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ASSESSING FIT OF ITEM RESPONSE MODELS FOR PERFORMANCE
ASSESSMENTS USING BAYESIAN ANALYSIS
Xiaowen Zhu, PhD

University of Pittsburgh, 2009

Assessing IRT model-fit and comparing different IRT models from a Bayesian
perspective is gaining attention. This research evaluated the performance of Bayesian model-fit
and model-comparison techniques in assessing the fit of unidimensional Graded Response (GR)
models and comparing different GR models for performance assessment applications.

The study explored the general performance of the PPMC method and a variety of
discrepancy measures (test-level, item-level, and pair-wise measures) in evaluating different
aspects of fit for unidimensional GR models. Previous findings that the PPMC method is
conservative were confirmed. In addition, PPMC was found to have adequate power in detecting
different aspects of misfit when using appropriate discrepancy measures. Pair-wise measures
were found more powerful in detecting violations of unidimensionality and local independence
assumptions than test-level and item-level measures. Yen’s Qs measure appeared to perform best.
In addition, the power of PPMC increased as the degree of multidimensionality or local
dependence among item responses increased. Two classical item-fit statistics were found
effective for detecting the item misfit due to discrepancies from GR model boundary curves.

The study also compared the relative effectiveness of three Bayesian model-comparison
indices (DIC, CPO, and PPMC) for model selection. The results showed that these indices
appeared to perform equally well in selecting a preferred model for an overall test. However, the
advantage of PPMC applications is that they can be used to compare the relative fit of different
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models, but also evaluate the absolute fit of each individual model. In contrast, the DIC and CPO
indices only compare the relative fit of different models.

This study further applied the Bayesian model-fit and model-comparison methods to
three real datasets from the QCAI performance assessment. The results indicated that these
datasets were essentially unidimensional and exhibited local independence among items. A 2P
GR model provided better fit than a 1P GR model, and a two-dimensional model was also not
preferred. These findings were consistent with previous studies, although Stone’s fit statistics in
the PPMC context identified less misfitting items compared to previous studies. Limitations and

future research for Bayesian applications to IRT are discussed.
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1.0 INTRODUCTION

1.1  STATEMENT OF THE PROBLEM

Performance assessments (PAs) require students to perform tasks rather than select an answer
from a developed list. They are intended to measure students’ learning through emulating the
context or conditions in which the intended knowledge or skills are actually applied (AERA,
APA, & NCME, 1999). Due to their advantages over multiple-choice (MC) tests, there has been
a significant expansion in the use of performance assessments, especially in large-scale
assessment and accountability programs (Lane & Stone, 2006).

Item response theory (IRT) has become main-stream for analyzing item response data in
educational and psychological measurement including performance assessment data. It consists
of a family of statistical models which specify how an examinee’s item responses are related to
his/her latent traits and item properties (Embretson & Reise, 2000). Compared with classical test
theory (CTT), IRT models make a number of strong assumptions such as dimensionality, local
independence, and model-data fit. The inferences from applications of IRT models are valid only
when the fit between model and data is satisfactory and the underlying assumptions are met.
Therefore, it is crucial to check the adequacy of a chosen IRT model in order to validate

applications of the model.



Evaluating applications of IRT to performance assessments is critical since in practice,
unidimensional polytomous IRT models are commonly used to analyze performance assessment
data but the underlying assumptions are more likely to be violated due to the properties of
performance tasks. For example, the constructs measured in performance assessments are likely
to be multidimensional. Large-scale performance assessments usually cover a broad range of
content areas and each item in performance assessments often measures several skills
simultaneously. The potential presence of local dependence (LD) may also be a more related
issue to performance assessments than multiple-choice (MC) assessments. In MC tests, items are
usually carefully designed to be independent of one another. In contrast, a setting or context
related to a real life situation is usually used in performance assessments and students are asked
several questions related to that setting (Yen, 1993). Thus, a set of items share the same stimulus
and might depend on each other. Several potential sources of LD existing in performance
assessments have been discussed by Yen (1993).

In many practical applications of IRT, there are several available models that might fit
the data, and finding the best model for a particular application is desirable. For example, for a
performance assessment which measure examinee’s overall math ability across two content
subdomains (e.g., algebra and geometry), a simple unidimensional polytomous IRT model and a
more complicated 2-dimensional polytomous model might both fit the data. In order to know if a
simple unidimensional model is adequate or if a multidimensional IRT model would be preferred
for this particular performance assessment application, model comparison techniques should be
employed.

In the last ten years, it has become increasingly common to use Bayesian methods for

estimating IRT models in educational measurement. Part of this increased use is due to the



development of complex IRT models for different educational testing applications. Using
traditional marginal maximum likelihood (MML) estimation method to estimate these complex
models is difficult, and Bayesian estimation using Markov Chain Monte Carlo (MCMC)
methods offer greater potential for estimating complex IRT models. Since Albert (1992)
proposed a full Bayesian method based on Gibbs sampling to estimate 2-parameter normal-ogive
IRT model, and Patz and Junker (1999a, 1999b) discussed Metropolis-Hastings (M-H) sampling
algorithms to estimate several different IRT models such as 2PL, 3PL and mixed models, full
Bayesian methods with MCMC algorithm have become widely used by many researchers to
estimate a variety of complex IRT models such as testlet models (Bradlow, Wainer, & Wang,
1999; DeMars 2006; Li, Bolt, & Fu, 2006; Wang, 2002), rater-effect models (Patz & Junker,
2002), and multidimensional IRT models (Béguin & Glas, 2001; Bolt & Lall 2003; Yao &
Schwarz, 2006).

In addition to using Bayesian methods to estimate IRT models, Bayesian methods can
also be used to evaluate other aspects of IRT applications such as model fit and model
comparison. Though a number of classical model-fit and model-comparison methods have been
proposed and have been found to be useful in more traditional IRT applications, a similar interest
in the assessment of IRT model-fit and IRT model comparisons from a Bayesian perspective is
gaining more and more attention.

The Posterior Predictive Model Checking (PPMC) method (Rubin, 1984) is a popular
Bayesian model checking tool and has proved useful with IRT models (e.g., Béguin & Glas,
2001; Fu, Bolt, & Li, 2005; Hoijtink, 2001; Levy, 2006; Sinharay, 2005, 2006; Sinharay,
Johnson, & Stern, 2006). Conducting PPMC involves simulating data under a presumed model

and comparing features of simulated data against observed data using discrepancy measures that



are sensitive to different aspects of misfit. Any systematic differences indicate potential misfit of
the model. The rationale underlying PPMC is that if a chosen model fits the data, then observed
data should look like replicated data generated from the posterior distributions of model
parameters. Differences between observed and predicted data on discrepancy measures in PPMC
can be evaluated using graphical displays as well as a numerical summary - Posterior Predictive
P-value (PPP-value).

Compared with classical model-fit tests, the advantages of using PPMC for IRT model-fit
are threefold: (1) PPMC takes into account uncertainty in parameter estimation by using
posterior distributions for model parameters rather than point estimates; (2) PPMC constructs
null sampling distributions empirically from MCMC simulations rather than relying on
analytically derived distributions; (3) PPMC can be used for assessing the fit of complex IRT
models which may be needed in real-world testing applications but can only be estimated using
Bayesian methods.

Among a number of Bayesian model comparison indices, Pseudo-Bayes Factor (PsBF;
Geisser & Eddy, 1979; Gelfand, Dey & Chang, 1992) and Deviance Information Criterion (DIC;
Spiegelhalter, Best, Carlin & van der Linde, 2002) are popular indices for model comparisons
with MCMC estimation. In IRT modeling, the PsBF index is commonly estimated using the
conditional predictive ordinate (CPO). In addition, several researchers recently have found that
the PPMC method was also effective for comparing different IRT models when MCMC
estimation method was used (Béguin & Glas, 2001; Li et. al, 2006).

The purpose of this study was twofold: (1) to explore the performance of the PPMC
method and various discrepancy measures in detecting threats to the use of unidimensional

graded response (GR) IRT models to performance assessment applications, and (2) to investigate



the relative effectiveness of three Bayesian model-comparison methods (DIC, CPO, and PPMC)
in choosing a preferred model for analyzing performance assessment data. Specifically, the
following research questions were addressed:

(1) What is the Type-I error rate for each proposed discrepancy measure used with PPMC
in assessing the fit of unidimensional GR model?

(2) What is the empirical power of each proposed discrepancy measure used with PPMC in
detecting different aspects of misfit for unidimensional GR model?

(3) Among different types of discrepancy measures (test-level, item-level, and pair-wise
measures) proposed in the current study, which measures are most effective in detecting
specific misfit?

(4) Do the three Bayesian model comparison criteria (DIC, CPO, and PPMC) perform
equally well in selecting the same model as the preferred model for a particular
performance assessment data? If not, which criterion performs best?

(5) How do Bayesian model checking and model comparison methods work with data from
a real performance assessment?

In order to answer these questions, two Monte Carlo simulation studies were conducted.
Study 1 was intended to examine different discrepancy measures used in model checking with
the PPMC method. Study 2 was designed to assess the different model comparison methods. In
addition, the proposed Bayesian approaches to model-checking and model-comparison were
further applied to several QUASAR’s performance assessment datasets to examine their use with

real data.



1.2 SIGNIFICANCE OF THE STUDY

In recent years, it has become increasingly common to use Bayesian method with MCMC for
estimating IRT models, especially for complicated IRT models (e.g., Albert, 1992; Béguin &
Glas, 2001; Bolt & Lall, 2003; Bradlow, et al. 1999; Patz & Junker 1999a, 1999b, 2002; Yao &
Schwarz, 2006). However, relatively little attention has been given to assessing the fit of IRT
models and comparing different IRT models from a Bayesian perspective.

Although PPMC has been previously used to assess IRT model fit (e.g., Béguin & Glas,
2001; Fu, Bolt, & Li, 2005; Hoijtink, 2001; Levy, 2006; Sinharay, 2005, 2006; Sinharay,
Johnson, & Stern, 2006), the focus has been on unidimensional IRT models for dichotomous
items. The present study was intended to extend previous research to polytomous IRT models
and provide a comprehensive application of PPMC in the context of unidimensional GR models.
This extension is very important because there has been a significant expansion in the use of
performance-based items in educational testing and the unidimensional GR model is commonly
used for modeling these items. Since the assumptions under the GR model are very likely to be
violated in performance assessment applications, it is critical to check the fit of a GR model to a
particular performance assessment data. In addition, many of the discrepancy measures used in
the current study reflect polytomous extensions of measures used in previous research for
dichotomous IRT models. Thus, it would be useful to assess the extent to which their
performance with dichotomous items can be generalized to polytomous items. Finally, though
PPMC is useful for simple unidimensional IRT models, its power is that it can be used for
assessing the fit of complex IRT models which may only be estimated using Bayesian methods.
However, research about applications of PPMC to complex IRT models has been very limited. In

this current study, the PPMC method was also used to evaluate the fit of different complex
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Bayesian IRT models such as 2-dimensional simple-structure and complex-structure GR models,
and GR models for testlet. Thus, this study also extended previous research to the use of PPMC
with complex IRT models.

Another objective of this study involved comparing Bayesian model-comparison criteria.
Comparing different IRT models and choosing the more appropriate one is important to all
testing applications including performance assessments. In practical applications, performance
assessments are usually designed to only measure one dominant dimension and thus
unidimensional polytomous models are commonly used. However, when the assumptions
underlying unidimensional models are violated, more complex polytomous models might be
used. Therefore, it is necessary and important to know if a simple or more complex model is
more appropriate for a particular performance assessment application.

The research comparing different Bayesian model comparison indices has been limited.
Sung and Kang (2006) conducted a study to compare four model selection methods (DIC, PsBF,
AIC, and BIC) in terms of their effectiveness. They mainly focused on comparing the different
unidimensional polytomous models for Likert-type data. In addition, the PPMC method was not
considered in their study. Li et al. (2006) investigated the performance of Bayesian tools (DIC,
PsBF, and PPMC) in choosing the true testlet models for dichotomous items. Since the results
from these studies indicated the differential performance of these model comparison indices, it is
necessary to compare their relative performance in different testing applications. The current
study played a significant role in extending the previous research to performance assessment
settings that consider different polytomous models which may be more appropriate for

performance assessment data including both unidimensional and complex GR models.



1.3 LIMITATIONS OF THE STUDY

This study explored the general performance of the PPMC method in detecting different aspects
of misfit for the unidimensional GR models, and also investigated the effectiveness of the
different Bayesian model-comparison indices in selecting the true models for performance
assessment data using two Monte Carlo simulation studies. Though the conditions were carefully
designed and the factors were fixed at realistic values, the results may not generalize to other
situations not considered in the current study. For example, this study is limited in terms of the
length of tests (15 items), the number of response category (5-category), the polytomous model
(GR), and the number of dimensions considered for multidimensional conditions.

Another limitation is that due to computing constraints of the WinBUGS program
(Spiegelhalter, Thomas, Best, & Lunn, 2003) and the large number of conditions in this study,
only 20 replications were implemented. Though it was smaller than which is typical for other
Monte Carlo research, it was typical for previous research involving PPMC and Bayesian model-
comparison applications (e.g., a number of researchers used 5 to 30 replications).

In addition, the performance of the PPMC method and the Bayesian model-comparison
indices for the GR models requires further study. For example, the effect of factors such as
sample size, the number of total items, the number of dimensions, the structure of dimensions,
and the inter-dimensional correlation given modeled multidimensionality could be further
explored. Other discrepancy measures could be proposed and evaluated. For example, the
conditional odds ratios could be used. Other assumptions under the use of IRT models with
performance assessments could be also considered in the future such as the normal ability
assumption. Finally, the current study did not compare the performance of classical model-fit

statistics with the performance of PPMC. Further research could explore this comparison.
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2.0 REVIEW OF LITERATURE

This chapter provides the theoretical background for this study which is organized into five
sections: 1) applications of IRT to performance assessments, 2) traditional methods for checking
IRT model-fit, 3) posterior predictive model checking (PPMC) in Bayesian framework, 4)

checking IRT model-fit using PPMC, and 5) model comparison in Bayesian framework.

2.1  APPLICATIONS OF IRT TO PERFORMANCE ASSESSMENTS

2.1.1 Brief Introduction to Performance Assessments

The recent trend in educational testing is moving from exclusively using multiple-choice items to
including performance assessment items. Performance assessment (PA) is a form of testing that
requires students to perform tasks rather than select an answer from a developed list. It is
intended to measure students’ learning through emulating the context or conditions in which the
intended knowledge or skills are actually applied (AERA, APA, & NCME, 1999). PA is also
termed “authentic assessment” since it often provides tasks that are thought to model realistic
applications that students will encounter in life. The performance-based items usually have two
parts: a clearly defined task and a list of explicit criteria (i.e., rubric) for assessing student
performance or product. The responses are constructed by examinees and scored on a response
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scale with several levels rather than only as correct or incorrect. PA includes a large range of
formats such as constructed-response, essays, experiments, and portfolios.

Lane and Stone (2006) summarized the main advantages of performance assessments: (1)
directness: they provide a more direct measure of the skills of interest; (2) meaningfulness: they
are meaningful and thus motivating students because of their relevance to real-life situations; (3)
they may influence curriculum and instructional changes in positive ways by encouraging
teachers to broaden the focus of their teaching and include reasoning, problem solving, and
communication in regular classroom activities. Moreover, performance assessments can measure
important skills that cannot be assessed by selected-response item format - for example,
assessing dynamic cognitive processes. Therefore, it may be argued that performance
assessments provide more valid information about student learning than multiple-choice
assessments (Baron, 1991).

Due to the aforementioned benefits, in the last decades there has been a significant
expansion in the use of performance assessments, especially in large-scale assessment and
accountability programs (Lane & Stone, 2006). Many school districts, state testing programs, and
national assessments have incorporated performance assessments into their programs. For
example, the National Assessment of Educational Progress (NAEP) is the nationally
representative and continuing assessment of what students know and can do in various subject
areas. Some NAEP items are performance-based. The Advanced Placement (AP) exams consist
of one-section constructed-response items which are used to determine the proficiency attached
by high school students in college courses. Besides the national assessments, a number of state
assessment programs contain both selected-response items and performance-based items (e.g.,

Kentucky, Pennsylvania, and Vermont), while others are even entirely performance-based (e.g.,
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Maryland). Though performance assessments have been widely used in large-scale assessments
for high-stake purposes such as providing school accountability information, evaluating reform
efforts, and determining instructional and curriculum changes, they can also be useful for
classroom purposes such as diagnosing student’s strength and weakness and evaluating the
effectiveness of instruction. Lane and Stone (2006) pointed out that classroom performance
assessments allow for a direct alignment between assessment and instructional activities and

have the potential to simulate the criterion performance better than large-scale assessments.

2.1.2 IRT Models for Performance Assessments

2.1.2.1 General Description
IRT consists of a family of statistical models which are used to analyze item response data.
These IRT models can be classified in several ways. One way is by the type of item data.
Dichotomous IRT models are used for analyzing dichotomous item data (item response scored in
two categories), and polytomous IRT models are used to analyze polytomous item data (item
response scored in more than two categories). Another way is by the number of ability
dimensions accounting for performance differences among examinees. Unidimensional IRT
models assume one underlying dimension, while multidimensional IRT models assume more
than one dimension determining examinees’ performance. Performance assessment tasks are
typically polytomously scored and generally measure one underlying ability dimension, thus
unidimensional polytomous IRT models are commonly applied to performance assessments.
There are various unidimensional polytomous IRT models available. The most
commonly used polytomous models include (1) the graded response (GR) model (Samejima,
1969); (2) the modified GR model (Muraki, 1990), also called Muraki’s rating scale (RS) model;
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(3) the partial credit (PC) model (Masters, 1982); (4) the generalized partial credit (GPC) model
(Muraki, 1992); (5) the rating scale (RS) model (Andrich, 1978); and (6) the nominal response
(NR) model (Bock, 1972). According to the useful taxonomy provided by Thissen and Steinberg
(1986) for classifying polytomous models, The GR and Muraki’s RS models belong to a class of
“difference” models, and the remaining models are classified as “divide-by-total” models. For
“difference” models, the probability of responding in a particular category j is calculated by
taking the difference between cumulative probabilities: for example, the probability of
responding at or above j and the probability of responding at or above (j+1). For “divide-by-
total” models, the probability of responding in a given category is obtained by the ratio of the
function for that category to the sum of the functions for all the categories (Yen & Fitzpatrick,
2006). Bock’s NR model is the most general “divide-by-total” model, and all the other models
(PC, GPC, and Andrich’s RS) are special cases of the NR model. In addition, the PC and
Andrich’s RS models are Rasch-based models assuming a constant item discrimination or slope
parameter for all items.

For performance assessments, all of the aforementioned models could be used because
they are applicable to items with ordered response categories. Nevertheless, the GR, PC, GPC,
and NR models are more commonly used because they can be used to analyze a set of
polytomous items that differ in the number of score levels. For example, either model could be
applied to a test having some items with 5-point rubrics and some with 4-point rubrics. While the
two RS models are simplified models, they are only suitable for items associated with the same
rating scales and therefore are rarely used with performance assessments. However, Lane and
Stone (2006) argued that the rating scale models could be applied to performance assessments if

a general rubric is used as the basis for developing specific item rubric since the response scales
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and the differences between score levels may be the same across the set of items. They also
pointed out that the NR model may not be preferred with performance assessments due to the

relatively large number of parameters to be estimated.

2.1.2.2 Graded Response Model (Samejima, 1969)

Samejima’s (1969) GR model is the main model applied in this study and is introduced in more
detail here. The GR model is an extension of dichotomous 2-paramter logistic (2PL) model and
was developed to model items with more than two graded or ordered response categories. Let
denote Kj= (m;+1) to be the number of ordered response categories for item i, with higher
response category indicating higher ability, then examinees would receive item scores of x = 0,
1... m; on this item. Samejima (1969) proposed a two-stage process to obtain the probability that
a given examinee with a certain ability level will receive item score x. In the first stage, the
response categories of each item are dichotomized into two overall categories: (1) equal to or
greater than category score x; and (2) less than category score x. For instance, for a 5-category
item, there are 4 types of dichotomies: (1) 0vs. 1,2,3,4;(2)0,1vs.2,3,4;(3)0, 1, 2vs. 3, 4,
(4) 0, 1, 2, 3vs. 4. The probability that an examinee receives a category score x (x = 1, 2... m;) or

higher on item i (P, (#)) can be modeled using the 2PL function:

- ol

where
D is the scaling constant (1.7 or 1),
a; is the discrimination (or slope) parameter of item i,
0 is the ability level, and

bix is the threshold parameter for category x of item i.
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The bix parameter represents the ability level at which examinees have a .50 probability of
receiving item score x or higher on item i. For an item with (m;+1) categories, one item
discrimination parameter (a;) and m; threshold parameters (bix) must be estimated under the GR

model. For each threshold parameter, there is one corresponding “operating characteristic curve”

(OCC; Embretson & Reise, 2000) or “boundary category curve” (BCC) described by P, (6)
Once these cumulative probabilities R;(e) are estimated, the probability of responding to

a particular response category P, (6?) (x=0, 1, 2... m;) can then be computed using the difference

between the cumulative probabilities for two adjacent categories: Py(6) and Py,.,,(0). Py(6) is
known to be the probability of an examinee obtaining item score equal to or higher than x
conditional on ability level, and Pi:Hl) (9) represents the probability of that examinee obtaining

item score higher than x. The difference is the probability of receiving the actual item score X.

Consider a 5-category item, Equation (2.1) defined the four cumulative probabilities:
Pi(0), P;(6), P5(#), andP;(6). In order to calculate the probabilities of obtaining the lowest
(0) and highest (4) item scores, two additional definitions should be given: the probability of
responding in or above the lowest category score (x = Q) is defined as Pi;(e):l, and the

probability of responding above the highest category score (x = 4) is R’;(e)=0. Thus, the

probability of responding in each of the five categories (x =0, 1... 4) can be calculated using:

0)-P;(0) (2.2)
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The general formula for computing the category response probabilities for an item with

(m;+1) categories (item score x =0, 1, 2... m;) is as follows:

Pio(e) =4i= PuI (‘9)
P.(0)=P;(0)-P.y(0) (x=1,2...(m-1)). (2.3)
I:)imi (0) = ir;i (0)_ 0

For illustrative purposes, Figure 2.1 displays the four boundary category curves (P, (0))
for a 5-category item (a = 1.7, b1 = -2, b2 = -1, b3 = 0, bs =1), and the category response curves
(Pix(e)) for this item are shown in Figure 2.2. Under the GR model, the item parameters

determine the shape and location of the boundary category curves and category response curves.
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Figure 2.1 Boundary Category Curves for a 5-category Item under the GR Model

For boundary category curves (Figure 2.1), the slope parameter (a;) determines the
steepness of the operating curves: the higher the slope parameter, the steeper the curves. Higher
slope indicates that the response categories discriminate or differentiate the examinees at
different ability levels fairly well. 1t should be noted that under the GR model, the slope a; varies

by item i, but within an item, all response categories share the same slope which results in
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parallel operating characteristic curves. The constraint of equal slopes within an item prevents

negative probabilities for P, (6).
The threshold parameters bix determine the location of P;(6). From the intersections of

dashed lines in Figure 2.1, it is evident that the threshold represents the ability level at which an
examinee has a .50 probability of receiving item score of x and higher. For instance, the first
threshold for this example item bl is -2 which means an examinee at ability level of -2 has .50
chance of obtaining a score of 1 or higher on this item. Moreover, the range of threshold values
dictates the spread of the boundary category curves. A large range of threshold values results in
curves that are more spread out, whereas, a small range of threshold values results in curves that
fall closer together. It should be also noted that within an item the threshold parameters are
ordered with the constraint bjx.1) < bix < bix+1). This is a requirement for the GR model, but not

for other models such as the PC model.
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Figure 2.2 Category Response Curves for a 5-category Item under the GR Model

For this 5-categeory item, there are 5 category response curves showed in Figure 2.2. The
curve for the lowest category (0) is monotonically decreasing, whereas, the curve for the highest

category (4) is monotonically increasing. The curves for the middle three categories (1, 2, and 3)
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are bell-shaped. Under the GR model, the slope parameter determines the shape of these curves
for the middle categories: the higher the slope parameter, the narrower and more peaked the
curves. The threshold parameters determine the locations of the curves for the middle response
categories. Specifically, these category response curves peak in the middle of two adjacent
threshold parameters. As showed using dashed lines in Figure 2.2, the middle value of two

threshold values (b1 = -2 and b2 = -1) is -1.5 which is the mode of the curve for category score 1.

2.1.3 Main Threats in Applying Unidimensional IRT Models to PAs

Due to the well-known advantages of IRT over classical test theory (CTT), IRT has become
main-stream for analyzing item response data in educational and psychological measurement.
However, IRT is based on many strong assumptions such as dimensionality, local independence,
and model-data fit. The inferences about the applications of any IRT model are valid only when
all the underlying assumptions for that model are met. Therefore, before any accurate inference
is drawn, it is necessary to check the assumptions in order to validate applications of IRT
models. It is especially true when unidimensional polytomous IRT models are applied for
performance assessments because the assumptions are more likely to be violated due to the
properties of performance tasks. This section discusses some main threats in applying

unidimensional IRT models to performance assessments.

2.1.3.1 Multidimensionality
Most of the commonly used IRT models assume that one ability dimension determines
examinees’ performance. However, the constructs measured in performance assessments are

very likely to be multidimensional and this multidimensionality is mainly due to the complexity
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of performance tasks. Performance tasks are typically developed to measure the complex
structure of multiple skills and knowledge needed for solving more realistic problems. Thus,
each item in performance assessments usually measures several dimensions simultaneously. For
example, a mathematics problem might focus on problem-solving and communication abilities.
In order to do well on that problem, students must be able to not only solve the problem, but also
communicate their ideas clearly.

Another case is that large-scale performance assessments usually cover a broad range of
content areas. For example, a math assessment may measure two content areas: algebra and
geometry. Though this test measures student’s overall math ability and a unidimensional IRT
model is commonly applied, the responses to this test is actually 2-dimensional.

In addition to this planned content structure, many nuisance or construct-irrelevant
factors would result in multidimensionality for performance assessments. For example, a
performance assessment intended to measure only mathematics ability might also require
examinee reading ability. When there is variability on reading ability among the examinees, the
reading ability would be viewed as nuisance dimension. Moreover, performance tasks are
designed to be contextual or have real-life applications. The degree to which a student is familiar
with a specific context would affect his/her performance. If the context effect varies across
examinees, it would introduce an additional nuisance dimension. Furthermore, performance tasks
often take more time to respond, and if the testing time was inadequate for some examinees,
“speededness” would result in another potential construct-irrelevant dimension.

Finally, performance tasks are typically combined with multiple-choice items in order to

measure examinees’ abilities more accurately. The combination of different item formats would
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result in multidimensionality because different formats might measure different level of
cognitive processing (Lane & Stone, 2006; Tate, 2002).

In summary, multidimensionality in item responses for performance assessments can be
easily caused by various factors such as planed test construct structure, unintended nuisance or
construct-irrelevant variances, and mixed item format. Unfortunately, in many practical
situations, this multidimensionality is completely ignored and the unidimensional models are
often applied to performance assessments. The lack of applications of multidimensional IRT
(MIRT) models is due to the difficulties in parameter estimation and the interpretation of the
latent ability space, as well as no user-friendly software available for estimating MIRT models
(DeAyala, 1994).

When a unidimensional IRT model is used to fit multidimensional data, several problems
might arise. Several researchers (Ackerman, 1989; Ansley & Forsyth, 1985, Way, Ansley, &
Forsyth, 1988) have investigated the consequences of fitting 2-dimensional dichotomous item
data with unidimensional three-parameter logistic (3PL) models and found violations of the
unidimensionality assumption clearly affected IRT parameter estimates. DeAyala (1994, 1995)
extended the previous work on the influence of multidimensionality on dichotomous model
parameter estimation to polytomous models including the GR model and the PC model. For
example, it was found that for the GR model, the difficulty parameters were well estimated, the
discrimination estimate more accurately estimated the average discrimination than either
dimensional a; or a,, and the single ability estimate also estimated the average more accurately
than either dimensional ability. Using incorrect model parameter estimates would subsequently
affect IRT applications such as equating, CAT, as well as the validity of ability score

interpretations. Tate (2002) summarized the previous studies and discussed that unidimensional
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ability estimates represent a target composite of abilities, and is only robust to violations of the
unidimensional assumption when the correlations among ability dimensions are moderate or
high. Otherwise, the validity of any inferences from the single ability estimate will be threatened
and it may not be appropriate to use unidimensional model (Lane & Stone, 2006).

Reckase (1985) found that difficulty and dimensionality can be confounded in the data
and thus the composite of abilities does not remain consistent across the ability scale. For
example, if the easy items measured one ability and the hard items measured another ability, low
and high scores on the ability scale would not have the same meaning as could be a serious threat
to validity of the total score. In addition, Ackerman (1992) demonstrated how the items may
display differential item functioning (DIF) if unidimensional model is used to scale
multidimensional data. Walker and Beretvas (2001, 2003) found the open-ended items in a large-
scale mathematics test functioned differentially in favor of students who were highly capable of
communicating their ideas and they further explored the effect of using only a single score on
student proficiency classifications in mathematics. Their results indicated that when data
believed to be multidimensional are modeled using a unidimensional model, different inferences
may be made about student proficiency. Examinees having less mathematics communication
ability were more likely to be placed in a lower general mathematics proficiency classification

under the unidimensional than multidimensional model.

2.1.3.2 Local Dependence
Local independence (LI) is a fundamental assumption for IRT models which means that
there is no relationship between examinees responses to different items after accounting for trait

abilities measured by a test. This conditional independence can be expressed mathematically as:
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P(X:x|9):1l_l[P(Xi=xi|9). (2.4)
i

It describes that the probability of any pattern of responses to all items (x), conditioned
on the abilities (), is equal to the product of the conditional probabilities of the response to each
item. This equation defines the strong form of local independence. A weak form of local
independence was proposed by McDonald (1979): the conditional covariances of all pairs of
item responses on the abilities are equal to zero. When this assumption is met, the joint
probability of responses to an item pair, conditioned on the abilities, is the product of the
probabilities of responses to these two items,

P(X; =x,X, =x,10)=P(X, =x |9)P(X, =x, | 9). (2.5)
This is a weaker form because higher-order dependencies among items are allowed.

An even weaker form of local independence was proposed by Stout (1987) who called it
as “essential item independence” and defined it as “the items in a test can be considered as
essentially independent when the average value of the conditional covariances between items
approaches zero as test length increases for all ability values”. It is a weakest form of local
independence since it only requires the average value of covariances rather than all covariances
close to 0.

A number of researchers have discussed that the local independence assumption is related
to the dimensionality assumption. The strong form indicates that the abilities measured by a test
completely explain the difference on examinees’ performances. The weak local independence
implies that the abilities completely explain the covariance between all item pairs between all
item pairs. Finally the essential independence implies that the abilities dominate the difference

on examinees’ performances (Yen & Fitzpatrick, 2006).
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The potential presence of local dependence (LD) may be a more related issue to
performance assessments (PA) than multiple-choice (MC) assessments. In MC tests, the items
are usually carefully designed to be independent of one another. In contrast, a setting or context
related to a real life situation is usually established in PA and students are asked several
questions related to that setting (Yen, 1993). Yen (1993) discussed several potential sources of
LD in PA such as: external assistance or interference with some items, speededness, fatigue,
practice, special item or response format, a shared stimulus or passage, item chaining, items
requiring explanation of a previous answer, scoring rubrics or raters, unique content knowledge
or abilities, and differential opportunity to learn. Most of these sources reflect an additional
nuisance factor (person, item, or rater characteristics) that consistently affects the performance of
some students on some items to a great extent, and some sources reflect item interactions such as
item chaining and a shared stimulus (Lane & Stone, 2006; Yen, 1993). Several studies (Yen,
1993; Ferrara, Huynh, & Baghi, 1997; Ferrara, Huynh, & Michaels, 1999) have showed some
sources of LD can cause very strong empirical LD.

IRT models are not robust to the violation of local independence assumption. Applying
an IRT model to LD response data could cause serious problems. First, the parameter estimates
may be biased because the likelihood function for IRT models is based on local independence
assumption and the incorrect likelihood would affect the accuracy of parameter estimation. Yen
(1993) demonstrated that positive LD would produce higher item discriminations for LD items.
Thus, the test information may be overestimated, and the standard errors of test scores would be
underestimated. These effects would subsequently affect any application of IRT models. For
example, the biased item discrimination estimates would affect item banking, and the

underestimated standard errors would cause the premature termination in case of CAT.
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In summary, the potential for violations in the assumptions of unidimensionality and
local independence may be more likely for performance assessments and the consequences of
these violations can not be ignored. Therefore, it is very important to check these two

assumptions before a unidimensional IRT model is applied to a performance assessment data.

2.2 TRADITIONAL METHODS FOR CHECKING IRT MODEL-FIT

Assessing the fit of IRT models is a multi-facet procedure that often involves the collection of
evidence about different aspects of fit: (1) assessing IRT model assumptions such as
unidimensionality and local independence; (2) assessing the goodness-of-fit of IRT models at the
item, person, and test levels (Embretson & Reise, 2000). A variety of methods have been
proposed for assessing the corresponding different aspects of fit. This section reviews traditional
approaches to checking the assumptions of unidimensionality and local independence and
evaluating the goodness-of-fit at item level for polytomous IRT models because these three

aspects are of the main interest in the present study.

2.2.1 Assessing Dimensionality

Several methods have been developed for assessing the dimensionality of polytomously scored
items and most of them are polytomous extensions of methods for dichotomous item response.
These methods fall into three categories: (1) factor analytic methods; (2) multidimensional IRT

methods; (3) nonparametric methods.
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Common linear factor analysis using Pearson product-moment correlations with
maximum likelihood (ML) estimation can only be applied when the response scale for
polytomous items has a large number of response categories and can be treated as a continuous
interval scale. Several factor analytic methods have been proposed specifically for ordinal
response data. For example, a weighted least square (WLS) analysis of polychoric correlations
has been developed and can be implemented in PRELIS/LISREL (Joreskog & Sorbom, 2006)
and Mplus (Muthén & Muthén, 2006). WLS requires a weight matrix which involves the inverse
of the covariance matrix of polychoric correlations. The size of the weight matrix is usually
substantial and it grows dramatically as the number of items increases. As a result, an adequate
estimate of the weight matrix requires a very large sample size. When the sample size is small or
moderate, a robust WLS approach (Muthén, duToit, & Spisic, 1997) is considered as the best
approach for factor analysis of ordinal variables. The robust WLS approach uses the identity
matrix rather than the weight matrix and its estimation does not require extensive computation
and enormously large sample sizes. Two robust WLS methods (mean-adjusted WLS and mean-
and variance-adjusted WLS) are available in Mplus. In a simulation study, Flora and Curren
(2004) showed that WLS performed adequately only at the largest sample size but led to
substantial estimation difficulties with smaller samples, whereas, the robust WLS performed well
across all simulation conditions.

Compared with factor analytic methods, MIRT approaches use all information in
response patterns rather than limited information from correlation matrices. A full-information
item factor analysis for polytomous item responses was proposed by Muraki and Carlson (1995)
and this method can be implemented in the most recent version of PRELIS/LISREL (Joreskog &

Sorbom, 2006). Another is a Rasch MIRT modeling approach proposed by Adams, Wilson, and
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Wang (1997) which assumes the slope or discrimination parameter is constant across all items.
This method is available in ConQuest (Wu, Adams, & Wilson, 1998).

The unidimensionality assumption indicates that there is a single latent ability measured
by a particular test. However, a real-world test will never be strictly unidimensional. Given this
fact, Stout (1987) proposed the concept of “essential unidimensionality” for a test which
measures a dominant dimension and examinees’ performances are unaffected by the presence of
minor dimensions. This concept is directly related to “essential local independence” discussed in
section 2.1.3.2. To assess whether a test is essential unidimensional for applying a
unidimensional IRT model, nonparametric approaches have been developed by Stout and his
colleagues (1987, 1990, 1993, & 1996) based on conditional item covariance theory. The simple
hypothesis that a test is essentially unidimensional can be examined using DIMTEST software
(Nandakumar & Stout, 1993). Poly-DIMTEST (Nandakumar, Yu, Li, & Stout ,1998) is an
extension of DIMTEST to accommodate tests that contain polytomous items. DETECT program
(Zhang & Stout, 1999) provides more information than DIMTEST by estimating the extent of
multidimensional approximate simple structure in a test. Poly-DETECT (Yu & Nandakumar,
2001) is a polytomous extension of DETECT. In addition, HCC/CCPROX program (Roussos,
Stout, & Marden, 1998) is used to search dimensionally homogeneous clusters of items using
hierarchical cluster analysis technique, and its polytomous version is Poly-CCPROX/HCA (Tay-

Lim & Stone, 2000).

2.2.2 Detecting Local Dependence

The IRTNEW software (Chen, 1998) provides five different measures of item local dependence
(LD) for dichotomous items. All of them are IRT based and examine LD in the context of
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unidimensional IRT models. The first one is Yen’s Qs statistic (1984, 1993) which measures
correlations between pairs of items after accounting for the latent ability. To calculate Qgz, the

expected performance of the i examinee on item j (E;j) is first obtained based on the IRT model:

E, =Y (k-1P,(8) (2.6)

k=1

where m is the total number of response category of item i, and P, (éi) is the probability of an

examinee at ability level éi responding in category k. The deviation (d;) between observed and
expected performance is then calculated as:
d; =x; —Ej. (2.7)
For items j and j', the Q3 is defined as the correlation of deviation scores across all
examinees:
Qy =rld; ;). (2.8)
When no local dependence exists, Yen (1984, 1993) suggested the Fisher’s Z
transformation of the Qs index would be approximately distributed normal with a mean of 0
(with a slight negative bias of -1/(n-1)) and a variance of about 1/(n-3), where n is the number of
items. However, in a simulation study, Chen and Thissen (1997) found that the empirical
distribution of Qs did not match this theoretical sampling distribution and produced Type-I error
rates that were sufficiently larger than the nominal levels. As a result, it is more common to use
Qs as a descriptive statistic than a hypothesis testing. The Q3 values greater than a uniform cutoff
value 0.20 generally indicate some degree of local dependence worthy of attention (Chen &
Thissen, 1997; Yen & Fitzpatrick, 2006). Yen’s Qs can be used with either dichotomous or

polytomous items.
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Four other LD indices in IRTNEW are based on 2 x 2 contingency tables of the observed
and expected frequencies of correct and incorrect responses for the item pairs. They include two
chi-square indices (the Pearson x” and the likelihood ratio G? statistics), as well as two signed
measures (the standardized coefficient difference ¢ index and standardized log-odds ratio
difference index). An advantage of the signed measures over chi-square indices is that their sign
can indicate the direction of association. These four indices were developed by Chen and Thissen
(1997) mainly for dichotomous items, but can be extended to accommodate polytomous items
based on tests of associations in general m x n contingency tables. Kim, Cohen and Lin (2006)
developed a computer program LDIP to detect LD for polytomous items specifically. It provides
four indices: Yen’s Qs, the Pearson y? the likelihood ratio G% and the Fisher-transformed

correlation difference statistic Zg.

2.2.3 Evaluating Item-Fit

Model-data fit can be evaluated at different levels such as at the test, item or person level. More
statistical procedures have been developed to evaluate item fit rather than overall model-fit
(Embretson & Reise, 2000). One reason is that a test may include mixed item types and different
IRT models need to be used for different type of items. Another reason is that even when the
overall model fits the data, some of the items do not function in the intended manner. Inadequacy
of model-data fit may have adverse consequences in the applications of IRT models such as
biased ability estimates, unfair ranks, and wrongly equated scores (Yen, 1981; Wainer &
Thissen, 1987). In addition, item fit analysis can help test constructers to isolate bad items in
item pools and retain only items that fit an IRT model. Therefore, assessing model fit at item

level is very important.
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2.2.3.1 Traditional Item-Fit Statistics

Assessing item-fit involves evaluating the degree to which the model predicts the observed item
responses or the degree to which observed item category curves (ICC) agrees with the form
predicted by a model. The traditional statistical procedure for assessing item fit for each item is
as follows:

(1) Obtain estimates of item and ability parameters for the IRT model;

(2) Specify a number of ability subgroups to approximate the continuous ability scale;

(3) Construct an observed score response distribution by cross-classifying examinees based
on their ability estimates and responses and calculating the proportion of examinees
responding to each response category.

(4) Construct an expected score response distribution by calculating the probability of
response of each subgroup to each response category based on IRT model, item
parameter estimates, and an ability estimate representing each group ability.

(5) Evaluate difference between the observed and expected response distribution through chi-
square statistics.

Several traditional item-fit statistics that can be used with dichotomous and polytomous
items have been proposed based on this procedure. They include Bock’s Pearson statistics
(1972), Yen’s Q; statistic (1981), and McKinley and Mills’s likelihood ratio statistics G* (1985).
The following is the simple description of Yen’s Q; statistic which will be used in the current
study. The other statistics are very similar to Yen’s Q; and only differ in the number of ability
subgroups, the methods for constructing the subgroups, or the methods for obtaining the
expected proportion.

Yen’s Q; Statistic (Yen, 1981)
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Yen’s item-fit statistic is a Pearson chi-square test statistic defined as:
10 K 0. —E. 2
ZZ ZZ N ( ik Jk) ’ (2.9)

where N; is the number of examinees within ability subgroup j, O and Ej are the observed and
predicted proportion of responses to category k for ability subgroup j, respectively. In Yen’s
statistic, examinees are divided into 10 ability subgroups of approximately equal size after they
are rank-ordered by their ability estimates. The expected proportion to a response category for a
subgroup is the mean of the probabilities of responses to that category for all the examinees in
that subgroup. The distribution of Yen’s Q statistic is assumed to have an approximate chi-
square distribution with degrees of freedom equal to 10*(K-1)-m, where m is the number of
estimated item parameters in the model.

Although the traditional chi-square statistics are useful for detecting item fit in many
situations and have been widely used, several problems with them have been identified in the
literature. The first problem is whether or not these item-fit statistics follow a known chi-square
distribution. IRT-based item-fit statistics are not constructed in the same way as classical
goodness-of-fit test statistics in which both variables are known and therefore the observed
proportions are based only on observed data. In contrast, for the IRT-based statistics, an IRT
model is firstly estimated. Cross-classification of examinees is then based on the ability
estimates. The model-dependent observed proportions would cause uncertainty about using a
chi-square distribution (Orlando & Thissen, 2000). Further, Stone (2000) pointed out that the
model-based expected proportions are also dependent on unknown model parameters. Using
estimated values rather than true values of parameters may also affect the chi-square
approximation to the distributions of item-fit statistics. Finally, it is not entirely clear what

degrees of freedom (DF) should be used for the null chi-square distribution. Though expected
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proportions in traditional item-fit statistics depend on both item and ability parameters, the DFs
are adjusted for the number of estimated item parameters only (Yen, 1981).

A second problem with the traditional item-fit statistics is that the number of subgroups
used to approximate the continuous ability scale and how the subgroups are created is arbitrary.
Different choices of subgroups might lead to different values of item statistics, then to different
conclusions about item fit.

Finally, classifying examinees into subgroups is based on point estimates rather than true
abilities. How accurate ability is estimated would potentially affect this classification, and
misclassifications would make the results of item-fit tests questionable, especially for shorter

tests like performance assessments (Stone, Mislevy, & Mazzeo, 1994).

2.2.3.2 Alternative Item-Fit Statistics

Given the above disadvantages of the traditional chi-square item-fit statistics, alternative item-fit
indices have been proposed. Herein, two widely used statistics (Orlando & Thissen, 2000; Stone,
2000) are introduced.

Item-Fit Statistics based on Total Scores (Orlando & Thissen, 2000)

Orlando and Thissen’s method includes forming ability subgroups based on total test
scores rather than ability estimates, cross-classifying examinees into the subgroups by their total
test scores and item responses, and then comparing expectations and observations using either a
Pearson chi-square statistic or a likelihood ratio statistic. The null distributions of these two
statistics are approximated by a chi-square distribution with df = (I-1)-m, where (I-1) is the
number of total score categories and m is the number of estimated item parameters. The effect of
sparseness of cell counts may be reduced by collapsing total score groups until all cells have a

minimum expected count. This method has advantages over traditional item-fit statistics in two
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aspects: the determination of subgroups is not arbitrary — each possible total score defines a
group; and the observed proportions are only a function of observed data and no longer model-
dependent.

Orlando and Thissen’s item-fit statistic was originally developed for dichotomous items,
and can be implemented in GOODFIT computer program (Orlando, 1997). Their indices have
been directly generalized to accommodate polytomous items (Kang & Chen, 2008), and the
generalized indices can be computed through a SAS macro IRTFIT developed by Bjorner,
Smith, Stone & Sun (2007).

Item-Fit Statistic Considering Uncertainty in Ability Estimation (Stone, 2000)

Stone, Mislevy, and Mazzeo (1994) and Stone (2000) pointed out that using point
estimates for ability rather than true abilities may cause inaccuracy in using a chi-square
distribution to approximate sampling distributions of traditional item statistics, particularly for
shorter tests such as performance assessments. A simulation study by Stone & Hansen (2000)
further showed that the distributions of item-fit statistics for polytomous items were affected by
the precision in ability estimation. When the abilities were not estimated precisely, the sampling
distribution would differ markedly from the assumed null chi-square distribution. These
researchers suggested that this imprecision or uncertainty in ability estimation should be
considered when item statistics are used to assess items in a shorter test.

To account for uncertainty in ability estimation, Stone et al. (1994) and Stone (2000)
proposed a fit statistic computed based on posterior distribution of ability rather than point
estimates of unknown ability parameters. Rather than cross-classifying examinees into only one
cell of the item fit table based on his/her item response and point ability estimate, this method

assigns each examinee to multiple ability groups based on his/her posterior expectations
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(posterior probabilities for each discrete ability level). As ability is estimated less precisely, the
posterior expectations would be more spread out across the ability scale and the examinee is
classified into more ability levels to account for the uncertainty. For each examinee, calculate his
/her posterior expectations and the pseudo-observed count for each cell in item-fit table can then
be computed by summing the posterior expectations across all examinees. Treating the
pseudocounts as observed counts, a Pearson chi-square or a likelihood ratio statistic can be
calculated as for traditional item-fit statistics. This item-fit statistic can be used to evaluate the fit
of either dichotomous or polytomous items, and computed through a SAS macro IRTFIT
(Bjorner et al, 2007) or a SAS program (IRTFIT RESAMPLE) written by Stone (2000).

Since pseudocounts rather that actual observations are used and the contribution of an
examinee’s response to the item-fit table is in more than one cell, the independence assumption
for goodness-of-fit chi-square test does not hold. Therefore, a null chi-square distribution can not
be assumed for this item-fit statistic. Stone, Ankenmann, Lane, and Liu (1993) used Monte Carlo
resampling methods to derive an empirical sampling distribution for the item fit statistic and
showed that the sampling distribution can be approximated by a scaled chi-square distribution.
The procedure takes into the account the uncertainty in the estimation of both item and ability
parameters through re-estimating IRT model for each simulated data. However, this method is
computationally intensive.

After that, Stone (2000) proposed an alternative resampling method to reduce the
computation burden that did not re-estimate the IRT model but instead used the item parameter
estimates from the original item responses to calculate item fit statistics across simulated
datasets. Based on this distribution of item fit statistics, a scaling factor and degrees of freedom

for a scaled chi-square approximation is computed and used for hypothesis tests. For this
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method, only uncertainty in ability estimation was considered in generating the empirical
sampling distribution. However, uncertainty in item parameter estimation was then considered
by adjusting the derived df by the number of estimated item parameters. Stone (2000) showed
that these two resampling procedures produced comparable results when evaluating the
application of IRT to a mathematics performance assessment. Hansen (2004) further proposed
using two multilevel equations for predicting scaling corrections based on information (item and
sample characteristics) in the observed data, instead of relying on Monte Carlo resampling

methods.

2.3 POSTERIOR PREDICTIVE MODEL CHECKING (PPMC) IN A BAYESIAN

FRAMEWORK

PPMC is a flexible and powerful method for assessing model-fit in a Bayesian framework. It has
several advantages over classical model-fit statistics. Most important, it provides a potential tool
for checking the fit of complicated models which can only be estimated using Bayesian analysis.
In this section, we first review the basic principle of the Bayesian framework which provides the

foundation for the PPMC method followed by detailed discussion of the PPMC technique.

2.3.1 Introduction to Bayesian Inference

Bayesian statistics have received considerable attention over the past decade. In the Bayesian
framework, unknown population parameters are treated as random variables that follow a certain

distribution. Prior knowledge or beliefs about the possible shape of this distribution are modeled
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by specifying a prior distribution on the parameters. The prior distribution will be updated by the
data using the likelihood to form a posterior distribution for the parameters. The Bayesian
inference about parameters is then drawn based on this posterior distribution.

Mathematically, this is represented as follows. Let y denote the data and @ denote the
vector of unknown parameter(s) in a model. The posterior distribution for @ given the data y can

be obtained through Bayes’ theorem:

plo,y) _ plo)plylo)  ple)p(y|o)
py)  ply)  [plyle)ple)e’ (210

plo]y)=

where p(m,y) is a joint probability distribution for @ and y; p(m)is the prior distribution of
parameter(s) ® and it represents researchers’ prior information or belief about ®; p(y | m)is the
likelihood function of the data given a value of parameter(s), and represents the probability of the
data y to be observed under a specific value of parameter(s) o; IO(Y) is the marginal or
unconditional probability of the data across all possible values of «. Because p(y) is the
function of data, it can be considered a constant for a given data. This constant is only used to
normalize p(@)p(y |®) so that p(w|y) is a probability distribution. Omitting p(y) will not

affect the inferences from posterior distribution, and yields the unnormalized posterior
distribution that is proportional to the product of the likelihood and the prior distribution:

ple]y)e plo)ply o). (2.11)

In many situations, it is either infeasible or simply not necessary to compute this

normalizing constant and Equation (2.11) is actually applied for Bayesian inferences. The main

goal of Bayesian inference is to sample from the posterior distribution p(e|y) in order to

estimate population parameters (e.g., quantiles and moments), to construct credible intervals, and

to obtain Bayesian posterior p-values for hypothesis tests (Rupp, Dey, & Zumbo, 2004).
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2.3.2 Posterior Predictive Model Checking (PPMC)

2.3.2.1 Description of PPMC Method
PPMC was introduced by Guttman (1976), applied by Rubin (1981), and given a formal
Bayesian definition by Rubin (1984). Gelmen, Carlin, Stern, & Rubin (1996) extended it to allow
more direct assessment of the discrepancy between data and presumed model. Conducting
PPMC involves simulating data under a presumed model and comparing features of simulated
data against observed data using discrepancy measures that are sensitive to different aspects of
misfit. Any systematic differences indicate potential misfit of the model. The rationale
underlying PPMC is that if a chosen model fits the data, then observed data should look like
replicated data generated from the posterior distributions of model parameters. Differences
between observed and predicted data on discrepancy measures in PPMC can be evaluated using
graphical displays as well as a numerical summary - Posterior Predictive P-value (PPP-value).
Let y be the observed data and y"™ be the replicated data set that could have been
observed if the experiment that produced y were replicated with the same model and the same
values of model parameters @ that produced the observed data. The PPMC method assesses the
fit of a model by examining whether the observed data y appear extreme with respect to the

posterior predictive distribution of replicated data y'*,
ply™ 1y)=[ ply™ ol yHo =] ply™ |o)p(o] y)do. (212)
where p(0]y) is the posterior distribution of @.

A test quantity or discrepancy measure D(y, ) is usually employed to measure the
discrepancy between the observed and the predicted data (Gelman et al., 2003). The comparison

of observed (realized) and posterior predictive discrepancy measures can be performed using
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graphical display as well as a PPP-value. Since the PPMC method should be used as a diagnostic
tool for model fit rather than a hypothesis testing, the preferable way to interpret the difference
between observed and predicted data in PPMC is to employ graphical plots (Gelman, et al.,
2003). However, PPP-values provide a numerical summary measure of the degree to which a
model fits the data and are typically used with graphical plots for interpretation. PPP-value is a
tail-area probability that predicted data are more extreme than observed data in terms of the

values of a discrepancy measure D(y, o):
PPP = P(D(y™,®)> D(y,®)|y)= ”D(ymp‘m)w(ym) p(y™ | o )p(w | y)dy @ de. (2.13)

It should be noted that the PPP-values can not be interpreted in the same way as
traditional hypothesis-testing p values. Though both of them are defined as a tail-area probability
and share some features, the PPP-values are not necessarily uniformly distributed under the null
conditions. In general, they tend to be closer to 0.5 more often than would be expected under a
uniform distribution (Levy, 2006; Meng, 1994; Robins, van der Vaart, & Ventura, 2000). As a
result, use of PPP-values in a hypothesis testing framework would lead to a conservative test
(Bayarri & Berger, 2000; Fu et al., 2005; Levy, 2006; Sinharay, 2005; Sinharay et al., 2006).
However, Levy (2006) showed that the distributions of PPP-values were close to uniform for
some suitable measures, and their type-1 error raters were close to the nominal level in the
hypothesis testing framework. PPP-values near 0.5 would indicate that the realized values of
discrepancy measures look similar to the posterior predictive values, indicative of data-model fit.
Extreme PPP-values near 0 or 1 suggest that the realized discrepancies are inconsistent with the
posterior predictive discrepancies and hence are indicative of data-model misfit.

The graphical plots are also commonly used with PPP-values for PPMC to provide

graphical evidence of misfit. When the discrepancy measure only depends on the data, the values

36



of D(y“p'”) (n =1, 2, ..., N, where N is the total number of replications) are plotted in a
histogram and the position of observed values of D(y) in this histogram is examined. The
observed value of a powerful discrepancy measure D(y) for an inadequate model should be
located in the tail area of the histogram. When the discrepancy measure depends on both the data

and parameters, pairs of the realized discrepancies D(y,co”) and predictive discrepancies
D(yre’)'“,m) are plotted in a scatter plot. Points lying consistently above or below the 45-degree
line indicate model misfit.

Figure 2.3 shows two histograms taken from Sinharay el al. (2006). A data was generated
based on 3PL model and estimated using 1PL and 3PL models. The discrepancy measure used
was the standard deviation of biserial correlation coefficients which was only dependent on the
data. As can be seen from the two graphs, when a 1PL model was fitted to the data (left plot), the
observed SD was far away from the posterior predictive distribution of the SDs of biserial
coefficients. In contrast, when a 3PL model was fitted to the data, the observed SD was very

close to the median of the posterior predictive distribution (right plot).
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Figure 2.3 Examples of Graphical Displays in PPMC by using Histograms

Figure 2.4 includes two scatter plots also from Sinharay el al. (2006). A data was

generated based on 3PL model and estimated using 2PL and 3PL models. The discrepancy
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measure used is a chi-square statistic reflecting the difference between the observed and
expected test score distribution. This statistic depends on both data and model parameters. The
left plot shows the realized discrepancies were consistently larger than the predicted values when

2PL was fitted to the data. The right plot shows 3PL fitted the data well.
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Figure 2.4 Examples of Graphical Displays in PPMC by using Scatter Plots

2.3.2.2 Computation via MCMC Simulation

Computation of posterior predictive distribution of discrepancy measures and PPP-values is
typically conducted using MCMC simulation methods. Gelman et al. (1996) pointed out that
since the MCMC method is a standard tool for Bayesian analysis with complex models and
provides a sample of draws from the posterior distribution p(co | y), the required computation for
PPMC is a byproduct of Bayesian analysis with MCMC simulation.

Given a parameter vector o, the steps for PPMC via MCMC are as follows: (1) draw N

parameter estimates®', ®”, ..., ®" from the posterior distribution of @- p(w|y) using

MCMC algorithm; (2) draw one y™ from the predictive distribution p(yreplco) for each

rep,1 rep,2 rep,N
) )

simulated o to produce N sets of replicated data, y from the joint posterior

Yy LY

distribution, p(yrep,m|y); (3) compute the realized discrepancies D(y,co”) and predictive
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discrepancies D(y'e"'”,co”), n=1, 2, ... N. Through this procedure, the reference distribution of
discrepancy is the distribution of D(yrep'”,co”), and the estimated PPP-value is just the
proportion of these N replications for which D(y“p'“,m”) equals or exceeds the realized value

D(y,co”). Sinharay et al. (2006) described this procedure graphically (see Figure 2.5). The
description about MCMC methods will be given in more detail in section 2.3.3.

plyl@) w rerl ~ p(ylw') — DY, @), D(y, @)
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Figure 2.5 Graphical Description of Implementing the PPMC Method

2.3.2.3 Discrepancy Measures

Discrepancy measures play a similar role in Bayesian model-fit checking as test statistics play in
classical testing. However, there is much more freedom in choosing discrepancy measures in
Bayesian framework because the reference distribution of any measure can be determined
through MCMC simulations. They can be any function of the data and/or model parameters.
When a discrepancy measure D(y) only depends on the data, it is a pivotal quantity similar to
classical test statistics. For example, a researcher observed a set of data from an experiment with
the mean of 5 and the variance of 10, and wanted to know if the observations follow N (5, 10).
We know a normal distribution has symmetric short tails. Therefore a useful discrepancy
measure for PPMC would be the extreme (minimum or maximum) observation which is only

data-dependent. If the observed extreme value is far away from the posterior distribution of
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extreme values under the normal model, it indicates the normal model is not adequate for the
extreme tails in the observation.

When the pivotal quantity can not capture a particular aspect of a model which reflects
inferential interests, an therefore would not have enough power to detect misfit, the discrepancy

measure should be chosen to depend on the model parameters @ as well as the data y: D(y,(o).

We continued using the previous example in which the result showed the normal model was
inadequate for the extreme tails. If the researcher is interested in whether the distribution of the
observation is symmetric, using the extreme observations will not work. A different measure

sensitive to asymmetry in the center of the distribution should be used. For example, the measure

D(y,y)z‘yaom)—u‘—‘y(gmh)—u‘ should be useful, where u is the mean of the normal

distribution, Yoy, and Y g, are the 10™ and 90™ percentile of the observed data, respectively.

This measure relies not only on data but also on the model parameter u.

The choice of discrepancy measures is a key issue in an application of the PPMC method
for assessing the fit of a model. They should be chosen to reflect aspects of model misfit of
greatest concerns, but not directly addressed by the model (Gelman et al., 2003). For example,
Sinharay and Johnson (2003) showed the biserial correlation coefficients were not powerful
discrepancy measures for 2PL/3PL model, but they were useful for Rasch model, because
2PL/3PL models have slope parameters to address the biserial but Rasch has not. Identifying an
appropriate discrepancy measures is a challenge to researchers in applying PPMC. A useful
strategy is to think about what is the main concern in application of a model to a specific dataset
and develop a discrepancy most related to this concern. If there are no prior concerns, it is
recommended to employ a number of different discrepancies for assessing different aspects of

model fit (Sinharay, Johnson, & Stern, 2006).
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2.3.2.4 Advantages of PPMC over Classical Model-Fit Tests

The PPMC method has several advantages over classical model-fit tests. Firstly, it incorporates
uncertainty in the estimation of parameters into the sampling distributions of discrepancy
measures by using posterior distributions of parameters rather than point estimates. Modeling
sources of uncertainty is a major advantage of Bayesian framework.

Secondly, for most models, the exact theoretical sampling distributions of classical
model-fit statistics are difficult to derive, and the null sampling distributions used are only
asymptotically justified. The departure of the approximate distribution from the true sampling
distribution may affect the performance of model-fit statistic and thus cause an incorrect decision
about the fit of a model. In contrast, the PPMC method forms posterior predictive distributions of
discrepancy measures empirically from MCMC simulations. These empirical distributions reflect
exact null sampling distributions.

Lastly, the recent rapid development of Bayesian computation allows us to fit more
realistic and sophisticated models than previously possible. However, classical model-fit tests are
not applicable for assessing the fit of these complicated models. PPMC may be the only general

model-checking method for them.

2.3.3 Markov Chain Monte Carlo (MCMC) Simulation

2.3.3.1 Definition

In many situations, the joint posterior distributions can not be obtained analytically and thus
direct sampling from them is not possible. MCMC simulation provides a flexible way to draw
samples or values from any posterior distribution. MCMC methods are widely considered as the
most important development in statistical computing in recent history and their occurrence
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makes Bayesian methodology more attractive and popular in many disciplines. MCMC methods
include a class of algorithms for sampling (drawing values of parameters) from probability
distributions based on constructing a Markov chain whose stationary distribution is the target
probability distribution. The key to MCMC is to create a Markov chain and run the simulation
long enough so that the distribution of the draws beyond some point of time reflects this target
distribution. The expectations of relevant functions of parameters are then approximated using
Monte Carlo integration. In a Bayesian framework, the target distribution is the posterior
distribution.

Different MCMC methods are distinguished by the sampling algorithms used in
simulating the Markov chains. Three well-known MCMC algorithms are the Gibbs sampler, the
Metropolis algorithm, and the Metropolis-Hastings (M-H) algorithm. The Gibbs sampler is also
called alternating conditional sampling (Gelman et. al, 2003), and it is used to create a Markov
chain by successively sampling from a set of “complete conditional” distributions which will
eventually approximate the joint posterior distribution. For example, the steps of sampling p
unknown parameters 04, 0,... 0 is as follows (Ruff et. al, 2004):

Step 1: Specify the joint posterior distribution:

p(6,,6,...6, 1Y) p(X 16,,6,..6,)p(6,)... p6,)
Step 2: Identify the complete set of conditional distributions:

p6,16,...6,,Y) pl6,16,.6,...6,,Y)...p6,16,.6,...0,,,Y)

Step 3: Provide initial values for 010, 020... 60 (at iteration 0) using direct specification or
sampling from appropriate distributions.

Step 4: Generate new values at iteration i as follows.
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Hl,i - p(el |‘92,i—l’03,i—17"‘ 0 )

' Yp,i-1

92,i - p(92 |91,i192,i—1703,i—17"' 0 )

' Yp,i-1

0,, ~ plo,16,,.6,,.6,,.....0, ,,)
Step 5: Repeat step 4 until the Markov chain is convergent.

The Gibbs sampler is conceptually the simplest of Markov chain sampling methods. It
works best when all of the complete conditional distributions can be obtained in closed form.

When the conditional distributions are not of a known distributional form, M-H sampling
methods are needed. The M-H algorithm, also known as rejection sampling algorithm, samples a
proposal 0" value from any convenient proposal distribution (jumping distribution) at time t,

q(6” [6'*) which depends on the previous state 6%*. This proposal 6" is accepted (6' = 6°) with

probability o where o = min{r, 1} and

_ Pl yhle16) 2.14
oo™ [y 107 o

If the proposal is not accepted, the old value of the parameter will be kept (8" = 8'%). The
difference between the Metropolis and M-H algorithms is on the proposal distribution
q(e* |9H). The Metropolis algorithm requires q(6’* |0"1) to be symmetric, satisfying the

condition that q,(6, |6,)=0,(6, |6,) for all 6, @&, and t. A symmetric proposal distribution

simplifies calculations of the ratio r since when q(@"l | 6’*)= q(e* | 9”), the terms cancel out.

The M-H algorithm generalizes the Metropolis algorithm using asymmetric proposal
distributions. Allowing asymmetric proposal distributions can be useful in increasing the speed

of the random walk or convergence to a stationary posterior distribution (Gelmen et. al, 2003).
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2.3.3.2 Convergence Diagnosis

The key to MCMC success is that the Markov Chain has converged to the target posterior
distribution. If the chain does not converge, the simulated draws from this chain would not
represent the posterior distribution of parameters of interest. Thus, the inference about
parameters based on the distribution of these draws would be invalid. Therefore, it is very
important to assess convergence of Markov chains before any Bayesian inferences are made.

A number of convergence diagnostics have been developed. Cowles and Carlin (1996),
and Brooks and Robert (1998) provide an excellent review. The most popular diagnostics are
time-series plots, autocorrelation plots, and the Gelman-Rubin statistic R. A time-series plot, also
called a “history plot”, is a scatter plot showing the generated values of a parameter at each
iteration number in a chain of sample values. Clear trends in the plot indicate that successive
simulated values of parameters are highly correlated and a chain has not converged. Time-series
plots provide a simple way to check the stability of simulated parameter values. Figures 2.6
provide example illustrations of two chains. The left plot shows a high likelihood of
convergence, but the right plot demonstrates the non-convergence since there is a clear trend: the

sampled values decreased as the iteration number increased.
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Figure 2.6 History Plots Displaying Evidence of Convergence and Non-Convergence
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An autocorrelation plot is a plot of the correlation between sequential draws of a
parameter in Markov chain. It is a commonly-used tool for checking randomness (independence)
in a data set. This randomness is ascertained by computing autocorrelations for data values at
varying time lags. Autocorrelation plots are not strictly a convergence diagnostic tool, but they
help indirectly to assess convergence. A MCMC algorithm generating highly correlated
parameter values will need a large number of iterations to converge to the appropriate posterior
distribution. In other words, such autocorrelation can cause inefficient MCMC simulation.
Solution to high autocorrelation is to “thin” the chains by keeping every k™ simulation draw from
each sequence and discarding the rest.

Gelman and Rubin (1992) suggest monitoring convergence based on multiple chains with
different or over-dispersed starting points. The motivation for this statistic is that “even if an
iterative simulation appears to converge, it still may actually be far from convergence if
important areas of the target distribution were not captured by the starting distribution and are
not easily reachable by the simulation algorithm” (Gelman et al., 2003, p297). This statistic is
computed through comparing between-chain (B) variance and within-chain (W) variance for
each parameter, and defined as the ratio of the estimated marginal posterior variance V(6ly) to

the within-chain variance W:

ﬁe:wfm ., Where \7(9|y)=[1-1}w+15. (2.15)
w n n

Before convergence, W underestimates total posterior variance in 6 because it has not
fully explored the target distribution. V(6]y) on the other hand overestimates variance in 0
because the starting points are over-dispersed relative to the target. Once convergence is reached,

W and V(0) should be almost equivalent because variation within the chains and variations
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between the chains should coincide, so R should approximately equal one. R near 1 for all
parameters of interest means the MCMC algorithm has converged. In addition, the convergence
of multiple chains to the same stationary distribution is often reflected by a large overlap in their
sampling histories.

Although the Gelman-Rubin statistic is a useful diagnostic tool, one drawback is that its
value depends on the choice of initial values. Since there is no single definitive convergence
diagnostic tool, the use of multiple tools is recommended in order to increase the chance of
correctly assessing convergence (Sinharay, 2004).

Given convergence of MCMC algorithm, inferences about parameters of interest should
be based on the draws after the point of convergence. Several additional issues to be considered
in this process were discussed by Kim and Bolt (2007). The first concerns the number of early
iterations of the simulation which should be discarded in order to diminish the effect of the
starting distribution. The practice of discarding early iterations in Markov chain simulation is
referred to as “burn-in”. Raftery and Lewis (1992) recommended the length of burn-in should be
at least as large as the distance between samples needed to achieve an autocorrelation of 0.
Gelman et al (2003) suggested discarding the first half of iterations as a conservative choice.
However, Kim and Bolt (2007, p43) pointed out that “because the actual burn-in usually involves
a relatively small number of iterations, the effect of some inaccuracy is generally of minimal
significance”.

A second consideration involves thinning the chain to reduce substantial autocorrelations
in the chain by taking every n™ draw. However, when large number of parameters are involved,

computer storage is always a problem for saving too much draws from the chains. In this
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situation, Gelman et al. (2003) suggested to thin the chain so that the total number of iterations
saved is no more than 1000.

The final concern is that how large of a posterior sample is necessary for obtaining
precise posterior inferences. It is important to recognize that the error in posterior estimation can
be attributed not only to the standard error of the point estimates as reflected by the posterior
sample standard deviation, but also to sampling error, referred to as Monte Carlo error (Kim &
Bolt, 2007). As a rule of thumb, the simulation should be run until the MC error for each
parameter of interest is less than about 5% of the sample standard deviation (Spiegelhalter et al.,

2003). The MC error can always be reduced by lengthening the chain.

24  CHECKING IRT MODEL-FIT USING PPMC

2.4.1 Advantages of Using PPMC in IRT

The common advantages of using PPMC over classical model-fit statistics were summarized in
Section 2.3.2.4. This section discusses the advantages of PPMC for assessing IRT model-fit.
Even though numerous classical approaches have been proposed to assessing different
aspects of model fit in IRT, many model-fit indexes have well-known shortcomings and none of
them is entirely satisfactory. One common issue with classical model-fit indices involves the use
of point estimates of IRT model parameters (item and ability) which do not take into account the
uncertainty in parameter estimation. In contrast, the PPMC method takes into account this
uncertainty by using the entire posterior distributions of model parameters rather than point

estimates.
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Another common problem with existing model-fit indices is that their sampling
distributions only asymptotically approximate a null chi-square distribution, and as discussed
previously, it is not entirely clear what degree of freedom should be used. The discrepancy of
true sampling distributions from assumed chi-square distributions would result in high type-I
error rate and high false alarm rate of some fit statistics (e.g., Orlando & Thissen, 2000;
Sinharay, 2006; Stone, 2000). Compared with classical model-fit statistics, the PPMC method is
free from the sampling distribution issue because it is constructed empirically from MCMC
simulation.

In the last ten years, the family of IRT models has expanded tremendously and complex
IRT models have been developed in response to different educational testing applications. When
IRT models become more complex, estimation of the models becomes more difficult using
traditional marginal maximum likelihood (MML) estimation methods. Bayesian estimation using
MCMC methods offer much potential for estimation of complex IRT models. Since Albert
(1992) proposed a full Bayesian method based on Gibbs sampling to estimate 2-parameter
normal-ogive IRT model, and Patz and Junker (1999a, 1999b) developed M-H sampling
algorithms to estimate several different IRT models such as 2PL, 3PL and mixed models, full
Bayesian methods with MCMC algorithm have become widely used by many researchers to
estimate a variety of complex IRT models such as testlet models (e.g., Bradlow et al., 1999;
DeMars, 2006; Li et al., 2006; Wang, 2002), rater-effect models (e.g., Patz & Junker, 2002), and
multidimensional IRT models ( e.g., Béguin & Glas, 2001; Bolt & Lall 2003; Yao & Schwarz,
2006). However, as for any IRT models, the application of those complex IRT models are valid
only if the modes fit the data. Unfortunately, though Bayesian estimation of complex IRT models

have received intensive attention, relatively little attention has been given to assessing the fit of
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these models from a Bayesian perspective and further research is needed. The PPMC method, as

a popular and flexible Bayesian model diagnostic tool, may address this issue.

2.4.2 Discrepancy Measures Used with Dichotomous IRT Models

Previous research using the PPMC method with IRT models has focused on unidimensional IRT
models for dichotomous items. Before the review of the previous research, the discrepancy
measures examined in those studies are firstly reviewed in this section. These discrepancy
measures were designed to assess model-fit at three levels: test level, item level, and item-pair
(or pair-wise) level. It should be noted that these measures were mainly proposed for
dichotomous IRT models. In the present study, the polytomous models are of interest. The
extensions of these measures to account for polytomous IRT models will be introduced in

Chapter 3.

2.4.2.1 Test-Level Discrepancy Measures
One simple measure at test level is “observed test score distribution” (number of examinees with
each total test score). The overall model fit can be examined through comparing the observed
and posterior predictive test score distributions. The credible interval for the posterior predictive
score distribution across multiple predicted response data sets and observed score distribution
can be shown in a same graph. If the observed score distribution falls within the credible interval,
there is no evidence of model misfit at the test level. This measure can be directly used for
polytomous IRT models.

Figure 2.7 illustrates the observed frequency, the posterior mean frequency and their

central 95% posterior interval (between 2.5% and 97.5%) for a polytomous response data
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generated based on a unidimensional GR model and estimated using the same model. As can be
seen from this figure, the observed distribution was well within the posterior interval, indicating
that the unidimensional GR model fitted the observed data reasonably well regarding the test

score distribution.

predicted vs. observed total test score distributions
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Figure 2.7 Example of Observed and Predictive Test Score Distributions

In addition, Béguin and Glas (2001) suggested using Pearson’s chi-square statistic ( z7)
to summarize the difference between the observed and expected frequencies of test scores:

X = i[N‘E(E—N(tN)‘)]Z (2.16)

t
where T is the maximum total test score, N; is the observed number of examinees with total score
t, and E(Ny) is the expected number of examinees with total score t based on the model. For a test

score point t, E(N;) can be calculated as:

E(N)=NY[plyl0)g(0)e, (2.17)

ylt
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where N is the total number of examinees, y|t represents the set of all possible response patterns

resulting in a score t, p(y | 49)is the probability of response pattern y given ability 6 and the item

parameters, and g(@) is the assumed density of the ability distribution. For dichotomous items,
E(N;) may be computed using a recursive algorithm proposed by Lord and Wingersky (1984).
For polytomous items, a generalized recursive algorithm (Thissen, Pommerich, Billeaud, &
Williams, 1995) has been discussed.

Béguin and Glas (2001) pointed out that though the statistic 2 does not follow a chi-
square distribution, it can be used with the PPMC method since PPMC constructs null sampling
distributions empirically from MCMC simulations. Previous research also found that this

measure can be used to detect certain types of misfit for dichotomous IRT models (Béguin &

Glas, 2001; Sinharay et al., 2006).

2.4.2.2 Item-Level Discrepancy Measures
(1) Bayesian 4* Statistic

The Bayesian y? measure is the Bayesian version of unweighted mean square item fit
statistic (Masters & Wright, 1997) which is the summation of unweighted standardized squared

residuals across the examinees. The Bayesian 4 statistic for item j is defined as:

7= ZN: [yij - E(yij )]2

: (2.18)
i1 Var(yij )

where N is the total number of examinees, y;; and E(yj;) are the observed and expected response
of examinee i to item j respectively, and Var(y;) is the variances of the response y;; . For the i

polytomous item with the total of response categories (M;+1), E(y;) and Var(y;) can be

calculated using:
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E(yij ): S kPijk (Hi)

M;

Var(yij ): Z(k - E(yij ))2 Py (6;)

k=0

T
<}

(2.19)

Although it is an intuitive and useful statistic for evaluating overall fit for many
statistical models, several researchers (Li et al., 2006; Sinharay et al., 2006) found that it was not
useful for IRT model checking as it failed to detect problems with inadequate models.

(2) Item Score Distribution

Item score distribution represents the number of examinees responding to each response

category for each item. Similar to test score distribution, the difference between observed and

posterior predictive item score distributions can be summarized using a goodness-of-fit statistic

(x; _Fit). For dichotomous items, it is defined as:

2
4 _Fit = le[olk;—Elk] (2.20)
ik

k=0
where O, (E; ) is the observed (predicted) number of examinees scoring in response category k

on item j. Ejx can be calculated by summing the probabilities of responding to category k on item

j across all N examinees:
N
E,=>pu(0) k=01 (2.21)
i=1

Joreskog and Moustaki (2001) used this statistic to measure the model fit and further
discussed that the null distributions of this measure does not follow a chi-square distribution.
They suggested fit values larger than 4.0 indicate poor fit. This measure was also used with the

PPMC method in detecting misfit of dichotomous IRT model (Levy, 2006) and polytomous
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fusion model (Fu et al, 2005). The PPMC method is free from sampling distribution issue and
therefore can avoid using the arbitrary guidelines.
(3) Classical Item-fit Statistics

Classical item-fit statistics can also be used as discrepancy measures with PPMC in order
to check IRT item-fit. As mentioned previously, for classical item-fit statistics, their sampling
distributions only asymptotically approximate assumed chi-square distributions and the
uncertainty in the estimation of model parameters (item and ability) is not taken into account.
These issues might affect the performance of these classical item-fit statistics especially for
shorter tests such as performance assessments. Since the PPMC method is free from these issues,
it is important to explore the performance of these classical item fit measures in a Bayesian
framework.

Though any classical item-fit statistics can be used with PPMC, only Orlando and
Thissen’s item-fit statistics were used by Sinharay (2006) to assess the fit of dichotomous items.
The results showed these item-fit statistics performed better than that in frequentist framework.
(4) Biserial Correlation Coefficient

The biserial correlation coefficient estimates the correlation between examinee total test
scores and binary outcomes on a particular dichotomous item which also reflects item
discrimination. Sinharay and Johnson (2003) found that the standard deviation of the biserial
correlations was powerful in detecting misfit of Rasch models when data were generated from a

2PL or 3PL model.

2.4.2.3 Pair-wise Discrepancy Measures
Pair-wise measures reflect the association between the responses to item pairs, and they as a

whole have been found to be more powerful than test- and item-level measures in detecting
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misfit for unidimensional IRT models. It is because there are no parameters in unidimensional
IRT models to address association/interaction among items and pairwise measures that capture
the association among items therefore have the potential to detect possible misfit such as
multidimensionality and local dependence. Several pairwise measures were used in previous
studies.
(1) Yen’s Qg3 Statistic

Yen’s Qs is the most popular statistic used to measure local independence. The definition
is given in section 2.2.2. As discussed before, Chen and Thissen (1997) showed the empirical
distribution of Qs did not match this theoretical sampling distribution that produced the Type-I
error rates sufficiently larger than the nominal levels. As a result, it is more common to use Qs as
a descriptive statistic than a hypothesis testing in the classical (frequentist) framework. Using
this statistic in the PPMC context can avoid the sampling distribution issue. Levy (2006) used
this measure with PPMC to detect the local dependence among responses to dichotomous items,
and found that Q3 was most effective among several measures.
(2) Chen & Thissen’s Chi-Square LD Index

The LD indices proposed by Chen and Thissen (1997) are based on 2x2 contingency
tables. For each pair of dichotomous items j and j, the following contingency table can be
constructed:

Item j

Noo (E(Noo)) | Noz (E(No1))
N0 (E(N10)) | Nu1 (E(N11))

ltem j~
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In this table, n,, and E(n ) are the observed and expected number of examinees having

response p on item j and response g on item j*, where 1 and O represent the correct and incorrect

responses, respectively. A Pearson’s 2 index is then defined as:

X = ZZ[ _E0y )], (2.22)

j=0 j*=0 E(njj*)
and the corresponding likelihood ratio G statistic is given by:

—22112”11 Iog )

j=0 j*=0

(2.23)

These two LD indices are assumed to follow chi-square distribution with degree of
freedom of 1 when the assumption of local dependence is hold. However, Chen and Thissen
(1997) found the empirical sampling distributions of these two indices are very nearly as a y?
distribution with degree of freedom slightly less than one in the null conditions. Using the
assumed y? distribution as the null sampling distribution would cause conservative results. Levy
(2006) used these measures with PPMC to detect the local dependence among responses to
dichotomous items, and found that though they were more effective than item-level measures,
but less effective than other pair-wise measures used in his study.

(3) Odds Ratio (OR)

Odds ratio (OR) is one of Chen & Thissen’s LD indices which were developed for

dichotomous items based on 2 x 2 contingency tables. Following the denotations for the two chi-

square LD indices above, the OR for a pair of dichotomous items (j and j*) is:

(2.24)

OR can be used in detecting the violation of local independence assumption for

unidimensional dichotomous models. If local independence is met, a unidimensional model can
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fit the observed OR. Otherwise, the observed OR will be larger than what is expected under a
unidimensional IRT model for within-cluster items, and smaller than expected for between-
cluster items. Chen and Thissen (1997) found that the standardized log(OR) difference does not
follow a standard normal distribution and hence is not a useful diagnostic in a frequentist
framework. However, many studies (Sinharay et al, 2005, 2006; Li et al, 2006; Levy, 2006)
showed OR measure is a useful discrepancy measures for checking several aspects of model fit
in the PPMC context.
(4) Mantel-Haenszel (MH) statistic

An odds ratio for one item pair conditional on rest score (i.e., the raw score on the test

excluding the two items) r can be defined as:

OR, = DoorMur (2.25)

r
nOlr nlOr
where n,,., is the number of examinees with rest score “r”” obtaining a score k on one item and a

score k on the other, k, k* = 0, 1. The MH statistic is a pooled conditional odds ratio across all

possible rest scores as:

anlrnOOr /nr
MH=ZL{—— , (2.26)
anornOIr /nr

where n, is the total number of examinees obtaining a total rest score “r”.

Like the OR index, the MH statistic is also useful in detecting local dependence for
unidimensional dichotomous IRT models. If the local independence (LI) holds, the conditional
covariance between the scores on the two items is close to zero, and the MH statistic should be
near 1; if the LI is violated, the conditional covariance is positive for within-cluster items which

causes the MH statistic more than 1, and negative for between-cluster items which causes the
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MH statistic less than 1. As a result, when the LD is not met, the observed MH statistics are
likely to be higher (lower) than what is expected for within-cluster (between-cluster) item pairs
(Sinharay, Johnson, & Stern, 2006). This statistic has been showed to be very effective with
PPMC in detecting local dependence for dichotomous items (Sinharay et al, 2005, 2006).

(5) Absolute Item Covariance Residual

For any pair of the items j and j’, the absolute item covariance residual RESID(j, j*) is
defined as the difference between the sample item covariance Sz(j, j*) and model-based item

covariance o (j, j°):

RESID(j, j")=s2(j.")-2(i.i") (2.27)
where:
> (yij Vi Xyij* - yij*)
s?(j, 7)== . (2.28)
_N (E(yij )_ E(yij ))(E(yi,-*)— E(yij* ))
o*(j.j")== , (2.29)

N

where N is the total number of examinees, y; and E(yij) represent the observed and expected

score of i examinee on item j, respectively, and y; and E(yij) denote the mean observed and

expected item score across N examinees, respectively. For two dichotomous item pairs, this

residual is simplified as (Levy, 2006):

RES|D(j, j*): InllnooN_znlonm _ E(ﬂn)E(r‘oloE)(;l E)(nlo)E(nm)I (2.30)

This measure has been shown to be relatively effective for detecting the departure of

response data from unidimensionality in a frequentist framework (Hattie, 1984, 1985; McDonald
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& Mok, 1995). Recently, Fu et al. (2005) and Levy (2006) found that it is also effective in
detecting certain types of misfit with PPMC.
(6) Hoijtink’s LI Indices

Hoijtink (2001) developed two fit statistics based on conditional item covariances and
demonstrated that they were effective for checking conditional independence (CI) for 2PL
models using the PPMC method. These fit statistics can also be used for checking item

independence for polytomous models. The proposed item-level statistic is:

Cl; = zz nRii*COVz(yj’ Yl Rjj*)’ (2.31)

iR
where y; and yj~ are the responses to item j and j’, respectively, R¥"is an examinee’s rest score if
two items j and j are deleted, and n is the number of examinees with rest score R¥". This fit
statistic weights each conditional covariance with the number of examinees in the rest score
groups in order to ensure the larger groups have more influence on the outcome. It should be
noted that although this statistic is at item level, it is grouped into “pairwise measures” since it is

based on conditional item covariances.
2.4.3 Previous Research

Previous research using PPMC methods with IRT models has focused on unidimensional
dichotomous models. Sinharay (2005) applied the PPMC method to a number of real
applications of unidimensional dichotomous IRT models. The first application was to assess
which model, a simple 3PL model data or a more complicated hierarchical model, fits an
operational CAT data better. The discrepancy measure used is standard deviation (SD) of the

proportion corrects of the 10 items. Through comparing the observed and predicted SD, the
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results showed that the hierarchical model explained the SDs satisfactorily. Another application
is to examine the speededness in a basic skill test using two pairwise discrepancy measures (OR
and MH) with PPMC. The last example used the PPMC method to check if a 3PL model can be a
good fit to a real data from NAEP. Several measures were employed to evaluate different aspects
of misfit including observed score distribution, biserial correlation, OR, and MH. The results
suggested the 3PL model performs extremely well. Overall, through using several real
applications, this study shows the PPMC method provides a straightforward way to evaluate
different aspects of model misfit.

As follows, Sinharay, Johnson, and Stern (2006) conducted several simulation studies to
show the ability of PPMC to detect a range of misfitting conditions using similar discrepancy
measures as in Sinharay (2005). They included observed score distribution, biserial correlation
coefficient, OR, and MH statistics. The results showed that the biserial correlations and OR
measures can be used to detect inadequacy of Rasch models when the data are generated under
2PL/3PL model, and the observed score distribution measure can identify the lack of fit of a 2PL
model to a 3PL data. Moreover, the OR and MH statistics were found to successfully detect
misfit whenever there is a violation of the local independence assumptions (e.g., for a
multidimensional or a speeded test), and the observed score distribution was very useful to
detect misfit when the assumed ability distribution was not correct. In this study, the authors
used graphical displays to present the PPMC results, providing graphical evidence about misfit.

Sinharay (2006) also used PPMC to assess item-fit of simulated and real data by using
item-fit plots and the discrepancy measures based on Orlando and Thissen (2000)’s item-fit
statistics S-X? and S-G2. These Bayesian item-fit measures have reasonable Type-I error rates,

false alarm rates, and acceptable power, even for a short test and/or small sample size.
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Hoijtink (2001) developed two fit statistics for evaluating conditional independence (ClI)
and differential item functioning (DIF), then applied PPMC to evaluate the effectiveness these fit
statistics. The results showed the PPMC method with these fit statistics were powerful in
detecting CI and DIF for 2PL models.

Fu, Bolt, and Li (2005) used PPMC to evaluate item fit for a polytomous fusion model
using a number of univariate and bivariate discrepancy measures. The univariate measures check
item fit through responses to a single item which is named as “item-level” discrepancy measures
in section 2.4.2. They included Orlando and Thissen (2000)’s item-fit statistics and item score
distribution. Bivariate measures are based on the joint responses to an item pair which is called
as “pairwise measures” in the present study. Two bivariate measures were included in their
study: ““absolute item residual covariance’ and “bivariate item response discrepancy” which is
a polytomous extension of Chen and Thissen (1997)’s chi-square LD index. It was found that
bivariate item test statistics had more power in detecting misfit items than univariate statistics
and moreover the absolute item covariance discrepancy measure performed best.

In the context of person-fit, type-1 error rates of most statistics for 2PL and 3PL models
are not consistent with empirical rates due to the use of estimated abilities rather than true
abilities. Since PPMC takes into the account the uncertainty of the estimation of model
parameters, Glas and Meijer (2003) applied it for assessing person fit of 3PL models using
several discrepancy measures. They found that this Bayesian analysis of person fit produced
reasonable Type-1 error rates, even for a short test and small sample size.

Levy (2006) conducted a simulation study to explore the effectiveness of PPMC for
dimensionality assessment of responses to dichotomous items. In his study, several factors that

would influence dimensionality such as correlations between dimensions, data-generating model,
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proportion of multidimensional items, strength of dependence, and sample size were
systematically manipulated. A number of univariate (item-level) and bivariate (pairwise)
discrepancy measures were investigated. The univariate measures included proportion correct,
and item score distribution. The bivariate measures included Chen and Thissen’s chi-square LD
index, Yen’s Qs statistic, model-based item covariance, absolute item covariance residual,
log(OR), and standardized log(OR). It was found that the univariate measures were wholly
ineffective for detecting the multidimensionality and the most effective measures were two
bivariate measures: model-based covariance and Qs. Furthermore, all discrepancy measures
showed empirical proportion of extreme PPP-values below nominal levels, but the model-based
covariance and Q3 had PPP-values quite close to nominal levels. The performance of these
discrepancies was also found to be related to the manipulated factors.

The studies presented so far have focused on using PPMC to check the fit of a single
model. Some researchers have also used PPMC for model comparison. For example, Béguin and
Glas (2001) compared the fits of one- and two-dimensional 3PL models by comparing observed
and posterior predictive score distributions to a data, and found that the two models were
comparable with regard to the reproduction of the observed score distribution. Li, Bolt, and Fu
(2006) applied several Bayesian model comparison methods including PPMC to compare
different testlet models. PPMC using the OR measure was found to be effective in choosing the

data-generating testlet model as the best model.
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2.5 MODEL COMPARISON IN A BAYESIAN FRAMEWORK

The purpose of model checking is to determine if a chosen model is appropriate. It is useful and
necessary when researchers or practitioners may already have a model before collecting the data
just based on their preferences, practical concerns or available software, and they want to know
if this model is adequate for the data. However, when there are several available models that
might fit the data, finding the best model for a particular data is always desirable. For example,
for a performance assessment which measure examinee’s overall math ability across two content
subdomains, algebra and geometry, a simple unidimensional polytomous IRT model and a more
complicated 2-dimensional polytomous model might both fit the data. In order to know if a
simple unidimensional model is good enough or if a MIRT model is needed for this particular
data, model comparison techniques should be employed.

There are several methods for model comparisons: (1) the likelihood ratio G* test
statistic; (2) Akaike’s Information Criterion (AIC; Akaike, 1974); (3) Schwarz’s Bayesian
Information Criterion (BIC; Schwarz, 1978); (4) Pseudo-Bayes Factor (PsBF; Geisser & Eddy,
1979; Gelfand, Dey & Chang, 1992); (5) Deviance Information Criterion (DIC; Spiegelhalter,
Best, Carlin & van der Linde, 2002); and (6) PPMC method. Among them, the likelihood ratio
G? statistic is only appropriate for comparing nested models (e.g., RSM, PCM, and GPCM), and
the other four criteria can be used to compare either nested or non-nested models. The difference
between the G? statistics for two nested models is distributed as a chi-square with the degrees of
freedom equal to the difference between the numbers of estimated model parameters. A
significant G? indicates the more complex model fits the data better. The AIC and BIC are
information-based criteria and are often used when maximum likelihood estimates (MLE) of

model parameters are obtained. For some complex IRT models, the MLE may not always be
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available and thus the AIC and BIC would be not appropriate. The DIC and PsBF are two
Bayesian criteria for model comparisons with MCMC estimation. In addition, as mentioned in
section 2.4.3, several researchers have found that the PPMC method was also effective for model
comparison when MCMC estimation methods were used (Béguin & Glas, 2001; Li et. al, 2006).
In the current study, Bayesian estimation methods with MCMC would be used for the
estimation of several polytomous IRT models. As a result, Bayesian criteria (DIC, PsBF, and
PPMC) would be adopted for model comparisons. Since the PPMC method has been described

in previous section, only DIC and PsBF are discussed herein.
2.5.1 Pseudo-Bayes Factor (PsBF)

A common Bayesian approach to comparing the fit of two models is to compute the Bayes factor
(BF). Consider two models (M; and M,), the BF is defined as the posterior odds of Model 1 (M;)
to Model 2 (M,) divided by the prior odds of M; to M,. By using Bayes theorem, the BF further

reduces to the ratio of marginal likelihoods of the data under each model:

P(M, )/ P(M, [y)_ P(y|M,)
B =P TRy IML) (232

A BF larger than 1 supports selection of M; and a value less than 1 supports selection of M, The
relative magnitude of BF also can be used in evaluating the relative weight of evidence in favor
of either model. For example, a value of BF between 1 and 3 is considered as minimal evidence
in favor of M; , between 3 and 12 as positive evidence in favor of M;, between 12 and 150 as
strong evidence, and larger than 150 as very strong evidence in support of M; (Raftery, 1996).
There are several issues with the BF criteria. For instance, it is often difficult to calculate

because the estimation of marginal likelihoods in equation (2.32) is difficult especially for
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complex models. In addition, the prior has effects on the estimation of the BF. If the prior is
improper, the BF is not well defined. In order to overcome these problems, an alternative
criterion called Pseudo-Bayes factor (PsBF; Geisser & Eddy, 1979; Gelfand, Dey & Chang,
1992) has been proposed and commonly used to approximate the BF.

The PsBF method requires the calculation of cross-validation predictive densities. Let

Y n.as denote the set of observations y . with the r" observation omitted, and let n denote all

the parameters under the assumed model. The cross-validation predictive density is defined as:

Hye 1Y) =] Tl Iy )i mlyq . (233)
The density f(yr |y(,)) indicates the values of y, that are likely when the model is fitted to all

observations except y, . This density is also known as the conditional predictive ordinate (CPO).
In the context of item response data, y, represents a single examinee’s response to an

individual item. The product of the CPOs across all observations can be used as an estimate of

the marginal likelihood in Equation (2.32). Thus, the PsBF can be defined as:

R

R
H f(yr,obs |y(r),0bs’M1) H CPO |M
PsBF = _ s | (2.3

R

R
H f(yr,obs |y(r),obs, ) H CPO |M

r=1 r=

N

where R denotes the total number of item responses from all examinees. When comparing the
models at the item level, R equals the number of examinees N. When compare the models at the
test level, R equals the number of the responses of all examinees to all items (i.e., R = N x |
where 1 is the total number of items).

In the context of IRT estimation with MCMC methods, to compute the PsBF index, the
CPOs are first estimated at the level of an individual item response using the inverse likelihood

of each observation for T draws when the chain is convergent after a sufficient burn-in period:
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-1
1 1
PO, =| = : (2.35)
J (Tzll f(yij |’7I)J
where yj; is the response of an examinee i on a particular item j, and f(yij | ﬂt) is the likelihood of

the observed item response yjj based on the sampled parameter values at draw t. In the
WinBUGS program (Spiegelhalter, Thomas, Best, & Lunn, 2003), the computation of the CPO j;
IS very straightforward since it only requires tracing the inverse probability of each observed
item response over the T draws from the convergent chain. The CPO j; is the average of these
inverse probabilities across the T draws which is given in the Summary Statistics in WinBUGS.
A CPO index for each item can be summarized by taking the log of the product of the

values of CPOj; across all examinees, that is:

CPO, = |og(]ﬁ[cpo” j (2.36)

i=1
where N is the total number of examinees. The preferred model for item j is the one returning the
higher CPO;. The corresponding PsBF is:

ﬁ (cPo, | M,)

PsBF, = - , (2.37)

ﬁ(cpo M,)

i=1

and larger values of the PsBF provides the evidence supporting M; for item j. Thus, the same
conclusion can be obtained by using either CPO; or PsBF; index. In addition, a CPO index for
the overall test can be easily computed by taking the log of the product of the item-level CPO;
across all the items. In the current study, the two levels of CPO index were used: the test-level
CPO was used to compare the models for the overall test, and the item-level CPOs were used to

choose a better model for each items. The larger the value of CPO, the better the model is.
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2.5.2 Deviance Information Criterion (DIC)

Another popular Bayesian model comparison criterion is DIC (Spiegelhalter et. al, 2002). The
DIC is similar to AIC and BIC in that they all consider the penalty on model complexity in
identifying the preferred model. AIC and BIC can be expressed as:

AIC = -2log p(y | 7)+2n, (2.38)

BIC =-2log p(y | 77)+nlog(N), (2.39)
where p(y|#)is the maximum likelihood function, n denotes the total number of model
parameters, and N is the total number of observations. The first component of AIC and BIC
—2log p(y | 77) is often called the “deviance between data and model”. The smaller the deviance

for a model, the better the model fits the data. The second component in both indices is penalty
functions for model complexity. As can be seen from the equations, the penalty function in AIC
takes into account the number of model parameters, whereas, the penalty function in BIC
considers the effects of both sample size and the number of parameters. As a result, BIC gives
higher penalty to the number of parameters when the sample size is larger and thus tends to
choose a less complex model than that selected based on AIC.

The AIC and BIC indices are often used under maximum likelihood estimation. When the
model is estimated using Bayesian estimation with MCMC methods, the DIC index is widely
used to compare different models. Similar to the AIC and BIC, the DIC is also composed of two

terms: deviance and penalty function and defined as:

DIC =D(n)+ py (2.40)
where D(7), a posterior mean of the deviance between data and model, is a Bayesian measure of
fit, and is computed based on the posterior distribution of the deviance:
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D(7)=E,,[D(n)]=E,,[-2log p(yln)]. (2.41)

The second term, p,, measuring model complexity, represents the effective number of
parameters in the model. It is defined as the difference between the posterior mean of the
deviance and the deviance at the posterior mean of the parameters:

po = D(7)-D(7), (2.42)
where 77 is the posterior mean of model parameters. As for AIC and BIC, the smaller the value

of DIC, the better the fit of a model is. However, any difference in DICs less than 5 units for two
models does not provide sufficient evidence in favor of one model over another (Spiegelhalter et

al., 2003). The WinBUGS program provides the DIC index.
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3.0 METHODOLOGY

The purpose of this study was twofold: (1) to explore the performance of the PPMC method in
detecting aspects of lack of fit for unidimensional graded IRT models using different discrepancy
measures; (2) to investigate the effectiveness of Bayesian model-comparison methods (DIC,
CPO, and PPMC) for comparing different polytomous IRT models. In order to accomplish these
two goals, two Monte Carlo simulation studies were conducted. In addition, the proposed
Bayesian approaches to model-checking and model-comparison were further applied to real
performance assessment data.

This chapter presents the methodology of this study which is organized in three sections.
The first section describes simulation Study 1, including the design of the study, generation and
validation of item response data, estimation of unidimensional GR models using MCMC,
description of the discrepancy measures used in the study, and implementation of the PPMC
method. The second section discusses simulation Study 2, including the design of the study,
estimation of different types of polytomous IRT models using MCMC, and computation of
different Bayesian model-comparison criteria. The last section introduces the application of the

methodology to real data.
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3.1 SIMULATION STUDY 1

Study 1 was intended to extend previous research on evaluating IRT model fit to polytomous

IRT models and explore the performance of PPMC in checking different aspects of fit for

unidimensional GR models. A variety of discrepancy measures were considered and the

usefulness of these discrepancy measures in detecting different types of misfit was compared.

3.1.1 Design of Simulation Study 1

Table 3.1 Design and Conditions in Study 1

Data-Analysis

Model Data-Gen(eI\r/Iat)lng Model CI\(l)lTr?qltgleorn Violated Assumption
(Ma) J
Unidimensional GR 1 None

2-dimension simple-structure GR
e Casel: correlation (diml, dim2) = 0.3 2
e Case2: correlation (dim1, dim2) = 0.6

Unidimensionality

2-dimension complex-structure GR (one
dominant dimension)

Unidimensional | ® Casel: mild dependence a2/al =0.5 3
GR e Case2: large dependence a2/al = 1.0
Local Independence

Testlet GR
e Casel: mild dependence o}, = 0.5
o Case2: large dependence oin =10 4
o Case2: extreme dependence o = 2.0
Some items with improper BCCs 5 Item-Fit

In order to explore the performance of the PPMC method in evaluating different types of fit of a

data to the unidimensional GR model, a number of response datasets were generated based on
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different IRT models. All simulated data were then estimated using a unidimensional GR model.
Let “Mg” denote a “data-generating model” and “Ma” denote the “data-analysis model”, Table
3.1 presents the design and specific conditions used in this study.

Condition 1 represents the null condition in which the generating model and analysis
model were the same, and Type-I error rates of PPMC were investigated. In Conditions 2 to 5,
different types of misfit were simulated which address the main threats to the applications of
unidimensional IRT models to performance assessments as reviewed in Chapter 2. In these four
conditions, Mg was different from Ma, and thus the empirical power rates of the PPMC method
were examined.

In Condition 2, responses were simulated based on a simple-structure 2-dimensional GR
model, reflecting a violation of the assumption of unidimensionality. Large-scale performance
assessments may assess a broad range of content areas and/or cognitive skills. For example, a
math assessment may measure two content areas: algebra and geometry; or, a test may measure
computation and high-order thinking skills. Though the tests measure student’s overall ability,
the responses to the tests may reflect 2 dimensions. Two levels of inter-dimensional correlation
(0.3 and 0.6) were considered to reflect a high and moderate degree of multidimensionality,
respectively.

In Conditions 3 and 4, two typical locally-dependent data situations in performance
assessments were simulated. Condition 3 simulated responses to a test which mainly measures a
dominant ability (e.g., math), but a subset of items also measure a nuisance or construct-
irrelevant ability (e.g., reading). This nuisance factor may cause local dependence among the
subset of items. In this condition, two levels of local dependence were considered which was

represented by the ratio of the nuisance dimension slope (a;) to the dominant dimension slope (a;
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). Condition 4 was designed to simulate responses to a test with a testlet. The items in the same

testlet (e.g., a shared stimulus or passage) would be locally dependent. Three levels of testlet

effect variance aj(i) reflected mild, large, and extreme dependence among the testlet items.

Condition 5 was intended to evaluate the effectiveness of PPMC in assessing item fit.
The responses to the misfitting items were simulated based on a function that differed from the
logistic function for boundary category curves (BCCs) underlying the unidimensional GR model.

Overall, in simulation Study 1, the manipulated independent factors were the type of
“data-generating model” (e.g., 2-dimensional simple-structure GR model), and the type of
discrepancy measure. The dependent variable was Type-I error rates and empirical power rates
for the proposed discrepancy measures. The discrepancy measures used in this study are
described later.

For each condition, test length, sample size, and item parameters were fixed at typical
values encountered in performance assessment applications (e.g., NAEP). Specifically, test
length was fixed at 15 items and the number of response categories was fixed at 5. Since the
focus of this study was on the effectiveness of different discrepancy measures with PPMC, a
large sample size should be used to ensure that the model parameters can be estimated precisely
and the PPMC results would not be affected by any inaccurate estimation of model parameters,.
Reise and Yu (1990) examined the effect of sample size on parameter recovery for GR models
and found that sample size had little effect on the recovery of ability parameters, but had an
effect on item parameter recovery. They concluded that a sample size of at least 500 examinees
was needed to obtain acceptable parameter estimates for the 25 items with 5-category used in
their study, and sample sizes between 1000 and 2000 would be needed for more accurate

estimation of item parameters. Ankenman and Stone (1992) also found that a size of 500 was the
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minimum for accurate and stable parameter estimates when the ability distribution was normal.
When the ability distribution was not normal, however, more than 1000 observations would be
needed. De Ayala (1994) suggested a ratio of 5:1 (examinees to item parameter estimates) could
provide reasonable item parameter estimation when the distribution of item responses is not
extreme. Yen and Fitzpatrick (2006) further discussed that large sample sizes were needed when
tests contain polytomous items that are extremely hard or extremely easy. Based on these
research conclusions, the sample size was fixed at 2000 for all conditions in this study in order to
ensure accurate and stable parameter estimates. For a specific condition, additional fixed factors
will be described in more detail in section 3.1.2.

In order to investigate Type-I error rates and empirical power rates, multiple responses
datasets were generated and the PPMC method was implemented for each generated data for
each condition. In general, at least 100 replications is required for exploring Type-I error rates or
empirical power in Monte Carlo simulations. However, in this study, the number of replications
was set to 20 due to computing constraints of the WinBUGS program and the large number of
experimental conditions. It should be noted that 20 replications may be defensible based on
previous research. Previous studies have used a small number of replications especially when the
WIinBUGS program was used to implement MCMC estimation. For example, Bolt and Lall
(2003) used only 5 replications for each condition in order to evaluate parameter recovery of
multidimensional IRT models using the MCMC estimation in WinBUGS. Fu et al (2005) used
30 replications in order to examine the performance of several item-fit measures with PPMC for
polytomous fusion model which was estimated in WinBUGS. Sung and Kang (2006) used 10
replications to compare the relative performance of several Bayesian model-comparison criteria

using WinBUGS. In order to evaluate the MIRT approach to subscore estimation, Yao and
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Boughton (2007) used 20 replications though the BMIRT rather than WinBUGS program was
used in their study. Even Levy (2006) with a much more efficient computer program C++ to
implement MCMC estimation and PPMC for dichotomous IRT models used 50 replications in
his study.

Note that in the current study, misfit was indicated if PPP-values represented extreme
values either below 0.05 or above 0.95, corresponding to a two-tailed test with a=0.10 in a
hypothesis testing framework.

For each replication, the overall steps to conducting Study 1 are shown in Figure 3.1 and
described as follows:
(1) Using defined item parameters and simulated ability values, generate one set of item

responses y using Mg;

(2) Estimate Ma with the generated data using MCMC estimation in WinBUGS;

(3) Obtain the posterior distributions of model parameters p(w|y) and posterior predictive
distributions of item responses p(yrEp |o)) in WinBUGS;
(4) Save T draws of model parameters (person and item) estimates for  (®",n=1..T ) from

p(w|y) after the Markov chain has converged;

(5) Save T draws of predictive (replicated) responses y™" (n=1,...,T) from the likelihood
distribution p(y"*|e");

(6) Compute the realized discrepancy measure D(y, ®") for each draw of o based on observed
response to get the realized distribution of discrepancy measure;

rep,n

(7) Compute the predictive discrepancy measure D(y*™™", ") for each draw of @ based on

replicated data to get the posterior predictive distribution of discrepancy measure;
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rep,n

(8) Estimate PPP-values using the proportion of T draws for which D(y""", ®") exceeds D(y,
®"). Extreme PPP-values (either < 0.05 or > 0.95) indicate model misfit;
(9) Repeat Steps 1) to 8) 20 times to obtain the estimates of Type-I error rates or empirical

power at a significant level of 0.10 (e.g., «=0.10).

L J

Simulate one item responses v under Mg using
defined item parameters and simulated ability values

In WinBUGS:
1. Fit Ma to the generated item responses;
2. Obtain the posterior predictive distribution of responses

U

Save: N draws of posterior estimates of model parameters: @"
(n=1.2....N). and N draws of predictive responses ¥ (n=1.....N)

U

L 4 k.
Compute the realized discrepancy Compute the posterior predictive discrepancy
measures D(v, ") for N draws of @ measures D(v'™", @") for N draws of @ and ¥

|

Estimate PPP-value

Go to next replication

Y

L J

Tvpe I Error rates Empirical Power

Figure 3.1 Overall Steps in Conducting Simulation Study 1
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3.1.2 Generate and Validate Item Response Data

For each condition, 20 item response data sets were generated using Mg with each dataset
containing responses for 2000 simulated examinees to 15 polytomous items with 5 response
categories. Table 3.2 presents the item parameters used for each condition. The details about the
configurations of the item parameters are discussed in each condition.

Unidimensional Graded Response Data (Condition 1)

For Condition 1, the unidimensional data were generated under Samejima’s (1969) GR
model (Equation 2.1). The scaling constant D was set to 1. The configuration of item parameters
for the GR model (see Table 3.2) involved a combination of 3 levels for the slope parameter:
1.0, 1.7, and 2.4 (low, average and high discrimination) and 5 levels of threshold parameters
reflecting varying levels of item difficulty: (1) -2.0, -1.0, 0.0, 1.0; (2) -1.5, -0.5, 0.5, 1.5; (3) -1.0,
0.0, 1.0, 2.0; (4) -3.0, -1.5, -0.5, 1.0; (5) -1.0, 0.5, 1.5, 3.0. This configuration was intended to
reflect a wide range of items. The last column (b) in Table 3.2 provides the average item
difficulty for each item. For items with more than two response categories, the average item
difficulty is the ability level at which the expected item score on the item divided by the
maximum item score is equal to 0.5, that is, the ability value at which examinees are most likely
to receive half of the possible score points. As can be seen in this column, the average difficulty
values covered five different levels: -1.0, -0.5, 0, 0.5, and 1.0. In addition, ability parameters for

simulated examinees were randomly selected from a N (0,1) distribution.
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Table 3.2 Item Parameters of the IRT Models under Conditions 1-5

Conditions 1, 4 and 5 Condition 2 Condition 3
Item a bl b2 b3 b4 b al a2 bl b2 b3 b4 al a2 bl b2 b3 b4
1 1.0 -2.0 -1.0 0.0 10 -05 1.0 0 -2.0 -1.0 0.0 1.0 1.0 1.0 (0.5) -2.0 -1.0 0.0 1.0
2 1.0 -1.5 -0.5 0.5 15 0.0 1.7 0 -1.5 -0.5 0.5 1.5 1.0 1.0 (0.5) -1.5 -0.5 0.5 1.5
3 1.0 -1.0 0.0 1.0 2.0 0.5 24 0 -1.0 0.0 1.0 2.0 1.0 1.0 (0.5) -1.0 0.0 1.0 2.0
4 1.0 -3.0 -1.5 -0.5 10 -1.0 1.0 0 -3.0 -1.5 -0.5 1.0 1.0 1.0 (0.5) -3.0 -1.5 -0.5 1.0
5 1.0 -1.0 0.5 15 3.0 1.0 1.7 0 -1.0 0.5 15 3.0 1.0 1.0 (0.5) -1.0 0.5 15 3.0
6 1.7 -2.0 -1.0 0.0 10 -05 24 0 -2.0 -1.0 0.0 1.0 1.7 0 -2.0 -1.0 0.0 1.0
7 1.7 -15 -0.5 0.5 15 0.0 1.0 0 -1.5 -0.5 0.5 15 1.7 0 -15 -0.5 0.5 1.5
8 1.7 -1.0 0.0 1.0 2.0 0.5 1.7 0 -1.0 0.0 1.0 2.0 1.7 0 -1.0 0.0 1.0 2.0
9 1.7 -3.0 -15 -0.5 10 -1.0 0 24 -3.0 -1.5 -0.5 1.0 17 0 -3.0 -1.5 -0.5 1.0
10 1.7 -1.0 0.5 15 3.0 1.0 0 1.0 -1.0 0.5 15 3.0 1.7 0 -1.0 0.5 15 3.0
11 24 -2.0 -1.0 0.0 10 -05 0 1.7 -2.0 -1.0 0.0 1.0 24 0 -2.0 -1.0 0.0 1.0
12 24 -1.5 -0.5 0.5 15 0.0 0 24 -1.5 -0.5 0.5 1.5 24 0 -1.5 -0.5 0.5 1.5
13 24 -1.0 0.0 1.0 2.0 0.5 0 1.0 -1.0 0.0 1.0 2.0 24 0 -1.0 0.0 1.0 2.0
14 24 -3.0 -15 -0.5 10 -1.0 0 1.7 -3.0 -1.5 -0.5 1.0 24 0 -3.0 -1.5 -0.5 1.0
15 2.4 -1.0 0.5 15 3.0 1.0 0 2.4 -1.0 0.5 15 3.0 24 0 -1.0 0.5 15 3.0
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Using these item and ability parameters, the probability of each examinee responding to
each item response category was calculated based on the unidimensional GR model, and the
cumulative probabilities were then obtained for each category. A random error component was
incorporated into each response by selecting a random number from a uniform distribution U (0,
1) and comparing it to the cumulative probabilities for each response category. The ordinal
position of the first cumulative probability that was greater than the random number was taken as
the examinee’s response to the item. The SAS code used to generate unidimensional GR data is
attached in Appendix A.

Two methods were used to validate the data generation process in Condition 1. The first
method involved comparing observed and model-based expected proportions of examinees
responding in each category for each item. An extreme sample size of 20,000 examinees were
simulated with the same item parameters, but all examinees had a fixed ability value (6=0), and
the observed and expected proportions were compared. If the data generation procedure was
valid, the differences between the two proportions would be small. Table 3.3 presents the
absolute differences between the observed and expected proportions at each response category
level for each item. As can be seen from this table, the largest absolute difference was 0.006 and
the average absolute difference across all categories and all items was 0.002. The small

differences provided evidence for the validation of the data generation process.
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Table 3.3 Absolute Differences between Observed and Expected Proportions under GR Model

Item Catl Cat2 Cat3 Cat4 Catb
1 0.005 0.003 0.000 0.001 0.001

2 0.003 0.002 0.002 0.001 0.003
3 0.001 0.002 0.002 0.001 0.000
4 0.001 0.001 0.003 0.000 0.003
5 0.002 0.004 0.001 0.001 0.000
6 0.002 0.003 0.000 0.001 0.004
7 0.003 0.001 0.004 0.004 0.003
8 0.001 0.002 0.004 0.002 0.001
9 0.001 0.001 0.003 0.006 0.003
10 0.002 0.001 0.000 0.000 0.000
11 0.001 0.001 0.002 0.004 0.001
12 0.000 0.002 0.003 0.002 0.000
13 0.001 0.002 0.002 0.000 0.000
14 0.000 0.001 0.001 0.001 0.002

15 0.004 0.002 0.002 0.000 0.000

The second method used to validate the generation of unidimensional GR data involved
checking item parameter recovery. If the data were properly simulated, item parameter estimates
should be close to true values. For this check, a large set of responses (10,000 examinees) were
generated and the GR model was estimated using MULTILOG (Thissen, 1991). Table 3.4
provides the true and estimated parameters. As can be seen from this table, item parameters were

recovered very well, again providing support for the validation of the data generation process.
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Table 3.4 Item Parameter Recovery under Unidimensional GR Model

Item True Estimates
a bl b2 b3 b4 a bl b2 b3 b4
1 10 -20 -1.0 0.0 1.0 101 -201 -0.99 0.01 1.02
2 10 -15 -05 0.5 15 1.00 -150 -0.51 0.52 1.49
3 10 -1.0 0.0 1.0 2.0 1.00 -0.95 0.03 101 198
4 10 -30 -15 -05 10 097 -302 -151 -048 1.05
5 10 -10 05 15 30 098 -1.02 054 154 3.09
6 1.7 -20 -1.0 0.0 1.0 171 -199 -1.01 0.01 101
7 1.7 -15 -05 0.5 1.5 168 -150 -0.48 051 152
8 1.7 -1.0 0.0 1.0 2.0 170 -0.97 0.01 0.99 1.97
9 17 -30 -15 -05 10 167 -3.03 -154 -048 1.01
10 1.7 -1.0 0.5 1.5 3.0 1.70 -1.00 0.51 152  3.06
11 24 20 -10 0.0 1.0 239 -197 -0.99 0.01 1.03
12 24 -15 -05 0.5 1.5 240 -147 -049 052 1.3
13 24 -1.0 0.0 1.0 2.0 242  -0.99 0.02 1.01 197
14 24 30 -15 -05 10 241 -295 -149 048 1.00
15 24 -1.0 0.5 1.5 3.0 240 -0.99 0.51 153 3.02

Two-dimensional Simple-Structure Graded Response Data (Condition 2)
For Condition 2, a multidimensional extension of GR model discussed by De Ayala
(1994) was used to generate 2-dimensional simple-structure data. Based on this extended model,

the probability of an examinee with ability © receiving a category score x (x = 1, 2... m;) or

higher on item i (P (©)) is defined as:

exp{ Dzh: a, (6, - b, )}
. 1+ exp{ Dzh: a, (6, —b, )}

3.1)

where
D is the scaling constant (1.7 or 1),

ain Is the discrimination (slope) parameter of item i on dimension h,
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& is the ability level on dimension h, and
bix is the threshold parameter for category x of item i.

Similar to the GR model, P&(@) is the cumulative probability, and the probability of responding
in a particular category, P, (@) equals the difference between the cumulative probabilities for

adjacent categories.

In this condition, the total test measured two dimensions but each item measured only
one dimension (simple-structure condition). The first 8 items were designed to measure the first
dimension, and the remaining 7 items were designed to measure a second dimension. As can be
seen from Table 3.2, the threshold parameters were the same as for Condition 1, but the
configuration of the slope parameters was different from Condition 1 though there were still
three levels 1.0, 1.7, and 2.4. This configuration was intended to ensure that the two dimensions
had items with similar discrimination.

The correlation between two dimensions was fixed at one of two levels: 0.3 or 0.6. The
0.6 case represents typical correlations among different dimensions for many large-scale
operational tests which cover a wide range of content domains. The rationale for the 0.3 case was
based on Levy (2006)’s study in which the effect of the inter-dimensional correlations on PPMC
was investigated. In his study, the correlation was varied across four levels: 0, 0.3, 0.7 and 0.9,
and the general finding was that the power of PPMC in detecting misfit increased as the inter-
correlation decreased. Specifically, PPMC performed better for two lower level correlations (0
and 0.3) but worse for two higher level correlations (0.7 and 0.9). However, the performance of
PPMC did not increase when the correlation decreased from 0.3 to 0 or from 0.9 to 0.7. As a
result, a value of 0.3 was used in the current study to reflect a low correlation between

dimensions and this level provided a useful comparison with the more moderate correlation case

80



(0.6). Ability parameters for two dimensions were randomly selected from a bivariate normal
distribution (0, 1) with the specified correlation (0.3 or 0.6).

Using the above model parameters and following the same logic for generating
unidimensional GR data under Condition 1, 2-dimensional simple-structure item responses were
generated by computing the cumulative probabilities for each response category based on
Equation (3.1), and then comparing the probability to a random number from a uniform
distribution U (0, 1).

In order to validate the data generation process for 2-dimensional simple-structure,
exploratory factor analyses of two generated datasets were conducted using the robust WLS
estimation approach in Mplus (Muthén & Muthén, 2006). Table 3.5 provides the Root Mean
Square Residual (RMSR) fit indices for the one-factor and two-factor solutions as well as
promax rotated factor loadings from the analyses. For each of the two cases (correlation 0.3 and
0.6), the two-factor model fit the data significantly better than a one-factor model since the
RMSR values were much less for the two-factor model and also below the recommended critical
value of 0.08. In addition, as seen from the promax rotation loading pattern, the first 8 items
loaded on the first factor and the remaining 7 items loaded on the second factor. The estimated
correlations between two dimensions were 0.27 and 0.53 and close to the true correlations (0.3

and 0.6, respectively). All these results indicated the data were properly generated.
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Table 3.5 Factor Analyses of Generated 2-dimensional Simple-Structure Data

Correlation = 0.3 Correlation = 0.6
Item F1 F2 F1 F2
1 0.51 0.00 0.52 -0.02
2 0.69 0.01 0.68 0.02
3 0.80  0.00  promax factor correlation: 0.78  0.06  promax factor correlation:
4 047  0.04 0.27 0.52  0.00 0.53
5 0.69 -0.01 0.69 0.03
6 0.79 0.00 0.78 0.06
7 0.53 0.02 0.48 0.01
8 0.68 0.00 0.71  -0.00
9 0.04 0.80 -0.01 0.80
One-factor RMSR: 0.17 One-factor RMSR: 0.10
10 -0.01 0.49 0.01 0.49
11 0.01 0.69 0.03 0.68
1 001 0.79 Two-factor RMSR: 0.01 0.06 0.76 Two-factor RMSR: 0.01
13 -0.05 0.53 0.07 0.45
14 0.00 0.68 0.01 0.70
15 0.01 0.79 0.05 0.76

Local Dependent Data due to a Nuisance Factor (Condition 3)

In Condition 3, a 2-dimensional GR model (Equation 3.1) was used to simulate responses
to a test in which all items measure a dominant ability (e.g., math), but a subset of items also
measure a nuisance or construct-irrelevant dimension (e.g., reading). This nuisance factor may
cause local dependence among the subset of items. Compared with the simple-structure data in
Condition 2, the data here reflects a complex-structure since some items were designed to
measure two dimensions (i.e., dominant and nuisance) at the same time.

As shown in Table 3.2, all 15 items measured a dominant dimension, but the first 5 items
also measured a nuisance dimension. The number of items reflecting two dimensions (5 items)
accounted for 1/3 of the total number of test items (15). The slope parameters for the dominant
dimension and the threshold parameters had the same basic configuration as in Condition 1.

Ackerman (1996) pointed out that if all the multidimensional items were easy or hard items, any
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pattern of misfit may be attributable to item difficulty rather than dimensionality. As a result, the
five 2-dimensional items in the current study were intended to cover all five levels of threshold
parameters in order to not confound threshold and dimensionality.

The degree to which simulated examinees’ performance on an item was determined by
the nuisance factor was captured by the ratio of the slope parameter (a;) for the dominant
dimension to the slope parameter (a,) for the nuisance dimension. Levy (2006) varied the ratio of
a; to a; from 0.25 to 0.5 to 0.75 to 1.0 in order to vary the strength of dependence on the
nuisance factor going from weak to strong. He found that the performance of PPMC improved as
the strength of dependence on auxiliary dimension increased, and for the lowest ratio of a, to a;
(0.25), it was hard to detect the misfit of a unidimensional model. This may be reasonable since
item performance was determined primarily by the dominant dimension. It was also found that
when the dependence was strong (0.75 and 1.0), the PPMC method performed almost equally
well. Based on his findings, the ratio of a, to a; for the first 5 items was set to two levels (0.5 and
1.0) in the current study. These values reflected mild to large dependence between the dominant
and nuisance dimensions. As can be seen from Table 3.2, the same slope values for the dominant
dimension (a; = 1.0) were used for the first 5 items, and the second slope parameters (a;) were
all 1.0 when the ratio of a, to a; was 1.0, and all 0.5 when the ratio of a, to a; was 0.5.

The correlation between the dominant dimension and the nuisance dimension was fixed
at a low level 0.3 because the test was designed to measure one dominant ability dimension.
Ability parameters for two dimensions were randomly selected from a bivariate normal
distribution (0, 1) with the specified correlation (0.3 or 0.6) for each case.

Based on the above specified model parameters, the 2-dimensional complex-structure

item responses were generated using a SAS program. As for Condition 2, cumulative
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probabilities for each of the response categories were computed based on Equation (3.1) and then
compared to a random number from a uniform distribution U (0, 1).

For this condition, it was expected that the underlying factor structure of the generated
response data would have only one main dimension since all items were designed to measure a
dominant dimension. On the other hand, it was also expected that the generated responses to the
first five items would be dependent because of a nuisance dimension also being measured. In
order to validate the data generation, two evaluations were conducted. One was to test if the data
were essentially unidimensional, and the other was to test if the first five items were locally
dependent.

The factor structures of the generated data for two cases (a, = 1.0 and a, = 0.5) were
examined using the robust WLS estimation approach implemented in Mplus (Muthén & Muthén,
2006). For the dataset with a; = 1.0, the largest eigenvalue was 7.789 and the second largest was
1.098, and all other eigenvalues were less than 1. For the dataset with a, = 0.5, the largest
eigenvalue was 7.632, and all other eigenvalues were less than 1. These factor analysis results
provided evidence that the generated response data were essentially unidimensional.

The IRTFIT macro (Bjorner et al., 2007) was used to evaluate any local item
dependencies in the generated responses. This macro compared the observed and expected
counts in a cross-tabulation table for each item pair, and two local dependence statistics were
calculated: (1) a chi-square fit statistics which is a polytomous extension of Chen and Thissen’s
(1997) chi-square local dependence index for dichotomous items; (2) a residual correlation based
on the difference between predicted and observed polychoric correlations. Before using the

IRTFIT macro to conduct local dependence test, the generated responses were calibrated in
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MULTILOG using unidimensional GR models and the item parameter estimates were then used

with the IRTFIT macro.

Table 3.6 Local Dependence Test (p-values of Chi-Square Statistics) in IRTFIT — Case 2

Chi-square
(p-value) Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14
Y2 0.00
Y3 0.02 0.00
Y4 0.00 0.00 0.00
Y5 0.01 0.00 0.00 0.00
Y6 0.27 0.19 0.19 0.04 047
Y7 046 031 032 098 0.22 0.55
Y8 069 0.20 0.08 0.04 0.02 0.72 0.95
Y9 0.27 0.15 0.14 0.00 0.19 056 0.63 0.54
Y10 087 051 029 031 037 100 068 0.08 0.27
Y11 061 051 047 004 0.04 042 057 088 091 0.50
Y12 0.78 040 005 046 065 035 082 033 086 034 0.80
Y13 082 070 034 0.12 0.22 0.19 004 0.76 092 0.77 0.63 0.45
Y14 0.22 057 025 0.04 0.06 055 053 080 091 0.38 098 0.37 0.16
Y15 0.06 032 047 078 020 0.21 030 047 023 064 036 071 052 0.14

Table 3.6 provides the p-values for the chi-square tests for all item pairs based on the

generated response data for Case 2 (a,/a; = 1.0). The elements in bold represent p-values for the

pairs of the simulated dependent items (i.e., Items 1-5), the italicized elements represent the p-

values for the pairs of the simulated independent items (i.e., Items 6-15), and the remaining

elements in the table reflect the item pairs between the independent and dependent items. As can

be seen, the chi-square tests were significant for the dependent item pairs, indicating that the null

hypothesis of local item independence was rejected for item pairs for the first 5 items. However,

for item pairs for the 10 independent items or the pairs reflecting independent and dependent

items, most of the p-values were not significant, suggesting there was no sufficient evidence to

reject the local independence assumption. Table 3.7 presents the residual correlations for all the
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item pairs. It can be seen that the residual correlations for the dependent item pairs (elements in
bold) were quite large relative to the other item pairs.

Table 3.7 Local Dependence Tests (Residual Correlations) in IRTFIT - Case 2

Residual
Correlation Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13 Y14
Y2 0.12
Y3 0.09 0.12
Y4 0.11 0.11 0.12
Y5 0.09 0.10 0.11 0.09
Y6 -0.04 -0.02 -0.03 -0.03 -0.03
Y7 -0.04 -0.01 -0.03 -0.02 -0.01 -0.01
Y8 -0.01 -0.03 -0.02 -0.01 -0.05 0.00 0.01
Y9 -0.03 -0.03 -0.04 -0.05 -0.03 0.02 0.00 -0.02
Y10 -0.01 -0.03 -0.02 -0.04 0.01 -0.01 0.00 -0.01 0.00
Y11 -0.03 -0.03 -0.03 -0.06 -0.01 0.00 0.01 0.01 0.01 0.01
Y12 -0.02 -0.02 -0.03 0.00 -0.00 0.00 -0.02 0.03 -0.02 -0.01 -0.00
Y13 -0.00 -0.03 -0.04 -0.03 -0.03 -0.00 -0.00 0.01 -0.00 -0.010 0.00 0.02
Y14 -0.03 -0.01 -0.04 -0.02 -0.02 0.01 -000 0.00 0.02 0.00 -0.00 -0.01 0.00
Y15 -0.04 -0.04 -0.01 -0.02 -0.04 0.00 -0.00 -0.00 0.02 0.01 0.02 0.01 0.01 -0.01

The results for Case 1 (a; = 0.5) are not shown here. For this case, the chi-square test
statistic was not powerful enough to detect any dependence among the first 5 items. Only 1 of 10
p-values was lower than 0.05. However, the residual correlations results clearly indicated
dependency among item pairs for Items 1 to 5.

Table 3.8 summarizes the average absolute residual correlations for different types of
item pairs for two levels of dependency. The no dependence condition (a; = 0) was also included
as a baseline for comparisons. As can be seen in this table, the average absolute residual
correlation across the dependent item pairs increased as the amount of dependency increased.
However, the average absolute residual correlations across the independent item pairs for two

dependence cases were similar to the values in the baseline condition. In summary, results from
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the factor analysis and local dependence tests imply that the locally dependent response data in

Condition 3 were generated properly.

Table 3.8 Average Absolute Residual Correlations for Different Levels of Dependency

Amount of Dependency

Item Pairs
None (a2=0) Mild (a2/a1=0.5) Large (a2/al=1)
All item pairs 0.010
Independent 0.009 0.008
Dependent 0.044 0.106
Between 0.013 0.024

Local Dependent Data due to Testlet Effect (Condition 4)

A common circumstance in which the assumption of local independence is not likely to
be true is when a test is constructed of “testlets”. A testlet is defined as an aggregation of items
based on a single stimulus. For example, a testlet including 3 or 4 items might be constructed
based on a common reading passage. Performance assessments often contain testlets that include
a more complex stimulus and a set of items paired with each stimulus (Lane & Stone, 2007). As
a result, for performance assessments with testlet(s), the assumption of local independence is
more likely to be violated. The item responses to the items within a testlet would be more highly
related than predicted by the overall latent ability for the entire test.

For Condition 4, the locally dependent data were generated under a modified GR model
for testlets proposed by Wang, Bradlow and Wainer (2002). According to their model, the
probability of an examinee j receiving a category score x (x = 1, 2... m;) or higher on item i

within a testlet d(i) is defined as:

0 exp|Da, (‘91 —b, _7/jd(i))J

o = ' 3.2
BT 1+ expDay (0, by — 7 10 )| -
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In this equation, a random testlet effect (rjq) is introduced to reflect an interaction for

person j with testlet d(i). Ability 6, is typically assumed to have a N (0, 1) distribution,
andy 4, is assumed to be distributed as N (0, o). The values of y are specified to be

constant for examinee j over all items within a given testlet with the constraint that z Yiegy =0
j

(Bradlow, Wainer, & Wang, 1999). For any independent item, y,, is set to be 0. The variances
of the testlet effects, aj(i), are testlet specific, allowing the testlet effect to vary across different

testlets. As the variance increases, the amount of local dependence increases. When crdz(i):O, the

items within the testlet can be treated conditionally independent.

In this condition, item parameters (see Table 3.2) were the same as for GR model in
Condition 1 except one testlet was considered (Items 6, 7 and 8). The variance of the testlet
effect was varied in order to simulate varying degrees of dependence. Based on previous

research (Bradlow et. al, 1999; Dresher, 2002; Li et. al, 2006; Wainer, Bradlow, & Du, 2000;

Wang et. al, 2002), the variance aj( was specified at three levels: 0.5 (mild dependence), 1.0

i)
(large dependence), and 2.0 (extreme dependence). Note that all values of the variance were
relative to 1 which is the variance of person abilities, 8, ~ N (0, 1), and is commonly used to
identify the model. Ability parameters were randomly selected from N (0, 1), and the testlet
effect y,,, was randomly selected from a N (0, o) for the items in the testlet. Given the
specified model parameters, the responses were generated using a SAS program.

In order to validate the data generation procedure, the IRTFIT macro (Bjorner et al.,

2007) was again used to identify any local item dependencies in the generated response data. For

three generated datasets (one for each case - aj(i): 0.5, 1.0, and 2.0, respectively), the p-values
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of the chi-square local independence statistics for all the item pairs within the testlet were
significant, in contrast, the tests for the independent pairs and the pairs between independent and
testlet items were not significant. The average absolute residual correlations for different type of

item pairs for three levels of testlet variance are provided in Table 3.9. The no testlet effect

condition (o, = 0) was also included as a baseline for comparisons. As can be seen, the average

absolute residual correlations were much higher for the item pairs within the testlet than for the
non-testlet item pairs or for between testlet and non-testlet item pairs. Moreover, the average
residual correlations across the testlet item pairs increased as the amount of dependency

increased. The results indicate the responses to a test with a testlet were generated as desired.

Table 3.9 Average Absolute Residual Correlations for Different Testlet Effects

Variance of Testlet Effects

Item Pairs None Mild Large Extreme
Oy =0 O 40y =05 o4y =10 O4i=2.0
All item pairs 0.010
Non-testlet 0.013 0.012 0.011
Testlet 0.130 0.273 0.443
Between 0.020 0.030 0.034

Item Responses to the Items with Improper BCCs (Condition 5)

In this condition, responses to 12 of the 15 items (Iltems 1-6 and Items 9-15) were
generated based on the GR model where the boundary category curves (BCCs) are modeled by
2PL functions (see Equation (2.1)). However, responses to two items (Items 7 and 8) were
simulated with BCCs which did not follow the common logistic functions under the GR model.
The BCCs for item 7 were based on a cubic form logit function (Douglas & Cohen, 2001) rather

than regular logit function:
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_expa(6,-b,)+c.65]
B 1+eXp|.ai (91 _bix)+ci9j3J '

P (0)

(3.3)

As in Douglas & Cohen (2001), the coefficient for the cubic term c; was set to 0.75. The
functions of BCCs for Item 8 were defined using the two-step Guttman functions as in Kang and

Chen (2008). Figure 3.2 illustrates the BCCs of these two items.

BCCs for Item 7 (cubic form)
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Figure 3.2 Boundary Category Curves (BCCs) for Two Misfitting Items
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Item parameters for this condition had the same configuration of slope and threshold
parameters as Condition 1 (see Table 3.2). Ability parameters for simulated examinees were
randomly selected from the N (0O, 1) distribution.

The generation of the responses to these two misfit items (Items 7 and 8) was evaluated
using simulated responses for 20000 examinees at a fixed ability level (-1). The expected and
observed proportions of examinees responding to each response category on Item 7 and Item 8
are reported in Table 3.10. The close match between two proportions indicates that the
responses to the two misfit items were properly generated.

Table 3.10 Expected and Observed Proportions for Two Misfitting Items

It Categoryl Category2 Category3 Category4 Category5
em

Exp Obs Exp Obs Exp Obs Exp Obs Exp Obs

7 0.475 0.475 0.357 0.363 0.132 0.129 0.029 0.027 0.007 0.006

0.500 0.507 0.500 0.493 0 0 0 0 0 0

3.1.3 Estimate Unidimensional GR Model in WinBUGS

For each condition in Study 1, the data-analysis model (Ma) was the unidimensional GR model.
In order to evaluate the fit of this model using PPMC, for each of 20 data sets generated in each
condition, a unidimensional GR model was first estimated using MCMC estimation and
WIinBUGS 1.4 (Spiegelhalter, Thomas, Best, & Lunn, 2003). For the GR model, the following
priors were used: ¢ ~ Normal(01)for all persons i, and a; ~Lognormal(0y1),

b, ~ Normal(0,0.25) and b;,,,, ~ Normal(0,0.25)1(b; ) for all items j, where the notation

I(b; ) indicates that b;,.,, was always sampled to be larger than b, which is a requirement
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under the GR model. It should be noted precision parameters rather than variance parameters are
used in these prior distributions. The WinBUGS code used for estimation of the GR model is
given in Appendix B.

As reviewed in Chapter 2, convergence of parameter posterior distribution to a stationary
distribution is crucial to MCMC estimation. A preliminary study was conducted to determine
how long the chain should run to achieve convergence and how many iterations were needed
after convergence to estimate parameters of the unidimensional GR model. One unidimensional
GR dataset was generated containing responses for 2000 simulated examinees to 15 polytomous
items with 5 response categories. Using WinBUGS, two chains of 4000 iterations were run. The
first 1000 iterations were discarded as part of the burn-in phase, and the remaining 3000
iterations in each chain were thinned by taking every other iteration to reduce any autocorrelation
among the draws. Convergence was examined through visual inspection of several convergence
diagnostic plots available in WinBUGS. The first plot is a “sampling history plot” for each
parameter. Figure 3.3 illustrates the histories for the slope and four threshold parameters of item
1. These sampling histories show that each chain displayed relatively quick convergence to a
stationary distribution and an overlap of the sampling histories for the two chains further

indicated convergence. Similar results were observed for the other items.
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b[1,1] chains 1:2
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Figure 3.3 Sampling History Plots of Item Parameters Associated with Two Chains - Item 1

In WinBUGS, a “BGR diagram” is often used to show the Gelman-Rubin convergence
statistic for multiple chains. It includes three lines in different colors. The green (G) and blue (B)
lines reflect the pooled and within-chain posterior variances, respectively. The ratio of these two
variances, that is, the Gelman-Rubin statistic, is represented by the red (R) line. Figure 3.4
includes the “BGR diagrams” for the slope and four threshold parameters of Item 1. As can been

seen, the red line (Gelman-Rubin statistic) converged to 1, indicating equality between the
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pooled and within-chain variances. Thus, these plots demonstrate the convergence of the two
chains with 4000 iterations was attained for all the parameters of Item 1. Similar results were

obtained for the other model parameters.
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Figure 3.4 "BGR™ Diagrams for the Parameters of Item 1

As reviewed in Chapter 2, autocorrelation plots are also helpful in evaluating
convergence. High correlations between adjacent states imply a slow rate of convergence, thus
requiring more iterations to achieve stationary posterior distributions for the model parameters.
Figure 3.5 provides the autocorrelation plots for the parameters of Item 1. As can been seen, the
correlations among the successive draws were reduced to 0 very quickly, indicating the length of
4000 iterations was sufficient to ensure convergence. Similar autocorrelation plots were found

for other item parameters.
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Figure 3.5 Autocorrelation Plots for the Parameters of Item 1

After the burn-in iterations were discarded and the chains were thinned, posterior
estimation of model parameters was conducted based on the remaining 3000 iterations and the
recovery of item parameters was examined. The degree of parameter recovery using the MCMC
method is an important factor in determining whether PPMC could be implemented successfully
since PPMC is based on posterior estimation of model parameters. In this preliminary study,
parameter recovery was evaluated by computing the difference between the estimated and true
parameter values (i.e., bias). Table 3.11 includes the generating item parameters and their
corresponding estimates in WinBUGS. The average absolute bias in the estimation of slope

parameters across all items was 0.061. The average absolute bias for all the threshold estimates
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across all items was 0.047. The results indicated that the item parameters were recovered well

using MCMC estimation in WinBUGS with two chains of 4000 iterations.

Table 3.11 Item Parameter Recovery using MCMC Estimation for the GR Model

Item True Estimates

a bl b2 b3 b4 a bl b2 b3 b4
1 1.0 -20 -10 00 10 099 -202 -1.00 0.01 0096
2 10 -15 -05 05 15 1.02 -161 -051 050 150
3 1.0 -10 00 1.0 20 1.01  -0.99 0.03 1.02  1.99
4 1.0 -30 -15 -05 10 1.04 -296 -145 -050 094
5 10 -10 05 15 30 096 -1.04 0.45 154  3.08
6 1.7 -20 -10 00 10 169 -212 -112 -005 0095
7 1.7 -15 -05 05 15 170 -153 -0.48 053 147
8 1.7 -10 0.0 1.0 20 1.68 -1.03 -0.01 1.05 2.04
9 1.7 30 -15 -05 10 181 -317 -147 -052 0.96
10 1.7 -1.0 0.5 15 3.0 171 -1.05 0.49 151 290
11 24 20 -10 00 10 242 -200 -104 -006 1.00
12 24 -15 -05 05 15 222 -151 -051 0.49 156
13 24 -10 00 1.0 20 231 -1.04 -0.05 096 192
14 24 -30 -15 -05 10 223 -325 -165 -056 1.03
15 24 -10 05 15 3.0 221 -1.04 0.49 154 3.19

3.1.4 Discrepancy Measures Used in Study 1

As discussed in Chapter 2, the choice of discrepancy measures is a key issue in an application of
the PPMC method. It was argued that the measures should be chosen to reflect relevant threats to
model fit for a specific testing application. The purpose of Study 1 was to examine the general
performance of PPMC in evaluating the fit of GR model to performance assessment data. Thus, a
variety of threats to model fit were considered and several different types of discrepancy
measures were employed. Among the measures examined in this study, most were the

polytomous extensions of measures used in the previous research for dichotomous IRT models,

96



and a few were newly proposed. These discrepancy measures were designed to assess model-fit
at the test level, item level, or item-pair (or pair-wise) level.

The “test-level” measure involved the “test score distribution” (see Section 2.4.2.1). Plots
comparing observed and posterior predictive distributions as well as the chi-square statistic ( ?2)

were used to provide evidence about the fit of unidimensional GR models at the test level.
Section 2.4.2.1 provides details about this measure.

The “item-level” discrepancy measures used with PPMC in previous research for
dichotomous models include “Bayesian 3 Statistic””, “item score distribution”, “Orlando and
Thissen’s item-fit Statistic”’, and *“item-total score correlation” (see Section 2.4.2.2). In the
current study, polytomous extensions of the “item score distribution” and “item-total score
correlation™ discrepancy measures were used. In addition, one traditional fit statistic “Yen’s Q;”
and one alternative item-fit index “Stone’s fit statistic”” were employed. These two classical
item-fit statistics have never been used in a Bayesian framework and were proposed in this study
in order to examine their performances with PPMC. Although the “Bayesian 4 Statistic” is an
intuitive and useful statistic for evaluating overall fit for many statistical models, several
researchers (Li et al., 2006; Sinharay et al., 2006) found that it was not useful for IRT model
checking. As a result, this measure was not considered in the current study.

Six “pair-wise” discrepancy measures used with PPMC for dichotomous IRT models
were reviewed in Section 2.4.2.3. They include “Yen’s Qs statistic”, “Chen and Thissen’s chi-
square LD index, “Odds Ration (OR)”, “Mantel-Haenszel (MH) statistic”’, *““absolute item
covariance residual”, and ““Hoijtink’s conditional item covariance index”. Levy (2006) used

four of them (“Yen’s Qs statistic”, “OR”, “Chen and Thissen’s chi-square LD index™, ““absolute

item covariance residual’”) with PPMC to detect the local dependence among responses to
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dichotomous items, and found that “Yen’s Qg statistic” was most effective and “Chen and
Thissen’s chi-square LD index” was less effective than other pair-wise measures. Based on these
findings, the least effective pair-wise measure was not used in the current study, and polytomous
versions of the other three measures were used. The MH statistic is computationally equivalent to
the conditional OR, and both OR and MH statistics were found to successfully detect misfit
whenever there is a violation of the local independence assumptions though the MH statistic
detected model misfit more often than the OR (Sinharay et al., 2006). Due to their similar
performance, only the OR statistic was employed as a discrepancy measure in the current study.
“Hoijtink’s conditional item covariance index” was not employed in this study. Though there
was no previous study comparing this measure with other pair-wise measures, it was expected
that its performance would be similar to “Yen’s Qs statistic” since the basic rationale underlying
these two measures are similar. “Yen’s Q3 statistic represents the correlation between responses
to two items after accounting for the latent ability (i.e., conditional on the ability), and
“Hoijtink’s index™ measures the covariance between the responses to two items conditional on
examinees’ scores based on the remaining items or rest scores. Both measures reflect conditional
relationship between responses to one item pair. The main difference of “Hoijtink’s index” from
“Yen’s Q3™ is that it uses “observed rest scores” to estimate examinees’ latent ability.

In summary, one test-level measure (“test score distribution”), four item-level measures
(“item score distribution”, “item-total score correlation”, “Yen’s Q;”, and “Stone’s fit
statistic’), and three pair-wise measures (“Yen’s Qz statistic”, “OR”, and “absolute item
covariance residual’) were used in the current study. Among them, two item-fit measures can be

used for polytomous items (see Section 2.2.3) and thus no extension was required. The

polytomous extension of the chi-square statistic (x?) measuring the difference between
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observed and predicted “test score distributions” was discussed in Section 2.4.2.1. The two pair-
wise measures (“Yen’s Qs” and “absolute item covariance residual”) can be extended to
accommodate polytomous item responses simply by calculating expected responses using the
polytomous IRT models instead of dichotomous items. After the expected responses are
obtained, the computation of these two measures is the same as for dichotomous items (see
Section 2.4.2.3). The following describes polytomous item extensions for the remaining three
measures.

(1) Item Score Distribution

In Section 2.4.2.2, a goodness-of-fit statistic (;(jz_Fit) used to summarize the

discrepancy between observed and posterior predictive item score distributions for dichotomous

items was discussed. For polytomous items, this statistic can be defined as:

Milo. —E. P
z?_Fit=Z—[ k2, (3.4)
k=0 Ejk

where M; is the highest score on item j, and O, (E,) is the observed (predicted) number of

examinees scoring in response category k on item j. Ej can be calculated by summing the

probabilities of responding to category k on item j across all N examinees:
N
Ejk = z pijk (QI) k=0, ..., Mj. (3-5)
i=1

(2) Item-Total Score Correlation

The item-test score correlation is the correlation between examinees’ total test scores and
their item scores on a particular item. For dichotomous items, the item-total score correlation is
commonly estimated using point-biserial or biserial correlations. Sinharay et al. (2006) have

shown that the biserial correlation between item and test scores was a powerful discrepancy
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measure for detecting misfit of the Rasch model when data was generated from a 2PL or 3PL
model. It was therefore hypothesized that the item-total score correlation would also be effective
for detecting “local dependence” among the responses to polytomous items. The underlying
rationale is that local dependence might affect item discrimination and the item-test correlation is
related to item discrimination. For example, Yen (1993) demonstrated that positive LD would
produce higher item discriminations for LD items.

The correlation between total test scores and scores on polytomous items should be
estimated using a “polyserial” correlation in theory. However, in practice, when there are a
number of response categories, the Pearson product-moment correlation is often used to estimate
item-total score correlation. Five response categories have been found to be a minimum in order
to use Pearson correlations (Dollan, 1994). In this study, the number of response categories was
5 and Pearson correlations were used to estimate the association between items and total test
scores.

(3) Global Odds Ratios

For dichotomous items, the contingency table for one pair of items is 2x2 and there is
only one odds ratio (OR) value for one item pair (see Equation 2.24). However, the computation
of an OR with a polytomous item pair involves a R x C (R>2 and C>2) contingency table from
which multiple ORs can be computed. There are three basic types of odds ratios ina R x C
contingency table: local odds ratios, local-global odds ratios, and global odds ratio (Agresti,
2002).

Local odds ratios are defined using cells in adjacent rows and adjacent columns (Agresti,
2002). Suppose two polytomous items j and j~ have the maximum score M; and M=, respectively.

That is, the total number of response categories is (M;+1) for item j and (M;++1) for item j". The

100



corresponding contingency table is (M;+1) x (M;«+1). Let k and k" denote the response scores on

items j and j respectively, the (M; * M;) non-redundant local odds ratios can be defined as:

n,.Nn * *
OR,, = 1D (k=0,1...(Mj-1), Kk =0, 1... (Mj=-1)), (3.6)

(k+l)k*nk(k*+1)
where nye is the observed number of examinees having response k on item j and response k™ on
item . For two items with 5 response categories (0, 1, 2, 3 and 4), there are 16 non-redundant
local odds ratios.

It can be seen that the number of local odds ratios will increase dramatically as the
number of response categories for each item increases. Therefore, it is not convenient to use
local odds ratios when the items have a large number of response categories. One alternative way
to measure the association in R x C contingency tables is to dichotomize one of the items
according to a cut point and compute local-global odds ratios. For example, if the responses on
the column item are dichotomized, the R x C contingency table will reduce to a R x 2 table and
the number of non-redundant odds ratios is only (R-1) rather than (R-1)*(C-1). For two items j
and j° with the maximum item score M; and M;«, respectively, the local-global odds ratio is

defined as:

Ny (<o M (o .
OR(® = KKK (=0 1., (MF1), K =0, 1... (Mjx-1)), (3.7)

My i) M (<)
where k™ is the cut point on the response scale for item j , and Ny(«+) represents the number of
examinees scoring k on item j and scoring k™ and lower on item j*. The local-global odds ratios
are local with respect to the row item and global with respect to the column item. Following the

same logic, global-local odds ratios can be defined as global with respect to the row item and

local with respect to the column item. For two items with 5 response categories (0, 1, 2, 3 and 4),
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there are four non-redundant global-local or local-global odds ratios, much smaller than the
number of local odds ratios.

A single OR is often preferred in order to simplify or summarize the association in R x C
contingency tables as for 2 x 2 contingency tables. In this situation, a global odds ratio can be
computed. For two items j and j* with the maximum item score M; and M, respectively,aR x C
contingency table can be reduced to a 2 x 2 contingency table by dichotomizing the response
categories of each item. The global odds ratio is defined as the cross-ratio of this pooled 2 x 2

table:

Ny M sk (o .
OR(®) = I COCK) (=0 1. .. (ML), K =0,1... (Mj+-1)), (3.8)
<)1) Nk (k)

where k and k™ are the cut points on the response scales for item j and item j* respectively, and

Ny« denotes the number of examinees scoring k and lower on item j and scoring k™ and

lower on item j*. For different cut points, the global odds ratios may be different.

In this study, only a global odds ratio was employed as one possible discrepancy measure
due to its simplicity. The dichotomization was based on score rubrics typically used with
performance assessments. For items with 5 response categories (0-4), Categories 3 and 4 were
treated as “correct” responses, and 0, 1, and 2 were treated as “incorrect” responses. Thus, the
cut point was set to 2.

Previous research (Sinharay et al, 2005, 2006; Li et al, 2006; Levy, 2006) has found the
OR measure to be a useful discrepancy measure for checking several aspects of model fit for
dichotomous IRT models. It was assumed that the global OR measure would be useful for
polytomous models. However, it might be not as effective as OR for dichotomous items due to

the dichotomization of the response categories.
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3.1.5 Conduct PPMC

As reviewed in Chapter 2, conducting PPMC involves simulating replicated data under a
presumed model and comparing the discrepancy measures for observed data against the
distribution of discrepancy measures across the replicated data sets using graphical displays or
PPP-values to evaluate model fit.

PPP-values provide a quantitative measure of the degree to which observed data would
be expected under the model. PPP-values near 0.5 indicate that the realized (i.e. observed)
discrepancies fall in the middle of the distribution of discrepancy measures based on the
posterior predictive response data (i.e., replicated data). Such values provide evidence for model
fit. In contrast, extreme PPP-values near O or 1 suggest that the observed discrepancies are
inconsistent with the posterior predictive discrepancies and hence are indicative of model misfit.
More specifically, PPP-values near O indicate that the predictive discrepancy values under the
model are smaller than the realized values most of the time, indicating that the model under-
predicts this discrepancy measure. Using the same logic, PPP-values near 1 indicate that the
predictive discrepancy values are larger than the realized values, indicating that the model over-
predicts the measure. In the current study, extreme PPP-values were defined as those below 0.05
or above 0.95, corresponding to a two-tailed test with =0.10 in a hypothesis testing framework.

In addition to PPP-values, different types of graphical plots were also used in the current
study to provide graphical evidence about model fit. As discussed in Chapter 2, it is more
appropriate to use the PPMC approach as a diagnostic tool for model fit rather than a hypothesis
test because the PPP-values are not necessarily uniformly distributed under the null conditions.
Thus, a preferable way to interpret the difference between observed and predicted discrepancy

measures in PPMC is also to employ graphical plots.
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Within each condition for Study 1, the generated data served as “observed data”, and the
posterior predictive (i.e. replicated) data sets under the unidimensional GR model were simulated
within WinBUGS in the process of estimating the model parameters. The values of the proposed
discrepancy measures were calculated both for the observed data as well as each of the predicted
data and then compared using graphical plots and PPP-values. Among all the 8 discrepancy
measures investigated in this study, four measures (*“‘item score distribution”, “Yen’s Q3”,
“absolute item covariance residual”, *“global OR”) and their corresponding PPP-values were
computed within WinBUGS. However, the remaining four discrepancy measures (““test score
distribution”, “item-total score correlation”, “Yen’s Q;”, and “Stone’s fit statistic’’) were
calculated by inputting the replicated response data and parameter estimates for all iterations
(CODA output) from WIinBUGS into SAS. If we label the first set of 4 measures as PPMC1
measures, and the remaining 4 measures as PPMC2 measures, the general steps to implement
PPMC in Study 1 are as follows:

1) Generate a unidimensional GR data in SAS;

2) Run WinBUGS from SAS through a batch file to estimate the generated data using a
unidimensional GR model, simulate replicated response data, and compute the PPP-values
of the four PPMC1 measures. In addition, save the replicated response data and parameter
estimates for all iterations (CODA files) into text files for the next implementation of
PPMC based on the four PPMC2 measures. Also save the CODA files for the realized and
predictive discrepancies in order to compare them using graphical plots;

3) Read these CODA text files from (2) into SAS datasets;

4) Compute the realized and predictive values of the PPMC2 discrepancy measures based on

observed data (i.e., generated data) and the CODA datasets from (3) in SAS, and then
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obtain their PPP-values. As for the PPMC1 measures, save the realized and predictive
discrepancies in order to draw graphical plots.

The preliminary study conducted in Section 3.1.3 used two chains of 4000 iterations. The
results showed that each chain converged very quickly and the item parameters were well
recovered. Based on those results, only one chain of length of 4000 was run for conducting
PPMC due to the intensive computation in WinBUGS. The first 3500 iterations in each chain
were discarded as part of the burn-in phase, and posterior estimation of model parameters and
PPMC were conducted based on the 500 remaining iterations. Item recovery using the posterior
sample of 500 was evaluated using the Root Mean Square Difference (RMSD) statistic. This
statistic compared the true (or generating) and estimated parameters across 20 replications, as

follows:

20

> (true —estimate)

RMSD = {| = . (3.9)
20

The results indicated that a posterior sample size of 500 was adequate for accurate recovery of
item parameters for GR model (see Chapter 4). In addition, this sample size was consistent with
previous studies (Fu et al., 2005; Levy, 2006; Li et al, 2006).

To investigate Type-l error rates and empirical power for each discrepancy measure
proposed, the PPMC analysis was replicated 20 times (one for each generated data) within each
condition. The proportion of the 20 replications with extreme PPP-values (< 0.05 or > 0.95) for
each discrepancy measures provides estimates of Type-I error rates of this measure under the
null condition (Condition 1) or estimates of empirical power rates of this measure under other
misfit conditions (Conditions 2-5). It should be noted that for each replication, different types of

discrepancy measures resulted in different numbers of PPP-values. For any replication, the test-
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level chi-square measure was evaluated once leading to one PPP-value; each item-level
discrepancy measure was evaluated 15 times (once for each item) leading to 15 PPP-values; and
each pair-wise discrepancy measure was evaluated 105 times (one for each unique pairing of
items) leading to 105 PPP-values. In order to summarize results, PPP-values for item-level and
pair-wise level measures were pooled based on data structure. Type-I error rates and empirical
power rates were based on these pooled PPP-values. The details are discussed in the results
chapter.

Appendix C provides the WinBUGS code used for the implementation of PPMC based
on the four PPMC1 measures including estimating unidimensional GR models, calculating these
four discrepancy measures and their PPP-values, as well as simulating replicated response data.
In addition, the SAS code used to create a batch file for running PPMC in WinBUGS from SAS
is given in Appendix D. The SAS code for conducting PPMC using the four PPMC2 measures is

available from the author upon request.
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3.2 SIMULATION STUDY 2

As reviewed in Chapter 2, unidimensional polytomous IRT models are commonly used in the
analysis of performance assessment data. However, the underlying assumptions such as
unidimensionality and local item independence are most likely to be violated for performance
assessment data. In that situation, more complex polytomous models might be needed to account
for the violation of assumptions. For example, a multidimensional GR model (De Ayala, 1994)
may be more appropriate for analyzing multidimensional performance data, or a modified GR
model for testlets (Wang, Bradlow & Wainer, 2002) may be more appropriate for performance
assessments that involve a subset of items with a common stimulus. In order to choose the
preferred model for a particular performance assessment data, model comparison tools may be
employed. A number of model comparison techniques in a Bayesian framework have been
reviewed previously. The purpose of Study 2 was to investigate the relative performance of three
Bayesian model selection methods (DIC, CPO, and PPMC) in choosing the preferred model for

analyzing performance assessment data.

3.2.1 Design of Simulation Study 2

In order to explore the relative performance of these three Bayesian model comparison methods,
four conditions were considered (Table 3.12). In each condition, typical performance assessment
data were generated based on an appropriate IRT model (Mg) and then calibrated using several
different data-analysis (Ma) models. Three Bayesian model comparison indices were then

computed for each Ma and the preferred model was selected based on each of indices. Indices
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were then examined to determine the extent to which “Mg” was selected as the “preferred”

model.

Table 3.12 Design and Conditions in Simulation Study 2

Data-Generating Model Data-Analysis Model Condition
(Mg) (Ma) Number
(1) 2P GR
2P GR (2) 1P GR 1
(3) RS
L i (1) 2P GR
2-dim Simple-Structure GR | 5) 2_dim Simple-Structure GR 2
" ] (1) 2P GR
2-dim Complex-Structure GR (2) 2-dim Complex-Structure GR 3
(1) 2PGR
Testlet GR (2) Testlet GR 4

In Condition 1, the responses were generated under the two-parameter Samejima’s (1969)
GR model, but estimated using two restricted GR models (one-parameter (1P) GR model and RS
model) in addition to the true model (two-parameter (2P) GR model). Both one-parameter (1P)
GR and RS models require fewer parameters to estimate than two-parameter (2P) GR models. A
1P GR model is similar to Samejima’s 2P GR model except that all slope parameters are fixed to
a single value. As a result, only one slope parameter needs to be estimated. The RS model
developed by Muraki (1990) is a restricted case of the 2P GR model for analyzing responses to
the items with a rating-scale type response format. Lane and Stone (2006) pointed out that this
RS model may be appropriate for performance assessments where a general rubric is used as the
basis for developing specific item rubrics since the response scales and the differences between
score levels may be the same across the set of items. In the RS model, the threshold parameters
of the 2P GR model are partitioned into two terms: a location parameter for each item, and one
set of category threshold parameters for all items. The number of parameters in the RS model is

therefore reduced greatly as compared with the 2P GR model. The purpose of Condition 1 was
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designed to determine if the model comparison criteria could discriminate between these three
models and select the 2P GR model as the preferred model.

Similar to some of the conditions examined in Study 1, the data generated in Conditions
2, 3 and 4 (see Table 3.12) reflect typical performance assessment applications in which the
assumptions underlying unidimensional GR model are violated. Specifically, in Condition 2, 2-
dimensional (2-dim) simple-structure GR responses were generated based on a multidimensional
GR (MGR) model (De Ayala, 1994) to reflect the violation of the unidimensionality assumption.
In Condition 3, 2-dimensional (2-dim) complex-structure GR data were simulated under a MGR
model to represent responses to a performance assessment which mainly measures a dominant
ability (e.g., math), but a subset of items also measure a nuisance or construct-irrelevant
dimension (e.g., reading). This nuisance factor would also result in local dependence among the
subset of items. In Condition 4, responses to a test with a testlet were generated under a modified
GR model for testlet (Wang, Bradlow & Wainer, 2002). The responses to items within a testlet
(e.q., a shared stimulus or passage) would be locally dependent. In each of these three conditions,
the generated data was calibrated using both the 2P GR model and the more complex data-
generating model in order to determine whether the model comparison tools were useful in
selecting the complex models as the preferred model when the underlying assumptions of the GR

model did not hold.

3.2.2 Generate Item Response Data

As for Study 1, 20 datasets were generated for each condition using the Mg with each dataset
containing responses for 2000 simulated examinees to 15 polytomous items with 5 response
categories. For Condition 1, the configurations of item parameters for unidimensional 2P GR
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models and the procedure for data generation were the same as for Condition 1 in Study 1. For
other conditions, the data generation procedures were the same as the corresponding conditions
in Study 1 except that no other factors were manipulated in Conditions 2, 3, and 4 in Study 2.

Recall, for Condition 2 in Study 1, the correlation between two dimensions was fixed at
one of two levels: 0.3 and 0.6, and different simple-structure 2-dimensional responses were
generated based on these two correlations. In Study 2, responses were generated only based on
the correlation of 0.6 since this value represents typical correlations among different dimensions
for many large-scale operational tests which cover a wide range of content domains. The item
parameters were exactly same as for Study 1 (see Table 3.2).

For Condition 3, the ratio of a, to a; for the first 5 items was set to two levels (0.5 and
1.0) in Study 1, reflecting mild and large dependence between the dominant and nuisance
dimensions. For the same condition in Study 2, only mild dependence (a,/a; = 0.5) case was
considered since it may be more realistic in practical applications. Other model parameters were

the same as for Study 1 (see Table 3.2).

For the testlet condition (Condition 4), in Study 1, the testlet effect variance aj(i) was

specified at three levels: 0.5, 1.0, and 2.0 to reflect mild, large, and extreme dependence among
the testlet items, respectively. In this study, only mild dependence was used. The item parameters

can be found in Table 3.2.

3.2.3 Estimate Different Data-Analysis Models in WinBUGS

In each condition, each of the 20 generated datasets was calibrated using the different data-
analysis models in WinBUGS 1.4. Since the model comparison indices are calculated based on

posterior estimation of model parameters, how well the different models involved in Study 2 can
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be estimated in WIinBUGS provides important evidence about the validity of the model
comparison results. Therefore, a preliminary study was first conducted to determine how long
the chain should run to achieve convergence, how many iterations are needed after convergence
to estimate the parameters, and the extent of model parameter recovery in WinBUGS for
different models. The calibration of the two-parameter (2P) GR model in WinBUGS was already
validated in Study 1. Thus, the estimation of the other models in WinBUGS was evaluated for
Study 2.

One-Parameter (1P) GR Model

In order to validate the estimation of one-parameter GR model, data were generated
based on the same model which contained responses for 2000 simulated examinees to 15
polytomous items with 5 response categories. The slope parameters for all 15 items were fixed to
1.7 and the threshold parameters were set to the same values used for the two-parameter GR
models.

A one-parameter GR model was fit to the generated data in WinBUGS. The code is
similar to that for estimating GR model (Appendix B) except that one slope is estimated rather
than multiple slope parameters. Two chains of length of 6000 were run which took
approximately 7 hours to complete. The first 1000 iterations were treated as burn-in and
discarded, and the remaining chains were thinned by taking every other iteration to obtain a
combined posterior distribution based on a sample of 5000. All the sampling histories, brg
diagrams, and autocorrelation plots suggested that each Markov chain converged to a stationary
distribution very quickly. The values of MC errors indicated the sample size of 5000 was

sufficient for precise posterior inference. Figure 3.6 illustrates the corresponding convergence
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diagnostic graphs for the first threshold parameter of Item 1 and the common slope parameter for

all the 15 items. Similar results were observed for the other item parameters.
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Figure 3.6 Example Convergence Diagnostic Plots for Item Parameters under 1P GR Model

Table 3.13 provides the comparison between the generating parameters and the estimates

in WinBUGS for the one-parameter GR model. As can be seen, parameters were well recovered.

The bias in the slope estimate was -0.01, and the average absolute bias for the thresholds

112



parameters across all items was 0.044. The results indicated that the one-parameter GR model

could be estimated precisely in WinBUGS, and the WinBUGS code used for the estimation was

valid.
Table 3.13 Item Parameter Recovery for 1P GR Model in WinBUGS
True Estimates
Item a bl b2 b3 b4 a bl b2 b3 b4
1 -2.0 -1.0 00 10 -2.08 -1.02 0.03 1.04
2 -15 -0.5 05 15 -1.49 -0.48 052 1.59
3 -1.0 0.0 10 20 -0.97 -0.01 1.04 2.07
4 -3.0 -15 -05 1.0 -3.20 -1.49  -052 0.99
5 -1.0 0.5 15 3.0 -0.96 0.56 155 331
6 -20 -10 00 10 -1.99 -0.93 0.00 1.01
7 -15 -0.5 05 15 -1.53 -0.54 0.53 155
8 L7 10 00 10 20| 169| 100 006 106 215
9 -3.0 -15 -05 1.0 -2.99 -154 -051 102
10 -1.0 0.5 15 3.0 -0.98 0.50 157 291
11 -2.0 -1.0 0.0 10 -1.98 -098 -0.02 1.02
12 -1.5 -0.5 05 15 -1.46 -0.44 053 161
13 -1.0 0.0 10 20 -1.02 0.03 101 1.96
14 -3.0 -15 -05 1.0 -2.97 -1.52  -055 097
15 -1.0 0.5 15 3.0 -1.01 0.49 150 284
RS Model

The operating characteristic curves for Muraki (1990)’s RS model can be expressed as:

-y exp[Da (- (b —c,)]
P.(0)= 1+exp[Da, (8- (b, —c,))] -

As can be seen, the threshold parameters (bix) of the 2P GR model are partitioned into two terms
in the RS model: a location parameter (b;) for each item, and one set of category threshold
parameters (cy) that applies to all items. The RS model is a restricted version of the 2P GR model

because the RS model assumes the category boundaries are equally distant from each other
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across all items, whereas they are free to vary across items in the 2P GR model. As a result, the
RS model requires fewer parameters to estimate than the 2P GR model. Thus, if a set of items
has a common set of response options or is scored based on a general rubric, the RS model may
provide an advantage over the 2P GR model.

In order to validate estimation of the RS model in WinBUGS, responses for 2000
simulated examinees to 15 polytomous items with 5 response categories were generated under
the RS model. The configuration of item parameters for 15 items under the RS model involved a
combination of 3 levels for the slope parameters (1.0, 1.7, and 2.4) and 5 levels for the location
parameters: -1.0, -0.5, 0, 0.5, and 1.0. Note that the five levels of the location parameters were
the same as the average difficulties of the 2P GR model (see Table 3.2). The category threshold
parameters were set to 1.5, 0.5, -0.5, and -1.5.

The generated data were estimated in WinBUGS. As for the 2P GR model, the prior
distributions of the slope parameters were defined as lognormal distributions with means 0 and
variances 1. Normal priors were assigned to the location parameters with means equal to 1 and
variances equal to 4. Prior distributions for the category threshold parameters were defined as the
same normal distributions as for the location parameters with two constraints: they were ordered
and the sum of them was 0. Finally, following standard conventions, ability parameters were
assigned standard normal priors.

One chain of length of 10000 was run in WinBUGS. The first 1000 iterations were
discarded (burn-in iterations) and the remaining chain was thinned by taking every other iteration
to obtain a posterior sample of 4500. All the sampling histories and autocorrelation plots
suggested that the Markov chain converged to a stationary distribution very quickly. That also

indicated that a shorter chain may adequate for estimating this model. The values of MC errors
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indicated the sample size of 4500 was sufficient for precise posterior inference. Figure 3.7

provides the history plots and autocorrelation plots for the slope and location parameters for Item

1. Similar results were observed for the other item parameters.
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Figure 3.7 Example Convergence Diagnostic Plots for Item Parameters under RS Model

Table 3.14 provides the comparison between the generating parameters and the

corresponding estimates in WinBUGS. As can be seen, the parameters were recovered well. The

average absolute bias in the slope estimate across all items was 0.058, and it was 0.034 for the

location parameters across all items and 0.028 for the category threshold parameters across all

categories. Thus, the results indicated that the WinBUGS code for estimating RS model was

valid.
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Table 3.14 Item Parameter Recovery for RS Model in WinBUGS

True Estimates

Item a b a b

1 1.0 -0.5 0.97 -0.53

2 1.0 0 0.97 -0.03

3 1.0 0.5 0.93 0.59

4 1.0 -1.0 0.97 -1.06

5 1.0 1.0 0.96 1.03

6 1.7 -0.5 1.60 -0.53

7 1.7 0 1.69 0.00

8 1.7 0.5 1.66 0.54

9 1.7 -1.0 1.65 -1.07

10 1.7 1.0 1.68 1.01

11 2.4 -0.5 2.29 -0.49

12 2.4 0 2.28 0.02

13 2.4 0.5 2.33 0.51

14 2.4 -1.0 2.44 -1.03

15 2.4 1.0 2.29 1.05
Cl C2 C3 C4
True 15 0.5 -0.5 -1.5
Estimates 1.55 0.51 -0.51 -1.54

2-dim Simple-Structure GR Model

In order to validate the estimation of two-dimensional (2-dim) simple-structure GR
models in WinBUGS, 2-dim simple-structure item response were generated for 2000 simulated
examinees to 15 polytomous items with 5 response categories. The configuration of item
parameters was the same as in Study 1 (see Table 3.2). Ability parameters for the two
dimensions were randomly selected from a bivariate normal (0, 1) with the specified correlation
of 0.6.

The generated data were estimated under a 2-dimensional simple-structure GR model in
WIinBUGS using the code given in Appendix E. The prior distributions for the item parameters
were the same as for the GR model. As for unidimensional IRT models, multidimensional
models have scale or metric indeterminacy problem. To solve this problem, the abilities on two
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dimensions were assigned multivariate normal priors, with means of O and variances of 1.
However, the covariance (or correlation) between the two dimensions was not fixed. Based on
previous research, this inter-dimensional correlation was assigned a normal prior with mean
equal to the true correlation 0.6, and the variance of 0.25 for the current study. This approach to
addressing the metric indeterminacy problem was similar to Yao and Boughton (2007)’s
approach except that they fixed the correlation to the true value. They found that as long as the
fixed correlations were smaller than the true correlations, the resulting estimated item parameters
were close to their true item parameters. However, in real applications, true correlations are
unknown, so Yao and Boughton (2007) suggested that the correlations can be approximated by
the correlations between the subtotal scores for each dimension or the correlations between the
estimated unidimensional scores for each dimension. In this study, the correlation was estimated
rather than fixed.

Two chains of length of 10000 were run and took approximately 6 hours to complete.
WIinBUGS uses Metropolis MCMC algorithm for estimating this complicated model. By default,
this sampling method utilizes the first 4000 iterations to determine suitable proposal distribution
variances in order to obtain an acceptance rate of between 20% and 40%. As the result, the first
5000 iterations in each chain were discarded (burn-in iterations), and the remaining chains were
thinned by taking every other iteration to get a combined posterior sample of 5000. All the
sampling histories, bgr diagrams, and autocorrelation plots suggested the Markov chains
converged to stationary posterior distributions. The values of MC errors indicated the sample
size of 5000 was sufficient for precise posterior inference. Figure 3.8 includes the brg diagrams
and autocorrelation graphs for the slope and first threshold parameters for Item 1 and for the

correlation between two dimensions. Similar results were observed for the other item parameters.
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Figure 3.8 Convergence Diagnostic Plots for Parameters under 2-dim Simple-Structure GR Model

Point estimates of the model parameters and standard errors were computed based on the
posterior sample of 5000 iterations. Table 3.15 presents the comparison between the generating
parameters and the corresponding estimates in WinBUGS for the 2-dim simple-structure GR
model. As can be seen, the parameters were recovered well. The average absolute bias in the
slope estimate across all items was 0.074, and 0.058 for the threshold parameters. In addition, the
correlation parameter between two dimensions was recovered well. The bias was 0.01. The

results indicated that the WinBUGS code for estimating 2-dim simple-structure GR model was

valid.
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Table 3.15 Item Parameter Recovery for 2-dim Simple-Structure GR Model in WinBUGS

True Estimates
Item al a2 bl b2 b3 b4 al a2 bl b2 b3 b4
1 1.0 0 -20 -10 00 10 1.12 - -1.74 -0.85 0.07 095
2 1.7 0 -15 -05 05 15 1.69 - -154 -048 053 161
3 2.4 0 -10 0.0 1.0 20 2.28 - -0.97 0.05 1.07 2.09
4 1.0 0 30 -15 -05 10 0.93 - 317 -153 -051 1.04
5 1.7 0 -10 0.5 15 3.0 1.85 - -0.87 0.50 149 281
6 2.4 0 -20 -10 00 1.0 2.17 - -196 -099 -0.01 1.00
7 1.0 0 -15 -05 05 15 1.03 - 144 -044 061 153
8 1.7 0 -1.0 0.0 1.0 20 1.72 - -1.00 0.03 1.00 1.98
9 0 24 30 -15 -05 10 - 234 -306 -153 -048 1.09
10 0 10 -10 0.5 15 30 - 097 -105 0.48 154 291
11 0o 17 -20 -10 00 10 - 154 -216 -1.07 0.01 1.09
12 0 24 -15 -05 05 15 - 238 -146 -0.45 051 142
13 0 10 -10 0.0 1.0 20 - 099 -095 -0.01 098 1.90
14 0 17 30 -15 -05 1.0 - 166 -3.07 -156 -051 0.95
15 0 24 -10 0.5 15 3.0 - 244 -0.97 0.52 155 3.15

Correlation: true = 0.60 estimate = 0.59

2-dim Complex-Structure GR Model

Responses for 2000 simulated examinees to 15 polytomous items with 5 response
categories were generated based on a 2-dimensional complex-structure GR model. The
configuration of item parameters was the same as for the first case of Condition 3 in Study 1.
Ability parameters for two dimensions were randomly selected from a bivariate normal (0, 1)
with the specified correlation of 0.3.

The generated data were estimated using a 2-dimensional complex-structure GR model in
WIinBUGS. When estimating complex-structure MIRT models using MCMC, it is important to
solve both metric indeterminacy and rotational indeterminacy problems. As for 2-dim simple-

structure model, the metric indeterminacy problem was addressed by assigning the abilities on
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two dimensions means of 0 and variances of 1. The rotational indeterminacy problem only exists
for complex-structure models when one item measures more than one dimension. Analogous to
factor analysis, the dimensions’ orientation are not unique. They can be rotated in the dimension
space without changing the model fit. To solve the rotational indeterminacy, the two ability axes
were constrained to be orthogonal, and for the last 10 items which only measure the dominant
dimension, the slope parameters were fixed at 0 on the nuisance dimension. Thus, the prior of
abilities followed multivariate normal, with means of 0 and a variance-covariance matrix equal
to the identity matrix. Note that the approaches to addressing the indeterminacy problems were
similar to those used by Bolt and Lall (2003). The prior distributions for other item parameters
were the same as for the GR model.

Response data in Condition 3 were generated based on two correlated dimensions
(correlation = 0.3), however, estimation of the complex-structure GR model always imposed an
orthogonal factor solution. Therefore, the slope estimates from WinBUGS could not be
compared directly with the generating slope parameters. Instead, the corresponding generating
slope parameters with respect to an orthogonal solution (correlation = 0) should be derived in
order to compare the estimates from WinBUGS with true values. It should be noted that though
the orthogonal solution affects the direct evaluation of item recovery, it does not affect the
probability of responses to each response categories. Thus the solution for rotational
indeterminacy should not affect the results for the model-fit and model-comparison.

In order to check the item recovery of 2-dim complex-structure GR model in WinBUGS,
a new dataset was generated assuming two uncorrelated or orthogonal dimensions. This dataset
was then estimated in WinBUGS using the same code. Two chains of length of 10000 were run

and took about 10 hours to complete. The first 4000 iterations were used to determine suitable
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proposal distribution variances for Metropolis sampling, and the next 1000 iterations were
discarded for the burn-in phase. The remaining chains were thinned by taking every other
iteration to obtain a combined posterior sample of 5000. All the sampling histories, bgr
diagrams, and autocorrelation plots suggested the Markov chains converged to a stationary
distribution. Figure 3.9 provides the convergence diagnostic graphs for the two slope parameters
as well as the first threshold parameter for Item 1. Similar results were observed for the other
item parameters. The moderate autocorrelations existing for the second slope and the threshold
parameters indicate that the chain may require additional thinning.

Point estimates of the model parameters and standard errors were computed from the
mean and standard deviations of posterior distributions for parameters. Table 3.16 compares the
generating parameters and the estimates in WinBUGS for the 2-dim complex-structure GR
model. The average absolute bias in the slope estimates across all items was 0.067 for dimension
1 and 0.032 for dimension 2. The average absolute bias in the threshold parameter estimates
across all items was 0.049. The results indicate close recovery of the item parameters in
WInBUGS and the code for estimating 2-dimensional complex-structure GR models was

considered valid.
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Figure 3.9 Convergence Diagnostic Plots for Parameters under 2-dim Complex-Structure GR Model
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Table 3.16 Item Parameter Recovery for 2-dim Complex-Structure GR Model in WinBUGS

True Estimates
Item al a2 bl b2 b3 b4 al a2 bl b2 b3 b4
1 10 05 -20 -10 00 1.0 088 049 -215 -107 -0.01 1.07
2 10 05 -15 -05 05 15 1.06 049 -151 -0.46 052 1.44
3 1.0 05 -1.0 0.0 1.0 20 1.02 049 -0.98 0.02 094 2.00
4 10 05 -30 -15 -05 10 103 042 -313 -156 -055 1.00
5 10 05 -1.0 0.5 15 3.0 1.03 055 -0.97 0.45 142 294
6 1.7 0 -20 -10 00 1.0 1.67 - -209 -106 -0.07 0.97
7 1.7 0 -15 -05 05 15 1.72 - -151 -0.52 047 145
8 1.7 0 -1.0 0.0 1.0 20 1.74 - -097 -0.01 096 198
9 1.7 0 -30 -15 -05 10 1.80 - =277 -140 -045 0.98
10 1.7 0 -1.0 0.5 15 3.0 1.59 - -1.00 0.48 154 3.20
11 2.4 0 -20 -10 0.0 1.0 2.45 - -206 -1.02 -001 104
12 2.4 0 -15 -05 05 15 2.54 - -148 -0.53 042 139
13 2.4 0 -1.0 0.0 1.0 20 2.52 - -0.96 0.00 098 1091
14 2.4 0 -30 -15 -05 10 2.31 - =292 -154 -055 0.95
15 2.4 0 -1.0 0.5 15 3.0 2.36 - -1.02 0.48 148 2.99

GR Model for Testlets
In order to validate the estimation of testlet GR models in WinBUGS, responses to a test

with one testlet was generated. As in Study 1, this test included 15 5-category items and Items 6,

7 and 8 were specified as a testlet. The variance of testlet effect o, was fixed to 1.0, and the

item parameters were the same as in Study 1 (see Table 3.2). A modified GR model for testlet
was fit to this generated data in WinBUGS. The prior distributions for the item parameters and

the examinees’ abilities were the same as for GR models. The testlet effect was assigned a

normal prior with mean of 0 and random variance of aj(i). The hyper-parameter aj(i) was given

an inverse chi-square distribution with a degree of freedom 0.5 indicating a lack of information
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about this parameter. This approach to specifying hyper prior of aj(i, was the same as that used

by Bradlow et al. (1999) and Li et al. (2006).

Two chains of length of 6000 were run and took approximately 6 hours to complete. The
first 1000 iterations were discarded for the burn-in phase. Following the burn-in iterations, the
remaining chains were thinned by taking every other iteration to get a combined posterior
distribution sample of 5000. All the sampling histories, bgr diagrams, and autocorrelation plots
suggested the Markov chains converged to a stationary distribution. Figure 3.10 displays the
convergence diagnostic graphs for the slope and first threshold parameters for Item 6 (the first
item in the testlet) and for the variance of the testlet effect. Similar results were observed for the
other item parameters.

Point estimates of the model parameters and standard errors were computed from the
mean and standard deviations for posterior distributions for parameters. Table 3.17 the
generating model parameters and their corresponding estimates in WinBUGS. The average
absolute bias was 0.055 for the slope estimate and 0.048 for the threshold parameters. In
addition, the bias in the estimation of the testlet effect variance was -0.06. Thus, close recovery
of parameters was indicated and the WinBUGS code used to estimate the testlet GR model was

considered valid.
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Figure 3.10 Convergence Diagnostic Plots for Parameters under Testlet GR Model
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Table 3.17 Item Parameter Recovery for Testlet GR Model in WinBUGS

True Estimates
Item | a bl b2 b3 b4 a bl b2 b3 b4
1 1.0 -20 -10 0.0 1.0 095 -201 -101 -0.00 1.11
2 1.0 -15 -05 0.5 1.5 1.00 -144  -047 0.50 1.55
3 1.0 -1.0 0.0 1.0 20 096 -0.93 0.07 1.09 2.16
4 1.0 -30 -15 -05 10 1.14 -270 -136  -0.49 0.96
5 1.0 -1.0 0.5 15 30 098  -1.02 0.52 1.48 3.11
6 1.7 20 -10 0.0 1.0 170  -1.98 -0.94 0.04 1.10
7 1.7 -15 -05 0.5 15 1.67 -1.48  -0.46 0.52 1.51
8 1.7 -1.0 0.0 1.0 20 1.79  -091 0.02 1.07 2.04
9 1.7 30 -15 -05 1.0 177 -3.08 -150 -0.48 1.02
10 1.7  -1.0 0.5 15 3.0 1.69 -1.08 0.45 1.55 3.06
11 24 20 -1.0 0.0 1.0 244  -1.98 -1.0  -0.02 1.04
12 24 -15 -05 0.5 15 254  -139  -0.48 0.48 1.51
13 24  -1.0 0.0 1.0 20 235 -0.98 0.02 1.03 2.13
14 24 30 -15 -05 1.0 227 -308 -151 -0.50 1.06
15 24  -1.0 0.5 1.5 3.0 241  -0.96 0.49 1.49 3.02

Variance of testlet effect: true =1.0 estimate = 0.94

3.2.4 Conduct Model Comparison

For each of 20 generated data in each condition, different models were estimated in WinBUGS,
and three Bayesian model comparison indices (DIC, CPO, and PPMC) were obtained for each
model during the estimation of the models. These values for the different models were then
compared in order to determine which model was preferred.

The estimates of the DIC index for different models were requested within WinBUGS. In
the batch file (see Appendix D), a line “dic.set()" was used to set the DIC index, and another
line "dic.stats()" was used to request the value of DIC. The smaller the value of DIC, the

better the model. It should be noted that the DIC index can only be used to choose a preferred
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model for the overall test. Based on DIC, we can not know which model is preferred for a
specific item.

The computation of the CPO index was implemented by first computing the CPO at the
level of an individual item response. A command line “ inprobl[i, j] <- pow(pl[i, j, y[i,j] ], -1)” was
added to the WIinBUGS code (see Appendix C) to compute the inverse likelihood of the
observed item response based on the posterior model parameter values at a specific iteration. The
mean value of this node “ inproby[i, j]” across the posterior sample is given in the statistics output
for WinBUGS and represents the estimate of CPO value for the response of student i to Item j.
After the CPO;; estimates were known, the CPO value for each item was computed in SAS by
reading in the CPO j; estimates and taking the log of the product of the CPOj; across all
examinees (see Equation 2.36). In addition, a CPO index for the overall test was summarized by
taking the log of the product of the item-level CPO; across all the items. In the current study,
two levels of CPO index were used: the test-level CPO was used to compare the models for the
overall test, and the item-level CPO; were used to choose a preferred model for each item. The
larger the value of the test-level CPO, the better the model fit for the overall test. The larger the
value of the item-level CPO;, the better the model fit for a specific item j.

The different models in each condition were also compared using PPMC. The details
about conducting PPMC were introduced in Section 3.1.5. Recall, 8 different levels of
discrepancy measure were used with PPMC in Study 1. Different from Study 1, however, the
discrepancy measures employed in Study 2 only included the effective measures identified from
Study 1. From the results presented in Chapter 4 for Study 1, two discrepancy measures “Yen’s
Qs” and “global OR” were found to be most effective among all the 8 measures for detecting the

violations of unidimensionality and local independence. Therefore, for Conditions 2-4 in Study
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2, only these two measures were used with PPMC for model comparison purpose. However, for
Condition 1 in which the GR, 1-parameter GR, and RS models were compared, all 8 discrepancy
measures were employed with PPMC since the use of discrepancy measures with these models
was not investigated and therefore unknown.

In order to compare different models using PPMC, the frequency of extreme PPP-values
was computed for each model. For item-level discrepancy measures, there were 15 PPP-values
for 15 items for each replication. How many items from the 15 items had extreme PPP-values (<
0.05 or > 0.95) was treated as the criterion for comparing different models. For pair-wise
measures, there were 105 PPP-values for the 105 item pairs for each replication. How many item
pairs out of these 105 pairs had extreme PPP-values (< 0.05 or > 0.95) was treated as the
criterion to compare different models. When the true model was estimated, it was expected that
no or few extreme PPP-values would be observed. In contrast, when the alternative model was
estimated, more extreme PPP-values would be expected. In addition to PPP-values, graphical
plots based on different models were also compared.

The relative performance of these three indices was compared with respect to the number
of times each index selected the correct model across 20 replications. An effective index should
be able to identify the generating model as the preferred model a large proportion of the time.

The preliminary study conducted in Section 3.2.3 used two chains of different length to
estimate different models. One exception was the RS model for which one long chain (10000
iterations) was run. The results indicated that each chain converged very quickly and item
parameters were well recovered. Due to the intensive computation in WinBUGS, only one chain

was run to estimate the different models and compute the model comparison indices. The length
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of the chain for each model depended on the model as well as the results from the preliminary
study.
Condition 1: GR vs. one-par GR vs. RS models

For each of these three models, one chain of 5000 iterations was run, and the first 4000
was discarded as the burn-in phase and the remaining 1000 iterations were thinned by taking
every other iteration to obtain a posterior sample of size 500. The computation of three model
comparison indices was based on these 500 iterations.
Condition 2: unidimensional GR model vs. 2-dim simple-structure GR model

For 2-dim simple-structure GR model, one chain of 8000 iterations was run, and the first
5000 was discarded as the burn-in phase and the remaining 3000 iterations were thinned by
taking every third iteration to get a posterior sample of size 1000. For the unidimensional GR
model in this condition, one chain of 5000 iterations was run, and the first 3000 was discarded as
the burn-in phase, and the remaining 2000 iterations were thinned by taking every other iteration
to get a posterior sample of size 1000. The computation of three model comparison indices was
based on these 1000 iterations.
Condition 3: unidimensional GR model vs. 2-dim complex-structure GR model

The length of the chain, thinning, and the size of posterior sample for the 2-dim complex-
structure GR model was the same as for the 2-dim simple-structure GR model in Condition 2.
Note that more thinning was conducted than the previous preliminary study in order to further
reduce the autocorrelation among parameters. For the unidimensional GR model, one chain of
5000 iterations was run, and the first 3000 was discarded as the burn-in phase, and the remaining
2000 iterations were thinned by taking every other iteration to get a posterior sample of size

1000.
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Condition 4: unidimensional GR model vs. testlet GR model
For both models, one chain of 5000 iterations was run, and the first 3000 was discarded
as the burn-in phase and the remaining 2000 iterations were thinned by taking every other

iteration to obtain a posterior sample of size 1000.

3.3 REAL DATA APPLICATION

This section examines the use of the proposed Bayesian approaches to model-checking and
model-comparison for a real mathematics performance assessment - the QUASAR Cognitive
Assessment Instrument (QCAI). QUASAR (Quantitative Understanding: Amplifying Student
Achievement and Reasoning) was a national project that sought to demonstrate that it is feasible
to implement instructional programs in the middle-school grades that promote the acquisition of
thinking and reasoning skills in mathematics (Silver, 1991). The QCAI was a performance
assessment developed for the QUASAR project in order to evaluate the impact of innovative
instructional programs on middle school students’ mathematical thinking and reasoning in four
sub-domains: reasoning, problem solving, communication, and understanding of the features that
characterize mathematical concepts and their interrelations (Lane, 1993). The QCAI includes
four test forms (A, B, C, and D), each containing 9 different open-ended tasks scored at 5 levels
(0-4). These four forms were randomly distributed within each sixth- and seventh-grade class in
the schools participating in the QUASAR project (Lane, Stone, Ankenmann & Liu, 1995). This
test was administrated in both the fall and the spring during 1990, 1991, and 1992.

Several researchers have examined the extent to which the QCAI response data met the

assumptions and properties underlying the GR model. Lane et al. (1995) conducted a
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comprehensive study to evaluate the dimensionality, speededness and item parameter invariance
for each of four QCAI forms across three administration occasions (Spring 1991, Fall 1991, and
Spring 1992). They examined the dimensionality through the use of the confirmatory factor
analysis and eigenvalue plots. Factor analysis results indicated that each of the four forms of the
QCAI were essentially unidimensional. However, it was found that tasks with lower factor
loadings in a one-factor model solution reflected tasks requiring some type of explanations, and
the tasks with relatively high loadings generally involved problems requiring students to only
display their mathematics solution strategies. Lane et al. (1995) further explored the use of two-
factor models. A two-factor model was estimated in which one factor included all tasks except
those requiring a nonprocedural explanation and a second factor included only the tasks
requiring a nonprocedural explanation. In addition, a two-factor model was estimated in which
one factor included only the tasks requiring the display of solution strategies and an explanation
and a second factor included tasks requiring only the solution strategies. From the results, there
was no substantial statistical evidence to support the two-factor models, thus providing
additional evidence supporting one dominant dimension underlying the item responses to the
QCAL.

Speededness was investigated for tasks by statistically comparing hierarchical GR models
using two groups of students with different administration time lengths. For two of the eight
tasks examined, only the slope parameter estimates differed, and for another two tasks, both the
slope and threshold parameter estimates differed. The stability of QCAI item parameter estimates
over time was investigated using restricted IRT models within a multiple-group analysis in
MULTILOG. The results indicated that the parameter estimates were stable for the first year, but

not stable for the second year.
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It is interesting to note that in their study, in order to select a more appropriate GR model
for scaling the QCAI data, they compared two hierarchical models, a two-parameter (2P) GR and
a one-parameter (1P) GR that restricted the slope parameters to be equal across items. These
models were compared using the log-likelihood statistics for the two models. A significant
difference between the statistics indicated that the 2P GR model fit the data better than the 1P
model.

Goodness of fit with respect to the QCAI items was investigated by Stone, Ankenmann,
Lane, & Liu (1993) and later reexamined by Stone (2000). Due to imprecise point ability
estimates caused by the small number of tasks on each QCAI form, the researchers utilized
Stone’s item-fit statistic G** to assess the fit of each QCAI task to the GR model. The difference
between these two studies involved different Monte Carlo resampling approaches for hypothesis
testing of the fit statistic.

Stone et al. (1993) used a Monte Carlo resampling method which required estimation of
the GR model for each simulated dataset, thus accounting for uncertainty in both item and ability
parameters in generating the simulated null distribution of the G** statistic. Fit was evaluated for
each of the items on four forms (A-D) across four administration occasions (Fall 1990, Spring
1991, Fall 1991, and Spring 1992) by comparing the G*  statistic with simulated null
distributions. A few flawed items were excluded from the analyses for earlier administration.
The total number of tasks on the four forms was 30 for the first two administrations, and 33 for
the last two administrations (three flawed tasks were revised and included). The results indicated
that 12 tasks fit the data across all four administrations, only 1 task did not fit the data across the

four administrations, 2 tasks did not fit the data across three of the four administrations, 7 tasks
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did not fit the data across two of the four administrations, and 9 tasks did not fit the data for one
of the four administrations.

The resampling method used by Stone et al. (1993) was computationally intensive due to
the requirement that item parameters be estimated for each Monte Carlo sample. To reduce the
computational complexity, Stone (2000) proposed an alternative resampling method that used the
item parameter estimates based on the real data for all Monte Carlo samples. Thus, the step
involving re-estimation of the GR model for each sample was eliminated. Stone (2000) also
proposed a procedure for estimating a scaling factor that could be used to rescale the fit statistic
to approximate the null distribution for hypothesis testing. For this method, only uncertainty in
ability estimation was considered in generating the sampling null distribution of the G*" statistic.
Uncertainty in item parameter estimation was considered by adjusting the derived df by the
number of estimated item parameters. In order to compare this alternative resampling method
with the previous method, the fit of 62 QCAI items from two of the four administrations used in
Stone et al. (1993) were reanalyzed using this alternative resampling and the results were
compared with those from the previous study. Although general agreement in terms of the fit of
these QCAI items from the two studies was high, there was some disagreement between two
studies. The disagreement existed primarily for items found to be significantly “misfitting” in
Stone et al. (1993) but not significantly “misfitting” using the alternative resampling method.

In the current study, the PPMC method was used to re-examine the fit of the QCAI to the
two-parameter GR model in terms of unidimensionality, local independence, and item-fit. All 8
discrepancy measures used in Simulation Study 1 were used with PPMC for this real application,
and the results were compared with those from the previous studies. In addition, the 1P GR and

2P GR models were re-compared using the proposed Bayesian model-comparison tools to see if
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the 2P GR model fit the QCAI data better as found in Lane et al. (1995). Moreover, a 2-
dimensional complex-structure GR model was estimated in order to see if a complex
multidimensional model was preferred over the simple unidimensional GR model. In this
multidimensional model, the first dimension included all items, and the second dimension
included only the items requiring an explanation. It should be noted that only Yen’s Qg3 statistic
and the global OR measure were used with PPMC for the 2-dimensional complex-structure
model since these two measures were found to be the most effective measures based on the
simulation studies.

For this real data application, three QCAI forms with 8 items each were reanalyzed: Form
A administrated in Spring 1991 (AS91), Form A given in Spring 1992 (AS92), and Form B
given in Spring 1992 (BS92). The sample sizes were 399, 459, and 446 for the AS91, AS92, and
BS92 forms, respectively.

Table 3.18 compares the decisions regarding item fit for the items on these three forms
from Stone et al. (1993) and Stone (2000). All decisions regarding item fit were made at the o =
0.05 level of significance. The misfitting items were indicated by asterisks. As seen in this table,
in Stone et al. (1993), there were 4 misfitting items for the AS91 test form, 2 misfitting items for
the AS92 form, and 5 misfitting items for the BS92 form. However, two of these items were not
identified as misfitting by Stone (2000). The fit of these items was re-examined using the PPMC

method, and the results were compared with the results in this table.

134



Table 3.18 Misfitting Items Identified in Stone et al. (1993) and Stone (2000)

AS91 AS92 BS92
Stone etal, | Stone, Stone etal, | Stone, Stone etal, | Stone,
Item 1993 2000 Item 1993 2000 | Item 1993 2000
1 * * 1 1 * *
2 2 * 2 * *
3 * 3 * * 3 * *
4 4 4
5 * * 5 5
6 6 6 * *
7 7 7 * *
8 * * 8 8

When a 2-dimensional complex-structure GR model was used to analyze the AS91 or
AS92 datasets, four explanation items (Iltems 1, 5, 7, and 8) loaded on the two dimensions, and
all other items only loaded on the first dimension. For the BS92 dataset, three explanation items

(Items 1, 5, and 8) loaded on both dimensions, and all other items only loaded on the first

dimension.

With regard to the implementation of MCMC and PPMC in WinBUGS, a chain of 15000
iterations was run to estimate, test and compare the fit of the two-parameter GR model, one-
parameter GR model, and the 2-dimensional complex-structure GR model. The first 10000
iterations were discarded for the burn-in phase and the remaining 5000 iterations were thinned by
selecting every 5™ iteration to obtain posterior distributions based on 1000 iterations. The

implementation of PPMC and the computation of model-comparison indices were based on this

posterior sample.
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40 RESULTS

This chapter presents the results from two simulation studies and one real application study in
three separate sections. Simulation Study 1 aimed to explore the performance of the PPMC
method in detecting aspects of lack of fit for unidimensional GR models using the proposed
discrepancy measures. The Type-I error rates or empirical power rates for these discrepancy
measures with PPMC are presented in the first section. The second section includes the results
from Simulation Study 2 in which the relative effectiveness of three Bayesian model-comparison
methods (DIC, CPO, and PPMC) were compared. The third section presents results evaluating
the fit of the unidimensional GR model item responses from the QCAI performance assessment

using the PPMC method and model-comparison indices.

4.1 RESULTS FROM SIMULATION STUDY 1

In order to investigate the performance of the PPMC method in evaluating different assumptions
underlying the unidimensional GR model, five conditions were considered in Study 1 (see Table
3.1). Condition 1 represents the null condition in which both the generating model (Mg) and
analysis model (Ma) were the unidimensional GR model, and thus Type-I error rates for PPMC
were investigated. In Conditions 2 to 5, different types of misfit were simulated based on

different GR models, and empirical power rates for PPMC in detecting different misfit were
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examined. The results from Study 1 are organized in the order of the conditions. For each
condition, both PPP-values and graphical plots for each of the 8 discrepancy measures used with

PPMC are summarized and reported.

4.1.1 Item Parameter Recovery

Table 4.1 RMSD for Item Parameter Recovery in WinBUGS for GR Model

Item a bl b2 b3 b4
1 0.05 0.09 0.06 0.05 0.08
2 0.06 0.08 0.05 0.06 0.12
3 0.06 0.08 0.06 0.08 0.14
4 0.04 0.14 0.10 0.07 0.05
5 0.05 0.07 0.06 0.11 0.21
6 0.08 0.10 0.05 0.04 0.06
7 0.07 0.06 0.04 0.05 0.10
8 0.09 0.05 0.04 0.05 0.12
9 0.06 0.11 0.06 0.05 0.05
10 0.09 0.05 0.05 0.07 0.19
11 0.09 0.08 0.04 0.03 0.05
12 0.12 0.07 0.04 0.03 0.06
13 0.10 0.04 0.03 0.03 0.08
14 0.09 0.13 0.06 0.04 0.04
15 0.10 0.04 0.04 0.07 0.14

RMSD(a)=0.08 RMSD(b)=0.07

PPMC is based on the posterior estimation of model parameters, and the quality of model
parameter recovery using MCMC estimation is an important factor in determining whether
PPMC could be implemented successfully. As a result, parameter recovery was examined first.
Table 4.1 represents the RMSD for each item parameter across the 20 replications. The average

RMSD across all items was 0.08 for slope parameter and 0.07 for threshold parameters. These
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results indicate one chain of 4000 and a posterior sample of 500 was adequate for the accuracy of

estimation of the unidimensional GR model using MCMC within WinBUGS.

4.1.2 Condition 1 (Ma = Mg = unidimensional GR)

When the estimated model was the same as the generating model, the proportion of 20
replications with extreme PPP-values (< 0.05 or > 0.95) for each discrepancy measure provides
evidence with regard to Type-I error rates, or how often misfit was wrongly detected by the
PPMC method. If the PPP-values were used in the same way as classical p-values, the nominal
Type | error rate would be 0.10. Table 4.2 reports the overall median PPP-value and average
Type-1 error rate for each measure. The values were pooled across all possible items (for item-
level measures) or item pairs (for pair-wise measures) and also across the 20 replications. The
underlying rationale is that the generated data in Condition 1 were unidimensional GR data and
all items (item-pairs) had the same dimensional structure. Thus, they were exchangeable in terms
of dimensionality.

Specifically, for the “test-level” measure, the median PPP-value was the median of PPP-
values across the 20 replications, and the Type-I error rate was reflected by the proportion of 20
replications with extreme PPP-values. For each item-level discrepancy measure, each of the 15
items had a median PPP-value and a Type-I error rate was computed across the 20 replications.
The overall median PPP-value was the median value of these median PPP-values of thel5 items,
and the overall Type-I error rate was the average of the Type-I error rates over 15 items.
Following the same logic, for each pair-wise measure, each of 105 item pairs had a median PPP-

value and a Type-I error rate across the 20 replications. The overall median PPP-value was the
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median of the median PPP-values for 105 item pairs, and the overall Type-I error rate was the

average of the Type-I error rates over these 105 item pairs.

Table 4.2 Median PPP-values and Average Proportions of Replications with Extreme PPP-values
(< 0.05 or >0.95) when Ma=Mg=unidimensional GR

Discrepancy Measure Median PPP Average
Proportion
Test-Level Test Score Distribution 0.51 0.10
Item Score Distribution 0.50 0.00
Item-Total Score Correlation 0.48 0.00
Item-Level
Yen’s Q1 0.52 0.00
Stone’s Fit Statistic 0.50 0.01
Global OR 0.49 0.05
Pair-wise Yen’s Q3 0.49 0.06
Item Covariance Residual 0.52 0.01

As shown in Table 4.2, the median PPP-values for all the measures were around 0.50
which was expected under the null condition. Thus, the realized (observed) values of the
discrepancy measure were not consistently larger or smaller than the posterior predictive values
(i.e., no systematic difference between realized and predictive values), indicating no departure of
model-data fit. All the proportions (except the test-level measure) were below 0.10, suggesting
that the use of PPP-values in hypothesis testing would lead to highly conservative tests (i.e., they
tend not to show misfit of a correct model too often). The two pair-wise measures (global OR
and Yen’s Qs) appeared to have empirical type-I error rates most close to the nominal rate,
though still quite lower.

The conservativeness of the discrepancy measures investigated in this study was further
explored by examining the distribution of PPP-values. As reviewed in Chapter 2, the departure of
the distribution of PPP-values from a uniform distribution under the null condition would result

in a conservative test when PPP-values are used in a hypothesis testing framework. The closer to
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uniform the distribution, the closer to the nominal level the Type-I error rate would be (Levy,

2006).
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Figure 4.1 Distributions of PPP-values for Each Discrepancy Measures under the Null Condition

Figure 4.1 presents the distributions of the PPP-values for each discrepancy measure
across all possible items or item pairs and across 20 replications as well. The distributions were
drawn without distinguishing different items or item pairs because of the exchangeability
assumption. As observed in this figure, all distributions of PPP-values were centered at around
0.5. However, the shape and the variability of the distributions differed for the different

measures. The distribution of the chi-square used to measure the difference between observed
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and expected item score distributions was least variable around 0.5. The item-total score
correlation, Yen’s Q; item-fit statistic, and item covariance residual exhibited slightly more

variation. Stone’s item-fit statistic showed more variability. Two pair-wise measures (global OR,
Yen’s Qs) exhibited most variability. It is interesting to note the chi-square measure y used to

measure the difference between observed and model-predicted test score distributions also
exhibited more variability. Although it is not entirely clear why the test-level and item-level
measures differed in variability, this test-level measure was observed to be more variable than
the item-level measures.

From Figure 4.1, the distributions of PPP-values for the two pair-wise measures — global
OR and Yen’s Qs and the test score distribution were more close to uniform distributions as
compared to the other discrepancy measures. As a result, they exhibit empirical Type | error
rates closer to the nominal rate of 0.10 than others as shown in Table 4.2. These findings are
consistent with previous research (Levy, 2006; Meng, 1994; Robins et al., 2000; Rubin, 1996).
They showed that different from classical p-values, PPP-values are not uniformly distributed
under null conditions, even asymptotically. Though the distribution may be centered at 0.5 it is
less dispersed than a uniform distribution. Thus, the PPP-values under the correct model tend to
be closer to 0.5 more often than would be expected under a uniform distribution. However, Levy
(2006) also showed that some effective measures approximated uniform distributions and
approximated nominal level Type-I errors.

As discussed previously, graphical plots are also often used to provide diagnostic
evidence about misfit. In general, when the discrepancy measure only depends on the data, the
position of the observed value in the distribution of posterior predictive values is examined.

When the measure depends on both the data and model parameters, pairs of realized vs.
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predictive discrepancies are plotted in a scatter plot. For the null condition of this study, several
different plots are shown for three levels of discrepancy measures. These plots served as
reference or baseline plots for the misfitting conditions (Conditions 2-5).

Test-Level Measure

Figure 4.2 shows two diagnostic plots based on the “observed test score distribution” for
one dataset (replication) generated from the unidimensional GR model and estimated using the
same model. The first plot is the observed score distribution versus the 90% posterior predictive
(PP) distributions (between 5% and 95%) of total test scores. As seen from this plot, the

observed score distribution is within the PP interval. The second plot shows the realized and

predictive values of the measure y?, summarizing the discrepancy between the observed and
predictive test score distributions. In this plot, the x-axis represents the predictive > values and

the y-axis represents the realized y? values. As can be observed, the realized »? values were
not consistently larger or smaller than the predictive values. Both plots provide graphical
evidence about model-fit. In addition, the corresponding PPP-value was 0.63 for this data set,
also indicating a good fit between model and data.

(1) Observed vs. 90% posterior predictive test score distributions (2) Scatter plot of realized vs. predictive values of ;2
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Figure 4.2 Diagnostic Plots based on Test Score Distribution when Ma=Mg=unidimensional GR
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Item-Level Measures

Table 4.3 presents the median PPP-values and Type-l error rate of the item-level
discrepancy measures for each item. As can been from this table, the median PPP-values were
around 0.50, and the Type-I error rates were 0.00, indicating high conservativeness for the four
item-level measures. It should be noted for each of the two item-fit measures (Yen’s and
Stone’s), both Pearson’s chi-square and likelihood ratio statistics were examined. Since both
statistics had very similar results, only the results for Pearson’s chi-square statistic are reported.

Table 4.3 Median PPP-values and Proportions of Replications with Extreme PPP-values for Item-Level
Meausres when Ma=Mg=unidimensional GR

ltermn Item Score Distribution Item-Total Correlation Yen’s Q; Stone’ Item-Fit
Median PPP | Type-I Median PPP | Type-I Median PPP | Type-I Median PPP | Type-I
1 0.51 0.00 0.46 0.00 0.52 0.00 0.49 0.00
2 0.51 0.00 0.45 0.00 0.54 0.00 0.54 0.00
3 0.50 0.00 0.48 0.00 0.52 0.00 0.56 0.05
4 0.50 0.00 0.48 0.00 0.51 0.00 0.49 0.00
5 0.50 0.00 0.49 0.00 0.47 0.00 0.47 0.00
6 0.48 0.00 0.49 0.00 0.48 0.00 0.57 0.00
7 0.50 0.00 0.49 0.00 0.50 0.00 0.50 0.00
8 0.50 0.00 0.45 0.00 0.48 0.00 0.48 0.00
9 0.50 0.00 0.48 0.00 0.56 0.00 0.55 0.00
10 0.50 0.00 0.50 0.00 0.52 0.00 0.50 0.00
11 0.50 0.00 0.46 0.00 0.51 0.00 0.59 0.00
12 0.51 0.00 0.51 0.00 0.53 0.00 0.52 0.05
13 0.50 0.00 0.46 0.00 0.54 0.00 0.58 0.00
14 0.50 0.00 0.52 0.00 0.53 0.00 0.46 0.00
15 0.50 0.00 0.50 0.00 0.50 0.00 0.43 0.05

Figure 4.3 illustrates the observed item-total score correlations, corresponding 90%
posterior predictive intervals and the median posterior correlations for each of 15 items based on
one replication. A clear pattern in this plot is that the items fell into three groups in terms of the
value of item-total correlation. This was expected since the first five items had the same true
slope value of 1, Items 6-10 had the same true slope of 1.7, and the last five items had slope of
2.4. Item-total score correlations reflect the item discriminations and are related to the slope

parameters. The observed correlation (solid dot) for each item approximated the median
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posterior correlation, indicative of a good fit of the unidimensional GR model to the data for this

discrepancy measure.
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Unlike the item-total score correlation measure which is dependent only on the data, the

other three item-level measures depend on both the data and model parameters. Figure 4.4 shows

the scatter plots of realized vs. posterior predictive values for the “item-level chi-square
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measure” (measuring the discrepancies between observed and predictive item score
distributions) and “Yen’s Q; item-fit statistic”. The PPP-values for these two measures were 0.51
and 0.54, respectively. As can be seen, there was no systematic difference between the realized
and posterior predictive values. The scatter plot for “Stone’s item-fit measure” was similar to
these two plots and is not provided here. It should be noted that the plots discussed above were
drawn from one dataset (i.e., one replication). Similar plots were observed for the other 19
datasets.

Pair-Wise Measures

For each pair-wise measure, there are 105 PPP-values for each replication. In order to
summarize the results across the 20 replications more efficiently, pie plots similar to those used
by Sinharay and his colleague (2006) were employed. Figure 4.5 displays the median PPP-values
(Left) and Type-I error rates (Right) for each item pair across the 20 replications for the three
pair-wise measures. In the left plot, there is one pie for each item pair, and the proportion of a
circle that is filled is equal to the magnitude of corresponding median PPP-value. The right plot
provides information related to how the discrepancy measure detected misfit for each item pair.
The filled proportion of a pie represents the proportion of 20 replications with extreme PPP-
values (i.e., Type-I error rate) for that item pair. There is a clear pattern in this figure: under the
null condition, the median PPP-values were all around 0.5 (left plot), and the proportion of
extreme PPP-values were small (right plot). In addition, a larger number of pie plots for the “item
covariance residual” measure were not filled, indicating that this measure was more
conservative than the other two measures. The same phenomenon was found previously when

comparing the overall Type-I error rates for these three pair-wise measures in Table 4.2.
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Figure 4.5 Display of Median PPP-values (Left) and Proportion of 20 Replications with Extreme PPP-values

(Right) for Global OR (Row1), Yen’s Qs (Row?2), and Item Covariance Residual (Row3) when Ma:

unidimensional GR
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It is also useful to examine the pattern for a single dataset rather than a summary across
20 datasets. Figure 4.6 shows the PPP-values of Yen’s Qs and Item Covariance Residual for
each item pair based on one of the 20 replications. The global OR displayed a similar pattern as
Yen’s Qs and is not shown here. As observed in these two plots, most of the PPP-values were not
extreme, providing evidence that the GR model fit the data. It is interesting to note that the PPP-
values of Yen’s Qs were more variable than those of Item Covariance Residual. This was
expected based on the difference between their PPP-values distributions. As observed in Figure
4.1, the distributions of global OR and Yen’s Qs measures were more variable and closer to

uniform distributions than the Item Covariance Residual. Similar plots were found for the other

19 datasets.
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Figure 4.6 Display of PPP-values (based on a single dataset) for Yen’s Q; (Left), and Item Covariance
Residual (Right) when Ma=Mg= unidimensional GR

Figure 4.7 plots the observed global ORs involving the first item, 90% PP interval, and
PP medians for one replication under the null condition. No observed global ORs (solid triangle)
fall outside the PP interval, suggesting the model fits the data. Similar findings were obtained for
other replications and other items. Figure 4.8 provides the scatter plots of the realized vs.

posterior predictive values for Yen’s Qs and Item Covariance Residual measures for one item
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pair based on a single data. As can be seen, there were no systematic differences between the
realized and posterior predictive values. Similar plots were obtained for the other 19 datasets and

for other item pairs and are not presented here.
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Figure 4.7 Observed vs. 90% Posterior Predictive Interval of Global OR for Item 1 with Other
Items (for a single replication) when Ma=Mg= unidimensional GR

0.10] 0204

0.05-] 015
&
S
~ -
< ° s
el o 3
pd Qo

G, 0007 S 010
[~
2 2
° 1]
. =
. S

-0.05- 0057

e DO o
_0.10—/,' 0.007
T T T T T — T T T T
0.10 0.05 0.00 0.05 0.10 000 005 0.10 015 020
rep_Q3(1,7) rep_residcov(1,15)

Figure 4.8 Scatter plots of Realized vs. Posterior Predictive Values of Yen’s Qz and Item
Covariance Residual (for a single data) when Ma=Mg= unidimensional GR
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4.1.3 Condition 2 (Mg = 2-dim simple-structure GR , Ma = 1-dim GR)

In this condition, the generated data reflected two dimensions (the first 8 items in Dim1 and the
last 7 items in Dim2), but the estimated model was a unidimensional model. The ability of the
PPMC method in detecting the violation of unidimensionality was explored by using all 8
proposed measures. Two cases were considered in this condition, one with low inter-dimensional
correlation (p=0.3), and another with a more typical moderate inter-dimensional correlation

(p=0.6).

Table 4.4 Overall Median PPP-values and Average Proportions of Replications with Extreme PPP-values for
all Measures — Condition 2

Case 1 (p=0.3) Case 2 (p=0.6)
Measure Type - -
Median PPP Power | Median PPP | Power
Test-Level | Test score dist - 0.06 0.25 0.41 0.10
ltem score dist Dim1l 0.50 0.00 0.50 0.00
Dim2 0.50 0.00 0.50 0.00
ltem-test corr Diml 1.00 0.91 0.28 0.09
ltem-Level Dimz 0.00 0.99 0.66 0.03
Yen's Q, D!ml 0.50 0.00 0.52 0.00
Dim2 0.50 0.00 0.53 0.00
e Dim1 0.50 0.00 0.51 0.01
Stone’s fit stat Dim2 0.50 0.01 0.53 0.00
(Dim1, Dim1) 0.07 0.45 0.01 0.74
Global OR (Dim1, Dim2) 0.99 0.79 0.98 0.68
(Dim2, Dim2) 0.00 0.87 0.00 0.80
(Dim1, Dim1) 0.01 0.74 0.00 0.96
Pair-Wise | Yen’s Qs (Dim1, Dim2) 1.00 0.98 1.00 0.97
(Dim2, Dim2) 0.00 0.95 0.00 0.97
(Dim1, Dim1) 0.08 0.44 0.00 0.87
Item cov resid (Dim1, Dim2) 0.00 0.93 0.01 0.83
(Dim2, Dim2) 0.00 0.86 0.00 0.92

Table 4.4 presents the pooled median PPP-values and the average proportion of extreme
PPP-values across the 20 replications (i.e., empirical power) for each discrepancy measure and
for the two correlation cases. Under the assumption that the items in the same dimension were
interchangeable, there were two types of items — items in Dim1 and items in Dim2 for each item-

level measure. Therefore, the median PPP-values and the proportions were pooled across items
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in each dimension. For the pair-wise measures, there were three types of item pairs: item pairs
from the first dimension (Dim1, Dim1), item pairs from the second dimension (Dim2, Dim2),
and item pairs from different dimensions (Dim1, Dim2). The PPP-values were pooled from the
same type of item pairs across the 20 replications.

As observed from this table, the three pair-wise measures were sufficiently powerful in
detecting the misfit of the unidimensional GR model to the two-dimensional data for both cases.
Median PPP-values were extreme and the empirical power rates were high. Yen’s Qs index
performed best in terms of empirical power, and the item covariance residual measure performed
better than the global OR. It is worthy to note that the global OR and Yen’s Qs measures are both
directional measures, and their PPP-values reflect the relationship between realized and posterior
predictive discrepancies. For example, for item pairs from the same dimension, the median PPP-
values for these two measures were close to 0. This indicated that the observed association
between these item pairs was systematically higher than predicted under the unidimensional GR
model. Thus the unidimensional model underestimated item relationships. For two items from
the different dimensions, the median PPP-values were close to 1, indicating that the observed
association was consistently lower than expected under the GR model, and the model
overestimated their relationship. The absolute item covariance residual does not have this
feature.

As the inter-dimensional correlation increased from 0.3 to 0.6, these three pair-wise
measures were consistently powerful in detecting the misfit. The results in Table 4.5 also
illustrate that the test-level and item-level measures did not appear as useful as the pair-wise
measures in detecting multidimensionality among the data where p=0.6. The median PPP-values

were not extreme and the proportions of extreme PPP-values (i.e., empirical power) were very
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small. However, for p=0.3, the test-level measure and the item-total score correlation measure
exhibited increased power. Specifically, when the correlation decreased from 0.6 to 0.3, the
median PPP-value for the test-level chi-square measure decreased from 0.41 to 0.06, and the
corresponding power rate increased from 0.10 to 0.25. For the item-total correlation, the overall
median PPP value became extreme, increasing from 0.28 to 1.00 for the items in Diml, and
decreasing from 0.66 to 0.00 for the items in Dim2. The average power rate increased from 0.09
to 0.91 for Dim1 items, and from 0.03 to 0.99 for Dim2 items. The median PPP value of 1.00
indicated the observed item-total correlations were consistently lower than the predictive values
for the items in Dim1, suggesting the 1-dim GR model over-estimated this measure. On the other
hand, the median PPP value of 0.00 indicated the observed item-total correlations were
consistently higher than the predictive values for the items in Dim2, suggesting the 1-dim GR
model under-estimated this measure. Since the performance of the item-total score correlation
changed dramatically when the inter-correlation decreased from 0.6 to 0.3, further study is
needed in order to explore the impact of higher correlations among dimensions.

As for Condition 1, graphical plots were provided to show the graphical evidence for the
misfit of the 1-dim GR model to the 2-dim data. It should be noted that only the plots related to
the effective measures are presented since the plots for the ineffective measures were similar to

the corresponding plots under the null condition (Condition 1).
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Figure 4.9 Display of Median PPP-values (Left) and Proportion of 20 Replications with Extreme PPP-values

(Right) for Global OR (Rowl), Yen’s Q; (Row2), and Item Covariance Residual (Row3) — Condition 2 (p
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Figure 4.9 displays the median PPP-values (Left) and empirical power (Right) of the
three pair-wise measures for each item pair across the 20 replications for Case 2. The large
number of the extreme PPP-values in this figure clearly indicates that the unidimensional GR
model did not fit the data. Moreover, the pattern in the plots for the two directional measures
(global ORs and Yen’s Qg3) differed clearly from the pattern under the null condition: all the 15
items fell into two clusters - Items 1-8 formed one cluster, and Items 9-15 formed another
cluster. This pattern matched the factor structure of the generated data. The pie plots for Case 1

were similar to the plots for Case 2 and are not shown here.
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Figure 4.10 Display of PPP-values (based on a single dataset) for Yen’s Q3 (Left), and Item Covariance
Residual (Right) - Condition 2 (p=0.6)

Figure 4.10 shows the PPP-values for Yen’s Qs and Item Covariance Residual for each
item pair based on one replication when the correlation was 0.6. Results for the global OR
displayed a similar pattern as Yen’s Qs and thus are not shown here. As observed in these two
plots, the pattern for a single dataset was similar to the pattern based on the 20 replications (see
Figure 4.9): most of the PPP-values were extreme, providing evidence of misfit of the

unidimensional GR model to the data.
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Figure 4.11 Scatter plots of Realized vs. Posterior Predictive Values of Yen’s Q3 (top), and Item
Covariance Residual (bottom) (for a single data) — Condition 2 / Case 2 (p=0.6)

Figure 4.11 displays the comparison of realized and PP values of Yen’s Qs and the item
covariance residual measure for different types of item pairs based on a single replication when
p=0.6. As can been seen from the top plots, for items in the same dimension (Items 1, 7 or Items
14, 15), the realized values of Q3 were mostly larger than the predictive values since the scatter
plot is above the diagonal line. In contrast, for items from the different dimensions (Items 1, 15),
the realized values of Qs were lower than the predictive values. Unlike Yen’s Qs, the item
covariance residual measure has no direction. As observed from the bottom plots, the realized
values of residuals were all systematically larger than the predictive residuals under the

unidimensional GR model. These results provided evidence of model misfit.
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Figure 4.12 Observed vs. 90% Posterior Predictive Interval of Global OR for Item 1 with
Other Items (for a single replication) — Condition 2 / Case 2 (p=0.6)

The global OR measure for the first item (90% PP interval, and PP medians) are shown in
Figure 4.12. As seen from this figure, the observed global ORs (solid triangle) fall outside or
above the PP interval for Item1 paired with Items 2-8 (all in Dim1 items). Whereas, the observed
ORs fall outside or blow the PP interval for Item1 paired with the items in Dim2 (Iltems 9-15).
The pattern in this figure indicated that the observed global OR were mostly larger than the
predictive values for the item pairs from the same dimension, but smaller for the item pairs from
the different dimensions.

The above plots for the three pair-wise measures illustrate results for some item pairs and
for one replication. Similar results were found for other item pairs and for the other 19
replications. Overall, the results above indicated that the PPMC method using three pair-wise
measures detected a lack of fit of the unidimensional GR model to the two-dimensional test data.
In addition, the directional measures, global OR and Yen’s Qg, provided plots which indicated

how the items may be grouped dimensionally.
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Figure 4.13 Observed vs. 90% Posterior Predictive Interval of Item-Total Score Correlation (Left) and
Histogram of Predicted SDs (for a single replication) for Case 1 (top) and Case 2 (bottom) — Condition 2

Recall that the item-total score correlation measure was found to be powerful when the
inter-dimensional correlation was 0.3 (Case 1), but exhibited lower power when the correlation
increased to 0.6 (Case 2). This finding is clearly illustrated in Figure 4.13 which includes two
types of plots for each case. The left plot presents the observed item-total correlation and 90%
PP interval for each item based on a single replication. The right plot shows the position of the
standard deviation (SD) of the observed item-total correlations for all items in the distribution of
the SDs of the predictive item-total correlations. As can been seen, when the correlation was 0.3,
the observed correlation fell outside or at the lower end of the PP intervals for the items in Dim1,

and fell outside or at the upper end of the intervals for the items in Dim2. The observed SD was
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located to the far left in the histogram of the predictive SDs, indicating that the observed item-
total correlations were less variable than the predictive correlations. However, when the
correlation increased to 0.6, there was not much difference between observed and predictive
values. As can been from the bottom plots, the observed correlations approximated the medians

of the predictive correlations, and the observed SD is in the middle of the histogram.

(1) Observed vs. 90% posterior predictive test score distributions  (2) Scatter plot of realized vs. predictive values of_;.«lf
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Figure 4.14 Diagnostic Plots based on Test Score Distribution (for a single data) — Condition2 /Case 1

As discussed previously, the test-level measure demonstrated adequate power in
detecting the misfit of the GR model to this two-dimensional data when the correlation was 0.3.
This finding is illustrated in Figure 4.14 which includes two diagnostic plots based on the total
test score distribution for one replication (the PPP-value for this replication was 0.03). The left
one displays moderate power since the observed frequencies lie outside the 90% PP intervals for

several but not a majority of total test score values. The right plot demonstrates more power
since most of the realized y? values were larger than predicted values. Compared with Figure

4.2 which includes the same plots under the null condition, Figure 4.14 indicates that the
unidimensional GR model can not adequately explain the observed test score distribution given

this 2-dim empirical simple-structure data.
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4.1.4 Condition 3 (Mg = 2-dim complex-structure GR , Ma = 1-dim GR)

In this condition, the generated data were two-dimensional with complex-structure (Items 1-5

measured a dominant dimension as well as a nuisance dimension, and Items 6-15 only measured

the dominant dimension), and a unidimensional model was estimated. The ability of the PPMC

method to detect a violation of local independence was explored by using all the 8 proposed

measures. Two cases were considered in this condition according to the ratio of a, (the slope of

the nuisance dimension) to a; (the slope of the dominant dimension) for the first 5 items. One

ratio was set to 0.5 and another ratio was 1.0, reflecting mild and large dependence between two

dimensions, respectively.

Table 4.5 Overall Median PPP-values and Average Proportion of 20 Replications with Extreme PPP-values
for all Measures — Condition 3

Case 1 (mild dependence) | Case 2 (large dependence)
Measure Type - -
Median PPP Power Median PPP Power
Test-Level | Test score dist - 0.29 0.10 0.25 0.10
ltem score dist 2dim 0.50 0.00 0.50 0.00
1dim 0.50 0.00 0.50 0.00
ltem-test corr 2dim 0.33 0.00 0.17 0.00
1dim 0.57 0.00 0.65 0.00
Item-Level -

Yen's Q, 2d!m 0.53 0.00 0.55 0.00
1dim 0.51 0.00 0.52 0.00
ye g 2dim 0.56 0.01 0.51 0.03
Stone’s fit stat 1dim 0.52 0.02 0.49 0.01
(2dim, 2dim) 0.18 0.20 0.00 0.94
Global OR (2dim, 1dim) 0.60 0.06 0.76 0.13
(1dim, 1dim) 0.44 0.05 0.42 0.06
(2dim, 2dim) 0.02 0.66 0.00 1.00
Pair-Wise | Yen’s Qs (2dim, 1dim) 0.65 0.09 0.94 0.45
(1dim, 1dim) 0.44 0.06 0.28 0.10
(2dim, 2dim) 0.15 0.18 0.00 1.00
Item cov resid (2dim, 1dim) 0.53 0.00 0.38 0.01
(1dim, 1dim) 0.52 0.00 0.50 0.00

Table 4.5 presents the pooled median PPP-values and the average proportions of extreme

PPP-values across the 20 replications (i.e., empirical power) for each discrepancy measure and

for the two cases. Based on the dimension structure, Items 1-5 were treated as interchangeable,
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and Items 6-15 were assumed interchangeable. Thus, the items were classified into two types:
“2dim” in the table represents the items measuring two dimensions (Items 1-5); “1dim” reflects
the items measuring the dominant dimension (ltems 6-15). For each item-level measure, the
median PPP-value and empirical power rate were pooled across items of the same type. In
addition, there were three types of item pairs: item pairs measuring two dimensions (2dim,
2dim), item pairs measuring the dominant dimension (1dim, 1dim), and pairs reflecting the
“2dim” and “1dim” items (2dim, 1dim). The results for the pair-wise measures were pooled from
the same type of item pairs and from the 20 replications as well.

As can be seen from Table 4.5, the test-level and item-level measures were not effective
in detecting the local dependence among the first 5 items since the power rates were quite small.
However, the three pair-wise measures performed effectively. The global OR and item
covariance residual measures exhibited low power (0.20 and 0.18, respectively), and Yen’s Qs
showed moderate power (0.66) in detecting the mild local dependence (Case 1) among the first 5
items (“2dim” items). The median PPP-value of Yen’s Qs for all the pairs among Items 1-5
(2dim, 2dim) was 0.02. This approximately 0 value indicated that most of the realized Qs values
were consistently larger than the predictive values under the unidimensional GR model, further
indicating that the GR model underestimated the association among the first 5 items. In other
words, the first 5 items had more dependence than expected under the unidimensional model.
Though the global OR and item covariance residual measures did not exhibit adequate power,
their median PPP-values for the (2dim, 2dim) pairs were far from 0.50 (0.18 and 0.15,
respectively), providing some evidence for model misfit.

As the strength of dependence on the nuisance dimension increased (Case 2), the

performance of the pair-wise measures with PPMC improved as would be expected. For the

159



large dependence case in Table 4.5, both Yen’s Qs index and the item covariance residual
measure had full power (1.00) in detecting the large local dependence among the first five items.
Their median PPP-values were 0.00, implying that all the realized values were larger than the
predictive values. In addition, the global OR measure exhibited sufficient power (0.94) for this
case, and the median PPP-value was also close to 0. Overall, all the three pair-wise measures
were effective in detecting the large dependence among the first five items, but for the mild
dependence, only Yen’s Qs appeared to display adequate power.

It is worthy to note that as the degree of dependence increased, Yen’s Qs measure also
had the potential to detect the associations between the modeled dependent and independent
items (2dim, 1dim). For Case 2, Yen’s Q3 showed moderate power (0.45) for the (2dim, 1dim)
pairs, and the corresponding median PPP-value was 0.94 for Yen’s Qs index. This high value
indicated that most of the realized Q3 values for the (2dim, 1dim) pairs were consistently smaller
than the predictive values under the unidimensional GR model.

Unlike the pair-wise measures, the performances for the test-level and item-level
measures did not improve significantly with increased dependence (Casel vs. Case 2). However,
it is interesting to note that though the item-total score correlation was not as effective as the
pair-wise measures in detecting the local dependence among the first five items, the decrease in
the median PPP-values from 0.33 to 0.17 from Case 1 to Case 2 suggested a potential to detect
lack of fit with increased dependence. The low value 0.17 indicated that the observed item-test
score correlations for the first five items were larger than the predicted correlations under a
unidimensional GR model. How much dependence among items is required for this measure to

become effective needs further study.
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Figure 4.15 Scatter plots of Realized vs. Posterior Predictive Values of Yen’s Q; (for a single data) for
Case 1 (top) and Case 2 (bottom) — Condition 3

The findings from Table 4.5 are illustrated in Figures 4.15-4.19. Figure 4.15 presents the
scatter plots of the realized and predictive Yen’s Q3 values based on one replication for Case 1
(top) and Case 2 (bottom). In each case, there are three example scatter plots for three types of
item pairs, respectively. For the (1dim, 1dim) type of pairs (e.g., (Item10, Item15)), about half of
the points were above the diagonal line and another half of points were below the line for both
cases, indicating there was no systematic difference between the realized and predictive values
for the item pair only measuring one dominant dimension. But for the (2dim, 2dim) type of item
pairs (e.g., (Iteml, Itemb5)), the scatter plots were consistently above the diagonal line for the
mild dependence case, and even further above the diagonal line for the large dependence case.
Both of these plots indicated that the realized Qs values were consistently larger than the
predictive values, and provided graphical evidence for model misfit. In addition, with the degree
of dependence increasing, the plot for the (2dim, 1dim) type of item pairs (e.g., (Item1, Item15))

falls below the diagonal line. This indicated that the realized Q3 values were consistently smaller

161



than the predictive values, providing more evidence about the misfit of the unidimensional GR

model to this simulated locally dependent data.
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Figure 4.16 Scatter plots of Realized vs. Posterior Predictive Values of Item Covariance Residual (for a
single data) for Case 1 (top) and Case 2 (bottom) — Condition 3
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Figure 4.16 includes similar scatter plots for the item covariance residual measure based

on the same replications used for Yen’s Qs. As can be seen, for the (2dim, 2dim) type of item

pairs (e.g., (Item1, Item5)), most points were above the diagonal line for the mild dependence

case, and the entire plot was above the line when the dependence was large (Case 2). This result

indicates the realized item covariance residuals were systematically larger than the predictive

values under the unidimensional GR model, thus providing evidence of model misfit.
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Figure 4.17 Observed vs. 90% Posterior Predictive Interval of Global OR for Item 1 with
Other Items (for a single replication) for Case 1 (top) and Case 2 (bottom) — Condition 3

Figure 4.17 displays the observed global ORs for Item 1, the 90% PP interval, and PP
medians for the two dependence conditions. As seen for Case 1 from this figure, most of the
observed global ORs (solid triangles) fall outside or at the upper end of the PP interval for Item1
paired with other items measuring two dimensions (ltems 2-5), and tend to be far above the
interval when the dependence increased (Case 2). In contrast, almost all the observed ORs lay
within the PP interval for Item1 paired with items measuring only one dimension (ltems 6-15). It
should be noted that although Figures 4.15 — 4.17 for each case were drawn from one dataset, the

same phenomena were observed for the other 19 datasets.
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As for the previous conditions, pie plots were used to examine any pattern in the PPP-
values. Figures 4.18 and 4.19 display the median PPP-values (Left) and empirical power (Right)
of the three item-pair measures for each item pair across the 20 replications for Case 1 and Case
2, respectively. The pattern in the PPP-values can be easily observed from Case 2, the large
dependence case (Figure 4.19). For the directional measures (global OR, and Yen’s Qs), the
median PPP-values were around 0.50 for the (1dim, 1dim) pairs, close to O for the (2dim, 2dim)
pairs, and close to 1 for the (2dim, 1dim) pairs. This pattern is more evident for the most
effective measure - Yen’s Qs. For the non-directional measure — item covariance residual, the
median PPP-values were close to 0 for the (2dim, 2dim) pairs, but around 0.50 for the (1dim,
1dim) and (2dim, 1dim) pairs. In addition, the empirical power rates of these three measures
were all close to 1 for the (2dim, 2dim) pairs, but Yen’s Qs measure also had moderate power for
the (2dim, 1dim) pairs.

For the mild dependence case, Case 1 (Figure 4.18), the pattern is not as evident as for
Case 2. However, it is still clear that the first 5 items were different from the remaining items.
Their extreme PPP-values indicated that the unidimensional GR model did not fit these 5 items.
The patterns found in these two figures were different from the patterns under the null condition,

thus providing evidence of model misfit.
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Figure 4.18 Display of Median PPP-values (Left) and Proportion of 20 Replications with Extreme PPP-values
(Right) for Global OR (Row1l), Yen’s Q; (Row?2), and Item Covariance Residual (Row3) — Condition 3/ Case 1
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4.1.5 Condition 4 (Mg = testlet GR , Ma = 1-dim GR)

In this condition, the effectiveness of different discrepancy measures with PPMC in detecting

local dependence among responses to testlet items was investigated. Recall that for this

condition, Items 6, 7 and 8 were designed to be in a testlet and three levels of dependence among

them were considered: mild (o, =0.5), large (og;, =1.0), and extremely large (o5, = 2.0).

The other items were simulated to be locally independent.

Table 4.6 Overall Median PPP-values and Average Proportion of 20 Replications with Extreme PPP-values
for all Measures — Condition 4

Measure Type Case 1 (mild) Case 2 (large) Case 3 (extreme large)
Median PPP Power | Median PPP | Power | Median PPP Power
Test-Level | Test score dist - 0.64 0.05 0.49 0.05 0.46 0.15
. testlet 0.50 0.00 0.50 0.00 0.49 0.00
Item score dist indep 0.50 0.00 0.50 0.00 0.50 0.00
ltem-test corr t_estlet 0.14 0.00 0.05 0.52 0.00 1.00
indep 0.54 0.00 0.63 0.00 0.75 0.02
Item-Level
Yen’s Q, t.estlet 0.45 0.00 0.47 0.00 0.48 0.00
indep 0.50 0.00 0.50 0.00 0.51 0.00
_— testlet 0.50 0.02 0.40 0.02 0.50 0.02
Stone’s fit stat indep 0.51 0.02 0.49 0.01 0.49 0.01
(testlet, testlet) 0.00 1.00 0.00 1.00 0.00 1.00
Global OR (testlet, indep) 0.70 0.10 0.80 0.20 0.86 0.23
(indep, indep) 0.40 0.05 0.43 0.05 0.40 0.06
(testlet, testlet) 0.00 1.00 0.00 1.00 0.00 1.00
Pair-Wise | Yen’s Q; (testlet, indep) 0.91 0.40 0.98 0.58 0.99 0.72
(indep, indep) 0.39 0.08 0.36 0.09 0.36 0.09
(testlet, testlet) 0.00 1.00 0.00 1.00 0.00 1.00
Item cov resid (testlet, indep) 0.45 0.01 0.28 0.05 0.18 0.14
(indep, indep) 0.52 0.00 0.50 0.00 0.52 0.00

Table 4.6 presents the overall median PPP-values and average proportions of extreme

PPP-values for the three cases. In this condition, there are two types of items — those labeled

“testlet” represents the testlet items (Items 6-8); and those labeled “independent” are the other

items. There are also three types of item pairs — testlet item pairs (testlet, testlet), independent

item pairs (indep, indep), and pairs reflecting one testlet item and one independent item (testlet,
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testlet). For each item-level measure, the median PPP-values and empirical power rates in Table
4.6 were pooled from the same type of items and from the 20 replications. For each pair-wise
measure, the median PPP-values and empirical power rates were pooled from the same type of
item pair and also aggregated over the 20 replications.

As found in Table 4.6, the three pair-wise measures had full power (1.00) in detecting the
misfit of unidimensional GR model to the modeled dependence among the testlet items, even for
the mild dependence case. The median PPP-values of these three measures were 0O for the (testlet,
testlet) pairs across the three cases, indicating that the realized associations among the testlet
items were consistently larger than the predicted under the GR model. In addition, the ability of
the two directional measures (global OR and Yen’s Q3) in detecting the misfit of the GR model
to the relationships between the testlet items and the independent items increased as the degree
of modeled dependence among the testlet items increased. Specifically, Yen’s Q3 measure
showed low (0.40), moderate (0.58), and large (0.72) power for the (testlet, indep) pairs for the
mild, large, and extremely large dependence cases, respectively. The global OR measure also
exhibited low power (0.20 and 0.23) for the (testlet, indep) pairs for Case 2 and Case 3, but very
low power for the mild dependence condition. In contrast, the item-covariance residual
exhibited very low power for the (testlet, indep) pairs, even for the extremely large dependence
condition. The median PPP-values of Yen’s Qs measures were close to 1 for the (testlet,
independent) pairs, implying that the realized associations between the testlet item and
independent items were mostly lower than the predicted under the GR model. However, the
pooled median PPP-values for the (indep, indep) item pairs for all the three pair-wise measures
were close to 0.50, indicating the realized associations between the independent items were

consistent with predicted values under the GR model.
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single data) for Case 1 (top) and Case 3 (bottom) — Condition 4
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The findings about the pair-wise measures from Table 4.6 were also revealed from
Figures 4.20 — 4.22 which were based on a single replication for each of two cases — mild
dependence (Case 1) and extremely large (Case 3). Note that similar figures were observed for
the other 19 replications.

Figure 4.20 shows the realized and posterior predictive Yen’s Qs values for three
different types of item pairs. The (Item1, Item3) pair reflects an (indep, indep) type of pair, the
(Iteml, Item6) reflects a (testlet, indep) type of pair, and the (Item6, Item7) represents a (testlet,
testlet) pair. As can be seen, the realized Qs values for the (Item6, Item7) pair were consistently
and sufficiently larger than the predictive values, that is, the entire scatter plot was far above the
diagonal line. In contrast, the realized Qs values for the (Item1, Item6) pair were systematically
smaller than the predictive values since most part of the scatter plot was below the diagonal line.
Moreover, the discrepancies between the observed and predictive values tended to increase as the
dependence among the testlet items increased. However, for the (Item1, Item3) pair, there was no
systematic difference between the realized and predictive Qs values for both cases, and both
predictive and realized values were around 0. In summary, these plots provide evidence about the
directional misfit of the unidimensional GR model. The model under-estimated the relationship
between the testlet items, but over-estimated the relationship between the testlet and independent
items.

Figure 4.21 includes the scatter plots of the realized and posterior predictive item
covariance residuals for three different types of item pairs. As can be observed, the predictive
item covariance residuals under the unidimensional GR model were close to 0 for each item pair.
For the independent item pair (Iteml, Item3), the realized and predictive residuals were in the

same range. However, for the testlet item pairs, the realized values were consistently larger than
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the predictive value of 0 for both cases. They ranged from 0.2 to 0.4 for the mild dependence
case, and from 0.8 to 1.0 for the extremely large dependence case. These large realized residuals
indicated misfit of the GR model. As discussed previously, unlike Yen’s Qs measure, the item
covariance residual measure demonstrated very power in detecting the misfit of the model for the
testlet and independent item pairs. This was also illustrated in the two plots for (Item1, Item6) in
which there was no clear difference between the realized and predictive residuals though the

range of realized residuals tended to a bit larger than the predictive range for Case 3.
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Figure 4.23 Display of Median PPP-values (Left) and Proportion of 20 Replications with Extreme PPP-values
(Right) for Global OR (Row1l), Yen’s Q; (Row2), and Item Covariance Residual (Row3) — Condition 4/Case 1
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Figure 4.22 displays the observed global OR value versus 90% PP interval for the global
OR measure for Item 6 paired with the other items for two cases. As seen from this figure, the
observed global ORs were far above the PP intervals for the two testlet item pairs ((Item6,
Item7) and (Item6, Item8)), implying that the unidimensional GR model could not adequately to
capture the dependencies among the responses to the testlet items.

The pattern of the PPP-values was also explored from pie plots for the pair-wise
measures. Figures 4.23 and 4.24 display the median PPP-values (Left) and empirical power
(Right) for each item pair across the 20 replications for three measures for the mild and
extremely large dependence cases, respectively. From Figure 4.24, the median PPP-values of two
directional measures (global OR and Yen’s Q3z) were around 0.50 for the independent item pairs,
close to O for the testlet item pairs, and close to 1 for the item pairs between the testlet and
independent items. For the item covariance residual measure, the median PPP-values were also
around 0.50 for the (indep, indep) pairs, and close to O for the (testlet, indep) or (testlet, testlet)
pairs. Items appear to fall into two clusters: Items 6-8 in one and the remaining items in another.
This pattern was clearly different from the corresponding plots under the null condition (Figure
4.5), providing strong evidence about the misfit of the GR model to the data with the large testlet
effect.

Although the pattern for the mild dependence case (Figure 4.23) was not as evident as
for the extremely large dependence case, the extreme PPP-values for the three testlet items also
provide evidence about lack of model fit. In addition to the median PPP-values, the pie plots
reflecting empirical power rates illustrate that all the three pair-wise measures had full power in
detecting the local dependence among the testlet items, and Yen’s Qs measure also exhibited

moderate power in detecting a lack of fit in the unidimensional GR model to the (testlet, indep)
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item pairs. Since all three pair-wise measures exhibited full power in detecting local dependence
among the testlet item pairs, it may be useful to determine when these three measures will lose
their full power. This could be evaluated by manipulating more levels of testlet effect less than
O'(f(i) =0.5.

As was seen from Table 4.6, the power of the item-total score correlation measure in
detecting the misfit of the GR model to the testlet items increased as the degree of testlet
dependence increased. The pooled median PPP-values were 0.14, 0.05, and 0.00 for the mild,
large, and extremely large dependence cases, respectively. The corresponding power increased
from no power (0.00) to moderate power (0.52) and to full power (1.00) for the three cases,
respectively. The median PPP-value tended to be O for testlet items, indicating that the observed
correlations for these items were higher than the predictive correlations. In contrast, for the
independent items, the median PPP-values for the three cases were not extreme, indicating
adequate fit of the GR model to these items. This phenomenon can also be demonstrated from
Figure 4.25 which presents the observed correlation and 90% PP interval for each item based on
a single replication. For the independent items, the observed correlations approximated the
medians of the predictive correlations across the three cases. But for the testlet items, the
observed correlations were at the upper end of the intervals for the mild dependence case, and

fell outside the interval with the large dependence case.
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Figure 4.25 Observed vs. 90% Posterior Predictive Interval of Item-Total Score Correlation for
Case 1 (top), Case 2 (middle), and Case 3 (bottom) based on a single replication — Condition 4
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4.1.6 Condition 5 (Mg = items with improper BCCs , Ma = 1-dim GR)

This condition was intended to explore the performance of PPMC in assessing misfit due to an
incorrect form of the logistic BCC functions. As discussed in Chapter 3, Items 7 and 8 were
simulated to follow BCCs functions that differed from the logistic functions under the
unidimensional GR model. Specifically, The BCCs of Item 7 followed cubic functions, and the
BCCs of Item 8 were two-step Guttman functions. The remaining 13 items (“Other Items”) were
simulated based on logistic BCC functions under the unidimensional GR model.

Table 4.7 Overall Median PPP-values and Average Proportion of Replications with Extreme PPP-
values for all Measures — Condition 5

Measure Type Median PPP Power

Test-Level | Test score dist - 0.61 0.20
Item 7 (cubic) 0.44 0.00

Item score dist Item 8 (step) 0.49 0.00

Other Items (logistic) 0.50 0.00

Item 7 (cubic) 0.63 0.00

Item-test correlation Item 8 (step) 0.46 0.00

ltem-Level Other Items (logistic) 0.44 0.00
Item 7 (cubic) 0.29 0.00

Yen’s Qq Item 8 (step) 0.04 0.65

Other Items (logistic) 0.49 0.00

Item 7 (cubic) 0.01 0.90

Stone’s fit statistic Item 8 (step) 0.00 1.00

Other Items (logistic) 0.49 0.04

(Item7, 1tem8) 0.52 0.00

Global OR (misfit, fit) 0.59 0.09

(fit, fit) 0.47 0.07

Pair-Wise (Item7, Item8) 0.67 0.10
Yen’s Qg (misfit, fit) 0.51 0.05

(fit, fit) 0.49 0.07

(Item?7, 1tem8) 0.44 0.00

Item covariance residual | (misfit, fit) 0.52 0.00

(fit, fit) 0.53 0.00

Table 4.7 presents the overall median PPP-values and average proportions of extreme

PPP-values across the 20 replications for this condition. As can be seen from this table, for each
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item-level measure, the median PPP-values and power for the simulated GR items (“Other
Items”) were pooled across the 13 items and across the 20 replications. For each pair-wise
measure, three values were computed for the overall median PPP-value and the average
empirical power, respectively. One was for the pair of two misfitting items, (ltem 7, Item 8),
another for the pairs between one misfitting item and one fitting item, and the third one for the
fitting item pairs.

The results in Table 4.7 show that only two classical item-fit statistics detected misfit
between the observed BCCs and the predictive BCCs under the GR model. For the simulated GR
items, the median PPP-values were 0.49 for both fit measures, and the average proportions of
extreme PPP-values for Yen’s Q; and Stone’s X? were 0.00 and 0.04, respectively. The average
proportions for the fitting items reflect the Type-I error rates in a hypothesis testing framework.
Though both item fit measures were conservative in the PPMC context, Stone’s measure had a
larger Type-1 error rate than Yen’s measure. Regarding the power in detecting the misfitting
items, Stone’s measure exhibited sufficient power in detecting the two modeled misfitting items
—0.90 for Item 7, and 1.00 for Item 8. Yen’s Q; measure was found to have less power (0.65) for
detecting the misfitting item with two-step Guttman BCC functions (Item 8), but did not exhibit
any power for the misfitting item with cubic BCC functions (Item 7). Since only two types of
BCC functions were considered and several factors were fixed in this study, the comparison of
the performance of these two item-fit statistics in a Bayesian framework requires further
investigation.

Figure 4.26 displays the scatter plots of realized and posterior predictive values for the
two item-fit measures for one replication. Note that the other 19 replications had similar plots.

For the fittting item (Item 1), the observed values were not systematically different from the
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predictive values for both measures, indicating close correspondence between the observed and
model-predicted BCCs. For the misfitting Item 7, the scatter plot for Stone’s fit statistic was
mostly above the diagonal line. This indicated that most of the observed values were larger than
the predictive values, further suggesting item misfit. In contrast, the plot of Yen’s measure did
not provide evidence of model misfit for this item. For the misfitting Item 8, the scatter plots for
both measures provide clear evidence of model misfit for this item.

Except for the two item-fit statistics, the other measures appeared to be ineffectiveness in
detecting the departure of the observed BCCs from the predicted BCCs under the unidimensional
GR model. Though the three pair-wise measures showed sufficient power for the violation of
unidimensionality and local independence, they were not useful for this condition. Figure 4.27
displays the pie plots for the pair-wise measures. As can been seen, the pattern in the pie plots

was very similar to that under the null condition, providing no evidence for model misfit.
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4.2 RESULTS FROM SIMULATION STUDY 2

Study 2 aimed to explore the relative performance of three Bayesian model comparison methods
(DIC, CPO, and PPMC) under four different model comparison conditions (see Table 3.12). The
different models that were considered included: the two-parameter (2P) graded response (GR)
model, the one-parameter (1P) GR model, the rating scale (RS) model, the testlet graded model,
and multidimensional graded model. In each condition, typical performance assessment data
were generated based on an appropriate IRT model (Mg) and then calibrated using several
different data-analysis (Ma) models. Three Bayesian model comparison indices were then
computed for each Ma and a preferred model was selected based on each of indices. The relative
performance of these three indices was compared with respect to the number of times each index

selected the generating or correct model across 20 replications.

4.2.1 Condition 1 (2P GR vs. 1P GR vs. RS Models)

In Condition 1, the data were generated based on 2P GR models, but calibrated using 2P GR, 1P
GR, and RS models. These models differ in terms of the number of parameters to be estimated.
The purpose of this condition was to determine how effectively the model comparison criteria
could discriminate between these three models and select the 2P GR as the preferred model.

Item parameter recovery for the 2P GR model was examined first. Table 4.8 gives the
RMSD for each item parameters across the 20 replications. The average RMSD across all items
was 0.07 for both slope and threshold parameters. These results indicate one chain of 5000 and a
posterior sample of 500 were adequate for estimating the 2P GR model using MCMC within

WIinBUGS. They were also adequate for the other two models because of the fewer parameters.
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Table 4.8 RMSD for Item Parameter Recovery in WinBUGS for 2P GR Model

Item a bl b2 b3 b4
1 0.07 0.13 0.09 0.06 0.09
2 0.05 0.09 0.06 0.05 0.09
3 0.06 0.10 0.06 0.08 0.12
4 0.04 0.14 0.08 0.06 0.07
5 0.05 0.07 0.05 0.08 0.16
6 0.08 0.09 0.06 0.05 0.06
7 0.06 0.06 0.03 0.03 0.06
8 0.07 0.06 0.05 0.06 0.06
9 0.08 0.15 0.06 0.05 0.05
10 0.08 0.05 0.05 0.07 0.15
11 0.07 0.09 0.04 0.03 0.05
12 0.08 0.04 0.03 0.04 0.06
13 0.09 0.04 0.03 0.05 0.06
14 0.10 0.19 0.06 0.04 0.04
15 0.08 0.05 0.04 0.04 0.14

RMSD(a) =007 RMSD(b)=0.07

Table 4.9 presents summary descriptive statistics (i.e., min, max, and mean) of the DIC
and test-level CPO values across the 20 replications for each model, as well as the rank of the
three models based on the mean value. The frequencies of choosing each model across the 20
replications are also reported in this table. As can been seen, the mean DIC values were 73960,
75498, and 74484 for the 2P GR, 1P GR, and RS models, respectively, indicating the 2P GR
model (Rank 1) fit the data better than the RS model (Rank 2) which in turn was better than the
1P GR model (Rank 3). In addition, the mean test-level CPO values were -16076, -16405, and -
16190 for the 2P GR, 1P GR, and RS models, respectively. Unlike the DIC index, larger CPO
values reflect the preferred model. Thus, the CPO and DIC indices reached the same conclusion
about the comparison of these three models. In addition, these two indices appeared to perform
equally well regarding the frequency of choosing the 2P GR model as the preferred model for the

overall test. As seen in this table, both indices chose the generating or true model as the preferred
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model for each of the 20 replications. The distributions of the index values for the three models

are shown in Figure 4.28 using the box plots. The distribution of DIC values for the 1P GR

model was above the distribution for the 2P GR model, whereas the distribution of CPO values

for the 1P GR model was below the distribution of values for the 2P GR model. Both suggested

that the 2P GR model fit the data consistently better across the 20 replications.

Table 4.9 Model Selection for Overall Test using DIC and Test-Level CPO - Condition 1

76,000

75,000~

74,000

73,000

DIC
Frequency of
Model Min Max Mean Rank Selecting Model
2P GR* 73322 74566 73960 1 20 (100%)
1P GR 74854 76098 75498 3 0 (0%)
RS 73863 75113 74484 2 0 (0%)
CPO
2P GR* -16208 -15937 -16076 1 20 (100%)
1P GR -16536 -16265 -16405 3 0 (0%)
RS -16327 -16054 -16190 2 0 (0%)
16,000
ot -16,200
-16,400
-16,600
DIC_IGRM DIC_1IpGRM DIC_IRSM CPO_IGRM CPO_‘IIpGRM CPO_IRSM

Figure 4.28 Box-plots of DIC and Test-Level CPO across 20 Replications — Condition 1

The previous comparison using the DIC and test-level CPO indices focused on the fit of

models at the test level. It was used to answer the question “which model best fit the responses to

the test?” As is well known, much of the power of IRT is that it models examinee responses at
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the item level. Therefore, a model which fits the overall test is not necessarily appropriate for
each item. As a result, comparing the models for each item provides additional information about

item model-fit.

Table 4.10 Model Selection for Each Item using Item-Level CPO Index — Condition 1

Item 2P GR 1P GR RS

1 Mean -1266 -1295 -1269
Frequency 19 0 1

2 Mean -1289 -1315 -1292
Frequency 19 0 1

3 Mean -1267 -1295 -1269
Frequency 20 0 0

4 Mean -1201 -1228 -1205
Frequency 19 0 1

5 Mean -1202 -1230 -1207
Frequency 20 0 0

6 Mean -1110 -1115 -1116
Frequency 20 0 0

7 Mean -1140 -1145 -1146
Frequency 20 0 0

8 Mean -1114 -1119 -1120
Frequency 20 0 0

9 Mean -982 -986 -993
Frequency 20 0 0

10 Mean -980 -985 -990
Frequency 20 0 0

11 Mean -956 -990 -965
Frequency 20 0 0

12 Mean -984 -1021 -994
Frequency 20 0 0

13 Mean -960 -994 -969
Frequency 20 0 0

14 Mean -807 -839 -823
Frequency 20 0 0

15 Mean -817 -848 -831
Frequency 20 0 0

Whereas, the DIC index can only be used to compare the models for the overall test, the
CPO index can be used to compare the models at the test- and item-levels. Table 4.10 includes

the mean CPO index values (across the 20 replications) for each of 15 items based on the three
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different models, as well as the frequency the true model (i.e., 2P GR) was chosen as the
preferred model for each item. As can been seen, the mean CPO value for the 2P GR model was
larger than the value for the RS model for each item, which was in turn larger than the value for
the 1P GR model. This indicated the 2P GR model fit the responses to each item better than the
other two models. In addition, for 12 out of 15 items, the item-level CPO index indicated that the
generating model was the preferred model for each of the 20 replications. For Items 1, 2, and 4,
the RS model was chosen as the preferred model for one replication, but the generating model
was chosen as the preferred models for the other 19 replications. The results indicated that the
true model was selected to be the preferred model for the overall test and also for each item.

Both the DIC and CPO indices are effective model-comparison tools and are generally
used to compare the relative fit of different models. It should be noted that these two indices
involve a relative comparison. When one or both of the models to be compared are appropriate,
the DIC and CPO indices can be used to obtain the preferred model. However, when either
models to be compared are not appropriate or do not fit a data, a preferred model can not be
chosen based on either the DIC or CPO indices. For example, in Condition 1, if only the 1P GR
and RS models were compared using the DIC or CPO indices, the RS model would be preferred
over the 1P GR model. However, the RS model is not really appropriate since the true model was
the 2P GR model. In this sense, the general model-comparison tools (i.e., DIC and CPO) only
consider the relative fit of different models rather than the absolute fit of each model. Compared
with these two indices, the PPMC method can be used to evaluate the fit of different models and
compare them at the same time.

For Condition 1, four item-level discrepancy measures (i.e., item score distribution, Yen’s

Q1 index, Stone’s item-fit statistic, and item-total score correlation) and three pair-wise measures
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(i.e., Yen’s Qs index, global odds ratio, and item covariance residual) were used with PPMC to
compare the three different models — the 2P GR, the 1P GR, and the RS models. Note that the
test-level distribution measure in Study 1 was not used here since it was found not effective in
most of the conditions in Study 1.

Table 4.11 Number of Items with Extreme PPP-values across 20 Replications (Item-level Measures)

Model Min Max Mean
Item Score Distribution
2P GR* 0 0 0
1P GR 0 0 0
RS 12 15 14
Yen’s Q;
2P GR* 0 0 0
1P GR 10 10 10
RS 8 9 8
Stone’s Item-Fit Stat
2P GR* 0 1 0
1P GR 10 11 10
RS 13 14 13
Item-Test Correlation
2P GR* 0 0 0
1P GR 11 15 12
RS 11 15 13

Tables 4.11 presents the minimum, maximum, and mean numbers of the 15 items with
extreme PPP-values across 20 replications for each item-level measure. For example, for Yen’s
Q1 measure, when the analysis model was the true model (2P GR), there were no extreme PPP-
values for each replication. However, there were an average 10 out of 15 items with extreme
PPP-values when the analysis model was the 1P GR model, and an average 8 items with extreme
PPP-values when the analysis model was the RS model.

As can be observed from this table, either the 1P or 2P GR model appeared to fit the data
when using the item score distribution discrepancy measure. However, based on the two item-fit

measures and the item-test score correlation, more items were identified as misfitting when the
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analysis model was the 1P GR or RS model. Therefore, the 2P GR model was clearly the
preferred model for the generated data in Condition 1.

For each pair-wise measure, there were 105 PPP-values corresponding to the 105 item
pairs in each replication. Tables 4.12 provides the minimum, maximum, and mean number of
item pairs with extreme PPP-values across the 20 replications. A large number of extreme PPP-
values would indicate model misfit. As can be seen, the 2P GR model had the least number of
extreme PPP-values for all three measures, providing evidence that the 2P GR model was
preferred. In contrast, the larger number of extreme PPP-values for the other two models

indicated misfit of these models to the data.

Table 4.12 Number of Item-pairs with Extreme PPP-values across 20 Replications (Pair-wise Measures)

Model Min Max Mean

Yen’s Qs

2P GR* 3 12 7

1P GR 40 55 48

RS 8 17 13
Global OR

2P GR* 3 11 6

1P GR 67 87 79

RS 21 40 31

Item Covariance Residual

2P GR* 0 1 0

1P GR 78 94 86

RS 38 51 48

All the measures considered in Condition 1, except the item score distribution measure,
appeared to be effective in discriminating between these three models. Based on these measures,
the PPMC method chose the generating model as the preferred model for each of the 20
replications. Thus, this method had the same performance as the other two indices regarding the
frequency of choosing the true model. In addition, when comparing the models and evaluating
the fit of each model, the PPMC method can provide more information about the potential misfit

of a model.
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Table 4.13 Median PPP-values for Each Item-level Measure across 20 Replications

Item-Level Discrepancy Measures
Item Score Dist Yen’s Q, Stone’s ltem-Fit Item-Test Correlation
2P 1P 2P 1P 2P 1P 2P 1P

Item GR GR RS GR GR RS GR GR RS GR GR RS
1 0.50 0.23 0.00 0.49 0.00 0.37 0.46 0.00 0.25 0.45 1.00 0.03
2 0.50 0.23 0.00 0.51 0.00 0.15 0.54 0.00 0.02 0.44 1.00 0.02
3 0.51 0.21 0.00 0.51 0.00 0.33 0.54 0.00 0.17 0.50 1.00 0.05
4 0.50 0.26 0.00 0.53 0.00 0.02 0.51 0.00 0.00 0.54 1.00 0.99
5 0.50 0.25 0.00 0.50 0.00 0.02 0.47 0.00 0.00 0.50 1.00 1.00
6 0.50 0.50 0.00 0.54 0.55 0.06 0.52 0.37 0.00 0.50 0.06 0.01
7 0.51 0.50 0.03 0.55 0.57 0.03 0.61 0.48 0.00 0.47 0.03 0.00
8 0.51 0.49 0.01 0.50 0.53 0.11 0.43 0.34 0.01 0.44 0.09 0.00
9 0.50 0.50 0.21 0.50 0.61 0.01 0.49 0.50 0.00 0.45 0.10 1.00
10 0.50 0.49 0.00 0.49 0.51 0.01 0.52 0.34 0.00 0.47 0.06 0.99
11 0.51 0.38 0.00 0.52 0.00 0.03 0.49 0.00 0.00 0.47 0.00 0.00
12 0.51 0.37 0.00 0.54 0.00 0.11 0.60 0.00 0.00 0.50 0.00 0.00
13 0.50 0.37 0.00 0.51 0.00 0.07 0.52 0.00 0.00 0.45 0.00 0.00
14 0.50 0.41 0.00 0.53 0.00 0.00 0.49 0.00 0.00 0.45 0.00 1.00
15 0.50 0.42 0.00 0.52 0.01 0.00 0.51 0.00 0.00 0.51 0.00 1.00

Table 4.13 includes the median PPP-values for each item-level discrepancy measure
across the 20 replications when each of the models was used to estimate the data. As can be seen,
when the 2P GR model fit to the data, the median PPP-values of the item-level measures for each
item were close to 0.50, indicating good fit of the model. When the 1P GR model was fit to the
data, the median PPP-values for the two item-fit measures were extreme (close to 0.00) for Items
1-5, and Items 11-15, but around 0.50 for Items 6-10. The pattern in these PPP-values indicated
that the 1P GR model could not fit the responses to Items 1-5 and 11-15, but fit the responses to
Items 6-10. By examining the slopes of the 2P GR model and the common slope of the 1P GR

model, Items 6-10 had a true slope parameter of 1.7 and the estimated common slope for the 1P
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GR was about 1.6. However, the true slopes were 1.0 for Items 1-5 and 2.4 for Iltems 11-15,
which were much different from the common slope estimate 1.6. In addition, from the pattern in
the median PPP-values for the item-test correlation, the potential misfit of the 1P GR model can
be observed. As shown in Figure 4.29, when the 2P GR model was estimated (top plot), the
observed item-test score correlations were well within the 90% posterior predictive intervals. In
contrast, when the 1P GR model was estimated (middle plot), the posterior predictive intervals
were consistent across all the 15 items, but the observed correlations fell into three clusters: 1)
For Items 1-5, the observed correlations were systematically lower than the predictive values; 2)
For Items 11-15, the observed values were consistently higher than the predictive values; 3) For
Items 6-10, the observed values were within the posterior predictive intervals.

As shown in Table 4.13, all four item-level measures had extreme PPP-values for each
item when the RS model was estimated, reflecting misfit of the RS model. For the item-test
correlation measure, the PPP-values for Items 4-5, 9-10, and 14-15 were close to 1.00, indicating
the observed correlations were systematically larger than the predictive values under the RS
model. However, the PPP-values for the remaining items were close to 0.00, indicating that the
observed correlations were systematically smaller than the predictive values. These phenomena
can be also observed in the bottom plot in Figure 4.29.

Figure 4.30 displays the pie plots for the three pair-wise measures. As can been seen, all
the median PPP-values were around 0.50, providing evidence of model fit for the 2P GR model.
The existence of the large number of extreme values in the middle and bottom plots indicated

model misfit for the 1P GR and RS models.
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Figure 4.30 Display of Median PPP-values for Pair-wise Measures when fitting 2P GR (top), 1P GR (middle),

and RS(bottom) models to the Data
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4.2.2 Condition 2 (1-dim GR vs. 2-dim simple-structure GR model)

In Condition 2, the data were generated based on 2-dim simple-structure GR models, but
calibrated using both the common 1-dim GR model and the true 2-dim simple-structure GR
model. The three model comparison criteria were compared in terms of their abilities to choose

the true model as the preferred model.

Table 4.14 RMSD for Item Parameter Recovery in WinBUGS for 2-dim Simple-Structure Model

Item al a2 bl b2 b3 b4
1 0.06 - 0.14 0.08 0.05 0.07
2 0.08 - 0.08 0.05 0.04 0.07
3 0.09 - 0.04 0.04 0.03 0.08
4 0.06 - 0.17 0.11 0.06 0.08
5 0.06 - 0.05 0.04 0.05 0.11
6 0.07 - 0.06 0.04 0.04 0.04
7 0.06 - 0.09 0.06 0.06 0.11
8 0.05 - 0.04 0.03 0.05 0.06
9 - 0.11 0.16 0.07 0.04 0.03
10 - 0.05 0.07 0.04 0.09 0.20
11 - 0.09 0.09 0.05 0.04 0.07
12 - 0.10 0.05 0.03 0.04 0.06
13 - 0.07 0.10 0.04 0.07 0.14
14 - 0.07 0.15 0.07 0.04 0.05
15 - 0.09 0.05 0.04 0.06 0.15

RMSD(corr) =0.016

Item parameter recovery for the 2-dim simple-structure GR model was examined first.
Table 4.14 gives the RMSD value for each item parameter across the 20 replications. The
average RMSD was 0.07 and 0.08 for the first and second slope, respectively, and the average

RMSD across all the threshold values was 0.07. The RMSD for the inter-dimensional correlation
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was 0.016. These results indicate one chain of 8000 and a posterior sample of 1000 were
adequate for estimating the 2-dim simple-structure GR model using MCMC within WinBUGS.

Table 4.15 Model Selection for Overall Test using Different Indices — Condition 2

DIC
Model Min Max Mean Frequ_ency of
Choosing True
-di *
2-dim GR 74887 75955 75434 20 (100%)
1-dim GR 78532 79363 78854
CPO
-di * - - -
2-dim GR 16541 16312 16430 20 (100%)
1-dim GR -17255 -17074 -17143

PPMC (global OR)
2-dim GR* 2 11 7
1-dim GR 69 85 75

20 (100%)

PPMC (Yen’s Qs)
2-dim GR* 0 10 4
1-dim GR 98 105 102

20 (100%)

Table 4.15 presents the minimum, maximum, and mean values of each index for the two
models, and the frequency of choosing the true model (i.e., 2-dim GR) across the 20 replications.
As can been seen, the mean DIC values were 75434 and 78854, and the mean CPO values were -
16430 and -17143, for the 2-dim and 1-dim GR model respectively. The lower DIC and the
higher CPO value for the 2-dim GR model indicated that the 2-dim model fit the data better than
the common 1-dim GR model. Recall, for this condition, only two pair-wise discrepancy
measures (global OR and Yen’s Q3 index) were used with PPMC. For PPMC, the index was the
total number of item pairs having extreme PPP-values. As shown in the table, when the true
model was used to analyze the data, on average, only 7 (or 4 ) out of 105 item pairs with extreme
PPP-values for the global OR measure (or Yen’s Qs index) were observed. However, when the

1-dim GR model was estimated, there were a large number of pairs with extreme PPP-values —
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75 and 102 pairs for the global OR and Yen’s Qs index, respectively. Thus, the PPMC results

also indicated that the 2-dim model was preferred over the 1-dim GR model.

As can also be seen in the table, the three indices appeared to perform equally well

regarding the frequency of choosing the 2-dim GR model as the preferred model for the overall

test. All of the indices selected the true model as the preferred model for each of the 20

replications. It is also worthy to note that there was no overlap between the ranges of each of

these three indices for the two models. For example, the range of DIC across the 20 replications

was (-16541, -16312) for the 2-dim GR model, and (-17255, -17074) for the 1-dim model. The

non-overlapping ranges can also be seen in Figure 4.31.
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Figure 4.31 Box-plots of Model Comparison Indices across 20 Replications — Condition 2
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The distributions of DIC and PPMC values for the 2-dim model were far below the
distribution of values for the 1-dim model, suggesting that the 2-dim model fit the data
consistently better across the 20 replications. The box-plot for CPO values for the 2-dim model
was far above that for the 1-dim model, also indicating that the 2-dim model was preferred.

Table 4.16 includes the minimum, maximum, and mean CPO index values (across the 20
replications) for each of the 15 items based on the two models, as well as the frequency the true
model (i.e., 2-dim GR) was chosen to be the preferred model for each item. As can been seen,
the mean CPO value for the 2-dim GR model was larger than the value for the 1-dim model for
each item, indicating that the 2-dim GR model fit the responses to each item better. Moreover,
for all items, the item-level CPO index chose the true model as the preferred model over the 20
replications.

Figure 4.32 displays the median PPP-values for two pair-wise discrepancy measures
when estimating the two different models. When a 1-dim GR model was estimated, all the PPP-
values were extreme and the items fell into two clusters — Items 1- 8 in one, and Items 9-15 in
another. This pattern indicated that a 2-dimensional model should be considered. In contrast,
when a 2-dim model was estimated, all the PPP-values were around 0.5, suggesting the fit of the

2-dim model.
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Table 4.16 Model Selection for Each Item using Item-level CPO Index — Condition 2

Frequency of

Item Model Min Max Mean Choosing True
-di * - - -
1 2-dim GR 1299 1259 1274 20 (100%)
1-dim GR -1312 -1279 -1291
-di * - - -
2 2-dim GR 1182 1136 1162 20 (100%)
1-dim GR -1227 -1186 -1209
- 1 * - - -
3 2-dim GR 1025 985 998 20 (100%)
1-dim GR -1093 -1054 -1077
- i * - - -
4 2-dim GR 1236 1192 1214 20 (100%)
1-dim GR -1254 -1206 -1231
-di * - - -
5 2-dim GR 1019 972 1001 20 (100%)
1-dim GR -1069 -1020 -1044
- i * - - -
6 2-dim GR 1023 983 999 20 (100%)
1-dim GR -1111 -1060 -1075
-di * - - -
7 2-dim GR 1321 1288 1301 20 (100%)
1-dim GR -1332 -1306 -1319
-di * - - -
8 2-dim GR 1151 1119 1133 20 (100%)
1-dim GR -1203 -1155 -1180
- 1 * - - -
9 2-dim GR 866 816 848 20 (100%)
1-dim GR -954 -883 -923
- i * - - -
10 2-dim GR 1228 1193 1209 20 (100%)
1-dim GR -1243 -1213 -1227
-di * - - -
11 2-dim GR 1159 1114 1133 20 (100%)
1-dim GR -1212 -1158 -1184
- i * - - -
12 2-dim GR 1049 1016 1032 20 (100%)
1-dim GR -1130 -1091 -1114
-di * - - -
13 2-dim GR 1301 1243 1277 20 (100%)
1-dim GR -1315 -1267 -1297
-di * - - -
14 2-dim GR 1023 973 1002 20 (100%)
1-dim GR -1070 -1014 -1049
- 1 * - - -
15 2-dim GR 871 818 845 20 (100%)
1-dim GR -955 -897 -923
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Figure 4.32 Display of Median PPP-values for Yen’s Qs (left) and Global OR (right) when Fitting 1-dim

GR model (top) and 2-dim simple-structure GR model (bottom) to the Data
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4.2.3 Condition 3 (1-dim GR vs. 2-dim complex-structure GR model)

In this condition, the data were generated based on 2-dim complex-structure GR models, but
calibrated using both the common 1-dim GR model and the generating 2-dim complex-structure
GR model. The three model comparison criteria were compared in terms of their abilities to

select 2-dim model as the preferred model.

Table 4.17 RMSD for Item Parameter Recovery in WinBUGS for 2-dim Complex-Structure Model

Item al a2 bl b2 b3 b4
1 0.18 0.08 0.16 0.09 0.04 0.10
2 0.15 0.10 0.13 0.04 0.06 0.15
3 0.14 0.12 0.08 0.04 0.09 0.15
4 0.15 0.10 0.30 0.15 0.06 0.10
5 0.16 0.10 0.09 0.04 0.13 0.26
6 0.07 - 0.07 0.05 0.04 0.04
7 0.06 - 0.08 0.04 0.05 0.07
8 0.06 - 0.06 0.03 0.05 0.07
9 0.06 - 0.17 0.05 0.03 0.05
10 0.07 - 0.04 0.04 0.06 0.11
11 0.07 - 0.04 0.03 0.03 0.05
12 0.08 - 0.05 0.03 0.03 0.05
13 0.08 - 0.05 0.03 0.04 0.06
14 0.10 - 0.12 0.05 0.03 0.03
15 0.09 - 0.05 0.03 0.05 0.12

Item parameter recovery for the 2-dim complex-structure GR model was examined first.
Table 4.17 gives the RMSD value for each item parameter across the 20 replications. The
average RMSD across all the threshold values was 0.074. For the slope parameter a;, the average
RMSD was 0.075 across the items (6-15) measuring only the dominant dimension, and 0.157
across the items (1-5) measuring the dominant AND the nuisance dimension. The average

RMSD for the slope parameter a, was 0.099. The relatively larger values of RMSD for the two

199



slopes for the first five items were due to fixing the correlation to be 0 when estimating the

model in WinBUGS (the true correlation was 0.30). However, this rotation of the two

dimensions would not affect the computation of the model-comparison indices.

Table 4.18 Model Selection for Overall Test using Different Indices — Condition 3

Model

DIC

Frequency of

Min Max Mean Choosing True

2-dim GR*
1-dim GR

71391 72365 71905
71563 72580 72093

20 (100%)

2-dim GR*
1-dim GR

CPO

-15746 -15534 -15645
-15776 -15556 -15670

20 (100%)

2-dim GR*
1-dim GR

PPMC (global OR)

1 8 4
2 14 8

18 (90%)

2-dim GR*
1-dim GR

PPMC (Yen’s Qs)

1 8 4
9 21 15

20 (100%)

Table 4.18 presents the minimum, maximum, and mean values for each index for the two

models, as well as the frequency of choosing the true model (i.e., 2-dim complex-structure GR)

across the 20 replications. As can been seen, the mean DIC values were 71905 and 72093, and

the mean CPO values were -15645 and -15670 for the 2-dim complex-structure and 1-dim GR

model, respectively. The lower DIC value and the higher CPO value for the 2-dim GR model

indicated that this complex model was preferred over the simple unidimensional GR model. For

the PPMC application, when the true model was estimated, 4 out of 105 item pairs with extreme

PPP-values for both pair-wise measures were observed. However, when the 1-dim GR model

was estimated, more item pairs had extreme PPP-values — 8 and 15 pairs for the global OR and

Yen’s Qs index respectively. The distributions of these indices are shown in Figure 4.33.
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Figure 4.33 Box-plots of Model Comparison Indices across 20 Replications — Condition 3

As shown in Table 4.18, the DIC, CPO and PPMC using Yen’s Q3 measures appeared to
perform equally well regarding the frequency of choosing the 2-dim GR model as the preferred
model for the overall test. However, when the global OR measure was used with PPMC, for 2
replications, the 1-dim GR model was wrongly chosen as the preferred model. The PPMC results
indicated that the choice of discrepancy measures would affect the performance of the PPMC
application in comparing different models. If the measure was not effective, the PPMC method
would lose power and would not be effective as the typical model-comparison indices (DIC and
CPO). For this condition, Yen’s Q3 measure appeared to be more effective than the global OR

measure.
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Table 4.19 Model Selection of Each Item using Item-level CPO Index — Condition 3

Frequency of

Item Model Min Max Mean Choosing True
-di * - - -
1 2-dim GR 1226 1183 1201 19 (95%)
1-dim GR -1230 -1188 -1205
-di * - - -
2 2-dim GR 1260 1222 1238 19 (95%)
1-dim GR -1264 -1226 -1242
- 1 * - - -
3 2-dim GR 1229 1191 1209 19 (95%)
1-dim GR -1234 -1191 -1212
- i * - - -
4 2-dim GR 1092 1056 1076 20 (100%)
1-dim GR -1097 -1059 -1081
-di * - - -
5 2-dim GR 1092 1042 1071 20 (100%)
1-dim GR -1095 -1050 -1076
6 2-dim GR* -1137 -1088 -1114 14 (70%)
1-dim GR -1137 -1089 -1115
-di * - - -
7 2-dim GR 1160 1118 1140 10 (50%)
1-dim GR -1160 -1117 -1139
-di * - - -
8 2-dim GR 1131 1086 1113 13 (65%)
1-dim GR -1132 -1087 -1114
- 1 * - - -
9 2-dim GR 1007 964 983 17 (85%)
1-dim GR -1007 -964 -984
- i * - - -
10 2-dim GR 1004 943 979 15 (75%)
1-dim GR -1004 -944 -978
-di * - - -
11 2-dim GR 986 938 961 14 (70%)
1-dim GR -986 -930 -959
12 2-dim GR* -1011 -965 -988 14 (70%)
1-dim GR -1013 -965 -989
-di * - - -
13 2-dim GR 984 938 958 14 (70%)
1-dim GR -985 -938 -959
-di * - - -
14 2-dim GR 834 780 807 18 (90%)
1-dim GR -834 -781 -808
- 1 * - - -
15 2-dim GR 831 784 806 12 (60%)
1-dim GR -832 -785 -808

As discussed above, the 2-dim complex-structure GR model fit better for the overall test.

Table 4.19 includes the minimum, maximum, and mean CPO index values, as well as the
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frequency the true model was chosen as the preferred model for each item. As can been seen, for
Items 1-5, which measured both the dominant and nuisance dimensions, the item-level CPO
selected the 2-dim model as the preferred model 95% to 100% of the time. However, for the
other items (Items 6-15), which only measured the dominant dimension, the 2-dim model was
chosen as the preferred model with a lower percentage (50% to 90%). This would be expected
since the 1-dim GR model should be appropriate for those items simulated to measure one
dimension. In addition, for Items 1-5, the mean CPO value for the 2-dim GR model was larger
than the value for the 1-dim model, and the difference between the two mean CPO values was
greater than 3 units. For Items 6-15, though most of the items had larger mean CPO values for
the 2-dim GR model, the difference between two models was only about 1 unit. It is should be
noted that this small difference might not provide sufficient evidence for favoring the 2-dim GR

model over the 1-dim GR model.

Recall, the smaller value of DIC, the better the fit of a model. However, any difference in
DIC less than 5 units for two models may not indicate sufficient evidence in favor of one model
over another (Spiegelhalter et al., 2003). There are no discussed guidelines for CPO as for DIC,
but the item-level CPO results for this condition may indicate that a difference of less than 3
units may not provide sufficient evidence supporting one model over another. However, the
amount of difference in CPO necessary to suggest a significant difference between models needs

further investigation.
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Figure 4.34 Display of Median PPP-values for Yen’s Q; (left) and Global OR (right) when Fitting 1-dim
GR Model (top) and 2-dim complex-structure GR Model (bottom) to the Data

Figure 4.34 displays the median PPP-values for the two pair-wise discrepancy measures
when both models were estimated. As can be observed, when the 2-dim complex-structure model
was estimated (bottom plots), all the PPP-values were around 0.5, providing evidence of fit for
the model. In contrast, when the unidimensional GR model was estimated, all the PPP-values
were extreme for the item pairs involving the first 5 items, but around 0.5 for the other item
pairs. This pattern indicated that the unidimensional GR model was not appropriate for Items 1-

5, but was appropriate for Items 6-15. Additionally, the close to 0 PPP-values for the item pairs
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among Items 1-5 indicated that the realized correlations among these five items were
consistently larger than the predicted correlations under the unidimensional GR model. This also
suggested that another factor may be measured by these 5 items in addition to the dominant
dimension.

In summary, all three indices showed that a 2-dim complex-structure GR model fit the
overall test better than a unidimensional GR model. The item-level CPO index further showed
that this complex model was needed to model the responses to the first 5 items, but a simple
unidimensional GR model might be adequate for the other items. In addition, the PPMC results
showed the misfit of a unidimensional GR model to the responses to the first 5 items as well as

the fit of this simple model to the other items.
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4.2.4 Condition 4 (1-dim GR model vs. GR model for testlet)

In this condition, Items 6, 7 and 8 were designed as a testlet, and the responses to these testlet
items were generated under a modified GR model for testlets. The responses to other items were
simulated to be locally independent based on the unidimensional (1-dim) GR model. For each of
the 20 generated data sets, both the 1-dim GR model and the testlet GR model were estimated to the
same data in WinBUGS, and three Bayesian model comparison indices were obtained for each
model. The values for different models were then compared in order to determine which model was

preferred.

Table 4.20 RMSD for Item Parameter Recovery in WinBUGS for Testlet GR Model

Item a bl b2 b3 b4
1 0.05 0.13 0.06 0.04 0.07
2 0.04 0.11 0.07 0.04 0.07
3 0.04 0.07 0.05 0.07 0.10
4 0.05 0.18 0.08 0.05 0.06
5 0.05 0.07 0.05 0.07 0.15
6 0.08 0.09 0.06 0.04 0.04
7 0.10 0.09 0.06 0.04 0.08
8 0.10 0.05 0.04 0.07 0.10
9 0.06 0.12 0.05 0.04 0.05
10 0.05 0.05 0.03 0.06 0.13
11 0.11 0.09 0.04 0.02 0.05
12 0.07 0.06 0.04 0.03 0.05
13 0.09 0.05 0.03 0.05 0.06
14 0.11 0.15 0.05 0.04 0.05
15 0.08 0.03 0.03 0.06 0.15

RMSD(o?) = 0.037

Item parameter recovery for the testlet GR model was examined first. Table 4.20 gives
the RMSD value for each item parameter across the 20 replications. The average RMSD was

0.073 and 0.067 for the slope and threshold parameters, respectively. The RMSD for the testlet
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variance across the 20 replications was 0.037. These results indicated one chain of 5000 and a

posterior sample of 1000 were adequate for the accuracy of estimation of the GR model for

testlet using MCMC within WinBUGS.

Table 4.21 Model Selection for Overall Test using Different Indices — Condition 4

Model

DIC

Frequency of

Min Max Mean Choosing True

testlet GR*
1-dim GR

73750 75177 74170
74476 75833 74924

20 (100%)

testlet GR*
1-dim GR

CPO

-16361 -16056 -16145
-16482 -16191 -16287

20 (100%)

testlet GR*
1-dim GR

PPMC (global OR)

2 12 6
5 17 10

18 (90%)

testlet GR*
1-dim GR

PPMC (Yen’s Qs)

3 9 5
17 28 21

20 (100%)

Table 4.21 presents the minimum, maximum, and mean values for each index for the two

models, as well as the frequency of choosing the true model (i.e., testlet GR) across the 20

replications. As can been seen, the mean DIC values were 74170 and 74924, and the mean CPO

values were -16145 and -16287 for the testlet GR model and 1-dim GR model, respectively. The

lower DIC and the higher CPO value for the testlet GR model indicated that this complex model

fit the overall test better than the simple unidimensional GR model. For the PPMC application,

when the testlet model was estimated, 5 (6) out of 105 item pairs with extreme PPP-values for

Yen’s Qs (global OR) were observed. However, when the unidimensional GR model was

estimated, more item pairs had extreme PPP-values — 10 and 21 pairs for the global OR and

Yen’s Qs index, respectively. The distributions of these indices are shown in Figure 4.35.
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Figure 4.35 Box-plots of Model Comparison Indices across 20 Replications — Condition 4

As shown in Table 4.21, the DIC, CPO and PPMC using Yen’s Q3 measures appeared to
perform equally well. All approaches resulted in selecting the testlet GR model as the preferred
model 100% of the time. However, when the global OR measure was used with PPMC, the
testlet GR model was chosen as the preferred model 90% of the time. As for Condition 3, Yen’s

Q3 measure appeared to be slightly more effective than the global OR measure for this condition.
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Table 4.22 Model Selection for Each Item using Item-level CPO Index — Condition 4

Frequency of

Item Model Min Max Mean Choosing True
* - - -
1 testlet GR 1284 1247 1269 15 (75%)
1-dim GR -1284 -1247 -1269
* - - -
2 testlet GR 1307 1275 1293 15 (75%)
1-dim GR -1307 -1276 -1294
* - - -
3 testlet GR 1287 1250 1266 16 (80%)
1-dim GR -1288 -1250 -1267
4 testlet GR* -1214 -1178 -1199 14 (70%)
1-dim GR -1215 -1178 -1120
* - - -
5 testlet GR 1221 1185 1204 16 (80%)
1-dim GR -1221 -1186 -1204
* - - -
6 testlet GR 1137 1094 1121 20 (100%)
1-dim GR -1180 -1133 -1162
* - - -
7 testlet GR 1185 1130 1151 20 (100%)
1-dim GR -1220 -1166 -1193
* - - -
8 testlet GR 1150 1099 1124 20 (100%)
1-dim GR -1190 -1140 -1166
* - - -
9 testlet GR 1004 961 986 18 (90%)
1-dim GR -1007 -962 -987
* - - -
10 testlet GR 1009 964 986 16 (80%)
1-dim GR -1009 -965 -987
* - - -
11 testlet GR 999 939 968 18 (90%)
1-dim GR -1001 -944 -970
* - - -
12 testlet GR 1008 969 991 16 (80%)
1-dim GR -1011 -969 -993
* - - -
13 testlet GR 989 938 962 19 (95%)
1-dim GR -992 -041 -965
* - - -
14 testlet GR 832 764 811 20 (100%)
1-dim GR -834 -765 -814
* - - -
15 testlet GR 845 788 814 20 (100%)
1-dim GR -851 -790 -816
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Table 4.22 includes the item-level CPO index information for each item. As can be seen,
for the items in the testlet (Items 6, 7 and 8), the mean CPO values for the testlet GR model were
much larger than the values for the unidimensional model. The difference was about 42 units for
these three items, and the testlet GR model was chosen as the preferred model 100% of the time.
For the other independent items, the mean CPO values were about the same for most of these
items, and the maximum CPO difference between two models was less than 3 units. Though the
testlet GR model was selected as the preferred model for these independent items 70% to 100%
of the time, the difference of less than 3 units did not provide sufficient evidence in favor of a
testlet GR model over a unidimensional model. As a result, it may be reasonable to apply the
simple unidimensional GR model to these items.

Figure 4.36 displays the median PPP-values for the two pair-wise discrepancy measures
when both models were estimated. As can be observed, when the testlet GR model was estimated
(bottom plots), all the PPP-values were around 0.5, suggesting the fit of the model. In contrast,
when the unidimensional GR model was estimated, all the PPP-values were extreme for the item
pairs with the three testlet items (Items 6, 7, and 8), but around 0.5 for the pairs among the
independent items. Additionally, the close to O PPP-values for the item pairs for the testlet items
indicated that the realized correlations among these items were consistently larger than the
predicted correlations under the unidimensional GR model. These results indicated that the
unidimensional GR model was not appropriate for Items 6, 7, and 8, but was appropriate for the
other items.

In summary, all three indices indicated that a testlet GR model fit the overall test better
than a unidimensional GR model when item responses with a testlet were simulated. The item-

level CPO index further showed that a testlet GR model fit Items 6, 7 and 8 significantly better
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than a unidimensional GR model, but this testlet model might be not necessary for the other

items. Moreover, the PPMC results indicated that the misfit of a unidimensional GR model to the

testlet items was due to the higher than expected correlations among the testlet items. The PPMC

results also indicated a good fit of the testlet GR model to all items.
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Figure 4.36 Display of Median PPP-values for Yen’s Qs (left) and Global OR (right) when fitting 1-dim GR

Model (top) and testlet GR Model (bottom) to the Data
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4.3 RESULTS FROM REAL APPLICATION

This section presents the results from the application of the Bayesian model-fit and model-
comparison methodology investigated in the current study to three QCAI data sets (AS91, AS92,
and BS92). Each dataset was calibrated using both a 2P GR (hereafter simply referred to as GR)
model and a 1P GR model in WIinBUGS, and different aspects of fit of each model were
evaluated by using the PPMC method. In addition, the model-comparison indices (DIC, CPO,
and PPMC) were computed for both models and a preferred model was chosen for each dataset.
It should be noted that all 8 discrepancy measures were used with the PPMC application in order

to assess different aspects of fit.

43.1 QCAI Datal-AS91

As for the previous simulation studies, the estimation of item parameter for GR models using
MCMC in WinBUGS was evaluated first. Since there were no true values for real data, the item
parameters were also estimated using MULTILOG. Comparing the results from both programs
provided information about the consistency of item parameter estimates.

Table 4.23 provides the item parameter estimates for the GR model based on the AS91
data. As can be seen, the estimates from the two programs were very similar. The average
absolute difference between WinBUGS and MULTILOG estimates across all the items was
0.051 for the slope parameters, and 0.052 for all the threshold parameters. It should be noted that
the estimates in MULTILOG were slightly different from the values in Hansen (2004). Though
Hansen (2004) estimated the same model based on the same data in MULTILOG, she used all

the available responses including the missing responses. The estimates in Table 4.23 were based
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on the data excluding the missing responses. The reason is that WinBUGS can not handle

missing values. The same issue existed for the other two datasets.

Table 4.23 Item Parameter Estimates using WinBUGS and Multilog — AS91

WinBUGS Multilog
Item a bl b2 b3 b4 a bl b2 b3 b4
1 0.87 1.30 2.09 2.43 2.97 0.87 1.31 2.08 2.40 291
2 1.57 -1.04 -0.08 0.73 1.53 1.63 -0.98 -0.06 0.71 1.48
3 1.27 0.04 1.25 1.50 1.80 1.32 0.06 1.23 1.46 1.73
4 1.22 0.18 0.93 1.39 2.17 1.30 0.19 0.90 1.31 2.04
5 1.00 -1.22 -0.10 1.93 3.47 1.03 -1.15 -0.08 1.89 3.36
6 1.20 -0.70 0.19 0.86 3.56 1.23 -0.66 0.20 0.84 3.46
7 1.16 -1.82 0.66 1.44 2.37 1.22 -1.72 0.65 1.38 2.25
8 1.56 0.93 1.57 1.85 2.21 1.66 0.90 1.51 1.76 2.09
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Figure 4.37 Example History and Autocorrelation Plots — AS91
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For each real dataset, a long chain of 15000 iterations was run in WinBUGS and the first
10000 iterations were discarded as the burn-in phase. The remaining 5000 iterations were
thinned every fifth iteration to obtain a total posterior sample of 1000. Figure 4.37 displays the
sample history and autocorrelation plots for the slope and one threshold parameters for Item 2.
Other parameters had similar plots. These plots demonstrated that the convergence in the chain.
Model-Fit
The PPP-values of the chi-square statistic summarizing the discrepancy between the observed
and predictive test score distributions were 0.56 and 0.64 for the GR and 1P GR models,
respectively. Both values were not extreme, indicating these two models fit the data in terms of

the total test score distributions.

Table 4.24 PPP-values for Item-level Measures based on GR and 1P GR Models — AS91

Item-Level Discrepancy Measures

Item Score Dist Yen’s Q, Stone’s ltem-Fit Item-Test Corr
Item GR 1P GR GR 1P GR GR 1P GR GR 1P GR
1 0.50 0.47 0.25 0.09 0.08 0.01 0.47 0.95

0.53 0.51 0.51 0.57 0.57 0.43 0.49 0.04
0.50 0.48 0.40 0.43 0.11 0.15 0.38 0.29
0.52 0.51 0.49 0.48 0.48 0.52 0.46 0.51
0.47 0.48 0.40 0.29 0.11 0.05 0.31 0.77
0.53 0.52 0.51 0.50 0.56 0.55 0.37 0.38
0.51 0.51 0.49 0.48 0.36 0.44 0.27 0.33
0.46 0.47 0.36 0.42 0.05 0.08 0.25 0.02

o N oo o B~ W DN

Table 4.24 includes the PPP-values for the item-level discrepancy measures for each of
the 8 QCAI items. As can be seen, when a GR model was used to analyze the AS91 data, the
PPP-values of the item score distribution, item-test score correlation, and Yen’s Q; index had no
extreme values. However, Stone’s fit statistic showed extreme values for a few of items,

indicating some misfitting items. Recall, in previous studies (see Table 3.18), Items 1, 3, 5, and 8
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were identified as misfitting by Stone et al. (1993), and Items 1, 5, and 8 were flagged as
misfitting by Stone (2000). Both studies used an o = 0.05 significance level. If the same
significance level was used for the current study, only Item 8 was flagged as misfitting.
However, if a higher level of significance of o = 0.10 was used, Items 1 and 8 would be
classified as misfitting. Items 3 and 5 had PPP-values around 0.11, thus indicating the potential
for item misfit.

In order to explain the different results and also to identify if there were some real issues
with item misfit, the observed and expected item response category curves (ICCs) were drawn.
Appendix F includes the ICCs for all the items on each of these three QCAI test forms. The ICCs
for four misfitting items (Items 1, 3, 5, and 8) on the AS91 form are also shown in Figure 4.38.
As can be seen, the discrepancies between observed and expected ICCs for response categories
1-4 were quite large for Item 5. There were some discrepancies between the observed and
expected ICCs for response categories 1, 2, 3 and 4 for Item 3, though the ICCs for the last
category (5) matched very well for the ability range of -2.5 to 2.5 in which most students fell.
The fact that Items 3 and 5 were not flagged as misfitting based on the PPP-values further
indicated the conservativeness of the PPMC method. As a result, a level of a = 0.10 was
employed for the real application.

It is important to determine if the misfitting identified by a statistical test has substantial
practical consequences. The comparison of the expected and observed ICCs could be used for
this purpose. Among these four misfitting items, Item 3 may not have significant practical
consequences of misfitting since the discrepancies between expected and observed ICCs were
not large in the ability range (-2.5, 2.5). The relatively large differences between ICCs for the

other three items (ltems 1, 5, and 8) may indicate that the item misfit may have practical
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consequences. These results also imply that the method used by Stone (1993) for evaluating
item-fit is relatively liberal. In contrast, the PPMC method used in the current study is relatively

conservative. The method used by Stone (2000) appears to lie between these two approaches.
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When a 1P GR model was fit this data, as shown in Table 4.24, the PPP-values of the
item score distribution were not extreme, suggesting that this model could predict the item score
distribution. A few of items were flagged based on the two item-fit measures. The most
important measure for this model is the item-total score correlation since it is related to the slope
parameter. When the common-slope GR model was used, Item 1 had a PPP-value of 0.95,
indicating the observed item-test correlation for this item was systematically lower than the
predicted correlations. In contrast, Items 2 and 8 had PPP-values of 0.04 and 0.02 respectively,
indicating the observed correlation was significantly higher than the predictive correlations. This
result was expected given the slope estimates in Table 4.23. The slopes of Items 3-7 were closer
to the common slope estimate (1.23). In contrast, Item 1 had a slope of 0.87, and Items 2 and 8
had slopes of almost 1.60.

Figure 4.39 displays the PPP-values for three pair-wise discrepancy measures for all the
28 item pairs using pie plots. As can be seen, there were no clear patterns in these plots. Most of
the PPP-values for Yen’s Qs and item covariance residual were not extreme for both models,
indicating that there was no clear evidence of violation in the unidimensionality and local
independence assumptions. Though the global OR measure showed more extreme values than
the other two measures, the results might not be convincing since several items on the AS91
form were very difficult. The dichotomization of the responses based on the rubric (0, 1, 2
treated as 0, and 3, 4 treated as 1) resulted in some zero frequency cells in the contingency tables.
Therefore, it was necessary to use the other two measures to evaluate model-fit for these real

datasets.
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Figure 4.39 Display of PPP-values for Pair-wise Measures when fitting GR Model (top) and 1P GR Model
(bottom) to the data — AS91

Overall, the results of PPMC using Yen’s Qs and the item covariance residual showed
that that the QCAI AS91 data was essentially unidimensional and items exhibited local
independence. This conclusion was consistent with that from Lane et al. (1995). The GR model
appeared to fit the AS91 data well regarding most aspects of the fit measured by these
discrepancy measures. For example, the GR model could be used to predict the test and item
score distributions, the relationships among the items, and the item-test score correlations.
However, several misfitting items to the GR model were identified using PPMC with Stone’s
item fit measure, a finding which is consistent with previous studies. The results also showed
that a 1P GR model could account for the item/test score distributions, and the correlations

among the items, but this model could not explain the item-test score correlations correctly.
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Model-Comparison

In order to compare the GR, 1P GR, and 2-dimensional complex-structure GR models, three
model-comparison indices (DIC, CPO, and PPMC) were computed and compared in Table 4.25.
It should be noted that only Yen’s Qg statistic and the global OR measure were used with PPMC
for the 2-dimensional complex-structure model. These two measures were found to be the most
effective measures based on the simulation studies. As can be seen, the smallest DIC value for
the 2-dim complex-structure GR model suggested this complex model was preferred over the GR
model which in turn was preferred over the 1P GR model. The test-level CPO values for these
three models only differed by less than 1 and thus did not provide sufficient evidence in favor of
one model over the other for the overall test. The item-level CPO values (see Table 4.26) were
also very close for the three models, further indicating there were no significant differences

between these three models.

Table 4.25 Model Selection Indices for Overall Test — AS91

PPMC
Model DIC CPO Test Item
score Item Yen’s Stone’s Item-test | Yen’s Global cov
dist score dist Q fit stat corr Qs OR resid
GR 7455 -1625.2 0.56 0/8 0/8 2/8 0/8 4/28 6/28 2/28
1P GR 7471 -1625.3 0.64 0/8 1/8 3/8 3/8 8/28 10/28 5/28
2-dim GR 7415 -1626.1 - - - - - 4/28 5/28 -

Table 4.26 Item-level CPO Index for Each Item — AS91

Item
1 2 3 4 5 6 7 8
GR -153.9 -246.9 -192.6 -208.0 -236.4 -229.0 -222.0 -136.4
1P GR -154.2 -247.9 -192.5 -207.5 -237.2 -227.8 -221.8 -136.4
2-dimGR  -154.3 -246.4 -192.5 -208.3 -236.5 -229.2 -222.3 -136.5

Model
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Table 4.25 also summarizes the PPMC results for this dataset. For the GR and 1P GR
models, all 8 discrepancy measures were used. For the test score distribution measure, the
numbers in the table are the PPP-values. For the item-level measures, the numbers reflect the
number of items with extreme PPP-values across the total number of 8 items. For example, for
the item-test score correlation, there were no extreme PPP-values under the GR model, but there
were 3 of 8 items with extreme values under the 1P GR model. For the pair-wise measures, the
numbers represent the number of item pairs having extreme PPP-values.

Firstly, we can see that there were more extreme values for the 1P GR model over the GR
model. However, the most useful measure for comparing these two models may be the item test
score correlation since it reflects the difference in item parameters between these two models. By
examining this measure, it is clear that the GR model fit this data significantly better. The DIC
values also indicated that the GR model was preferred over the 1P GR model, but this index only
provided an absolute measure of model fit. In contrast, the results of the PPMC application not
only indicated that the GR model was preferred, but also indicated that this model fit the data
reasonably well. The conclusion that the GR model fit the data significantly better than the 1P
GR model is consistent with the previous finding by Lane et al. (1995).

It can also seen from Table 4.25 that when a 2-dimensional complex-structure GR model
was used to analyze this AS91 dataset, 4 and 5 out of 28 item pairs had extreme PPP-values for
Yen’s Q; index and the global OR measure, respectively. When a unidimensional GR model was
estimated, the numbers of extreme PPP-values were about the same as for the 2-dimensional
model. This result indicates that there was not sufficient evidence to prefer the 2-dimensional
model. Thus a simpler unidimensional GR model may be adequate for this dataset. This

conclusion is also consistent with the previous finding by Lane et al. (1995).
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Overall, the DIC values indicated that a 2-dimensional model was preferred for the AS91
dataset, but the PPMC results indicated that a unidimensional GR model was adequate. The CPO

values did not provide sufficient evidence in favor of one model over the other.

4.3.2 QCAI Data 2 - AS92

Table 4.27 provides the item parameter estimates for the GR model based on the AS92 data. As
can be seen, the estimates from two programs were very similar. The average absolute difference
between WinBUGS and MULTILOG estimates across all the items was 0.021 for the slope
parameters, and 0.032 for all the threshold parameters. In addition, Figure 4.40 shows the sample
history and autocorrelation plots for the slope and one threshold parameters for item 2. Other
parameters had similar plots. These plots demonstrated that the convergence of the chain was
attained for this AS92 data.

Table 4.27 Item Parameter Estimates using WinBUGS and Multilog — AS92

WinBUGS Multilog
Item a bl b2 b3 b4 a bl b2 b3 b4
1 1.12 1.25 1.84 2.64 3.34 1.12 1.28 1.87 2.66 3.34
1.47 -1.03 -0.08 0.66 141 1.51 -0.97 -0.05 0.66 1.39
1.14 0.30 1.26 1.66 1.80 1.16 0.32 1.26 1.64 1.76
0.70 -0.18 0.85 1.16 3.97 0.69 -0.13 0.89 1.19 3.99
0.70 -1.72 -0.54 2.16 4.17 0.67 -1.73 -0.52 2.26 4.33
111 -0.93 0.03 0.84 3.50 1.13 -0.89 0.05 0.84 3.46
1.32 -1.48 0.28 1.06 1.77 1.37 -1.41 0.29 1.04 1.72
1.38 1.26 2.17 2.46 3.03 1.38 1.28 2.17 2.44 2.99

0 N o o b~ N
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Figure 4.40 Example History and Autocorrelation Plots — AS92
Model-Fit

The PPP-values of the chi-square statistic summarizing the discrepancy between the observed
and predictive test score distributions were 0.24 and 0.18 for the GR and 1P GR models,
respectively. Both values were not extreme, indicating these two models fit the data regarding
the total test score distribution.

Table 4.28 includes the PPP-values for the four item-level discrepancy measures for each
item. When a GR model was used to analyze this data, all the PPP values were not extreme,
suggesting a good fit of the GR model in the aspects measured by these four measures. However,

when a 1P GR model was estimated, two items (Items 2 and 5) were identified as misfitting by
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Stone’s item-fit measure. Most important, among the eight items, six items had extreme PPP
values for the item-total score correlation measure, providing evidence that the 1P GR model

could not predict the item-test score correlations in the data.

Table 4.28 PPP-values for Item-level Measures based on GR and 1P GR Models — AS92

Item-Level Discrepancy Measures

Item Score Dist Yen’s Q, Stone’s Item-Fit Item-Test Corr
Item GR 1P GR GR 1P GR GR 1P GR GR 1P GR
1 0.51 0.49 0.54 0.54 0.57 0.62 0.40 0.29

0.50 0.47 0.40 0.35 0.19 0.06 0.17 0.00
0.48 0.51 0.42 0.45 0.18 0.28 0.17 0.04
0.51 0.46 0.53 0.32 0.54 0.14 0.46 1.00
0.48 0.43 0.46 0.26 0.33 0.06 0.48 1.00
0.47 0.50 0.51 0.55 0.36 0.42 0.53 0.44
0.48 0.47 0.50 0.48 0.41 0.38 0.31 0.02
0.52 0.47 0.42 0.54 0.46 0.42 0.24 0.01

o N oo o b~ 0N

It should be noted that Items 2 and 3 were identified as misfitting for the GR model by
Stone et al. (1993), and Item 3 was also flagged by Stone (2000). Even if the significance level o
= 0.10 was used, no item would be flagged as misfitting using the PPMC method with Stone’s
item fit measure. The PPP values for Items 2 and 3 were around 0.19 and 0.18, respectively.
Though their values were lower than the other values, they were not extreme enough to indicate
item misfitting.

The ICCs for Items 2 and 3 are shown in Figure 4.41, and the ICCs for other items are in
Appendix F. It can be seen the observed and predicted ICCs matched reasonably well for Item 2.
Thus, the item misfit identified by Stone (1993) may not indicate a practical consequence. For
Item 3, the observed ICCs for three response categories 1, 3 and 4 were very close to the
corresponding predicted ICCs. However, there were some discrepancies between the observed

and predicted ICCs for the other categories (2, and 5). These results further indicate the
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conservativeness of the PPMC method in evaluating item-fit, and the liberalness of the method

used by Stone (1993). As before, the method used by Stone (2000) falls in between these two

approaches and yields results that are more reasonable for practical purposes.
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Figure 4.42 displays the PPP-values for three pair-wise discrepancy measures for all the
28 item pairs using the pie plots. As can be seen, there were no clear patterns in these plots, and
most of the PPP-values for Yen’s Qs and item covariance residual were not extreme for both
models. The results indicated that there was no clear evidence of violations in the
unidimensionality and local independence assumptions for this data. This conclusion is

consistent with the finding in Lane et al. (1995).
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Figure 4.42 Display of PPP-values for Pair-wise Measures when fitting GR Model (top) and 1P GR
Model (bottom) to the Data — AS92

Overall, the GR model appeared to fit the AS92 data well regarding different aspects of
the fit such as dimensionality, item-fit, item/test score distribution, and item-test score
correlations. Although a 1P GR model could explain several aspects of properties in the data, it

could not explain the relationship between items and test scores.
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Model-Comparison

Table 4.29 compares the values of DIC, CPO and PPMC for the GR and 1P GR models. As can
be seen, the DIC values indicated that the 2-dimensional complex-structure GR model was
preferred over the GR model, which in turn was preferred over the 1P model for this particular
dataset. However, the CPO values for these three models suggested that the GR model was
preferred over the 2-dim GR model which in turn was better than the 1P model. For the PPMC
indices, in general, there were more extreme PPP values for the 1P GR model compared to the
other two models. As an example, six of eight items had extreme values for the item-test score
correlation. However, the same numbers of extreme PPP-values for the 2-dim GR and the

unidimensional GR model indicated that the unidimensional GR model was adequate for this

dataset.
Table 4.29 Model Selection Indices for Overall Test — AS92
PPMC

Model DIC CPO Test ltem
score Item Yen’s Stone’s Item-test | Yen’s Global cov
dist score dist Q fit stat corr Qs OR resid
GR 8644 -1884 0.24 0/8 0/8 0/8 0/8 4/28 6/28 1/28
1P GR 8693 -1891 0.18 0/8 0/8 0/8 6/8 7/28 9/28 8/28

2-dimGR | 8598 -1888 - - - - - 4/28 6/28 -

In summary, these three model-comparison indices reached the same conclusion that the
GR model was preferred over the 1P GR model for the AS92 data, a finding which is consistent
with Lane et al. (1995). In addition, both the CPO and PPMC results indicated that the GR model
was also preferred over the 2-dimensional GR model. The DIC index tended to choose a more
complex model as the preferred model based on the results for the previous AS91 dataset and

this AS92 dataset.
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4.3.3 QCAI Data 3 -BS92

Table 4.30 Item Parameter Estimates using WinBUGS and Multilog — BS92

WinBUGS Multilog
Item a bl b2 b3 b4 a bl b2 b3 b4
1 0.93 -1.69 -0.12 1.40 3.21 0.97 -1.60 -0.10 1.34 3.08
2 1.50 -0.47 0.59 1.06 1.35 1.57 -0.44 0.58 1.03 1.29
3 1.64 -0.28 0.62 1.17 1.64 1.70 -0.25 0.61 1.14 1.58
4 1.76 0.70 1.33 1.46 1.81 1.82 0.69 1.30 1.42 1.74
5 1.36 -2.15 -0.29 0.49 1.66 1.40 -2.07 -0.26 0.49 1.61
6 1.06 -0.43 0.42 0.92 1.63 1.12 -0.39 0.41 0.87 1.53
7 1.67 0.36 1.04 1.20 1.54 1.73 0.37 1.02 1.16 1.49
8 0.89 -1.45 -0.64 -0.21 0.67 0.95 -1.34 -0.60 -0.20 0.62
a[2]
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Figure 4.43 Example History and Autocorrelation Plots — BS92
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Table 4.30 provides the item parameter estimates for the GR model based on the BS92 data. As
can be seen, the estimates from two programs were close. The average absolute difference
between WinBUGS and MULTILOG estimates across all the items was 0.056 for the slope
parameters, and 0.044 for all the threshold parameters. Figure 4.41 shows the sample history and
autocorrelation plots for the slope and one threshold parameters for item 2. Other parameters had
similar plots. These plots indicate that convergence of the chain was attained.

Model-Fit

The PPP-values of the chi-square statistic summarizing the discrepancy between the observed
and predictive test score distributions were 0.02 and 0.01 for the GR and 1P GR models,
respectively. Both values were extreme, indicating these two models could not adequately

predict the test score distribution for this dataset.

Table 4.31 PPP-values for Item-level Measures based on GR and 1P GR Models — BS92

Item-Level Discrepancy Measures

Item Score Dist Yen’s Q, Stone’s Item-Fit Item-Test Corr
Item GR 1P GR GR 1P GR GR 1P GR GR 1P GR
1 0.48 0.41 0.26 0.11 0.05 0.01 0.49 1.00

0.49 0.44 0.31 0.34 0.05 0.03 0.12 0.00
0.46 0.42 0.26 0.27 0.01 0.00 0.23 0.00
0.52 0.49 0.43 0.52 0.69 0.27 0.27 0.00
0.50 0.52 0.45 0.50 0.22 0.36 0.33 0.16
0.47 0.46 0.22 0.18 0.02 0.01 0.13 0.56
0.48 0.46 0.31 0.33 0.05 0.02 0.13 0.00
0.51 0.49 0.48 0.25 0.39 0.13 0.33 0.99

0 N oo o b~ 0N

Table 4.31 presents the PPP-values for the four item-level discrepancy measures for each
item. When a GR model was used to analyze this data, the PPP-values of the item score
distribution, item-test score correlation, and Yen’s Q; index were not extreme. However, five

items (Items 1-3, 6-7) demonstrated extreme PPP-values for Stone’s item fit statistic and would
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therefore be flagged as misfitting. It is worthy to note that the same five items were also
identified as misfitting by Stone et al. (1993) and Stone (2000) (see Table 3.18). The number of
misfitting items might explain why the GR model could not predict adequately the test score

distribution for this dataset.
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Figure 4.44 Observed vs. Expected ICCs for Misfitting Items on the BS92 Form

The ICCs for these five misfitting items are shown in Figure 4.44, and the ICCs for other
items are in Appendix F. As can be seen, the discrepancies between the observed and predicted
ICCs for Items 1-3, and 6 were large, and these large discrepancies may reflect significant
practical consequences of item misfit. However, for Item 7, the observed ICCs matched the
predicted ICCs reasonably well except that there were small discrepancies for response
categories 2 and 4. These discrepancies may not indicate practical significance in item misfit.

When a 1P GR model was estimated, as shown in Table 4.31, the same five items were
also flagged as misfitting by Stone’s item-fit measure. In addition, six items had extreme PPP
values for the item-test score correlation. The results provided sufficient evidence that the 1P GR

model was not appropriate for this dataset.
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It is interesting to note that Yen's Q; index, in contrast with Stone's fit statistic, appeared
to have no power for the short tests that were studied (AS91, AS92, BS92). A number of items
across the three datasets were identified as misfitting using Stone's fit statistic, but not flagged
using Yen's index. Previous research has found that item fit statistics such as Yen's or Bock's
indices do not perform well with short tests (Orlando & Thissen, 2000; Stone & Hansen, 2000;
Stone & Zhang, 2003). Imprecision in ability estimates with short tests result in classification
errors in the item fit tables which in turn affects the null chi-square distribution and hypothesis
testing (Stone, 2000). However, in the PPMC framework, the sampling distributions are based
on Monte Carlo resampling methods. It is not clear why results based on Yen's Q; index and

Stone's fit statistic differed, and therefore, more research is needed to explain this finding.
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Figure 4.45 Display of PPP-values for Pair-wise Measure when fitting GR Model (top) and 1P GR Model
(bottom) to the Data — BS92

Figure 4.45 displays the PPP-values for three pair-wise discrepancy measures for all the

28 item pairs using pie plots. As can be seen, most of the PPP-values for Yen’s Qs and item
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covariance residual under the GR model were not extreme, implying the assumptions of
unidimensionality and local independence underlying the GR model were not violated for this
dataset. This conclusion is consistent with the finding in Lane et al. (1995). However, there were
more item pairs with extreme PPP values under the 1P GR model.

In summary, neither the GR model nor 1P GR model fit the BS92 dataset very well.
Though the GR model fit the data in terms of item score distribution and item-test score
correlations, there were five misfitting items identified by Stone’s fit statistic. Moreover, this
model could not explain the test score distribution observed in this dataset. The 1P GR model
exhibited these same problems. In addition, it could not explain the relationship between items
and test scores.

Model-Comparison

Table 4.32 Model Selection Indices for Overall Test — BS92

PPMC
Model DIC CPO Test Item
score Item Yen’s Stone’s Item-test | Yen’s Global cov
dist score dist Q fit stat corr Qs OR resid
GR 8727 -1902 0.02 0/8 0/8 5/8 0/8 3/28 9/28 1/28
1P GR 8771 -1909 0.01 0/8 0/8 5/8 6/8 6/28 12/28 9/28
2-dimGR | 8679 -1902 - - - - - 2/28 7/28

Table 4.32 compares the values for model-comparison indices. The smaller DIC and larger CPO
values for the GR model suggested that the GR model was preferred over the 1P GR model for
the BS92 dataset. For the PPMC indices, in general, there were more extreme PPP values for the
1P GR model, further indicating that the GR model was the preferred model. The PPMC results
also tell us that even though the GR model was better than the one-par GR for this dataset, it did

not fit the data in several aspects such as test score distribution and item-fit.
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Regarding the fit of the 2-dimensional GR model and the unidimensional GR model, it
can be seen from this table that the 2-dim GR model had smaller DIC value than the GR model,
indicating the 2-dim GR model may be preferred. However, the CPO values for these two
models were the same, providing insufficient evidence in favor of one model over the other
model. Additionally, the PPMC results also did not provide enough evidence to support the more
complex 2-dim GR model. Therefore, based on the CPO and PPMC results, the relatively more
parsimonious model (i.e., the GR model) would be preferred. As for the other dataset, this is
consistent with the finding by Lane et al. (1995). The different results between the DIC index

and the other indices further indicated that the DIC index tends to select a more complex model.
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5.0 DISCUSSION

The present work, through two simulations and three real data examples, evaluates the
application of Bayesian model-fit and model-comparison techniques to assess fit of
unidimensional GR models and compare different GR models for performance assessment
applications. This section summarizes the major findings from this work and also provides the

future research directions.

5.1 SUMMARY OF MAJOR FINDINGS

5.1.1 Simulation Study 1

The first study in the current work was to explore the general performance of the PPMC method
in evaluating different aspects of fit of unidimensional GR models to performance assessments
by using a variety of discrepancy measures. PPMC has been found to be useful in assessing the
fit for dichotomous IRT models. Study 1 extended previous research to the use of PPMC for
polytomous IRT models. The discrepancy measures examined involved one test-level measure
(observed test score distribution), several item-level measures (item score distribution, item total
test correlation, Yen’s Qs, and Stone’s item-fit statistics), and three pair-wise measures (global
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odds ratios, Yen’s Qs, and absolute item covariance residual). Specifically, this study was

intended to address the following three research questions:

(1) What is the Type-I error rate for each proposed discrepancy measure used with PPMC in
assessing the fit of unidimensional GR model?

(2) What is the empirical power for each proposed discrepancy measure used with PPMC in
detecting the violation of the assumptions underlying the unidimensional GR model (i.e.,
unidimensionality, local independence, and item fit)?

(3) Among different types of discrepancy measures (test-level, item-level, and pair-wise
measures) proposed in the current study, which measures are most effective in detecting
model misfit?

Type-I Error Rates:

The results from Condition 1, where the generating model was the same as the analyzing
model, demonstrated that the Type-I error rates of the discrepancy measures examined in this
study were below the nominal level. This indicates that the use of PPP-values in hypothesis
testing would lead to highly conservative inferences (i.e., they tend not to indicate misfit of a
correct model too often). The two pair-wise measures (global OR and Yen’s Q3z) appeared to
have empirical Type-I error rates that were closest to the nominal rate, though still quite lower.
This finding confirmed the conclusion from the previous PPMC research (Bayarri & Berger,
2000; Fu et al., 2005; Levy, 2006; Sinharay, 2005; Sinharay et al., 2006) about the
conservativeness of the PPMC method.

Previous studies pointed out that this conservativeness in the hypothesis tests is due to the
departure of the distribution of PPP-values from the uniform distribution, which is also supported

by the current study. The distributions of PPP-values for the discrepancy measure examined were
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generally centered at 0.5 but less dispersed than a uniform distribution. The PPP-values under the
correct model tend to be closer to 0.5 more often than would be expected under a uniform
distribution. However, the distributions of PPP-values for the two pair-wise measures — global
OR and Yen’s Qs and the test score distribution were closest to uniform distributions as
compared to the other measures. The approximate uniform distributions for the global OR and
Yen’s Qs discrepancy measures were also observed by Levy (2006).

Empirical Power Rates:

Unidimensionality

The ability of each discrepancy measure with PPMC to detect violations of
unidimensionality was explored in Condition 2. Two multidimensional cases (p=0.3 or 0.6) were
examined, reflecting a high and moderate degree of multidimensionality, respectively. Overall,
the PPMC method using three pair-wise measures (Yen’s Qs, global OR, and item covariance
residual) detected the lack of fit of unidimensional GR model to the two-dimensional test data
successfully for both cases. Among them, Yen’s Qz index performed best in terms of the
empirical power, and the item covariance residual measure in turn performed better than the
global OR. The relatively low performance of the global OR measure might be due to the
dichotomization of polytomous item responses. However, Levy (2006) found that Yen’s Qs
index was more powerful than the OR measure based on the dichotomous IRT model. It is
worthy to note that the global OR and Yen’s Qs measures are both directional measures, and
their PPP-values reflect the relationship between realized and posterior predictive discrepancies.
The patterns of PPP-values could also be used to indicate how the items may be grouped into

clusters or dimensions, and therefore used to explore the dimensionality of the item responses. In
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this sense, these two measures are better than the item covariance residual which is non-
directional.

The test-level and item-level discrepancy measures were found to be less effective for
detecting this multidimensionality than the pair-wise measures. The three item-level measures
(item score distribution, Yen’s Qi, and Stone’s fit statistic) did not demonstrate any power for
both cases. The item-total score correlation measure exhibited no power in detecting the
moderate degree of multidimensionality (p=0.6), but became extremely powerful in detecting the
high degree of multidimensionality (p=0.3). The test-level measure (i.e. test score distribution)
shows certain power in detecting the misfit of the GR model when the data was highly two-
dimensional (p=0.3).

The performance of PPMC was affected by the degree of the uniqueness in the
dimensions. Specifically, as the inter-dimensional correlation increased from 0.3 to 0.6 (i.e., as
the degree of uniqueness decreased), the power of three pair-wise measures decreased slightly,
but they still appeared consistently powerful in detecting model misfit. In other words, the
performance of PPMC was stable in the range of inter-dimensional correlations from 0.3 to 0.6.
Therefore, future research that manipulates more levels between 0.6 and 1.0 is needed in order to
identify the level at which the PPMC method with these three pair-wise measures would lose
power. On the other hand, an increase in the inter-dimensional correlation from 0.3 to 0.6 had
great impact on the effectiveness of the item-total score correlation measure. It exhibited almost
full power for the low correlation condition, but had no power for the high correlation condition.
Further research specifying more levels in the correlation is needed in order to more fully

understand PPMC applications with this measure.
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Local Independence

The performance of PPMC in detecting violations in the local independence assumption
was examined. In one condition, Condition 3, the local dependence was due to an added nuisance
dimension, and two levels of dependence on the nuisance dimension were considered: large
dependence (a2/al=1) and mild dependence (a2/a1=0.5). The test-level and item-level measures
were found to be not useful in detecting local dependence among items loading also on the
nuisance dimension, while three pair-wise measures performed effectively. All three pair-wise
measures exhibited sufficient power in detecting a large dependence among the items. However,
as the strength of dependence on the nuisance dimension decreased, their performance decreased.
Yen’s Qs had moderate power in detecting the mild local dependence among the items loading
also on the nuisance dimension, but the global OR and item covariance residual measures did not
demonstrate enough power. Overall, all three pair-wise measures were sufficiently effective in
detecting a large dependence among the items, but for the mild dependence condition, only
Yen’s Qz appeared to be powerful. These findings were similar to the findings from Levy (2006)
in which the performance of PPMC in detecting the local dependence among the dichotomous
items was examined.

In Condition 4, local dependence was modeled through a testlet effect, and the degree of
testlet effect varied from mild (aj(i):O.S) though large (adz(i) =1.0) to extremely large
(aj(i) =2.0). The results indicated that the three pair-wise measures had full power (1.00) in

detecting the modeled dependence among responses to testlet items, even for the mild
dependence case. In addition, as the dependence decreased, they did not seem to be a significant

effect on the performance of the measures. As a result, more levels of testlet effect less than
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aj(i) =0.5should be manipulated in order to explore how the effectiveness of the pair-wise

measures changes and at what level of a testlet effect these measures would lose their power.

The power of the item-total score correlation measure in detecting the misfit of the GR
model to the testlet items gradually increased from no power (0.00) to moderate power (0.52) to
full power (1.00) as the degree of testlet dependence increased from the mild to large to
extremely large. This indicates that the change of testlet effect had an influence on the
performance of the item-total score correlation measure in the PPMC context. The test-level
measure and other item-level measures appeared to be insensitive to this misfit.

Item-Fit

Condition 5 was designed to evaluate the ability of the PPMC method to assess the misfit
of the GR model to items which did not conform to the GR model. One misfitting item had cubic
BCC functions, and another misfitting item had two-step Guttman BCC functions.

Only two classical item-fit statistics (Yen’s Q; and Stone’s fit statistic) were found to be
effective for detecting this type of item misfit. Stone’s measure exhibited sufficient power to
detect the two modeled misfitting items. Yen’s Qi measure was found to have adequate power
(0.65) for detecting the misfitting item with two-step Guttman BCC functions, but did not exhibit
any power for the misfitting item with cubic BCC functions. Since only two types of BCC
functions were considered and several factors were fixed in this study, the comparison of the
performance of these two item-fit statistics in a Bayesian framework requires further
investigation.

Summary for Study 1

For applications of Bayesian methods for assessing IRT model-fit, the choice of the

discrepancy measures is important. Consistent with the findings from Levy (2006), the pair-wise
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measures were found to be more powerful in detecting violations of unidimensionality and local
independence assumptions than test- and item-level measures. This may be expected since the
unidimensional GR model has no parameters to model the associations between responses to
pairs of items, but the pair-wise measures can capture these associations. Among the three pair-
wise measures, the directional measures (global OR and Yen’s Qz) may be preferred over a non-
directional measure (absolute item covariance residual). In addition, Yen’ Q3 measure appeared
to perform best. Though the item-total score correlation appeared to be more sensitive to large
local dependence, power was low under mild local dependence cases. The test score distribution
and item score distribution appeared least useful, as well as the two item-fit statistics, in
detecting a violation of unidimensionality and local independence assumptions.

Regarding the item-fit assumption, only two classical item-fit statistics (Yen’s Q; and
Stone’s) were found to be useful measures in detecting non-conforming to the GR model. It is
worthwhile to note that there are different sources of item misfit. Condition 5 only considered
item misfit due to the discrepancy from the true GR model curves. In Conditions 2-4, other
sources of misfit for item were examined. Specifically, the item misfit in Condition 2 was due to
multidimensionality, and the item misfit in Conditions 3-4 was due to local dependence.
However, as seen from the results, these two item-fit measures did not exhibit any power in
detecting item misfit due to multidimensionality or local dependence. This finding may seem
surprising, but it is consistent with findings from previous research. For example, Zhang (2003)
extended Orland and Thiseen (2000)’s item-fit statistics to multidimensional dichotomous IRT
models, and examined their statistical properties. Though these item-fit statistics were found to
exhibit adequate power for most conditions investigated in his study, they lacked power in all

conditions when data were generated under 2-dim MIRT models but scaled by one-dimensional
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IRT models. Another related study was conducted by Kang and Chen (2008). They generalized
Orland and Thiseen’s (2000) chi-square item-fit index for polytomous items, and evaluated its
performance in assessing item-fit for the GR model. The results indicated that the power of this
index was much lower when the misfit was due to multidimensionality or local dependence than
when it was due to departure from the form of GR model boundary curves. They further found
that 20,000 examinees were required to obtain acceptable power in detecting misfit items due to
multidimensionality. Though the current study used a different design and conditions, the results
confirmed the insensitiveness of the classical item-fit statistics to detect misfit due to
multidimensionality or local dependence, even in the PPMC context.

The evaluation of fit of IRT models usually involves collecting a wide variety of
evidence about different aspects of fit. Simulation Study 1 demonstrated that the PPMC method
provides a framework to collect different kinds of information about model fit. Study 1 also
illustrated that the extension of the use of PPMC from dichotomous IRT models to polytomous
IRT models is flexible and straightforward. Many discrepancy measures for dichotomous models
are also appropriate for the GR model.

Many results from this study are also consistent with previous research. As in several
studies (e.g., Sinharay, 2005, 2006), a number of different types of graphical plots were used in
this study in order to provide graphical evidence about model-fit. The use of graphical displays
with PPMC is useful since the plots may be easier to understand and more appealing than tables
of PPP-values. Another reason is that from plots, researchers may be able to discern patterns
which may indicate an alternative model. For example, as shown in Condition 2, when a
unidimensional GR model was estimated with 2-dim data, the pie plots displayed two clear item

clusters, implying that a 2-dim model may be appropriate.
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One disadvantage of the PPMC method is its conservativeness in evaluating model-fit.
However, Sinharay (2006) argued that a conservative test with reasonable power is often better
than a test that rejects too often. For example, as shown in the current study, Yen’s Qs measure
had close to uniform Type-I error rates (a little bit conservative), but had sufficient power in
detecting multidimensionality and local dependence.

A practical consideration with PPMC applications is the intensive computation demands
that are required. Nevertheless, as discussed by Sinharay (2006), once the posterior sample
obtained during the estimation of a model is saved, the computation of each discrepancy
measures and PPP-values based on this sample is not computationally demanding. More
importantly, the stored sample values can be used in the future for different aspect of fit using

different discrepancy measures.

5.1.2 Simulation Study 2

Study 2 was used to address the research question “Do the three Bayesian model-comparison
indices (DIC, CPO, and PPMC) perform equally well in choosing a preferred GR model for a
particular performance assessment application?” The results showed that for all the conditions
examined in this study, these three indices appeared to perform equally in selecting the true
model as the preferred model for an overall test. However, the CPO and PPMC indices were
found to be more informative than the DIC index.

Specifically, DIC can only be used to choose an overall best model for an entire test,
while the CPO index can be used to compare the models at either the test- or item-level. A model
may be preferred at the test level but it may not necessarily be the preferred model for each item.
As a result, comparing the models for each item using the item-level CPO index provides
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additional information about model-fit. For example, in Conditions 3 and 4, the three indices
indicated that a more complex GR model was preferred than a simple one-dimensional GR
model for the overall test. But the results at the item-level using the CPO index indicated that the
more complex model was only better for several items, and a simple unidimensional GR model
might be adequate for the other items. One additional finding about the CPO index is that any
trivial difference in CPO values between different models may not provide sufficient evidence
supporting one model over another. In that situation, a more parsimonious model should be
chosen.

Consistent with previous studies (Li et al., 2006; Sinharay, 2005), the PPMC approach
was also found to be effective for performing model comparisons in this study. Moreover, the
advantage of PPMC applications is in that they can be used to compare the relative fit of
different models, but also evaluate the absolute fit of each individual model. In contrast, the DIC
and CPO model-comparison tools only consider the relative fit of different models. They do not
consider the absolute fit of each model. For example, two models, Model A and Model B, may
be compared using the DIC and CPO indices. But it is not known whether either of these models
fit the data. In addition, the graphical plots used with PPMC applications may provide some
useful information regarding “what is the reason for misfit”, “which items do not fit”, and
“which model is appropriate”?

It should also be noted that the results from this study indicate that the choice of
discrepancy measures affects the performance of PPMC applications in comparing different
models. If the measure is not effective, the PPMC method is less effective than the DIC and CPO
indices. As shown in Conditions 3 and 4, when Yen’s Q3 measure was used with PPMC, the

PPMC index performed equally well with DIC and CPO. However, when the global OR measure
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was used with PPMC, its performance was less effective than the other two indices. Yen’s Q3
measure appeared to be more effective than the global OR measure for detecting violations in
local dependence among items. Note that this conclusion was also obtained from Study 1.

It is also worthy to point out that the results in Condition 1 provided incremental
evidence about the effectiveness of the proposed discrepancy measures beyond that found in
Study 1. In Condition 1, the data was generated based on a 2P GR model, but three models were
estimated: a 1P GR model, a 2P GR model and a RS model. The misfit of the 1P GR model and
RS model to the simulated 2P GR item responses was examined using PPMC. The same
discrepancy measures were employed as in Study 1 (except no test-level measure). This
condition was not considered in Study 1. The results indicated that all 7 measures (4 item-level
and 3 pair-wise) had sufficient power to detect the misfit of the RS model to the simulated 2P
GR data. Six measures except “the item score distribution” were found to be very effective in
detecting the misfit of the 1P GR model. It is worthy to note that the two item-fit measures
exhibited adequate power to detect the item misfit due to the different unidimensional GR

models.

5.1.3 Real Application

The methodology investigated in the two simulations was further applied to three datasets from
the QCAI performance assessment. Overall, the results indicated that that these datasets were
essentially unidimensional and exhibited local independence among items, and that a 2P GR
model provided better model-fit than a 1P GR model. These findings were consistent with that

from Lane et al. (1995).
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The 2P GR model appeared to fit one dataset well regarding different aspects of fit such
as dimensionality, item-fit, item/test score distribution, and item-test score correlations.
However, for the other two datasets, though a GR model seemed appropriate in terms of most
aspects of fit, several misfitting items were identified. Moreover, this model could not explain
the test score distribution observed in one dataset.

Due to the conservativeness of PPMC applications, a higher level of significance of o =
0.10 was used to identified the misfitting items (Note that the previous studies used o = 0.05).
Even with the higher level of significance, there were several items flagged as misfitting. These
same items were also identified as misfitting in previous studies (Stone et al., 1993; Stone,
2000), but as shown in Table 3.18, the previous studies flagged more misfitting items than using
PPMC with Stone’s fit measure. Thus, Stone’s fit statistics became more conservative in the
PPMC context. In addition, the approach used by Stone et al. (1993) flagged more misfitting
items than the approach used by Stone (2000). These results indicated that the method used by
Stone (1993) for evaluating item-fit is relatively liberal. In contrast, the PPMC method used in
the current study is relatively conservative. The method used by Stone (2000) appears to lie
between these two approaches and yield results that are more reasonable for practical purposes.

Though Stone’s fit measure identified several misfitting items, Yen’s Q1 measure did not
flag any item as misfitting. The classical Yen’s Q; index did not perform similarly to Stone’s
item-fit statistic. This may be due to the application with short tests where the imprecision in
ability estimates can affect the use of more traditional measures of item fit such as Yen’s Q;
statistic. However, in the PPMC framework, the sampling distributions are based on simulations,
and it is therefore still unclear why Yen’s Qi measure did not show sufficient power. More

research is needed in order to explain this finding.
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In order to see if a more complex 2-dimensional model fit these QCAI datasets better
than the unidimensional 2P GR and 1P GR models, three model-comparison indices were
computed. The DIC index selected the 2-dimensional complex-structure model as the preferred
model. However, based on the CPO and PPMC results, the unidimensional 2P GR model would
be preferred. This conclusion that a unidimensional GR model was adequate for the datasets is
consistent with the finding by Lane et al. (1995). The different results between the DIC index
and the other indices indicated that the DIC index tends to select a more complex model. This
finding is not uncommon for other information-based criteria such as the AIC (Akaike, 1974),

and BIC (Schwarz, 1978).

5.2 LIMITATIONS AND FUTURE RESEARCH DIRECTIONS

This research used two Monte Carlo simulations to address the proposed research questions.
Though the conditions were carefully designed and some factors were fixed at realistic values
relative to typical performance assessments, the results may not generalize to other situations not
considered in the current study. For example, this study is limited in terms of the length of tests
(15 items), the number of response category (5-category), the polytomous model (GR), and the
number of dimensions (2 dimensions).

Another limitation is that due to computing constraints of the WinBUGS program and a
large number of conditions in this study, only 20 replications at each combination of
experimental conditions were implemented. Though this is smaller than that other Monte Carlo

simulations, it was reasonable in the context of previous research and Bayesian methods (e.g., a
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number of researchers used 5 to 30 replications). However, more replications may be needed in
order to obtain more reliable and accurate results.

In addition, the performance of the PPMC method and the Bayesian model-comparison
indices for the GR models requires further study. For example, the effect of factors such as
sample size, the number of total items, the number of dimensions, the structure of dimensions,
and the inter-dimensional correlation given modeled multidimensionality could be further
explored. For each condition investigated in the current work, a more comprehensive simulation
study could be conducted in order to more fully explore how combination in factors affect the
performance of PPMC and the effectiveness of the model-comparison indices.

Other discrepancy measures could also be proposed and evaluated. For example, the
current research considered the global OR as one measure. As reviewed in Chapter 2, several
previous studies also employed a conditional OR (MH) statistic as a discrepancy measure for
dichotomous items. It is possible for future research to explore the use of the conditional global
OR measure. The conditional OR may be more powerful than the global OR for checking the
unidimensionality or local independence assumptions for polytomous items. Another useful
discrepancy measure would be the Liu-Agresti estimate of the cumulative common odds ratio
(Liu & Agresti, 1996) for ordinal variables. The global OR in the current study considered only
one possible of dichotomization, while the cumulative common OR measure would consider all
possible dichotomizations of the polytomous responses.

Furthermore, this study focused on evaluating the fit of IRT models relative to specific
aspects of model fit: dimensionality, local independence, and the form of boundary curves in the

GR model. Other assumptions underlying the use of IRT models with performance assessments
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could be also considered in the future such as the normal ability assumption, and the non-
speededness assumption.

Finally, the current study examined the general performance of some classical model-fit
statistics used with PPMC. Further research is also needed in order to systematically compare the
performance of these measures in the PPMC context and the classical framework. The PPMC
method has several advantages when compared with the classical model-fit methods in theory,
but the results from comprehensive simulation studies varying different conditions may provide
useful guidelines about the use of PPMC. One possible comparison could involve various item-
fit statistics. Several sources of item misfit could be modeled, and the misfit in both classical and
Bayesian frameworks could be explored using traditional item-fit statistics such as Yen’s Q;
index, and some alternative item-fit indices such as Orlando and Thissen’s fit statistics and
Stone’s statistics. In addition, the effect of smaller sample sizes could be explored since the

Bayesian methods are often recommended for applications involving small sample sizes.
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APPENDIX A

SAS CODE USED TO GENERATE UNIDIMENSIONAL GR DATA

*hkKxxk *hkKkk R R e e

* This sas code is used to generate the unidimensional graded responses

KA A A AA A AR A AR A A A A A AR A A AKX A AR A AR A A AR A AR A AAA A ARAAAAAAAXAAAAAAAXAAAXALAAAXAAAXALAAXA XXX AAAAK

* USER CONTROL VARIABLES;
%let ncat=5;

%let nthres=4;

%let nperson=2000;

%let nitem=15;

%let seed=0;
/*input the true item parameters */

data itempar;
input a bl b2 b3 b4;

cards;
1.0 -2.0 -1.0 0.0 1.0
1.0 -1.5 -0.5 0.5 1.5
1.0 -1.0 0.0 1.0 2.0
1.0 -3.0 -1.5 -0.5 1.0
1.0 -1.0 0.5 1.5 3.0
1.7 -2.0 -1.0 0.0 1.0
1.7 -1.5 -0.5 0.5 1.5
1.7 -1.0 0.0 1.0 2.0
1.7 -3.0 -1.5 -0.5 1.0
1.7 -1.0 0.5 1.5 3.0
2.4 -2.0 -1.0 0.0 1.0
2.4 -1.5 -0.5 0.5 1.5
2.4 -1.0 0.01.0 2.0
2.4 -3.0 -1.5 -0.5 1.0
2.4 -1.0 0.51.5 3.0

-
Couns
S

i

/*put all the item paramters in one row*/
data itempar;
set itempar;
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array par{*} a bl-b&nthres;
do j=1 to é&ncat;

p=par{j};
output;
end;
keep p;
run;

proc transpose out=itempar prefix=p;
var p;
run;

/*generate the graded responses (0 1 2 3 4) */
data resp;

set itempar;

array p{&nitem,&ncat} pl-p%eval(&nitem*&ncat);
array y{&nitem} yl-y&nitem;

array cumprob{&ncat} cumprobl-cumprob&ncat;

seed=&seed;

do i=1 to &nperson;
call rannor(seed,theta); /* Randomly generate theta value - normal(0,1)
*/
*theta=0; /*set all examinees at ability 0 to validate the data
generation */
do j=1 to &nitem;
do k=1 to é&ncat;
cumprob[k]=-;
end;
do resp=0 to (&ncat-1);
do; /*calculate the proprobility for each category*/
if resp=(&ncat-1) then
prob=1/(1+exp(-p[J,1]*(theta-p[]j,&ncat])));
else if resp=0 then
prob=1-1/(1+exp(-p[J ,1]1*(theta-p[}.,2]))):
else
prob=1/(1+exp(-p[J,1]*(theta-p[]j.,resp+1])))
-1/(1+exp(-pLj,1]*(theta-p[j,resp+2])));
end;

if resp=0 then cumprob[l]=prob; /*calculate the cumulative prob
(the prob of a response in
categories<=k)*/
else cumprob[resp+1]=prob+cumprob[resp];
end;

call ranuni(seed,r01); /* Generate a random number between 0 and 1 */

do k=1 to &ncat-1;
if k=1 and rOl<=cumprob[k] then

y[31=0;
else if rOl>cumprob[k] and rOl<=cumprob[k+1] then
vii1=k; /*response: 0, 1, 2, 3, 4* (5 categories)*/
end;
end;
output;
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*File wrkdir(&responsefile);
*put (yl-y&nitem)(1.);

end;

keep yl-y&nitem;

run;

/*transform the responses (0 1 2 3 4)to (1,

Winbugs*/

data newresp;

set resp;

array y{*} yl-yé&nitem;
do j=1 to &nitem;

yOl=y1+1;
end;

keep yl-y&nitem;
run;
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APPENDIX B

WINBUGS CODE USED TO ESTIMATE UNIDIMENSIONAL GR MODELS

# Unidimensional Graded Response Model

model

{

# Specify unidimensional GR Model using Logistic function
for (i in 1:nperson) {
for(j in 1:nitem){
for (k in 1:ncat-1) {
logit(pstarfi, j, k]) <-a[j]*(theta]i]- b[j, k]);

pli, j, 1] <- 1-pstarfi, j, 1]
for(k in 2:ncat-1){
pli, j, K] <- pstarfi, j, k-1] - pstarfi, j, k]
pli, j, ncat] <- pstarfi, j, ncat-1]
yli, jl ~ dcat(pli, j, 1:ncat])
}

theta[i]~dnorm(0,1)

}
#specify prior

for (j in 1:nitem) {
afj] ~ dinorm(0, 1)

b[j,1] ~ dnorm(0, 0.25)
for (k in 1:ncat-2){
b[j,k+1] ~ dnorm(0, .25) I(b[j, k], )
}
}
}
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APPENDIX C

WINBUGS CODE USED TO IMPLEMENT PPMC

# Unidimensional Graded Response Model

# Use PPMC method to check the model

# The discrepancy measures in this code include
# (1) "lItem Score Distribution”

# (2) "Yen's Q3 Statistics"

# (3) "Absolute Item Covariance Residual”

# (4) "Global Odds Ratios"

model

{

# Specify unidimensional GR Model using Logistic function
for (i in 1:nperson) {
for(j in 1:nitem){
for (k in 1:ncat-1) {
logit(pstarfi, j, K]) <-a[j]*(theta]i]- b[j, K]);

pli, j, 1] <- 1-pstarfi, j, 1]
for(k in 2:ncat-1){

pli, j, kK] <- pstar]i, j, k-1] - pstar]i, j, K]
p[i, j, ncat] <- pstar[i, j, ncat-1]

yli, jl ~ deat(pli, j, 1:ncat])

# compute CPO for observed item responses
# replicated response data

yrepli, j] ~ dcat(pli, j, 1:ncat])

thetal[i]~dnorm(0,1)
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#specify prior

for (j in 1:nitem) {
a[j] ~ dinorm(0, 1)

b[j,1] ~ dnorm(0, 0.25)
for (k in 1:ncat-2){
b[j,k+1] ~ dnorm(0, .25) I(b[j, k], )
}
}

# (1) calculate the chi-sqaure statistic for item score distribution
for(j in L:nitem){
for (k in 1:ncat) {
for (i in 1:nperson) {
count_obsJi,j,k] <- equals(y[i,j], k)
count_rep[i,j,k] <- equals(yrep[i,j], k)

nfj,k] <- sum(count_obs[ ,j,k]) # observed number of examinees having responses (k-1) (i.e. in
category k) on
# item |
for observed data
n_replj,k] <- sum(count_rep[ ,j,k]) # observed number of examinees having responses (k-1) on item j for
# replicated data

En[j,k] <- sum(pl,j,k]) # the expected number of examinees having responses (k-1) (i.e. in
category k)
# on item j

resid[j,k] <- pow(n[j,k]-En[j,k], 2)/(En[j,k]+0.0001*equals(En[j,k],0))
resid_replj,k] <- pow(n_rep[j,k]-En[j,k], 2)/(En]j,k]+0.0001*equals(En[j,k],0))

}
itemchi2[j] <- sum(resid[j,])  # the "realized" chi-square item-fit statistic
itemchi2_rep[j] <- sum(resid_rep[j,])  # the "predicted" chi-square item-fit statistic

PPP.itemchi2[j] <- step(itemchi2_rep[j]-itemchi2[j]) # the posterior predictive P-values for each item

}

# (2) Yen's Q3 Statistic

for (i in 1:nperson) {
for(j in 1:nitem){
for (k in 1:ncat) {
xX[i.j,k] <- (k-1)*p[i.j.K]

E[i,j] <- sum(xx[i,j,]) # expected item response

r.obs[i,j] <- y[i,jI-E[i,j] # the residual for observed data

r.rep[i,j] <- yrepl[i,jl-E[i,j] # the residual for replicated data
1

for(j in 1:nitem){
r.obs.meanlj] <- mean(r.obs[1:nperson, j]) # the mean of the residulas for item j for observed data
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r.obs.sd[j] <- sd(r.obs[1:nperson, j]) # the sd of the residulas for item j

r.rep.mean|j] <- mean(r.rep[1:nperson, j]) # the mean of the residulas for item j for replicated data
r.rep.sd[j] <- sd(r.rep[l:nperson, j]) # the sd of the residulas for item j

}

for(j1 in 1:(nitem-1)){
for(j2 in (j1+1):nitem){

Q3.0bs[j1,j2] <- (inprod(r.obs[1:nperson, 1], r.obs[1:nperson, i2]) -
nperson*r.obs.mean[j1]*r.obs.mean[j2])/((nperson-1)*r.obs.sd[j1]*r.obs.sd[j2]) #Q3 for observed data

Q3.rep[jl1,j2] <- (inprod(r.rep[1:nperson, 1], r.rep[l:nperson, i2]) -
nperson*r.rep.mean[j1]*r.rep.mean(j2])/((nperson-1)*r.rep.sd[j1]*r.rep.sd[j2]) #Q3 for replicated data

PPP.Q3[j1,j2] <- step(Q3.rep[j1,j2] - Q3.0bs[j1,j2]) #PPP values
1
# (3) Absolute Item Residual Covariance
for(j in 1:nitem){
y.mean[j] <- mean(y[1:nperson, j])
yrep.mean(j] <- mean(yrep[1:nperson, j])

E.mean[j] <- mean(E[1:nperson, j])

}

for(j1 in 1:(nitem-1)){
for(j2 in (j1+1):nitem){

# sample item covariance

S2.0bs[j1,j2] <- (inprod(y[1:nperson, j1], y[1:nperson, j2]) - nperson*y.mean[j1]*y.mean[j2])/(nperson-1)
S2.rep[jl1,j2] <- (inprod(yrep[1:nperson, 1], yrep[l:nperson, i2D -
nperson*yrep.mean[j1]*yrep.mean[j2])/(nperson-1)
# model-based item covariance

sigmaZ2[j1,j2] <- (inprod(E[1:nperson, j1], E[1:nperson, j2]) - nperson*E.mean[j1]*E.mean[j2])/nperson

# Absolute Residuals between sample and model-based item covariance for each item pair
residcov.obsl[j1, j2] <- abs(S2.0bs][j1, j2] - sigmaZ2[j1, j2]) # for the observed data
residcov.rep[jl, j2] <- abs(S2.rep[j1, j2] - sigma2[j1, j2]) # for the replicated data

PPP.residcov[j1, j2] <- step( residcov.repljl, j2] - residcov.obs[j1, j2])

B

# (4) Global Odds Ratio

# Firstly, dichotomize the response data (the cut scores for each item is based on rubric
for(i in 1:nperson){
for(j in 1:nitem){
y.di[i,j] <- step(y[i,j]-cutscore[j])  # dichotomize the observed response based on cutscore
yrep.di[i,j] <- step(yrepli,j]-cutscore[j]) # dichotomize the replicated response

}
for(i in 1:nperson){

for(j in 1:nitem){
x.di[i,j]<- 1-y.di[i,]] # the intemedium variables used for computing OR below
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xrep.difi,j]<- 1-yrep.di[i,j]
B

# Compute the Global Odds Ratio
for(j1 in 1:(nitem-1)){
for(j2 in (j1+1):nitem){
OR[j1, j2] <- inprod(y.di[1:nperson,j1], y.di[1:nperson,j2]) * inprod(x.di[1:nperson,j1], x.di[1:nperson,j2])
/ (inprod(y.di[1:nperson,j1], x.di[1:nperson,j2]) * inprod(x.di[1:nperson,j1], y.di[1:nperson,j2]))

OR.rep[j1, j2] <- inprod(yrep.di[l:nperson,jl], yrep.di[l:nperson,j2]) * inprod(xrep.di[1l:nperson,jl],
xrep.di[1:nperson,j2]) / (inprod(yrep.di[1:nperson,jl], xrep.di[l:nperson,j2]) * inprod(xrep.di[l:nperson,j1],
yrep.di[1:nperson,j2]))

PPP.OR[j1, j2] <- step(OR.rep[j1,j2] - OR[j1,j2])
1

}
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APPENDIX D

SAS CODE USED TO CREATE ABATCH FILE TO RUN PPMC FROM SAS

*hkxhkx

* Creat the Batch file *

R o o R R AR A ;

%include "C:\dissertation\studyl\SASBUGS Macro\*.sas";

FILENAME GRM "C:\dissertation\studyl\GRM";

*FILENAME bugsloc “c:\program files\winbugsl4®; /*used for window XP*/
FILENAME bugsloc "c:\winbugsl4®; /*used for window vista*/

/*Scripts to run WinBUGS*/

DATA _NULL_;

FILE bugsloc(grmBatch.txt);

PUT@1 "display(“log®)";

PUT@1 ""check("C:/dissertation/studyl/GRM/GRmodel .txt")" ;
PUT@1 "data("C:/dissertation/studyl/GRM/datal.txt")";
PUT@1 "data("C:/dissertation/studyl/GRM/data2.txt")";
PUT@1 ""compile(l)";

PUT@1 *"gen.inits()";

PUT@1 "update(4000)";

PUT@1 "set(a)';

PUT@1 "set(b)';

PUT@1 "set(yrep)';

PUT@1 *"set(theta)';

PUT@1 *"set(itemchi2)";

PUT@1 "set(itemchi2_rep)";

PUT@1 ""set(PPP.itemchi2)";

PUT@1 "set(Q3.0bs)";

PUT@1 *"set(Q3.rep)";

PUT@1 "'set(PPP.Q3)";

PUT@1 "set(residcov.obs)";

PUT@1 "set(residcov.rep)";

PUT@1 "set(PPP.residcov)";

PUT@1 "set(OR.rep)";

PUT@1 "'set(PPP.OR)";

PUT@1 "set(inprob)";

PUT@1 "dic.set()";

PUT@1 *""update(1000)";
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PUT@1 "thin.samples(2)";

PUT@1 "stats(a)";

PUT@1 *"stats(b)";

PUT@1 *"stats(PPP.itemchi2)";

PUT@1 *"stats(PPP.Q3)";

PUT@1 "stats(PPP.residcov)";

PUT@1 *'stats(PPP.OR)";

PUT@1 *"stats(inprob)™;

PUT@1 "dic.stats()";

PUT@1 "save("C:/dissertation/studyl/GRM/log.txt")";

PUT@1 "coda(a, "C:/dissertation/studyl/GRM/coda a.txt")";

PUT@1 "coda(b,"C:/dissertation/studyl/GRM/coda b.txt")";

PUT@1 "coda(theta,"C:/dissertation/studyl/GRM/coda_theta.txt")";

PUT@1 *"coda(yrep, "C:/dissertation/studyl/GRM/coda_yrep.txt®)";

PUT@1 "coda(itemchi2, "C:/dissertation/studyl/GRM/coda_itemchi2.txt")";
PUT@1"coda(itemchi2_rep,"C:/dissertation/studyl/GRM/coda_itemchi2rep.txt")"";
PUT@1 ""coda(Q3.obs, "C:/dissertation/studyl/GRM/coda Q3obs.txt")";

PUT@1 *"coda(Q3.rep,"C:/dissertation/studyl/GRM/coda_Q3rep.-txt")"";

PUT@1 *"coda(residcov.obs, "C:/dissertation/studyl/GRM/coda_residobs.txt")";
PUT@1 "coda(residcov.rep, "C:/dissertation/studyl/GRM/coda_residrep.txt™)";
PUT@1 ""coda(OR.rep,"C:/dissertation/studyl/GRM/coda ORrep.txt")";

PUT@L1 "quit()";

RUN;

/*create a batch file*/

DATA _NULL_;

FILE GRM(run_cl1GRM.bat);

*PUT """C:\program files\WinBUGS14\WinBUGS14._exe" /PAR grmBatch.txt";
PUT ""C:\WinBUGS14\WinBUGS14_exe"™ /PAR grmBatch.txt";

PUT "exit";

RUN;
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APPENDIX E

WINBUGS CODE USED TO ESTIMATE 2-DIMENSIONAL GR MODELS

model

{
# Specify simple-structure 2-dim GR Model
for (i in 1:nperson) {
for(j in L:nitem1){
for (k in 1:ncat-1) {
logit(pstarfi, j, K]) <-a[j]*(theta[i,1]- b[j, k]);
}
for(j in (nitem1+1):nitem){
for (k in 1:ncat-1) {
logit(pstarfi, j, K]) <-a[j]*(thetali,2]- b]j, K]);
}
for(j in 1:nitem){
pli, j, 1] <- 1-pstarfi, j, 1]
for(k in 2:ncat-1){
pli, j, K] <- pstar]i, j, k-1] - pstar]i, j, k]
pli, j, ncat] <- pstarfi, j, ncat-1]
y[i, j] ~ dcat(pli, j, 1:ncat))
}

theta[i,1:2]~dmnorm(mu[1:2], tau[1:2, 1:2])
}

#specify prior

for (j in 1:nitem) {
afj] ~ dinorm(0, 1)

b[j,1] ~ dnorm(0, 0.25)
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for (k in L:ncat-2){

b[j,k+1] ~ dnorm(0, .25) I(b[j, k], )
}
}

tau[1:2, 1:2] <- inverse(sigma[1:2, 1:2])

sigmall,1] <- 1
sigmal2,2] <- 1
sigma[1,2] <- corr
sigma[2,1] <- corr

corr ~ dnorm(0.6,4) 1(0,)

¥
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APPENDIX F

ITEM CATEGORY CURVES (ICCS) FOR THE QCAI ITEMS
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