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  A simplified dynamical model of immune response to uncomplicated influenza virus 

infection is presented, which focuses on the control of the infection by the innate and adaptive 

immunity. Innate immunity is represented by interferon-induced resistance to infection of 

respiratory epithelial cells and by removal of infected cells by effector cells.  Adaptive immunity 

is represented by virus-specific antibodies. Similar in spirit to the recent model of Bocharov & 

Romanyukha (Bocharov and Romanyukha, 1994), the model is constructed as a system of 10 

ordinary differential equations with 27 parameters.  

In the first part, parameter values for the model are obtained either from published 

experimental data or by estimation based on fitting available data about the time course of IAV 

infection in a naïve host. Sensitivity analysis is performed on the model parameters. To account 

for the variability and speed of adaptation, a variable is introduced that quantifies the antigenic 

compatibility between the virus and the antibodies.  It is found that for small initial viral load the 

disease progresses through an asymptomatic course, for intermediate value it takes a typical 

course with constant duration and severity of infection but variable onset, and for large initial 

viral load the disease becomes severe. The absence of antibody response leads to recurrence of 

disease and appearance of a chronic state with nontrivial constant viral load.   

In the second part, an ensemble model of immune response is developed, which consists 

of multiple ODE models that are identical in form but differ in parameter values.  A probabilistic 

measure of goodness of fit of the ODE model is used to derive an a posteriori probability density 
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on the space of parameter values.  This probability density is sampled using the Metropolis 

Monte Carlo method and sampling is enhanced using parallel tempering algorithm.  The 

ensemble model is employed to compute probabilistic estimates on trajectory of the immune 

response, duration of disease, maximum damage, likelihood of rebound in the disease and the 

probability of occurrence of superspreaders. The effectiveness of using antiviral drug to treat the 

infection is addressed and optimal treatment scenarios are discussed. 
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1.0  INTRODUCTION 

Influenza is a highly cytopathic, contagious, acute respiratory disease caused by an 

influenza virus infection (Mohler et al., 2005; Nicholson K.G et al., 1998; Tamura et al., 2004). 

Transmission is caused by direct contact such as hand shake or by airborne virus (Mohler et al., 

2005). The virus is an enveloped virus with seven internal proteins (nucleoprotein (NP), three 

polymerase proteins (PA, PB1, and PB2), two matrix proteins (M1 and M2), and nonstructural 

proteins (NS2)) and two external glycoproteins, hemagglutinin (HA) and neuraminidase (NA) 

(Tamura et al., 2005). It is divided into types A, B, and C, according to the antigenic differences 

between nucleoprotein (NP) and matrix protein (M) (Tamura et al., 2005). Influenza A viruses 

are subdivided into subtypes such as H1N1, H16N9 etc. based on the antigenic signatures of the 

major surface proteins HA (16 subtypes differ by 30%) and NA (Webster et al., 2006). The 

viruses in each subtype regularly undergo gradual changes in genetic makeup through point 

mutations in the HA and NA molecules (antigenic drift) which cause local outbreaks of influenza 

and small size epidemics. Occasionally, a major change in the HA and NA proteins can arise 

from the exchange of genetic material  (reassortment) between the avian influenza gene pool and 

human influenza genes during co-infection (Tamura et al., 2004) or adaptive mutation. Such a 

change is termed as “antigenic shift” and since the population has typically limited or no 

immunity against the modified virus, a global pandemic may result. 
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In the 20th century, three global pandemics occurred. The “Spanish flu” of 1918-19, 

which was of the subtype H1N1, infected approximately one third of the entire human 

population(Taubenberger et al., 2006). More than a half million people died in the U.S. and 

about 50 million people died worldwide(Taubenberger et al., 2006). In 1957-58, “Asian flu” of 

the subtype H2N2 caused about 70,000 deaths in the U.S. In 1968-69, “Hong Kong flu” of the 

subtype H3N2 caused about 34,000 deaths in the U.S.  Many scientists believe that it is only a 

matter of time until the next pandemic occurs. In the absence of proper preparation, a pandemic 

could cause 89,000 to 207,000 deaths, 314,000 to 734,000 hospitalizations, 18 to 42 million 

outpatient visits, and another 20 to 47 million people being sick in the U.S (Meltzer et al., 1999). 

The economic impact could range between $71.3 and $166.5 billion and between 15% and 35% 

of the U.S. population could be affected from the infection(Meltzer et al., 1999). Currently, there 

is a big concern about the pandemic potential of the avian flu of subtype H5N1 which has 

already caused considerable damage, mainly to birds: more than 140 million domestic birds have 

been killed by the virus or culled to stem its spread till now and more than 130 people have been 

infected in various countries in Asia(Webster et al., 2006). Almost half of the infected people 

died. These numbers show the potential danger of IAV infection for human population and the 

importance of understanding virus-immune system interactions which helps for taking necessary 

control measures (vaccination or antiviral drugs). 

Mathematical modeling has proven to be a valuable tool in the understanding of immune 

response to infectious diseases (Perelson, 2002) which helps in clarifying and testing hypotheses, 

finding the smallest number of factors sufficient to explain the biological  phenomena and 

analyzing experimental results(Asquith et al., 2003). Modeling has a substantial impact on 

research at the molecular level(Nowak et al., 2000). Recently, important results have been 
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obtained in the mathematical modeling of virus dynamics for the HIV (Nowak et al., 1996; 

Perelson et al., 1993; Perelson et al., 1996), hepatitis B(Marchuk et al., 1991), hepatitis C 

(Neumann et al., 1998)and influenza(Bocharov et al., 1994) infections. 

This thesis is concerned with the development of a mathematical model of the dynamics 

of IAV infection and the human immune response to such infection. Two closely related types of 

models are discussed: a deterministic ODE model, which is derived and analyzed in the first part, 

and an ensemble model base on the ODE model that is discussed in the second part. 
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2.0  A DYNAMICAL MODEL OF HUMAN IMMUNE RESPONSE TO INFLUENZA 

VIRUS INFECTION 

2.1 INTRODUCTION 

In this part we construct a simplified, biologically justified, mathematical model of the 

dynamics of IAV infection and the human immune response to such infection. We do not strive 

to obtain a detailed model accounting for all known components of the immune system and their 

interactions. Rather, we focus on three important components of the immune response; the 

interferon and cellular components of innate immunity and the adaptive immunity. All of them 

have the same goal of limiting the concentration of the virus and the damage to the system. They 

achieve this goal using different strategies: interferon immunity by removing the “substrate” that 

virus needs for reproduction (i.e., the healthy cells), cellular immunity by removing the source of 

new viruses (i.e., the infected cells), and adaptive immunity by lowering the effective 

concentration of the virus.   

 Our main goal is to uncover the relative roles played by each immune strategy during the 

course of the disease to have a better understanding of what drives the intensity of symptoms, 

infectivity of the virus and the host and duration of the disease. In subsequent research, the 

model will serve as a tool for predicting the effect of therapeutic interventions on the course of 

the disease, as well as a model for understanding of basic processes of the immune response to 
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multiple infections. Our second goal is to develop a model of the immune response of individuals 

that can be used as a practical basis for multi-scale population susceptible-infected-recovered 

(SIR) models that are used to describe geographic disease spread and evaluate the impact of 

containment strategies. As such, this biological model should account for individual 

characteristics of the human host and the virulence of a specific virus subtype or strain and 

should yield predictions about the onset, severity and infectivity of the IAV infection in an 

individual as a function of the initial viral load and existing immunity(Clermont et al., 2004). 

Yet, the model should be sufficiently simple to allow fast computation of individual immune 

responses as part of multi-scale simulations. 

2.2 BIOLOGICAL MODEL 

Influenza virus (IAV) attacks the host respiratory tract mucosa, interacts with healthy 

epithelial cells and infects them by binding to cell surface receptors via one of the major surface 

glycoproteins, HA (Tamura et al., 2004). The virus replicates in infected cells and several hours 

after cellular infection, newly synthesized virus particles are released by the action of another 

major glycoprotein, NA (Tamura et al., 2005). The response of the host to IAV infection 

involves a cascade of events mediated by several effector cells and molecules (Ada et al., 1986; 

Tamura et al., 2004) that neutralize free virus, kill infected cells and limit the spread of viral 

particles by increasing healthy cell resistance to infection.  

Antigen presenting cells (APC) are essential in the induction and amplification of the 

human immune response (Akira et al., 2001). Exogenous viral antigens, which comprise inactive 

viral particles, intact viruses and apoptotic, infected cells, are taken up by APC through 
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endocytosis and provide a potential source of peptides that could bind to MHC class I or II 

molecules in the APC (Nguyen et al., 1998; Tamura et al., 2004; Tulp et al., 1994). The role of 

the APC is to stimulate both innate and adaptive immunity.  

As the first line of defense, APC and infected cells stimulate the innate immunity by 

secreting interferon α andβ (IFN) molecules (Julkunen et al., 2000; Lamb R, 1996; Ronni et al., 

1995; Sareneva et al., 1998), (Stark et al., 1998) which interact with healthy cells and convert 

them to an infection resistant state, thereby preventing the virus from spreading efficiently and 

allowing the adaptive immune response enough time to develop and eliminate the virus (Price et 

al., 2000).  Another role of IFN is to stimulate symptoms such as fever which occurs in the early 

stages of infection. IFN levels rise rapidly after infection and correlate directly with the degree of 

viral replication in ferrets, mice and humans (Tamura et al., 2004; Wyde et al., 1982). The 

magnitude of fever correlates strongly with the level of virus shedding in humans and animals 

(Tamura et al., 2004). 

As a second line of defense, APC stimulate the cellular component of innate immunity 

which consists of effector cells (cytotoxic T cells (CTL) or natural killer cells (NK)) that destroy 

infected cells before they can release a mature virus. Activated T cells produce various factors 

which are extremely important for the kinetics of the IAV infection: helper T cells secrete IL-2 

and other lymphocytes and CTL produce IFN-γ, which increases the expression of MHC 

antigens acting to enhance virus-infected cell destruction. The peptide-class I MHC complexes 

presented on the infected cells are recognized by class-I MHC-restricted CD8+ memory T cells 

(Th1 cells), which destroy the infected cells (Tamura et al., 2005). The specificity of memory T 

cells is directed against viral internal proteins; NP is the strongest of these antigens (Yewdell et 
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al., 1985). Since structure of these antigens is conserved within the type of virus, Th1 cells 

against these antigens are cross-reactive within the type of influenza (Tamura et al., 2005). 

Finally, APC stimulate adaptive immunity by activating the proliferation of virus-specific 

plasma cells which produce antibodies (Abs) that bind with IAV and render it ineffective. HA 

and NA are taken up in an endocytic vesicle pathway of the APC and are degraded; the peptides 

of these antigens are loaded on class-II MHC molecules and then expressed on the APC (Tulp et 

al., 1994).The peptide class II MHC complexes are recognized by class-II MHC-restricted CD4+ 

T cells (Th2 cells). Th2 cell stimulation by antigen recognition results in the production of 

specific Abs to HA and NA molecules. Anti-HA Abs neutralize the infectivity of the virus, 

whereas anti-NA Abs prevent the release of viruses from infected cells (Johansson et al., 1989). 

Thus, anti-HA Abs are primarily responsible for preventing infection, while anti-NA Abs and 

CTL specific for viral core proteins are responsible for reducing viral spread and thereby for 

accelerating the recovery from influenza(Tamura et al., 2005).  

 The respiratory tract mucosa is not only the site of infection by influenza viruses but also 

the site of defense against viral infection in the host (Tamura et al., 2004). The recovery process 

after primary infection involves two phases: An early phase (days 5-7), characterized by a rapid 

decrease in virus titer via killing of the virus-infected epithelial cells by MHC class I restricted 

CD8+ CTL’s, which appear with a peak at day 7 is cellular response dependent, while a late 

phase (day 7 onwards), characterized by a more protracted decrease that ultimately results in 

clearance, depends on the adaptive response (Tamura et al., 2004). Since flu symptoms emerge 

within a few days of inoculation, acquired immunity appearing after the first week of infection 

cannot prevent the onset of respiratory symptoms. Therefore, effective immunity must be 

induced in advance by natural infection or vaccination in order to prevent disease. 
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2.3 MATHEMATICAL MODEL 

The model of human immune response against IAV infection we consider is a simplified 

model of population-dynamics type which consists of the following interactions (see Figure 2-1): 

The epithelial cells of the respiratory tract are assumed to be in one of four possible states: 

healthy (H), infected (I), dead (D), or resistant (R) to infection. The total number of epithelial 

cells (i.e., H + I + D + R) is assumed constant. The virus particles (V) interact with healthy cells 

and infect them. Infected cells release new virus particles upon their death. Proliferation of 

healthy cells causes regeneration and decrease in the proportion of dead cells.  Dead cells 

stimulate the activation of APC (M). APC stimulate the production of interferon α andβ  (F)  

 

 

Figure 2-1. Schematic representation of interactions included in the model. 

The influenza virus (IAV) is shown as red hexagon, the four different cell types are shown in cyan.  
Components of adaptive immunity are shown in orange, cellular component of innate immunity in purple, 
and interferon component in green. Upregulation is represented by lines terminated with arrows and 
inhibition by lines terminated with bars.  
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that interact with healthy cells and convert them to a resistant state. APC also stimulate the 

proliferation of effector cells (E) that destroy infected cells. Finally, they stimulate the 

production of plasma cells (P) which, in turn, produce antibodies (A) that neutralize (kills) virus. 

This neutralization is modulated by the antigenic compatibility (S) between  virus and antibodies 

currently produced by the organism. S quantifies the affinity between antibodies and virus. 

These interactions were used in the construction of a system of 10 ordinary differential 

equations describing the dynamics of the main variables, listed in Table 2-1, which correspond to 

the components of the immune response shown in Figure 2-1: 

         

Table 2-1. Model variables and scaling factors. 

Variable Description Scaling factor 

V Viral load per epithelial cell* H* =  1.7 x 10-11 M  

H Proportion of healthy cells H* =  1.7 x 10-11 M 

I Proportion of infected cells H* =  1.7 x 10-11 M 

M Activated antigen presenting cells per homeostatic level M* = 10-15 M 

F Interferons per homeostatic level of macrophages M* = 10-15 M 

R Proportion of resistant cells H* =  1.7 x 10-11 M 

E Effector cells per homeostatic level E* = 10-16 M 

P Plasma cells per homeostatic level P* = 1.8139 x 10-20 M 

A Antibodies per homeostatic level A* = 7.2 x 10-11 M 

S Antigenic compatibility  
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dt
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dt
dP
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AaSAVPb
dt
dA

AAVA −−= γ          (9) 

)1( SrP
dt
dS

−=                     (10)  

 

No differential equation is needed for the proportion of dead cells (D) which is given by  

 IRHD −−−= 1          (11) 

The variable D serves as a marker for tissue damage (Hayden et al., 1998) and an 

indicator of the severity of disease. All variables have been rescaled by their constant 

homeostatic values (see Table 2-1) and hence the system (1)-(11) is dimensionless. 
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The interactions are based on clonal selection theory, mass-action kinetics, characteristics 

of interactions and the birth-death balances of populations of cells and molecules: Equation (1) 

of the system describes the rate of change of virus concentration V. It expresses the production 

rate of a viral particle by infected cells, rate of neutralization of IAV by specific antibodies, the 

rate of adsorption of viral particles by healthy cells, and the natural decay of viral particles. The 

viral particles are also removed from the respiratory tract by nonspecific mechanisms. The non-

specific mucociliary removal of virions supported by cough and other mechanisms is described 

by the term (aV1V)/(1+aV2V), which saturates with increasing V as the available capacity of these 

mechanisms is exhausted. Note that the lethal damage of an infected cell by the effector cells 

doesn’t cause any release of infective IAV and hence in equation (1) there is no term of the form 

EI. 

 Equation (2) determines the time rate of change of healthy cells H.  During recovery, 

new healthy cells are generated as a result of proliferation of both healthy and resistant cells (the 

offspring of resistant cells lose resistance) and hence the proliferation term is proportional to 

(H+R), and to D (in a logistic fashion) since regeneration can only occur in the presence of 

damage. Resistant cells R gradually loose their resistance to infection and return into their initial 

sensitive state (healthy state) (Joklik, 1985) , which is characterized by the term aRR. The term 

γHVVH  is the loss of healthy cells due to infection and the term bHFFH characterizes transition of 

the healthy cells into resistant state. 

Equation (3) characterizes the time rate of change of infected cells I. The infection of 

healthy cells by virions is described in the term γHVVH. The term aII indicates the natural death 

of infected cells during which new virus particles are produced. The term bIEEI characterizes the 
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destruction of infected cells by effector cells (CTL and NK) during which no new virus is 

produced.  

Equation (4) establishes that the time rate of increase of activated APC (M) is 

proportional to the amount of the virus and the amount of dead cells.  The natural decay of 

activated state of APC is represented by the last term in that equation. 

Equation (5) describes the time rate of change of interferons α andβ  (F) which depends 

on the production rate of F by APC and by infected cells, on the rate of F binding healthy cells, 

as well as on the non-specific decay of F. 

Equation (6) shows that resistant cells R are induced from healthy cells (bHFFH) and 

convert back to healthy cells (aRR) with finite lifetime. 

Equation (7) characterizes the rate of change of effector cells E concentration and takes 

into account the production rate of effector cells stimulated by APC (first term) and the 

destruction rate of infected cells by effector cells (second term, bEIIE). The terms aE(1-E) and 

aP(1-P) in equations (7) and (8) are approximate expressions for homeostatic maintenance of the 

levels of active effectors and plasma cells, reflecting the observation that the healthy body tends 

to maintain their concentrations within narrow bounds. In a healthy state the effectors and 

plasma cells are naturally located in lymph nodes and blood, and migrate into the infected tissue 

upon activation. Both the activation and migration of those cells to the infected tissue are 

assumed to be much faster than their proliferation and hence are not explicitly accounted for. The 

first term in equation (8) characterizes the activation process of plasma cells stimulated by APC. 

Equation (9) stands for the time rate of change of the concentration of antibodies A 

describing the production rate of A by plasma cells (first term), the neutralization rate of free 

viral particles by specific antibodies (second term) and the natural decay rate of A (last term).  
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The variable S in our model represents the compatibility between antibodies and the virus 

strain in an individual and ranges from 0 (no compatibility) to 1 (maximal compatibility) and can 

be interpreted as a measure of binding affinity of the antibody and the virus (Smith et al., 1999).  

The immune memory of the host is described by the initial value S(0) of S.  During the course of 

the disease, S increases as plasma cells produce antibodies increasingly compatible with viral 

antigens. The rate of increase of S is approximated by the term rP(1-S) which accounts for two 

natural observations: (i) the increase in S is stimulated by plasma cells  and (ii) S cannot increase 

beyond 1. By adjusting the time evolution of S we may observe how the course of the disease 

depends on the evolution of antigenic distance.   

It has been established that IAV boosts T cell and B cell memory (Ada et al., 1986). 

However, the majority of IAV-induced CTL are fully cross-reactive with related strains and 

would provide heterotypic immunity, while antibodies (and consequently B memory cells) are 

protective only against reinfection by strains closely related to the stimulating IAV (Bocharov et 

al., 1994). Thus a variable analogous to S for description of the antigenic distance between 

effectors and the virus is not necessary. 

We note that a number of assumptions in the model are strong simplifications of our 

knowledge of immune physiology. The populations of cells and virions are assumed to be 

uniformly distributed over the epithelial layer at all times. It is also assumed that time rate of 

change of any model variable is determined by the present value of all variables. Some of the 

variables do not have uniquely identifiable biological counterparts.  For example, there is no 

single biological entity or marker that represents the APC in our model, which are assumed to 

provide both antigen presenting and IFN producing functions. We have also omitted intermediate 

steps in the pathways: for example, we do not account for the intermediate steps in the 
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production of effector cells and plasma cells such as Th1 and Th2 helper cells and B-cells. We 

do not consider time delays in the reproduction of cellular components.  

Although our model is similar on that of Bocharov et al, (Bocharov et al., 1994) it differs 

in number of instances that reflect the latest knowledge about biology of influenza: (i) we 

include a new nonspecific virus removal term in Equation (1), which results in clearing out 

extremely low initial virus concentrations, (ii) we make the cell regeneration rate proportional to 

the product of healthy cells and dead cells, as opposed to only dead cells, (iii) we include 

reproduction of resistant cells, (iv) we make the activation of APC proportional to the amount of 

both viral particles and dead cells, (v) we include a new term describing the production of 

interferons by infected cells, (vi) we introduce a new variable that accounts for the antigenic 

distance between antibodies and the virus.   

2.4 SIMULATIONS 

We use the dynamical systems analysis software XPPAUT (www.pitt.edu/~phase/) to run all 

simulations. The time courses of variables were obtained by numerical integration using 

parameters provided in Table 2-2. Model parameters were adjusted so that the response of the 

naïve host to the standard initial conditions (see below) satisfies the following criteria, extracted 

from available experimental and clinical data (Bocharov et al., 1994): (i) Virus titers V peak 4-5 

day after infection with an approximately 104 fold increase over the initial level. (ii) The 

maximum amount of activated APC M is 40%. APC become deactivated within 8-10 days. (iii) 

Effector cells E peak with approximately 102 fold increase over the homeostatic level. (iv) P 

cells peak with approximately 104 fold increase. (v) S changes gradually. After 15 days, the 
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antibodies A are compatible with the probability 0.8. (vi) Maximum level of dead cells Dmax is 

36%.  (vii) Interferons F peak with approximately 104 fold increase. (viii) Antibodies A peak 

with approximately 103 fold increase. Most of our parameters are close to those in (Bocharov et 

al., 1994) yet rescaled to dimensionless quantities. To examine the robustness of infection 

dynamics to parameter values and to provide insight into inter-individual variation in disease 

dynamics, we conducted a full set of one-dimensional sensitivity analyses.  

 

Table 2-2. Model parameters used for the baseline case 

Parameter Value Description Comments Sources 

γV 510 Rate constant of influenza A 
virus (IAV)  particles 
secretion per infected 
epithelial cells 

About 103-104 virus particles 
are released from a single 
infected cell within a day. 

(Zdanov 
et al., 
1969) 

γVA 619.2 Rate constant of 
neutralization of IAV by 
antibodies 

1-10 antibodies are sufficient 
to neutralize a single IAV 
(Wohlfart, 1988) 

(Bocharov 
et al., 
1994) 

γVH 1.02 Rate constant of adsorption 
of IAV by infected epithelial 
cells  

In vitro experiments show 
that a single epithelial cell 
can adsorb 1-10 influenza 
virions.  

(Bocharov 
et al., 
1994) 

αV 1.7 Rate constant of nonspecific 
IAV removal 

Nonspecific physical removal 
of infective virions takes 
about 4-24 hours. 

(Bocharov 
et al., 
1994) 

aV1 100 Rate constant of nonspecific 
IAV removal 

  

aV2 23000 Rate constant of nonspecific 
IAV removal 

  

bHD 4 Rate constant of regeneration 
of epithelial cells 

The duration of a single 
division of an epithelial cell 
is about 0.3-1 day. 

(Keenan 
et al., 
1982) 

aR 1 Rate constant of epithelial 
cells’ virus resistance state 
decay 

 (Marchuk 
et al., 
1991) 

γHV  0.34 Rate constant of epithelial 
cells infected by IAV 

The difference between γVH 
and γHV is caused by the fact 
that more than one virion are 

(Marchuk 
et al., 
1991) 
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required to infect a healthy 
cell. 

γHV  0.34 Rate constant of epithelial 
cells infected by IAV 

The difference between γVH 
and γHV is caused by the fact 
that more than one virion are 
required to infect a healthy 
cell. 

(Marchuk 
et al., 
1991) 

bHF  0.01 Rate constant of epithelial 
cells’ virus resistant state 
induction 

 (Bocharov 
et al., 
1994) 

bIE  0.066 Rate constant of infected 
epithelial cells that CTL 
damage 

A single effector cell can 
deliver 
approximately 10 lethal hits. 

(Bocharov 
et al., 
1994) 

aI 1.5 Rate constant of infected 
epithelial cells damage by 
cytopathicity of IAV 

The life time of an infected 
cell is approximately 1 day  
 

(Zdanov 
et al., 
1969) 

bMD 1 Rate constant of stimulation 
of antigen presenting cells by 
dead cells 

 (Marchuk 
et al., 
1991) 

bMV 0.0037 Rate constant of stimulation 
of antigen presenting cells by 
virus particles 

 (Marchuk 
et al., 
1991) 

aM 1 Rate constant of  
stimulated state loss of antig
presenting cells 

 (Marchuk 
et al., 
1991) 

bF 250000 Interferon (IFN) production 
rate per APC 

 (Bocharov 
et al., 
1994) 

cF 2000 Interferon (IFN) production 
rate per infected cell. 

interferon α andβ (IFN) are 
secreted also from infected 
cells(Julkunen et al., 2000) 

Estimated 

bFH 17 Rate constant of epithelial 
cells that IFN binds 

 (Bocharov 
et al., 
1994) 

aF 8 Rate constant of IFN’s 
natural decay 

 (Bocharov 
et al., 
1994) 

bEM 8.3 Rate constant of stimulation 
of effector cells 

 (Marchuk 
et al., 
1991) 

bEI 2.72 Rate constant of death of 
effectors by lytic interactions 
with infected epithelial cells 

A single effector cell can kill 
about 100 infected cells. 
 

(Bocharov 
et al., 
1994) 

aE 0.4 Rate constant of natural 
death of effector cells 

 (Marchuk 
et al., 
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1991) 
bPM 11.5 Rate constant of plasma cells 

production   
 (Marchuk 

et al., 
1991) 

aP 0.4 Rate constant of natural 
death of plasma cells 

 (Marchuk 
et al., 
1991) 

bA 0.043 Antibody production rate per 
plasma cells 

 (Marchuk 
et al., 
1991) 

γAV 146.2 Rate constant of antibodies 
which binds to IAV 

 (Bocharov 
et al., 
1994) 

aA 0.043 Rate constant of natural 
death of antibodies 

 (Marchuk 
et al., 
1991) 

r 3e-5 Rate constant for  S variable   Estimated 

 

 

2.5 RESULTS 

2.5.1 Standard Behavior 

The standard behavior describes the course of infection in a naïve host. We assume that 

initially the host has no dead, infected or resistant cells, no interferon molecules, and no activated 

APC (i.e., H(0) = 1, I(0) = M(0) = F(0) = R(0) = 0). The initial levels of effectors, plasma cells, 

and antibodies are assumed to be at the homeostatic values (i.e., E(0) = P(0) = A(0) = 1)  

(Asquith et al., 2003). The influence of antigenic compatibility S on the progression of infection 
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is described in the subsection “Impact of Antigenic Distance” below. In a naïve host, we assume 

that S(0) = 0.1 which corresponds to a relatively low compatibility with the virus strain, that may 

have resulted from previous exposure to IAV and subsequent genetic drift. In the typical course 

of acute IAV Infection, the initial concentration of aerosol delivered virus particles that the host 

receives is about 106 particle per ml on day 0, corresponding to V(0) = 0.01 in our dimensionless 

system.  

The resulting time courses of model variables corresponding to naïve infection are 

depicted in Figure 2-2. As seen in Figure 2-2, virus level peaks (period of maximum antigen 

concentration) after 5 days. This relatively late onset of the disease is the result of relatively low 

initial viral load used in our simulation. Peak viral load is increased by 104 fold with respect to 

initial value staying at peak approximately 3 more days, in accord with experimental data 

(Tamura et al., 1998). Viral load starts to decline to inoculation level after day 8 (early stage of 

recovery, disappearance of IAV particles). The host is considered infectious when the virus level 

exceeds 1, which happens at day 4.9. The host remains infectious for 2.6 days. APC are activated 

after 5 days peaking after about 7 days and returning to homeostatic levels within 8-10 days. 

The resulting loss of respiratory epithelial cells (dead cells) is one major reason for 

several of the symptoms that accompany infection, such as cough, depressed tracheobronchial 

clearance, and altered pulmonary function (Hayden et al., 1998). We consider the host  

“symptomatic” if the damage level exceeds 10% of the epithelial cells(Marchuk et al., 1986), 

which occurs when the viral load peak at day 5. The maximum proportion of dead cells is 36% 

attained at day 6.1. The host stays symptomatic for 2.4 days after which time most of the cells 

become resistant to the infection. Infected cells reach a maximum proportion of 53% of all cells 

after day 5.2, while the proportion of resistant cells peak after 9 days, which is in accord with the 
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experimental observation that the expression of nucleoprotein (NP) mRNA in epithelial cells, 

showing the presence of infected cells, changes in parallel with viral titer (Fig. 2-2) (Tamura et 

al., 2004). 

 Interferon response comes into play once the virus peaks at day 5 making most of the 

cells resistant to infection. Interferon level is increased by 104 fold peaking approximately at day 

6. Plasma cells are produced after 6 days peaking at 9 days, before virus-specific antibodies are 

detectable, in accord with empirical observations (Ada et al., 1986). Antibody production by 

plasma cells begins at day 7. There is a 103 fold increase in the amount of antibodies when the 

adaptive immune response comes into play to remove all viral particles and generate immune 

memory. Furthermore, antigenic compatibility is increasing monotonically starting right after 

when the adaptive immunity is activated (after day 8) and the antibodies are capable of inhibiting 

viral particles with 80% probability after 15 day of infection. 
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Figure 2-2. Time-courses of the viral load, proportion of respiratory epithelial cells, and the three arms of the 
immune response for a standard course of the disease. 
Initially, the viral load is V(0) = 0.01, all cells are healthy, levels of APC and interferons are zero, effector 
cells, plasma cells and antibodies are at their homeostatic levels, and antigenic compatibility S(0) = 0.1.  Panel 
at the bottom on the right displays cumulative proportions of types of respiratory epithelial cells: at any given 
time, below the red curve is the proportion of dead cells, between red and green the proportion of infected 
cells, between green and blue the proportion of resistant cells, and above blue is the proportion of healthy 
cells. 
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2.5.2 Impact of viral load 

We investigated the impact of initial viral load on the onset, duration and severity of 

infection to understand the immune response of a naïve host to a moderate virus strain. It has 

been realized that IAV infection could result in large spectrum of disease states, however, this 

spectrum of severity has not been understood well (Yetter et al., 1980). 

As seen in Fig. 2-3, the immune response falls into one of three categories depending on initial 

viral load, V(0): asymptomatic disease, typical disease, and severe disease (Asquith et al., 2003). 

If V(0) is less than the threshold V1, the disease never develops. This corresponds to 

asymptomatic infection in which no virus shedding is observed. The host is considered not 

contagious in this case since the virus is eliminated from the host promptly and viral load 

remains very low with almost no ensuing damage. If V(0) is in the range between V1 and V2, the 

disease follows the same trajectory but the larger V(0) the sooner the onset of the disease. In 

other words, in this range of V(0), the maximum viral load (Vmax = 138), maximum damage 

(Dmax = 36%), the duration of symptoms, and length of contagious period are all independent of 

V(0). If V(0) is larger than V2, the disease state corresponds to severe disease for which the 

maximum viral load and damage increase with V(0). In this case maximum damage can exceed 

50% of the respiratory cell population.  Such levels of damage represent serious situation in 

which secondary infections could develop resulting in the death of the host. For standard 

parameter values the thresholds are V1 = 0.00227 and V2 = 0.1, with V1 producing a trajectory 

terminating at a saddle node (see below), and V2 being an approximate quantity determined as 

the lowest value of V(0) for which the trajectory perceptibly departs from the typical behavior. 
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Figure 2-3. Time-courses of (a) viral load and (b) damage for various levels of the initial viral load V(0). 
For V(0) in the range from 0.00227 to 0.1 the dependence of V on t (and of D on t) follows the same trajectory 
but the larger V(0) the sooner the onset of the disease. (c) phase diagram of the dependence on initial viral 
load V(0) as a plot of log V versus log D.  The direction of time is indicated by arrows. The maximum viral 
load and maximum damage for typical disease are Vmax = 1.3x1010 particles/ml and Dmax = 36. The thresholds 
V1 = 0.00227 for the typical disease and V2 = 0.1 for the extreme disease are indicated and the corresponding 
trajectories are shown in black. 
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Fig. 2-3(c) shows the projection of the phase diagram onto the variables V and D. In this 

projection the trajectories have only a very limited tendency to cross.  The trajectories for initial 

conditions V1 < V(0) < V2 all coincide, in accord with the observation that the trajectories are 

very similar and only shifted in time. On this plot the trajectory with V(0) = V1 terminates at the 

point (V,D) = (0.0015,0.0001) . Note that because the graphs are plotted on a logarithmic scale 

and D(0) = 0, the trajectories originate off the graph on the left. 

2.5.3 Stability analysis 

 As expected, the flow of the dynamical system defined by (1)-(11) leaves invariant the 

physiological region of the phase space obeying ),,,,(0 APEFV≤ , 1),,,,,(0 ≤≤ MSDRIH .  

Within that region, for the baseline parameter values, the system (1)-(11) with parameters as in 

Table 2-2 has 3 steady states. One is the healthy steady state xh at which (V, H, I, M, F, R, E, P, 

A,S)  = (0, 1, 0, 0, 0, 0, 1, 1, 1, 1), the second is a threshold state xth for which (V, H, I, M, F, R, 

E, P, A, S)  = (0.0014698, 0. 9865, 0.00031472, 0.00012869, 1.3243, 0.013064, 1.0005, 1.0037, 

0.16739, 1), and the third one is a high-virulence state xv for which (V, H, I, M, F, R, E, P, A, S)  

= (2.9646, 0.0903, 0.056947, 0.034516, 916.91, 0.82797, 1.49024, 130.29, 0.012925, 1).  The 

threshold state corresponds to the separator for the dynamics of influenza between the 

asymptomatic disease and typical disease cases as seen in Fig. 2-3.  The Jacobian matrix for the 

linearization of the system (1)-(11) about the healthy state xh admits eigenvalues that are all real 

and negative, and hence the healthy fixed point is asymptotically stable. We find that, with the 

exception of a small number of cases, the healthy state remains stable under perturbations of the 
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parameters of the system.  The Jacobian matrix for the threshold state xth has two complex and 

one positive eigenvalue and hence xth is a saddle node. The Jacobian matrix for the high-

virulence state xv has one positive eigenvalue and hence xv is also a saddle node. As discussed 

below, the xv becomes stable at fixed, extremely low values of S(0). 

2.5.4 Sensitivity analysis 

The goals of sensitivity analysis with respect to random perturbations of the model 

parameters are the following: 

• To show how robust the simplified uncomplicated influenza model is in relation to 

perturbed parameter values. 

• To explore to which parameters the system is more sensitive to understand key processes 

and immune system mechanisms. 

 Our approach to investigate sensitivity was based on studying the effect of changes in the 

parameters (in every case we increased and decreased the baseline value threefold) on the 

duration, onset and severity of the disease. In clinical studies, the assessment of influenza virus 

pathogenicity is based on the magnitude and duration of fever, the frequency and amount of virus 

shedding, and the level and persistence of the infection. Within the model framework we can 

generalize these clinically relevant correlates into the following characteristics: (I) the severity of 

the disease measured as the maximum attained proportion of dead cells. , (II) 

the duration of symptomatic infection 

)(max 0max tDD t>=

illness 2 1=t -ttΔ , where  t1 is the time that D exceeds 0.1 and t2 

is the time that D drops below 0.1 (III) similarly, the value V =1 is considered to be the threshold 
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level for becoming contagious and the duration of infectivity will be referred to as . For 

typical disease, we find that  days and 

contagioustΔ

illness=2.4tΔ contagious=2.6tΔ  days. 
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Table 2-3. One-way sensitivity analysis on model parameters. 

Parameter Baseline (range) Model behavior 
 
 
 
 
 

γHV 

 
 
 
 
 
 

.34 (.1-1) 

• At high virulence, disease always develops. At low 
virulence, asymptomatic disease is possible. 
• The higher the virulence, the earlier the onset of disease. 
• The higher the virulence, the shorter the duration of 
disease. 
• At high virulence, damage (Dmax= 68%) is at least five 
times larger than that of low virulence (Dmax= 12%). So, high 
virulence may cause death. 
• At peak, virus shedding is about the same for high and low 
virulent viruses. 
• The less virulent the virus, the longer the contagious period 
when disease is developed. 

γV 510(150-1500)             The model behavior is same as in case for γHV. 

 
 
 
 
 

γVA 

 
 
 
 
 

619.2(200-1800) 

• For low γVA, disease always develops. 
• The higher the γVA, the later the onset of disease. 
• At high and low values of γVA, the duration of disease is 
about the same. 
• At high and low values of γVA, the damage is about the 
same. At peak, virus shedding is about the same for high and 
low γVA. 
• The contagious period is about the same for various values 
of γVA. So, γVA only affects the onset of the disease which has 
same characteristics. 
 

 
 
 
 

bMD 

 
 
 
 

2(0.6-6) 

• Disease always develops for all bMD. 
• The onset of disease stays the same. 
• The higher bMD, the shorter the duration of disease. 
• The higher bMD, the lesser the damage. Very low values of 
bMD may cause death. At peak, virus shedding is about the 
same for high and low bMD 
• The higher bMD the shorter the contagious period. 
• If bMD is very high the onset is very late, duration is short, 
damage is very low, contagious period is very short. 

 
bIE 

 
0.066(0.02-0.1) 

• At high bIE, asymptomatic disease is observed for standard 
V(0) and S(0). 
• The higher bIE, the later the onset of disease. 
• The higher bIE, the shorter the duration of disease. 
• At high values of bIE , the damage is lower. Changes only 
in bIE only can not cause death. 
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• At peak, virus shedding is about the same for high and low 
bIE . 
• The higher bIE, the shorter the contagious period when 
disease is developed. 

 
 
 
 

aI 

 
 
 
 

1.5(0.5-4.5) 

• At high aI, asymptomatic disease is observed for standard 
V(0) and S(0). 
• The higher aI, the later the onset of disease. 
• The higher aI, the shorter the duration of disease. 
• At high values of aI, the damage is lower. Changes only in 
bIE only can not cause death. 
• Virus shedding is very sensitive to aI. When aI  is higher, at 
the peak viruses shed less. 
• The higher aI, the shorter the contagious period. But the 
time difference is very small. 

 
 
 
 

bHD 

 
 
 
 

4(2-8) 

• Disease always develops for all bHD for standard V(0) and 
S(0). 
• Onset of disease is about the same for all bHD. 
• The higher bHD the shorter the duration of disease.  
• At high values of bHD, the damage is lower. Changes only 
in bHD can not cause death. 
• Virus shedding is very sensitive to bHD When bHD is higher, 
at the peak viruses shed more. 
• The higher bHD, the longer the contagious period. The time 
difference is significant. 

 
 
 
 

bF 

 
 
 
 

25000(125000-
500000) 

• Disease always develops for all bF for standard V(0) and 
S(0). 
• Onset of disease is the about same for all bF. 
• The higher bF, the shorter the duration of disease. 
• At high values of bF, the damage is lower. Very low values 
of ρG may cause death. 
• Virus shedding is very sensitive to bF. When bF is higher, 
at the peak viruses shed less. 
• The higher bF, the longer the contagious period. The time 
difference is significant. 

 
 
 

bA 

 
 
 

0.043(0.01-0.12) 

• Disease always develops for all bA for standard V(0) and 
S(0). 
• The higher the bA, the later the onset of disease. 
• The duration of disease is about the same for all bA. 
• At high values of bA, the damage is lower. Changes only in 
bA can not cause death. 
• Virus shedding is sensitive to bA. When bA is higher, 
viruses shed a little at the peak less. 
• The higher bA, the shorter the contagious period. The time 
difference is small. 
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bHF 

 
 
 
 

0.02(0.005-0.03) 

• At high bHF, asymptomatic disease is observed for standard 
V(0) and S(0). 
• Onset of disease is about the same for all bHF. 
• The higher bHF, the shorter the duration of disease. 
• At high values of bHF, the damage is lower. Very low 
values of bHF may cause death. 
• Virus shedding is very sensitive to bHF. When bHF is 
higher, at the peak viruses shed significantly less. 
• The higher bHF, the longer the contagious period. The time 
difference is significant. 

 
 
 
 

bEM 
 

 
 
 
 

8.3(2.5-25) 

• At high bEM, asymptomatic disease is observed for standard 
V(0) and S(0). 
            Onset of disease is about the same for all bEM. 
• The higher the value of bEM, the shorter the duration of 
disease. 
• At low values of bEM , the damage is lower. Very high 
values of   may cause death. 
• Virus shedding is not sensitive to bEM. 
• The higher the value of bEM, the shorter the contagious 
period. The time difference is not significant. 

 
 
 

bPM 

 
 

 
 
 

11.3(3-30) 

• For low values of bPM, flow goes through disease trajectory 
and converges to the fixed point for standard V(0) and S(0). 
• Onset of disease is about the same for all bPM. 
• The duration of disease is about the same for all bPM. 
• The damage is about the same for all bPM. 
• Virus shedding is not sensitive to bPM. 
• The higher the value of bPM, the shorter the contagious 
period. The time difference is significant. 

 
 
 

S(0) 

 
 
 

0-1 

• For S(0)=0 disease always develop for standard V(0). 
• The higher the S(0), the later the onset of disease. The 
duration of disease is about the same for all S(0).. 
• At high values of S(0), the damage is lower. When S(0) is 
higher, viruses shed less at the peak. The higher the value of 
S(0), the higher  the contagious period during the typical 
disease. 
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2.5.4.1 Sensitivity to pathogen virulence 

Virulence is characterized by the parameters γHV and γV, which represent the rate of 

infection of epithelial cells by IAV and the rate of IAV particles secretion per infected epithelial 

cell, respectively. When virulence is high, the viruses are able to infect the healthy cells at much 

higher rate and they reproduce and replicate themselves in infected cells much faster. Since the 

sensitivity to γHV and γV are essentially the same, we will consider only parameter γHV.  

The virulence γHV affects the range of viral loads V(0) causing typical disease. When the 

value of γHV is three times more than the baseline value, then no matter what the initial viral load 

is, disease always develops (See Fig. 2-4(b)). When γHV is three times less then the baseline, we 

observe the presence of asymptomatic, typical and severe disease regimes depending on V(0). 

When V(0) is low, the disease stays asymptomatic. The higher the virulence, the earlier the onset 

of disease and the shorter the duration of disease. The variation in maximum damage, mmax, 

between the case of low γHV and the case of high γHV is significant (we found a fivefold 

difference between Dmax = 68% for γHV = 1 and Dmax =12% for γHV = 0.1). As expected, infection 

by virus of high virulence causes substantial damage, while infection by a virus of low virulence 

may go unnoticed. The lower the virulence, the longer the contagious period Δtcontagious . The 

duration of the disease and maximum level of virus titer at the peak are not sensitive to the 

virulence. When γHV is 0.1, the threshold value for V(0) to cause typical disease is 0.00227.  The  
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Figure 2-4. Time-courses of (a) viral load and (b) damage for various values of  γ HV.  (c) phase diagram of 
the dependence on initial viral load V(0) for value of γ HV (γ HV =1) that is 3 fold higher than the standard 
value.  
The direction of time for each curve is indicated by arrows. The maximum viral load and maximum damage 
for typical disease are Vmax = 1.1x1010 particles/ml and Dmax = 68. 
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phase diagram for γHV is 0.1 (not shown) is essentially the same as Fig. 2-3(c).  The threshold 

point of the dynamics between the typical disease case and the asymptomatic case is due to the 

presence of an unstable threshold state xth which stable manifold intersects the locus of initial 

conditions. 

2.5.4.2 Sensitivity to interferon response 

The parameters bF and bHF characterize the interferon production rate constant and the 

rate constant of induction of resistant state in epithelial cells, respectively. If bF increased or 

lowered from its standard value, disease always develops for standard values of V(0) and S(0). 

However, when bHF is high, the host remains asymptomatic.  The time of onset of disease does 

not depend on bF and bHF , but when either of these constants are higher, the duration of disease 

becomes shorter. Damage increases if either bF or bHF is decreased. Very low values of bF or bHF 

result in excessive damage (over 50%) which may presumably lead to secondary infections or 

death (Iwasaki et al., 1977). Virus shedding is sensitive to the magnitude of bF or bHF: higher 

values are associated with a less virus shedding but a longer contagious period. When the 

interferon production rate constant is two times bigger than the baseline value (i.e., when 

bF=500000), then the host remains contagious for about 3.5 days. When this rate is two times 

less than the baseline (i.e., when bF=125,000) then the contagious period is about 2.3 days. So, 

the difference in the length of infectious period is significant for various levels of innate immune 

response.  

Even in the absence of an innate response (when bF=0 and bHF=0), the disease is 

eventually healed by the adaptive immune response and the organism will approach the healthy 

state. 
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2.5.4.3 Sensitivity to cellular component of innate immunity 

The parameters bEM and bIE stand for the rate constant of production of effector cells and 

rate constant of removal of infected cells by effectors, respectively. For sufficiently large bEM or 

bIE , the host is able to clear the disease without symptoms and typical disease conditions, given 

the standard initial immunity and standard initial amount of the virus. Although bEM has no effect 

on the onset of the disease, when infected cell removal rate constant is high, the onset of 

infection happens later. At low values of bEM or bIE , the symptoms last longer. When bEM is 

high, the resulting maximum damage, Dmax, is large and may result in death. On the other hand, 

when bIE is high, we observe lower damage of epithelial cells. Even under a significant decrease 

in bIE, Dmax will stay under 50% and hence a decrease in in bIE has no effect on the mortality. 

Virus shedding is the same for different levels of bEM or bIE. When there is a less vigorous 

cellular response, the host remains infectious for longer. But the time differences in the 

contagious period of the host for various levels of bEM or bIE are small. 

Even in the absence of a cellular response (when bEM=0 and bIE=0), virus is eventually 

cleared by the innate and adaptive immune responses and the organism will approach the healthy 

state. 

2.5.4.4 Sensitivity to adaptive response 

Activation of adaptive immune response is slower than activation of cellular and 

interferon components of innate immunity. The parameters bPM, bA and γVA stand for the plasma 

cell production rate constant, antibody production rate constant and the rate constant of 

neutralization of IAV by antibodies. For sufficiently large bPM, bA or γVA, the host is able to clear 

infection without symptoms after administration of a standard inoculum. Although bPM has no 
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effect on the onset of the disease, later onset is observed with higher bA and γVA. The duration of 

illness does not depend on bPM, bA or γVA. Damage is lower with higher bA, while damage is 

insensitive to the two other rate constants. Variations in bPM, bA or γVA never result in excessive 

damage. Virus shedding is sensitive to bA. With higher bA , less virus is shed at the peak of the 

disease and the contagious period is significantly shorter. 

In summary, γVA only affects the onset of the disease, while bPM affects only virus 

shedding at the peak. The system is much more sensitive to the bA. We’ll discuss the situation 

where there is no adaptive response or very weak response in the next subsection.  

 

2.5.4.5 Impact of Antigenic Distance 

The efficiency of the existing antibodies of the organism to neutralize the virus of the 

strain causing the illness is represented by the variable S which describes the probability of a 

match between the existing antibodies and the antigenic structure of the viral strain. Fig. 2-5(a) 

displays the dependence of incurred damage on S(0), the initial value of S. Previous infection 

with one subtype induces little or no immunity to other subtypes of the IAV (Couch et al., 1983; 

Murphy et al., 1989), therefore S(0) for the individual facing a new subtype is very low. For the 

standard value of S(0), corresponding to the standard response, we chose S(0) = 0.1 which 

corresponds to partial match of antibodies due to the history of previous contacts of the 

individual with the virus, perhaps during the last season. This standard S(0) is much lower than 1 

because of the antigenic drift of the virus strain. When there is no initial match at all (S(0)=0), 

damage is higher (Yetter et al., 1980). When S(0) is sufficiently large, then the individual 
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remains asymptomatic (Liew et al., 1984; Yoshikawa et al., 2004). As seen in Fig. 2-5(b), when 

S(0)=0, disease always develops regardless of initial viral load, i.e., V1 = ∞− .  The threshold for  
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Figure 2-5. (a) Time courses of the damage for various levels of the initial probability of the existing 
antibodies to neutralize IAV particles, S(0). The larger S(0) the sooner the onset of the disease. (b) Diagram of 
the dependence of the expected type of disease on V(0) and S(0). 
The lines correspond to the threshold values V1 (triangles connected by green lines) and V2 (circles connected 
by red lines).  The regions corresponding to asymptomatic, typical and severe disease are indicated.  
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Figure 2-6. Time-courses of (a) the viral load and (b) the proportion of healthy cells for an individual with no 
initial and no improvement in antibody compatibility, S(0) = 0, r = 0, i.e., an individual without adaptive 
immune response. Failure to develop compatible antibodies results in recurrence of the disease and transition 
to a chronic state. Time-courses of (c) the viral load and (d) the proportion of healthy cells in an individual 
whose existing antibodies are incompatible but improving, i.e., S(0) = 0, r = 10-5.  As virus-specific antibodies 
appear with the adaptive response, IAV particles are removed from the host completely. 
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severe disease, V2, increases with S(0). The threshold for typical disease, V1, becomes finite 

when S(0) = 0.0124 and then increases with S(0). For values of S(0) above 0.2, corresponding to 

reasonably compatible initial immunity, the disease is asymptomatic unless V(0) > 0.1.  This 

situation corresponds to an immunized individual. The higher the S(0), the later the onset of 

disease. The duration of disease is about the same for all S(0).. At high values of S(0), the 

damage is lower (Yetter et al., 1980) When S(0) is higher, shed viruses less at the peak. The 

higher the value of S(0),  the less the contagious period (Yetter et al., 1980). 

The parameter r controls the rate of improvement of antigenic distance. A zero rate r 

corresponds to the situation in which antibodies do not improve their ability to match antigens. 

Complete failure to develop antibodies (When S(0)=0 and r=0)  results in recurrence of the 

disease and transition to a chronic state, as seen Fig. 2-6(a)-(b). This state is characterized by the 

following values: (V, H, I, M, F, R, E, P, A) = (5.26, 0.06, 0.018, 0.05, 1484, 0.89, 67.0). As the 

immune system produces virus-specific antibodies, the host is able to clear the disease even in 

the case when the production rate of compatible antibodies is quite low such as r=10-5, as seen in 

Fig. 2-6(c)-(d). A partial failure to develop antibodies occurs when S(0) > 0 and r = 0. In that 

case, if S(0) is sufficiently small (below 10-7), complete failure occurs, with recurrence of the 

disease and transition to a chronic state (not shown). 

To obtain further insight into the influence of the variable S on the behavior of the system 

we considered the reduced system of equations (1)-(9) with S treated as a constant, and studied 

changes in the location and stability of fixed points of this reduced system as a function of S.   

The corresponding bifurcation diagram, shown in Figures 2-7(a)-(b), reveals that when S < S* = 

0.000224555, the high virulence state xv is stable while the healthy state is unstable. (This is 

compatible with the behavior of the full system for S = 0 and r = 0 described above).  At S = S*,  
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Figure 2-7. Bifurcation diagram for a reduced system of equations (1)-(9) with S treated as a bifurcation 
parameter. 
 Two separate parts of the diagram are shown: (a) the high virulence steady state and connected branches 
and (b) the healthy state and connected branches.  Stable states are shown as solid black curves, unstable 
steady states as dashed red curves, unstable periodic orbit as hollow red circles and stable periodic orbit as 
solid black circles. (The branch of limit cycles is terminated due to difficulties in its numerical calculation, but 
is expected to persist up to the value S = 1.)   
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a subcritical Hopf bifurcation occurs which gives rise to a family of unstable periodic orbits.   

That family continues as a family of stable limit cycles for values S > S*.  (Only a portion of that 

branch is shown in Figure 2-7 (a); difficulties with numerical calculation of that branch prevent 

us from determining whether the stable limit cycle persists for all S <= 1.)  The healthy steady 

state xH is unstable until S reaches S# = 0.0129294, at which value xH gains stability through a 

transcritical bifurcation. A branch of unstable threshold steady states xTH bifurcates off of xH and 

exists for S > S#. 

2.6 DISCUSSION 

We presented a simplified model of the human immune response to the IAV infection in 

individual hosts which includes innate and adaptive immunity, and analyzed its behavior. Such a 

model could be used to explore in more detail individual determinants of symptoms and behavior 

of clinical relevance, especially in large-scale simulations of disease spread and containment. 

Simulation and sensitivity analysis of this model suggest that for majority of possible parameter 

values and initial conditions the course of the disease falls into one of three categories: 

asymptomatic disease, typical disease, and severe disease. In special circumstances a recurrence 

of infection may occur, followed by a transition to either healthy or chronic state.  The 

magnitude of initial viral load V(0) determines which of the paths will be taken, in accord with 

experimental observations (Tamura et al., 2004). With sufficiently small viral inoculum, disease 

is asymptomatic in the sense that the virus level decreases monotonically to 0 and damage 

remains very low. With inocula within the interval of values corresponding to typical disease, 

virus shedding, duration of sickness and the severity of symptoms, as well as the duration of 
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contagious period are independent of size of inoculum; only the time of the onset of disease 

changes: disease peaks earlier for larger inocula.  An important epidemiological implication of 

this result is that from observations of a typical disease it is impossible to determine a posteriori 

both when the infection occurred and what was the initial virus load since these data are 

interdependent. When the inoculum is sufficiently large (more than 0.1 particles per epithelial 

cell in some cases), disease becomes severe with maximum viral load and maximum damage 

increasing proportionally to the size of the inoculum. 

Analysis of the adaptive immune response revealed that whenever there is sufficient 

antibody response with enough specificity, the dynamics will restore health, irrespective of the 

intensity of the innate responses and of the trajectory followed by the disease. However, if 

memory cells cannot produce sufficiently compatible antibodies against the IAV particles 

initially (very low S(0)) or cannot improve the antigenic compatibility sufficiently rapidly (S is 

not increasing during the disease), there is rebound of virus shedding and transition of the system 

to a chronic state.   

The role of antigenic compatibility in virus clearance can be viewed as a series of 

transitions in the bifurcation diagram of Fig. 2-7, once one realizes that S is slowly, but steadily, 

increasing during the course of the disease in initially naïve individuals.  Near S = 0 the healthy 

steady state is unstable and the system initially approaches the chronic state.  Eventually, S 

increases beyond S*, the limit of stability of the chronic state, and the system will approach the 

limit cycle.  Eventually, S will increase beyond S#, at which instant the healthy state becomes 

stable and the immune system clears the infection.  

The reduced model underlines the importance of antigenic distance between the virus 

strain which causes IAV infection and the existing virus-specific antibodies of the adaptive 
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response represented in the model by S variable. Children who previously experienced natural 

infection or who received a live virus vaccine exhibit a marked reduction in both the amount and 

duration of virus shedding when compared to subjects without prior exposure to IAV infection 

(Tamura et al., 2004). Compared with adults, children can shed virus earlier before illness begins 

and for longer periods once illness starts. In children absolute levels of virus shedding may be 

higher than those in adults. These experimental findings confirm our model predictions (see Fig. 

5) which take into account the immune memory of the individual providing not only much 

accurate predictions for the host but also a solid foundation as individual-based model for 

realistic epidemic models. Our results suggest that in the absence of initial immune memory (low 

S(0) or S(0)=0) due to lack of proper vaccination or new subtype of the virus, the individual 

would experience severe disease which might result in death and remains contagious for a longer 

period of time. Therefore, such an individual has a larger probability to die and spread the 

disease in an epidemic.   

Our results illustrate the point that IAV infection caused by highly virulent viruses may 

cause death due to substantial damage, while infection by a virus with low virulence may be 

cleared without any symptoms: a combination of viral properties and host susceptibility 

determines the outcome of infection(Price et al., 2000). High virulence corresponds in our model 

to high values of the parameters γHV and γV which characterizes the rate of infection of epithelial 

cells by IAV and the rate of IAV particles secretion per infected epithelial cell, respectively. In 

the three global pandemic of the last century, new subtypes with higher values of γHV and γV 

arose due to antigenic shift.  Since there was no or very little immunity of human population to 

these new subtypes (0 or very low S(0)) combining with high virulence, they caused excessive 

mortality rates with large probability of death for particular individuals as our results indicated. 
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Although the H5N1 subtype of avian flu has very limited ability to bridge the species barrier and 

humans to human has not been observed(Kuiken et al., 2006; Shinya et al., 2006), it might 

mutate into a form for which it can be transmitted from human to human. Since this new subtype 

(i.e very low S(0) for  individuals) of the IAV is very virulent (i.e. γHV and γV both high), it 

would be predicted to cause excessive damage in individuals, conditions conducive to a 

pandemic. Containment measures should be taken such as antiviral drugs which can neutralize 

the actions of NA (i.e. decreased γV) and efficient vaccination which can improve host immunity 

by the existence of very affine subtype specific antibodies neutralizing  the actions of HA (i.e 

very low S(0) and  decreased γHV). Sensitivity analysis of the model suggest that innate response 

is an early, important line of nonspecific defense which has significant impact on lowering the 

duration of sickness, virus shedding and tissue damage. Contagious period of an individual 

which is an important measure for disease control is increased by the higher interferon response. 

Sensitivity analysis also suggests that higher cellular response result in lower period of 

symptomatic case and contagious period.  

Although each component of innate and adaptive immune response contributes to the 

recovery of IAV infection, the simulations suggest that, in the absence of one component of 

innate immunity, the remaining two defense mechanisms are sufficient for viral clearance. For 

example, when cellular component are not involved in viral clearance, antibodies (sufficient in 

the amount and affinity) on their own can mediate clearance of influenza (Scherle et al., 1992). 

The cellular response can also be sufficient to clear the IAV infection from an individual 

(Asquith et al., 2003). In the absence of adaptive immunity, the viral load is brought down to 

very low levels, although not completely cleared, which is supported by experiments showing 

that in some circumstances antibody response is necessary to clear the infection (Iwasaki et al., 

 42 



 

1977). For example, in nude mice without antibodies the viral particles survive with chronic 

infection (see Fig. 2-6(a)) (Scherle et al., 1992). After transferring T helper cells into the infected 

mice that promotes antibody response, the disease is completely cleared (Iwasaki et al., 1977; 

Scherle et al., 1992). Therefore, one can conclude that innate defense mechanisms are not 

capable of curing the disease on their own in the absence of antibody response, and can only 

reduce the disease to a chronic state (see Fig. 2-6(b)). Host may escape from this chronic state 

with sufficient adaptive response or through sufficient cellular response (Epstein et al., 1998). 

The biological relevance of our analysis and conclusions are limited by the significant 

oversimplification present in our reduced model and the difficulty in translating functions such 

as “antigen presenting cells”, “damage”, “effector cells” into measurable quantities as we have 

done in more specific models.(Chow et al., 2005) Our model does not permit the derivation of 

the number of new cases per infected cases, or R0. Yet, inscribed in a simulation furnishing 

distributions of viral loads/contact and contact density, such a number could be derived. Future 

development of the biological model include detailed mathematical analysis of the system of 

equations of the model, correlating infectivity and classes of symptoms to specific components 

of the model such as viral load, interferon levels and proportion of unhealthy respiratory 

epithelial cells, and improved biological fidelity and calibration data. We wish to include the 

effects of age and genetic variations through realistic distributions of key model parameters. 

Such an extension will be used to conduct large scale simulations of clinical trials of antiviral 

strategies in genetically heterogeneous hosts and to construct response surfaces to be integrated 

in multiscale models of IAV infection.(Clermont et al., 2004) We also wish to develop a more 

sophisticated model of antigenic distance. 
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3.0  ENSEMBLE MODELS FOR HUMAN IMMUNE RESPONSE TO INFLUENZA 

VIRUS INFECTION  

3.1 INTRODUCTION 

Mathematical models are essential tools in disease modeling that help in making 

predictions about the outcome given the characteristics of the pathogen and immune state of the 

host. Majority of models in mathematical biology are traditionally deterministic in nature. These 

deterministic models sufficiently capture the average behavior of the biological system under 

consideration. However, they are not capable of describing the stochastic characteristics of the 

underlying system. The rate constants (parameters) in these deterministic models representing 

the chemical reactions between model variables are usually picked (sometimes by guess) in a big 

range of possible values to fit the model to the biological observations. In the deterministic 

model in (Hancioglu et al., 2007) and Chapter 2, we generated a set of parameter values as given 

in Table 2-2, which describes the process of immune response to influenza virus infection. This 

set is chosen to fit the model to the observations given in(Bocharov et al., 1994; Hayden et al., 

1998). The values chosen are neither the best nor the most “effective” ones corresponding to the 

chemical reactions happening in the upper respiratory tract mucosa.  
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In order to understand the stochastic nature of the events happening in the components of 

the immune system and the probabilistic outcome, we need a different modeling approach taking 

into account the random characteristics of the pathogen (a priori the specific virus strain for 

future influenza outbreak is not known) as well as the host (vaccinated versus unvaccinated or 

immunosuppressed, etc.). Since the deterministic model is not able to capture the probabilistic 

nature of individual immune responses to influenza viruses (no statistical analysis may be done 

based on it), a model providing probabilistic predictions to quantify individual variability of the 

immune response to specific virus characteristics is a crucial need. The purpose of the stochastic 

model is not limited to account for random phenomena regarding variable individual responses 

to different strains. It also provides population level statistics of symptom development, 

infectiousness, mortality rates, duration of disease and most importantly it suggests the best 

treatment and containment strategies for the susceptible population.   

Modeler may choose different paths to reach these objectives and to incorporate 

stochasticity into the deterministic approach. We chose modeling human immune response to 

influenza infection by an ensemble model to incorporate the stochastic effects mentioned above. 

In this part, instead of having one set of parameters for model equations, we construct model 

ensembles that vary in parameter values and ranked according to their likelihood to capture 

existing data or clinically available observations. An ensemble prediction contains multiple runs 

of numerical prediction models, which differ in the initial conditions, model structure or 

parameter values addressing the major sources of uncertainty(Gneiting et al., 2005). We focus on 

the uncertainty coming from the parameter values in our ensemble model approach. So, we 

extend the deterministic ODE model obtained in the previous chapter to an ensemble model so as 

the information inferred from an a priori knowledge is used to obtain an a posteriori distribution 
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which contains all the information on the model space. Our main goal is to quantify uncertainty 

in model predictions due to parameter heterogeneity.  

In most of the epidemiological models, the immune response to pathogen interactions has 

been considered as an intrinsically deterministic endeavor. Ensemble models have been widely 

used in large scale simulations of weather systems as well as dynamical models of microbial cell 

population to account for the uncertainty connected with the design of models, estimation of 

model parameters and the heterogeneity of parameters across a population. Probabilistic 

forecasts in these weather models allow one to quantify weather related risk, and they have 

greater economic value than deterministic forecasts in a wide range of applications including 

disease modeling (Gneiting et al., 2005). Similar approach that is used in weather predictions 

may be applied to model biological systems, processes, disease spread and in particular immune 

response to pathogen. The results obtained through simulations of an ensemble model are the 

probabilistic predictions of the dynamics that accurately represents the variability of responses in 

individuals.   

We have adopted a similar approach with the exception that the source of our uncertainty 

lies mainly in parameter estimation on sparse datasets, yielding an ensemble of models differing 

not by their initial conditions or equation structure (typically the case in weather models), but by 

model parameters. We achieved a characterization of the joint probability densities of these 

parameter sets, based on empirical data and observations. We believe that from individual level 

to multiscale population level models, ensemble methods may potentially become a prominent 

part of numerical disease modeling. Indeed, probabilistic predictions based on reasonably well 

characterized probability densities of parameter sets would provide the best account for the 

uncertainty observed in individual immune responses against influenza viruses. 
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3.2  MATHEMATICAL MODEL DEVELOPMENT 

3.2.1 Posterior distribution 

Parameters in empirical mathematical models are determined from available 

experimental data using a process called regression. Parameters of the ODE model, the 

underlying deterministic model representing the human immune response to IAV infection, in 

(Hancioglu et al., 2007) were taken from literature or estimated so as to best reproduce available 

data about the time course of IAV infection in a naïve host. 

The maximum likelihood (ML) and its special case of least squares estimation is the most 

common regression scheme that is used for parameter estimation. In ML estimation, the 

likelihood of a parameter set is equal to the probability of obtaining the available experimental 

data from a process that is represented by the tested model(Jaqaman et al., 2006). So, the most 

likely parameter values are computed as the parameters maximizing the probability of observing 

the experimental data (Jaqaman et al., 2006). 

This probability is defined as a function of the differences between the model-predicted 

data and the experimentally observed data, and it increases as these differences decrease. In our 

model for the human immune response to IAV infection, it is highly nonlinear making the 

description of the a posteriori distribution not easy.  The two sources of differences between 

model generated and experimental data are measurement errors and parameter variability. We 

assume that these differences are not correlated and follow a normal distribution.  

Let us represent the model under consideration as a nonlinear map φ  hat to a given set of 

parameters 

t

},...,{ 1 pααα = (in our case the kinetic rate constants) assigns a set of predicted   
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values  corresponding to the available clinical data },...,{ 1 qccc = },...,{ 1 qddd =  (for example, 

the magnitude of viral load at a specified time, maximum value of damage, etc.), i.e., )(αφ=c . 

The likelihood L of a parameter set α  is given by: 

∏
=

Δ=
q

j
jrPL

1
)()(α                                             (1) 

where 

( )2/(exp)2()( 222 2
1

jjjj rrP σπσ Δ=Δ − )                       (2) 

is the likelihood of the residual j jjr c dΔ = − , representing the model error at the data point j, 

and 2
jσ  is the variance of the distribution of jrΔ .   

The probability )(αρ  of a parameter set α  given observed experimental data is obtained 

from the likelihood function )(αL  using Bayesian inference based on a prior distribution )(αθ , 

as follows, 

∫
=

ααθα
αθααρ

dL
L

)()(
)()()(        (3) 

where ( ) ( )L dα θ α α∫  is the normalizing constant.
 
 

 The prior distribution represents our a priori knowledge about the ensemble model that 

is independent of the measured data. A priori information tells us what would be the biologically 

reasonable ranges of parameter values for the biological processes under consideration in the 

model.  The posterior distribution is derived from the degree of fit between the data predicted 

from models and the observed clinical data and it summarizes the uncertainty on the parameter 

space.   In the present case, the prior distribution )(αθ for each parameter value is determined as 

the normal distribution whose expectation is the baseline value of the parameter and variance is 

 48 



 

taken to be 0.5. Any new parameter value determined based on a priori distribution lies in the 

range of 3-fold higher or 3-fold lower with respect to the baseline value. 

3.2.2 Ensemble Model 

Consider now a deterministic ODE model ( , )α=x f x&  with parameters },...,{ 1 pααα = . 

The forward problem is the problem of predicting or calculating the “observables” 

 that constitute the output of the model for given },...,{ 1 qccc = α and can be generally computed 

from the trajectory  of the model. (Examples of such observables can be the value of a 

variable at a specified time, the maximum value of a variable over a specified interval, the time t 

when a specified variable exceeds a specified threshold, and many others.) 

α( ; )tx

The classical problem of model fitting is to find the set of parameters  

for which model predictions are closest to observed data 

},...,{* **
1 pααα =

},...,{ 1 qddd =  in a precisely defined 

sense. Because of the lack of sufficient data, experimental uncertainties, or parameter uncertainty 

(resulting from pooling results from multiple observations together) the values of d are known 

only to within an error characterized by standard deviations },...,{ 1 qσσσ = .   

The ensemble model problem replaces the search for the best model *α  by asking what 

information can we infer on the model associated with α  based on the observations d or, in other 

words, ”what is the distribution of α  that represents the likelihood of a particular model 

capturing the data d ”.  Thus a single value *α  is replaced by a probability density )(αρ  and a 

single system of ODEs ( , )α=x f x&  with fixed values of a parameter set α , is replaced by an 

ensemble of systems that are identical in their structure (i.e., function f ) but differ in the values 
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of system parameters α  (see Figure 3-1). Each parameter vector is assigned a weight ( )L α  that 

is proportional to the likelihood with which the available data },...,,{ 21 qdddd = , are described 

by the trajectory  of the system (see Fig. 3-2).  This weight is computed using Equations 

(1)-(3) and it represents the model ability to capture clinical observations in which the residual 

α( ; )tx

jrΔ  is taken to be the difference between model prediction  and data measurement  and jc jd 2
jσ  

is the variance of the uncertainty at . jd

 

 

 

1( , )x f x= α&

2( , )x f x= α&

3( , )x f x= α&

( , )nx f x

 
 
Figure 3-1. Schematic representation of the ensemble model. 
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Figure 3-2. Computation of the likelihood function. On the left, a sample trajectory is shown together with 
data point dj and the model prediction cj. On the right, sample trajectories of the distribution are shown. 

3.2.3 Metropolis Monte Carlo sampling 

The probability density function )(αρ  assigns a value to every point in the accessible 

region of the parameter space, which generally has many dimensions. One practical way of 

representing such a distribution is by a random sample of points  selected so that the 

probability of occurrence of  in the sample is equal to . The Metropolis Monte Carlo 

method (MMC) provides such a sample by utilizing the concept of random walk. “The Monte 

Carlo method” was first used by Metropolis and Ulam in1949. In 1953, Metropolis introduced 

the Metropolis algorithm which samples a space according to a Gibbs-Boltzmann distribution. It 

is a random walk that samples the posterior distribution  with iterations based on a 

probabilistic rule. Sampling of the model space is improved by the method given in Wiggins 
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(Wiggins, 1969; Wiggins, 1972) in which the parameter space is sampled according to the prior 

distribution ( )iθ α . 

To illustrate the MMC algorithm on a simple example, let us consider a discrete space S 

of N states and a Markov chain on the space S given by transition probabilities .  The 

probability that at the step n the chain is at the state i is given by . At the next step, the 

probability will be . As number of steps goes to infinity, the probability of 

being in the state i converge to a distribution  called the “equilibrium probability 

distribution” (Feller, 1970).  If it is possible to go from any point to any other point in the graph 

with finite number of steps, then there is a unique equilibrium probability distribution 

N
jiijP 1,}{ =

n
ip

∑=+
j

n
jij

n
i pPp 1

n
i

n
i p

∞→
= limπ

iπ  for the 

 independent of the initial probabilities  for the process (Feller, 1970).  N
jiijP 1,}{ =

0
ip

The goal of the MMC algorithm is to find for a given prescribed distribution  a 

Markov chain that has a unique limiting distribution  such that

N
ii 1}{ =ρ

N
ii 1}{ =π ii ρπ = . This Markov 

chain is found as a random walk in the following way:  

1. A random starting point  is chosen. 1i

2. A random step is made from the current point  to a new point j according to some 

fixed proposed transition matrix

ni

{ }njiQ . (No restrictions are placed on { }njiQ  other than it is a 

symmetric, doubly stochastic matrix.)  

3. The new point j is accepted as the next point in the random walk with the 

probability }/,1min{ jinP ρρ= . (In other words, if jin ρρ ≥  then , while if ji n =+1
jin ρρ <  

then with probability jin ρρ /1−  the point j is rejected.)   

 52 



 

2nd and 3rd steps of the algorithm are repeated and accepted points  are 

stored. The random walk  generated in this way is guaranteed to have the limiting 

probability distribution   (Feller, 1970). 

1 2, ,..., ,...ni i i

1 2, ,..., ,...ni i i

N
ii 1}{ =ρ

A special case of the above algorithm in which we sample Gibbs-Boltzmann distribution 

)exp( ii Eβρ −=  corresponding to some energy function  is called the Metropolis algorithm.  iE

The implementation for continuous state space is analogous to the discrete space 

implementation and is described in detail below in Section 3.2.5. 

3.2.4 Parallel tempering method 

In order to maximize sampling the whole accessible region of the parameter space, we 

incorporated parallel tempering simulation method into our numerical simulations. Parallel 

tempering, or replica exchange, is a simulation method to improve the sampling methods of 

Markov chain Monte Carlo simulations. Replicas of a system of interest were simulated at a 

series of temperature exchanging the configuration information in a 1986 paper by Swendsen 

and Wang (Swendsen et al., 1986). The more familiar form of the model originates from Geyer 

et al.(Geyer et al., 1991). First, the method has been applied only to the problems in statistical 

physics. Since , several replicas of the system are simulated at a series of1( )kTβ −= β  values. 

Replicas at adjacent temperatures exchange partially their configurations through swapping. 

Configuration swaps between the lower and higher temperature systems allow the lower 

temperature systems to escape from one region of model space where they could be stuck (at a 

local minima) and to sample a representative set of another low energy minima(Earl et al., 2005). 

The highest temperature (lowestβ ) has to be high enough so that no replicas become stuck in 
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local energy minima, while the number of replicas used has to be sufficiently large so as to 

ensure that swapping occurs between all adjacent replicas. 

At each Monte Carlo step, the method updates the system by swapping the configuration 

of the two systems, or trading the two temperatures. The update can be accepted or rejected with 

the Metropolis rule. This update can be generalized to more than two systems. By carefully 

choosing theβ  values (temperatures) and systems, significant improvement in the mixing 

properties of several Monte Carlo simulations can be achieved that exceeds the extra 

computational cost of running parallel simulations.  

The systems associated with higher temperatures are able to sample larger volumes of the 

parameter space, whereas the ones associated with lower temperatures make precise sampling in 

a local region of the model space. The ones with lower temperatures may become trapped in a 

local minima staying there and sampling around it for a longer period of time in computer 

simulations. Parallel tempering method promotes mixing of random walks in parameter space 

and hence enhances sampling of local minima. During the process, lower temperature systems 

make small jumps in the neighborhood achieving complete sampling around local minima, 

whereas the higher ones make bigger jumps scanning the whole parameter space finding 

different local minima in the model space. Therefore, we not only gain access to all possible 

local minima in the model space but also achieve good sampling around them. All the 

information inferred using replicas at different temperatures are stored in a single replica from 

which we obtain a posteriori distribution. In our simulations, this single replica corresponds to 

the one for which the β  is equal to 1.  

 Simulation of 5 replicas rather than one requires on the order of 5 times more 

computational time. Because of enhanced mixing properties, it is more efficient to have the 
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original single-temperature Monte Carlo simulation run 5 times longer. Different replicas can 

also be run in parallel as an extra benefit of this method. Figure 3-3 shows how quickly the 

parallel tempering method reaches equilibrium and how average energies of random walks at 

different values of β are inversely proportional toβ , which allows the chain with the lowest β to 

sample larger regions of the space. Figure 3-4 shows the histogram of the parameters 
VAγ and 

Vα . 
VAγ  is the rate constant of neutralization of IAV by antibodies and Vα  is the rate constant 

of nonspecific IAV removal. Both are important parameters for the disease dynamics as 

described in Table 2-2. Figure 3-5 shows an example of how mixing is enabled by swapping 

chains with different β .  In the figure, swaps are visible as jumps between distant values of each 

parameter. 
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Figure 3-3. Convergence and equilibration of the parallel tempering Monte Carlo algorithm.  The energy for 
each of the 5 replicas of random walk generated by MCM algorithm associated with different values of β : 1 
(blue), 0.5 (green), 0.25 (red), 0.125 (cyan), and 0.0875 (magenta). Examples of an initial part of a run (above) 
which represents the first 200 points in the sample and equilibrated portion (below) which represents the last 
900 points are shown. 
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VAγ (above) and VαFigure 3-4: Histograms of the parameters (below) are shown for the first part of the chain (on the left) 
and the second part(on the right). The similar pattern of the histograms of parameters at different parts of the chain 
indicates the convergence to the posterior distribution. The y axes shows the frequency of parameters over the parameter 
space and the x axes indicates the parameter values; 1 is the baseline value and possible parameter values lie between 1/3-
3(3-fold less and 3-fld high). 



 

 Parameter values  

Around the baseline

Parameter points 

  

Figure 3-5. Examples of the variation of values of all 27 parameters along the random walk for replica with 
β = 1. 

3.2.5 Implementation of Metropolis Algorithm to the Influenza Modeling 

We are interested in finding a posterior distribution )(αρ over the 27 dimensional 

parameter space of the deterministic ODE model described in Chapter 2 using the equations (1)-

(11). The distribution )(αρ , defined by equations (1)-(3) of Section 3.2.1 gives the complete 

solution of the inverse problem and describes all the information we have on the system. To 
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represent )(αρ  in the computer simulations, we will sample the points according to Metropolis 

Algorithm from the accessible region of the parameter space. Each point α in the parameter 

space represents a parameter vector with 27 components: 

   { }1 2 27, ,...,α α α α=

The total data set d to fit the model contains 13 data points described in the subsection 

3.2.6: 

1 2 13{ , , ..., }d d d d=  

Briefly, 7 of these data points are taken from the time courses of the virus titers in 19 human 

volunteers as reported in  (Hayden et al., 1998) and the other 6 points are chosen to be the 

maximum levels that D, E, P, S, A and F variables could achieve during the course of infection 

as given in Bocharov et al. The values are the expected values of the time 

courses of model variables at points where the data is available. The standard deviations 

1 2 1, , ...,d d d 3

},...,,{ 1621 σσσσ = for the virus data are taken from  (Hayden et al., 1998) while they are chosen 

according to the expected qualitative model behavior for other 6 points.  We could add more data 

points to fit or set the standard deviations more accurately with the availability of broader 

clinical data. This would give more assurance for the posterior density we get. However, the 

essence of the method that we describe would not change.     

We sample the points in parameter space starting from the default parameter set which 

consists of the baseline parameter values for the model in (Hancioglu et al., 2007). We could 

start the sampling algorithm from any point randomly chosen in the accessible region.  A sample 

 representing the probability distribution Mαα ,...,1 )(αρ  is found according to the Metropolis 

Algorithm as described in the subsection 3.2.3.  
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1. A starting point 1α  is taken to be the default parameter set. 

For a current state  we computenα nE , the energy at the point , as . 
nα )(ln nnE αρ−=

2. A new set of parameters α  is generated according to the proposal density Q which is 

taken to be a Gaussian probability density with variance ε  centered at the current 

point nα , i.e., ( ))2/()(exp)2()( 22/1 εααπεα nQ −−= − . If any parameter value in the 

new set α is above 3-times the default or below one third the default, that value is 

rescaled to fit within these limits. 

3. E , the energy of the new state is computed as )(ln αρ−=E   

4. If nEE ≤  then α  is accepted as the new point, i.e., αα =+1n , and the algorithm goes 

back to Step 2.  If nEE >  then α  is accepted, i.e., αα =+1n , with probability 

( ))(exp nEEP −−= β , otherwise it is rejected, i.e., 1+nα  is not assigned.  The algorithm 

then goes back to Step 2.   

 

The algorithm keeps track of the acceptance ratio of the proposed parameter sets, i.e., the 

ratio of accepted to total proposed new sets. Optimal convergence is achieved if the acceptance 

ratio is around 0.4(Feller, 1970). The acceptance ratio increases with decreasing values of β  and 

ε . In other words, the acceptance increases if we lower the multiplier β  which will make 

energy increases more acceptable, or if we make smaller jumps.  In the present case, 1=β  is 

fixed and 01.0=ε was found to be optimal by trial and error.  

Metropolis algorithm samples the points  in the parameter space where 

each new point is sampled according to the posterior distribution.  

},...,{ 21 Mααα
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Figure 3-6. Schematic representation of the Metropolis sampling algorithm. 

 

 The classical MMC method may get stuck at a local minimum or a particular region in 

the parameter space. The modeler needs to get around this problem. One way of rescuing from 

the region where the convergence is no longer good and making sure that the sampling algorithm 

samples all over the accessible region of the parameter space with sufficient number of iterations 

is to apply the Parallel Tempering method as follows: We simulated 5 replicas of the original 

system, each with a different value of iβ  such that 1 2 5...β β β> > > 1 2 3 4 5, , , ,. β β β β β  are chosen 

to be 1, 0.5, 0.25, 0.125, 0.0675, respectively. The value of ε  has been determined by trial and 

error to satisfy the acceptance ratio of 0.35 for each replica. 1 2 3 4 5, , , ,ε ε ε ε ε are determined to be 

0.023, 0.035, 0.053, 0.08, 0.12 respectively to satisfy this acceptance ratio. Therefore, replica #5 

could make bigger jumps than other replicas and in case the process becomes stuck at a certain 

region in the parameter space, it would rescue the process by jumping another region. Each 

replica uses the Metropolis algorithm to produce a random walk with the limiting probability 

distribution ))(exp()( αβαρ Eii −= . At each step, n swaps are attempted between replicas with 
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adjacent values of β  with the probability 

  ))})(exp((,1min{ n
j

n
iji EEP −−= ββ

Let   represents the sample of parameter sets for each replica at the 

step n. i.e.  are the points sampled by the chain with

nnnnn
54321 ,,,, ααααα

n
iα iββ = . Through swapping occurred with 

other chains, this chain would sample the whole accessible parameter space and provide us the 

unique posteriori distribution. The following figure illustrates swapping between the 1st and 2nd 

replicas: 

 

 

 

 

 

Figure 3-7. Schematic representation of swapping between the replicas. 

 

3.2.6 Simulations 

 We used MATLAB 7.0 to run all simulations. The ensemble models are obtained by 

numerical integrations of ODEs using the MATLAB stiff solver, ode23s. The parameter set 

associated with previously published model is taken as a starting point for the Metropolis 

algorithm & parallel tempering method even though random starting point would be sufficient 

for the algorithm. The parameter values in this set are close to those in (Bocharov et al., 1994) 

yet rescaled to dimensionless quantities. Acceptance ratio of new points in the replicas was about 
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0.35 which is considered very efficient for the algorithm. Energy calculation or likelihood of a 

specific model is computed based on the following available clinical data and set of observations 

considering the response of a naïve host to the standard initial conditions (see below) (Bocharov 

et al., 1994)& (Hancioglu et al., 2007): (i) Time courses of virus titers after experimental 

influenza A/Texas/36/91(H1N1) are taken from (Hayden et al., 1998). Standard deviation of 

each data point is calculated from the information given in (Hayden et al., 1998). (ii) Effector 

cells E peak with approximately 102 fold increase over the homeostatic level. Standard deviation 

of peak E value is set to 0.5 (on logarithmic scale) (iii) P cells peak at 104 fold level. Standard 

deviation of P at the peak is set to 0.5 (on logarithmic scale) (iv) After 15 days, the compatibility 

S is 0.8. Standard deviation of S at the peak is set to 0.1 (v) Maximum level of dead cells Dmax is 

35%, i.e., 0.35. Standard deviation of D at the peak is set to 0.2 (vi) Interferons F peak at 104 

fold level and after 2 days of the infection. Standard deviation of the time of peak for F is set to 

0.5 (on logarithmic scale) (vii) Antibodies A peak at 103 fold level. Standard deviation of A at the 

peak is set to 0.5 (on logarithmic scale). 

3.3 RESULTS 

3.3.1 Standard behavior 

The standard behavior for ensemble models describes probabilistic prediction of the 

course of infection in a naïve host. We assume that initially the host has no dead, infected or 

resistant cells, no interferon molecules, and no activated APC (i.e., H(0) = 1, I(0) = M(0) = F(0) 

= R(0) = 0). The initial levels of effectors, plasma cells, and antibodies are assumed to be at the 
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homeostatic values (i.e., E(0) = P(0) = A(0) = 1)  (Asquith et al., 2003). In a naïve host, we 

assume that S(0) = 0.07 which corresponds to a relatively low compatibility with the virus strain, 

that may have resulted from previous exposure to IAV and subsequent genetic drift. In the 

typical course of acute IAV infection, the initial concentration of aerosol delivered virus particles 

that the host receives is about 105 particles per ml on day 0, corresponding to V(0) = 0.001 in our 

dimensionless system. The initial values are assumed fixed over the entire ensemble of parameter 

values. The resulting probabilistic prediction of time courses of model variables corresponding to 

naïve infection are depicted in Figure 3-8.  

 

Figure 3-8. Statistical analysis of trajectories of the ensemble model showing, for each variable, the following 
percentile levels as a function of time: 5th percentile (lower green dots) , 25th (lower blue dots), 50th (black 
curve), 75th (upper blue dots) and 95th (upper green dots). Only trajectories with single peak in V have been 
selected. 
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As seen in Figure 3-8, virus level peaks (period of maximum antigen concentration) after 

2 days for almost all trajectories. (In Chapter 1, we showed that the onset of disease depends on 

initial viral load; the larger the V(0), the sooner the onset of disease.) Peak viral load is increased 

by 104 fold with respect to initial value for the big majority of models staying at peak 

approximately 3 days, in accord with experimental data (Tamura et al., 1998). Viral load starts to 

decline to inoculation level after day 5 (early stage of recovery, disappearance of IAV particles) 

and are removed from the system completely within 15-20 days in 98% of the cases. As we 

mentioned above, in 2% of cases viral titers are rebounded after about a week peaking at variable 

days depending on the model (from day 8 to 17) although the majority peaks at day 13. The host 

is considered infectious when the virus level exceeds 1, which happens after day 1 for almost all 

individuals. The host remains infectious for about 2.6 days. APC are activated after 1 days 

peaking after about 3 days and returning to homeostatic levels within 8-10 days.  Although the 

virus titer trajectory is essentially identical for all parameter sets, the amount of healthy cells at 

day 15 varies widely over the ensemble distribution. While 50% of cases remain with H below 

0.2 (and hence majority of epithelial cells are resistant), 5% of cases show essentially full 

recovery to H = 0.9.  It is not until day 22 that 50% of cases are halfway through complete 

recovery of healthy cells. 

The resulting loss of respiratory epithelial cells (dead cells) is one major reason for 

several of the symptoms that accompany infection, such as cough, depressed tracheobronchial 

clearance, and altered pulmonary function (Hayden et al., 1998). We consider the host 

“symptomatic” if the damage level exceeds 10% of the epithelial cells(Marchuk et al., 1986), 

which occurs when the viral load peak at day 2. The maximum proportion of dead cells is varied 

through the population starting from insignificant levels to 40% mostly attained between days 2 
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and 3. 25% of the population is considered asymptomatic whereas 5% of them suffer from severe 

symptoms and a little more than half of people follow the regular flu trajectory. The symptomatic 

period is between 2 to 4 days after which time most of the cells become resistant to the infection. 

Infected cells reach a maximum proportion of 15-55% of all cells after day 2 for above 90% of 

the population, while the proportion of resistant cells peak after 5-10 days based on individual, 

which is in accord with the experimental observation that the expression of nucleoprotein (NP) 

mRNA in epithelial cells, showing the presence of infected cells, changes in parallel with viral 

titer (Tamura et al., 2004). By the action of the innate immune response, almost everybody 

becomes resistant to infection for the standard case when R reaches levels of 90% and above at 

the peak. 

Interferon response comes into play once the virus peaks at day 2 making most of the 

cells resistant to infection. Interferon level is increased by 101 – 102 folds for more than half of 

the population peaking approximately at day 3. It reaches levels of up to the 104 fold increase for 

some of the individuals. Plasma cells are produced after 2-3 days before virus-specific antibodies 

are detectable peaking between days 10 and 15, in accord with empirical observations (Ada et 

al., 1986). Antibody production by plasma cells begins at day 8. The amount of antibody 

increase falls in a big range averaging 103 fold in the population when the adaptive immune 

response comes into play to remove all viral particles and generate immune memory. 

Furthermore, antigenic compatibility is increasing monotonically starting right after when the 

adaptive immunity is activated (after day 8) and the antibodies are capable of inhibiting viral 

particles with 80% probability in median after 15 day of infection. When the infection is over, 

specific antibody levels of the population is ranging between 60-100% to the subtype. 
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For about 2% of all the trajectories, the curve of viral titer versus time has two peaks 

within 20 days. When we continue simulations after 20 days, we still observe rebound of 

trajectories showing chronic behavior. This bimodal behavior most likely caused by reduction in 

the production of plasma cells, as they are produced 100 times less on average. These trajectories 

are shown as rebounded in Figure 3-9. 

 

Figure 3-9. Statistical analysis of trajectories of the ensemble model for rebounding trajectories with two or 
more peaks in V. 
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3.3.2 Superspreaders 

Influenza outbreaks cannot be completely understood if individual variation in 

infectiousness is ignored. Epidemiologists believe that the 20/80 rule applies in most of the 

infectious diseases, 20% of infected individuals provide 80% of subsequent 

infections(Woolhouse et al., 1997). Many people don’t infect anyone else but a few people, 

“superspreaders”, who come into contact with large number of people, may potentially infect 

tens or hundreds of people in epidemics. What determines whether an infection dies out or 

survives is the emergence of these superspreaders. So, public health programs must target this 

20% of the population in order to be successful. This requires a better understanding of factors 

determining individual infectiousness. If highly infectious individuals can be identified 

effectively then the efficiency of control can be greatly increased. Applying half of the control 

measures on the most infectious 20% of cases is about 3-fold more effective than random 

control(Lloyd-Smith et al., 2005). Disease control interventions such as quarantine or isolation of 

certain individuals and reduction in the number of contacts of infected people could change the 

infectiousness of an individual.   
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Figure 3-10. Statistical analysis of trajectories of the ensemble model for superspreaders, i.e., individuals with 
low damage and immune response. 

 

From the several factors that might make someone a superspreader, we consider those 

individuals who choose not to seek treatment due to low levels of symptoms such as cough or 

fever and the ones who are immunocompromised. So, in our analysis, this corresponds to low 

levels of D (D<0.1), F (F<5000), and sufficient amount of virus shedding (logV>1) at the peak. 

The superspreader trajectories account for 0.6 % of all the trajectories of the ensemble 

model. As we can see from the time courses of percentiles of superspreaders in Figure 3-10, D 

peaks at the same day with levels less than 10 times for the median of typical trajectories. 

Proportion of infected cells is decreased by 2-3 times. Activated APC, P and E are about the 

same whereas F is decreased by 5-10 times depending on percentiles. In spite of the low level of 

interferon and damage factor indicating asymptomatic regime, virus load reaches the level of 

typical disease trajectories. Therefore, although these individuals will not seek treatment just 
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because they feel good, they might be very dangerous in an epidemic since they will interact 

with others at work, school or in other public places and spread the disease. 

3.3.3 Drug therapy 

Several treatment scenarios can be considered to determine optimal interventions 

(vaccination, antiviral drugs, etc.) and effectiveness of therapy for individuals at various 

conditions (immune, not immune, immunosupressed, etc.). The ensemble model that we 

constructed is used to make probabilistic predictions of success of selected therapeutic 

interventions. Using the methods we presented, one can address several questions such as  

1. How long and how intense should antiviral treatment be? 

2. What is the probability that a value of a given model variable drops below a prescribed 

threshold at a certain time? (Such as, for example, what is the probability that V drops 

below 10 (i.e. host becomes noninfectious) at day 3.) 

3. How the onset, severity, duration of disease and the contagious period of an individual 

are changed according to the treatment? 

4. What are the effectiveness of various antiviral drugs (HA inhibitors vs. NA inhibitors)  

5. When the pathogen is more virulent how the above results are affected? 

We can continue on similar questions and one can address all these questions using 

the posteriori distribution that we computed in the parameter space. Below, we chose to 

analyze the following question: Assuming that the length of the treatment is fixed, what 

would be the optimal time to start the treatment? We investigate the optimal time to start the 

treatment to reduce the proportion of people becoming sick, the damage (symptoms), the 

infectiousness of a person and the duration of infection once the susceptible person is 
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infected. The output of the treatment depends on several factors including the strength of the 

virus, the strength of immune compatibility of the patient, and the effectiveness of the drug.  

Here “treatment” refers to administration of drugs which are NA inhibitors reducing the 

replication rate of viruses from infected cells. Duration of treatment is fixed as one week. 

“Less effective drug” refers to either lower dosages of an effective drug or a drug which 

reduces the replication rate mildly, i.e., replication rate becomes 3 times lower with respect to 

the baseline value after the drug therapy. On the other hand, “High effective drug” refers to 

higher dosages of a drug or the one which reduces the replication rate aggressively, i.e., 

replication rate becomes 10 times lower with respect to the baseline value after the drug 

therapy. 

3.3.3.1 Effect of therapy for regular flu 

Using the posterior distribution over the parameter space, the ensemble model provides 

the following observations on the course of disease caused by mild-type seasonal influenza A 

viruses and the effectiveness of antiviral drug therapy: 

a) no treatment 

Without antiviral drug therapy, when a population is infected by the mild type IAV, the 

onset of disease is prolonged for those who have higher initial immune status (see Figure 3-11). 

In this figure, Vtmin is the onset of the disease, i.e. the time when virus titer first crosses the 

threshold V=1. Vtdur is the duration of the disease, i.e. the time interval between the onset and 

the last time point at which V crosses below V=1. logVmax is the maximum virus titer in the 

logarithmic scale. Ftmin and Ftdur are analogous to Vtmin and Vtdur for interferon. Dmax is the 

maximum damage. Immune individuals have lower level of infectiousness and systemic 

symptoms. So, either vaccination or early exposure to the same subtype of the virus helps reduce 
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the spread of disease, the severity of symptoms and the transmission. The duration of disease is 

slightly decreased by increased immunity. For a naïve population, 75% of the population is 

expected to be sick, instead, only 20% or less people are symptomatic in the immune population. 

So, probability of becoming sick is increased significantly by being naïve to the infection.  
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a) b)

 

 

 

c) d) 

 

 

 

 

 

 

 

 

 

 

Figure 3-11. Immune response to regular flu for no treatment and different initial antigenic compatibility. a) 
S(0)=0 b)S(0)=0.07 c)S(0)=0.2 d)S(0)=0.4. Here as in Figure 3-5,6,7 statistics over the distribution of 
parameters is shown using percentile levels. 5th percentile (lower dots) , 25th (lower dashes), 50th (line), 75th 
(upper dashes) and 95th (upper dots). 
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b) Treatment of regular IAV by low or high effective drug 

 

 Type of treatment (drug efficiency & dosage) has significant impact on the onset of 

infection. The higher the dosage, the more the onset is prolonged. In most of the cases where the 

host is sufficiently immune to the infection, no disease is expected. The therapy in general 

lowers the infectiousness of a person. The rate of reduction depends on the initial immune state 

of the host. For those of without immunity, the high efficient drug administered after about half a 

day provides a better result. For the ones who have weak immune response, the less efficient 

drug administered at the beginning of the infection performs the best. For all of the immune 

people, the treatment heals the infection. The duration of contagious period and the duration of 

systemic symptoms are not affected by the type of treatment. The infectiousness of a person is 

decreased after the treatment and the amount of reduction in contagiousness is the same 

regardless of the dosage and the efficiency of drug. The more effective the drug, the more people 

will escape from the disease. 25% of people are more likely to be sick after normal drug therapy 

instead of only 5% is expected to be sick after highly efficient therapy (in a naïve population). 

For weakly immune individuals (S(0)=0.07), these ratios are 5% and 25% respectively. So, 

higher dosages actually make the case worse. Low dosage or low efficient drug given at the 

beginning of infection is preferable. For immune population, effect of various dosages is similar.    
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 a) b)
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Figure 3-12. Immune response to regular flu treated with low efficiency antiviral drug administered starting 
at time t1 for 7 days. a) S(0)=0 b)S(0)=0.07 c)S(0)=0.2 d)S(0)=0.4.  

 

 

 75 



 

 
b)

 
a) 

 

 

 

 

 

 

 

 

 

 c) d)
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-13. Immune response to regular flu treated with high efficiency antiviral drug administered starting 
at time t1 for 7 days. a) S(0)=0 b)S(0)=0.07 c)S(0)=0.2 d)S(0)=0.4. 
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3.3.3.2 Effect of therapy for highly virulent virus 

“Highly virulent virus” means the one which is able to infect healthy cells at much higher 

rate (3 times greater in our simulations). Based on our simulations, the following observations 

are worth mentioning for the course of disease caused by virulent IAV and for the effect of 

antiviral drug therapy: 

a) No treatment 

When antiviral drugs are not used in a population infected by high virulent IAV, the onset 

of disease is prolonged proportional to the initial immunity of an individual. Other disease 

characteristics such as duration, infectiousness, severity of symptoms has not been changed 

significantly depending on the S(0), initial immune state of the host. So, vaccination will not 

benefit the whole population against a highly virulent virus and unless taking the proper antiviral 

drug therapy, the population would suffer from the disease with severe symptoms, even with 

high mortality rates coming along with high transmission rates. Duration of disease is slightly 

decreased by increased immunity too. For naïve population, 95% of the population is expected to 

be sick caused by such an epidemic. Timing and dosage of the drug therapy is crucial in this case 

and affects the onset, symptoms and infectiousness in various ways as explained below: 
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a) b) 
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Figure 3-14. Immune response to virulent flu for no treatment and different initial antigenic compatibility. a) 
S(0)=0 b)S(0)=0.07 c)S(0)=0.2 d)S(0)=0.4 
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b) Treatment of virulent IAV by low or high effective drug 

High dosage prolong the onset significantly; the more effective the drug, the more 

prolonged the onset of disease. Treatment lowers the contagious period about the same for low 

and high dosages. Also in this case, therapy lowers the infectiousness of a person. For less 

effective drug, treatment should start as soon as possible to reduce the infectiousness. For high 

effective one, optimal time to start treatment depends on the immune status of the host; for naïve 

host, it is after 6 hours, whereas, for immune individuals, it might be as late as 1 day. So, even 

unintuitive, optimal time to start treatment is not right after infection for an immune population, 

it would just make the transmission rates higher in an epidemic. 

Drug therapy helps reducing the duration of disease and symptoms. The more effective 

the drug, the more reduced the duration and optimal time to start is at day 0, right after infection. 

As expected, the more effective the drug, the more lowered the symptoms. Optimal starting time 

of treatment to reduce symptoms varies depending on the immune status of the host. Starting 

earlier is always better whenever low dosages are chosen. When high effective drug is chosen, it 

should be given to naïve patients after 6 hours, although 1 day is the optimal time to start for 

immune ones. Giving it at day 0 would not decrease the symptoms as much as when it is given at 

the optimal time. 

The more effective the drug, the more people will escape from the disease for virulent 

virus as well. However, percentage of people who will be sick in an epidemic is significantly 

increased due to high virulent strain of IAV. For example, in a naïve population, 95% of the 

population is predicted to be sick even after low efficient drug therapy whereas 25% of people 

will be affected by disease when given high effective dosages. 45-50% of relatively immune 

individuals will develop symptoms even after high efficient treatment. For weakly immune  
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Figure 3-15. Immune response to virulent flu treated with low efficiency antiviral drug administered starting 
at time t1 for 7 days. a) S(0)=0 b)S(0)=0.07 c)S(0)=0.2 d)S(0)=0.4. 
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Figure 3-16. Immune response to virulent flu treated with high efficiency antiviral drug administered starting 
at time t1 for 7 days. a) S(0)=0 b)S(0)=0.07 c)S(0)=0.2 d)S(0)=0.4. 
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individuals(S(0)=0.07), these ratios are 5% and 25% respectively. So, higher dosages actually 

make the case worse. Low dosage or low efficient drug given at the beginning of infection is 

preferable. For immune population, the effect of various dosages is similar. 

3.3.3.3 Sensitivity to virulence  

 We investigated the impact of virulence on onset, duration, contagious period, 

infectiousness and severity of symptoms in cases where the low effective drug therapy and high 

effective drug therapy is applied. 

 a) Low dosage 

  When low dosage is chosen; the more virulent the virus, the more shortened the onset. 

More virulent virus causes increased transmission rates especially for vaccinated individuals or 

for an immune population. For naïve population virus type has no effect on making people more 

infectious. Duration and severity of disease is increased by virulence. For naïve population, 25% 

of people are becoming symptomatic caused by an infection with low virulent IAV, while 70% 

of them are becoming symptomatic caused by an infection with high virulent virus after the 

treatment. For an immunized population, everybody is likely to be cured for IAV caused by the 

low virulent virus. However, only half of the population is cured for infection caused by the high 

virulent virus. 

  b) High dosage 

  When high dosage is chosen; the more virulent the virus, the more shortened the onset. 

More virulent virus causes increased transmission rates. Duration and severity of disease is 

increased by virulence. For naïve population, 5% of people are becoming symptomatic caused by 

an infection with low virulent IAV, while 30% of them are becoming symptomatic caused by an 

infection with high virulent virus after the treatment. For an immune population, everybody is 
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likely to be cured for IAV caused by the low virulent virus. However, only half or less 

percentage of the population is cured for infection caused by the high virulent virus. 

 

3.4 DISCUSSION 

 In this part, we presented an ensemble model for human immune response to the 

IAV infection which varies in parameter values and are ranked according to their likelihood to 

capture clinically available data. We extended the deterministic ODE model presented in part 1 

to obtain a posteriori distribution which contains all the information on the parameter space using 

the information inferred from a priori knowledge. A priori information is provided by the actual 

data measurements and biologically reasonable ranges for parameter values (Bocharov et al., 

1994; Hancioglu et al., 2007). Using the Bayesian approach, we quantified uncertainty in model 

predictions due to individual variability (being superspreader, immunocompressed, etc.) of the 

human immune response to specific virus characteristics such as virulence. This approach 

combines the a priori information ( )θ α  that we have on the parameter space with the 

deterministic ODE model m to define a probability density function ( )ρ α  in M representing the 

a posteriori information. The distribution ( )ρ α  gives the complete solution of the inverse 

problem as described above and distinguishes all the information we have on the model space.  

 The most likely parameter values for the influenza model are determined using 

Metropolis algorithm as the parameters that maximize the likelihood of observing the clinical 

data. We incorporated parallel tempering method to improve sampling the parameter vectors. 5 

replicas of the system are simulated at a series of temperatures. Configurations of 5 replicas at 
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adjacent temperatures are exchanged partially by swapping. Swapping allows the lower 

temperature systems to escape from one local minima of parameter space where they could 

easily stuck to sample larger volumes of the parameter space enhancing the sampling of local 

minima over M . 

For many phenomena in the nature, repeated observations under a specified set of 

conditions invariably leads to the same outcome. Scientists can analyze these phenomena with 

deterministic approach, by modeling it with the tools of ODE or PDE Theory. However, there 

are other phenomena whose repeated observations under a specified set of conditions do not 

always lead to the same outcome. In our case, we consider human immune response to IAV 

infection as the latter due to lack of data & information on time series of model variables, 

individual specific parameters representing reaction rates of several biological processes within 

the host and unknown virus specific characteristics (mild versus virulent virus). At first sight, it 

may look like impossible to make any worthwhile statements considering such random 

phenomena, but this is not so. Our results illustrate the point that the nondeterministic biological 

phenomena (immune response in our case) exhibit a statistical regularity that makes it subject to 

study. In the deterministic approach, one set of parameter set is found for the ODE system 

representing the disease dynamics through optimization schemes associated with the best model 

fitting the clinical data. However, as we pointed out above, this parameter set is a biased 

estimator of the model space due to unpredictable nature of future influenza virus strains and the 

individual variability of response. In the ensemble model method we presented in this part 

instead, we take into account all uncertainty in parameters as a more realistic and unbiased 

approach to the inverse problem and still provide firm, precise assertions on clinical outcome. 

These results have broad implications for infectious disease epidemiology, and open challenges 
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for further work. Novel mathematical contribution in this thesis is the development and analysis 

of the influenza model and the application of ensemble modeling techniques to parameter 

estimation for complex biological systems. 

An important issue for users of MCMC methods is to allow sampling to continue until 

the resulting distribution is reasonably close to the stationary distribution of interest, and 

therefore use the samples to estimate characteristics of this distribution. This encapsulates the 

issue of convergence of MCMC sampling methods. Usually, MCMC users address the 

convergence problem by applying diagnostic tests to the output produced by running their 

samplers. There are several methods that assess convergence, but all of these methods may yield 

misleading results depending of the nature of the problem at hand. A combination of strategies 

aimed at accelerating, and evaluating convergence should be used. These include monitoring 

autocorrelations and cross-correlations, modifying parameterizations or sampling algorithms 

appropriately and applying diagnostic procedures to a small number of parallel chains. However, 

it is not possible to conclude with certainty that a finite sample obtained through an MCMC 

algorithm is representative of an underlying stationary distribution (Cowles et al., 1996). Many 

statisticians rely heavily on these diagnostics for no other reason than “a weak diagnostic is 

better than no diagnostic at all”(Cowles et al., 1996). 

Efforts to solve the problem of determining MCMC algorithm convergence have 

concentrated on two areas. The first area is theoretical in which the Markov transition kernel of 

the chain is analyzed to predetermine a number of iterations that will ensure convergence in total 

variation distance to within a specified tolerance of the stationary distribution (Polson, 1996; 

Rosenthal, 1996). In the trivial situation where a Markov chain has a transition kernel explicitly 

formulated as a matrix, the second eigenvalue provides an explicit quantization of convergence 
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time. The second approach is the one that most applied work based on applying the diagnostic 

tools to output produced by the algorithm itself.  

All of the diagnostics seek to uncover bias arising from a sample that is not representative 

of the underlying distribution. Some of them estimate how many samples should be drawn to 

produce estimates with variance sufficiently small to build confidence in their accuracy. It has 

been found that many of the diagnostics produce results which are difficult to interpret with 

confidence and are potentially misleading even in the idealized settings (Cowles et al., 1996). 

Any convergence diagnostic test should not be unilaterally relied upon and the use of several 

techniques to increase understanding of the target distribution is strongly recommended(Brooks 

et al., 1999).  

The statistical analysis on the output can be categorized into two groups: Descriptive 

Statistics and Convergence Diagnostics. Using Descriptive Statistics tools, the modeler can 

compute autocorrelations, cross-correlations, and summary statistics. Histograms of the 

parameters and time series plots also give evidence of the convergence. High auto-correlations 

indicate slow mixing within a chain and, usually, slow convergence to the posterior distribution. 

Correlation matrix for the parameters in each chain is a good tool, too. High correlation among 

parameters leads to slow convergence. In order to reduce the amount of cross-correlation, clever 

reparametrization is needed. Summary statistics include the sample means and standard 

deviations. 

The most commonly used methods used to assess the convergence of MCMC output are 

discussed below: 

1) Brooks, Gelman & Rubin Convergence Diagnostic: 

The Brooks, Gelman and Rubin convergence diagnostic is appropriate for the analysis of 

two or more parallel chains, each with different starting values which are overdispersed with 
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respect to the target distribution. Several methods for generating starting values for the MCMC 

samplers have been proposed (Gelman and Rubin, 1992). Since we used the same starting point 

for the chains, this diagnostic test is not appropriate to us. 

2) Geweke Convergence Diagnostic: 

The Geweke Convergence Diagnostic is appropriate for the analysis of individual chains 

such as ours when convergence of the mean of some function of the sampled parameters is of 

interest. The chain is divided into two windows. This method produces a Z statistics calculated 

as the difference between the two means of the windows divided by the asymptotic standard 

error of their difference. If the chain has converged, as the number of iterations approaches 

infinity, the Z statistics approaches the N(0,1).  

3) Heidelberg and Welch Convergence Diagnostic: 

The Heidelberg and Welch Convergence Diagnostic is appropriate for the analysis of 

individual chains. Heidelberg and Welch’s stationarity test based on Brownian bridge theory and 

uses the Cramer-von-Mises statistic. Failure of the chain to pass this test indicates that a longer 

run of the MCMC sampler is needed in order to achieve convergence.  

4) Raftery and Lewis Convergence Diagnostic: 

The Raftery and Lewis Convergence Diagnostic is appropriate for the analysis of 

individual chains such as ours. The diagnostic proposed by Raftery and Lewis tests for 

convergence to the stationary distribution and estimates the run-lenghts needed to accurately 

estimate quantiles of functions of the parameters. The user may specify the quantile of interest, 

the desired degree of accuracy in estimating this quantile, and the probability of attaining the 

indicated degree of accuracy. It lists the total number of iterations needed for each parameter, the 

number of initial iterations to discard as the burn-in set, and the thinning interval to be used. If 
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the dependence factors measured is greater than 5.0 then it indicates convergence failure and a 

need to reparameterize the model (Raftery and Lewis, 1992). 

The convergence diagnostics of Gelman and Rubin(Gelman et al., 1992) and of Raftery 

and Lewis (Raftery et al., 1992) are the most popular in the statistical community. Methods by 

Garren and Smith(1993), (Geweke, 1992), (Johnson, 1994), Liu, Liu and Rubin(Liu et al., 1992; 

Roberts, 1992),Yu(1994), Yu and Mykland(1994), and Zellner and Min(Zellner et al., 1995) 

have also been proposed. The measure of convergence in this thesis is graphical (as in some of 

the above methods). A more thorough and deeper analysis of convergence relevant to the 

specific problem discussed in this thesis may be done as a future extension of this project.  As 

pointed out in Cowles et al., many of the MCMC diagnostics proposed in the statistical literature 

are fairly difficult to implement, requiring problem-specific coding and some analytic work. 

They may not succeed at detecting the sort of convergence failure they were designed to identify 

even in low-dimensional idealized problems far simpler than our high-dimensional one. So, 

further research needs to be done by statisticians in both applied and theoretical aspects of these 

algorithms. There are several Bayesian output analysis programs which can be used for our 

sampling and they are mostly publicly available.  

Despite claims in the literature somehow to the effect that some methods may be 

significantly superior in assessing convergence, it appears that a proper balance between 

implementation time and collective reliability of a number of methods should be considered, 

given that reliability of a single method may be highly dependent of the specific problem at hand 

(Brooks et al., 1999). 

The ensemble model predicts that 0.6% of the population becomes superspreaders in 

seasonal flu outbreaks. Public health authorities should target this small proportion of the 
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population in order to control the epidemic more efficiently. Identifying these individuals 

requires a better understanding of factors (host, pathogen and environmental) determining 

individual infectiousness and subject of further studies.  

Our results also indicate that 2% of people develop chronic disease in a regular influenza 

outbreak. Reduction in the production of plasma cells indicates insufficient adaptive immune 

response to the infection causing chronic behavior, in accord with our observations in the first 

part (see subsection 2.5.4.5). 

Antiviral drug therapy is an important control measure to prevent from the disease and to 

control an epidemic. Determining the optimal treatment strategy for antiviral drugs is a crucial 

problem affecting not only recovery of an individual but also efficiency to disease spread.  

 The higher the dosage or efficiency of the drug, the more the onset of disease is 

prolonged. This delay on onset might be as much as 3 weeks and it gives an opportunity for the 

host to clear the infection even before it comes to peak with another strategy such as increased 

immunity.  

The optimal starting time of treatment is not obvious. It depends on the immune status of 

the host as well as virus specific characteristics. Proper vaccination or early exposure to the same 

subtype of the virus helps reduce the spread of disease, severity of symptoms and transmission 

rates. A low dosage or low efficient drug, given at the beginning of infection, is preferable for 

weak immune individuals for the regular (seasonal) flu epidemic. For these people, choosing 

higher efficiency drug treatment actually makes the case worse. For the immune population, 

effect of low or high dosages is similar. So, low efficiency drug is quite enough for therapy to 

avoid side effects, which is an important parameter to consider searching for optimal strategies 

(there is no arbitrage, a well known financial term meaning free lunch). For virulent viruses, the 
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optimal time to start treatment is neither as early as possible nor right after infection. If it starts at 

day 0, it would just make the transmission rates higher and symptoms more severe in an 

epidemic. This effect might be explained by insufficient stimulation of immune response caused 

by less activated APCs. Infected cells (I) are not becoming D as fast as in the no treatment case 

and infectious virus particles are not released from I as much as in the no treatment case. So, due 

to early intervention D and V levels are initially lower causing lower immune response. 

Increased computational power and using multimodel ensembles in which each single 

model run is deterministic composed of a parameter set taken from the distribution would 

enhance the results we could get. This new approach to disease modeling requires more work to 

be done to provide fully reliable, flow dependent probabilistic predictions. Future work would 

include investigation of alternative treatment strategies such as combination of several drug 

treatments, anti HA inhibitors and various vaccine strategies to control disease spread at 

population level. Availability of more clinical data and computational power would enhance the 

derivation of the posterior probability and give more reliable and accurate results. 
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