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Assessing IRT model-fit and comparing different IRT models from a Bayesian 

perspective is gaining attention. This research evaluated the performance of Bayesian model-fit 

and model-comparison techniques in assessing the fit of unidimensional Graded Response (GR) 

models and comparing different GR models for performance assessment applications. 

The study explored the general performance of the PPMC method and a variety of 

discrepancy measures (test-level, item-level, and pair-wise measures) in evaluating different 

aspects of fit for unidimensional GR models. Previous findings that the PPMC method is 

conservative were confirmed. In addition, PPMC was found to have adequate power in detecting 

different aspects of misfit when using appropriate discrepancy measures. Pair-wise measures 

were found more powerful in detecting violations of unidimensionality and local independence 

assumptions than test-level and item-level measures. Yen’s Q3 measure appeared to perform best. 

In addition, the power of PPMC increased as the degree of multidimensionality or local 

dependence among item responses increased. Two classical item-fit statistics were found 

effective for detecting the item misfit due to discrepancies from GR model boundary curves.  

The study also compared the relative effectiveness of three Bayesian model-comparison 

indices (DIC, CPO, and PPMC) for model selection. The results showed that these indices 

appeared to perform equally well in selecting a preferred model for an overall test. However, the 

advantage of PPMC applications is that they can be used to compare the relative fit of different 
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models, but also evaluate the absolute fit of each individual model. In contrast, the DIC and CPO 

indices only compare the relative fit of different models. 

This study further applied the Bayesian model-fit and model-comparison methods to 

three real datasets from the QCAI performance assessment. The results indicated that these 

datasets were essentially unidimensional and exhibited local independence among items. A 2P 

GR model provided better fit than a 1P GR model, and a two-dimensional model was also not 

preferred. These findings were consistent with previous studies, although Stone’s fit statistics in 

the PPMC context identified less misfitting items compared to previous studies. Limitations and 

future research for Bayesian applications to IRT are discussed. 
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1.0  INTRODUCTION 

1.1 STATEMENT OF THE PROBLEM 

Performance assessments (PAs) require students to perform tasks rather than select an answer 

from a developed list. They are intended to measure students’ learning through emulating the 

context or conditions in which the intended knowledge or skills are actually applied (AERA, 

APA, & NCME, 1999). Due to their advantages over multiple-choice (MC) tests, there has been 

a significant expansion in the use of performance assessments, especially in large-scale 

assessment and accountability programs (Lane & Stone, 2006). 

Item response theory (IRT) has become main-stream for analyzing item response data in 

educational and psychological measurement including performance assessment data. It consists 

of a family of statistical models which specify how an examinee’s item responses are related to 

his/her latent traits and item properties (Embretson & Reise, 2000). Compared with classical test 

theory (CTT), IRT models make a number of strong assumptions such as dimensionality, local 

independence, and model-data fit. The inferences from applications of IRT models are valid only 

when the fit between model and data is satisfactory and the underlying assumptions are met. 

Therefore, it is crucial to check the adequacy of a chosen IRT model in order to validate 

applications of the model.  
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Evaluating applications of IRT to performance assessments is critical since in practice, 

unidimensional polytomous IRT models are commonly used to analyze performance assessment 

data but the underlying assumptions are more likely to be violated due to the properties of 

performance tasks. For example, the constructs measured in performance assessments are likely 

to be multidimensional. Large-scale performance assessments usually cover a broad range of 

content areas and each item in performance assessments often measures several skills 

simultaneously. The potential presence of local dependence (LD) may also be a more related 

issue to performance assessments than multiple-choice (MC) assessments. In MC tests, items are 

usually carefully designed to be independent of one another. In contrast, a setting or context 

related to a real life situation is usually used in performance assessments and students are asked 

several questions related to that setting (Yen, 1993). Thus, a set of items share the same stimulus 

and might depend on each other. Several potential sources of LD existing in performance 

assessments have been discussed by Yen (1993). 

In many practical applications of IRT, there are several available models that might fit 

the data, and finding the best model for a particular application is desirable. For example, for a 

performance assessment which measure examinee’s overall math ability across two content 

subdomains (e.g., algebra and geometry), a simple unidimensional polytomous IRT model and a 

more complicated 2-dimensional polytomous model might both fit the data. In order to know if a 

simple unidimensional model is adequate or if a multidimensional IRT model would be preferred 

for this particular performance assessment application, model comparison techniques should be 

employed.  

In the last ten years, it has become increasingly common to use Bayesian methods for 

estimating IRT models in educational measurement. Part of this increased use is due to the 
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development of complex IRT models for different educational testing applications. Using 

traditional marginal maximum likelihood (MML) estimation method to estimate these complex 

models is difficult, and Bayesian estimation using Markov Chain Monte Carlo (MCMC) 

methods offer greater potential for estimating complex IRT models. Since Albert (1992) 

proposed a full Bayesian method based on Gibbs sampling to estimate 2-parameter normal-ogive 

IRT model, and Patz and Junker (1999a, 1999b) discussed Metropolis-Hastings (M-H) sampling 

algorithms to estimate several different IRT models such as 2PL, 3PL and mixed models, full 

Bayesian methods with MCMC algorithm have become widely used by many researchers to 

estimate a variety of complex IRT models such as testlet models (Bradlow, Wainer, & Wang, 

1999; DeMars 2006; Li, Bolt, & Fu, 2006; Wang, 2002), rater-effect models (Patz & Junker, 

2002), and multidimensional IRT models (Béguin & Glas, 2001; Bolt & Lall 2003; Yao & 

Schwarz, 2006).  

In addition to using Bayesian methods to estimate IRT models, Bayesian methods can 

also be used to evaluate other aspects of IRT applications such as model fit and model 

comparison. Though a number of classical model-fit and model-comparison methods have been 

proposed and have been found to be useful in more traditional IRT applications, a similar interest 

in the assessment of IRT model-fit and IRT model comparisons from a Bayesian perspective is 

gaining more and more attention.  

The Posterior Predictive Model Checking (PPMC) method (Rubin, 1984) is a popular 

Bayesian model checking tool and has proved useful with IRT models (e.g., Béguin & Glas, 

2001; Fu, Bolt, & Li, 2005; Hoijtink, 2001; Levy, 2006; Sinharay, 2005, 2006; Sinharay, 

Johnson, & Stern, 2006). Conducting PPMC involves simulating data under a presumed model 

and comparing features of simulated data against observed data using discrepancy measures that 
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are sensitive to different aspects of misfit. Any systematic differences indicate potential misfit of 

the model. The rationale underlying PPMC is that if a chosen model fits the data, then observed 

data should look like replicated data generated from the posterior distributions of model 

parameters. Differences between observed and predicted data on discrepancy measures in PPMC 

can be evaluated using graphical displays as well as a numerical summary - Posterior Predictive 

P-value (PPP-value).  

Compared with classical model-fit tests, the advantages of using PPMC for IRT model-fit 

are threefold: (1) PPMC takes into account uncertainty in parameter estimation by using 

posterior distributions for model parameters rather than point estimates; (2) PPMC constructs 

null sampling distributions empirically from MCMC simulations rather than relying on 

analytically derived distributions; (3) PPMC can be used for assessing the fit of complex IRT 

models which may be needed in real-world testing applications but can only be estimated using 

Bayesian methods. 

Among a number of Bayesian model comparison indices, Pseudo-Bayes Factor (PsBF; 

Geisser & Eddy, 1979; Gelfand, Dey & Chang, 1992) and Deviance Information Criterion (DIC; 

Spiegelhalter, Best, Carlin & van der Linde, 2002) are popular indices for model comparisons 

with MCMC estimation. In IRT modeling, the PsBF index is commonly estimated using the 

conditional predictive ordinate (CPO). In addition, several researchers recently have found that 

the PPMC method was also effective for comparing different IRT models when MCMC 

estimation method was used (Béguin & Glas, 2001; Li et. al, 2006).  

The purpose of this study was twofold: (1) to explore the performance of the PPMC 

method and various discrepancy measures in detecting threats to the use of unidimensional 

graded response (GR) IRT models to performance assessment applications, and (2) to investigate 
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the relative effectiveness of three Bayesian model-comparison methods (DIC, CPO, and PPMC) 

in choosing a preferred model for analyzing performance assessment data. Specifically, the 

following research questions were addressed: 

(1) What is the Type-I error rate for each proposed discrepancy measure used with PPMC 

in assessing the fit of unidimensional GR model? 

(2) What is the empirical power of each proposed discrepancy measure used with PPMC in 

detecting different aspects of misfit for unidimensional GR model? 

(3) Among different types of discrepancy measures (test-level, item-level, and pair-wise 

measures) proposed in the current study, which measures are most effective in detecting 

specific misfit? 

(4) Do the three Bayesian model comparison criteria (DIC, CPO, and PPMC) perform 

equally well in selecting the same model as the preferred model for a particular 

performance assessment data? If not, which criterion performs best? 

(5) How do Bayesian model checking and model comparison methods work with data from 

a real performance assessment? 

In order to answer these questions, two Monte Carlo simulation studies were conducted. 

Study 1 was intended to examine different discrepancy measures used in model checking with 

the PPMC method. Study 2 was designed to assess the different model comparison methods. In 

addition, the proposed Bayesian approaches to model-checking and model-comparison were 

further applied to several QUASAR’s performance assessment datasets to examine their use with 

real data. 
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1.2 SIGNIFICANCE OF THE STUDY 

In recent years, it has become increasingly common to use Bayesian method with MCMC for 

estimating IRT models, especially for complicated IRT models (e.g., Albert, 1992; Béguin & 

Glas, 2001; Bolt & Lall, 2003; Bradlow, et al. 1999; Patz & Junker 1999a, 1999b, 2002; Yao & 

Schwarz, 2006). However, relatively little attention has been given to assessing the fit of IRT 

models and comparing different IRT models from a Bayesian perspective. 

 Although PPMC has been previously used to assess IRT model fit (e.g., Béguin & Glas, 

2001; Fu, Bolt, & Li, 2005; Hoijtink, 2001; Levy, 2006; Sinharay, 2005, 2006; Sinharay, 

Johnson, & Stern, 2006), the focus has been on unidimensional IRT models for dichotomous 

items. The present study was intended to extend previous research to polytomous IRT models 

and provide a comprehensive application of PPMC in the context of unidimensional GR models. 

This extension is very important because there has been a significant expansion in the use of 

performance-based items in educational testing and the unidimensional GR model is commonly 

used for modeling these items. Since the assumptions under the GR model are very likely to be 

violated in performance assessment applications, it is critical to check the fit of a GR model to a 

particular performance assessment data. In addition, many of the discrepancy measures used in 

the current study reflect polytomous extensions of measures used in previous research for 

dichotomous IRT models. Thus, it would be useful to assess the extent to which their 

performance with dichotomous items can be generalized to polytomous items. Finally, though 

PPMC is useful for simple unidimensional IRT models, its power is that it can be used for 

assessing the fit of complex IRT models which may only be estimated using Bayesian methods. 

However, research about applications of PPMC to complex IRT models has been very limited. In 

this current study, the PPMC method was also used to evaluate the fit of different complex 
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Bayesian IRT models such as 2-dimensional simple-structure and complex-structure GR models, 

and GR models for testlet. Thus, this study also extended previous research to the use of PPMC 

with complex IRT models. 

Another objective of this study involved comparing Bayesian model-comparison criteria. 

Comparing different IRT models and choosing the more appropriate one is important to all 

testing applications including performance assessments. In practical applications, performance 

assessments are usually designed to only measure one dominant dimension and thus 

unidimensional polytomous models are commonly used. However, when the assumptions 

underlying unidimensional models are violated, more complex polytomous models might be 

used. Therefore, it is necessary and important to know if a simple or more complex model is 

more appropriate for a particular performance assessment application. 

The research comparing different Bayesian model comparison indices has been limited. 

Sung and Kang (2006) conducted a study to compare four model selection methods (DIC, PsBF, 

AIC, and BIC) in terms of their effectiveness. They mainly focused on comparing the different 

unidimensional polytomous models for Likert-type data. In addition, the PPMC method was not 

considered in their study. Li et al. (2006) investigated the performance of Bayesian tools (DIC, 

PsBF, and PPMC) in choosing the true testlet models for dichotomous items. Since the results 

from these studies indicated the differential performance of these model comparison indices, it is 

necessary to compare their relative performance in different testing applications. The current 

study played a significant role in extending the previous research to performance assessment 

settings that consider different polytomous models which may be more appropriate for 

performance assessment data including both unidimensional and complex GR models. 
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1.3 LIMITATIONS OF THE STUDY 

This study explored the general performance of the PPMC method in detecting different aspects 

of misfit for the unidimensional GR models, and also investigated the effectiveness of the 

different Bayesian model-comparison indices in selecting the true models for performance 

assessment data using two Monte Carlo simulation studies. Though the conditions were carefully 

designed and the factors were fixed at realistic values, the results may not generalize to other 

situations not considered in the current study. For example, this study is limited in terms of the 

length of tests (15 items), the number of response category (5-category), the polytomous model 

(GR), and the number of dimensions considered for multidimensional conditions.  

Another limitation is that due to computing constraints of the WinBUGS program 

(Spiegelhalter, Thomas, Best, & Lunn, 2003) and the large number of conditions in this study, 

only 20 replications were implemented. Though it was smaller than which is typical for other 

Monte Carlo research, it was typical for previous research involving PPMC and Bayesian model-

comparison applications (e.g., a number of researchers used 5 to 30 replications).  

In addition, the performance of the PPMC method and the Bayesian model-comparison 

indices for the GR models requires further study. For example, the effect of factors such as 

sample size, the number of total items, the number of dimensions, the structure of dimensions, 

and the inter-dimensional correlation given modeled multidimensionality could be further 

explored. Other discrepancy measures could be proposed and evaluated. For example, the 

conditional odds ratios could be used. Other assumptions under the use of IRT models with 

performance assessments could be also considered in the future such as the normal ability 

assumption. Finally, the current study did not compare the performance of classical model-fit 

statistics with the performance of PPMC. Further research could explore this comparison. 
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2.0  REVIEW OF LITERATURE 

This chapter provides the theoretical background for this study which is organized into five 

sections: 1) applications of IRT to performance assessments, 2) traditional methods for checking 

IRT model-fit, 3) posterior predictive model checking (PPMC) in Bayesian framework, 4) 

checking IRT model-fit using PPMC, and 5) model comparison in Bayesian framework. 

2.1 APPLICATIONS OF IRT TO PERFORMANCE ASSESSMENTS 

2.1.1 Brief Introduction to Performance Assessments 

The recent trend in educational testing is moving from exclusively using multiple-choice items to 

including performance assessment items. Performance assessment (PA) is a form of testing that 

requires students to perform tasks rather than select an answer from a developed list. It is 

intended to measure students’ learning through emulating the context or conditions in which the 

intended knowledge or skills are actually applied (AERA, APA, & NCME, 1999). PA is also 

termed “authentic assessment” since it often provides tasks that are thought to model realistic 

applications that students will encounter in life.  The performance-based items usually have two 

parts: a clearly defined task and a list of explicit criteria (i.e., rubric) for assessing student 

performance or product. The responses are constructed by examinees and scored on a response 
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scale with several levels rather than only as correct or incorrect. PA includes a large range of 

formats such as constructed-response, essays, experiments, and portfolios.  

 Lane and Stone (2006) summarized the main advantages of performance assessments: (1) 

directness: they provide a more direct measure of the skills of interest; (2) meaningfulness: they 

are meaningful and thus motivating students because of their relevance to real-life situations; (3) 

they may influence curriculum and instructional changes in positive ways by encouraging 

teachers to broaden the focus of their teaching and include reasoning, problem solving, and 

communication in regular classroom activities. Moreover, performance assessments can measure 

important skills that cannot be assessed by selected-response item format - for example, 

assessing dynamic cognitive processes. Therefore, it may be argued that performance 

assessments provide more valid information about student learning than multiple-choice 

assessments (Baron, 1991). 

Due to the aforementioned benefits, in the last decades there has been a significant 

expansion in the use of performance assessments, especially in large-scale assessment and 

accountability programs (Lane & Stone, 2006). Many school districts, state testing programs, and 

national assessments have incorporated performance assessments into their programs. For 

example, the National Assessment of Educational Progress (NAEP) is the nationally 

representative and continuing assessment of what students know and can do in various subject 

areas. Some NAEP items are performance-based.  The Advanced Placement (AP) exams consist 

of one-section constructed-response items which are used to determine the proficiency attached 

by high school students in college courses. Besides the national assessments, a number of state 

assessment programs contain both selected-response items and performance-based items (e.g., 

Kentucky, Pennsylvania, and Vermont), while others are even entirely performance-based (e.g., 
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Maryland). Though performance assessments have been widely used in large-scale assessments 

for high-stake purposes such as providing school accountability information, evaluating reform 

efforts, and determining instructional and curriculum changes, they can also be useful for 

classroom purposes such as diagnosing student’s strength and weakness and evaluating the 

effectiveness of instruction. Lane and Stone (2006) pointed out that classroom performance 

assessments allow for a direct alignment between assessment and instructional activities and 

have the potential to simulate the criterion performance better than large-scale assessments.  

2.1.2 IRT Models for Performance Assessments 

2.1.2.1 General Description 

IRT consists of a family of statistical models which are used to analyze item response data. 

These IRT models can be classified in several ways. One way is by the type of item data. 

Dichotomous IRT models are used for analyzing dichotomous item data (item response scored in 

two categories), and polytomous IRT models are used to analyze polytomous item data (item 

response scored in more than two categories). Another way is by the number of ability 

dimensions accounting for performance differences among examinees. Unidimensional IRT 

models assume one underlying dimension, while multidimensional IRT models assume more 

than one dimension determining examinees’ performance. Performance assessment tasks are 

typically polytomously scored and generally measure one underlying ability dimension, thus 

unidimensional polytomous IRT models are commonly applied to performance assessments. 

There are various unidimensional polytomous IRT models available. The most 

commonly used polytomous models include (1) the graded response (GR) model (Samejima, 

1969); (2) the modified GR model (Muraki, 1990), also called Muraki’s rating scale (RS) model; 
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(3) the partial credit (PC) model (Masters, 1982); (4) the generalized partial credit (GPC) model 

(Muraki, 1992); (5) the rating scale (RS) model (Andrich, 1978); and (6) the nominal response 

(NR) model (Bock, 1972). According to the useful taxonomy provided by Thissen and Steinberg 

(1986) for classifying polytomous models, The GR and Muraki’s RS models belong to a class of 

“difference” models, and the remaining models are classified as “divide-by-total” models. For 

“difference” models, the probability of responding in a particular category j is calculated by 

taking the difference between cumulative probabilities: for example, the probability of 

responding at or above j and the probability of responding at or above (j+1). For “divide-by-

total” models, the probability of responding in a given category is obtained by the ratio of the 

function for that category to the sum of the functions for all the categories (Yen & Fitzpatrick, 

2006). Bock’s NR model is the most general “divide-by-total” model, and all the other models 

(PC, GPC, and Andrich’s RS) are special cases of the NR model. In addition, the PC and 

Andrich’s RS models are Rasch-based models assuming a constant item discrimination or slope 

parameter for all items.  

For performance assessments, all of the aforementioned models could be used because 

they are applicable to items with ordered response categories. Nevertheless, the GR, PC, GPC, 

and NR models are more commonly used because they can be used to analyze a set of 

polytomous items that differ in the number of score levels. For example, either model could be 

applied to a test having some items with 5-point rubrics and some with 4-point rubrics. While the 

two RS models are simplified models, they are only suitable for items associated with the same 

rating scales and therefore are rarely used with performance assessments. However, Lane and 

Stone (2006) argued that the rating scale models could be applied to performance assessments if 

a general rubric is used as the basis for developing specific item rubric since the response scales 
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and the differences between score levels may be the same across the set of items. They also 

pointed out that the NR model may not be preferred with performance assessments due to the 

relatively large number of parameters to be estimated.  

2.1.2.2 Graded Response Model (Samejima, 1969) 

Samejima’s (1969) GR model is the main model applied in this study and is introduced in more 

detail here. The GR model is an extension of dichotomous 2-paramter logistic (2PL) model and 

was developed to model items with more than two graded or ordered response categories. Let 

denote Ki= (mi+1) to be the number of ordered response categories for item i, with higher 

response category indicating higher ability, then examinees would receive item scores of x = 0, 

1… mi on this item. Samejima (1969) proposed a two-stage process to obtain the probability that 

a given examinee with a certain ability level will receive item score x. In the first stage, the 

response categories of each item are dichotomized into two overall categories: (1) equal to or 

greater than category score x; and (2) less than category score x. For instance, for a 5-category 

item, there are 4 types of dichotomies: (1) 0 vs. 1, 2, 3, 4; (2) 0, 1 vs. 2, 3, 4; (3) 0, 1, 2 vs. 3, 4; 

(4) 0, 1, 2, 3 vs. 4. The probability that an examinee receives a category score x (x = 1, 2… mi) or 

higher on item i ( ( )θ*
ixP ) can be modeled using the 2PL function: 

( ) ( )[ ]
( )[ ]ixi

ixi
ix bDa

bDa
P

−+
−

=
θ

θ
θ

exp1
exp* ,                                                (2.1) 

where 

 D is the scaling constant (1.7 or 1), 

 ai is the discrimination (or slope) parameter of item i, 

 θ is the ability level, and 

 bix is the threshold parameter for category x of item i. 
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The bix parameter represents the ability level at which examinees have a .50 probability of 

receiving item score x or higher on item i. For an item with (mi+1) categories, one item 

discrimination parameter (ai) and mi threshold parameters (bix) must be estimated under the GR 

model. For each threshold parameter, there is one corresponding “operating characteristic curve” 

(OCC; Embretson & Reise, 2000) or “boundary category curve” (BCC) described by ( )θ*
ixP .  

Once these cumulative probabilities ( )θ*
ixP  are estimated, the probability of responding to 

a particular response category ( )θixP  (x = 0, 1, 2… mi) can then be computed using the difference 

between the cumulative probabilities for two adjacent categories: ( )θ*
ixP  and ( )θ*

)1( +xiP . ( )θ*
ixP  is 

known to be the probability of an examinee obtaining item score equal to or higher than x 

conditional on ability level, and ( )θ*
)1( +xiP  represents the probability of that examinee obtaining 

item score higher than x. The difference is the probability of receiving the actual item score x.  

Consider a 5-category item, Equation (2.1) defined the four cumulative probabilities: 

( )θ*
1iP , ( )θ*

2iP , ( )θ*
3iP , and ( )θ*

4iP . In order to calculate the probabilities of obtaining the lowest 

(0) and highest (4) item scores, two additional definitions should be given: the probability of 

responding in or above the lowest category score (x = 0) is defined as ( ) 1*
0 =θiP , and the 

probability of responding above the highest category score (x = 4) is ( ) 0*
4 =θiP . Thus, the 

probability of responding in each of the five categories (x =0, 1… 4) can be calculated using: 
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The general formula for computing the category response probabilities for an item with 

(mi+1) categories (item score x = 0, 1, 2… mi) is as follows: 

           

( ) ( )
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       (x = 1, 2… (mi-1)).                          (2.3) 

For illustrative purposes, Figure 2.1 displays the four boundary category curves ( ( )θ*
ixP ) 

for a 5-category item (a = 1.7, b1 = -2, b2 = -1, b3 = 0, b4 =1), and the category response curves 

( ( )θixP ) for this item are shown in Figure 2.2. Under the GR model, the item parameters 

determine the shape and location of the boundary category curves and category response curves.  

 

Figure 2.1 Boundary Category Curves for a 5-category Item under the GR Model 

For boundary category curves (Figure 2.1), the slope parameter (ai) determines the 

steepness of the operating curves: the higher the slope parameter, the steeper the curves. Higher 

slope indicates that the response categories discriminate or differentiate the examinees at 

different ability levels fairly well. It should be noted that under the GR model, the slope ai varies 

by item i, but within an item, all response categories share the same slope which results in 
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parallel operating characteristic curves. The constraint of equal slopes within an item prevents 

negative probabilities for ( )θixP .  

The threshold parameters bix determine the location of ( )θ*
ixP . From the intersections of 

dashed lines in Figure 2.1, it is evident that the threshold represents the ability level at which an 

examinee has a .50 probability of receiving item score of x and higher. For instance, the first 

threshold for this example item b1 is -2 which means an examinee at ability level of -2 has .50 

chance of obtaining a score of 1 or higher on this item. Moreover, the range of threshold values 

dictates the spread of the boundary category curves. A large range of threshold values results in 

curves that are more spread out, whereas, a small range of threshold values results in curves that 

fall closer together. It should be also noted that within an item the threshold parameters are 

ordered with the constraint bi(x-1) < bix < bi(x+1). This is a requirement for the GR model, but not 

for other models such as the PC model. 

 

Figure 2.2 Category Response Curves for a 5-category Item under the GR Model 

For this 5-categeory item, there are 5 category response curves showed in Figure 2.2. The 

curve for the lowest category (0) is monotonically decreasing, whereas, the curve for the highest 

category (4) is monotonically increasing. The curves for the middle three categories (1, 2, and 3) 
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are bell-shaped. Under the GR model, the slope parameter determines the shape of these curves 

for the middle categories: the higher the slope parameter, the narrower and more peaked the 

curves. The threshold parameters determine the locations of the curves for the middle response 

categories. Specifically, these category response curves peak in the middle of two adjacent 

threshold parameters. As showed using dashed lines in Figure 2.2, the middle value of two 

threshold values (b1 = -2 and b2 = -1) is -1.5 which is the mode of the curve for category score 1.  

2.1.3 Main Threats in Applying Unidimensional IRT Models to PAs 

Due to the well-known advantages of IRT over classical test theory (CTT), IRT has become 

main-stream for analyzing item response data in educational and psychological measurement. 

However, IRT is based on many strong assumptions such as dimensionality, local independence, 

and model-data fit. The inferences about the applications of any IRT model are valid only when 

all the underlying assumptions for that model are met. Therefore, before any accurate inference 

is drawn, it is necessary to check the assumptions in order to validate applications of IRT 

models. It is especially true when unidimensional polytomous IRT models are applied for 

performance assessments because the assumptions are more likely to be violated due to the 

properties of performance tasks. This section discusses some main threats in applying 

unidimensional IRT models to performance assessments. 

2.1.3.1 Multidimensionality 

Most of the commonly used IRT models assume that one ability dimension determines 

examinees’ performance. However, the constructs measured in performance assessments are 

very likely to be multidimensional and this multidimensionality is mainly due to the complexity 
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of performance tasks. Performance tasks are typically developed to measure the complex 

structure of multiple skills and knowledge needed for solving more realistic problems. Thus, 

each item in performance assessments usually measures several dimensions simultaneously. For 

example, a mathematics problem might focus on problem-solving and communication abilities. 

In order to do well on that problem, students must be able to not only solve the problem, but also 

communicate their ideas clearly.  

Another case is that large-scale performance assessments usually cover a broad range of 

content areas. For example, a math assessment may measure two content areas: algebra and 

geometry. Though this test measures student’s overall math ability and a unidimensional IRT 

model is commonly applied, the responses to this test is actually 2-dimensional.  

In addition to this planned content structure, many nuisance or construct-irrelevant 

factors would result in multidimensionality for performance assessments. For example, a 

performance assessment intended to measure only mathematics ability might also require 

examinee reading ability. When there is variability on reading ability among the examinees, the 

reading ability would be viewed as nuisance dimension. Moreover, performance tasks are 

designed to be contextual or have real-life applications. The degree to which a student is familiar 

with a specific context would affect his/her performance. If the context effect varies across 

examinees, it would introduce an additional nuisance dimension. Furthermore, performance tasks 

often take more time to respond, and if the testing time was inadequate for some examinees, 

“speededness” would result in another potential construct-irrelevant dimension.  

Finally, performance tasks are typically combined with multiple-choice items in order to 

measure examinees’ abilities more accurately. The combination of different item formats would 
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result in multidimensionality because different formats might measure different level of 

cognitive processing (Lane & Stone, 2006; Tate, 2002). 

In summary, multidimensionality in item responses for performance assessments can be 

easily caused by various factors such as planed test construct structure, unintended nuisance or 

construct-irrelevant variances, and mixed item format. Unfortunately, in many practical 

situations, this multidimensionality is completely ignored and the unidimensional models are 

often applied to performance assessments. The lack of applications of multidimensional IRT 

(MIRT) models is due to the difficulties in parameter estimation and the interpretation of the 

latent ability space, as well as no user-friendly software available for estimating MIRT models 

(DeAyala, 1994). 

When a unidimensional IRT model is used to fit multidimensional data, several problems 

might arise. Several researchers (Ackerman, 1989; Ansley & Forsyth, 1985, Way, Ansley, & 

Forsyth, 1988) have investigated the consequences of fitting 2-dimensional dichotomous item 

data with unidimensional three-parameter logistic (3PL) models and found violations of the 

unidimensionality assumption clearly affected IRT parameter estimates. DeAyala (1994, 1995) 

extended the previous work on the influence of multidimensionality on dichotomous model 

parameter estimation to polytomous models including the GR model and the PC model. For 

example, it was found that for the GR model, the difficulty parameters were well estimated, the 

discrimination estimate more accurately estimated the average discrimination than either 

dimensional a1 or a2, and the single ability estimate also estimated the average more accurately 

than either dimensional ability. Using incorrect model parameter estimates would subsequently 

affect IRT applications such as equating, CAT, as well as the validity of ability score 

interpretations. Tate (2002) summarized the previous studies and discussed that unidimensional 
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ability estimates represent a target composite of abilities, and is only robust to violations of the 

unidimensional assumption when the correlations among ability dimensions are moderate or 

high. Otherwise, the validity of any inferences from the single ability estimate will be threatened 

and it may not be appropriate to use unidimensional model (Lane & Stone, 2006). 

Reckase (1985) found that difficulty and dimensionality can be confounded in the data 

and thus the composite of abilities does not remain consistent across the ability scale. For 

example, if the easy items measured one ability and the hard items measured another ability, low 

and high scores on the ability scale would not have the same meaning as could be a serious threat 

to validity of the total score. In addition, Ackerman (1992) demonstrated how the items may 

display differential item functioning (DIF) if unidimensional model is used to scale 

multidimensional data. Walker and Beretvas (2001, 2003) found the open-ended items in a large-

scale mathematics test functioned differentially in favor of students who were highly capable of 

communicating their ideas and they further explored the effect of using only a single score on 

student proficiency classifications in mathematics. Their results indicated that when data 

believed to be multidimensional are modeled using a unidimensional model, different inferences 

may be made about student proficiency. Examinees having less mathematics communication 

ability were more likely to be placed in a lower general mathematics proficiency classification 

under the unidimensional than multidimensional model.  

2.1.3.2 Local Dependence 

Local independence (LI) is a fundamental assumption for IRT models which means that 

there is no relationship between examinees responses to different items after accounting for trait 

abilities measured by a test. This conditional independence can be expressed mathematically as: 
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It describes that the probability of any pattern of responses to all items (x), conditioned 

on the abilities (θ), is equal to the product of the conditional probabilities of the response to each 

item.  This equation defines the strong form of local independence. A weak form of local 

independence was proposed by McDonald (1979): the conditional covariances of all pairs of 

item responses on the abilities are equal to zero. When this assumption is met, the joint 

probability of responses to an item pair, conditioned on the abilities, is the product of the 

probabilities of responses to these two items, 

             ( ) ( ) ( )θθθ |||, jjiijjii xXPxXPxXxXP ===== .                        (2.5) 

This is a weaker form because higher-order dependencies among items are allowed.  

An even weaker form of local independence was proposed by Stout (1987) who called it 

as “essential item independence” and defined it as “the items in a test can be considered as 

essentially independent when the average value of the conditional covariances between items 

approaches zero as test length increases for all ability values”. It is a weakest form of local 

independence since it only requires the average value of covariances rather than all covariances 

close to 0.  

A number of researchers have discussed that the local independence assumption is related 

to the dimensionality assumption. The strong form indicates that the abilities measured by a test 

completely explain the difference on examinees’ performances. The weak local independence 

implies that the abilities completely explain the covariance between all item pairs between all 

item pairs. Finally the essential independence implies that the abilities dominate the difference 

on examinees’ performances (Yen & Fitzpatrick, 2006). 
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The potential presence of local dependence (LD) may be a more related issue to   

performance assessments (PA) than multiple-choice (MC) assessments. In MC tests, the items 

are usually carefully designed to be independent of one another. In contrast, a setting or context 

related to a real life situation is usually established in PA and students are asked several 

questions related to that setting (Yen, 1993). Yen (1993) discussed several potential sources of 

LD in PA such as: external assistance or interference with some items, speededness, fatigue, 

practice, special item or response format, a shared stimulus or passage, item chaining, items 

requiring explanation of a previous answer, scoring rubrics or raters, unique content knowledge 

or abilities, and differential opportunity to learn. Most of these sources reflect an additional 

nuisance factor (person, item, or rater characteristics) that consistently affects the performance of 

some students on some items to a great extent, and some sources reflect item interactions such as 

item chaining and a shared stimulus (Lane & Stone, 2006; Yen, 1993). Several studies (Yen, 

1993; Ferrara, Huynh, & Baghi, 1997; Ferrara, Huynh, & Michaels, 1999) have showed some 

sources of LD can cause very strong empirical LD.  

IRT models are not robust to the violation of local independence assumption. Applying 

an IRT model to LD response data could cause serious problems. First, the parameter estimates 

may be biased because the likelihood function for IRT models is based on local independence 

assumption and the incorrect likelihood would affect the accuracy of parameter estimation. Yen 

(1993) demonstrated that positive LD would produce higher item discriminations for LD items. 

Thus, the test information may be overestimated, and the standard errors of test scores would be 

underestimated. These effects would subsequently affect any application of IRT models. For 

example, the biased item discrimination estimates would affect item banking, and the 

underestimated standard errors would cause the premature termination in case of CAT.  
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In summary, the potential for violations in the assumptions of unidimensionality and 

local independence may be more likely for performance assessments and the consequences of 

these violations can not be ignored. Therefore, it is very important to check these two 

assumptions before a unidimensional IRT model is applied to a performance assessment data. 

2.2 TRADITIONAL METHODS FOR CHECKING IRT MODEL-FIT 

Assessing the fit of IRT models is a multi-facet procedure that often involves the collection of 

evidence about different aspects of fit: (1) assessing IRT model assumptions such as 

unidimensionality and local independence; (2) assessing the goodness-of-fit of IRT models at the 

item, person, and test levels (Embretson & Reise, 2000). A variety of methods have been 

proposed for assessing the corresponding different aspects of fit. This section reviews traditional 

approaches to checking the assumptions of unidimensionality and local independence and 

evaluating the goodness-of-fit at item level for polytomous IRT models because these three 

aspects are of the main interest in the present study. 

2.2.1 Assessing Dimensionality 

Several methods have been developed for assessing the dimensionality of polytomously scored 

items and most of them are polytomous extensions of methods for dichotomous item response. 

These methods fall into three categories: (1) factor analytic methods; (2) multidimensional IRT 

methods; (3) nonparametric methods. 
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Common linear factor analysis using Pearson product-moment correlations with 

maximum likelihood (ML) estimation can only be applied when the response scale for 

polytomous items has a large number of response categories and can be treated as a continuous 

interval scale. Several factor analytic methods have been proposed specifically for ordinal 

response data. For example, a weighted least square (WLS) analysis of polychoric correlations 

has been developed and can be implemented in PRELIS/LISREL (Joreskog & Sorbom, 2006) 

and Mplus (Muthén & Muthén, 2006). WLS requires a weight matrix which involves the inverse 

of the covariance matrix of polychoric correlations. The size of the weight matrix is usually 

substantial and it grows dramatically as the number of items increases. As a result, an adequate 

estimate of the weight matrix requires a very large sample size. When the sample size is small or 

moderate, a robust WLS approach (Muthén, duToit, & Spisic, 1997) is considered as the best 

approach for factor analysis of ordinal variables. The robust WLS approach uses the identity 

matrix rather than the weight matrix and its estimation does not require extensive computation 

and enormously large sample sizes. Two robust WLS methods (mean-adjusted WLS and mean- 

and variance-adjusted WLS) are available in Mplus. In a simulation study, Flora and Curren 

(2004) showed that WLS performed adequately only at the largest sample size but led to 

substantial estimation difficulties with smaller samples, whereas, the robust WLS performed well 

across all simulation conditions.  

Compared with factor analytic methods, MIRT approaches use all information in 

response patterns rather than limited information from correlation matrices. A full-information 

item factor analysis for polytomous item responses was proposed by Muraki and Carlson (1995) 

and this method can be implemented in the most recent version of PRELIS/LISREL (Joreskog & 

Sorbom, 2006). Another is a Rasch MIRT modeling approach proposed by Adams, Wilson, and 



 25 

Wang (1997) which assumes the slope or discrimination parameter is constant across all items. 

This method is available in ConQuest (Wu, Adams, & Wilson, 1998). 

The unidimensionality assumption indicates that there is a single latent ability measured 

by a particular test. However, a real-world test will never be strictly unidimensional. Given this 

fact, Stout (1987) proposed the concept of “essential unidimensionality” for a test which 

measures a dominant dimension and examinees’ performances are unaffected by the presence of 

minor dimensions. This concept is directly related to “essential local independence” discussed in 

section 2.1.3.2. To assess whether a test is essential unidimensional for applying a 

unidimensional IRT model, nonparametric approaches have been developed by Stout and his 

colleagues (1987, 1990, 1993, & 1996) based on conditional item covariance theory. The simple 

hypothesis that a test is essentially unidimensional can be examined using DIMTEST software 

(Nandakumar & Stout, 1993). Poly-DIMTEST (Nandakumar, Yu, Li, & Stout ,1998) is an 

extension of DIMTEST to accommodate tests that contain polytomous items. DETECT program 

(Zhang & Stout, 1999) provides more information than DIMTEST by estimating the extent of 

multidimensional approximate simple structure in a test. Poly-DETECT (Yu & Nandakumar, 

2001) is a polytomous extension of DETECT. In addition, HCC/CCPROX program (Roussos, 

Stout, & Marden, 1998) is used to search dimensionally homogeneous clusters of items using 

hierarchical cluster analysis technique, and its polytomous version is Poly-CCPROX/HCA (Tay-

Lim & Stone, 2000). 

2.2.2 Detecting Local Dependence 

The IRTNEW software (Chen, 1998) provides five different measures of item local dependence 

(LD) for dichotomous items. All of them are IRT based and examine LD in the context of 
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unidimensional IRT models. The first one is Yen’s Q3 statistic (1984, 1993) which measures 

correlations between pairs of items after accounting for the latent ability. To calculate Q3, the 

expected performance of the ith examinee on item j (Eij) is first obtained based on the IRT model: 
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where m is the total number of response category of item i, and ( )ijkP θ̂  is the probability of an 

examinee at ability level iθ̂  responding in category k. The deviation (dij) between observed and 

expected performance is then calculated as: 

                                 ijijij Exd −= .                                                                 (2.7) 

For items j and j', the Q3 is defined as the correlation of deviation scores across all 

examinees: 

                                             ( )jjjj ddrQ ′′ = ,3 .                                                              (2.8) 

When no local dependence exists, Yen (1984, 1993) suggested the Fisher’s Z 

transformation of the Q3 index would be approximately distributed normal with a mean of 0 

(with a slight negative bias of -1/(n-1)) and a variance of about 1/(n-3), where n is the number of 

items. However, in a simulation study, Chen and Thissen (1997) found that the empirical 

distribution of Q3 did not match this theoretical sampling distribution and produced Type-I error 

rates that were sufficiently larger than the nominal levels. As a result, it is more common to use 

Q3  as a descriptive statistic than a hypothesis testing. The Q3 values greater than a uniform cutoff 

value 0.20 generally indicate some degree of local dependence worthy of attention (Chen & 

Thissen, 1997; Yen & Fitzpatrick, 2006). Yen’s Q3 can be used with either dichotomous or 

polytomous items. 
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Four other LD indices in IRTNEW are based on 2 x 2 contingency tables of the observed 

and expected frequencies of correct and incorrect responses for the item pairs. They include two 

chi-square indices (the Pearson χ2 and the likelihood ratio G2 statistics), as well as two signed 

measures (the standardized coefficient difference φ index and standardized log-odds ratio 

difference index). An advantage of the signed measures over chi-square indices is that their sign 

can indicate the direction of association. These four indices were developed by Chen and Thissen 

(1997) mainly for dichotomous items, but can be extended to accommodate polytomous items 

based on tests of associations in general m x n contingency tables. Kim, Cohen and Lin (2006) 

developed a computer program LDIP to detect LD for polytomous items specifically. It provides 

four indices: Yen’s Q3, the Pearson χ2, the likelihood ratio G2, and the Fisher-transformed 

correlation difference statistic Zd.  

2.2.3 Evaluating Item-Fit 

Model-data fit can be evaluated at different levels such as at the test, item or person level. More 

statistical procedures have been developed to evaluate item fit rather than overall model-fit 

(Embretson & Reise, 2000). One reason is that a test may include mixed item types and different 

IRT models need to be used for different type of items. Another reason is that even when the 

overall model fits the data, some of the items do not function in the intended manner. Inadequacy 

of model-data fit may have adverse consequences in the applications of IRT models such as 

biased ability estimates, unfair ranks, and wrongly equated scores (Yen, 1981; Wainer & 

Thissen, 1987). In addition, item fit analysis can help test constructers to isolate bad items in 

item pools and retain only items that fit an IRT model. Therefore, assessing model fit at item 

level is very important. 
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2.2.3.1 Traditional Item-Fit Statistics 

Assessing item-fit involves evaluating the degree to which the model predicts the observed item 

responses or the degree to which observed item category curves (ICC) agrees with the form 

predicted by a model. The traditional statistical procedure for assessing item fit for each item is 

as follows: 

(1) Obtain estimates of item and ability parameters for the IRT model; 

(2) Specify a number of ability subgroups to approximate the continuous ability scale; 

(3) Construct an observed score response distribution by cross-classifying examinees based 

on their ability estimates and responses and calculating the proportion of examinees 

responding to each response category.  

(4) Construct an expected score response distribution by calculating the probability of 

response of each subgroup to each response category based on IRT model, item 

parameter estimates, and an ability estimate representing each group ability. 

(5) Evaluate difference between the observed and expected response distribution through chi-

square statistics. 

Several traditional item-fit statistics that can be used with dichotomous and polytomous 

items have been proposed based on this procedure. They include Bock’s Pearson statistics 

(1972), Yen’s Q1 statistic (1981), and McKinley and Mills’s likelihood ratio statistics G2 (1985). 

The following is the simple description of Yen’s Q1 statistic which will be used in the current 

study. The other statistics are very similar to Yen’s Q1 and only differ in the number of ability 

subgroups, the methods for constructing the subgroups, or the methods for obtaining the 

expected proportion. 

Yen’s Q1 Statistic (Yen, 1981) 
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Yen’s item-fit statistic is a Pearson chi-square test statistic defined as: 
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where Nj  is the number of examinees within ability subgroup j, Ojk  and Ejk are the observed and 

predicted proportion of responses to category k for ability subgroup j, respectively. In Yen’s 

statistic, examinees are divided into 10 ability subgroups of approximately equal size after they 

are rank-ordered by their ability estimates. The expected proportion to a response category for a 

subgroup is the mean of the probabilities of responses to that category for all the examinees in 

that subgroup. The distribution of Yen’s Q1 statistic is assumed to have an approximate chi-

square distribution with degrees of freedom equal to 10*(K-1)-m, where m is the number of 

estimated item parameters in the model. 

Although the traditional chi-square statistics are useful for detecting item fit in many 

situations and have been widely used, several problems with them have been identified in the 

literature. The first problem is whether or not these item-fit statistics follow a known chi-square 

distribution. IRT-based item-fit statistics are not constructed in the same way as classical 

goodness-of-fit test statistics in which both variables are known and therefore the observed 

proportions are based only on observed data. In contrast, for the IRT-based statistics, an IRT 

model is firstly estimated. Cross-classification of examinees is then based on the ability 

estimates. The model-dependent observed proportions would cause uncertainty about using a 

chi-square distribution (Orlando & Thissen, 2000). Further, Stone (2000) pointed out that the 

model-based expected proportions are also dependent on unknown model parameters. Using 

estimated values rather than true values of parameters may also affect the chi-square 

approximation to the distributions of item-fit statistics. Finally, it is not entirely clear what 

degrees of freedom (DF) should be used for the null chi-square distribution. Though expected 
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proportions in traditional item-fit statistics depend on both item and ability parameters, the DFs 

are adjusted for the number of estimated item parameters only (Yen, 1981). 

A second problem with the traditional item-fit statistics is that the number of subgroups 

used to approximate the continuous ability scale and how the subgroups are created is arbitrary. 

Different choices of subgroups might lead to different values of item statistics, then to different 

conclusions about item fit.  

Finally, classifying examinees into subgroups is based on point estimates rather than true 

abilities. How accurate ability is estimated would potentially affect this classification, and 

misclassifications would make the results of item-fit tests questionable, especially for shorter 

tests like performance assessments (Stone, Mislevy, & Mazzeo, 1994). 

2.2.3.2 Alternative Item-Fit Statistics 

Given the above disadvantages of the traditional chi-square item-fit statistics, alternative item-fit 

indices have been proposed. Herein, two widely used statistics (Orlando & Thissen, 2000; Stone, 

2000) are introduced. 

Item-Fit Statistics based on Total Scores (Orlando & Thissen, 2000) 

Orlando and Thissen’s method includes forming ability subgroups based on total test 

scores rather than ability estimates, cross-classifying examinees into the subgroups by their total 

test scores and item responses, and then comparing expectations and observations using either a 

Pearson chi-square statistic or a likelihood ratio statistic. The null distributions of these two 

statistics are approximated by a chi-square distribution with df = (I-1)-m, where (I-1) is the 

number of total score categories and m is the number of estimated item parameters. The effect of 

sparseness of cell counts may be reduced by collapsing total score groups until all cells have a 

minimum expected count. This method has advantages over traditional item-fit statistics in two 
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aspects: the determination of subgroups is not arbitrary – each possible total score defines a 

group; and the observed proportions are only a function of observed data and no longer model-

dependent.  

Orlando and Thissen’s item-fit statistic was originally developed for dichotomous items, 

and can be implemented in GOODFIT computer program (Orlando, 1997). Their indices have 

been directly generalized to accommodate polytomous items (Kang & Chen, 2008), and the 

generalized indices can be computed through a SAS macro IRTFIT developed by Bjorner, 

Smith, Stone & Sun (2007). 

Item-Fit Statistic Considering Uncertainty in Ability Estimation (Stone, 2000) 

Stone, Mislevy, and Mazzeo (1994) and Stone (2000) pointed out that using point 

estimates for ability rather than true abilities may cause inaccuracy in using a chi-square 

distribution to approximate sampling distributions of traditional item statistics, particularly for 

shorter tests such as performance assessments. A simulation study by Stone & Hansen (2000) 

further showed that the distributions of item-fit statistics for polytomous items were affected by 

the precision in ability estimation. When the abilities were not estimated precisely, the sampling 

distribution would differ markedly from the assumed null chi-square distribution. These 

researchers suggested that this imprecision or uncertainty in ability estimation should be 

considered when item statistics are used to assess items in a shorter test.  

To account for uncertainty in ability estimation, Stone et al. (1994) and Stone (2000) 

proposed a fit statistic computed based on posterior distribution of ability rather than point 

estimates of unknown ability parameters. Rather than cross-classifying examinees into only one 

cell of the item fit table based on his/her item response and point ability estimate, this method 

assigns each examinee to multiple ability groups based on his/her posterior expectations 
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(posterior probabilities for each discrete ability level). As ability is estimated less precisely, the 

posterior expectations would be more spread out across the ability scale and the examinee is 

classified into more ability levels to account for the uncertainty. For each examinee, calculate his 

/her posterior expectations and the pseudo-observed count for each cell in item-fit table can then 

be computed by summing the posterior expectations across all examinees. Treating the 

pseudocounts as observed counts, a Pearson chi-square or a likelihood ratio statistic can be 

calculated as for traditional item-fit statistics. This item-fit statistic can be used to evaluate the fit 

of either dichotomous or polytomous items, and computed through a SAS macro IRTFIT 

(Bjorner et al, 2007) or a SAS program (IRTFIT RESAMPLE) written by Stone (2000). 

Since pseudocounts rather that actual observations are used and the contribution of an 

examinee’s response to the item-fit table is in more than one cell, the independence assumption 

for goodness-of-fit chi-square test does not hold. Therefore, a null chi-square distribution can not 

be assumed for this item-fit statistic. Stone, Ankenmann, Lane, and Liu (1993) used Monte Carlo 

resampling methods to derive an empirical sampling distribution for the item fit statistic and 

showed that the sampling distribution can be approximated by a scaled chi-square distribution. 

The procedure takes into the account the uncertainty in the estimation of both item and ability 

parameters through re-estimating IRT model for each simulated data. However, this method is 

computationally intensive.  

After that, Stone (2000) proposed an alternative resampling method to reduce the 

computation burden that did not re-estimate the IRT model but instead used the item parameter 

estimates from the original item responses to calculate item fit statistics across simulated 

datasets. Based on this distribution of item fit statistics, a scaling factor and degrees of freedom 

for a scaled chi-square approximation is computed and used for hypothesis tests. For this 
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method, only uncertainty in ability estimation was considered in generating the empirical 

sampling distribution. However, uncertainty in item parameter estimation was then considered 

by adjusting the derived df  by the number of estimated item parameters. Stone (2000) showed 

that these two resampling procedures produced comparable results when evaluating the 

application of IRT to a mathematics performance assessment. Hansen (2004) further proposed 

using two multilevel equations for predicting scaling corrections based on information (item and 

sample characteristics) in the observed data, instead of relying on Monte Carlo resampling 

methods.  

2.3 POSTERIOR PREDICTIVE MODEL CHECKING (PPMC) IN A BAYESIAN 

FRAMEWORK 

PPMC is a flexible and powerful method for assessing model-fit in a Bayesian framework. It has 

several advantages over classical model-fit statistics. Most important, it provides a potential tool 

for checking the fit of complicated models which can only be estimated using Bayesian analysis. 

In this section, we first review the basic principle of the Bayesian framework which provides the 

foundation for the PPMC method followed by detailed discussion of the PPMC technique.  

2.3.1 Introduction to Bayesian Inference 

Bayesian statistics have received considerable attention over the past decade. In the Bayesian 

framework, unknown population parameters are treated as random variables that follow a certain 

distribution. Prior knowledge or beliefs about the possible shape of this distribution are modeled 
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by specifying a prior distribution on the parameters. The prior distribution will be updated by the 

data using the likelihood to form a posterior distribution for the parameters. The Bayesian 

inference about parameters is then drawn based on this posterior distribution. 

Mathematically, this is represented as follows. Let y denote the data and ω denote the 

vector of unknown parameter(s) in a model. The posterior distribution for ω given the data y can 

be obtained through Bayes’ theorem:  
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where ( )yω,p  is a joint probability distribution for ω  and y; ( )ωp is the prior distribution of 

parameter(s) ω  and it represents researchers’ prior information or belief about ω ; ( )ωy |p is the 

likelihood function of the data given a value of parameter(s), and represents the probability of the 

data y to be observed under a specific value of parameter(s) ω ; ( )yp  is the marginal or 

unconditional probability of the data across all possible values of ω . Because ( )yp  is the 

function of data, it can be considered a constant for a given data. This constant is only used to 

normalize ( ) ( )ωyω |pp  so that ( )yω |p  is a probability distribution. Omitting ( )yp  will not 

affect the inferences from posterior distribution, and yields the unnormalized posterior 

distribution that is proportional to the product of the likelihood and the prior distribution: 

                                        ( ) ( ) ( )ωyωyω || ppp ∝ .                                                     (2.11) 

In many situations, it is either infeasible or simply not necessary to compute this 

normalizing constant and Equation (2.11) is actually applied for Bayesian inferences. The main 

goal of Bayesian inference is to sample from the posterior distribution ( )yω |p  in order to 

estimate population parameters (e.g., quantiles and moments), to construct credible intervals, and 

to obtain Bayesian posterior p-values for hypothesis tests (Rupp, Dey, & Zumbo, 2004). 
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2.3.2 Posterior Predictive Model Checking (PPMC) 

2.3.2.1 Description of PPMC Method 

PPMC was introduced by Guttman (1976), applied by Rubin (1981), and given a formal 

Bayesian definition by Rubin (1984). Gelmen, Carlin, Stern, & Rubin (1996) extended it to allow 

more direct assessment of the discrepancy between data and presumed model. Conducting 

PPMC involves simulating data under a presumed model and comparing features of simulated 

data against observed data using discrepancy measures that are sensitive to different aspects of 

misfit. Any systematic differences indicate potential misfit of the model. The rationale 

underlying PPMC is that if a chosen model fits the data, then observed data should look like 

replicated data generated from the posterior distributions of model parameters. Differences 

between observed and predicted data on discrepancy measures in PPMC can be evaluated using 

graphical displays as well as a numerical summary - Posterior Predictive P-value (PPP-value).  

Let y be the observed data and yrep be the replicated data set that could have been 

observed if the experiment that produced y were replicated with the same model and the same 

values of model parameters ω that produced the observed data. The PPMC method assesses the 

fit of a model by examining whether the observed data y appear extreme with respect to the 

posterior predictive distribution of replicated data yrep, 

( ) ( ) ( ) ( ) ωyωωyωyωyyy dppdpp repreprep |||,| ∫∫ == .                        (2.12) 

where ( )yθ |p  is the posterior distribution of ω. 

A test quantity or discrepancy measure D(y, ω) is usually employed to measure the 

discrepancy between the observed and the predicted data (Gelman et al., 2003). The comparison 

of observed (realized) and posterior predictive discrepancy measures can be performed using 
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graphical display as well as a PPP-value. Since the PPMC method should be used as a diagnostic 

tool for model fit rather than a hypothesis testing, the preferable way to interpret the difference 

between observed and predicted data in PPMC is to employ graphical plots (Gelman, et al., 

2003). However, PPP-values provide a numerical summary measure of the degree to which a 

model fits the data and are typically used with graphical plots for interpretation. PPP-value is a 

tail-area probability that predicted data are more extreme than observed data in terms of the 

values of a discrepancy measure D(y, ω):  
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It should be noted that the PPP-values can not be interpreted in the same way as 

traditional hypothesis-testing p values. Though both of them are defined as a tail-area probability 

and share some features, the PPP-values are not necessarily uniformly distributed under the null 

conditions. In general, they tend to be closer to 0.5 more often than would be expected under a 

uniform distribution (Levy, 2006; Meng, 1994; Robins, van der Vaart, & Ventura, 2000). As a 

result, use of PPP-values in a hypothesis testing framework would lead to a conservative test 

(Bayarri & Berger, 2000; Fu et al., 2005; Levy, 2006; Sinharay, 2005; Sinharay et al., 2006). 

However, Levy (2006) showed that the distributions of PPP-values were close to uniform for 

some suitable measures, and their type-I error raters were close to the nominal level in the 

hypothesis testing framework. PPP-values near 0.5 would indicate that the realized values of 

discrepancy measures look similar to the posterior predictive values, indicative of data-model fit. 

Extreme PPP-values near 0 or 1 suggest that the realized discrepancies are inconsistent with the 

posterior predictive discrepancies and hence are indicative of data-model misfit.  

The graphical plots are also commonly used with PPP-values for PPMC to provide 

graphical evidence of misfit. When the discrepancy measure only depends on the data, the values 
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of ( )nrepD ,y  (n = 1, 2, …, N, where N is the total number of replications) are plotted in a 

histogram and the position of observed values of ( )yD  in this histogram is examined. The 

observed value of a powerful discrepancy measure ( )yD  for an inadequate model should be 

located in the tail area of the histogram. When the discrepancy measure depends on both the data 

and parameters, pairs of the realized discrepancies ( )nD ωy,  and predictive discrepancies 

( )ωy ,,nrepD  are plotted in a scatter plot. Points lying consistently above or below the 45-degree 

line indicate model misfit.  

Figure 2.3 shows two histograms taken from Sinharay el al. (2006). A data was generated 

based on 3PL model and estimated using 1PL and 3PL models. The discrepancy measure used 

was the standard deviation of biserial correlation coefficients which was only dependent on the 

data. As can be seen from the two graphs, when a 1PL model was fitted to the data (left plot), the 

observed SD was far away from the posterior predictive distribution of the SDs of biserial 

coefficients. In contrast, when a 3PL model was fitted to the data, the observed SD was very 

close to the median of the posterior predictive distribution (right plot).  

           

Figure 2.3 Examples of Graphical Displays in PPMC by using Histograms 

Figure 2.4 includes two scatter plots also from Sinharay el al. (2006). A data was 

generated based on 3PL model and estimated using 2PL and 3PL models. The discrepancy 
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measure used is a chi-square statistic reflecting the difference between the observed and 

expected test score distribution. This statistic depends on both data and model parameters. The 

left plot shows the realized discrepancies were consistently larger than the predicted values when 

2PL was fitted to the data. The right plot shows 3PL fitted the data well.  

        

Figure 2.4 Examples of Graphical Displays in PPMC by using Scatter Plots 

2.3.2.2 Computation via MCMC Simulation 

Computation of posterior predictive distribution of discrepancy measures and PPP-values is 

typically conducted using MCMC simulation methods. Gelman et al. (1996) pointed out that 

since the MCMC method is a standard tool for Bayesian analysis with complex models and 

provides a sample of draws from the posterior distribution ( )yω |p , the required computation for 

PPMC is a byproduct of Bayesian analysis with MCMC simulation.  

Given a parameter vector ω , the steps for PPMC via MCMC are as follows: (1) draw N 

parameter estimates 1ω , 2ω , …, Nω  from the posterior distribution of ω - ( )yω |p  using 

MCMC algorithm; (2) draw one yrep from the predictive distribution ( )ωy |repp  for each 

simulated ω  to produce N sets of replicated data, yrep,1,  yrep,2, … , yrep,N from the joint posterior 

distribution, ( )yωy |,repp ; (3) compute the realized discrepancies ( )nD ωy,  and predictive 
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discrepancies ( )nnrepD ωy ,, , n = 1, 2, … N. Through this procedure, the reference distribution of 

discrepancy is the distribution of ( )nnrepD ωy ,, , and the estimated PPP-value is just the 

proportion of these N replications for which ( )nnrepD ωy ,,   equals or exceeds the realized value 

( )nD ωy, . Sinharay et al. (2006) described this procedure graphically (see Figure 2.5). The 

description about MCMC methods will be given in more detail in section 2.3.3. 

 

Figure 2.5 Graphical Description of Implementing the PPMC Method 

2.3.2.3 Discrepancy Measures 

Discrepancy measures play a similar role in Bayesian model-fit checking as test statistics play in 

classical testing. However, there is much more freedom in choosing discrepancy measures in 

Bayesian framework because the reference distribution of any measure can be determined 

through MCMC simulations. They can be any function of the data and/or model parameters. 

When a discrepancy measure D(y) only depends on the data, it is a pivotal quantity similar to 

classical test statistics. For example, a researcher observed a set of data from an experiment with 

the mean of 5 and the variance of 10, and wanted to know if the observations follow N (5, 10). 

We know a normal distribution has symmetric short tails. Therefore a useful discrepancy 

measure for PPMC would be the extreme (minimum or maximum) observation which is only 

data-dependent. If the observed extreme value is far away from the posterior distribution of 
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extreme values under the normal model, it indicates the normal model is not adequate for the 

extreme tails in the observation. 

When the pivotal quantity can not capture a particular aspect of a model which reflects 

inferential interests, an therefore would not have enough power to detect misfit, the discrepancy 

measure should be chosen to depend on the model parameters ω  as well as the data y: ( )ωy,D . 

We continued using the previous example in which the result showed the normal model was 

inadequate for the extreme tails. If the researcher is interested in whether the distribution of the 

observation is symmetric, using the extreme observations will not work. A different measure 

sensitive to asymmetry in the center of the distribution should be used. For example, the measure 

( ) uyuyyD thth −−−= )90()10(,µ  should be useful, where u is the mean of the normal 

distribution, )10( thy  and )90( thy  are the 10th and 90th percentile of the observed data, respectively. 

This measure relies not only on data but also on the model parameter u.  

The choice of discrepancy measures is a key issue in an application of the PPMC method 

for assessing the fit of a model. They should be chosen to reflect aspects of model misfit of 

greatest concerns, but not directly addressed by the model (Gelman et al., 2003). For example, 

Sinharay and Johnson (2003) showed the biserial correlation coefficients were not powerful 

discrepancy measures for 2PL/3PL model, but they were useful for Rasch model, because 

2PL/3PL models have slope parameters to address the biserial but Rasch has not. Identifying an 

appropriate discrepancy measures is a challenge to researchers in applying PPMC. A useful 

strategy is to think about what is the main concern in application of a model to a specific dataset 

and develop a discrepancy most related to this concern. If there are no prior concerns, it is 

recommended to employ a number of different discrepancies for assessing different aspects of 

model fit (Sinharay, Johnson, & Stern, 2006).  
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2.3.2.4 Advantages of PPMC over Classical Model-Fit Tests 

The PPMC method has several advantages over classical model-fit tests. Firstly, it incorporates 

uncertainty in the estimation of parameters into the sampling distributions of discrepancy 

measures by using posterior distributions of parameters rather than point estimates. Modeling 

sources of uncertainty is a major advantage of Bayesian framework.  

Secondly, for most models, the exact theoretical sampling distributions of classical 

model-fit statistics are difficult to derive, and the null sampling distributions used are only 

asymptotically justified. The departure of the approximate distribution from the true sampling 

distribution may affect the performance of model-fit statistic and thus cause an incorrect decision 

about the fit of a model. In contrast, the PPMC method forms posterior predictive distributions of 

discrepancy measures empirically from MCMC simulations. These empirical distributions reflect 

exact null sampling distributions.  

Lastly, the recent rapid development of Bayesian computation allows us to fit more 

realistic and sophisticated models than previously possible. However, classical model-fit tests are 

not applicable for assessing the fit of these complicated models. PPMC may be the only general 

model-checking method for them. 

2.3.3 Markov Chain Monte Carlo (MCMC) Simulation 

2.3.3.1 Definition 

In many situations, the joint posterior distributions can not be obtained analytically and thus 

direct sampling from them is not possible. MCMC simulation provides a flexible way to draw 

samples or values from any posterior distribution. MCMC methods are widely considered as the 

most important development in statistical computing in recent history and their occurrence 
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makes Bayesian methodology more attractive and popular in many disciplines. MCMC methods 

include a class of algorithms for sampling (drawing values of parameters) from probability 

distributions based on constructing a Markov chain whose stationary distribution is the target 

probability distribution. The key to MCMC is to create a Markov chain and run the simulation 

long enough so that the distribution of the draws beyond some point of time reflects this target 

distribution. The expectations of relevant functions of parameters are then approximated using 

Monte Carlo integration. In a Bayesian framework, the target distribution is the posterior 

distribution.  

Different MCMC methods are distinguished by the sampling algorithms used in 

simulating the Markov chains. Three well-known MCMC algorithms are the Gibbs sampler, the 

Metropolis algorithm, and the Metropolis-Hastings (M-H) algorithm. The Gibbs sampler is also 

called alternating conditional sampling (Gelman et. al, 2003), and it is used to create a Markov 

chain by successively sampling from a set of “complete conditional” distributions which will 

eventually approximate the joint posterior distribution. For example, the steps of sampling p 

unknown parameters θ1, θ2… θp is as follows (Ruff et. al, 2004): 

Step 1

 

: Specify the joint posterior distribution: 

Step 2

 

: Identify the complete set of conditional distributions: 

Step 3: Provide initial values for θ1,0, θ2,0… θp,0 (at iteration 0) using direct specification or 

sampling from appropriate distributions. 

Step 4

( ) ( ) ( ) ( )ppp ppXpYp θθθθθθθθ  12121 ...,||, ∝

: Generate new values at iteration i as follows. 

( ) ( ) ( )YpYpYp pppp ,,|,,,|,,| 12131221 −θθθθθθθθθθθ 
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Step 5

The Gibbs sampler is conceptually the simplest of Markov chain sampling methods. It 

works best when all of the complete conditional distributions can be obtained in closed form.  

: Repeat step 4 until the Markov chain is convergent. 

When the conditional distributions are not of a known distributional form, M-H sampling 

methods are needed. The M-H algorithm, also known as rejection sampling algorithm, samples a 

proposal θ* value from any convenient proposal distribution (jumping distribution) at time t, 

( )1* | −tq θθ  which depends on the previous state θt-1. This proposal θ* is accepted (θt = θ*) with 

probability α where α = min{r, 1} and  

( ) ( )
( ) ( )1*1

*1*

||
||

−−

−

= tt

t

qyp
qypr

θθθ
θθθ                                                          (2.14) 

If the proposal is not accepted, the old value of the parameter will be kept (θt = θt-1). The 

difference between the Metropolis and M-H algorithms is on the proposal distribution 

( )1* | −tq θθ . The Metropolis algorithm requires ( )1* | −tq θθ  to be symmetric, satisfying the 

condition that ( ) ( )abtbat qq θθθθ || =  for all θa, θb, and t. A symmetric proposal distribution 

simplifies calculations of the ratio r since when ( ) ( )1**1 || −− = tt qq θθθθ , the terms cancel out. 

The M-H algorithm generalizes the Metropolis algorithm using asymmetric proposal 

distributions. Allowing asymmetric proposal distributions can be useful in increasing the speed 

of the random walk or convergence to a stationary posterior distribution (Gelmen et. al, 2003).  
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2.3.3.2 Convergence Diagnosis 

The key to MCMC success is that the Markov Chain has converged to the target posterior 

distribution. If the chain does not converge, the simulated draws from this chain would not 

represent the posterior distribution of parameters of interest. Thus, the inference about 

parameters based on the distribution of these draws would be invalid. Therefore, it is very 

important to assess convergence of Markov chains before any Bayesian inferences are made. 

 A number of convergence diagnostics have been developed. Cowles and Carlin (1996), 

and Brooks and Robert (1998) provide an excellent review. The most popular diagnostics are 

time-series plots, autocorrelation plots, and the Gelman-Rubin statistic R. A time-series plot, also 

called a “history plot”, is a scatter plot showing the generated values of a parameter at each 

iteration number in a chain of sample values. Clear trends in the plot indicate that successive 

simulated values of parameters are highly correlated and a chain has not converged. Time-series 

plots provide a simple way to check the stability of simulated parameter values. Figures 2.6 

provide example illustrations of two chains. The left plot shows a high likelihood of 

convergence, but the right plot demonstrates the non-convergence since there is a clear trend: the 

sampled values decreased as the iteration number increased.           

 

Figure 2.6 History Plots Displaying Evidence of Convergence and Non-Convergence 



 45 

An autocorrelation plot is a plot of the correlation between sequential draws of a 

parameter in Markov chain. It is a commonly-used tool for checking randomness (independence) 

in a data set. This randomness is ascertained by computing autocorrelations for data values at 

varying time lags. Autocorrelation plots are not strictly a convergence diagnostic tool, but they 

help indirectly to assess convergence. A MCMC algorithm generating highly correlated 

parameter values will need a large number of iterations to converge to the appropriate posterior 

distribution. In other words, such autocorrelation can cause inefficient MCMC simulation. 

Solution to high autocorrelation is to “thin” the chains by keeping every kth simulation draw from 

each sequence and discarding the rest. 

Gelman and Rubin (1992) suggest monitoring convergence based on multiple chains with 

different or over-dispersed starting points. The motivation for this statistic is that “even if an 

iterative simulation appears to converge, it still may actually be far from convergence if 

important areas of the target distribution were not captured by the starting distribution and are 

not easily reachable by the simulation algorithm” (Gelman et al., 2003, p297). This statistic is 

computed through comparing between-chain (B) variance and within-chain (W) variance for 

each parameter, and defined as the ratio of the estimated marginal posterior variance V(θ|y) to 

the within-chain variance W: 

                          )(ˆ
R̂

W
V θ

= ,       where B
n

W
n

yV 111)|(ˆ +





 −=θ .                         (2.15) 

Before convergence, W underestimates total posterior variance in θ because it has not 

fully explored the target distribution. V(θ|y) on the other hand overestimates variance in θ 

because the starting points are over-dispersed relative to the target. Once convergence is reached, 

W and V(θ) should be almost equivalent because variation within the chains and variations 
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between the chains should coincide, so R̂  should approximately equal one. R̂ near 1 for all 

parameters of interest means the MCMC algorithm has converged. In addition, the convergence 

of multiple chains to the same stationary distribution is often reflected by a large overlap in their 

sampling histories. 

Although the Gelman-Rubin statistic is a useful diagnostic tool, one drawback is that its 

value depends on the choice of initial values. Since there is no single definitive convergence 

diagnostic tool, the use of multiple tools is recommended in order to increase the chance of 

correctly assessing convergence (Sinharay, 2004).  

Given convergence of MCMC algorithm, inferences about parameters of interest should 

be based on the draws after the point of convergence. Several additional issues to be considered 

in this process were discussed by Kim and Bolt (2007). The first concerns the number of early 

iterations of the simulation which should be discarded in order to diminish the effect of the 

starting distribution. The practice of discarding early iterations in Markov chain simulation is 

referred to as “burn-in”. Raftery and Lewis (1992) recommended the length of burn-in should be 

at least as large as the distance between samples needed to achieve an autocorrelation of 0. 

Gelman et al (2003) suggested discarding the first half of iterations as a conservative choice. 

However, Kim and Bolt (2007, p43) pointed out that “because the actual burn-in usually involves 

a relatively small number of iterations, the effect of some inaccuracy is generally of minimal 

significance”. 

A second consideration involves thinning the chain to reduce substantial autocorrelations 

in the chain by taking every nth draw. However, when large number of parameters are involved, 

computer storage is always a problem for saving too much draws from the chains. In this 



 47 

situation, Gelman et al. (2003) suggested to thin the chain so that the total number of iterations 

saved is no more than 1000.  

The final concern is that how large of a posterior sample is necessary for obtaining 

precise posterior inferences. It is important to recognize that the error in posterior estimation can 

be attributed not only to the standard error of the point estimates as reflected by the posterior 

sample standard deviation, but also to sampling error, referred to as Monte Carlo error (Kim & 

Bolt, 2007). As a rule of thumb, the simulation should be run until the MC error for each 

parameter of interest is less than about 5% of the sample standard deviation (Spiegelhalter et al., 

2003). The MC error can always be reduced by lengthening the chain. 

2.4 CHECKING IRT MODEL-FIT USING PPMC 

2.4.1 Advantages of Using PPMC in IRT 

The common advantages of using PPMC over classical model-fit statistics were summarized in 

Section 2.3.2.4. This section discusses the advantages of PPMC for assessing IRT model-fit.  

Even though numerous classical approaches have been proposed to assessing different 

aspects of model fit in IRT, many model-fit indexes have well-known shortcomings and none of 

them is entirely satisfactory. One common issue with classical model-fit indices involves the use 

of point estimates of IRT model parameters (item and ability) which do not take into account the 

uncertainty in parameter estimation. In contrast, the PPMC method takes into account this 

uncertainty by using the entire posterior distributions of model parameters rather than point 

estimates. 
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Another common problem with existing model-fit indices is that their sampling 

distributions only asymptotically approximate a null chi-square distribution, and as discussed 

previously, it is not entirely clear what degree of freedom should be used. The discrepancy of 

true sampling distributions from assumed chi-square distributions would result in high type-I 

error rate and high false alarm rate of some fit statistics (e.g., Orlando & Thissen, 2000; 

Sinharay, 2006; Stone, 2000). Compared with classical model-fit statistics, the PPMC method is 

free from the sampling distribution issue because it is constructed empirically from MCMC 

simulation.  

In the last ten years, the family of IRT models has expanded tremendously and complex 

IRT models have been developed in response to different educational testing applications. When 

IRT models become more complex, estimation of the models becomes more difficult using 

traditional marginal maximum likelihood (MML) estimation methods. Bayesian estimation using 

MCMC methods offer much potential for estimation of complex IRT models. Since Albert 

(1992) proposed a full Bayesian method based on Gibbs sampling to estimate 2-parameter 

normal-ogive IRT model, and Patz and Junker (1999a, 1999b) developed M-H sampling 

algorithms to estimate several different IRT models such as 2PL, 3PL and mixed models, full 

Bayesian methods with MCMC algorithm have become widely used by many researchers to 

estimate a variety of complex IRT models such as testlet models (e.g., Bradlow et al., 1999; 

DeMars, 2006; Li et al., 2006; Wang, 2002), rater-effect models (e.g., Patz & Junker, 2002), and 

multidimensional IRT models ( e.g., Béguin & Glas, 2001; Bolt & Lall 2003; Yao & Schwarz, 

2006). However, as for any IRT models, the application of those complex IRT models are valid 

only if the modes fit the data. Unfortunately, though Bayesian estimation of complex IRT models 

have received intensive attention, relatively little attention has been given to assessing the fit of 
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these models from a Bayesian perspective and further research is needed. The PPMC method, as 

a popular and flexible Bayesian model diagnostic tool, may address this issue. 

2.4.2 Discrepancy Measures Used with Dichotomous IRT Models 

Previous research using the PPMC method with IRT models has focused on unidimensional IRT 

models for dichotomous items. Before the review of the previous research, the discrepancy 

measures examined in those studies are firstly reviewed in this section. These discrepancy 

measures were designed to assess model-fit at three levels: test level, item level, and item-pair 

(or pair-wise) level. It should be noted that these measures were mainly proposed for 

dichotomous IRT models. In the present study, the polytomous models are of interest. The 

extensions of these measures to account for polytomous IRT models will be introduced in 

Chapter 3.  

2.4.2.1 Test-Level Discrepancy Measures 

One simple measure at test level is “observed test score distribution” (number of examinees with 

each total test score). The overall model fit can be examined through comparing the observed 

and posterior predictive test score distributions. The credible interval for the posterior predictive 

score distribution across multiple predicted response data sets and observed score distribution 

can be shown in a same graph. If the observed score distribution falls within the credible interval, 

there is no evidence of model misfit at the test level. This measure can be directly used for 

polytomous IRT models. 

Figure 2.7 illustrates the observed frequency, the posterior mean frequency and their 

central 95% posterior interval (between 2.5% and 97.5%) for a polytomous response data 
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generated based on a unidimensional GR model and estimated using the same model. As can be 

seen from this figure, the observed distribution was well within the posterior interval, indicating 

that the unidimensional GR model fitted the observed data reasonably well regarding the test 

score distribution. 
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Figure 2.7 Example of Observed and Predictive Test Score Distributions 

In addition, Béguin and Glas (2001) suggested using Pearson’s chi-square statistic ( 2
Tχ ) 

to summarize the difference between the observed and expected frequencies of test scores: 
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where T is the maximum total test score, Nt is the observed number of examinees with total score 

t, and E(Nt) is the expected number of examinees with total score t based on the model. For a test 

score point t, E(Nt) can be calculated as: 
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where N is the total number of examinees, y|t represents the set of all possible response patterns 

resulting in a score t, ( )θ|yp is the probability of response pattern y given ability θ and the item 

parameters, and ( )θg  is the assumed density of the ability distribution. For dichotomous items, 

E(Nt) may be computed using a recursive algorithm proposed by Lord and Wingersky (1984). 

For polytomous items, a generalized recursive algorithm (Thissen, Pommerich, Billeaud, & 

Williams, 1995) has been discussed.  

Béguin and Glas (2001) pointed out that though the statistic 2
Tχ  does not follow a chi-

square distribution, it can be used with the PPMC method since PPMC constructs null sampling 

distributions empirically from MCMC simulations. Previous research also found that this 

measure can be used to detect certain types of misfit for dichotomous IRT models (Béguin & 

Glas, 2001; Sinharay et al., 2006). 

2.4.2.2 Item-Level Discrepancy Measures 

(1) Bayesian χ2 Statistic  

The Bayesian χ2 measure is the Bayesian version of unweighted mean square item fit 

statistic (Masters & Wright, 1997) which is the summation of unweighted standardized squared 

residuals across the examinees. The Bayesian χ2 statistic for item j is defined as: 
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where N is the total number of examinees, yij and E(yij) are the observed and expected response 

of examinee i to item j respectively, and Var(yij) is the variances of the response yij . For the jth 

polytomous item with the total of response categories (Mj+1),  E(yij) and Var(yij)  can be 

calculated using: 
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Although it is an intuitive and useful statistic for evaluating overall fit for many 

statistical models, several researchers (Li et al., 2006; Sinharay et al., 2006) found that it was not 

useful for IRT model checking as it failed to detect problems with inadequate models. 

(2) Item Score Distribution 

Item score distribution represents the number of examinees responding to each response 

category for each item. Similar to test score distribution, the difference between observed and 

posterior predictive item score distributions can be summarized using a goodness-of-fit statistic 

( Fitj _2χ ). For dichotomous items, it is defined as: 
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where jkO  ( jkE ) is the observed (predicted) number of examinees scoring in response category k 

on item j. Ejk can be calculated by summing the probabilities of responding to category k on item 

j across all N examinees: 
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Joreskog and Moustaki (2001) used this statistic to measure the model fit and further 

discussed that the null distributions of this measure does not follow a chi-square distribution. 

They suggested fit values larger than 4.0 indicate poor fit. This measure was also used with the 

PPMC method in detecting misfit of dichotomous IRT model (Levy, 2006) and polytomous 
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fusion model (Fu et al, 2005). The PPMC method is free from sampling distribution issue and 

therefore can avoid using the arbitrary guidelines.  

(3) Classical Item-fit Statistics 

Classical item-fit statistics can also be used as discrepancy measures with PPMC in order 

to check IRT item-fit. As mentioned previously, for classical item-fit statistics, their sampling 

distributions only asymptotically approximate assumed chi-square distributions and the 

uncertainty in the estimation of model parameters (item and ability) is not taken into account. 

These issues might affect the performance of these classical item-fit statistics especially for 

shorter tests such as performance assessments. Since the PPMC method is free from these issues, 

it is important to explore the performance of these classical item fit measures in a Bayesian 

framework.  

Though any classical item-fit statistics can be used with PPMC, only Orlando and 

Thissen’s item-fit statistics were used by Sinharay (2006) to assess the fit of dichotomous items. 

The results showed these item-fit statistics performed better than that in frequentist framework.  

(4) Biserial Correlation Coefficient 

The biserial correlation coefficient estimates the correlation between examinee total test 

scores and binary outcomes on a particular dichotomous item which also reflects item 

discrimination. Sinharay and Johnson (2003) found that the standard deviation of the biserial 

correlations was powerful in detecting misfit of Rasch models when data were generated from a 

2PL or 3PL model. 

2.4.2.3 Pair-wise Discrepancy Measures 

Pair-wise measures reflect the association between the responses to item pairs, and they as a 

whole have been found to be more powerful than test- and item-level measures in detecting 
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misfit for unidimensional IRT models. It is because there are no parameters in unidimensional 

IRT models to address association/interaction among items and pairwise measures that capture 

the association among items therefore have the potential to detect possible misfit such as 

multidimensionality and local dependence. Several pairwise measures were used in previous 

studies. 

(1) Yen’s Q3 Statistic 

Yen’s Q3 is the most popular statistic used to measure local independence. The definition 

is given in section 2.2.2. As discussed before, Chen and Thissen (1997) showed the empirical 

distribution of Q3 did not match this theoretical sampling distribution that produced the Type-I 

error rates sufficiently larger than the nominal levels. As a result, it is more common to use Q3 as 

a descriptive statistic than a hypothesis testing in the classical (frequentist) framework. Using 

this statistic in the PPMC context can avoid the sampling distribution issue. Levy (2006) used 

this measure with PPMC to detect the local dependence among responses to dichotomous items, 

and found that Q3 was most effective among several measures. 

(2) Chen & Thissen’s Chi-Square LD Index 

The LD indices proposed by Chen and Thissen (1997) are based on 2x2 contingency 

tables. For each pair of dichotomous items j and j*, the following contingency table can be 

constructed: 

 

 

 

   Item j 

Item j* 
n00 (E(n00)) n01 (E(n01)) 

n10 (E(n10)) n11 (E(n11)) 
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In this table, pqn  and )( pqnE  are the observed and expected number of examinees having 

response p on item j and response q on item j*, where 1 and 0 represent the correct and incorrect 

responses, respectively. A Pearson’s χ2 index is then defined as: 
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and the corresponding likelihood ratio G2 statistic is given by: 
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These two LD indices are assumed to follow chi-square distribution with degree of 

freedom of 1 when the assumption of local dependence is hold. However, Chen and Thissen 

(1997) found the empirical sampling distributions of these two indices are very nearly as a χ2 

distribution with degree of freedom slightly less than one in the null conditions. Using the 

assumed χ2 distribution as the null sampling distribution would cause conservative results. Levy 

(2006) used these measures with PPMC to detect the local dependence among responses to 

dichotomous items, and found that though they were more effective than item-level measures, 

but less effective than other pair-wise measures used in his study. 

(3) Odds Ratio (OR) 

 Odds ratio (OR) is one of Chen & Thissen’s LD indices which were developed for 

dichotomous items based on 2 x 2 contingency tables. Following the denotations for the two chi-

square LD indices above, the OR for a pair of dichotomous items (j and j*) is:  
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OR =  .                                                                  (2.24) 

OR can be used in detecting the violation of local independence assumption for 

unidimensional dichotomous models. If local independence is met, a unidimensional model can 
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fit the observed OR. Otherwise, the observed OR will be larger than what is expected under a 

unidimensional IRT model for within-cluster items, and smaller than expected for between-

cluster items. Chen and Thissen (1997) found that the standardized log(OR) difference does not 

follow a standard normal distribution and hence is not a useful diagnostic in a frequentist 

framework.  However, many studies (Sinharay et al, 2005, 2006; Li et al, 2006; Levy, 2006) 

showed OR measure is a useful discrepancy measures for checking several aspects of model fit 

in the PPMC context.  

(4) Mantel-Haenszel (MH) statistic 

An odds ratio for one item pair conditional on rest score (i.e., the raw score on the test 

excluding the two items) r can be defined as: 
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where rkkn *  is the number of examinees with rest score “r” obtaining a score k on one item and a 

score k* on the other, k, k* = 0, 1. The MH statistic is a pooled conditional odds ratio across all 

possible rest scores as: 
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where rn  is the total number of examinees obtaining a total rest score “r”. 

Like the OR index, the MH statistic is also useful in detecting local dependence for 

unidimensional dichotomous IRT models. If the local independence (LI) holds, the conditional 

covariance between the scores on the two items is close to zero, and the MH statistic should be 

near 1; if the LI is violated, the conditional covariance is positive for within-cluster items which 

causes the MH statistic more than 1, and negative for between-cluster items which causes the 
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MH statistic less than 1. As a result, when the LD is not met, the observed MH statistics are 

likely to be higher (lower) than what is expected for within-cluster (between-cluster) item pairs 

(Sinharay, Johnson, & Stern, 2006). This statistic has been showed to be very effective with 

PPMC in detecting local dependence for dichotomous items (Sinharay et al, 2005, 2006). 

(5) Absolute Item Covariance Residual 

For any pair of the items j and j*, the absolute item covariance residual ( )*, jjRESID  is 

defined as the difference between the sample item covariance ( )*2 , jjS  and model-based item 

covariance ( )*2 , jjσ : 

( ) ( ) ( )*2*2* ,,, jjjjSjjRESID σ−= ,                                           (2.27) 
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where N is the total number of examinees, ijy  and ( )ijyE  represent the observed and expected 

score of ith examinee on item j, respectively, and ijy  and ( )ijyE  denote the mean observed and 

expected item score across N examinees, respectively. For two dichotomous item pairs, this 

residual is simplified as (Levy, 2006): 
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This measure has been shown to be relatively effective for detecting the departure of 

response data from unidimensionality in a frequentist framework (Hattie, 1984, 1985; McDonald 
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& Mok, 1995). Recently, Fu et al. (2005) and Levy (2006) found that it is also effective in 

detecting certain types of misfit with PPMC.                              

(6) Hoijtink’s LI Indices 

Hoijtink (2001) developed two fit statistics based on conditional item covariances and 

demonstrated that they were effective for checking conditional independence (CI) for 2PL 

models using the PPMC method. These fit statistics can also be used for checking item 

independence for polytomous models. The proposed item-level statistic is: 
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where yj and yj*  are the responses to item j and j*, respectively, *jjR is an examinee’s rest score if 

two items j and j* are deleted,  and n is the number of examinees with rest score *jjR . This fit 

statistic weights each conditional covariance with the number of examinees in the rest score 

groups in order to ensure the larger groups have more influence on the outcome. It should be 

noted that although this statistic is at item level, it is grouped into “pairwise measures” since it is 

based on conditional item covariances. 

2.4.3 Previous Research 

Previous research using PPMC methods with IRT models has focused on unidimensional 

dichotomous models. Sinharay (2005) applied the PPMC method to a number of real 

applications of unidimensional dichotomous IRT models. The first application was to assess 

which model, a simple 3PL model data or a more complicated hierarchical model, fits an 

operational CAT data better. The discrepancy measure used is standard deviation (SD) of the 

proportion corrects of the 10 items. Through comparing the observed and predicted SD, the 
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results showed that the hierarchical model explained the SDs satisfactorily. Another application 

is to examine the speededness in a basic skill test using two pairwise discrepancy measures (OR 

and MH) with PPMC. The last example used the PPMC method to check if a 3PL model can be a 

good fit to a real data from NAEP. Several measures were employed to evaluate different aspects 

of misfit including observed score distribution, biserial correlation, OR, and MH. The results 

suggested the 3PL model performs extremely well. Overall, through using several real 

applications, this study shows the PPMC method provides a straightforward way to evaluate 

different aspects of model misfit. 

As follows, Sinharay, Johnson, and Stern (2006) conducted several simulation studies to 

show the ability of PPMC to detect a range of misfitting conditions using similar discrepancy 

measures as in Sinharay (2005). They included observed score distribution, biserial correlation 

coefficient, OR, and MH statistics. The results showed that the biserial correlations and OR 

measures can be used to detect inadequacy of Rasch models when the data are generated under 

2PL/3PL model, and the observed score distribution measure can identify the lack of fit of a 2PL 

model to a 3PL data. Moreover, the OR and MH statistics were found to successfully detect 

misfit whenever there is a violation of the local independence assumptions (e.g., for a 

multidimensional or a speeded test), and the observed score distribution was very useful to 

detect misfit when the assumed ability distribution was not correct. In this study, the authors 

used graphical displays to present the PPMC results, providing graphical evidence about misfit. 

Sinharay (2006) also used PPMC to assess item-fit of simulated and real data by using 

item-fit plots and the discrepancy measures based on Orlando and Thissen (2000)’s item-fit 

statistics S-X2 and S-G2. These Bayesian item-fit measures have reasonable Type-I error rates, 

false alarm rates, and acceptable power, even for a short test and/or small sample size. 
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Hoijtink (2001) developed two fit statistics for evaluating conditional independence (CI) 

and differential item functioning (DIF), then applied PPMC to evaluate the effectiveness these fit 

statistics. The results showed the PPMC method with these fit statistics were powerful in 

detecting CI and DIF for 2PL models. 

Fu, Bolt, and Li (2005) used PPMC to evaluate item fit for a polytomous fusion model 

using a number of univariate and bivariate discrepancy measures. The univariate measures check 

item fit through responses to a single item which is named as “item-level” discrepancy measures 

in section 2.4.2. They included Orlando and Thissen (2000)’s item-fit statistics and item score 

distribution. Bivariate measures are based on the joint responses to an item pair which is called 

as “pairwise measures” in the present study. Two bivariate measures were included in their 

study: “absolute item residual covariance” and “bivariate item response discrepancy” which is 

a polytomous extension of Chen and Thissen (1997)’s chi-square LD index. It was found that 

bivariate item test statistics had more power in detecting misfit items than univariate statistics 

and moreover the absolute item covariance discrepancy measure performed best.  

In the context of person-fit, type-I error rates of most statistics for 2PL and 3PL models 

are not consistent with empirical rates due to the use of estimated abilities rather than true 

abilities. Since PPMC takes into the account the uncertainty of the estimation of model 

parameters, Glas and Meijer (2003) applied it for assessing person fit of 3PL models using 

several discrepancy measures. They found that this Bayesian analysis of person fit produced 

reasonable Type-I error rates, even for a short test and small sample size.  

Levy (2006) conducted a simulation study to explore the effectiveness of PPMC for 

dimensionality assessment of responses to dichotomous items. In his study, several factors that 

would influence dimensionality such as correlations between dimensions, data-generating model, 
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proportion of multidimensional items, strength of dependence, and sample size were 

systematically manipulated. A number of univariate (item-level) and bivariate (pairwise) 

discrepancy measures were investigated. The univariate measures included proportion correct, 

and item score distribution. The bivariate measures included Chen and Thissen’s chi-square LD 

index, Yen’s Q3 statistic, model-based item covariance, absolute item covariance residual, 

log(OR), and standardized log(OR). It was found that the univariate measures were wholly 

ineffective for detecting the multidimensionality and the most effective measures were two 

bivariate measures: model-based covariance and Q3. Furthermore, all discrepancy measures 

showed empirical proportion of extreme PPP-values below nominal levels, but the model-based 

covariance and Q3 had PPP-values quite close to nominal levels. The performance of these 

discrepancies was also found to be related to the manipulated factors. 

The studies presented so far have focused on using PPMC to check the fit of a single 

model. Some researchers have also used PPMC for model comparison. For example, Béguin and 

Glas (2001) compared the fits of one- and two-dimensional 3PL models by comparing observed 

and posterior predictive score distributions to a data, and found that the two models were 

comparable with regard to the reproduction of the observed score distribution. Li, Bolt, and Fu 

(2006) applied several Bayesian model comparison methods including PPMC to compare 

different testlet models. PPMC using the OR measure was found to be effective in choosing the 

data-generating testlet model as the best model. 
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2.5 MODEL COMPARISON IN A BAYESIAN FRAMEWORK 

The purpose of model checking is to determine if a chosen model is appropriate. It is useful and 

necessary when researchers or practitioners may already have a model before collecting the data 

just based on their preferences, practical concerns or available software, and they want to know 

if this model is adequate for the data. However, when there are several available models that 

might fit the data, finding the best model for a particular data is always desirable. For example, 

for a performance assessment which measure examinee’s overall math ability across two content 

subdomains, algebra and geometry, a simple unidimensional polytomous IRT model and a more 

complicated 2-dimensional polytomous model might both fit the data. In order to know if a 

simple unidimensional model is good enough or if a MIRT model is needed for this particular 

data, model comparison techniques should be employed. 

There are several methods for model comparisons: (1) the likelihood ratio G2 test 

statistic; (2) Akaike’s Information Criterion (AIC; Akaike, 1974); (3) Schwarz’s Bayesian 

Information Criterion (BIC; Schwarz, 1978); (4) Pseudo-Bayes Factor (PsBF; Geisser & Eddy, 

1979; Gelfand, Dey & Chang, 1992); (5) Deviance Information Criterion (DIC; Spiegelhalter, 

Best, Carlin & van der Linde, 2002); and (6) PPMC method. Among them, the likelihood ratio 

G2 statistic is only appropriate for comparing nested models (e.g., RSM, PCM, and GPCM), and 

the other four criteria can be used to compare either nested or non-nested models. The difference 

between the G2 statistics for two nested models is distributed as a chi-square with the degrees of 

freedom equal to the difference between the numbers of estimated model parameters. A 

significant G2 indicates the more complex model fits the data better. The AIC and BIC are 

information-based criteria and are often used when maximum likelihood estimates (MLE) of 

model parameters are obtained. For some complex IRT models, the MLE may not always be 



 63 

available and thus the AIC and BIC would be not appropriate. The DIC and PsBF are two 

Bayesian criteria for model comparisons with MCMC estimation. In addition, as mentioned in 

section 2.4.3, several researchers have found that the PPMC method was also effective for model 

comparison when MCMC estimation methods were used (Béguin & Glas, 2001; Li et. al, 2006).  

In the current study, Bayesian estimation methods with MCMC would be used for the 

estimation of several polytomous IRT models.  As a result, Bayesian criteria (DIC, PsBF, and 

PPMC) would be adopted for model comparisons. Since the PPMC method has been described 

in previous section, only DIC and PsBF are discussed herein.  

2.5.1 Pseudo-Bayes Factor (PsBF) 

A common Bayesian approach to comparing the fit of two models is to compute the Bayes factor 

(BF). Consider two models (M1 and M2), the BF is defined as the posterior odds of Model 1 (M1) 

to Model 2 (M2) divided by the prior odds of M1 to M2. By using Bayes theorem, the BF further 

reduces to the ratio of marginal likelihoods of the data under each model: 
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A BF larger than 1 supports selection of M1 and a value less than 1 supports selection of M2. The 

relative magnitude of BF also can be used in evaluating the relative weight of evidence in favor 

of either model. For example, a value of BF between 1 and 3 is considered as minimal evidence 

in favor of M1 , between 3 and 12 as positive evidence in favor of M1, between 12 and 150 as 

strong evidence, and larger than 150 as very strong evidence in support of M1 (Raftery, 1996). 

There are several issues with the BF criteria. For instance, it is often difficult to calculate 

because the estimation of marginal likelihoods in equation (2.32) is difficult especially for 
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complex models. In addition, the prior has effects on the estimation of the BF. If the prior is 

improper, the BF is not well defined. In order to overcome these problems, an alternative 

criterion called Pseudo-Bayes factor (PsBF; Geisser & Eddy, 1979; Gelfand, Dey & Chang, 

1992) has been proposed and commonly used to approximate the BF. 

The PsBF method requires the calculation of cross-validation predictive densities. Let 

obsr ),(y  denote the set of observations obsy  with the rth observation omitted, and let η  denote all 

the parameters under the assumed model. The cross-validation predictive density is defined as: 

( ) ( ) ( ) ηyηyηy dfyfyf rrrrr )()()( |,|| ∫= .                                        (2.33) 

The density ( ))(| rryf y  indicates the values of ry  that are likely when the model is fitted to all 

observations except ry . This density is also known as the conditional predictive ordinate (CPO). 

In the context of item response data, ry  represents a single examinee’s response to an 

individual item. The product of the CPOs across all observations can be used as an estimate of 

the marginal likelihood in Equation (2.32). Thus, the PsBF can be defined as: 
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where R denotes the total number of item responses from all examinees. When comparing the 

models at the item level, R equals the number of examinees N. When compare the models at the 

test level, R equals the number of the responses of all examinees to all items (i.e., R = N x I 

where I is the total number of items). 

In the context of IRT estimation with MCMC methods, to compute the PsBF index, the 

CPOs are first estimated at the level of an individual item response using the inverse likelihood 

of each observation for T draws when the chain is convergent after a sufficient burn-in period: 
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where yij is the response of an examinee i on a particular item j, and ( )tij ηyf |  is the likelihood of 

the observed item response yij based on the sampled parameter values at draw t. In the 

WinBUGS program (Spiegelhalter, Thomas, Best, & Lunn, 2003), the computation of the CPO ij 

is very straightforward since it only requires tracing the inverse probability of each observed 

item response over the T draws from the convergent chain. The CPO ij is the average of these 

inverse probabilities across the T draws which is given in the Summary Statistics in WinBUGS. 

A CPO index for each item can be summarized by taking the log of the product of the 

values of CPOij across all examinees, that is: 
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where N is the total number of examinees. The preferred model for item j is the one returning the 

higher CPOj. The corresponding PsBF is: 
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and larger values of the PsBF provides the evidence supporting M1 for item j. Thus, the same 

conclusion can be obtained by using either CPOj  or PsBFj index. In addition, a CPO index for 

the overall test can be easily computed by taking the log of the product of the item-level CPOj 

across all the items. In the current study, the two levels of CPO index were used: the test-level 

CPO was used to compare the models for the overall test, and the item-level CPOs were used to 

choose a better model for each items. The larger the value of CPO, the better the model is. 
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2.5.2 Deviance Information Criterion (DIC) 

Another popular Bayesian model comparison criterion is DIC (Spiegelhalter et. al, 2002). The 

DIC is similar to AIC and BIC in that they all consider the penalty on model complexity in 

identifying the preferred model. AIC and BIC can be expressed as: 

                    ( ) npAIC 2|log2 +−= ηy ,                                                      (2.38) 

                  ( ) ( )NnpBIC log|log2 +−= ηy ,                                             (2.39) 

where ( )η|yp is the maximum likelihood function, n denotes the total number of model 

parameters, and N is the total number of observations. The first component of AIC and BIC 

( )η|log2 yp−  is often called the “deviance between data and model”. The smaller the deviance 

for a model, the better the model fits the data. The second component in both indices is penalty 

functions for model complexity. As can be seen from the equations, the penalty function in AIC 

takes into account the number of model parameters, whereas, the penalty function in BIC 

considers the effects of both sample size and the number of parameters. As a result, BIC gives 

higher penalty to the number of parameters when the sample size is larger and thus tends to 

choose a less complex model than that selected based on AIC. 

The AIC and BIC indices are often used under maximum likelihood estimation. When the 

model is estimated using Bayesian estimation with MCMC methods, the DIC index is widely 

used to compare different models. Similar to the AIC and BIC, the DIC is also composed of two 

terms: deviance and penalty function and defined as: 

                                                  ( ) DpDDIC += η ,                                                      (2.40) 

where ( )ηD , a posterior mean of the deviance between data and model, is a Bayesian measure of 

fit, and is computed based on the posterior distribution of the deviance: 
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                                    ( ) ( )[ ] ( )[ ]y|ηpEDED η|yη|y log2−== ηη .                                 (2.41) 

The second term, Dp , measuring model complexity, represents the effective number of 

parameters in the model. It is defined as the difference between the posterior mean of the 

deviance and the deviance at the posterior mean of the parameters: 

                                                  ( ) ( )ηη ˆDDpD −= ,                                                     (2.42) 

where η̂  is the posterior mean of model parameters. As for AIC and BIC, the smaller the value 

of DIC, the better the fit of a model is. However, any difference in DICs less than 5 units for two 

models does not provide sufficient evidence in favor of one model over another (Spiegelhalter et 

al., 2003). The WinBUGS program provides the DIC index.  
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3.0  METHODOLOGY 

The purpose of this study was twofold: (1) to explore the performance of the PPMC method in 

detecting aspects of lack of fit for unidimensional graded IRT models using different discrepancy 

measures; (2) to investigate the effectiveness of Bayesian model-comparison methods (DIC, 

CPO, and PPMC) for comparing different polytomous IRT models. In order to accomplish these 

two goals, two Monte Carlo simulation studies were conducted. In addition, the proposed 

Bayesian approaches to model-checking and model-comparison were further applied to real 

performance assessment data. 

This chapter presents the methodology of this study which is organized in three sections. 

The first section describes simulation Study 1, including the design of the study, generation and 

validation of item response data, estimation of unidimensional GR models using MCMC, 

description of the discrepancy measures used in the study, and implementation of the PPMC 

method. The second section discusses simulation Study 2, including the design of the study, 

estimation of different types of polytomous IRT models using MCMC, and computation of 

different Bayesian model-comparison criteria. The last section introduces the application of the 

methodology to real data. 
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3.1 SIMULATION STUDY 1 

Study 1 was intended to extend previous research on evaluating IRT model fit to polytomous 

IRT models and explore the performance of PPMC in checking different aspects of fit for 

unidimensional GR models. A variety of discrepancy measures were considered and the 

usefulness of these discrepancy measures in detecting different types of misfit was compared.  

3.1.1 Design of Simulation Study 1 

Table 3.1 Design and Conditions in Study 1 

Data-Analysis 
Model 
(Ma) 

Data-Generating Model 
(Mg) 

Condition 
Number Violated Assumption 

Unidimensional 
GR 

Unidimensional GR 1 None 
 

2-dimension simple-structure GR 
• Case1: correlation (dim1, dim2) = 0.3 
• Case2: correlation (dim1, dim2) = 0.6 

 

2 Unidimensionality 

 
2-dimension complex-structure GR (one 
dominant dimension) 
• Case1: mild dependence a2/a1 = 0.5 
• Case2: large dependence a2/a1 = 1.0 

 

3 

Local Independence  
Testlet GR 
• Case1: mild dependence 5.02

)( =idσ  
• Case2: large dependence 0.12

)( =idσ  
• Case2: extreme dependence 0.22

)( =idσ  
 

4 

Some items with improper BCCs 5 Item-Fit 

 

In order to explore the performance of the PPMC method in evaluating different types of fit of a 

data to the unidimensional GR model, a number of response datasets were generated based on 



 70 

different IRT models. All simulated data were then estimated using a unidimensional GR model. 

Let “Mg” denote a “data-generating model” and “Ma” denote the “data-analysis model”, Table 

3.1 presents the design and specific conditions used in this study.  

Condition 1 represents the null condition in which the generating model and analysis 

model were the same, and Type-I error rates of PPMC were investigated. In Conditions 2 to 5, 

different types of misfit were simulated which address the main threats to the applications of 

unidimensional IRT models to performance assessments as reviewed in Chapter 2. In these four 

conditions, Mg was different from Ma, and thus the empirical power rates of the PPMC method 

were examined.  

In Condition 2, responses were simulated based on a simple-structure 2-dimensional GR 

model, reflecting a violation of the assumption of unidimensionality. Large-scale performance 

assessments may assess a broad range of content areas and/or cognitive skills. For example, a 

math assessment may measure two content areas: algebra and geometry; or, a test may measure 

computation and high-order thinking skills. Though the tests measure student’s overall ability, 

the responses to the tests may reflect 2 dimensions. Two levels of inter-dimensional correlation 

(0.3 and 0.6) were considered to reflect a high and moderate degree of multidimensionality, 

respectively. 

In Conditions 3 and 4, two typical locally-dependent data situations in performance 

assessments were simulated. Condition 3 simulated responses to a test which mainly measures a 

dominant ability (e.g., math), but a subset of items also measure a nuisance or construct-

irrelevant ability (e.g., reading). This nuisance factor may cause local dependence among the 

subset of items. In this condition, two levels of local dependence were considered which was 

represented by the ratio of the nuisance dimension slope (a2) to the dominant dimension slope (a1 
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). Condition 4 was designed to simulate responses to a test with a testlet. The items in the same 

testlet (e.g., a shared stimulus or passage) would be locally dependent. Three levels of testlet 

effect variance 2
)(idσ  reflected mild, large, and extreme dependence among the testlet items. 

Condition 5 was intended to evaluate the effectiveness of PPMC in assessing item fit. 

The responses to the misfitting items were simulated based on a function that differed from the 

logistic function for boundary category curves (BCCs) underlying the unidimensional GR model.  

Overall, in simulation Study 1, the manipulated independent factors were the type of 

“data-generating model” (e.g., 2-dimensional simple-structure GR model), and the type of 

discrepancy measure. The dependent variable was Type-I error rates and empirical power rates 

for the proposed discrepancy measures. The discrepancy measures used in this study are 

described later. 

For each condition, test length, sample size, and item parameters were fixed at typical 

values encountered in performance assessment applications (e.g., NAEP). Specifically, test 

length was fixed at 15 items and the number of response categories was fixed at 5. Since the 

focus of this study was on the effectiveness of different discrepancy measures with PPMC, a 

large sample size should be used to ensure that the model parameters can be estimated precisely 

and the PPMC results would not be affected by any inaccurate estimation of model parameters,. 

Reise and Yu (1990) examined the effect of sample size on parameter recovery for GR models 

and found that sample size had little effect on the recovery of ability parameters, but had an 

effect on item parameter recovery. They concluded that a sample size of at least 500 examinees 

was needed to obtain acceptable parameter estimates for the 25 items with 5-category used in 

their study, and sample sizes between 1000 and 2000 would be needed for more accurate 

estimation of item parameters. Ankenman and Stone (1992) also found that a size of 500 was the 
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minimum for accurate and stable parameter estimates when the ability distribution was normal. 

When the ability distribution was not normal, however, more than 1000 observations would be 

needed. De Ayala (1994) suggested a ratio of 5:1 (examinees to item parameter estimates) could 

provide reasonable item parameter estimation when the distribution of item responses is not 

extreme. Yen and Fitzpatrick (2006) further discussed that large sample sizes were needed when 

tests contain polytomous items that are extremely hard or extremely easy. Based on these 

research conclusions, the sample size was fixed at 2000 for all conditions in this study in order to 

ensure accurate and stable parameter estimates. For a specific condition, additional fixed factors 

will be described in more detail in section 3.1.2.  

In order to investigate Type-I error rates and empirical power rates, multiple responses 

datasets were generated and the PPMC method was implemented for each generated data for 

each condition. In general, at least 100 replications is required for exploring Type-I error rates or 

empirical power in Monte Carlo simulations. However, in this study, the number of replications 

was set to 20 due to computing constraints of the WinBUGS program and the large number of 

experimental conditions. It should be noted that 20 replications may be defensible based on 

previous research. Previous studies have used a small number of replications especially when the 

WinBUGS program was used to implement MCMC estimation. For example, Bolt and Lall 

(2003) used only 5 replications for each condition in order to evaluate parameter recovery of 

multidimensional IRT models using the MCMC estimation in WinBUGS. Fu et al (2005) used 

30 replications in order to examine the performance of several item-fit measures with PPMC for 

polytomous fusion model which was estimated in WinBUGS. Sung and Kang (2006) used 10 

replications to compare the relative performance of several Bayesian model-comparison criteria 

using WinBUGS. In order to evaluate the MIRT approach to subscore estimation, Yao and 
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Boughton (2007) used 20 replications though the BMIRT rather than WinBUGS program was 

used in their study. Even Levy (2006) with a much more efficient computer program C++ to 

implement MCMC estimation and PPMC for dichotomous IRT models used 50 replications in 

his study. 

Note that in the current study, misfit was indicated if PPP-values represented extreme 

values either below 0.05 or above 0.95, corresponding to a two-tailed test with α=0.10 in a 

hypothesis testing framework. 

For each replication, the overall steps to conducting Study 1 are shown in Figure 3.1 and 

described as follows: 

(1) Using defined item parameters and simulated ability values, generate one set of item 

responses y using Mg; 

(2) Estimate Ma with the generated data using MCMC estimation in WinBUGS;  

(3) Obtain the posterior distributions of model parameters p(ω|y) and posterior predictive 

distributions of item responses ( )ωy |repp  in WinBUGS; 

(4) Save T draws of model parameters (person and item) estimates for ω ( Tnn ...1, =ω ) from 

p(ω|y) after the Markov chain has converged; 

(5) Save T draws of predictive (replicated) responses yrep,n (n=1,…,T) from the likelihood 

distribution p(yrep|ωn); 

(6) Compute the realized discrepancy measure D(y, ωn) for each draw of ω based on observed 

response to get the realized distribution of discrepancy measure; 

(7) Compute the predictive discrepancy measure D(yrep,n, ωn) for each draw of ω based on 

replicated data to get the posterior predictive distribution of discrepancy measure; 
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(8) Estimate PPP-values using the proportion of T draws for which D(yrep,n, ωn) exceeds D(y, 

ωn). Extreme PPP-values (either < 0.05 or > 0.95) indicate model misfit; 

(9) Repeat Steps 1) to 8) 20 times to obtain the estimates of Type-I error rates or empirical 

power at a significant level of 0.10 (e.g., α=0.10). 

 

Figure 3.1 Overall Steps in Conducting Simulation Study 1 
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3.1.2 Generate and Validate Item Response Data 

For each condition, 20 item response data sets were generated using Mg with each dataset 

containing responses for 2000 simulated examinees to 15 polytomous items with 5 response 

categories. Table 3.2 presents the item parameters used for each condition. The details about the 

configurations of the item parameters are discussed in each condition. 

Unidimensional Graded Response Data (Condition 1) 

For Condition 1, the unidimensional data were generated under Samejima’s (1969) GR 

model (Equation 2.1). The scaling constant D was set to 1. The configuration of item parameters 

for the GR model (see Table 3.2) involved a combination of  3 levels for the slope parameter: 

1.0, 1.7, and 2.4 (low, average and high discrimination) and 5 levels of threshold parameters 

reflecting varying levels of item difficulty: (1) -2.0, -1.0, 0.0, 1.0; (2) -1.5, -0.5, 0.5, 1.5; (3) -1.0, 

0.0, 1.0, 2.0; (4) -3.0, -1.5, -0.5, 1.0; (5) -1.0, 0.5, 1.5, 3.0. This configuration was intended to 

reflect a wide range of items. The last column (b) in Table 3.2 provides the average item 

difficulty for each item. For items with more than two response categories, the average item 

difficulty is the ability level at which the expected item score on the item divided by the 

maximum item score is equal to 0.5, that is, the ability value at which examinees are most likely 

to receive half of the possible score points. As can be seen in this column, the average difficulty 

values covered five different levels: -1.0, -0.5, 0, 0.5, and 1.0. In addition, ability parameters for 

simulated examinees were randomly selected from a N (0,1) distribution. 
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Table 3.2 Item Parameters of the IRT Models under Conditions 1-5 

 Conditions 1, 4 and 5 
 

Condition 2 
 

Condition 3 

Item a b1 b2 b3 b4 b a1 a2 b1 b2 b3 b4 a1 a2 b1 b2 b3 b4 

1 1.0 -2.0 -1.0  0.0 1.0 -0.5 1.0 0 -2.0 -1.0 0.0 1.0 1.0 1.0 (0.5) -2.0 -1.0 0.0 1.0 

2 1.0 -1.5 -0.5  0.5 1.5 0.0 1.7 0 -1.5 -0.5 0.5 1.5 1.0 1.0 (0.5) -1.5 -0.5 0.5 1.5 

3 1.0 -1.0  0.0  1.0 2.0 0.5 2.4 0 -1.0 0.0 1.0 2.0 1.0 1.0 (0.5) -1.0 0.0 1.0 2.0 

4 1.0 -3.0 -1.5 -0.5 1.0 -1.0 1.0 0 -3.0 -1.5 -0.5 1.0 1.0 1.0 (0.5) -3.0 -1.5 -0.5 1.0 

5 1.0 -1.0   0.5  1.5 3.0 1.0 1.7 0 -1.0 0.5 1.5 3.0 1.0 1.0 (0.5) -1.0 0.5 1.5 3.0 

6 1.7 -2.0 -1.0  0.0 1.0 -0.5 2.4 0 -2.0 -1.0 0.0 1.0 1.7 0 -2.0 -1.0 0.0 1.0 

7 1.7 -1.5 -0.5  0.5 1.5 0.0 1.0 0 -1.5 -0.5 0.5 1.5 1.7 0 -1.5 -0.5 0.5 1.5 

8 1.7 -1.0  0.0  1.0 2.0 0.5 1.7 0 -1.0 0.0 1.0 2.0 1.7 0 -1.0 0.0 1.0 2.0 

9 1.7 -3.0 -1.5 -0.5 1.0 -1.0 0 2.4 -3.0 -1.5 -0.5 1.0 1.7 0 -3.0 -1.5 -0.5 1.0 

10 1.7 -1.0   0.5  1.5 3.0 1.0 0 1.0 -1.0 0.5 1.5 3.0 1.7 0 -1.0 0.5 1.5 3.0 

11 2.4 -2.0 -1.0  0.0 1.0 -0.5 0 1.7 -2.0 -1.0 0.0 1.0 2.4 0 -2.0 -1.0 0.0 1.0 

12 2.4 -1.5 -0.5  0.5 1.5 0.0 0 2.4 -1.5 -0.5 0.5 1.5 2.4 0 -1.5 -0.5 0.5 1.5 

13 2.4 -1.0  0.0  1.0 2.0 0.5 0 1.0 -1.0 0.0 1.0 2.0 2.4 0 -1.0 0.0 1.0 2.0 

14 2.4 -3.0 -1.5 -0.5 1.0 -1.0 0 1.7 -3.0 -1.5 -0.5 1.0 2.4 0 -3.0 -1.5 -0.5 1.0 

15 2.4 -1.0   0.5  1.5 3.0 1.0 

 

0 2.4 -1.0 0.5 1.5 3.0 

 

2.4 0 -1.0 0.5 1.5 3.0 
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Using these item and ability parameters, the probability of each examinee responding to 

each item response category was calculated based on the unidimensional GR model, and the 

cumulative probabilities were then obtained for each category. A random error component was 

incorporated into each response by selecting a random number from a uniform distribution U (0, 

1) and comparing it to the cumulative probabilities for each response category. The ordinal 

position of the first cumulative probability that was greater than the random number was taken as 

the examinee’s response to the item. The SAS code used to generate unidimensional GR data is 

attached in Appendix A. 

Two methods were used to validate the data generation process in Condition 1. The first 

method involved comparing observed and model-based expected proportions of examinees 

responding in each category for each item. An extreme sample size of 20,000 examinees were 

simulated with the same item parameters, but all examinees had a fixed ability value (θ=0), and 

the observed and expected proportions were compared. If the data generation procedure was 

valid, the differences between the two proportions would be small. Table 3.3 presents the 

absolute differences between the observed and expected proportions at each response category 

level for each item. As can be seen from this table, the largest absolute difference was 0.006 and 

the average absolute difference across all categories and all items was 0.002. The small 

differences provided evidence for the validation of the data generation process. 
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Table 3.3 Absolute Differences between Observed and Expected Proportions under GR Model 

Item Cat1 Cat2 Cat3 Cat4 Cat5 

1 0.005 0.003 0.000 0.001 0.001 

2 0.003 0.002 0.002 0.001 0.003 

3 0.001 0.002 0.002 0.001 0.000 

4 0.001 0.001 0.003 0.000 0.003 

5 0.002 0.004 0.001 0.001 0.000 

6 0.002 0.003 0.000 0.001 0.004 

7 0.003 0.001 0.004 0.004 0.003 

8 0.001 0.002 0.004 0.002 0.001 

9 0.001 0.001 0.003 0.006 0.003 

10 0.002 0.001 0.000 0.000 0.000 

11 0.001 0.001 0.002 0.004 0.001 

12 0.000 0.002 0.003 0.002 0.000 

13 0.001 0.002 0.002 0.000 0.000 

14 0.000 0.001 0.001 0.001 0.002 

15 0.004 0.002 0.002 0.000 0.000 
 

 The second method used to validate the generation of unidimensional GR data involved 

checking item parameter recovery. If the data were properly simulated, item parameter estimates 

should be close to true values. For this check, a large set of responses (10,000 examinees) were 

generated and the GR model was estimated using MULTILOG (Thissen, 1991). Table 3.4 

provides the true and estimated parameters. As can be seen from this table, item parameters were 

recovered very well, again providing support for the validation of the data generation process.  
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Table 3.4 Item Parameter Recovery under Unidimensional GR Model 

Item True Estimates 

 a b1 b2 b3 b4 a b1 b2 b3 b4 

1 1.0 -2.0 -1.0 0.0 1.0 1.01 -2.01 -0.99 0.01 1.02 

2 1.0 -1.5 -0.5 0.5 1.5 1.00 -1.50 -0.51 0.52 1.49 

3 1.0 -1.0 0.0 1.0 2.0 1.00 -0.95 0.03 1.01 1.98 

4 1.0 -3.0 -1.5 -0.5 1.0 0.97 -3.02 -1.51 -0.48 1.05 

5 1.0 -1.0 0.5 1.5 3.0 0.98 -1.02 0.54 1.54 3.09 

6 1.7 -2.0 -1.0 0.0 1.0 1.71 -1.99 -1.01 0.01 1.01 

7 1.7 -1.5 -0.5 0.5 1.5 1.68 -1.50 -0.48 0.51 1.52 

8 1.7 -1.0 0.0 1.0 2.0 1.70 -0.97 0.01 0.99 1.97 

9 1.7 -3.0 -1.5 -0.5 1.0 1.67 -3.03 -1.54 -0.48 1.01 

10 1.7 -1.0 0.5 1.5 3.0 1.70 -1.00 0.51 1.52 3.06 

11 2.4 -2.0 -1.0 0.0 1.0 2.39 -1.97 -0.99 0.01 1.03 

12 2.4 -1.5 -0.5 0.5 1.5 2.40 -1.47 -0.49 0.52 1.53 

13 2.4 -1.0 0.0 1.0 2.0 2.42 -0.99 0.02 1.01 1.97 

14 2.4 -3.0 -1.5 -0.5 1.0 2.41 -2.95 -1.49 -0.48 1.00 

15 2.4 -1.0 0.5 1.5 3.0 2.40 -0.99 0.51 1.53 3.02 
 

Two-dimensional Simple-Structure Graded Response Data (Condition 2) 

For Condition 2, a multidimensional extension of GR model discussed by De Ayala 

(1994) was used to generate 2-dimensional simple-structure data. Based on this extended model, 

the probability of an examinee with ability Θ receiving a category score x (x = 1, 2… mi) or 

higher on item i ( ( )Θ*
ixP ) is defined as: 

( )
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where 

 D is the scaling constant (1.7 or 1), 

 aih is the discrimination (slope) parameter of item i on dimension h, 
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 θh is the ability level on dimension h, and 

 bix is the threshold parameter for category x of item i. 

Similar to the GR model, ( )Θ*
ixP  is the cumulative probability, and the probability of responding 

in a particular category, ( )ΘixP , equals the difference between the cumulative probabilities for 

adjacent categories. 

In this condition, the total test measured two dimensions but each item measured only 

one dimension (simple-structure condition). The first 8 items were designed to measure the first 

dimension, and the remaining 7 items were designed to measure a second dimension. As can be 

seen from Table 3.2, the threshold parameters were the same as for Condition 1, but the 

configuration of the slope parameters was different from Condition 1 though there were still 

three levels 1.0, 1.7, and 2.4. This configuration was intended to ensure that the two dimensions 

had items with similar discrimination. 

The correlation between two dimensions was fixed at one of two levels: 0.3 or 0.6. The 

0.6 case represents typical correlations among different dimensions for many large-scale 

operational tests which cover a wide range of content domains. The rationale for the 0.3 case was 

based on Levy (2006)’s study in which the effect of the inter-dimensional correlations on PPMC 

was investigated. In his study, the correlation was varied across four levels: 0, 0.3, 0.7 and 0.9, 

and the general finding was that the power of PPMC in detecting misfit increased as the inter-

correlation decreased. Specifically, PPMC performed better for two lower level correlations (0 

and 0.3) but worse for two higher level correlations (0.7 and 0.9). However, the performance of 

PPMC did not increase when the correlation decreased from 0.3 to 0 or from 0.9 to 0.7. As a 

result, a value of 0.3 was used in the current study to reflect a low correlation between 

dimensions and this level provided a useful comparison with the more moderate correlation case 



 81 

(0.6). Ability parameters for two dimensions were randomly selected from a bivariate normal 

distribution (0, 1) with the specified correlation (0.3 or 0.6). 

Using the above model parameters and following the same logic for generating 

unidimensional GR data under Condition 1, 2-dimensional simple-structure item responses were 

generated by computing the cumulative probabilities for each response category based on 

Equation (3.1), and then comparing the probability to a random number from a uniform 

distribution U (0, 1). 

In order to validate the data generation process for 2-dimensional simple-structure, 

exploratory factor analyses of two generated datasets were conducted using the robust WLS 

estimation approach in Mplus (Muthén & Muthén, 2006). Table 3.5 provides the Root Mean 

Square Residual (RMSR) fit indices for the one-factor and two-factor solutions as well as 

promax rotated factor loadings from the analyses. For each of the two cases (correlation 0.3 and 

0.6), the two-factor model fit the data significantly better than a one-factor model since the 

RMSR values were much less for the two-factor model and also below the recommended critical 

value of 0.08. In addition, as seen from the promax rotation loading pattern, the first 8 items 

loaded on the first factor and the remaining 7 items loaded on the second factor. The estimated 

correlations between two dimensions were 0.27 and 0.53 and close to the true correlations (0.3 

and 0.6, respectively). All these results indicated the data were properly generated. 
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Table 3.5 Factor Analyses of Generated 2-dimensional Simple-Structure Data 

 Correlation = 0.3 Correlation = 0.6 

Item F1 F2    F1 F2    

1 0.51 0.00    0.52 -0.02    

2 0.69 0.01 0.68 0.02 

3 0.80 0.00 0.78 0.06 

4 0.47 0.04 0.52 0.00 

5 0.69 -0.01 

Promax  factor correlation:   
0.27 

0.69 0.03 

Promax  factor correlation: 
0.53 

6 0.79 0.00    0.78 0.06    

7 0.53 0.02    0.48 0.01    

8 0.68 0.00 0.71 -0.00 

9 0.04 0.80 -0.01 0.80 

10 -0.01 0.49 0.01 0.49 

11 0.01 0.69 0.03 0.68 

12 -0.01 0.79 0.06 0.76 

13 -0.05 0.53 

One-factor RMSR: 0.17 
 
 

Two-factor RMSR: 0.01 

0.07 0.45 

One-factor RMSR: 0.10 
 
 

Two-factor RMSR: 0.01 

14 0.00 0.68    0.01 0.70    

15 0.01 0.79    0.05 0.76    

 
Local Dependent Data due to a Nuisance Factor (Condition 3) 

In Condition 3, a 2-dimensional GR model (Equation 3.1) was used to simulate responses 

to a test in which all items measure a dominant ability (e.g., math), but a subset of items also 

measure a nuisance or construct-irrelevant dimension (e.g., reading). This nuisance factor may 

cause local dependence among the subset of items. Compared with the simple-structure data in 

Condition 2, the data here reflects a complex-structure since some items were designed to 

measure two dimensions (i.e., dominant and nuisance) at the same time. 

 As shown in Table 3.2, all 15 items measured a dominant dimension, but the first 5 items 

also measured a nuisance dimension. The number of items reflecting two dimensions (5 items) 

accounted for 1/3 of the total number of test items (15). The slope parameters for the dominant 

dimension and the threshold parameters had the same basic configuration as in Condition 1. 

Ackerman (1996) pointed out that if all the multidimensional items were easy or hard items, any 
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pattern of misfit may be attributable to item difficulty rather than dimensionality. As a result, the 

five 2-dimensional items in the current study were intended to cover all five levels of threshold 

parameters in order to not confound threshold and dimensionality.  

The degree to which simulated examinees’ performance on an item was determined by 

the nuisance factor was captured by the ratio of the slope parameter (a1) for the dominant 

dimension to the slope parameter (a2) for the nuisance dimension. Levy (2006) varied the ratio of 

a2 to a1 from 0.25 to 0.5 to 0.75 to 1.0 in order to vary the strength of dependence on the 

nuisance factor going from weak to strong. He found that the performance of PPMC improved as 

the strength of dependence on auxiliary dimension increased, and for the lowest ratio of a2 to a1 

(0.25), it was hard to detect the misfit of a unidimensional model. This may be reasonable since 

item performance was determined primarily by the dominant dimension. It was also found that 

when the dependence was strong (0.75 and 1.0), the PPMC method performed almost equally 

well. Based on his findings, the ratio of a2 to a1 for the first 5 items was set to two levels (0.5 and 

1.0) in the current study. These values reflected mild to large dependence between the dominant 

and nuisance dimensions. As can be seen from Table 3.2, the same slope values for the dominant 

dimension (a1 = 1.0) were used for the first 5 items, and the second slope parameters (a2) were 

all 1.0 when the ratio of a2 to a1 was 1.0, and all 0.5 when the ratio of a2 to a1 was 0.5.  

 The correlation between the dominant dimension and the nuisance dimension was fixed 

at a low level 0.3 because the test was designed to measure one dominant ability dimension. 

Ability parameters for two dimensions were randomly selected from a bivariate normal 

distribution (0, 1) with the specified correlation (0.3 or 0.6) for each case. 

Based on the above specified model parameters, the 2-dimensional complex-structure 

item responses were generated using a SAS program. As for Condition 2, cumulative 
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probabilities for each of the response categories were computed based on Equation (3.1) and then 

compared to a random number from a uniform distribution U (0, 1). 

For this condition, it was expected that the underlying factor structure of the generated 

response data would have only one main dimension since all items were designed to measure a 

dominant dimension. On the other hand, it was also expected that the generated responses to the 

first five items would be dependent because of a nuisance dimension also being measured. In 

order to validate the data generation, two evaluations were conducted. One was to test if the data 

were essentially unidimensional, and the other was to test if the first five items were locally 

dependent. 

The factor structures of the generated data for two cases (a2 = 1.0 and a2 = 0.5) were 

examined using the robust WLS estimation approach implemented in Mplus (Muthén & Muthén, 

2006). For the dataset with a2 = 1.0, the largest eigenvalue was 7.789 and the second largest was 

1.098, and all other eigenvalues were less than 1. For the dataset with a2 = 0.5, the largest 

eigenvalue was 7.632, and all other eigenvalues were less than 1. These factor analysis results 

provided evidence that the generated response data were essentially unidimensional. 

The IRTFIT macro (Bjorner et al., 2007) was used to evaluate any local item 

dependencies in the generated responses. This macro compared the observed and expected 

counts in a cross-tabulation table for each item pair, and two local dependence statistics were 

calculated: (1) a chi-square fit statistics which is a polytomous extension of Chen and Thissen’s 

(1997) chi-square local dependence index for dichotomous items; (2) a residual correlation based 

on the difference between predicted and observed polychoric correlations. Before using the 

IRTFIT macro to conduct local dependence test, the generated responses were calibrated in 
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MULTILOG using unidimensional GR models and the item parameter estimates were then used 

with the IRTFIT macro.  

Table 3.6 Local Dependence Test (p-values of Chi-Square Statistics) in IRTFIT – Case 2 

Chi-square  
(p-value) Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 

Y2 0.00 . . . . . . . . . . . . . 

Y3 0.02 0.00 . . . . . . . . . . . . 

Y4 0.00 0.00 0.00 . . . . . . . . . . . 

Y5 0.01 0.00 0.00 0.00 . . . . . . . . . . 

Y6 0.27 0.19 0.19 0.04 0.47 . . . . . . . . . 

Y7 0.46 0.31 0.32 0.98 0.22 0.55 . . . . . . . . 

Y8 0.69 0.20 0.08 0.04 0.02 0.72 0.95 . . . . . . . 

Y9 0.27 0.15 0.14 0.00 0.19 0.56 0.63 0.54 . . . . . . 

Y10 0.87 0.51 0.29 0.31 0.37 1.00 0.68 0.08 0.27 . . . . . 

Y11 0.61 0.51 0.47 0.04 0.04 0.42 0.57 0.88 0.91 0.50 . . . . 

Y12 0.78 0.40 0.05 0.46 0.65 0.35 0.82 0.33 0.86 0.34 0.80 . . . 

Y13 0.82 0.70 0.34 0.12 0.22 0.19 0.04 0.76 0.92 0.77 0.63 0.45 . . 

Y14 0.22 0.57 0.25 0.04 0.06 0.55 0.53 0.80 0.91 0.38 0.98 0.37 0.16 . 

Y15 0.06 0.32 0.47 0.78 0.20 0.21 0.30 0.47 0.23 0.64 0.36 0.71 0.52 0.14 

 
 Table 3.6 provides the p-values for the chi-square tests for all item pairs based on the 

generated response data for Case 2 (a2/a1 = 1.0). The elements in bold represent p-values for the 

pairs of the simulated dependent items (i.e., Items 1-5), the italicized elements represent the p-

values for the pairs of the simulated independent items (i.e., Items 6-15), and the remaining 

elements in the table reflect the item pairs between the independent and dependent items. As can 

be seen, the chi-square tests were significant for the dependent item pairs, indicating that the null 

hypothesis of local item independence was rejected for item pairs for the first 5 items. However, 

for item pairs for the 10 independent items or the pairs reflecting independent and dependent 

items, most of the p-values were not significant, suggesting there was no sufficient evidence to 

reject the local independence assumption. Table 3.7 presents the residual correlations for all the 
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item pairs. It can be seen that the residual correlations for the dependent item pairs (elements in 

bold) were quite large relative to the other item pairs. 

Table 3.7 Local Dependence Tests (Residual Correlations) in IRTFIT - Case 2 

Residual 
Correlation Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14 

 Y2  0.12 . . . . . . . . . . . . . 

 Y3  0.09 0.12 . . . . . . . . . . . . 

 Y4  0.11 0.11 0.12 . . . . . . . . . . . 

 Y5  0.09 0.10 0.11 0.09 . . . . . . . . . . 

 Y6  -0.04 -0.02 -0.03 -0.03 -0.03 . . . . . . . . . 

 Y7  -0.04 -0.01 -0.03 -0.02 -0.01 -0.01 . . . . . . . . 

 Y8  -0.01 -0.03 -0.02 -0.01 -0.05 0.00 0.01 . . . . . . . 

 Y9  -0.03 -0.03 -0.04 -0.05 -0.03 0.02 0.00 -0.02 . . . . . . 

 Y10  -0.01 -0.03 -0.02 -0.04 0.01 -0.01 0.00 -0.01 0.00 . . . . . 

 Y11  -0.03 -0.03 -0.03 -0.06 -0.01 0.00 0.01 0.01 0.01 0.01 . . . . 

 Y12  -0.02 -0.02 -0.03 0.00 -0.01 0.00 -0.02 0.03 -0.02 -0.01 -0.00 . . . 

 Y13  -0.00 -0.03 -0.04 -0.03 -0.03 -0.00 -0.00 0.01 -0.00 -0.01 0.00 0.02 . . 

 Y14  -0.03 -0.01 -0.04 -0.02 -0.02 0.01 -0.00 0.00 0.02 0.00 -0.00 -0.01 0.00 . 

 Y15  -0.04 -0.04 -0.01 -0.02 -0.04 0.00 -0.00 -0.00 0.02 0.01 0.02 0.01 0.01 -0.01 

 
 The results for Case 1 (a2 = 0.5) are not shown here. For this case, the chi-square test 

statistic was not powerful enough to detect any dependence among the first 5 items. Only 1 of 10 

p-values was lower than 0.05. However, the residual correlations results clearly indicated 

dependency among item pairs for Items 1 to 5.   

Table 3.8 summarizes the average absolute residual correlations for different types of 

item pairs for two levels of dependency. The no dependence condition (a2 = 0) was also included 

as a baseline for comparisons. As can be seen in this table, the average absolute residual 

correlation across the dependent item pairs increased as the amount of dependency increased. 

However, the average absolute residual correlations across the independent item pairs for two 

dependence cases were similar to the values in the baseline condition. In summary, results from 
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the factor analysis and local dependence tests imply that the locally dependent response data in 

Condition 3 were generated properly. 

Table 3.8 Average Absolute Residual Correlations for Different Levels of Dependency  

Amount of Dependency 
Item Pairs 

None (a2=0) Mild (a2/a1=0.5) Large (a2/a1=1) 

All item pairs 0.010   

    

Independent   0.009 0.008 

Dependent  0.044 0.106 

Between  0.013 0.024 

 
Local Dependent Data due to Testlet Effect (Condition 4) 

A common circumstance in which the assumption of local independence is not likely to 

be true is when a test is constructed of “testlets”. A testlet is defined as an aggregation of items 

based on a single stimulus. For example, a testlet including 3 or 4 items might be constructed 

based on a common reading passage. Performance assessments often contain testlets that include 

a more complex stimulus and a set of items paired with each stimulus (Lane & Stone, 2007). As 

a result, for performance assessments with testlet(s), the assumption of local independence is 

more likely to be violated. The item responses to the items within a testlet would be more highly 

related than predicted by the overall latent ability for the entire test.  

For Condition 4, the locally dependent data were generated under a modified GR model 

for testlets proposed by Wang, Bradlow and Wainer (2002). According to their model, the 

probability of an examinee j receiving a category score x (x = 1, 2… mi) or higher on item i 

within a testlet d(i) is defined as: 
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In this equation, a random testlet effect (rjd(i)) is introduced to reflect an interaction for 

person j with testlet d(i). Ability jθ  is typically assumed to have a N (0, 1) distribution, 

and )(ijdγ is assumed to be distributed as N (0, 2
)(idσ ). The values of )(ijdγ  are specified to be 

constant for examinee j over all items within a given testlet with the constraint that 0)( =∑
j

ijdγ  

(Bradlow, Wainer, & Wang, 1999). For any independent item, )(ijdγ  is set to be 0. The variances 

of the testlet effects, 2
)(idσ , are testlet specific, allowing the testlet effect to vary across different 

testlets. As the variance increases, the amount of local dependence increases. When 2
)(idσ =0, the 

items within the testlet can be treated conditionally independent.  

In this condition, item parameters (see Table 3.2) were the same as for GR model in 

Condition 1 except one testlet was considered (Items 6, 7 and 8). The variance of the testlet 

effect was varied in order to simulate varying degrees of dependence. Based on previous 

research (Bradlow et. al, 1999; Dresher, 2002; Li et. al, 2006; Wainer, Bradlow, & Du, 2000; 

Wang et. al, 2002), the variance 2
)(idσ  was specified at three levels: 0.5 (mild dependence), 1.0 

(large dependence), and 2.0 (extreme dependence). Note that all values of the variance were 

relative to 1 which is the variance of person abilities, jθ  ~ N (0, 1), and is commonly used to 

identify the model. Ability parameters were randomly selected from N (0, 1), and the testlet 

effect )(ijdγ  was randomly selected from a N (0, 2
)(idσ ) for the items in the testlet. Given the 

specified model parameters, the responses were generated using a SAS program. 

In order to validate the data generation procedure, the IRTFIT macro (Bjorner et al., 

2007) was again used to identify any local item dependencies in the generated response data. For 

three generated datasets (one for each case - 2
)(idσ = 0.5, 1.0, and 2.0, respectively), the p-values 
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of the chi-square local independence statistics for all the item pairs within the testlet were 

significant, in contrast, the tests for the independent pairs and the pairs between independent and 

testlet items were not significant. The average absolute residual correlations for different type of 

item pairs for three levels of testlet variance are provided in Table 3.9. The no testlet effect 

condition ( 2
)(idσ = 0) was also included as a baseline for comparisons. As can be seen, the average 

absolute residual correlations were much higher for the item pairs within the testlet than for the 

non-testlet item pairs or for between testlet and non-testlet item pairs. Moreover, the average 

residual correlations across the testlet item pairs increased as the amount of dependency 

increased. The results indicate the responses to a test with a testlet were generated as desired. 

Table 3.9 Average Absolute Residual Correlations for Different Testlet Effects 

Variance of Testlet Effects 

Item Pairs None 

 2
)(idσ =0 

Mild  
2

)(idσ =0.5 

Large  
2

)(idσ =1.0 

Extreme  
2

)(idσ =2.0 

All item pairs 0.010    

     

Non-testlet   0.013 0.012 0.011 

Testlet  0.130 0.273 0.443 

Between  0.020 0.030 0.034 

 
Item Responses to the Items with Improper BCCs (Condition 5) 

 In this condition, responses to 12 of the 15 items (Items 1-6 and Items 9-15) were 

generated based on the GR model where the boundary category curves (BCCs) are modeled by 

2PL functions (see Equation (2.1)). However, responses to two items (Items 7 and 8) were 

simulated with BCCs which did not follow the common logistic functions under the GR model. 

The BCCs for item 7 were based on a cubic form logit function (Douglas & Cohen, 2001) rather 

than regular logit function: 
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As in Douglas & Cohen (2001), the coefficient for the cubic term ci was set to 0.75. The 

functions of BCCs for Item 8 were defined using the two-step Guttman functions as in Kang and 

Chen (2008). Figure 3.2 illustrates the BCCs of these two items. 

BCCs for Item 7 (cubic form)
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Figure 3.2 Boundary Category Curves (BCCs) for Two Misfitting Items 
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Item parameters for this condition had the same configuration of slope and threshold 

parameters as Condition 1 (see Table 3.2). Ability parameters for simulated examinees were 

randomly selected from the N (0, 1) distribution.  

The generation of the responses to these two misfit items (Items 7 and 8) was evaluated 

using simulated responses for 20000 examinees at a fixed ability level (-1). The expected and 

observed proportions of examinees responding to each response category on Item 7 and Item 8 

are reported in Table 3.10.  The close match between two proportions indicates that the 

responses to the two misfit items were properly generated.  

Table 3.10 Expected and Observed Proportions for Two Misfitting Items 

Category1 Category2 Category3 Category4 Category5 
Item 

Exp Obs Exp Obs Exp Obs Exp Obs Exp Obs 
7 0.475 0.475 0.357 0.363 0.132 0.129 0.029 0.027 0.007 0.006 
8 0.500 0.507 0.500 0.493 0 0 0 0 0 0 

 
 

3.1.3 Estimate Unidimensional GR Model in WinBUGS 

For each condition in Study 1, the data-analysis model (Ma) was the unidimensional GR model. 

In order to evaluate the fit of this model using PPMC, for each of 20 data sets generated in each 

condition, a unidimensional GR model was first estimated using MCMC estimation and 

WinBUGS 1.4 (Spiegelhalter, Thomas, Best, & Lunn, 2003). For the GR model, the following 

priors were used: )1,0(~ Normaliθ for all persons i, and )1,0(~ Lognormala j , 

)25.0,0(~1 Normalbj  and )()25.0,0(~)1( jkkj bINormalb +  for all items j, where the notation 

)( jkbI  indicates that )1( +kjb  was always sampled to be larger than jkb  which is a requirement 
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under the GR model. It should be noted precision parameters rather than variance parameters are 

used in these prior distributions. The WinBUGS code used for estimation of the GR model is 

given in Appendix B. 

As reviewed in Chapter 2, convergence of parameter posterior distribution to a stationary 

distribution is crucial to MCMC estimation. A preliminary study was conducted to determine 

how long the chain should run to achieve convergence and how many iterations were needed 

after convergence to estimate parameters of the unidimensional GR model. One unidimensional 

GR dataset was generated containing responses for 2000 simulated examinees to 15 polytomous 

items with 5 response categories. Using WinBUGS, two chains of 4000 iterations were run. The 

first 1000 iterations were discarded as part of the burn-in phase, and the remaining 3000 

iterations in each chain were thinned by taking every other iteration to reduce any autocorrelation 

among the draws. Convergence was examined through visual inspection of several convergence 

diagnostic plots available in WinBUGS. The first plot is a “sampling history plot” for each 

parameter. Figure 3.3 illustrates the histories for the slope and four threshold parameters of item 

1.  These sampling histories show that each chain displayed relatively quick convergence to a 

stationary distribution and an overlap of the sampling histories for the two chains further 

indicated convergence. Similar results were observed for the other items. 

a[1] chains 1:2

iteration
1001 2000 3000

    0.8

    0.9

    1.0

    1.1

    1.2
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iteration
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Figure 3.3 Sampling History Plots of Item Parameters Associated with Two Chains - Item 1 

In WinBUGS, a “BGR diagram” is often used to show the Gelman-Rubin convergence 

statistic for multiple chains. It includes three lines in different colors. The green (G) and blue (B) 

lines reflect the pooled and within-chain posterior variances, respectively. The ratio of these two 

variances, that is, the Gelman-Rubin statistic, is represented by the red (R) line. Figure 3.4 

includes the “BGR diagrams” for the slope and four threshold parameters of Item 1. As can been 

seen, the red line (Gelman-Rubin statistic) converged to 1, indicating equality between the 
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pooled and within-chain variances. Thus, these plots demonstrate the convergence of the two 

chains with 4000 iterations was attained for all the parameters of Item 1. Similar results were 

obtained for the other model parameters. 

a[1] chains 1:2

iteration
1001 2000 3000
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iteration
1001 2000 3000
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Figure 3.4 "BGR" Diagrams for the Parameters of Item 1 

As reviewed in Chapter 2, autocorrelation plots are also helpful in evaluating 

convergence.  High correlations between adjacent states imply a slow rate of convergence, thus 

requiring more iterations to achieve stationary posterior distributions for the model parameters. 

Figure 3.5 provides the autocorrelation plots for the parameters of Item 1. As can been seen, the 

correlations among the successive draws were reduced to 0 very quickly, indicating the length of 

4000 iterations was sufficient to ensure convergence. Similar autocorrelation plots were found 

for other item parameters. 
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Figure 3.5 Autocorrelation Plots for the Parameters of Item 1 

After the burn-in iterations were discarded and the chains were thinned, posterior 

estimation of model parameters was conducted based on the remaining 3000 iterations and the 

recovery of item parameters was examined. The degree of parameter recovery using the MCMC 

method is an important factor in determining whether PPMC could be implemented successfully 

since PPMC is based on posterior estimation of model parameters. In this preliminary study, 

parameter recovery was evaluated by computing the difference between the estimated and true 

parameter values (i.e., bias). Table 3.11 includes the generating item parameters and their 

corresponding estimates in WinBUGS. The average absolute bias in the estimation of slope 

parameters across all items was 0.061. The average absolute bias for all the threshold estimates 
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across all items was 0.047. The results indicated that the item parameters were recovered well 

using MCMC estimation in WinBUGS with two chains of 4000 iterations. 

Table 3.11 Item Parameter Recovery using MCMC Estimation for the GR Model 

Item True Estimates 
 a b1 b2 b3 b4 a b1 b2 b3 b4 

1 1.0 -2.0 -1.0 0.0 1.0 0.99 -2.02 -1.00 0.01 0.96 
2 1.0 -1.5 -0.5 0.5 1.5 1.02 -1.61 -0.51 0.50 1.50 
3 1.0 -1.0 0.0 1.0 2.0 1.01 -0.99  0.03 1.02 1.99 
4 1.0 -3.0 -1.5 -0.5 1.0 1.04 -2.96 -1.45 -0.50  0.94 
5 1.0 -1.0 0.5 1.5 3.0 0.96 -1.04   0.45 1.54 3.08 
6 1.7 -2.0 -1.0 0.0 1.0 1.69 -2.12 -1.12 -0.05 0.95 
7 1.7 -1.5 -0.5 0.5 1.5 1.70 -1.53 -0.48 0.53 1.47 
8 1.7 -1.0 0.0 1.0 2.0 1.68 -1.03 -0.01 1.05 2.04 
9 1.7 -3.0 -1.5 -0.5 1.0 1.81 -3.17 -1.47 -0.52 0.96 

10 1.7 -1.0 0.5 1.5 3.0 1.71 -1.05 0.49 1.51 2.90 
11 2.4 -2.0 -1.0 0.0 1.0 2.42 -2.00 -1.04 -0.06 1.00 
12 2.4 -1.5 -0.5 0.5 1.5 2.22 -1.51 -0.51 0.49 1.56 
13 2.4 -1.0 0.0 1.0 2.0 2.31 -1.04 -0.05 0.96 1.92 
14 2.4 -3.0 -1.5 -0.5 1.0 2.23 -3.25 -1.65 -0.56 1.03 
15 2.4 -1.0 0.5 1.5 3.0 2.21 -1.04 0.49 1.54 3.19 

 
 

3.1.4 Discrepancy Measures Used in Study 1 

As discussed in Chapter 2, the choice of discrepancy measures is a key issue in an application of 

the PPMC method. It was argued that the measures should be chosen to reflect relevant threats to 

model fit for a specific testing application. The purpose of Study 1 was to examine the general 

performance of PPMC in evaluating the fit of GR model to performance assessment data. Thus, a 

variety of threats to model fit were considered and several different types of discrepancy 

measures were employed. Among the measures examined in this study, most were the 

polytomous extensions of measures used in the previous research for dichotomous IRT models, 
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and a few were newly proposed. These discrepancy measures were designed to assess model-fit 

at the test level, item level, or item-pair (or pair-wise) level. 

The “test-level” measure involved the “test score distribution” (see Section 2.4.2.1). Plots 

comparing observed and posterior predictive distributions as well as the chi-square statistic ( 2
Tχ ) 

were used to provide evidence about the fit of unidimensional GR models at the test level. 

Section 2.4.2.1 provides details about this measure. 

 The “item-level” discrepancy measures used with PPMC in previous research for 

dichotomous models include “Bayesian χ2 Statistic”, “item score distribution”, “Orlando and 

Thissen’s item-fit Statistic”, and “item-total score correlation” (see Section 2.4.2.2). In the 

current study, polytomous extensions of the “item score distribution” and “item-total score 

correlation” discrepancy measures were used. In addition, one traditional fit statistic “Yen’s Q1” 

and one alternative item-fit index “Stone’s fit statistic” were employed. These two classical 

item-fit statistics have never been used in a Bayesian framework and were proposed in this study 

in order to examine their performances with PPMC. Although the “Bayesian χ2 Statistic” is an 

intuitive and useful statistic for evaluating overall fit for many statistical models, several 

researchers (Li et al., 2006; Sinharay et al., 2006) found that it was not useful for IRT model 

checking. As a result, this measure was not considered in the current study.  

 Six “pair-wise” discrepancy measures used with PPMC for dichotomous IRT models 

were reviewed in Section 2.4.2.3. They include “Yen’s Q3 statistic”, “Chen and Thissen’s chi-

square LD index”, “Odds Ration (OR)”, “Mantel-Haenszel (MH) statistic”, “absolute item 

covariance residual”, and “Hoijtink’s conditional item covariance index”. Levy (2006) used 

four of them (“Yen’s Q3 statistic”, “OR”, “Chen and Thissen’s chi-square LD index”, “absolute 

item covariance residual”) with PPMC to detect the local dependence among responses to 
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dichotomous items, and found that “Yen’s Q3 statistic” was most effective and “Chen and 

Thissen’s chi-square LD index” was less effective than other pair-wise measures. Based on these 

findings, the least effective pair-wise measure was not used in the current study, and polytomous 

versions of the other three measures were used. The MH statistic is computationally equivalent to 

the conditional OR, and both OR and MH statistics were found to successfully detect misfit 

whenever there is a violation of the local independence assumptions though the MH statistic 

detected model misfit more often than the OR (Sinharay et al., 2006). Due to their similar 

performance, only the OR statistic was employed as a discrepancy measure in the current study. 

“Hoijtink’s conditional item covariance index” was not employed in this study. Though there 

was no previous study comparing this measure with other pair-wise measures, it was expected 

that its performance would be similar to “Yen’s Q3 statistic” since the basic rationale underlying 

these two measures are similar. “Yen’s Q3” statistic represents the correlation between responses 

to two items after accounting for the latent ability (i.e., conditional on the ability), and 

“Hoijtink’s index” measures the covariance between the responses to two items conditional on 

examinees’ scores based on the remaining items or rest scores. Both measures reflect conditional 

relationship between responses to one item pair. The main difference of “Hoijtink’s index” from 

“Yen’s Q3” is that it uses “observed rest scores” to estimate examinees’ latent ability. 

 In summary, one test-level measure (“test score distribution”), four item-level measures 

(“item score distribution”, “item-total score correlation”, “Yen’s Q1”, and “Stone’s fit 

statistic”), and three pair-wise measures (“Yen’s Q3 statistic”, “OR”, and “absolute item 

covariance residual”) were used in the current study. Among them, two item-fit measures can be 

used for polytomous items (see Section 2.2.3) and thus no extension was required. The 

polytomous extension of the chi-square statistic ( 2
Tχ ) measuring the difference between 
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observed and predicted “test score distributions” was discussed in Section 2.4.2.1.  The two pair-

wise measures (“Yen’s Q3” and “absolute item covariance residual”) can be extended to 

accommodate polytomous item responses simply by calculating expected responses using the 

polytomous IRT models instead of dichotomous items. After the expected responses are 

obtained, the computation of these two measures is the same as for dichotomous items (see 

Section 2.4.2.3). The following describes polytomous item extensions for the remaining three 

measures. 

(1) Item Score Distribution 

In Section 2.4.2.2, a goodness-of-fit statistic ( Fitj _2χ ) used to summarize the 

discrepancy between observed and posterior predictive item score distributions for dichotomous 

items was discussed. For polytomous items, this statistic can be defined as: 
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where Mj is the highest score on item j, and jkO  ( jkE ) is the observed (predicted) number of 

examinees scoring in response category k on item j. Ejk can be calculated by summing the 

probabilities of responding to category k on item j across all N examinees:  
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θ         k=0, …, Mj.                                              (3.5) 

(2) Item-Total Score Correlation   

The item-test score correlation is the correlation between examinees’ total test scores and 

their item scores on a particular item. For dichotomous items, the item-total score correlation is 

commonly estimated using point-biserial or biserial correlations. Sinharay et al. (2006) have 

shown that the biserial correlation between item and test scores was a powerful discrepancy 
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measure for detecting misfit of the Rasch model when data was generated from a 2PL or 3PL 

model. It was therefore hypothesized that the item-total score correlation would also be effective 

for detecting “local dependence” among the responses to polytomous items. The underlying 

rationale is that local dependence might affect item discrimination and the item-test correlation is 

related to item discrimination. For example, Yen (1993) demonstrated that positive LD would 

produce higher item discriminations for LD items. 

The correlation between total test scores and scores on polytomous items should be 

estimated using a “polyserial” correlation in theory. However, in practice, when there are a 

number of response categories, the Pearson product-moment correlation is often used to estimate 

item-total score correlation. Five response categories have been found to be a minimum in order 

to use Pearson correlations (Dollan, 1994). In this study, the number of response categories was 

5 and Pearson correlations were used to estimate the association between items and total test 

scores. 

(3) Global Odds Ratios 

For dichotomous items, the contingency table for one pair of items is 2x2 and there is 

only one odds ratio (OR) value for one item pair (see Equation 2.24). However, the computation 

of an OR with a polytomous item pair involves a R x C (R>2 and C>2) contingency table from 

which multiple ORs can be computed. There are three basic types of odds ratios in a R x C 

contingency table: local odds ratios, local-global odds ratios, and global odds ratio (Agresti, 

2002). 

Local odds ratios are defined using cells in adjacent rows and adjacent columns (Agresti, 

2002). Suppose two polytomous items j and j* have the maximum score Mj and Mj*, respectively. 

That is, the total number of response categories is (Mj+1) for item j and (Mj*+1) for item j*. The 
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corresponding contingency table is (Mj+1) x (Mj*+1). Let k and k* denote the response scores on 

items j and j* respectively, the (Mj * Mj) non-redundant local odds ratios can be defined as: 
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where nkk*  is the observed number of examinees having response k on item j and response k* on 

item  j*. For two items with 5 response categories (0, 1, 2, 3 and 4), there are 16 non-redundant 

local odds ratios. 

It can be seen that the number of local odds ratios will increase dramatically as the 

number of response categories for each item increases. Therefore, it is not convenient to use 

local odds ratios when the items have a large number of response categories. One alternative way 

to measure the association in R x C contingency tables is to dichotomize one of the items 

according to a cut point and compute local-global odds ratios. For example, if the responses on 

the column item are dichotomized, the R x C contingency table will reduce to a R x 2 table and 

the number of non-redundant odds ratios is only (R-1) rather than (R-1)*(C-1). For two items j 

and j* with the maximum item score Mj and Mj*, respectively, the local-global odds ratio is 

defined as: 
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where k* is the cut point on the response scale for item j* , and ( )*kkn ≤  represents the number of 

examinees scoring k on item j and scoring k* and lower on item j*.  The local-global odds ratios 

are local with respect to the row item and global with respect to the column item. Following the 

same logic, global-local odds ratios can be defined as global with respect to the row item and 

local with respect to the column item. For two items with 5 response categories (0, 1, 2, 3 and 4), 
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there are four non-redundant global-local or local-global odds ratios, much smaller than the 

number of local odds ratios. 

A single OR is often preferred in order to simplify or summarize the association in R x C 

contingency tables as for 2 x 2 contingency tables. In this situation, a global odds ratio can be 

computed. For two items j and j* with the maximum item score Mj and Mj*, respectively, a R x C 

contingency table can  be reduced to a 2 x 2 contingency table by dichotomizing the response 

categories of each item. The global odds ratio is defined as the cross-ratio of this pooled 2 x 2 

table: 

( ) ( )

( ) ( )*)(*)(

*)(*)()(
*

kkkk

kkkkG
kk nn

nn
OR

≤>>≤

>>≤≤=         (k = 0, 1. . . (Mj-1),     k* = 0, 1… (Mj* -1)),            (3.8) 

where k and k* are the cut points on the response scales for item j and item j* respectively, and 

( )*)( kkn ≤≤  denotes the number of examinees scoring k and lower on item j and scoring k* and 

lower on item j*. For different cut points, the global odds ratios may be different.  

In this study, only a global odds ratio was employed as one possible discrepancy measure 

due to its simplicity. The dichotomization was based on score rubrics typically used with 

performance assessments. For items with 5 response categories (0-4), Categories 3 and 4 were 

treated as “correct” responses, and 0, 1, and 2 were treated as “incorrect” responses. Thus, the 

cut point was set to 2. 

Previous research (Sinharay et al, 2005, 2006; Li et al, 2006; Levy, 2006) has found the 

OR measure to be a useful discrepancy measure for checking several aspects of model fit for 

dichotomous IRT models. It was assumed that the global OR measure would be useful for 

polytomous models. However, it might be not as effective as OR for dichotomous items due to 

the dichotomization of the response categories. 
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3.1.5 Conduct PPMC 

As reviewed in Chapter 2, conducting PPMC involves simulating replicated data under a 

presumed model and comparing the discrepancy measures for observed data against the 

distribution of discrepancy measures across the replicated data sets using graphical displays or 

PPP-values to evaluate model fit.  

PPP-values provide a quantitative measure of the degree to which observed data would 

be expected under the model. PPP-values near 0.5 indicate that the realized (i.e. observed) 

discrepancies fall in the middle of the distribution of discrepancy measures based on the 

posterior predictive response data (i.e., replicated data). Such values provide evidence for model 

fit. In contrast, extreme PPP-values near 0 or 1 suggest that the observed discrepancies are 

inconsistent with the posterior predictive discrepancies and hence are indicative of model misfit. 

More specifically, PPP-values near 0 indicate that the predictive discrepancy values under the 

model are smaller than the realized values most of the time, indicating that the model under-

predicts this discrepancy measure. Using the same logic, PPP-values near 1 indicate that the 

predictive discrepancy values are larger than the realized values, indicating that the model over-

predicts the measure. In the current study, extreme PPP-values were defined as those below 0.05 

or above 0.95, corresponding to a two-tailed test with α=0.10 in a hypothesis testing framework. 

In addition to PPP-values, different types of graphical plots were also used in the current 

study to provide graphical evidence about model fit. As discussed in Chapter 2, it is more 

appropriate to use the PPMC approach as a diagnostic tool for model fit rather than a hypothesis 

test because the PPP-values are not necessarily uniformly distributed under the null conditions. 

Thus, a preferable way to interpret the difference between observed and predicted discrepancy 

measures in PPMC is also to employ graphical plots. 
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Within each condition for Study 1, the generated data served as “observed data”, and the 

posterior predictive (i.e. replicated) data sets under the unidimensional GR model were simulated 

within WinBUGS in the process of estimating the model parameters. The values of the proposed 

discrepancy measures were calculated both for the observed data as well as each of the predicted 

data and then compared using graphical plots and PPP-values. Among all the 8 discrepancy 

measures investigated in this study, four measures (“item score distribution”, “Yen’s Q3”, 

“absolute item covariance residual”, “global OR”) and their corresponding PPP-values were 

computed within WinBUGS. However, the remaining four discrepancy measures (“test score 

distribution”, “item-total score correlation”, “Yen’s Q1”, and “Stone’s fit statistic”) were 

calculated by inputting the replicated response data and parameter estimates for all iterations 

(CODA output) from WinBUGS into SAS. If we label the first set of 4 measures as PPMC1 

measures, and the remaining 4 measures as PPMC2 measures, the general steps to implement 

PPMC in Study 1 are as follows: 

1) Generate a unidimensional GR data in SAS; 

2) Run WinBUGS from SAS through a batch file to estimate the generated data using a 

unidimensional GR model, simulate replicated response data, and compute the PPP-values 

of the four PPMC1 measures. In addition, save the replicated response data and parameter 

estimates for all iterations (CODA files) into text files for the next implementation of 

PPMC based on the four PPMC2 measures. Also save the CODA files for the realized and 

predictive discrepancies in order to compare them using graphical plots; 

3) Read these CODA text files from (2) into SAS datasets; 

4) Compute the realized and predictive values of the PPMC2 discrepancy measures based on 

observed data (i.e., generated data) and the CODA datasets from (3) in SAS, and then 
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obtain their PPP-values. As for the PPMC1 measures, save the realized and predictive 

discrepancies in order to draw graphical plots. 

The preliminary study conducted in Section 3.1.3 used two chains of 4000 iterations. The 

results showed that each chain converged very quickly and the item parameters were well 

recovered. Based on those results, only one chain of length of 4000 was run for conducting 

PPMC due to the intensive computation in WinBUGS. The first 3500 iterations in each chain 

were discarded as part of the burn-in phase, and posterior estimation of model parameters and 

PPMC were conducted based on the 500 remaining iterations. Item recovery using the posterior 

sample of 500 was evaluated using the Root Mean Square Difference (RMSD) statistic. This 

statistic compared the true (or generating) and estimated parameters across 20 replications, as 

follows: 

20

)(
20

1

2∑
=

−
= n

estimatetrue
RMSD .                                                (3.9) 

The results indicated that a posterior sample size of 500 was adequate for accurate recovery of 

item parameters for GR model (see Chapter 4). In addition, this sample size was consistent with 

previous studies (Fu et al., 2005; Levy, 2006; Li et al, 2006).  

To investigate Type-I error rates and empirical power for each discrepancy measure 

proposed, the PPMC analysis was replicated 20 times (one for each generated data) within each 

condition. The proportion of the 20 replications with extreme PPP-values (< 0.05 or > 0.95) for 

each discrepancy measures provides estimates of Type-I error rates of this measure under the 

null condition (Condition 1) or estimates of empirical power rates of this measure under other 

misfit conditions (Conditions 2-5).  It should be noted that for each replication, different types of 

discrepancy measures resulted in different numbers of PPP-values. For any replication, the test-



 106 

level chi-square measure was evaluated once leading to one PPP-value; each item-level 

discrepancy measure was evaluated 15 times (once for each item) leading to 15 PPP-values; and 

each pair-wise discrepancy measure was evaluated 105 times (one for each unique pairing of 

items) leading to 105 PPP-values. In order to summarize results, PPP-values for item-level and 

pair-wise level measures were pooled based on data structure. Type-I error rates and empirical 

power rates were based on these pooled PPP-values. The details are discussed in the results 

chapter. 

Appendix C provides the WinBUGS code used for the implementation of PPMC based 

on the four PPMC1 measures including estimating unidimensional GR models, calculating these 

four discrepancy measures and their PPP-values, as well as simulating replicated response data. 

In addition, the SAS code used to create a batch file for running PPMC in WinBUGS from SAS 

is given in Appendix D. The SAS code for conducting PPMC using the four PPMC2 measures is 

available from the author upon request. 
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3.2 SIMULATION STUDY 2 

As reviewed in Chapter 2, unidimensional polytomous IRT models are commonly used in the 

analysis of performance assessment data. However, the underlying assumptions such as 

unidimensionality and local item independence are most likely to be violated for performance 

assessment data. In that situation, more complex polytomous models might be needed to account 

for the violation of assumptions. For example, a multidimensional GR model (De Ayala, 1994) 

may be more appropriate for analyzing multidimensional performance data, or a modified GR 

model for testlets (Wang, Bradlow & Wainer, 2002) may be more appropriate for performance 

assessments that involve a subset of items with a common stimulus. In order to choose the 

preferred model for a particular performance assessment data, model comparison tools may be 

employed. A number of model comparison techniques in a Bayesian framework have been 

reviewed previously. The purpose of Study 2 was to investigate the relative performance of three 

Bayesian model selection methods (DIC, CPO, and PPMC) in choosing the preferred model for 

analyzing performance assessment data.  

3.2.1 Design of Simulation Study 2 

In order to explore the relative performance of these three Bayesian model comparison methods, 

four conditions were considered (Table 3.12). In each condition, typical performance assessment 

data were generated based on an appropriate IRT model (Mg) and then calibrated using several 

different data-analysis (Ma) models. Three Bayesian model comparison indices were then 

computed for each Ma and the preferred model was selected based on each of indices. Indices 
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were then examined to determine the extent to which “Mg” was selected as the “preferred” 

model.  

Table 3.12 Design and Conditions in Simulation Study 2 

Data-Generating Model 
(Mg) 

Data-Analysis Model 
(Ma) 

Condition 
Number 

2P GR 
(1) 2P GR 
(2) 1P GR 
(3) RS 

1 

2-dim Simple-Structure GR (1) 2P GR 
(2) 2-dim Simple-Structure GR 2 

2-dim Complex-Structure GR (1) 2P GR 
(2) 2-dim Complex-Structure GR 3 

Testlet GR (1) 2P GR 
(2) Testlet GR 4 

 
 In Condition 1, the responses were generated under the two-parameter Samejima’s (1969) 

GR model, but estimated using two restricted GR models (one-parameter (1P) GR model and RS 

model) in addition to the true model (two-parameter (2P) GR model). Both one-parameter (1P) 

GR and RS models require fewer parameters to estimate than two-parameter (2P) GR models. A 

1P GR model is similar to Samejima’s 2P GR model except that all slope parameters are fixed to 

a single value. As a result, only one slope parameter needs to be estimated. The RS model 

developed by Muraki (1990) is a restricted case of the 2P GR model for analyzing responses to 

the items with a rating-scale type response format. Lane and Stone (2006) pointed out that this 

RS model may be appropriate for performance assessments where a general rubric is used as the 

basis for developing specific item rubrics since the response scales and the differences between 

score levels may be the same across the set of items. In the RS model, the threshold parameters 

of the 2P GR model are partitioned into two terms: a location parameter for each item, and one 

set of category threshold parameters for all items. The number of parameters in the RS model is 

therefore reduced greatly as compared with the 2P GR model. The purpose of Condition 1 was 
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designed to determine if the model comparison criteria could discriminate between these three 

models and select the 2P GR model as the preferred model.  

Similar to some of the conditions examined in Study 1, the data generated in Conditions 

2, 3 and 4 (see Table 3.12) reflect typical performance assessment applications in which the 

assumptions underlying unidimensional GR model are violated. Specifically, in Condition 2, 2-

dimensional (2-dim) simple-structure GR responses were generated based on a multidimensional 

GR (MGR) model (De Ayala, 1994) to reflect the violation of the unidimensionality assumption. 

In Condition 3, 2-dimensional (2-dim) complex-structure GR data were simulated under a MGR 

model to represent responses to a performance assessment which mainly measures a dominant 

ability (e.g., math), but a subset of items also measure a nuisance or construct-irrelevant 

dimension (e.g., reading). This nuisance factor would also result in local dependence among the 

subset of items. In Condition 4, responses to a test with a testlet were generated under a modified 

GR model for testlet (Wang, Bradlow & Wainer, 2002). The responses to items within a testlet 

(e.g., a shared stimulus or passage) would be locally dependent. In each of these three conditions, 

the generated data was calibrated using both the 2P GR model and the more complex data-

generating model in order to determine whether the model comparison tools were useful in 

selecting the complex models as the preferred model when the underlying assumptions of the GR 

model did not hold. 

3.2.2 Generate Item Response Data 

As for Study 1, 20 datasets were generated for each condition using the Mg with each dataset 

containing responses for 2000 simulated examinees to 15 polytomous items with 5 response 

categories. For Condition 1, the configurations of item parameters for unidimensional 2P GR 
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models and the procedure for data generation were the same as for Condition 1 in Study 1. For 

other conditions, the data generation procedures were the same as the corresponding conditions 

in Study 1 except that no other factors were manipulated in Conditions 2, 3, and 4 in Study 2.  

Recall, for Condition 2 in Study 1, the correlation between two dimensions was fixed at 

one of two levels: 0.3 and 0.6, and different simple-structure 2-dimensional responses were 

generated based on these two correlations. In Study 2, responses were generated only based on 

the correlation of 0.6 since this value represents typical correlations among different dimensions 

for many large-scale operational tests which cover a wide range of content domains. The item 

parameters were exactly same as for Study 1 (see Table 3.2). 

For Condition 3, the ratio of a2 to a1 for the first 5 items was set to two levels (0.5 and 

1.0) in Study 1, reflecting mild and large dependence between the dominant and nuisance 

dimensions. For the same condition in Study 2, only mild dependence (a2/a1 = 0.5) case was 

considered since it may be more realistic in practical applications. Other model parameters were 

the same as for Study 1 (see Table 3.2). 

For the testlet condition (Condition 4), in Study 1, the testlet effect variance 2
)(idσ  was 

specified at three levels: 0.5, 1.0, and 2.0 to reflect mild, large, and extreme dependence among 

the testlet items, respectively. In this study, only mild dependence was used. The item parameters 

can be found in Table 3.2. 

3.2.3 Estimate Different Data-Analysis Models in WinBUGS 

In each condition, each of the 20 generated datasets was calibrated using the different data-

analysis models in WinBUGS 1.4. Since the model comparison indices are calculated based on 

posterior estimation of model parameters, how well the different models involved in Study 2 can 
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be estimated in WinBUGS provides important evidence about the validity of the model 

comparison results. Therefore, a preliminary study was first conducted to determine how long 

the chain should run to achieve convergence, how many iterations are needed after convergence 

to estimate the parameters, and the extent of model parameter recovery in WinBUGS for 

different models. The calibration of the two-parameter (2P) GR model in WinBUGS was already 

validated in Study 1. Thus, the estimation of the other models in WinBUGS was evaluated for 

Study 2. 

One-Parameter (1P) GR Model 

In order to validate the estimation of one-parameter GR model, data were generated 

based on the same model which contained responses for 2000 simulated examinees to 15 

polytomous items with 5 response categories. The slope parameters for all 15 items were fixed to 

1.7 and the threshold parameters were set to the same values used for the two-parameter GR 

models.  

A one-parameter GR model was fit to the generated data in WinBUGS. The code is 

similar to that for estimating GR model (Appendix B) except that one slope is estimated rather 

than multiple slope parameters. Two chains of length of 6000 were run which took 

approximately 7 hours to complete. The first 1000 iterations were treated as burn-in and 

discarded, and the remaining chains were thinned by taking every other iteration to obtain a 

combined posterior distribution based on a sample of 5000. All the sampling histories, brg 

diagrams, and autocorrelation plots suggested that each Markov chain converged to a stationary 

distribution very quickly. The values of MC errors indicated the sample size of 5000 was 

sufficient for precise posterior inference. Figure 3.6 illustrates the corresponding convergence 
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diagnostic graphs for the first threshold parameter of Item 1 and the common slope parameter for 

all the 15 items. Similar results were observed for the other item parameters. 
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Figure 3.6 Example Convergence Diagnostic Plots for Item Parameters under 1P GR Model 

Table 3.13 provides the comparison between the generating parameters and the estimates 

in WinBUGS for the one-parameter GR model. As can be seen, parameters were well recovered. 

The bias in the slope estimate was -0.01, and the average absolute bias for the thresholds 
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parameters across all items was 0.044. The results indicated that the one-parameter GR model 

could be estimated precisely in WinBUGS, and the WinBUGS code used for the estimation was 

valid. 

Table 3.13 Item Parameter Recovery for 1P GR Model in WinBUGS 

True Estimates 

Item a b1 b2 b3 b4 a b1 b2 b3 b4 

1 -2.0 -1.0  0.0 1.0 -2.08 -1.02 0.03 1.04 

2 -1.5 -0.5  0.5 1.5 -1.49 -0.48 0.52 1.59 

3 -1.0  0.0  1.0 2.0 -0.97  -0.01 1.04 2.07 

4 -3.0 -1.5 -0.5 1.0 -3.20 -1.49 -0.52 0.99 

5 -1.0   0.5  1.5 3.0 -0.96 0.56 1.55 3.31 

6 -2.0 -1.0  0.0 1.0 -1.99 -0.93 0.00 1.01 

7 -1.5 -0.5  0.5 1.5 -1.53 -0.54 0.53 1.55 

8 -1.0  0.0  1.0 2.0 -1.00 0.06 1.06 2.15 

9 -3.0 -1.5 -0.5 1.0 -2.99 -1.54 -0.51 1.02 

10 -1.0   0.5  1.5 3.0 -0.98 0.50 1.57 2.91 

11 -2.0 -1.0  0.0 1.0 -1.98 -0.98 -0.02 1.02 

12 -1.5 -0.5  0.5 1.5 -1.46 -0.44 0.53 1.61 

13 -1.0  0.0  1.0 2.0 -1.02 0.03 1.01 1.96 

14 -3.0 -1.5 -0.5 1.0 -2.97 -1.52 -0.55 0.97 

15 

1.7 

-1.0   0.5  1.5 3.0 

1.69 

-1.01 0.49 1.50 2.84 
 

RS Model 

The operating characteristic curves for Muraki (1990)’s RS model can be expressed as: 
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As can be seen, the threshold parameters (bix) of the 2P GR model are partitioned into two terms 

in the RS model: a location parameter (bi) for each item, and one set of category threshold 

parameters (cx) that applies to all items. The RS model is a restricted version of the 2P GR model 

because the RS model assumes the category boundaries are equally distant from each other 
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across all items, whereas they are free to vary across items in the 2P GR model. As a result, the 

RS model requires fewer parameters to estimate than the 2P GR model. Thus, if a set of items 

has a common set of response options or is scored based on a general rubric, the RS model may 

provide an advantage over the 2P GR model. 

In order to validate estimation of the RS model in WinBUGS, responses for 2000 

simulated examinees to 15 polytomous items with 5 response categories were generated under 

the RS model. The configuration of item parameters for 15 items under the RS model involved a 

combination of 3 levels for the slope parameters (1.0, 1.7, and 2.4) and 5 levels for the location 

parameters: -1.0, -0.5, 0, 0.5, and 1.0. Note that the five levels of the location parameters were 

the same as the average difficulties of the 2P GR model (see Table 3.2). The category threshold 

parameters were set to 1.5, 0.5, -0.5, and -1.5.  

The generated data were estimated in WinBUGS. As for the 2P GR model, the prior 

distributions of the slope parameters were defined as lognormal distributions with means 0 and 

variances 1. Normal priors were assigned to the location parameters with means equal to 1 and 

variances equal to 4. Prior distributions for the category threshold parameters were defined as the 

same normal distributions as for the location parameters with two constraints: they were ordered 

and the sum of them was 0. Finally, following standard conventions, ability parameters were 

assigned standard normal priors.  

One chain of length of 10000 was run in WinBUGS. The first 1000 iterations were 

discarded (burn-in iterations) and the remaining chain was thinned by taking every other iteration 

to obtain a posterior sample of 4500. All the sampling histories and autocorrelation plots 

suggested that the Markov chain converged to a stationary distribution very quickly. That also 

indicated that a shorter chain may adequate for estimating this model. The values of MC errors 
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indicated the sample size of 4500 was sufficient for precise posterior inference. Figure 3.7 

provides the history plots and autocorrelation plots for the slope and location parameters for Item 

1. Similar results were observed for the other item parameters. 

a[1]

iteration
1001 2500 5000 7500

    0.8

    0.9

    1.0

    1.1

    1.2

 

b[1]

iteration
1001 2500 5000 7500

   -0.7

   -0.6

   -0.5

   -0.4

   -0.3

 

a[1]

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

b[1]

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

 

Figure 3.7 Example Convergence Diagnostic Plots for Item Parameters under RS Model 

Table 3.14 provides the comparison between the generating parameters and the 

corresponding estimates in WinBUGS. As can be seen, the parameters were recovered well. The 

average absolute bias in the slope estimate across all items was 0.058, and it was 0.034 for the 

location parameters across all items and 0.028 for the category threshold parameters across all 

categories. Thus, the results indicated that the WinBUGS code for estimating RS model was 

valid. 
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Table 3.14 Item Parameter Recovery for RS Model in WinBUGS 

True  Estimates 
Item a b  a b 

1 1.0 -0.5  0.97 -0.53 
2 1.0 0  0.97 -0.03 
3 1.0 0.5  0.93 0.59 
4 1.0 -1.0  0.97 -1.06 
5 1.0 1.0  0.96 1.03 
6 1.7 -0.5  1.60 -0.53 
7 1.7 0  1.69 0.00 
8 1.7 0.5  1.66 0.54 
9 1.7 -1.0  1.65 -1.07 

10 1.7 1.0  1.68 1.01 
11 2.4 -0.5  2.29 -0.49 
12 2.4 0  2.28 0.02 
13 2.4 0.5  2.33 0.51 
14 2.4 -1.0  2.44 -1.03 
15 2.4 1.0  2.29 1.05 

 C1 C2 C3 C4  
True 1.5 0.5 -0.5 -1.5  
Estimates 1.55 0.51 -0.51 -1.54  

 
2-dim Simple-Structure GR Model 

In order to validate the estimation of two-dimensional (2-dim) simple-structure GR 

models in WinBUGS, 2-dim simple-structure item response were generated for 2000 simulated 

examinees to 15 polytomous items with 5 response categories. The configuration of item 

parameters was the same as in Study 1 (see Table 3.2). Ability parameters for the two 

dimensions were randomly selected from a bivariate normal (0, 1) with the specified correlation 

of 0.6. 

The generated data were estimated under a 2-dimensional simple-structure GR model in 

WinBUGS using the code given in Appendix E. The prior distributions for the item parameters 

were the same as for the GR model. As for unidimensional IRT models, multidimensional 

models have scale or metric indeterminacy problem. To solve this problem, the abilities on two 
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dimensions were assigned multivariate normal priors, with means of 0 and variances of 1. 

However, the covariance (or correlation) between the two dimensions was not fixed. Based on 

previous research, this inter-dimensional correlation was assigned a normal prior with mean 

equal to the true correlation 0.6, and the variance of 0.25 for the current study. This approach to 

addressing the metric indeterminacy problem was similar to Yao and Boughton (2007)’s 

approach except that they fixed the correlation to the true value. They found that as long as the 

fixed correlations were smaller than the true correlations, the resulting estimated item parameters 

were close to their true item parameters. However, in real applications, true correlations are 

unknown, so Yao and Boughton (2007) suggested that the correlations can be approximated by 

the correlations between the subtotal scores for each dimension or the correlations between the 

estimated unidimensional scores for each dimension. In this study, the correlation was estimated 

rather than fixed.    

Two chains of length of 10000 were run and took approximately 6 hours to complete. 

WinBUGS uses Metropolis MCMC algorithm for estimating this complicated model. By default, 

this sampling method utilizes the first 4000 iterations to determine suitable proposal distribution 

variances in order to obtain an acceptance rate of between 20% and 40%. As the result, the first 

5000 iterations in each chain were discarded (burn-in iterations), and the remaining chains were 

thinned by taking every other iteration to get a combined posterior sample of 5000. All the 

sampling histories, bgr diagrams, and autocorrelation plots suggested the Markov chains 

converged to stationary posterior distributions. The values of MC errors indicated the sample 

size of 5000 was sufficient for precise posterior inference. Figure 3.8 includes the brg diagrams 

and autocorrelation graphs for the slope and first threshold parameters for Item 1 and for the 

correlation between two dimensions. Similar results were observed for the other item parameters. 
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Figure 3.8 Convergence Diagnostic Plots for Parameters under 2-dim Simple-Structure GR Model 

Point estimates of the model parameters and standard errors were computed based on the 

posterior sample of 5000 iterations. Table 3.15 presents the comparison between the generating 

parameters and the corresponding estimates in WinBUGS for the 2-dim simple-structure GR 

model. As can be seen, the parameters were recovered well. The average absolute bias in the 

slope estimate across all items was 0.074, and 0.058 for the threshold parameters. In addition, the 

correlation parameter between two dimensions was recovered well. The bias was 0.01. The 

results indicated that the WinBUGS code for estimating 2-dim simple-structure GR model was 

valid. 
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Table 3.15 Item Parameter Recovery for 2-dim Simple-Structure GR Model in WinBUGS 

 True Estimates 
Item a1 a2 b1 b2 b3 b4 a1 a2 b1 b2 b3 b4 

1 1.0 0 -2.0 -1.0  0.0 1.0 1.12 - -1.74 -0.85 0.07 0.95 
2 1.7 0 -1.5 -0.5  0.5 1.5 1.69 - -1.54 -0.48 0.53 1.61 
3 2.4 0 -1.0  0.0  1.0 2.0 2.28 - -0.97 0.05 1.07 2.09 
4 1.0 0 -3.0 -1.5 -0.5 1.0 0.93 - -3.17 -1.53 -0.51 1.04 
5 1.7 0 -1.0   0.5  1.5 3.0 1.85 - -0.87 0.50 1.49 2.81 
6 2.4 0 -2.0 -1.0  0.0 1.0 2.17 - -1.96 -0.99 -0.01 1.00 
7 1.0 0 -1.5 -0.5  0.5 1.5 1.03 - -1.44 -0.44 0.61 1.53 
8 1.7 0 -1.0  0.0  1.0 2.0 1.72 - -1.00 0.03 1.00 1.98 
9 0 2.4 -3.0 -1.5 -0.5 1.0 - 2.34 -3.06 -1.53 -0.48 1.09 

10 0 1.0 -1.0   0.5  1.5 3.0 - 0.97 -1.05 0.48 1.54 2.91 
11 0 1.7 -2.0 -1.0  0.0 1.0 - 1.54 -2.16 -1.07 0.01 1.09 
12 0 2.4 -1.5 -0.5  0.5 1.5 - 2.38 -1.46 -0.45 0.51 1.42 
13 0 1.0 -1.0  0.0  1.0 2.0 - 0.99 -0.95 -0.01 0.98 1.90 
14 0 1.7 -3.0 -1.5 -0.5 1.0 - 1.66 -3.07 -1.56 -0.51 0.95 
15 0 2.4 -1.0   0.5  1.5 3.0 - 2.44 -0.97 0.52 1.55 3.15 

Correlation:                  true = 0.60                                                           estimate = 0.59 
 

 

2-dim Complex-Structure GR Model 

Responses for 2000 simulated examinees to 15 polytomous items with 5 response 

categories were generated based on a 2-dimensional complex-structure GR model. The 

configuration of item parameters was the same as for the first case of Condition 3 in Study 1. 

Ability parameters for two dimensions were randomly selected from a bivariate normal (0, 1) 

with the specified correlation of 0.3. 

The generated data were estimated using a 2-dimensional complex-structure GR model in 

WinBUGS. When estimating complex-structure MIRT models using MCMC, it is important to 

solve both metric indeterminacy and rotational indeterminacy problems. As for 2-dim simple-

structure model, the metric indeterminacy problem was addressed by assigning the abilities on 
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two dimensions means of 0 and variances of 1. The rotational indeterminacy problem only exists 

for complex-structure models when one item measures more than one dimension. Analogous to 

factor analysis, the dimensions’ orientation are not unique. They can be rotated in the dimension 

space without changing the model fit. To solve the rotational indeterminacy, the two ability axes 

were constrained to be orthogonal, and for the last 10 items which only measure the dominant 

dimension, the slope parameters were fixed at 0 on the nuisance dimension. Thus, the prior of 

abilities followed multivariate normal, with means of 0 and a variance-covariance matrix equal 

to the identity matrix. Note that the approaches to addressing the indeterminacy problems were 

similar to those used by Bolt and Lall (2003). The prior distributions for other item parameters 

were the same as for the GR model. 

Response data in Condition 3 were generated based on two correlated dimensions 

(correlation = 0.3), however, estimation of the complex-structure GR model always imposed an 

orthogonal factor solution. Therefore, the slope estimates from WinBUGS could not be 

compared directly with the generating slope parameters. Instead, the corresponding generating 

slope parameters with respect to an orthogonal solution (correlation = 0) should be derived in 

order to compare the estimates from WinBUGS with true values. It should be noted that though 

the orthogonal solution affects the direct evaluation of item recovery, it does not affect the 

probability of responses to each response categories. Thus the solution for rotational 

indeterminacy should not affect the results for the model-fit and model-comparison. 

In order to check the item recovery of 2-dim complex-structure GR model in WinBUGS, 

a new dataset was generated assuming two uncorrelated or orthogonal dimensions. This dataset 

was then estimated in WinBUGS using the same code. Two chains of length of 10000 were run 

and took about 10 hours to complete. The first 4000 iterations were used to determine suitable 
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proposal distribution variances for Metropolis sampling, and the next 1000 iterations were 

discarded for the burn-in phase. The remaining chains were thinned by taking every other 

iteration to obtain a combined posterior sample of 5000. All the sampling histories, bgr 

diagrams, and autocorrelation plots suggested the Markov chains converged to a stationary 

distribution. Figure 3.9 provides the convergence diagnostic graphs for the two slope parameters 

as well as the first threshold parameter for Item 1. Similar results were observed for the other 

item parameters. The moderate autocorrelations existing for the second slope and the threshold 

parameters indicate that the chain may require additional thinning. 

Point estimates of the model parameters and standard errors were computed from the 

mean and standard deviations of posterior distributions for parameters. Table 3.16 compares the 

generating parameters and the estimates in WinBUGS for the 2-dim complex-structure GR 

model. The average absolute bias in the slope estimates across all items was 0.067 for dimension 

1 and 0.032 for dimension 2. The average absolute bias in the threshold parameter estimates 

across all items was 0.049. The results indicate close recovery of the item parameters in 

WinBUGS and the code for estimating 2-dimensional complex-structure GR models was 

considered valid. 
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Figure 3.9 Convergence Diagnostic Plots for Parameters under 2-dim Complex-Structure GR Model 
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Table 3.16 Item Parameter Recovery for 2-dim Complex-Structure GR Model in WinBUGS 

 True Estimates 

Item a1 a2 b1 b2 b3 b4 a1 a2 b1 b2 b3 b4 

1 1.0 0.5 -2.0 -1.0  0.0 1.0 0.88 0.49 -2.15 -1.07 -0.01 1.07 

2 1.0 0.5 -1.5 -0.5  0.5 1.5 1.06 0.49 -1.51 -0.46 0.52 1.44 

3 1.0 0.5 -1.0  0.0  1.0 2.0 1.02 0.49 -0.98 0.02 0.94 2.00 

4 1.0 0.5 -3.0 -1.5 -0.5 1.0 1.03 0.42 -3.13 -1.56 -0.55 1.00 

5 1.0 0.5 -1.0   0.5  1.5 3.0 1.03 0.55 -0.97 0.45 1.42 2.94 

6 1.7 0 -2.0 -1.0  0.0 1.0 1.67 - -2.09 -1.06 -0.07 0.97 

7 1.7 0 -1.5 -0.5  0.5 1.5 1.72 - -1.51 -0.52 0.47 1.45 

8 1.7 0 -1.0  0.0  1.0 2.0 1.74 - -0.97 -0.01 0.96 1.98 

9 1.7 0 -3.0 -1.5 -0.5 1.0 1.80 - -2.77 -1.40 -0.45 0.98 

10 1.7 0 -1.0   0.5  1.5 3.0 1.59 - -1.00 0.48 1.54 3.20 

11 2.4 0 -2.0 -1.0  0.0 1.0 2.45 - -2.06 -1.02 -0.01 1.04 

12 2.4 0 -1.5 -0.5  0.5 1.5 2.54 - -1.48 -0.53 0.42 1.39 

13 2.4 0 -1.0  0.0  1.0 2.0 2.52 - -0.96 0.00 0.98 1.91 

14 2.4 0 -3.0 -1.5 -0.5 1.0 2.31 - -2.92 -1.54 -0.55 0.95 

15 2.4 0 -1.0   0.5  1.5 3.0 2.36 - -1.02 0.48 1.48 2.99 
 

 

GR Model for Testlets 

In order to validate the estimation of testlet GR models in WinBUGS, responses to a test 

with one testlet was generated. As in Study 1, this test included 15 5-category items and Items 6, 

7 and 8 were specified as a testlet. The variance of testlet effect 2
)(idσ  was fixed to 1.0, and the 

item parameters were the same as in Study 1 (see Table 3.2). A modified GR model for testlet 

was fit to this generated data in WinBUGS. The prior distributions for the item parameters and 

the examinees’ abilities were the same as for GR models. The testlet effect was assigned a 

normal prior with mean of 0 and random variance of 2
)(idσ . The hyper-parameter 2

)(idσ  was given 

an inverse chi-square distribution with a degree of freedom 0.5 indicating a lack of information 
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about this parameter. This approach to specifying hyper prior of 2
)(idσ  was the same as that used 

by Bradlow et al. (1999) and Li et al. (2006). 

Two chains of length of 6000 were run and took approximately 6 hours to complete. The 

first 1000 iterations were discarded for the burn-in phase. Following the burn-in iterations, the 

remaining chains were thinned by taking every other iteration to get a combined posterior 

distribution sample of 5000. All the sampling histories, bgr diagrams, and autocorrelation plots 

suggested the Markov chains converged to a stationary distribution. Figure 3.10 displays the 

convergence diagnostic graphs for the slope and first threshold parameters for Item 6 (the first 

item in the testlet) and for the variance of the testlet effect. Similar results were observed for the 

other item parameters. 

Point estimates of the model parameters and standard errors were computed from the 

mean and standard deviations for posterior distributions for parameters. Table 3.17 the 

generating model parameters and their corresponding estimates in WinBUGS. The average 

absolute bias was 0.055 for the slope estimate and 0.048 for the threshold parameters. In 

addition, the bias in the estimation of the testlet effect variance was -0.06. Thus, close recovery 

of parameters was indicated and the WinBUGS code used to estimate the testlet GR model was 

considered valid. 
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Figure 3.10 Convergence Diagnostic Plots for Parameters under Testlet GR Model 



 126 

Table 3.17 Item Parameter Recovery for Testlet GR Model in WinBUGS 

 True Estimates 

Item a b1 b2 b3 b4 a b1 b2 b3 b4 

1 1.0 -2.0 -1.0  0.0 1.0 0.95 -2.01 -1.01 -0.00 1.11 
2 1.0 -1.5 -0.5  0.5 1.5 1.00 -1.44 -0.47 0.50 1.55 
3 1.0 -1.0  0.0  1.0 2.0 0.96 -0.93 0.07 1.09 2.16 
4 1.0 -3.0 -1.5 -0.5 1.0 1.14 -2.70 -1.36 -0.49 0.96 
5 1.0 -1.0   0.5  1.5 3.0 0.98 -1.02 0.52 1.48 3.11 
6 1.7 -2.0 -1.0  0.0 1.0 1.70 -1.98 -0.94 0.04 1.10 
7 1.7 -1.5 -0.5  0.5 1.5 1.67 -1.48 -0.46 0.52 1.51 
8 1.7 -1.0  0.0  1.0 2.0 1.79 -0.91 0.02 1.07 2.04 
9 1.7 -3.0 -1.5 -0.5 1.0 1.77 -3.08 -1.50 -0.48 1.02 

10 1.7 -1.0   0.5  1.5 3.0 1.69 -1.08 0.45 1.55 3.06 
11 2.4 -2.0 -1.0  0.0 1.0 2.44 -1.98 -1.0 -0.02 1.04 
12 2.4 -1.5 -0.5  0.5 1.5 2.54 -1.39 -0.48 0.48 1.51 
13 2.4 -1.0  0.0  1.0 2.0 2.35 -0.98 0.02 1.03 2.13 
14 2.4 -3.0 -1.5 -0.5 1.0 2.27 -3.08 -1.51 -0.50 1.06 
15 2.4 -1.0   0.5  1.5 3.0 2.41 -0.96 0.49 1.49 3.02 

Variance of testlet effect:               true = 1.0                             estimate = 0.94 
 

 

3.2.4 Conduct Model Comparison 

For each of 20 generated data in each condition, different models were estimated in WinBUGS, 

and three Bayesian model comparison indices (DIC, CPO, and PPMC) were obtained for each 

model during the estimation of the models. These values for the different models were then 

compared in order to determine which model was preferred.  

The estimates of the DIC index for different models were requested within WinBUGS. In 

the batch file (see Appendix D), a line “dic.set()" was used to set the DIC index, and another 

line   "dic.stats()" was used to request the value of DIC. The smaller the value of DIC, the 

better the model. It should be noted that the DIC index can only be used to choose a preferred 
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model for the overall test. Based on DIC, we can not know which model is preferred for a 

specific item. 

The computation of the CPO index was implemented by first computing the CPO at the 

level of an individual item response. A command line “ inprob[i, j] <- pow(p[i, j, y[i,j] ], -1)” was 

added to the WinBUGS code (see Appendix C) to compute the inverse likelihood of the 

observed item response based on the posterior model parameter values at a specific iteration. The 

mean value of this node “ inprob[i, j]” across the posterior sample is given in the statistics output 

for WinBUGS and represents the estimate of CPO value for the response of student i  to Item j. 

After the CPOij estimates were known, the CPO value for each item was computed in SAS by 

reading in the CPO ij estimates and taking the log of the product of the CPOij across all 

examinees (see Equation 2.36).  In addition, a CPO index for the overall test was summarized by 

taking the log of the product of the item-level CPOj   across all the items. In the current study, 

two levels of CPO index were used: the test-level CPO was used to compare the models for the 

overall test, and the item-level CPOj were used to choose a preferred model for each item. The 

larger the value of the test-level CPO, the better the model fit for the overall test. The larger the 

value of the item-level CPOj, the better the model fit for a specific item j. 

The different models in each condition were also compared using PPMC. The details 

about conducting PPMC were introduced in Section 3.1.5. Recall, 8 different levels of 

discrepancy measure were used with PPMC in Study 1. Different from Study 1, however, the 

discrepancy measures employed in Study 2 only included the effective measures identified from 

Study 1. From the results presented in Chapter 4 for Study 1, two discrepancy measures “Yen’s 

Q3” and “global OR” were found to be most effective among all the 8 measures for detecting the 

violations of unidimensionality and local independence. Therefore, for Conditions 2-4 in Study 
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2, only these two measures were used with PPMC for model comparison purpose. However, for 

Condition 1 in which the GR, 1-parameter GR, and RS models were compared, all 8 discrepancy 

measures were employed with PPMC since the use of discrepancy measures with these models 

was not investigated and therefore unknown.  

In order to compare different models using PPMC, the frequency of extreme PPP-values 

was computed for each model. For item-level discrepancy measures, there were 15 PPP-values 

for 15 items for each replication. How many items from the 15 items had extreme PPP-values (< 

0.05 or > 0.95) was treated as the criterion for comparing different models. For pair-wise 

measures, there were 105 PPP-values for the 105 item pairs for each replication. How many item 

pairs out of these 105 pairs had extreme PPP-values (< 0.05 or > 0.95) was treated as the 

criterion to compare different models. When the true model was estimated, it was expected that 

no or few extreme PPP-values would be observed. In contrast, when the alternative model was 

estimated, more extreme PPP-values would be expected. In addition to PPP-values, graphical 

plots based on different models were also compared.  

The relative performance of these three indices was compared with respect to the number 

of times each index selected the correct model across 20 replications. An effective index should 

be able to identify the generating model as the preferred model a large proportion of the time.  

The preliminary study conducted in Section 3.2.3 used two chains of different length to 

estimate different models. One exception was the RS model for which one long chain (10000 

iterations) was run. The results indicated that each chain converged very quickly and item 

parameters were well recovered. Due to the intensive computation in WinBUGS, only one chain 

was run to estimate the different models and compute the model comparison indices. The length 
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of the chain for each model depended on the model as well as the results from the preliminary 

study. 

Condition 1

For each of these three models, one chain of 5000 iterations was run, and the first 4000 

was discarded as the burn-in phase and the remaining 1000 iterations were thinned by taking 

every other iteration to obtain a posterior sample of size 500. The computation of three model 

comparison indices was based on these 500 iterations.  

: GR vs. one-par GR vs. RS models 

Condition 2

For 2-dim simple-structure GR model, one chain of 8000 iterations was run, and the first 

5000 was discarded as the burn-in phase and the remaining 3000 iterations were thinned by 

taking every third iteration to get a posterior sample of size 1000. For the unidimensional GR 

model in this condition, one chain of 5000 iterations was run, and the first 3000 was discarded as 

the burn-in phase, and the remaining 2000 iterations were thinned by taking every other iteration 

to get a posterior sample of size 1000. The computation of three model comparison indices was 

based on these 1000 iterations.  

: unidimensional GR model vs. 2-dim simple-structure GR model 

Condition 3

The length of the chain, thinning, and the size of posterior sample for the 2-dim complex-

structure GR model was the same as for the 2-dim simple-structure GR model in Condition 2. 

Note that more thinning was conducted than the previous preliminary study in order to further 

reduce the autocorrelation among parameters. For the unidimensional GR model, one chain of 

5000 iterations was run, and the first 3000 was discarded as the burn-in phase, and the remaining 

2000 iterations were thinned by taking every other iteration to get a posterior sample of size 

1000.  

: unidimensional GR model vs. 2-dim complex-structure GR model 
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Condition 4

For both models, one chain of 5000 iterations was run, and the first 3000 was discarded 

as the burn-in phase and the remaining 2000 iterations were thinned by taking every other 

iteration to obtain a posterior sample of size 1000.  

: unidimensional GR model vs. testlet GR model 

3.3 REAL DATA APPLICATION 

This section examines the use of the proposed Bayesian approaches to model-checking and 

model-comparison for a real mathematics performance assessment - the QUASAR Cognitive 

Assessment Instrument (QCAI). QUASAR (Quantitative Understanding: Amplifying Student 

Achievement and Reasoning) was a national project that sought to demonstrate that it is feasible 

to implement instructional programs in the middle-school grades that promote the acquisition of 

thinking and reasoning skills in mathematics (Silver, 1991). The QCAI was a performance 

assessment developed for the QUASAR project in order to evaluate the impact of innovative 

instructional programs on middle school students’ mathematical thinking and reasoning in four 

sub-domains: reasoning, problem solving, communication, and understanding of the features that 

characterize mathematical concepts and their interrelations (Lane, 1993). The QCAI includes 

four test forms (A, B, C, and D), each containing 9 different open-ended tasks scored at 5 levels 

(0-4). These four forms were randomly distributed within each sixth- and seventh-grade class in 

the schools participating in the QUASAR project (Lane, Stone, Ankenmann & Liu, 1995). This 

test was administrated in both the fall and the spring during 1990, 1991, and 1992. 

Several researchers have examined the extent to which the QCAI response data met the 

assumptions and properties underlying the GR model. Lane et al. (1995) conducted a 
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comprehensive study to evaluate the dimensionality, speededness and item parameter invariance 

for each of four QCAI forms across three administration occasions (Spring 1991, Fall 1991, and 

Spring 1992). They examined the dimensionality through the use of the confirmatory factor 

analysis and eigenvalue plots. Factor analysis results indicated that each of the four forms of the 

QCAI were essentially unidimensional. However, it was found that tasks with lower factor 

loadings in a one-factor model solution reflected tasks requiring some type of explanations, and 

the tasks with relatively high loadings generally involved problems requiring students to only 

display their mathematics solution strategies. Lane et al. (1995) further explored the use of two-

factor models. A two-factor model was estimated in which one factor included all tasks except 

those requiring a nonprocedural explanation and a second factor included only the tasks 

requiring a nonprocedural explanation. In addition, a two-factor model was estimated in which 

one factor included only the tasks requiring the display of solution strategies and an explanation 

and a second factor included tasks requiring only the solution strategies. From the results, there 

was no substantial statistical evidence to support the two-factor models, thus providing 

additional evidence supporting one dominant dimension underlying the item responses to the 

QCAI. 

Speededness was investigated for tasks by statistically comparing hierarchical GR models 

using two groups of students with different administration time lengths. For two of the eight 

tasks examined, only the slope parameter estimates differed, and for another two tasks, both the 

slope and threshold parameter estimates differed. The stability of QCAI item parameter estimates 

over time was investigated using restricted IRT models within a multiple-group analysis in 

MULTILOG. The results indicated that the parameter estimates were stable for the first year, but 

not stable for the second year. 
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 It is interesting to note that in their study, in order to select a more appropriate GR model 

for scaling the QCAI data, they compared two hierarchical models, a two-parameter (2P) GR and 

a one-parameter (1P) GR that restricted the slope parameters to be equal across items. These 

models were compared using the log-likelihood statistics for the two models. A significant 

difference between the statistics indicated that the 2P GR model fit the data better than the 1P 

model.  

Goodness of fit with respect to the QCAI items was investigated by Stone, Ankenmann, 

Lane, & Liu (1993) and later reexamined by Stone (2000). Due to imprecise point ability 

estimates caused by the small number of tasks on each QCAI form, the researchers utilized 

Stone’s item-fit statistic G2* to assess the fit of each QCAI task to the GR model. The difference 

between these two studies involved different Monte Carlo resampling approaches for hypothesis 

testing of the fit statistic.  

Stone et al. (1993) used a Monte Carlo resampling method which required estimation of 

the GR model for each simulated dataset, thus accounting for uncertainty in both item and ability 

parameters in generating the simulated null distribution of the G2* statistic. Fit was evaluated for 

each of the items on four forms (A-D) across four administration occasions (Fall 1990, Spring 

1991, Fall 1991, and Spring 1992) by comparing the G2* statistic with simulated null 

distributions. A few flawed items were excluded from the analyses for earlier administration. 

The total number of tasks on the four forms was 30 for the first two administrations, and 33 for 

the last two administrations (three flawed tasks were revised and included). The results indicated 

that 12 tasks fit the data across all four administrations, only 1 task did not fit the data across the 

four administrations, 2 tasks did not fit the data across three of the four administrations, 7 tasks 
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did not fit the data across two of the four administrations, and 9 tasks did not fit the data for one 

of the four administrations. 

The resampling method used by Stone et al. (1993) was computationally intensive due to 

the requirement that item parameters be estimated for each Monte Carlo sample. To reduce the 

computational complexity, Stone (2000) proposed an alternative resampling method that used the 

item parameter estimates based on the real data for all Monte Carlo samples. Thus, the step 

involving re-estimation of the GR model for each sample was eliminated. Stone (2000) also 

proposed a procedure for estimating a scaling factor that could be used to rescale the fit statistic 

to approximate the null distribution for hypothesis testing. For this method, only uncertainty in 

ability estimation was considered in generating the sampling null distribution of the G2* statistic. 

Uncertainty in item parameter estimation was considered by adjusting the derived df  by the 

number of estimated item parameters. In order to compare this alternative resampling method 

with the previous method, the fit of 62 QCAI items from two of the four administrations used in 

Stone et al. (1993) were reanalyzed using this alternative resampling and the results were 

compared with those from the previous study. Although general agreement in terms of the fit of 

these QCAI items from the two studies was high, there was some disagreement between two 

studies. The disagreement existed primarily for items found to be significantly “misfitting” in 

Stone et al. (1993) but not significantly “misfitting” using the alternative resampling method.  

In the current study, the PPMC method was used to re-examine the fit of the QCAI to the 

two-parameter GR model in terms of unidimensionality, local independence, and item-fit. All 8 

discrepancy measures used in Simulation Study 1 were used with PPMC for this real application, 

and the results were compared with those from the previous studies. In addition, the 1P GR and 

2P GR models were re-compared using the proposed Bayesian model-comparison tools to see if 
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the 2P GR model fit the QCAI data better as found in Lane et al. (1995). Moreover, a 2-

dimensional complex-structure GR model was estimated in order to see if a complex 

multidimensional model was preferred over the simple unidimensional GR model. In this 

multidimensional model, the first dimension included all items, and the second dimension 

included only the items requiring an explanation. It should be noted that only Yen’s Q3 statistic 

and the global OR measure were used with PPMC for the 2-dimensional complex-structure 

model since these two measures were found to be the most effective measures based on the 

simulation studies.    

For this real data application, three QCAI forms with 8 items each were reanalyzed: Form 

A administrated in Spring 1991 (AS91), Form A given in Spring 1992 (AS92), and Form B 

given in Spring 1992 (BS92). The sample sizes were 399, 459, and 446 for the AS91, AS92, and 

BS92 forms, respectively.  

Table 3.18 compares the decisions regarding item fit for the items on these three forms 

from Stone et al. (1993) and Stone (2000). All decisions regarding item fit were made at the α = 

0.05 level of significance. The misfitting items were indicated by asterisks. As seen in this table, 

in Stone et al. (1993), there were 4 misfitting items for the AS91 test form, 2 misfitting items for 

the AS92 form, and 5 misfitting items for the BS92 form. However, two of these items were not 

identified as misfitting by Stone (2000). The fit of these items was re-examined using the PPMC 

method, and the results were compared with the results in this table. 
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Table 3.18 Misfitting Items Identified in Stone et al. (1993) and Stone (2000) 

AS91 AS92 BS92 

Item 
Stone et al, 

1993 
Stone, 
2000 Item 

Stone et al, 
1993 

Stone, 
2000 Item 

Stone et al, 
1993 

Stone, 
2000 

1 * * 1   1 * * 

2   2 *  2 * * 

3 *  3 * * 3 * * 

4   4   4   

5 * * 5   5   

6   6   6 * * 

7   7   7 * * 

8 * * 8   8   
 

 When a 2-dimensional complex-structure GR model was used to analyze the AS91 or 

AS92 datasets, four explanation items (Items 1, 5, 7, and 8) loaded on the two dimensions, and 

all other items only loaded on the first dimension. For the BS92 dataset, three explanation items 

(Items 1, 5, and 8) loaded on both dimensions, and all other items only loaded on the first 

dimension. 

With regard to the implementation of MCMC and PPMC in WinBUGS, a chain of 15000 

iterations was run to estimate, test and compare the fit of the two-parameter GR model, one-

parameter GR model, and the 2-dimensional complex-structure GR model. The first 10000 

iterations were discarded for the burn-in phase and the remaining 5000 iterations were thinned by 

selecting every 5th iteration to obtain posterior distributions based on 1000 iterations. The 

implementation of PPMC and the computation of model-comparison indices were based on this 

posterior sample. 
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4.0  RESULTS 

This chapter presents the results from two simulation studies and one real application study in 

three separate sections. Simulation Study 1 aimed to explore the performance of the PPMC 

method in detecting aspects of lack of fit for unidimensional GR models using the proposed 

discrepancy measures. The Type-I error rates or empirical power rates for these discrepancy 

measures with PPMC are presented in the first section. The second section includes the results 

from Simulation Study 2 in which the relative effectiveness of three Bayesian model-comparison 

methods (DIC, CPO, and PPMC) were compared. The third section presents results evaluating 

the fit of the unidimensional GR model item responses from the QCAI performance assessment 

using the PPMC method and model-comparison indices. 

4.1 RESULTS FROM SIMULATION STUDY 1 

In order to investigate the performance of the PPMC method in evaluating different assumptions 

underlying the unidimensional GR model, five conditions were considered in Study 1 (see Table 

3.1). Condition 1 represents the null condition in which both the generating model (Mg) and 

analysis model (Ma) were the unidimensional GR model, and thus Type-I error rates for PPMC 

were investigated. In Conditions 2 to 5, different types of misfit were simulated based on 

different GR models, and empirical power rates for PPMC in detecting different misfit were 
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examined. The results from Study 1 are organized in the order of the conditions. For each 

condition, both PPP-values and graphical plots for each of the 8 discrepancy measures used with 

PPMC are summarized and reported. 

4.1.1 Item Parameter Recovery 

Table 4.1 RMSD for Item Parameter Recovery in WinBUGS for GR Model 

Item a b1 b2 b3 b4 

1 0.05 0.09 0.06 0.05 0.08 

2 0.06 0.08 0.05 0.06 0.12 

3 0.06 0.08 0.06 0.08 0.14 

4 0.04 0.14 0.10 0.07 0.05 

5 0.05 0.07 0.06 0.11 0.21 

6 0.08 0.10 0.05 0.04 0.06 

7 0.07 0.06 0.04 0.05 0.10 

8 0.09 0.05 0.04 0.05 0.12 

9 0.06 0.11 0.06 0.05 0.05 

10 0.09 0.05 0.05 0.07 0.19 

11 0.09 0.08 0.04 0.03 0.05 

12 0.12 0.07 0.04 0.03 0.06 

13 0.10 0.04 0.03 0.03 0.08 

14 0.09 0.13 0.06 0.04 0.04 

15 0.10 0.04 0.04 0.07 0.14 
 08.0)( =aDSMR       07.0)( =bDSMR  

 
 PPMC is based on the posterior estimation of model parameters, and the quality of model 

parameter recovery using MCMC estimation is an important factor in determining whether 

PPMC could be implemented successfully. As a result, parameter recovery was examined first. 

Table 4.1 represents the RMSD for each item parameter across the 20 replications. The average 

RMSD across all items was 0.08 for slope parameter and 0.07 for threshold parameters. These 



 138 

results indicate one chain of 4000 and a posterior sample of 500 was adequate for the accuracy of 

estimation of the unidimensional GR model using MCMC within WinBUGS. 

4.1.2 Condition 1 (Ma = Mg = unidimensional GR) 

When the estimated model was the same as the generating model, the proportion of 20 

replications with extreme PPP-values (< 0.05 or > 0.95) for each discrepancy measure provides 

evidence with regard to Type-I error rates, or how often misfit was wrongly detected by the 

PPMC method. If the PPP-values were used in the same way as classical p-values, the nominal 

Type I error rate would be 0.10. Table 4.2 reports the overall median PPP-value and average 

Type-I error rate for each measure. The values were pooled across all possible items (for item-

level measures) or item pairs (for pair-wise measures) and also across the 20 replications. The 

underlying rationale is that the generated data in Condition 1 were unidimensional GR data and 

all items (item-pairs) had the same dimensional structure. Thus, they were exchangeable in terms 

of dimensionality.  

Specifically, for the “test-level” measure, the median PPP-value was the median of PPP-

values across the 20 replications, and the Type-I error rate was reflected by the proportion of 20 

replications with extreme PPP-values.  For each item-level discrepancy measure, each of the 15 

items had a median PPP-value and a Type-I error rate was computed across the 20 replications. 

The overall median PPP-value was the median value of these median PPP-values of the15 items, 

and the overall Type-I error rate was the average of the Type-I error rates over 15 items. 

Following the same logic, for each pair-wise measure, each of 105 item pairs had a median PPP-

value and a Type-I error rate across the 20 replications. The overall median PPP-value was the 
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median of the median PPP-values for 105 item pairs, and the overall Type-I error rate was the 

average of the Type-I error rates over these 105 item pairs. 

               Table 4.2 Median PPP-values and Average Proportions of Replications with Extreme PPP-values    
(< 0.05 or >0.95) when Ma=Mg=unidimensional GR 

 Discrepancy Measure Median PPP Average 
Proportion 

Test-Level Test Score Distribution 0.51 0.10 
Item Score Distribution 0.50 0.00 
Item-Total Score Correlation 0.48 0.00 
Yen’s Q1 0.52 0.00 

Item-Level 

Stone’s Fit Statistic 0.50 0.01 
Global OR 0.49 0.05 
Yen’s Q3 0.49 0.06 Pair-wise 

Item Covariance Residual 0.52 0.01 
 

 As shown in Table 4.2, the median PPP-values for all the measures were around 0.50 

which was expected under the null condition. Thus, the realized (observed) values of the 

discrepancy measure were not consistently larger or smaller than the posterior predictive values 

(i.e., no systematic difference between realized and predictive values), indicating no departure of 

model-data fit. All the proportions (except the test-level measure) were below 0.10, suggesting 

that the use of PPP-values in hypothesis testing would lead to highly conservative tests (i.e., they 

tend not to show misfit of a correct model too often). The two pair-wise measures (global OR 

and Yen’s Q3) appeared to have empirical type-I error rates most close to the nominal rate, 

though still quite lower.  

The conservativeness of the discrepancy measures investigated in this study was further 

explored by examining the distribution of PPP-values. As reviewed in Chapter 2, the departure of 

the distribution of PPP-values from a uniform distribution under the null condition would result 

in a conservative test when PPP-values are used in a hypothesis testing framework. The closer to 
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uniform the distribution, the closer to the nominal level the Type-I error rate would be (Levy, 

2006).  

 

Figure 4.1 Distributions of PPP-values for Each Discrepancy Measures under the Null Condition 

Figure 4.1 presents the distributions of the PPP-values for each discrepancy measure 

across all possible items or item pairs and across 20 replications as well. The distributions were 

drawn without distinguishing different items or item pairs because of the exchangeability 

assumption. As observed in this figure, all distributions of PPP-values were centered at around 

0.5. However, the shape and the variability of the distributions differed for the different 

measures. The distribution of the chi-square used to measure the difference between observed 
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and expected item score distributions was least variable around 0.5. The item-total score 

correlation, Yen’s Q1 item-fit statistic, and item covariance residual exhibited slightly more 

variation. Stone’s item-fit statistic showed more variability. Two pair-wise measures (global OR, 

Yen’s Q3) exhibited most variability. It is interesting to note the chi-square measure 2
Tχ  used to 

measure the difference between observed and model-predicted test score distributions also 

exhibited more variability. Although it is not entirely clear why the test-level and item-level 

measures differed in variability, this test-level measure was observed to be more variable than 

the item-level measures. 

From Figure 4.1, the distributions of PPP-values for the two pair-wise measures – global 

OR and Yen’s Q3 and the test score distribution were more close to uniform distributions as 

compared to the other discrepancy measures. As a result, they exhibit empirical Type I error 

rates closer to the nominal rate of 0.10 than others as shown in Table 4.2. These findings are 

consistent with previous research (Levy, 2006; Meng, 1994; Robins et al., 2000; Rubin, 1996).  

They showed that different from classical p-values, PPP-values are not uniformly distributed 

under null conditions, even asymptotically. Though the distribution may be centered at 0.5 it is 

less dispersed than a uniform distribution. Thus, the PPP-values under the correct model tend to 

be closer to 0.5 more often than would be expected under a uniform distribution. However, Levy 

(2006) also showed that some effective measures approximated uniform distributions and 

approximated nominal level Type-I errors.  

As discussed previously, graphical plots are also often used to provide diagnostic 

evidence about misfit. In general, when the discrepancy measure only depends on the data, the 

position of the observed value in the distribution of posterior predictive values is examined. 

When the measure depends on both the data and model parameters, pairs of realized vs. 
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predictive discrepancies are plotted in a scatter plot. For the null condition of this study, several 

different plots are shown for three levels of discrepancy measures. These plots served as 

reference or baseline plots for the misfitting conditions (Conditions 2-5).  

Figure 4.2 shows two diagnostic plots based on the “observed test score distribution” for 

one dataset (replication) generated from the unidimensional GR model and estimated using the 

same model. The first plot is the observed score distribution versus the 90% posterior predictive 

(PP) distributions (between 5% and 95%) of total test scores. As seen from this plot, the 

observed score distribution is within the PP interval. The second plot shows the realized and 

predictive values of the measure

Test-Level Measure 

2
Tχ , summarizing the discrepancy between the observed and 

predictive test score distributions. In this plot, the x-axis represents the predictive 2
Tχ  values and 

the y-axis represents the realized 2
Tχ  values. As can be observed, the realized 2

Tχ  values were 

not consistently larger or smaller than the predictive values. Both plots provide graphical 

evidence about model-fit. In addition, the corresponding PPP-value was 0.63 for this data set, 

also indicating a good fit between model and data.  

 

Figure 4.2 Diagnostic Plots based on Test Score Distribution when Ma=Mg=unidimensional GR 
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Table 4.3 presents the median PPP-values and Type-I error rate of the item-level 

discrepancy measures for each item. As can been from this table, the median PPP-values were 

around 0.50, and the Type-I error rates were 0.00, indicating high conservativeness for the four 

item-level measures. It should be noted for each of the two item-fit measures (Yen’s and 

Stone’s), both Pearson’s chi-square and likelihood ratio statistics were examined. Since both 

statistics had very similar results, only the results for Pearson’s chi-square statistic are reported. 

Item-Level Measures 

Table 4.3 Median PPP-values and Proportions of Replications with Extreme PPP-values for Item-Level 
Meausres when Ma=Mg=unidimensional GR 

Item Score Distribution Item-Total Correlation Yen’s Q1 Stone’ Item-Fit 
Item 

Median PPP Type-I Median PPP Type-I Median PPP Type-I Median PPP Type-I 
1 0.51 0.00 0.46 0.00 0.52 0.00 0.49 0.00 
2 0.51 0.00 0.45 0.00 0.54 0.00 0.54 0.00 
3 0.50 0.00 0.48 0.00 0.52 0.00 0.56 0.05 
4 0.50 0.00 0.48 0.00 0.51 0.00 0.49 0.00 
5 0.50 0.00 0.49 0.00 0.47 0.00 0.47 0.00 
6 0.48 0.00 0.49 0.00 0.48 0.00 0.57 0.00 
7 0.50 0.00 0.49 0.00 0.50 0.00 0.50 0.00 
8 0.50 0.00 0.45 0.00 0.48 0.00 0.48 0.00 
9 0.50 0.00 0.48 0.00 0.56 0.00 0.55 0.00 

10 0.50 0.00 0.50 0.00 0.52 0.00 0.50 0.00 
11 0.50 0.00 0.46 0.00 0.51 0.00 0.59 0.00 
12 0.51 0.00 0.51 0.00 0.53 0.00 0.52 0.05 
13 0.50 0.00 0.46 0.00 0.54 0.00 0.58 0.00 
14 0.50 0.00 0.52 0.00 0.53 0.00 0.46 0.00 
15 0.50 0.00 0.50 0.00 0.50 0.00 0.43 0.05 

 
 Figure 4.3 illustrates the observed item-total score correlations, corresponding 90% 

posterior predictive intervals and the median posterior correlations for each of 15 items based on 

one replication. A clear pattern in this plot is that the items fell into three groups in terms of the 

value of item-total correlation. This was expected since the first five items had the same true 

slope value of 1, Items 6-10 had the same true slope of 1.7, and the last five items had slope of 

2.4. Item-total score correlations reflect the item discriminations and are related to the slope 

parameters. The observed correlation (solid dot) for each item approximated the median 
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posterior correlation, indicative of a good fit of the unidimensional GR model to the data for this 

discrepancy measure. 

 

Figure 4.3 Oberved vs. 90% Posterior Preditive Interval of Item-Total Correlation for Each Item 
when Ma=Mg=undimensional GR 

 

 

Figure 4.4 Realized vs. Posterior Predictive Values of Item-Level Chi-Square Measure and Yen’s Q1

Unlike the item-total score correlation measure which is dependent only on the data, the 

other three item-level measures depend on both the data and model parameters. Figure 4.4 shows 

the scatter plots of realized vs. posterior predictive values for the “item-level chi-square 

 
for Item 1 when Ma=Mg=unidimensional GR 
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measure” (measuring the discrepancies between observed and predictive item score 

distributions) and “Yen’s Q1 item-fit statistic”. The PPP-values for these two measures were 0.51 

and 0.54, respectively. As can be seen, there was no systematic difference between the realized 

and posterior predictive values. The scatter plot for “Stone’s item-fit measure” was similar to 

these two plots and is not provided here. It should be noted that the plots discussed above were 

drawn from one dataset (i.e., one replication). Similar plots were observed for the other 19 

datasets.  

For each pair-wise measure, there are 105 PPP-values for each replication. In order to 

summarize the results across the 20 replications more efficiently, pie plots similar to those used 

by Sinharay and his colleague (2006) were employed. Figure 4.5 displays the median PPP-values 

(Left) and Type-I error rates (Right) for each item pair across the 20 replications for the three 

pair-wise measures. In the left plot, there is one pie for each item pair, and the proportion of a 

circle that is filled is equal to the magnitude of corresponding median PPP-value. The right plot 

provides information related to how the discrepancy measure detected misfit for each item pair. 

The filled proportion of a pie represents the proportion of 20 replications with extreme PPP-

values (i.e., Type-I error rate) for that item pair. There is a clear pattern in this figure: under the 

null condition, the median PPP-values were all around 0.5 (left plot), and the proportion of 

extreme PPP-values were small (right plot). In addition, a larger number of pie plots for the “item 

covariance residual” measure were not filled, indicating that this measure was more 

conservative than the other two measures. The same phenomenon was found previously when 

comparing the overall Type-I error rates for these three pair-wise measures in Table 4.2.  

Pair-Wise Measures 
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Figure 4.5 Display of Median PPP-values (Left) and Proportion of 20 Replications with Extreme PPP-values 
(Right) for Global OR (Row1), Yen’s Q3 (Row2), and Item Covariance Residual (Row3) when Ma=Mg= 
unidimensional GR 
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It is also useful to examine the pattern for a single dataset rather than a summary across 

20 datasets.  Figure 4.6 shows the PPP-values of Yen’s Q3 and Item Covariance Residual for 

each item pair based on one of the 20 replications. The global OR displayed a similar pattern as 

Yen’s Q3 and is not shown here. As observed in these two plots, most of the PPP-values were not 

extreme, providing evidence that the GR model fit the data. It is interesting to note that the PPP-

values of Yen’s Q3 were more variable than those of Item Covariance Residual. This was 

expected based on the difference between their PPP-values distributions. As observed in Figure 

4.1, the distributions of global OR and Yen’s Q3 measures were more variable and closer to 

uniform distributions than the Item Covariance Residual. Similar plots were found for the other 

19 datasets. 

 

Figure 4.6 Display of PPP-values (based on a single dataset) for Yen’s Q3 (Left), and Item Covariance 
Residual (Right) when Ma=Mg= unidimensional GR 

Figure 4.7 plots the observed global ORs involving the first item, 90% PP interval, and 

PP medians for one replication under the null condition. No observed global ORs (solid triangle) 

fall outside the PP interval, suggesting the model fits the data. Similar findings were obtained for 

other replications and other items. Figure 4.8 provides the scatter plots of the realized vs. 

posterior predictive values for Yen’s Q3 and Item Covariance Residual measures for one item 
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pair based on a single data. As can be seen, there were no systematic differences between the 

realized and posterior predictive values. Similar plots were obtained for the other 19 datasets and 

for other item pairs and are not presented here. 
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Figure 4.7 Observed vs. 90% Posterior Predictive Interval of Global OR for Item 1 with Other 
Items (for a single replication) when Ma=Mg= unidimensional GR 

 

  

Figure 4.8 Scatter plots of Realized vs. Posterior Predictive Values of Yen’s Q3 and Item 
Covariance Residual (for a single data) when Ma=Mg= unidimensional GR  
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4.1.3 Condition 2 (Mg = 2-dim simple-structure GR , Ma = 1-dim GR) 

In this condition, the generated data reflected two dimensions (the first 8 items in Dim1 and the 

last 7 items in Dim2), but the estimated model was a unidimensional model. The ability of the 

PPMC method in detecting the violation of unidimensionality was explored by using all 8 

proposed measures. Two cases were considered in this condition, one with low inter-dimensional 

correlation (ρ=0.3), and another with a more typical moderate inter-dimensional correlation 

(ρ=0.6). 

Table 4.4 Overall Median PPP-values and Average Proportions of Replications with Extreme PPP-values for 
all Measures – Condition 2 

Case 1 (ρ=0.3) Case 2 (ρ=0.6)  
Measure Type 

Median PPP Power Median PPP Power 
Test-Level Test score dist - 0.06 0.25 0.41 0.10 

Dim1 0.50 0.00 0.50 0.00 Item score dist 
Dim2 0.50 0.00 0.50 0.00 
Dim1 1.00 0.91 0.28 0.09 Item-test corr 
Dim2 0.00 0.99 0.66 0.03 
Dim1 0.50 0.00 0.52 0.00 Yen’s Q1 Dim2 0.50 0.00 0.53 0.00 
Dim1 0.50 0.00 0.51 0.01 

Item-Level 

Stone’s fit stat 
Dim2 0.50 0.01 0.53 0.00 

(Dim1, Dim1) 0.07 0.45 0.01 0.74 
(Dim1, Dim2) 0.99 0.79 0.98 0.68 Global OR 
(Dim2, Dim2) 0.00 0.87 0.00 0.80 
(Dim1, Dim1) 0.01 0.74 0.00 0.96 
(Dim1, Dim2) 1.00 0.98 1.00 0.97 Yen’s Q3 
(Dim2, Dim2) 0.00 0.95 0.00 0.97 
(Dim1, Dim1) 0.08 0.44 0.00 0.87 
(Dim1, Dim2) 0.00 0.93 0.01 0.83 

Pair-Wise 

Item cov resid 
(Dim2, Dim2) 0.00 0.86 0.00 0.92 

 
 Table 4.4 presents the pooled median PPP-values and the average proportion of extreme 

PPP-values across the 20 replications (i.e., empirical power) for each discrepancy measure and 

for the two correlation cases. Under the assumption that the items in the same dimension were 

interchangeable, there were two types of items – items in Dim1 and items in Dim2 for each item-

level measure. Therefore, the median PPP-values and the proportions were pooled across items 
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in each dimension. For the pair-wise measures, there were three types of item pairs: item pairs 

from the first dimension (Dim1, Dim1), item pairs from the second dimension (Dim2, Dim2), 

and item pairs from different dimensions (Dim1, Dim2). The PPP-values were pooled from the 

same type of item pairs across the 20 replications.  

 As observed from this table, the three pair-wise measures were sufficiently powerful in 

detecting the misfit of the unidimensional GR model to the two-dimensional data for both cases. 

Median PPP-values were extreme and the empirical power rates were high. Yen’s Q3 index 

performed best in terms of empirical power, and the item covariance residual measure performed 

better than the global OR. It is worthy to note that the global OR and Yen’s Q3 measures are both 

directional measures, and their PPP-values reflect the relationship between realized and posterior 

predictive discrepancies. For example, for item pairs from the same dimension, the median PPP-

values for these two measures were close to 0. This indicated that the observed association 

between these item pairs was systematically higher than predicted under the unidimensional GR 

model. Thus the unidimensional model underestimated item relationships. For two items from 

the different dimensions, the median PPP-values were close to 1, indicating that the observed 

association was consistently lower than expected under the GR model, and the model 

overestimated their relationship. The absolute item covariance residual does not have this 

feature.  

As the inter-dimensional correlation increased from 0.3 to 0.6, these three pair-wise 

measures were consistently powerful in detecting the misfit. The results in Table 4.5 also 

illustrate that the test-level and item-level measures did not appear as useful as the pair-wise 

measures in detecting multidimensionality among the data where ρ=0.6. The median PPP-values 

were not extreme and the proportions of extreme PPP-values (i.e., empirical power) were very 
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small. However, for ρ=0.3, the test-level measure and the item-total score correlation measure 

exhibited increased power. Specifically, when the correlation decreased from 0.6 to 0.3, the 

median PPP-value for the test-level chi-square measure decreased from 0.41 to 0.06, and the 

corresponding power rate increased from 0.10 to 0.25. For the item-total correlation, the overall 

median PPP value became extreme, increasing from 0.28 to 1.00 for the items in Dim1, and 

decreasing from 0.66 to 0.00 for the items in Dim2. The average power rate increased from 0.09 

to 0.91 for Dim1 items, and from 0.03 to 0.99 for Dim2 items. The median PPP value of 1.00 

indicated the observed item-total correlations were consistently lower than the predictive values 

for the items in Dim1, suggesting the 1-dim GR model over-estimated this measure. On the other 

hand, the median PPP value of 0.00 indicated the observed item-total correlations were 

consistently higher than the predictive values for the items in Dim2, suggesting the 1-dim GR 

model under-estimated this measure. Since the performance of the item-total score correlation 

changed dramatically when the inter-correlation decreased from 0.6 to 0.3, further study is 

needed in order to explore the impact of higher correlations among dimensions. 

As for Condition 1, graphical plots were provided to show the graphical evidence for the 

misfit of the 1-dim GR model to the 2-dim data. It should be noted that only the plots related to 

the effective measures are presented since the plots for the ineffective measures were similar to 

the corresponding plots under the null condition (Condition 1).  
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Figure 4.9 Display of Median PPP-values (Left) and Proportion of 20 Replications with Extreme PPP-values 
(Right) for Global OR (Row1), Yen’s Q3 (Row2), and Item Covariance Residual (Row3) – Condition 2 (ρ=0.6) 
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Figure 4.9 displays the median PPP-values (Left) and empirical power (Right) of the 

three pair-wise measures for each item pair across the 20 replications for Case 2. The large 

number of the extreme PPP-values in this figure clearly indicates that the unidimensional GR 

model did not fit the data. Moreover, the pattern in the plots for the two directional measures 

(global ORs and Yen’s Q3) differed clearly from the pattern under the null condition: all the 15 

items fell into two clusters - Items 1-8 formed one cluster, and Items 9-15 formed another 

cluster. This pattern matched the factor structure of the generated data. The pie plots for Case 1 

were similar to the plots for Case 2 and are not shown here.  

 

Figure 4.10 Display of PPP-values (based on a single dataset) for Yen’s Q3 (Left), and Item Covariance 
Residual (Right) - Condition 2 (ρ=0.6) 

Figure 4.10 shows the PPP-values for Yen’s Q3 and Item Covariance Residual for each 

item pair based on one replication when the correlation was 0.6. Results for the global OR 

displayed a similar pattern as Yen’s Q3 and thus are not shown here. As observed in these two 

plots, the pattern for a single dataset was similar to the pattern based on the 20 replications (see 

Figure 4.9): most of the PPP-values were extreme, providing evidence of misfit of the 

unidimensional GR model to the data.  
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Figure 4.11 Scatter plots of Realized vs. Posterior Predictive Values of Yen’s Q3 (top), and Item 
Covariance Residual (bottom) (for a single data) – Condition 2 / Case 2 (ρ=0.6) 

Figure 4.11 displays the comparison of realized and PP values of Yen’s Q3 and the item 

covariance residual measure for different types of item pairs based on a single replication when 

ρ=0.6. As can been seen from the top plots, for items in the same dimension (Items 1, 7 or Items 

14, 15), the realized values of Q3 were mostly larger than the predictive values since the scatter 

plot is above the diagonal line. In contrast, for items from the different dimensions (Items 1, 15), 

the realized values of Q3 were lower than the predictive values. Unlike Yen’s Q3, the item 

covariance residual measure has no direction. As observed from the bottom plots, the realized 

values of residuals were all systematically larger than the predictive residuals under the 

unidimensional GR model. These results provided evidence of model misfit. 
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Figure 4.12 Observed vs. 90% Posterior Predictive Interval of Global OR for Item 1 with 
Other Items (for a single replication) – Condition 2 / Case 2 (ρ=0.6) 

The global OR measure for the first item (90% PP interval, and PP medians) are shown in 

Figure 4.12. As seen from this figure, the observed global ORs (solid triangle) fall outside or 

above the PP interval for Item1 paired with Items 2-8 (all in Dim1 items). Whereas, the observed 

ORs fall outside or blow the PP interval for Item1 paired with the items in Dim2 (Items 9-15). 

The pattern in this figure indicated that the observed global OR were mostly larger than the 

predictive values for the item pairs from the same dimension, but smaller for the item pairs from 

the different dimensions. 

The above plots for the three pair-wise measures illustrate results for some item pairs and 

for one replication. Similar results were found for other item pairs and for the other 19 

replications. Overall, the results above indicated that the PPMC method using three pair-wise 

measures detected a lack of fit of the unidimensional GR model to the two-dimensional test data. 

In addition, the directional measures, global OR and Yen’s Q3, provided plots which indicated 

how the items may be grouped dimensionally. 
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Figure 4.13 Observed vs. 90% Posterior Predictive Interval of Item-Total Score Correlation (Left) and 
Histogram of Predicted SDs (for a single replication) for Case 1 (top) and Case 2 (bottom) – Condition 2 

Recall that the item-total score correlation measure was found to be powerful when the 

inter-dimensional correlation was 0.3 (Case 1), but exhibited lower power when the correlation 

increased to 0.6 (Case 2). This finding is clearly illustrated in Figure 4.13 which includes two 

types of plots for each case. The left plot presents the observed item-total correlation and 90% 

PP interval for each item based on a single replication. The right plot shows the position of the 

standard deviation (SD) of the observed item-total correlations for all items in the distribution of 

the SDs of the predictive item-total correlations. As can been seen, when the correlation was 0.3, 

the observed correlation fell outside or at the lower end of the PP intervals for the items in Dim1, 

and fell outside or at the upper end of the intervals for the items in Dim2. The observed SD was 
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located to the far left in the histogram of the predictive SDs, indicating that the observed item-

total correlations were less variable than the predictive correlations. However, when the 

correlation increased to 0.6, there was not much difference between observed and predictive 

values. As can been from the bottom plots, the observed correlations approximated the medians 

of the predictive correlations, and the observed SD is in the middle of the histogram. 

 

Figure 4.14 Diagnostic Plots based on Test Score Distribution (for a single data) – Condition2 /Case 1 

As discussed previously, the test-level measure demonstrated adequate power in 

detecting the misfit of the GR model to this two-dimensional data when the correlation was 0.3. 

This finding is illustrated in Figure 4.14 which includes two diagnostic plots based on the total 

test score distribution for one replication (the PPP-value for this replication was 0.03). The left 

one displays moderate power since the observed frequencies lie outside the 90% PP intervals for 

several but not a majority of total test score values. The right plot demonstrates more power 

since most of the realized 2
Tχ  values were larger than predicted values. Compared with Figure 

4.2 which includes the same plots under the null condition, Figure 4.14 indicates that the 

unidimensional GR model can not adequately explain the observed test score distribution given 

this 2-dim empirical simple-structure data. 
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4.1.4 Condition 3 (Mg = 2-dim complex-structure GR , Ma = 1-dim GR) 

In this condition, the generated data were two-dimensional with complex-structure (Items 1-5 

measured a dominant dimension as well as a nuisance dimension, and Items 6-15 only measured 

the dominant dimension), and a unidimensional model was estimated. The ability of the PPMC 

method to detect a violation of local independence was explored by using all the 8 proposed 

measures. Two cases were considered in this condition according to the ratio of a2 (the slope of 

the nuisance dimension) to a1 (the slope of the dominant dimension) for the first 5 items. One 

ratio was set to 0.5 and another ratio was 1.0, reflecting mild and large dependence between two 

dimensions, respectively. 

Table 4.5 Overall Median PPP-values and Average Proportion of 20 Replications with Extreme PPP-values 
for all Measures – Condition 3  

Case 1 (mild dependence) Case 2 (large dependence)  
Measure Type 

Median PPP Power Median PPP Power 
Test-Level Test score dist - 0.29 0.10 0.25 0.10 

2dim 0.50 0.00 0.50 0.00 Item score dist 
1dim 0.50 0.00 0.50 0.00 
2dim 0.33 0.00 0.17 0.00 Item-test corr 
1dim 0.57 0.00 0.65 0.00 
2dim 0.53 0.00 0.55 0.00 Yen’s Q1 1dim 0.51 0.00 0.52 0.00 
2dim 0.56 0.01 0.51 0.03 

Item-Level 

Stone’s fit stat 
1dim 0.52 0.02 0.49 0.01 

(2dim, 2dim) 0.18 0.20 0.00 0.94 
(2dim, 1dim) 0.60 0.06 0.76 0.13 Global OR 
(1dim, 1dim) 0.44 0.05 0.42 0.06 
(2dim, 2dim) 0.02 0.66 0.00 1.00 
(2dim, 1dim) 0.65 0.09 0.94 0.45 Yen’s Q3 
(1dim, 1dim) 0.44 0.06 0.28 0.10 
(2dim, 2dim) 0.15 0.18 0.00 1.00 
(2dim, 1dim) 0.53 0.00 0.38 0.01 

Pair-Wise 

Item cov resid 
(1dim, 1dim) 0.52 0.00 0.50 0.00 

 
 Table 4.5 presents the pooled median PPP-values and the average proportions of extreme 

PPP-values across the 20 replications (i.e., empirical power) for each discrepancy measure and 

for the two cases. Based on the dimension structure, Items 1-5 were treated as interchangeable, 
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and Items 6-15 were assumed interchangeable. Thus, the items were classified into two types: 

“2dim” in the table represents the items measuring two dimensions (Items 1-5); “1dim” reflects 

the items measuring the dominant dimension (Items 6-15). For each item-level measure, the 

median PPP-value and empirical power rate were pooled across items of the same type. In 

addition, there were three types of item pairs: item pairs measuring two dimensions (2dim, 

2dim), item pairs measuring the dominant dimension (1dim, 1dim), and pairs reflecting the 

“2dim” and “1dim” items (2dim, 1dim). The results for the pair-wise measures were pooled from 

the same type of item pairs and from the 20 replications as well.  

As can be seen from Table 4.5, the test-level and item-level measures were not effective 

in detecting the local dependence among the first 5 items since the power rates were quite small. 

However, the three pair-wise measures performed effectively. The global OR and item 

covariance residual measures exhibited low power (0.20 and 0.18, respectively), and Yen’s Q3 

showed moderate power (0.66) in detecting the mild local dependence (Case 1) among the first 5 

items (“2dim” items). The median PPP-value of Yen’s Q3 for all the pairs among Items 1-5 

(2dim, 2dim) was 0.02. This approximately 0 value indicated that most of the realized Q3 values 

were consistently larger than the predictive values under the unidimensional GR model, further 

indicating that the GR model underestimated the association among the first 5 items. In other 

words, the first 5 items had more dependence than expected under the unidimensional model. 

Though the global OR and item covariance residual measures did not exhibit adequate power, 

their median PPP-values for the (2dim, 2dim) pairs were far from 0.50 (0.18 and 0.15, 

respectively), providing some evidence for model misfit. 

As the strength of dependence on the nuisance dimension increased (Case 2), the 

performance of the pair-wise measures with PPMC improved as would be expected. For the 
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large dependence case in Table 4.5, both Yen’s Q3 index and the item covariance residual 

measure had full power (1.00) in detecting the large local dependence among the first five items. 

Their median PPP-values were 0.00, implying that all the realized values were larger than the 

predictive values. In addition, the global OR measure exhibited sufficient power (0.94) for this 

case, and the median PPP-value was also close to 0. Overall, all the three pair-wise measures 

were effective in detecting the large dependence among the first five items, but for the mild 

dependence, only Yen’s Q3 appeared to display adequate power. 

It is worthy to note that as the degree of dependence increased, Yen’s Q3 measure also 

had the potential to detect the associations between the modeled dependent and independent 

items (2dim, 1dim). For Case 2, Yen’s Q3 showed moderate power (0.45) for the (2dim, 1dim) 

pairs, and the corresponding median PPP-value was 0.94 for Yen’s Q3 index. This high value 

indicated that most of the realized Q3 values for the (2dim, 1dim) pairs were consistently smaller 

than the predictive values under the unidimensional GR model.  

Unlike the pair-wise measures, the performances for the test-level and item-level 

measures did not improve significantly with increased dependence (Case1 vs. Case 2). However, 

it is interesting to note that though the item-total score correlation was not as effective as the 

pair-wise measures in detecting the local dependence among the first five items, the decrease in 

the median PPP-values from 0.33 to 0.17 from Case 1 to Case 2 suggested a potential to detect 

lack of fit with increased dependence. The low value 0.17 indicated that the observed item-test 

score correlations for the first five items were larger than the predicted correlations under a 

unidimensional GR model. How much dependence among items is required for this measure to 

become effective needs further study. 
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Figure 4.15 Scatter plots of Realized vs. Posterior Predictive Values of Yen’s Q3 (for a single data) for 
Case 1 (top) and Case 2 (bottom) – Condition 3 

The findings from Table 4.5 are illustrated in Figures 4.15-4.19. Figure 4.15 presents the 

scatter plots of the realized and predictive Yen’s Q3 values based on one replication for Case 1 

(top) and Case 2 (bottom). In each case, there are three example scatter plots for three types of 

item pairs, respectively. For the (1dim, 1dim) type of pairs (e.g., (Item10, Item15)), about half of 

the points were above the diagonal line and another half of points were below the line for both 

cases, indicating there was no systematic difference between the realized and predictive values 

for the item pair only measuring one dominant dimension. But for the (2dim, 2dim) type of item 

pairs (e.g., (Item1, Item5)), the scatter plots were consistently above the diagonal line for the 

mild dependence case, and even further above the diagonal line for the large dependence case. 

Both of these plots indicated that the realized Q3 values were consistently larger than the 

predictive values, and provided graphical evidence for model misfit. In addition, with the degree 

of dependence increasing, the plot for the (2dim, 1dim) type of item pairs (e.g., (Item1, Item15)) 

falls below the diagonal line. This indicated that the realized Q3 values were consistently smaller 
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than the predictive values, providing more evidence about the misfit of the unidimensional GR 

model to this simulated locally dependent data. 

 

Figure 4.16 Scatter plots of Realized vs. Posterior Predictive Values of Item Covariance Residual (for a 
single data) for Case 1 (top) and Case 2 (bottom) – Condition 3 

 

Figure 4.16 includes similar scatter plots for the item covariance residual measure based 

on the same replications used for Yen’s Q3. As can be seen, for the (2dim, 2dim) type of item 

pairs (e.g., (Item1, Item5)), most points were above the diagonal line for the mild dependence 

case, and the entire plot was above the line when the dependence was large (Case 2). This result 

indicates the realized item covariance residuals were systematically larger than the predictive 

values under the unidimensional GR model, thus providing evidence of model misfit. 
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Figure 4.17 Observed vs. 90% Posterior Predictive Interval of Global OR for Item 1 with 
Other Items (for a single replication) for Case 1 (top) and Case 2 (bottom) – Condition 3 

Figure 4.17 displays the observed global ORs for Item 1, the 90% PP interval, and PP 

medians for the two dependence conditions. As seen for Case 1 from this figure, most of the 

observed global ORs (solid triangles) fall outside or at the upper end of the PP interval for Item1 

paired with other items measuring two dimensions (Items 2-5), and tend to be far above the 

interval when the dependence increased (Case 2). In contrast, almost all the observed ORs lay 

within the PP interval for Item1 paired with items measuring only one dimension (Items 6-15). It 

should be noted that although Figures 4.15 – 4.17 for each case were drawn from one dataset, the 

same phenomena were observed for the other 19 datasets.  
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As for the previous conditions, pie plots were used to examine any pattern in the PPP-

values. Figures 4.18 and 4.19 display the median PPP-values (Left) and empirical power (Right) 

of the three item-pair measures for each item pair across the 20 replications for Case 1 and Case 

2, respectively. The pattern in the PPP-values can be easily observed from Case 2, the large 

dependence case (Figure 4.19). For the directional measures (global OR, and Yen’s Q3), the 

median PPP-values were around 0.50 for the (1dim, 1dim) pairs, close to 0 for the (2dim, 2dim) 

pairs, and close to 1 for the (2dim, 1dim) pairs. This pattern is more evident for the most 

effective measure - Yen’s Q3. For the non-directional measure – item covariance residual, the 

median PPP-values were close to 0 for the (2dim, 2dim) pairs, but around 0.50 for the (1dim, 

1dim) and (2dim, 1dim) pairs. In addition, the empirical power rates of these three measures 

were all close to 1 for the (2dim, 2dim) pairs, but Yen’s Q3 measure also had moderate power for 

the (2dim, 1dim) pairs. 

For the mild dependence case, Case 1 (Figure 4.18), the pattern is not as evident as for 

Case 2. However, it is still clear that the first 5 items were different from the remaining items. 

Their extreme PPP-values indicated that the unidimensional GR model did not fit these 5 items. 

The patterns found in these two figures were different from the patterns under the null condition, 

thus providing evidence of model misfit. 
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Figure 4.18 Display of Median PPP-values (Left) and Proportion of 20 Replications with Extreme PPP-values 
(Right) for Global OR (Row1), Yen’s Q3 (Row2), and Item Covariance Residual (Row3) – Condition 3/ Case 1 
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Figure 4.19 Display of Median PPP-values (Left) and Proportion of 20 Replications with Extreme PPP-values 
(Right) for Global OR (Row1), Yen’s Q3 (Row2), and Item Covariance Residual (Row3) – Condition 3/ Case 2 
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4.1.5 Condition 4 (Mg = testlet GR , Ma = 1-dim GR) 

In this condition, the effectiveness of different discrepancy measures with PPMC in detecting 

local dependence among responses to testlet items was investigated. Recall that for this 

condition, Items 6, 7 and 8 were designed to be in a testlet and three levels of dependence among 

them were considered: mild ( 5.02
)( =idσ ), large ( 0.12

)( =idσ ), and extremely large ( 0.22
)( =idσ ). 

The other items were simulated to be locally independent.  

Table 4.6 Overall Median PPP-values and Average Proportion of 20 Replications with Extreme PPP-values 
for all Measures – Condition 4   

Case 1 (mild) Case 2 (large) Case 3 (extreme large)  Measure Type 
Median PPP Power Median PPP Power Median PPP Power 

Test-Level Test score dist - 0.64 0.05 0.49 0.05 0.46 0.15 
testlet 0.50 0.00 0.50 0.00 0.49 0.00 Item score dist 
indep 0.50 0.00 0.50 0.00 0.50 0.00 
testlet 0.14 0.00 0.05 0.52 0.00 1.00 Item-test corr 
indep 0.54 0.00 0.63 0.00 0.75 0.02 
testlet 0.45 0.00 0.47 0.00 0.48 0.00 Yen’s Q1 indep 0.50 0.00 0.50 0.00 0.51 0.00 
testlet 0.50 0.02 0.40 0.02 0.50 0.02 

Item-Level 

Stone’s fit stat 
indep 0.51 0.02 0.49 0.01 0.49 0.01 

(testlet, testlet) 0.00 1.00 0.00 1.00 0.00 1.00 
(testlet, indep) 0.70 0.10 0.80 0.20 0.86 0.23 Global OR 
(indep, indep) 0.40 0.05 0.43 0.05 0.40 0.06 
(testlet, testlet) 0.00 1.00 0.00 1.00 0.00 1.00 
(testlet, indep) 0.91 0.40 0.98 0.58 0.99 0.72 Yen’s Q3 
(indep, indep) 0.39 0.08 0.36 0.09 0.36 0.09 
(testlet, testlet) 0.00 1.00 0.00 1.00 0.00 1.00 
(testlet, indep) 0.45 0.01 0.28 0.05 0.18 0.14 

Pair-Wise 

Item cov resid 
(indep, indep) 0.52 0.00 0.50 0.00 0.52 0.00 

 
 

Table 4.6 presents the overall median PPP-values and average proportions of extreme 

PPP-values for the three cases. In this condition, there are two types of items – those labeled 

“testlet” represents the testlet items (Items 6-8); and those labeled “independent” are the other 

items. There are also three types of item pairs – testlet item pairs (testlet, testlet), independent 

item pairs (indep, indep), and pairs reflecting one testlet item and one independent item (testlet, 
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testlet). For each item-level measure, the median PPP-values and empirical power rates in Table 

4.6 were pooled from the same type of items and from the 20 replications. For each pair-wise 

measure, the median PPP-values and empirical power rates were pooled from the same type of 

item pair and also aggregated over the 20 replications. 

As found in Table 4.6, the three pair-wise measures had full power (1.00) in detecting the 

misfit of unidimensional GR model to the modeled dependence among the testlet items, even for 

the mild dependence case. The median PPP-values of these three measures were 0 for the (testlet, 

testlet) pairs across the three cases, indicating that the realized associations among the testlet 

items were consistently larger than the predicted under the GR model. In addition, the ability of 

the two directional measures (global OR and Yen’s Q3) in detecting the misfit of the GR model 

to the relationships between the testlet items and the independent items increased as the degree 

of modeled dependence among the testlet items increased.  Specifically, Yen’s Q3 measure 

showed low (0.40), moderate (0.58), and large (0.72) power for the (testlet, indep) pairs for the 

mild, large, and extremely large dependence cases, respectively. The global OR measure also 

exhibited low power (0.20 and 0.23) for the (testlet, indep) pairs for Case 2 and Case 3, but very 

low power for the mild dependence condition.  In contrast, the item-covariance residual 

exhibited very low power for the (testlet, indep) pairs, even for the extremely large dependence 

condition. The median PPP-values of Yen’s Q3 measures were close to 1 for the (testlet, 

independent) pairs, implying that the realized associations between the testlet item and 

independent items were mostly lower than the predicted under the GR model. However, the 

pooled median PPP-values for the (indep, indep) item pairs for all the three pair-wise measures 

were close to 0.50, indicating the realized associations between the independent items were 

consistent with predicted values under the GR model.  



 169 

 

Figure 4.20 Scatter Plots of Realized vs. Posterior Predictive Values of Yen’s Q3 (for a single data) for 
Case 1 (top) and Case 3 (bottom) – Condition 4 

 

Figure 4.21 Scatter Plots of Realized vs. Posterior Predictive Values of Item Covariance Residual (for a 
single data) for Case 1 (top) and Case 3 (bottom) – Condition 4 
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The findings about the pair-wise measures from Table 4.6 were also revealed from 

Figures 4.20 – 4.22 which were based on a single replication for each of two cases – mild 

dependence (Case 1) and extremely large (Case 3). Note that similar figures were observed for 

the other 19 replications.  

Figure 4.20 shows the realized and posterior predictive Yen’s Q3 values for three 

different types of item pairs. The (Item1, Item3) pair reflects an (indep, indep) type of pair, the 

(Item1, Item6) reflects a (testlet, indep) type of pair, and the (Item6, Item7) represents a (testlet, 

testlet) pair. As can be seen, the realized Q3 values for the (Item6, Item7) pair were consistently 

and sufficiently larger than the predictive values, that is, the entire scatter plot was far above the 

diagonal line. In contrast, the realized Q3 values for the (Item1, Item6) pair were systematically 

smaller than the predictive values since most part of the scatter plot was below the diagonal line. 

Moreover, the discrepancies between the observed and predictive values tended to increase as the 

dependence among the testlet items increased. However, for the (Item1, Item3) pair, there was no 

systematic difference between the realized and predictive Q3 values for both cases, and both 

predictive and realized values were around 0. In summary, these plots provide evidence about the 

directional misfit of the unidimensional GR model. The model under-estimated the relationship 

between the testlet items, but over-estimated the relationship between the testlet and independent 

items. 

Figure 4.21 includes the scatter plots of the realized and posterior predictive item 

covariance residuals for three different types of item pairs. As can be observed, the predictive 

item covariance residuals under the unidimensional GR model were close to 0 for each item pair. 

For the independent item pair (Item1, Item3), the realized and predictive residuals were in the 

same range. However, for the testlet item pairs, the realized values were consistently larger than 
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the predictive value of 0 for both cases. They ranged from 0.2 to 0.4 for the mild dependence 

case, and from 0.8 to 1.0 for the extremely large dependence case. These large realized residuals 

indicated misfit of the GR model. As discussed previously, unlike Yen’s Q3 measure, the item 

covariance residual measure demonstrated very power in detecting the misfit of the model for the 

testlet and independent item pairs. This was also illustrated in the two plots for (Item1, Item6) in 

which there was no clear difference between the realized and predictive residuals though the 

range of realized residuals tended to a bit larger than the predictive range for Case 3. 

 

Figure 4.22 Observed vs. 90% Posterior Predictive Interval of Global OR for Item 6 with Other 
Items (for a single replication) for Case 1 (top) and Case 3 (bottom) – Condition 4 
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Figure 4.23 Display of Median PPP-values (Left) and Proportion of 20 Replications with Extreme PPP-values 
(Right) for Global OR (Row1), Yen’s Q3 (Row2), and Item Covariance Residual (Row3) – Condition 4/Case 1 
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Figure 4.24 Display of Median PPP-values (Left) and Proportion of 20 Replications with Extreme PPP-values 
(Right) for Global OR (Row1), Yen’s Q3 (Row2), and Item Covariance Residual (Row3) – Condition 4/Case 3 
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Figure 4.22 displays the observed global OR value versus 90% PP interval for the global 

OR measure for Item 6 paired with the other items for two cases. As seen from this figure, the 

observed global ORs were far above the PP intervals for the two testlet item pairs ((Item6, 

Item7) and (Item6, Item8)), implying that the unidimensional GR model could not adequately to 

capture the dependencies among the responses to the testlet items.  

The pattern of the PPP-values was also explored from pie plots for the pair-wise 

measures. Figures 4.23 and 4.24 display the median PPP-values (Left) and empirical power 

(Right) for each item pair across the 20 replications for three measures for the mild and 

extremely large dependence cases, respectively. From Figure 4.24, the median PPP-values of two 

directional measures (global OR and Yen’s Q3) were around 0.50 for the independent item pairs, 

close to 0 for the testlet item pairs, and close to 1 for the item pairs between the testlet and 

independent items. For the item covariance residual measure, the median PPP-values were also 

around 0.50 for the (indep, indep) pairs, and close to 0 for the (testlet, indep) or (testlet, testlet) 

pairs. Items appear to fall into two clusters: Items 6-8 in one and the remaining items in another. 

This pattern was clearly different from the corresponding plots under the null condition (Figure 

4.5), providing strong evidence about the misfit of the GR model to the data with the large testlet 

effect. 

 Although the pattern for the mild dependence case (Figure 4.23) was not as evident as 

for the extremely large dependence case, the extreme PPP-values for the three testlet items also 

provide evidence about lack of model fit. In addition to the median PPP-values, the pie plots 

reflecting empirical power rates illustrate that all the three pair-wise measures had full power in 

detecting the local dependence among the testlet items, and Yen’s Q3 measure also exhibited 

moderate power in detecting a lack of fit in the unidimensional GR model to the (testlet, indep) 
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item pairs. Since all three pair-wise measures exhibited full power in detecting local dependence 

among the testlet item pairs, it may be useful to determine when these three measures will lose 

their full power. This could be evaluated by manipulating more levels of testlet effect less than 

5.02
)( =idσ . 

As was seen from Table 4.6, the power of the item-total score correlation measure in 

detecting the misfit of the GR model to the testlet items increased as the degree of testlet 

dependence increased. The pooled median PPP-values were 0.14, 0.05, and 0.00 for the mild, 

large, and extremely large dependence cases, respectively. The corresponding power increased 

from no power (0.00) to moderate power (0.52) and to full power (1.00) for the three cases, 

respectively. The median PPP-value tended to be 0 for testlet items, indicating that the observed 

correlations for these items were higher than the predictive correlations. In contrast, for the 

independent items, the median PPP-values for the three cases were not extreme, indicating 

adequate fit of the GR model to these items. This phenomenon can also be demonstrated from 

Figure 4.25 which presents the observed correlation and 90% PP interval for each item based on 

a single replication. For the independent items, the observed correlations approximated the 

medians of the predictive correlations across the three cases. But for the testlet items, the 

observed correlations were at the upper end of the intervals for the mild dependence case, and 

fell outside the interval with the large dependence case. 
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Figure 4.25 Observed vs. 90% Posterior Predictive Interval of Item-Total Score Correlation for 
Case 1 (top), Case 2 (middle), and Case 3 (bottom) based on a single replication – Condition 4  
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4.1.6 Condition 5 (Mg = items with improper BCCs , Ma = 1-dim GR) 

This condition was intended to explore the performance of PPMC in assessing misfit due to an 

incorrect form of the logistic BCC functions. As discussed in Chapter 3, Items 7 and 8 were 

simulated to follow BCCs functions that differed from the logistic functions under the 

unidimensional GR model. Specifically, The BCCs of Item 7 followed cubic functions, and the 

BCCs of Item 8 were two-step Guttman functions. The remaining 13 items (“Other Items”) were 

simulated based on logistic BCC functions under the unidimensional GR model. 

Table 4.7 Overall Median PPP-values and Average Proportion of Replications with Extreme PPP-
values for all Measures – Condition 5 

 Measure Type Median PPP Power 
Test-Level Test score dist - 0.61 0.20 

Item 7 (cubic) 0.44 0.00 
Item 8 (step) 0.49 0.00 Item score dist 
Other Items (logistic) 0.50 0.00 
Item 7 (cubic) 0.63 0.00 
Item 8 (step) 0.46 0.00 Item-test correlation 
Other Items (logistic) 0.44 0.00 
Item 7 (cubic) 0.29 0.00 
Item 8 (step) 0.04 0.65 Yen’s Q1 
Other Items (logistic) 0.49 0.00 
Item 7 (cubic) 0.01 0.90 
Item 8 (step) 0.00 1.00 

Item-Level 

Stone’s fit statistic 
Other Items (logistic) 0.49 0.04 
(Item7, Item8) 0.52 0.00 
(misfit, fit) 0.59 0.09 Global OR 
(fit, fit) 0.47 0.07 
(Item7, Item8) 0.67 0.10 
(misfit, fit) 0.51 0.05 Yen’s Q3 
(fit, fit) 0.49 0.07 
(Item7, Item8) 0.44 0.00 
(misfit, fit) 0.52 0.00 

Pair-Wise 
 

Item covariance residual 
(fit, fit) 0.53 0.00 

 
 Table 4.7 presents the overall median PPP-values and average proportions of extreme 

PPP-values across the 20 replications for this condition. As can be seen from this table, for each 
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item-level measure, the median PPP-values and power for the simulated GR items (“Other 

Items”) were pooled across the 13 items and across the 20 replications. For each pair-wise 

measure, three values were computed for the overall median PPP-value and the average 

empirical power, respectively. One was for the pair of two misfitting items, (Item 7, Item 8), 

another for the pairs between one misfitting item and one fitting item, and the third one for the 

fitting item pairs. 

The results in Table 4.7 show that only two classical item-fit statistics detected misfit 

between the observed BCCs and the predictive BCCs under the GR model. For the simulated GR 

items, the median PPP-values were 0.49 for both fit measures, and the average proportions of 

extreme PPP-values for Yen’s Q1 and Stone’s X2 were 0.00 and 0.04, respectively. The average 

proportions for the fitting items reflect the Type-I error rates in a hypothesis testing framework. 

Though both item fit measures were conservative in the PPMC context, Stone’s measure had a 

larger Type-I error rate than Yen’s measure. Regarding the power in detecting the misfitting 

items, Stone’s measure exhibited sufficient power in detecting the two modeled misfitting items 

– 0.90 for Item 7, and 1.00 for Item 8. Yen’s Q1 measure was found to have less power (0.65) for 

detecting the misfitting item with two-step Guttman BCC functions (Item 8), but did not exhibit 

any power for the misfitting item with cubic BCC functions (Item 7). Since only two types of 

BCC functions were considered and several factors were fixed in this study, the comparison of 

the performance of these two item-fit statistics in a Bayesian framework requires further 

investigation.  

Figure 4.26 displays the scatter plots of realized and posterior predictive values for the 

two item-fit measures for one replication. Note that the other 19 replications had similar plots. 

For the fittting item (Item 1), the observed values were not systematically different from the 
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predictive values for both measures, indicating close correspondence between the observed and 

model-predicted BCCs. For the misfitting Item 7, the scatter plot for Stone’s fit statistic was 

mostly above the diagonal line. This indicated that most of the observed values were larger than 

the predictive values, further suggesting item misfit. In contrast, the plot of Yen’s measure did 

not provide evidence of model misfit for this item. For the misfitting Item 8, the scatter plots for 

both measures provide clear evidence of model misfit for this item.  

Except for the two item-fit statistics, the other measures appeared to be ineffectiveness in 

detecting the departure of the observed BCCs from the predicted BCCs under the unidimensional 

GR model. Though the three pair-wise measures showed sufficient power for the violation of 

unidimensionality and local independence, they were not useful for this condition. Figure 4.27 

displays the pie plots for the pair-wise measures. As can been seen, the pattern in the pie plots 

was very similar to that under the null condition, providing no evidence for model misfit. 
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Figure 4.26 Scatter plots of Realized vs. Posterior Predictive Values of Yen’s Q1 and Stone’s X2 Item-Fit 
Statistics (for a single data) – Condition 5 
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Figure 4.27 Display of Median PPP-values (left) and Proportion of 20 Replications with Extreme PPP-
values (right) for Global OR (row1), Yen’s Q3 (row2), and Item Covariance Residual (row3) – Condition 5 
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4.2 RESULTS FROM SIMULATION STUDY 2 

Study 2 aimed to explore the relative performance of three Bayesian model comparison methods 

(DIC, CPO, and PPMC) under four different model comparison conditions (see Table 3.12). The 

different models that were considered included: the two-parameter (2P) graded response (GR) 

model, the one-parameter (1P) GR model, the rating scale (RS) model, the testlet graded model, 

and multidimensional graded model. In each condition, typical performance assessment data 

were generated based on an appropriate IRT model (Mg) and then calibrated using several 

different data-analysis (Ma) models. Three Bayesian model comparison indices were then 

computed for each Ma and a preferred model was selected based on each of indices. The relative 

performance of these three indices was compared with respect to the number of times each index 

selected the generating or correct model across 20 replications. 

4.2.1 Condition 1 (2P GR vs. 1P GR vs. RS Models) 

In Condition 1, the data were generated based on 2P GR models, but calibrated using 2P GR, 1P 

GR, and RS models. These models differ in terms of the number of parameters to be estimated. 

The purpose of this condition was to determine how effectively the model comparison criteria 

could discriminate between these three models and select the 2P GR as the preferred model.  

Item parameter recovery for the 2P GR model was examined first. Table 4.8 gives the 

RMSD for each item parameters across the 20 replications. The average RMSD across all items 

was 0.07 for both slope and threshold parameters. These results indicate one chain of 5000 and a 

posterior sample of 500 were adequate for estimating the 2P GR model using MCMC within 

WinBUGS. They were also adequate for the other two models because of the fewer parameters.  
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Table 4.8 RMSD for Item Parameter Recovery in WinBUGS for 2P GR Model 

Item a b1 b2 b3 b4 

1 0.07 0.13 0.09 0.06 0.09 

2 0.05 0.09 0.06 0.05 0.09 

3 0.06 0.10 0.06 0.08 0.12 

4 0.04 0.14 0.08 0.06 0.07 

5 0.05 0.07 0.05 0.08 0.16 

6 0.08 0.09 0.06 0.05 0.06 

7 0.06 0.06 0.03 0.03 0.06 

8 0.07 0.06 0.05 0.06 0.06 

9 0.08 0.15 0.06 0.05 0.05 

10 0.08 0.05 0.05 0.07 0.15 

11 0.07 0.09 0.04 0.03 0.05 

12 0.08 0.04 0.03 0.04 0.06 

13 0.09 0.04 0.03 0.05 0.06 

14 0.10 0.19 0.06 0.04 0.04 

15 0.08 0.05 0.04 0.04 0.14 
 07.0)( =aDSMR       07.0)( =bDSMR  

 
 Table 4.9 presents summary descriptive statistics (i.e., min, max, and mean) of the DIC 

and test-level CPO values across the 20 replications for each model, as well as the rank of the 

three models based on the mean value. The frequencies of choosing each model across the 20 

replications are also reported in this table. As can been seen, the mean DIC values were 73960, 

75498, and 74484 for the 2P GR, 1P GR, and RS models, respectively, indicating the 2P GR 

model (Rank 1) fit the data better than the RS model (Rank 2) which in turn was better than the 

1P GR model (Rank 3). In addition, the mean test-level CPO values were -16076, -16405, and -

16190 for the 2P GR, 1P GR, and RS models, respectively. Unlike the DIC index, larger CPO 

values reflect the preferred model. Thus, the CPO and DIC indices reached the same conclusion 

about the comparison of these three models. In addition, these two indices appeared to perform 

equally well regarding the frequency of choosing the 2P GR model as the preferred model for the 

overall test. As seen in this table, both indices chose the generating or true model as the preferred 
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model for each of the 20 replications. The distributions of the index values for the three models 

are shown in Figure 4.28 using the box plots. The distribution of DIC values for the 1P GR 

model was above the distribution for the 2P GR model, whereas the distribution of CPO values 

for the 1P GR model was below the distribution of values for the 2P GR model. Both suggested 

that the 2P GR model fit the data consistently better across the 20 replications.  

Table 4.9 Model Selection for Overall Test using DIC and Test-Level CPO – Condition 1 

 DIC 

Model Min Max Mean Rank 
Frequency of 

Selecting Model 

2P GR* 73322 74566 73960 1 20 (100%) 

        1P GR 74854 76098 75498 3 0 (0%) 

RS 73863 75113 74484 2 0 (0%) 

 CPO 

2P GR* -16208 -15937 -16076 1 20 (100%) 

        1P GR -16536 -16265 -16405 3 0 (0%) 

RS -16327 -16054 -16190 2 0 (0%) 
 

       

Figure 4.28 Box-plots of DIC and Test-Level CPO across 20 Replications – Condition 1 

 The previous comparison using the DIC and test-level CPO indices focused on the fit of 

models at the test level. It was used to answer the question “which model best fit the responses to 

the test?”  As is well known, much of the power of IRT is that it models examinee responses at 
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the item level. Therefore, a model which fits the overall test is not necessarily appropriate for 

each item. As a result, comparing the models for each item provides additional information about 

item model-fit.  

Table 4.10 Model Selection for Each Item using Item-Level CPO Index – Condition 1 

Item  2P GR 1P GR RS 
1 Mean -1266 -1295 -1269 
 Frequency 19 0 1 

2 Mean -1289 -1315 -1292 
 Frequency 19 0 1 

3 Mean -1267 -1295 -1269 
 Frequency 20 0 0 

4 Mean -1201 -1228 -1205 
 Frequency 19 0 1 

5 Mean -1202 -1230 -1207 
 Frequency 20 0 0 

6 Mean -1110 -1115 -1116 
 Frequency 20 0 0 

7 Mean -1140 -1145 -1146 
 Frequency 20 0 0 

8 Mean -1114 -1119 -1120 
 Frequency 20 0 0 

9 Mean -982 -986 -993 
 Frequency 20 0 0 

10 Mean -980 -985 -990 
 Frequency 20 0 0 

11 Mean -956 -990 -965 
 Frequency 20 0 0 

12 Mean -984 -1021 -994 
 Frequency 20 0 0 

13 Mean -960 -994 -969 
 Frequency 20 0 0 

14 Mean -807 -839 -823 
 Frequency 20 0 0 

15 Mean -817 -848 -831 
 Frequency 20 0 0 

 
 Whereas, the DIC index can only be used to compare the models for the overall test, the 

CPO index can be used to compare the models at the test- and item-levels. Table 4.10 includes 

the mean CPO index values (across the 20 replications) for each of 15 items based on the three 
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different models, as well as the frequency the true model (i.e., 2P GR) was chosen as the 

preferred model for each item. As can been seen, the mean CPO value for the 2P GR model was 

larger than the value for the RS model for each item, which was in turn larger than the value for 

the 1P GR model. This indicated the 2P GR model fit the responses to each item better than the 

other two models. In addition, for 12 out of 15 items, the item-level CPO index indicated that the 

generating model was the preferred model for each of the 20 replications. For Items 1, 2, and 4, 

the RS model was chosen as the preferred model for one replication, but the generating model 

was chosen as the preferred models for the other 19 replications. The results indicated that the 

true model was selected to be the preferred model for the overall test and also for each item. 

Both the DIC and CPO indices are effective model-comparison tools and are generally 

used to compare the relative fit of different models. It should be noted that these two indices 

involve a relative comparison. When one or both of the models to be compared are appropriate, 

the DIC and CPO indices can be used to obtain the preferred model. However, when either 

models to be compared are not appropriate or do not fit a data, a preferred model can not be 

chosen based on either the DIC or CPO indices. For example, in Condition 1, if only the 1P GR 

and RS models were compared using the DIC or CPO indices, the RS model would be preferred 

over the 1P GR model. However, the RS model is not really appropriate since the true model was 

the 2P GR model. In this sense, the general model-comparison tools (i.e., DIC and CPO) only 

consider the relative fit of different models rather than the absolute fit of each model. Compared 

with these two indices, the PPMC method can be used to evaluate the fit of different models and 

compare them at the same time. 

For Condition 1, four item-level discrepancy measures (i.e., item score distribution, Yen’s 

Q1 index, Stone’s item-fit statistic, and item-total score correlation) and three pair-wise measures 
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(i.e., Yen’s Q3 index, global odds ratio, and item covariance residual) were used with PPMC to 

compare the three different models – the 2P GR, the 1P GR, and the RS models. Note that the 

test-level distribution measure in Study 1 was not used here since it was found not effective in 

most of the conditions in Study 1.  

Table 4.11 Number of Items with Extreme PPP-values across 20 Replications (Item-level Measures) 

Model Min Max Mean 

 Item Score Distribution 
   2P GR* 0 0 0 
   1P GR 0 0 0 
      RS 12 15 14 

 Yen’s Q1 
   2P GR* 0 0 0 
   1P GR 10 10 10 
      RS 8 9 8 

 Stone’s Item-Fit Stat 
   2P GR* 0 1 0 
   1P GR 10 11 10 
      RS 13 14 13 

 Item-Test Correlation 
   2P GR* 0 0 0 
   1P GR 11 15 12 
      RS 11 15 13 

 
 Tables 4.11 presents the minimum, maximum, and mean numbers of the 15 items with 

extreme PPP-values across 20 replications for each item-level measure. For example, for Yen’s 

Q1 measure, when the analysis model was the true model (2P GR), there were no extreme PPP-

values for each replication. However, there were an average 10 out of 15 items with extreme 

PPP-values when the analysis model was the 1P GR model, and an average 8 items with extreme 

PPP-values when the analysis model was the RS model.  

As can be observed from this table, either the 1P or 2P GR model appeared to fit the data 

when using the item score distribution discrepancy measure. However, based on the two item-fit 

measures and the item-test score correlation, more items were identified as misfitting when the 
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analysis model was the 1P GR or RS model. Therefore, the 2P GR model was clearly the 

preferred model for the generated data in Condition 1. 

For each pair-wise measure, there were 105 PPP-values corresponding to the 105 item 

pairs in each replication. Tables 4.12 provides the minimum, maximum, and mean number of 

item pairs with extreme PPP-values across the 20 replications. A large number of extreme PPP-

values would indicate model misfit. As can be seen, the 2P GR model had the least number of 

extreme PPP-values for all three measures, providing evidence that the 2P GR model was 

preferred. In contrast, the larger number of extreme PPP-values for the other two models 

indicated misfit of these models to the data.  

Table 4.12 Number of Item-pairs with Extreme PPP-values across 20 Replications (Pair-wise Measures) 

Model Min Max Mean 

 Yen’s Q3 
   2P GR* 3 12 7 
   1P GR 40 55 48 
      RS 8 17 13 

 Global OR 
   2P GR* 3 11 6 
   1P GR 67 87 79 
      RS 21 40 31 

 Item Covariance Residual 
   2P GR* 0 1 0 
   1P GR 78 94 86 
      RS 38 51 48 

 
 All the measures considered in Condition 1, except the item score distribution measure, 

appeared to be effective in discriminating between these three models. Based on these measures, 

the PPMC method chose the generating model as the preferred model for each of the 20 

replications. Thus, this method had the same performance as the other two indices regarding the 

frequency of choosing the true model. In addition, when comparing the models and evaluating 

the fit of each model, the PPMC method can provide more information about the potential misfit 

of a model. 
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Table 4.13 Median PPP-values for Each Item-level Measure across 20 Replications 

 Item-Level Discrepancy Measures 

 Item Score Dist Yen’s Q1 Stone’s Item-Fit Item-Test Correlation 

Item 
2P 
GR 

1P 
GR RS 

2P 
GR 

1P 
GR RS 

2P 
GR 

1P 
GR RS 

2P 
GR 

1P 
GR RS 

1 0.50 0.23 0.00 0.49 0.00 0.37 0.46 0.00 0.25 0.45 1.00 0.03 

2 0.50 0.23 0.00 0.51 0.00 0.15 0.54 0.00 0.02 0.44 1.00 0.02 

3 0.51 0.21 0.00 0.51 0.00 0.33 0.54 0.00 0.17 0.50 1.00 0.05 

4 0.50 0.26 0.00 0.53 0.00 0.02 0.51 0.00 0.00 0.54 1.00 0.99 

5 0.50 0.25 0.00 0.50 0.00 0.02 0.47 0.00 0.00 0.50 1.00 1.00 

6 0.50 0.50 0.00 0.54 0.55 0.06 0.52 0.37 0.00 0.50 0.06 0.01 

7 0.51 0.50 0.03 0.55 0.57 0.03 0.61 0.48 0.00 0.47 0.03 0.00 

8 0.51 0.49 0.01 0.50 0.53 0.11 0.43 0.34 0.01 0.44 0.09 0.00 

9 0.50 0.50 0.21 0.50 0.61 0.01 0.49 0.50 0.00 0.45 0.10 1.00 

10 0.50 0.49 0.00 0.49 0.51 0.01 0.52 0.34 0.00 0.47 0.06 0.99 

11 0.51 0.38 0.00 0.52 0.00 0.03 0.49 0.00 0.00 0.47 0.00 0.00 

12 0.51 0.37 0.00 0.54 0.00 0.11 0.60 0.00 0.00 0.50 0.00 0.00 

13 0.50 0.37 0.00 0.51 0.00 0.07 0.52 0.00 0.00 0.45 0.00 0.00 

14 0.50 0.41 0.00 0.53 0.00 0.00 0.49 0.00 0.00 0.45 0.00 1.00 

15 0.50 0.42 0.00 0.52 0.01 0.00 0.51 0.00 0.00 0.51 0.00 1.00 
 

 

Table 4.13 includes the median PPP-values for each item-level discrepancy measure 

across the 20 replications when each of the models was used to estimate the data. As can be seen, 

when the 2P GR model fit to the data, the median PPP-values of the item-level measures for each 

item were close to 0.50, indicating good fit of the model. When the 1P GR model was fit to the 

data, the median PPP-values for the two item-fit measures were extreme (close to 0.00) for Items 

1-5, and Items 11-15, but around 0.50 for Items 6-10. The pattern in these PPP-values indicated 

that the 1P GR model could not fit the responses to Items 1-5 and 11-15, but fit the responses to 

Items 6-10. By examining the slopes of the 2P GR model and the common slope of the 1P GR 

model, Items 6-10 had a true slope parameter of 1.7 and the estimated common slope for the 1P 
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GR was about 1.6. However, the true slopes were 1.0 for Items 1-5 and 2.4 for Items 11-15, 

which were much different from the common slope estimate 1.6. In addition, from the pattern in 

the median PPP-values for the item-test correlation, the potential misfit of the 1P GR model can 

be observed. As shown in Figure 4.29, when the 2P GR model was estimated (top plot), the 

observed item-test score correlations were well within the 90% posterior predictive intervals. In 

contrast, when the 1P GR model was estimated (middle plot), the posterior predictive intervals 

were consistent across all the 15 items, but the observed correlations fell into three clusters: 1) 

For Items 1-5, the observed correlations were systematically lower than the predictive values; 2) 

For Items 11-15, the observed values were consistently higher than the predictive values; 3) For 

Items 6-10, the observed values were within the posterior predictive intervals. 

As shown in Table 4.13, all four item-level measures had extreme PPP-values for each 

item when the RS model was estimated, reflecting misfit of the RS model. For the item-test 

correlation measure, the PPP-values for Items 4-5, 9-10, and 14-15 were close to 1.00, indicating 

the observed correlations were systematically larger than the predictive values under the RS 

model. However, the PPP-values for the remaining items were close to 0.00, indicating that the 

observed correlations were systematically smaller than the predictive values. These phenomena 

can be also observed in the bottom plot in Figure 4.29. 

Figure 4.30 displays the pie plots for the three pair-wise measures. As can been seen, all 

the median PPP-values were around 0.50, providing evidence of model fit for the 2P GR model. 

The existence of the large number of extreme values in the middle and bottom plots indicated 

model misfit for the 1P GR and RS models. 
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Figure 4.29 Observed vs. 90% Posterior Predictive Interval of Item-Total Score Correlation for 2P GR 
(top), 1P GR (middle), and RS (bottom) Model 
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Figure 4.30 Display of Median PPP-values for Pair-wise Measures when fitting 2P GR (top), 1P GR (middle), 
and RS(bottom) models to the Data 
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4.2.2 Condition 2 (1-dim GR vs. 2-dim simple-structure GR model) 

In Condition 2, the data were generated based on 2-dim simple-structure GR models, but 

calibrated using both the common 1-dim GR model and the true 2-dim simple-structure GR 

model. The three model comparison criteria were compared in terms of their abilities to choose 

the true model as the preferred model.  

Table 4.14  RMSD for Item Parameter Recovery in WinBUGS for 2-dim Simple-Structure Model 

Item a1 a2 b1 b2 b3 b4 

1 0.06 - 0.14 0.08 0.05 0.07 

2 0.08 - 0.08 0.05 0.04 0.07 

3 0.09 - 0.04 0.04 0.03 0.08 

4 0.06 - 0.17 0.11 0.06 0.08 

5 0.06 - 0.05 0.04 0.05 0.11 

6 0.07 - 0.06 0.04 0.04 0.04 

7 0.06 - 0.09 0.06 0.06 0.11 

8 0.05 - 0.04 0.03 0.05 0.06 

9 - 0.11 0.16 0.07 0.04 0.03 

10 - 0.05 0.07 0.04 0.09 0.20 

11 - 0.09 0.09 0.05 0.04 0.07 

12 - 0.10 0.05 0.03 0.04 0.06 

13 - 0.07 0.10 0.04 0.07 0.14 

14 - 0.07 0.15 0.07 0.04 0.05 

15 - 0.09 0.05 0.04 0.06 0.15 
016.0)( =corrRMSD  

 
 Item parameter recovery for the 2-dim simple-structure GR model was examined first. 

Table 4.14 gives the RMSD value for each item parameter across the 20 replications. The 

average RMSD was 0.07 and 0.08 for the first and second slope, respectively, and the average 

RMSD across all the threshold values was 0.07. The RMSD for the inter-dimensional correlation 
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was 0.016. These results indicate one chain of 8000 and a posterior sample of 1000 were 

adequate for estimating the 2-dim simple-structure GR model using MCMC within WinBUGS. 

Table 4.15  Model Selection for Overall Test using Different Indices – Condition 2 

 DIC 

Model Min Max Mean Frequency of 
Choosing True 

2-dim GR* 74887 75955 75434 

     1-dim GR 78532 79363 78854 
20 (100%) 

 CPO 

2-dim GR* -16541 -16312 -16430 

     1-dim GR -17255 -17074 -17143 
20 (100%) 

 PPMC (global OR) 

2-dim GR* 2 11 7 

     1-dim GR 69 85 75 
20 (100%) 

 PPMC (Yen’s Q3) 

2-dim GR* 0 10 4 

     1-dim GR 98 105 102 
20 (100%) 

 
 Table 4.15 presents the minimum, maximum, and mean values of each index for the two 

models, and the frequency of choosing the true model (i.e., 2-dim GR) across the 20 replications. 

As can been seen, the mean DIC values were 75434 and 78854, and the mean CPO values were -

16430 and -17143, for the 2-dim and 1-dim GR model respectively. The lower DIC and the 

higher CPO value for the 2-dim GR model indicated that the 2-dim model fit the data better than 

the common 1-dim GR model. Recall, for this condition, only two pair-wise discrepancy 

measures (global OR and Yen’s Q3 index) were used with PPMC. For PPMC, the index was the 

total number of item pairs having extreme PPP-values. As shown in the table, when the true 

model was used to analyze the data, on average, only 7 (or 4 ) out of 105 item pairs with extreme 

PPP-values for the global OR measure (or Yen’s Q3 index) were observed. However, when the 

1-dim GR model was estimated, there were a large number of pairs with extreme PPP-values – 
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75 and 102 pairs for the global OR and Yen’s Q3 index, respectively. Thus, the PPMC results 

also indicated that the 2-dim model was preferred over the 1-dim GR model. 

 As can also be seen in the table, the three indices appeared to perform equally well 

regarding the frequency of choosing the 2-dim GR model as the preferred model for the overall 

test. All of the indices selected the true model as the preferred model for each of the 20 

replications. It is also worthy to note that there was no overlap between the ranges of each of 

these three indices for the two models. For example, the range of DIC across the 20 replications 

was (-16541, -16312) for the 2-dim GR model, and (-17255, -17074) for the 1-dim model. The 

non-overlapping ranges can also be seen in Figure 4.31.  

 

Figure 4.31  Box-plots of Model Comparison Indices across 20 Replications – Condition 2 
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The distributions of DIC and PPMC values for the 2-dim model were far below the 

distribution of values for the 1-dim model, suggesting that the 2-dim model fit the data 

consistently better across the 20 replications. The box-plot for CPO values for the 2-dim model 

was far above that for the 1-dim model, also indicating that the 2-dim model was preferred. 

Table 4.16 includes the minimum, maximum, and mean CPO index values (across the 20 

replications) for each of the 15 items based on the two models, as well as the frequency the true 

model (i.e., 2-dim GR) was chosen to be the preferred model for each item. As can been seen, 

the mean CPO value for the 2-dim GR model was larger than the value for the 1-dim model for 

each item, indicating that the 2-dim GR model fit the responses to each item better. Moreover, 

for all items, the item-level CPO index chose the true model as the preferred model over the 20 

replications.  

Figure 4.32 displays the median PPP-values for two pair-wise discrepancy measures 

when estimating the two different models. When a 1-dim GR model was estimated, all the PPP-

values were extreme and the items fell into two clusters – Items 1- 8 in one, and Items 9-15 in 

another. This pattern indicated that a 2-dimensional model should be considered. In contrast, 

when a 2-dim model was estimated, all the PPP-values were around 0.5, suggesting the fit of the 

2-dim model. 
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Table 4.16  Model Selection for Each Item using Item-level CPO Index – Condition 2 

Item Model Min Max Mean Frequency of 
Choosing True 

1     2-dim GR* -1299 -1259 -1274 

     1-dim GR -1312 -1279 -1291 
20 (100%) 

2     2-dim GR* -1182 -1136 -1162 

     1-dim GR -1227 -1186 -1209 
20 (100%) 

3     2-dim GR* -1025 -985 -998 

     1-dim GR -1093 -1054 -1077 
20 (100%) 

4     2-dim GR* -1236 -1192 -1214 

     1-dim GR -1254 -1206 -1231 
20 (100%) 

5     2-dim GR* -1019 -972 -1001 

     1-dim GR -1069 -1020 -1044 
20 (100%) 

6     2-dim GR* -1023 -983 -999 

     1-dim GR -1111 -1060 -1075 
20 (100%) 

7     2-dim GR* -1321 -1288 -1301 

     1-dim GR -1332 -1306 -1319 
20 (100%) 

8     2-dim GR* -1151 -1119 -1133 

     1-dim GR -1203 -1155 -1180 
20 (100%) 

9     2-dim GR* -866 -816 -848 

     1-dim GR -954 -883 -923 
20 (100%) 

10     2-dim GR* -1228 -1193 -1209 

     1-dim GR -1243 -1213 -1227 
20 (100%) 

11     2-dim GR* -1159 -1114 -1133 

     1-dim GR -1212 -1158 -1184 
20 (100%) 

12     2-dim GR* -1049 -1016 -1032 

     1-dim GR -1130 -1091 -1114 
20 (100%) 

13     2-dim GR* -1301 -1243 -1277 

     1-dim GR -1315 -1267 -1297 
20 (100%) 

14     2-dim GR* -1023 -973 -1002 

     1-dim GR -1070 -1014 -1049 
20 (100%) 

15     2-dim GR* -871 -818 -845 

     1-dim GR -955 -897 -923 
20 (100%) 
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Figure 4.32  Display of Median PPP-values for Yen’s Q3 (left) and Global OR (right) when Fitting 1-dim 
GR model (top) and 2-dim simple-structure GR model (bottom) to the Data 
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4.2.3 Condition 3 (1-dim GR vs. 2-dim complex-structure GR model) 

In this condition, the data were generated based on 2-dim complex-structure GR models, but 

calibrated using both the common 1-dim GR model and the generating 2-dim complex-structure 

GR model. The three model comparison criteria were compared in terms of their abilities to 

select 2-dim model as the preferred model.  

Table 4.17  RMSD for Item Parameter Recovery in WinBUGS for 2-dim Complex-Structure Model 

Item a1 a2 b1 b2 b3 b4 

1 0.18 0.08 0.16 0.09 0.04 0.10 

2 0.15 0.10 0.13 0.04 0.06 0.15 

3 0.14 0.12 0.08 0.04 0.09 0.15 

4 0.15 0.10 0.30 0.15 0.06 0.10 

5 0.16 0.10 0.09 0.04 0.13 0.26 

6 0.07 - 0.07 0.05 0.04 0.04 

7 0.06 - 0.08 0.04 0.05 0.07 

8 0.06 - 0.06 0.03 0.05 0.07 

9 0.06 - 0.17 0.05 0.03 0.05 

10 0.07 - 0.04 0.04 0.06 0.11 

11 0.07 - 0.04 0.03 0.03 0.05 

12 0.08 - 0.05 0.03 0.03 0.05 

13 0.08 - 0.05 0.03 0.04 0.06 

14 0.10 - 0.12 0.05 0.03 0.03 

15 0.09 - 0.05 0.03 0.05 0.12 
 

 Item parameter recovery for the 2-dim complex-structure GR model was examined first. 

Table 4.17 gives the RMSD value for each item parameter across the 20 replications. The 

average RMSD across all the threshold values was 0.074. For the slope parameter a1, the average 

RMSD was 0.075 across the items (6-15) measuring only the dominant dimension, and 0.157 

across the items (1-5) measuring the dominant AND the nuisance dimension. The average 

RMSD for the slope parameter a2 was 0.099. The relatively larger values of RMSD for the two 
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slopes for the first five items were due to fixing the correlation to be 0 when estimating the 

model in WinBUGS (the true correlation was 0.30). However, this rotation of the two 

dimensions would not affect the computation of the model-comparison indices. 

Table 4.18  Model Selection for Overall Test using Different Indices – Condition 3 

 DIC 

Model Min Max Mean Frequency of 
Choosing True 

2-dim GR* 71391 72365 71905 

     1-dim GR 71563 72580 72093 
20 (100%) 

 CPO 

2-dim GR* -15746 -15534 -15645 

     1-dim GR -15776 -15556 -15670 
20 (100%) 

 PPMC (global OR) 

2-dim GR* 1 8 4 

     1-dim GR 2 14 8 
18 (90%) 

 PPMC (Yen’s Q3) 

2-dim GR* 1 8 4 

     1-dim GR 9 21 15 
20 (100%) 

 
 Table 4.18 presents the minimum, maximum, and mean values for each index for the two 

models, as well as the frequency of choosing the true model (i.e., 2-dim complex-structure GR) 

across the 20 replications. As can been seen, the mean DIC values were 71905 and 72093, and 

the mean CPO values were -15645 and -15670 for the 2-dim complex-structure and 1-dim GR 

model, respectively. The lower DIC value and the higher CPO value for the 2-dim GR model 

indicated that this complex model was preferred over the simple unidimensional GR model. For 

the PPMC application, when the true model was estimated, 4 out of 105 item pairs with extreme 

PPP-values for both pair-wise measures were observed. However, when the 1-dim GR model 

was estimated, more item pairs had extreme PPP-values – 8 and 15 pairs for the global OR and 

Yen’s Q3 index respectively. The distributions of these indices are shown in Figure 4.33.  
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Figure 4.33  Box-plots of Model Comparison Indices across 20 Replications – Condition 3 

As shown in Table 4.18, the DIC, CPO and PPMC using Yen’s Q3 measures appeared to 

perform equally well regarding the frequency of choosing the 2-dim GR model as the preferred 

model for the overall test. However, when the global OR measure was used with PPMC, for 2 

replications, the 1-dim GR model was wrongly chosen as the preferred model. The PPMC results 

indicated that the choice of discrepancy measures would affect the performance of the PPMC 

application in comparing different models. If the measure was not effective, the PPMC method 

would lose power and would not be effective as the typical model-comparison indices (DIC and 

CPO). For this condition, Yen’s Q3 measure appeared to be more effective than the global OR 

measure.  
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Table 4.19  Model Selection of Each Item using Item-level CPO Index – Condition 3 

Item Model Min Max Mean Frequency of 
Choosing True 

1     2-dim GR* -1226 -1183 -1201 

     1-dim GR -1230 -1188 -1205 
19 (95%) 

2     2-dim GR* -1260 -1222 -1238 

     1-dim GR -1264 -1226 -1242 
19 (95%) 

3     2-dim GR* -1229 -1191 -1209 

     1-dim GR -1234 -1191 -1212 
19 (95%) 

4     2-dim GR* -1092 -1056 -1076 

     1-dim GR -1097 -1059 -1081 
20 (100%) 

5     2-dim GR* -1092 -1042 -1071 

     1-dim GR -1095 -1050 -1076 
20 (100%) 

6     2-dim GR* -1137 -1088 -1114 

     1-dim GR -1137 -1089 -1115 
14 (70%) 

7     2-dim GR* -1160 -1118 -1140 

     1-dim GR -1160 -1117 -1139 
10 (50%) 

8     2-dim GR* -1131 -1086 -1113 

     1-dim GR -1132 -1087 -1114 
13 (65%) 

9     2-dim GR* -1007 -964 -983 

     1-dim GR -1007 -964 -984 
17 (85%) 

10     2-dim GR* -1004 -943 -979 

     1-dim GR -1004 -944 -978 
15 (75%) 

11     2-dim GR* -986 -938 -961 

     1-dim GR -986 -930 -959 
14 (70%) 

12     2-dim GR* -1011 -965 -988 

     1-dim GR -1013 -965 -989 
14 (70%) 

13     2-dim GR* -984 -938 -958 

     1-dim GR -985 -938 -959 
14 (70%) 

14     2-dim GR* -834 -780 -807 

     1-dim GR -834 -781 -808 
18 (90%) 

15     2-dim GR* -831 -784 -806 

     1-dim GR -832 -785 -808 
12 (60%) 

 
 As discussed above, the 2-dim complex-structure GR model fit better for the overall test. 

Table 4.19 includes the minimum, maximum, and mean CPO index values, as well as the 
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frequency the true model was chosen as the preferred model for each item. As can been seen, for 

Items 1-5, which measured both the dominant and nuisance dimensions, the item-level CPO 

selected the 2-dim model as the preferred model 95% to 100% of the time. However, for the 

other items (Items 6-15), which only measured the dominant dimension, the 2-dim model was 

chosen as the preferred model with a lower percentage (50% to 90%). This would be expected 

since the 1-dim GR model should be appropriate for those items simulated to measure one 

dimension. In addition, for Items 1-5, the mean CPO value for the 2-dim GR model was larger 

than the value for the 1-dim model, and the difference between the two mean CPO values was 

greater than 3 units. For Items 6-15, though most of the items had larger mean CPO values for 

the 2-dim GR model, the difference between two models was only about 1 unit. It is should be 

noted that this small difference might not provide sufficient evidence for favoring the 2-dim GR 

model over the 1-dim GR model.  

Recall, the smaller value of DIC, the better the fit of a model. However, any difference in 

DIC less than 5 units for two models may not indicate sufficient evidence in favor of one model 

over another (Spiegelhalter et al., 2003). There are no discussed guidelines for CPO as for DIC, 

but the item-level CPO results for this condition may indicate that a difference of less than 3 

units may not provide sufficient evidence supporting one model over another. However, the 

amount of difference in CPO necessary to suggest a significant difference between models needs 

further investigation.  
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Figure 4.34  Display of Median PPP-values for Yen’s Q3 (left) and Global OR (right) when Fitting 1-dim 
GR Model (top) and 2-dim complex-structure GR Model (bottom) to the Data 

Figure 4.34 displays the median PPP-values for the two pair-wise discrepancy measures 

when both models were estimated. As can be observed, when the 2-dim complex-structure model 

was estimated (bottom plots), all the PPP-values were around 0.5, providing evidence of fit for 

the model. In contrast, when the unidimensional GR model was estimated, all the PPP-values 

were extreme for the item pairs involving the first 5 items, but around 0.5 for the other item 

pairs. This pattern indicated that the unidimensional GR model was not appropriate for Items 1-

5, but was appropriate for Items 6-15. Additionally, the close to 0 PPP-values for the item pairs 
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among Items 1-5 indicated that the realized correlations among these five items were 

consistently larger than the predicted correlations under the unidimensional GR model. This also 

suggested that another factor may be measured by these 5 items in addition to the dominant 

dimension.  

In summary, all three indices showed that a 2-dim complex-structure GR model fit the 

overall test better than a unidimensional GR model. The item-level CPO index further showed 

that this complex model was needed to model the responses to the first 5 items, but a simple 

unidimensional GR model might be adequate for the other items. In addition, the PPMC results 

showed the misfit of a unidimensional GR model to the responses to the first 5 items as well as 

the fit of this simple model to the other items. 
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4.2.4 Condition 4 (1-dim GR model vs. GR model for testlet) 

In this condition, Items 6, 7 and 8 were designed as a testlet, and the responses to these testlet 

items were generated under a modified GR model for testlets. The responses to other items were 

simulated to be locally independent based on the unidimensional (1-dim) GR model. For each of 

the 20 generated data sets, both the 1-dim GR model and the testlet GR model were estimated to the 

same data in WinBUGS, and three Bayesian model comparison indices were obtained for each 

model. The values for different models were then compared in order to determine which model was 

preferred. 

Table 4.20  RMSD for Item Parameter Recovery in WinBUGS for Testlet GR Model 

Item a b1 b2 b3 b4 

1 0.05 0.13 0.06 0.04 0.07 

2 0.04 0.11 0.07 0.04 0.07 

3 0.04 0.07 0.05 0.07 0.10 

4 0.05 0.18 0.08 0.05 0.06 

5 0.05 0.07 0.05 0.07 0.15 

6 0.08 0.09 0.06 0.04 0.04 

7 0.10 0.09 0.06 0.04 0.08 

8 0.10 0.05 0.04 0.07 0.10 

9 0.06 0.12 0.05 0.04 0.05 

10 0.05 0.05 0.03 0.06 0.13 

11 0.11 0.09 0.04 0.02 0.05 

12 0.07 0.06 0.04 0.03 0.05 

13 0.09 0.05 0.03 0.05 0.06 

14 0.11 0.15 0.05 0.04 0.05 

15 0.08 0.03 0.03 0.06 0.15 
 037.0)( 2 =σRMSD  

 
 Item parameter recovery for the testlet GR model was examined first. Table 4.20 gives 

the RMSD value for each item parameter across the 20 replications. The average RMSD was 

0.073 and 0.067 for the slope and threshold parameters, respectively. The RMSD for the testlet 
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variance across the 20 replications was 0.037. These results indicated one chain of 5000 and a 

posterior sample of 1000 were adequate for the accuracy of estimation of the GR model for 

testlet using MCMC within WinBUGS. 

Table 4.21  Model Selection for Overall Test using Different Indices – Condition 4 

 DIC 

Model Min Max Mean Frequency of 
Choosing True 

testlet GR* 73750 75177 74170 

     1-dim GR 74476 75833 74924 
20 (100%) 

 CPO 

testlet GR* -16361 -16056 -16145 

     1-dim GR -16482 -16191 -16287 
20 (100%) 

 PPMC (global OR) 

testlet GR* 2 12 6 

     1-dim GR 5 17 10 
18 (90%) 

 PPMC (Yen’s Q3) 

testlet GR* 3 9 5 

     1-dim GR 17 28 21 
20 (100%) 

 
 Table 4.21 presents the minimum, maximum, and mean values for each index for the two 

models, as well as the frequency of choosing the true model (i.e., testlet GR) across the 20 

replications. As can been seen, the mean DIC values were 74170 and 74924, and the mean CPO 

values were -16145 and -16287 for the testlet GR model and 1-dim GR model, respectively. The 

lower DIC and the higher CPO value for the testlet GR model indicated that this complex model 

fit the overall test better than the simple unidimensional GR model. For the PPMC application, 

when the testlet model was estimated, 5 (6) out of 105 item pairs with extreme PPP-values for 

Yen’s Q3 (global OR) were observed. However, when the unidimensional GR model was 

estimated, more item pairs had extreme PPP-values – 10 and 21 pairs for the global OR and 

Yen’s Q3 index, respectively. The distributions of these indices are shown in Figure 4.35.  



 208 

 

Figure 4.35  Box-plots of Model Comparison Indices across 20 Replications – Condition 4 

 

As shown in Table 4.21, the DIC, CPO and PPMC using Yen’s Q3 measures appeared to 

perform equally well. All approaches resulted in selecting the testlet GR model as the preferred 

model 100% of the time. However, when the global OR measure was used with PPMC, the 

testlet GR model was chosen as the preferred model 90% of the time. As for Condition 3, Yen’s 

Q3 measure appeared to be slightly more effective than the global OR measure for this condition. 
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Table 4.22  Model Selection for Each Item using Item-level CPO Index – Condition 4 

Item Model Min Max Mean Frequency of 
Choosing True 

1    testlet GR* -1284 -1247 -1269 

    1-dim GR -1284 -1247 -1269 
15 (75%) 

2    testlet GR* -1307 -1275 -1293 

    1-dim GR -1307 -1276 -1294 
15 (75%) 

3    testlet GR* -1287 -1250 -1266 

    1-dim GR -1288 -1250 -1267 
16 (80%) 

4    testlet GR* -1214 -1178 -1199 

    1-dim GR -1215 -1178 -1120 
14 (70%) 

5    testlet GR* -1221 -1185 -1204 

    1-dim GR -1221 -1186 -1204 
16 (80%) 

6    testlet GR* -1137 -1094 -1121 

    1-dim GR -1180 -1133 -1162 
20 (100%) 

7    testlet GR* -1185 -1130 -1151 

    1-dim GR -1220 -1166 -1193 
20 (100%) 

8    testlet GR* -1150 -1099 -1124 

    1-dim GR -1190 -1140 -1166 
20 (100%) 

9    testlet GR* -1004 -961 -986 

    1-dim GR -1007 -962 -987 
18 (90%) 

10    testlet GR* -1009 -964 -986 

    1-dim GR -1009 -965 -987 
16 (80%) 

11    testlet GR* -999 -939 -968 

    1-dim GR -1001 -944 -970 
18 (90%) 

12    testlet GR* -1008 -969 -991 

    1-dim GR -1011 -969 -993 
16 (80%) 

13    testlet GR* -989 -938 -962 

    1-dim GR -992 -941 -965 
19 (95%) 

14    testlet GR* -832 -764 -811 

    1-dim GR -834 -765 -814 
20 (100%) 

15    testlet GR* -845 -788 -814 

    1-dim GR -851 -790 -816 
20 (100%) 
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Table 4.22 includes the item-level CPO index information for each item. As can be seen, 

for the items in the testlet (Items 6, 7 and 8), the mean CPO values for the testlet GR model were 

much larger than the values for the unidimensional model. The difference was about 42 units for 

these three items, and the testlet GR model was chosen as the preferred model 100% of the time.  

For the other independent items, the mean CPO values were about the same for most of these 

items, and the maximum CPO difference between two models was less than 3 units. Though the 

testlet GR model was selected as the preferred model for these independent items 70% to 100% 

of the time, the difference of less than 3 units did not provide sufficient evidence in favor of a 

testlet GR model over a unidimensional model. As a result, it may be reasonable to apply the 

simple unidimensional GR model to these items. 

Figure 4.36 displays the median PPP-values for the two pair-wise discrepancy measures 

when both models were estimated. As can be observed, when the testlet GR model was estimated 

(bottom plots), all the PPP-values were around 0.5, suggesting the fit of the model. In contrast, 

when the unidimensional GR model was estimated, all the PPP-values were extreme for the item 

pairs with the three testlet items (Items 6, 7, and 8), but around 0.5 for the pairs among the 

independent items. Additionally, the close to 0 PPP-values for the item pairs for the testlet items 

indicated that the realized correlations among these items were consistently larger than the 

predicted correlations under the unidimensional GR model. These results indicated that the 

unidimensional GR model was not appropriate for Items 6, 7, and 8, but was appropriate for the 

other items. 

In summary, all three indices indicated that a testlet GR model fit the overall test better 

than a unidimensional GR model when item responses with a testlet were simulated. The item-

level CPO index further showed that a testlet GR model fit Items 6, 7 and 8 significantly better 
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than a unidimensional GR model, but this testlet model might be not necessary for the other 

items. Moreover, the PPMC results indicated that the misfit of a unidimensional GR model to the 

testlet items was due to the higher than expected correlations among the testlet items. The PPMC 

results also indicated a good fit of the testlet GR model to all items.  

 

Figure 4.36  Display of Median PPP-values for Yen’s Q3 (left) and Global OR (right) when fitting 1-dim GR 
Model (top) and testlet GR Model (bottom) to the Data 

 

 

 

 



 212 

4.3 RESULTS FROM REAL APPLICATION 

This section presents the results from the application of the Bayesian model-fit and model-

comparison methodology investigated in the current study to three QCAI data sets (AS91, AS92, 

and BS92). Each dataset was calibrated using both a 2P GR (hereafter simply referred to as GR) 

model and a 1P GR model in WinBUGS, and different aspects of fit of each model were 

evaluated by using the PPMC method. In addition, the model-comparison indices (DIC, CPO, 

and PPMC) were computed for both models and a preferred model was chosen for each dataset. 

It should be noted that all 8 discrepancy measures were used with the PPMC application in order 

to assess different aspects of fit. 

4.3.1 QCAI Data 1 – AS91 

As for the previous simulation studies, the estimation of item parameter for GR models using 

MCMC in WinBUGS was evaluated first. Since there were no true values for real data, the item 

parameters were also estimated using MULTILOG. Comparing the results from both programs 

provided information about the consistency of item parameter estimates. 

Table 4.23 provides the item parameter estimates for the GR model based on the AS91 

data. As can be seen, the estimates from the two programs were very similar. The average 

absolute difference between WinBUGS and MULTILOG estimates across all the items was 

0.051 for the slope parameters, and 0.052 for all the threshold parameters. It should be noted that 

the estimates in MULTILOG were slightly different from the values in Hansen (2004). Though 

Hansen (2004) estimated the same model based on the same data in MULTILOG, she used all 

the available responses including the missing responses. The estimates in Table 4.23 were based 
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on the data excluding the missing responses. The reason is that WinBUGS can not handle 

missing values. The same issue existed for the other two datasets. 

Table 4.23  Item Parameter Estimates using WinBUGS and Multilog – AS91 

 WinBUGS Multilog 

Item a b1 b2 b3 b4 a b1 b2 b3 b4 

1 0.87 1.30 2.09 2.43 2.97 0.87 1.31 2.08 2.40 2.91 

2 1.57 -1.04 -0.08 0.73 1.53 1.63 -0.98 -0.06 0.71 1.48 

3 1.27 0.04 1.25 1.50 1.80 1.32 0.06 1.23 1.46 1.73 

4 1.22 0.18 0.93 1.39 2.17 1.30 0.19 0.90 1.31 2.04 

5 1.00 -1.22 -0.10 1.93 3.47 1.03 -1.15 -0.08 1.89 3.36 

6 1.20 -0.70 0.19 0.86 3.56 1.23 -0.66 0.20 0.84 3.46 

7 1.16 -1.82 0.66 1.44 2.37 1.22 -1.72 0.65 1.38 2.25 

8 1.56 0.93 1.57 1.85 2.21 1.66 0.90 1.51 1.76 2.09 
 

  

Figure 4.37  Example History and Autocorrelation Plots – AS91 
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For each real dataset, a long chain of 15000 iterations was run in WinBUGS and the first 

10000 iterations were discarded as the burn-in phase. The remaining 5000 iterations were 

thinned every fifth iteration to obtain a total posterior sample of 1000. Figure 4.37 displays the 

sample history and autocorrelation plots for the slope and one threshold parameters for Item 2. 

Other parameters had similar plots. These plots demonstrated that the convergence in the chain. 

The PPP-values of the chi-square statistic summarizing the discrepancy between the observed 

and predictive test score distributions were 0.56 and 0.64 for the GR and 1P GR models, 

respectively. Both values were not extreme, indicating these two models fit the data in terms of 

the total test score distributions.  

Model-Fit 

Table 4.24  PPP-values for Item-level Measures based on GR and 1P GR Models – AS91 

 Item-Level Discrepancy Measures 

 Item Score Dist Yen’s Q1 Stone’s Item-Fit Item-Test Corr 

Item GR 1P GR GR 1P GR GR 1P GR GR 1P GR 

1 0.50 0.47 0.25 0.09 0.08 0.01 0.47 0.95 

2 0.53 0.51 0.51 0.57 0.57 0.43 0.49 0.04 

3 0.50 0.48 0.40 0.43 0.11 0.15 0.38 0.29 

4 0.52 0.51 0.49 0.48 0.48 0.52 0.46 0.51 

5 0.47 0.48 0.40 0.29 0.11 0.05 0.31 0.77 

6 0.53 0.52 0.51 0.50 0.56 0.55 0.37 0.38 

7 0.51 0.51 0.49 0.48 0.36 0.44 0.27 0.33 

8 0.46 0.47 0.36 0.42 0.05 0.08 0.25 0.02 
 

 Table 4.24 includes the PPP-values for the item-level discrepancy measures for each of 

the 8 QCAI items. As can be seen, when a GR model was used to analyze the AS91 data, the 

PPP-values of the item score distribution, item-test score correlation, and Yen’s Q1 index had no 

extreme values. However, Stone’s fit statistic showed extreme values for a few of items, 

indicating some misfitting items. Recall, in previous studies (see Table 3.18), Items 1, 3, 5, and 8 
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were identified as misfitting by Stone et al. (1993), and Items 1, 5, and 8 were flagged as 

misfitting by Stone (2000). Both studies used an α = 0.05 significance level. If the same 

significance level was used for the current study, only Item 8 was flagged as misfitting. 

However, if a higher level of significance of α = 0.10 was used, Items 1 and 8 would be 

classified as misfitting. Items 3 and 5 had PPP-values around 0.11, thus indicating the potential 

for item misfit.  

In order to explain the different results and also to identify if there were some real issues 

with item misfit, the observed and expected item response category curves (ICCs) were drawn. 

Appendix F includes the ICCs for all the items on each of these three QCAI test forms. The ICCs 

for four misfitting items (Items 1, 3, 5, and 8) on the AS91 form are also shown in Figure 4.38. 

As can be seen, the discrepancies between observed and expected ICCs for response categories 

1-4 were quite large for Item 5. There were some discrepancies between the observed and 

expected ICCs for response categories 1, 2, 3 and 4 for Item 3, though the ICCs for the last 

category (5) matched very well for the ability range of -2.5 to 2.5 in which most students fell. 

The fact that Items 3 and 5 were not flagged as misfitting based on the PPP-values further 

indicated the conservativeness of the PPMC method. As a result, a level of α = 0.10 was 

employed for the real application. 

It is important to determine if the misfitting identified by a statistical test has substantial 

practical consequences. The comparison of the expected and observed ICCs could be used for 

this purpose. Among these four misfitting items, Item 3 may not have significant practical 

consequences of misfitting since the discrepancies between expected and observed ICCs were 

not large in the ability range (-2.5, 2.5). The relatively large differences between ICCs for the 

other three items (Items 1, 5, and 8) may indicate that the item misfit may have practical 
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consequences. These results also imply that the method used by Stone (1993) for evaluating 

item-fit is relatively liberal. In contrast, the PPMC method used in the current study is relatively 

conservative. The method used by Stone (2000) appears to lie between these two approaches. 
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Figure 4.38  Observed vs. Expected ICCs for Misfitting Items on the AS91 Form 
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When a 1P GR model was fit this data, as shown in Table 4.24, the PPP-values of the 

item score distribution were not extreme, suggesting that this model could predict the item score 

distribution. A few of items were flagged based on the two item-fit measures. The most 

important measure for this model is the item-total score correlation since it is related to the slope 

parameter. When the common-slope GR model was used, Item 1 had a PPP-value of 0.95, 

indicating the observed item-test correlation for this item was systematically lower than the 

predicted correlations. In contrast, Items 2 and 8 had PPP-values of 0.04 and 0.02 respectively, 

indicating the observed correlation was significantly higher than the predictive correlations. This 

result was expected given the slope estimates in Table 4.23. The slopes of Items 3-7 were closer 

to the common slope estimate (1.23). In contrast, Item 1 had a slope of 0.87, and Items 2 and 8 

had slopes of almost 1.60. 

Figure 4.39 displays the PPP-values for three pair-wise discrepancy measures for all the 

28 item pairs using pie plots. As can be seen, there were no clear patterns in these plots. Most of 

the PPP-values for Yen’s Q3 and item covariance residual were not extreme for both models, 

indicating that there was no clear evidence of violation in the unidimensionality and local 

independence assumptions. Though the global OR measure showed more extreme values than 

the other two measures, the results might not be convincing since several items on the AS91 

form were very difficult. The dichotomization of the responses based on the rubric (0, 1, 2 

treated as 0, and 3, 4 treated as 1) resulted in some zero frequency cells in the contingency tables. 

Therefore, it was necessary to use the other two measures to evaluate model-fit for these real 

datasets. 
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Figure 4.39  Display of PPP-values for Pair-wise Measures when fitting GR Model (top) and 1P GR Model 
(bottom) to the data – AS91 

 

Overall, the results of PPMC using Yen’s Q3 and the item covariance residual showed 

that that the QCAI AS91 data was essentially unidimensional and items exhibited local 

independence. This conclusion was consistent with that from Lane et al. (1995). The GR model 

appeared to fit the AS91 data well regarding most aspects of the fit measured by these 

discrepancy measures. For example, the GR model could be used to predict the test and item 

score distributions, the relationships among the items, and the item-test score correlations. 

However, several misfitting items to the GR model were identified using PPMC with Stone’s 

item fit measure, a finding which is consistent with previous studies. The results also showed 

that a 1P GR model could account for the item/test score distributions, and the correlations 

among the items, but this model could not explain the item-test score correlations correctly. 
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In order to compare the GR, 1P GR, and 2-dimensional complex-structure GR models, three 

model-comparison indices (DIC, CPO, and PPMC) were computed and compared in Table 4.25.  

It should be noted that only Yen’s Q3 statistic and the global OR measure were used with PPMC 

for the 2-dimensional complex-structure model. These two measures were found to be the most 

effective measures based on the simulation studies.   As can be seen, the smallest DIC value for 

the 2-dim complex-structure GR model suggested this complex model was preferred over the GR 

model which in turn was preferred over the 1P GR model. The test-level CPO values for these 

three models only differed by less than 1 and thus did not provide sufficient evidence in favor of 

one model over the other for the overall test. The item-level CPO values (see Table 4.26) were 

also very close for the three models, further indicating there were no significant differences 

between these three models. 

Model-Comparison 

Table 4.25  Model Selection Indices for Overall Test – AS91  

PPMC 
Model DIC CPO Test 

score 
dist 

Item 
score dist 

Yen’s 
Q1 

Stone’s 
fit stat 

Item-test 
corr 

Yen’s 
Q3 

Global 
OR 

Item 
cov 

resid 

GR 7455 -1625.2 0.56 0/8 0/8 2/8 0/8 4/28 6/28 2/28 

1P GR 7471 -1625.3 0.64 0/8 1/8 3/8 3/8 8/28 10/28 5/28 

2-dim GR 7415 -1626.1 - - - - - 4/28 5/28 - 
 

 

Table 4.26  Item-level CPO Index for Each Item – AS91 

Item Model 
1 2 3 4 5 6 7 8 

GR -153.9 -246.9 -192.6 -208.0 -236.4 -229.0 -222.0 -136.4 

1P GR -154.2 -247.9 -192.5 -207.5 -237.2 -227.8 -221.8 -136.4 

2-dim GR -154.3 -246.4 -192.5 -208.3 -236.5 -229.2 -222.3 -136.5 
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Table 4.25 also summarizes the PPMC results for this dataset. For the GR and 1P GR 

models, all 8 discrepancy measures were used. For the test score distribution measure, the 

numbers in the table are the PPP-values. For the item-level measures, the numbers reflect the 

number of items with extreme PPP-values across the total number of 8 items. For example, for 

the item-test score correlation, there were no extreme PPP-values under the GR model, but there 

were 3 of 8 items with extreme values under the 1P GR model. For the pair-wise measures, the 

numbers represent the number of item pairs having extreme PPP-values.  

Firstly, we can see that there were more extreme values for the 1P GR model over the GR 

model. However, the most useful measure for comparing these two models may be the item test 

score correlation since it reflects the difference in item parameters between these two models. By 

examining this measure, it is clear that the GR model fit this data significantly better. The DIC 

values also indicated that the GR model was preferred over the 1P GR model, but this index only 

provided an absolute measure of model fit. In contrast, the results of the PPMC application not 

only indicated that the GR model was preferred, but also indicated that this model fit the data 

reasonably well. The conclusion that the GR model fit the data significantly better than the 1P 

GR model is consistent with the previous finding by Lane et al. (1995). 

It can also seen from Table 4.25 that when a 2-dimensional complex-structure GR model 

was used to analyze this AS91 dataset, 4 and 5 out of 28 item pairs had extreme PPP-values for 

Yen’s Q1 index and the global OR measure, respectively. When a unidimensional GR model was 

estimated, the numbers of extreme PPP-values were about the same as for the 2-dimensional 

model. This result indicates that there was not sufficient evidence to prefer the 2-dimensional 

model. Thus a simpler unidimensional GR model may be adequate for this dataset. This 

conclusion is also consistent with the previous finding by Lane et al. (1995). 
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Overall, the DIC values indicated that a 2-dimensional model was preferred for the AS91 

dataset, but the PPMC results indicated that a unidimensional GR model was adequate. The CPO 

values did not provide sufficient evidence in favor of one model over the other. 

4.3.2 QCAI Data 2 – AS92 

Table 4.27 provides the item parameter estimates for the GR model based on the AS92 data. As 

can be seen, the estimates from two programs were very similar. The average absolute difference 

between WinBUGS and MULTILOG estimates across all the items was 0.021 for the slope 

parameters, and 0.032 for all the threshold parameters. In addition, Figure 4.40 shows the sample 

history and autocorrelation plots for the slope and one threshold parameters for item 2. Other 

parameters had similar plots. These plots demonstrated that the convergence of the chain was 

attained for this AS92 data. 

Table 4.27  Item Parameter Estimates using WinBUGS and Multilog – AS92 

 WinBUGS Multilog 

Item a b1 b2 b3 b4 a b1 b2 b3 b4 

1 1.12 1.25 1.84 2.64 3.34 1.12 1.28 1.87 2.66 3.34 

2 1.47 -1.03 -0.08 0.66 1.41 1.51 -0.97 -0.05 0.66 1.39 

3 1.14 0.30 1.26 1.66 1.80 1.16 0.32 1.26 1.64 1.76 

4 0.70 -0.18 0.85 1.16 3.97 0.69 -0.13 0.89 1.19 3.99 

5 0.70 -1.72 -0.54 2.16 4.17 0.67 -1.73 -0.52 2.26 4.33 

6 1.11 -0.93 0.03 0.84 3.50 1.13 -0.89 0.05 0.84 3.46 

7 1.32 -1.48 0.28 1.06 1.77 1.37 -1.41 0.29 1.04 1.72 

8 1.38 1.26 2.17 2.46 3.03 1.38 1.28 2.17 2.44 2.99 
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Figure 4.40  Example History and Autocorrelation Plots – AS92 

The PPP-values of the chi-square statistic summarizing the discrepancy between the observed 

and predictive test score distributions were 0.24 and 0.18 for the GR and 1P GR models, 

respectively. Both values were not extreme, indicating these two models fit the data regarding 

the total test score distribution.  

Model-Fit 

Table 4.28 includes the PPP-values for the four item-level discrepancy measures for each 

item. When a GR model was used to analyze this data, all the PPP values were not extreme, 

suggesting a good fit of the GR model in the aspects measured by these four measures. However, 

when a 1P GR model was estimated, two items (Items 2 and 5) were identified as misfitting by 
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Stone’s item-fit measure. Most important, among the eight items, six items had extreme PPP 

values for the item-total score correlation measure, providing evidence that the 1P GR model 

could not predict the item-test score correlations in the data. 

Table 4.28  PPP-values for Item-level Measures based on GR and 1P GR Models – AS92 

 Item-Level Discrepancy Measures 

 Item Score Dist Yen’s Q1 Stone’s Item-Fit Item-Test Corr 

Item GR 1P GR GR 1P GR GR 1P GR GR 1P GR 

1 0.51 0.49 0.54 0.54 0.57 0.62 0.40 0.29 

2 0.50 0.47 0.40 0.35 0.19 0.06 0.17 0.00 

3 0.48 0.51 0.42 0.45 0.18 0.28 0.17 0.04 

4 0.51 0.46 0.53 0.32 0.54 0.14 0.46 1.00 

5 0.48 0.43 0.46 0.26 0.33 0.06 0.48 1.00 

6 0.47 0.50 0.51 0.55 0.36 0.42 0.53 0.44 

7 0.48 0.47 0.50 0.48 0.41 0.38 0.31 0.02 

8 0.52 0.47 0.42 0.54 0.46 0.42 0.24 0.01 
 

 It should be noted that Items 2 and 3 were identified as misfitting for the GR model by 

Stone et al. (1993), and Item 3 was also flagged by Stone (2000). Even if the significance level α 

= 0.10 was used, no item would be flagged as misfitting using the PPMC method with Stone’s 

item fit measure. The PPP values for Items 2 and 3 were around 0.19 and 0.18, respectively. 

Though their values were lower than the other values, they were not extreme enough to indicate 

item misfitting. 

The ICCs for Items 2 and 3 are shown in Figure 4.41, and the ICCs for other items are in 

Appendix F. It can be seen the observed and predicted ICCs matched reasonably well for Item 2. 

Thus, the item misfit identified by Stone (1993) may not indicate a practical consequence. For 

Item 3, the observed ICCs for three response categories 1, 3 and 4 were very close to the 

corresponding predicted ICCs. However, there were some discrepancies between the observed 

and predicted ICCs for the other categories (2, and 5). These results further indicate the 
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conservativeness of the PPMC method in evaluating item-fit, and the liberalness of the method 

used by Stone (1993). As before, the method used by Stone (2000) falls in between these two 

approaches and yields results that are more reasonable for practical purposes. 

 

Figure 4.41  Observed vs. Expected ICCs for Misfitting Items on the AS92 Form 
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Figure 4.42 displays the PPP-values for three pair-wise discrepancy measures for all the 

28 item pairs using the pie plots. As can be seen, there were no clear patterns in these plots, and 

most of the PPP-values for Yen’s Q3 and item covariance residual were not extreme for both 

models. The results indicated that there was no clear evidence of violations in the 

unidimensionality and local independence assumptions for this data. This conclusion is 

consistent with the finding in Lane et al. (1995). 

 

Figure 4.42  Display of PPP-values for Pair-wise Measures when fitting GR Model (top) and 1P GR 
Model (bottom) to the Data – AS92 

 

Overall, the GR model appeared to fit the AS92 data well regarding different aspects of 

the fit such as dimensionality, item-fit, item/test score distribution, and item-test score 

correlations. Although a 1P GR model could explain several aspects of properties in the data, it 

could not explain the relationship between items and test scores. 
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Table 4.29 compares the values of DIC, CPO and PPMC for the GR and 1P GR models. As can 

be seen, the DIC values indicated that the 2-dimensional complex-structure GR model was 

preferred over the GR model, which in turn was preferred over the 1P model for this particular 

dataset. However, the CPO values for these three models suggested that the GR model was 

preferred over the 2-dim GR model which in turn was better than the 1P model. For the PPMC 

indices, in general, there were more extreme PPP values for the 1P GR model compared to the 

other two models. As an example, six of eight items had extreme values for the item-test score 

correlation. However, the same numbers of extreme PPP-values for the 2-dim GR and the 

unidimensional GR model indicated that the unidimensional GR model was adequate for this 

dataset.  

Model-Comparison 

Table 4.29  Model Selection Indices for Overall Test – AS92 

PPMC 
Model DIC CPO Test 

score 
dist 

Item 
score dist 

Yen’s 
Q1 

Stone’s 
fit stat 

Item-test 
corr 

Yen’s 
Q3 

Global 
OR 

Item 
cov 

resid 

GR 8644 -1884 0.24 0/8 0/8 0/8 0/8 4/28 6/28 1/28 

1P GR 8693 -1891 0.18 0/8 0/8 0/8 6/8 7/28 9/28 8/28 

2-dim GR 8598 -1888 - - - - - 4/28 6/28 - 
 

  

 In summary, these three model-comparison indices reached the same conclusion that the 

GR model was preferred over the 1P GR model for the AS92 data, a finding which is consistent 

with Lane et al. (1995). In addition, both the CPO and PPMC results indicated that the GR model 

was also preferred over the 2-dimensional GR model. The DIC index tended to choose a more 

complex model as the preferred model based on the results for the previous AS91 dataset and 

this AS92 dataset. 
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4.3.3 QCAI Data 3 – BS92 

Table 4.30  Item Parameter Estimates using WinBUGS and Multilog – BS92 

 WinBUGS Multilog 

Item a b1 b2 b3 b4 a b1 b2 b3 b4 

1 0.93 -1.69 -0.12 1.40 3.21 0.97 -1.60 -0.10 1.34 3.08 

2 1.50 -0.47 0.59 1.06 1.35 1.57 -0.44 0.58 1.03 1.29 

3 1.64 -0.28 0.62 1.17 1.64 1.70 -0.25 0.61 1.14 1.58 

4 1.76 0.70 1.33 1.46 1.81 1.82 0.69 1.30 1.42 1.74 

5 1.36 -2.15 -0.29 0.49 1.66 1.40 -2.07 -0.26 0.49 1.61 

6 1.06 -0.43 0.42 0.92 1.63 1.12 -0.39 0.41 0.87 1.53 

7 1.67 0.36 1.04 1.20 1.54 1.73 0.37 1.02 1.16 1.49 

8 0.89 -1.45 -0.64 -0.21 0.67 0.95 -1.34 -0.60 -0.20 0.62 
 

 

Figure 4.43  Example History and Autocorrelation Plots – BS92 
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Table 4.30 provides the item parameter estimates for the GR model based on the BS92 data. As 

can be seen, the estimates from two programs were close. The average absolute difference 

between WinBUGS and MULTILOG estimates across all the items was 0.056 for the slope 

parameters, and 0.044 for all the threshold parameters. Figure 4.41 shows the sample history and 

autocorrelation plots for the slope and one threshold parameters for item 2. Other parameters had 

similar plots. These plots indicate that convergence of the chain was attained. 

The PPP-values of the chi-square statistic summarizing the discrepancy between the observed 

and predictive test score distributions were 0.02 and 0.01 for the GR and 1P GR models, 

respectively. Both values were extreme, indicating these two models could not adequately 

predict the test score distribution for this dataset.  

Model-Fit 

Table 4.31  PPP-values for Item-level Measures based on GR and 1P GR Models – BS92 

 Item-Level Discrepancy Measures 

 Item Score Dist Yen’s Q1 Stone’s Item-Fit Item-Test Corr 

Item GR 1P GR GR 1P GR GR 1P GR GR 1P GR 

1 0.48 0.41 0.26 0.11 0.05 0.01 0.49 1.00 

2 0.49 0.44 0.31 0.34 0.05 0.03 0.12 0.00 

3 0.46 0.42 0.26 0.27 0.01 0.00 0.23 0.00 

4 0.52 0.49 0.43 0.52 0.69 0.27 0.27 0.00 

5 0.50 0.52 0.45 0.50 0.22 0.36 0.33 0.16 

6 0.47 0.46 0.22 0.18 0.02 0.01 0.13 0.56 

7 0.48 0.46 0.31 0.33 0.05 0.02 0.13 0.00 

8 0.51 0.49 0.48 0.25 0.39 0.13 0.33 0.99 
 

 Table 4.31 presents the PPP-values for the four item-level discrepancy measures for each 

item. When a GR model was used to analyze this data, the PPP-values of the item score 

distribution, item-test score correlation, and Yen’s Q1 index were not extreme. However, five 

items (Items 1-3, 6-7) demonstrated extreme PPP-values for Stone’s item fit statistic and would 
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therefore be flagged as misfitting. It is worthy to note that the same five items were also 

identified as misfitting by Stone et al. (1993) and Stone (2000) (see Table 3.18). The number of 

misfitting items might explain why the GR model could not predict adequately the test score 

distribution for this dataset. 
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Figure 4.44 Observed vs. Expected ICCs for Misfitting Items on the BS92 Form 

The ICCs for these five misfitting items are shown in Figure 4.44, and the ICCs for other 

items are in Appendix F. As can be seen, the discrepancies between the observed and predicted 

ICCs for Items 1-3, and 6 were large, and these large discrepancies may reflect significant 

practical consequences of item misfit. However, for Item 7, the observed ICCs matched the 

predicted ICCs reasonably well except that there were small discrepancies for response 

categories 2 and 4. These discrepancies may not indicate practical significance in item misfit. 

When a 1P GR model was estimated, as shown in Table 4.31, the same five items were 

also flagged as misfitting by Stone’s item-fit measure. In addition, six items had extreme PPP 

values for the item-test score correlation. The results provided sufficient evidence that the 1P GR 

model was not appropriate for this dataset.  
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It is interesting to note that Yen's Q1 index, in contrast with Stone's fit statistic, appeared 

to have no power for the short tests that were studied (AS91, AS92, BS92). A number of items 

across the three datasets were identified as misfitting using Stone's fit statistic, but not flagged 

using Yen's index.  Previous research has found that item fit statistics such as Yen's or Bock's 

indices do not perform well with short tests (Orlando & Thissen, 2000; Stone & Hansen, 2000; 

Stone & Zhang, 2003).  Imprecision in ability estimates with short tests result in classification 

errors in the item fit tables which in turn affects the null chi-square distribution and hypothesis 

testing (Stone, 2000).  However, in the PPMC framework, the sampling distributions are based 

on Monte Carlo resampling methods. It is not clear why results based on Yen's Q1 index and 

Stone's fit statistic differed, and therefore, more research is needed to explain this finding. 

 

Figure 4.45  Display of PPP-values for Pair-wise Measure when fitting GR Model (top) and 1P GR Model 
(bottom) to the Data – BS92 

Figure 4.45 displays the PPP-values for three pair-wise discrepancy measures for all the 

28 item pairs using pie plots. As can be seen, most of the PPP-values for Yen’s Q3 and item 
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covariance residual under the GR model were not extreme, implying the assumptions of 

unidimensionality and local independence underlying the GR model were not violated for this 

dataset. This conclusion is consistent with the finding in Lane et al. (1995).  However, there were 

more item pairs with extreme PPP values under the 1P GR model. 

In summary, neither the GR model nor 1P GR model fit the BS92 dataset very well. 

Though the GR model fit the data in terms of item score distribution and item-test score 

correlations, there were five misfitting items identified by Stone’s fit statistic. Moreover, this 

model could not explain the test score distribution observed in this dataset. The 1P GR model 

exhibited these same problems. In addition, it could not explain the relationship between items 

and test scores. 

Table 4.32  Model Selection Indices for Overall Test – BS92 

Model-Comparison 

PPMC 
Model DIC CPO Test 

score 
dist 

Item 
score dist 

Yen’s 
Q1 

Stone’s 
fit stat 

Item-test 
corr 

Yen’s 
Q3 

Global 
OR 

Item 
cov 

resid 

GR 8727 -1902 0.02 0/8 0/8 5/8 0/8 3/28 9/28 1/28 

1P GR 8771 -1909 0.01 0/8 0/8 5/8 6/8 6/28 12/28 9/28 

2-dim GR 8679 -1902 - - - - - 2/28 7/28 - 
 

  

Table 4.32 compares the values for model-comparison indices. The smaller DIC and larger CPO 

values for the GR model suggested that the GR model was preferred over the 1P GR model for 

the BS92 dataset. For the PPMC indices, in general, there were more extreme PPP values for the 

1P GR model, further indicating that the GR model was the preferred model. The PPMC results 

also tell us that even though the GR model was better than the one-par GR for this dataset, it did 

not fit the data in several aspects such as test score distribution and item-fit. 
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 Regarding the fit of the 2-dimensional GR model and the unidimensional GR model, it 

can be seen from this table that the 2-dim GR model had smaller DIC value than the GR model, 

indicating the 2-dim GR model may be preferred. However, the CPO values for these two 

models were the same, providing insufficient evidence in favor of one model over the other 

model. Additionally, the PPMC results also did not provide enough evidence to support the more 

complex 2-dim GR model. Therefore, based on the CPO and PPMC results, the relatively more 

parsimonious model (i.e., the GR model) would be preferred.  As for the other dataset, this is 

consistent with the finding by Lane et al. (1995).  The different results between the DIC index 

and the other indices further indicated that the DIC index tends to select a more complex model. 
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5.0  DISCUSSION 

 

The present work, through two simulations and three real data examples, evaluates the 

application of Bayesian model-fit and model-comparison techniques to assess fit of 

unidimensional GR models and compare different GR models for performance assessment 

applications. This section summarizes the major findings from this work and also provides the 

future research directions. 

5.1 SUMMARY OF MAJOR FINDINGS 

5.1.1 Simulation Study 1 

The first study in the current work was to explore the general performance of the PPMC method 

in evaluating different aspects of fit of unidimensional GR models to performance assessments 

by using a variety of discrepancy measures. PPMC has been found to be useful in assessing the 

fit for dichotomous IRT models. Study 1 extended previous research to the use of PPMC for 

polytomous IRT models. The discrepancy measures examined involved one test-level measure 

(observed test score distribution), several item-level measures (item score distribution, item total 

test correlation, Yen’s Q3, and Stone’s item-fit statistics), and three pair-wise measures (global 
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odds ratios, Yen’s Q3, and absolute item covariance residual). Specifically, this study was 

intended to address the following three research questions: 

(1) What is the Type-I error rate for each proposed discrepancy measure used with PPMC in 

assessing the fit of unidimensional GR model? 

(2) What is the empirical power for each proposed discrepancy measure used with PPMC in 

detecting the violation of the assumptions underlying the unidimensional GR model (i.e., 

unidimensionality, local independence, and item fit)? 

(3) Among different types of discrepancy measures (test-level, item-level, and pair-wise 

measures) proposed in the current study, which measures are most effective in detecting 

model misfit? 

Type-I Error Rates: 

The results from Condition 1, where the generating model was the same as the analyzing 

model, demonstrated that the Type-I error rates of the discrepancy measures examined in this 

study were below the nominal level. This indicates that the use of PPP-values in hypothesis 

testing would lead to highly conservative inferences (i.e., they tend not to indicate misfit of a 

correct model too often). The two pair-wise measures (global OR and Yen’s Q3) appeared to 

have empirical Type-I error rates that were closest to the nominal rate, though still quite lower. 

This finding confirmed the conclusion from the previous PPMC research (Bayarri & Berger, 

2000; Fu et al., 2005; Levy, 2006; Sinharay, 2005; Sinharay et al., 2006) about the 

conservativeness of the PPMC method.   

Previous studies pointed out that this conservativeness in the hypothesis tests is due to the 

departure of the distribution of PPP-values from the uniform distribution, which is also supported 

by the current study. The distributions of PPP-values for the discrepancy measure examined were 



  238 

generally centered at 0.5 but less dispersed than a uniform distribution. The PPP-values under the 

correct model tend to be closer to 0.5 more often than would be expected under a uniform 

distribution. However, the distributions of PPP-values for the two pair-wise measures – global 

OR and Yen’s Q3 and the test score distribution were closest to uniform distributions as 

compared to the other measures. The approximate uniform distributions for the global OR and 

Yen’s Q3 discrepancy measures were also observed by Levy (2006).  

Empirical Power Rates: 

The ability of each discrepancy measure with PPMC to detect violations of 

unidimensionality was explored in Condition 2. Two multidimensional cases (ρ=0.3 or 0.6) were 

examined, reflecting a high and moderate degree of multidimensionality, respectively. Overall, 

the PPMC method using three pair-wise measures (Yen’s Q3, global OR, and item covariance 

residual) detected the lack of fit of unidimensional GR model to the two-dimensional test data 

successfully for both cases. Among them, Yen’s Q3 index performed best in terms of the 

empirical power, and the item covariance residual measure in turn performed better than the 

global OR. The relatively low performance of the global OR measure might be due to the 

dichotomization of polytomous item responses. However, Levy (2006) found that Yen’s Q3 

index was more powerful than the OR measure based on the dichotomous IRT model. It is 

worthy to note that the global OR and Yen’s Q3 measures are both directional measures, and 

their PPP-values reflect the relationship between realized and posterior predictive discrepancies. 

The patterns of PPP-values could also be used to indicate how the items may be grouped into 

clusters or dimensions, and therefore used to explore the dimensionality of the item responses. In 

Unidimensionality 
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this sense, these two measures are better than the item covariance residual which is non-

directional. 

The test-level and item-level discrepancy measures were found to be less effective for 

detecting this multidimensionality than the pair-wise measures. The three item-level measures 

(item score distribution, Yen’s Q1, and Stone’s fit statistic) did not demonstrate any power for 

both cases. The item-total score correlation measure exhibited no power in detecting the 

moderate degree of multidimensionality (ρ=0.6), but became extremely powerful in detecting the 

high degree of multidimensionality (ρ=0.3). The test-level measure (i.e. test score distribution) 

shows certain power in detecting the misfit of the GR model when the data was highly two-

dimensional (ρ=0.3). 

The performance of PPMC was affected by the degree of the uniqueness in the 

dimensions. Specifically, as the inter-dimensional correlation increased from 0.3 to 0.6 (i.e., as 

the degree of uniqueness decreased), the power of three pair-wise measures decreased slightly, 

but they still appeared consistently powerful in detecting model misfit. In other words, the 

performance of PPMC was stable in the range of inter-dimensional correlations from 0.3 to 0.6. 

Therefore, future research that manipulates more levels between 0.6 and 1.0 is needed in order to 

identify the level at which the PPMC method with these three pair-wise measures would lose 

power. On the other hand, an increase in the inter-dimensional correlation from 0.3 to 0.6 had 

great impact on the effectiveness of the item-total score correlation measure. It exhibited almost 

full power for the low correlation condition, but had no power for the high correlation condition. 

Further research specifying more levels in the correlation is needed in order to more fully 

understand PPMC applications with this measure.  
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The performance of PPMC in detecting violations in the local independence assumption 

was examined. In one condition, Condition 3, the local dependence was due to an added nuisance 

dimension, and two levels of dependence on the nuisance dimension were considered: large 

dependence (a2/a1=1) and mild dependence (a2/a1=0.5). The test-level and item-level measures 

were found to be not useful in detecting local dependence among items loading also on the 

nuisance dimension, while three pair-wise measures performed effectively. All three pair-wise 

measures exhibited sufficient power in detecting a large dependence among the items. However, 

as the strength of dependence on the nuisance dimension decreased, their performance decreased. 

Yen’s Q3 had moderate power in detecting the mild local dependence among the items loading 

also on the nuisance dimension, but the global OR and item covariance residual measures did not 

demonstrate enough power. Overall, all three pair-wise measures were sufficiently effective in 

detecting a large dependence among the items, but for the mild dependence condition, only 

Yen’s Q3 appeared to be powerful. These findings were similar to the findings from Levy (2006) 

in which the performance of PPMC in detecting the local dependence among the dichotomous 

items was examined. 

Local Independence 

In Condition 4, local dependence was modeled through a testlet effect, and the degree of 

testlet effect varied from mild ( 5.02
)( =idσ ) though large ( 0.12

)( =idσ ) to extremely large 

( 0.22
)( =idσ ). The results indicated that the three pair-wise measures had full power (1.00) in 

detecting the modeled dependence among responses to testlet items, even for the mild 

dependence case. In addition, as the dependence decreased, they did not seem to be a significant 

effect on the performance of the measures. As a result, more levels of testlet effect less than 
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5.02
)( =idσ should be manipulated in order to explore how the effectiveness of the pair-wise 

measures changes and at what level of a testlet effect these measures would lose their power. 

The power of the item-total score correlation measure in detecting the misfit of the GR 

model to the testlet items gradually increased from no power (0.00) to moderate power (0.52) to 

full power (1.00) as the degree of testlet dependence increased from the mild to large to 

extremely large. This indicates that the change of testlet effect had an influence on the 

performance of the item-total score correlation measure in the PPMC context. The test-level 

measure and other item-level measures appeared to be insensitive to this misfit. 

Condition 5 was designed to evaluate the ability of the PPMC method to assess the misfit 

of the GR model to items which did not conform to the GR model. One misfitting item had cubic 

BCC functions, and another misfitting item had two-step Guttman BCC functions.  

Item-Fit 

Only two classical item-fit statistics (Yen’s Q1 and Stone’s fit statistic) were found to be 

effective for detecting this type of item misfit. Stone’s measure exhibited sufficient power to 

detect the two modeled misfitting items. Yen’s Q1 measure was found to have adequate power 

(0.65) for detecting the misfitting item with two-step Guttman BCC functions, but did not exhibit 

any power for the misfitting item with cubic BCC functions. Since only two types of BCC 

functions were considered and several factors were fixed in this study, the comparison of the 

performance of these two item-fit statistics in a Bayesian framework requires further 

investigation.  

For applications of Bayesian methods for assessing IRT model-fit, the choice of the 

discrepancy measures is important. Consistent with the findings from Levy (2006), the pair-wise 

Summary for Study 1 
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measures were found to be more powerful in detecting violations of unidimensionality and local 

independence assumptions than test- and item-level measures. This may be expected since the 

unidimensional GR model has no parameters to model the associations between responses to 

pairs of items, but the pair-wise measures can capture these associations. Among the three pair-

wise measures, the directional measures (global OR and Yen’s Q3) may be preferred over a non-

directional measure (absolute item covariance residual). In addition, Yen’ Q3 measure appeared 

to perform best. Though the item-total score correlation appeared to be more sensitive to large 

local dependence, power was low under mild local dependence cases. The test score distribution 

and item score distribution appeared least useful, as well as the two item-fit statistics, in 

detecting a violation of unidimensionality and local independence assumptions.  

Regarding the item-fit assumption, only two classical item-fit statistics (Yen’s Q1 and 

Stone’s) were found to be useful measures in detecting non-conforming to the GR model. It is 

worthwhile to note that there are different sources of item misfit. Condition 5 only considered 

item misfit due to the discrepancy from the true GR model curves. In Conditions 2-4, other 

sources of misfit for item were examined. Specifically, the item misfit in Condition 2 was due to 

multidimensionality, and the item misfit in Conditions 3-4 was due to local dependence. 

However, as seen from the results, these two item-fit measures did not exhibit any power in 

detecting item misfit due to multidimensionality or local dependence. This finding may seem 

surprising, but it is consistent with findings from previous research. For example, Zhang (2003) 

extended Orland and Thiseen (2000)’s item-fit statistics to multidimensional dichotomous IRT 

models, and examined their statistical properties. Though these item-fit statistics were found to 

exhibit adequate power for most conditions investigated in his study, they lacked power in all 

conditions when data were generated under 2-dim MIRT models but scaled by one-dimensional 
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IRT models. Another related study was conducted by Kang and Chen (2008). They generalized 

Orland and Thiseen’s (2000) chi-square item-fit index for polytomous items, and evaluated its 

performance in assessing item-fit for the GR model. The results indicated that the power of this 

index was much lower when the misfit was due to multidimensionality or local dependence than 

when it was due to departure from the form of GR model boundary curves. They further found 

that 20,000 examinees were required to obtain acceptable power in detecting misfit items due to 

multidimensionality. Though the current study used a different design and conditions, the results 

confirmed the insensitiveness of the classical item-fit statistics to detect misfit due to 

multidimensionality or local dependence, even in the PPMC context. 

The evaluation of fit of IRT models usually involves collecting a wide variety of 

evidence about different aspects of fit. Simulation Study 1 demonstrated that the PPMC method 

provides a framework to collect different kinds of information about model fit. Study 1 also 

illustrated that the extension of the use of PPMC from dichotomous IRT models to polytomous 

IRT models is flexible and straightforward. Many discrepancy measures for dichotomous models 

are also appropriate for the GR model.  

Many results from this study are also consistent with previous research. As in several 

studies (e.g., Sinharay, 2005, 2006), a number of different types of graphical plots were used in 

this study in order to provide graphical evidence about model-fit. The use of graphical displays 

with PPMC is useful since the plots may be easier to understand and more appealing than tables 

of PPP-values. Another reason is that from plots, researchers may be able to discern patterns 

which may indicate an alternative model. For example, as shown in Condition 2, when a 

unidimensional GR model was estimated with 2-dim data, the pie plots displayed two clear item 

clusters, implying that a 2-dim model may be appropriate. 
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One disadvantage of the PPMC method is its conservativeness in evaluating model-fit. 

However, Sinharay (2006) argued that a conservative test with reasonable power is often better 

than a test that rejects too often. For example, as shown in the current study, Yen’s Q3 measure 

had close to uniform Type-I error rates (a little bit conservative), but had sufficient power in 

detecting multidimensionality and local dependence. 

A practical consideration with PPMC applications is the intensive computation demands 

that are required. Nevertheless, as discussed by Sinharay (2006), once the posterior sample 

obtained during the estimation of a model is saved, the computation of each discrepancy 

measures and PPP-values based on this sample is not computationally demanding. More 

importantly, the stored sample values can be used in the future for different aspect of fit using 

different discrepancy measures.   

5.1.2 Simulation Study 2 

Study 2 was used to address the research question “Do the three Bayesian model-comparison 

indices (DIC, CPO, and PPMC) perform equally well in choosing a preferred GR model for a 

particular performance assessment application?”  The results showed that for all the conditions 

examined in this study, these three indices appeared to perform equally in selecting the true 

model as the preferred model for an overall test. However, the CPO and PPMC indices were 

found to be more informative than the DIC index. 

Specifically, DIC can only be used to choose an overall best model for an entire test, 

while the CPO index can be used to compare the models at either the test- or item-level. A model 

may be preferred at the test level but it may not necessarily be the preferred model for each item. 

As a result, comparing the models for each item using the item-level CPO index provides 
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additional information about model-fit. For example, in Conditions 3 and 4, the three indices 

indicated that a more complex GR model was preferred than a simple one-dimensional GR 

model for the overall test. But the results at the item-level using the CPO index indicated that the 

more complex model was only better for several items, and a simple unidimensional GR model 

might be adequate for the other items. One additional finding about the CPO index is that any 

trivial difference in CPO values between different models may not provide sufficient evidence 

supporting one model over another. In that situation, a more parsimonious model should be 

chosen. 

 Consistent with previous studies (Li et al., 2006; Sinharay, 2005), the PPMC approach 

was also found to be effective for performing model comparisons in this study. Moreover, the 

advantage of PPMC applications is in that they can be used to compare the relative fit of 

different models, but also evaluate the absolute fit of each individual model. In contrast, the DIC 

and CPO model-comparison tools only consider the relative fit of different models. They do not 

consider the absolute fit of each model. For example, two models, Model A and Model B, may 

be compared using the DIC and CPO indices. But it is not known whether either of these models 

fit the data. In addition, the graphical plots used with PPMC applications may provide some 

useful information regarding “what is the reason for misfit”, “which items do not fit”, and 

“which model is appropriate”? 

 It should also be noted that the results from this study indicate that the choice of 

discrepancy measures affects the performance of PPMC applications in comparing different 

models. If the measure is not effective, the PPMC method is less effective than the DIC and CPO 

indices. As shown in Conditions 3 and 4, when Yen’s Q3 measure was used with PPMC, the 

PPMC index performed equally well with DIC and CPO. However, when the global OR measure 
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was used with PPMC, its performance was less effective than the other two indices. Yen’s Q3 

measure appeared to be more effective than the global OR measure for detecting violations in 

local dependence among items. Note that this conclusion was also obtained from Study 1.  

 It is also worthy to point out that the results in Condition 1 provided incremental 

evidence about the effectiveness of the proposed discrepancy measures beyond that found in 

Study 1. In Condition 1, the data was generated based on a 2P GR model, but three models were 

estimated: a 1P GR model, a 2P GR model and a RS model. The misfit of the 1P GR model and 

RS model to the simulated 2P GR item responses was examined using PPMC. The same 

discrepancy measures were employed as in Study 1 (except no test-level measure). This 

condition was not considered in Study 1. The results indicated that all 7 measures (4 item-level 

and 3 pair-wise) had sufficient power to detect the misfit of the RS model to the simulated 2P 

GR data. Six measures except “the item score distribution” were found to be very effective in 

detecting the misfit of the 1P GR model. It is worthy to note that the two item-fit measures 

exhibited adequate power to detect the item misfit due to the different unidimensional GR 

models. 

5.1.3 Real Application 

The methodology investigated in the two simulations was further applied to three datasets from 

the QCAI performance assessment. Overall, the results indicated that that these datasets were 

essentially unidimensional and exhibited local independence among items, and that a 2P GR 

model provided better model-fit than a 1P GR model. These findings were consistent with that 

from Lane et al. (1995). 
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The 2P GR model appeared to fit one dataset well regarding different aspects of fit such 

as dimensionality, item-fit, item/test score distribution, and item-test score correlations. 

However, for the other two datasets, though a GR model seemed appropriate in terms of most 

aspects of fit, several misfitting items were identified. Moreover, this model could not explain 

the test score distribution observed in one dataset. 

Due to the conservativeness of PPMC applications, a higher level of significance of α = 

0.10 was used to identified the misfitting items (Note that the previous studies used α = 0.05). 

Even with the higher level of significance, there were several items flagged as misfitting. These 

same items were also identified as misfitting in previous studies (Stone et al., 1993; Stone, 

2000), but as shown in Table 3.18, the previous studies flagged more misfitting items than using 

PPMC with Stone’s fit measure. Thus, Stone’s fit statistics became more conservative in the 

PPMC context. In addition, the approach used by Stone et al. (1993) flagged more misfitting 

items than the approach used by Stone (2000). These results indicated that the method used by 

Stone (1993) for evaluating item-fit is relatively liberal. In contrast, the PPMC method used in 

the current study is relatively conservative. The method used by Stone (2000) appears to lie 

between these two approaches and yield results that are more reasonable for practical purposes. 

Though Stone’s fit measure identified several misfitting items, Yen’s Q1 measure did not 

flag any item as misfitting. The classical Yen’s Q1 index did not perform similarly to Stone’s 

item-fit statistic. This may be due to the application with short tests where the imprecision in 

ability estimates can affect the use of more traditional measures of item fit such as Yen’s Q1 

statistic. However, in the PPMC framework, the sampling distributions are based on simulations, 

and it is therefore still unclear why Yen’s Q1 measure did not show sufficient power. More 

research is needed in order to explain this finding.  
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 In order to see if a more complex 2-dimensional model fit these QCAI datasets better 

than the unidimensional 2P GR and 1P GR models, three model-comparison indices were 

computed. The DIC index selected the 2-dimensional complex-structure model as the preferred 

model.  However, based on the CPO and PPMC results, the unidimensional 2P GR model would 

be preferred. This conclusion that a unidimensional GR model was adequate for the datasets is 

consistent with the finding by Lane et al. (1995).  The different results between the DIC index 

and the other indices indicated that the DIC index tends to select a more complex model. This 

finding is not uncommon for other information-based criteria such as the AIC (Akaike, 1974), 

and BIC (Schwarz, 1978). 

5.2 LIMITATIONS AND FUTURE RESEARCH DIRECTIONS 

This research used two Monte Carlo simulations to address the proposed research questions. 

Though the conditions were carefully designed and some factors were fixed at realistic values 

relative to typical performance assessments, the results may not generalize to other situations not 

considered in the current study. For example, this study is limited in terms of the length of tests 

(15 items), the number of response category (5-category), the polytomous model (GR), and the 

number of dimensions (2 dimensions).  

Another limitation is that due to computing constraints of the WinBUGS program and a 

large number of conditions in this study, only 20 replications at each combination of 

experimental conditions were implemented. Though this is smaller than that other Monte Carlo 

simulations, it was reasonable in the context of previous research and Bayesian methods (e.g., a 
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number of researchers used 5 to 30 replications). However, more replications may be needed in 

order to obtain more reliable and accurate results. 

In addition, the performance of the PPMC method and the Bayesian model-comparison 

indices for the GR models requires further study. For example, the effect of factors such as 

sample size, the number of total items, the number of dimensions, the structure of dimensions, 

and the inter-dimensional correlation given modeled multidimensionality could be further 

explored. For each condition investigated in the current work, a more comprehensive simulation 

study could be conducted in order to more fully explore how combination in factors affect the 

performance of PPMC and the effectiveness of the model-comparison indices. 

Other discrepancy measures could also be proposed and evaluated. For example, the 

current research considered the global OR as one measure. As reviewed in Chapter 2, several 

previous studies also employed a conditional OR (MH) statistic as a discrepancy measure for 

dichotomous items. It is possible for future research to explore the use of the conditional global 

OR measure. The conditional OR may be more powerful than the global OR for checking the 

unidimensionality or local independence assumptions for polytomous items. Another useful 

discrepancy measure would be the Liu-Agresti estimate of the cumulative common odds ratio 

(Liu & Agresti, 1996) for ordinal variables. The global OR in the current study considered only 

one possible of dichotomization, while the cumulative common OR measure would consider all 

possible dichotomizations of the polytomous responses. 

Furthermore, this study focused on evaluating the fit of IRT models relative to specific 

aspects of model fit: dimensionality, local independence, and the form of boundary curves in the 

GR model. Other assumptions underlying the use of IRT models with performance assessments 
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could be also considered in the future such as the normal ability assumption, and the non-

speededness assumption. 

Finally, the current study examined the general performance of some classical model-fit 

statistics used with PPMC. Further research is also needed in order to systematically compare the 

performance of these measures in the PPMC context and the classical framework. The PPMC 

method has several advantages when compared with the classical model-fit methods in theory, 

but the results from comprehensive simulation studies varying different conditions may provide 

useful guidelines about the use of PPMC. One possible comparison could involve various item-

fit statistics. Several sources of item misfit could be modeled, and the misfit in both classical and 

Bayesian frameworks could be explored using traditional item-fit statistics such as Yen’s Q1 

index, and some alternative item-fit indices such as Orlando and Thissen’s fit statistics and 

Stone’s statistics. In addition, the effect of smaller sample sizes could be explored since the 

Bayesian methods are often recommended for applications involving small sample sizes. 
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APPENDIX A 

SAS CODE USED TO GENERATE UNIDIMENSIONAL GR DATA 

***************************************************************************** 
* This sas code is used to generate the unidimensional graded responses                  
***************************************************************************** 
 
*  USER CONTROL VARIABLES; 
%let ncat=5; 
%let nthres=4; 
%let nperson=2000; 
%let nitem=15; 
 
%let seed=0; 
 
/*input the true item parameters */ 
data itempar; 
  input a b1 b2 b3 b4; 
  cards; 
1.0 -2.0 -1.0 0.0 1.0 
1.0 -1.5 -0.5 0.5 1.5 
1.0 -1.0  0.0 1.0 2.0 
1.0 -3.0 -1.5 -0.5 1.0 
1.0 -1.0  0.5 1.5 3.0 
1.7 -2.0 -1.0 0.0 1.0 
1.7 -1.5 -0.5 0.5 1.5 
1.7 -1.0  0.0 1.0 2.0 
1.7 -3.0 -1.5 -0.5 1.0 
1.7 -1.0  0.5 1.5 3.0 
2.4 -2.0 -1.0 0.0 1.0 
2.4 -1.5 -0.5 0.5 1.5 
2.4 -1.0  0.0 1.0 2.0 
2.4 -3.0 -1.5 -0.5 1.0 
2.4 -1.0  0.5 1.5 3.0 
 ; 
run; 
 
/*put all the item paramters in one row*/ 
data itempar; 
set itempar; 
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array par{*} a b1-b&nthres; 
do j=1 to &ncat; 
 p=par{j}; 
 output; 
end; 
keep p; 
run; 
 
proc transpose out=itempar prefix=p; 
var p; 
run; 
 
/*generate the graded responses (0 1 2 3 4) */ 
data resp; 
set itempar; 
array p{&nitem,&ncat} p1-p%eval(&nitem*&ncat); 
array y{&nitem} y1-y&nitem; 
array cumprob{&ncat} cumprob1-cumprob&ncat; 
 
seed=&seed; 
 
do i=1 to &nperson; 
   call rannor(seed,theta);  /* Randomly generate theta value - normal(0,1) 
*/ 
   *theta=0;  /*set all examinees at ability 0 to validate the data 
generation */ 
   do j=1 to &nitem; 
     do k=1 to &ncat; 
    cumprob[k]=.; 
  end; 
     do resp=0 to (&ncat-1); 
     do;  /*calculate the proprobility for each category*/ 
     if resp=(&ncat-1) then  
    prob=1/(1+exp(-p[j,1]*(theta-p[j,&ncat]))); 
        else if resp=0 then 
          prob=1-1/(1+exp(-p[j,1]*(theta-p[j,2]))); 
  else 
          prob=1/(1+exp(-p[j,1]*(theta-p[j,resp+1]))) 
              -1/(1+exp(-p[j,1]*(theta-p[j,resp+2]))); 
        end; 
 
        if resp=0 then cumprob[1]=prob; /*calculate the cumulative prob 
                                    (the prob of a response in 
categories<=k)*/  
  else cumprob[resp+1]=prob+cumprob[resp]; 
  end; 
 
      call ranuni(seed,r01); /* Generate a random number between 0 and 1 */ 
       
   do k=1 to &ncat-1; 
     if k=1 and r01<=cumprob[k] then 
           y[j]=0; 
  else if r01>cumprob[k] and r01<=cumprob[k+1] then  
     y[j]=k;       /*response: 0, 1, 2, 3, 4* (5 categories)*/ 
   end; 
   end; 
   output; 
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   *file wrkdir(&responsefile); 
   *put  (y1-y&nitem)(1.); 
end; 
keep y1-y&nitem; 
run; 
 
/*transform the responses (0 1 2 3 4)to (1, 2, 3, 4, 5,) format used in 
Winbugs*/ 
data newresp; 
set resp; 
array y{*} y1-y&nitem; 
do j=1 to &nitem; 
 y[j]=y[j]+1; 
end; 
keep y1-y&nitem; 
run; 
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APPENDIX B 

WINBUGS CODE USED TO ESTIMATE UNIDIMENSIONAL GR MODELS 

# Unidimensional Graded Response Model 
 
model 
{ 
# Specify unidimensional GR Model using Logistic function  
  for (i in 1:nperson) { 
      for(j in 1:nitem){ 
          for (k in 1:ncat-1) { 
             logit(pstar[i, j, k]) <-a[j]*(theta[i]- b[j, k]); 
          } 
            
          p[i, j, 1] <- 1-pstar[i, j, 1] 
          for(k in 2:ncat-1){ 
              p[i, j, k] <- pstar[i, j, k-1] - pstar[i, j, k] 
          } 
          p[i, j, ncat] <- pstar[i, j, ncat-1] 
 
       y[i, j] ~ dcat(p[i, j, 1:ncat]) 
 
     } 
 
   theta[i]~dnorm(0,1) 
 
}   
      
 #specify prior 
 
for (j in 1:nitem) {  
a[j] ~ dlnorm(0, 1) 
 
b[j,1] ~ dnorm(0, 0.25) 
for (k  in 1:ncat-2){ 
   b[j,k+1] ~ dnorm(0, .25) I(b[j, k], ) 
 } 
} 
} 
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APPENDIX C 

WINBUGS CODE USED TO IMPLEMENT PPMC 

# Unidimensional Graded Response Model 
# Use PPMC method to check the model 
# The discrepancy measures in this code include  
#   (1) "Item Score Distribution" 
#   (2) "Yen's Q3 Statistics" 
#   (3) "Absolute Item Covariance Residual" 
#   (4) "Global Odds Ratios" 
 
model 
{ 
# Specify unidimensional GR Model using Logistic function  
  for (i in 1:nperson) { 
      for(j in 1:nitem){ 
          for (k in 1:ncat-1) { 
             logit(pstar[i, j, k]) <-a[j]*(theta[i]- b[j, k]); 
          } 
            
          p[i, j, 1] <- 1-pstar[i, j, 1] 
          for(k in 2:ncat-1){ 
              p[i, j, k] <- pstar[i, j, k-1] - pstar[i, j, k] 
          } 
          p[i, j, ncat] <- pstar[i, j, ncat-1] 
 
       y[i, j] ~ dcat(p[i, j, 1:ncat]) 
 
       # compute CPO for observed item responses 
       inprob[i, j] <- pow(p[i, j, y[i,j] ], -1) 
        
        # replicated response data 
       yrep[i, j] ~ dcat(p[i, j, 1:ncat])     
     } 
 
   theta[i]~dnorm(0,1) 
 
}   
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 #specify prior 
 
for (j in 1:nitem) {  
a[j] ~ dlnorm(0, 1) 
 
b[j,1] ~ dnorm(0, 0.25) 
for (k  in 1:ncat-2){ 
   b[j,k+1] ~ dnorm(0, .25) I(b[j, k], ) 
 } 
} 
 
# (1) calculate the chi-sqaure statistic for item score distribution 
for(j in 1:nitem){ 
   for (k in 1:ncat) { 
      for (i in 1:nperson) { 
        count_obs[i,j,k] <- equals(y[i,j], k) 
        count_rep[i,j,k] <- equals(yrep[i,j], k)             
      } 
   n[j,k] <- sum(count_obs[ ,j,k])   # observed number of examinees having responses (k-1) (i.e. in 
category k) on 
             # item j 
for observed data 
   n_rep[j,k] <- sum(count_rep[ ,j,k]) # observed number of examinees having responses (k-1) on item j for 
                                                    # replicated data 
  
   En[j,k] <- sum(p[,j,k])           # the expected number of examinees having responses (k-1) (i.e. in 
category k) 
                                                  # on item j 
    
   resid[j,k] <- pow(n[j,k]-En[j,k], 2)/(En[j,k]+0.0001*equals(En[j,k],0)) 
   resid_rep[j,k] <- pow(n_rep[j,k]-En[j,k], 2)/(En[j,k]+0.0001*equals(En[j,k],0)) 
  
} 
 
itemchi2[j] <- sum(resid[j, ])      # the "realized" chi-square item-fit statistic 
 
itemchi2_rep[j] <- sum(resid_rep[j, ])      # the "predicted" chi-square item-fit statistic 
 
PPP.itemchi2[j] <-  step(itemchi2_rep[j]-itemchi2[j])  # the posterior predictive P-values for each item 
} 
 
 
# (2) Yen's Q3 Statistic  
 
for (i in 1:nperson) { 
   for(j in 1:nitem){ 
      for (k in 1:ncat) { 
          xx[i,j,k] <- (k-1)*p[i,j,k] 
      } 
          E[i,j] <- sum(xx[i,j, ])   # expected item response 
          r.obs[i,j] <- y[i,j]-E[i,j]    # the residual for observed data 
          r.rep[i,j] <- yrep[i,j]-E[i,j]    # the residual for replicated data 
}} 
 
for(j in 1:nitem){     
      r.obs.mean[j] <- mean(r.obs[1:nperson, j])  # the mean of the residulas for item j for observed data 
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      r.obs.sd[j] <-  sd(r.obs[1:nperson, j])            # the sd of the residulas for item j 
       
      r.rep.mean[j] <- mean(r.rep[1:nperson, j])  # the mean of the residulas for item j for replicated data 
      r.rep.sd[j] <-  sd(r.rep[1:nperson, j])            # the sd of the residulas for item j 
} 
 
for(j1 in 1:(nitem-1)){ 
 for(j2 in (j1+1):nitem){ 
 
   Q3.obs[j1,j2] <- (inprod(r.obs[1:nperson, j1], r.obs[1:nperson, j2]) - 
nperson*r.obs.mean[j1]*r.obs.mean[j2])/((nperson-1)*r.obs.sd[j1]*r.obs.sd[j2])       #Q3 for observed data 
 
   Q3.rep[j1,j2] <- (inprod(r.rep[1:nperson, j1], r.rep[1:nperson, j2]) - 
nperson*r.rep.mean[j1]*r.rep.mean[j2])/((nperson-1)*r.rep.sd[j1]*r.rep.sd[j2])        #Q3 for replicated data 
 
   PPP.Q3[j1,j2] <- step(Q3.rep[j1,j2] - Q3.obs[j1,j2])      #PPP values 
}} 
# (3) Absolute Item Residual Covariance 
for(j in 1:nitem){     
   y.mean[j] <- mean(y[1:nperson, j]) 
   yrep.mean[j] <- mean(yrep[1:nperson, j]) 
  
   E.mean[j] <- mean(E[1:nperson, j]) 
} 
 
for(j1 in 1:(nitem-1)){ 
 for(j2 in (j1+1):nitem){ 
 
# sample item covariance 
 S2.obs[j1,j2] <- (inprod(y[1:nperson, j1], y[1:nperson, j2]) - nperson*y.mean[j1]*y.mean[j2])/(nperson-1)  
 S2.rep[j1,j2] <- (inprod(yrep[1:nperson, j1], yrep[1:nperson, j2]) - 
nperson*yrep.mean[j1]*yrep.mean[j2])/(nperson-1)   
# model-based item covariance 
  sigma2[j1,j2] <- (inprod(E[1:nperson, j1], E[1:nperson, j2]) - nperson*E.mean[j1]*E.mean[j2])/nperson   
 
# Absolute Residuals between sample and model-based item covariance for each item pair 
  residcov.obs[j1, j2] <- abs(S2.obs[j1, j2] - sigma2[j1, j2])     # for the observed data 
  residcov.rep[j1, j2] <- abs(S2.rep[j1, j2] - sigma2[j1, j2])     # for the replicated data 
 
PPP.residcov[j1, j2] <- step( residcov.rep[j1, j2] - residcov.obs[j1, j2]) 
 
}} 
 
# (4) Global Odds Ratio  
 
# Firstly, dichotomize the response data (the cut scores for each item is based on rubric 
for(i in 1:nperson){ 
   for(j in 1:nitem){ 
      y.di[i,j] <- step(y[i,j]-cutscore[j])      # dichotomize the observed response based on cutscore 
      yrep.di[i,j] <- step(yrep[i,j]-cutscore[j])    # dichotomize the replicated response 
   } 
} 
 
for(i in 1:nperson){ 
   for(j in 1:nitem){ 
     x.di[i,j]<- 1-y.di[i,j]                   # the intemedium variables used for computing OR below 
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     xrep.di[i,j]<- 1-yrep.di[i,j] 
}} 
 
# Compute the Global Odds Ratio 
for(j1 in 1:(nitem-1)){ 
  for(j2 in (j1+1):nitem){ 
     OR[j1, j2] <- inprod(y.di[1:nperson,j1], y.di[1:nperson,j2]) * inprod(x.di[1:nperson,j1], x.di[1:nperson,j2])                       
/ (inprod(y.di[1:nperson,j1], x.di[1:nperson,j2]) * inprod(x.di[1:nperson,j1], y.di[1:nperson,j2])) 
 
     OR.rep[j1, j2] <- inprod(yrep.di[1:nperson,j1], yrep.di[1:nperson,j2]) * inprod(xrep.di[1:nperson,j1],          
xrep.di[1:nperson,j2]) / (inprod(yrep.di[1:nperson,j1], xrep.di[1:nperson,j2]) * inprod(xrep.di[1:nperson,j1],  
yrep.di[1:nperson,j2])) 
 
      PPP.OR[j1, j2] <- step(OR.rep[j1,j2] - OR[j1,j2]) 
}} 
 
} 
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APPENDIX D 

SAS CODE USED TO CREATE A BATCH FILE TO RUN PPMC FROM SAS 

************************* 
* Creat the Batch file  * 
*************************; 
%include 'C:\dissertation\study1\SASBUGS_Macro\*.sas'; 
FILENAME GRM 'C:\dissertation\study1\GRM'; 
*FILENAME bugsloc 'c:\program files\winbugs14'; /*used for window XP*/ 
FILENAME bugsloc 'c:\winbugs14';  /*used for window vista*/ 
 
/*Scripts to run WinBUGS*/ 
 
DATA _NULL_; 
FILE bugsloc(grmBatch.txt); 
PUT@1 "display('log')"; 
PUT@1 "check('C:/dissertation/study1/GRM/GRmodel.txt')" ; 
PUT@1 "data('C:/dissertation/study1/GRM/data1.txt')"; 
PUT@1 "data('C:/dissertation/study1/GRM/data2.txt')"; 
PUT@1 "compile(1)"; 
PUT@1 "gen.inits()"; 
PUT@1 "update(4000)"; 
PUT@1 "set(a)"; 
PUT@1 "set(b)"; 
PUT@1 "set(yrep)"; 
PUT@1 "set(theta)"; 
PUT@1 "set(itemchi2)"; 
PUT@1 "set(itemchi2_rep)"; 
PUT@1 "set(PPP.itemchi2)"; 
PUT@1 "set(Q3.obs)"; 
PUT@1 "set(Q3.rep)"; 
PUT@1 "set(PPP.Q3)"; 
PUT@1 "set(residcov.obs)"; 
PUT@1 "set(residcov.rep)"; 
PUT@1 "set(PPP.residcov)"; 
PUT@1 "set(OR.rep)"; 
PUT@1 "set(PPP.OR)"; 
PUT@1 "set(inprob)"; 
PUT@1 "dic.set()"; 
PUT@1 "update(1000)"; 
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PUT@1 "thin.samples(2)"; 
PUT@1 "stats(a)"; 
PUT@1 "stats(b)"; 
PUT@1 "stats(PPP.itemchi2)"; 
PUT@1 "stats(PPP.Q3)"; 
PUT@1 "stats(PPP.residcov)"; 
PUT@1 "stats(PPP.OR)"; 
PUT@1 "stats(inprob)"; 
PUT@1 "dic.stats()"; 
PUT@1 "save('C:/dissertation/study1/GRM/log.txt')"; 
PUT@1 "coda(a,'C:/dissertation/study1/GRM/coda_a.txt')"; 
PUT@1 "coda(b,'C:/dissertation/study1/GRM/coda_b.txt')"; 
PUT@1 "coda(theta,'C:/dissertation/study1/GRM/coda_theta.txt')"; 
PUT@1 "coda(yrep,'C:/dissertation/study1/GRM/coda_yrep.txt')"; 
PUT@1 "coda(itemchi2,'C:/dissertation/study1/GRM/coda_itemchi2.txt')";   
PUT@1"coda(itemchi2_rep,'C:/dissertation/study1/GRM/coda_itemchi2rep.txt')"; 
PUT@1 "coda(Q3.obs,'C:/dissertation/study1/GRM/coda_Q3obs.txt')"; 
PUT@1 "coda(Q3.rep,'C:/dissertation/study1/GRM/coda_Q3rep.txt')"; 
PUT@1 "coda(residcov.obs,'C:/dissertation/study1/GRM/coda_residobs.txt')"; 
PUT@1 "coda(residcov.rep,'C:/dissertation/study1/GRM/coda_residrep.txt')"; 
PUT@1 "coda(OR.rep,'C:/dissertation/study1/GRM/coda_ORrep.txt')"; 
PUT@1 "quit()"; 
RUN; 
 
/*create a batch file*/ 
DATA _NULL_; 
FILE GRM(run_c1GRM.bat);   
*PUT '"C:\program files\WinBUGS14\WinBUGS14.exe" /PAR grmBatch.txt'; 
PUT '"C:\WinBUGS14\WinBUGS14.exe" /PAR grmBatch.txt'; 
PUT 'exit'; 
RUN; 
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APPENDIX E 

WINBUGS CODE USED TO ESTIMATE 2-DIMENSIONAL GR MODELS 

model 
{ 
# Specify simple-structure 2-dim GR Model  
  for (i in 1:nperson) { 
      for(j in 1:nitem1){ 
          for (k in 1:ncat-1) { 
             logit(pstar[i, j, k]) <-a[j]*(theta[i,1]- b[j, k]); 
          } 
       } 
 
      for(j in (nitem1+1):nitem){ 
          for (k in 1:ncat-1) { 
             logit(pstar[i, j, k]) <-a[j]*(theta[i,2]- b[j, k]); 
          } 
       } 
            
       for(j in 1:nitem){ 
          p[i, j, 1] <- 1-pstar[i, j, 1] 
          for(k in 2:ncat-1){ 
              p[i, j, k] <- pstar[i, j, k-1] - pstar[i, j, k] 
          } 
          p[i, j, ncat] <- pstar[i, j, ncat-1] 
 
       y[i, j] ~ dcat(p[i, j, 1:ncat]) 
 
     } 
 
     theta[i,1:2]~dmnorm(mu[1:2], tau[1:2, 1:2]) 
}   
      
 #specify prior 
 
for (j in 1:nitem) {  
a[j] ~ dlnorm(0, 1) 
 
b[j,1] ~ dnorm(0, 0.25) 
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for (k  in 1:ncat-2){ 
   b[j,k+1] ~ dnorm(0, .25) I(b[j, k], ) 
 } 
} 
 
tau[1:2, 1:2] <- inverse(sigma[1:2, 1:2]) 
 
sigma[1,1] <- 1 
sigma[2,2] <- 1 
sigma[1,2] <- corr 
sigma[2,1] <- corr 
corr ~ dnorm(0.6,4) I(0,) 
} 
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APPENDIX F 

ITEM CATEGORY CURVES (ICCS) FOR THE QCAI ITEMS  
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Item 1: 

Test Form “AS91” 

 
Item 2: 
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Item 3: 

 

Item 4: 
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Item 5: 

 

Item 6: 
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Item 7: 

 

Item 8: 
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Item 1:  

Test Form “AS92” 

 

Item 2: 
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Item 3: 

 

Item 4: 
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Item 5: 

 

Item 6: 
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Item 7: 

 

Item 8: 
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Item 1: 

Test Form “BS92” 

 

Item 2: 
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Item 3:  

 

Item 4: 
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Item 5: 

 

Item 6: 
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Item 7: 

 
Item 8:  
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