over the transit 

time of the bubble. Doppler flow meters would require some sort of particulate or bubble 

to be in the system, which is not possible in the medical catheters under study. Turbine 

flow meters are insensitive to gas composition, temperature or humidity, but have 

inertial effects from the turbine that would interfere with their ability to measure high 

speed oscillating flow. 11

Among the flow meters that may possibly be used in the volume sensor, the hot 

wire and hot film anemometers have the most potential, as they both have performance 

properties that will allow them to function, with compensation, in changing gas flow. The 

anemometers have a zero-flow response that is due to the composition of the measured 

fluid, which allows information regarding the fluid properties to be gathered at a known 

flow rate. Hot wire anemometers (HWA) also have a response time around 1-10 ms, 

which makes them fast enough for our fluid flow measurements. 12 

 

2.2 HOT WIRE ANEMOMETRY 

 Hot wire anemometry can be used in gas flows and has a faster flow rate than 

hot film anemometers, 12,13 and therefore is the flow meter of choice for this experiment. 

A hot wire anemometer uses the principles of heat transfer to measure the flow of a gas 

or other fluid. The specific type of HWA in this research was a constant temperature 

anemometer. The constant temperature sensor suspends a very thin, high aspect ratio 
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wire into the fluid stream to be measured. This wire is heated to high temperatures (250 

Celsius in this case) by the electric current though the wire. Flow past the wire causes 

heat transfer to the flowing fluid, and the wire cools.  

The temperature is maintained by measuring the resistance of the wire. The wire 

forms a quarter of a balanced Wheatstone bridge, an electrical circuit made of four 

resistors designed to measure small changes in resistance by comparing one resistor 

with the set of three other resistors. The bridge starts out with balanced resistance 

values, which produces equal current flowing through each half of the bridge. The 

resistance of the hot wire increases with the decrease of wire temperature and the 

balance of current through the bridge changes, which results in a potential difference 

across the bridge between points 1 and 2. 12-15  

The bridge output is connected to an operational amplifier feedback circuit that 

supplies additional voltage, and thereby current, across the bridge to return the wire 

temperature to the balance point of the bridge. This added voltage is measured as the 

voltage output of the sensor.  The output voltage is related to the amount of heat lost by 

the wire into the fluid, and to the fluid flow by King’s Law. 12,13 
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2 1 

Figure 6. Circuit diagram for standard constant temperature hot wire 
anemometer (HWA), showing the balanced Wheatstone bridge and amplified 
voltage output. 
 

The same principles are used in hot film anemometry, where a plate is heated on 

the side of the fluid flow path and the fluid flows across the top surface of the plate. Hot 

film anemometers are more robust for use in liquid flows, but hot wire anemometry was 

cheaper to implement and had a faster response time for this application. 11, 13 
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2.3 KING’S LAW 

 Hot wire anemometry measures the heat lost into a moving fluid stream in order 

to calculate the velocity and flow of the fluid. The general relation between the output of 

the sensor (voltage, E) and the movement of fluid through the sensor is King’s Law: 

nUbaE ′+=2     (2) 

King’s Law is composed of two components: a, the zero-flow heat loss term and a 

constant for a specific gas concentration and b’Un, the heat loss due to fluid motion, 

made up of the sensor constant n, the fluid velocity U and the convective constant b’, 

determined by gas properties. The theoretical output graph is Figure 7, an exponential 

curve with a definite zero flow offset a, equal to the squared voltage at zero-flow Emin
2. 

12,13,14,16 

The heat loss in high aspect ratio wires is governed by the equations for heat 

loss from a cylinder in a moving fluid. The assumptions used in this analysis are: 12,13,14 

• The temperature of the wire is held constant and is constant along its entire length 

• All heat lost from the wire is transferred to the fluid, with minimal conduction to other 

parts of the sensor and minimal loss from radiation  

• Fluid velocity is uniform over the length of the wire and is small compared to sonic 

speed 

• The heat transfer is governed by the Nusselt number, Nu.  

 

17 



0

1

2

3

4

5

6

0 2 4 6 8 10
Fluid velocity U (m/s)

V
ol

ta
ge

 E
2  v

ol
ts

2

E2 = a + bUc

 Emin
2 

0

1

2

3

4

5

6

0 2 4 6 8 10
Fluid velocity U (m/s)

V
ol

ta
ge

 E
2  v

ol
ts

2

 

E2 = a + bUc

Emin
2 

 

 

 

 
Figure 7. Ideal King’s Law Voltage output vs. Flow velocity in a hot wire 
anemometer, showing zero velocity voltage offset, Emin  
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Figure 8. Hot wire anemometer steady state heat loss from wire due to resistive 
heating of wire (I2R), showing fluid flow, heat balance and Nusselt number 
relations.  
 

We may also assume that in a constant temperature wire that there is no  

change in the heat stored in the wire and the heat input equals the heat output of the 

wire. The power loss from current in the wire is completely transmitted as heat to the 

environment, which results in the power balance: 

radcondconv HHHRI ++=2    (3) 

The resistive heating of the wire is I2R, where I is current and R is wire resistance. 

Some heat is lost through conduction to the supports, Hcond , but this heat loss is 

considered to be negligible as most anemometers are constructed of low conductive 

materials for this very reason. 12,13 The radiative heat loss, Hrad, is equal to (1)σ (TW
4 –

TF
4). The view number is 1, as the wire is completely surrounded by the lumen of the 

flow meter, and the heat lost to radiation is therefore 0.66 Watts per square centimeter. 

When combined with the extremely small surface area of the wire, the radiative heat 

loss can be considered negligible. 12,13 Therefore all heat loss is transferred to the fluid, 

as Hcond and Hrad go to zero Equation 3 becomes: 
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( )FWW TThARI −=2    (4) 

where h is the heat transfer coefficient from the wire to the fluid, Aw is the contact area 

of the wire to the fluid, Tw is the wire temperature, and TF is the fluid temperature.12,14 

The specific Nusselt number for a cylinder in cross flow is in equation (5). 

 

( )
k

hDbaNu wn =′′+′= Re   (5) 

Where k is the thermal conductivity of the fluid and Dw is the diameter of the wire. 

Solving for h and inserting into Equation 4, we obtain: 

( )[ ]( ) wFW
n

w
ATTbaD

kRI −′′+′⎟
⎠
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⎝
⎛= Re2

 (6) 

Rewriting the Reynolds number in terms of fluid density (ρ), viscosity (µ), velocity (U), 

and tube diameter (Dt) and multiplying both sides by the wire resistance (to obtain 

voltage squared) yields: 
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 Equation 7 can be simplified by incorporating all the constant terms into the two 

coeffiecients, a and b, 11, which returns us to Equation 2, King’s Law:  

nUbaE ′+=2     (2) 

where:      
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The coefficient a can be replaced by the term Emin, or minimum voltage, as the minimum 

voltage will occur when U=0 (seen in Figure 9), and the heat transfer is governed by 

conduction to the static fluid. In flow through constant cross section, the velocity is equal 

to the flow divided by area. The inverse flow lumen area incorporated into b allows a 

reformulation of Equation 2: 12,13,14,16  

nbQEE += 2
min

2     (8) 

King’s Law is necessarily a general formula, as it describes behavior of all hot 

wire anemometers. Specific applications, such as in the DBVSS, require assignment of 

the variables Emin, b, and n. These variables change based on properties of the fluid 

measured as well as the specific geometry and composition of the hot wire 

anemometer.  

Many hot wire anemometers have an n of approximately 0.5, and many 

theoretical solutions use this value of n as the standard. But experimental results have 

shown that n can vary between 0.4 and 0.7 and should be separately calculated for 

each anemometer during calibration.12,13
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Figure 9.  Expected voltage response flow for a HWA in pulsatile flow, showing 
Emin at zero flow and the variability of the voltage signal in backward flow. 
 

2.4 USE OF HWA IN VOLUME MEASUREMENT 

Hot wire anemometry is well established for measuring oscillatory volumes in the 

spirography of respiration where the flow meter can be calibrated to known exhalation 

pressures and gas concentrations. Scalfaro et. al. and  Plakk et. al. measured 

exhalation flow on patients on a ventilator. 17,18 They showed that integration of the flow 

does give repeatable and accurate volume measures of respiration volume and that 
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HWA has low resistance to flow. While the HWA will be affected by changes in gas 

concentrations, as with other flow meters, this change can be compensated for due to 

the predictable response of the HWA sensor. In areas where the constant flow is 

known, HWA can also be used to measure changes in gas concentration, specifically 

helium, where the flow rate in known 19,20 so an application that measures both 

changing flow and changing volume can readily be developed from this collection of 

research.  

Plakk et. al.16 did present a method for compensating for concentration changes 

between inspired and expired air during spirometry. While a compensation method was 

developed, the errors cause by the difference between inspired and expired air were 

minor (approximately 1%) because the reduced oxygen and increased carbon dioxide in 

the expired air did not significantly change the gas thermal properties. Thus the 

compensation method was not really needed in this case nor was it validated under 

conditions of more substantive differences in gas composition. In helium pulsed balloon 

catheters, the thermal conductivity of helium can be up to 16 times that of air, 21,22 and 

so even small changes in gas composition greatly affect gas thermal properties and 

require compensating for gas composition in the flow measurement used to monitor 

balloon volume.  

2.5 OBJECTIVES, CHALLENGES AND RESEARCH PLAN 

The dynamic balloon volume sensor system (DBVSS) combines techniques of 

spirography with an algorithm to compensate for helium loss. This paper describes the 

development of this unique system as a tool to measure the volume of pulsating 

catheters. The development of the flow relations from theory, the development of the 
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sensor response to changing helium concentrations, and the combination of these 

elements into a fully functional flow sensor are shown. The DBVSS was validated using 

techniques of spirography to measure pulsating balloon catheters, as well as 

demonstrating a robust method to compensate a hot wire anemometer for changing gas 

concentrations.  

The practical application of the hot wire anemometer was a challenge in these 

complex inflation systems. Certain steps were necessary to first verify the actual 

function of the HWA as a volume measure in the pulsing drive gas. The first step was to 

examine the flow meter response in the expected different flow and gas regimes in the 

DBVSS operation. The sensor needed to be tested in steady and dynamic flow against 

a flow standard, to confirm the previous authors’ work on HWA. Flow testing could then 

be followed by exploration of the sensor response to changing gas concentration. These 

two independant verifications of the sensor response could then lead to operating the 

sensor in combined dynamic flow and changing gas concentrations.  

The combined operation would entail adding functionality to either the sensor or 

the data analysis system, as there will be two unknowns in the system, concentration 

and flow, and only the sensor voltage output with which to measure them. The usable 

flow meter could measure the correct flow regardless of gas concentration, which 

allowed the flow to be used to measure volume delivered.  The spirographic technique 

could be employed, using known volumes to check to applicability of integrating the 

measured flow. Volume measurements could be automated after the spirographic 

technique is shown to be effective, and the system would detect and measure flow 

pulses out of a set of pulsation data during experiments. This last step marks the 
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formation of the actual dynamic balloon volume sensor system, a system which can 

measure flow, correct for helium concentration, detect the flow pulses, and integrate 

them to find the delivered volumes. The DBVSS could then be tested across the full 

range of expected variations in pulsation, such as simulated helium loss, volume loss or 

change in frequency as well as constrictions and interference with balloon inflation. 
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3.0 HWA CALIBRATION AND STEADY FLOW TESTS 

 

 The hot wire anemometer was calibrated in a series of controlled steady gas 

flows to measure the voltage vs. flow relationships for air, helium, and air/helium mixes. 

The anemometer’s ultimate use was in dynamic flow, but Bruun and Lomas 12,13 both 

indicate that steady flow calibration for hot wire anemometers can give flow 

relationships very similar to the dynamic flow response. The steady flow calibration was 

used to validate of King’s Law for this anemometer, it provides more information on 

using different gases in the flow measurement and provides a starting point for further 

development of the full volume measurement system. 

 

3.1 APPARATUS 

 The steady flow calibration was performed in a controlled flow path where the 

gas flow and composition could be varied as it passed through the hot wire 

anemometer; the setup is shown in Figure 10. The Hot wire anemometer output was 

compared to the flow measured by the flow standard, a series 5200 bubble flow meter 

(Accura Flow Products, Warminster PA) placed upstream of the HWA. A vacuum pump 

was used downstream of the HWA to pull the test gases of air and helium through the 

system, with the flow rate controlled by a needle valve. The hot wire anemometer was 

placed just upstream of the needle valve, followed by the bubble flow meter. Two series 

5200 bubble flowmeters were used, with ranges of 0-10 LPM and 5-25 LPM; they 
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allowed flow calibration over a range of 0 to 25 LPM. The gases entered the bubble flow 

meter through a pair of mixing rotameters (Cole-Parmer inc, Vernon Hills IL) that 

controlled the ratio of room air to helium entering the flow path. The rotameters each 

had an integral needle valve, which could control and measure the relative contribution 

each gas made to the total gas flow in the system. The air was room air, and the helium 

was supplied from a 99.95% medical grade helium tank. The helium supply line had a 

Y-junction connected to the surrounding atmosphere, which maintained the helium at 

atmospheric pressure, the same as the air supply. The bubble flowmeters had ANSI 

traceable flow calibration, and were used to check the rotameters. 

      

Bubble   
Flowmeter   

Mixing   
Rota meter s   

Air       

Helium       
HWA   

Flowmeter   
Vacuum       

Pump       

Needle       
Valve       

 

Figure 10. Hot wire anemometer calibration setup for steady flow, with the gas 
supply drawn under vacuum pressure through the volume standard and 
anemometer 
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3.2 PROCEDURE 

The hot wire anemometer was tested in three gases: air, helium and an 

air/helium mixture. Air was tested first, pulled through the air rotameter by the vacuum, 

which produced 360 mmHg absolute pressure, 400 mmHg below atmospheric, with the 

needle valve fully open. The voltage of the HWA was read with a voltmeter (Tektronics 

inc., Beaverton, OR) and recorded, and the bubble meter provided a flow output on a 

digital display, which was recorded for three successive bubble measurements and 

arithmetically averaged. The needle valve was adjusted to vary the flow rate from 0 to 9 

LPM while using the 0-10 LPM bubble flow meter, and the flow and voltages recorded. 

Zero flow was measured by clamping off the entrance and exit tubing to the HWA after 

flushing the system with gas of interest for one minute. The 0-10 LPM bubble flow meter 

was replaced with the 5-25 LPM bubble flow meter to measure flows of 6-12 LPM. The 

meter had the ability to measure flows above 12 LPM, but the pressure difference 

during air flow in this system caused excessive bubbling that precluded use of the 

bubble flow meter at higher flows. 

Pure helium tests followed, with the air rotameter closed and the helium 

rotameter opened to the Y-junction and on to the supply tank. The tests were then 

repeated, measuring voltage and flow across 0-9 LPM, then from 6-25 LPM with the two 

bubble flow meters, as the helium allowed full range use of the bubble flow meter. Three 

additional zero-flow measurements were taken during helium testing to confirm helium 

concentration across the tests, the first after the 1 LPM test, the second after the 9 LPM 

test on the first flow meter, and the third after the 25 LPM test.  
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The pure helium test was followed by a mixed air/helium calibration, where the 

two mixing rotameters were opened partially to allow a constant 3 to 7 volume ratio of 

air flow to helium flow across the range of calibration flows. The mixed gas was 

measured over a range of 0-9 LPM, then 6-18 LPM. The bubble flow meter was able to 

measure flow over a larger range than with air, but smaller range than with helium. 

 

3.3 DATA ANALYSIS 

Each bubble flow meter reading was arithmetically averaged across the three 

recorded flows, and matched with the corresponding voltage output of the hot wire 

anemometer. These paired values were entered into the Matlab mathematical language 

program (The MathWorks inc., Natick MA ) as three  

‘n x 2’ matrices, one for each test gas. The Matlab non-linear fit function, “nlinfit.m”, was 

used to calculate the constants b and n for the equations relating flow to voltage, of the 

King’s Law form E2 = Emin +bQn  (Equation 9).  The variable Emin is the zero flow voltage, 

directly measured. The exponent n was constrained to be equal across all gases, and 

each gas’s flow equation was regressed to its own value of b. 
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3.4 RESULTS 

  Figure 12 shows the steady flow calibrations hot wire anemometer calibrations, in 

all three gases. The flow exponent for all three gases was n=0.63, above the typical 

assumed exponent of n=0.5 but within the cited 0.4 to 0.7 range. 12,13 The helium 

response is the top curve, showing the higher heat transfer of helium compared to the 

lower curve of the air flow data, and the mixed gas response lies between the other two 

curves. The air calibration regressed to E2= 0.25+0.3510*Q0.63, 70% helium to 

E2=3.7425+0.7867*Q0.63 and 100% helium to E2=5.3453+0.8365*Q0.63. With increasing 

helium concentration, the zero flow voltage increased, as well as the rate at which 

voltage changed with flow. 

 

3.5 DISCUSSION 

The steady flow tests did confirm King’s Law operation in the HWA and the dependence 

of b and Emin on gas composition, but the direct application of the steady flow 

calibrations in oscillatory flow application required further refinement. Bruun 12 did find 

similar dynamic and steady flow responses in hot wire anemometers, but it became 

important to optimize the DBVSS volume determination for the pulsating balloon 

systems. Accordingly, experiments were undertaken to refine the King’s Law 

calibrations determined from steady flow, which used oscillatory flow representative of 

the applications of interest. 
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Figure 11.  Non linear fits from helium, air and mixed gas calibrations of the hot 
wire anemometer, showing increasing y-intercepts and flow coefficients with 
increased helium concentration. 

31 



 

 

4.0 EMIN DEPENDENCE ON HELIUM CONCENTRATION 

 

The steady flow results in Figure 12 illustrate the differing flow responses in 

lowered helium concentrations. The exact effect may be complicated to determine, as 

the derivation of King’s Law demonstrates that there are concentration dependant terms 

that make up both Emin and b (Equations 7,8 and 2a). However, it is possible to explore 

the Emin term alone to illustrate what effect helium concentration has at zero flow. 

Examination of the relationship of helium concentration to these zero-flow values can 

provide insight into how the dynamic voltage response will change with reduced helium 

concentration. 

 

4.1 APPARATUS AND PROCEDURE 

Confirming how Emin changes with respect to the helium concentration required a 

change in the testing setup from the steady flow. The hot wire anemometer was fitted 

with stopcocks to enable filling the sensor with volumetric mixtures of helium and air. 

The voltage output was connected to the Tektronics multimeter to read the zero flow 

voltage. The gas mixtures were 100%, 90%, 80%, 70% and 0% helium, mixed in 50cc 

amounts (e.g. 70% helium was 35cc of helium and 15cc of air). The inner lumen volume 

was approximately 30ml, the bolus size was chosen to fill and sweep the entire lumen. 

Medical grade helium flushed the inside of the sensor lumen before each test, and then 

the 50cc gas bolus was pushed into the open sensor. Zero flow was guaranteed by 
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sealing both ends of the sensor with the stopcocks after the mixture filled the sensor 

lumen, and the resulting voltage output was measured using the Tektronics multimeter. 

Each test was performed three times at the same gas concentration. 

 

4.2 RESULTS AND DISCUSSION 

The expected result from King’s Law was confirmed, as Figure 17 shows Emin 

lowering with lowered helium concentration. The voltage response is bracketed on 

either side by the pure gas results in this binary gas system, by 100% helium on the 

high side and by 100% air (or 0% helium) on the low side. The linear fit through the 

averaged voltages had a y-intercept equal to the measured zero flow in air, 0.5 volts. 

The standard deviation between tests is shown on the graph, which demonstrates the 

low variance between tests as well as the linear relationship between the percent 

helium and Emin.  
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Figure 12. The change in Emin with changing helium concentration, illustrating the 
upper limit of 2.38 volts in helium, and the lower limit of 0.5 volts in air. 
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5.0 DEVELOPMENT OF A VOLUME MEASURE FROM FLOW DATA 

 

Steady flow measurements and the zero flow response are useful for 

understanding the sensor properties, but development of the full volume measurement 

system requires examination of the flow pulses in dynamic conditions. A main challenge 

lies in the fact that a flow standard for the dynamic flow is not available, due to the 

inapplicability of most flow methods described in section 2.2. The sensor must therefore 

be used to measure volume, and be compared to a volume standard, a calibrated 

plethysmograph. 

Spirography can use a flow pulse to measure the delivered volume over a time 

period τ. The steady flow voltage vs. flow relationship allows the hot wire anemometer 

voltage output during pulsation (Figure 14) to be converted to flow. The flow is related to 

balloon filling volume, Vb, through Equation 1: 

∫
+

=
τt

t
b dttQV )(     (1) 

Q is the flow past the sensor, t is time, and τ is the time period corresponding to the 

positive flow into the balloon, seen in Figures 6 and 14. Equation 1 then becomes more 

useful with flow as the independent variable:  

n

b
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Figure 13.  Example flow for a HWA in pulsatile flow, shown for two gas 
concentrations in the same flow meter. 
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Integrating the full flow signal requires some method of recording the full flow 

signal, and to refine instantaneous flow Q into flow which varies with time Q(t). Digitally 

sampling provides a series of discrete flow values across time points, which lends itself 

well to numerical integration of the flow signal. The trapezoidal rule for numerical 

integration was used to integrate the flow, defined as: 

  ∑ ∆
++

= ttQtQVb 2
)1()(

    (11) 

 

The combination of Equation 11 with Equation12 combines the theoretical flow 

response with the sampling method to allow numerical processing of the signal. The 

practical application of this equation requires the King’s law equation, with b, Emin and n 

defined for a specific gas. The solution for the steady flow voltage vs. flow relationship 

in the hot wire anemometer in air provides values for these variables in 100% helium 

70% helium and 100% air. The steady flow equation for 100% air allows the test of the 

spirographic technique on air pulses, to see the applicability to the hot wire 

anemometer. Flow in 100% air prevents any change in gas composition, as the drive 

gas and atmospheric gas are the same composition, which simplifies the conversion of 

flow signals. Integrating a flow signal would then produce an accurate measure of the 

volume that flowed through the sensor. 
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5.1 APPARATUS 

 The hot wire anemometer was set up to allow the injection of an air bolus through 

the lumen of the flow meter, as shown in Figure 14. The downstream end of the HWA 

was open to atmosphere, and the upstream end was connected to a stopcock and then 

to a 60cc syringe filled with 40cc of air. The flow and temperature voltages were 

connected as differential inputs to a AT-MIO-16E data acquisition card (National 

Instruments, Austin TX).   

 

 

HWA

40cc Syringe

Stopcock Stopcock

Voltage Out
HWA

40cc Syringe

Stopcock Stopcock

Voltage Out

 

 

Figure 14. Setup for injection of known volumes through anemometer, with stopcocks 
to ensure zero gas flow between tests 
 

 

5.2 PROCEDURE 

 The tests measured a series of air injections through the hot wire anemometer. 

The syringe was filled with air and the two channels of data were recorded into a “.dat” 

file, sampled at 100 Hz, using a National Instruments LabVIEW data acquisition 

program. The stopcock was opened and the air bolus injected through the system. The 

38 



data acquisition was stopped 3-5 seconds after each injection, after the flow voltage 

returned to the minimum, no-flow level. The injection test was performed six times with 

the 40cc bolus. 

 

5.3 DATA ANALYSIS 

 The data files were opened in Microsoft Excel. The hot wire anemometer 

voltages were converted to flow data using the equation fit to the steady flow data 

(Figure12), where Emin=0.25, b=0.3510, and n=0.63. Equation 12 was used to calculate 

the trapezoidal numerical integration of adjoining flow data points, which were summed 

starting at the first non-zero flow value and ending at the last non-zero flow value in the 

flow pulse.  

 

5.4 RESULTS 

The integrated injection volumes across the series are plotted in order of the 

tests, Figure 13. The results show that the calculated volumes were at most 7% off of 

the injected volume of 40cc, and had a mean value of 39.78cc, which was only 0.5% 

below the actual volume. These tests indicate the integration of flow provides volumes 

near the actual flow values, and also shows there is some amount of variability between 

integrations even when similar flow conditions are repeated. The ability to measure and 

record flow signals was now demonstrated, and the next step towards a full volume 

sensor was to analyze pulsating flow. 
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Figure 15. Results of using numerical integration on known 40cc air injections 
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6.0 DBVSS DEVELOPMENT 

 

 The flow integration hypothesis for the DBVSS was confirmed in the air injection 

tests, which enabled the expansion into testing oscillatory flow. Several steps were 

necessary to construct the full volume measurement system. First a volume standard 

had to be established for comparison to the measured pulsatile flow. Next the data 

acquisition system to gather data had to be assembled and connected to all the 

required sensors for flow and volume measurement. Finally the computational system 

had to be built that could analyze the recorded data from pulsation and calculate the 

balloon volumes.  

 

6.1 SETUP, SENSORS AND DATA ACQUISITION 

The full DBVSS consists of the hot wire anemometer, pressure sensors, data 

acquisition system and the computer program to analyze the data. The DBVSS was to 

be evaluated by comparing its volume output, Vb
DBVSS, to the water displaced by the 

pumping of a Datascope 40cc Intra-Aortic Balloon Catheter (Datascope, Fairfield, NJ), 

Vb
act.  The setup can be seen in Figure 14. The balloon was placed underwater in a 

sealed plethysmograph, and the drive tubing ran through the hot wire anemometer and 

on to the drive system, so the HWA could measure all flow into the balloon. The helium 

line, 1/4 inch Tygon tubing (Cole-Parmer inc, Vernon Hills IL) ultimately terminated in a 

safety chamber (Datascope), the source for the pulsing helium flow. Two Sensym 921 
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A, 0-780 mmHg pressure transducers (Sensym, Milpitas CA) were connected to the 

plethysmograph (P2) and the driveline (P1). 

Four channels of data (temperature, plethysmograph pressure, driveline pressure 

and flow) and one control voltage were recorded through a National Instruments AT-

MIO-16E-10 data acquisition board using a custom LabVIEW (National Instruments, 

Austin TX) data acquisition program. Sampling rate in each pulsation test was 1000Hz, 

and each data set was 15 seconds long. Signal conditioning consisted of a 10 Hz 

Butterworth low pass filter on the plethysmograph pressure transducer box (P2) and a 

control voltage, which grounded the unused channels.  

 

Data 
Acquisition

Q T

Balloon Pump
Hot Wire 

Anemometer

P1P2

Plethysmograph
Balloon

LabVIEW
Data 

Acquisition

Q T

Balloon Pump
Hot Wire 

Anemometer

P1P2

Plethysmograph
Balloon

Data 
Acquisition

Q T

Balloon Pump
Hot Wire 

Anemometer

P1P2

Plethysmograph
Balloon

LabVIEW

Figure 16. Setup for testing the DBVSS against the Plethysmograph standard, 
showing gas driveline from pump to balloon as well as sensor and data 
acquisition setup 
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6.2 VOLUME STANDARD 

Actual displaced balloon volume, Vb
act, was determined from the pressure signal 

of the plethysmograph by using the model for adiabatic compression of air and the 

following relationship:  

0

01
P

VP
V act

b
∗

=
γ     (12) 

where γ  is the adiabatic constant for air, P is the absolute plethysmograph pressure at 

full balloon inflation, P0 is the plethysmograph pressure at balloon deflation (also 

atmospheric pressure), and V0 is the volume of air in the plethysmograph at balloon 

deflation. As the balloon inflates, the water level rises, compressing the air trapped at 

the top of the plethysmograph, V0, which increases the pressure, P.  

The plethysmograph is calibrated to the accurate V0 through injections of known 

water volumes, which can be measured using isothermal expansion of gas. Isothermal 

volume is found by setting γ =1 in equation 12. The system is sealed, and atmospheric 

pressure is measured. A series of 1cc water injections are injected into the 

plethysmograph, up to 20cc. Using these volumes as Vb
act in the isothermal case of 

equation 12, it is possible to solve for V0, which in this case is 2286cc. 

 

6.3 DATA ANALYSIS 

The recorded data was analyzed using a custom LabVIEW program, Appendices 

B,C, and D.  This program built upon the established integration methods of spirography 

by combining the integration techniques with the data acquisition system, as well as the 

development of algorithms that can detect and automatically mark and integrate the 
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positive flow pulses. The data analysis portion of the DBVSS was very systematic in the 

processing of the flow voltages and the step by step methods follow. 

The program opened the data files using LabVIEW, and passed the flow and 

pressure voltages into a Matlab subroutine for analysis. The subroutine converted the 

HWA voltage signal to a flow signal, using King’s Law of the form E2=Emin +bQ0.63. The 

minimum flow voltage, Emin, was measured as the minimum voltage measured in the 

first 1000 data points (1 second at 1000Hz), and n=0.63. The final coefficient, b, was 

taken from the steady flow solution for 100% helium. Example voltage and flow are 

shown in Figure 17 and Figure 18, with reduced number of data points to better 

illustrate the data processing.  

The program then analyzed the voltage signal to detect the beginnings of each 

flow region. The mathematical method to detect peaks was multifold. A threshold for 

examining flow pulses was determined by looking only at those points at least 10% 

above Emin. The data was tested to find three rising points in a row, and which marked 

any the flow section longer than 20 points long, in order to exclude small artifact pulse-

like flows. The beginning points of the flow pulses were marked in separate matrix, an 

example of which can be seen superimposed over the flow signal in Figure 19. 
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Figure 17.  Example flow voltage from the hot wire anemometer, as it is taken 
into the DBVSS for processing (sampling rate reduced for clarity) 
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Figure 18.  Example flow voltage from Figure 17 converted to flow using King’s Law, as 
performed in DBVSS program (sampling rate reduced for clarity) 
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Figure 19. Flow signal from above demarcated by the marker points for the 
beginning of each flow pulse, as determined by the DBVSS analysis program. 
 

The next program step was to numerically integrate the positive flow pulses. This 

step did require user input to select the first positive flow pulse, using the displayed flow 

and pressure data. The program then used the beginning points marked in ‘ipoint’ to 

numerically integrate every other pulse from the flow signal data, using Equation 11. 

This integration turns the flow pulses into discrete volumes, as graphed in Figures 20 

and 21.  
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Figure 20. Flow data from the DBVSS program, showing the marked integration 
regions, and the integrating of every other pulse to evaluate the positive flow. 
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Figure 21. Resulting volumes from numerical integration of flow pulses marked 
in Figure 20. 

  

The DBVSS also measures the displaced volume on each pulsation, as 

measured in the plethysmograph above. The maximum and minimum pressure voltage 

was measured and the difference converted to the difference in pressure, using the 

calibration for the pressure transducer. This actual volume, Vb
act, was plotted against 

the measured volume from the flow meter Vb
DBVSS. This series of steps establishes the 

testing protocol through which we can compare the DBVSS measured volume to the 

actual volume of the balloon. More data processing was necessary to create 

compensation methods for changes in the concentration of the pulsating helium, but the 

basic methods of testing were now established. 
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7.0 INITIAL TESTING OF DBVSS 

 

 The volume measurement method described above now allows the test of the 

steady flow King’s Law equations found in Chapter 3. The King’s Law coefficients 

solved in Figure 12 can allow us to examine air and helium flow in the full DBVSS 

system. Beginning with 100% helium, as the device is expected to be after inflation, we 

can test the ability to measure volumes in the pulsating balloon. 

 

7.1 HELIUM PULSATION TESTS 

 The helium pulsation tests used the same test setup developed for the air 

pulsation tests, Figure 16. The system was filled with helium and the balloon pulsated 

for 5 minutes, after which the balloon pump was halted in the inflated position, with the 

balloon fully inflated under the water level in the plethysmograph. The entire system 

was evacuated by pulling a vacuum four times with a 60cc syringe. The system was 

then filled with 120cc of helium, refilling the submerged balloon in the plethysmograph. 

The system was then pulsed at 120 BPM, recording the four data channels described 

above (Flow voltage, Temperature Voltage, plethysmograph pressure voltage and line 

pressure voltage) for 10 seconds at 1000Hz.  

 

7.2 DATA ANALYSIS 

The collected data was analyzed following the pulsation, using the DBVSS 

program described in section 6 above. The value of b was taken from the steady flow 
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tests, b=0.8365, and Emin was measured from the hot wire anemometer flow voltage. 

Twenty pulsations from the data set were analyzed to find the average DBVSS volume 

and the plethysmograph volume (actual volume). 

 

7.3 RESULTS AND DISCUSSION 

 The volume measurements seen in Figure 16 show the DBVSS volumes (the 

lower, square data points) are consistently below the upper triangular volume data from 

the plethysmograph. This difference between the actual volume and the DBVSS volume 

can be attributed to two factors. First, there was an expected difference in steady flow 

and dynamic flow response, but the actual contribution of this cannot be measured. 

Second, the gas from the above test was diluted to a certain degree with air, due to 

imperfect filling methods, here measured as approximately 95% helium, where the 

King’s Law coefficients were measured in near-100% helium. The effects of the lowered 

helium on Emin were demonstrated in Chapter 4, but the effects upon b must be 

examined before a dynamic voltage vs. flow relationship can be found. 

The combination of these two factors demonstrates that the dynamic calibration 

of the sensor needs to test both the dynamic response to flow, as well as the change in 

the coefficients of King’s Law with respect to changing helium concentrations. The lack 

of a dynamic flow standard limits the testing methods used to develop the DBVSS 

further, but use of a volume standard will allow progress in the helium compensation 

portion of the DBVSS. 
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Figure 22. Example results for integrating dynamic helium flow using steady flow 
helium calibrations  
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8.0 DEVELOPMENT OF HELIUM COMPENSATION ALGORITHMS 

 

 The heat transfer theory of King’s Law combined with empirical testing of the hot 

wire anemometer allows us to define a voltage vs. flow relationship for any helium 

concentration. Using repeated measurements and regression could have produced a 

relationship from empirical testing alone, but exploring the theory before applying the 

empirical iterations allowed a more detailed examination of the flow response. 

Heat loss, and thereby voltage output, from the hot wire sensor is governed by 

the difference in gas temperature and wire temperature: (TW -TF), the flow past the 

sensor: Q, the gas properties: k, ρ, and µ, and the coefficients a’ and b’’. The wire 

temperature is held constant by the HWA feedback circuit, and the bulk gas 

temperature remains equal to the atmospheric temperature during pulsation, so the 

temperature difference essentially remains constant during operation. The coefficients 

a’ and b’’ also remain constant, and are components of the King’s Law coefficients a 

and b. The items of interest for changing voltage response are therefore the flow and 

gas concentration, which influences the thermal conductivity, density and viscosity of 

the fluid. 

 A ratio method is discussed in Lomas 12, to be applied in changing gas 

concentration in order to find the calibration at different gas concentrations. We can 

expand King’s law to be specific to a certain gas, such as Equation set 14. The 
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subscripts a, m, and h refer to response in air, mixed gas and helium, respectively. The 

coefficients a and b are thus a function of the gas concentration. 

n
hhh

n
mmm

n
aaa

UbaE

UbaE

UbaE

+=

+=

+=

2

2

2

    (13) 

 From these equations can be developed a normalized quantity to measure the 

effect of the concentration on voltage output, which gives the Psi equation: 

HA
MA

EE

EE

ah

am =
−

−
=Ψ 22

22

    (14) 

which was shown to be independent of velocity up to 20 m/s in steady flow. This 

equation is best shown in the idealized flow plotted in Figure 23, which shows that for 

any given flow, the squared voltage difference of the gas mixture to the air value and 

the difference between the helium and the air value is a constant ratio. 19

2

2

1

1

HA
MA

HA
MA

==Ψ     (15) 

This equation seems to indicate that with a steady flow calibration in air to find the value 

of n, we can extrapolate the voltage vs. flow curve for any concentration of helium by 

using the known gas properties.  

The Psi ratio formula was developed for steady, fully developed flow conditions, 

and therefore uses average voltage as opposed to the near-instantaneous flow voltage 

from dynamic flow through the hot wire anemometer. However tests at different 

velocities showed that the ratio was independent of velocity for steady flow, so the 

equations could possibly be adapted for mixed gas flow in the DBVSS.  
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Figure 23 Ideal voltage response to flow, showing the Ψ ratio at differing flow 
rates 
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Figure 23 should then be the ideal version of the steady flow results in Figure 11, 

which can be readily checked. We could measure HA and calculate ME across the flow 

range, leading to Figure 24, in which we can see the limitations of the Psi function for 

this research. The plotted function for the mixed gas diverges greatly from the actual 

gas flows measured. Further, by merely measuring the Psi functions in the Figure 11, 

we can see that they are inconsistent across the measured flow range. The ratio at 0 

LPM is 0.685, the ratio at 5 LPM is 0.729 and at 10 LPM it is 0.746.  The difference in 

calculated and observed ratio would result in a four liter-per-minute error in the flow 

measurement at the point indicated on the graph. This steady increase in the error of 

the ratios suggested that the Psi method is not usable in this DBVSS application, and 

that a method based on the observed changes in the hot wire anemometer output would 

be more useful. Better results could come from a focus on the King’s Law equation itself 

and how b and Emin would change with lowered helium concentration. 
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Figure 24. Psi function prediction of mixed gas flow, plotted against actual 
steady gas flow to show divergence from the actual voltage output at higher 
flows. 
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8.1 DBVSS METHOD 

The coefficients for King’s Law can be calculated in steady flow calibration for a 

given temperature and fluid. Equation 7 indicates that a change in fluid properties will 

result in a different voltage output for the same fluid velocity. The fluid composition 

changes in our tests as helium is diluted with room air, which alters the values of ρ, µ, 

and k.  The above theory indicates that n is a property of the sensor and will stay the 

same in changing fluids, but a and b will change as the helium concentration changes. 

Equation 7 also shows that a will change as a function of k, while b changes as a 

function of ρn, µn, and k, their other components remaining constant.  

 Pulsation of the balloon in the plethysmograph allows us to measure actual 

volume, and the King’s Law relationship in the DBVSS can be built from our known 

value of n=0.63, and a measured Emin. The value of b can then be regressed until the 

DBVSS volumes match the actual volumes.  The proper formulation of King’s law 

should transform the flow voltage signals of the same balloon pulsation measured at 

two separate concentrations (such as in Figure 13) into flow signals that integrate to the 

same volume. The flow signals themselves will not be identical, even under ideal 

measurement, as the differing gas concentrations will also have different viscosity and 

density. 

The value of a can be directly measured, as it is the square of the zero-flow 

(conductive) heat loss from the sensor, Emin.  The hypothesis for creating a 

concentration compensation algorithm was that a relationship could be determined 

between the change in Emin and the change in b for the equation. The gas properties 
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that contribute to the voltage vs. flow coefficients are shown in Equation 2a, and can be 

used to approximate the relative changes in King’s Law.  

The heat transfer coefficient between the wire and helium is sixteen times that of 

air. 21 The viscosities and densities of the gases have similar differences, as the 

viscosity of air is 107% of the viscosity of helium, and the density of helium 62% of the 

density of air. 22 Changes in b should be dominated by k, with small contributions from 

the changes in viscosity and density.  Emin is controlled by the same gas property, k, and 

so is Emin and b should change at a similar rate in changing gas concentrations. This 

relationship would enable generation of reliable E2 vs. Q relationships for any helium 

concentration. 

 

8.2 DETERMINATION OF KING’S LAW COEFFICIENTS 

A procedure needed to be built to develop the helium compensation algorithm, 

one based on the nature of the King’s Law equation: 

nbQEE += 2
min

2     (8) 

The algorithm needed to produce the coefficients for this equation at any gas 

concentration. The data available is the voltage signal, E2, and the minimum voltage, 

Emin.  The coefficient b and the exponent n can be chosen to make up correct voltage 

vs. flow relationship. “Correct” in this instance is the equation that converts the voltage 

signal to a flow signal that can be integrated to find a balloon volume, Vb
DBVSS, which 

matches the actual volume Vb
act. If one of these terms can be determined, then the 

other can be regressed until the two volumes match. Therefore, the first step was to 
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determine the correct value of n. Steady flow tests had developed a value for n, but 

testing in dynamic flow suggested further refinement of the King’s Law equation. 

 

8.3 CALIBRATION TESTS 

 A range of n values were examined, n=[0.45, 0.55,0.6, 0.63,0.65, 0.7], which 

included the typical literature value 0.45, the steady flow value 0.63, and a series of 

values up to the expected max from previous HWA testing, 0.7. 12,14 A series of 

pulsation data sets was gathered using the plethysmograph volume testing apparatus, 

Figure 16, and this data was used to evaluate all the n values. The balloon was filled to 

40cc and pulsed at 120BPM, while recording 10 seconds of the same data channels 

described above. The recording was then repeated as the balloon volume was reduced 

to 30cc and 20cc. The balloon was returned to 40cc and the pulsation was recorded as 

the balloon was diluted with room air six times down to 70% helium. At 70% helium the 

volume was again reduced to 30cc and 20cc. The same recording of 10 sec of data 

occurred at each change in volume or concentration. 

 These tests provided a range of volumes and concentrations, paired with the flow 

voltage signal from the hot wire anemometer. It was then possible to iterate the n value 

to find the equation which best fit this full range of expected inflation values. Choosing 

one n value, it was possible to use the DBVSS integration algorithm to keep regressing 

b until the volumes for one specific test matched the actual volumes. Each regressed 

value of b provided a new point in a Emin vs. b plot, which could then be fitted to a Emin 

vs. b equation, one equation for each value of n. 
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8.4 TESTING OF EQUATIONS 

Each Emin vs. b equation was then used to predict the b values and therefore the flow 

equation for the entire data set. The aim was to find which n value equation gave the 

greatest correlation across the greatest number of tests, which was measured using the 

statistical coefficient of determination, Rc
2, the ratio of the regression sum of squares to the 

total sum of squares: 23
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where V  is the mean balloon volume,  is the particular balloon volume, and  is the 

calculated volume from the regression equation. The coefficient of determination is 

designed to test how well as regression equation fits the data.  

iV iV̂

 

8.5 RESULTS AND DISCUSSION 

Figure 25 shows how the Rc
2 values change over the range in n, from 0.85 at n=0.45 

to the maximum 0.965 at n=0.65. This maximum is near the steady flow regressed value of 

n=0.63, with both above the 0.45 or 0.5 often quoted in HWA literature. 12-14 The data also 

demonstrates the local maximum, with n values higher and lower than 0.65 having lower 

Rc
2 correlation. This value of n has a repeatable b vs. Emin relationship that was used for the 

remainder of the tests in this project, Figure 26. Using Equation 10 and substituting for b 

from Figure 19, we arrive at the general flow vs. voltage relationship for the hot wire 

anemometer in dynamic flow: 

65.0
1

min
2
min

2 )]*3655.01963.0/()[( EEEQ t +−=   (17) 
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Figure 25. The correlation between actual volume and measured volume as n 
changes 
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Figure 26. The change in b with a change in Emin, n=0.65 and the linear fit 
relationship between them 
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9.0 FUNCTIONAL TESTING OF THE DBVSS 

 
 
          The complete DBVSS has now combined the proper form of King’s Law, a 

usable compensation algorithm for gas, a flow integration method and a data collection 

and analysis program to result in a usable volume measurement for pulsating balloon 

catheters. The DBVSS no longer requires user input to define the components of King’s 

Law, and so may function ‘automatically’ for the subsequent tests. The individual 

development of the separate DBVSS functions suggests that further testing of the full 

system be undertaken. A testing regime is necessary that can measure the 

performance of the full DBVSS across the expected range of clinical conditions, 

especially including those not covered during development of the theory of operation.  
 

 
9.1 DILUTION TESTS 

 
 The b vs. Emin relationship was tested with the drive gas at several 

concentrations of helium. The gas was pulsated in the same experimental setup shown 

in Figure 14, with the only change occurring in the program code, which had been 

amended to include the flow vs. voltage relationship enumerated in Equation 16. The 

balloon system was filled with helium and pulsated at 120 BPM, with the data recorded 

by the DBVSS. The drive gas was then diluted by a 5ml injection of room air, mixed, 

and then 5ml of the mixed air was removed. The 120 BPM pulsation and measurement 

were repeated in the diluted gas, and measured again by the DBVSS. The 5ml dilution 
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was performed 8 times, for a total of 9 tests, diluting the test gas from 92 to 65% helium. 

The data was processed using the DBVSS algorithm above. 

The results can be seen in Figure 27, which shows the dilutions from left to right, 

and the three volume measurements Vb
act, Vb

DBVSS and Vb
UC calculated at each dilution. 

The uncorrected volume was 14% below the actual volume at the highest concentration 

of helium, and Vb
UC decreased to 30% below Vb

act as the helium concentration lowered 

to 65%. The DBVSS volume Vb
DBVSS was within 6% of Vb

act across all the dilutions, and 

was within 1% at the lower concentrations of helium.  

 

9.2 VARIABLE VOLUME TESTS 

 The DBVSS was next tested for ability to measure volume loss from the balloon. 

These tests continued with the same volume measurement setup as detailed in Figure 

9, with the test balloon pulsating at 120 BPM underwater in the plethysmograph. The 

system was purged with helium and the balloon was fully filled before the first pulsation. 

Data was collected for 20 seconds of pulsation and analyzed with the DBVSS as 

detailed in Chapter 6; using equation 16 to convert voltage to flow and integrating the 

flow pulses. Subsequent tests each had five-milliliter volumes of drive gas removed, 

reducing the balloon inflation volumes across six experiments, as the balloon was again 

pulsated and measured after each removal. The full series of six volume removals were 

then repeated at concentrations of 80% and 70% helium.
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Figure 27. Results of volume measurement across helium dilutions. The DBVSS 
volume remains within 6% of the actual across all concentrations, while the 
uncorrected volume varies from 14% to 30% below the actual. 
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Total results of the variable volume tests are shown in Figure 28, with the three 

graphs representing the three helium concentrations of 90%, 80% and 70% left to right. 

The dark line on each graph is the actual volume, measured by the plethysmograph. 

The squares represent the DBVSS measured volume, while the triangles show the 

uncorrected volume measurements. The results show the ability of the DBVSS to 

measure across many different volumes, as the DBVSS volume results stay within 10% 

of the actual volume across the tests, and again the uncorrected volume 20% below the 

actual volume or lower, especially at the lower helium concentrations. 
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Figure 28. DBVSS performance across changing volumes and differing 
concentrations  
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9.3 BALLOON CONSTRICTION TESTS 

 

The testing of the DBVSS went beyond those deviations suggested by King’s 

Law theory, into possibilities of malfunctioning catheters. For example, the catheters 

have the possibility of a clinical insertion into a tortuous or constrictive anatomical 

region, which could limit balloon inflation volumes. Device constriction could also be 

caused clinically by improper deployment of the balloon or another insertion difficulty. 

The DBVSS must read correct volumes even when the insertion location limits balloon 

inflation or increases the backpressure on the system. This is especially important in a 

system designed to detect improper inflation.  

This next test uses the same experimental setup as had been employed, but with 

a slight modification to the balloon location in the plethysmograph. The intra-aortic 

balloon was inserted into a constricting half-inch rubber tube to simulate a tight vascular 

insertion and limit the balloon maximum filling volume, but with open ends to allow the 

balloon to still displace water. The balloon was tested at three levels of constriction: 

outside the tube, then inserted to half its length, and finally completely inserted into the 

tube, followed by a repeated test outside the tube. This set of tests was conducted at 

120 BPM and at two gas concentrations; the system filled with helium and with the 

system diluted with room air to approximately 80% helium, for a total of eight data sets. 

Each test was 15 seconds and followed the same data acquisition procedure as the 

previous tests. 

Figure 29 shows the results of the balloon constriction tests - eight data points, 

four at 92% helium and four at 82% helium.  The graph again shows the three volume 
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measures, actual volume, DBVSS volume and uncorrected volume. The data point 

shows the volume measurements of the unconstricted balloon. The filling volumes are 

reduced as the balloon is inserted into the tubing in the second and third data points, 

and the volumes return when the balloon is removed from the tubing before the fourth 

data point. The next four data points show the performance at the lowered helium 

concentration, 82%. The measured volumes are fairly repeatable between 

concentrations, but with the expected divergence of uncorrected volumes from the 

actual in the lower helium case. 

The uncorrected volume Vb
UC was 15% below the actual volume in 92% helium, 

while Vb
DBVSS was within 5% of Vb

act at this higher concentration of helium. The volume 

difference 82% helium was much greater, as the uncorrected volumes were more that 

25% below the actual volumes. The DBVSS was able to remain within 5% of the actual 

volume across both concentrations, and was within 3% for many of the tests.  
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Figure 29. DBVSS function under constriction of the balloon, showing the 
consistent agreement of actual balloon volume and DBVSS measured volume. 

 

9.4 DRIVELINE RESISTANCE TESTS 

Driveline constriction is another event that could limit the filling ability of the 

balloon catheters, as it would alter the flow pattern and the amount of gas delivered to 

the balloon. Change in flow could also cause erroneous integration if the program is not 

able to adapt to flow patterns outside standard operation, or if the flow exceeds the high 

or low measurement limit of the sensor. The effects of a constricted driveline were 

tested by running pulsation tests at different resistances of the tubing. 

The same measurement and drive system setup was used for the resistance 

tests as in previous tests, Figure 16. A needle valve was inserted between the DBVSS 

and the balloon to increase the line resistance and simulate driveline crimping.  The 

needle valve was left open for the first test, but the fully open valve had an increase in 
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resistance over the open Tygon tube. The needle valve was tightened and the line 

resistance increased across the next two tests, reducing the delivered volume with each 

increase in resistance. The final test repeated the first, with the valve completely open. 

These four tests were performed at maximum helium concentration (approximately 95% 

helium).  

The changing volumes in Figure 30 correspond to the tightening of the needle 

valve placed in the driveline during the driveline constriction tests, and the final data 

point shows the recovery of the system after the needle valve is reopened. The DBVSS 

did accurately read the volumes delivered, and across all data points in Figure 20 the 

agreement of Vb
DBVSS to Vb

act was within 7% across all data points. These results show 

that different flow patterns still result in accurate volume measurement by the DBVSS. 
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Figure 30. DBVSS function with increased driveline resistance, showing less 
than 7% divergence between the actual and measured volume. 
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9.5 TESTING ACROSS PULSATION FREQUENCIES. 

 

The range of frequencies tested covers the expected pulsation rates for both IABP 

and the respiratory catheter. 2-7 Fifteen seconds of data were recorded at each pulsation 

rate, from 120 to 480 beats per minute (BPM) with intervals of 60 BPM. Two sets of data 

were recorded: one in ascending and one in descending order of frequency. A second 

experiment tested the effect of frequency on the DBVSS in a lowered helium concentration. 

The system was tested again from 120 to 480 beats per minute but in a system diluted with 

20cc of room air to approximately 65% helium. Two sets of data were recorded: one 

ascending in frequency and one descending. 

The DBVSS calculated the volumes, both Vb
UC and Vb

DBVSS, from the data gathered 

in the above tests, and the plethysmograph provided the control volumes, Vb
act. Figures 31 

and 32 compare these three volumes across frequencies.  The effect of frequency can be 

seen as the volumes decrease with increased frequency, as the balloon has less time to fill. 

The three volume readings at 90% helium (Figure 31) maintain a rather constant separation 

across frequencies, with the uncorrected volumes consistently reading about 13% below 

Vb
act. Vb

DBVSS is also below the actual, but is within the 10% goal of the research, and has 

about half the deviation of the uncorrected volumes.  

The tests in 65% helium, Figure 32, show extremely good agreement (<5%) between 

Vb
DBVSS and Vb

act, up to 420 beats per minute. Figure 31 shows that Vb
DBVSS diverges from 

the values of Vb
act when measuring above 420, with the DBVSS volumes and uncorrected 

volumes both reading above the volume standard. This deviation is important, as it seems 

to indicate an upper frequency limit for the current DBVSS program.  
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Figure 31.  DBVSS performance across frequency at 90% helium 
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Figure 32. DBVSS performance across frequency at 65% helium, showing 
divergence of DBVSS and Actual volume above 420 BPM 
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10.0 CONCLUSIONS 

 

 The project goal was to develop a volume measurement system for helium-

pulsed balloon catheters, which could measure the delivered volumes to the balloon. 

This research had the extra requirement of maintaining accurate measurement as the 

drive gas, helium, leaked from the system and was replaced by room air. The data has 

shown the functionality of the system and has confirmed that our theory on flow 

measurement was developed into an accurate volume measurement system. This final 

system was able to meet our goal of measuring balloon volume within 10% of the actual 

volume, Vact. 

 Development of the DBVSS has built upon previous work in the field of 

spirography, 10,17,18 and of the basic science of hot wire anemometry. 12,13,16,17,18 HWA 

was previously limited to situations where the flow rate or the gas compensation was 

known or measured by a second sensor. This work has expanded the use of a single 

hot wire sensor in flow measurement. Likewise, spirography can benefit from our sensor 

and does not need to rely on assumptions of gas composition or on calculations from 

outside variables. Plakk et al 18 did touch upon this development, but that equation 

required the measurement of both gas density and viscosity and was ultimately not 

used in the study. Our method simplifies the equations from Plakk et al into one easily 

measurable independent variable and provides a repeatable and robust method for 

applying HWA theory to volume measurement. The compensation method in our paper 
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requires only one measurement, which is taken from the sensor data already gathered 

in the flow signal. This reduction in the total sensors, in addition to the compensation 

algorithm for helium concentration, is what greatly adds to the functionality of hot wire 

anemometers. 

 Full clinical applicability of the DBVSS would require testing across other 

changing variables that would also occur in its use. The main concern at higher 

frequencies will be the measurement of the minimum voltage, Emin, when the shuttle gas 

has limited zero-flow time between pulsations. A certain amount of this higher frequency 

limit was seen in the Figure 24 results. The measurement difficulty only represents a 

problem in the initial prototype, as further improvement of precision and sampling speed 

would greatly reduce this error. Also, the rate of helium loss is slow enough that Emin 

only needs to be checked infrequently. A DBVSS integrated with the drive system could 

pause the pulsations for half a second at intervals of 15 minutes (or other determined 

time). Both balloon catheters discussed in this paper have regular pauses in their 

functions, and these zero flow pauses could be so short and infrequent as to not affect 

patient treatment. 

 The volume limit of the system also has yet to be determined, both on the high 

and low end. We did confirm that the system was functional in the range of IABP 

balloons that would be used clinically, and the theory suggests that there should be no 

problems measuring different volume ranges. Low volumes could be difficult to measure 

with the current flow meter when the resolution of the hot wire anemometer is reached. 

However, the design of the system is such that it would be possible to select a specific 

flow meter of the appropriate flow to eliminate this problem. Again, specific application 
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devices using our technology would have much better function over certain ranges than 

our general-purpose prototype. 

 Helium-air mixture effects were examined in this paper, but other binary gas 

systems might also be analyzed with the DBVSS. Hot wire anemometry theory indicates 

that other mixtures can be used, but a new b vs. Emin relationship would have to be 

found for each pair of gases. This adaptation is probably only necessary between gases 

of disparate thermal conductivities, and the margin of error can be determined for each 

case using the appropriate portions of the equations. 

 The Emin vs. b relationship is useful shorthand for the actual gas changes 

occurring in the system. Re-examining the derivation of King’s law we see that Emin and 

b are functions of many variables, including gas properties, fluid flow geometry, and 

sensor properties. The variables changing as the gas concentration changes are k, ρ 

and µ, with Emin a function of k and b a function of kn, ρn, and µn. 

This set of experiments has shown only one realm into which our DBVSS can be 

applied; the theory of hot wire anemometry we have developed can be applied in many 

situations beyond medical catheters. The reduction of mixed gas properties to a single 

measurement within the flow signal can have many applications for the simplification 

and reduction of hot wire anemometer measurement systems, with the equations 

independent of flow range or gas mixture. The expansion of spirography, and single hot 

wire anemometer flow meters, can be applied to many fields of flow research, including 

nanotechnology and MEMS, where anemometry is a valuable method on measuring 

minute flows.  
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In the process of validating a specific volume system, this data has also 

expanded the theory of flow measurement using hot wire anemometry and so affects all 

the application areas in which that flow measure is used.  

In conclusion, this work expands upon previous work on measurement of spirography to 

measure oscillating volume. The ability to measure dynamic flow under changing helium 

concentrations is a valuable expansion of the abilities of hot wire anemometry and 

spirography in general. Our system is also adaptable to different flow patterns, shown 

by the functionality across different volume pulsations, and further work should readily 

confirm the readiness of the DBVSS for several pulsating catheter applications.  
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Figure 33. Scanning electron micrograph of a microfabricated hot wire 
anemometer, University of Louisville MicroTechnology Center 24

79 



 
 

11.0 FUTURE DIRECTIONS 

 

 The DBVSS has been shown to be an accurate method for measuring balloon 

volume in changing gas concentrations, but it needs refinement before becoming a 

useful research tool. First, the system is not real time, as it requires tow steps: data 

collection and then data analysis. The added step takes only a matter of minutes to 

execute, but a real time device would be best for use in a clinical setting.  

The limitation is in the setup of the data collection and thresholding of the data 

that is currently performed. The actual processing and data analysis takes only 15 

seconds on a 266 MHz Pentium II processor, which could probably be shortened with 

further refinement of the data processing algorithms. 

 A requirement for real-time operation would be a refinement of the low peak 

detecting that separates the forward and reverse flow signals. Currently, the operator 

has to select the positive flow signal based on the driveling pressure, but this selection 

could readily be automated. The thresholding of where to divide the flow signal is also 

an issue.  The algorithm sometimes selects smaller, artifact peaks as flow peaks, which 

causes erroneous volume measures. 

 Second, the flow meter used in the DBVSS was not ideal. The HWA flow meter 

was designed for use in 0-300 LPM air or oxygen flow. Errors from low resolution of the 

flow meter in the lower flow range were not detected during testing, but a device with a 

larger voltage change over the studied flow range would make data acquisition and 

analysis easier, as it would boost the signal to noise ratio. This is of special concern at 
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the higher frequencies where the algorithm had higher occurrences of false positives 

and false negatives in the volume detection.  

 The theoretical applications of this research are in the relationships between the 

voltage vs. flow graphs at different helium concentrations. While a method for finding 

the equation has been demonstrated, the correlation of these equations to changes in 

the actual gas properties is theoretically possible. The equations exist, and the theory of 

mixed gases is well established.  
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DATA ACQUISITION PROGRAM, LABVIEW FRONT PANEL 
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DBVSS DATA ACQUISITION PROGRAM, LABVIEW FRONT PANEL 

 



 

 

APPENDIX C 

 

DBVSS DATA ACQUISITION PROGRAM, LABVIEW BACK 
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e n d
v m in = v m in 2 ^ .5 ;

a = v m in 2 ;
b = sc l;
c = .6 5 ;
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APPENDIX D 
 
 
 

DBVSS DATA ACQUISITION PROGRAM, MATLAB CODE 
 
 
 
 
%-------------------------------------------------------------- 
% DBVSS analysis code 
% Tim Nolan 
%-------------------------------------------------------------- 
 
% input temperature voltage from column 2 of data file  
temp=tsi(:,2); 
temp=temp';  
 
%input plethysmograph pressure transducer voltage from column 4 of %data file 
press=tsi(:,4);  
press=press'; 
 
% input flow voltage from column 1 of data file      
tflow=tsi(:,1); 
tflow=tflow'; 
 
%use thermister equation from TSI to calculate average temperature 
atemp=(.8077.*temp.^2) - 21.335.*temp + 73.42; 
temp1=mean(atemp); 
 
%coefficients are V^2=A +BQ^C 
 
vstd=tflow; 
vstd(1)=2.36; 
vstd2=vstd.^2; 
 
%vmin2 is the minimum voltage over a 4 second period 
vmin2=min(vstd2(4000:8000)); 
 
%vmin2 is bounded on the high side by the value of 100% helium zero-%flow  
if vmin2>(2.38^2); 
   vmin2=(2.38^2); 
end 
vmin=vmin2^.5; 
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a=vmin2; 
% scl is user input from LabVIEW program, changed to regress values or % 
calculated by program and delivered to user 
b=scl; 
%c was found through dynamic volume measurement 
c=.65; 
 
%King’s law solved for flow as the independent variable 
%voltage data converted to flow data 
qtsi =(((vstd2 - a)./b).^(1/c)); 
%anemometer cannot measure negative flow 
qtsi =abs(qtsi); 
 
%converts atmospheric pressure from inHg to mmHg 
patm=25.4*patm; 
 
% Calculate isothermal expansion coefficient 
isothermal=patm/2287; 
 
% Use adiabatic constant for air to calculate adiabatic expansion %coefficient 
adiabatic=1.401*isothermal; 
 
%Finding pressure change by subtracting minimum pressure 
press1=press-p0; 
 
%convert pressure voltages to pressures using PTB calibration 
press2=press1.*ptb; 
 
%calculate volume change from pressure change 
pvol=press2./adiabatic; 
 
%set up empty matrix to hold time data on pulsations  
len=length(vstd); 
x=1:len; 
ipoint=zeros(size(vstd)); 
%set minimum length of flow pulsation 
smp=round((sample/100)*7); 
% calculate helium concentration 
helium=(vmin-.5072)/1.8788; 
 
% begin detection algorithm for flow pulsations 
% set region of examination to the interval over which vmin was %determined, 
beginning point ‘n’ set by user. 
for i=n:len-4; 
 
%set threshold over zero flow voltage detect positive flow 
   if vstd(i)<(1.15*vmin); 
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%is point in question the bottom of a ‘valley’ or the transition from steady %flow 
to increasing flow? mark as a ‘1’ in [ipoint] 
      if vstd(i-1)>=vstd(i) & vstd(i+1)>=vstd(i); 
         if vstd(i-3)>=vstd(i) & vstd(i+3)>=vstd(i) & ipoint(i-1)==0; 
            ipoint(i)=1; 
            for t=1:smp; 
               ipoint(i-t)=0; 
            end 
         end 
      end 
   end 
end 
%Make the ipoint vector more visible on the display 
ipoint=80.*ipoint; 
 
count=0;  %no loops integrated 
tag=-1;  %will toggle on at start 
s=n;    %set counter to start index 
   %none integrated yet 
sum5=0; 
c1=0; 
loops=qtsi; 
while count<=amount; 
   if ipoint(s)==80; 
      tag=tag*(-1);  %turns on or off at inflections 
      c1=c1+1; 
   end 
   if tag==1 & ipoint(s)==80 
      if count>0; 
         int5(count)=sum5; %move integral to vector 
         if count==1; 
             st=1; 
         else 
              st=int5i(count-1)-40; 
         end 
         interval=pvol(st:(s+40)); 
         %interval2=pline(st:(s+40)); 
         vcycle(count)=max(interval) -min(interval); 
         int5i(count)=s; 
        sum5=0;     %reset integral 
      end 
      count=count+1 %increments count per loop 
   end 
   if tag==1;   %positive flow 
      sum5=sum5 + (qtsi(s) + qtsi(s+1))*(delay/(2*60*1000));  
   end 
   s=s+1; 
end 
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vcycle2=abs(vcycle.*((patm + linemax)/(patm))); 
int=abs(int5.*1000); 
tmean=mean(int5)*1000; 
tstd=std(int5)*1000; 
pmean=mean(vcycle2); 

pstd=std(vcycle2) 
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