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Marek J. Druzdzel

CONSTRUCTION AND UTILIZATION OF MECHANISM-BASED CAUSAL MODELS

Tsai-Ching Lu, Ph.D.

University of Pittsburgh, 2003

This dissertation studies how the mechanism-based view of causality can assist in construction

and utilization of causal models for decision support. The mechanism-based view of causality is

based on the theory of causal ordering, proposed by Simon [1953], which explicates causal asym-

metries among variables in a self-contained set of simultaneous structural equations. I extend

the theory of causal ordering to explicate causal relations in under-constrained sets of structural

equations. Considering under-constrained models as intermediate representations of one’s under-

standing of decision problems, I demonstrate that a model construction process can be viewed as

the process of assembling mechanisms from under-constrained models into self-contained causal

models. I formalize the reversibility property of a mechanism to support changes in structure in

causal models containing reversible mechanisms. I introduce algorithms for deliberating atomic

actions when one considers manipulating a variable or releasing a mechanism to achieve a decision

objective. In addition, I introduce the concept of search for opportunities which amounts to both

identifying the set of policy variables and computing their optimal setting for a decision objective.

Search for opportunities presents decision makers with a list of ranked interventions based on the

value of intervention computation. I implement an interactive system called ImaGeNIe that sup-

ports mechanism-based model construction and utilization. I conduct subject experiments and find

that ImaGeNIe can effectively assist users in constructing causal models for causal reasoning.
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Chapter 1

Introduction

1.1 Motivation

Causality plays an important role in our thinking. We constantly ask ourselves why things

happen as they are. Our understanding of the “why” enables us to hypothesize how we can change

the world toward our advantages. For example, when facing an economic recession, economists

debate about the possible causes of the recession and seek policies to stimulate the economy; when

observing a drop of students’ retention rate, board of education wonders if the curriculum should

be changed; when an automobile accident happens, one questions if a more careful maneuver could

have prevented it. If we believe that there is a reason behind every event we see, we can safely say

that causal reasoning guides us through our journey. As the study of Artificial Intelligence aims

at building systems that can reason with human intelligence and assists our daily activities, it is

evident that causal reasoning will remain one of the central research topics of artificial intelligence.

Causal models based on structural equations emerged from genetics, econometrics, and social

sciences [Wright, 1934; Haavelmo, 1943; Simon, 1953; Goldberger, 1972] and have become a domi-

nant representation for supporting causal reasoning in Artificial Intelligence [Glymour and Cooper,

1999; Pearl, 2000; Spirtes et al., 2000]. In the last decade, researchers have developed methods

for deriving causal relationships from data with background knowledge [Pearl and Verma, 1991;

Cooper and Herskovits, 1992; Spirtes et al., 1993], providing causal interpretations to decision-

theoretic models such as Bayesian networks and influence diagrams [Druzdzel, 1992; Pearl, 1993;

Spirtes et al., 1993], predicting effects of actions and policies [Pearl, 1993; Spirtes et al., 1993;

Balke and Pearl, 1995; Galles and Pearl, 1997], learning causal relationships from experimental

or non-experimental data [Pearl, 1995; Spirtes et al., 1995; Cooper, 2000], and generating causal

explanations for observed events [Halpern and Pearl, 2001; Pearl, 2000]. Researchers have reported

a wide range of applications of causal models in various scientific and industrial areas [Glymour

and Cooper, 1999; Pearl, 2000].

1



A causal model of a system consists of a set of simultaneous structural equations, each of

which represents a causal mechanism active in the system. Simon developed the theory of causal

ordering that explicates causal asymmetries among variables in a causal model and represents causal

relations in the model as a causal graph [Simon, 1953; Simon and Rescher, 1966; Simon, 1979;

Simon and Iwasaki, 1988]. Causality derived by the theory of causal ordering is known as the

mechanism-based view of causality. And causal graphs have played an essential role in identifying

causal claims that are otherwise difficult to derive [Pearl, 1998]. A simple example of a causal

model and its corresponding causal graph is a power train system of an automobile, which consists

of two mechanisms: the mechanism acting between the engine (E) and the transmission (T ), and

the mechanism acting between the transmission (T ) and the wheels (W ). When the automobile

engine is turned on, it acts on the transmission (T ), which in turn acts on the wheels (W ). The

theory of causal ordering derives the following causal graph: E → T →W .

The quality of causal reasoning depends on the quality of the causal models. A model is requisite

if it contains everything that is essential for solving the problem and no new insights emerge about

the problem [Phillips, 1984]. Building a requisite model requires intuition and creativity, since the

notion of requisiteness is subjective. Constructing requisite causal models is often a laborious task

for domain experts. It is important to assist the process of causal model construction so that we

can increase the quality of causal reasoning when facing complex systems. In this dissertation, I

ask how the mechanism-based view of causality can assist the process of model construction.

The mechanism-based view of causality explicates causal relations within a postulated model.

Although a causal relation between two variables is asymmetric in a model, researchers have re-

ported that it can be reversed when a mechanism is embedded in different operational contexts

[Simon, 1953; Wold and Jureen, 1953; Wold, 1954; Simon and Rescher, 1966; Druzdzel, 1992;

Spirtes et al., 1993; Pearl, 2000]. In the example of the power train system, when we drive a car

down a hill, it is common practice to slow down the car by switching to a lower gear. According

to the theory of causal ordering, we have the causal graph: E ← T ← W . When we compare this

graph with the causal graph in the previous operational context, we see that causal relations among

variables are reversed. Such modeling assumes that (1) a modeler has sufficient prior knowledge

for predicting effects of actions and (2) effects of actions are represented by modifying the set of

structural equations. Researchers in econometrics refer to such modeling as changes in structure

2



[Koopmans, 1950; Hood and Koopmans, 1953], namely modifying local structural equations that are

brought about by interventions. When a manipulated variable is directly governed by an irreversible

mechanism, changes in structure reduces to the arc-cutting semantic as reported in [Pearl, 1993;

Spirtes et al., 1993]. For example, the rain (R) can get us wet (W ), R → W ; however, wearing

the rain coat can only prevent us getting wet but it does not make the rain go away, i.e., the arc

between R and W is cut, but not reversed. Whether a mechanism is reversible or not provides

us with the knowledge necessary to determine which mechanism should be removed from the ma-

nipulated model. However, when manipulating on a system containing reversible mechanisms, no

guidance has been provided in determining the effects of actions, namely which mechanisms should

be invalidated and removed from the manipulated system. In this dissertation, I ask how the

mechanism-based view of causality can support modelers in deliberating over changes in structure

in systems containing reversible mechanisms.

When confronted with a complex system, decision makers may not know which variables one

should best manipulate to achieve a decision objective, even given a requisite causal model that

describes the system. Causal models can assist a decision maker in generating decision alternatives.

I introduce the concept of search for opportunities which amounts to both identifying the set

of policy variables and computing their optimal settings for a given decision objective. In this

dissertation, I ask how to combine decision-theoretic methods with the mechanism-based view of

causality to solve the problem of search for opportunities.

1.2 Statement of Thesis

The central thesis of this dissertation is as follows:

The mechanism-based view of causality provides an effective formalism for causal model

construction and utilization.

I study this thesis and demonstrate its correctness by extending the theory of causal ordering

and by implementing a computer-aided interactive modeling environment ImaGeNIe for causal

reasoning. In particular, I demonstrate that

Model Construction The model construction process can be viewed as the process of assembling
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mechanisms from under-constrained models into self-contained causal models. The extended

theory of causal ordering explicates causal relations in under-constrained models into causal

graphs that can represent ones’ intermediate understanding of decision problems.

Changes in Structure The reversibility property of a mechanism can support changes in struc-

ture in causal models containing reversible mechanisms. The formalization of reversibility

leads to algorithms for deliberating atomic actions when one considers manipulating a vari-

able or releasing a mechanism to achieve a decision objective.

Search for Opportunities The mechanism-based view of causality enables the computation of

the value of intervention. The formalisms of the action operator Act and the augmented

models allow the myopic search for opportunities to compute a sequence of intervening and

non-intervening actions as decision alternatives.

1.3 Overview

This dissertation will be organized as follows:

Chapter 2 describes the theory of causal ordering and the graphical representation of causal

models.

Chapter 3 presents the extended theory of causal ordering for under-constrained systems and

shows how such theory can be used in assisting the process of model construction. An interac-

tive and iterative modeling environment, ImaGeNIe, is presented to demonstrate the approach of

mechanism-based causal model construction.

Chapter 4 formalizes the reversibility property of a mechanism and the Act operator for rea-

soning with systems containing reversible mechanisms. It presents two algorithms for deliberating

atomic actions for changes in structure in reversible systems.

Chapter 5 introduces the concept of search for opportunities and the computation of the value

of intervention. It demonstrates how to solve the problem of search for opportunities in causal

models containing mixtures of mechanisms.

Chapter 6 describes the experimental results on using ImaGeNIe to construct causal models

for causal reasoning.

4



Chapter 7 concludes the contributions of this dissertation and describes possible future research.
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Chapter 2

Causal Models

A system is a piece of the real world that can be reasonably studied in isolation. A model

describes the phenomena and mechanisms in a system. A model can be represented by a set

of structural equations where each equation describes a conceptually distinct causal mechanism

active in the system. Such models are known as Simultaneous Equation Models (SEMs) [Wright,

1934; Haavelmo, 1943; Simon, 1953], also called Structural Equation Models [Goldberger, 1972] in

economics and social science. Simon [1953] developed the theory of causal ordering to explicate

causal asymmetries among variables in a self-contained SEM. The theory of causal ordering provides

a formal account of causality, known as mechanism-based view of causality.

This chapter reviews the theory of causal ordering and defines the concepts needed for the rest

of this dissertation. Section 2.1 presents notations that will be used in this document. Section 2.2

and 2.3 describe the building blocks of causal models and discuss the assumptions practiced in

structural equation modeling. Section 2.4 describes causal structure, the theory of causal ordering,

and causal graph.

2.1 Notation

Variables will be denoted by capital letters, such as V , and values of variables by lower case

letters, such as v. A set of variables will be written as upper case boldface type such as V and the

values of a set of variables as lower case bolder face v. |V| will denote the number of elements in

the set V. A graph G = 〈N,A, A〉 consists of a set of nodes N, a set of directed arcs A, and a set

of undirected arcs A. A graph G = 〈N,A, A〉 is (completely) directed if |A| = 0, shorthanded as

G = 〈N,A〉. A graph G = 〈N,A, A〉 is undirected if |A| = 0, shorthanded as G = 〈N, A〉. The

sets of parents, children, ancestors, and descendants of a node N ∈ N in a graph G are denoted by

Pa(N), Ch(N), Anc(N), and Des(N) respectively.
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2.2 Phenomena and Variables

Structural equation modeling starts with identifying entities involved in a system. An entity

can be a single object (e.g., a patient), a population of similar objects (e.g., male patients in

a hospital), or a group of relevant objects (e.g., patients, doctors, and insurance company in a

health system). We define variables to represent phenomena of entities (e.g., the blood pressure

of a patient) and define structural equations to describe mechanisms among the variables in a

system. A set of structural equations that describes the system of interest is a SEM. Our prior

domain knowledge decides which mechanisms are involved in a system. Therefore, the definitions

of structural equations and variables in a SEM are a-priori [Simon, 1953; Wold, 1954].

Since a variable represents a phenomenon of an entity, we may associate different properties

to a variable for different purposes of modeling. A variable has value as its default property.

The value of a variable can be categorized into discrete or continuous, temporal or non-temporal,

and spacial or non-spacial. When a variable is used in a statistical model, we may attach to the

variable properties such as measured or unmeasured, and observable or non-observable. When a

variable is used in experiments, we may attach to the variable properties such as manipulable or

non-manipulable and dependent or independent. In general, a variable in a SEM should be treated

analogically to a user-defined data type in a programming language, where a modeler has clear

definition of what it represents in the real world and what properties it has.

2.3 Mechanisms and Structural Equations

Mechanisms are relations between phenomena, which are represented as structural equations

over variables. When relations among phenomena are consistently observed, we postulate mech-

anisms to describe such relations. Rather than arbitrarily assert mechanisms among phenomena,

we normally apply criteria such as stability to screen off transitory relations or favor one formalism

over the other. For example, we say that causal relationships are more stable than probabilistic

relationships because causal relationships ontologically describe physical relations among objects

in the world, whereas probabilistic relationships epistemically reflect what we believe about our

world [Pearl, 2000, pp. 25]. It is also stressed that a mechanism should be autonomous in the sense
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that the external change on any one of the mechanisms in a system does not imply the change of

others [Haavelmo, 1944, pp. 26]. For example, disconnecting the fuse that connects the headlights

and the battery in an automobile does not imply that the generator will not generate power for the

battery. A structural equation can be defined as follows.

Definition 2.1 (structural equation)

A structural equation e(V1, V2, . . . , Vn) = 0 represents an autonomous and stable mechanism among

the set of variables {V1, V2, . . . , Vn} that represents the phenomena described by that mechanism.

Simon [1979] pointed out that different a-priori assumptions for one structural equation may

lead to different interpretations of causal relations among variables. For example, schooling helps

in increasing verbal ability in one experimental context, but verbal ability helps in getting higher

schooling in another. Simon used the term causal mechanisms to refer to mechanisms considered

under different a-priori assumptions. In other words, a structural equation can be written in an

explicit functional form to specify the effect and its causes in a-priori assumptions.

Definition 2.2 (structural equation in explicit form)

Let e(V1, V2, . . . , Vn) = 0 be a structural equation that represents a mechanism. Solution of this

equation for Vi, i.e, the equation Vi = fi(V1, . . . , Vi−1, Vi+1, . . . , Vn) is an explicit functional form

of e that represents a causal mechanism where the set of variables {V1, . . . , Vi−1, Vi+1, . . . , Vn} are

the causes of the effect variable Vi.

In general, an equation is symmetric. Does it imply that a structural equation in its implicit

form can be written into all its possible explicit functional forms and be interpreted causally? The

answer is no. The assertions of causal relations require a-priori assumptions [Haavelmo, 1944;

Simon, 1953; Wold, 1954]. Simon [1979; 1988] suggested three sources in asserting asymmetries:

manipulability, time precedence, and prepotency.

Manipulability is based on the empty world postulate [Simon and Rescher, 1966] which states

that

“. . . most variables in the world are not directly connected with most other variables,

and that such connections as exist involve a very small number of different kinds of

mechanisms. Then, one would include a particular variable in a subsystem only if one
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could select a mechanism from the list of admitted mechanism through which that

variable could possibly act on that subsystem.”

In other words, we can select one of admitted mechanisms in the system and manipulate on one of

the variables in the selected mechanism such that the system will contain a mechanism that is linked

to the manipulated variable alone. Manipulation in the context of randomized experimentation

allows experimenters to test causal links between the independent variables and the dependent

variable. However, when one takes the nature as the force of the manipulation and by this tests a

mechanism from naturally occurring data, this postulate may be fallible when spurious links exist.

Time precedence is undoubtedly one of primary sources to conjecture asymmetries among vari-

ables. In the world we live, it is generally agreed that the effect cannot precede its causes in

time. Consequently, we tend to apply regularity of succession to assert asymmetries among vari-

ables. Temporal precedence, however, does not always imply causal precedence since spurious

correlation may be at play. We shall emphasize that time precedence is inessential for causality

defined in the theory of causal ordering [Simon, 1953; Simon and Rescher, 1966; Simon, 1979;

Simon and Iwasaki, 1988]. Nonetheless, explicit representations of temporal ordering among vari-

ables in a structural equation may assert causality explicitly.

Prepotency postulate states that phenomena with large or powerful force cause the small or

weak phenomena as effects. For example, we normally say that Sun causes Earth to revolve, rather

than the other way around. However, this postulate may be fallible when feedback mechanisms

exist. For example, the amount of rains causally influence the amount of agricultural productions,

but increasing the amount of agricultural productions by taking the land away from forests in the

long run may influence weather in reverse. Prepotency postulate may also be fallible when control

subsystems exist. For example, our nerve system controls our body movement although the mass

of our nerve system is small, comparing to the mass of the rest of our body.

When a mechanism is embedded in different operational contexts, the causal asymmetries among

variables may be reversed from one context to another. Such type of mechanisms is recognized as

reversible mechanisms in [Simon, 1953; Wold and Jureen, 1953; Wold, 1954; Simon and Rescher,

1966; Druzdzel, 1992; Spirtes et al., 1993; Pearl, 2000]. In Chapter 4, I will discuss the representation

of reversible mechanisms and their role in causal reasoning.
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2.4 Causal Structure, Causal Ordering, and Causal Graph

An equation-based mathematical model is qualified as a structural equation model if each

equation in the model represents a conceptually distinct mechanism in a system. We may represent

a static equilibrium system as a set of algebraic equations; a dynamic equilibrium system as a

set of difference or differential equations; a nearly decomposable equilibrium system [Simon and

Iwasaki, 1988; Simon and Rescher, 1966] as a set of mixed algebraic and difference or differential

equations. Druzdzel and Simon [1993] showed that a causal Bayesian network can be represented

as a structural equation model. In this dissertation, I focus on structural aspects of causal models.

When performing quantitative analysis, I work with quantified causal models.

Let Vars(e) denotes the set of variables appearing in a structural equation e. The set of variables

appearing in a set of structural equations E is denoted as Vars(E) =
⋃

e∈E Vars(e). A structural

equation model can be represented as a set of structural equations E = {e1, e2, . . . , em} over a set of

variables V = {V1, V2, . . . , Vn} appearing in E, i.e., V ≡ Vars(E). A variable Vj ∈ V is exogenous

if it is determined by factors outside the model, i.e., if there exists a structural equation ei(Vj) = 0

in E. A variable is endogenous if it is determined by other variables in the model. I denote the

sets of exogenous and endogenous variables in E as ExVars(E) and EnVars(E) respectively. E is

independent if there does not exist an equation ei ∈ E such that ei is satisfied by all simultaneous

solutions of any subset of E \ {ei}. E is consistent if the solution set of E is not empty. In order

to ensure that E is independent and consistent, Simon and Rescher [1966] defined the concept

structure.

Definition 2.3 (structure)

A structure is a set of equations E where |E| ≤ |Vars(E)| such that in any subset E′ ⊆ E :

1. |E′| ≤ |Vars(E′)|, and

2. If the values of any |Vars(E′)| − |E′| variables in Vars(E′) are chosen arbitrarily, then the

values of the remaining |E′| variables are determined uniquely.

The following definitions are needed for for introducing theory of causal ordering [Simon, 1953].

Definition 2.4 (self-contained structure)

A structure E is self-contained if |E| = |Vars(E)|.
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Definition 2.5 (under-constrained structure)

A structure E is under-constrained if |E| < |Vars(E)|.

Definition 2.6 (minimal self-contained structure)

A self-contained structure E is minimal if it does not contain any proper subset of equations in E

which is self-contained.

Definition 2.7 (strongly coupled component)

A minimal self-contained structure is a strongly coupled component if it contains more than one

equation (one variable).

To complete the discussion, we say that a set of structural equations is over-constrained if the

number of equations is more than the number of variables. Note that a set of over-constrained

structural equations is not a structure since it violates Definition 2.3.

Definition 2.8 (over-constrained)

A set of structure equations E is over-constrained if |E| > |Vars(E)|.

To formalize the theory of causal ordering, Simon and Rescher [1966] define structure matrix

as the qualitative representation of a set of structure equations.

Definition 2.9 (structure matrix)

A structure matrix is a qualitative representation of s set of structure equations E, where an element

aij = x if Vj ∈ V participates in ei ∈ E; and aij = 0, otherwise.

Example 2.1 The following SEM is the description for the match ignition: “Striking a dry match

in the presence of oxygen, tinder, and fuel will cause a conflagration.”1 We define the following

binary variables to describe the system: (S) struck or unstruck; (D) dry or damp; (O) oxygen or no

oxygen; (I) ignited or unignited; (T ) tinder or no tinder; (F ) fuel or no fuel; and (C) conflagration

or no conflagration. The mechanism for lighting matches is specified by the Boolean function

I = S ∧ D ∧ O. The conflagration mechanism is specified by C = I ∧ O ∧ T ∧ F. The exogenous

variables are S, D, O, T , and F . Figure 2.1 presents the set of structural equations in implicit

function form on the left and its corresponding structure matrix on the right. 2

1This example is first given in Simon and Rescher [1966].

11








f1(S) = 0
f2(D) = 0
f3(O) = 0
f4(T ) = 0
f5(F ) = 0

f6(I, S, D, O) = 0
f7(C, I, O, T, F ) = 0

S D O T F I C
f1 x 0 0 0 0 0 0
f2 0 x 0 0 0 0 0
f3 0 0 x 0 0 0 0
f4 0 0 0 x 0 0 0
f5 0 0 0 0 x 0 0
f6 x x x 0 0 x 0
f7 0 0 x x x x x

Figure 2.1. The set of structural equations in implicit functional form and its corresponding struc-
ture matrix for Example 2.1.

Although each structural equation represents a causal mechanism active in a system, how does

one know the causal relations among the variables? Simon [1953] proposes the theory of causal

ordering to derive the asymmetric causal relations among variables (equations) in a self-contained

structure. The theory of causal ordering only requires the qualitative knowledge, which variables

appears in which structural equations, i.e, structure matrix, to derive the causal relations. The

theory of causal ordering is later extended to dynamic and nearly-decomposable systems [Simon

and Rescher, 1966; Simon and Iwasaki, 1988; Iwasaki and Simon, 1994]. Rather than restate the

theories, I present it as causal ordering algorithm and explain it with examples.

The causal ordering algorithm (COA) takes a self-contained structure E as input and outputs a

causal graph G(E) = 〈N,A〉, where N represents variables V = Vars(E) and A is a set of directed

arcs among N. More precisely, N is a partitioning of V, meaning that N = {N1,N2, . . . ,Nr} is a

pairwise disjoint sets such that
⋃r

i=1 Ni = V, and A is a set of directed arcs Vj → Ni where Vj ∈ V,

Ni ∈ N, and Vj /∈ Ni. The algorithm starts with identifying the minimal self-contained structure in

E. These identified minimal self-contained structures, C0 = {C0
1,C

0
2, . . . ,C

0
l }, are called complete

structures of 0-th order and a partition N0
k on V is created for Vars(C0

k), for each C0
k ∈ C0. For

each variable Vj ∈ N0
k, a corresponding node is created. When the minimal complete structure

is a strongly coupled component, i.e., |C0
k| > 1, we draw the nodes created for variables in N0

k

as overlapping circles because their values need to be solved simultaneously. Next, the algorithm

removes C0 from E for the values of Vars(C0) is solved. We denote the new structure E \ C0

as Ê1. The algorithm then removes the columns representing Vars(C0) as substituting the solved

values of Vars(C0) into Ê1 to obtain the derived structure of the first order E1. The algorithm
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repeats the process of identifying, solving, removing, and substituting on the derived structure of

p-th order until it is empty. In addition, whenever a partition Np
k and corresponding nodes are

created for a complete structure Cp
k in the complete structures of p-th order, the algorithm refers

Cp
k back to its equations before any substitutions in E, denoted as Ĉp

k, and adds arcs from nodes

representing variables in Vars(Ĉp
k) \Vars(Cp

k) to the nodes representing Np
k. Note that the causal

ordering algorithm creates one-to-one mapping between equations Ĉp
k and variables Np

k, denoted

as 〈Ĉp
k,N

p
k〉, for a self-contained causal structure. In other words, Ĉp

k is mapped to Np
k and vice

versa in G(E).

Simon [1953] introduces the concept of endogenous and exogenous variables pertinent to the

structure before substitutions of a complete structure of p-th order.

Definition 2.10 (endogenous and exogenous variables with respect to Ĉp
k )

Let Cp and Cq be the complete structures of p-th and q-th order respectively in a self-contained

structure E when applying causal ordering algorithm. Let Ĉp
k be the structure before any substitu-

tions of a complete structure Cp
k ∈ Cp and Vi ∈ Vars(Ĉp

k).

1. Vi is endogenous with respect to Ĉp
k, if Vi /∈ Vars(Cq) for all q < p.

2. Vi is exogenous with respect to Ĉp
k, if Vi ∈ Vars(Cq) for some q < p.

The sets of endogenous and exogenous variables with respect to Ĉp
k are denoted as EnVars(Ĉp

k)

and ExVars(Ĉp
k) respectively.

Simon [1953] uses the concept of endogenous and exogenous variables with respect to Ĉp
k to

define direct cause.

Definition 2.11 (direct cause)

For every Ĉp
k in a self-contained structure E, each Vi ∈ ExVars(Ĉp

k) is a direct cause of each

Vj ∈ EnVars(Ĉp
k).

Example 2.2 Consider applying the causal ordering algorithm to Example 2.1, COA first identifies

f1, . . . , f5 as complete subsets of 0-th order, since each equation contains one variable and can be

solved for the value of this variable. Then nodes are created for each of the solved variables: S,
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S D O T F I C
f1 x 0 0 0 0 0 0
f2 0 x 0 0 0 0 0
f3 0 0 x 0 0 0 0
f4 0 0 0 x 0 0 0
f5 0 0 0 0 x 0 0
f6 x x x 0 0 x 0
f7 0 0 x x x x x
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Figure 2.2. Causal ordering algorithm takes a self-contained structure as input and outputs a causal

graph for Example 2.1.

D, O, T , and F . Next, the algorithm removes the solved equations f1, . . . , f5 from the system

and substitute the solved values of variables, S, D, O, T , and F , into equations f6 and f7, i.e,

removing the columns of S, D, O, T , and F . We obtain the derived system of first order. In this

derived structure, f ′
6 is a minimal self-contained structure, which can be solved for the values of I;

correspondingly node I is created. Referring to the original equation f6, the algorithm adds arcs

from nodes O, D, S to I. And the newly derived structure of the second order only consists of f ′′
7

which is a self-contained structure that allows us for solving the value of C; correspondingly node

C is created and the arcs from F , O, T , and I to C are added. The structure matrices for the 0-th,

1-st, and 2-nd derived structures and the causal graph generated by COA are shown in Figure 2.2.

According to the causal ordering presented in the causal graph, we can read off the causal relations:

(1) S, D, and O are the direct causes of I; (2) T , I, O, and F are the direct causes of C. 2

Example 2.3 Consider the structure matrix presented in Figure 2.3. The causal ordering algo-

rithm takes the structure matrix as input and identifies C0 = Ĉ0 = {{e1}, {e2}, {e3}}, Ĉ1 =

{{e4, e5}}, Ĉ2 = {{e6}, {e7}}, and Ĉ3 = {{e8}} to generate the causal graph. The mapping be-
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V1 V2 V3 V4 V5 V6 V7 V8

e1 x 0 0 0 0 0 0 0
e2 0 x 0 0 0 0 0 0
e3 0 0 x 0 0 0 0 0
e4 0 x 0 x x 0 0 0
e5 0 x x x x 0 0 0
e6 0 0 x 0 x x 0 0
e7 0 0 0 x 0 0 x 0
e8 x 0 0 0 0 0 x x
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Figure 2.3. Causal ordering algorithm takes on a self-contained structure as input and outputs a

causal graph with a strongly-coupled component.

tween equations and variables are 〈e1, V1〉, 〈e2, V2〉, 〈e3, V3〉, 〈{e4, e5}, {V4, V5}〉, 〈e6, V6〉, 〈e7, V7〉

and 〈e8, V8〉. From the causal graph, we can read off the causal relations among the sets of vari-

ables. We can read off direct causal relations: {V4, V5} is caused by V2 and V3; V6 is caused by

V3 and V5; V7 is caused by V4; V8 is caused by V1 and V7. We can also read off transitive causal

relations such as V3 is an indirect cause of V7 because there is direct path from V3 to V7. How-

ever, the causal relations between V4 and V5 are undefined, since they are in a strongly-coupled

component. Considering the endogenous and exogenous variables with respect to each complete

structure, we have EnVars(Ĉ0
1) = {V1}, EnVars(Ĉ0

2) = {V2}, and EnVars(Ĉ0
3) = {V3} for

the complete structures of 0-th order Ĉ0. For the complete structures of 1-st order Ĉ1, we have

EnVars(Ĉ1) = {V4, V5} and ExVars(Ĉ1) = {V2, V3}. For Ĉ2
1, we have EnVars(Ĉ2

1) = {V6} and

ExVars(Ĉ2
1) = {V3, V4, V5}. For Ĉ2

2, we have EnVars(Ĉ2
2) = {V7} and ExVars(Ĉ2

2) = {V4, V5}.

For Ĉ3, we have EnVars(Ĉ3) = {V8} and ExVars(Ĉ3) = {V1, V7}. 2
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2.5 Summary

In this chapter, I have introduced the mechanism-based view of causality and the theory of

causal ordering as the causal ordering algorithm. The building blocks of causal models are variables

and structural equations. Mechanisms are stable and autonomous relations among phenomena.

Structural equations are mathematical representations of mechanisms. A causal model is a self-

contained set of structural equations describing a system of interest. Simon [1953] developed the

theory of causal ordering on a self-contained structure matrix and defined the mechanism-based

view of causality by means of the causal ordering algorithm.
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Chapter 3

Mechanism-based Causal Model Construction

The previous chapter describes the building blocks of causal models and the causal ordering

algorithm which produces a causal graph for a self-contained causal structure to represent causal

relations among variables. This chapter presents a framework for building graphical causal models

based on the extended theory of causal ordering for under-constrained structures. I consider an

under-constrained structure as a representation of one’s intermediate understanding of a decision

problem, and the process of model construction as transforming an under-constrained structure

into a self-contained structure. I implement the framework as an interactive model construction

module called ImaGeNIe in SMILE (Structural Modeling, Inference, and Learning Engine) and

GeNIe (SMILE ’s Windows user interface).

The rest of the chapter is organized as follows. Section 3.1 discusses previous approaches

in supporting construction of graphical models and outlines the mechanism-based approach of

causal model construction. Section 3.2 describes the ImaGeNIe framework. Section 3.3 discusses

the representation of mechanism knowledge base. Section 3.4 presents the extension of causal

ordering algorithm for under-constrained structures. Section 3.5 discusses the use of bipartite

graph matching for solving the problem of causal ordering. Section 3.6 discusses the interactive

modeling process. Section 3.7 presents an example of user interaction with ImaGeNIe.

3.1 Introduction

The quality of the advice suggested by graphical decision models depends directly on the req-

uisiteness of the models, since the normative character of such models guarantees the correct-

ness of the inference procedure. A model is requisite if it contains everything that is essential

for solving the problem and no new insights about the problem will emerge by elaborating on

it [Phillips, 1984]. To build a requisite model requires human intuition and creativity since the

notion of requisiteness is subjective. Construction of graphical models, therefore, is laborious

and demanding in terms of domain expertise. While support for obtaining model parameters,

17



such as prior and conditional probability distributions, has received much attention in behav-

ioral decision theory literature (see von Winterfeldt and Edwards [1988] for a review) and in

artificial intelligence [Druzdzel and van der Gaag, 2000], relatively little work has been done

on composing model structure, with the work on modeling physical systems in [Iwasaki, 1988;

Nayak, 1992] being notable exceptions. At the same time, there are some indications that the

quality of advice is more sensitive to the model structure than to the precision of its numerical

parameters [Pradhan et al., 1996].

In the literature on graphical probabilistic models, such as Bayesian networks and influence

diagrams, there are essentially four approaches to aid model building. The first approach focuses

on providing more expressive building tools. The Noisy-OR model [Pearl, 1988; Henrion, 1989] and

its generalizations [Diez, 1993; Srinivas, 1993] simplify the representation and elicitation of inde-

pendence interactions among multiple causes. Heckerman [1990] developed the similarity network

and partition as tools for representing subset independence to facilitate the structure construction

and probability elicitation. The second approach, usually referred to knowledge-based model con-

struction (KBMC), emphasizes aiding model building by automated generation of decision models

from a domain knowledge-base guided by the problem description and observed information (see

a special issue at the journal IEEE Transactions on Systems, Man and Cybernetics on the topic

of KBMC [Breese et al., 1994]). The third approach focuses on algorithms that can learn the

model structure and parameters from a database of observations [Cooper and Herskovits, 1991;

Pearl and Verma, 1991; Spirtes et al., 1993]. Although model construction from data can reduce

the knowledge engineering effort, the learning approach faces other problems such as small data

sets, unmeasured variables, missing data, selection bias, and the flexibility of model granularity.

Furthermore, combing several approaches is risky [Druzdzel and Dı́ez, 2003].

While acknowledging that in the future it may be possible to build powerful computer systems

that will model human creativity, sense for relevance, and simplicity, I believe that these tasks

are and will long be performed better by humans. My view is that model building, a task that

relies on all these capacities, is best implemented as an interactive process. The fourth approach

on aiding model construction that is most related to my work is to apply system engineering and

knowledge engineering techniques for aiding the process of building Bayesian networks. Laskey and

Mahoney [1996; 1997] address the issues of modularization, object-orientation, knowledge-base,
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and evaluation in a spiral model of development cycle. Koller and Pfeffer [1997; 1999] developed

Object-Oriented Bayesian Networks (OOBN) that use objects as organizational units to reduce the

complexity of modeling and increase the speed of inference.

My approach on aiding model construction is based on the mechanism-based view of causality,

where mechanisms are building blocks of a model and the theory of causal ordering determines

the causal structure of a model. As they encode our understanding of local interactions among

variables, mechanisms are fairly model independent and can be easily reused in various models.

Similarly to the abstraction of object-hierarchy, mechanisms can be organized hierarchically in

nearly decomposable system [Iwasaki and Simon, 1994]. In addition, mechanism-based view of

causality provides a valuable heuristic for acquiring and managing causal knowledge.

In my framework, I encode mechanisms as functional relations among variables and, wherever

causal mechanisms are asymmetric, the direction of causal influence among variables. I extend

Simon’s causal ordering algorithm [Simon, 1953] to develop a modeling process that uses the output

graph of this algorithm in the interaction with users. I assist the model building process by helping

users (1) to identify a set of mechanisms related to the current model and to bring them into

model workspace (2) to integrate the newly added mechanisms with the model under construction

(3) to specify the manipulated variables, and (4) to extract reusable mechanisms from existing

models into the knowledge base. The final model structures generated by my modeling process

are guaranteed to be causal if the underlying structural equations reflect causal mechanisms of the

modeled problem.

One important aspect of causal reasoning is to allow users to predict the effect of manipulation,

i.e., changes in structure. The users of causal models (and that includes autonomous robots) can

ask questions like “What will happen if I perform action A?” Manipulation is especially important

in strategic planning, where it is important to derive creative decision options and not only to

evaluate existing decision options. Furthermore, a user may want to explore the possibility of

manipulating different variables in the process of creating a model. Supporting this manipulation

is not straightforward, as some mechanisms may be reversible, i.e., acting in reverse direction. For

example, when driving up the hill, car engine causes the wheels to turn; but when driving down

the hill in a low gear, the model should be able to predict that the wheels will cause the engine to

slow down. My approach supports causal modeling that includes reversible mechanisms and offers
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an integrated framework for building and using causal models. I will present the theoretical and

algorithmic aspects on supporting changes in structure in Chapter 4.

3.2 The Framework

I develop an interactive and iterative model construction environment, called ImaGeNIe, that

assists users in building causal models. I use the causal ordering algorithm to generate the network

structure of a causal model, which can later be associated with different node types and parameters.

Figure 3.1 shows the architecture of ImaGeNIe. It includes three knowledge structures: mechanism

knowledge bases, which holds domain knowledge expressed as causal mechanisms, model building

workspace, which serves as a blackboard for model composition, and models. The domain knowledge

can be maintained either by the equation authoring interface, where model builders can compose

structural equations directly, or by the mechanism extraction operation that enables model builders

to extract reusable causal mechanisms from existing models. Model builders can use hierarchy

navigation interface to locate the mechanisms of interest and select them into the model building

workspace with assistance of the mechanism selection operation. In addition to mechanism selection

and traditional model authoring operations, model builders can manipulate variables and merge

mechanisms as the model building process evolves. The underlying causal ordering module will

restructure the models according to the users’ interactions with the system.

3.3 Mechanism Knowledge Base

In ImaGeNIe, the mechanism knowledge base is organized as a hierarchical system that con-

sists of subsystems and causal mechanisms as its fundamental building elements. The hierarchical

approach not only assists domain experts to express their domain knowledge in cognitively mean-

ingful units but also helps knowledge engineers to access stored mechanisms easily. The approach

is similar to type-hierarchy in [Koller and Pfeffer, 1997; Laskey and Mahoney, 1997] but without

imposing the inheritance constraint since knowledge can be possibly organized hierarchically from

different perspectives. Appendix A describes the XML schema of the mechanism knowledge base

in ImaGeNIe.
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Figure 3.1. Interactive and iterative model construction system architecture. The arcs show the

direction of the information flow.

The fundamental knowledge units in mechanism knowledge base are causal mechanisms which

are represented as structural equations. Users can specify structural equations in implicit functional

forms or explicit functional forms such as algebraic functions, conditional probability tables, truth

tables, value/utility tables, and choice tables. While most mechanisms will be described in one,

perhaps their only, mode of operation, some mechanisms will be described in different modes of

operation because when those mechanisms are embedded in different operation contexts, the causal

relations among variables may be reversed. The reversibility of a mechanism will be formally

introduced in Chapter 4.

To aid the process of model building, I define the manipulability and observability properties

for each variable in the domain knowledge base. On the manipulability property, a variable can be

manipulable or non-manipulable. A variable is manipulable if it can be manipulated directly, i.e.,

the value of a manipulable variable can be set directly, by forces outside a model in a modeling

domain. A variable is non-manipulable if the value of the variable has to be derived from a model

in a modeling domain. For example, the mechanism describing the degree of sunshine (S) and my
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behavior of wearing sunglasses (SG) can be represented by a structural equation f(S, SG) = 0. I

define both S and SG as manipulable variables in the modeling domain. The degree of sunshine S

is determined by the external force of nature. Wearing sunglasses or not (SG) could be controlled

by me. Note that the manipulability property of a variable in a modeling domain is different from

its appearance as an exogenous variable in a model. For example, I can have g(S) = 0, which

describes the degree of sunshine, together with f(S, SG) = 0 to model the situation where I wear

my sunglasses because of the sunshine (S → SG). In this example, I have S as an exogenous

variable, but not SG. However, SG is still manipulable in my modeling domain, since I can always

wear sunglasses regardless of the degree of sunshine. In such case, I have the model with structural

equations g(S) = 0 and h(SG) = 0 (representing the behavior of wearing sunglasses regardless of

sunshine) with a causal graph in which SG is disconnected from S and both are exogenous variables

with respect to the model. In other words, a manipulable variable is not necessary manipulated in a

model, but an exogenous variable is manipulated in a model and it has to be a manipulable variable

in the modeling domain. I call the unmanipulated manipulable variables in a model as potential

policy variables. On the observability property, a variable can be observable or unobservable. It

is sometime desirable to associate other properties with variables to facilitate the use of models.

For example, one may want to associate the properties such as manipulation cost/observation cost

with manipulable/observable variables to incorporate the modeling of costs into causal models.

3.4 Extended Theory of Causal Ordering

In ImaGeNIe, we the model construction process is considered as a reflection of our problem

solving. The under-constrained structures emerged in such process reveal different stages of problem

solving. Mechanisms in different under-constrained structures are structural relations recognized by

modelers as pertinent to each stage of problem solving. Exogenous variables in under-constrained

structures are outside influences that have been committed by modelers. An under-constrained

model cannot be drawn as a directed acyclic graph, as the causal interactions are not completely

determined until a model is self-contained. However, it is desired to have a graphical representation

of under-constrained models during the whole process of model construction, since the graphical

representation can help modelers identify focus and commitments of the outside influences. I extend
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Simon’s causal ordering algorithm to explicate the causal ordering that has been identified in under-

constrained models. In addition, I propose a graphical representation to depict the causal ordering

in an informative graphical form that aims to help users in model building.

In order to formalize the extended theory of causal ordering, I restate the theorem that was

originally proven by Simon [1953].

Theorem 3.1 (disjunct property)

Let A and B be two minimal self-contained subsets of a structure E. Then the structural equations

of A and B, and likewise the variables in A and B are disjunct.

Based on Theorem 3.1, I prove the following lemma.

Lemma 3.1

Let E be a structure and E′ be the derived set of structural equations from E by applying identifi-

cation, solving, removing, and substitution. If E′ is not empty, then E′ is a structure.

Proof: In Section 2.4, I describe the operations of identification, solving, removing, and substi-

tution on a self-contained structure. Now, I apply these operations with the same definitions to a

structure E. In the process of identification, let C be the union of all the minimal self-contained

subsets, i.e., C = C1 ∪C2 ∪ . . . ∪Ck, and the remainder R. We know that R is not empty since

E′ is not empty as given in the premise. Suppose that E′ is not a structure. Then there exists a

subset E∗ of E′ such that |E∗| > Vars(E∗). Let R∗ be the subset of R where E∗ derives from.

We know that the number of equations in R∗ is the same as the number of equations in E∗, i.e,

|R∗| = |E∗|. Now, consider the subset F = C ∪ R∗. The equations of C and R∗ are disjunct

because C and R are disjunct and R∗ ⊆ R. Therefore, |F| = |C| + |R∗| = |C| + |E∗|. Since E∗

derives from R∗ by substitution, the variables appearing in R∗ are either in C or in E∗. Con-

sequently, the variables in F are either in C or in E∗. Moreover, the variables in C and E∗ are

disjunct because E∗ derives from R∗ by substituting out the variables in C. Therefore, |Vars(F)| =

|Vars(C)| + |Vars(E∗)|. Since the equations of Ci, and likewise the variables in Ci, are disjunct

by Theorem 3.1, we have |Vars(C)| =
∑

i |Vars(Ci)| and |C| =
∑

i |C
i|. Hence |Vars(C)| = |C|.

Therefore, |F| = |C|+ |R∗| = |C|+ |E∗| > |C|+ |Vars(E∗)| = |Vars(C)|+ |Vars(E∗)| = |Vars(F)|,

i.e., the number of equations of F is greater than the number of variables of F. In other words,

23



the set F violates Definition 2.3 contradicting the fact that E is a structure. We conclude that E′

must be a structure. 2

Given Lemma 3.1, I can keep applying identification, solving, removing, and substitution op-

erations on derived structure till either E′ is empty or there are no more minimal self-contained

structures that can be identified. If E′ is empty, I know that E is self-contained. If E′ is not empty

and no more self-contained structures can be identified, I know that E is under-constrained and I

call the final E′ the derived strictly under-constrained structure.

Definition 3.1 (strictly under-constrained structure)

An under-constrained structure is strictly under-constrained if it does not contain any self-contained

structures.

Theorem 3.2

A structure E is under-constrained if and only if there exists a derived strictly under-constrained

structure in E.

Proof: (⇒) By Definition 2.5, we know that |Vars(E)| > |E|. Applying Lemma 3.1 on E, we

derive a strictly under-constrained subsets E′ that has |Vars(E′)| > |E′|.

(⇐) Since a derived strictly under-constrained subset must be obtained by the process of iden-

tification, solving, and substitution operations, therefore, by definition E is a structure, i.e., E can

be either under-constrained or self-contained. If E is self-contained, then the derived structure E′

must be empty; otherwise, we can keep applying the process of identification, solving, and substitu-

tion operations. We conclude that we cannot obtain a derived strictly under-constrained structure

from a self-contained E. Therefore, E must be under-constrained. 2

Based on Theorem 3.2, I present the extended causal ordering algorithm in Figure 3.2. The

input of the algorithm is a structure matrix E. The output is a graph G(E) = 〈N,A, A〉 where

N represents Vars(E), A is a set of directed arcs, and A is a set of undirected arcs among N.

The algorithm essentially follows the steps of identification, solving, removing, and substitution

as Simon’s causal ordering algorithm until there are no more self-contained subsets that can be

identified from the derived structure. The algorithm will explicitly depicts the causal relations and

relevant relations encoded in the strictly under-constrained subset, if there remains one.
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Procedure ExtendedCausalOrdering(E)

Input: A structure matrix E.

Output: A graph G(E) = 〈N,A, A〉 where N represents Vars(E), A is a set of directed arcs,
and A is a set of undirected arcs among N.

1. i := 0; Ei := E.

2. while (∃ Ci ⊆ Ei)

3. for each Ci
k ∈ Ci

4. Create a node Nj for each Vj ∈ Vars(Ci
k).

5. Add arcs from each Nl representing Vl ∈ ExVars(Ĉi
k) to Nj .

6. if |Vars(Ci
k)| > 1 then

7. Overlap nodes representing Vars(Ci
k).

8. end if

9. end for each

10. Êi := Ei \Ci.

11. Remove Vars(Ci) from Êi to derive Ei+1.

12. i := i + 1.

13. end while

14. if Ei 6= ∅

15. for each e ∈ Ei

16. Create nodes Ne representing Vars(e).

17. Add arcs from nodes representing ExVars(ê) to Ne.

18. end for each

19. Create pair-wise undirected arcs among NEi .

20. end if

Figure 3.2. Extended causal ordering algorithm.

The graph generated by the extended causal ordering algorithm is designed to aid the process

of model construction. Unlike the original causal ordering algorithm, each variable in the structure

is represented as a separate node so that the modeler can access and manipulate on it directly. The
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set of directed arcs depicts causal relations encoded in an under-constrained structure. A strongly-

coupled component is drawn as a set of overlapped nodes. The set of undirected arcs depict relevant

relations among undetermined variables. Undirected arcs present relevant but undetermined causal

relations among variables so that model builder can focus on clarifying the mechanisms governing

these variables to make a model self-contained.

3.5 Bipartite Graph Matching and Causal Ordering

The extended causal ordering algorithm outlined in Figure 3.2 and the causal ordering algorithm

discussed in Section 2.4 are in worst-case exponential time algorithms. Nayak [1994] discussed a

polynomial time algorithm, based on the bipartite graph matching, for causal ordering over self-

contained structures. Although Nayak’s work focused on the automated modeling of physical

systems, he did not address the problem of causal ordering for under-constrained structures in

model construction. Nayak’s work on causal ordering was based on the work of Serrano and

Gossard [1987] where they focused on the constraint management in conceptual design. Given a

set of equations, they recognized that the complete matching between the set of equations and

the set of variables yields the causal ordering. Although Serrano and Gossard discussed the use of

bipartite graph matching for detecting under-constrained and over-constrained systems, they did

not discuss causal relation among variables in these systems.

In Section 3.5.1, I summarize the link of causal ordering and the bipartite graph matching in

[Serrano and Gossard, 1987; Nayak, 1994] and demonstrate how to use the bipartite graph matching

to derive causal graphs. Section 3.5.2 derives the method that uses the bipartite graph matching

in the extended causal ordering for under-constrained structures.

3.5.1 Complete Matching and Causal Ordering

Given a self-contained structure E, the causal ordering algorithm creates one-to-one mappings

〈Ĉp
k,EnVars(Ĉp

k)〉, between the equations of minimal self-contained structures, Ĉp
k, and its en-

dogenous variables, EnVars(Ĉp
k) (See Section 2.4). The concept of direct cause, defined in Defi-

nition 2.11, states that for each Ĉp
k in a self-contained structure E, ExVars(Ĉp

k) are direct causes

of EnVars(Ĉp
k). The bottleneck of the causal ordering algorithm discussed in Section 2.4 is in the
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step of identifying these one-to-one mappings. Serrano and Gossard [1987] suggested the use of the

bipartite graph matching in finding these one-to-one mappings. The bipartite graph representation

of structure E can be formalized as follows.

Definition 3.2 (bipartite graph of a structure E)

The bipartite graph BG(E) = 〈NE,NV, A〉 of a structure E consists of two disjoint sets of nodes

NE and NV, and a set of undirected arcs A, where

1. for each equation ei ∈ E, there is a node Nei
∈ NE.

2. for each variable Vi ∈ V, where V = Vars(E), there is a node NVi
∈ NV, and

3. for each equation ei ∈ E, there is a set of undirected arcs (Nei
, NVj

) in A for each Vj ∈

Vars(ei).

A matching in a bipartite graph is a set of arcs such that no two nodes in the matching share

an arc. A node Nei
is matched to a node NVj

(or vise versa) with respect to a matching Am ⊆ A,

if the arc (Nei
, NVj

) ∈ Am. A matching is complete if and only if each node in the graph is covered

by an arc in the matching [Even, 1979]. Serrano and Gossard [1987] and Nayak [1994] recognized

that a complete matching of BG(E) resembles one-to-one mapping in the causal ordering of E.

Given a self-contained structure E, I formalize the algorithm, denoted as COABGM , that uses the

bipartite graph matching to generate the causal graph of E as in Figure 3.3.

COABGM takes a self-contained structure E as input and outputs a causal graph G(E) = 〈N,A〉.

It first constructs the bipartite graph BG(E) and then identifies a complete matching Am of BG(E).

Each arc (Nei
, NVj

) in Am is interpreted as a direct dependency relation where Vars(ei)\Vj directly

determine Vj with equation ei. Based on this interpretation, a directed graph DG(E) is created to

depict the dependency relations encoded in E by Am. The algorithm then identifies the strongly-

connected components in DG(E) and depicts those that have more thane one element in the

component as strongly-coupled components. Interpreting a strongly-connected component with

more than one element as a strongly-coupled component is because variables within such strongly-

connected component are interdependent in DG(E). The algorithm finally outputs the modified

acyclic graph DG(E) as G(E).
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Procedure COABGM (E)

Input: A self-contained structure matrix E.

Output: A causal graph G(E) = 〈N,A〉, where N represents Vars(E) and A is a set of directed
arcs depicting causal relations among N.

1. Create the bipartite graph BG(E) = 〈NE,NV, A〉.

2. Identify a complete matching Am ⊂ A of BG(E).

3. Construct a directed graph DG(E) = 〈N,A〉 with respect to Am, where

4. the set of nodes N corresponds to NV, and

5. for each (Nei
, NVj

) ∈ Am

6. there exists in A a set of directed arcs, Nk → Nj , where Nk represents

7. each Vk ∈ {Vars(ei) \ {Vj}} and Nj represents Vj .

8. end for each

9. Identify the strongly-connected components S in DG(E).

10. for each strongly-connected component Si ∈ S

11. if |Si| > 1

12. Collect the set of parents of each Nj ∈ Si as P.

13. Remove all incoming arcs of each Nj ∈ Si.

14. Create a partition Ni with all nodes in Si.

15. Draw Nj ∈ Ni as overlapped for the strongly-coupled component Si.

16. Create directed arcs Pi → Ni for all Pi ∈ P.

17. end if

18. end for each

19. Return DG(E) as G(E).

Figure 3.3. Causal ordering algorithm based on bipartite graph matching.

COABGM is in the worst-case polynomial in time. In Figure 3.3, the graph construction for both

BG(E) and DG(E), listed in Line 1 and Line 3–8 respectively, can be done in linear time. Similarly,

the graph manipulation in Lines 10–18 and the identification of strongly-connected components in

Line 9 can also be done in linear time. For the bipartite graph matching in Line 2, there are well-
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known polynomial time algorithms. For example, Papadimitriou and Stelglitz [1982] described a

bipartite graph matching algorithm using network-flow technique with time complexity O(n1/2a),

where n = |NE| = |NV| and a = |A|. Therefore, COABGM is a worst-case polynomial time

algorithm.
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(b)

Figure 3.4. The bipartite graph representation of the self-contained structure in Example 2.3 is

shown in (a). A complete matching of the bipartite graph (a) is depicted by bold arcs in (b).

Example 3.1 Consider applying the COABGM algorithm on the structure in Example 2.3. COABGM

first creates the corresponding bipartite graph of the structure as shown in Figure 3.4 (a). Next,

COABGM computes the complete matching as shown in Figure 3.4 (b), where each bold arc depicts

an arc in the matching. Third, COABGM creates a directed graph, shown in Figure 3.5 (a), ac-

cording to the complete matching. Finally, COABGM generates the causal graph by identifying the

strongly-coupled components and creating corresponding partitions with modifications over the set
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of incoming arcs of strongly-coupled components (See Figure 3.5 (b)). 2
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Figure 3.5. (a): COABGM creates the directed graph according to the complete matching in

Figure 3.4 (b). (b): COABGM creates the causal graph by identifying the strongly-connected

component {V4, V5} in (a) and grouping it into a strongly-coupled component.

Serrano and Gossard [1987] observed that there may exist more than one complete matching

in Line 2 of COABGM , resulting from the strongly-coupled components for a given self-contained

structure. For example, an alternative complete matching for the example in Figure 3.4 would

have been (e5, V4) and (e4, V5) instead of (e4, V4) and (e5, V5). Nayak [1994] proved that there

exists an unique transitive closure for all possible DG(E)s, created in Lines 3–8 of COABGM , with

respect to all possible complete matchings for a self-contained structure E. This theorem allows

us to transform one DG(E) for a complete matching to the causal graph G(E) that represents

the unique transitive closure over all possible DG(E)s. Nonetheless, both algorithms in [Nayak,

1994; Serrano and Gossard, 1987] stop at Line 8 of COABGM and with additional discussion for

Line 9, since Serrano and Gossard focused on the evaluation of constraints and Nayak focused on

generating causal explanations for physical systems, where a succinct graphical representation for

causal ordering was not the focus.
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One important difference between graphs generated by the COA in [Simon, 1953] and graphs

generated by procedure in [Nayak, 1994] is the depiction of the causal relations among variables

in a strongly-coupled component. Variables in a strongly-coupled component are interdependent,

but no causal relations among them are explicitly identified by COA. On the other hand, graphs

generated by the procedure of Nayak hypothesize the causal relations among variables in strongly-

coupled components. For example, Figure 3.5 (a) shows that the direct causes of V4 are {V2, V5} and

the direct causes of V5 are {V2, V3, V4}, but Figure 3.5 (b) shows that the direct causes of {V4, V5}

are {V2, V3} and variables V4 and V5 are interdependent. The causal relations among variables

in strongly-coupled components was the subject of a debate between [Iwasaki and Simon, 1986a;

1986b] and [de Kleer and Brown, 1986]. I take the view of Simon and treat variables in a strongly-

coupled component as interdependent.

3.5.2 Maximum Matching and Extended Causal Ordering

In addition to the relation between complete matching and causal ordering, Serrano and Gos-

sard [1987] discussed the use of maximum matching in identifying under-constrained and over-

constrained systems. Since the focus of their work was constraint management, they did not

discuss causal ordering in under-constrained systems. In this section, I develop a method that

derives the extended causal ordering in polynomial time using maximum matching.

A maximum matching in a bipartite graph is a matching with maximum cardinality. A complete

matching is by definition a maximum matching. The following theorem states the relation between

the bipartite graph matching and a structure E.1

Theorem 3.3

Let BG(E) = 〈NE,NV, A〉 be the bipartite graph of a structure E. Then E is self-contained, if

there is a complete matching in BG(E); and under-constrained, otherwise.

Proof: According to Hall’s theorem ([Even, 1979, p.p. 137-138]), a bipartite graph BG(E) =

〈NE,NV, A〉 has complete matching if and only if (a) |NE| = |NV| and (b) for every subset

NE′ ⊆ NE, |NE′ | ≤ |NV′ |, where NV′ are nodes connected with NE′ in A. The BG(E) of a self-

contained structure E satisfies criteria (a) and (b) by Definition 2.3 and 2.4. Therefore, if there is

1Note that Theorem 3.3 also provides the foundation for Line 2 of COABGM .
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a complete matching in BG(E) of a structure E, then E is self-contained. The BG(E) of an under-

constrained structure E, on the other hand, violates the criteria (a) by Definition 2.5. Therefore,

the BG(E) of an under-constrained structure E cannot have a complete matching according to

Hall’s theorem. 2

Given Theorem 3.3 and the fact that a complete matching is also a maximum matching, I can

apply an algorithm finding maximum matching to the BG(E) of a given structure E and check

whether a complete matching is found. If yes, I have a self-contained structure and a complete

matching that can lead me to construct the causal graph of the self-contained structure E. If not,

I have an under-constrained structure with a maximum matching. Next, I show how to derive the

extended causal ordering using the maximum matching of a bipartite graph of an under-constrained

structure.

For any matching Am of a bipartite graph BG(E) = 〈NE,NV, A〉 of a structure E, I denote the

set of matched nodes in Am as NEm ⊆ NE and NVm ⊆ NV, and the set of unmatched nodes as

NEm
⊆ NE and NVm

⊆ NV. I prove the following lemma to show that given any under-constrained

structure E, all NE are matched in any maximum matching Am of BG(E), i.e., NEm = NE and

NEm
= ∅.

Lemma 3.2

Any maximum matching Am of the bipartite graph BG(E) = 〈NE,NV, A〉 of an under-constrained

structure E has all NE matched and some NVm
⊂ NV unmatched.

Proof: I prove this lemma by contradiction. Assume that Am is a maximum matching of

BG(E) with NEm
6= ∅. Since E is an under-constrained structure and |NEm | = |NVm |, we have

|NEm
| < |NVm

| and NVm
6= ∅.

To simplify our discussion, we focus on an unmatched node N ∈ NEm
. We know that N is only

connected with nodes in NVm , but not with nodes in NVm
. Otherwise, it contradicts that Am is a

maximum matching, since we can increase the cardinality of Am by including the arc that connects

N and the node in NVm
.

Let X ⊆ NVm be the set of nodes that connected with N and Y ⊆ NEm be the set of nodes that

matched with X in Am. We know that Y must connect with nodes other than X in A; otherwise,

|Y∪N | > |X|, contradicting with the bipartite graph representation of a structure. If any Y ∈ Y is
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connected with a node Z ∈ NVm
, we can replace the matched arc (Y, X) in Am, where X ∈ X and

X is connected with N , by (N, X) and (Y, Z), which contradicts the fact that Am is a maximum

matching. If no Y ∈ Y is connected with nodes in NVm
, there must be some nodes in Y connected

with nodes X′ ⊆ NVm and X′ * X. We identify the nodes Y′ matched with X′ in Am. Let

Y = Y ∪Y′ and X = X ∪X′. Apply the same argument that Y must connect with nodes other

than X in A; otherwise, |Y ∪ N | > |X|, contradicting with the bipartite graph representation of

a structure. We can then repeat our previous reasoning and follow the same argument. Since we

have finite number of nodes in BG(E), We will eventually have a node in Y ∈ Y that connects to

a node Z ∈ NVm
. We can then replace the matched arcs backward along the path of extension

and finally reach N to increase the cardinality of Am. We prove by contradiction that there exist

no maximum matching Am of BG(E) with NEm
6= ∅. 2

Although all NE = NEm are matched to NVm in Am according to Lemma 3.2, an arc (Nei
, NVj

)

in Am, where Nei
∈ NEm and NVj

∈ NVm , does not necessarily represent a direct dependency

relations as an arc in a complete matching for the BG(E) of a self-contained structure E. The

reason is that the values of unmatched variables NVm
are not determined by any equations in Am.

Therefore, they cannot be used by X ∈ NEm , the set of matched equations connected with NVm

in A, to determine the values of variables represented by the corresponding matched nodes Y. In

other words, those matchings composed by X and Y do not represent valid direct dependency

relations. I can then view the values of Y as undermined and apply the same reasoning again

and again to extend X and Y until all invalid direct dependency relations are identified. More

precisely, I propose the following procedure that modifies a maximum matching Am of the BG(E)

of an under-constrained structure E into a matching Am′ in which each arc represents a direct

dependency relation.

1. Am′ := Am; Y := NV
m′

.

2. Identify the set of nodes X ⊆ NEm′
that are adjacent to Y in A.

3. If X = ∅, return Am′ .

4. Identify the set of nodes Z ⊆ NVm′
that are matched to X in Am′ . Let Ar ⊆ Am′ denote the

set of arcs that match Z and X.
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5. Let Am′ := Am′ \ Ar. Consequently, Z ⊆ NV
m′

and X ⊆ NE
m′

.

6. Let Y := Z and go to Step 2.

Given a finite under-constrained structure E, the procedure will stop and return Am′ . If Am′ = ∅,

then E is strictly under-constrained because there is no direct dependency relation in E, i.e., E

does not contain any self-contained structure. If Am′ 6= ∅, then NEm′
represents a self-contained

structure Em′ and NE
m′

represents the derived strictly under-constrained structure Em′ .

Since there exist more than one maximum matching for the BG(E) of an under-constrained

structure E, I prove Theorem 3.4 to show that the proposed procedure derives the same NEm′
and

NE
m′

given any maximum matching Am. Consequently, the theorem derives unique Em′ , the union

of self-contained structures embedded in E, and Em′ , derived strictly under-constrained structure,

from any maximum matching Am.

Theorem 3.4

Any maximum matching Am of the bipartite graph BG(E) = 〈NE,NV, A〉 of an under-constrained

structure E has the same NEm′
and NE

m′
with respect to the modified matching Am′.

Proof: By contradiction. Assume that there are two different maximum matchings Am1
and

Am2
, for which the procedure returns two different modified matchings Am′

1
and Am′

2
with different

NEm′

1

and NEm′

2

(similarly NE
m′

1

and NE
m′

2

). Since both modified matchings contain all direct

dependency relations encoded in E according to the procedure, we know that Am′

1
and Am′

2
are

complete matchings for subgraphs BG(Em′

1
) and BG(Em′

2
) of BG(E) respectively. According to

Theorem 3.3, both Em′

1
⊂ E and Em′

2
⊂ E are self-contained structures in E. However, Theorem 3.2

implies that there is only one derived strictly under-constrained structure in an under-constrained

structure E. Therefore, E \ Em′

1
= E \ Em′

2
and Em′

1
= Em′

2
. It contradicts Em′

1
6= Em′

2
that

derives from our assumption NEm′

1

6= NEm′

2

. 2

I remark that not all modified matchings Am′ are the same given different maximum matchings

Am of an under-constrained structure E. As long as there are no strongly-coupled components in

Em′ with respect to Am′ , any maximum matching Am results in the same modified matching Am′ .

I formalize the extended causal ordering algorithm that based on maximum matching in bipar-

tite graph, denoted as ECOABGM , in Figure 3.6 and Figure 3.7. ECOABGM takes a structure E
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Procedure ECOABGM (E)

Input: A structure matrix E.

Output: A graph G(E) = 〈N,A, A〉, where N represents Vars(E), A is a set of directed arcs,
and A is a set of undirected arcs among N.

1. Create the bipartite graph BG(E) = 〈NE,NV, ABG〉.

2. Identify a maximum matching Am ⊂ ABG of BG(E).

3. if |Am| < |NV|

4. Y := NVm
; Identify X ⊆ NEm that are adjacent to Y in ABG.

5. do

6. Identify Z ⊆ NVm that are matched to X in Am.

7. Let Ar ⊆ Am denote the set of arcs that match Z and X.

8. Am := Am \ Ar. Consequently, Z ⊆ NVm
and X ⊆ NEm

.

9. Y := Z; Identify X ⊆ NEm that are adjacent to Y in A.

10. until X = ∅.

11. end if

12. Construct a graph G(E) = 〈N,A, A〉 from Am, where

13. the set of nodes N corresponding to NV, and

14. for each arc (Nei
, NVj

) in Am

15. construct a set of directed arcs Nk → Nj

16. for each variable Vk ∈ {Vars(ei) \ {Vj}} to variable Vj .

17. end for each

Continued on Figure 3.7.

Figure 3.6. Extended causal ordering algorithm based on bipartite graph matching.

as input and outputs a causal graph G(E) for a self-contained structure or a graph G(E) depicting

causal and relevant relations for an under-constrained structure. ECOABGM first construct the

bipartite graph BG(E) and then identify a maximum matching Am of BG(E). ECOABGM checks

if Am is a complete matching. If not, ECOABGM modifies Am, as listed in Line 3–11, such that

each arc in Am represents a direct dependency relation. ECOABGM then constructs a graph with
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Continued from Figure 3.6.

18. if (NEm
6= ∅)

19. for each Ne ∈ NEm

20. Let NX ⊆ NVm and NY ⊆ NVm
connected with Ne in ABG.

21. Construct a set of directed arcs Ni → Nj

22. for each pair of NXi
∈ NX and NYj

∈ NY.

23. Construct a set of pair-wised undirected arcs among

24. nodes corresponding to NY in N.

25. end for each

26. end if

27. Identify the strongly-connected components S in G(E).

28. for each strongly-connected component Si ∈ S

29. if |Si| > 1

30. Collect the set of parents of each Nj ∈ Si as P.

31. Remove all incoming arcs of each Nj ∈ Si.

32. Create a partition Ni with all nodes in Si.

33. Draw Nj ∈ Ni as a cloud for the strongly-coupled component.

34. Create directed arcs Pi → Ni for all Pi ∈ P.

35. end if

36. end for each

37. Return G(E).

Figure 3.7. Extended causal ordering algorithm based on bipartite graph matching (continued).

directed arcs with respect to Am. In Line 12–26, ECOABGM depicts causal relations and rele-

vant relation among the derived strictly under-constrained structure. ECOABGM then identifies

the strongly connected component and modifies the graph for the strong coupled components in

Line 28–36. ECOABGM is a worst-case polynomial time algorithm, since all of the codes in Fig-

ure 3.6 and Figure 3.7 can be done in linear time except for finding the maximum matching in

Line 2 and modifying maximum matching in Line 3–11 require polynomial time.
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Example 3.2 Consider applying the ECOABGM algorithm to the structure in Figure 3.8 (a).

ECOABGM first construct the corresponding bipartite graph of the structure as shown in Fig-

ure 3.8 (b). Next, ECOABGM computes the maximum matching as shown in Figure 3.8 (b), where

each bold arc depicts an arc in the matching. ECOABGM then modifies the maximum matching

as shown in Figure 3.9 (a). ECOABGM finally creates the graph, as shown in Figure 3.9 (b), that

depicts causal and relevant relations in the under-constrained structure in Figure 3.8 (a). 2
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e1 x 0 0 0 0 0 0
e2 0 x 0 0 0 0 0
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Figure 3.8. (a) The bipartite graph representation of an under-constrained structure E. (b) A

maximum matching of the bipartite graph is depicted as bold arcs.

3.6 Interactive Modeling Process

The modeling process starts with an initial focus, which is normally, in the spirit of value-focused

thinking [Keeney, 1994], the value variable. Users can also start with other focus variables such as

decision, observation, or whatever criteria that is pertinent or important a-priori. Using ImaGeNIe
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Figure 3.9. (a) The modified matching of Figure 3.8 (b). ECOABGM outputs the graph in

(b) to depict causal and relevant relations among variables in the under-constrained structure in

Figure 3.8 (a).

environment, users can interactively browse the mechanisms related to their focus variables in

mechanism knowledge base. A key word search interface for mechanisms is provided in mechanism

knowledge base to facilitate finding relevant mechanisms given the name of a variable. Users select

mechanisms that best depict the problem at hand, bring them into workspace, merge them, or

specify exogenous variables to set the boundary of the system. However, I suggest the users to

focus on one variable and add relevant mechanisms one at a time as the model evolves, since it

resembles the action of focusing on a variable of interest, explaining or observing it in terms of its

underlying mechanism. The users repeat the process iteratively until the model is requisite. In

other words, users make decisions on the level of granularity and when to stop in the model building

process. The system only plays the passive role of an assistant: assisting in searches for relevant

mechanisms, indicating the possible mechanisms to merge, denoting the manipulable variables,

and showing the status of each variable and (causal or relevant) relations among variables in the
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workspace.

A model is normally evolved from an under-constrained model to a self-contained model. Desig-

nating manipulable variables as exogenous helps in obtaining a self-contained system, i.e., orienting

all arcs in the graph. If the user assigns a potential policy variable, a manipulable variable that is

endogenous in a self-contained system, as exogenous, the whole model becomes over-constrained,

because the number of equations is greater than the number of variables. I allow a model to be

under-constrained or self-contained at any stage of the model development in ImaGeNIe, but I dis-

allow a model to be over-constrained. When a model becomes over-constrained, the system present

a list of mechanisms that are currently in the model and asks users to release one of them in order

to change the system into a self-contained or an under-constrained system. The implication of such

manipulations is further discussed in Chapter 4.

3.7 Example Model Building Session

The University Performance Budget Planning Model [Simon et al., 2000] is composed of thirty-

eight nonlinear structural equations that describe interactions among eighty-eight variables. These

structural equations are divided into seven subsystems: Teaching Operations, Teaching Expendi-

tures, Research Expenditures, Income, Space Cost, Total Expense, and Surplus. I encode these

structural equations into a mechanism knowledge base and demonstrate how to use ImaGeNIe to

build a simplified university budget model.

Suppose Tom, an officer of the budget planning office, would like to plan the expense on the

faculty salary for next year. He starts up ImaGeNIe and loads the university knowledge base.

He may use the navigation tree to locate the relevant mechanisms for faculty salary. Suppose

he identifies a mechanism that describes the interactions among variables: faculty salary (facsal),

other income (oinc), tuition fee (tuition), number of students (nstud), number of faculty (nfac),

and overhead (overh), as facsal = (oinc + tuition ∗ nstud)/(nfac ∗ (1 + overh)). He selects the

mechanism by clicking and dragging it into the model building workspace. The extended causal

ordering module generates the corresponding graph as shown in Figure 3.10 and the variables in

the workspace are also shown in the network tree view. He then designates nstud , nfac, tuition,

overh, and oinc as exogenous variables by either right-clicking on the context menu of the nodes
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Figure 3.10. Model builder selects the mechanism relevant to the faculty salary into workspace and

the causal ordering generates the corresponding graph.

in the workspace or the nodes in network tree view to invoke the Make exogenous dialogue box to

provide values for those exogenous variables. The extended causal ordering module then derives

the new graph (See Figure 3.11). He then identifies that the student-faculty ratio (stratio) is also

an relevant mechanism which is described as stratio = nstud/nfac and brings it into the workspace.

The workspace of ImaGeNIe now contains two mechanism boxes, representing two mechanisms

brought in by Tom, where each mechanism box has a title named by the mechanism: faculty

salary and student-faculty ratio. He can then integrate these two mechanisms by selecting the node

Number of students (nstud) from one (source) mechanism box and drag it over to the other (target)

mechanism box. When the mouse cursor enters the target mechanism box, ImaGeNIe search over

identifiers in the target mechanism box such that the variable with the identifier same as the source

node is automatically highlighted. He can then release the mouse cursor over the highlighted

variable to merge the two variables. ImaGeNIe then automatically merges other variables with the
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same identifiers in both mechanism boxes and integrates two mechanism boxes into one box with

two mechanisms (See Figure 3.12). He then brings in the mechanism describing the interactions

among variables: class size (classize), number of students (nstud), class load (cload), number of

faculty (nfac), and teaching load (tload), as classsize = (nstud ∗ cload)/(nfac ∗ tload). He merges

the mechanism boxes of class size with the integrated mechanism box. He then makes teaching

load (tload) and class load (cload) exogenous and obtains a self-contained model that describes

the causal relations among those variables of interests (See Figure 3.13). He can now read off the

following causal relations from the self-contained model:

• Faculty salary is determined by the number of students, the number of faculty, tuition fee,

other income, and overhead.

• Student-teacher ratio is determined by the number of students and the number of faculty.

• Class size is determined by the number of students, the number of faculty, class load, and

teaching load.

3.8 Discussion

Support for building model structure is one of the best ways to improve the quality of advice

based on decision-theoretic models. I believe that human judgement with respect to relevance,

model size, completeness, and granularity is more reliable. While existing approaches focus on

automatic model construction either from knowledge base or directly from data, the approach

proposed in this dissertation favors a closely-coupled loop between the system and its user. Built on

the assumption that under-constrained models reflect the problem recognition stages, ImaGeNIe

assists users in encoding their conceptual problem in a causal graph generated by the extended

causal ordering algorithm. Furthermore, ImaGeNIe provides users with the flexibility to choose

building blocks from a knowledge base to extend the model, to manipulate the variables, and

to extract reusable mechanisms from existing models to knowledge bases. The concept of causal

mechanisms, on which ImaGeNIe relies, provides a general means to accommodate different forms

of knowledge description and makes the knowledge acquisition task easier. In addition, ImaGeNIe
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Figure 3.11. Model builder makes variables number of students (nstud), number of faculties (nfac),

tuition (tuition), overhead (overh), and other income (oinc) become exogenous (top) and the causal

ordering generates the corresponding graph (bottom).
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Figure 3.12. Model builder drops the student-teacher ratio mechanism into workspace (top) and

perform the merge operations for number of students (nstud) and the number of faculty (nsfac)

(middle). The causal ordering algorithm generates the corresponding graph (bottom).
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Figure 3.13. A simplified university model that contains three core mechanisms and seven value

assignment equations. The causal graph of the model is shown on the top; and the structure matrix

of the model is shown at the bottom.

helps users to organize causal mechanisms into subsystems so that users can effectively access the

knowledge base.

Recent research in applying the object-oriented framework to extend Bayesian networks for

modeling complex domains [Koller and Pfeffer, 1997; Laskey and Mahoney, 1997; Pfeffer et al.,

1999] are closely related to this work. Each of these approaches organizes domain knowledge into

a hierarchical system. In Object-Oriented Bayesian Networks (OOBN), the domain knowledge is

structured explicitly as a class-hierarchy for the type system and as an object-hierarchy for the

real model. In my framework, I do not impose any constraints on how users should organize their

domain knowledge in the knowledge base. In the future, I would like to explore the semantics for

combining the type system with causal mechanisms so that the knowledge base can more efficiently

store the domain knowledge and be more effectively used by users. As for the constructed models,

ImaGeNIe provides submodels to group nodes into a graphical organization unit for the sake of

succinct presentation, but there is no special semantic meaning attached to submodels in terms
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of inference. In the future, I plan to impose d-sepset [Xiang et al., 1993] constraints on submodel

composition such that each submodel has well defined I/O sets to resemble object hierarchy in

OOBN.

Once the model structures generated from the framework are associated with variable ranges

and their numerical parameters, such as explicit equations or conditional probability tables (CPTs),

manipulation on the model may invalidate these numerical parameters. Druzdzel and van Leijen

[2001] have shown the special conditions under which the CPTs in Bayesian networks can be re-

versed under manipulation. As for the explicit equations, ImaGeNIe tries to solve the manipulated

system symbolically if there exists a solution. I would like to further explore conditions under which

one can derive the numerical parameters for the manipulated models.

ImaGeNIe provides a flexible interactive model building environment for users to build models

in causal form with as much system assistance as possible but without giving up their control over

the model building process. I believe my efforts in incorporating causality as a heuristic in aiding

model building and knowledge acquisition is an important extension to the existing approaches.

The experimental results on the effectiveness of ImaGeNIe will be presented in Chapter 6.
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Chapter 4

Changes in Structure

The term “changes in structure,” originating from work in econometrics, refers to structural

modifications resulting from modeling the effects of actions on a causal model. In this Chapter,

I address the problem of changes in structure in systems containing reversible mechanisms. A

mechanism is reversible if the causal relations among its variables change as the mechanism is

embedded in different systems, or in different operational contexts of a system. I formalize the

representation of the reversibility property of a mechanism for supporting the modeling of changes in

structure in systems containing reversible mechanisms. Causal models built on my formalization can

answer two new types of queries: (1) When manipulating a potential policy variable (unmanipulated

manipulable variable) in a causal model (i.e., making an endogenous variable exogenous), which

structural equations are possibly invalidated and can be removed from the model? (2) Which

potential policy variables may be manipulated in order to invalidate and, effectively, remove a

structural equation from a model?

Section 4.1 introduces the problem of changes in structure. Section 4.2 introduces my for-

malization of the reversibility of a mechanism. Section 4.3 discusses different representations of

actions and introduces action operator Act(E,Epre,Eadd,Edel) defined upon the level of mecha-

nisms. Section 4.4 introduces the problem of action deliberation and provides algorithms to assist

in forming atomic actions. Section 4.5 presents the support of changes in structure in ImaGeNIe.

4.1 Introduction

The problem of predicting the effects of actions was originally studied in econometrics literature

as the problem of changes in structure in simultaneous structural equation models. Assuming that

a modeler has sufficient prior knowledge to predict the effects of actions, researchers in econometrics

modeled the effects of actions by “scraping” invalid equations and “replacing” them by new ones

[Marschak, 1953; Simon, 1953; Wold, 1954; Strotz and Wold, 1960]. If we assume that the variable
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manipulated by an action is governed by an irreversible mechanism, the effect of an action amounts

to the arc-cutting operation in the causal graph describing the system [Pearl, 2000; Spirtes et al.,

1993]. For example, rain (R) can make us wet (W ); wearing a rain coat will protect us from

getting wet but it does not make rain go away. To model this, we cut the arc R → W , since the

mechanism between rain (R) and getting wet (W ) is irreversible. However, there exists a large class

of reversible mechanisms [Simon, 1953; Wold and Jureen, 1953; Wold, 1954; Simon and Rescher,

1966; Druzdzel, 1992; Spirtes et al., 1993; Pearl, 2000] that are not amenable to the arc-cutting

operation. For example, a car engine causes wheels to turn when going up hill, but the wheels slow

down the engine when going down hill with transmission being put in a lower gear. An action may

reverse the direction of causal relations among variables and consequently have drastic effects on

causal graphs.

There have been attempts to assist in predicting the effects of actions on systems containing

reversible mechanisms. Bogers [1997] developed theorems to support structure modifications in

which the equation being removed by an action governs an exogenous variable. Druzdzel and

van Leijen [2001] studied the conditions under which a conditional probability table in a causal

Bayesian network can be reversed when manipulating a reversible mechanism. Dash and Druzdzel

[2001] demonstrated how various recursive equilibrium systems may violate the Manipulation Pos-

tulate, arc-cutting operation, when actions are applied on equilibrium systems; they attributed such

violations to the problem of reversible mechanisms.

My approach to supporting changes in structure is based on an explicit representation of the

reversibility of a mechanism. I define the reversibility of a mechanism semantically on the set of pos-

sible effect variables of a mechanism. A set of structural equations is a causal model only if the causal

relations among the variables are consistent with the reversibility of its mechanisms. Similarly to

STRIPS language [Fikes and Nilsson, 1971], I represent an action as Act(E,Epre,Eadd,Edel),

where E is the model that an action applies on, Epre is the set of preconditions that needs to be

satisfied before an action can be applied, Eadd is the set of structural equations to be added into

E, and Edel is the set of structural equations to be removed from E. Once an action is completely

specified, the effect of an action is simply performing the modifications specified in Eadd and Edel

lists on the causal model E when Epre is satisfied. Given the Epre and one of the Eadd or Edel lists

of a partially specified action, I prove two theorems to assist modelers in answering two new types
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of queries: (1) When manipulating a potential policy variable in a causal model, which structural

equations are possibly invalidated and can be removed from the model? (2) Which potential policy

variables may be manipulated in order to invalidate and, effectively, remove a structural equation

from a model? My approach enables us to predict the effects of actions on systems consisting of

mixtures of mechanisms.

4.2 Reversible Mechanisms and Reversibility

Traditionally, reversible mechanisms are discussed mainly in deterministic mechanical and phys-

ical relations [Wold and Jureen, 1953, pp. 325], since the invertibility of a function is a necessary

condition for the reversibility. A functional relation may be reversible in functional sense, but may

not be reversible in causal sense [Wold, 1954, footnote 6]. For example, ideal gas law and Ohm’s

law are given in [Wold and Jureen, 1953, pp. 40] and [Nayak, 1994, pp. 10] respectively as examples

of only partially reversible mechanisms, even though their functional relations are invertible. Wold

[1964, pp. 279] claimed that a deterministic relation may or may not be causally reversible, but

a stochastic relation never is. However, Druzdzel and van Leijen [2001] demonstrated that under

some special conditions probability distribution tables in a causal Bayesian network can be reversed

in both functional and causal senses.

I propose to explicitly represent the reversibility of a mechanism to assist model construction

and predictions of the effect of actions on systems containing reversible mechanisms. I define the

reversibility of a mechanism semantically on the set of possible effect variables of a mechanism. In

my framework, modelers are allowed to associate more than one causal relation to a mechanism

with reasonable a-priori assumptions. Modelers start with identifying variables in a mechanism

qualitatively, then expressing a causal relation qualitatively as a specification of the effect variable

and its causes, and, finally, giving such qualitative specification an explicit quantitative specification

in a functional form. Assuming that the number of variables in a mechanism is finite, the number of

possible effect variables for a mechanism is also finite. I can classify mechanisms into four categories

according to their reversibility : (1) completely reversible (CR): every variable in the mechanism

can be an effect variable, (2) partially reversible (PR): some of the variables in the mechanism can

be effect variables, (3) irreversible (IR): exactly one of the variables in the mechanism can be an
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effect variable, and (4) unknown (UN ): the reversibility of the mechanism is unspecified, i.e., the

modeler only asserts that variables in a mechanism are relevant, but has not yet resolved how they

relate to each other causally.

Definition 4.1 (reversibility)

Let Vars(e) be the set of variables in a structural equation e. Let EfVars(e) ⊆ Vars(e) be the set of

all possible effect variables in a structural equation e. The reversibility of a mechanism represented

by e is

1. completely reversible if EfVars(e) = Vars(e) and |EfVars(e)| > 1,

2. partially reversible if 1 < |EfVars(e)| < |Vars(e)|,

3. irreversible if |EfVars(e)| = 1, and

4. unknown if |EfVars(e)| = ∅.

I emphasize that the notion of reversibility of a mechanism is a semantic one since it is defined

with respect to the set of effect variables of a mechanism with a-priori assumptions. In addition,

reversibility is defined as the property of a mechanism, but not as a derived property of a mechanism

when it is embedded in a system. In other words, the set of effect variables of a mechanism is

assumed a-priori before we decide which system the mechanism will be embedded in. Which effect

variable is active will be determined as soon as we know which system the mechanism is embedded

in.

Notice that the notion of entity plays an essential role in our modeling. The notion of reversibil-

ity of a mechanism is very often confused with causal mixtures [Cooper, 1999] in which members of

entities may not share the same causal relationships. For example, if the relation between school-

ing and verbal ability is modeled as a causal mixture, we may find that schooling helps to increase

verbal ability in one subpopulation of students but verbal ability helps to get higher schooling in

another. However, reversible mechanisms model the same entities in different contexts. For exam-

ple, the verbal ability helps some population of students to get higher schooling in one context, but

in another context the schooling helps the same students to increase their verbal ability.

To assist modeling with systems containing reversible mechanisms, I explicitly represent the set

of possible effect variables of each structural equation, along with their explicit functional forms, in
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a mechanism knowledge base as presented in Chapter 3. In Section 2.4, I assumed that all structural

equations in a structural equation model described causal mechanisms active in the system. When

predicting the effects of actions on systems containing reversible mechanisms, I need to verify if a

manipulated model, derived for a queried intervention, is still consistent with the prior knowledge

stored in the knowledge base. I define consistency as follows.

Definition 4.2 (consistency)

A set of structural equations E = {e1, e2, . . . , em} is consistent with a knowledge base K if there

exists F = {f1, f2, . . . , fm}, where each fi ∈ F is an explicit functional form of ei ∈ E, stored in K

such that F is a self-contained structure.

Given a set of structural equations E, I can test if E is consistent with K as described in the

procedure IsConsistent(E,K) shown in Figure 4.1. IsConsistent(E,K) takes E and K as inputs

and outputs a Boolean value true if E is consistent with K; false otherwise. The procedure first

checks if |E| = |Vars(E))|. If |E| = |Vars(E)|, the procedure assumes that E is a self-contained

structure and applies COABGM qualitatively on E’s structure matrix to generate the graph G(E).

If |E| 6= |Vars(E)|, return false. For each partition Np
k in G(E), the procedure checks if the

mapped structural equations Ĉp
k have corresponding explicit functional forms in K, i.e., if there

exists Np
k ⊆ EfVars(Ĉp

k). The procedure outputs false if for any Np
k, Np

k * EfVars(Ĉp
k); oth-

erwise true. In order to assist modelers in hypothesizing causal relations for a mechanism whose

reversibility is unknown, the procedure treats the mechanism with unknown reversibility as com-

pletely reversible. Notice that for those E containing strongly coupled components, those mecha-

nisms in strongly-coupled components must have more than one effect variable. In other words, an

irreversible mechanism cannot participate in a strongly coupled component. The time complexity of

IsConsistent(E,K) is in worst-case poly-nominal because the procedure uses COABGM to generate

the graph for consistency checking.

Example 4.1 Assume that the set of structural equations E = {e1, e2, . . . , e8} for the set of

variables V = {V1, V2, . . . , V8} shown in Figure 2.3 is stored in a knowledge base K along with their

explicit functional forms and the set of possible effect variables (See Table 4.1). In the knowledge

base K, e6 and e7 are irreversible where EfVars(e6) = {V6} and EfVars(e7) = {V7}, e4 and

e5 are completely reversible where EfVars(e4) = Vars(e4) and EfVars(e5) = Vars(e5), and e8
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Procedure IsConsistent(E,K)

Input: A set of structural equations E; A mechanism knowledge base K.

Output: true, if E is consistent with K; false, otherwise.

1. if |E| 6= |Vars(E)|, return false.

2. Apply COABGM on E and generate corresponding graph G(E).

3. for each 〈Np
k, Ĉ

p
k〉 in G(E)

4. if Np
k * EfVars(Ĉp

k), return false.

5. end for each

6. return true

Figure 4.1. Procedure IsConsistent(E,K) that tests if a set of structural equations E is consistent

with a knowledge base K.

Table 4.1. The fragment of a knowledge base K represents effect variables for the set of structural

equations in Figure 2.3.

Structural Equation e Effect Variables (EfVars(e)) Reversibility

e1(V1) = 0 {V1} IR

e2(V2) = 0 {V2} IR

e3(V3) = 0 {V3} IR

e4(V2, V4, V5) = 0 {V2, V4, V5} CR

e5(V2, V3, V4, V5) = 0 {V2, V3, V4, V5} CR

e6(V3, V5, V6) = 0 {V6} IR

e7(V1, V7) = 0 {V7} IR

e8(V1, V7, V8) = 0 {V1, V8} PR

is partially reversible where EfVars(e8) = {V1, V8}. Consequently, E is consistent with K since

there exists a self-contained structure F of E. However, if I have EfVars(e7) = {V4} instead of

EfVars(e7) = {V7} in the knowledge base K, then E is not consistent with K because there is no

explicit functional form of e7 that corresponds to F depicted by G(E). 2
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4.3 Representation of Action

Given a causal model that describes a system of interest, we may easily hypothesize different

manipulations on manipulable variables with the intention to influence the values of some target

variables. For example, we can “lower interest rate” to increase “consumer spending.” However, we

may not know how other parts of the system may respond to these hypothetical manipulations. In

other words, we know that our hypothetical manipulations will affect the variables of interest, which

are usually the descendants of the manipulated variables in a causal graph, but we are not ceratin

how other parts of the system will be disturbed by our hypothetical manipulations. Therefore, the

process of policy making usually focuses on deliberating the unexpected effects of a manipulation.

How should we represent an action in causal modeling to facilitate this deliberation?

Pearl [2000, pp. 225] suggested to use the notation do(q), where q is a proposition, to denote

an action, since people use phrases such as “reduce tax” in daily language to express actions. More

precisely, an atomic action, denoted as do(V = v) in [Pearl, 2000] and manipulate(v) in [Spirtes

et al., 1993; Cooper, 1999], is invoked by an external force that manipulates on a variable V by

imposing a probability distribution or holding it at a constant value, v, and replacing the causal

mechanism, V = f(Pa(V )), directly governing V in a causal model. The corresponding change

in the causal graph is depicted as the arc-cutting operation by which all incoming arcs to the

manipulated variable V are removed [Spirtes et al., 1993; Pearl, 2000]. Notice that the implicit

assumption behind the arc-cutting operation is that the manipulated variable is governed by an

irreversible mechanism, i.e., only V can be an effect variable in mechanism e(V,Pa(V )) = 0. In

order to ensure that the manipulated causal model is self-contained, the irreversible mechanism,

which governs the manipulated variable in the model before manipulation, has to be replaced.

However, when the manipulated variable is governed by a reversible mechanism, the manipulated

model derived from the arc-cutting operation may not be consistent with our conception of the

manipulated system. I argue that an action in causal modeling should be defined at the level of

mechanisms, not at the level of propositions.

In econometric literature (e.g., [Marschak, 1953; Simon, 1953; Wold, 1954; Strotz and Wold,

1960]), a system is represented as a SEM, a set of structural equations, and actions are modeled as

“scraping invalid equations” and “replacing them by new ones”. In STRIPS language [Fikes and

52



Nilsson, 1971], a situation is represented by a state, conjunctions of function-free ground literals

(propositions), and actions are represented as PRE , ADD , and DEL lists which are conjunctions

of literals. There is a clear analogy between these two modeling formalisms, where the effects

of actions are modeled explicitly as adding or deleting fundamental building blocks, which are

structural equations in SEM and propositions in STRIPS. I propose to explicitly translate the

operations of “scraping invalid equations” as specifying equations in Edel list and “replacing them

by new ones” as specifying equations in Eadd and define an action operator as follows.

Definition 4.3 (action operator)

An action operator Act(E,Epre,Eadd,Edel) represents an action on a system represented by a

SEM E, where Epre is the precondition of the action, and Eadd and Edel are the changes brought

about by the action on E :

1. Epre: a set of conditions that must be true before the action can be applied to E.

2. Eadd: a set of structural equations added to E.

3. Edel: a set of structural equations removed from E.

I remark that Definition 4.3 explicitly specifies the context and the effects of an action. This

is consistent with our daily dialogue where we talk about an action and its possible effects under

a certain context. For example, the phrase “reduce tax” is usually stated in an economic context

with some expectations about how economic units would react.

Given an action A = Act(E,Epre,Eadd,Edel) on a SEM E, I define the manipulated model

EA as follows.

Definition 4.4 (manipulated model)

A manipulated model EA resulting from applying an action A = Act(E,Epre,Eadd,Edel) on a

SEM E is a set of structural equations EA = E ∪Eadd \Edel.

Since an action Act(E,Epre,Eadd,Edel) can be applied to a SEM E as long as the preconditions

Epre are satisfied, the manipulated model EA is not necessary self-contained after the manipulation

even though E is self-contained. EA could be under-constrained or over-constrained, depending
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on the structural equations specified in Eadd and Edel. To support the action deliberation in the

following section, I define a self-contained action with respect to a self-contained model E as follows.

Definition 4.5 (self-contained action)

An action A = Act(E,Epre,Eadd,Edel) on a system represented by a SEM E is self-contained if

the manipulated model EA is self-contained and indeed represents the manipulated system.

Definition 4.5 states that applying a self-contained action on a self-contained model will result in

a self-contained manipulated model. For example, an atomic action defined in [Spirtes et al., 1993;

Pearl, 2000] is considered a self-contained action in my definition.

4.4 Action Deliberation

Once I choose to represent an action explicitly including its effects and context, I shift the

problem of predicting the effects of an action to the problem of finding which structural equations

should be specified in Eadd and Edel. I call the process of deciding which structural equations

should be in Eadd and Edel action deliberation. In this section, I develop theorems to assist

the process of deliberating about an atomic action. Given a SEM E, I seek to answer two new

types of queries (1) When making an endogenous variable exogenous, which structural equations

are possibly invalidated and can be removed from the model? (2) Which manipulable variables

may be manipulated in order to invalidate and, effectively, remove a structural equation from a

model? Query (1) assists modelers in modeling the effects of an action considering the direct

manipulation at hand; Query (2), on the other hand, assists modelers in identifying the set of

possible manipulation alternatives. In order to assist action deliberation in systems with mixtures

of mechanisms, I introduce the following definitions.

Definition 4.6 (atomic addition)

The Eadd of an action A = Act(E,Epre,Eadd,Edel) is atomic if it consists of only one structural

equation in the form V = v which assigns a variable V ∈ Vars(E) of a SEM E to a value v. I

denote such atomic addition by Eadd(V ).
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Definition 4.7 (atomic deletion)

The Edel of an action A = Act(E,Epre,Eadd,Edel) is atomic if it consists of only one structural

equation e ∈ E of a SEM E. I denote such atomic deletion by Edel(e).

Definition 4.8 (atomic action)

An action A = Act(E,Epre,Eadd,Edel) is atomic if it is a self-contained action where Eadd =

Eadd(V ) and Edel = Edel(e), and V ∈ Vars(E) and e ∈ E.

I will sometime use the notation EV as a shorthand for a model resulting from applying an

atomic action A = Act(E,Epre,Eadd(V ),Edel(e)) on a model E. I will assume that Epre is satisfied

in the rest of the discussion.

From Definition 2.10, I know that each variable V in a self-contained E can appear as an

endogenous variable in only one Ĉp
k. I define the necessary structure for V in E to support action

deliberation.

Definition 4.9 (necessary structure)

Let G(E) be the causal graph generated by applying the causal ordering algorithm to a self-contained

structure E. Let V ∈ Np
k and Anc(Np

k) be the ancestral set of Np
k in G(E). The necessary structure

for V , denoted as Ens(V ), is the set of equations that map to Np
k ∪Anc(Np

k) by the causal ordering

algorithm.

It is easy to see that a necessary structure is self-contained. In other words, Ens(Vi) consists of

all equations in E that are necessary to determine Vi uniquely.

Example 4.2 In Example 2.3, for V1, V2, V3, the necessary structures are Ens(V1) = {e1}, Ens(V2) =

{e2}, and Ens(V3) = {e3} respectively. The necessary structures for V4 and V5 are the same,

Ens(V4) = Ens(V5) = {e2, e3, e4, e5}. For V6, the necessary structure is Ens(V6) = {e2, e3, e4, e5, e6}.

For V7, the necessary structure is Ens(V7) = {e2, e3, e4, e5, e7}. For V8, the necessary structure is

Ens(V8) = {e1, e2, e3, e4, e5, e7, e8}. 2

I define the set of minimal over-constrained equations to describe the situation where an atomic

addition is made to a self-contained model.
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Definition 4.10 (minimal over-constrained)

A set of over-constrained equations is minimal if itself does not contain any over-constrained proper

subsets.

Lemma 4.1

Let E be a self-contained structure and Eadd(V ) be an atomic addition where V ∈ EnVars(E). Let

E′
V = Eadd(V )∪E. The set of equations O′

V = Ens(V )∪Eadd(V ) is minimal over-constrained, where

Ens(V ) is the necessary structure of V in E.

Proof: I first show that O′
V is over-constrained. We know that |Ens(V )| = |Vars(Ens(V ))| because

Ens(V ) is self-contained. Since O′
V = Ens(V ) ∪ Eadd(V ) and the only variable in Eadd(V ) is also in

Ens(V ), we have |O′
V | = |Ens(V )| + 1 > |Vars(Ens(V ))| = |Vars(O′

V )|. Consequently, O′
V is not a

structure by Definition 2.3. Therefore, O′
V is over-constrained. To show that O′

V is minimal, we

need to show that any proper subset P ⊂ O′
V is a structure. If Eadd(V ) /∈ P, then P ⊆ Ens(V ).

Consequently, P is a structure since Ens(V ) is a self-contained structure. If Eadd(V ) ∈ P, consider

the simple case where P = Eadd(V ). Apparently, P is a self-contained structure. The only case

left is P = Q ∪ Eadd(V ), where Q ⊂ Ens(V ). If V /∈ Vars(Q), then P is a structure because Q

is a structure itself and Eadd(V ) only determines the variable V . If V ∈ Vars(Q), we know that

|Q| < |Vars(Q)| because and Q ⊂ Ens(V ) and Definitions 2.10 and 4.9 ensure that V appears

as one of the undetermined variables in Q. Therefore, Q is under-constrained. Consequently, P

is a structure since Eadd(V ) only determines the variable V . We conclude that O′
V is minimal

over-constrained. 2

Lemma 4.1 states that an atomic addition makes a self-contained structure minimal over-

constrained. Next, I prove Lemma 4.2 to identify the set of equations such that removing any

one of them makes the set of minimal over-constrained equations self-contained again.

Lemma 4.2

Given O′
V of E′

V , deleting any equation e ∈ Ens(V ) makes OV = O′
V \ Edel(e) self-contained and,

consequently, EV = E′
V \Edel(e) self-contained.

Proof: Since OV ⊂ O′
V and there is no proper subset of equations that is over-constrained in

a set of minimal over-constrained equations by Definition 4.10, we know that OV is a structure.

56



Now, we need to prove that OV is self-contained, i.e., |OV | = |Vars(OV )|. We first show that

|OV | = |Ens(V )|. Let R = Ens(V ) \ Edel(e). We have OV = R ∪ Eadd(V ). Consequently, |OV | =

|R| + 1 = |Ens(V )| − |Edel(e)| + 1 = |Ens(V )| − 1 + 1 = |Ens(V )|. Since we know that |Ens(V )| =

|Vars(Ens(V ))|, all we need to prove now is Vars(OV ) = Vars(Ens(V )). Let V ∈ EnVars(Ĉp
k) in

Ens(V ). We consider cases where (a) e ∈ Ĉp
k and Cp

k is not strongly coupled in Ens(V ), (b) e ∈ Ĉp
k

and Cp
k is strongly coupled in Ens(V ), and (c) e /∈ Ĉp

k.

In case (a), e = Ĉp
k, since Cp

k is not strongly coupled. Therefore, Vars(e) = Vars(Ĉp
k), i.e.,

EnVars(e) = EnVars(Ĉp
k) = {V } and ExVars(e) = ExVars(Ĉp

k). By Definitions 2.3 and 4.9,

and R = Ens(V ) \ Edel(e), we know that ExVars(e) ⊆ Vars(R) and V /∈ Vars(R). Therefore,

Vars(R) = Vars(Ens(V )) \ {V }. Since OV = R ∪Eadd(v), we know that Vars(OV ) = Vars(R) ∪

Vars(Eadd(V )) = (Vars(Ens(V )) \ {V }) ∪ {V } = Vars(Ens(V )). We have that Vars(OV ) =

Vars(Ens(V )) in this case.

In case (b), since Cp
k is strongly coupled, we have ExVars(e) ⊆ ExVars(Ĉp

k) and EnVars(e) =

EnVars(Ĉp
k). By Definitions 2.3 and 4.9, we know that ExVars(e) ⊆ Vars(R) and EnVars(e) ⊆

Vars(R) because there must exist at least one more equation in Ĉp
k that has the same set of en-

dogenous variables as e when Cp
k is strongly coupled. We therefore have Vars(e) ⊆ Vars(R).

Consequently, Vars(Ens(V )) = Vars(R) ∪ Vars(e) = Vars(R) and Vars(OV ) = Vars(R) ∪

Vars(Eadd(V )) = Vars(Ens(V )) ∪ Vars(Eadd(V )) = Vars(Ens(V )). We prove that Vars(OV ) =

Vars(Ens(V )) in this case.

In case (c), since e /∈ Ĉp
k, e must be in some Ĉq

l where Ĉq
l ⊂ Ens(V ) and q < p. By Definitions 2.3

and 4.9, we know that ExVars(e) ⊆ ExVars(Ĉq
l ) ⊂ Vars(Ĉt) where Ĉt ⊂ R and t < q, and

EnVars(e) = EnVars(Ĉq
l ) ⊂ Vars(Ĉt′) where Ĉt′ ⊂ R and q < t′ ≤ p. Therefore, Vars(e) ⊂

Vars(R). Then again Vars(Ens(V )) = Vars(R)∪Vars(e) = Vars(R) and Vars(OV ) = Vars(R)∪

Vars(Eadd(V )) = Vars(Ens(V )) ∪ Vars(Eadd(V )) = Vars(Ens(V )). We prove that Vars(OV ) =

Vars(Ens(V )) in this case. We conclude that in all cases |Vars(OV )| = |OV |. OV is self-contained.

It is easy to see that EV = E′
V \ Edel(e) is self-contained. In E, all variables in Vars(Ens(V ))

are solved and may serve as exogenous variables to the rest of equations in E. In EV , we see

from above proof that Vars(OV ) = Vars(ns(V )) and OV is self-contained. Therefore, variables

in Vars(Ens(V )) are solved in OV and may serve as exogenous variables to the rest of equations

staying intact in EV . Therefore, EV is self-contained. 2
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Corollary 4.1

Given E′
V = Eadd(V )∪E, E′

V will remain over-constrained if none of equations e ∈ O′
V is removed.

Example 4.3 Consider the self-contained structure E in Figure 2.3. If we consider an atomic ad-

dition on variable V7, i.e., Eadd(V7 ), the resulting set of equations E′
V7

= E∪Eadd(V7 ) becomes over-

constrained. From Lemma 4.1, we know that the set of equations O′
V7

= {e2, e3, e4, e5, e7,Eadd(V7 )}

is minimal over-constrained. From Lemma 4.2, we know that removing any equation e ∈

{e2, e3, e4, e5, e7} makes the remaining set of equations EV7
= E′

V7
\ Edel(e) a self-contained struc-

ture. If we instead remove e6, the set of equations E′
V7
\Edel(e6 ) remains over-constrained according

to Corollary 4.1.

2

Notice that Lemmas 4.1 and 4.2 hold for a sets of structural equations. As stated in Section 4.2,

when assisting changes in structure on systems containing reversible mechanisms, we need to verify

if a manipulated model is consistent with the knowledge base K. Therefore, in order to deliberate

about an atomic action, we need to verify that the manipulated set of structural equations is

consistent with K. In general, we can simply enumerate each structural equation e ∈ Ens(V ) and

then use the procedure IsConsistent(EV ,K) outlined in Figure 4.1 to check if the manipulated

model EV is consistent with K.

However, please observe that the irreversibility of mechanisms allows us to find the set of possible

atomic deletions locally. Consider an atomic addition Eadd(V ) on a SEM E = {e1, e2, . . . , em} and

V ∈ EnVars(E). When all mechanisms governing EnVars(Ens(V )) in Ens(V ) are completely

reversible or unknown, we may remove any one of the mechanisms in Ens(V ) to have a manipulated

SEM that is consistent with K. When V is directly governed by an irreversible mechanism e, we

have to remove e since V cannot be determined by Eadd(V ) and e simultaneously in a manipulated

model. In other words, the irreversibility of the mechanism which governs the manipulated variable

reduces the set of possible atomic deletions from Ens(V ) to e. Based on the above observations, we

see that the propagation of the impacts of an atomic addition on a SEM is blocked by irreversible

mechanisms. Now, I can prove Theorem 4.1 to answer Query (1): When making an endogenous

variable exogenous, which structural equations are possibly invalidated and can be removed from

the model?
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Theorem 4.1 (possible atomic deletions)

Let Eadd(V ) be an atomic addition on a SEM E consistent with a knowledge base K, where V ∈

EnVars(E). Then, there exists a non-empty set of possible atomic deletions D ⊆ Ens(V ) such that

deleting any structural equation d ∈ D derives the manipulated SEM, EV = E ∪Eadd(V ) \ Edel(d),

that is consistent with K.

Proof: From Lemmas 4.1 and 4.2, we know that removing any equation e ∈ Ens(V ) makes

EV = E ∪Eadd(V ) \Edel(e) self-contained. Now, we need to check whether the manipulated EV is

consistent with K. Let G(E) be the causal graph of E. Let G(Ens(V )) be the subgraph of G(E)

induced by the set of nodes representing variables in Vars(Ens(V )). For each Np
k in G(Ens(V )), if

Ĉp
k, where 〈Ĉp

k,N
p
k〉 in G(E), is irreversible, cut all incoming arcs to Np

k in G(Ens(V )) and derive the

graph G′(Ens(V )). Let D be the set of equations mapped to nodes Anc(Np
k)∪Np

k, where V ∈ Np
k,

in G′(Ens(V )). For each d ∈ D, let EV = E∪Eadd(V ) \Edel(d). If IsConsistent(EV ,K) is false, then

remove d from D. Consequently, we construct the set of possible atomic deletions D. Notice that

D is complete since Corollary 4.1 ensures that D ⊆ Ens(v) and we only use the irreversibility of

mechanisms to avoid unnecessary checking. Also notice that D is not empty since we can at least

remove the structural equation directly governing V in E. Therefore, we prove by construction

that there exists a nonempty set of possible atomic deletions D ⊆ Ens(V ) such that deleting any

one of mechanisms d ∈ D derives a manipulated EV that is consistent with K. 2

In Figure 4.2, I outline the procedure FindAtomicDeletions that based on Theorem 4.1 identifies

the set of possible atomic deletions. The procedure takes a self-contained structure E, a mechanism

knowledge base K, and an atomic addition Eadd(V ) on V ∈ Vars(E) as inputs and generate the

set of possible atomic deletions D as output. FindAtomicDeletions first computes the causal graph

G(E) using COABGM and identifies the subgraph G(Ens(V )) induced by Vars(Ens(V )). Next,

FindAtomicDeletions modifies G(Ens(V )) according to the principle that the propagation of the

impact of an atomic addition is blocked by irreversible mechanisms. FindAtomicDeletions then

enumerates each equation mapped to each node in the modified G(Ens(V )) as the atomic deletion

d and checks if EV = E∪Eadd(V ) \Edel(d) is consistent with K. FindAtomicDeletions then returns

all consistent atomic deletions as D. The complexity of FindAtomicDeletions is in worst case

O(n3/2a) where n is the number of equations of E and a is the number of arcs in the bipartite
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graph representation of E, because the procedure IsConsistent is used in Line 12.

Procedure FindAtomicDeletions(E,K,Eadd(V ))

Input: A self-contained structure E, a mechanism knowledge base K, and an atomic addition
Eadd(V ) on V ∈ Vars(E).

Output: The set of possible atomic deletions D.

1. Apply COABGM on E and generate the corresponding graph G(E).

2. Identify Anc(NV ) and induce the subgraph G(Ens(V )) of G(E).

3. for each Np
k in G(Ens(V ))

4. if Np
k’s mapping Ĉp

k is irreversible in K

5. Remove all incoming arcs to Np
k in G(Ens(V )).

6. end if

7. end for each

8. Identify Anc(NV ) ∪NV in G(Ens(V )).

9. Identify the set of equations mapped to Anc(NV ) ∪NV as D.

10. for each d ∈ D

11. EV := E ∪Eadd(V ) \Edel(d).

12. if IsConsistent(EV ,K) == false

13. D := D \Edel(d).

14. end if

15. end for each

16. return D.

Figure 4.2. Procedure for finding the set of possible atomic deletions defined in Theorem 4.1.

Considering a completely reversible system, a manipulation usually results in the change of an

operational context as in from the operation of driving uphill to the operation of driving downhill

in the power train system described in Section 4.1. We normally remove one of the exogenous

equations, when we manipulate on a system to change its operational contexts. Since all mechanisms

in the system are still working, they are just possibly operating in different causal directions with

respect to different operational contexts. However, if we remove a mechanism that was governing
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an endogenous variable, it means that the linkage among the set of variables is invalid in the

manipulated system. For example, transmission between the engine and the wheels may be broken.

Consequently, the link between engine and wheel is no longer valid. Therefore, I suggest modelers

to use different enumeration orders to inspect the set of possible atomic deletions in different

applications.

Example 4.4 Consider the set of structural equations in Figure 2.3 and its reversibility assumed

in Example 4.1. If we manipulate variable V8, i.e., Eadd(V8 ), the set of possible atomic deletions

is {e1, e8} according to Theorem 4.1. Notice that the irreversibility of mechanisms allows us to

find the set of possible atomic deletions in {e1, e7, e8} instead of Ens(V8). Moreover, EV8
= E ∪

Eadd(V8 ) \Edel(e7 ) is not consistent with K since V7 cannot be an effect variable in e8 according to

the reversibility of e8 in the knowledge base K. However, if we choose to remove e1, i.e., Edel(e1 ),

the manipulated model is shown in Figure 4.3. 2

V1 V2 V3 V4 V5 V6 V7 V8

Eadd(V8 ) 0 0 0 0 0 0 0 x

e2 0 x 0 0 0 0 0 0
e3 0 0 x 0 0 0 0 0
e4 0 x 0 x x 0 0 0
e5 0 x x x x 0 0 0
e6 0 0 x 0 x x 0 0
e7 0 0 0 x 0 0 x 0
e8 x 0 0 0 0 0 x x
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Figure 4.3. The structure matrix and its corresponding graph after the atomic action

Act(E, ∅,Eadd(V8 ),Edel(e1 )) on E in Figure 2.3.
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The dual theorem to Theorem 4.1 is to identify the set of possible atomic additions given

an atomic deletion, which answers Query (2): Which variables may be manipulated in order to

invalidate and, effectively, remove a structural equation from a model?

Theorem 4.2 (possible atomic additions)

Let Edel(e) be an atomic deletion on a SEM E consistent with a knowledge base K, where e ∈ E. Let

〈Np
k, Ĉ

p
k〉 be the mapping in G(E), where e ∈ Ĉp

k and G(E) is the causal graph of E. Let Des(Np
k) be

the descendants of Np
k in G(E). Then, there exists a nonempty set of variables A ⊆ (Des(Np

k)∪N
p
k)

such that manipulating any variable A ∈ A derives the manipulated SEM EA = E∪Eadd(A)\Edel(e)

consistent with K. The set of structural equations
⋃

A∈A Eadd(A) is called the set of possible atomic

additions.

Proof: From Theorem 4.1, we know that in order to have EA = E ∪ Eadd(A) \ Edel(e) consistent

with K, we must have e ∈ Ens(A). Consequently, A must be in (Des(Np
k) ∪ Np

k). Again, the

irreversibility of mechanisms allows me to inspect smaller sets of variables. For each variable V in

(Des(Np
k) ∪Np

k), if V is governed by an irreversible mechanism, cut all arcs into V and derive the

graph G′(E). Let A = Des(Np
k) ∪Np

k in G′(E). For each A ∈ A, if EA = E ∪ Eadd(A) \ Edel(e)

is not consistent with K, we remove A from A. Consequently, we construct the set of possible

atomic additions
⋃

A∈A Eadd(A). Notice that A is complete since Theorem 4.1 ensures that A is in

(Des(Np
k) ∪Np

k) and we only use the irreversibility of mechanism to avoid unnecessary checking.

Also notice that A is not empty since we can at least manipulate the variables governed by the

mechanism e in E. Therefore, we prove the theorem by construction. 2

Theorem 4.2 states that in order to invalidate a structural equation in a model, we may ma-

nipulate on one of the variables in the set of possible atomic additions. Similarly, Theorem 4.2

assists modelers in finding the set of possible atomic additions locally. I outline the procedure

FindAtomicAdditions in Figure 4.4. The complexity of FindAtomicAdditions is also in worst case

O(n3/2a), where n is the number of equations of E and a is the number of arcs in the bipartite

graph representation of E.

Example 4.5 Consider the set of structural equations in Figure 2.3 and its reversibility assumed

in Example 4.1. The set of possible atomic additions for structural equation e4, Edel(e4 ), is {V4, V5}
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Procedure FindAtomicAdditions(E,K,Edel(e))

Input: A self-contained structure E, a mechanism knowledge base K, and an atomic deletion
Edel(e) on e ∈ E.

Output: The set of possible atomic additions A.

1. Apply COABGM on E and generate the corresponding graph G(E).

2. Identify Des(Nq
l ) in G(E), where Nq

l is mapped with e.

3. for each Np
k in Des(Nq

l ) ∪Nq
l

4. if Np
k’s mapping Ĉp

k is irreversible in K

5. Remove all incoming arcs to Np
k in G(E).

6. end if

7. end for each

8. Let A be Des(Nq
l ) ∪Nq

l in G(Ens(V )).

9. for each A ∈ A

10. EA := E ∪Eadd(A) \Edel(e).

11. if IsConsistent(EA,K) == false

12. A := A \ {A}.

13. end if

14. end for each

15. return A.

Figure 4.4. Procedure for finding the set of possible atomic additions defined in Theorem 4.2.

according to Theorem 4.2. If we choose to manipulate on V5, Eadd(V5 ), the manipulated model and

its causal graph are shown in Figure 4.5. 2

4.5 Changes in Structure in ImaGeNIe

The tree view of mechanism libraries in ImaGeNIe provides graphical interface for users to in-

teract with mechanism knowledge base. Users can create a mechanism in a mechanism library and

organize the domain knowledge hierarchically into subsystems in the domain. To specify the infor-
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V1 V2 V3 V4 V5 V6 V7 V8

e1 x 0 0 0 0 0 0 0
e2 0 x 0 0 0 0 0 0
e3 0 0 x 0 0 0 0 0

Eadd(V5 ) 0 0 0 0 x 0 0 0

e5 0 x x x x 0 0 0
e6 0 0 x 0 x x 0 0
e7 0 0 0 x 0 0 x 0
e8 x 0 0 0 0 0 x x
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Figure 4.5. The structure matrix and its corresponding graph after the atomic action

Act(E, ∅,Eadd(V5 ),Edel(e4 )).

mation needed for changes in structure, users can open the property page of a mechanism to specify

the properties associated with variables in a mechanism, namely manipulability, observability, and

effectiveness. Please see Figure 4.6 for an example property page of a mechanism.

FindAtomicDeletions(E,K,Eadd(V )) and FindAtomicAdditions(E,K,Edel(e)) have been imple-

mented in ImaGeNIe to support atomic action deliberation for changes in structure. Users can

select “Control Value” from the context menu of an endogenous variable to invoke the dialogue

for specifying a value for an endogenous variable. If the system is self-contained, the “Release

equation” drop-down list will contain equations in the set of possible atomic deletions produced

by FindAtomicDeletions(E,K,Eadd(V )). Users can select “Release Value” from the context menu

of an exogenous variable to invoke the dialogue for releasing a value for an exogenous variable. If

the system is self-contained, the “Add equation” drop-down list will contain equations in the set

of possible atomic additions produced by FindAtomicAdditions(E,K,Edel(e)).

Let’s continue our example model building session in Section 3.7. After inspecting the current

self-contained model, Tom would like to analyze the model under the condition that the average
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Figure 4.6. The property page for specifying manipulability, observability, and effectiveness for

variables in the mechanism governing variables class size, number of faculty, number of student,

class load, and teaching load..

class size is fixed at 15 students per class. He makes the variable classsize exogenous by specifying

an exogenous equation equation as classsize = 15. Consequently, the original self-contained model

will become over-constrained. ImaGeNIe will ask the model builder to release one of the equations.

Suppose that he chooses to release the exogenous equation for the variable teaching load (tload).

The resulting graph generated by the causal ordering is shown in Figure 4.7.

Now, he can read off another set of causal relations that correspond to the change of the system

that he intends to model.

• Teaching load is determined by the number of students, the number of faculty, class load and

class size.

• Faculty salary is determined by the number of students, the number of faculty, tuition fee,

other income, and overhead.

• Student-teacher ratio is determined by the number of students and the number of faculty.
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Figure 4.7. Model builder adds a exogenous equation for class size (classsize) and selects the

exogenous equation for teaching load (tload) to be released (top), and the causal ordering generates

the corresponding graph and its structure matrix (bottom).
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4.6 Discussion

In this chapter, I have formalized the representation for the reversibility of a mechanism to

support modeling of changes in structure. I have defined the reversibility of a mechanism seman-

tically on the set of possible effect variables. This definition allows one to extend the concept of

reversible mechanisms from traditional mechanical and physical systems to other systems. I have

further drawn the analogy between the action represented in SEM and STRIPS languages to argue

that the context and the effects of an action should be represented explicitly in causal modeling.

My formalization allows one to answer two new types of queries: (1) When manipulating a causal

model, which mechanisms are possibly invalidated and can be removed from the model? (2) Which

variables may be manipulated in order to invalidate and, effectively, remove a mechanism from a

model? In practical applications, it may be desirable to further encode domain knowledge, such as

what is the cost of a manipulation, along with each mechanism.
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Chapter 5

Search for Opportunities

The previous chapter discusses how to support atomic action deliberation for changes in struc-

ture given an atomic addition or an atomic deletion. In this chapter, I propose to address a decision

scenario in which none of atomic addition or atomic deletion is given but a causal model and a

decision objective are given. This decision scenario happens when a decision maker who is con-

fronted with a complex system does not know which variables to best manipulate to achieve a

desired objective. While algorithms for influence diagrams allow for computing the optimal setting

for decision variables, they offer no guidance in generation of policy alternatives, arguably a critical

stage of decision making. I introduce the problem of search for opportunities, which amounts to

both identifying the set of policy variables and computing their optimal setting for a given deci-

sion objective. Search for opportunities is built on the value of intervention computation in causal

models.

Section 5.1 introduces my motivation of addressing the problem of search for opportunities.

Section 5.2 gives an overview of probabilistic causal models. Section 5.3 introduces augmented

models for describing decision problems at hand. Section 5.4 discusses the concept of value of

intervention. Section 5.5 shows the use of the value of intervention for solving the problem of

search for opportunities. Section 5.6 presents the method of augmenting a model for non-intervening

actions and the computation of value of observation. Section 5.7 discusses search for opportunities

with a sequence of non-intervening and intervening actions on systems containing only irreversible

mechanisms. Section 5.8 discusses search for opportunities with a sequence of non-intervening and

intervening actions on systems containing reversible mechanisms.

5.1 Introduction

Influence diagrams [Howard and Matheson, 1981] are popular tools for representing decision

problems under uncertainty and identifying optimal strategies. The key problem with using in-

fluence diagrams for decision support under uncertainty is that we need to specify beforehand all
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decision alternatives and their consequences explicitly. In complex systems, this may result in a

cumbersome, if not totally unmanageable, modeling process. Ideally, a modeling language should

support the prediction of the effects of actions that were not considered in the construction of model

[Druzdzel and Simon, 1993; Pearl, 1988; 2000]. This allows us to search for the best actions to be

taken to achieve a set of objectives, a concept that I refer to as search for opportunities.

The problem of search for opportunities is related to the problem of information gathering [Rus-

sell and Norvig, 1995]. In information gathering, a decision maker tries to decide which information

to acquire to reduce the uncertainty over a model, and consequently to improve the quality of the

decision at hand. The means for acquiring information is constrained to observations that modify

the decision maker’s belief over the states of a system. Search for opportunities, in contrast, seeks

to apply intervening actions that alter the trajectory of the system toward those outcomes that are

preferable to the decision maker.

In decision analysis, the primary tool for information gathering is value of information [Howard,

1966] (also called value of observation [Savage, 1972]). Value of information is defined as the upper

bound on what a decision maker should be willing to pay in employing a clairvoyant to reveal

the outcome of a chance variable. Similarly, the concept of value of control has been introduced

and defined as the upper bound on what a decision maker should be willing to pay a wizard

for setting a chance node into a preferred state. Both value of information and value of control

are defined with respect to a decision problem [Howard, 1971; Matheson, 1990]. However, to

my knowledge, the value of control computation has only been applied to chance nodes with no

predecessors in influence diagrams encoded in Howard canonical form [Howard, 1971; Matheson,

1990]. Since influence diagrams may describe probabilistic rather than causal relations, there is no

guarantee that converting a chance node with predecessors (or a chance node without predecessors

in diagrams that are not in Howard canonical form) into a decision node will correctly model the

effects of control. Even influence diagrams in canonical form [Heckerman and Shachter, 1995], an

extension of Howard canonical form that supports causal reasoning, require modelers to make causal

assertions (“responsiveness”) about chance variables with respect to a set of decisions, along with

probabilistic assessments over mapping variables. This approach needs a combinatorial number of

tests of the form: Is a node Xi responsive to a set of decisions D? This number can be very large

if the tests are to be applied to all potential sets of decisions.
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In this chapter, I discuss the problem of search for opportunities, where a decision maker seeks

creative decision options in order to achieve a given objective. The basis of the search is a causal

model of the system that is subject of the decision. Causal models based on structural equations

support causal reasoning and, in particular, prediction of the effects of actions [Pearl, 2000; Spirtes

et al., 2000]. A causal model consists of a self-contained set of simultaneous structural equations,

each of which represents a causal mechanism active in the modeled system. Causal models support

prediction of the effects of actions by replacing those mechanisms that are impacted by actions

with new mechanisms, possibly not contemplated during model’s construction, and leaving the

rest intact. The problem of search for opportunities, in this formulation, amounts to searching for

variables that were not originally contemplated as decision variables, but were a priori specified as

subject to potential manipulation, and intervening into mechanisms governing these variables in

order to affect the outcomes. Therefore, search for opportunities leads to discovery of novel actions

to achieve decision objectives.

To address the problem of search for opportunities, I introduce the concept of value of inter-

vention. The value of intervention, related to the value of control, arises from considering jointly

the economic factors and effects of actions in causal models. It can be considered a generalization

of the value of control since the intervention operates at the level of mechanisms in causal models,

but the control operates at the level of variables in influence diagrams. The value of intervention

computation is also applicable to influence diagrams in canonical form [Heckerman and Shachter,

1995], but not to influence diagrams that do not represent causal relations.

5.2 Probabilistic Causal Models

Bayesian networks [Pearl, 1988] and influence diagrams [Howard and Matheson, 1981] are pop-

ular tools for reasoning and decision making under uncertainty. Both formalisms were originally

developed for modeling probabilistic relations in the world. Druzdzel and Simon [1993] established

the link between Bayesian networks and causal models. They showed that for the probability distri-

bution encoded in a Bayesian network, there exists a structural equation model that generates the

encoded distribution. Therefore, if each group of nodes, consisting of a node and its predecessors, in

a Bayesian network represents a causal mechanism, then the Bayesian network can be interpreted
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causally. Pearl [2000] presents a detail account of causal reasoning in probabilistic causal models

based on structural equations. I briefly summarize the definition of probabilistic causal models

based on structural equations as follows.

A causal model M = 〈X,E〉 consists of a self-contained set of simultaneous structural equations

E over a set of variables X ≡ Vars(E). The set of variables X can be partitioned into two disjoint

sets U ≡ ExVars(E) and V ≡ EnVars(E) of exogenous and endogenous variables respectively. A

causal model is sometimes denoted as M = 〈U,V,E〉. Let D(Xi) be the domain of a variable Xi,

and D(X) = D(X1)×. . .×D(Xn) be the domain of the set of variables X = {X1, . . . , Xn}. Given u ∈

D(U), the solutions for endogenous variables Y ⊆ V, denoted as YM (u) or Y(u), in a causal model

M can always be determined uniquely. The pair 〈M,u〉 is called a causal world, or simply world.

Given a probability distribution Pr(u) defined over D(U), the pair 〈M, Pr(u)〉 is called a probabilistic

causal model where for each Y ∈ V, Pr(y) ≡ Pr(Y = y) ,
∑

{u|Y (u)=y} Pr(u). A causal model M

is recursive if the associated G(M) is a directed acyclic graph, where each node corresponds to a

variable, and each family (a node with its parents in G(M)) to a structural equation [Druzdzel and

Simon, 1993]. In other words, each structural equation e(X1, . . . , Xn) = 0 is expressed in its explicit

functional form Xi = fXi
(X1, . . . , Xi−1, Xi+1, . . . , Xn) and is depicted graphically as a family with

arcs from nodes representing arguments of fXi
(i.e., X1, . . . , Xi−1, Xi+1, . . . , Xn) to Xi. For the

rest of this chapter, the term “causal model” refers to a recursive probabilistic causal model, in

which each equation is indexed by the dependent variable of its explicit form.

Example 5.1 Consider a model for the operational status of a command center (CC). CC depends

on the status of communications (C) and radar (R). Radar depends on the antenna structure (A)

and the power supplied by the generator (G). Communications relies on the power supplied by

generator. The generator relies on fuel supply (F ) to generate power. Each of the variables has state

operational or damaged . We assume that for each of the above relations there is a corresponding

exogenous variable, denoted as Ucc, Ur, Uc, and Ug, that summarizes the factors outside the models

for each relation. F and A are themselves exogenous variables. We assume that all exogenous

variables U = {Ucc, Ur, Uc, Ug, F, A} are independent. The set of structural equations, representing

the domain of our interest, and its corresponding causal graph are shown in Figure 5.1. We have

included an explicit graphical representation of variables Ucc, Ur, Uc, Ug for the sake of clarity of
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explanation. In practice, these variables are modeled implicitly by error terms in the corresponding

equations and we will omit them in the sequel of this chapter for the sake of clarity. 2

eUg(Ug) = 0

eUc(Uc) = 0

eUr(Ur) = 0

eUcc(Ucc) = 0

eF (F ) = 0

eA(A) = 0

eG(G, F, Ug) = 0

eC(C, G, Uc) = 0

eR(R, A, G, Ur) = 0

eCC(CC, G, C, Ucc) = 0

Figure 5.1. Causal model and its corresponding causal graph for modeling the operational status

of a command center.

5.2.1 Recursive Actions

In general, an action on a recursive model may result in non-recursive models. Consider a simple

recursive causal model M = 〈X,E〉 where X = {X1, X2} and E = {eX1
(X1) = 0, eX2

(X1, X2) = 0}.

When applying an action Act(E, ∅,Eadd,Edel(eX1
)) on M where Eadd = {e′X1

(X1, X2) = 0}, I have

a non-recursive causal model with structural equations EX1
= E∪Eadd\Edel(eX1

) = {e′X1
(X1, X2) =

0, eX2
(X1, X2) = 0}. I define recursive actions with respect to a SEM E as follows.

Definition 5.1 (recursive action)

An action A = Act(E,Epre,Eadd,Edel) on a SEM E is recursive if the manipulated model EA is

recursive and indeed represents the manipulated system.

Notice that a recursive action is a self-contained action defined in Definition 4.5.
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5.2.2 Recursive Actions on Systems with Irreversible Mechanisms

Given a causal model M = 〈U,V,E〉 representing a system containing only irreversible mech-

anisms, a recursive atomic action Act(E,Epre,Eadd(X ),Edel(eX )), where Eadd(X ) = {X = x} and

eX ∈ E, sets an endogenous variable X ∈ V to the value x ∈ D(X) and transforms M to the

modified model Mx = 〈U,V,EX〉, where EX = E∪Eadd(X ) \Edel(eX ). Following Pearl’s notation,

I abbreviate Act(E,Epre,Eadd(X ),Edel(eX )) to do(X = x). The effect of action do(X = x) is given

by Mx. Please note that the shorthand notation states that the operator do(·) always replaces

eX with its argument, a (probability) function that (probabilistically) assigns X with the value

x ∈ D(X), to derive the modified model Mx and consequently its corresponding effects.

In addition to recursive atomic action, Pearl and Robins [1994; 1995] define three other types

of recursive actions:

Conditional action Act(E,Epre,Eadd,Edel(eX )) where Epre = {Z = z | ∀Zj ∈ Z, Zj /∈ Des(Xi)},

Eadd = {X = x↓x=g(z)}. In Pearl’s notation, a conditional action is denoted as do(X =

x↓x=g(z)). The conditional action do(X = x↓x=g(z)) sets X ∈ V to the value x = g(z)

whenever Z attain values z, where g : D(Z) → D(X) and Z are non-descendants of X in

G(M).

Stochastic action Act(E, ∅,Eadd,Edel(eX )) where Eadd = {X = x↓Pr∗(x)}. In Pearl’s notation,

a stochastic action is denoted as do(X = x↓Pr∗(x)). The stochastic action do(X = x↓Pr∗(x))

sets X ∈ V to the value x with probability Pr∗(x) where Pr∗(x) is specified externally.

Stochastic policy Act(E,Epre,Eadd,Edel(eX )) where Epre = {Z = z | ∀Zj ∈ Z, Zj /∈ Des(Xi)}

and Eadd = {X = x↓Pr∗(x|z)}. In Pearl’s notation, a stochastic policy is denoted as do(X =

x↓Pr∗(x|z)). The stochastic policy do(X = x↓Pr∗(x|z)) sets X = x with probability Pr∗(x|z)

whenever Z attain values z where Z are non-descendants of X in G(M) and Pr∗(x|z) is set

externally.

Given a world 〈M, u〉, the potential response of Y ∈ V to action do(·) on variable X ∈ V,

denoted as YMx(u) or Yx(u), is the solution for Y to the set of equations Ex of Mx. Yx(u) can also

be interpreted as the counterfactual value that Y would obtain had X been x in the counterfactual

world brought about by action do(·). Given a probabilistic causal model 〈M, Pr(u)〉, the causal
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effect on Y of an atomic action do(X = x) is given by 〈Mx, Pr(u)〉 as Pr(Y = y|do(X = x)) ≡

Pr(y|x̂) ≡ Pr(Yx = y) ,
∑

{u|Yx(u)=y} Pr(u). The causal effect on Y of a conditional action do(X =

x↓x=g(z)) is expressed as Pr(Y = y|do(X = x↓x=g(z))) ≡ Pr(y|x̂)↓x=g(z) ≡ Pr(Yx = y)↓x=g(z) ,

∑
z Pr(y|x̂, z)↓x=g(z) Pr(z). The causal effect on Y of a stochastic action do(X = x↓Pr∗(x)) is ex-

pressed as Pr(Y = y|do(X = x↓Pr∗(x))) ≡ Pr(y|x̂)↓Pr∗(x) ≡ Pr(Yx = y)↓Pr∗(x) ,
∑

x Pr(y|x̂) Pr∗(x).

The causal effect on Y of a stochastic policy do(X = x↓Pr∗(x|z)) is expressed as Pr(Y = y|do(X =

x↓Pr∗(x|z))) ≡ Pr(y|x̂)↓Pr∗(x|z) ≡ Pr(Yx = y)↓Pr∗(x|z) ,
∑

x

∑
z Pr(y|x̂, z) Pr∗(x|z) Pr(z).

Example 5.2 Suppose the model in Example 5.1 is an enemy’s command center and one objective

is to disrupt the enemy’s communications. We can act on the communications C by, for example,

jamming the signal with noise, and by setting this C to damaged . The modified causal model and

its corresponding causal graph are shown in Figure 5.2. Please note that the intervention makes

the arcs coming into C inactive (arc G→ C) 2

eUg(Ug) = 0

eUc(Uc) = 0

eUr(Ur) = 0

eUcc(Ucc) = 0

eF (F ) = 0

eA(A) = 0

eG(G, F, Ug) = 0

C = damaged

eR(R, A, G, Ur) = 0

eCC(CC, G, C, Ucc) = 0

Figure 5.2. The modified causal model and its corresponding causal graph after an atomic action

do(C = damaged).
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5.3 Augmented Models

In order to describe a decision problem at hand, I propose to augment a probabilistic causal

model 〈M, Pr(u)〉 by specifying properties over its variables. In addition to the manipulability and

observability introduced in Section 3.3, I associate the property of focus (focus or non-focus) for

each variable in a model. Let X denote all variables in M . A variable Xi ∈ X is observable,

denoted as Xi.o, if it represents an entity that can be measured directly; unobservable, denoted

as Xi.o, otherwise. A variable Xi ∈ X is manipulable, denoted as Xi.m, if it represents an entity

that can be manipulated directly; non-manipulable, denoted as Xi.m, otherwise. I assume that a

manipulable variable is always observable, i.e., I assume that I can always observe the effect of my

manipulation. A variable Xi ∈ X is a focus variable, denoted as Xi.f , if it represents a decision

objective; non-focus, denoted as Xi.f , otherwise.

The goal of this work is to build a system that suggests decisions. At any stage of working with

the system, there may be variables on which the user has decided to manipulate, whether based

on the system’s suggestions or the user’s prior choices. I represent such pre-specified decisions by

augmenting the model with a set of decision variables D along with their corresponding settings.

The domain of each Di ∈ D consists of the choices of setting Xi.m, the augmented manipulable

variable, to a value xi ∈ D(Xi), denoted as x′
i, and a special state idle representing the force

of nature [Pearl, 1993]. Let Pa(Xi) denote the set of parents of Xi in G(M), i.e., Pa(Xi) =

Vars(eXi
) \ {Xi}. I augment the equation eXi

(Xi,Pa(Xi)) = 0 to e′Xi
(Xi,Pa′(Xi)) = 0, where

Pa′(Xi) = Pa(Xi) ∪ Z ∪ {Di} and Z ⊂ X, a set of non-descendants of Xi in G(M) brought about

by interventions. I define the augmented equation e′Xi
(Xi,Pa′(Xi)) = 0 as

e′Xi
(Xi,Pa′(Xi)) ,






e∗Xi
(Xi,Pa′(Xi)) = 0 if Di = x′

i,

eXi
(Xi,Pa(Xi)) = 0 if Di = idle,

(5.1)

where the form of e∗Xi
(Xi,Pa′(Xi)) = 0 depends on the type of intervention (See Table 5.1.). To

represent concurrent actions on Xi and Xj , in addition to Di and Dj and corresponding augmen-

tations on eXi
and eXj

, I add a decision variable, denoted as Dij , to represent the concurrency.

The domain of Dij is D(Dij) = D(Di) × D(Dj). I add projection equations eDi
: D(Dij) → D(Di)
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and eDj
: D(Dij)→ D(Dj) such that Di = di and Dj = dj for each dij ∈ D(Dij).

Table 5.1. The form of e∗Xi
(Xi,Pa′(Xi)) characterized with respect to different types of interven-

tions.

e∗
Xi

(Xi,Pa′(Xi)) = 0

Atomic Pr(xi|pa′(Xi)) =

{
1 if x′

i
= xi,

0 otherwise.

Conditional Pr(xi|pa′(Xi)) =

{
1 if x′

i
= xiand xi = g(z),

0 otherwise.

Stochastic Pr(xi|pa′(Xi)) =

{
Pr∗(xi) if x′

i
= xi,

0 otherwise.

Policy Pr(xi|pa′(Xi)) =

{
Pr∗(xi|z) if x′

i
= xiand xi = g(z),

0 otherwise.

Finally, to represent the preferences over the given set of objectives and decisions, I augment the

model by a set of utility variables UT along with their utility functions U. Each utility function

Ui ∈ U can only have focus or decision variables as its arguments. Formally, I can define an

augmented model as follows.

Definition 5.2 (Augmented Model)

An augmented model for a decision problem is MA = 〈〈M, Pr(u)〉, C(X), 〈D,E′〉, 〈UT,U〉〉, where:

1. 〈M, Pr(u)〉 is a probabilistic causal model.

2. C(X) is a characterization of observability, manipulability, and focus for each Xi ∈ X.

3. 〈D,E′〉 is a set of decision variables D and the modified equation E′ with respect to the

decisions.

4. 〈UT,U〉 is a set of utility variables UT and its corresponding utility functions U over a set

of focus variables, characterized by C(X), and a subset of decision variables in D.

Example 5.3 Suppose variables F , A, G, R, C, and CC are manipulable and CC is the only focus

variable in Example 5.1. We add a utility node, Utility , with utility function U(CC), to represent

our preference over the states of CC. The corresponding causal graph is shown in Figure 5.3 (a).

Suppose we have a decision option of manipulating the communications C with no direct influence

on Utility . We then have a causal graph with Dc as a decision variable shown in Figure 5.3 (b). 2
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(a) (b)

Figure 5.3. (a) Example model augmented with utility over variable CC. (b) The model in (a)

augmented with the atomic action Dc.

I emphasize that specifying that a variable is manipulable, which merely acknowledges the pos-

sibility of interventions, is not the same as designating a decision variable in an influence diagram,

which requires the explicit specifications of a decision variable along with its consequences. Declar-

ing that a variable is manipulable allows the algorithm that searches for opportunities to explore

possible interventions that might not have been foreseen when the model was constructed. Further-

more, I require neither a manipulable variable being intervened upon, nor an observable variable

being observed. It is the task of search for opportunities and information gathering to determine

which variable one should intervene on or observe and in what order. In other words, I propose

to relax not only the assumption of a fixed sequence of intervening actions and observations in

influence diagrams, but also the assumption of a fixed operation over a variable. For example, a

manipulable variable may be intervened on, observed, or unknown, depending on different decision

sequences generated by search for opportunities and information gathering. Only when a manip-

ulable variable is augmented by the decision variable and its augmented equation as in the form

of Equation 5.1, one commits to intervene on the manipulable variable with one of the policies

specified by the decision variable.
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5.4 Value of Intervention

Suppose that I am considering an additional atomic intervention on an unaugmented manipu-

lable variable Xk in an augmented model MA. I augment MA by adding a new decision variable

Dk and modify eXk
to e′Xk

, as demonstrated in Equation 5.1. Let D′ = D ∪ {Dk} be the new set

of decision variables. I also augment utility function U to U
′ if the intervention directly influences

U. Most interventions come at a certain cost and the cost of intervention can be incorporated

by augmenting U. Let M ′
A denote the newly augmented model, π(M ′

A) its optimal strategy, and

MEU(MA) and MEU(M ′
A) the maximum expected utility yielded by the optimal strategies π(MA)

and π(M ′
A) respectively. I define the value of intervention on Xk as

VOINT(Dk = d∗k) , MEU(M ′
A)−MEU(MA), (5.2)

where d∗k ∈ D(Dk) is yielded in π(M ′
A) by the optimal policy of Dk. Note that value of atomic

intervention can account for the concept of the value of control in influence diagrams. Since

augmented models support prediction of the effect of actions, I am not constrained to only atomic

interventions (control) on nodes with no predecessors as in the case of value of control in influence

diagrams. To compute value of intervention for a conditional, stochastic, or stochastic policy action,

I simply substitute the action of interest for the atomic intervention in augmenting model MA and

perform analysis using Equation (5.2).

Theorem 5.1 Let MA be an augmented model and Xk be an unaugmented manipulable variable in

MA. If M ′
A is the augmented model of MA resulting from considering an intervention on Xk that

has no direct impact on utility function U, then MEU(M ′
A) ≥ MEU(MA).

Proof: When evaluating π(MA), I can decompose the joint probability distribution of MA accord-

ing to G(MA). When considering an additional intervention on Xk that has no direct impact on

U, I augment MA into M ′
A by modifying Pr(xk|pa(Xk)) to Pr(xk|pa′(Xk)). Now, when evaluating

π(M ′
A), I also decompose the joint probability distribution of M ′

A according to the G(M ′
A). Notice
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that Xk participates in MEU(MA) as

MEU(MA) = · · ·
∑

xk∈D(Xk)

Pr(xk|pa(Xk)) · · ·U,

and in MEU(M ′
A) as

MEU(M ′
A) = · · · max

dk∈D(Dk)

∑

xk∈D(Xk)

Pr(xk|pa′(Xk)) · · ·U,

where dk ∈ pa′(Xk). Since Pr(xk|pa(Xk)) is also represented in Pr(xk|pa′(Xk)) as dk = idle,

MEU(M ′
A) ≥ MEU(MA) according to the maximization operator. 2

Consider a simple model MA which consists of one variable Xk with probability distribution

Pr(xk), where xk ∈ D(Xk), and a utility variable UT with utility function U(xk). We have

MEU(MA) = EU(MA) =
∑

xk∈D(Xk) Pr(xk)U(xk). Consider an additional stochastic intervention

on Xk that has no direct impact on U. We augment MA to M ′
A with a new decision variable Dk

with domain D(Dk) = D(Xk) ∪ {idle}, and modify the probability distribution of Xk to

Pr(xk|dk) =






Pr∗(xk) if Dk = x′
k and xk = x′

k,

0 if Dk = x′
k and xk 6= x′

k,

Pr(xk) if Di = idle.

We have

MEU(M ′
A) = max

dk∈D(Dk)

∑

xk∈D(Xk)

Pr(xk|dk)U(xk),

and the optimal value of setting Dk,

d∗k = arg maxdk∈D(Dk)

∑

xk∈D(Xk)

Pr(xk|dk)U(xk).

It shows that d∗k is taken on one of x′
k only if

∑

xk∈D(Xk)

Pr∗(xk)U(xk) ≥
∑

xk∈D(Xk)

Pr(xk)U(xk).
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In other words, it suggests not to act if the stochastic intervention under consideration does no

better than the nature. By the same token, d∗k can always take on the state idle for other types

of interventions that have no direct impacts on utility functions U, if it will not do better than the

nature. Next, consider an augmented model with variables DA → A→ B → U . We have

MEU(MA) = max
dA∈D(DA)

∑

a∈D(A)

Pr(a|dA)
∑

b∈D(B)

Pr(b|a)U(b).

Consider an additional intervention on B with no direct impacts on U and augment MA to M ′
A

correspondingly. We have

MEU(M ′
A) = max

dA∈D(DA)

∑

a∈D(A)

Pr(a|dA) max
dB∈D(DB)

∑

b∈D(B)

Pr(b|a, dB)U(b).

We see, again, that DB will take on the state other than idle only if

∑

b∈D(B)

Pr(b|a, dB)U(b) >
∑

b∈D(B)

Pr(b|a)U(b).

Example 5.4 Suppose that we are considering an additional atomic intervention on R in the

model of Figure 5.3 (b). Suppose that the atomic intervention under consideration is associated

with a cost of intervention function CI(Dr) over D(DR). We add a multi-attribute utility function

MAU that combines CI(Dr) and Utility . The augmented model is shown in Figure 5.4 (a). The

value of atomic intervention VOINT(DR = d∗R) = MEU(M ′
A)−MEU(MA), where M ′

A is the model

in Figure 5.4 (a) and MA is the one in Figure 5.3 (b). 2

5.5 Search for Opportunities

Search for opportunities refers to the problem of identifying novel interventions that can improve

the outcomes. Ideally, one should consider all possible novel interventions on all unaugmented

manipulable variables simultaneously, along with existing decisions, to find the optimal strategy and

the maximum expected utility for the model. In a complex system, however, such analysis can easily

challenge the modeling and computational complexity. For example, even if we constrain ourselves
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(a) (b)

Figure 5.4. (a) The model augmented with a possible atomic intervention on R, the cost of inter-

vention CI(DR), and the multi-attribute utility function MAU. (b) The optimal atomic intervention

on R is instantiated by setting DR to d∗R and the model is augmented with a possible intervention

on CC and the cost of intervention CI(DCC) in the myopic approach of search for opportunities.

to considering only recursive atomic interventions on manipulable variables in the command center

example, theoretically, we need to elicit utilities and to evaluate strategies for 36 combinations of

all possible atomic interventions. In general, if we have n manipulable variables with m states for

each, we will have (m + 1)n combinations of utilities and strategies, including one extra dimension

for the force of nature.

To simplify the problem of modeling, I assume that all novel interventions under consideration

have no direct impact on utility functions except by the cost of intervention. One can elicit the cost

of intervention CI(Dk) for each novel intervention on Xk. Let CI denote all costs of interventions

under consideration. I assume that my multi-attribute utility function over the existing individual

utility functions U and costs of interventions is decomposable, i.e., there exists a multi-attribute

utility function MAU that takes as arguments each Ui ∈ U and each CI(Dk) ∈ CI and combine them
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Procedure MyopicSFOIntSysIrrevMechs(MA, δ∗,Xm,CI)

Input: An augmented model MA, a threshold δ∗ for the increase of expected utility, and the set
of unaugmented manipulable variables Xm and its cost function CI(Di) for each Xi ∈ Xm

in MA.

Output: A sequence of interventions D on the subset of Xm.

1. D := ∅; M∗ := MA; Update(M∗); µ∗ := MEU(M∗); found := false;

2. while found = false

3. M := M∗; µ := µ∗; δ := δ∗;

4. for each Xi ∈ Xm

5. M ′ := Augment(M∗, do(Xi), CI(Di)); Update(M ′); µ′ := MEU(M ′);

6. △µ := µ′ − µ∗; /* VOINT(Di) */

7. if △µ > δ then

8. δ := △µ; M := M ′; µ := µ′; X := Xi; d := π(M ′
i);

9. found := true;

10. end if

11. end for each

12. if found = true then

13. M∗ := Instantiate(M, X, d); µ∗ := µ; D := D ∪ {(X, d)};

14. found := false;

15. else found := true;

16. end if

17. end while

18. return D;

Figure 5.5. Myopic search for opportunities with intervening actions on systems containing only
irreversible mechanisms. Update(M) computes the optimal strategy and maximum expected utility
for a model M . Augment(M, do(Xi), CI(Di)) denotes the operation of augmenting the model M
with an intervention on Xi with the cost of intervention CI(Di). Instantiate(M, X, d) denotes the
operation of setting the value of DX to d in M .

with a functional form (such as a simple linear or a multiplicative form). In the case of a linearly

additive MAU, we need to elicit n × (m + 1) numbers for CI and at most n + 1 numbers for the
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weights in MAU (if the units of cost are the same, this number can be significantly smaller). Next,

I approximate the optimal strategy computation by the myopic (greedy) search that considers one

intervention at a time and selects the one with the maximum value of intervention to perform. I

act according to the selected intervention and perform the myopic search again to select the next

intervention to act until there is no intervention that can improve the maximum expected utility

over the predefined threshold. Figure 5.5 outlines this procedure. The complexity of this procedure

is NP-hard since it relies on the probabilistic belief update in Line 1 and 5.

Example 5.5 Given the model in Figure 5.3 (b), suppose that we use the myopic approach to

identify that R is the next variable to intervene by an atomic intervention. The model is augmented

with an intervention on R as shown in Figure 5.4 (a). After intervening on R by setting DR to

d∗R, suppose that we identify that CC is the next variable to act on by an atomic intervention. We

have the model augmented as shown in Figure 5.4 (b). 2

Figure 5.6. A ranked list of value of interventions on unaugmented manipulable variables.

The procedure in Fig. 5.5 can be applied by a robot to find out the next most effective action.

It can also be a useful extension of a modeling environment, which is how I plan to apply it. As

illustrated in Figure 5.6, I present users with a list of ranked values of interventions, generated

by Lines 4-11 in Figure 5.5.1 Users may take the suggestion from the myopic search to perform

1As far as utility and cost of intervention are concerned, I use a simple linearly additive form of MAU function.
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the intervention at the top of the list, or select any other intervention from the list to alter the

generation of the decision sequences. Once the users have entered the intervention into the system,

the system performs the myopic search again to update the ranked list of possible interventions.

This interactive environment allows the users also to perform “what if” analysis in generating

decision sequences.

5.6 Non-intervening Action and Value of Observation

In many decision problems, we bring new mechanisms into the model when we consider to apply

a non-intervening action on a system. For example, consider a model that describes the relations

among heart disease (HD), blood pressure (BP), and headache (HA) as mechanisms fHD(HD) = 0,

fBP (HD ,BP) = 0, and fHA(BP ,HA) = 0. Assume that the utility (Utility) of a patient directly

depends on headache (HA). The causal graph for this example is depicted in Figure 5.7(a). An

example of a non-intervening action would be measuring blood pressure (MBP), which brings the

variable blood pressure reading (BPR) and the mechanism describing how the blood pressure is

measured, fBPR(BP ,BPR,MBP) = 0, into consideration. I represent the cost of measuring blood

pressure (CO(MBP)) as a value function of MBP , i.e., U(MBP). Now, I have the causal graph as

depicted in Figure 5.7(b).

Let M ′
A denote the augmented model of MA when considering a non-intervening action on

an observable variable in MA. Let π(M ′
A) and π(MA) be the optimal strategy of M ′

A and MA

respectively. I can define the value of observation (value of information) as

VOOBS(Dk = d∗k) , MEU(M ′
A)−MEU(MA),

where d∗k ∈ D(Dk) is yielded in MEU(M ′
A) by the optimal policy of Dk.

I can now choose between intervening actions and non-intervention actions by comparing their

values of interventions and observations. For example, I can compute the value of observation

for non-intervening actions such as measuring blood pressure (MBP) based on model depicted in

Figure 5.7(a) and (b). I can then compute the value of interventions for intervening actions such

as taking the medicine for blood pressure (Dbp), taking the medicine for headache (Dha), or taking
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Figure 5.7. (a) depicts the causal relations among heart disease (HD), blood pressure (BP), and
headache (HA); (b) depicts the augmented model for a non-intervening action – measuring blood
pressure (MBR), its reading (BPR), and cost (CO(MBR)); (c) depicts the augmented model for
the intervening action – taking the blood pressure control medicine (Dbp) and its cost (CI(Dbp));
(d) depicts the augmented model for intervening action – taking the medicine for headache (Dha)
and its cost (CI(Dha)); (e) depicts the augmented model for concurrent intervening action – taking
the medicine for both blood pressure and headache (Dbpha) and its cost (CI(Dbpha)).

medicine for both blood pressure and headache (Dbpha), based on model depicted in Figure 5.7(c),

(d), (e), and (a) respectively.

5.7 Search for Opportunities in Systems Containing Only

Irreversible Mechanisms

Very often we act because of what we have observed, since we intend to change the world in

the desired direction. We therefore have a sequence of non-intervening and intervening actions. In

this section, I address the problem of search for opportunities in system containing only irreversible

mechanisms.

5.7.1 Persistence and Response

I now continue the example in Section 5.6. After examining the reading of a patient’s blood

pressure, a doctor may prescribe a medicine to control the blood pressure such that the symptom of
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headache can be eased. Consequently, I need to augment the model to represent the persistency of

heart disease, which has not been treated, and the response of blood pressure and headache relative

to the prescribed blood pressure control medicine. It is common sense that the previous reading

of blood pressure becomes invalid after taking the blood pressure control medicine. However, the

reading of blood pressure before taking the medicine should affect our belief of the severity of the

heart disease and its persistence.

In Figure 5.8(a), I depict a model representing the relations among heart disease (HD), blood

pressure (BP), and headache (HA). Since a non-intervening action does not intervene into mecha-

nisms in a model, I augment the model in 5.8(a) with the non-intervening action, measuring blood

pressure (MBP), and the mechanisms brought about by the non-intervening action, the blood pres-

sure reading (BPR) and the observation cost CO(MBP). Figure 5.8(b) shows the augmented model.

To model the intervening action of taking a blood pressure control medicine (Dbp) conditioned on

the non-intervening action (MBP) and its reading (BPR), I copy the mechanisms describing the

relations among heart disease, blood pressure, and headache (HD → BP → HA) to the next time

slice as (HD ′ → BP ′ → HA′) (See Figure 5.8(c)). Then I augment the definition of heart disease

in the next time slice (HD ′) to indicate that it is determined by the heart disease in the previous

time slice (HD). In other words, the arc in HD → HD ′ represents the persistency of the heart

disease. Then I augment the model by adding the conditional intervening action – taking the blood

pressure control medicine (Dbp), which is conditioned on the blood pressure reading (BPR) and the

non-intervening action (MBP), and by modifying the distribution of (BP ′) to depends on HD ′ and

Dbp. Please note that the instantiated observation of blood pressure reading (BPR) changes the

belief of heart disease (HD) and then changes the belief or (HD ′) through the persistent relation

between (HD) and (HD ′). In other words, the evidence of blood pressure reading (BPR) is not

only used for making the decision of blood pressure control (Dbp) but also used in updating the

belief between time slices through the persistence link between HD → HD ′. Furthermore, I drop

the headache and its utility in the previous time slice since we are now interested in the utility in

the next time slice.

To see how the model structures are changed with respect to the sequential non-intervening

and intervening actions, I first show the set of structural equations E for the model M on the left.

After applying the non-intervening action AMBP , Act(E,Epre,Eadd,Edel) where Epre = {BP ∈
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Figure 5.8. (a) depicts relations among heart disease (HD), blood pressure (BP), and headache
(HA); (b) depicts the augmented model for the non-intervening action – measuring blood pressure
(MBR), its reading (BPR) and cost (CO(MBR)); (c) depicts the augmented model for considering
taking the blood pressure control medicine (Dbp) and its cost (CI(Dbp)), after measuring the blood
pressure.

Vars(E)}, Eadd = {fBPR, fCO(MBP )}, and Edel = ∅, the set of modified structural equations is

shown at the right hand side.






fHD(HD) = 0

fBP (BP ,HD) = 0

fHA(HA,BP) = 0

fUtility(Utility ,HA) = 0

=⇒






fHD(HD) = 0

fBP (BP ,HD) = 0

fHA(HA,BP) = 0

fUtility(Utility ,HA) = 0

fBPR(BPR,MBP ,BP) = 0

fMBP (MBP) = 0

fCO(MBP )(CO(MBP ),MBP) = 0

We see that AMBP brought fBPR and fCO(MBP ) into the model but did not intervene into any

of the existing mechanisms: fHD , fBP , fHA, and fUtility . Furthermore, AMBP is applicable only
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when the variable is about to be observed is in the model, i.e., Epre = {BP ∈ Vars(E)}.

Let MAMBP
denote the augmented model after applying AMBP on M and EAMBP

de-

note the set of structural equations in MAMBP
. Consider the intervening action ADbp

,

Act(EAMBP
,Epre,Eadd,Edel) where Epre = {MBP ∈ Vars(E) ∧MBP = true,BPR ∈ Vars(E) ∧

BPR = high,BP ∈ Vars(E)}, Eadd = {fDbp
, fHD ′ , fBP ′ , fHA′ , fUtility ′ , fCI(Dbp)}, and Edel =

{fHA, fUtility}. The set of modified structural equations is shown at the right hand side.






fHD(HD) = 0

fBP (BP ,HD) = 0

fHA(HA,BP) = 0

fUtility(Utility ,HA) = 0

fBPR(BPR,MBP ,BP) = 0

fMBP (MBP) = 0

fCO(MBP )(CO(MBP ),MBP) = 0

=⇒






fHD(HD) = 0

fBP (BP ,HD) = 0

fBPR(BPR = high,MBP = true,BP) = 0

fMBP (MBP) = 0

fCO(MBP )(CO(MBP ),MBP) = 0

fDbp
(Dbp ,BPR = high,MBP = true) = 0

fHD ′(HD ′,HD) = 0

fBP ′(BP ′,HD ′,Dbp) = 0

fHA′(HA′,BP ′) = 0

fUtility ′(Utility ′,HA′) = 0

fCI(Dbp)(CI(Dbp),Dbp) = 0

As we can see, the persistency of heart disease between time slice is modeled by the structural

equation fHD ′ . The previous reading of blood pressure (BPR = high) updates our belief of the

severity of heart disease in the next time slice (HD ′) through the path of persistence (HD → HD ′).

The decision of taking blood pressure control medicine (Dbp) depends on the decision of measuring

the blood pressure (MBP = true) and the reading of blood pressure (BPR = high). The blood

pressure after the intervention is governed by the structural equation fBP ′ . The headache at the

next time slice (HA′) is governed by the structural equation fHA′ .

5.7.2 Generic Actions

After presenting the way of augmenting a model for a non-intervening action followed by an

intervening action, I examine the generality of both AMBP and ADbp
. The non-intervening action
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AMBP is applicable to all models in the same domain as long as the precondition Epre = {BP ∈

Vars(E)} is held, since it simply brings in new mechanisms into a model without intervening on

the rest. On the other hand, we can see that ADbp
is not directly applicable to all models in the

domain, since I have represented the persistence and response into Eadd and Edel of ADbp
. To

make the intervening action ADbp
model independent, I shall specify the relations that are locally

relevant to ADbp
, namely fDbp

, fBP ′ , and fCI(Dbp) in Eadd. The relation representing persistence,

fHD ′ in Eadd, should be inferred from EAMBP
. Similarly, the relations representing response, fHA′

and fUtility ′ in Eadd and the Edel of ADbp
, should be inferred from EAMBP

.

Before I give the framework for inferring persistence and response, I first discuss when I shall

model a system into two consequent time slices. When I apply only intervening actions on systems

containing only irreversible mechanisms, as in Section 5.5, there is no need to model a system in

two consequent time slices, since no variables are observed and all intervening actions are applicable

when their preconditions are satisfied. However, I need to model a system in two consequent time

slices when I apply an intervening action on a direct or an indirect cause of an observed variable,

by which I determine the intervening action. In other words, if I do not model a system in two

consequent time slices, I cannot distinguish the variable which is a cause of observed variable from

the same variable which is manipulated by the intervening action.

Second, I need to decide on which variables I should apply their persistence relations when I

model a system in two consequent time slices. Since all endogenous variables are determined within

the model, I shall only consider applying persistence relations for exogenous variables at the next

time slice. In addition, I can elicit persistent relations before I decide what type of actions to apply

on the system, since the persistence relations simply represent the evolutional influences from the

system in the current time slice to the system in the next time slice. Furthermore, the persistence

relations serve as the path way of carrying the information brought about by observations from the

current time slice to the next time slice.

Third, I need to decide the responses resulting from an intervening action. Modeling a system

in two different time slices is one of responses of an intervening actions. For such response, I

copy mechanisms from the system in the current time slice into the system in the next time slice,

but leave those invalid observations. The other response is to remove mechanisms, which are not

needed for the decision on the system in the next time slice, from the system in the current time
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slice. Such mechanisms are those govern the nodes which are not ancestors of the evidences and

are d-separated from the evidences given the manipulated variable.

Procedure InstantiateActionIrrev(E,K, AXi
)

Input: An irreversible system E, a mechanism knowledge base K, and a generic action AXi
,

Act(E, Epre, Eadd, Edel) in K.

Output: true: AXi
is instantiated action into AXi

, Act(E,Epre,Eadd,Edel); or false.

1. E := E; Epre := Epre; Eadd := Eadd; Edel := Edel;

2. if (Epre is not true in E) return false; end if

3. Apply COABGM on E and generate the corresponding graph G(E) = 〈N,A〉;

4. Let O ⊂ N be the set of all observed variables in Vars(E);

5. if (Xi /∈ Anc(O)) return true with AXi
, Act(E,Epre,Eadd,Edel); end if

6. P := ∅;

7. for each Nj ∈ N where Nj 6= Xi and Nj /∈ O

8. if (Nj ∈ ExVars(E) and ∃eN ′

j
in K) Eadd := Eadd ∪ eN ′

j
; P := P ∪Nj ;

9. else Create eN ′

j
as the next time slice of eNj

in 〈eNj
, Nj〉; Eadd := Eadd ∪ eN ′

j
;

10. end for each

11. for each Nj ∈ O

12. if (Nj /∈ Des(Xi)) and no (∃Pi ∈ Anc(Nj) and Pi ∈ P)

13. Create eN ′

j
as the next time slice of eNj

in 〈eNj
, Nj〉; Eadd := Eadd ∪ eN ′

j
; end if

14. end for each

15. Find D ⊂ N where D * Anc(Xi) and Independent(D,O|Xi);

16. for each Dj ∈ D

17. Edel := Edel ∪ eDj
where eDj

∈ E and eDj
is the mapping of Dj in 〈eDj

, Dj〉.

18. end for each

19. return true with AXi
, Act(E,Epre,Eadd,Edel)

Figure 5.9. Procedure for instantiate a generic intervening action AXi
on a system containing

irreversible mechanisms E using knowledge in K.

To represent intervening actions that are applicable in the same domain for different models, I
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represent persistence relations and generic intervening actions into a knowledge base. A persistence

relation is represented by a structural equation eX′

i
(X ′

i,Xpre) = 0 where Xpre is a set of exogenous

variables and Xi ∈ Xpre. The persistence relation describes how a subset of variables in the current

time slice, Xpre, affects the variable X ′
i at the next time slice. I represent generic intervening

actions in a knowledge base as AXi
, Act(E, Epre, Eadd, Edel) where AXi

will be instantiated

into AXi
, Act(E,Epre,Eadd,Edel) when AXi

is about to be applied on a model E; Epre is the

precondition that can invoke AXi
; Eadd consists of local mechanisms that will be brought about by

the action AXi
and will be augmented into Eadd when the action AXi

is instantiated on a specific

model E; similarly Edel is initially an empty set and will be instantiated into Edel when the action

AXi
is instantiated. Please note that Xi ∈ Vars(E) should be in Epre as default, since the action

will be applied to the variable Xi.

In Figure 5.9, I outline the procedure for instantiating a generic action AXi
on a model E using

the domain knowledge in K. The procedure InstantiateActionIrrev(E,K, AXi
) takes a generic

intervening action AXi
on a model E in the domain K as inputs and outputs an instantiated action

AXi
using knowledge given in K. Line 2 checks if the precondition of the generic intervening action

AXi
is satisfied with E. Lines 5 checks if the system needs to be modeled into consequent time

slices. In Lines 7-10, mechanisms for the next time slice are added into Eadd. In Line 8, mechanisms

for persistence relations are added into Eadd. In Lines 11-14, valid observations are created into

the system in the next time slice. In Lines 16-18, mechanisms that are independent of the decision

at the next time slice are added into Edel. The procedure is worst-case polynomial time due to

Line 3.

5.7.3 Myopic Search for Opportunities

Given the way of modeling a sequence of non-intervening and intervening actions in previ-

ous subsection, I can now address the problem of search for opportunities with non-intervening

and intervening actions on systems containing only irreversible mechanisms. Similarly to the

MyopicSFOIntSysIrrevMechs procedure presented in Section 5.5, I approximate the optimal strat-

egy computation by myopic search where I consider one intervening (or non-intervening) action

at a time and select the one with the maximum value of intervention (or value of observation)

to perform. I act according to the selected action and perform the myopic search again to select
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the next action to perform until there is no action that can improve the expected utility over the

predefined threshold of the increase of expected utility. I outline the procedure in Figures 5.10

and 5.11.

Procedure MyopicSFOMixSysIrrevMechs(MA, δ∗,K)

Input: An augmented model MA, a threshold δ∗ for the increase of expected utility, and the
knowledge base K that contains generic intervening actions AXi.m for each manipulable
variable Xi.m, non-intervening actions OXi.o for each observable variable Xi.o, and per-
sistence relations e′Xi.p

for each persistent variable Xi.p in the domain.

Output: A sequence of actions D.

1. D := ∅; M∗ := MA; Update(M∗); µ∗ := MEU(M∗); found := false.

2. while found = false

3. M := M∗; µ := µ∗; δ := δ∗; /* M = 〈X,E〉 */

4. for each Xi ∈ X

5. if Xi ∈ Xm
i

6. for each AXi
in K /* intervening action */

7. AXi
= InstantiateActionIrrev(E,K, AXi

);

8. M ′ := Augment(M∗, AXi
); Update(M ′); µ′ := MEU(M ′);

9. △µ := µ′ − µ∗. /* VOINT(AXi
) */

10. if △µ > δ then

11. δ := △µ; M := M ′; µ := µ′; A := AXi
; d := π(M ′

i); found := true;

12. end if

13. end for each

14. end if

Continued on Figure 5.11.

Figure 5.10. Myopic search for opportunities with non-intervening and intervening actions on sys-
tems containing irreversible mechanisms. Update(M) computes the optimal strategy and maximum
expected utility for a model M . Augment(M, AXi

) (or Augment(M, OXi
)) denotes the operation of

augmenting the model M with an intervening (or non-intervening) action on Xi. Instantiate(M, A)
denotes the operation of setting (or observing) the value of Xi in M .

The procedure MyopicSFOMixSysIrrevMechs takes an augmented model MA, a threshold δ∗
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Continued from Figure 5.10.

15. if Xi ∈ Xo
i and no eOXi

∈ E

16. for each OXi
in K /* non-intervening actions */

17. M ′ := Augment(M∗, OXi
); Update(M ′); µ′ := MEU(M ′);

18. △µ := µ′ − µ∗. /* VOOBS(OXi
) */

19. if △µ > δ then

20. δ := △µ; M := M ′; µ := µ′; A := OXi
; d := π(M ′

i); found := true;

21. end if

22. end for each

23. end if

24. end for each

25. if found = true then

26. M∗ := Instantiate(M, A); µ∗ := µ; D := D ∪ {A};

27. found := false,

28. else found := true.

29. end if

30. end while.

31. return D.

Figure 5.11. Myopic search for opportunities with non-intervening and intervening actions on
systems containing irreversible mechanisms (continued).

for the increase of expected utility, and the domain knowledge base K as inputs and outputs a

sequence of actions D. The domain knowledge base K contains generic intervening actions AXi.m

for each manipulable variable Xi.m, non-intervening actions OXi.o for each observable variable Xi.o,

and persistence relations e′Xi.p
for each persistent variable Xi.p in the domain. In other words,

in addition to the manipulability, observability, and focus, I introduce the persistence property

for each variable and specify their persistent relations in the knowledge base. In Lines 4-24, the

procedure performs the myopic search to find the best intervening actions or non-intervening action

to perform. In Lines 6-13, the procedure goes through each manipulable variable Xi.m and its
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admissible intervening actions to compute the value of interventions for the myopic search. In

Lines 16-22, the procedure goes through each unobserved observable variable Xi.o to compute the

value of observation for the myopic search. The complexity of this procedure is NP-hard since it

depends on Bayesian network inference in Lines 8 and 17.

5.8 Search for Opportunities in Systems Containing Reversible

Mechanisms

In Chapter 4, I show that performing a self-contained action on a system containing reversible

mechanisms may reverse causal relations among variables in the system. I presented algorithms

FindAtomicDeletions and FindAtomicAdditions in Section 4.4 to assist atomic action deliberation

in systems containing reversible mechanisms. In previous sections, I addressed the problem of

search for opportunities, using recursive actions defined in Definition 5.1, for systems consisting of

irreversible mechanisms. In this section, I address the problem of search for opportunities, using

self-contained actions defined in Definition 4.5, for systems containing reversible mechanisms.

First, I consider the case where I apply only intervening actions on systems containing reversible

mechanisms. For each manipulable variable Xi.m in the system, I can use FindAtomicDeletions

procedure in Figure 4.2 to identify all possible atomic actions for manipulating Xi.m. For each

endogenous variable Xi in the system, I can use FindAtomicAdditions procedure in Figure 4.4

to identify all possible atomic actions which one can consider in order to release the mechanism

governing Xi. I can then compute the value of intervention for applying each of these identified

atomic actions on the system, and then select the one that yields the maximum increase of the

expected utility as the next action to perform. I outline this procedure in Figures 5.12 and 5.13.

The procedure MyopicSFOIntSysRevMechs(MA, δ∗,K) takes the augmented model MA, a thresh-

old δ∗ for the increase of expected utility, and the knowledge base K that contains the manipulability

and reversibility of domain variables and outputs a sequence of actions D. In Lines 4-14, the proce-

dure loops through each manipulable variable in the model to identify their possible atomic deletions

and to generate possible atomic actions for the value of intervention computation in Line 8. In

Lines 15-26, the procedure loops through each endogenous variable in the model to identify their
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Procedure MyopicSFOIntSysRevMechs(MA, δ∗,K)

Input: An augmented model MA, a threshold δ∗ for the increase of expected utility, and the
knowledge base K that contains the manipulability and reversibility of domain variables.

Output: A sequence of actions D.

1. D := ∅; M∗ := MA; Update(M∗); µ∗ := MEU(M∗); found := false.

2. while found = false

3. M := M∗; µ := µ∗; δ := δ∗; /* M = 〈X,E〉 */

4. for each Xi ∈ Xm
i where Xm

i ⊆ X

5. Edel := FindAtomicDeletions(E,K,Eadd(Xi ))

6. for each Edel(d) ∈ Edel

7. AXi
:= Act(E, ∅,Eadd(Xi ),Edel(d))

8. M ′ := Augment(M∗, AXi
); Update(M ′); µ′ := MEU(M ′);

9. △µ := µ′ − µ∗. /* VOINT(AXi
) */

10. if △µ > δ then

11. δ := △µ; M := M ′; µ := µ′; A := AXi
; d := π(M ′

i); found := true;

12. end if

13. end for each

14. end for each

Continued on Figure 5.13.

Figure 5.12. Myopic search for opportunities with intervening actions on systems containing re-
versible mechanisms. Update(M) computes the optimal strategy and maximum expected utility
for a model M . Augment(M, AXi

) denotes the operation of augmenting the model M with an
intervening action on Xi. Instantiate(M, AXi

) denotes the operation of setting the value of Xi in
M .

possible atomic additions and to generate possible atomic actions for the value of intervention com-

putation in Line 20. The complexity of this procedure is also NP-hard due to the belief updates in

Lines 8 and 20.

Now, I consider applying a sequence of intervening and non-intervening actions on systems

containing reversible mechanisms. The method for modeling a sequence of non-intervening and

intervening actions on systems containing reversible mechanisms is similar to the one modeling
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Continued from Figure 5.12.

15. for each Xj ∈ EnVars(E)

16. find e in the mapping 〈Xj , e〉 in G(E);

17. Eadd := FindAtomicAdditions(E,K,Edel(e))

18. for each Eadd(Xi ) ∈ Eadd

19. AXi
:= Act(E, ∅,Eadd(Xi ),Edel(e))

20. M ′ := Augment(M∗, AXi
); Update(M ′); µ′ := MEU(M ′);

21. △µ := µ′ − µ∗. /* VOINT(AXi
) */

22. if △µ > δ then

23. δ := △µ; M := M ′; µ := µ′; A := AXi
; d := π(M ′

i); found := true;

24. end if

25. end for each

26. end for each

27. if found = true then

28. M∗ := Instantiate(M, A); µ∗ := µ; D := D ∪ {A}; found := false;

29. else found := true;

30. end if

31. end while

Figure 5.13. Myopic search for opportunities with intervening actions on systems containing re-
versible mechanisms (continued).

actions on systems containing only irreversible mechanisms, except that the criteria for inferring

the persistence and response need to be modified for actions on reversible mechanisms. With re-

spect to persistence relations, I use the same criterion to apply persistence relations on exogenous

variables in the next time slice, except for the manipulated variable. With respect to the response,

I shall create the system in the next time slice as applying the action on the system in the cur-

rent time slice. And I shall drop invalid observations, which are descendants of the manipulated

variable in the system of the next time slices and descendants of exogenous variables which are

involved in persistence relations, and keep the valid ones. In addition, I shall also drop those
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mechanisms that are not needed for decisions at the next time slice from the system in the current

time slice. Consider the system depicted in Figure 5.14(a) that describes relations among variables

A, B, C, D, E, F, M, N with non-intervening actions DOn , DOd
, DOe and their corresponding obser-

vations On, Od, Oe. For the sake of presentation, I do not include mechanisms describing utility

functions in the system. Consider the generic intervening action AE , Act(E, Epre, Eadd, Edel)

where Epre = {Oe ∈ Vars(E) ∧ DOe = true}, Eadd = {fE}, Edel = {fC}. When I instantiate

this generic action on the model E depicted in Figure 5.14(a), I add fA′ into Eadd by persistence

relations in K. With respect to the response, I add fM ′ , fN ′ , fB′ , fD′ , fF ′ , fO′

n
, fD′

On
into Eadd by

copying them directly from their corresponding mechanisms in previous time slice. I copy fE into

Eadd as fC′ and do not copy fC into Eadd. And fE specified in Eadd is instantiated into fE′ is

added into Eadd together with fDe .

Figure 5.14. (a) depicts relations among variables A, B, C, D, E, F, M, N and non-intervening ac-
tions DOn , DOd

, DOe and their corresponding observations On, Od, Oe. (b) depicts the augmented
model for considering the intervening action which manipulates on E and releases the mechanism
governing C. The system in (a) is augmented into the next time slice in (b). There is a persistence
relation for A defined in knowledge base, but no persistence relation for M . The valid observation
On is therefore kept in the next time slice.
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Procedure InstantiateActionRev(E,K, AXi
)

Input: A reversible system E, a mechanism knowledge base K, and a generic action AXi
,

Act(E, Epre, Eadd, Edel) in K.

Output: true: AXi
is instantiated action into AXi

, Act(E,Epre,Eadd,Edel); or false.

1. E := E; Epre := Epre; Eadd := ∅; Edel := ∅;

2. if (Epre is not true in E) return false; end if

3. Apply COABGM on E and generate the corresponding graph G(E) = 〈N,A〉;

4. Let O ⊂ N be the set of all observed variables in Vars(E);

5. P := ∅;

6. for each Nj ∈ N where Nj 6= Xi and Nj /∈ O

7. if (Nj ∈ ExVars(E) and ∃eN ′

j
in K) Eadd := Eadd ∪ eN ′

j
; P := P ∪Nj ;

8. else if (Nj = Vars(Eadd))

9. Copy eNj
into eN ′

j
where eNj

∈ Eadd; Eadd := Eadd ∪ eN ′

j
;

10. else if (Nj 6= Ni where eNi
∈ Edel)

11. Copy eNj
into eN ′

j
where eNj

in 〈eNj ,Nj
〉; Eadd := Eadd ∪ eN ′

j
; end if

12. end for each

13. for each (Nj ∈ O)

14. if (Nj /∈ Des(Xi)) and no (∃Pi ∈ Anc(Nj) and Pi ∈ P)

15. Copy eNj
into eN ′

j
where eNj

in 〈eNj ,Nj
〉; Eadd := Eadd ∪ eN ′

j
; end if

16. end for each

17. Find D ⊂ N where D * Anc(Xi) and Independent(D,O|Xi);

18. for each Dj ∈ D

19. Edel := Edel ∪ eDj
where eDj

∈ E and eDj
is the mapping of Dj in 〈eDj

, Dj〉.

20. end for each

21. return true with AXi
, Act(E,Epre,Eadd,Edel)

Figure 5.15. Procedure for instantiating a generic intervening action AXi
on a system containing

reversible mechanisms E using knowledge in K.
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I outline the procedure for instantiating generic intervening actions on systems containing re-

versible mechanisms in Figure 5.15. The procedure InstantiateActionRev takes a reversible system

E, a mechanism knowledge base K, and a generic intervening action AXi
, Act(E, Epre, Eadd, Edel)

in K as inputs and outputs an instantiated action AXi
, Act(E,Epre,Eadd,Edel) when the pre-

condition of AXi
is satisfied. In Lines 6-12, mechanisms for the next time slice are added into

Eadd. In Line 7, mechanisms for persistence relations are added into Eadd. In Lines 13-16, valid

observations are created into the system in the next time slice. In Lines 18-20, mechanisms that are

independent to the decision at the next time slice are added into Edel. The procedure is worst-case

polynomial time due to Line 3.

Given InstantiateActionRev outlined in Figure 5.15, I present the myopic approach of search for

opportunities in systems containing reversible mechanisms in Figure 5.16 and 5.17. The procedure

MyopicSFO(MA, δ∗,K) takes an augmented model MA, a threshold δ∗ for the increase of expected

utility, and the knowledge base K as inputs and produces a sequence of actions. Lines 1-13 adds

generic actions found by FindAtomicDeletions and FindAtomicDeletions into K. Lines 17-37

performs the myopic search. Lines 19-26 searches through intervening actions in K and compute

their values of interventions. Lines 29-35 search through non-intervening actions in K and compute

their values of observations.

5.9 Discussion

In this chapter, I presented augmented causal models to address the problem of search for

opportunities. I introduced the myopic search algorithms that compute the value of intervention

and the value of observation to myopically select the best action to perform. The proposed myopic

search algorithms can work with systems containing mixtures of mechanisms. Table 5.2 presents

a categorization of proposed algorithms for myopic search for opportunities along the reversibility

of systems and the availability of observations. The algorithms for reversible systems subsume the

algorithms for irreversible systems, as do the algorithms for observable systems to unobservable

systems.

The concept of value of intervention has also been proposed for causal discovery in active

learning [Murphy, 2001; Tong and Koller, 2001; Yoo and Cooper, 2002]. Since the focus of their
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Procedure MyopicSFO(MA, δ∗,K)

Input: An augmented model MA, a threshold δ∗ for the increase of expected utility, and the
knowledge base K that contains generic intervening actions AXi.m for each manipulable
variable Xi.m, non-intervening actions OXi.o for each observable variable Xi.o, and per-
sistence relations e′Xi.p

for each persistent variable Xi.p in the domain.

Output: A sequence of actions D.

1. for each Xi ∈ Xm
i

2. Ddel := FindAtomicDeletions(E,K,Eadd(Xi ))

3. for each Dj ∈ Ddel

4. Add generic intervening action AXi
= Act(E, ∅, Eadd(Xi ), Edel(eDj

)) into K.

5. end for each

6. end for each

7. for each Xi ∈ EnVars(E)

8. Let eXi
be the mapping of Xi in G(E).

9. Dadd := FindAtomicAdditions(E,K,Edel(eXi
)) into K.

10. for each Dj ∈ Dadd

11. Add generic intervening action ADj
= Act(E, ∅, Eadd(Dj ), Edel(eXi

))

12. end for each

13. end for each

14. D := ∅; M∗ := MA; Update(M∗); µ∗ := MEU(M∗); found := false.

15. while found = false

16. M := M∗; µ := µ∗; δ := δ∗; /* M = 〈X,E〉 */

17. for each Xi ∈ X

18. if Xi ∈ Xm
i

Continued on Figure 5.17.

Figure 5.16. Myopic search for opportunities in systems containing reversible mechanisms.
Update(M) computes the optimal strategy and maximum expected utility for a model M .
Augment(M, AXi

) (or Augment(M, OXi
)) denotes the operation of augmenting the model M with

an intervening (or non-intervening) action on Xi. Instantiate(M, A) denotes the operation of setting
(or observing) the value of Xi in M .
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Continued from Figure 5.16.

19. for each AXi
in K /* intervening action */

20. AXi
= InstantiateActionRev(E,K, AXi

);

21. M ′ := Augment(M∗, AXi
); Update(M ′); µ′ := MEU(M ′);

22. △µ := µ′ − µ∗. /* VOINT(AXi
) */

23. if △µ > δ then

24. δ := △µ; M := M ′; µ := µ′; A := AXi
; d := π(M ′

i); found := true;

25. end if

26. end for each

27. end if

28. if Xi ∈ Xo
i and no eOXi

∈ E

29. for each OXi
in K /* non-intervening actions */

30. M ′ := Augment(M∗, OXi
); Update(M ′); µ′ := MEU(M ′);

31. △µ := µ′ − µ∗. /* VOOBS(OXi
) */

32. if △µ > δ then

33. δ := △µ; M := M ′; µ := µ′; A := OXi
; d := π(M ′

i); found := true;

34. end if

35. end for each

36. end if

37. end for each

38. if found = true then

39. M∗ := Instantiate(M, A); µ∗ := µ; D := D ∪ {A}; found := false,

40. else found := true.

41. end if

42. end while.

43. return D.

Figure 5.17. Myopic search for opportunities in systems containing reversible mechanisms (contin-
ued).

101



Table 5.2. A categorization of algorithms for myopic search for opportunities.

Systems unobservable observable

irreversible MyopicSFOIntSysIrrevMechs MyopicSFOMixSysIrrevMechs
reversible MyopicSFOIntSysRevMechs MyopicSFO

work is on discovering the true model structure, the value of intervention is defined over all possible

models. My approach, on the other hand, assumes the availability of the true model and uses the

value of intervention to advise the next intervention to perform to achieve a desired objective.

Jensen and Vomlelová [2002] introduced unconstrained influence diagrams that address decision

problems in which the order of decisions and observations is not determined, but partial temporal

ordering of decisions and observations is specified. In my framework, I address decision problems

where the choice of a variable being observed or intervened is not even determined. The myopic

search for opportunities procedure suggests users on which variables to observe and on which

variables to intervene.

Breese and Heckerman [1996] introduced the persistence network for modeling the repair in

decision-theoretic troubleshooting. Their persistence network is similar to the modeling of the

persistence and response relations discussed in this chapter. However, my approach can handle

systems with mixture of mechanisms and the mechanism-based view of causality allows us to infer

the persistence and response relations with respect to generic actions.
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Chapter 6

Evaluation

Chapter 3 proposes the mechanism-based causal model construction to assist users in construct-

ing causal models. Built on the results of theoretical analysis, the proposed framework provides

a sound and novel approach to model construction. However, the soundness and novelty alone do

not imply the effectiveness of the proposed framework [Suermondt, 1992]. This chapter describes a

preliminary study in determining the plausibility that ImaGeNIe provides an effective environment

in constructing causal models. I investigated the effectiveness of ImaGeNIe in the domain of stock

market investment, measuring (1) the structure discrepancy between constructed models and gold

standard models, and (2) the efficiency of model constructions. I also recorded users’ rating of the

usefulness of ImaGeNIe.

Section 6.1 reports my method of studying the effectiveness of using ImaGeNIe in causal model

constructions and changes in structure. Section 6.2 presents the experimental results. Section 6.3

summarizes the findings and discusses the possible threats to my study.

6.1 Methods

To evaluate the effectiveness of using ImaGeNIe in causal model constructions, I presented the

subjects with the problem descriptions (cases) generated from gold standard models; and asked

them to construct model structures for each case by means of ImaGeNIe, EqGeNIe and Excel .1

I measured the effectiveness of ImaGeNIe by comparing the structure discrepancies between the

models constructed by ImaGeNIe and EqGeNIe to gold standard models. Finally, I measured the

efficiency by comparing the time spent on constructing models using ImaGeNIe, EqGeNIe and

Excel .

The study has a within-subjects case-by-case experimental design. Each problem description

is a case. For each case, subjects use ImaGeNIe, EqGeNIe and Excel to construct models. One

unit of measure is the structure discrepancy between the constructed model and the gold standard

1Please see Section 6.1.2 for a detail description of EqGeNIe system.
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model of a single case by a single subject; and the other unit of measure is the time spent on a single

case by a single subject. At the end of the experiment, subjects were asked to fill a questionnaire

to rate the usefulness of ImaGeNIe, EqGeNIe and Excel .

Section 6.1.1 describes the problem domain, the selection of gold standard models, and the

generation of cases. Section 6.1.2 describes the presentation of ImaGeNIe, EqGeNIe and Excel sys-

tems. Section 6.1.3 describes the issues of subjects, randomization, procedures, and questionnaire

in the experimental design. Section 6.1.4 describes the proposed measure of structure discrepancy

and time, and the statistical analysis of results.

6.1.1 Case Generation

The domain of this evaluation is stock market investment. Please see Appendix B.1 for a

detailed description of the simplified mechanism library for stock market investment. The reason

for choosing this domain is its accessibility and familiarity to the subjects. I chose four mechanisms

which consisted of nine variables from the domain to generate two cases for the study. The first

case (Task I) asked subjects to answer a query by constructing models using ImaGeNIe, EqGeNIe

and Excel . The second case (Task II) asked subjects to answer another query by changing the

structures of constructed models of Task I using ImaGeNIe, EqGeNIe and Excel . For each case, I

generated a case description. Please see Appendix B.2 for the presentation of the case descriptions.

I also generated a gold standard model for each case. I ensured that the gold standard models of

the two cases are directed acyclic graphs, i.e., they contained no strongly-coupled components. The

main reason for such restriction is that existing systems are only designed for constructing acyclic

graphical models such as Bayesian networks or influence diagrams. Although ImaGeNIe supports

strongly-coupled components, I restricted my study to cases represented by directed acyclic graphs

so that I can compare ImaGeNIe with EqGeNIe and Excel systems.

6.1.2 System Presentations

Since ImaGeNIe is designed as an embedded model construction module in GeNIe, the graphical

user interfaces of ImaGeNIe and GeNIe are basically consistent. However, they can be easily

distinguished from each other since ImaGeNIe has an additional mechanism-tree view window and
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mechanism boxes in the workspace. To ensure that subjects have clear understanding of different

approaches (mechanism-based versus traditional) in the experiment, it was emphasized that the

GUI with mechanism-tree view window is called ImaGeNIe and the traditional GeNIe workspace

is called EqGeNIe since it contains an additional equation node type. Figure 6.1 shows EqGeNIe

system where subjects can draw directed arcs among equation nodes and enter equations with the

equation authoring dialogue. For each case, each subject used ImaGeNIe, EqGeNIe and Excel to

construct models. Please note that I did not ask the subjects to use Excel to construct graphical

models but rather use Excel to solve the case in the spreadsheet view of Excel , i.e., using the formula

bar in Excel to enter equations. I also pre-created the variables participating in the tasks in the

workspace of EqGeNIe and the spreadsheet of Excel . This ensured that EqGeNIe and ImaGeNIe

could be compared on an equal footing, since variables and mechanisms are stored in the stock

market investment mechanism library for ImaGeNIe.

To ensure that subjects are familiar with the functionalities needed for solving cases in ImaGeNIe,

EqGeNIe and Excel , I showed the available systems in the modeling environments and demonstrated

their uses in constructing models for an example case. Then I assisted each subject in constructing

models for the example case and made sure that each subject had sufficient confidence and skill in

working with ImaGeNIe, EqGeNIe and Excel . Please see Appendix B.3 for the presentation of the

example case and the training session.

6.1.3 Design

This study had a within-subjects case-by-case experimental design, which allowed me to cope

with the constraint of limited number of subjects participating in both control and experimental

setting. In this section, I will introduce the background of the subjects, the procedures, the control

of potential sources of bias, and the content of the questionnaire.

Subjects: 40 subjects participated in the experiments. All subjects were graduate students taking

the class Decision Analysis and Decision Support Systems (INFSCI 2130 / ISSP 2240) offered

by Prof. Marek J. Druzdzel in the Spring 2003 semester at the School of Information Sciences

or graduate students, members of Decision Systems Laboratory who have taken this class in

the past. The request for voluntary subjects was announced through the course e-mail list.
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Figure 6.1. EqGeNIe System. The equation nodes are shown as green “E” icons in the network tree

view window at left. Users define equations for equation nodes with equation authoring dialogue

shown at the bottom.

Subjects were compensated for their participation by extra course credit and candies. All

subjects have received basic training in decision analysis and were familiar with the graphical

decision support tools such as GeNIe, as they had been using GeNIe in solving exercises for

the class.

Procedures: Each subject received the following procedures:

1. A training session in using ImaGeNIe, EqGeNIe and Excel to construct models for the

example case.

2. Two cases to solve using ImaGeNIe, EqGeNIe and Excel in a randomized order to
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construct models for each case.

3. A questionnaire to fill out after the experiment.

Control of potential bias: 1. To control for a possible bias generated by the order in which

the training session of using EqGeNIe, ImaGeNIe and Excel were given to the subjects,

I randomly assigned for each subject which training session the subject would receive

first.

2. To control for a possible bias generated by the order in which the systems ImaGeNIe,

EqGeNIe and Excel are used to construct models for each case, I randomized this order

for each subject.

Questionnaire: I ask the subjects to rate the usefulness of the three systems for solving each task

case on an eleven-point scale ranged from useless (0) to extremely useful (10). I then asked an

open-ended question for subjects’ comments on using different systems in solving each task

case. Please see Appendix B.4 for the presentation of the questionnaire.

6.1.4 Data Analysis

Effectiveness

Of the 40 subjects who participated in the experiment, two dropped out the experiments for per-

sonal reasons, leaving 38 usable results. I further eliminated the last two subjects to counterbalance

the order of using ImaGeNIe, EqGeNIe and Excel .

The unit of one of the measures in this study was the structure discrepancy between the con-

structed model and the gold standard model of a single case by a single subject. Although models

constructed by Excel system were not in a graphical form, I converted them into directed graphs by

reading off the dependency relations specified in cells. For example, if a cell “C3” in a spreadsheet

view had formula “= C1+C2”, I drew directed arcs C1→ C3 and C2→ C3. With three systems,

thirty-six subjects, and two tasks, I have 3× 36× 2 data points for statistical analysis.

Since I need to process models in a graphical form, I first discuss how to read off a model

structure from a causal graph. Given a causal graph G over variables V = {V1, . . . , Vn}, I create

a n by n matrix M where columns and rows are indexed by the the same order of V and all its

elements are 0. For each node Vi ∈ V and its parents Pa(Vi) ⊂ V in G, I change the elements aii
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and aij , where column Vj ∈ Pa(Vi), to 1. This change corresponds to reading off G the structural

equations and the variables participating in each equation. The constructed matrix is called an

ordered binary structure matrix of G, since it has binary values as its elements and a fixed order of

variables in rows and columns.

Given two causal graph G and G′ over the same set of variable V, I define the structure similarity

measure as follows.

Definition 6.1 (structure similarity measure) Let G and G′ be two causal graphs over the

same set of variables V. Let M and M ′ be the ordered binary structure matrices of G and G′

respectively, where M and M ′ have the same order over V. I define structure similarity measure

between M and M ′ as D(M, M ′) ,
∑

ij aij ⊕ a′ij, where aij and a′ij are the elements of M and M ′

respectively, and ⊕ is the exclusive-or operator.

The structure similarity measure satisfies three fundamental properties of distance and, hence, it

is a distance measure.

Theorem 6.1

Let G, G′, and G′′ be causal graphs over the same set of variables V. Let M , M ′, M ′′ be the ordered

binary structure matrices of G G′, and G′′ respectively, where M , M ′, M ′′ have the same row and

column order over V. Then:

1. Positiveness: |V| × |V| ≥ D(M, M ′) ≥ 0. D(M, M ′) = 0 iff aij = a′ij for all ij, and

D(M, M ′) = |V| × |V| iff aij 6= a′ij for all ij, where aij and a′ij are elements of M and M ′

respectively.

2. Symmetry: D(M, M ′) = D(M ′, M).

3. Triangle Inequality: D(M, M ′) + D(M ′, M ′′) ≥ D(M, M ′′).

Proof: The proofs for positiveness and symmetry are straightforward. Here, I will only prove the

triangle inequality. We first expand the equation

D(M, M ′) + D(M ′, M ′′) ≥ D(M, M ′′) (6.1)

108



to
∑

ij

aij ⊕ a′ij +
∑

ij

a′ij ⊕ a′′ij ≥
∑

ij

aij ⊕ a′′ij (6.2)

where aij , a′ij , and a′′ij are elements of M , M ′, and M ′′ respectively. Since M , M ′, and M ′′ have

the same dimensions, we move the summation over ij in front of the left hand side of Equation 6.2.

We have
∑

ij

[(aij ⊕ a′ij) + (a′ij ⊕ a′′ij)] ≥
∑

ij

aij ⊕ a′′ij . (6.3)

For each ij, if we have (aij ⊕ a′ij) + (a′ij ⊕ a′′ij) ≥ aij ⊕ a′′ij , then Equation 6.3 is true and so is the

triangle inequality. In Table 6.1, we see that for any combinations of aij , a′ij , and a′′ij , the inequality

(aij ⊕ a′ij) + (a′ij ⊕ a′′ij) ≥ aij ⊕ a′′ij holds. Therefore, we prove that the structure similarity measure

satisfies the triangle inequality. 2

Table 6.1. Enumerations of aij , a′ij , and a′′ij for the proof of triangle inequality for the structure
similarity measure.

aij a′ij a′′ij aij ⊕ a′ij a′ij ⊕ a′′ij aij ⊕ a′′ij
0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 1 1 0
0 1 1 1 0 1
1 0 0 1 0 1
1 0 1 1 1 0
1 1 0 0 1 1
1 1 1 0 0 0

Example 6.1 Consider the causal graphs (a) and (b) over the same set of variables {A, B, C, D, E}

in Figure 6.2. Their ordered binary structure matrices is shown in Figure 6.3, and their distance is

6. 2

For each case ci, I denote its gold standard model as Mg(ci). For each subject sj , I denote

the models constructed for each case ci using ImaGeNIe, EqGeNIe and Excel as MIma(ci, sj) and

MEq(ci, sj) and MEx(ci, sj) respectively. Given that all Mg(ci), MIma(ci, sj), MEq(ci, sj), and

MEx(ci, sj) have the same column and row order over V, for each case ci and each subject sj I have

three data points D(Mg(ci), MIma(ci, sj)), D(Mg(ci), MEq(ci, sj)), and D(Mg(ci), MEx(ci, sj)). Each
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Figure 6.2. According to the structure similarity measure, the distance between the causal graphs

(a) and (b) is 6.

A B C D E
A 1 0 0 0 0
B 1 1 0 0 0
C 1 0 1 0 0
D 0 1 1 1 0
E 0 0 0 1 1

A B C D E
A 1 0 1 0 0
B 1 1 1 0 0
C 1 0 0 0 0
D 0 1 0 1 1
E 0 0 0 0 1

(a) (b)

Figure 6.3. The ordered binary structure matrices for causal graphs (a) and (b) in Figure 6.2.

Each element aij = 1 represents that the column variable Vj directly causes the row variable Vi.

data point can fall between 0 (same structures) and 72 (different on all off-diagonal elements in the

ordered structure binary matrices, i.e., 9× 9− 9) for our two cases.

The independent variable of the evaluation is the set of systems that support in constructing

model structures. The dependent variable is the effectiveness of systems measured by the structure

similarity measure. I conduct two single factor ANOVA hypothesis tests over the data points with

α = 0.05. For each subject j and task i, I compute D(Mg(ci), MIma(ci, sj)), D(Mg(ci), MEq(ci, sj)),

and D(Mg(ci), MEx(ci, sj)). Let A, B, and C be the random variables of the structure discrepancies

between gold standard models and the models constructed by ImaGeNIe, EqGeNIe and Excel

respectively. The null hypotheses are H0 : µA = µB = µC for both Task I and Task II.
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Efficiency

I analyze the efficiency of model constructions. The unit of measure here is the time taken to

construct a model for a single case by a single subject. I have three systems (ImaGeNIe, EqGeNIe

and Excel), 36 subjects, and two tasks. I therefore have 3×36×2 data points for statistical analysis.

The independent variable of this analysis is the set of systems that support in constructing

models. The dependent variable is the efficiency of systems measured by the time used in completing

each task. For each subject i and task j, I recorded the time used in constructing models. I conduct

two single factor ANOVA hypothesis tests over the data points with α = 0.05. Let A, B, and C be

the random variables of the time used in constructing models with ImaGeNIe, EqGeNIe and Excel

respectively. The null hypotheses are H0 : µA = µB = µC for both Task I and Task II.

Usefulness

I analyze the subjective account of usefulness collected from the answers in the questionnaire.

The unit of measure here is the usefulness of systems for constructing models of a single case rated

by a single subject on an eleven-point scale. I have three systems (ImaGeNIe, EqGeNIe and Excel),

36 subjects, and two tasks. I therefore have 3× 36× 2 data points for statistical analysis.

The independent variable of this analysis is the set of systems that support constructing models.

The dependent variable is the usefulness of systems rated by the subject for each task. I conduct

two single factor ANOVA hypothesis tests over the data points with α = 0.05. Let A, B, and C

be the random variables of the usefulness in constructing models with ImaGeNIe, EqGeNIe and

Excel respectively. The null hypotheses are H0 : µA = µB = µC for both Task I and Task II.

6.2 Results

Effectiveness

I report the analysis results for the effectiveness of using three systems in Table 6.2 and 6.3. We

see that F = 0.184 < F -critical=3.083 and P -value = 0.832 > α = 0.05 for Task I and F = 1.257 <

F -critical=3.083 and P -value = 0.289 > α = 0.05 for Task II. Therefore, we cannot reject both

null hypotheses H0 : µA = µB = µC for Tasks I and II.

I also report the descriptive statistics for the effectiveness of using three systems in Table 6.4

and 6.5.
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Table 6.2. ANOVA Test for the Effectiveness of Task I (α = 0.05).

Source of Variation SS df MS F P-value F crit

Between Groups 0.13 2 0.065 0.184 0.832 3.083
Within Groups 36.944 105 0.352

Total 37.074 107

Table 6.3. ANOVA Test for the Effectiveness of Task II (α = 0.05).

Source of Variation SS df MS F P-value F crit

Between Groups 13.407 2 6.704 1.257 0.289 3.083
Within Groups 559.778 105 5.331

Total 573.185 107

Table 6.4. Descriptive statistics for the effectiveness of Task I. The range of mean is between 0 and
72.

Excel EqGeNIe ImaGeNIe

Mean 0.056 0.083 0.139
Standard Error 0.056 0.083 0.198
Median 0 0 0
Mode 0 0 0
Standard Deviation 0.333 0.5 0.833
Sample Variance 0.111 0.25 0.694
Kurtosis 36 36 36
Skewness 6 6 6
Range 2 3 5
Minimum 0 0 0
Maximum 2 3 5
Sum 2 3 5
Count 36 36 36
Largest(1) 2 3 5
Smallest(1) 0 0 0
Confidence Level (95%) 0.113 0.169 0.282
Confidence Interval (95%) [-0.057, 0.168] [-0.086, 0.253] [-0.143,0.421]

Efficiency

I report the analysis result for the completion time of Task I in Table 6.6. We see that F =

18.814 > F -critical=3.083 and P -value = 1.039e − 07 < α = 0.05. We therefore reject the null

hypothesis H0 : µA = µB = µC for Task I.

To give insight into the difference, I show the descriptive statistics for the completion time of
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Table 6.5. Descriptive statistics for the effectiveness of Task II. The range of mean is between 0
and 72.

Excel EqGeNIe ImaGeNIe

Mean 1.111 0.5 0.278
Standard Error 0.538 0.348 0.198
Median 0 0 0
Mode 0 0 0
Standard Deviation 3.196 2.09 1.186
Sample Variance 10.216 4.371 1.406
Kurtosis 8.379 28.039 18.407
Skewness 3.012 5.164 4.321
Range 13 12 6
Minimum 0 0 0
Maximum 13 12 6
Sum 40 18 10
Count 36 36 36
Largest(1) 13 12 6
Smallest(1) 0 0 0
Confidence Level (95%) 1.081 0.707 0.401
Confidence Interval (95%) [0.03, 2.192] [-0.207, 1.207] [-0.123,0.679]

Table 6.6. ANOVA Test for the Completion Time of Task I (α = 0.05).

Source of Variation SS df MS F P-value F crit

Between Groups 123.574 2 61.787 18.814 1.039E-07 3.083
Within Groups 344.833 105 3.284

Total 468.407 107

Task I in Table 6.7 and plot the means and their 95% confidence levels in Figure 6.4. We see that

Excel outperforms EqGeNIe and ImaGeNIe since there is no overlap of the range of Excel to the

ranges of other systems. ImaGeNIe is better than EqGeNIe but their ranges are overlapping.

I report the analysis result for the completion time of Task II in Table 6.8. In Table 6.8, we see

that F = 25.149 > F -critical=3.083 and P -value = 1.191e − 09 < α = 0.05. We therefore reject

the null hypothesis H0 : µA = µB = µC for Task II.

To give insight into the difference, I show the descriptive statistics for the completion time of

Task II in Table 6.9 and plot the means and their 95% confidence levels in Figure 6.5. We see that

ImaGeNIe outperforms Excel and EqGeNIe since there is no overlap of the range of ImaGeNIe

with the ranges of the other systems.
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Table 6.7. Descriptive statistics for the completion time of Task. The average completion time for
Excel , EqGeNIe, and ImaGeNIe are 3.111, 5.639, and 4.972 minutes respectively.

Excel EqGeNIe ImaGeNIe

Mean 3.111 5.639 4.972
Standard Error 0.202 0.256 0.409
Median 3 5.5 4.5
Mode 3 4 4
Standard Deviation 1.214 1.533 2.455
Sample Variance 1.473 2.352 6.028
Kurtosis -0.867 -0.856 2.064
Skewness 0.081 0.351 1.346
Range 4 6 11
Minimum 1 3 2
Maximum 5 9 13
Sum 112 203 179
Count 36 36 36
Largest(1) 5 9 13
Smallest(1) 1 3 2
Confidence Level (95%) 0.411 0.519 0.831
Confidence Interval (95%) [2.7, 3.522] [5.12, 6.158] [4.141, 5.803]

Figure 6.4. Completion time of Task I.

Usefulness

I report the analysis result for the usefulness of the systems for Task I in Table 6.10. We see

that F = 7.393 > F -critical=3.083 and P -value = 0.00099 < α = 0.05. We therefore reject the null

hypothesis H0 : µA = µB = µC for Task I.

To give insight into the difference, I show the descriptive statistics for the usefulness of Task I
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Table 6.8. ANOVA Test for the Completion Time of Task II (α = 0.05).

Source of Variation SS df MS F P-value F crit

Between Groups 1241.796 2 620.898 25.149 1.191E-09 3.083
Within Groups 2592.305 105 24.688

Total 3834.102 107

Table 6.9. Descriptive statistics for the completion time of Task II. The average completion time
for Excel , EqGeNIe, and ImaGeNIe are 6.167, 10.389, and 2.083 minutes respectively.

Excel EqGeNIe ImaGeNIe

Mean 6.167 10.389 2.083
Standard Error 0.746 1.18 0.329
Median 5 8.5 1.5
Mode 3 4 1
Standard Deviation 4.475 7.08 1.977
Sample Variance 20.029 50.13 3.907
Kurtosis 3.885 1.008 12.215
Skewness 1.935 1.401 3.239
Range 20 24 10
Minimum 2 4 1
Maximum 22 28 11
Sum 222 374 75
Count 36 36 36
Largest(1) 22 28 11
Smallest(1) 2 4 1
Confidence Level (95%) 1.514 2.396 0.669
Confidence Interval (95%) [4.653, 7.681] [7.993, 12.785] [1.414, 2.752]

Table 6.10. ANOVA Test for the Usefulness of Task I (α = 0.05).

Source of Variation SS df MS F P-value F crit

Between Groups 42.667 2 21.333 7.393 0.00099 3.083
Within Groups 303 105 2.886

Total 345.667 107

in Table 6.11 and plot the means and their confidence levels in Figure 6.6. We see that ImaGeNIe

outperforms EqGeNIe and Excel since there is no overlap of the range of ImaGeNIe to the ranges

of other systems.

I report the analysis result of the usefulness of the systems for Task II in Table 6.12. In

Table 6.12, we see that F = 24.695 > F -critical=3.083 and P -value = 1.621E − 09 < α = 0.05. I
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Figure 6.5. Completion time of Task II.

Table 6.11. Descriptive statistics for the usefulness of Task I. The range of mean is between 1 and
10.

Excel EqGeNIe ImaGeNIe

Mean 7.278 7.278 8.611
Standard Error 0.292 0.251 0.304
Median 7 8 9
Mode 8 8 10
Standard Deviation 1.75 1.504 1.825
Sample Variance 3.063 2.263 3.33
Kurtosis -0.52 1.254 4.45
Skewness -0.215 -0.984 -1.951
Range 7 7 8
Minimum 3 3 2
Maximum 10 10 10
Sum 262 262 310
Count 36 36 36
Largest(1) 10 10 10
Smallest(1) 3 3 2
Confidence Level (95%) 0.592 0.509 0.617
Confidence Interval (95%) [6.686, 7.87] [6.769, 7.787] [7.994, 9.228]

therefore reject the null hypothesis H0 : µA = µB = µC for Task II.

To give insight into the difference, I show the descriptive statistics for the usefulness of Task II

in Table 6.13 and plot the means and their confidence levels in Figure 6.7. We see that ImaGeNIe

outperforms Excel and EqGeNIe since there is no overlap of the range of ImaGeNIe to the ranges

of other systems.
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Figure 6.6. Usefulness of Task I.

Table 6.12. ANOVA Test for the Completion Time of Task II (α = 0.05).

Source of Variation SS df MS F P-value F crit

Between Groups 216.352 2 108.176 24.695 1.621E-09 3.083
Within Groups 459.944 105 4.38

Total 676.296 107

Figure 6.7. Usefulness of Task II.

6.3 Discussion

To summarize my findings, the subjects did find ImaGeNIe system an efficient and useful system

for casual model construction. Due to the nature of the task, I did not find any significant difference
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Table 6.13. Descriptive statistics for the usefulness of Task II. The range of mean is between 1 and
10.

Excel EqGeNIe ImaGeNIe

Mean 6 5.639 8.806
Standard Error 0.359 0.357 0.331
Median 6 5.5 10
Mode 6 8 10
Standard Deviation 2.151 2.14 1.983
Sample Variance 4.629 4.58 3.933
Kurtosis -0.587 -1.075 4.043
Skewness -0.255 -0.073 -2.089
Range 8 7 8
Minimum 2 2 2
Maximum 10 9 10
Sum 216 203 317
Count 36 36 36
Largest(1) 10 9 10
Smallest(1) 2 2 2
Confidence Level (95%) 0.728 0.724 0.671
Confidence Interval (95%) [5.272, 6.728] [4.915, 6.363] [8.135, 9.477]

among the effectiveness of model construction using different systems. The reason why Excel to

outperformed ImaGeNIe and EqGeNIe might be subjects’ familiarity with it. But the fact that

ImaGeNIe outperformed Excel and EqGeNIe on Task II suggests that ImaGeNIe is helpful in the

task of changes in structure.

The first possible threat to this study is the instrumentation: the result of the data analysis

may be subject to the particular measure over structure discrepancy. So far, I have not found

that the structure discrepancy measure is used with structural equations in the literature. I shall

reanalyze the data when new measures become available.

The second possible threat to this study is the experimenter effect : the designer of ImaGeNIe

system was the experimenter of this experiment. Although the experimenter has tried to conceal

his identity toward subjects and tried to follow the script of the training session rigorously, the

experimenter effect might have still possibly sneaked into the training session unconsciously.

Because of the exploratory flavor of this study, I advise readers to consider the number of cases

and the number of subjects participated in the study. The answers for the opened question are

summarized in Appendix B.5. In general, I had positive responses from users in using ImaGeNIe.
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Chapter 7

Conclusions

7.1 Summary

Causal models based on structural equations have become a dominant representation for sup-

porting causal reasoning, such as predicting effects of actions, deriving causal relations from data,

and generating causal explanations for observed events. Since the quality of recommendations de-

pends not only on the correct use of causal reasoning but also on the quality of models, I focused

my work on (1) providing a sound and effective methodology in constructing causal models, (2)

supporting the deliberations of the effects of actions with systems containing mixtures of mech-

anisms, and (3) assisting decision makers in achieving decision objectives by searching for novel

actions.

I presented the system ImaGeNIe for building graphical causal models based on the extended

theory of causal ordering. The mechanism-based view of causality, first proposed by Simon [1953]

as the theory of causal ordering, is the theoretical foundation of the implementation of ImaGeNIe.

Causal ordering explicates the causal relations in a self-contained structure model into a causal

graph. I extended the theory of causal ordering to explicate causal relations in an under-constrained

structure model such that its graphical representation can represent decision makers’ intermediate

understanding of a decision problem. The model construction process in ImaGeNIe can be viewed

as the process of assembling mechanisms from under-constrained models into self-contained models.

The models constructed by decision makers using ImaGeNIe are guaranteed to be causal because

of the mechanism-based view of causality and the decision makers’ a-priori assumptions.

In addition to providing decision makers with a sound methodology for building causal models, I

assisted decision makers in deliberating effects of actions when one manipulates on systems contain-

ing mixtures of mechanisms. I formalized the representations of causal reversibility and the action

operator Act. I defined the set of effect variables as a property of a mechanism and categorized

mechanisms into three categories: completely reversible, partially reversible, and irreversible. And
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I further drew an analogy between changes in structure and STRIPS-like action language to define

the action operator Act(E,Epre,Eadd,Edel) such that I can assist decision makers in deliberating

an action, namely reasoning about which structural equations should be included in Eadd or Edel.

In particular, I developed algorithms to answer two types of queries: (1) When manipulating a

causal model, which mechanisms are possibly invalidated and can be removed from the model? (2)

Which variables may be manipulated in order to invalidate and, effectively, remove a mechanism

from a model?

Although supporting the deliberation over actions is helpful, decision makers still need to provide

partial parameters for an action operator, namely Eadd or Edel, for deliberating an action. I took

a step further to address the decision scenarios in which neither Eadd nor Edel is given but a causal

model and a decision objective. This decision scenario happens when a decision maker, who is

confronted with a complex system, does not know which variables to best manipulate or to observe

to achieve a desired objective. I refer to this problem as search for opportunities, which amounts to

both identifying the set of policy variables and computing their optimal setting for a given decision

objective. To solve the problem of search for opportunities, I introduced the concept of value of

intervention which arises from considering jointly the economic factors and effects of actions in

causal models. I proposed augmented causal models, which allow users to specify observability,

manipulability, persistence, and focus as properties of variables, to describe a decision problem at

hand. I then developed myopic search algorithms to solve the problem of search for opportunities

for systems containing mixtures of mechanisms. The algorithm looks one step ahead to compute the

value of intervention for each manipulable variable or the value of observation for each observable

variables in the model yielding the optimal sequence of actions.

Finally, I have presented the result of an subject experiment evaluating ImaGeNIe and found

that ImaGeNIe can efficiently assist users in constructing causal models for causal reasoning.

Based on these results, I may conclude the central thesis of this dissertation:

The mechanism-based view of causality provides an effective formalism for causal model

construction and utilization.
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7.2 Future Research

Although structural equations are flexible means of representing mechanisms in causal mod-

els and knowledge bases, how to organize structural equations into more higher level knowledge

representation is an important research question. Research in Object-Oriented Bayesian Networks

(OOBN) [Koller and Pfeffer, 1997; Laskey and Mahoney, 1997; Pfeffer et al., 1999], Multiply-

Sectioned Bayesian Networks (MSBN) [Xiang et al., 1993], and Relational Bayesian Networks

[Jaeger, 1997], has yielded graphical models based on higher level knowledge representation con-

structs, but there have been fewer discussions on how to organize these knowledge representation

constructs into knowledge bases. The mechanism knowledge base proposed in this dissertation

provides the approach of organizing mechanisms hierarchically into subsystems. It is desirable to

extend this approach to effectively unify object-hierarchy, type-hierarchy, and entity-relations to

derive a more general representation for mechanism knowledge base. Furthermore, providing causal

accounts for models constructed with higher level knowledge representation constructs may shed

light on the relations between causality different levels of knowledge granularity.

Since the Act(E,Epre,Eadd,Edel) operator on causal models is drawn from the analogy of the

action operator in STRIPS language, I expect that this formalism will open new research directions

in the use of causal models and causal reasoning for planning problems. In this dissertation, I

proposed the problem of search for opportunities and address the problem by myopic search. The

problem of search for opportunities can be considered as a sequential decision problem where the

overall utility depends on the sequence of actions. But the problem is not like Markov Decision

Process (MDP) or partially observable Markoov Decision Process (POMDP) where a transition

model is given [Boutilier et al., 1999]. The problem is also different from decision problems modeled

by influence diagrams where the actions are pre-specified and the structures cannot be changed with

respect to effects of actions. I believe the formalism of search for opportunities and the Act operator

have brought a different perspective on planning problems.
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Appendix A

Mechanism Knowledge Base Schema

I represent the syntax of mechanism knowledge bases in ImaGeNIe using XML Schema.

<?xml version="1.0" encoding="ISO-8859-1"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="mechanism library">

<xs:complexType> <xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="description" type="xs:string" minOccurs="0"/>

<xs:element ref="subsystem" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="mechanism" minOccurs="0" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="version" use="required"/>

<xs:attribute name="id" type="xs:token" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="subsystem">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="description" type="xs:string" minOccurs="0"/>

<xs:element ref="subsystem" minOccurs="0" maxOccurs="unbounded"/>

<xs:element ref="mechanism" minOccurs="0" maxOccurs="unbounded"/>
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</xs:sequence>

<xs:attribute name="id" type="xs:token" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="mechanism">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="description" type="xs:string" minOccurs="0"/>

<xs:element name="equation" type="xs:string"/>

<xs:element ref="variable" minOccurs="1" maxOccurs="unbounded"/>

</xs:sequence>

<xs:attribute name="id" type="xs:token" use="required"/>

</xs:complexType>

</xs:element>

<xs:element name="variable">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="description" type="xs:string" minOccurs="0"/>

</xs:sequence>

<xs:attribute name="id" type="xs:token" use="required"/>

<xs:attribute name="effective" type="xs:boolean" use="optional" default="true"/>

<xs:attribute name="observable" type="xs:boolean" use="optional" default="true"/>

<xs:attribute name="manipulable" type="xs:boolean" use="optional" default="true"/>

</xs:complexType>

</xs:element>

</xs:schema>
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Appendix B

Experiment Materials and Data

The following sections present material relevant to the experiments conducted in Chapter 6.

B.1 Stock Market Investment Mechanism Library

Following is the stock marek investment mechanisms library used in the evaluation of ImaGeNIe

system.

<?xml version="1.0" encoding="ISO-8859-1"?>

<mechanism library version="1.0" id="StockMechLib">

<name>StockMechLib</name>

<description></description>

<mechanism id="PricePaidMech">

<name>PricePaid</name>

<description></description>

<equation>PP=PPPS*Q+BC</equation>

<variable id="BC" observable="true" manipulable="true" effective="true">

<name>BuyCommission</name>

<description></description>

</variable>

<variable id="PP" observable="true" manipulable="true" effective="true">

<name>PricePaid</name>

<description></description>

</variable>

<variable id="PPPS" observable="true" manipulable="true" effective="true">
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<name>PurchasePricePerShare</name>

<description></description>

</variable>

<variable id="Q" observable="true" manipulable="true" effective="true">

<name>Quantity</name>

<description></description>

</variable>

</mechanism>

<mechanism id="MarketValueMech">

<name>MarketValue</name>

<description></description>

<equation>MV=MPPS*Q</equation>

<variable id="MPPS" observable="true" manipulable="true" effective="true">

<name>MarketPricePerShare</name>

<description></description>

</variable>

<variable id="MV" observable="true" manipulable="true" effective="true">

<name>MarketValue</name>

<description></description>

</variable>

<variable id="Q" observable="true" manipulable="true" effective="true">

<name>Quantity</name>

<description></description>

</variable>

</mechanism>

<mechanism id="GainMech">

<name>Gain</name>

<description></description>

<equation>G=MV-PP-SC</equation>

<variable id="G" observable="true" manipulable="true" effective="true">
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<name>Gain</name>

<description></description>

</variable>

<variable id="MV" observable="true" manipulable="true" effective="true">

<name>MarketValue</name>

<description></description>

</variable>

<variable id="PP" observable="true" manipulable="true" effective="true">

<name>PricePaid</name>

<description></description>

</variable>

<variable id="SC" observable="true" manipulable="true" effective="true">

<name>SaleCommission</name>

<description></description>

</variable>

</mechanism>

<mechanism id="PercentageGainMech">

<name>PercentageGain</name>

<description></description>

<equation>PG=G/PP</equation>

<variable id="G" observable="true" manipulable="true" effective="true">

<name>Gain</name>

<description></description>

</variable>

<variable id="PG" observable="true" manipulable="true" effective="true">

<name>PercentageGain</name>

<description></description>

</variable>

<variable id="PP" observable="true" manipulable="true" effective="true">

<name>PricePaid</name>
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<description></description>

</variable>

</mechanism>

</mechanism library>
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B.2 Task Description

Problem Domain: Stock Market Investment

Variables: The following are variables in our hypothetical stock market:

• PurchasePricePerShare (PPPS ): the stock price per share when the stock was

purchased.

• MarketPricePerShare (MPPS ): the current stock price per share in stock trading

center.

• Quantity (Q): the number of shares.

• BuyCommission (BC ): commission paid to brokerage for buying the stock.

• SaleCommision (SC ): commission paid to brokerage for selling the stock.

• PricePaid (PP): price paid to buy the stock.

• MarketValue(MV ): the stock value according to current market price.

• Gain (G): the gain of realizing the trading.

• PercentageGain (PG): the percentage gain of trading.

Equations: The following are equations that we use to decide our trading strategy:

• PP = PPPS ∗Q + BC

• MV = MPPS ∗Q

• G = MV − PP − SC

• PG = G/PP
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Construct models using ImaGeNIe (EqGeNIe, Excel) to answer the following questions:

Task I Given

• PPPS = 21.69

• MPPS = 23.5

• Q = 105

• BC = 22.99

• SC = 22.99

What is your percentage gain?

Task II Assume that you are given the model as in (1). Goal is to make a 20 percentage gain

(PG = 0.2) on your trading. At what price (MPPS ) you should sell your stock?
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B.3 Training Session

The experimenter shows the following pictures and explains to subjects the physical model of a

cart with an object on it:

Figure B.1. A training case of Newton’s Second Law presented in Excel .

• “There is a cart on the table. There is an object on the cart. The total mass is the mass of

the cart plus the mass of the object. If we apply force on the cart, the cart will accelerate.

The physical law governing this acceleration is Newton’s Second Law: Force = Mass ×

Acceleration, i.e., f = m× a.”

Training Session with Excel

The experimenter guides subjects to reason the following tasks in Excel :

• Task 1: “Assume that the mass of cart is 7 kg and the object of the cart is 3 kg. The total

mass of the cart is 10 kg (7 kg + 3 kg). Assume that we apply 5 N. What’s the acceleration?

The answer is 0.5 m/s2, which is computed by Acceleration = Force/TotalMass.”
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• Task 2: “Assume that the mass of cart is 7 kg and the object of the cart is 3 kg. The total

mass of the cart is 10 kg (7kg + 3kg). What force should we use to get acceleration of 2 m/s2?

The answer is 20 N, which is computed by Force = TotalMath ∗Acceleration.”

• Task 3: “Assume that the mass of the cart is 7 kg. What mass should the object on the

cart have for the cart to achieve acceleration of 2.0 m/sec2 when the force is 25 N? The

answer is 25 kg, which is computed by TotalMath = Force/Acceleration and ObjectMath =

TotalMath − CartMath.”

Training Session with EqGeNIe

The experimenter shows subjects how to use EqGeNIe in creating models for the reasoning tasks

as follows:

• Select equation node tool. Create nodes ObjectMass, CartMass, TotalMass, Force, and

Acceleration on by one.

• Open node property page for equation nodes, switch to Definition page, and change the

definition for each task.

• Click on UpdateBelief to compute the value for equation nodes and answer the questions in

the tasks.

Training Session with ImaGeNIe

The experimenter shows subjects how to use ImaGeNIe in creating models for the reasoning tasks

as follows:

• Apply drag and drop to select mechanism from Mechanism Tree view into ImaGeNIe graphical

view.

• Use context menu on each mechanism node to control its value.

• View the set of currents equation in equation tool tip of the structure box.

• View the status of the structure box.

• Merge two mechanism nodes from one structure box to another.
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• Use context menu on each mechanism node to control its value and release one of the equations

if the system is self-contained.

• Use the above techniques to construe the models for each reasoning task.
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B.4 Questionnaire

Subject Number: Sex:

1. How do you rate your familiarity in using Microsoft Excel?

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

extremely
unfamiliar

extremely
familiar

1 5 10

2. How do you rate the usefulness of Microsoft Excel in solving Task 1 and 2?

Please mark ‘x’ on the circle.

Task 1:

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��useless

extremely
useful

1 5 10

Task 2:

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��useless

extremely
useful

1 5 10
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3. How do you rate the usefulness of EqGeNIe in solving Task 1 and 2?

Please mark ‘x’ on the circle.

Task 1:

�
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�
��

�
��

�
��

�
��

�
��

�
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�
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�
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�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��useless

extremely
useful

1 5 10

4. How do you rate the usefulness of ImaGeNIe in solving Task 1 and 2?

Please mark ‘x’ on the circle.

Task 1:

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��useless
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1 5 10

Task 2:

�
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�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��useless

extremely
useful

1 5 10
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5. How do you rate the usefulness of “mechanism libraries” in ImaGeNIe?

Please mark ‘x’ on the circle.

Task 1:

�
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�
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�
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�
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�
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�
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�
��

�
��useless

extremely
useful

1 5 10

6. Do you find the graphical view that depicting relations among variables helping you in solving

the tasks?

Please mark ‘x’ on the circle.

Task 1:

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��

�
��useless
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�
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�
��

�
��

�
��

�
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�
��

�
��

�
��

�
��useless

extremely
useful

1 5 10
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Please rank the ease of use in solving Task I: (A > B denotes that A is easier to use than B).

Excel > EqGeNIe > ImaGeNIe

Excel > ImaGeNIe > EqGeNIe

EqGeNIe > Excel > ImaGeNIe

EqGeNIe > ImaGeNIe > Excel

ImaGeNIe > Excel > EqGeNIe

ImaGeNIe > EqGeNIe > Excel

Please rank the ease of use in solving Task II: (A > B denotes that A is easier to use than B).

Excel > EqGeNIe > ImaGeNIe

Excel > ImaGeNIe > EqGeNIe

EqGeNIe > Excel > ImaGeNIe

EqGeNIe > ImaGeNIe > Excel

ImaGeNIe > Excel > EqGeNIe

ImaGeNIe > EqGeNIe > Excel

Please provide your comments on using different systems in solving each task:
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B.5 Comments

Comments compiled from the questionnaire:

Subject 1: [blank]

Subject 2: [blank]

Subject 3: [blank]

Subject 4: EqGeNIe crashed and in order to calculate the second problem, it seems that the entire

diagram had to be calculated again which made it not so user friendly. ImaGeNIe was very

helpful in solving the second task, after the first was completed. All you had to do is clear

one variable and you were finished (very useful).

Subject 5: For Task I, EqGeNIe was slightly easier than Excel because of the typing involved in

Excel. ImaGeNIe was the most difficult but not overly so. Familiarity with the 2 GeNIe tools

would help in modeling the problem. For task 2, EqGeNIe was by far the easiest with Excel

being by far the most difficult. I like EqGeNIe the most in helping to model and solve the

problems.

Subject 6: ImaGeNIe is really good and take out a lot of the thinking process making it easier.

Equation GeNIe makes you think a lot more. Excel works fine but isn’t much fun. I’d rate

ImaGeNIe as the best.

Subject 7: ImaGeNIe is very useful, it decreases the mental work load, calculation becomes easy.

EqGeNIe is only good when all the controls (variables) are given on the right-hand side of

the equation; when I need to re-formulate the equation, modeling just takes some time. It is

good to try ImaGeNIe in person, when I saw it at the beginning I was a little bit confused.

But after I try it, I found it’s very good.

Subject 8: If I am trying to solve a different type of problem. The preference of the tools might

be different.

Subject 9: ImaGeNIe is really good very easy to use and takes care of everything by itself.
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Subject 10: [blank]

Subject 11: ImaGeNIe seemed pretty straightforward and with some experience one can move

around pretty quickly. I like principle behind EqGeNIe and recognize that my existing famil-

iarity with GeNIe might help me a bit. The second problem was a bit confusing at first, until

I figure out how to reverse the equations. With practice, this can be pretty useful also. In

my obviously limited experiences, the ImaGeNIe was a little more intuitive. I think the only

reason that I zipped through Excel so quickly was because it was familiar.

Subject 12: The ImaGeNIe graphical tool to learn dependencies between variable in any field,

good learning tool.

Subject 13: Very nice graphical presentation. Very intuitive.

Subject 14: You should ask about background to compare users. I.E. Engineering Computers.

Subject 15: Advantage of Excel is that when I was setting variables I could easily remember what

I already set because the organization of rows and columns helped me remember better than

freely motioned nodes in EqGeNIe. In case of ImaGeNIe it was not such problem because

I did not have to check my setting because I know previous result and it was enough to

check result. Changing order of tools might made EqGeNIe better. It took me longer to

check variable because of checking values by positioning the mouse over small icons on node

picture.

Subject 16: The ImaGeNIe seems to be very useful tool but it is confusing a little bit. Instead of

eliminating formulas I was looking for setting correct formula.

Subject 17: ImaGeNIe is good. EqGeNIe is not much useful than Excel when restructuring is

required. Its only advantage seems its graphical presentation.

Subject 18: In EqGeNIe, if there are a lot of nodes and complicated relations, it is hard to

understand the graphic. Furthermore, I think it would be better if the equation can show in

the graphic (not only show when I double click on the node). I often forget what node I set

equation and what node I do not.
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Subject 19: ImGeNIe is powerful. However, when the number of variables increases, is it still

easy to sort everything out and combine them? Preset the mechanism libraries is central

to the problem solving. When there are too many equations, it is hard. Better have some

categories.

Subject 20: [blank]

Subject 21: [blank]

Subject 22: EqGeNIe is hard to set up. A lot of work for something you could do faster another

way. ImaGeNIe made task II much easier, and I thought it was pretty slick. Some questions

I might have about it is can you hid pieces of a complex set of equations as to avoid clutter.

Also, is there a way to allow interactions between different equations without putting them

in the same box?

Subject 24: I did not find the graphical view helpful, it just added another layer of complexity.

Doing this task and being unfamiliar with the topic created no benefit to the visualization.

The idea was abstract, the relationships were unfamiliar - so it was easier for me to be

abstract in my thinking. GeNIe would be better applied when you understand the topic and

relationships.

Subject 25: Although ImaGeNIe has some errors, it is relatively easy to use and helps to complete

the questions, preventing errors. If the goal is solving the problem, it is good. If the goal is

understanding the equation, EqGeNIe is better. Excel is still good since it is easier to see the

text of the equations.

Subject 26: Very nice user interface in ImaGeNIe.

Subject 27: ImaGeNIe I feel is very intuitive and easy to learn software. The list of equations

on the left makes it simple to keep focus on the task. I was definitely most comfortable with

Excel, that is because of the number of years of experiences I have with it. EqGeNIe I found

the most hard to work with. I got confused while re-drawing arcs. When I fed a wrong value

in EqGeNIe, it simply did not know what to do, there was no error message generated.
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Subject 28: I was easily confused using EqGeNIe, especially when rearranging the equations away

from their structure shown in the problem domain.

Subject 29: I think the only reason Excel is rated higher than EqGeNIe is base on the familiarity.

I know GeNIe well enough, but I have used Excel so often.

Subject 30: EqGeNIe was extremely difficult when restructuring the equation. It is frustrating

that the equation is rested when the links are deleted. It was however very easy to set up.

ImaGeNIe was opposite that it was not easy to set up but extremely easy to restructure.

Subject 31: I think the hardest part of solving the problems with GeNIe was actually keeping

tack of which variables where which, because the arrows crossed so much. Other than figuring

out where to put the nodes, the GeNIe tools made the problem easier.

Subject 32: Good when it is inference more complicate problem. But the process of constructing

is not that convenient. You should forbid two different name node converge.

Subject 33: ImaGeNIe is good (easy to use), but EqGeNIe is bad (not easy to use).

Subject 34: ImaGeNIe is pretty helpful when we have relationships in hand and we can flexibly

find any variables in those equations easily. I like it!! : Good job.

Subject 35: For learning about how the networks work ImaGeNIe is good, because it creates the

arcs automatically. For task 2, it is definitely the best, although I did not at first get what

was going on in the BG.

Subject 36: I think that both EqGeNIe and ImaGeNIe are very useful tools and not very difficult

to use. They were both easy to learn the basics of each. I liked being able to model the

equation and being able to manipulate the models in order to solve for different variables.

Subject 37: ImaGeNIe was straight forward to use after one example. It is more intuitive and user

friendly than Excel. The drag and drop functionality of ImaGeNIe is great. This capability

reduces the amount of steps the user takes in solving the problem. With fewer steps, there

is less chance that the user will use the incorrect formula. This is a distnic possibility in the

other software used in the test. During the test I only noticed one thing that would be useful,
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the addition of an “undo” button. This would undo the last step entered. This (ImaGeNIe)

is an impressive tool. It made the task completion easy to perform and visualize.

Subject 38: I found the ImaGeNIe hard to do. I needed to back out and start over again to

complete the task. With training it might be better but not really for short term learning.
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