
NATURAL LANGUAGE TUTORING AND THE

NOVICE PROGRAMMER

by

H. Chad Lane

B.S. Mathematics & Computer Science, Truman State University, 1995

M.S. Computer Sciences, University of Wisconsin-Madison, 1997

Submitted to the Graduate Faculty of

the Department of Computer Science in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2004



UNIVERSITY OF PITTSBURGH

DEPARTMENT OF COMPUTER SCIENCE

This dissertation was presented

by

H. Chad Lane

It was defended on

8 September 2004

and approved by

Dr. Kurt VanLehn, Depts. of Computer Science & Psychology

Dr. Diane Litman, Dept. of Computer Science

Dr. Janyce Wiebe, Dept. of Computer Science

Dr. Peter Brusilovsky, Dept. of Information Science

Dr. Marian Petre, Dept. of Computing, The Open University, UK

Dissertation Director: Dr. Kurt VanLehn, Depts. of Computer Science & Psychology

ii



NATURAL LANGUAGE TUTORING AND THE NOVICE PROGRAMMER

H. Chad Lane, PhD

University of Pittsburgh, 2004

For beginning programmers, inadequate problem solving and planning skills are among the

most salient of their weaknesses. As a result, they often struggle profoundly when confronted

with a programming task. One reason for this is that novices, by definition, lack much of

the tacit knowledge that underlies effective programming. This dissertation examines the

efficacy of natural language tutoring (NLT) to foster acquisition of this tacit knowledge. The

hypothesis is that NLT is superior to reading alone.

Coached Program Planning (CPP) is proposed as a solution to the problem of teaching

the tacit knowledge of programming. The general aim is to cultivate the development of

such knowledge by eliciting and scaffolding the problem solving and planning activities that

novices are known to underestimate or bypass altogether. The specific goals of CPP are to

elicit goal decompositions and program plans from students in natural language. A variety

of tutoring tactics are used that leverage students’ intuitive understandings of the problem,

how it might be solved, and the underlying concepts of programming. ProPl(“pro-PELL”),

a dialogue-based intelligent tutoring system based on CPP, is also described. ProPl is in-

tended to help students plan their programs before they write them. Keyword and phrase

spotting is used to understand student input and dialogue management can loosely be clas-

sified as using a finite-state model. Knowledge Construction Dialogues (pre-authored hier-

archical structures) are used to implement a variety of the CPP tutoring tactics, including

many for eliciting goals and fleshing out plan details.

In an evaluation, the primary findings were that students who received tutoring from

ProPl seemed to exhibit an improved ability compose plans and displayed behaviors sug-

iii



gestive of thinking at greater levels of abstraction than students in a read-only control group.

ProPl students were more successful assembling algorithms and worked with code at the

level of plans rather than in the usual, line-by-line approach that novices tend to adopt.

Surprisingly, no differences were detected on written design questions. The major finding is

therefore that NLT appears to be effective in teaching program composition skills, but less

so at raising the competency of students to use natural language.

iv



TABLE OF CONTENTS

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 MOTIVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 THE PROBLEM AND APPROACH . . . . . . . . . . . . . . . . . . . . . 3

1.3 RESEARCH GOALS AND QUESTIONS . . . . . . . . . . . . . . . . . . 7

1.4 OVERVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.0 LEARNING TO PROGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 PROGRAMMING TASK ANALYSIS . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 The tacit knowledge of programming . . . . . . . . . . . . . . . . . . 11

2.1.2 Cognitive subtasks involved in programming . . . . . . . . . . . . . . 12

2.1.3 The decomposition and composition problems . . . . . . . . . . . . . 13

2.2 NOVICE PROGRAMMERS . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 What makes programming hard? . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Novice programmer behaviors . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Why novices do what they do . . . . . . . . . . . . . . . . . . . . . . 18

2.3 SYSTEMS FOR NOVICE PROGRAMMERS . . . . . . . . . . . . . . . . 19

2.3.1 Systems supporting on-the-fly planning . . . . . . . . . . . . . . . . 19

2.3.1.1 LISP Tutor . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1.2 Grace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1.3 GIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1.4 ELM-ART . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1.5 PROUST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

v



2.3.2 Systems supporting distinct planning . . . . . . . . . . . . . . . . . . 22

2.3.2.1 Bridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2.2 MEMO-II . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2.3 GPCeditor . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2.4 SolveIt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.2.5 DISCOVER . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 CHAPTER SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.0 TUTORING AND DIALOGUE . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 HUMAN TUTORING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 What human tutors do . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.2 Tutor-centered view of tutoring . . . . . . . . . . . . . . . . . . . . . 26

3.1.3 Student-centered view of tutoring . . . . . . . . . . . . . . . . . . . . 27

3.1.4 Pre-practice intervention in tutoring . . . . . . . . . . . . . . . . . . 27

3.2 REVIEW OF DIALOGUE-BASED EDUCATIONAL SYSTEMS . . . . . 29

3.2.1 Early systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 Modern systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2.1 Why2-Atlas . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2.2 Circsim-Tutor . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2.3 AutoTutor . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2.2.4 Geometry Explanation Tutor . . . . . . . . . . . . . . . . . . 31

3.2.2.5 BEETLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.2.3 Dialogue-based systems for programming . . . . . . . . . . . . . . . 32

3.2.3.1 Program Enhancement Adviser . . . . . . . . . . . . . . . . 32

3.2.3.2 Duke Programming Tutor . . . . . . . . . . . . . . . . . . . 33

3.2.3.3 GENIUS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 CHAPTER SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.0 TEACHING THE TACIT KNOWLEDGE OF PROGRAMMING . . . 35

4.1 PRELIMINARIES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.1 CPP history: a personal account . . . . . . . . . . . . . . . . . . . . 36

4.1.2 Pedagogical underpinnings . . . . . . . . . . . . . . . . . . . . . . . 38

vi



4.1.2.1 Argument for pre-practice intervention . . . . . . . . . . . . 38

4.1.2.2 Natural language and programming . . . . . . . . . . . . . . 40

4.1.2.3 Pseudocode . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.2.4 Staged design . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 TARGETED PROBLEM TYPES . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 The Hailstone problem and other knowledge-lean tasks . . . . . . . . 46

4.2.2 An illustrative solution to Hailstone . . . . . . . . . . . . . . . . . . 48

4.3 THE TUTORING MODEL: COACHED PROGRAM PLANNING . . . . 51

4.3.1 Corpus analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1.1 Corpus overview . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.1.2 General procedure for corpus analysis . . . . . . . . . . . . . 52

4.3.2 General aims and principles . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.3 3-step pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.4 Elements of a tutoring session . . . . . . . . . . . . . . . . . . . . . . 57

4.4 ELICITATION TACTICS . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.1 Top-level questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.1.1 A comment about top-level questions . . . . . . . . . . . . . 61

4.4.1.2 Categorizing student answers . . . . . . . . . . . . . . . . . . 62

4.4.2 Remedial tactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.4.2.1 Purpose, form, and content . . . . . . . . . . . . . . . . . . . 63

4.4.2.2 Goal remediation tactics . . . . . . . . . . . . . . . . . . . . 66

4.4.2.3 Schema/plan remediation tactics . . . . . . . . . . . . . . . . 70

4.4.2.4 More on the use of examples . . . . . . . . . . . . . . . . . . 74

4.4.2.5 Paradigm and pseudocode placement . . . . . . . . . . . . . 76

4.5 CHAPTER SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.0 ANALYSIS OF STUDENT LANGUAGE . . . . . . . . . . . . . . . . . . 80

5.1 HOW STUDENTS DESCRIBE GOALS . . . . . . . . . . . . . . . . . . . 80

5.2 HOW STUDENTS DESCRIBE SCHEMAS . . . . . . . . . . . . . . . . . 82

5.3 CHAPTER SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.0 AUTOMATED COACHED PROGRAM PLANNING . . . . . . . . . . 87

vii



6.1 PROPL-C: THE CONTROL SYSTEM . . . . . . . . . . . . . . . . . . . . 87

6.1.1 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1.2 Staged design in the interface . . . . . . . . . . . . . . . . . . . . . . 90

6.1.3 Design notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.2 PROPL: A DIALOGUE-BASED ITS FOR NOVICE PROGRAM DESIGN 94

6.2.1 What happens in a tutoring session . . . . . . . . . . . . . . . . . . 94

6.3 DIALOGUE ENGINE AND KNOWLEDGE SOURCES . . . . . . . . . . 97

6.3.1 Knowledge Construction Dialogues (KCDs) . . . . . . . . . . . . . . 98

6.3.1.1 Effort required for a new problem . . . . . . . . . . . . . . . 99

6.3.2 Top-level dialogue control . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3.3 Understanding student input . . . . . . . . . . . . . . . . . . . . . . 100

6.3.4 Differences between ProPl-C and ProPl . . . . . . . . . . . . . . 101

6.4 CHAPTER SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.0 EVALUATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.1 CPP VERSUS BASELINE . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.1.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.1.2 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.1.3 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.1.4 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.1.4.1 Floundering . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.1.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2 PROPL EXPERIMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.2.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2.2 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2.3 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.2.3.1 Class programming projects . . . . . . . . . . . . . . . . . . 112

7.2.3.2 Programming tests . . . . . . . . . . . . . . . . . . . . . . . 112

7.2.3.3 Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.2.4 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

viii



7.2.5 Intention-based scoring . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2.5.1 Inspecting an online protocol . . . . . . . . . . . . . . . . . . 116

7.2.5.2 Bug identification . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2.5.3 Scoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2.5.4 IBS Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.3 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3.1 Pretest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.3.2 Programming projects . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.3.2.1 Final program scores . . . . . . . . . . . . . . . . . . . . . . 122

7.3.2.2 Composite intention-based scores . . . . . . . . . . . . . . . 123

7.3.2.3 Decomposed intention-based scores . . . . . . . . . . . . . . 124

7.3.2.4 Bug frequencies . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.3.2.5 Summary of IBS results . . . . . . . . . . . . . . . . . . . . . 129

7.3.3 Written posttest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.3.4 Survey results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

7.3.5 The “I don’t know” crutch . . . . . . . . . . . . . . . . . . . . . . . 133

7.3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.4 ANALYSIS OF KCD-DRIVEN DIALOGUES . . . . . . . . . . . . . . . . 135

7.5 CHAPTER SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.0 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.1 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8.2 CONTRIBUTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.3 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.4 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . . 146

APPENDIX A. PROGRAMMING PROBLEMS . . . . . . . . . . . . . . . . 148

A.1 ROCK-PAPER-SCISSORS . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

A.2 SNAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

A.3 COUNT/HOLD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

APPENDIX B. WRITTEN TESTS . . . . . . . . . . . . . . . . . . . . . . . . . 151

B.1 PRETEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

ix



B.2 POSTTEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

APPENDIX C. BUG FREQUENCY RESULTS . . . . . . . . . . . . . . . . . 160

APPENDIX D. SAMPLE KCDS . . . . . . . . . . . . . . . . . . . . . . . . . . 163

D.1 KCD 1: HAND CALCULATION . . . . . . . . . . . . . . . . . . . . . . . 163

D.2 KCD 2: ELICITING A GOAL . . . . . . . . . . . . . . . . . . . . . . . . . 165

D.3 KCD 3: FILTERING AND FORM-FILLING . . . . . . . . . . . . . . . . 166

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

x



LIST OF TABLES

5.1 Hailstone goal utterance summaries . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Schema suggestions in Hailstone . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.1 Final program means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2 Composite intention-based scores . . . . . . . . . . . . . . . . . . . . . . . . 123

7.3 Summary of all IBS results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.4 Survey results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

xi



LIST OF FIGURES

1.1 Commonsense counting strategy . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Learning an algorithmic method for counting. . . . . . . . . . . . . . . . . . 5

3.1 Three categories of tutoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 The Hailstone Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Staged solution to the Hailstone problem . . . . . . . . . . . . . . . . . . . . 50

4.3 3-step pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4 CPP Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5 Purpose, form, and content of CPP tactics . . . . . . . . . . . . . . . . . . . 63

4.6 Pointing to the problem statement . . . . . . . . . . . . . . . . . . . . . . . . 66

4.7 Eliciting the generate-sequence goal . . . . . . . . . . . . . . . . . . . . . . . 67

4.8 Eliciting a goal with a hypothetical . . . . . . . . . . . . . . . . . . . . . . . 69

4.9 Elevating the student to a more abstract goal . . . . . . . . . . . . . . . . . . 70

4.10 Teaching a counting schema . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.11 Eliciting a comparison abstraction . . . . . . . . . . . . . . . . . . . . . . . . 72

4.12 Eliciting a plan component . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.13 Eliciting combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.14 Tutoring algorithm for the use of examples . . . . . . . . . . . . . . . . . . . 76

4.15 CPP in a nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1 Sample goal suggestions from the CPP corpus . . . . . . . . . . . . . . . . . 81

5.2 Example schema suggestions from CPP corpus . . . . . . . . . . . . . . . . . 83

6.1 Initial screen of ProPl-C, the control system . . . . . . . . . . . . . . . . . 89

6.2 Stages in the control system . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

xii



6.3 Design notes screenshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.4 Hand calculation with ProPl . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.5 Screenshot of ProPl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.6 Handling open-ended schema suggestions . . . . . . . . . . . . . . . . . . . . 100

7.1 Online protocol tagging tool . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2 First two stages of producing an IBS. . . . . . . . . . . . . . . . . . . . . . . 117

7.3 Example of IBS bug identification. . . . . . . . . . . . . . . . . . . . . . . . . 119

7.4 Merging related points lost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.5 Plan part omission points lost . . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.6 Isolated errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.7 Written posttest scores by problem . . . . . . . . . . . . . . . . . . . . . . . 131

C1 Frequency of plan-merging related errors . . . . . . . . . . . . . . . . . . . . 161

C2 Plan part omission frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . 161

C3 Isolated error frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

xiii



PREFACE

This is my first preface. Let me tell you something: I’ve been waiting a long time to write
this. Of all the dissertations I’ve cracked open over the years as a graduate student, it was
(and still is) my favorite part. I believe it is a tremendous feeling to think about the reasons
we do what we do and to consider those involved in our lives.

The best place to start in the thanking frenzy has to be with all of my former students. I
was lucky enough to have taught beginning programming throughout my graduate student
years, first at the University of Wisconsin-Madison and then again at the University of
Pittsburgh. Early on, I had no idea what was happening. I was repeatedly fascinated by
what these students were experiencing. The difficulties they faced and the ensuing (often
intense) frustrations were as compelling for me as anything I ever experienced. I looked at
countless programs that should never have been written. The raging battles they fought with
the compiler seemed, to me, to be monumental wastes of time. I wanted students to plan
ahead! For one semester, I required that students turn in pseudocode a week before their
assignment was due. Their attempts were below poor – some students went ahead and wrote
the whole program, while others copied a different program from the book. It became clear
to me at that point: students were not ready for programming. They needed more than just
a problem statement and a compiler.

Luckily, around January of 2001, my adviser, Dr. Kurt VanLehn, handed me a list with
about 10 or 12 references to papers about novice programmers. He told me that it was
time we started putting some of this inspiration from the classroom into my research and
ultimately, turn it into a dissertation. That was a great day, and the end result is in your
hands now. I cannot thank Kurt enough for all of the sagacious guidance, unwavering support
and encouragement, and the friendship he has extended to me over the years. I could not
have had a better adviser.

There are also many people in the Computer Science department who have helped me get
done what needed to be done: Kathy O’Connor, Loretta Shabatura, Nancy Kreuzer, Don
Bonidie, Dr. George Novacky, Dr. Panos Chrysanthis, and Dr. Rami Melhem. I’ve also
been extremely lucky to have had nothing but wonderful people in LRDC to work with: Eric
Fussenegger, Jo-Anne Krevy, De Ivanhoe, Tamara Cathcart, and everyone else on the 2nd
and 5th floors.

On the research side of the coin, I have also been very lucky to have had brilliant fellow
graduate students and highly skilled friends. Kurt and Dr. Micki Chi deserve a lot of credit
for assembling and maintaining such strong research environments. Quite a lot of people
have helped with my project in particular: Dr. Pam Jordan (who volunteered to read my
boring proposal), Collin Lynch (who volunteered to help run my subjects when I had to be

xiv



out of town), Dumiszewe Bhembi (who did the same thing as Collin), Linwood Taylor (a
masterful programmer who can make Lisp and Java talk to each other like they were old beer
drinking buddies from college), Bob Hausmann (who taught me everything I know about
experimental design and SAS), and Mark Fenner (who helped code some data and provided
some great conversations). I also owe a lot to Kurt’s other graduate students: Noboru
Matsuda, Min Chi, Mike Ringenberg, Chas Murray, and the brand new shiny Dr. Stephanie
Siler. Our weekly meetings were always intriguing and useful, even though we never could
get the order straight. I have also have been fortunate to have had fantastic professors while
at Pitt who helped lay the groundwork that enabled me to write a dissertation and prepare
for the rest of my career: Dr. Bruce Buchanan, Dr. Gaea Leinhart, Dr. Kevin Crowley, and
Dr. Diane Litman, who is also on my committee. I would also like to thank the rest of my
committee for taking the time out of their busy lives to help me do this and for always being
so willing to negotiate times, places, etc. My other committee members are Dr. Jan Wiebe,
Dr. Peter Brusilovsky, and Dr. Marian Petre from the Open University in Milton Keynes,
UK.

Finally, and most importantly, without my family, I most definitely would not be writing
my first preface. There has not been a minute in my 31 years of life when they have not
been there to support, love, and provide. Bart, my brother, has kept me keen to what is
funny about the world and my spirits high; Melissa, my sister, has been a constant source of
wisdom and calmness for me; for my Mom, I would have to write a dissertation-sized preface
to list what she has done for me over the years – the cards, food, clothes, etc. etc – the love
and support is never-ending from her, and I know how lucky I am; my Dad inspired me to
love to teach and to love to learn – insights from this 40+ years of teaching have directly
affected the content of this dissertation, and on top of all that, I love golf because of him. I
would also like to thank Nichole for her willingness to juggle schedules and for her friendship
over the years. Finally, I am dedicating this dissertation and the effort that went into it to
my son, Rowan. Even though the world awaits his first complete sentence, he has said more
to me over the last 2 years than anyone.

HCL, September 2004

xv



1.0 INTRODUCTION

A computer program is more than text on a screen. A completed program by itself reveals

very little about the process that went into creating it or the knowledge required to produce

it. In addition to knowing a particular programming language, creating a program requires

problem solving, design, editing, and debugging skills. There is also an undeniable level of

creativity required to program well. Teaching these skills and the requisite knowledge is

turning out to be one of the more challenging educational problems of our time. Novice

programmers represent a compelling group of students to study because of the habits they

adopt and beliefs they form. This dissertation presents a new approach to tackling this now

classic problem.

The goal of this work is to explore an application of artificial intelligence in an effort

to accelerate the development of programming skills in beginners. Although the techniques

of AI have been used many times over in novice programming systems, this dissertation

demonstrates how natural language technology can be used to scaffold the earliest stages

of writing a program. The culmination of the work is a dialogue-based intelligent tutoring

system for novice program design that is evaluated with real students. The experiment

revealed that students using the dialogue-based tutor improved in several key ways over

students who read the same material. Most importantly, tutored students demonstrated an

improved ability to produce conceptually distinct, but textually integrated program code.

The purpose of this opening chapter is to define the problem being addressed, explain why it

is important and worthwhile to attack it, and preview the proposed solution and remainder

of the dissertation.

1



1.1 MOTIVATION

With the increasing prominence of computers in the everyday lives of people, there has been

a concomitant increase in the number of people interested in acquiring programming skills.

Universities are increasingly offering an introductory programming course as an elective

that satisfies core degree requirements. This has led to an increase in the number of “non-

majors” enrolled in such courses and thereby broadened the traditional notion of who novice

programmers are. To meet the needs of this new class of beginner (i.e., those not bound for

computing careers), some departments have redesigned their introductory courses (Forte and

Guzdial 2004; Herrmann et al. 2003), while many others have begun offering courses for non-

majors, designed for the true beginner. For many of these students, this will likely be their

only exposure to the concepts of computation and algorithm design. Their experiences, good

and bad, will act as the backdrop for all of the interactions they have with programmers and

computer scientists for the rest of their lives. It is important for educators and researchers

to recognize the importance of this group, and to take advantage of this brief window of

opportunity in these students’ lives.

This dissertation is not only motivated by non-majors, however: beginning programmers

in general struggle with many of the same issues. Difficulties that stem from inadequate

problem-solving abilities are present in all classes of students, including those majoring in

computer science. It is also hard to teach programming: evaluations of programming skill

in introductory courses done in the 80’s (Soloway et al. 1982) and again in the late 90’s

(McCracken et al. 2001) revealed an alarming lack of competence in students, even after a

full year of programming instruction. Clearly, the search for effective methods of teaching

programming is far from over. Strangely, many of the methods used to teach programming

are partly responsible for the problems novices face. For example, a class syllabus built

around programming constructs sends the message that programming is mostly about those

constructs. Rather than reading a problem and then determining how to solve it with the

tools of a language, novices learn to pick a tool (e.g., a for statement) and then seek to

fit it to the problem. There is certainly no universal solution to the problem of teaching

programming; however, it is precisely this challenge, the difficulties novices face, and the

2



misconceptions that underly them that make novice programmers a compelling subject for

research.

1.2 THE PROBLEM AND APPROACH

Novices experience a great deal of frustration and difficulty when programming (du Boulay

1989; Pea and Kurland 1983; Pintrich, Berger, and Stemmer 1987; Robins, Rountree, and

Rountree 2003). Although there are many causes for their troubles, a large portion can

be directly traced to poor planning and design skills. To understand the cognitive skills

and knowledge that underlie programming, numerous researchers have studied how expe-

rienced programmers generate, comprehend, and maintain computer programs (Linn 1985;

Rich 1981; Rist 1995; Soloway and Ehrlich 1984). The resulting theories tend to assert the

existence of reusable “chunks” of knowledge representing solution patterns that achieve dif-

ferent kinds of goals. In this dissertation, these chunks are referred to as schemata. When a

programming goal is recognized, a programmer must retrieve or create a schema to achieve

that goal. For example, if the goal is to determine the length of an arbitrarily long sequence

of numbers, the programmer would use a counter-schema. It consists of four components:

an initialization step, an enclosing loop, an increment step, and a print step after the loop

(assuming a requirement exists to output the length).

In what seems like second nature, experienced programmers are able to implement a

counter with little or no difficulty. The knowledge has been been internalized, generalized,

and stored. Novices are at a disadvantage, however, because they have not yet built up

the abstractions. All programmers must go through this acquisition process at some point,

and for many, it is quite a challenge. In addition, complicating the problem for novices is

the observation that, at some points during learning, they are forced to construct “stories”

that explain observed events to themselves, which are often inconsistent and/or incomplete

(Taylor 1999). This suggests that it is dangerous to leave novices alone during the tenuous

time of learning to program. The problem being addressed in this dissertation is therefore

how to scaffold the development of the tacit knowledge of programming in novices. I seek to

3



uncover, implement, and evaluate a tutoring model that reveals and makes this knowledge

more accessible.

The basic approach is to use natural language dialogue to draw on students’ commonsense

understandings of programming and the problems being solved. It is often necessary to help

them transition from their initial understandings to a more algorithmic view of the solution.

Such a situation appears in figure 1.1. This is a dialogue between the author (playing the

role of tutor) and student over a network. The tutor1 is helping the student understand how

a sequence of values could be counted in a program. The goal is simply to create a sequence

of numbers according to rules that are given, and display how many items were generated

by the loop.

Each line in this dialogue (and all subsequent dialogues) is broken down by utterances.

In other words, each line number corresponds to one, typed contribution to the dialogue.

The sub-dialogue begins with a question to the student asking if s/he has any ideas about

how to implement a counter. The student is unsure how to go about it, but does take the

initiative and provides a shallow response (lines 2-3). The tutor ignores this answer and

proceeds to ask how s/he went about it in an earlier example. The response, “I just counted

them by hand” suggests a post-sequence counting strategy, meaning that the student looked

back over the sequence after it was created to determine the length.

The commonsense approach to counting is expected in novices. The student would have

no reason to adopt a more dynamic counting strategy when doing a sequence by hand. The

problem is that this intuitive strategy does not translate well into an algorithmic solution. It

might conjure up strange ideas, such as reading from the screen or storing all of the values in

a variable to count them later (arrays are typically taught after loops). The point of asking,

however, is to help the student recognize this crucial difference. The dialogue continues in

figure 1.2, which shows the tutor gently nudging the student towards a more algorithmic

view of counting. The tactic is to ask the student to “watch” the count as successive values

of the sequence are produced for a particular example (lines 11-16). Although the tutor

draws the conclusion for the student in this case (line 17), the student does provide some

1To reduce confusion between my roles as researcher and as tutor in the study, I will use “tutor” to refer
to myself in the tutoring sessions.

4



1 T Can you tell me how we can use count up the items in the sequence?
2 S I’m not sure
3 S make a procedure to do it
4 T So tell me when you said there were 7 items in our example earlier,
5 T how did you know?
6 S I just counted them by hand
7 T Unfortunately our program cannot do it that way, at least not easily.

Figure 1.1: The student describes a commonsense method of counting items in a sequence.
This causes a problem for novice programmers because they naturally attempt to implement
a similar strategy in their programs.

8 T So can you think of a different way to count? A way that does not
9 T require you to look back over your work?
10 (pause)
11 T It’s ok... let’s go back to the example.
12 T If we start at 6, how many items is that so far?
13 S 1
14 T Good. You said earlier that 3 is next. How many items now?
15 S 2
16 T After that is 10, takes us up to 3. And so on.
17 T So rather than counting them up when we’re done, we keep track of it
18 T as we go along.
19 S ohhh!
20 S do we need to make another variable then?

Figure 1.2: The tutor uses an example to teach the student how to count algorithmically;
i.e., by incrementing a counter variable.

positive confirmation (lines 19), even suggesting that a new variable would be needed in the

program (line 20).

As mentioned earlier, novices are essentially breaking ground on their mental library

of programming schemata. In the example, the tutor is helping the student develop an

algorithmic approach to counting a sequence. The ensuing dialogue included a discussion

of initializing the counter variable, placing the increment step inside the loop, and printing

5



the result after the loop. In other words, the tutor is scaffolding the creation of the counter-

schema. When teachers send students off to write their programs, this essentially leaves

it up to each student to build these abstractions and mental libraries up for themselves.

The assumption in this research is that this is a bad idea: novices are not ready to fly on

their own when the extent of their background is textbook examples, labs, and lectures.

There is simply too much going on for novices to manage it all and learn effectively from

the experience. The evidence for this conclusion comes simply from the massive number

of papers for almost three decades that report the many difficulties of novice programmers

(many of which are cited in the bibliography as well as in Robins, Rountree, and Rountree

2003).

The use of more open-ended questions, such as the one posed in figure 1.1 (line 1),

is an important component of the overall tutoring strategy proposed by this dissertation.

Novices do not often know what questions to ask themselves, and so posing questions to

them allows the important problem solving issues to be addressed without the distraction

of the programming language, compiler, etc. It also forces students to search the space of

design choices and explore different alternatives prior to engaging in an implementation.

On top of this, it is also safer to make a suggestion in the presence of the tutor because

misunderstandings of the problem and “bad” ideas can be detected and remediated to prevent

them from propagating through to the implementation phase. The tutoring model can be

classified under the general notion of pre-practice tutoring, since tutoring occurs before actual

problem solving with a compiler. Tutoring is intended to cover projects the student will be

attempting independently at a later time, and so the hope is that their difficulties will be

reduced by having been tutored.

Of course, the cost of using human tutors to tutor all students on each project in a class

would be prohibitive. For this reason, ProPl (“pro-PELL”, short for PROgram PLanner),

a dialogue-based intelligent tutoring system, was created to provide such intervention auto-

matically. Briefly, ProPl is web-based software that students can use prior to beginning

their programming projects to help them engage in meaningful planning activities. ProPl

is a partial implementation of Coached Program Planning (CPP), the tutoring model intro-

duced by this dissertation.

6



1.3 RESEARCH GOALS AND QUESTIONS

It is generally accepted that it takes 10 years to bring a beginning programmer up to an

expert level (Winslow 1996). When looked at in this light, it is hard to imagine that any

intervention at all could have a perceptible impact on students given only 16 weeks to work.

However, the goal here is not to produce expert programmers, but rather to help novices

along during a delicate and volatile time in their acquisition of programming skills. Also,

as many students in beginning programming courses will not continue in the field, a second

reason to pursue this line of work is to improve their experiences, and hopefully also their

attitudes of programming.

So, one top-level goal of this research is to determine if there are pedagogical benefits

to providing pre-practice tutoring in programming, and if so, what are they? How do tu-

tored students compare to students who receive no such tutoring and are left to develop

programming knowledge on their own? The second goal of the research is to assess the

efficacy of natural language tutoring to foster the development of programming skills and

understanding of the tacit knowledge of programming in novices. The hypothesis is that

dialogue-based tutoring will produce better learning than reading the same content. If so,

why is dialogue-based tutoring superior to reading? Do students actually develop a height-

ened sense of the knowledge underlying completed programs? Does it affect their view of

the tasks of programming? Are they able to use natural language to produce abstractions

and decompose problems more effectively?

Research on the tutoring of novice programmers has almost exclusively focused on pro-

gramming during the implementation phase. This body of work has explored intelligent

support for writing functions (Anderson 1990), automatic debugging (Anderson et al. 1995),

and analyses of human tutors in introductory programming courses (Littman, Soloway, and

Pinto 1990). Very little work involving the tutoring of novices before they enter into an imple-

mentation phase has been published. There is evidence that providing conceptual guidance

and helping novices establish a better context for problem solving before they begin working

on a problem can have a positive effects for students learning physics (Dufresne et al. 1992),

and so this research represents a similiar investigation into novice programming.

7



This dissertations builds on previous research on novice programming, intelligent tutoring

systems, and educational dialogue systems. It is also novel in several ways:

• It presents a dialogue-based tutoring system for novice program planning. Several

dialogue-based exist that support debugging and code improvement (discussed in sec-

tion 2.3), but none work with the student in the beginning of the process, when their

ideas and impressions are first being formed about the problem.

• It acts as a test of the generality of the Knowledge Construction Dialogue (KCD) tech-

nology since it is being applied to a design domain (programming) for the first time.

• The tacit knowledge of programming is being taught without introducing any concrete

representation of it. Most previous approaches based on theories of schema-like program-

ming knowledge explicitly identify these chunks.

• A new method of evaluating student success, namely intention-based scoring, is intro-

duced to deal with the problem of assessing the process of programming.

In sum, it is novel to both tutor only the planning process and to do so with natural language

tutoring. Why tutor only before programming? It could certainly turn out that support in

all phases is best; but, to understand the impact of tutoring during each phase, I have

chosen to start at the beginning. To understand the relative importance of tutoring at each

phase, tutoring only in the planning phase, and observing the results, can begin to answer

this question. In addition, this research is a direct result of personal teaching experiences

with novice programmers. In many different situations, it was clear to me as a teacher that

students were not starting “on the right track,” but instead were making serious mistakes

early, and paying for throughout an entire implementation. My belief was that they simply

needed help establishing the context and starting place for solving programming problems.

Therefore, this research is an attempt to provide an intelligent tool for pre-planning assistance

and, in the best of cases, make life slightly better for beginning programmers.

8



1.4 OVERVIEW

The remainder of the dissertation is organized as follows. Chapter 2 provides a task analysis

of programming and elaborates on the “tacit knowledge” that underlies it. The decompo-

sition and composition problems are introduced, both of which pose difficulty for novices.

A literature review on novice programmers is also presented, describing what is hard about

programming, what novices do to make it even harder, and why it is a bad idea to turn them

loose with a compiler.

Chapter 3 summarizes past and current research on human tutoring and intelligent tu-

toring systems. Human tutoring is described, why it is believed to be the best known form

of teaching, and also what kinds of student behaviors are known to correlate with learning.

Because the interest is specifically in automated natural language tutoring, this chapter also

includes a review of existing dialogue-based educational systems.

Chapter 4 is in many ways the centerpiece of the dissertation. It sits at the confluence

of the previous two chapters by describing how natural language tutoring can be applied

to the problem of teaching programming. The suitability of the natural language approach

is discussed, showing that it is easier to connect to students’ existing knowledge through

dialogue. This chapter also presents CPP, the model of planning embedded in it and the

tutoring tactics used for remediation. The model is based on a three-step pattern that

prescribes the identification of programming goals, elaboration on how to achieve them, and

implementation of the identified techniques in pseudocode. A variety of tutoring tactics are

also identified, such as the one shown in figures 1.1 and 1.2.

The topic of chapter 5 is about how students describe goals and how to achieve them,

based on a corpus of program planning dialogues. This was preliminary work for building

ProPl and reveals that students, in general, are able to find productive contributions to

make when asked what and how questions. However, a great deal of tutorial effort is often

required to refine their answers. Much of the work presented in this chapter was directly

encoded into the dialogue knowledge sources used by ProPl.

Chapter 6 describes the intelligent tutoring system ProPl that implements of the tu-

toring model presented in the previous chapter. It applies many of the tactics identified in

9



chapter 4. In addition, ProPl-C, a non-dialogue-based version of the system, is described.

The interface and implementation of both systems are described in detail along with several

sample interactions.

Chapter 7 describes two controlled evaluations: one from the human-human study of

the tutoring of novice program design and the second, a controlled evaluation of ProPl.

The evaluation reveals that students who used ProPl were more effective at solving the

composition problem and demonstrated a preference for more abstract representations of pro-

gramming knowledge. No differences in generating natural language solutions or in solving

the decomposition problem were detected.

The dissertation concludes with chapter 8, which contains a summary of the general

argument of the dissertation, discussion of the main findings, a review of the contributions,

and discussion of future work.

10



2.0 LEARNING TO PROGRAM

Becoming an effective programmer requires a unique blend of technical, strategic, and prac-

tical skills – it is difficult to imagine a greater learning challenge for a beginner. This chapter

begins by examining what programming entails and discusses the acquisition of programming

knowledge by beginners. Motivating answers to the classic question “What makes program-

ming hard?” are discussed, and the chapter concludes with a review of existing sytems for

novice programmers.

2.1 PROGRAMMING TASK ANALYSIS

2.1.1 The tacit knowledge of programming

As discussed in chapter 1, writing a program requires skills and knowledge that go well

beyond that of a particular programming language. In addition, there is a great deal of

implicit knowledge behind a completed program. Studies that focus on the content and

structure of this knowledge generally identify structured “chunks” of knowledge that achieve

a variety of goals; however, some terminological confusions have arisen. Rich (1981) refers to

such a chunk as a programming cliche, Linn (1985) uses template, Soloway (1984) calls it a

plan, and Rist (1995) uses schema. More recently, the term design pattern has been adopted

to represent similar knowledge that underlies object-oriented programs (Gamma et al. 1995).

The term schema is used here to refer to the general form of these chunks, while plan is used

to refer to instantiated versions of the same knowledge. That is, plan is used to be specific to

a problem and schema to be generic, with placeholders where program variables sit in plans.

11



This distinction will be useful in later chapters when the issue of how these representations

are used to drive dialogue is discussed.

2.1.2 Cognitive subtasks involved in programming

Programming is fundamentally a problem solving task. Hence, models of programming

have their roots in models of general problem solving, such as those originally proposed by

Polya (1957) and Newell and Simon (1972). Programming is also a design task (Greeno

and Simon 1988). The product of programming is an artifact, not the output produced by

programs, as many novices tend to believe. It is this aspect of programming that distinguishes

it from problem solving in other domains such as calculus or physics. Numerous researchers

have extended and recast these general models for programming (Feddon and Charness 1999;

Pea and Kurland 1983; Pennington and Grabowski 1990), all of which essentially posit four

necessary stages novices and experts must go through to create a computer program:

1. understand the problem: develop a mental representation of the task

2. plan/design a solution: produce a description (mental or on paper) of the program

3. implement the solution: translate design into program code

4. debug program: observe program execution and repair if necessary

Some models include maintenance either separately or together with debugging, which refers

to tasks such as adding functionality to the program or optimizations based on runtime data.

Most beginning programming classes do not address maintenance, optimization, and other

tasks associated with fully-written programs to any significant degree, and this will not be

addressed by this dissertation.

This is an idealized model, however. Pennington (1990, p. 47) points out four reasons

why the distinction between the stages is not as clean as it may appear. First, expert pro-

grammers rarely complete one stage before beginning another – they are able to interweave

work on various stages at once. Second, design takes place at different levels of abstraction;

that is, different abstractions may be appropriate for different stages. Third, there may be

interactions between the problem solving domain and the algorithm being developed. For

example, domain-specific knowledge may be required when planning an algorithm. Fourth,

12



the environments used by programmers may convolute the programming process. Some en-

courage no distinctions between the stages while others impose tight restrictions to maintain

the distinctions between stages. The practices of experienced programmers do not always

translate into an appropriate model for beginners, however. Although experts are able to

juggle the stages of programming, and do so effectively, it is argued here that this is some-

thing novice programmers should not be allowed to attempt. They simply lack the skill and

experience of experts to handle it. This issue is addressed in greater detail in section 2.2.

2.1.3 The decomposition and composition problems

In terms of a schema-based theory of programming knowledge, it is possible to elaborate on

what the planning and implementation phases entail. To write a program, several studies

have identified two key problems to solve (Jeffries et al. 1981; Guzdial et al. 1998):

• Decomposition problem: identifying the goals and corresponding schemata needed

to solve the problem.

• Composition problem: assembling the corresponding plans and coordinating their

interactions such that the problem is solved correctly.

Soloway et. al. (1988) state that the decomposition problem asks the programmer to

“lay the components of the solution on the table” (p. 142). For introductory problems, goals

can either be explicitly stated in the problem statement or be implicit to it. When solving

the decomposition problem, the programmer must identify these goals and retrieve appro-

priate schemata. Although the plans that achieve goals are generally easy to understand

in isolation, subtle interactions and complications can arise when multiple plans are to be

merged. For example, when two plans each call for a loop, the programmer must determine

if one loop in the proposed solution can satisfy both plans from the decomposition. These

are not always easy decisions given that, in some cases several solution paths are acceptable,

while, in others, a poor design choice made early has the potential to propagate throughout

an implementation, limiting or even possibly eliminating other, higher quality paths to a

solution.

13



Unlike the strict syntactic rules imposed by compilers, there are no steadfast rules de-

scribing how to go about solving the decomposition and composition problems. There are

several ways solutions to these two problems might unfold:

• simultaneously with coding: the programmer concurrently decomposes, implements, and

merges the plans needed for a solution.

• separate decomposition: the programmer decomposes the problem completely prior to an

implementation.

• incremental planning: the programmer alternates between decomposition and composi-

tion by identifying a goal, implementing it, then returning for another goal, and so on

(also see section 4.1.2.4).

Again, the distinction between these is not as clean as it may appear. Some programmers

will, for example, do a separate decomposition at a very high level of abstraction, and then

plan simultaneously while coding to satisfy those goals from the decomposition (Pennington

and Grabowski 1990). In addition, decompositions may or may not involve the physical

production of a design document. This very much depends on the problem and its context.

There is evidence that expert programmers spend a large portion of time designing and

planning their solutions, many of whom use pseudocode to play this role (Petre 1990). For

projects assigned in introductory programming courses, it is generally accepted that design

involves the creation of some form of intermediate representation which bridges a problem

statement to an implemented program (Pea and Kurland 1983). Effective programmers know

the limits of their ability and will either plan “on-the-fly” or choose to write out a solution

ahead of time that represents the program decomposition. Many novices, as the next section

shows, are not able to make this determination.

2.2 NOVICE PROGRAMMERS

As the previous section laid out, the skills required to be an effective programmer are com-

plex, and the knowledge that underlies these skills is not very apparent. Learning how to

14



program is significant challenge: not only must a new programming language be mastered,

but also these less tangible skills. A firm grasp of how particular programming constructs

work does not necessarily make the overall task of programming any easier. For example,

novice programmers often underestimate the difficulty of writing a program from scratch

because they find example programs easy to understand.

2.2.1 What makes programming hard?

It might actually be easier to answer the question “What about programming is not hard?”

Indeed, novices can struggle with just about any aspect of programming. DuBoulay (1989)

provides a top-level categorization of potential trouble spots including: (1) orientation, what

programming is for and what it means to program; (2) the notional machine, the compu-

tational model as defined by the programming language; (3) notation, defines the syntax

and semantics of the language; (4) structures, the underlying knowledge structures (i.e.,

schemata, plans, etc.); (5) pragmatics, the skills that drive the building of programs, includ-

ing decomposing, planning, debugging, etc. Although it is certainly important to address

difficulties associated with each of these areas, the focus in this dissertation is on the latter

two: knowledge structures and pragmatics.

One of the most frequently reported weaknesses of novices lies in their lack of planning

and design skills (Soloway et al. 1982; Pea and Kurland 1983; Pintrich, Berger, and Stemmer

1987; du Boulay 1989; Perkins et al. 1989; Deek 1998; Robins, Rountree, and Rountree 2003).

In terms of schema-based theory of programming knowledge, novice deficiencies in planning

are easily explained: they struggle to plan because they have not yet “built up” a library

of schemata from which to draw – they are essentially breaking ground on this kind of

knowledge. Hence, when solving novel problems, novices are not able to retrieve schemata

because they do not yet exist (Rist 1995, p. 537), and so they are forced into creating them

on the fly. One of the claims in this dissertation is that novices need a great deal of support

during this phase of schema creation – much more than is typically provided.

Possessing a library of schemata is only part of the reason experienced programmers

succeed, however. They also have the skills to apply that knowledge. For example, such

15



knowledge is needed to efficiently solve the decomposition and composition problems, both

of which are also difficult for novices. Novices have difficulty managing goal and subgoal

structure of programs (Pennington 1987). In addition, novices will often implement flawed

plans with missing, incorrect, or spurious components, for example (Perkins and Martin

1986). Because the branching factor for non-trivial design tasks can grow large (Soloway,

Spohrer, and Littman 1988), the sheer number of decisions that need to be made can make

programming uncomfortable for the novice.

Novices struggle with the composition problem as well, even when their decompositions

are correct. For example, two plans that handle separate goals may interact in unforeseen

ways when integrated into the same program. There are at least three ways such interactions

might arise:

• Elements of one plan are duplicated (spuriously) and inserted into another. For example,

a variable serving one role could be used incorrectly in a calculation step of another plan.

• Elements of two separate plans are unnecessarily merged. For example, a plan to read

in a positive number could be integrated into a primary program loop rather than being

implemented as a separate loop.

• Aspects of two plans that must be merged are done so improperly. For example, a plan

step that should go inside an existing program loop could be placed after the loop.

In studies of introductory programming students, Spohrer et. al. (1985) found that roughly

65% of the bugs present in their first syntactically correct compilation attempts of a mid-

semester project were due to errors of these types. For students at this point in their

learning, the programs generally contained the correct plan parts, but the real problem was

that students were not able to integrate them into a whole solution, at least on their first

tries.1

1The title of the paper (Spohrer and Soloway 1985) summed it up nicely: “Putting it all together is hard
for novice programmers.”

16



2.2.2 Novice programmer behaviors

One of the main motivations behind this dissertation is that novice programmers do not

generally plan their programs before they attempt to write them, despite the advice (and

pleas) of their instructors to do so. Studies have shown that the first step for most novices

when writing a program is to type in code (Pintrich, Berger, and Stemmer 1987; Wender,

Weber, and Waloszek 1987). The natural tendency is to “get behind the wheel” of a compiler

and enter code, often with disastrous results. This is especially true for novices with little

or no programming experience. Failure to plan ahead is not surprising given that the most

salient weaknesses of beginning programmers revolve around a lack of problem solving and

design skills. When faced with a novel problem to solve, then, novices find themselves in a

Catch-22: a variety of problems arise because they did not plan, but they lack the skill and

experience to have effectively done so in the first place.

So, what happens to a novice when they try to write a program without having planned

ahead? du Boulay (1989) points out that the difficulties they face “are compounded by the

student’s attempt to deal with all these different kinds of difficulty at once” (p. 284). Perkins

(1989) explains that novices “try to deal with decomposition issues in the middle of coding,

instead of planning deliberately in advance” (p. 257). In other words, problem solving and

planning questions are addressed simultaneously with the learning of a new programming

language and environment. Being forced to deal with so many new issues at one time (i.e.,

when using the compiler) is not a situation conducive to learning: the central tenet from

cognitive load theory (Sweller 1994) is that when too many new topics are being addressed

at once, learning is hindered. This issue surfaces again in section 4.1.2.1.

Another particularly detrimental behavior displayed by many novices is the use of program

output behavior as the primary means of judging program quality (Joni and Soloway 1986).

This view is substantiated by the observation that some novices resort to “tinkering” as a

debugging strategy (Perkins et al. 1989). That is, such students repeatedly compile and

run programs with only minor changes, hoping each change produces the desired program

output. Such behavior is likely a result of poor or nonexistent pre-planning of the program,

as well as fragile knowledge of the programming language.

17



So why don’t novices plan? A viable explanation is that novices do not plan simply

because they do not know how. Another possible explanation is cultural: novices may view

programming and keying in programs as one and the same, and so perceive planning as

extraneous to the ultimate goal of producing a working program. It could also be that

students are thrown by the deceptive simplicity of the tasks they are asked to program.

Because the task is easy to do by hand, they seem to reason, so must be writing a program

to perform that task. Yet another possibility is that novices fully intend to plan their

programs, but lack knowledge and ability to express the plan in any representation other

than code. In general, it seems that novices enter into a programming task without a global

picture of their program. Addressing this deficiency appears to be central to helping novices

deal with the difficulties of programming.

2.2.3 Why novices do what they do

One of the problems is that introductory programming is often taught from a syntactic

perspective in which students learn about programming constructs from example programs

and isolated code segments. The focus is on the language constructs rather than the process

that led up to these final programs. For a novice, it is next to impossible to infer the

implicit knowledge that drove the process from a completed example alone. In addition to

this, novices also lack an incomplete model of how programs operate and hence, are unable

to infer anything about the underlying design decisions of a program. Novices will also

create their own explanations for program behavior (Taylor 1999), which further complicates

matters since incomplete and incorrect models are learned in these circumstances. Educators

and researchers in computer science education have been aware of this problem for decades

(Soloway et al. 1982; Soloway 1989; Perkins, Schwartz, and Simmons 1988; Robins, Rountree,

and Rountree 2003); but even so, introductory programming courses continue to struggle to

produce competency in students (McCracken et al. 2001).

Novices also are hindered by the fact that they tend to lack deep understandings of

programming knowledge. In a review of several studies of novices, Winslow (1996) concludes

that novices superficially organize their knowledge about programming, have underdeveloped

18



mental models, fail to access and apply the knowledge they do have, and view programming

“line by line” instead of as schemata or purpose of code. These are confirmed by numerous

studies showing that novices use a bottom-up approach to programming (Rist 1989; Soloway

1989; Wender, Weber, and Waloszek 1987), thinking of programming in terms of small,

syntactic units. This is not peculiar to programming: novices in other domains (like physics)

display similar behaviors (Chi, Feltovich, and Glaser 1981).

2.3 SYSTEMS FOR NOVICE PROGRAMMERS

A large number of systems have been built in attempts to help novices overcome their

difficulties (thorough reviews can be found in Brusilovsky 1995; Deek 1998; Guzdial 2004;

Ramadhan and Boulay 1993). A majority of these systems do not distinctly address the

planning phase of programming, tending instead to support implementation-time activities.

Systems in this category effectively encourage “on the fly” planning of programs, which is

appropriate for teaching particular language features or for small-scale problems.

However, if the aim is to support novices’ problem solving and planning shortcomings, it

is generally acknowledged that these concepts should be addressed separately in some form.

In this section, a number of systems falling into both categories are reviewed.

2.3.1 Systems supporting on-the-fly planning

2.3.1.1 LISP Tutor As one of the earliest and most famous of all intelligent tutoring

systems, the LISP Tutor demonstrated the feasibility of applying the techniques of artificial

intelligence and cognitive modeling in a teaching system (Anderson and Reiser 1985; Ander-

son et al. 1995; Corbett and Anderson 1992). It is an example of a model tracing system and

was developed as a test of Anderson’s ACT-R theory of cognition. The system helps students

write LISP functions by providing skeletons that must be filled in by the student. As with

all of the ACT-R tutors, the LISP Tutor uses a production rule representation to encode

domain knowledge. Students are required to stay on a known solution path at all times and

19



receive immediate corrective feedback when an incorrect action is taken. This usually takes

the form of a hint attached to a production involved with the error. Evaluations showed that

students using the LISP tutor reached the equivalent or higher levels of mastery in about

one-third of the time it takes in traditional programming environments.

A later version of the system reifies problem decompositions by explicitly showing program

goals on the screen and scaffolding their use (Corbett and Anderson 1995). In addition, the

system relies on examples to help students manage and connect the problem, goals, and

ultimately, the solution. An evaluation revealed that LISP programming knowledge was

more easily acquired with goal reification and that that the knowledge was more easily

generalized when compared with the original system not performing such reifications.

2.3.1.2 Grace Having been developed in industry, Grace (McKendree, Radlinski, and

Atwood 1992) stands as one of the few thoroughly field-tested systems for programming

available. It teaches COBOL to beginners and experienced programmers alike. Students write

programs through the use of menu selections and template completion. Goal and subgoal

structure is shown, and help is available at any time via either demand or immediate feedback

on errors. An evaluation showed that students tutored by Grace outperformed students who

did not use the system on standardized posttests. In addition, they were able to complete

more exercises and make progress with less instructor help. A modified version of Grace

was later created in response to novice-expert differences observed in the first version of the

system (Radlinski and McKendree 1992).

2.3.1.3 GIL One of the main weaknesses of the LISP Tutor was the absence of alternative

representations other than the code itself (Corbett and Anderson added some supporting rep-

resentations in later versions). GIL (Reiser et al. 1992), or “Graphical Instruction in LISP,”

provides a graphical view of the process of writing small LISP programs. The system presents

“before and after” concrete examples and then helps the student identify the operations that

can be used to connect the two. The identified operations are used to write LISP code that

performs the same task, but in general. In a similar outcome seen with the LISP Tutor,

students using GIL were able to reach similar levels of competency in about half the time.

20



Far fewer errors were made by GIL students as opposed to those using a traditional, non-

intelligent environment. Also, students showed a strong preference for forward reasoning, as

opposed to backward.

2.3.1.4 ELM-ART Examples are also the centerpiece in ELM-ART, a web-based, adap-

tive, interactive textbook for programming in LISP (Weber and Brusilovsky 2001). Using

an elaborate overlay and episodic student model, the system provides navigation support,

topic sequencing, individualized diagnosis, and example-based problem solving support. So-

lutions are analyzed via cognitive diagnosis of the code with feedback being generated from

this diagnosis. In addition, relevant examples (correct and buggy) are retrieved en masse

as analogies to support learning. An evaluation of ELM-ART with a previous version of the

system (ELM-PE) determined that on a programming task, students using ELM-ART were

more successful and took less time to complete all of the lessons (although this may have

been due to differences in availability of the two systems).

2.3.1.5 PROUST In an effort to help students debug their programs, Johnson devel-

oped PROUST to provide algorithm-related feedback on students’ programs (Johnson 1990).

Using a large library of programming plans, PROUST builds a goal decomposition and gener-

ates a tree-like representation of a solution that represents multiple solutions to the problem.

Then, the student’s program is compared with the generic solution to determine correctness.

When the two programs differ, plan-difference operators are applied to help the system char-

acterize what is wrong and provide feedback. In an evaluation of PROUST’s bug identification

capabilities, it was able to localize errors to a high degree of accuracy (94%), however it was

not able to identify the precise error in many cases. Also, a complete analysis was required to

reach this level of accuracy. In programs that PROUST was not able to completely analyze,

performance was much lower.

The intervention provided by PROUST may also be too late for many novices. Early

misconceptions have the chance to propagate throughout the whole programming, which

may be one reason complete analyses were difficult to obtain in many cases. That is, it

is possible that in some cases, students were so confused and so unprepared to write the

21



program that their solution was out of the scope of PROUST. This issue is returned to in

chapter 4 when Coached Program Planning is presented, a planning-oriented, or pre-practice

approach to tutoring.

2.3.2 Systems supporting distinct planning

2.3.2.1 Bridge One of the earliest systems to explicitly support a distinct planning phase

was Bridge (Bonar and Cunningham 1988). While using this system, the student enters via

menus a high level solution to a problem expressed in a constrained natural language form, via

menus. With help available at every stage from Bridge, this solution is iteratively rewritten

into more precise forms, ultimately resulting in a working Pascal program. Although student

reaction was overwhelmingly positive, no conclusive pedagogical benefits regarding the use

of Bridge were ever published. It is possible that the use of menus, rather than open-ended

natural language, did not encourage the sort of deep understanding necessary for improved

learning. It is also possible that the intermediate language (a puzzle-like representation of

plans) was viewed as excessive by students and increased their cognitive load.

2.3.2.2 MEMO-II MEMO-II (Paoloa 2001) also clearly distinguishes planning and design

by providing tools for the construction of solution specifications that are independent of any

particular programming language. These specifications are used to automatically generate

code, thus allowing the student to stay focused on the problem solving aspects of the prob-

lem. Deek (Deek 1998) notes that MEMO-II may not be appropriate for novices due to

the complexities of the solution specification language. It appears that no evaluation of the

system was ever published.

2.3.2.3 GPCeditor The GPCeditor (goal-plan-code, Guzdial et al. 1998) is an inte-

grated CAD workbench that provides tools that help students solve the decomposition and

composition problems. With these tools, students first identify goals and plans needed for

a solution, then apply plan composition operators, such as abut and nest, to assemble the

identified plans into a complete solution. An evaluation of GPCeditor revealed that it en-

22



abled weaker students to produce quality, working programs, but that higher ability students

were unhappy with the added restrictions. Most importantly, however, positive transfer was

observed to a traditional programming environment. Students demonstrated reuse of known

plans and of application of the techniques learned to combine them.

The contrast between the approaches taken in GPCeditor and ProPl is striking. Both

systems attempt to teach similar skills – that is, to scaffold students solving the decomposi-

tion and composition problems. In addition, both systems work from a plan-based theory of

programming knowledge. The key difference lies in the approach taken to elicit and convey

this knowledge to the student. In GPCeditor, plans are explicitly named and manipulated

with the help of the interface. This follows the original suggestion of Soloway (Soloway and

Iyenger 1986). In ProPl, the assumption is that “less is more” and an effort is made to

introduce as few new representations as possible. The aim is to teach these ideas tacitly

through natural language and allow them to develop naturally. The one advantage ProPl

may have is that it can be easily “plugged” into any introductory programming course using

a procedural paradigm – there is no need to change the compiler or programming language.

2.3.2.4 SolveIt Deek (1999) developed SolveIt as a complete problem solving and

programming framework for beginners. The stages of programming identified in section 2.1.2

are all directly and distinctly supported. The system does not provide any intelligent analy-

sis of students’ programs, and so is susceptible to the traditional weaknesses of discovery

environments (e.g., garden paths). However, evaluations of SolveIt revealed differences

both in terms of students’ problem solving ability and attitude when compared to students

who used the system and a baseline control group.

2.3.2.5 DISCOVER Discover (Ramadhan, Deek, and Shihab 2001) includes a cogni-

tive model of programming and performs model-tracing to track students. Students construct

pseudocode solutions under the eye of the tutor, and are required to say on the solution path

prescribed by the model. Pseudocode is constructed via buttons which, when pressed, pro-

duce pseudocode templates that the student fills in. Discover therefore draws largely on

recognition memory, which may hinder student learning.

23



2.4 CHAPTER SUMMARY

In this chapter, the tasks of programming were presented and literature that addresses the

weaknesses and problems of novice programmers reviewed. The main points of the chapter

were:

• A schema can be thought of as a stereotypical “chunk” of programming knowledge that

summarizes a way to achieve a programming goal.

• The cognitive subtasks involved in programming are understanding, planning, implemen-

tation, and debugging.

• To write a program, a programmer must identify the goals and schemata needed to solve

the problem (the decomposition problem) and assemble the corresponding plans into a

proposed solution (the composition problem).

• Novices struggle a great deal with the planning and problem solving aspects of program-

ming.

• One of the reasons for this is that novices have not yet developed a mental library of

schemata from which to draw – they must create this knowledge as needed.

• Novices adopt a variety of poor behaviors that make programming even more challenging,

such as failure to plan, tinkering with their code, and focusing on output behavior.

• A large number of systems for novice programmers have been designed, but many of

them fail to explicitly distinguish between the planning and implementation phases of

programming.

24



3.0 TUTORING AND DIALOGUE

As alluded to in the previous chapter, teaching complex material is often as challenging as

learning it, perhaps more-so. This chapter examines a well-known form of teaching: tutoring.

A literature review is presented covering the behaviors of expert human tutors, the role of the

student during tutoring, and an examination of why tutoring is believed to be so effective.

A review of existing educational dialogue systems is also included and the chapter ends with

an argument for early tutorial intervention in programming.

3.1 HUMAN TUTORING

It is generally acknowledged that the most effective form of teaching is that of one-on-one

human tutoring. Using pre- and posttests, peer tutored students have been shown to score at

least 0.4 standard deviations higher than those who receive traditional classroom instruction

(Cohen, Kulik, and Kulik 1982). When expert tutors are used, the effect size has been shown

to reach 2.0 standard deviations (Bloom 1984). In contrast, the best computer tutors have

been shown to achieve effect sizes of about 1.0 standard deviation (Anderson et al. 1995;

VanLehn et al. 2002b).

3.1.1 What human tutors do

Tutoring is similar to classroom instruction in many ways: questions are asked, problems

are solved, lectures are given, etc. However, there are also some significant differences.

Good tutoring is highly interactive – students are more compelled to participate with no

25



other students present (Graesser, Person, and Magliano 1995). Having only one student

to monitor, a tutor is more likely to respond to the individual reactions and difficulties

of that student. Rather than giving away the answer when the student cannot answer a

question, tutors can take actions to help the student make progress (Merrill et al. 1994).

When solving problems, tutors are able to help students over impasses and provide targeted

feedback (VanLehn et al. 1998; VanLehn et al. 2003). This feedback can take the form

of immediate feedback, when the student makes an error, or as demand feedback, when the

student requests help (Merrill et al. 1992). Exactly why tutoring is so effective remains an

open question, however (Chi et al. 2001).

3.1.2 Tutor-centered view of tutoring

The tutor-centered hypothesis for why tutoring is effective states that tutoring improves

learning because tutors are able to adapt their instruction to the student. This adaptation

has been reported to occur in at least four ways:

1. Choosing successive problems according to the student’s ability (Bloom 1984).

2. Changing tutoring policies and activities according to affective and motivational states

(Lepper et al. 1993).

3. Providing immediate feedback during problem solving to elicit correct steps (Merrill et al.

1992; Graesser, Person, and Magliano 1995).

4. Personalizing explanations to account for the ability and knowledge possessed by the

student (Sleeman et al. 1989).

A number of studies have also focused on the tactics used by human tutors, assuming that

learning was a function of skilled execution of tutoring tactics. McArthur (1990) analyzed hu-

man tutors in algebra and identified a variety of tactics, including some that helped students

with task management, understanding goal structure, rule application conditions, and many

more. Collins and Stevens (1982) analyzed the strategies of inquiry teachers and identified

a variety of strategies including the referencing of examples, identification of domain values

or concepts, eliciting of evaluations, and entrapment techniques (i.e., “Socratic” tutoring).

26



3.1.3 Student-centered view of tutoring

Researchers have also investigated the learning behaviors of students. When students study

alone, those who self-explain material (e.g., justify problem solving steps to themselves,

make inferences, etc.) learn more effectively than those who read more passively (Chi et al.

1989). This is referred to as the self-explanation effect. It is possible to achieve the same

effect via scaffolded self-explanation, that is, as fostered by the encouragement of a tutor

(Chi 1996; Renkl et al. 1998). Furthermore, when pre-test scores are factored out, scaffolded

student responses to tutor questions correlate with learning, but self-initiated responses (like

questions and self-explanations) do not (Chi et al. 2001, p. 496). This means that the tutor’s

role in encouraging greater student contributions is responsible for learning beyond the usual

benefits seen with self-explanation.

Students who benefit most from tutoring also tend to participate in more significant

ways. For example, deeper student contributions during scaffolding episodes correlate with

improved learning (Chi et al. 2001, p. 515). Also, more words per student utterance (Rose

et al. 2003b) and the ratio of student words to the tutor’s (Core, Moore, and Zinn 2003) both

correlate with learning gains. The general implication of these findings is that tutors should

seek to maximize student participation and elicit meaningful contributions from students.

3.1.4 Pre-practice intervention in tutoring

The classic view of the tutor is that of sitting next to the student while s/he works on

problems. While the student works, the tutor observes, answers questions, and intervenes

when it is deemed necessary. Tutoring can take place at different times, however. Another

option is to tutor reflectively by reviewing a problem after it has been solved. Activities in

reflective tutoring include things like highlighting good steps, identifying impasses, correcting

conceptual misconceptions, and discussion about how the problem solving could have been

improved (Katz, Allbritton, and Connelly 2003). Finally, tutoring can also occur before

problem solving to help “set the stage” for student before they actually begin working on

the problem. This is depicted in figure 3.1. Although researchers have established the

pedagogical benefits of reflective tutoring tutoring in physics (Katz, Allbritton, and Connelly

27



Figure 3.1: Three categories of tutoring.

2003) as well as with collaborative science learning (White, Shimoda, and Frederiksen 1999),

much less work has been done with early, pre-practice tutorial intervention. Part of the aim

of this dissertation is to explore the value of this type of tutoring.

A related notion, preventive tutoring, has received substantial attention in the reading

community. The aim of preventive tutoring is not to prepare the student for independent

reading sessions (where reading plays the role problem solving), but rather to intervene in

the early stages of learning. The idea is to increase the pedagogical presence when reading

skills are first being developed, thereby reducing the chance that errors will slip by and

become more ingrained. In the 16 studies reviewed by Wasik (1993), nearly all of them

report success, some with substantially large effect sizes. In sum, for the acquisition of

reading skills, preventive intervention works exceedingly well.

As chapter 4 will suggest, preventive tutoring does indirectly apply to the pedagogical

approach presented in this dissertation. As in the reading studies, this research targets

novice programmers at the time they are acquiring programming skills. The general aim is

to reduce the amount of time they are left alone to pursue the poor habits discussed in the

previous chapter. However, because the goals here are more focused – to provide help on

individual assignments – the term pre-practice tutoring is used in this dissertation. It is a

fit with programming since novices do not tend to plan on their own anyway.

28



3.2 REVIEW OF DIALOGUE-BASED EDUCATIONAL SYSTEMS

The best intelligent tutoring systems improve student performance by 1 standard deviation.

For many of these systems, however, shallow learning is a big concern. Some students will

learn how to use the system successfully rather than learning the domain. It has been

suggested that natural language dialogue is a possible solution to this problem. As discussed

earlier, by asking questions and eliciting answers, it is believed by many that deeper learning

will result. This belief has motivated the development of a number of dialogue-based tutoring

systems. In this section, some historical and modern systems falling into this category are

reviewed. A review of the few dialogue-based systems for programming that exist is also

presented.

3.2.1 Early systems

In the 70’s and early 80’s, researchers began to recognize the potential of natural language

dialogue in educational systems. Examples of such systems included Carbonell’s geogra-

phy tutor SCHOLAR (1970), Collins and Stevens’ Socratic tutor for rainfall processes WHY

(Stevens and Collins 1977; Collins and Stevens 1982), and Burton and Brown’s series of

simulation-based systems SOPHIE I, II, and III (Brown, Burton, and Kleer 1982). Extensive

reviews of these systems can be found in (Wenger 1987). All were seminal systems and laid

much of the groundwork for modern dialogue-based educational systems; however, because

of the limited success of natural language processing at the time, the dialogue capabilities

of these systems were limited. The resulting dialogues tended to be unrealistic and students

were commonly restricted to short answers.

3.2.2 Modern systems

A rebirth of dialogue-based educational systems occurred in the late 90’s. Although the

rigidity of early systems was still present to some extent, corresponding technological im-

provements in natural language processing and statistical approaches to AI (Jurafsky and

Martin 2000) helped make dialogue systems more robust and usable.

29



3.2.2.1 Why2-Atlas Why2-Atlas (VanLehn et al. 2002a) is a system that poses quali-

tative, conceptual physics problems and analyzes student essays that are given as answers.

Remediation dialogues are used when problems are detected in the essay, like missing con-

cepts or evidence of misconceptions. The dialogues generally try to help the student recognize

these errors through entrapment (Socratic) means, or by the use of example situations. Stu-

dents have a chance to revise their essay and resubmit until the essay adequately answers the

original question. Why2-Atlas attempts a deep linguistic analysis to produce a first order

representation of the content of the essay (Rose et al. 2001), then uses this representation

along with an abductive theorem prover (Jordan and VanLehn 2002) to determine the issues

that should be addressed with dialogue. Evaluations of the system have shown mixed to

moderate posttest gains for students using KCDs versus those who read mini-lessons (Rose

et al. 2001; Rose et al. 2003a).

3.2.2.2 Circsim-Tutor To help first-year medical students learn about the reflex con-

trol of blood pressure, Evens and her colleagues have developed Circsim-Tutor (Evens et al.

2001; Glass 2001). Students using the system fill cells in a table that represent their pre-

dictions of changes in parameters, such as heart rate and blood pressure. When errors are

detected in the predictions, Circsim-Tutor conducts a tutorial dialogue aimed at helping

the students understand the mistake and revise their prediction. Many different types of

errors are recognized, and for each, a pre-authored line of reasoning is executed as a dia-

logue plan. Although only closed-answer questions are ever asked and student answers are

generally short, this is appropriate because of kinds of problems it targets in the domain of

cardiovascular physiology. For example, a typical question asks the student to predict if one

variable should increase or decrease when given information on other, predictive variables in

the model.

3.2.2.3 AutoTutor AutoTutor was developed to simulate dialogue patterns of un-

skilled and skilled tutors (Graesser et al. 2001). Students are asked how, why, and what-if

questions to elicit domain facts and concepts from a student. The system employs Latent

Semantic Analysis (LSA) to determine which concepts are present in a student’s utterance

30



(Graesser et al. 2000), and uses a variety of techniques to encourage the student to contribute

to the dialogue. For example, if a student’s answer matches on a subset of the expected con-

cepts, AutoTutor may return with a pump, such as “What else?” Other tactics include

hints, completion questions, and gesturing (an avatar is used to deliver the tutor’s contribu-

tions). All questions asked are closed-answer in that specific answers are expected for the

tutor’s questions. Expected answers are spelled out in a curriculum script, which includes

answer aspects that the tutor seeks to elicit. Some buggy answers and responses are also

included. Variance in student answers is automatically handled by LSA and the provision of

a variety of answers on the curriculum script. Versions of AutoTutor exist for computer

literacy, conceptual physics, and research methods.

3.2.2.4 Geometry Explanation Tutor The Geometry Explanation Tutor is an exten-

sion to the Geometry Cognitive Tutor that, in addition to adding lines to a proof, requires

students to give English explanations of those steps (Aleven, Koedinger, and Popescu 2003;

Aleven et al. 2003). To understand student explanations, a robust parser is used to produce

semantic representations that are in turn, classified by a LOOM knowledge-base. Based on

the classification, feedback is generated by the system to elicit the precision necessary to

correctly explain geometry theorems. For example, a student might suggest the base angles

of a triangle are equal, but forget to say that this is true only for isosceles triangles. Since at

each step the student must explain the theorem used, all questions posed by the system are

closed-answer in that a precise list of theorem conditions must be stated by the student. In a

controlled experiment comparing the explanation version of the system against the original,

and with time fixed, the explanation tutor led to improved performance on the posttest.

3.2.2.5 BEETLE In an effort to go beyond the simple dialogue management techniques

used in many dialogue-based tutoring systems, such as finite-state-based control and form-

filling, BEETLE adopts a 3-tier planning architecture inspired by those used in robotics (Zinn,

Moore, and Core 2002). It consists of an interpretation module to do syntactic, semantic, and

intentional analysis of student utterances, an update module that maintains dialogue context,

and finally a response generation whose job is to determine appropriate tutorial moves. Three

31



levels of planning occur: deliberative (high-level of abstraction), context-driven (sub-dialogue

planning), and action execution (performing primitive acts). This model permits tutorial

reasoning at different levels of abstraction and allows the tutor to use more advanced tactics.

BEETLE is the prototype system built to validate and experiment with the architecture (Zinn

et al. 2003). The domain is electronic trouble-shooting and the goal of the tutor is to walk

the student through problems, eliciting next steps, elaborating the reasons for taking certain

steps, and correcting misconceptions. At the time of this writing, the system was not yet

complete and no evaluation had been conducted.

3.2.3 Dialogue-based systems for programming

Only a few dialogue-based systems have been developed for the domain of programming,

and none of these seems to target the planning or problem solving aspects of program-

ming. This may be due to the fact that generalized domain knowledge for programming

is notoriously complex. For example, the PROUST system (not a dialogue-based system,

see section 2.3.1.5) dealt directly with algorithm-related errors. After a massive effort to

analyze student programs and build the system, it was only able to tutor students on two

programming problems.

3.2.3.1 Program Enhancement Adviser To demonstrate theories of interactive ex-

planation, Moore (1995) developed the Program Enhancement Adviser (PEA) as a “test

bed in which to explore issues of interactive explanation generation” (p. 13). It helps

programmers improve the style of their LISP code by suggesting transformations that help

with readability and/or maintainability. Using dialogue, PEA gives advice to the student

on changes to make, such as the benefits of using SETF instead of SETQ. Students can ask

for elaboration on why the changes are being suggested, what certain terms mean, and for

follow-up explanations. Since the goals of the research were to test a theory of interactive

explanation and build a prototype, only a non-trivial subset of recommendations were imple-

mented in the system. It was not designed for broad coverage of LISP, and thus underwent

no pedagogical evaluation.

32



3.2.3.2 Duke Programming Tutor The Duke Programming Tutor (Keim, Fulkerson,

and Biermann 1997; Keim 1997) provided spoken dialogue assistance to novice programmers

in the debugging of simple Pascal programs. Students could initiate a dialogue when they had

errors to ask the system for advice. For example, if asked “What is wrong with my program?”,

the system might respond “There is something wrong with this writeln statement.” It appears

that the goal of this system was to present the student with compiler error feedback in a

more palatable form along with advice about how to fix the errors. In addition, it also was

used to develop and test new algorithms for the taking and releasing of initiative. It appears

no evaluation of the system took place, or that it ever made it beyond the prototype phase.

3.2.3.3 GENIUS Deemed as an exercise in “ignorance-based reasoning,” the GENIUS

system attempted to use ELIZA-like interactions to help students repair syntax errors in their

programs (McCalla and Murtagh 1991). The motivation behind this system was to keep the

student talking and hope they would be able to resolve their own errors. Understanding is

limited to yes/no questions and “I don’t know” responses. The compiler output is analyzed

to determine what content to present, which is given to the student after a number of pattern-

matched exchanges. GENIUS was not able to provide help for 60% of the requests in one

study (also see Deek 1998).

3.3 CHAPTER SUMMARY

In this chapter, literature on tutoring was reviewed as well as that on several dialogue-based

tutoring systems, old and new. The main points of the chapter were:

• One-to-one human tutoring is generally acknowledged as the best form of teaching.

• Although it is not known precisely why tutoring works so well, some believe it is due to

the adaptive nature of tutoring.

• Studies have shown that tutors adapt by selecting appropriate problems, detecting the

affective state of the student, providing immediate feedback to keep the student on a

productive path, and personalizing explanations for the student.

33



• Tutoring can take place in three ways with respect to problem solving: before (pre-

practice), during (“on-line”), or after (reflective).

• The self-explanation effect occurs when students reason about the material they study,

make connections, infer properties, etc. Students who self-explain learn more effectively,

and tutoring has been shown to encourage self-explanation in students.

• Students who contribute more during dialogue also learn more, and so the goal of

dialogue-based systems is often to elicit as much as possible from the student.

• A number of dialogue systems for educational purposes have been developed, the first of

which surfaced in the late 70’s with a second wave arriving in the late 90’s. This “rebirth”

coincided with advances in natural language processing and dialogue systems as well with

research showing that tutoring could be effective at eliciting self-explanations, of which

natural language is necessary to perform on a computer.

34



4.0 TEACHING THE TACIT KNOWLEDGE OF PROGRAMMING

The problem addressed by this dissertation is how to scaffold the development of the tacit

knowledge of programming through the use of natural language tutoring. In this chapter,

Coached Program Planning (CPP) is presented as a proposed solution to this problem. CPP

began as an exploratory effort to find out how novice programmers would talk about solving

programming problems in the abstract and before they had a chance to attempt to solve them.

Based on the intense difficulties they face with programming, it made sense to provide help

that started with first exposure to the problem. After I conducted a series of computer-

mediated tutoring sessions, CPP started to take shape. The purpose of this chapter is both

tell this story and layout the details of the tutoring model. All of the data presented here

played a major role in the design of ProPl, which is the topic of chapter 6.

In many ways, this chapter is the centerpiece of the dissertation because it addresses

most directly how tutoring can be used to open up the concepts of programming to novices.

Dialogue examples are presented to demonstrate fundamental aspects of CPP. This chap-

ter can therefore be viewed as a “how-to” guide for readers interested in tutoring novice

programmers.

4.1 PRELIMINARIES

Before presenting the details of the CPP tutoring model, this section provides some history

and pedagogical background for the rest of the chapter.

35



4.1.1 CPP history: a personal account

The roots of this research effort surfaced in late October of 2000. I had been teaching

introductory programming courses for nearly 5 years at that time, and had formed the belief

that novices needed a different kind of help to maximize the value of the time they spent

programming. In a document describing my initial thoughts on what kind of system to build,

I wrote the following:

The basic idea behind this proposal is to build an ITS that tutors on two issues: problem
comprehension and decomposition. Success on both measures would mean a student should
know (beyond just an observational understanding) what exactly a problem is asking, and
secondly, should have an initial problem decomposition establishing a sequence of attainable
programming goals ultimately solving the problem.

I had defined observational understanding as simply the ability to read an example of some

task and follow the steps. It was the first stage in an early model of programming ability I

developed. The higher levels included the ability to perform the task (say, on paper), and

ultimately the ability to write an algorithm to perform the task. At the time, I had not

committed to natural language (or, for that matter, any of the decisions laid out in the next

section). The early aim was to simply build a tool that helped novices understand what they

were trying to do, and have an initial idea of how to proceed. This aspect was motivated

largely by informal reports of students not knowing what to do once sitting in front of a

computer.

About a month later, I began creating scenarios for several problems (most namely, Hail-

stone and RPS). It was at this time I realized that working directly in some specific program-

ming language would only increase the chances of syntax and compiler-specific issues would

only muddy an already complex domain (i.e., what happens anywah when novices enter into

an implementation prematurely. This view is substantiated by research in cognitive load

(Sweller 1994), and so the best alternative was to use pseudocode, especially given its long

history as a planning tool and the inherent absence of syntactic rules. The early scenarios I

constructed looked surprisingly similar to actual CPP dialogues I would eventually collect,

including discussions about what to do next, how to figure out termination conditions on

loops, and so on.

36



A few aspects of these crafted scenarios did not make it into the eventual CPP model.

The two most salient of these were:

• abstract tiles: allowing the student to roll-up a bunch of steps into one “superstep”, and

• reflective plan reification: creation of a written plan (to take home) after the pseudocode

is complete.

The abstract tile idea was dropped quickly because of fears that students would not like it

in such small programs (maybe I was wrong). The reflective plan reification did, however,

make it into the pilot study (discussed below).

To gather some real student data, a pilot study was run in the summer of 2001. A simple

environment was built (figure 4.4, page 58), IRB approval granted, and then I advertised.

11 students volunteered out of about 45 in the class. Interestingly, the gender split was 8

females and 3 males, but the class had roughly the inverse split (80% male). The students

were asked to not look at the problem statement until they came in for their scheduled

tutoring session.

Sessions were simple: students came in, were given a brief description of the environment,

and then started typing their answers to questions in the chat window. As the discussion

proceeded, the pseudocode grew, and at the end, they had a pseudocode plan to take home

with them. In this study, reflective plan reification was performed, but students had trouble

understanding why this was necessary given that the pseudocode was already complete. It

was awkward to tell students that there was more work to do even when the pseudocode was

complete. The way it worked was to first remember how the program was written, and then

highlight certain steps that contributed to each identified goal. Once done, this produced

a sequence of gradually larger programs, each consuming another goal. When I began to

notice that students were only requesting printouts of the final pseudocode (and not the list

of derived programming goals), I realized that the reflective goal reification idea was not

going to last. Students viewed it as superfluous.

The most important outcome of the pilot study, however, was the corpus. With this

collection of student utterances and this record of my own tactics to help students build the

programs (indeed, I had used similar tactics over the years to help students write real code),

37



some more practically useful observations could be made (this is the topic of section 4.3.1).

CPP began to take shape in the fall of 2001 and spring of 2002 with more subjects.1 The

rest of this chapter details the model and the issues involved in its design.

4.1.2 Pedagogical underpinnings

Clearly, my early beliefs and research activities had a huge impact on CPP. It is true that

development of any pedagogical approach or tutoring system requires navigation through a

huge space of choices, each of which could be the topic of a research study. For example,

what type of interaction is best? Should intervention take place before, during, or after

problem solving? How should domain knowledge be presented to the student? This section

presents four principle decisions that underly CPP:

1. tutor the student before actual problem solving (with a compiler) takes place

2. use natural language dialogue as the primary mode of interaction

3. present program code as natural-language-style pseudocode

4. teach a staged approach to program development

The primary purpose of this section is to defend these choices as reasonable and provide

the context for the remainder of the chapter. The thesis is that natural language tutoring

is effective at making the tacit knowledge of programming more accessible by novices than

it normally is. Therefore, in the evaluation presented in chapter 7, the only independent

variable is the use of dialogue: a dialogue group is compared with a read-only group – the

other three choices remain fixed.

4.1.2.1 Argument for pre-practice intervention As discussed in section 2.3, most

systems developed for beginning programmers are intended for use while the student is en-

gaged in the act of programming. A small fraction of these systems provide assistance for the

planning of programs, and none provide help with only planning in mind. In general, most

systems are geared towards providing support during practice (e.g., Anderson et al. 1995;

1This was also about the time it got its name.

38



Gertner and VanLehn 2000). As a result, less is known about the impact pre-practice tutor-

ial intervention might have on students when they sent off to solve problems independently.

One example of such a system is the Hierarchical Analysis Tool (HAT) which provides the

student with a set of problem-independent menus for use before solving physics problems

(Dufresne et al. 1992). The goal is to help the student identify relevant physics principles

to think about applying and set the stage for principle-grounded problem solving. Several

experiments with HAT found that it helped novices judge solution similarity and solve prob-

lems more effectively. The fact that HAT was found to be beneficial for physics learners is

suggestive that CPP could do the same for beginning programmers.

For programming, pre-practice intervention has appeal because of the fact that program-

ming is a design task – it can and should be done in stages. As discussed in section 2.2.2,

novices do not generally engage in any meaningful planning activities. One of the many

negative outcomes of this behavior is summarized well by Perkins, who also casts a vote for

early intervention:

Finally, students face trouble in breaking problems down because they often try to
deal with decomposition issues in the middle of coding, instead of planning delib-
erately in advance. Instructional intervention which encourages pre-planning might
help. (Perkins et al. 1989, p. 275)

Novices force themselves into planning on-the-fly and so must make key problem solving

decisions at the same time they are learning about the programming language, compiler,

editor, and so on. According to cognitive load theory (Sweller 1994), too many new issues in

working memory at once hinders learning. This happens because the interactions between

the components is too much for a student to manage. Many novice programmers have little

chance on their own to avoid this situation.

In studies of cognitive load theory, it has been shown that an effective remedy is to teach

new topics in a domain successively rather than simultaneously, whenever possible (these

are summarized in Sweller 1994). This reduces the interactions between the components,

and therefore promotes learning. In programming, since students are not able to do this

naturally, the suggestion is that pre-practice tutoring is needed to help students recognize

and act on the distinction between planning and implementation. Such support would allow

39



problem solving issues to be addressed separately from programming language and compiler

issues, thereby reducing their implementation-time cognitive load. In sum, from a cognitive

load perspective, pre-practice intervention seems to be a good fit.

4.1.2.2 Natural language and programming The relationship between natural lan-

guage and programming has been studied by a number of researchers. A fundamental prob-

lem for learners of programming has to do with the incongruities that exist between these

two classes of languages:

• There are “serious ‘cognitive mismatches’ between the solutions provided by naive pro-

grammers intended for other people and the solutions required for effective computer

programming” (Miller 1981, p.194).

• Novices often impose commonsense meanings of words onto their use in a programming

language. For example, many students interpret then in a chronological sense (“first do

this then that”) rather than a conditional sense (Bonar and Soloway 1989).

• Some students will introduce new vocabulary that is not part of the of the programming

language they are using (Bruckman and Edwards 1999).

• There are often expectations and assumptions that would be reasonable in a conversa-

tion with another human, but completely out of the scope of a compiler or interpreter

(Bruckman and Edwards 1999; Miller 1981).

• When asked to describe algorithms in free-form natural language, the “code” produced

differs in fundamental ways from the semantics of common programming languages. For

example, beginners often prefer a daemon-like style of loop that constantly monitors

the termination condition rather than the usual one-time check that accompanies each

iteration (Pane, Ratanamahatana, and Myers 2001). This has also been observed as a

common novice misconception of how loops work in real programming languages (Bonar

and Soloway 1989).

In short, there seems to be a kind of negative transfer from natural language to programming

and it has the potential to be a major hindrance to learning. Students confuse the semantics

of the languages and are often unable to “reset” the context when switching between them.

40



One of the challenges of teaching programming, then, is to help raise the awareness in

students of what it means to program and how it differs from natural communication skills.

From the perspective of programming educators, it is generally believed that many pop-

ular languages (e.g., C, Java) function quite poorly as a first language. This is indeed one of

the great, and perhaps misplaced debates of computer science education. At a conceptual

level, the differences between Pascal, C, Java, etc. are minimal. Mismatches with natural

language, such as those mentioned above, exist with all popular programming languages.

In attempts to make programming less difficult for beginners, a number of researchers have

therefore advocated the design of programming languages that better match natural ways of

thinking and communicating. These efforts have included more intuitive control structures

(Pane 2002), increased use of natural vocabulary (Bruckman and Edwards 1999), and the

use of more intuitive syntax (McIver and Conway 1999). The general idea is to “close the

gap” between a problem statement and a programmed solution by limiting the cognitive

hurdles imposed by traditional programming languages, thereby making it easier for novices

to express their solutions in the desired language.

The major drawback of this approach is that teachers and departments are reluctant to use

languages in their introductory courses that are not mainstream. Also, changing the language

of an introductory programming course is likely the single most dramatic change imaginable.

The ramifications of such a change often extend well beyond the introductory course: it is

common for subsequent courses in a curriculum to depend on knowledge of a certain language.

In practice, then, it does seem not practical to overhaul introductory courses this radically.

This chapter lays out an approach that is intended to remain sensitive to the concerns of

those who believe commonsense notions of language should be recognized, but also to the

natural resistance to replace traditional programming languages with pedagogical ones.

So is there anything about natural language that might help novices rather than get in

their way? Aside from the obvious fact that negative transfer from natural language occurs

anyway, there are in fact several reasons to apply natural language tutoring to the problem

of teaching the tacit knowledge of programming:

• Scaffolded self-explanation with the encouragement and support of a tutor, improves

learning (Chi 1996, see section 3.1.3).

41



• Encouraging students to elaborate ideas in their own words is known to facilitate learning

of technical material (Mayer 1980).

• It is easier to connect to students’ existing knowledge by using natural language because

it is familiar to them (Mayer 1989).

Although some aspects of natural language certainly present complications, it is the medium

humans use for communication and it does overlap in many ways with the semantics of

modern programming languages. The basic problem that novices face is that they generally

lack the experience and ability to understand the distinctions between languages for human

communication and those for communication with machines. This is where tutoring can fit

in: by establishing a tutorial presence with students when they are first encountering the

challenges of programming, it may be possible to help novices develop an understanding of

the differences and stave off some of the misconceptions that naturally arise.

Lastly, why dialogue? Why not tutor directly in the target programming language or

in some specialized design environment? One reason is that there are pedagogical reasons

to elicit student contributions in their own words (see section 3.1.3). Many of the systems

discussed in section 2.3.1 present menus or buttons that allow the student to work in the

problem space. A common problem with such systems is that students learn to focus more

on where to click or what action to take to make progress.2 This means that recognition

memory is being tapped instead of recall memory, which is necessary for deeper learning.

In general, for deeper learning, systems should eschew menu or button-based interfaces in

favor of those that require that students provide answers in their entirety (this argument

also appears in Rose et al. 2001).

The most obvious way to achieve this is to have the student enter the actual problem

solving steps (lines of a program, in the case of programming). This approach has been used

many times over, including in the domain of programming (Anderson et al. 1995; McKendree,

Radlinski, and Atwood 1992; Reiser et al. 1992). Starting with a specific programming

language, however, is contrary to the CPP aim of helping novices plan ahead and develop

a problem-driven, more abstract view of programming. So, the use of natural language

2Such systems also often make it easier for students who try to “game the system” in order to finish their
assignments. That is, some students will click aimlessly just trying to get through the material.

42



dialogue stands as a compromise between requiring the use of recall memory and avoiding

the specifics of a particular programming language.

Another potential solution is to introduce a specialized intermediate language that can

be used to express a solution design. This was the approach taken in Bridge (Bonar and

Cunningham 1988). The basic problem here is that any new language, no matter how

intuitive, will increase cognitive load. Although it possessed intuitive appeal, the puzzle-

piece planning language used in Bridge may have been viewed as excessive for some of the

test subjects. New (and superfluous) languages unavoidably introduce new learning hurdles.

However, natural language is already familiar to the student. Students can try to express the

concepts of programming in their own words and, hopefully, make connections to existing

knowledge more readily. And so, CPP calls for natural language dialogue to be the primary

mode of communication with the tutor, be it a human or computer.

4.1.2.3 Pseudocode Pseudocode is a well-established approach to teaching novice pro-

gram design because of many of the issues discussed above. Pseudocode is not intended to

be executed by a computer, but rather to capture key aspects of an algorithm being created.

At one extreme, Shackelford promotes the exclusive use of (formal) pseudocode and no con-

tact with a compiler at all during a semester (Shackelford 1998). Others have argued for a

gradual introduction of pseudocode along with a particular programming language (Lee and

Phillips 1998). The approach taken in CPP fits in with the latter.3 The style of pseudocode

used in CPP tutoring is informal in an effort to better match the language of the student

(it is similar to that adopted in Robertson 2000). An example CPP pseudocode solution

appears later in this chapter (section 4.2.2, page 50).

A second important motivation to using pseudocode is that it allows the tutor to avoid

talking about programming language specific topics. Beginners are known to think of pro-

gramming in a very concrete, low-level way (Winslow 1996). For example, common responses

from novices when asked about what to do next in a (Java) program are “use println()” or

“Math.max().” By using pseudocode as the target of the problem solving, it is easier to work

at an abstract level and encourage students to not think about a particular programming

3Although, it could certainly be applied in a pseudocode-only style of class as well.

43



language. Also, most of the concepts of programming are independent of any language (e.g.,

repetition, conditional execution, and so on); by using pseudocode, language-independent

learning is indirectly supported (although CPP is directed at the procedural or imperative

paradigm, at least at this time).

4.1.2.4 Staged design Rather than provide direct support of top-down design, a staged

style of program development is supported in CPP. In top-down design, the programmer

first identifies all programming goals, then iteratively refines these goals until they bottom

out into program steps. Staged design also prescribes the identification of goals, but in a

slightly different way. The idea is to identify a simplified sub-problem of the original problem

(which is often the same as a goal identified in top-down design), then write a program that

solves that sub-problem. At this point, the programmer revisits the problem to determine

the next goal to achieve, then returns to the program to solve that goal. This process is

repeated until the complete problem is solved. Plan merging (discussed in section 2.1.3)

therefore occurs incrementally, with plans being integrated into the whole solution one at a

time.

One of the more subtle skills that underlies a staged approach is learning what to ignore

in the problem statement. In this sense, staged design is similar to focal design (Rist 1995) in

which the programmer first identifies the “simplest, most basic action” involved in a solution,

then builds around that (p. 537).4 In CPP, however, no commitment is made to whittle a

problem down to a “most basic action,” but rather the more vague notion of simplifying the

original problem is adopted.

There is empirical support for the appeal of staged design to novices. In Spohrer and

Soloway’s (1985) analysis of the first syntactically correct programs submitted by novices,

they were forced to drop 25 programs (out of about 160) because these students chose to

write small programs that did not attempt to solve the whole problem. They were interested

in identifying the interactions between plans and the problem this posed for their students.

Since these 25 students had not attempted to implement all plans in the problem at once,

4Two other names for staged design found in the literature are incremental development and programming
by improvement.

44



there was much less of a chance for interaction errors. In many cases, these partial solutions

were in fact the first step of a staged approach. Spohrer and Soloway surmised that this

behavior was one way some of their students coped with the complexities presented by the

composition problem because they realized it was easier to merge plans incrementally (one

at a time) rather than some larger number of plans all at once.

Support of the staged approach in the tutoring model presented here is not, however,

staged in the truest sense because of a commitment to pre-planning. That is, students are

not “released” after talking about a goal and plan to actually go write the program. Instead,

the tutoring session is a kind of dry run of the planning process which uses pseudocode as

the target language. In this sense, the tutoring is taking the role of an advance organizer

that primes a student for an independent implementation phase by situating their pending

(new) experience in context that is meaningful and accessible to them (Ausubel 1960). The

tutoring session is intended to help the student develop an improved understanding of both

the problem and how to go about solving it.

4.2 TARGETED PROBLEM TYPES

CPP works best on a certain class of problems, which is the topic of this section. Also,

to illustrate the program planning model embedded in CPP and provide a context for dia-

logue examples throughout the rest of the dissertation, this section discusses the Hailstone

problem,5 a typical assignment given to students four or five weeks into an introductory pro-

gramming course. Two other problems, Rock-Paper-Scissors (RPS) and Count/Hold (CH),

also played prominent roles in this research. Descriptions of them can be found in appen-

dix A.

5I first encountered this problem in Doug Cooper’s popular textbook Oh Pascal!, which, interestingly,
was also one of the earliest textbooks to reify plan-like knowledge in a way suitable for novices.

45



4.2.1 The Hailstone problem and other knowledge-lean tasks

Introductory programming assignments can usually be classified as knowledge-lean; that is,

“problems that require very little knowledge to solve them” (Robertson 2001, p.8). Such

problems are also very typically easy to perform by hand, although not necessarily easy to

solve. Some simple examples include dominoes, tic-tac-toe, and Go. Sometimes the tasks

underlying these problems are overt, while in others, although still trivial, involve subtle

assumptions and hidden steps that are easy to overlook. Knowledge-lean problems falling

into this category often require some piece of insight to solve.

The reason knowledge-lean problems are so attractive for introductory programming in-

structors is that they allow more time to be spent on the programming and problem solving

aspects of solving it – little background work is necessary. A drawback, however, is that

knowledge-lean tasks are often deceptively simple: novice programmers sometimes believe

that “easy to understand” implies “easy to program.” Unfortunately for them, there are

often insights that arise when attempting to solve a problem algorithmically that do not ap-

pear when a problem is solved by hand. It therefore requires a deeper level of understanding

and ability to construct an algorithm to perform a specific task.

A good example of a knowledge-lean problem that is particularly challenging to program

is the classic game of Rock-Paper-Scissors (RPS). Most people already know how to play,

and if not, can easily be taught. The act of playing a game is essentially a simulation of

the desired program behavior. Performing such a simulation is often referred to as a hand

calculation, terminology introduced by Spohrer (Spohrer and Soloway 1985). There are a

large number of issues that arise when writing a program to play RPS that are not apparent

from simply playing the game. For example, how does the computer pick? How do you

determine a winner? How do you represent the three choices? An ability to play a game

by hand does not obviously help a novice when faced with these questions. In fact, based

on the earlier discussion of novice behaviors, it seems unlikely that most novices will even

generate these questions until they open up their favorite editor.6

6Yet another example often cited in the literature the averaging problem (e.g., Shackelford 1993). College
students rarely have a problem computing an average of a list of numbers by hand, but most struggle to
write a program that can do it.

46



The January 1984 issue of Scientific American contains an article describ-
ing an interesting sequence of numbers known as the Hailstone Series. The
series is formed like this:

1. Pick a positive integer.
2. If it’s odd, triple the number and add one.
3. If it’s even, divide the number by two.
4. Go back to 2.

Although the numbers usually bob up and down, they eventually they
reach a repeating “ground” state: 4 2 1 4 2 1 ... This has been
proven for every number up to about 1.2E12.

You are to write a program to generate a Hailstone series for initial values
entered by the user. Your program should answer the following questions
after the ground state has been reached:

• How many items are in the sequence?
• What is the largest number the sequence reaches along the way?

You program should stop counting once any member of the ground state
(4 2 1) is reached.

Figure 4.1: The Hailstone Problem Statement

RPS is actually too complicated to be given early in an introductory class, however. As

such, another knowledge-lean problem that we will consider, and draw from heavily, is the

Hailstone problem, shown in figure 4.1. It involves an interesting, somewhat unpredictable

sequence of numbers. The problem statement also asks the student to count the items in the

sequence and find the largest value encountered. For most, it is trivial to produce a sequence

on paper since only very basic math skills are required. Counting the items and finding the

largest are similarly very easy to do – all students in involved in this research were able to do

so easily with the only errors being minor slips. As with RPS, however, writing a program

to solve Hailstone is challenging.7

7About half of the students in the study spent at least four hours working on their solution. When asked
what was hard about it, most responded that it was the first assignment that required the use of several
different programming constructs together in one program.

47



4.2.2 An illustrative solution to Hailstone

A programmed solution to the Hailstone problem requires the use of several variables, a

conditional statement for the update rules, a loop to produce a sequence, a counter, and

a test to track the largest value. To concretize the nature of the knowledge that underlies

CPP, Hailstone is solved below using a staged approach and with pseudocode.

The first step for a student is to read the problem statement (figure 4.1). Next, CPP

prescribes a hand calculation. Starting with the initial value of 11, for example, would

produce the following sequence and answers:

• 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1.

• the length is 13 and largest is 52.

The count should include the initial value and the first value reached in the ground state

(which will be 4, unless another value in the ground state is used as the initial value). To

perform this hand calculation, the student only needs to follow the problem statement and

apply basic arithmetic skills.

As with most programs, there are a number of potential “good” solutions to the Hailstone

problem. However, because it is a relatively small program, many of the possible variations

between different solutions are inconsequential, such as the relative locations of independent

steps within a loop. The solution presented below is simply a form of the most commonly

produced solution from my own experiences with students solving this problem. So, to begin

solving the Hailstone program using staged design, the first step is identify an appropriate

sub-problem that will act as the first program goal. By inspecting the problem statement, it

is clear that step 1 says to “Pick a positive integer.” Thus, for the program, the first goal is

to read in the initial value from the user (initial-value).8 The schema for this goal is simple,

consisting only of only a prompt and read. It should be noted that the problem statement

does indicate that this value should be positive, and so the actual program should ultimately

check for this. Currently, this is left out of the code to reduce cognitive load.

After achieving get-initial-value, most students prefer to follow the problem statement by

applying the second and third steps (that involve checking for even or odd). This also follows

8When referring to a specific programming goal by name, a sans serif font is used.

48



the intuition from a hand calculation. The goal is therefore to get the next Hailstone value

(get-next-value) and can be achieved by an update schema consisting of conditional statement

and a appropriate assignment statements. After implementing the plan for this schema, it

is simply abutted with the code that reads in the initial value (top part of figure 4.2). At

this point, the program obtains the initial value and computes the one that comes after

it. The next issue the student must confront is the “goto” step in the problem statement.

Intuitively, the goal is to get yet another value; that is, to attempt next-value again. Some

students suggest to implement another update schema (to abut with the one that already

exists), but this approach fails to recognize the need for repetition. The correct goal to

pursue next is therefore one to generate a full Hailstone sequence (generate-sequence). This

can be done by wrapping a while loop around the existing conditional statement as shown

in the bottom of the already existing code. This is shown in the middle of figure 4.2.

The only two goals remaining to complete the pseudocode come directly from the problem

statement. The goals are to determine the length of the Hailstone sequence (count-items)

and find the largest value in the sequence (find-largest). As with the other goals, the plans

that achieve them can be easily folded into the existing pseudocode. Each requires a new

variable, an initialization step, an update step inside the loop, and a print statement after

the loop. Integration of each plan is similar, and because of space, figure 4.2 only shows

integration of the counter plan.

The goal structure of Hailstone is fairly straightforward. The challenge for most novices,

in my experience, comes in recognizing the two tacit goals: next-value and generate-sequence.

These goals are not explicitly stated in the problem statement and thus are easier to overlook.

They represent abstractions that can be inferred from the four steps described in the problem

statement (steps 2 through 4, figure 4.1). Steps 2 and 3 can be viewed as one conceptual

step: to get the next value. It could certainly be argued that this goal does not need to be

recognized in order to implement a solution, and this is true. However, one of the primary

pedagogical aims of CPP is to help students form the abstractions and view programs as a

collection of plans. In this light, it is important to clearly establish such goals. The other

3 goals, get-initial-value, count-items, and find-largest, are all explicitly stated in the problem

statement and thus much easier to recognize.

49



Figure 4.2: A staged solution to the Hailstone problem. Goals are shown along the left side
and the pseudocode achieving those goals along the right. New steps for each goal are shown
in boldface.

50



4.3 THE TUTORING MODEL: COACHED PROGRAM PLANNING

The staged solution to the Hailstone problem just presented above demonstrates a key part

of the Coached Program Planning (CPP) model of of tutoring. Most novices will attempt

to achieve most or all program goals at once, and subsequently struggle intensely with the

interactions between the plans involved in the solution (Spohrer and Soloway 1985). CPP

is designed to slow novices down to prevent a precipitant implentation. The intent is to

provide the scaffolding novices need in order to plan effectively. This section begins with a

discussion of the history behind CPP and continues on to discuss the details of collecting

a corpus and how it was examined. From here, the basic tutoring model is laid out. This

section sets the backdrop for presenting the tutoring tactics discussed in section 4.4.

4.3.1 Corpus analysis

In section 4.1.1, I described the lead-up to CPP. Based on some intuitive notions of what

I believed novices needed, an environment for pseudocode planning was constructed and

then pilot students were put through it with me as the tutor. In this section, this corpus is

described in more detail, and discuss the process I followed to analyze and learn from it.

4.3.1.1 Corpus overview The full CPP corpus consists of 48 tutoring sessions across 5

problems, all performed between the summer of 2001 and the summer of 2003 with sections

of introductory programming at the University of Pittsburgh (CS0007 and CS0401, in partic-

ular). The main reason for collecting the corpus was to (1) collect a large sampling of student

utterances and (2) assess and understand a variety of tutoring tactics in the context of pro-

gram planning. Sessions were offered for a variety of the programming assignments given

during those semesters, and so the corpus covers several problems in addition to Hailstone

and Rock, Paper, Scissors:

1. Numbers to words: input a number between 1 and 999 then display the number in

English words.

51



2. Weather calculations: implement a menu-driven program that computes several pop-

ular weather-related formulas.

3. Baseball statistics: input raw baseball data and calculate derived statistics (such as

slugging percentage) to store in a file.

Based on the awkwardness of the resulting dialogues for the latter two problems, it became

clear that these problems were somehow not a good fit for CPP. The problems seemed

to require less insight than the other programs and more “busy work” to implement them

properly. The numbers program was a good fit, but overlapped too much with Hailstone and

RPS to be given during the same semester with respect to its relationship with the syllabus.

Hence, the analyses presented in this chapter focus primarily on Hailstone and RPS. Luckily,

they constitute a large portion of the corpus.

Of the 48 dialogues, 14 covered the three problems listed above, and these were not used

in this analysis. After this, 22 are from the Hailstone problem and 12 from RPS. In the spirit

of experimentation, 3 of the Hailstone and 4 of the RPS sessions (done in the summer of

2003) were done without pseudocode. They were performed to see if students would respond

to highly abstract planning dialogues which discussed goals and schemas only (with no

programmatic reifications at all, just English text). Although there was some overlap with

the full CPP dialogues, on the whole these were also too awkward to draw useful data from.

For example, there never was any pseudocode of which to refer, and students who became

lost early in the session gave very poor answers for the remainder of the time. The content of

this chapter is therefore based on the 27 dialogues that involved full CPP over the Hailstone

and RPS problems.

4.3.1.2 General procedure for corpus analysis In analyzing the dialogues in the

corpus, my goals were to find out how novices talked about programming (see chapter 5),

and also to learn how student misconceptions would surface in dialogue. In addition, I also

wanted to retrospectively analyze my own tutoring behavior. Although having outside tutors

may have been beneficial in claiming generality regarding these results, my aim was to build

an automated system, not to seek general truths about the behaviors of tutors. In many

ways, it was an advantage to have been the tutor because I was able to easily explain my own

52



tutoring behaviors, even when they were not obvious from the textual content alone. For

example, the decision to use more involved tutoring tactics at certain points in the session

were often influenced by my incoming knowledge of that particular student.

To break down a tutoring session, the first step was to find the locations of the top-level

what questions (i.e., goal-eliciting). These were easy to locate since all tutoring sessions fol-

lowed a staged approach to solving the problems in pseudocode. This allowed easy collection

of the answers to these questions. Next, within each of these sections, the corresponding

how-questions were identified, and their initial responses collected. The pattern seemed to

generally hold, except when:

• The student provided a schema-oriented answer to a goal question.

• The student gave a prematurely correct answer, to which the tutor would, in place of

re-asking, just remind the student later of that answer.

• The goal question was so simple, that the goal and how to achieve it were nearly identical

(e.g., ”read in a value”).

With the lines drawn between the discourse segments, I was able to look in between them

to find examples of tutoring tactics.

Before identifying tactics, it was first necessary to understand the different kinds of an-

swers students were giving. The quality of the answers, not surprisingly, seemed to play a

major role in determining the tutorial responses. For example, an overly-specific answer is

often responded to with an elevation tactic that tries to bring the student up to thinking

about goals (these are discussed in section 4.4). After knowing what kinds of answers are

given, the next step was to look at the tutorial responses in close detail. In identifying

tactics, I began to organize them in different ways. The top-level split that worked best

for me was between simple, 1- or 2-turn tactics, and those that required multiple turns to

complete. I found that the longer remedial dialogues almost always involved a reference to

some example, either in retrospect or with a brand new example (this is discussed later in

section 4.4.2.4). Finally, with the tactics delineated in the dialogues, it was easier to convert

them into dialogue knowledge sources (by hand).

53



4.3.2 General aims and principles

Through reflective-practice and introspection on this first part of the CPP corpus (before

the details had been fleshed out), I was able to solidify some of the aspects of the underly-

ing pedagogy. These are now presented. In a CPP tutoring session, the student and tutor

collaborate to build a natural-language-style pseudocode solution to a problem. Ideally, the

student has already read the problem statement, but has not yet attempted an implemen-

tation. Dialogue is the vehicle for this collaboration. In the last section, the underlying

decisions behind CPP were discussed. These were: adopt early (pre-practice) intervention,

natural language dialogue, pseudocode, and staged design. Moving on now to the role that

CPP should play and the principles that guide tutorial interaction.

Principle #1: Make planning part of learning about the problem.

The natural tendency of most novices is to enter prematurely into an implementation

phase, thereby skipping any meaningful planning activities (see section 2.2.2). As discussed,

the travails of an unprepared novice with an editor and compiler are often significant. The

approach taken in CPP is to integrate planning with the process of reading and learning

about the problem. That is, the aim is to traditional methods of assignment dissemination

(e.g., a printout) with an interactive experience that will (hopefully) better prepare them

for an independent implementation phase. The long term hope is that novices will begin to

understand that pre-planning is an important part of real software design. Unfortunately,

the scope of the experiments in this dissertation (chapter 7) do not allow this outcome to be

addressed conclusively.

Principle #2: Model and support the cognitive planning activities that novices are known to

underestimate or even bypass altogether.

One explanation for why novices fail to plan is simply that they do not know how to do

so. One of the overarching goals, then, of tutoring in CPP is to scaffold program planning

activities and when necessary, demonstrate them. In the CPP model, this consists of decom-

posing the problem, identifying the schemata and plans necessary, and composing them in

54



the form of pseudocode. The basic motivation is to help the student understand the problem

and develop an idea of how to solve it without the distractions presented by programming

language specific issues. Even if the student is not able to answer correctly very often, the

experience will have at least exposed some of the subtleties of the problem.

Principle #3: Exploit commonsense understanding of the problem to help novices graduate to a

more algorithmic understanding.

Knowledge-lean tasks are easy to understand and simulate by hand (see section 4.2.1.

This principle implies that tutoring should take full advantage of this fact whenever possible

to help students make problem solving and design suggestions. The idea is to use what the

student knows and understands, and help connect it to what they do not yet understand,

i.e., how to program the same task. This principle suggests that the tutor should use the

natural ability of a student to perform a hand calculation and to subsequently scaffold the

decompilation of the steps. This can then be used to help the student make the necessary

abstractions and to produce a program.

Several reasons to use natural language tutoring were provided in section 4.1.2.2. The

argument was that although some aspects of natural language do present extra challenges,

it remains a viable medium in which to learn about programming. A programming system

that uses natural language also affords another way for students to express their ideas. For

example, it is possible that a student who cannot express an idea they have in the strict

syntax of a programming language could do so in their own words. In sum, the idea is to

exploit natural language and common sense to make the implicit knowledge of programming

more readily available to novices. Natural language allows us to leverage students’ common-

sense problem solving and programming knowledge to elicit problem decompositions and to

support the application of these general skills within the context of programming.

Principle #4: Use the low-level tendencies of novices to help them build abstractions and think

at the level of schemata.

A broad aim of CPP is to be aware of the “code-first” tendency of novices while gently

and indirectly helping them to think more abstractly about the problem. Novices lack

55



problem solving ability: given a problem statement, students are not likely to have the

ability articulate a clear set of programming goals. Novices tend to think of programming

“bottom-up” (Rist 1989; Soloway 1989; Wender, Weber, and Waloszek 1987), and thus are

likely to have the ability to suggest some applicable lower level programming concepts (e.g.,

“we need an if statement”). The basic approach adopted in CPP is to take advantage of

natural novice tendencies and use them to steer novices into to a more expert-like, abstract

view. The lower-level elements of programming are important, and novices should receive

positive feedback when these suggestions are correct. However, they need help elevating their

view, realizing that dispersed lines of code in a program are often best viewed as one, and

understanding which lines of code accomplish which goals.

The fact that novices are generally able to produce the correct program parts, but fail to

bring them together effectively (Spohrer and Soloway 1985), is powerful evidence that more

support is needed during the planning phase of programming. Novices can identify the lower

level necessities, but just need guidance to connect these up with the more abstract notions

of problem solving and design. This is why early, pre-practice intervention is important and

why CPP is designed in this fashion.

4.3.3 3-step pattern

In section 4.1.2.4 a staged model of program development was presented. The heart of this

approach is that identification and achievement of goals are interspersed. That is, once a goal

is identified, it is implemented before another goal is another goal is identified. This leads

to an “evolving” solution that simplifies the plan merging aspect of solving the composition

problem (Spohrer and Soloway 1985). The staged approach produces a 3-step dialogue

pattern consisting of the identification of goals, how to achieve them, and actually achieving

them (figure 4.3).

Since the tutor’s overarching goal is to elicit the design from the student, each step in

the pattern corresponds to a tutor question along with, perhaps, a sub-dialogue aimed at

eliciting the correct answer. Although there are some exceptions in the full corpus (described

in section 4.3.1.2), this pattern seems to be consistent throughout the corpus. It reveals a

56



1. identify a programming goal

2. identify a schema for attaining this goal

3. realize the resulting plan in pseudocode

a. create pseudocode step(s) achieving the goal

b. place the steps within the pseudocode

Figure 4.3: 3-step pattern resulting from the use of staged-approach to design.

progression from goals, to schemata, and ultimately to plans which are then integrated into

the pseudocode. When represented as natural language utterances, schemata and plans

take on slightly different forms. For example, a schema can be identified by vague utterances

such as “keep a counter” whereas plans are more precise and require the mention of program-

specific variables: “initialize counter to 0 and then increment it inside the loop.” There is

pedagogical value in recognizing this distinction between schematic forms: helping novices

to identify general strategies first and then transition to the more precise representation of

plans supports the more abstract view promoted by CPP.

4.3.4 Elements of a tutoring session

The first task a student is directed to do in a CPP tutoring session is to read the problem

statement. Upon completion, the tutor and student then perform an an interactive hand

calculation that is used to confirm the student’s understanding of the target task and to act

as a demonstration the desired program behavior. It also provides an example to which the

tutor may refer to later. Once the student completes the hand calculation (as stated earlier,

it is usually quite easy to do), the dialogue shifts to writing pseudocode, which plays the

role of the artifact in the design. Following the 3-step pattern, the tutor repeatedly asks

the student to suggest goals, give ideas on how to achieve them, to identify which steps to

add to the pseudocode, and to determine where they belong. The pattern is repeated until

57



Figure 4.4: CPP Environment

all programming goals have been satisfied, and the pseudocode is complete. It should be

noted that the dialogue does not typically include the reification of schemata into complete

plans – this happens with creation of pseudocode steps. It is a blurry line, however; novices

tend towards the concrete, and so it often is easier to talk about existing program constructs

and variables from the pseudocode. In these cases, the tutor will commonly engage an

elevation tactic to make sure the student is able to link up the lower-level pseudocode with

the higher-level, problem solving issues (see section 4.4).

Although it would be feasible to perform CPP in a face-to-face context, the ultimate goal

of this research was to produce an automated system to perform it (i.e., ProPl, chapter 6).

The corpus was therefore collected via computer-mediated tutoring sessions over a network.

The environment used is shown in figure 4.4. The interface consists of three main windows:

1. A mini-browser (upper left) that displays HTML pages and remains available through-

out the tutoring session.

58



2. A dialogue window (lower left) that allows communication between the tutor and

student. Student contributions are made via the text field below the window.

3. Finally, the pseudocode window (right half), which contains draggable tiles containing

pseudocode text, each of which represents a step in the solution.

After using the mini-browser to read the problem statement and doing a hand calculation

in the dialogue window with the tutor, the student and tutor work together to build the

solution in the pseudocode window. As steps are suggested by the student, they are either

rejected, accepted with some modification, or fully accepted by the tutor. After this, the

tutor creates tiles, and the student drags them into the pseudocode area. Not allowing the

student to create tiles directly puts the tutor in a “filter-like” role, preventing wrong solutions

from being created. Instead, these poor ideas are caught in the dialogue and remediated there

instead of within the program. The content of the tiles (i.e., the text of the pseudocode step)

is kept as close to the student’s actual language as possible at the tutor’s discretion. Upon

completion, the tile outlines are removed leaving the pseudocode in a more traditional form

for the student to print out and use during implementation.

During a CPP dialogue, the tutor acts as a filter for the student’s ideas and so the resulting

pseudocode is guaranteed to be correct. Thus, heading into implementation, students are

armed with a better understanding of the problem and a better idea of the overall algorithm.

The individual pseudocode steps are implicitly approved and often edited by the tutor before

making their way to the solution. Thus, the style of the pseudocode is up to the tutor. The

basic requirement is that the student should require minimal (if any) training to generate

the text for the steps. In summary, each step is suggested by the student, created by the

tutor, and finally placed by the student.

To reify the staged approach to design in the experiment, the environment also supports

snapshots of the pseudocode at different times during its development. Basically, after a goal

is identified and implemented, the student is asked to summarize what it accomplishes, and

then a snapshot is taken (by clicking the button in the upper right corner of the interface).

This “freezes” that version of the pseudocode so the student can remember what the code

looked like at that moment. The CPP environment then produces a new copy of the tiled

window that allows the student and tutor to continue working on the solution. At the end

59



of the session, the student is allowed to review all of the stages by clicking on the tabs.

The snapshot capability was dropped in ProPl in lieu of a list of programming goals with

descriptions (these are called design notes and are described later in section 6.1.3).

4.4 ELICITATION TACTICS

Good tutors are stingy when it comes to giving answers – they prefer to hear them. In

section 3.1, the point was made that learning is enhanced when the student plays a greater

role in the tutoring; the student should be responsible for as much of the problem solving as

possible. This chapter turns now to a critical component of of CPP: how to elicit answers

from students. Two categories of elicitation tactics are identified: top-level questions and

remediation.

4.4.1 Top-level questions

As indicated earlier, the 3-step pattern (figure 4.3, page 57) dictates the initiating ques-

tions used by the tutor to elicit design choices from the student. Each part of the 3-step

pattern corresponds to a question intended to elicit that item from the student. To elicit

programming goals from the student, questions such as the following are used:

• “What is the first thing the program should do?”

• “What should we work on now?”

To support transition between goals, sometimes it is a good idea to state what was just

achieved before posing the question:

• “We’ve got the initial value. What do you think we should work on next?”

• “With both choices now loaded, what are we now ready to do?”

• “At this point, the program plays a game. What should it do next?”

Setting up the question in this way also helps to ground the state of the solution in the

dialogue. The student is reminded of where the solution stands and of the purpose of work

60



just completed. Finally, it also contextualizes the question so that the connection between

the hand simulation and the program under construction is easier to make.

Once a goal is established, the next step is to decide how to achieve that goal (step 2 of

the 3-step pattern). The tutor’s objective is to elicit a schema suggestion from the student

by posing a “how” question. Some typical examples are:

• “How do you think we can do that?”

• “Any ideas on how we can update the pseudocode to accomplish this?”

• “How should we proceed with that?”

• “How do you think we can get the program to count the items?”

Such questions immediately follow the establishment of a goal in the dialogue, and so it is

less common to preface them as sometimes done with goals. In cases when establishing a

programming goal is difficult for the student, however, it is not uncommon to see the “how”

question posed in a more precise way (like the final bulleted example above).

4.4.1.1 A comment about top-level questions Although top-level questions seem to

the student to be open-ended (e.g., “What should we work on now?”, sometimes in reality

they are not. For example, in many cases a goal-eliciting question is actually a closed-

answer question when considering the set of correct responses. This is most true when the

expectation for a goal-question is an explicitly stated goal in the problem statement. For tacit

goals there is a slightly greater range of expression since there is no vocabulary established

in the problem statement, yet it is still really a closed-answer question that appears like an

open-ended one.

The schema-eliciting questions (i.e., “how” questions) are, however, closer to being truly

open-ended. Students have a far greater range of potential answers available to them. For

example, a response can be a good description of the schema, the key step in the schema

(or plan), a programming primitive, and so on. Basically, anything that can be interpreted

as related to or part of the appropriate schema can be considered correct. In chapter 6

we pick up this discussion to explain how ProPl handles this wide variety of potential

answers. In general, the issue of open- and closed-answer questions is a difficult to classify.

61



For the purposes of this research, the only suggestion made is that it is important to confront

students with seemingly open questions to encourage them to think through alternatives and

organize their planning-oriented knowledge.

4.4.1.2 Categorizing student answers Obviously, the quality of a student’s contribu-

tions is extremely important in determining how to respond. A classification scheme similar

to the one below has been developed as part of the Circsim-Tutor (Glass 2001). Aside from

being completely correct or incorrect, students can be wrong (or right) in a variety of ways:

• partially correct/incomplete: covers only a portion of the expected answer.

• partially incorrect: contains some aspect that is incorrect, but also something correct

(else it would be completely incorrect).

• overly vague: captures the gist of an expected answer, but is too imprecise in some

important way(s).

• overly specific: too much detail is given when a more abstract or general response is

expected.

• correct, but premature: true, but not timely; usually indicates the student is over-

looking something of greater immediate importance.

The initial response to the 3-step questions can reveal a great deal about the student’s ability

and appropriate tutoring tactics for later in the dialogue. Consistently poor answers that

indicate little understand portend more example-based tactics and more explicit lines of

questioning in the corpus. Similarly, strings of good answers early on seem to establish the

student’s competence, and lead to more abstract tactics by the tutor.

4.4.2 Remedial tactics

The more successful a student is answering top-level questions, the faster progress is made

developing a solution in the dialogue. This holds for the simple fact that the student begins

closer to (or at) the correct answer. This is no guarantee that the student fully understands,

of course. It simply means the path to finding a good answer is shorter (in the dialogue).

When there is a problem with the student’s answer, as there often is in the corpus, the tutor

62



Figure 4.5: Three dimensions of tutoring tactics in CPP. The Purpose describes what kind
of answer the tactic is intended to elicit, form indicates the structure of the interaction,
and content simply reveals what the form refers to. The columns are orthogonal and each
tutoring tactic falls into some category along each dimension.

must take remedial action to elicit a correct response. Sometimes the response is simple and

direct, while in others it is somewhat involved (even tedious). In this section, a number of

representative remedial tactics are shown and a framework from which to understand their

use is explained.

4.4.2.1 Purpose, form, and content To describe the remedial tactics of CPP, it is

useful to analyze them along 3 dimensions: purpose, form, and content. A tutorial purpose

is simply a pedagogically driven intent of the tutor largely motivated by the quality and

classification of the student’s initial answers. The form of a tactic is its structural make-up

or how it takes shape in the dialogue. Finally, the content of a tactic is that which is referred

to by the form. An overview of the various values each dimension can take on is shown in

table 4.4.2.1.

The purpose of a CPP tactic is most heavily influenced by the classification of an answer,

be it too vague, or partially incorrect, etc. Generally, the tutor has an expectation of a

63



correct answer and at what level of abstraction the answer should be cast. Also, sometimes

the tutor may need to confirm understanding of something in the dialogue or simply to tell

the student a missing piece of information. All tactics in CPP therefore serve one of the

following purposes:

1. precision: elicit a more specific answer from the student.

2. elevation: elicit a more general or abstract answer from the student.

3. conceptual grounding: confirm the student’s understanding of how something relates

to the problem or pseudocode.

4. elaboration: (non-interactive) direct explanation to the student, without another ques-

tion.

The quality of the student’s answer directly determines the purpose adopted by the tutor.

For example, if a student’s answer is too vague, a precision eliciting tactic is chosen. Similarly,

if a student provides unnecessary or spurious detail, then the tutor attempts to elevate the

students thinking to a more abstract level. Elevation can be used to either help the student

think in terms of goals and schemata, or to make an important generalization specific to the

problem from a concrete example. Several examples of these tactics are shown later in this

section.

Once a purpose is in place, the tutor must decide both form and content of the response;

these are shown in the second and third columns of table 4.4.2.1. The various forms used in

a CPP tactic are:

1. pump: a simple prompt asking for more information, such as “Can you say anything

more about that?”

2. hint & re-ask: provision of some requisite information the tutor believes the student

does not have, followed by a re-asking of the question.

3. Socratic: an extended dialogue consisting of a string of tutor questions intended to

culminate in an “ah-ha” moment for the student as the answers are digested and related

to one another.

4. simulation: another extended technique involving either a hand calculation or simulated

execution of the pseudocode.

64



Pumping, a tactic used frequently used by AutoTutor (Graesser, Person, and Harter 2001),

and hinting, used by just about every ITS, are simple, one- or two-turn tactics. They are

most useful when there is a sense that the student is on the cusp of the right answer and

only needs a slight nudge. If frustration is obvious or if the student’s answer is far from

correct, however, a simple tactic is likely to fail and a more involved, multi-turn tactic is

called for. In the CPP corpus, such tactics fall under the two broad categories of Socratic

and simulation. Socratic tutoring, pioneered in the ITS community by the WHY system

(Stevens and Collins 1977), is usually triggered by a flawed answer indicative of a deeper

misunderstanding.9 Finally, simulation-based tactics are quite common in the corpus. It is

widely accepted that students in general respond positively to concrete examples, and so

this is no surprise.

The third and final dimension of tutoring tactic framework is content. The various sources

of content for tactics used in the CPP corpus are:

1. examples: a concrete example of the target task.

2. hypothetical: an imagined example or reference to a previous example, sans the details.

3. pseudocode: the pseudocode solution.

4. problem statement: the description of the target task, program requirements, and

often an example to read.

5. empty: no information content (only applies to a pump).

Unless the context of a tutorial response establishes something to refer to (such as pumping),

it is necessary for the tactic to “set the stage” for eliciting the desired piece of information.

Simply put, the content of a tutorial tactic gives the student something to think about and

work from while generating a response.

The rest of this section is devoted to examples of these tactics in action taken from both

the human-human study of CPP. Taking the cross product of the 3 dimensions discussed

above, 80 different categories of tactics are possible (4 purposes, 4 forms, and 5 kinds of

content). However, many of these are not used because they are incoherent. Two examples

9Strictly speaking, a Socratic dialogue involves a series of questions all based on a faulty assumption by
the student. At the end of the dialogue, it is hoped the student will come to recognize the error. However,
over time the definition has broadened to refer to any dialogue that consists of repeated questioning.

65



1 T What should we work on now?
2 S I don’t know
3 T You might want to take a look back at the problem statement.
4 T Give it another shot. What should we work on next?
5 S count the items in a sequence
6 T Good job.

Figure 4.6: A goal-eliciting KCD that uses the tactic of pointing to the problem statement
(generated by ProPl).

are pumps with non-empty content and elaboration with follow-up questions. Nonetheless,

there is still a rich set of tactics to discuss and so the next section begins this discussion with

goals. The examples below were selected to give a broad flavor of the different tactics used

in the corpus.

4.4.2.2 Goal remediation tactics Identifying program goals is often quite easy to do.

When goals are explicitly stated in the problem statement, such as count-items and find-

largest in the Hailstone problem, students in the corpus are nearly always able to provide

the answer with little difficulty. In the few cases when a student is not able to identify an

explicit goal, a gentle nudge back to the problem statement is usually all that is necessary.

An example appears in figure 4.6. In this case, the student claims not to know what to do

next in line 2, but with the suggestion to look at the problem statement in line 3, is able to

identify the correct goal.

To analyze this tactic in terms of purpose, form, and content, it is first necessary to

understand the student’s answer. Since it is completely void of domain-related content, in

this context “I don’t know” is considered extremely vague. Thus, the tactic is classified as

follows:

• The purpose is to elicit more precision in the answer.

• The form is to give a hint and then re-ask.

• Finally, the content comes from the problem statement.

66



1 T What do we need to work on next?
2 S Finding the how many numbers are in the sequence
3 T are you sure? [pause]
4 T does our program generate an entire sequence?
5 S We need to see if the new number is now odd or positive.
6 T right... and after we do that, are we done?
7 S Not unless we reach the ground state.
8 T how can that be determined in the program?
9 S by a loop
10 T right!

Figure 4.7: An attempt to elicit the generate-sequence goal of Hailstone turns into a schema-
eliciting dialogue (this is a human-human example).

When successful, simple tactics such as this one allow the dialogue to move forward quickly

since they can be resolved quickly and rarely require any subsequent deep elaboration.

When a goal is tacit, however, it proves to be much more of a challenge to elicit. In these

cases, an inference or generalization is usually required to properly identify the goal. To

illustrate the difficulty of eliciting such a goal, figure 4.7 shows a dialogue of a human tutor

attempting to elicit the implied generate-sequence goal of Hailstone. Two tactics are present

in this figure. First, the student is ready to count the items in the sequence, however, there

is no sequence yet to count. The tutor attempts to pump the student for the information in

line 3, but when this fails, engages in a slightly more involved tactic.

The tutor asks about the state of the pseudocode in line 4, thus engaging a a different

tactic. This classification for it is as follows:

• The purpose is elevation, since the tutor is seeking an abstract answer.

• The form is Socratic.

• And the content is from the pseudocode.

Even though the dialogue appears good at first glance, the tactic is not technically successful:

the goal the tutor accepts is to implement a loop (line 9). This is markedly different from

saying something like “we need the program to produce a sequence” since it involves a

67



programming construct. Goals in CPP are expected to be more abstract entities that should

stand semantically closer to problem statement rather than a programming concept. Second,

the tutor seems to blur the line between goals and schemata by encouraging the student to

think about how to update the code (line 8). The 3-step pattern is not specifically followed

since the tutor seems to switch from looking for a programming goal to accepting a technique

instead. In ProPl, this student would have received positive feedback for responses such

as those in the dialogue, but the more abstract, problem-derived goal would have been

discussed.10 There are several other aspects of this example that are important to note:

• The student takes initiative by ignoring the tutor’s precise question in line 4 (it is a

yes/no question).

• The answer given by the student in line 5 is part of the plan that achieves next-value,

which in turn is a component of the generate-sequence plan. This reasoning confirms that

the student is “in the ballpark.”

• Similarly, in line 7 the student mentions “the ground state”, which is part of the plan to

achieve generate-sequence.

In this dialogue, the student seems to lack a heuristic of the form if a sequence of values

needs to be generated, use a loop.11 The observation that the student highlights the plan parts

before thinking about the whole plan as a unit stands in harmony with findings discussed in

chapter 2 that described the low-level perspective novices tend to adopt. That is, novices tend

to view programs “line-by-line” and prefer a depth-first search approach to programming.

This is, of course, at odds with the breadth-first, “top-down” approach commonly taught in

introductory programming courses.

There is one last thing to say about the dialogue in figure 4.7.12 The student accidentally

says “positive” instead of “even” in line 5. The slip is overlooked by the tutor in this case

because of the very high probability the student meant to say “even.” In the corpus, close

to 40% of the students in the CPP corpus make a positive/negative for even/odd slip at

10This was one of the earliest dialogues collected during the human-human study, and so the tutoring was
still at an experimental stage.

11Spohrer (1992, p.19) refers to this as an expand plan that inputs a single value and produces a stream
of values.

12The audience moans.

68



1 T So, what is the first step in playing a game of RPS?
2 S knowing the rules
3 T Well... If we imagine a real game between two people, each player

begins by slamming their fist into their other hand three times.
What are they doing on the third slam?

4 S choosing rock paper or scissors
5 T Correct. So, the game starts with each player making a game choice.

Figure 4.8: Eliciting the first step of a game of Rock-Paper-Scissors using a hypothetical
situation (this is a ProPl dialogue).

some point. When asked about it, students nearly always immediately repaired the mistake,

saying they intended even or odd. Although a mild slip, it occurs far too frequently to not

mention here. Thanks to these observations, ProPl is able to detect this slip and make

the proper assumption about what was meant. The response is simply to elaborate on the

difference, and then assume the property of evenness (or oddness) was originally intended.

The next example of a goal-eliciting tactic uses a hypothetical situation and is shown in

figure 4.8. This is best classified as an elevation tactic because the student suggests a goal

to inform the user of the rules of the game (line 2). While a good idea, this is more “busy

work” than anything else. The purpose here is to elicit the more important goal of getting

the player inputs for a game of RPS. The hypothetical game is used to help the student

take advantage of a commonsense understanding of how to play. The tutor refers to the

act of “slamming their fist,” which is intended to help the student visualize the act of make

a selection. The general strategy being used by the tutor in this example is to decompile

existing knowledge and observe the steps. In this case it is used to elicit a goal, but it is

most commonly used to elicit schema components in the context of a more elaborate hand

simulation.

The next dialogue is another example of an elevation tactic. In this example (shown in

figure 4.9), the tutor asks the student to consider why a loop was appropriate. In a way, this

is the kind of dialogue that the human tutor should have pursued in figure 4.7. When asked

why a loop is needed, the student provides a fairly typical response from a novice in line

69



1 T ...what do you think we need to do?
2 S create a loop
3 T That’s right. We will have to add a loop.
4 T Let’s figure out why. What made you think of using a loop?
5 S because a loop continuously cycles until a desired number

is reached.
6 T A loop is definitely needed, but it is important to think clearly about

what purpose it serves. In this case, a loop will allow you to create
a whole sequence of numbers.

Figure 4.9: Example of an elevation tactic to elicit a programming goal. The tactic is to
simply ask why a particular technique is needed (ProPl dialogue).

5. Basically, the student is “stuck” at the line-by-line, more concrete level. Although the

tutor does give up a bit too quickly (ProPl is tightly bound by its dialogue capabilities),

the ideal abstraction is stated by the tutor and (hopefully) understood by the student. In

many cases, this is actually deemed “obvious” by students, even when they are unable (or

perhaps, unwilling) to offer it as an answer themselves.

4.4.2.3 Schema/plan remediation tactics Schemata and plans are more complex

than goals, and thus are harder to elicit from students. They consist of components, each

of which can correspond to a line in a program, or another schema. Secondly, when asked

a top-level “how” question, the range of responses that can be considered correct is quite

large. For example, the answer can be a nice abstraction of the general approach represented

by the schema. It might also simply be the first step of the schema. Most schemata are com-

plex enough that it not feasible to expect a complete answer all at once, and so the general

approach used in CPP is to use the student’s initial response as a kind of test to determine

the subsequent tactic. If the initial answer is on track and correct, then more open-ended

questions can follow. If the student says “I don’t know” or produces a weak response (such

as “write a function”), then an elicitation tactic must be used. In this section, examples

falling under each of the tutorial purposes are shown.

70



1 T Let’s look at an example to find out how counting
2 might work.
3 T So, starting with 10. What is the count so far?
4 S 10
5 T Well, we just have 10. The count is therefore just 1 now.
6 T After 10 in the sequence is 5. What is the count now?
7 S 2
8 T Good job. And after 5 comes 16. What is the count now?
9 S 3
10 T Right. So what is happening to the count?
11 S it increments by one each time the loop runs a cycle
12 T Yep. How often do we need to do this?
13 S until the counter equals 4
14 T We will need to add one to the count for each value we see.

Figure 4.10: Teaching an “on-the-fly” counting schema through the use of a hand calculation
(with a human tutor).

Examples of elevation tactics

The first example builds off of the notion of knowledge decompilation described earlier.

For knowledge-lean problems it is almost always very simple to do a hand calculation, and so

in the tactic shown in figure 4.10, it is easy for the student to contribute in productive ways.

The tactic can be classified as having the purpose of elevation, the form of a simulation, and

the content of an example.13 There are several important points to make:

• The tutor asks a series of very easy questions to answer (lines 3 through 9). This keeps

the student involved and contributing.

• The natural way to count (on paper) is to look back over the sequence and do it after

the sequence is done. This tactic introduces the student to a dynamic counting strategy,

which is more suitable for use in a program.

• The sense of elevation in this tactic is to help the student transition from counting in

an example to a general policy of incrementing the counter each time through the loop.

The student provides the necessary generalization in line 11.

13A similar example was presented earlier in figures 1.1 and 1.2 in chapter 1.

71



1 T So, let’s generalize. At the beginning of that step, you
compared the largest value so far (6) to what?

2 S 10
3 T Right, that is correct. But let’s try to say it in general.

It sounds strange, but what value did 10 represent at the time of
the comparison?

4 S a new hailstone value
5 T Good job. To summarize, then, we need to ask ourselves if the current

value is bigger than the largest so far. If true, we have a new largest.

Figure 4.11: Eliciting the comparison to find the largest value from a concrete example. In
prior dialogue, the student had gone through the sequence 6, 3, and now 10, being asked to
track the largest along the way (dialogue performed by ProPl).

• No pseudocode is mentioned - the discussion is purely at the schema level; this dialogue

sets up development and integration of a counting plan for the pseudocode.

Concrete examples play an important role in the CPP corpus. They provide an easily acces-

sible context in which to introduce the tacit knowledge of programming. In this case, the

student is learning a counter schema. The student is gently transitioned from an intuitive

simulation to a more algorithmic view. This discussion resumes later in section 4.4.2.4.

The second example of elevation involves helping the student come up with the correct test

condition for finding the largest value in Hailstone. Novices generally struggle to understand

which two values need to compared in the loop. For some reason, many students will suggest

that the largest value be compared to the initial value of the sequence. Although this does

happen in some hand calculations, it is certainly not part of the general solution. An example

of a tactic that tries to elicit this abstraction (i.e., which two values to compare) is shown

in figure 4.11. This tactic is best classified as elevation-hint/re-ask-example.

Not showing in the figure is the setup of the comparison question. In that setup, an

example sequence was introduce that started at 6. The tutor tells the student that 6 is

the largest so far (also an indirect hint that the largest variable should be initialized to the

initial value of the sequence). After the first time through the loop, 6 remains as the largest

because it is greater than 3. However, when 10 is encountered, the time comes to update the

72



largest value. This is when the tutor asks the student to describe what 10 represents at that

very moment (lines 1 and 3). The student here is able to answer correctly (line 4), however

some students are confused by this question.14 To sum up, the goal of the tactic is to help

the student generalize from the easy to recognize fact that 10 > 6 to the conclusion that the

current hailstone value needs to be compared to the current largest value. Of course, there

is a bit more work to be done, but this is the key abstraction targeted by this tactic.

Examples of precision tactics

Moving now to elicitation of plans, the tutorial purposes almost always fall under the

category of precision. This association makes perfect sense: plans are the instantiated ver-

sions of schemata, and thus involve specific details that will soon be integrated into the

pseudocode solution. The dialogue showing in figure 4.12 demonstrates such a tactic. In this

example, the tutor is helping the student hammer out the termination condition on the main

Hailstone loop. The student makes a poor suggestion for the loop termination condition in

line 2 by suggesting that the loop stop when an even number is encountered. This indicates

that the student has made a merging error by confusing the plan for generate-sequence with

the next-value plan. The only time even and odd matter is in the calculation of the next

value.

To fix this mistake, the tutor uses a hypothetical example in line 4 and with the stu-

dent responding with something a bit more coherent (“the same numbers” refers to the

4-2-1 repeating ground state sequence of Hailstone), the student is able to enunciate the

perfect condition (line 8). The full classification of this tactic is therefore precision-simulate-

hypothetical.

The final example comes from the RPS problem. This program is the student’s first

opportunity at implementing functions (methods). A good portion of their tutoring in CPP

is therefore about the interface, requirements, and usage of these functions. As mentioned

earlier, students are able to determine the winner of a game with little thought. However, to

write a function to compare two choices and return the winner is an extremely daunting task.

The dialogue in figure 4.13 shows the tutor helping the student establish the background

14Some of the stranger responses in the ProPl corpus to the question posed in line 3 are “three times
three plus one,” “even value,” and simply “3.”

73



1 T What condition will we need on that loop?
2 S while hailnumber is even do
3 T think about that. you want to repeat the even/odd check over and over.
4 T in the example you did, when did you stop?
5 S when it went to the same numbers
6 T yep. that was called the “ground state”.
7 T so we’ll loop while what is true?
8 S hailnumber is not equal to 4
9 T good.

Figure 4.12: Eliciting the loop termination condition for the Hailstone problem. The student
exhibits a merging error by suggesting that condition should look to see if the number is even
(dialogue is with a human tutor).

necessary to implement a function that determines the winner of a game. The dimensions of

this strategy are conceptual grounding (purpose), Socratic (form), and hypothetical

(content).

Although ProPl is slightly too didactic in this example, the student seems to understand

the conclusion. The correct answer (that there are 9 combinations) is given in line 10. Many

students in the corpus answer 6 to the question posed in line 9, even with the elaborate

setup. After this dialogue, the student is ready to talk about the conditional statements

used in the calculation of a game winner knowing that there are 9 cases to handle.

4.4.2.4 More on the use of examples In general, the use of concrete examples in

tutoring is known to be a successful technique. Examples can be used, for instance, to

directly confront misconceptions (Brown 1992), to provide a concrete reference for an abstract

concept or skill (Heffernan 2001), or, in the case of programming, to act as data on which

the program should run (Reiser et al. 1992). Although precisely why examples are

This seems to hold true for novice programmers as well. In the CPP corpus, the success

rate with concrete examples in terms of eliciting ideal answers from students is overwhelming.

Across 18 Hailstone dialogues in that corpus, there are 37 uses of concrete examples, not

including obligatory opening examples for simulation. Of these, 10 are used for elaboration

74



1 T And how many different possibilities are there for a game?
2 S 3
3 T Well, we do have 3 for each player. But there are two players in

a game. Let’s think about it more thoroughly. How many choices
does the user have?

4 S three
5 T Very good. And how many choices does the computer have?
6 S three
7 T Right. Suppose the user chooses rock. There are different choices

available for the computer, so that is 3 combinations.
8 T If the user chooses paper, again, there three choices for the

computer. That’s 6 combinations.
9 T Lastly, the user can choose scissors. For this, the computer

can still pick 3. How many total combinations are there then?
10S 9

Figure 4.13: The tutor and student are discussing the number of combinations possible in
a game of RPS. Students do not need to think about these possibilities when just playing
RPS, but it is necessary to do so to program it (generated by ProPl).

only (e.g., to demonstrate a misunderstood aspect of the problem) and the remaining 27 for

elicitation of important observations or abstractions. Of these, the student failed to provide

the targeted answer only 4 times (a success rate of 85%).

The four failures in the corpus generally boil down to the abstraction step. Although

students in the study were always able to answer the easier lead-in questions, in these

failures, they seemed to balk when asked to generalize. In all cases, the tutor gave the

answer away, or at least tried to elicit something facile, only to complete it with the more

challenging details.

An appealing property of examples for novices is that they allow the tutor to ask isolated

and simple questions that the student can answer. Because the tasks in beginning pro-

gramming assignments are often knowledge-lean, students can usually simulate the desired

behavior with little difficulty. Asking the student to self-reflect during the process of a hand

simulation can bring important issues to the table, and with the tutor’s help, act as a bridge

into appropriate planning knowledge. It can also help the student begin to understand that

75



1. preamble/trigger
a. T asks a question
b. S answers
c. T asks follow-up Q, goto (b)
d. T accepts answer, goto 4(b)
e. problems with answer, goto 2

2. example/hand calculation subdialogue
a. T sets the stage
b. T asks (easy) question
c. S answers
d. T evaluates, corrects if necessary
e. either go to (b) or 3

3. elicit observation
a. T asks about the example
b. S answers
c. T accepts, refines, re-engages 2, or gives answer

4. abstraction/generalization
a. T connects observation from 3 to code
b. T asks Q to suggest pseudocode steps or summarize
c. T evaluates, accepts, refines, or gives answer

Figure 4.14: General algorithm the tutor seems to follow when using examples. When
necessary (step 1), the tutor engages in an interactive simulation (the example), and “pops”
out (step 4) to help the student make the important observation.

the difference between how they solve a problem by hand and how to express that skill as

a generalized algorithm. Of course, it is a much greater challenge to express an algorithmic

level of understanding. As discussed earlier, examples are used frequently in the corpus – a

possible general pattern, including the trigger step for using such an example, is shown in

figure 4.14.

4.4.2.5 Paradigm and pseudocode placement The analysis presented in this chap-

ter focuses purely on the times before pseudocode is actually added at each stage. A portion

of the corpus does involve the tutoring and remediation that involves the layout and organi-

zation of the pseudocode. In CPP when a schema is agreed on, the student suggests steps,

then places them in the pseudocode. The two most common errors were steps being placed

76



out of order (errors of arrangement) and indentation mistakes. Because ProPl was not

going to support this kind of tutoring, analysis of these pseudocode placement sub-dialogues

was not completed.

It is also important to say more about the programming paradigm. While the focus is

clearly on structured programming, the idea of using natural language to elicit program

design ideas and decisions would certainly apply to any paradigm, such as object-oriented or

functional programming. For example, in their book How to Design Programs, Felleisen et.

al. present design recipes to help students write functions in Scheme (Felleisen et al. 2001).

Each phase in these recipes has the student draw on intuition and use natural language to

guide code writing. When students ask for help, most tutorial interaction involves asking

general questions about the student’s status within the design recipe (Flatt 2002).

4.5 CHAPTER SUMMARY

In this chapter, the pedagogy of Coached Program Planning (CPP) was described: the

underlying principles, three-step tutoring algorithm, and elicitation tactics were presented.

A summary of CPP is provided below, followed by the main points of the chapter.

CPP is a tutoring model intended to elicit program design ideas using the tacit knowledge

of programming to guide the design process. The general aim is to help the student in the

transition from understanding the problem to being ready to implement a solution. This is

accomplished by asking top-level goal- and schema-eliciting questions and using the student’s

intuition and commonsense understanding to help them develop a deeper understanding of

the problem and how to solve it. A variety of tutoring tactics are used to do this, many of

which rely on simulating the desired program behavior, and other forms of example. As a

CPP tutoring session progresses, the solution grows as goals are identified and program code

fleshed out. This produces a staged solution which simplifies the merging of new program

segments into existing code, something novices typically struggle with to a high degree.

CPP is summarized in figure 4.15. The figure shows the top-level tutoring algorithm,

elicitation pattern, goals for Hailstone and RPS, and a small selection of tactics described

77



Figure 4.15: CPP in a nutshell.

earlier in the chapter. The main loop of the tutoring algorithm operates over all programming

goals of the problem in question. The order of how the goals are achieved depend both on

the state of the solution as it evolves and the tutor’s discretion (and so this aspect is not

addressed in the figure). Similarly, the schemata and plans needed to achieve these goals are

not shown because they vary widely and even more options exist with increased independence

between the plans.

The main points of the chapter were:

• The problem being addressed by this dissertation is how to scaffold the development of

the tacit knowledge of programming through the use of natural language tutoring.

• CPP makes the following pedagogical commitments: adopt a pre-practice model of tu-

toring, use natural language dialogue as the primary mode of communication, present

programs as natural-language-style pseudocode, and teach a staged approach to program

design.

78



• There is a negative transfer from natural language to programming. One aim of CPP

is to mitigate this transfer, and help novices learn to understand the difference between

languages designed for human communication and those designed for communication

with machines.

• CPP targets knowledge-lean problems; that is, problems that require little or no back-

ground knowledge to understand.

• Knowledge-lean tasks are often easy to execute by hand, but in many cases, require

deeper insight and understanding to express algorithmically.

• A staged approach to programming means that the programmer first writes a program

to solve a small sub-problem of the whole, and then repeatedly extends this solution to

encompass more and more the whole problem until complete.

• An aim of CPP is to be present when novices are first exposed to programming problems

and help cultivate the development of their mental libraries of programming techniques

through tutoring.

• CPP tutoring tactics are based on the idea of exploiting easy-to-understand properties of

knowledge-lean tasks as well as the low-level tendencies of novice programmers to help

novices produce the abstractions necessary to write the corresponding algorithm.

• CPP dialogues are governed by a 3-step pattern that prescribes the identification of goals,

schemata, and ultimately plans. Each step in the pattern also determines the top-level

questions asked by the tutor during a tutoring session.

• The tactics used by CPP fall into two categories: open-ended questions (from the 3-

step pattern) and elicitation tactics designed to repair poor utterances or elicit missing

concepts.

• Tactics can best be understood by looking at them along three dimensions: purpose,

form, and content.

• Using hand calculations is a popular tutoring technique since they allow the tutor to ask

simple questions that the student can answer, and ultimately generalize into knowledge

suitable for creating a plan.

79



5.0 ANALYSIS OF STUDENT LANGUAGE

To build the knowledge sources for ProPl, it was necessary to discover how novices respond

to the top level questions that ask them to suggest goals, schemata, and plans (from the 3-

step pattern). These questions were discussed in section 4.4.1. This chapter provides such a

characterization of student answers to these questions from the Hailstone problem dialogues

in the CPP corpus.

5.1 HOW STUDENTS DESCRIBE GOALS

To elicit a new programming goal, the tutor typically asks something like “What should

we work on now?” Task-wise, these are often closed-answer questions, meaning there is

only a small number of acceptable answers. However, as shown below, there are many

acceptable alternatives for expressing goals. In section 4.2.2, five distinct goals of Hailstone

were identified. For each, there is a transition point in the dialogue when the tutor attempts

to elicit a new goal from the student. Some examples students’ responses to these questions

appear in figure 5.1.

Table 5.1 summarizes all of the student answers to such questions from the 16 Hailstone

dialogues that were analyzed. For each goal, the table shows typical keywords present in

answers, along with their respective frequencies. The first line for each goal also displays

the average length in words (right-most column). In some cases, there was no goal-eliciting

question-answer adjacency pair, which explains why some of the frequencies are not out of 16

(the total number of dialogues). In such dialogues, the student typically mentioned the goal

prematurely, and the tutor used that fact. For example, “Now let’s look at that loop you

80



1. initial-value: “read an integer from a user”
2. next-value: “see whether the number is odd or even”
3. generate-sequence: “check if the number is one that belongs to the ground

floor”
4. generate-sequence: “could we do a while loop for odds and evens?”
5. count: “how many numbers there are in the sequence”
6. count: “what to do when the number does equal 4” (outlier)
7. largest: “you need the largest number”
8. largest: “error checking” (outlier)

Figure 5.1: Example goal suggestions from CPP corpus.

Table 5.1: Each section of the table shows commonly used words in students’ answers to
goal-eliciting questions.

goal common answer parts frequency avg length

initial-value read, prompt, pick, integer, number 75% (12/16) 6.5
odd, even, if 19% (3/16)

next-value odd, even, if 64% (9/14) 11.3
positive, valid, error 21% (3/14)
loop, sequence, ground state 14% (2/14)

generate-sequence loop, repeat, again 53% (8/15) 13.3
ground state, 4-2-1, stop 40.0% (6/15)

count count, how many, items in sequence 88% (14/16) 10.1

largest find, largest, highest, maximum 100% (14/14) 8.0

mentioned earlier.” There are three main observations to make based on the data regarding

goals:

Observation #1: Students seem to have little difficulty saying something productive about what

goals to pursue.

The high frequency answer categories were all considered valid ways of expressing the goals

with which they are associated in the corpus. This is similar to the finding of Spohrer and

81



Soloway (1985) that novices were generally able to find the right plans for the programs

(however they were not able to “put them together”). In other words, it seems that novices

are able to determine what needs to be done, both in English and in programs.

Observation #2: If the problem statement contains a clearly stated programming goal, students

are better able to state it in the dialogue.

It was pointed out in section 4.4.1.1 that when goals are explicitly stated in the problem

statement (such as initial-value, count, and largest), students rarely have a problem stating

it. When they do, a simple nudge towards the problem statement is sufficient (this was a

tactic discussed in section 4.4).

Observation #3: When goals are not explicitly stated in the problem statement, students resort

to either details of the target task or to programming primitives.

Inspecting table 5.1 for the goals not explicitly given (next-value and generate-sequence), the

answer parts for these are not nearly at the level of abstraction of the explicitly stated goals.

The tacit goal suggestions (next-value and generate-sequence) tend to be overly specific or

programming-related. This behavior suggests that students talk about programming in the

same way they actually program: bottom-up.

So, what are the implications for building ProPl? To recognize explicit goals, these

observations imply that the language of the problem statement needs to be covered. For the

tacit goals, the system will will need to have several different elevation tactics at its disposal,

and will need to incorporate language involving schemata in order to understand what goals

students are attempting to express. This is the topic of the next section.

5.2 HOW STUDENTS DESCRIBE SCHEMAS

Given the nature of students’ responses to goal-eliciting questions, it is no surprise that many

of those answers lead quickly into a discussion of how to achieve the goal. The typical path

the tutor takes in these instances in the corpus is to pursue whatever aspects of the solution

the student has suggested. After a goal is established, and if the student has not hinted at

82



1. generate-sequence: “until a the current sequence number is a 4 2 or 1 keep
calculating the next term”

2. generate-sequence: “go back to the if statement” (outlier)
3. count: “use a variable”
4. count: “ok in the loop i’d have a variable starting at 0 that would have a

1 added everytime the loop was executed”
5. largest: “we’ll have to compare each number to the number next to it”
6. largest: “i guess we could see if each number found is bigger than the last

and if it is keep it to compare to the next”
7. largest: “we should test it” (outlier)

Figure 5.2: Answers to schema-eliciting questions in the CPP corpus.

an implementation strategy, the tutor generally follows with a schema-eliciting question like

“Can you think of a way we can do that?” Although ideal answers on the first try are rare,

students again are generally able to “pick out” some aspects of what needs to be said. Some

example utterances are shown in figure 5.2. If the student’s answer is flawed, the tutor rarely

gives away the answer, opting instead to engage some tutoring tactic to elicit the answer

(discussed in section 4.4)

It should be noted that there were no instances in the corpus of the tutor asking a student

how to accomplish either the initial-value or next-value goals (other than follow-up elevation

tactics – the focus here is top-level responses). This was because the “how” was already

evident based on the answers to the goal questions and in the creation of pseudocode. Thus,

this analysis consists of the remaining three goals. A summary of all instances of when

students were asked schema-eliciting questions appears in table 5.2. Instead of organizing by

utterances this time, the table organizes by concepts. This is done because a schema typically

consists of several parts. The frequency, therefore, shows how often each concept appears

in utterances for that goal. Many utterances contain mention of multiple concepts. For

example, the concept of incrementing occurred in 58% of all utterances aimed at describing

how to accomplish count-items.

The utterances analyzed in this table represent all initial attempts by a student to talk

about “how” to achieve the associated goals. At times, two such utterances were included

83



Table 5.2: Shows answer parts and their frequencies of student schema suggestions in Hail-
stone. Boldface entries represent the subsuming concept of the key words. “Other” covers
all remaining (rare) concepts.

goal common answer parts/concepts frequency

generate-sequence repetition: loop, while, again, go back 100% (19/19)
termination: ground-state, stop, test 26% (5/19)
get-next-value: odd, if-statement, next term 21% (4/19)

count track: each time, each step, go through 75% (9/12)
repetition: loop, while 58% (7/12)
increment: add 1, increase by 1 58% (7/12)
save: variable, counter, keep 42% (5/12)
others 42% (5/12)

find-largest compare: greater-than, less-than, bigger, test 67% (12/18)
save: variable, remember 50% (9/18)
track: after each, every value, each, along the way 33% (6/18)
find-largest (goal): largest, highest, find 33% (6/18)
initialize: first number, originally set, start out 17% (3/18)
others 28% (5/18)

(for example, when the tutor pumped). The purpose is to get at the content of how students

initially talk about “how.” It should also be noted that in several instances, the student

flatly admitted not knowing. This happened a total of six times across these three goals. In

a few instances, it was followed by a pump, in which the student did turn out to have an

idea. These utterances were included in the table.

Table 5.2 confirms a few of the earlier observations made about goals. Although it takes

some prodding at times, students still seem generally to have the skill to suggest something

relevant and productive. Similarly, because the problem statement does not specifically say

anything about how to achieve these three goals, student answers are generally incomplete.

This is confirmed by noting that many of the frequencies of important answer parts are low.

Nonetheless, the data seem to confirm observation #1 that students have the ability to find

something productive to say, albeit somewhat harder to elicit in the case of schemata.

84



Concepts mentioned in “other” categories occurred either once or twice over all utterances.

For example, in the count-items group, students mentioned the goal get-next-value, the

ground state, finding the largest, and a procedure. While none of these are particularly

relevant or required, they are generally ignored by the tutor (no negative feedback). In the

case of “procedure,” for example, the student was simply suggesting that a procedure be

written to accomplish the counting goal. This is not something the tutor wants to reject –

often this is a good way to think about a problem.

What does this imply for schema understanding in ProPl? Most importantly, it means

that the system must be aware of all of the various parts of a schema or plan and be prepared

to give positive feedback for successful mention of a part. In addition, it must also be able

to elicit what is missing. In terms of a traditional dialogue system, a form-filling approach

to dialogue management (Jurafsky and Martin 2000) is ideal, then, for eliciting schema

components from students. In addition to this, another implication is that many of the

knowledge structures that are used for schemata will likely be useful for recognizing tacit

goal suggestions. This is true since novices tend to jump to the details when asked for such

goals.

5.3 CHAPTER SUMMARY

This chapter presented a brief analysis of the language students use in the CPP corpus to

talk about goals and schemata. Only data from the Hailstone problem was discussed. The

main points of the chapter were:

• Students generally seem to be able to answer open-ended goal- and schema-eliciting

questions productively.

• Explicitly stated goals are easy for students to identify, however when asked for tacit

problem goals, they almost always resort to low-level aspects of the problem or program-

ming primitives.

• Students are also generally able to identify important aspects of the schemata involved

in a solution, but do often omit other important details.

85



• To understand the “goal-” and “schema-talk” of students, ProPl must be ready to

recognize the language used in the problem statement and have a way to recognize

individual parts of plans, no matter the order in which they are suggested. This suggests

a form-filling approach to handling schema understanding in dialogue.

86



6.0 AUTOMATED COACHED PROGRAM PLANNING

Obviously, it is not feasible to provide a human tutor for every student prior to every program

they write. This is the motivation behind the construction of an automated system capable

of performing CPP. Having laid out the underlying pedagogy in the last chapter, this chapter

presents ProPl,1 a partial implementation of CPP. First, ProPl-C, a non-dialogue-based

version of ProPl (the ‘C’ stands for “control”) that allows the student to read the tutorial

content, is presented. In the discussion of ProPl-C, the focus is on how the interface is

designed to convey the pedagogy prescribed by CPP. After this, a discussion of ProPl’s

tutoring and dialogue capabilities is presented.

As mentioned in the previous chapter, ProPl and ProPl-C are intended to be used

by students to help them prepare to write a computer program. The expectation is that

students have not yet started working on a program prior to using the system. It is best if

they have not yet even read the problem statement. The idea is to establish an early tutorial

presence and not give students the chance to generate, much less act on, any misconceptions

or misunderstandings that may arise.

6.1 PROPL-C: THE CONTROL SYSTEM

The purpose of this dissertation is to explore, define, and evaluate the use of natural language

tutoring to teach the tacit knowledge of programming that is known to underly effective

program planning skills. To properly perform such an evaluation, ProPl must be compared

against a similar system that does not use dialogue. In this section, a system to play this

1Pronounced “pro-PELL” and short for “PROgram PLanner.

87



role is shown: ProPl-C. It is used as the control system used in the experiment reported

in chapter 7.

To properly attribute any learning benefits to students using ProPl versus those using

ProPl-C, differences between the two systems (other than the use of dialogue) must be

minimized, hopefully eliminated. As such, there is a great deal of overlap between the two,

and so much of the information presented below applies to both systems. Both display the

same problem statement, examples, background reading, design notes, and pseudocode. And

so, this chapter begins by describing how the pedagogical content of a CPP tutoring session

can be delivered in an interface that does not use dialogue.

6.1.1 Interface

ProPl-C runs on any Java-enabled web browser and is connected to a back-end imple-

mented in Lisp that controls the interactions. Using the control system is very simple since

it only involves clicking several buttons, tabs, and scrollbars. The interface is very similar to

the one used in CPP (see section 4.3.4 and figure 4.4 on page 58) and is shown in figure 6.1.

It consists of four primary components:

• mini-browser (upper left corner): The problem statement appears here as it normally

would appear for the student (say, in a printout). It defines the problem and provides

necessary background information. In addition, it is available throughout the session.

Back and forward buttons permit viewing of all the pages.

• tutoring content window (lower left corner): Tutor messages appear in this window.

As the session progresses, the student reads about how to solve the problem, what goals

to post, designing schemata, and so on. Once the student clicks “Move On”, this material

cannot be reviewed.

• pseudocode window (right half): A dual-tabbed pane holding the evolving pseudocode

solution.

• design notes: The other tab holds important pieces of information discussed in the

tutoring content window (more in section 6.1.3).

88



Figure 6.1: The initial screen of ProPl-C, the control version of ProPl.

When using the system, the student is told to read the tutorial content first, follow any

instructions it contains (such as reading the problem statement or viewing the pseudocode),

and then click the “Move On” button to see the next tutor message. This is the extent of

the interaction with ProPl-C.

Sessions with ProPl-C (as well as ProPl) follow the same top-level pattern as pre-

scribed by CPP. In a tutoring session, students move through the following stages:

1. Read the problem statement (which includes an example to read).

2. Do an example (hand calculation) with the system’s help.

3. Repeatedly apply the 3-step pattern (goals, schemata, and plans) until the pseudocode

is complete.

4. Review the solution as long as desired.

89



For experimental reasons, students using ProPl-C and ProPl are not allowed to take notes

while using the system (this is explained in section 7.2.3.1). At the conclusion, students then

are free to write the program as they normally would on their own schedule.

6.1.2 Staged design in the interface

As the student clicks through the tutor messages of ProPl-C, all of the goals, schemata,

and plans are described. The messages direct the student through the stages described

above, and strictly follow the 3-step pattern, presenting programming goals, followed by

schema descriptions, and ultimately the plans for each goal. As shown in figure 6.1, the

environment starts with a blank slate. The interface is updated to present the pseudocode

incrementally in harmony with the content the student sees. The stages for Hailstone shown

in section 4.1.2.4 are the same ones presented by the system.

The first two cases of merging in the Hailstone problem are shown in the two screenshots

of figure 6.2 (since the first plan to read input is added to an empty screen, that screenshot

is not displayed). The input plan was the first to be posted, which was followed by the

conditional statement that obtains the next value. This new code being merged in is shown

in a different color to help it temporarily stand out. After a number of “Move On” clicks

revealing more tutor messages, the bottom screenshot in the figure shows the state of the

program after the generate-sequence code is merged in. At this point, the code satisfying

the get-initial-value and get-next-value goals becomes the “old” code, and reverts to the same

color (black, in the actual system). The newer steps, that introduce the loop, are merged in

and again, show in a bright color. This process continues until the solution is complete.

The pseudocode must obviously be pre-written by a domain author and should be written

to use familiar words and phrases to make the connections between it, the notes, and the

dialogue as clear as possible. The style of the pseudocode is derived from the solutions

developed in the CPP corpus, which in turn was modeled after the pseudocode described in

(Robertson 2000).

90



Figure 6.2: As the student clicks through the tutorial messages, new pseudocode is merged
into the existing code each time a new plan is called implemented.

91



Figure 6.3: Design notes, which show program goals and paraphrases of the schemata and
plans involved in achieving them, are shown for the next-value and generate-sequence goals
of the Hailstone problem.

92



6.1.3 Design notes

As the student progresses through the messages, the other tab on the right half of the

interface also fills with design notes, which are essentially a record of important observations

made in the tutor messages. They consist of:

• The goals of the problem, as staged programs to write (represented by bold face, larger

lines in the interface).

• Comments about the schemata and plans needed to achieve those goals (represented by

pre-authored English sentences similar to the tutorial content).

The comments appear below each goal they elaborate. The goals and comments are linked

to certain tutorial messages and appear immediately after the student has read about them.

When authoring the design notes, domain authors should include all of the programming

goals, the need for particular programming constructs, and any other useful observations that

can be tied to the dialogue content. Figure 6.3 contains the corresponding screenshots from

figure 6.2, showing the notes after the next-value and generate-sequence goals are satisfied.

Although there is no practical reason to post such notes, they are included it to act as

a representation and reminder of the usually tacit knowledge that goes into producing the

final solution. The reification (i.e., physical posting) of problem solving actions or decisions

that otherwise remain hidden or implied is common in many intelligent tutoring systems

(e.g., Singley 1990). As mentioned earlier, the benefit of using natural language to reify the

tacit knowledge of programming is that the student can understand without having to learn

a new intermediate representation or artificial planning language.

The student is free to move between viewing the pseudocode or design notes at any time

by clicking on the corresponding tabs. The system will, however, change the screen back to

the pseudocode screen and pause before displaying new pseudocode to help the student see

the integration of a new plan. In CPP, full pseudocode development was supported, with

full dragging and dropping of steps. Because of the computational and reasoning demands

this posed for ProPl, it was dropped in favor of the approach described above. This does,

however, remain as future work, and is discussed in chapter 8.

93



6.2 PROPL: A DIALOGUE-BASED ITS FOR NOVICE PROGRAM

DESIGN

ProPl-C was, in fact, built after ProPl. Much of the same source code is used, minus the

dialogue-enabling components. They both teach the same pedagogical content, including

everything discussed in the previous section. The key difference between the two is that

ProPl attempts to elicit the design elements via dialogue rather than provide them in

reading (i.e., “mini-lessons”).

6.2.1 What happens in a tutoring session

A student using ProPl follows the same top-level pattern as listed above (problem state-

ment, hand calculation, and so on). Interaction is vastly different, however, since after

reading the problem statement, the system begins asking questions. The first dialogue the

student has with the system is to do an interactive hand calculation. An example of such

an interaction with ProPl appears in figure 6.4 (the dialogue is from the ProPl corpus).

The primary purpose of the hand calculation is to confirm the student’s understanding of

the task targeted by the problem statement. As shown in the figure, the dialogue is usually

very simple, asking the user to simulate the input-output behavior of the desired program.

During this interaction, the student is not asked about programming goals or schemata, just

the task at hand. In the RPS dialogues, the student is presented with game choices and

asked to report the outcome of games. It is generally very easy to conduct such dialogues

for knowledge-lean tasks such as these.

Although errors are rare in the hand calculations, minor slips do occur. The student

in this example makes two mistakes, both of which are corrected by ProPl. On line 6,

the student incorrectly applies the rules to the value of 3. A similar error happens on line

10. In both cases, the student seems to recover by providing the correct next answer. This

student was able to provide the correct count and largest value for this sequence in the

ensuing dialogue. It should also be noted that had the student said the ground state was

reached in lines 16, 18, or 20, ProPl would have stopped the example and confirmed that

94



1 T If we start at 12, what comes next?
2 S 6
3 T Fine. What comes after 6?
4 S 3
5 T Good. Ok, what follows 3?
6 S 5
7 T 3 times 3 is 9, then you add 1 to get 10. after 10?
8 S 5
9 T Super. good. next one after 5?
10 S 8
11 T Well... Since 5 is odd, we triple that and add 1 giving 16.

after that?
12 S 8
13 T Good job. yep. what’s next?
14 S 4
15 T Yep. after 4?
16 S 2
17 T ok, after 2?
18 S 1
19 T after 1?
20 S 4
21 T Do we need to keep going?
22 S no
23 T That’s great. The sequence will now repeat 4 2 1 (the ground

state) forever, so we can stop.

Figure 6.4: ProPl performs an interactive hand calculation of a Hailstone series with the
student.

it was ok to stop. The major benefit of going through such an exercise is that students who

tend to be careless get a chance to make slips and mistakes with the tutor present. Serious

misunderstandings of the problem and task have a far less chance of carrying through to

implementation because of this.

Once the simulation is completed, ProPl begins by asking top-level questions as pre-

scribed by the CPP 3-step pattern. As each programming goal is correctly identified during

the course of a tutoring session, it is posted in the design notes pane. After a goal is iden-

tified, a “how” question follows and, when answered correctly, aspects of the schemata that

95



achieve these goals are posted as comments beneath the relevant goals. To complete the

3-step pattern, dialogue ensues to describe the needed plan, and the pseudocode screen is

updated. It is important to note that the student plays no role in the actual construction

of the pseudocode, other than being asked where steps should go. Although it would be

highly desirous to have the student deeply involved in this part of the planning, it was soon

discovered to be too difficult a problem to deal with in a general way, and to support it in

dialogue.

As the problem solving session evolves, both the design notes screen and pseudocode

screen grow, just as it does in ProPl-C. When students are unable to answer a question, or

give a wrong answer, ProPl continues by engaging in a subdialogue aimed at eliciting the

desired answer. These tactics were described in section 4.4. When the student is unable to

provide the correct answer even after the remedial tutoring tactics, ProPl will eventually

give it away. The student is told when the last goal has been achieved in the pseudocode and

given a chance to review the solution and notes as long as desired. In addition, the browser

and dialogue history are also reviewable at any time.

The interface for ProPl is shown in figure 6.5. As the figure shows, it is nearly identical to

that of ProPl-C. The only difference is in the lower left hand window: the tutorial content

window is replaced with a dialogue window. Tutor utterances appear in boldface and the

student responds by typing into the response field. This is identical to how interaction

occurred with the human tutor in the CPP environment.

Although there is a period of adjustment and learning with any new system, this time is

especially lengthy for dialogue systems (interacting with the system, how to phrase responses,

understand the system’s output, etc.). As such, before using ProPl for for the first time,

users receive a short tutorial for a simple three line program that computes a person’s

body mass index. The tutorial demonstrates how to answer questions and work in the

environment. Participation is limited to clicking buttons and typing predetermined answers

to the questions. Providing such a tutorial is known to be an effective way to accelerate

users’ abilities to use dialogue systems effectively (Kamm, Litman, and Walker 1998).

96



Figure 6.5: ProPl’s interface uses a dialogue window (lower left corner) to interact with
the student. Tutor utterances appear in blue and the student’s in black.

6.3 DIALOGUE ENGINE AND KNOWLEDGE SOURCES

ProPl is an application of the Atlas dialogue management system (Freedman et al. 2000),

a domain-independent framework for the development of natural language dialogue systems.

Atlas provides two main components:

• Atlas Planning Engine: (APE) a planner for tutorial dialogue.

• CARMEL: a natural language understanding component which includes robust and

efficient algorithms for parsing, semantic interpretation, and repair.

To build a tutoring system using Atlas, it is necessary, at a minimum, to provide a plan library

to guide tutorial interactions and a semantic grammar and lexicon for the sentence-level

understander. Atlas also prescribes the use of Knowledge Construction Dialogues (KCDs)

when developing and provides additional tools to support their creation and refinement (Rose

et al. 2001; Jordan, Rose, and VanLehn 2001).

97



6.3.1 Knowledge Construction Dialogues (KCDs)

Briefly, a KCD is based on a main line of reasoning that it elicits from the student in a series

of questions. If understanding fails to detect a correct answer to a question, it initiates a

subdialogue, which can be another KCD or a bottom-out utterance giving away the answer.

Different wrong answers can elicit different subdialogues to remedy them, and there is always

a generic remedial subdialogue for answers that cannot be recognized as correct or as one of

the expected wrong answers. The dialogue management approach for KCDs can be loosely

categorized as a finite state model (Jurafsky and Martin 2000). Tutor responses are specified

in a hand-authored network. State nodes in the network indicate either the system should

question the student or push and pop to other networks. The links exiting a state node

correspond to anticipated student responses to the question. Anticipated student responses

are recognized by looking for certain phrases and their semantic equivalents (Rose et al.

2001).

ProPl contains about 35 top-level KCDs and 100 more remedial KCDs covering three

programming problems (see section 7.2.3.1). As mentioned earlier, when moving through

the 3-step pattern, each step engenders a question to the student. These are the first ques-

tions asked in each top-level KCD (minus those doing the initial hand simulations) and the

student’s answers dictate which remedial subdialogues are called, if any. There are KCDs

for all goals and plans involved in each solution. KCDs to elicit goals are often short while

those to elicit plans are longer because each part of the plan must be addressed.

KCDs in ProPl were constructed with a variety of goals in mind. For example, many

involve the refinement of vague answers, completion of incomplete answers, and redirection

to concepts of greater relevance. ProPl’s responses are dictated entirely by the authored

content of the KCDs. That is, the system’s responses to student answers are dictated by the

classification of that answer by the CARMEL and the KCD “called” for that answer class.

There is no higher level tutorial decision making or student modeling done in ProPl, even

though APE provides some functionality for introducing advanced techniques such as this

into the planning operators. A sample of KCDs for the Hailstone problem are shown in

appendix D.

98



6.3.1.1 Effort required for a new problem KCD authoring task is much simpler with

a corpus since expected answers and the problem-specific aspects of tutoring are readily

available. It is still certainly possible to write KCDs for a new problem without it, however.

The Snap KCDs were written with no corpus to draw from and in the KCD analysis presented

in the next chapter (section 7.4), this set of KCDs did just as well as questions from the

Hailstone and RPS problems. On the other hand, at the point the Snap KCDs were written,

I had a great deal of experience having gone through the full process twice. It made a huge

difference to have had access to example questions and answers when working on them.

The general KCD engineering process consisted of first gathering a collection of student

answers to the goal- and schema-eliciting questions (when a corpus was available). The

tutoring tactics were then identified (either through creativity or the corpus) and answer

classes identified, then implemented in KCDs. In my experience, the rough estimate of time

needed to author each top-level KCD, along with the shorter ones that “hang” off them,

was about 2.5 hours. The “large” KCDs implementing advanced tactics took between a 30

and 120 minutes each (there were a few of these in each of the three problems). These are

estimates based on my reflection on the process. Also, the time is greatly dependent on

the desired level of breadth of understanding and tutoring. Total effort, including building

up the NLU sources, integrating them in with the ProPl environment, revising them after

test runs, and writing the necessary HTML content, it was about an average of 60 hours per

problem (overall total of 180). Of course, the key benefit is that once a problem is authored,

it is available forever (and can be iteratively improved over time).

6.3.2 Top-level dialogue control

Top-level control of ProPl consists of a set of simple APE operators that call KCDs in a

pre-determined order. For each problem, KCDs exist to elicit each goal and schema/plan.

These are called in the same order they are presented in ProPl-C, which is also the same

order students seemed to prefer in the human-human corpus. The completion of a KCD

triggers the update of the design notes and pseudocode windows, depending on if a goal or

schema was just completed.

99



Figure 6.6: ProPl handles many “how” questions by checking for parts in the student’s
answer, then calling remediation KCDs for the missing elements.

6.3.3 Understanding student input

The goal/schema distinction in CPP provides a useful context for understanding. For ex-

ample, if the tutor asks a goal-eliciting question, the understanding task is to infer the

relevant goal from the student’s answer. The aim is to take every advantage of the “good-

ness” present in utterances. Similarly, when students answer schema-eliciting questions, they

seem to “pluck” concepts from various sources, like the problem statement or their limited

(largely syntactic) understanding of programming. Nonetheless, in the human-human dia-

logues, novices are generally able to say something correct, even if it sometimes was only “in

the ballpark” (see chapter 5).

It is therefore quite important to identify the correct components in an answer and provide

feedback indicative of that recognition. It is important not only to carry on natural-sounding

dialogues, but also to maintain student morale (Lepper et al. 1993). Two strategies are used

in ProPl to handle recognizing a wide-range of correct answers:

1. Build up the semantic grammar with utterances collected in the human-human corpus,

pilot testing, and from subject-matter experts (a standard practice).

100



2. Use the answer part facility provided by the KCD component of Atlas to allow the student

to mention schema components in any order (depicted in figure 6.6).

Building up a semantic grammar – that is, expanding the breadth of key words and phrases

that can be recognized – is necessary when building most dialogue systems. Luckily, Atlas

provides several tools to help automate the process. The second method, using answer parts

to implement form-filling, represents an unintended application of the method in ProPl as

it has been used in other KCD-driven systems (Rose et al. 2001). Answer parts are typically

authored when a student’s answer is expected to contain mention of all parts on the first try.

In ProPl, this assumption is relaxed by turning off negative feedback when parts are left

out. Instead, KCDs are called that elicit fillers for the “gaps” in the student’s original answer.

In dialogue systems research, this strategy is known as a form-filling approach to dialogue

management. In sum, it permits students to talk about any component of a schema/plan,

with other KCDs being called to elicit the remaining details.

6.3.4 Differences between ProPl-C and ProPl

The key and only intended difference between ProPl and ProPl-C is the mode of com-

munication with the student. More specifically, ProPl uses free form natural language

dialogue for communication and ProPl-C uses reading alone. As mentioned, the problem

and solution content is identical. Nonetheless, there are some unintended differences between

the two systems that are worthy of mention. These are particularly important since it is

these two systems which are pitted against each other in the evaluation described in the next

chapter.

The tutor messages in ProPl-C are intended to replace the dialogue window of ProPl.

The pedagogical content of the authored messages was written to represent faithfully what

the dialogue covers, but it would be impossible to do so perfectly. It would be overwhelming

and likely not comprehensible to show the possible remedial KCDs that exist in ProPl.

Another strategy is to perform yoking, which simply means that dialogues from the experi-

mental group are shown as reading for the control group. Although this is a good solution,

the decision was made to adopt a more palatable, straightforward approach of canned read-

101



ing (or “mini-lessons”). This approach has been used in previous studies on KCDs (Rose

et al. 2003a).

Another difference arises when one considers the time it takes to use each system. Since

a ProPl-C student is only reading and is not required to type answers from scratch, it

naturally takes them less time to make it through a complete solution. Time-on-task differ-

ences are common in studies of educational systems, and so the decision was made to not

introduce some artificial time filler or restrictions on using either system. In fact, when one

looks at the overall times, including time on the compiler and planning time, it is not clear

at all there is even a time-on-task issue with these systems.

6.4 CHAPTER SUMMARY

This chapter discussed automating CPP. The main points of the chapter were:

• ProPl is a partial implementation of CPP. Goals, schemata, and plans are elicited, but

very little pseudocode arrangement is performed. Rather, it is presented to the student

stage by stage, in tandem with the progress of the dialogue.

• ProPl-C is a non-dialogue version of the system that presents a rendition of the dialogue

content as mini-lessons. The same solutions are presented by both systems.

• Design notes are English summaries of the goals and schemata involved in a solution.

Their purpose is to reify the tacit knowledge of programming in the context of the

problem being solved with the system.

• ProPl tutoring sessions follow the form prescribed by CPP: an initial hand calculation

is done, followed by progression to the 3-step pattern to produce the pseudocode.

• ProPl is an application of Atlas, a dialogue toolkit for tutoring systems. The pri-

mary knowledge source for ProPl are Knowledge Construction Dialogues, which are

hierarchical structures that walk student through directed lines of reasoning.

• ProPl handles understanding by possessing a large semantic grammar for programming

and using the answer-part facility of Atlas. This allows the KCDs to handle a variety of

student answers, and use a form-filling approach to handle schemata.

102



7.0 EVALUATION

In this chapter, two controlled evaluations are reported: one comparing students receiving

CPP from a human tutor versus those receiving no tutoring at all, and another comparing

ProPl and ProPl-C. The first experiment took place in fall of 2001 and spring of 2002

and used introductory programming students as subjects. The study was designed with two

primary goals in mind:

1. Collect a corpus of human tutoring sessions to inform the development of an intelligent

tutoring system for beginning programmers.

2. Evaluate the impact of CPP on students’ programming ability.

The corpus analysis focused on analyzing the tutoring tactics as well as the kinds of answers

and general language students use to talk about programming. Section 4.4 described the

tutoring tactics used in the corpus and in chapter 5, a brief overview of how novices responded

to goal- and schema-eliciting questions was presented. Regarding the evaluation of CPP on

students’ programming ability, this study was very much an exercise in determining how

best to go about it given the aims of CPP.

The second experiment, which took place in the spring of 2004, refines and improves

the first. It pits ProPl against ProPl-C with students coming from three introductory

programming courses. Again, projects from the courses were used as subject matter, but this

time written pre- and posttests were given to improve the evaluation. The most important

finding from this experiment, and perhaps the entire dissertation, is that ProPl students

displayed more skill at solving the composition problem. Sadly, there is a certain amount of

discord between the two experiments. Certainly mistakes were made in the first experiment,

but part of this effort was exploratory: it was not clear, in the beginning, what (if any)

103



impact pre-practice tutoring would have on students. Luckily, the results of the CPP study

led to revisions and refinements that made the ProPl study more coherent and targeted.

7.1 CPP VERSUS BASELINE

A pilot study was conducted in the summer of 2001 to test the CPP software and begin

collection of the corpus. Tutoring occurred with a human tutor1 over a network. Student

reaction was very positive. Based solely on their reactions, the decision to move forward

towards ProPl was essentially assured.2 Nonetheless, to build up the corpus and to begin

assessing what impact it might have on beginning programmers, the controlled evaluation

moved forward.

7.1.1 Design

Students began by signing consent forms and reading about the experiment. Next, they were

assigned to one of two conditions according to their preferences: the experimental condition

with subjects using the CPP environment over a network with a human tutor or a control

condition allowing students to go about writing their programs as they normally would (with

no intervention). It was, perhaps, a mistake to not assign students at random, but given the

goal of building up a corpus, those students willing to spend the extra time to come in for

tutoring (and get paid, not all were willing) were not turned away.

7.1.2 Participants

Subjects were volunteers from Introduction to Computer Programming, a CS03 service course

at the University of Pittsburgh and were paid $7/hour for their participation. 16 students

1The author was the tutor.
2Immediately after the tutoring session, one student sat back from the computer and said, “Cool! I’ve

already started on my program!” The comment was not simply enthusiastic, but suggested the student
perceived pseudocode planning as programming.

3This is the general ACM classification for beginning programming courses that are not intended for
computer science majors (which is labeled CS1).

104



volunteered (out of roughly 35 in the course) and 2 were removed for not completing the

course. None of the subjects had programming experience beyond a few weeks of BASIC or

spreadsheet skills. The initial assignment of students was n = 7 to each condition.

7.1.3 Materials

Four projects from the course were used in this study, starting roughly one month into the

course.

1. Numbers to Words: input a number between 1 and 999 then display the number in

English words.

2. Hailstone: shown in figure 4.1 (page 47).

3. Rock-Paper-Scissors (RPS): play a “best-of” match of RPS games, keeping track of

wins and picking randomly for the computer. The solution involved the use of subpro-

grams (appendix A).

4. Lotto Check: an array program requiring a variety of array processing activities.

The first assignment acted as the pretest for students in both groups; no tutorial intervention

was performed. Students in the CPP group received tutoring for the Hailstone and RPS

problems before they attempted to implement solutions. Finally, no intervention was given

on the fourth project allowing it to play the role of posttest.

7.1.4 Procedure

The experiment began roughly one month into the semester. In their classes, students

had learned the basic concepts of computer systems (memory, processors, etc.) and some

rudimentary programming concepts including types, variables, operators, and simple in-

put/output. The study spanned nearly six weeks, during which students learned control

flow (conditionals and loops) and how to write simple subprograms. All students signed a

consent form agreeing to participate in the study and have data about them collected and

analyzed. Data collection consisted of recording compiler and editor activities of all subjects.

This data also included copies of all files submitted to the compiler – this collection of files

105



is called an online protocol (this method was also used in Spohrer and Soloway 1985). In

addition, students were allowed to take notes as well as a copy of the pseudocode after their

tutoring sessions.

7.1.4.1 Floundering To determine if CPP subjects displayed less erratic behavior during

implementation, the idea of floundering was borrowed from the fields of user interfaces and

intelligent tutoring systems. Students are deemed to flounder when their movements in an

interface begin to seem random and often rapid. A student with no idea how to move forward

will either stop altogether or resort to floundering. In programming, Perkins (1989) refers to

these two groups as movers and stoppers. An extreme mover, a tinkerer, is one who thinks

very little about the purpose behind each compile attempt, and usually hopes (rather than

knows) if each change will bring the desired results.

Floundering is defined in programming as repeated attempts to repair an algorithm-

related bug (as opposed to a syntactic or language-construct bug) that leaves the program

no closer to being correct after each attempt. To gauge floundering, the online protocols

were tagged based on the content of the differences between each pair of syntactically correct

versions of the programs. Changes between each pair of files were labeled as involving an

algorithmic bug-fix or something else.4 Basically, if a compile attempt appears to be grounded

in an algorithmic problem, and it did not show signs of progress towards correction of the

error, then it was tagged.

Under this definition, tinkerers will produce more instances of floundering than students

closer to the stopper end of the spectrum. So, instead of counting the raw number of com-

piles that are classified as floundering, the solution was to count the number of floundering

episodes. An episode is defined as one or more consecutive recompiles intended to fix the

same error. This levels the playing field between the different classes of students. For exam-

ple, an episode of length 17 and one of length 3 will each count as one episode. Intuitively,

then, the number of floundering episodes found in an implementation represents the number

of algorithmic impasses the student struggles to repair over the course of a protocol.

4“Something else” includes things like tweaking i/o behavior, adding comments, superficial rearrangement
of program code, and adding large code segments.

106



Two other measures were used to evaluate CPP’s impact. To see if students who used

CPP were more included to use comments, the number of comment lines in the final version

of the posttest program was counted. Single line comments counted as 1, as did each line

within multi-line comments. Administrative comments (name, date, class, etc.) were not

counted. This metric was largely motivated by my own observations that students did

not use comments to sufficient levels, and was confirmed by a number of other instructors.

My belief was that the use of natural language dialogue to prepare for a program could,

perhaps, carry over into an implementation in the form of more use of comments. Second,

to determine if CPP subjects gained a better understanding of structural concepts, all files

submitted to the compiler, including those with syntax errors, were checked for indentation

errors. Each improperly indented line was counted upon its first appearance. The rules for

proper indentation were liberal (one space was considered enough), but consistent with those

presented in popular introductory programming textbooks.

7.1.5 Results

Because of a possible self-selection bias (subjects were assigned to one of the two conditions

according to their stated preferences), the first project included in the study, also the first

non-trivial assignment given in the class, was used as a pretest. The scores on these projects

(from the course) revealed no significant association between condition and pretest (t(12) =

−0.269, p = 0.79), allowing the conclusion that both conditions consisted of subjects of

equivalent competence. In analyses below, then, ANCOVAs are used to factor out the pretests

and support the conclusion that the intervention was responsible for the differences and not

student ability.

Floundering The first test for floundering was to simply count all successful compile

attempts on the fourth assignment in the study (covering arrays, untutored). CPP subjects

compiled an average of 25.0 (SD = 32.9) times on this project, and control subjects compiled

49.4 (SD = 41.38) times. The difference is not statistically significant. However, by throwing

out a statistical outlier in the CPP condition who was 2.2 standard deviations from the

mean, the difference becomes marginally significant (F (1, 10) = 4.08, p = 0.071). The

107



Figure 7.1: Tagging tool for online protocols.

second test was to count episodes of algorithmic floundering. In the posttest assignment,

CPP subjects had a mean of 1.00 (SD = 2.24) episodes and the control subjects averaged

2.71 (SD = 2.63). The difference is marginally statistically significant (F (1, 11) = 3.53,

p = 0.087) and moderately large (effect size = 0.65).5

Because floundering is a subjective measure, the online protocols were coded indepen-

dently by two experienced programming instructors. A coding tool was developed to help

the coders tag the protocols (a screenshot appears in figure 7.1). It displays programs in

pairs and provides button- and slider-based navigation for easy viewing. In the center of the

interface, coders select the appropriate tag for each pair of programs (the kind of debugging

act and whether or not it can be classified as floundering). In addition, differences between

the two versions of the program are highlighted (with the help of diff) to help the coders

see where changes occur.

5Effect size was computed using Glass’ delta, that is, Mexp−Mctrl

SDctrl

108



To develop the conditions and understanding of floundering, four randomly chosen proto-

cols were used for training and discussion. Coding was done together on these four leaving

the remaining protocols to be coded independently by each coder. After identifying the

beginning and ends of all floundering episodes, the inter-coder reliability was computed. To

do this, the kappa statistic, a measure popular in the computational linguistics community

was used (Carletta 1996). Using a +/− 1 cushion on the boundaries of episodes 2 in length

or longer, the resulting kappa value was 0.872.6 This means the identification of floundering

can be considered a consistent and usable measure to gauge a student’s success in developing

a program.

Commenting In their final posttest programs, CPP subjects had a mean of 35.0 (SD =

23.1) comment lines. The mean for control subjects was 12.3 (SD = 9.76), leaving a dif-

ference of nearly 23 more lines of comment lines on average for CPP subjects over control

subjects. This difference is statistically significant (F (1, 11) = 5.97, p = 0.0325) and large

(effect size = 2.33).

Indentation Because indentation had been covered in class and gradually learned through-

out the semester, there was a ceiling effect when analyzing the indentation of the posttest

program. Thus, results for the second project are presented understanding that the CPP

students had already created a pseudocode solution prior to their real solution. During the

implementation of the second project, CPP subjects produced an average of 2.43 (SD = 2.88)

improperly indented lines of code per implementation. The mean for the control subjects

was 12.7 (SD = 10.8). This means that CPP subjects maintained the structure of their code

by incorrectly indenting roughly 10 less lines than the control subjects. This difference is

statistically significant (F (1, 11) = 5.61, p = 0.0373) and large (effect size = 0.95).

7.1.6 Discussion

Overall, these results were deemed encouraging enough to move forward with the develop-

ment of ProPl. Although only marginally significant results were found when counting the

number of floundering episodes, with such a small N , it was suggestive that CPP seemed to

6Generally, a kappa value above 0.80 is considered reliable.

109



help them. It is important to note that only the posttest project was used in the floundering

analysis, and so the CPP’s influence seemed to extend beyond the tutored projects. Lack of

comments in programs is often a problem for novices, and so the finding that significantly

more comments existed in code written by CPP students suggests that the tutoring encour-

aged them to be more verbose and perhaps implies that they tended to think more about

programming in their own words. The mere existence of comments is only a suggestive,

however, and so a more detailed analysis of the content of these comments would need to

be done to confirm that hypothesis. This was not done as part of the experiment. Finally,

it is highly likely the indentation benefits were due to the fact that students were allowed

to take the pseudocode solution with them to do the actual program. As stated above, the

indentation analysis was done on the Hailstone program since a ceiling effect was detected

on the posttest project. Thus, the indentation result is not as strong regarding the longer

term effect of CPP.

In sum, the CPP experiment provided a sufficient corpus to analyze tutoring tactics and

collect examples of student responses. These data were used in the construction of ProPl

as detailed in the previous chapter. The experimental evaluation also provided some valuable

insights into the problem of assessing the process of programing and the integration of pre-

practice tutoring into a course curriculum.

7.2 PROPL EXPERIMENT

An experiment to evaluate ProPl was conducted in the spring of 2004. It was designed

to highlight ProPl’s use of natural language dialogue and tutoring tactics and to assess

its impact on students’ programming experiences, general algorithm writing ability, and

program planning skills. Because CPP seemed to be helpful and students received it well,

the goals of this experiment were more directed. In particular, it was designed to focus on the

benefits of tutoring with natural language dialogue and to test the ability of state-of-the-art

dialogue technology to deliver CPP-like instruction.

110



7.2.1 Design

Participants were randomly assigned to one of two conditions: ProPl or the “click-through”

reading of ProPl-C. As described in chapter 6, the differences between the two were min-

imal, except for the use of dialogue. Students using the control system observed problem

decompositions and solution compositions by clicking a button to see the material. The

tutorial content was authored such that it mirrored the content presented in the dialogues as

much as possible. Both groups viewed the same pseudocode solutions presented in the same

staged fashion. The same design notes were also identified and posted. The experiment was

designed so that the only real difference between the two groups was the style of interaction.

There are two possible confounds in the design, however. One lies in the difference

in content between the mini-lessons and the dialogues. As discussed, this was kept to a

minimum by careful authoring of the reading. Secondly, the students using ProPl received

a five minute tutorial on the system which presented a simple three line program. In this

tutorial, the student does no typing and the problem difficulty is equivalent to that of a

program viewed in the second week of class.

7.2.2 Participants

The participants were university students currently enrolled in one of three sections of intro-

ductory programming at the University of Pittsburgh (again, CS0 service courses intended

for non-majors or potential majors requiring remedial coursework). Two of the sections used

Java (those in the Computer Science department) and the third used C (in the Information

Science department). All three covered content typical for such courses (types, variables,

operators, control structures, functions, arrays, and files). Students were admitted on a

voluntary basis and admitted into the study if they had very little or no programming expe-

rience before taking the class (no more than one semester). Participants were paid $7/hour

for their time.

Out of the roughly 90 total students enrolled in the three courses, 33 volunteered to

participate in the study. Of these, 3 were turned away because they had too strong a

programming background (over 1 semester prior experience). The initial assignment of

111



students was n=15 to each condition. After attrition, the numbers fell to n = 12 and n = 13

in the ProPl and ProPl-C groups respectively.

7.2.3 Materials

Just as in the CPP study, the experiment began about one month into the semester and

students had covered some basic programming concepts. The study spanned about five

weeks, during which students learned control flow (conditionals and loops) and how to write

simple subprograms.

7.2.3.1 Class programming projects Instructors in the three courses agreed to give

the same two assignments needed for this study (Hailstone and RPS). To help drive home the

CPP model, students used the system for a third time for an extra problem that they were

not required to solve for their class. This problem, called Snap requires that the program

allow the user to enter numbers until a user specified number of repeats is detected. The

program is to print the mean of the numbers seen prior to the repeating sequence.7 The full

problem statement appears in appendix A.

For students in the Java courses, it was possible to collect online protocols but it was

not possible to collect this data from some students in the C section (they worked on their

personal computers rather than the central unix server). The numbers for each condition

for which online protocols were available are n = 8 (control) and n = 9 (ProPl). Final

solutions to each project were available for all participants. It should also be noted that

on-line protocols were available for all students in the posttest programming project (next

section) since it was completed in a lab environment.

7.2.3.2 Programming tests Two written programming tests were developed. The first

was given as a pretest to gauge students’ general incoming programming competence. The

test included conceptual questions (multiple choice, true/false), program output questions,

7The name comes from the fact that the program should break off a sequence, i.e., “snap” it, once the
specified number of repeats has been entered.

112



and code-writing problems. Students were given 45 minutes to complete this test. Java and

C versions of the test were given depending on the course the student was taking.

When students took the pretest, they had only encountered basic topics like types, vari-

ables, expressions, i/o, etc. As such, minimal problem solving ability was able to be assessed

on this test. The posttest was quite different in that it targeted students planning and

algorithm writing skills. It consisted of six distinct questions:

1. Given a “bag” of pseudocode steps and a problem, assemble a solution to the problem

using those steps. Not all steps were needed and some duplication was required.

2. Using the same steps, organize them by the goals they help achieve (i.e., plan identifica-

tion).

3. Read four small code segments and describe the programming goal each achieves as

concisely as possible.

4. Given a partially completed program written by a fictitious friend, state the next two

goals that should be pursued.

5. Produce a design for the Snap problem (i.e., the third problem that was tutored in the

study)

6. Produce a design for the game of Craps (rules are given).

75 minutes was allotted for students to finish, which was sufficient for about 80% of the

students in the study. Questions 1 and 2 included some “red herring” steps and some that

needed to be used more than once in the solution. Question 3 was a far transfer problem

intended to determine if students could reason from actual program code to an abstract

statement, in words, of its purpose. Questions 5 and 6 were open-ended design tasks with a

restriction on 5 to clearly state a set of programming goals.

In addition to the written posttest, students also completed a charette at the end of the

study.8 This assignment, called Count/Hold, asked the student to play a simple dice game

between opponents. Two players roll dice, and after each roll, the user has the choice to

count the roll for that game (getting that score), or hold their roll over to add to the next

8A charette is a small programming assignment done under a strict time limit in a closed lab environment.
This method of assessment discriminates against students with test anxiety or those who work naturally
slower (McCracken et al. 2001).

113



game (getting a 0 for the current game). The solution requires the implementation of a

computer player, allowing the user to play against it, and the play of as many games as

the user requests. Students were given two hours to work and were allowed to use their

textbook and class notes if desired. The program involved achieving six overlapping goals

and required the use of loops, conditionals, and several advanced plans.

7.2.3.3 Survey At the end of the study, students were given a survey consisting of 15

questions (with two extra questions for ProPl students to evaluate the natural language

capabilities). These questions targeted students’ attitudes about the software and how it

impacted them during and after their implementations. Several questions also asked about

their use or recollection of the design notes versus the pseudocode. A five-point Likert-type

scale (1=strongly disagree to 5=strongly agree) was used to score each statement on the

survey.

7.2.4 Procedure

Students completed the following steps in the ProPl experiment (in order):

1. consent form and background questionnaire

2. written pretest

3. tutoring session for Hailstone followed by independent implementation

4. tutoring session for RPS followed by independent implementation

5. tutoring session for Snap

6. written posttest

7. programming posttest (Count/Hold)

For Hailstone and RPS, students were instructed to not start the assignment before coming

in for their tutoring session. Students were also not allowed to take notes or record the

content of their sessions in any form. As discussed earlier, this was permitted in the CPP

experiment, and proved to be a problem in the study. To test for direct effects, it was

necessary that students be faced with the task of recreating the solution they learned about.

In other words, the idea is to force students to solve the composition problem all over again,

114



but after their experimental intervention. Thus, note-taking was outlawed for students in

both the ProPl and ProPl-C conditions.

7.2.5 Intention-based scoring

Before presenting the results of the experiment, it is necessary to describe the approach used

to evaluate student programming ability. Although final scores can be used to analyze the

ultimate success of a student’s programming ability, they reveal little about the path taken

to that final product. Such scores are best understood as testing for indirect effects since

there are other potential factors that appear between the time of the intervention and the

scoring. Finding indirect effects is highly desirable, but often very difficult to achieve. If no

indirect effects are found, the goal is then to find any direct effects that may have occurred.

In the case of this study, grading a final program is difficult because of many issues, like time

and the influence of outside sources (tutor, friends, etc.) on the program produced by the

student.

To test for direct effects, the idea of collecting an online protocol (i.e., the collection of all

programs submitted to the compiler) was presented in the previous chapter. This collection

offers a rare glimpse into the thinking of a novice programmer, but can also be very messy.

Compile attempts can be made for a myriad of reasons, some of which are not readily appar-

ent from the textual differences between successive programs. Researchers are just beginning

to develop tools for analyzing such data to reveal what it says about programming behav-

iors (Jadud and Fincher 2003). Simple measures, like raw compile counts and time spent

between compiles, are rough and do not necessarily correlate with programming ability. For

example, when a student compiles excessively, they may be “tweaking” their code rather

than repairing significant bugs. Algorithmic floundering was was proposed as an improve-

ment over such raw measures, but was found to be too difficult to interpret in a precise way.

Floundering results say nothing about the kinds of errors being made, and perhaps speaks

more to debugging ability and persistence than it does about algorithm writing ability.

It was not possible to perform testing for direct effects in the CPP study since students

were allowed to take the pseudocode solutions with them after their tutoring sessions. In

115



other words, programming for students in the study was reduced to a translation task,

from pseudocode to their target language. This meant they were not required to solve the

composition problem again. This mistake in the design of the CPP experiment that was not

apparent until far too late, but was rectified in the ProPl experiment.

In this section, a new way of deriving interpretable scores from online protocols is de-

veloped, namely, intention-based scoring (IBS). The goal is to provide a score that more

accurately assesses a student’s ability to solve the composition problem, and therefore assess

direct effects. IBS derives elements from previous work on identifying bugs in online protocols

including intention-based diagnosis from PROUST (Johnson 1990), as well as on establishing

cognitively plausible accounts for how novice bugs are produced (Spohrer, Soloway, and Pope

1989). The remainder of this section provides a detailed outline of three steps necessary to

perform IBS: inspection of an online protocol, bug identification, and scoring.

7.2.5.1 Inspecting an online protocol The first step in producing an IBS is to identify

the subset of programs from an online protocol to analyze for bugs. As discussed above, this

subset of programs should be the student’s initial attempts at achieving each goal. A judge

begins with the first program submitted and works through the protocol chronologically,

checking off goals along the way. This stage is complete when attempts at all goals have

been identified or the protocol ends (leaving some goals un-attempted). The process of

protocol subset identification is depicted in the top half of figure 7.2.

The identification process is not always straightforward, however. The first program in

a protocol is not always a legitimate goal attempt, for example. Some novices prefer to

compile very simple programs to begin, including only things like variable declarations or

simple print statements. Cases like this are ignored and the search continues sequentially

for the first substantive attempt at achieving a goal. A related issue is the sometimes fuzzy

question of whether or not a program represents an attempt at achieving a goal or not. It

is not quite as simple as saying “if any plan component is present, then count it as a goal

attempt.” For example, some students prefer to declare and initialize all variables at once.

This certainly does not imply the student is attempting to implement all plans in which

these steps participate.

116



Figure 7.2: The first two stages of computing an intention-based score. From a protocol, the
programs representing the first attempts at goals are identified, then these are matched to
known correct plans that can achieve them.

To handle problems like this, the method of selecting programs throughout a protocol

must be agreed upon between multiple judges. In the example below, the consensus with

the variable declaration issue, for example, was to conclude that by itself, a declaration would

not be counted as an attempt at its plan. In other words, more plan components would need

to be present than just a declaration or initialization step to count as an outright attempt

at that goal. Such issues arise frequently in the subjective tagging of data, which is why it

is recommended to tag some subset of the data together under open discussion.

7.2.5.2 Bug identification A critical component of IBS involves the identification and

classification of bugs present in a student’s protocol. The same two stage process is followed

which is described in (Spohrer, Soloway, and Pope 1989). First, the plans being implemented

by the student must be identified, and next, compared to the known correct plans of an

117



implementation. Bugs then fall out as differences between these two structures. For IBS,

of course, only the plans corresponding to the new goals being implemented at each stage

should be considered.

Although there are certainly many ways to characterize the bugs (i.e., plan differences), a

simplification of the approach taken in (Spohrer, Soloway, and Pope 1989) is adopted here.

Most generally, an IBS scheme could be constructed from any similar bug classification

strategy. Because the goal here is not to provide an account of cognitive plausibility, cate-

gories that relate to solving the composition problem are the only ones used. The top-level

categories of bugs in the coding scheme are:

• omission: A plan component is missing.

• malformation: A component is incorrectly implemented.

• arrangement error: A component was placed in the wrong location.

In addition, when inspecting a program, it is also necessary to identify those bugs that are

a result of merging of plans (e.g., the multiple loop issue mentioned above). Bugs that are

not a result of confusion between multiple plans are referred to as isolated. Of course, some

bugs can fall under multiple categories. For example, a step can be malformed, out of place,

and be a result of confusion between two plans. Because this is a subjective tagging process,

it is recommended that multiple judges be used and agreement be checked.

An example of bug identification is shown in figure 7.3. In this example, the student

is attempting to implement a counter plan (shown in the shaded box), but has made three

mistakes. First, the incorrect value is used for the initialization step (it should be 1). Second,

the increment step is not placed inside the loop body (an arrangement bug). Finally, there is

no print statement (a bug of omission). In this case, the arrangement bug is also considered

a plan-merging error since the counter is being integrated into the looping code, which was

already in place to achieve a different goal in this problem.

7.2.5.3 Scoring With a bug-tagged protocol, the final step in computing an IBS is to

apply a scoring rubric. Although simple bug frequencies could be used, it is less fair since

focal steps in plans (i.e., those that are “more” central, such as the increment step of a counter

118



Figure 7.3: To find bugs via plan differences, the Hailstone counter plan (on the right) is
mapped into the student’s code. Three differencs fall out of this comparison, including a
malformed initialization step, an incorrectly arranged counter step, and finally an omitted
print statement.

plan) would count the same as less critical components (such as an output statement). To

create a rubric, points need to be assigned to the various plan components. Focal steps

are weighted more heavily, like updates and conditions, than are supporting steps, like

initializations and output statements. This allows discounting of slips (like forgetting to

print a value) and the highlighting of errors in critical plan steps. Finally, points for each bug

identified during the analysis are taken away from an overall possible score, thereby producing

a final intention-based score. In sum, this score represents the accuracy of students’ first

attempts at achieving programming goals. By looking at points lost from each of the sub-

categories (like merge errors or omissions), one can get a better feel for the kinds of errors

novices produce.

As an example, for the counter plan in figure 7.3, one possible assignment could be 3 points

for the initialization step, 5 for the increment step, and 2 for the print step. As mentioned, it

is best to perform this stage with expert instructors who have experience creating rubrics. In

the example, the student would lose 1 point for the incorrect initial value, 3 for the improper

119



location of the increment step, and 2 for forgetting the print step. These partial values need

to be agreed upon in the rubric. In sum, this student would receive 4 out of 10 possible

points for this attempt at implementing a counter plan.

7.2.5.4 IBS Discussion One difference of IBS with previous work using online protocols

is that all attempts in a protocol are made available for inspection. Most previous work

considered only syntactically correct compile attempts. The reasoning behind “opening” up

the protocols in this way comes from the observation that for some students in the protocols,

the algorithm intended by the first compile attempt was often different than that in the first

syntactically correct attempt. This means that students’ algorithms seemed to change, likely

inadvertently, while fixing syntax errors. The very first attempt at assembling an algorithm

is likely a more accurate representation of a student’s initial impression at how to solve the

composition problem. Also, the process is dubbed “intention-based” for two reasons: first,

programs are inspected by inferring what goals the student is trying to achieve. Second,

when a program statement is not syntactically correct, it is necessary to infer what plan

component is being attempted. The line count + 1;, for example, is likely an attempt to

increment a counter variable. Thus, such a statement is considered equally as correct as a

syntactic one.

There are several problems with the IBS method of evaluating programs. First, it is

extremely tedious. In no way is IBS intended for regular classroom evaluations – it is

only reasonable for use in targeted evaluations that require a fine-grained understanding of

student success. In fact, it would be largely unfair to use IBS for the purposes of assigning

a grade since debugging, optimization, etc. are all important skills as well. Second, the

creation of the rubric is subject to the bias of the researcher. In other words, the weighting

of the various plan components may indirectly impact the outcome of the study. To deal

with this problem, the raw frequences are discussed (section 7.3.2.4 and appendix C), which

are immune to bias potential (but fail to produce an accurate assessment). Finally, in the

form presented here, IBS is dependent on a plan-based theory of programming knowledge.

The difficulties and limitations of this theory, such as handling the notion of recursion, are

naturally inherited.

120



7.3 RESULTS

The primary objective of this evaluation was to test the efficacy of natural language tutoring

to teach simple program planning skills. The hypothesis was that students who learn decom-

position and composition skills in the context of their class assignments will learn such skills

more effectively if they are engaged in natural language dialogue as opposed to reading the

same material. In this section, results from the programming assignments, posttests, and

follow-up survey are reported. For the programming assignments, baseline data is included

from students who received no tutoring or intervention at all. These students used Pascal

and the data was collected from the CPP study.9 By looking at the performance of students

who receive no special intervention, a better idea of where ProPl and ProPl-C sit with

respect to students who learn in the traditional way can be formed.

7.3.1 Pretest

On the pretest covering programming competence, scores were similar for the ProPl group

(M = 68.9, SD = 19.2) and control (ProPl-C) group (M = 67.5, SD = 18.7), t(24) = .155,

p = .88. This indicates no difference in incoming programming ability allowing the conclusion

that the assignment to conditions was fair with respect to incoming student ability. Because

the students in the baseline group were not given this pretest, it was not able to include

them in the above test of equivalence between groups.10 Thus, in the sections below, t-tests

were used for comparisons involving the baseline group, whereas ANCOVAs were used for

comparisons between the control and ProPl groups to factor out the pretest.

9Two more protocols from untutored students became available after the CPP study, taking the n for the
baseline group to 9.

10However, looking at the final grades students in the three groups received in their respective introductory
programming courses suggests roughly equal competence. The GPAs were 2.89, 2.88, and 2.89 for the
baseline, control, and ProPl groups, respectively. In addition, each group had a roughly even split of A, B,
and C students. Although weak evidence, it is at least suggestive of equivalence between the three groups.

121



Table 7.1: Final program means and standard deviations in parentheses using traditional
scoring rubrics that measured execution behavior, quality of code, and style. All scores are
out of a possible 100.

problem baseline ctrl ProPl

Hailstone 86.0 (13.4) 84.3 (19.3) 90.1 (11.4)
RPS 78.8 (23.0) 76.3 (22.9) 75.8 (23.5)
CH n/a 45.6 (23.5) 48.3 (32.3)

7.3.2 Programming projects

The programming data analyzed in this study covered three programming projects: Hail-

stone, Rock-Paper-Scissors (both described in section 7.2.3.1), and Count/Hold (described

in section 7.2.3.2). Count/Hold was a charette: students worked in the lab under a two

hour time limit and were not given any help (other than with technical difficulties). In this

section, we first report final scores on these projects followed by the intention-based results.

7.3.2.1 Final program scores The final scores for the three programming projects

involved in this study are shown in table 7.1. The control and ProPl groups received

tutoring for the Hailstone and RPS projects as discussed in the previous section. Students

in the baseline group attempted the programs with no intervention at all. Programs were

graded independently by two experienced instructors using rubrics similar to those used

in other studies (e.g., McCracken et al. 2001) and agreement between the graders over all

programs was very high (r(83) = .852, p < .0001). None of differences between groups were

found to be statistically significant.

In understanding why no differences were found between the groups using the final pro-

gram scores, it is useful to draw the distinction between direct and indirect effects. A direct

effect is one that is most closely related (both chronologically and conceptually) to the in-

tervention. Final program scores do not fall into the direct effect category because of (1) the

122



Table 7.2: Composite intention-based are derived from a goal/plan analysis of students’
online protocols and represent a composite score of the accuracy of students’ first attempts
at achieving programming goals. All scores are out of a possible 100.

problem baseline ctrl ProPl

Hailstone 69.3 (16.4) 79.8 (15.4) 86.1 (9.46)
RPS 67.7 (22.5) 59.5 (18.7) 77.5 (16.4)
CH n/a 49.1 (26.3) 64.1 (29.8)

large number of potential influences (such as friends, TAs, etc.) and (2) the introduction

of other domain factors, such as confusion over syntax, debugging skill, and extended time

available to continue working. In short, final program scores are indirect effects because of

these complications. In this light, it is not surprising to find no differences between these

indirect measures. To get at a more direct measure, it is necessary to turn to intention-based

scores.

7.3.2.2 Composite intention-based scores As discussed in section 7.2.5, intention-

based scores are designed to reveal more about the students’ process by measuring the

correctness of their first attempts at each programming goal (see section 7.2.5). The reader

is reminded that because there was no access to online protocols for all subjects, the number

of subjects is reduced for the Hailstone and RPS projects. The respective n’s for the baseline,

control and ProPl groups were 9, 8, and 9. The protocols for these students were coded for

bugs to produce the intention-based scores by two experienced instructors. After training

together on roughly 15% of all programs and scoring another 20% independently, a kappa

was again computed to assess agreement. In this case, the tags for all plans were compared

between graders. The result was a kappa of .865 which indicates very high agreement11

11Such a high agreement is not as surprising as it may first seem. For example, it is easy to see when a step
is arranged improperly or when a statement is malformed. Disagreements, when they did occur, generally
involved the classification of a malformed step as a merging error or on the intentional interpretation of a
step (i.e., deciding on the intention underlying a syntactically wrong step).

123



The intention-based scores are shown in table 7.2. Some significant and marginally signifi-

cant differences exist between the groups. Considering first how the baseline group compared

with each of the other groups, for Hailstone, the ProPl students (M = 86.1, SD = 9.46)

outscored baseline students (M = 69.3, SD = 16.4). This difference is statistically signifi-

cant (t(16) = 2.12, p = .0017) with a very large effect size (es = 1.03). The control group

also outperformed the baseline group on Hailstone, but not significantly. On the RPS prob-

lem, the baseline group (M = 67.7, SD = 22.5) actually outperformed the control group

(M = 59.5, SD = 18.7), but the difference is not significant. ProPl students (M = 77.5,

SD = 16.4) did outperform the baseline students, but again, not to a significant level. Be-

cause the baseline students were not a part of this study, they did not do the Count/Hold

problem.

Turning now to the ProPl and control groups, all students in these groups took the

pretest described in section 7.2.3.2, and so ANCOVAs are used for statistical tests in order

to factor out pretest performance. Although ProPl students outperformed the control

students on each project, the only significant difference is on RPS. ProPl students (M =

77.5, SD = 16.4) were significantly better than control subjects (M = 69.5, SD = 18.7),

F (1, 15) = 7.88, p = 0.015, es = .96. On Count/Hold (the untutored posttest charette),

ProPl students (M = 64.1, SD = 29.8) outperformed those in the control group (M = 49.1,

SD = 26.3) to a marginally significant level (F (1, 22) = 3.59, p = .072, es = .57).

7.3.2.3 Decomposed intention-based scores The results shown in table 7.2 are com-

posite scores; that is, the various categories of bugs (discussed in section 7.2.5) are lumped

together to produce the overall score. To reveal how these points were distributed across

the various bug categories, the composite scores were broken down according to several

categories:

• Merge errors: points lost due to the interaction between separate plans in a solutions

(includes arrangement and some step malformation errors).

• Plan component omissions: points from missing plan parts.

• Remaining isolated errors: non-merge related malformation errors of individual plan

components.

124



Figure 7.4: Merging related points can result from step arrangement errors or malformed
statements that involve aspects of two distinct plans. As before, points lost are shown per
opportunity to make an error along with standard error bars.

It would be misleading to use the total points missed for each of these categories. For

example, a student who attempts two goals out of a possible five would have far fewer

opportunities to produce merging errors than someone who attempts to solve all five. The

resulting merge error score would be deceptively low. Similar arguments can be made for plan

component omissions and isolated errors. Rather than using raw points, then, the solution

is normalize and compare the points lost per opportunity to commit that error. For the error

categories identified above, the total number of goals attempted is used as a denominator.12

Figure 7.4 shows the points lost from merging related errors over the three programming

problems. For the Hailstone problem, the control group (M = .38, SD = .65) produced

significantly fewer merging related errors than the baseline group (M = 2.31, SD = 1.9),

t(15) = 2.76, p = 0.015, es = 1.0. The ProPl group (M = .36, SD = .45) performed

similarly well when compared to the baseline group (t(16) = 3.02, p = .008, es = 1.0).

On RPS, the ProPl group (M = .19, SD = .21) outperformed both the baseline group

(M = .85, SD = 1.0) to a marginally significant level (t(15) = 1.98, p = .075, es = .66) as

12For merge errors, total number of attempted goals −1 was used because at least two plans are required
for a merge error to be possible.

125



Figure 7.5: Plan part omission points lost per plan implementation attempt.

well as the control group (M = .91, SD = 1.1), F (1, 15) = 3.71, p = .076, es = .65. Finally,

on the Count/Hold project, the ProPl group (M = .07, SD = .24) again surpassed the

control group (M = .61, SD = .74) but this time to a significant level (F (1, 15) = 5.77,

p = .026) and with an extremely large effect size (es = 2.3).

Next, looking at students’ ability to produce complete plans (figure 7.5), several differences

were found to be significant. Interestingly, for the Hailstone problem, the baseline group lost

fewer points for missing plan parts (M = .57, SD = .59) than the control group (M = 1.1,

SD = .53) to a marginally significant level (t(16) = −1.85, p = .085, es = 1.0). When

compared to the ProPl group, the difference is not significant. With more points lost in the

merging category by the baseline group, however, losing fewer points in the omission category

makes sense. On RPS, the baseline group (M = 1.22, SD = .62) again outperformed the

control group (M = 1.95, SD = .67), but to a significant level (t(16) = −2.20, p = .046,

es = 1.2). The control group, in general, seemed to be more forgetful than the other two

groups. The ProPl group (M = .71, SD = .63) also was significantly better than the

baseline group on RPS (F (1, 15) = 15.6, p = .0017, es = 1.9). A similar difference appeared

on Count/Hold with the ProPl group (M = .72, SD = .62) losing significantly less than

the control group (M = 1.84, SD = 1.13), F (1, 15) = 9.22, p = .0065, es = .99.

126



Figure 7.6: Points lost for isolated (non-merging) errors, per plan implementation attempt

Lastly, turning to isolated errors, which are essentially all malformations not related

to the complications of plan merging, very few differences exist between the groups (see

figure 7.6). In fact, the only statistically significant difference occurred in the Hailstone

problem between the ProPl group (M = .44, SD = .31) and the baseline group (M = .82,

SD = .4), t(16) = 2.22, p = .042, es = .95. Although the control group (M = .24, SD = .63)

did lose fewer points per attempt than the ProPl group (M = .78, SD = .70) on RPS, the

difference is not significant (F (1, 15) = 2.03, p = .18). The absence of isolated errors in RPS

by control students does make sense when compared to their higher rate of omission errors;

i.e., they had fewer chances to make isolated errors because they implemented fewer plan

components overall.

7.3.2.4 Bug frequencies There is a potential bias involved in the creation of any rubric.

In the case of IBSs, the point values assigned to each plan component and how points are

taken away for plan differences are susceptible to such a bias. To confirm that the rubric-

based scores were indeed representative of the bugs underlying them, bug frequencies were

collected from the original IBS codings and counted. Bug frequency counts are best thought

of as a rubric that assigns one point to each plan part, rather than weighting various pieces

127



differently. This removes the chance for bias since all plan components are counted equally.

In addition, there is no opportunity for partial point deductions, which is another potential

source of rubric bias.

Because the results were very similar to the rubric-derived scores, the full results are not

shown here (but do appear in appendix C). The graphs for each of the categories (merging

errors, omissions, and isolated errors) all reveal the same relationships between the various

groups and projects. Even though, some of the statistical results did vary:

1. For merging errors on RPS, the ProPl group difference was found to be significant over

the baseline group (rather than marginal).

2. Again for merging errors on RPS, the ProPl group difference over the control group

was not significant (rather than marginal).

3. For merging errors in Count/Hold, the ProPl group difference was found to be mar-

ginally significant (down from significant).

4. For omissions in Hailstone, the baseline group difference over control was found to be

significant (rather than marginal).

5. Also with omissions in Hailstone, a marginal difference favoring the baseline group was

found over the ProPl group (no difference with the rubric).

6. For omissions on RPS, the significant difference favoring the control group over the

baseline did not appear with bug frequencies.

Out of the 10 significant or marginally significant differences found using the rubric, seven of

them either stayed the same or were stronger using bug frequencies. Only one was weakened

from significant to marginal, and two differences did not appear. Since the basic relation-

ships between the groups were maintained and no drastic statistical shifts in either direction

occurred, the suggestion is that the original rubrics used were fair.

So why not use only the bug frequencies? A large price is paid when looking only at

frequencies. The drawback is that all bugs contribute equally to the overall score. This

means that, for example, misplacing a printing step in a counter plan (a common slip) is

treated the same as misplacing the focal increment step (which is clearly more important).

In other words, less important steps in plans influence the overall score too much, which is

128



Table 7.3: A summary of all IBS results. P represents the ProPl group, C the control,
and B the baseline. A double relational sign (e.g., >>) implies significance and a single
implies marginal significance. Note that these refer to performance (e.g., P >> B means P
outperformed B. † and ∗ indicate that signifance was reduced in the bug frequency analysis
to marginal and none, respectively.

also the probable explanation for many of the differences described above. Errors on critical

plan components should influence scores more heavily, and so the focus in the discussion in

the next section is primarily based on the rubric-based scores.

7.3.2.5 Summary of IBS results Decomposing the IBS results has the unfortunate

side-effect of greatly muddying the overall evaluation picture. To help bring all of these

results together, all significant and marginally significant results are shown in figure 7.3.

Significant relationships show a double-greater or less-than sign, while marginal differences

use single. Also, the relationship refers to performance, not scores. So, for example, ProPl

students outperformed control students on the Count/Hold project by losing fewer merging

related points per plan merging attempt.

Most cells show that the relationships run in the expected directions. The only cells where

the differences run contrary to expectations occur in the omission row. The control students

129



were clearly more forgetful than the baseline group in both RPS and Hailstone. However, the

price for this is revealed by their poor showing in the merging row, which shows consistent

baseline shortcomings. Possible explanations for this is given below, in section 7.3.6.

7.3.3 Written posttest

The written posttests were graded by three experienced programming instructors. Each of

the six questions was scored on a scale of 0 to 5 (0 = no attempt, 5 = excellent) giving

a maximum possible score of 30. The first five tests were graded together to refine the

grading rubrics. Agreement on the remaining exams between the graders, as calculated by

a linear regression, was extremely high for each pair (p1,2 = .95, p2,3 = .94, p1,3 = .91,

all r(19) < .001). To calculate student scores, the mean score of the three graders was

computed.

Overall, students in the ProPl group (M = 19.3, SD = 4.38) scored higher than those

in the control group (M = 17.4, SD = 6.14), but this difference is not statistically significant

(F (1, 23) = 2.04, p = .17). However, because question 3 was a code comprehension question

and the only one that does not require any program planning skills, it is worthwhile to in

consider the overall score without it. The question asked students to read Java or C code

and describe the goal it achieved, in a few words. Not surprisingly, most students answered

with line-by-line descriptions of how the code operates (e.g., “first a variable is declared, then

it is assigned 0, then...”) rather than summarizing and abstracting from it as the problem

asked. Omitting question 3, ProPl students (M = 17.1, SD = 3.75) again outperformed

those in the control group (M = 15.1, SD = 5.1), but to a marginally significant level

(F (1, 23) = 3.00, p = .097, es = .392).

The questions on the posttest (described in section 7.2.3.2) tested different aspects of the

decomposition and composition problems:

• Question 1 tested composition skills.

• Question 2 targeted novices ability to organize code by plans.

• Question 4 involved identifying goals to pursue given code.

• Questions 5 and 6 were open-ended decomposition problems.

130



Figure 7.7: Student performance on the written posttest by question with standard error
bars shown. Differences in questions 1 and 2 are statistically significant.

Because of this, it is illuminating to view student performance by question rather than overall

performance. Such a breakdown is shown in figure 7.7. On question 1, ProPl students

(M = 3.39, SD = 1.2) scored higher than control students (M = 2.56, SD = 1.4), which is

a significant difference (F (1, 23) = 5.72, p = .026, es = .61). On question 2, ProPl students

(M = 3.44, SD = .70) similarly were better than control students (M = 2.95, SD = .84)

to a significant level (F (1, 23) = 24.6, p < .001, es = .58). ProPl students (M = 3.83,

SD = 1.1) scored nearly a half a point higher than the control students on question 4

(M = 3.36, SD = 1.2), but the difference was not found to be significant (F (1, 23) = 1.0,

p = .33). None of the differences on the remaining questions approach significance.

7.3.4 Survey results

Of the 15 questions both groups received on the follow-up survey, four resulted in statistically

significant differences between the ProPl and control groups. These are shown in table 7.4

along with two other items of note. Based on these responses, it seems that ProPl students

believed they understood the material less, focused on the design notes to a greater degree

than pseudocode, found debugging easier “because of the use of the system,” and that they

131



Table 7.4: A subset of the survey results comparing mean evaluation scores (1 = strongly dis-
agree, 5 = strongly agree) of students who used ProPl against students who used ProPl-C.
* indicates statistical significance (p < .05) while † implies marginal significance (p < .1), as
computed by 2-tailed t-tests.

survey item Ctrl (SD) ProPl (SD)
Would use system again on my own (w/no pay) 4.2 (.94) 4.7 (.65)
I understood the explanations given* 4.7 (.49) 4.1 (.79)
I tried to remember the design notes* 4.0 (1.0) 4.8 (.39)
I tried to remember pseudocode 4.8 (.62) 4.5 (.52)
Debugging was easier because of software* 3.3 (1.1) 4.4 (.79)
I had influence on the pseudocode† 2.8 (1.3) 3.7 (.89)

had more influence on the pseudocode as it was being constructed during tutoring than

students in the control group. In reality, neither group had any influence on the pseudocode

as it was hand-authored ahead of time. Students in both groups indicated a desire to use

the system again in the future, for their own benefit and with no payment, but the difference

was not significant between groups (first line, table 7.4). There is a possible ceiling effect

with this question due to the natural bias of using volunteers as participants.

Looking now within the groups, significant differences are found in questions that reveal

how the content of the tutoring was perceived by the students. Two items on the survey

asked to what degree they tried to remember the design notes and the pseudocode after

their sessions. Within the control group only, students claimed they tried to remember

the pseudocode (M = 4.8, SD = .62) more than they tried to remember the design notes

(M = 4.0, SD = 1.0), t(22) = −2.14, p = .044. Checking the same questions within the

ProPl group, the inverse of these rankings was observed. That is, pseudocode (M = 4.5,

SD = .52) received a lower ranking than design notes (M = 4.8, SD = .39), but only to a

marginally significant level (t(22) = 1.77, p = .090).

132



7.3.5 The “I don’t know” crutch

Students are told in the ProPl tutorial that “I don’t know” is an option when they are

unable to answer a question. In analysis of the transcripts of students using ProPl it was

found that the use of “I don’t know” (IDK) is a reliable predictor of posttest performance.

In a multiple regression, the partial (negative) correlation between IDK and posttest was

marginally significant (r2(11) = .29, p = .073) with pretest score as the other independent

variable.

7.3.6 Discussion

First, because of small sizes of the groups in this study, it can be argued that all of the

detected differences in the previous section are encouraging, even when full significance

was not reached. Nonetheless, these results do point to several findings. Perhaps most

importantly, students who were tutored by ProPl demonstrated enhanced skill at solving

the composition problem. This is supported by several results: ProPl students...

• had consistently higher intention-based scores than students in the other two groups.

• made fewer merging-related errors than students in the other two groups.

• omitted fewer plan parts than students in the control group.

• scored higher on a written algorithm assembly problem than the control group.

Each of these represent important aspects of solving the composition problem. Since ProPl

students outperformed students who received no tutoring (baseline group) and students who

read the same content (control group), these differences suggest that the dialogue-based

interaction led to deeper learning and skill at solving the composition problem.

Turning now to students’ ability to work with plans, the data suggests that ProPl

students adopted a more expert-like view of programming by working at the level of schemata

and plans rather than by the line-by-line, more localized perspective typically taken by

novices. This is supported by three results from the previous section. First, fewer merging

related errors by ProPl students suggests that they developed a heightened sense of the

relationships and distinctions between plans and plan parts. For example, an understanding

133



that two plans should not interact would translate into fewer spurious connections in program

code between them. Second, fewer plan part omissions means ProPl students were able to

produce more complete plans on their first attempts at implementing them. Third, ProPl

students received higher scores on the written posttest problem that asked them to organize

steps according to the goals they achieved and the plans to which they belonged. When

considered together, these differences suggest that dialogue-based tutoring accelerates the

development of the tacit knowledge of programming and the expert-like perspective that

code can be viewed in “chunks” dispersed throughout a program.

Looking at how the students perceived the help provided by the two systems, several

differences were found (section 7.3.4). For one, students who used the control system believed

they understood the material better than students who used ProPl. This phenomenon is

known as “the illusion of knowing” (Glenberg, Wilkinson, and Epstein 1982) and it seems

that dialogue-based tutoring mitigates this effect to a certain degree. It is likely that par-

ticipation in dialogue is responsible for this difference. In a dialogue context, students often

receive negative feedback, and this may help them develop more accurate self-assessment

skills. In the control condition, students did not have this opportunity unless they took it

for themselves (i.e., unless they self-explained on their own). It is also possible that the

subtleties of the problems were exposed in a more memorable way thanks to dialogue.

Another result from the surveys was that ProPl students preferred the more abstract,

conversational-style representation of programming knowledge instead of the more concrete,

pseudocode representation. They rated the value of design notes higher than pseudocode

when asked what they remembered when thinking back to the tutoring sessions. The in-

verse rankings were given by control students, pointing to the pseudocode as the preferred

representation. Since design notes consist only of short phrases and sentences, it is a more

abstract and less structured representation of the solution. In fact, the intent behind us-

ing design notes in the first place was to aid in the reification of the tacit knowledge that

underlies programming (i.e., goals and schemata). It seems that the use of dialogue raised

the comfort levels of those students to use the more abstract representation, at least in their

own estimation. This result is in concert with the previously mentioned result that ProPl

students seemed to work more on the plan-level rather than line-by-line.

134



Performance on the open-ended design questions on the written posttest was surprising.

Question 5 asked students to describe their approach to the Snap problem, the third problem

covered in the experiment. Question 6 presented a novel problem, Craps, and asked students

to produce a set of design notes (i.e., a goal decomposition and ideas about how to achieve

those goals). The initial hypothesis was that because ProPl’s tutoring posed the “what”

and “how” questions, and gave feedback, this practice would lead to improved ability to

perform the same task without the guidance of the system. Since control students never

generated any verbal descriptions at all, it was surprising to see their verbal abilities on par

with the ProPl students (questions 3, 5, and 6 in particular, described in section 7.2.3.2).

One possible explanation is that students were not directly responsible for the writing or

organization of the design notes, in either condition. Therefore, no students had any di-

rect practice producing decompositions written in natural language. This suggests students

should be more involved with creating the design notes and if possible, responsible for the

content.

7.4 ANALYSIS OF KCD-DRIVEN DIALOGUES

Recall from 6.3 that ProPl is an application of the Atlas dialogue management system.

Pre-authored, hierarchical structures called Knowledge Construction Dialogues (KCDs) are

used to guide dialogue. To author these knowledge sources, a domain author must produce

the tutor’s contributions, questions, and sets of expected student answers. In order for the

resulting dialogues to be realistic, the authoring of the KCDs needs to be carefully constructed

and expected answer lists sufficiently broad.

To provide support that ProPl was able to carry out reasonable dialogues, a manipu-

lation check was performed on a random sampling of 100 question/answer pairs from the

ProPl corpus. Such an analysis involves asking two questions of each pair:

• Was the answer category selected by Atlas the same that a human judge13 would select,

from the available categories?

13The author served as judge in this analysis.

135



• Does the student’s answer represent a new category of answers not included in the cor-

responding KCD?

A manipulation check is therefore intended to reveal whether that the student’s answers are

being classified properly and that the coverage of answers in the KCDs is broad enough. It

should also be noted that the two questions are independent. It is possible that even when

the system and human judge’s category selections match, that a new category might be

needed to properly handle the student’s answer.

To select the question/answer pairs from the ProPl corpus, random number generators

were used. These were used to first select a problem (Hailstone, RPS, or Snap), then a

student id, and lastly an utterance number from the corresponding dialogue. If the utterance

selected was not part of a question/answer pair, then another random utterance was selected

until an appropriate one was found.14 The results were positive:

• The system chose the “best” category 84% of the time.

• A new category of answer was needed 18% of the time.

Of the 16% incorrectly classified answers, simply extending the synonym list would have

sufficed 75% of the time. In addition, within the 84% of the matches with the human judge,

21% of them occured as an “anything else” match, meaning that the default response was

ideal given the student’s answer. The remaining 79% of the correctly matched answers were

all expected student answers and therefore, responded to as intended by the KCD author.

These results are suggestive that student utterances were generally understood and that the

KCDs reached an adequate level of robustness.

7.5 CHAPTER SUMMARY

This chapter presented the evaluation of CPP when compared against a baseline group of

students who receive no tutoring at all, and an evaluation of ProPl which compared it with

ProPl-C, the non-dialogue version of the system. The main points of the chapter were:

14Other utterance types included didactic tutor utterances, administrative utterances, and student inter-
face actions.

136



• Floundering happens when students compile to fix an algorithm-related bug and make no

progress in fixing that bug. To identify floundering, one must analyze a student’s online

protocol (i.e., the collection of all programs submitted to a compiler) and use multiple

expert programmers to tag compile attempts as floundering or not.

• Students receiving CPP floundered less than students who received no tutoring on a

follow-up, untutored project, but only to a marginally significant level (suggesting there

was some longer-term impact).

• ProPl (dialogue) students demonstrated superior performance at solving the composi-

tion problem when compared to ProPl-C (read-only) students on various measures.

• Also, ProPl students showed evidence of adopting a more expert-like view of program-

ming by viewing programs by chunks rather than line-by-line.

• ProPl-C students believed they understood the material better than ProPl students,

suggesting that dialogue had mitigating effect on the “illusion of knowing.”

• ProPl students preferred the design notes over the pseudocode when thinking about

their tutoring sessions, suggesting they preferred the more abstract representation of the

tacit knowledge of programming.

• ProPl-C students, on the other hand, preferred the more concrete, pseudocode repre-

sentation.

• A manipulation check performed on the ProPl corpus revealed that the Atlas system

chose the best category for a student answer 84% of the time, and that unexpected

answers deserving of a new category altogether occurred only 18% of the time.

137



8.0 CONCLUSION

8.1 SUMMARY

In this dissertation, a model of tutoring for novice programmers called Coached Program

Planning (CPP) was developed. A central aim of CPP is to model and support the cogni-

tive problem solving and planning activities that novices are known to overlook or bypass

altogether. A salient reason why novices are unable to plan effectively is that they lack the

experience and generalized programming knowledge that experts possess. As such, a second

goal of this work was to explore how natural language tutoring could be used to scaffold the

acquisition and development of this tacit knowledge of programming in novices. The main

hypothesis was that natural language tutoring would be more effective at teaching novices

how to decompose and plan programs than simply reading the same content.

Given a problem to solve, CPP prescribes the use of open-ended design questions to elicit

programming goals (the “what”) and the schemata involved in achieving those goals (the

“how”) from a student. A host of tactics can be used to elicit answers when the student is

not able to answer correctly the first time. Many of those identified take advantage of the

students’ commonsense understandings of problem solving and hand calculations (simula-

tions of the target task). Some tactics are designed to elevate an overly specific answer to

something more abstract while others can be used for eliciting important program details,

such as identification of all components of a schema. The artifact being designed, and target

of much of content of the dialogue, is a natural-language-style pseudocode program. It is

constructed in stages: each time a goal is identified and schema fleshed out in dialogue, the

corresponding pseudocode steps are integrated into the solution. Students therefore learn to

plan in staged fashion and view programs by the schemata that constitute them. Once the

138



pseudocode is complete, the student then pursues an independent implementation phase as

they normally would.

ProPl, an automated version of CPP, was also presented. This system conducts natural

language dialogue with the student to elicit goals and schemata for a given problem. The

role of ProPl is identical to that of CPP: students can use the system to help them prepare

to write the program on their own. Dialogue is implemented as Knowledge Construction

Dialogues, which walk students through directed lines of reasoning that pose the open-ended

questions and execute the tutoring tactics identified in CPP. Variety in student answers is

handled by a large semantic grammar as well as by a form-filling approach to handle multiple

components in a schema. A check of the resulting dialogues showed that the system did well

at choosing the appropriate concept categories when available (84% correct), and that new

categories would have been useful about 18% of the time. To act as the control system in

an evaluation, a non-dialogue version of ProPl was created that uses canned mini-lessons

(“click-through” reading) to present the same tutorial content. Both use the same interface

and present identical solutions.

The evaluation was designed to demonstrate the efficacy of natural language dialogue to

teach decomposition and composition skills. ProPl, with its use of dialogue, was pitted

against the read-only control system. Students in the experiment were randomly assigned

to one of the two conditions and used the corresponding system on three programming

problems. All participants took a pretest to gauge their incoming programming ability and

a written posttest that focused on problem solving ability. In addition, a timed programming

posttest was given in the lab, which was followed by a final survey intended to assess their

views of the tutoring and feelings towards the system they used. Moreover, copies of all

programs submitted to the compiler were collected for many of the students. To evaluate

the impact of the two systems, intention-based scoring was used to reveal more accurately

how well students were able to assemble algorithms (i.e., solve the composition problem) on

their first attempt at each program goal.

In general, the dialogue-based tutoring of ProPl seemed to provide a more meaningful

learning experience than the read-only control system. Several outcomes of the experiment

support this conclusion:

139



• Students who used ProPl were consistently better at solving the composition problem

than control or baseline students (students who received no tutoring at all). This occurred

on the tutored programs and on the written posttest. More specifically, ProPl students

generally exhibited fewer errors caused by the interaction of multiple schemata in one

program.

• ProPl students also seemed to adopt a more expert-like view of programming by writ-

ing code more at the schema level rather than line-by-line, a common trait in novice

programmers. Evidence of this was found on the written posttest as well as on certain

aspects of the decomposed intention-based scores.

• On the written posttest, students in both conditions demonstrated equivalent competence

at solving open-ended decomposition problems. Thus, this experiment provided no evi-

dence that dialogue-based tutoring accelerated students’ ability to decompose problems

at an abstract level and subsequently express those abstractions in words (the latter is a

highly difficult task for novice programmers anyway).

• On the followup survey, control students expressed a preference for the pseudocode over

the English descriptions presented in the system; however, ProPl students expressed

the reverse view, indicating they found the more abstract representation more appealing.

• Control students claimed to have a better understanding of the material they learned

than did ProPl students. Dialogue therefore seemed to have a mitigating effect on the

“illusion of knowing” that students often experience.

In sum, ProPl students seemed to develop a stronger understanding of the tacit knowledge

of programming and also how to apply it. In some places the differences were not dramatic,

and so it certainly cannot be claimed that ProPl students were brought to expert-level.

However, it does seem clear that dialogue-based interaction accelerated the acquisition and

application of this knowledge.

140



8.2 CONTRIBUTIONS

This research makes contributions to several streams, including intelligent tutoring systems,

computer science education, and dialogue-based educational systems. In addition, teachers of

beginning programmers may find the pedagogical presentation useful, perhaps for Teaching

Assistant training or for integration of new tactics into their own teaching that are grounded

in contemporary theories of cognition and learning.

Contribution #1: An easily incorporated system for teaching programming.

Most systems and pedagogical approaches for novice programmers necessitate significant

changes in a course’s curriculum. For example, using a new programming language specif-

ically designed for novices requires a change of textbook, compiler, assignments, lecture

notes, and so on. The only requirement of ProPl on an introductory course is that it cover

structured programming (more about this limitation in the future work section below). To

integrate ProPl into a traditional introductory programming course, no changes in pro-

gramming language, compiler, syllabus, or much of anything else are required. The only

real change required is to have students use the system before they begin implementing a

solution to an assignment. Since ProPl runs in any Java-enabled browser, this should be

a simple matter. Traditional methods of distributing an assignment, like a handout or web

page, are passive – only the students who naturally self-explain will do so. ProPl provides

a more interactive introduction to problems. It promotes the early confrontation of diffi-

cult programming choices that many novices prefer to delay (usually until implementation

time). Given the encouraging experimental results, ProPl offers a meaningful pedagogical

addition to a programming course with relatively low cost in terms of curricular change.

There is a cost in terms of authoring effort, however (see section 6.3.1.1). It takes roughly

60 hours of authoring and testing time to produce a moderately-sized problem (like Hailstone)

to give it sufficient breadth of understanding and enough tutoring tactics to be useful. In

addition, the problem statement, pseudocode, and design notes need to be written, but this

is, in sum, no more than a 2 hour task (all in HTML). Although a burden in time, the payoff

is that KCD authoring skills can be acquired quickly (in my experience) and once problems

141



are written, they can re-used indefinitely. A mundane, but very practical piece of future

work would therefore be to build up a library of ProPl problems for use in an introductory

curriculum.

Contribution #2: Non-reification of schema/plan knowledge.

In many circles, it is generally assumed that Soloway-style programming plan knowledge

should be reified; that is, plans should be explicitly identified, named, and discussed. The

work in this dissertation challenges this assumption. One drawback of explicitly teaching

plans is that students have the potential to view it as excessive: they already have a lot on

the table to learn, including language constructs and how to use the editor/compiler. CPP

promotes the learning of plan-based programming knowledge through staged design and the

application of the 3-step pattern to elicit goals, schemata, plans, and plan components from

students. In a way, the goal is to teach the tacit knowledge of programming in such a way

that the student does not realize it is happening. The hope here is that the student will be

less likely to reject it as extraneous since it is more closely connected to commonsense and

their own language.

One effective way to do this, as this dissertation has laid out, is through natural language

tutoring. A possible explanation behind why it worked is that the tutoring strategies help

make the connections between novices’ intuitive understandings of tasks and the algorithms

that implement those tasks more apparent. In other words, the claim made is that it is

not necessary to overtly reify this knowledge (i.e., by explicitly teaching schemata in their

abstract forms), but rather help the student self-construct through the use of accessible and

intuitive notions. Of course, no claim is made regarding the relative strengths of reifying

plan knowledge versus not doing it – a different kind of study would be necessary to answer

that question. However, the conclusion to take away from this study is that dialogue-based

tutoring is a viable alternative to overtly identifying plans in the mutual effort to accelerate

students’ acquisition of the tacit knowledge of programming.

Contribution #3: Coached Program Planning

One of the aims of this research was to provide an account of tutoring of novice programmers

during the planning phase of programming. CPP is such an account and, in its current state,

142



is intended to help students identify programming goals, describe how to achieve those

goals, and to actually do so in pseudocode. Along with the staged-design inspired three-step

pattern, CPP also includes a library of tutoring tactics implemented as KCDs in ProPl.

These tactics are all intended to elicit correct answers from students and help them connect

their commonsense understandings to the underlying notions of programming. At least one

professor in the U.S. uses the CPP corpus to help train Teaching Assistants, and so the

potential value of the CPP model extends beyond its role in the implementation of ProPl.

Contribution #4: Intention-based scoring.

The question of how to evaluate process is a very difficult problem. In programming, online

protocols provide a means to do so, but unfortunately, no standard approaches have been

developed to judge or score them. In the ProPl experiment, intention-based scoring was

proposed as a method to turn programming bugs into comparable scores between students.

The approach blends the seminal bug identification techniques of Johnson, Spohrer, and

Soloway along with traditional scoring rubrics normally used in programming. The resulting

score represents the ability of a student to solve the composition problem on their initial

attempts at each programming goal (spread over a protocol).

In addition, because an intention-based score is based on bug categories, it was easy to

break the score down into its component parts, thus revealing more about what kinds of

problems the students in the two conditions were facing. For example, it was possible to

isolate the points lost due to interactions between plans (“merging” errors). To make the

comparisons fair, it was also necessary to use the protocols to count the number of goals

being achieved to generate the points-lost-per-attempt for each sub-category of bugs. Having

done this analysis, it was much easier to interpret the (decomposed) intention-based scores

and therefore understand where ProPl was having an impact and where it was not. It is

therefore highly likely that this kind of analysis would be applicable to any programming

study that is targeting the process of programming and uses online protocols.

143



8.3 FUTURE WORK

There are many directions to take the work presented in this dissertation. This section dis-

cusses possible future work along three dimensions. First, having shown in this dissertation

that CPP accelerates the development of the tacit knowledge of programming, it is impor-

tant to find out why this happened. So, below are some speculation on how to determine

this based on analysis of the corpora collected in the experiments. Second, since ProPl

is limited in a technological sense, there a number of enhancements that if pursued, might

improve the power of the system as a whole. Finally, realizing that CPP (and thus ProPl)

only supports structured programming, this section ends with a discussion of what work

would be necessary to implement CPP-like support in other programming paradigms.

The ProPl experiment suggested that natural language dialogue was useful with respect

to the goal of accelerating learning of the tacit knowledge of programming. Given this

finding, the next step is to find out why it worked. In other words, what was it about

the dialogues that led to the enhanced skill of ProPl students to solve the composition

problem? Given the size of experimental group in the ProPl experiment, it is difficult to

cull anything conclusive from the observed dialogue behaviors from it alone. It would be

necessary to run the experiment on a larger scale. Some analyses worthy of doing would be

to check the KCD success rates, average answer lengths, or perhaps, how close students were

to a reasonable answer (when wrong).

In addition, the result that “I don’t know” frequency predicts posttest performance sug-

gests that students who struggle with the concepts of programming also struggle to express

the ideas of programming in words. The implication is that it may be important to focus on

weaker students’ abilities to express themselves and draw upon their intuitions first rather

than teaching them the details of a particular language. The research question for this line of

work would be “does teaching students how to talk about programming improve their ability

to plan programs?”

Turning now to the implementation of ProPl, based on the experiment, the intention-

based scoring results suggest that ProPl students produce programs that are “more correct”

on their first attempts at achieving program goals. It is not clear whether this initial closeness

144



translated into less frustration and effort overall, however. Deeper analysis is needed to

find out whether students in both conditions struggled about the same amount to debug

and complete their programs. If true, this suggests that students were possibly unable to

recognize a fundamentally correct algorithm unless it compiled and executed as expected, or

that they sometimes undo correct aspects of their solutions when trying to fix other problems.

To address these issues (again, if true), one solution would be to extend tutorial support into

the implementation phase. This change could take several forms:

• Integrating ProPl with problem-specific, compile-time feedback, such as that given by

PROUST (Johnson 1990), could be used to help novices recall important issues from

their tutoring sessions.

• Use ProPl as prescribed in this paper, but provide an environment and tools, such as

GPCeditor (Guzdial et al. 1998), to make it easier to apply the ideas learned during the

tutoring session.

• Going another step, integration of ProPl-like tutoring into such a novice environment

may enhance the learning benefits of such systems.

Indeed, there are a great number of systems for novices (Brusilovsky 1995; Deek 1998) could

potentially benefit from the use of natural language tutoring. Yet another option would be

to increase the tracking of novices during their independent programming time to capture

planning activities and monitor the help they receive. This angle on future research would

allow the focus to remain on pre-practice tutoring.

The manipulation check presented in section 7.4 suggested that the KCD-driven dialogues

were generally successful with respect to Atlas’ classification of answers the authoring of the

answer categories. As usual, however, students did learn that short answers were preferred by

the system. Also, the output of the KCDs is all canned text, and so it is sometimes difficult

for references and anaphora to sound natural. Unless the context is plainly obvious, it is also

very difficult to understand when the student uses such language. To take ProPl to the

next technological level, one option would be to take more direct advantage of the analysis of

tutoring tactics presented in section 4.4 that described them as consisting of a purpose, form,

and content. Rather than hard-coding such information directly into the KCDs, it might

145



produce more natural-sounding dialogues if these dimensions were reasoned about at different

levels of abstraction (perhaps in a way similar to the 3-tier architecture of BEETLE, Zinn

et al. 2003). There are certainly strong connections between the classification of a student’s

answer and the ensuing tutorial purpose (e.g., an overly specific answer portends an elevation

tactic in goal-eliciting contexts). There are undoubtedly countless other possibilities for

extending (or replacing) the dialogue manager of ProPl.

Finally, regarding programming paradigm, although the approach presented in this dis-

sertation was directed at structured programming, the technology and general pedagogy

underlying ProPl is very much independent of this paradigm. The notions of setting goals

and working to achieve them is central to programming in general, and it is likely that the

dialogue patterns and tutoring strategies similar to the ones presented in this paper could

be applied in other contexts, like object-oriented programming. Even if this did not turn

out to be true, the differences would be interesting and might even shed some light on the

never-ending discussion over what paradigm is best for beginners. Structured programming

was convenient for us given the coverage of the CS0 courses at the University of Pittsburgh

and because of the large body of goal/plan research from the mid and late-80’s that offered

a solid foundation from which to build a tutoring system. As evidenced by intention-based

scoring, it also provided an important basis for evaluation.

8.4 CONCLUDING REMARKS

This work was motivated by real students in real classrooms who were really struggling with

programming. The original aim was to provide a tool for them that obliged them to plan.

The reasoning was that since students obviously did not plan on their own, they might

encouraged to do so if asked the right questions. Thanks to Sacks, Scheglhoff, and Jefferson

(1974) and others (Traum and Allen 1994; Graesser, Person, and Magliano 1995), it is known

that when one is asked a question, one should respond.1 Also, having students type answers

in natural language rather than selecting answers from a list taps recall memory instead of

1Also thanks to our mothers.

146



recognition memory. For these reasons, CPP was conceived and ProPl was built to get

students involved in the planning of their programs, and to help them to be more productive

as beginning programmers.

The original goal was to get students to plan on their own. Sadly, on the post-test charette

(the Count/Hold problem), only 1 student out of 25 sat down with a blank sheet of paper

to plan out the program ahead of time. Obviously, changing the habits of novices were

beyond the scope of ProPl, but this is, at least for experienced programming instructors,

not a surprise at all. On the other hand, the intention-based results and written post-test

do suggest that ProPl students learned to assemble steps more productively on their first

attempts. It was also found that these same students indicated that the more abstract

representations of programming were appealing and useful, whereas the students who read

the same material tended to prefer the more concrete pseudocode. These findings are a hint

that natural language might be one of the keys to accelerating the acquisition of the elusive

tacit knowledge of programming, and provide general support for the notion of pre-practice

tutoring.

147



APPENDIX A

PROGRAMMING PROBLEMS

The Hailstone problem, was discussed in detail in section 4.2, page 47. Three other prob-

lems were used in this study, and their problem statements appear below. They include a

slightly enhanced version of the classic game Rock-Paper-Scissors (RPS), a pattern-matching

program called Snap, and the post-test programming problem, a simple dice game called

Count/Hold (CH). Students were tutored on the first 3, but not on CH.

A.1 ROCK-PAPER-SCISSORS

Remember the ultimate tie-breaking game of games? Some might think thumb-wrestling or even

Monopoly... but none can compare to a good old fashioned game of rock-paper-scissors (RPS).

The game is simple: each player pounds their fists into their other hands three times, and on

the third, each player comes up with either paper (an open hand), scissors (a v-shape with two

fingers), or a rock (fist) . The winner is determined like this:

• paper covers rock

• rock crushes scissors

• scissors cut paper

Many times people like to play best of 3 or 5, or some other number.

148



The word match refers to an entire collection of games played, whereas game means one of

the many (where each player makes a choice). Thus, the goal of a player is to win the whole

match, but it is entirely possible (and likely) that s/he will lose a game or more.

You are to write a program that plays RPS match against the user. The program should ask

the user how many times s/he would like to play, then run just enough games to determine a

winner. The user will specify the maximum number of games, not the number of games needed

to determine a winner.

Your program should determine the computer’s choice randomly, and keep the user updated

on the progress of the games, including:

• the computer’s choice for that game

• the winner of the game

• the current record

When the match is over, your program should indicate who won the match.

A.2 SNAP

Recognizing patterns is a common task for computers. For example, software that monitors cell

phone chatter for threatening content can save lives (e.g., preventing terrorism, drug trafficking,

etc.).

The basic idea is that there is some stream of information that needs to be monitored. This

is costly for humans to do but not for computers. When certain patterns are identified, these

monitoring programs are programmed to react in certain ways. For example, it might send a

message to a law enforcement officer to watch a particular video feed at the airport.

The pattern in question for this project is the repetition of numbers. In other words, you are

looking for some number of back-to-back numbers that are all the same. The program should

begin by asking the user for how many numbers in a row s/he wants to detect. After this, the

program should continually read in (positive) integers until that many numbers that are identical

have been entered.

149



When that number of identical numbers appear in a row, the sequence is ”snapped” (hence

the name of the project). In other words, the program stops reading in numbers because the

proper pattern has been identified. Once this has happened, your program should print out the

average of all numbers seen up to (but not including) any of the numbers in the desired pattern.

A.3 COUNT/HOLD

There are a lot of fun games that can be played with dice. In this problem, you are being asked

to write a program that plays a game with the user. Each player takes turn rolling a die until the

game is over.

Each player rolls a 6 sided die privately, covering it up with their hand. Before revealing the

result, each player must decide to count the value now, or hold it over:

• If you count the roll, that is your score for the game.

• If you hold it, you have a 0 score for that roll, but you get to add the amount to your next

game score. You do not reveal your roll when you hold.

After both players have decided what to do, they reveal their count/hold decision. The winner

of the game is the person with the highest score for the roll.

A match is some fixed number of games decided by the players (no no best of calculation).

For example, a 10 game match consists of 10 games no matter what. If both players have won

the same number of games at the end, the player with the highest total over all of their rolls wins

the match. If the tie remains, the whole match ends in a tie.

Here’s what to do: write a program that plays a match according to the rules above. Also:

• Do not worry about printing out the rules for the user.

• Let the user pick how long of a match to play.

• Print the match winner when it is all over.

Hint: you do not need arrays for this program.

150



APPENDIX B

WRITTEN TESTS

The written pre- and post-tests were discussed in section 7.2.3.2. The complete exams are

shown below, although they are compressed to preserve space.

B.1 PRETEST

This test is designed to allow us to gauge your general understanding of programming. Please
answer the questions to the best of your ability. The results will be used only in conjunction
with this study and will be kept confidential.

SECTION 1
Circle the best answer for each question. If you think that more than one answer may be
correct, choose the one that seems most appropriate to you.

1. The job of a compiler is to

a. transform your source code into executable code.
b. execute your program.
c. allow you to make changes to your source code and save them.
d. identify the errors in your program.

2. A byte is consists of 8 bits and a bit is equal to either 0 or 1. How many different values
can a byte hold?

a. 8
b. 16
c. 64
d. 256

151



3. Which of the following does not conceptually belong?
a. int
b. main
c. char
d. float

4. In a computer program, which best describes how a variable can get a new value?
a. the programmer prints the value into the variable
b. a value is computed and copied into the variables memory location
c. the computer solves the equation that contains the variable
d. the compiler assigns the value to the variable

5. Which of the following will produce a syntax error?
a. accidentally using x instead of * for multiplication
b. accidentally using + instead of * for multiplication
c. declaring a variable as a double when you needed an int
d. inserting too many blank lines between statements

6. To use a variable in your program, the first thing you need to do is
a. initialize it
b. declare it
c. assign it a value
d. read a value in from the user

7. Which of the following operators has the highest precedence?
a. ++
b. =
c. + (binary addition)

d. %

8. Of the statements below, which does not have the effect of increasing the value of n by
1 upon completion of the statement?

a. n++;
b. n = n++;

c. n += 1;

d. n += -n + ++n;

SECTION 2
For each code segment shown below, determine the final contents of the variables (at the
end of code segment) and enter your answers under the variable names on the right.

CODE SEGMENTS FINAL VALUES

int n,m,p; n m p

n = 45 / 6;

m = 11 % 3;

p = 12 + 3 * 4;

152



_____________________________________________

int a=0, b=2, c=5; a b c

a = a + 2;

b = b + a;

c = a + b;

_____________________________________________

int d=100, e=50, f=125; d e f

e += d;

d = (f + d) % 5;

f = e / 100;

_____________________________________________

int x=1, y=2, z=7; x y z

z = z * y / 2;

y = x++;

SECTION 3
Write code segments that meet the requirements specified below (it is not necessary to write
complete programs). Use the programming language you know best. You should declare the
variables you need (along with their type).

1. Write a code segment that asks the user for two numbers representing weight (in pounds)
and prints out the combined weight (the sum of the two).

2. Write a code segment that reads in two numbers then prints out how many times the
first will divide the second and what is left over. For example, if 5 and 13 are entered,
the answers are 2 (5 goes into 13 twice) and 3.

3. Write a code segment that begins by reading in a double and accomplishes the following
steps:

a. calculate one-half of the number
b. calculate one-third of that number
c. multiply this result by the original number
d. move the decimal place to the right by two spaces
e. print the final result

SECTION 4
Determine the output of the following program segment.

int hello=5;

System.out.println("Greetings.");

System.out.println("You see, hello starts at " + hello);

System.out.print("but then ");

153



if (hello % 2)

hello = 50;

if (hello % 2 == 0)

hello = 100;

System.out.println("it goes to " + hello);

154



B.2 POSTTEST

This test is designed to allow us to gauge your understanding of certain programming con-
cepts. The results will be used only in for this study and will be kept confidential. You have
75 minutes to complete as much as possible.

QUESTION 1
Below you see a bunch of pseudocode programming steps. Your task is to reorganize these
steps such that they solve the specified problem.

The problem:
Write a program that repeatedly reads in numbers from the user until a 0 is entered. The
program should ignore negative numbers. When a 0 is entered, the program should:

• Print the sum total of all the even numbers
• Print the sum total all the numbers
• Print out how many odd numbers were entered

The steps:

print eventotal increment count

print nextval else

eventotal = 0 while (nextval < 0) do

total = total + nextval total = 0

eventotal = eventotal + count read nextval

if (nextval < 0) while (nextval is not 0) do

nextval = -1 if (nextval is even)

end while while (count > 0) do

print count if (count > eventotal)

count = 0 print total

eventotal = eventotal + nextval

Write out your solution here. Remember, just write down the steps from the previous
page such that they solve the problem. Things to note:

• Do not add any new steps or change them when you copy them over.
• Not all steps will need to be used.
• Some steps may be used more than once.

QUESTION 2:
This question uses the same problem as before and the same pseudocode steps, but on the
following page you will be asked to organize the steps in terms of programming goals.

On this page you can see several programming goals that must be achieved to solve the
problem from question 1. Below each write down the steps from the list on the previous
page are involved with solving each goal. Again:

155



• not all of the steps need to be used
• some of the steps need to be used more than once

Sum up the even numbers Count the odd numbers

Read in numbers until seeing 0 Read in a positive number

Sum up all the numbers

QUESTION 3:
This has two parts. Just answer the questions as best you can.

Part 1:
Each code segment should be considered independent of the others. Look at each and then
try to generally and concisely state what it does. Just try to explain what goal(s) it achieves
in a sentence or less. The first one is an example.

Code segment: Description:

int s=0,c=0,n=1; Calculate the average of numbers entered

while (n > 0) { by the user stopping at 0 (or a negative).

n = Console.in.readInt();

s += n;

c++;

}

System.out.println(s/c);

---------------------------------------------------------------

int n=-1;

while (n<0 || n>100) {

System.out.print(enter a number: );

n = Console.in.readInt();

}

---------------------------------------------------------------

int n = Console.in.readInt();

while (n!=4) {

System.out.println(n);

if (n%2 == 1)

n = n*3 + 1;

else

n /= 2;

}

156



---------------------------------------------------------------

int n,c=0;

while (n >= 0) {

n = Console.in.readInt();

if (n >= 0 && n < 10)

c++;

}

System.out.println(c);

---------------------------------------------------------------

long phn = Console.in.readLong();

while (phn > 1000)

phn = phn/10;

if (phn==412)

System.out.println(yes);

QUESTION 4:
For this question, consider the following problem statement:

Problem statement:
Write a program that plays a simplified version of War with the user. Your program should
deal the user and the computer each a random number between 1 and 10, then print out the
winner of that hand. After 21 games, it should print out the overall winner of the match.

What to do:
Pretend that you are a tutor and the student has written the following program. The student
is not sure what to do next.

After you read the problem statement, suggest the next two or three things for this student
to work on. Try to give the student programming goals related to this problem to pursue,
but dont give away too much about how to actually do them.

The program:

int user, comp, games=0;

while (games < 21) {

user = (int) Math.random() * 10 + 1;

comp = (int) Math.random() * 10 + 1;

System.out.println(You got a: + user);

System.out.println(The computer got: + comp);

if (user > comp)

System.out.println(You won!);

157



else if (user < comp)

System.out.println(The computer won!);

else

System.out.println(The game was a tie.);

}

QUESTION 5:
You read about the Snap problem earlier during this study. Re-read that problem statement
below and then read the directions for this question below that.

The problem:
Write a program that asks the user for how many numbers in a row to detect, then continually
read in positive integers until that many identical numbers in a row have been entered. When
the specified number of repeats appears in a row, the sequence is snapped and the program
should stop reading in numbers. The last thing the program should do is print out the average
of all numbers seen, excluding those that caused the sequence to end (those repeated at the
end).

For example, if the user wants 4 in a row, and you get: 5 5 2 8 7 7 7 7 The program
should stop at the fourth 7, then print 4.0, which is (5+5+2+8)/4

What to do:
Describe how you would go about solving this problem. Just say what you would do and
how you would plan to do it in order to solve this problem. Do this at whatever level of
detail you want and in any form you want. This is a totally open-ended question.

QUESTION 6:
When you used the software in this study it attempted to help you break a big problem into
a series of smaller ones by identifying goals and jotting down ideas to help solve them.

For this last question, read the problem statement below and then read the instructions
that come after that.

The Problem:
The game of craps is played by rolling a pair of dice. Depending on the value that comes up
on the dice, the game might be over in one roll or it might take several rolls. Here are the
rules for one game:

The player rolls the pair of dice. If the total on the dice is 2, 3, or 12, then the game is
lost immediately. If the total on the dice is 7 or 11, then the game is won immediately.
If the total is any other number, then the game continues. The total on the dice becomes
the ”point.” The player then rolls the pair of dice over and over until one of two things
happen: If the player’s roll is a 7, the player loses the game. If the player’s roll is equal
to the ”point” (the total from the first roll), then the player loses. (Otherwise, the player
keeps rolling.)

The program that you write should work as follows: The program should first ask the user
how many games of craps to play. The program should read the user’s input. It should then
simulate the specified number of games and should count the number of games that are won.

158



After all the games have been played, the program should print the number of games that
were won and the percentage of games that were won.

What to do:
Write out a list of programming goals and any comments you have about them, similar to
the Notes Window you saw while using the software. Just do your best.

159



APPENDIX C

BUG FREQUENCY RESULTS

As discussed in section 7.3.2.4, there is potential bias in any scoring rubric. In the IBS results

presented in this dissertation, points were assigned to various plans and plan components in

such a way to emphasize more important aspects of the programming tasks involved. The

primary benefit of doing this is that focal aspects of plans can play a proportionally larger

role in the score. The drawback, of course, is the above mentioned potential for bias. In this

appendix, the raw frequencies of bugs are analyzed and presented in exactly the same manner

as in section 7.3.2.3. Since this does not involve a rubric, these results are intended to stand

in support of the rubric-derived scores. Only the results are presented in this appendix, as

a discussion of these results was provided in sections 7.3.2.4 and 7.3.2.5.

Figure C1 shows the frequencies of merging related errors over the three programming

problems. For the Hailstone problem, the control group (M = .14, SD = .20) produced

significantly fewer merging related errors than the baseline group (M = .68, SD = .51),

t(15) = 2.79, p = 0.014, es = .96. The ProPl group (M = .19, SD = .24) performed

similarly well when compared to the baseline group (t(16) = 2.54, p = .022, es = .96). On

RPS, the ProPl group (M = .07, SD = .07) outperformed the baseline group (M = .21,

SD = .17) to a significant level (t(15) = 2.22, p = .042, es = .82). In this case, the

difference using the rubric was only marginal. The difference between the ProPl group

and control group (M = .19, SD = .20) failed to maintain marginal significance using bug

frequencies (F (1, 15) = 3.29, p = .13), however (which held using the rubric). Finally, on the

Count/Hold project, the ProPl group (M = .03, SD = .10) again surpassed the control

160



Figure C1: Frequency of merging-related error counts. Standard error bars are shown.

Figure C2: Number of plan component omissions per plan implementation attempt.

group (M = .15, SD = .19) but this time to a marginally significant level (F (1, 15) = 3.29,

p = .072, es = .63).

Next, looking at students’ ability to produce complete plans (figure C2), several differences

were found to be significant. For the Hailstone problem, the baseline group omitted fewer

161



Figure C3: Number of isolated (non-merging) errors committed per plan implementation
attempt.

plan parts (M = .18, SD = .16) than the control group (M = .38, SD = .16), and to a

significant level this time (t(16) = −2.43, p = .029, es = 1.25). When compared to the

ProPl group (M = .38, SD = .23), the difference was found to be marginally significant

(t(15) = −1.97, p = .068, es = 1.25 – this difference was not present using the rubric). In the

RPS problem, the difference between baseline group (M = .31, SD = .12) and control group

(M = .40, SD = .09), was not found to be significant using frequencies (t(16) = −1.65,

p = .12), even though it was using the rubric. The ProPl group (M = .19, SD = .15) was

significantly better than the baseline group on RPS, however (F (1, 15) = 36.8, p = .004,

es = 2.3). A similar difference also appeared on the posttest project (Count/Hold) with

the ProPl group (M = .21, SD = .18) committing significantly fewer omissions than the

control group (M = .51, SD = .31), F (1, 15) = 17.7, p = .010, es = .97.

Lastly, turning to isolated errors, there were again very few differences between the groups

(see figure C3). As before, the only statistically significant difference occurred in the Hail-

stone problem between the ProPl group (M = .18, SD = .12) and the baseline group

(M = .35, SD = .15), t(16) = 2.73, p = .015, es = 1.1.

162



APPENDIX D

SAMPLE KCDS

The files holding the ProPl KCDs covering the three problems in the study take up roughly

150 kilobytes in size (about 75 printed pages of text). In this appendix, a selection of

these KCDs are shown, with annotation, to give the reader an idea of the make-up of these

knowledge sources. The code below is processed by the KCD tools present in Atlas, compiled

in to planning operators, and executed by the APE planner. Note that the expected answer

lists in KCDs typically show only a few of the complete list. Synonyms and other answers in

the same class were added with the help of the KCD-NLU tool. In many cases, I included a

beginning synonym list in comments while writing the KCDs.

D.1 KCD 1: HAND CALCULATION

One of the reasons KCDs were a good fit for implementing many of the tactics of CPP was that

interactive examples were easy to implement. Below is a Hailstone KCD that implements one

of these introductory examples. The top-level system goal is listed at the top (“HAILBEGIN”)

while the subordinate goals each are a node in the line of reasoning. Other notes:

• Subordinate nodes are named arbitrarily (e.g., HB1, HB2, and so on).

• Immediately after these labels, the system utterance appears in quotes.

• Below this is the expected answer list.

163



• Correct responses appear alone, while flawed answers sit next to the name of another

KCD, which is “called” to remediate for that answer class (these are in all capitals).

• $anything-else$ is the default category followed when no match is made with expected

answers.

This is the simplest kind of KCDs used in ProPl since it is primarily a linear line of reasoning

(there is only one path a Hailstone series can take once you know the initial value).

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; HAILBEGIN presents an interactive example to the student. It asks

;; the student to apply the update rules, identify the ground state,

;; determine the count, and identify the largest value.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(goal HAILBEGIN

(goal HB1

"Let’s start off with an example. Please enter just one value at a time.")

(goal HB2

"If we start at 12, what comes next?"

(((("6") ;"six" is also acceptable (and so on for all #s below)

("37" EVENREC12)

("$anything else$" NEXTVAL12)))))

(goal HB3

"What comes after 6?"

(((("3")

("19" EVENREC6)

("$anything else$" NEXTVAL6)))))

(goal HB4

"Ok, what follows 3?"

(((("10")

("9" FORGOTADDONE)

("1 5" ODDREC3) ;"one half", took half of 3

("end" WRONGTERMCOND3) ; student thinks 3 is in the ground state

("$anything else$" NEXTVAL3)))))

(goal HB5

"after 10?"

(((("5")

("end" WRONGTERMCOND10)

("$anything else$" NEXTVAL10)))))

(goal HB6

"good. next one after 5?"

(((("16")

("15" FORGOTADDONE)

("2 5" ODDREC5) ; "two half"

164



("end" WRONGTERMCOND5)

("$anything else$" NEXTVAL5)))))

...

D.2 KCD 2: ELICITING A GOAL

Two KCDs are shown below. The first elicits generate-sequence, a goal in the Hailstone

problem and the second is the remediation tactic for elevating the student from a low-level

concept to the more abstract goal. The expected answers are all categories derived from the

corpus. Several other aspects of KCD writing not mentioned above are also present in the

example:

• Answer categories can be in different classes, but call the same remedial KCDs (for

example, “even” and “odd” below). Each class needs to have its own set of synonyms.

• Two KCDs can be called back-to-back (“count” and “largest” below).

• In the example, the most involved tutoring tactic is associated with the anything-else

branch.

The KCDs mentioned below that begin with “ELICITREPETITION...” are in response to

student suggestions to look at another value. This is indicated by mention of words that

are related to that notion (e.g., “odd” suggests they are thinking about checking the next

number against the rules). In this case, the goal is to elicit the idea of repetition (or looping)

from the fact that “getting another value” has been suggested.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

;; ELICITSEQUENCEGOAL - Goal to generate a full sequence

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(goal ELICITSEQUENCEGOAL

(goal ESG1

"Ok, great. What should we work on now?"

(((("sequence") ("generate more")

("loop" ELICITREPFROMLOOP)

("count" PREMATURECOUNT REASKFORSEQUENCEGOAL)

("largest" PREMATURELARGEST REASKFORSEQUENCEGOAL)

("odd" ELICITREPETITION) ("even" ELICITREPETITION) ("if" ELICITREPETITION)

("ground" ELICITREPFROMTERM) ("end" ELICITREPFROMTERM)

165



("$anything else$" ELICITSEQUENCEWITHPC)))))

) ; end top-level goal

(goal ELICITREPFROMLOOP

(goal ESG0.1

"That’s right. We will have to add a loop.")

(goal ESG0.2

"Let’s figure out why. What made you think of using a loop?"

(((("sequence") ("many numbers")

("$anything else$" GIVEABSTRACTGOAL))))))

...

D.3 KCD 3: FILTERING AND FORM-FILLING

Determining whether or not to engage in an advanced tutoring tactic is not always obvious.

I call the solution I came up with filtering. This approach, which uses the existing KCD

framework, is simply to check the student’s answer to the top-level question by searching

for known important and relevant keywords. If any are present, then the long and involved

example-based tactic is not followed (this is DOLARGESTEXAMPLE below). The drawback

is that since there is no memory in KCDs, is that any “goodness” in that initial answer is

lost and must be given again when the appropriate questions are asked again later.

This KCD walks the student through the parts of the schema for finding the largest value

in a sequence. It is necessary to discuss the initialization, if-statement in the loop, and the

print statement. The if-statement in the loop involves several parts: the use of “if”, the

comparison, and its location. To handle this, the answer parts facility provided by KCDs is

used (under goal ELS4 below). When asked “how,” the system will look for each of these

aspects in the answer, and then calls the remaining KCDs to fill in the gaps. This follows

the “form-filling” approach to dialogue management. Using answer-parts within KCDs was

not originally built for this behavior, but it worked well for ProPl.

(goal ELICITLARGESTSCHEMA

(goal ELS1

"Any ideas on how to find the largest?"

(((("greater than") ("compare") ("previous") ;; common parts of good answers

166



("variable")

("$anything else$" DOLARGESTEXAMPLE)))))

(goal ELS2

"Let’s handle the details one at a time.")

(goal ELS3

"We’ll need a variable to hold the largest value, let’s call it largest.

What should we initialize it to?"

(((("initial") ("hailval")

("0" COULDWORKBUT ELICITINITLARGEST)

("1" COULDWORKBUT ELICITINITLARGEST)

("$anything else$" ELICITINITLARGEST)))))

;; Answer parts provide a nice workaround here...

(goal ELS4

"How are we going to use largest in the program? "

(((("after increment") ("after if") ("before increment") ("before end")

("$anything else$" ELICITLARGECHECKLOC))

(("assign") ("save")

("$anything else$" ELICITSAVELARGEST))

(("if")

("$anything else$" ELICITIFSTATEMENT))

(("hailval greater largest") ("largest less hailval")

("hailval less largest" COMPARISONREVERSED)

("largest greater hailval" COMPARISONREVERSED)

("compare" COMPARISONGOOD ELICITCOMPARISONDETAILS)

("$anything else$" WENEEDTOCOMPARE ELICITCOMPARISONDETAILS))

)))

...

167



BIBLIOGRAPHY

Aleven, Vincent, Ken Koedinger, and Octav Popescu. 2003. “A Tutorial Dialog System
to Support Self-Explanation: Evaluation and Open Questions.” Edited by U. Hoppe,
F. Verdejo, and J. Kay, Proceedings of the 11th International Conference on Artificial
Intelligence and Education. Amsterdam: IOS Press, 39–46.

Aleven, Vincent, A. Ogan, Octav Popescu, and Ken Koedinger. 2003. “A Formative Class-
room Evaluation of a System that Supports Self-Explanation.” Edited by V. Aleven,
U. Hoppe, J. Kay, R. Mizoguchi, H. Pain, and F. Verdejo, Supplemental Proceedings of
the 11th International Conference on Artificial Intelligence (AIED2003), Vol. VI. School
of Information Technologies, University of Sydney, 345–355.

Anderson, John R. 1990. “Analysis of student performance with the LISP tutor.” In Di-
agnostic Monitoring of Skill and Knowledge Acquisition, edited by N. Frederickson,
R. Glaser, A. Lesgold, and M. Shaffo, 27–50. Hillsdale, NJ: Lawrence Erlbaum.

Anderson, John R., Albert T. Corbett, Ken R. Koedinger, and R. Pelletier. 1995. “Cognitive
tutors: Lessons learned.” The Journal of the Learning Sciences 4 (2): 167–207.

Anderson, John R., and B. Reiser. 1985. “The LISP Tutor.” Byte 10:1–16.

Ausubel, D. P. 1960. “The use of advance organizers in the learning and retention of mean-
ingful verbal material.” Journal of Educational Psychology 53:267–272.

Bloom, B. S. 1984. “The 2 sigma problem: The search for methods of group instruction as
effective as one-to-one tutoring.” Educational Researcher 13:4–16.

Bonar, Jeffrey G., and Robert Cunningham. 1988. “Bridge: Tutoring the Programming
Process.” In Intelligent Tutoring Systems: Lessons Learned, edited by Joseph Psotka,
L. Dan Massey, and Sharon A. Mutter, 409–434. 1988.

Bonar, Jeffrey G., and Elliot Soloway. 1989. “Preprogramming Knowledge: A Major Source
of Misconceptions in Novice Programmers.” In Soloway and Spohrer 1989, 325–354.

Brown, D. E. 1992. “Using Examples and Analogies to Remediate Misconceptions in
Physics: Factors Influencing Conceptual Change.” Journal of Research in Science Teach-
ing 29 (1): 17–34.

168



Brown, J. S., R. R. Burton, and J. Kleer. 1982. “Pedagogical, natural language, and knowl-
edge engineering techniques in SOPHIE I, II, and III.” In Intelligent Tutoring Systems,
edited by D. H. Sleeman and J. S. Brown, 227–282. London: Academic Press.

Bruckman, Amy, and Elizabeth Edwards. 1999. “Should We Leverage Natural-Language
Knowledge? An Analysis of User Errors in a Natural-Language-Style Programming
Language.” Proceedings of the Conference on Human Factors in Computing Systems.
Pittsburgh, PA, 207–214.

Brusilovsky, Peter. 1995. “Intelligent Learning Environments for Programming.” Proceed-
ings of AI-ED’95, 7th World Conference on Artificial Intelligence in Education. Wash-
ington, DC, 1–8.

Carbonell, J. R. 1970. “AI in CAI: An artificial intelligence approach to computer-assisted
instruction.” IEEE Transactions on Man-Machine Systems 11 (4): 190–202.

Carletta, Jean C. 1996. “Assessing agreement on classification tasks: the Kappa statistic.”
Computational Linguistics 22 (2): 249–254.

Chi, M. T. H., S. Siler, H. Jeong, T. Yamauchi, and R. G. Hausmann. 2001. “Learning
from tutoring: A student-centered versus a tutor-centered approach.” Cognitive Science
25:471–533.

Chi, Micki, P. J. Feltovich, and Robert Glaser. 1981. “Categorization and representation of
physics problems by experts and novices.” Cognitive Science 5:121–152.

Chi, Micki T. H. 1996. “Constructing self-explanations and scaffolded explanations in tu-
toring.” Applied Cognitive Psychology 10:S33–S49.

Chi, Micki T. H., M. W. Lewis, P. Reimann, and R. Glaser. 1989. “Self-explanations: How
students study and use examples in learning to solve problems.” Cognitive Science 13
(2): 145–182.

Cohen, Peter A., James A. Kulik, and Chen-Lin C. Kulik. 1982. “Educational outcomes of
tutoring: A meta-analysis of findings.” American Educational Research Journal 19 (2):
237–248.

Collins, Allen, and A. L. Stevens. 1982. “Goals and Strategies of Inquiry Teachers.” In
Advances in Instructional Psychology, Vol. 2, edited by R. Glaser. Hillsdale, NJ: Erlbaum
Associates.

Corbett, Albert, and John R. Anderson. 1992. “The LISP intelligent tutoring system:
Research in skill acquisition.” In Computer Assisted Instruction and Intelligent Tu-
toring Systems: Establishing Communication and Collaboration, edited by J. Larkin,
R. Chabay, and C. Scheftic. Hillsdale, NJ: Erlbaum.

169



. 1995. “Knowledge decomposition and sugoal reification in the ACT program-
ming tutor.” Artificial Intelligence and Education: The Proceedings of AI-ED 95. Char-
lottesville, VA: AACE.

Core, Mark G., Johanna D. Moore, and Claus Zinn. 2003. “The Role of Initiative in Tutorial
Discourse.” 10th Conference of the European Chapter of the Association for Computa-
tional Linguistics (to appear). Budapest, Hungary.

Deek, Fadi P. 1998. “A Survey and Critical Analysis of Tools for Learning Programming.”
Computer Science Education 8 (2): 130–178.

. 1999. “A Framework for an Automated Problem Solving and Program Development
Environment.” Journal of Integrated Design and Process Science 3 (3): 1–13.

du Boulay, Benedict. 1989. “Some Difficulties of Learning to Program.” In Soloway and
Spohrer 1989, 283–299.

Dufresne, Robert J., William J. Gerace, Pamela T. Hardiman, and Jose P. Mestre. 1992.
“Constraining Novices to Perform Expertlike Problem Analyses: Effects on Schema Ac-
quisition.” The Journal of the Learning Sciences 2 (3): 190–202.

Evens, Martha W., S. Brandle, R. C. Chang, and et. al. 2001. “CIRCSIM-Tutor: An Intel-
ligent Tutoring System Using Natural Language Dialogue.” Proceedings of the Twelfth
Midwest AI and Cognitive Science Conference. Oxford, OH, 16–23.

Feddon, Jeffrey S., and Neil Charness. 1999. “Component Relationships Depend on Skill in
Programming?” 11th Annual PPIG Workshop. University of Leeds, UK.

Felleisen, Matthias, Robert B. Findler, Matthew Flatt, and Shriram Krishnamurthi. 2001.
How to Design Programs. MIT Press.

Flatt, Matthew. 2002, March. Personal Communication. The Thirty-fourth SIGCSE Tech-
nical Symposium on Computer Science Education (SIGCSE), Dr. Scheme Workshop.

Forte, Andrea, and Mark Guzdial. 2004. “Computers for Communication, Not Calcula-
tion: Media as a Motivation and Context for Learning.” Proceedings of 37th Hawaiian
International Conference of Systems Sciences. Big Island, Hawaii.

Freedman, R., Carolyn P. Rose, Michael A. Ringenberg, and Kurt VanLehn. 2000. “ITS
Tools for Natural Language Dialogue: A Domain-Independent Parser and Planner.” Fifth
International Conference on Intelligent Tutoring Systems (ITS 2000). Springer-Verlag
Lecture Notes in Computer Science.

Gamma, Erich, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design Patterns:
Elements of Reusable Object- Oriented Software. Addison Wesley.

Gertner, Abigail, and Kurt VanLehn. 2000. “Andes: A Coached Problem Solving Environ-
ment for Physics.” Edited by G. Gauthier, C. Frasson, and Kurt VanLehn, Proceedings of

170



the 5th International Conference for Intelligent Tutoring Systems (ITS2000). Montreal,
Canada, 131–142.

Glass, Michael. 2001. “Processing Language Input in the CIRCSIM-Tutor Intelligent Tutor-
ing System.” Edited by Johanna Moore, Artificial Intelligence in Education. Amsterdam:
IOS Press, 210–221.

Glenberg, A. M., A. C. Wilkinson, and W. Epstein. 1982. “The Illusion of Knowing: Failure
in the Self-Assessment of Comprehension.” Memory & Cognition 10:597–602.

Graesser, Arthur C., N. K. Person, and Derrick Harter. 2001. “Teaching Tactics and Dialog
in AutoTutor.” International Journal of Artificial Intelligence in Education 12:257–279.

Graesser, Arthur C., N. K. Person, and J. P. Magliano. 1995. “Collaborative dialogue
patterns in naturalistic one-to-one tutoring.” Applied Cognitive Psychology 9:495–522.

Graesser, Arthur C., Kurt VanLehn, Carolyn P. Ros e, Pamela W. Jordan, and Derek
Harter. 2001. “Intelligent Tutoring Systems with Conversational Dialogue.” AI Magazine
22 (Winter): 39–51.

Graesser, Arthur C., Peter Wiemer-Hastings, N. K. Person, and Derrick Harter. 2000.
“Using latent semantic analysis to evaluate the contributions of students in AutoTutor.”
Interactive Learning Environments 8:129–148.

Greeno, J., and H. Simon. 1988. “Problem solving and reasoning.” In Handbook of Experi-
mental Psychology, edited by R. C. Atkinson, Volume 2, 589–672. New York, NY: John
Wiley and Sons.

Guzdial, Mark. 2004, January. “Programming Environments for Novices.” In Computer
Science Education Research, edited by Sally Fincher and Marian Petre. Springer–Verlag.

Guzdial, Mark, Luke Hohmann, Michael Konneman, Christopher Walton, and Elliot
Soloway. 1998. “Supporting Programming and Learning-to-Program with an Integrated
CAD and Scaffolding Workbench.” Interactive Learning Environments 6 (1&2): 143–179.

Heffernan, Neil T. 2001, March. “Intelligent Tutoring Systems have Forgotten the Tutor:
Adding a Cognitive Model of Human Tutors.” Ph.D. diss., Carnegie-Mellon University.
Tech Report CMU-CS-01-127.

Herrmann, N., J. C. Popyack, Paul Zoski, C. D. Cera, R. N. Lasas, and A. Nanjappa. 2003.
“Redesigning introductory computer programming using multi-level online modules for
a mixed audience.” Eighth Annual Innovation and Technology in Computer Science Ed-
ucation (ITiCSE).

Jadud, Matthew C., and Sally A. Fincher. 2003, March. “Naive tools for studying compila-
tion histories.” techreport 3-03, University of Kent Canterbury, Computing Laboratory,
University of Kent, Canterbury, Kent, CT2 7NF.

171



Jeffries, R., A. A. Turner, P. G. Polson, and M. E. Atwood. 1981. “The processes involved in
designing software.” In Cognitive skills and their acquisition, edited by J. R. Anderson.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Johnson, W. Lewis. 1990. “Understanding and Debugging Novice Programs.” Artificial
Intelligence 42:51–97.

Joni, Saj-Nicole, and Elliot Soloway. 1986. “But My Program Runs! Discourse Rules for
Novice Programmers.” Journal of Educational Computing Research 2 (1): 95–125.

Jordan, Pamela, Carolyn Rose, and Kurt VanLehn. 2001, May. “Tools for Authoring Tu-
torial Dialogue Knowledge.” Proceedings of 11th International Conference on Artificial
Intelligence in Education (AIED2001). Austin, TX.

Jordan, Pamela, and Kurt VanLehn. 2002. “Discourse Processing for Explanatory Essays
in Tutorial Applications.” Proceedings of the 3rd SIGdial Workshop on Discourse and
Dialogue.

Jurafsky, D., and J. H. Martin. 2000. Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition. Pren-
tice Hall.

Kamm, Candace A., Diane J. Litman, and Marilyn A. Walker. 1998, December. “From
Novice to Expert: The Effect of Tutorials on User Expertise with Spoken Dialogue Sys-
tems.” Proceedings of the 5th International Conference on Spoken Language Processing
(ICSLP). Sydney, Australia, 1211–1214.

Katz, Sandra, David Allbritton, and John Connelly. 2003. “Going Beyond the Problem
Given: How Human Tutors Use Post-Solution Discussions to Support Transfer.” Inter-
national Journal of Artificial Intelligence in Education 13:79–116.

Keim, Greg. 1997. “Temperature Based Dialogue in the Duke Programming Tutor.” avail-
able on-line at http://citeseer.ist.psu.edu/.

Keim, Greg, M. Fulkerson, and A. Biermann. 1997. Initiative in tutorial dialogue systems.

Lee, P., and C. Phillips. 1998. “Programming Versus Design: Teaching First Year Students.”
SIGCSE Bulliten 30 (3): 289.

Lepper, M. R., M. Woolverton, D. L. Mumme, and J. L. Gurtner. 1993. “Motivational
Techniques of Expert Human Tutors: Lessons for the Design of Computer-Based Tutors.”
In Computers as Cognitive Tools, 75–105. S. P. LaJoie and S. J. Derry.

Linn, Marcia C. 1985. “The cognitive consequences of programming instruction in class-
rooms.” Educational Researcher 14 (5): 14–16,25–29 (May).

Littman, D., Elliot Soloway, and J. Pinto. 1990. “The Knowledge Required for Tutorial
Planning: An Empirical Study.” Interactive Learning Environments 1, no. 2.

172



Mayer, Richard E. 1980. “Elaboration techniques for technical text: An experimental test
of the learning strategy hypothesis.” Journal of Educational Psychology 72:770–784.

. 1989. “The Psychology of How Novices Learn Computer Programming.” In Soloway
and Spohrer 1989, 129–159.

McArthur, David, Cathleen Stasz, and Mary Zmuidzinas. 1990. “Tutoring Techniques in
Algebra.” Cognition and Instruction 7 (3): 197–244.

McCalla, Gordon, and K. Murtagh. 1991. “GENIUS: An experiment in ignorance-based
automated program advising.” AISB Quarterly, pp. 11–19.

McCracken, Michael, Vicki Almstrum, Danny Diaz, Mark Guzdial, Dianne Hagan, Yifat
Ben-David Kolikant, Cary Laxer, Lynda Thomas, Ian Utting, and Tadeusz Wilusz. 2001.
“A multi-national, multi-institutional study of assessment of programming skills of first-
year CS students.” ACM SIGCSE Bulliten 33 (4): 125–140. Report by the ITiCSE 2001
Working Group on Assessment of Programming Skills of First-year CS.

McIver, Linda, and Damian Conway. 1999. “GRAIL: A Zeroth Programming Language.”
Proceedings of the International Conference on Computers in Education.

McKendree, Jean, Bob Radlinski, and Michael E. Atwood. 1992. “The Grace Tutor: A qual-
ified success.” Edited by C. Frasson, G. Gauthier, and G. I. McCalla, Intelligent Tutoring
Systems: Second International Conference, ITS ’92 Proceedings. Berlin: Springer-Verlag,
677–684.

Merrill, D. C., B. J. Reiser, S. K. Merrill, and S. Landes. 1994. “Guided learning by doing.”
Cognition and Instruction 13 (3): 315–372.

Merrill, D. C., B. J. Reiser, M. Ranney, and J. G. Trafton. 1992. “Effective tutoring tech-
niques: A comparison of human tutors and intelligent tutoring systems.” The Journal
of the Learning Sciences 2 (3): 277–306.

Miller, L. A. 1981. “Natural language programming: Styles, strategies, and contrasts.” IBM
Systems Journal 20 (2): 184–215.

Moore, Johanna D. 1995. Participating in Explanatory Dialogues: Interpreting and Re-
sponding to Questions in Context. Cambridge, MA: ACL-MIT Press.

Newell, Allen, and Herbert Simon. 1972. Human Problem Solving. Prentice Hall.

Pane, John F. 2002. “A Programming System for Children that is designed for Usability.”
Ph.D. diss., Carnegie Mellong University, Pittsburgh, PA. CMU-CS-02-127.

Pane, John F., Chotirat Ann Ratanamahatana, and Brad Myers. 2001. “Studying the lan-
guage and structure in non-programmers’ solutions to programming problems.” Inter-
national Journal of Human-Computer Studies 54:237–264.

173



Paoloa. 2001. “Incorporating Software Visualization in the Design of Intelligent Diagnosis
Systems for User Programming.” Artificial Intelligence Review 16:61–84.

Pea, Roy D., and Midian D. Kurland. 1983. “On the Cognitive Prequisites of Learning
Computer Programming.” Technical Report 18, Bank Street College of Education, New
York, NY.

Pennington, Nancy. 1987. “Comprehension strategies in programming.” In Empirical studies
of programmers: second workshop, edited by Gary M. Olson, Sylvia Sheppard, and Elliot
Soloway, 100–113. Norwood, New Jersey: Ablex Corp.

Pennington, Nancy, and B. Grabowski. 1990. “The Tasks of Prorgramming.” In Psychology
of Programming, edited by J. M. Hoc, T. R. G. Green, R. Samurcay, and D. J. Gilmore,
45–62. London: Harcourt Brace Jovanich.

Perkins, D. N., Chris Hancock, Renee Hobbs, Fay Martin, and Rebecca Simmons. 1989.
“Conditions of Learning in Novice Programmers.” In Soloway and Spohrer 1989, 261–
279.

Perkins, D. N., and Fay Martin. 1986. “Fragile Knowledge and Neglected Strategies in
Novice Programmers.” In Soloway and Iyenger 1986, 213–220.

Perkins, D. N., Steve Schwartz, and Rebecca Simmons. 1988. “Instructional Strategies for
the Problems of Novice Programmers.” In Teaching and Learning Computer Program-
ming, edited by Richard E. Mayer, 153–178. Hillsdale, NJ: Lawrence Erlbaum Associates.

Petre, Marian. 1990. “Expert Programmers and Programming Languages.” In Psychology
of Programming, edited by J. M. Hoc, T. R. G. Green, R. Samurcay, and D. J. Gilmore.
London: Academic Press.

Pintrich, Paul R., Carl F. Berger, and Paul M. Stemmer. 1987. “Students’ Programming
Behavior in a Pascal Course.” Journal of Research in Science Teaching 24 (5): 451–466.

Polya, George. 1957. How to Solve It. New York: Doubleday–Anchor.

Radlinski, Bob, and Jean McKendree. 1992, May. “Grace meets the “real world”: tutoring
COBOL as a second language.” Proceedings of the SIGCHI conference on Human factors
in computing systems. Monterey, CA: ACM Press, 343–350.

Ramadhan, Haider A., and Benedict Du Boulay. 1993. “Programming Environments for
Novices.” In Cognitive Models and Intelligent Environments for Learning Programming,
edited by G. Dettori, B. Du Boulay, and E. Lemut, 125–134. Berlin: Springer Verlag.

Ramadhan, Haider A., Fadi Deek, and Khalil Shihab. 2001. “Incorporating Software Visual-
ization in the Design of Intelligent Diagnosis Systems for User Programming.” Artificial
Intelligence Review 16:61–84.

174



Reiser, Brian J., D. Y. Kimberg, M. C. Lovett, and M. Ranney. 1992. “Knowledge repre-
sentation and explanation in GIL, an intelligent tutor for programming.” In Computer-
Assisted Instruction and Intelligent Tutoring Systems: Shared Goals and Complementary
Approaches, 111–150. J. H. Larkin and R. W. Chabay.

Renkl, Alexander, R. Stark, H. Gruber, and H. Mandl. 1998. “Learning from worked-out ex-
amples: The effects of example variability and elicited self-explanations.” Contemporary
Educational Psychology 23:90–108.

Rich, Charles. 1981. “Inspection methods in programming.” Technical Report MIT/AI/TR-
604, Massachusetts Institute of Technology, Cambridge, MA.

Rist, Robert S. 1989. “Schema Creation in Programming.” Cognitive Science 13:389–414.

. 1995. “Program Structure and Design.” Cognitive Science 19:507–562.

Robertson, Leslie A. 2000. Simple Program Design. Cambridge, MA: Course-Technology –
Thompson Learning.

Robertson, S. Ian. 2001. Problem Solving. Philadelphia, PA: Psychology Press Ltd.

Robins, Anthony, Janet Rountree, and Nathan Rountree. 2003. “Learning and Teaching
Programming: A Review and Discussion.” Computer Science Education 13 (2): 137–
172.

Rose, Carolyn P., D. Bhembe, Stephanie Siler, R. Srivastava, and Kurt VanLehn. 2003a.
“Exploring the Effectiveness of Knowledge Construction Dialogues.” Proceedings of AI
in Education 2003 Conference. Sydney, Australia: Amsterdam: IOS Press.

. 2003b. “The Role of Why Questions in Effective Human Tutoring.” Proceedings of
AI in Education 2003 Conference.

Rose, Carolyn P., Pamela Jordan, Michael Ringenberg, Stephanie Siler, Kurt VanLehn, and
Anders Weinstein. 2001. “Interactive Conceptual Tutoring in Atlas-Andes.” Proceedings
of AI in Education 2001 Conference.

Sacks, H., E. A. Schegloff, and G. Jefferson. 1974. “A simplest systematics for the organi-
sation of turn-taking for conversation.” Language 50:696–735.

Shackelford, Russ. 1993. “Why can’t smart students solve simple programming problems?”
International Journal of Man-Machine Studies 38 (6): 985–997.

. 1998. Introduction to Computing and Algorithms. Addison-Wesley.

Singley, M. K. 1990. “The reification of goal structures in a calculus tutor: Effects on
problem solving performance.” Interactive Learning Environments 1:102–123.

175



Sleeman, D., A. E. Kelly, A. E. Martinak, R. D. Ward, and J. L. Moore. 1989. “Studies of
diagnosis and remediation with high school algebra students.” Cognitive Science 13:551–
568.

Soloway, Elliot. 1989. “Learning to Program = Learning to Construct Mechanisms and
Explanations.” Communications of the ACM 29 (9): 850–858 (September).

Soloway, Elliot, and Kate Ehrlich. 1984. “Empirical Studies of Programming Knowledge.”
IEEE Transactions on Software and Engineering SE-10 (5): 595–609 (September).

Soloway, Elliot, Kate Ehrlich, Jeffrey Bonar, and J. Greenspan. 1982. “What do novices
know about programming?” In Directions in Human-Computer Interaction, edited by
Andre Badre and Ben Schneiderman, 87–122. Norwood, New Jersey: Ablex Corp.

Soloway, Elliot, and Sitharama Iyenger, eds. 1986. Empirical Studies of Programmers. Nor-
wood, New Jersey: Ablex Corp.

Soloway, Elliot, and James C. Spohrer, eds. 1989. Studying the Novice Programmer. Nor-
wood, New Jersey: Ablex Corp.

Soloway, Elliot, James C. Spohrer, and David Littman. 1988. “E Unum Pluribus: Generat-
ing Alternative Designs.” In Teaching and Learning Computer Programming, edited by
Richard E. Mayer. 137–152.

Spohrer, James C. 1992. MARCEL: Simulating the Novice Programmer. Norwood, New
Jersey: Ablex Corp.

Spohrer, James C., and Elliot Soloway. 1985, November 12-15. “Putting It All Together is
Hard For Novice Programmers.” Proceedings of the IEEE International Conference on
Systems, Man, and Cybernetics. Tucson, Arizona.

Spohrer, James C., Elliot Soloway, and Edgar Pope. 1989. “A Goal/Plan Analysis of Buggy
Pascal Programs.” In Soloway and Spohrer 1989, 355–399.

Stevens, A., and Alan Collins. 1977. “The Goal Structure of a Socratic Tutor.” Proceedings
of the National ACM Conference. New York, NY: ACM Press.

Sweller, John. 1994. “Cognitive Load Theory, Learning Difficulty, and Instructional Design.”
Learning and Instruction 4:295–312.

Taylor, Josie. 1999. “Analyzing Novices Analyzing Prolog: What stories do novices tell
themselves about Prolog?” In Learning to Build and Comprehend Complext Information
Structures: Prolog as a Case Study, edited by P. Brna, B. duBoulay, and H. Pain.
Norwood, New Jersey: Ablex Corp.

Traum, D. R., and James F. Allen. 1994, June. “Discourse Obligations in Dialogue Process-
ing.” Proceedings of the 32nd Annual Meeting of the Association for Computational Lin-
guistics (ACL-94). 1–8.

176



VanLehn, Kurt, Pam Jordan, Carolyn Rose, D. Bhembe, M. Boettner, A. Gaydos,
M. Makatchev, U. Pappuswamy, M. Ringenberg, A. Roque, S. Siler, R. Srivastava, and
R. Wilson. 2002a. “The Architecture of Why2-Atlas: A Coach for Qualitative Physics
Essay Writing.” Proceedings of the 6th International Conference on Intelligent Tutoring
Systems (ITS 2002). Biarritz, France, 158–167.

VanLehn, Kurt, Collin Lynch, Linnwood Taylor, Anders Weinstein, Richard Shelby, Kate
Schulze, D. Treacy, and M. Wintersgill. 2002b. “Minimally invasive tutoring of complex
physics problem solving.” Edited by S. A. Cerri, G. Gouarderes, and F. Paraguacu,
Proceedings of the 6th International Conference on Intelligent Tutoring Systems (ITS
2002). Biarritz, France, 367–376.

VanLehn, Kurt, Stephanie Siler, Chas Murray, and W. B. Baggett. 1998. “What makes
a tutorial event effective?” Proceedings of the Twenty-first Annual Conference of the
Cognitive Science Society. Mahwah, NJ: Lawrence Erlbaum Associates, 1084–1089.

VanLehn, Kurt, Stephanie Siler, Chas Murray, Takashi Yamauchi, and W. B. Baggett.
2003. “Why do only some events caus learning during human tutoring?” Cognition and
Learning 21 (3): 209–249.

Wasik, B. A., and R. E. Slavin. 1993. “Preventing early reading failure with one-to-one
tutoring: A review of five programs.” Reading Research Quarterly 28:178–200.

Weber, G., and Peter Brusilovsky. 2001. “ELM-ART: An Adaptive Versatile System for
Web-based Instruction.” International Journal of Artificial Intelligence in Education
12:351–384.

Wender, Karl F., Gerhard Weber, and Gerd Waloszek. 1987. “Psychological considerations
for the design of tutorial systems.” Proceedings of the Third International Conference on
Artificial Intelligence and Education. Pittsburgh, PA.

Wenger, Etienne, ed. 1987. Artificial Intelligence and Tutoring Systems: Computational
and Cognitive Approaches to Communication of Knowledge. Los Altos, CA: Morgan
Kaufmann.

White, B., T. A. Shimoda, and J. Frederiksen. 1999. “Enabling students to construct theo-
ries of collaborative inquiry and reflective learning: Computer support for metacognitive
development.” International Journal of Artificial Intelligence in Education 10:151–182.

Winslow, Leon E. 1996. “Programming Pedagogy – A Psychological Overview.” SIGCSE
Bulliten 28:17–22.

Zinn, Claus, Johanna D. Moore, and Mark G. Core. 2002, June. “A 3-tier Planning Architec-
ture for Managing Tutorial Dialogue.” Intelligent Tutoring Systems, Sixth International
Conference (ITS 2002). Biarritz, France.

177



Zinn, Claus, Johanna D. Moore, Mark G. Core, Sebastian Varges, and Kaska Porayska-
Pomsta. 2003, September. “The BE&E Tutorial Learning Environment (BEETLE).”
Proceedings of the Seventh Workshop on the Semantics and Pragmatics of Dialogue (Dia-
Bruck 2003). Saarbrucken, Germany.

178


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	5.1. Hailstone goal utterance summaries
	5.2. Schema suggestions in Hailstone
	7.1. Final program means
	7.2. Composite intention-based scores
	7.3. Summary of all IBS results
	7.4. Survey results

	LIST OF FIGURES
	1.1. Commonsense counting strategy
	1.2. Learning an algorithmic method for counting.
	3.1. Three categories of tutoring
	4.1. The Hailstone Problem Statement
	4.2. Staged solution to the Hailstone problem
	4.3. 3-step pattern
	4.4. CPP Environment
	4.5. Purpose, form, and content of CPP tactics
	4.6. Pointing to the problem statement
	4.7. Eliciting the generate-sequence goal
	4.8. Eliciting a goal with a hypothetical
	4.9. Elevating the student to a more abstract goal
	4.10. Teaching a counting schema
	4.11. Eliciting a comparison abstraction
	4.12. Eliciting a plan component
	4.13. Eliciting combinations
	4.14. Tutoring algorithm for the use of examples
	4.15. CPP in a nutshell
	5.1. Sample goal suggestions from the CPP corpus
	5.2. Example schema suggestions from CPP corpus
	6.1. Initial screen of ProPl-C, the control system
	6.2. Stages in the control system
	6.3. Design notes screenshots
	6.4. Hand calculation with ProPl
	6.5. Screenshot of ProPl
	6.6. Handling open-ended schema suggestions
	7.1. Online protocol tagging tool
	7.2. First two stages of producing an IBS.
	7.3. Example of IBS bug identification.
	7.4. Merging related points lost
	7.5. Plan part omission points lost
	7.6. Isolated errors
	7.7. Written posttest scores by problem
	C1. Frequency of plan-merging related errors
	C2. Plan part omission frequencies
	C3. Isolated error frequencies

	PREFACE
	1.0 INTRODUCTION
	1.1 MOTIVATION
	1.2 THE PROBLEM AND APPROACH
	1.3 RESEARCH GOALS AND QUESTIONS
	1.4 OVERVIEW

	2.0 LEARNING TO PROGRAM
	2.1 PROGRAMMING TASK ANALYSIS
	2.1.1 The tacit knowledge of programming
	2.1.2 Cognitive subtasks involved in programming
	2.1.3 The decomposition and composition problems

	2.2 NOVICE PROGRAMMERS
	2.2.1 What makes programming hard?
	2.2.2 Novice programmer behaviors
	2.2.3 Why novices do what they do

	2.3 SYSTEMS FOR NOVICE PROGRAMMERS
	2.3.1 Systems supporting on-the-fly planning
	2.3.1.1 LISP Tutor
	2.3.1.2 Grace
	2.3.1.3 GIL
	2.3.1.4 ELM-ART
	2.3.1.5 PROUST

	2.3.2 Systems supporting distinct planning
	2.3.2.1 Bridge
	2.3.2.2 MEMO-II
	2.3.2.3 GPCeditor
	2.3.2.4 SolveIt
	2.3.2.5 DISCOVER


	2.4 CHAPTER SUMMARY

	3.0 TUTORING AND DIALOGUE
	3.1 HUMAN TUTORING
	3.1.1 What human tutors do
	3.1.2 Tutor-centered view of tutoring
	3.1.3 Student-centered view of tutoring
	3.1.4 Pre-practice intervention in tutoring

	3.2 REVIEW OF DIALOGUE-BASED EDUCATIONAL SYSTEMS
	3.2.1 Early systems
	3.2.2 Modern systems
	3.2.2.1 Why2-Atlas
	3.2.2.2 Circsim-Tutor
	3.2.2.3 AutoTutor
	3.2.2.4 Geometry Explanation Tutor
	3.2.2.5 BEETLE

	3.2.3 Dialogue-based systems for programming
	3.2.3.1 Program Enhancement Adviser
	3.2.3.2 Duke Programming Tutor
	3.2.3.3 GENIUS


	3.3 CHAPTER SUMMARY

	4.0 TEACHING THE TACIT KNOWLEDGE OF PROGRAMMING
	4.1 PRELIMINARIES
	4.1.1 CPP history: a personal account
	4.1.2 Pedagogical underpinnings
	4.1.2.1 Argument for pre-practice intervention
	4.1.2.2 Natural language and programming
	4.1.2.3 Pseudocode
	4.1.2.4 Staged design


	4.2 TARGETED PROBLEM TYPES
	4.2.1 The Hailstone problem and other knowledge-lean tasks
	4.2.2 An illustrative solution to Hailstone

	4.3 THE TUTORING MODEL: COACHED PROGRAM PLANNING
	4.3.1 Corpus analysis
	4.3.1.1 Corpus overview
	4.3.1.2 General procedure for corpus analysis

	4.3.2 General aims and principles
	4.3.3 3-step pattern
	4.3.4 Elements of a tutoring session

	4.4 ELICITATION TACTICS
	4.4.1 Top-level questions
	4.4.1.1 A comment about top-level questions
	4.4.1.2 Categorizing student answers

	4.4.2 Remedial tactics
	4.4.2.1 Purpose, form, and content
	4.4.2.2 Goal remediation tactics
	4.4.2.3 Schema/plan remediation tactics
	4.4.2.4 More on the use of examples
	4.4.2.5 Paradigm and pseudocode placement


	4.5 CHAPTER SUMMARY

	5.0 ANALYSIS OF STUDENT LANGUAGE
	5.1 HOW STUDENTS DESCRIBE GOALS
	5.2 HOW STUDENTS DESCRIBE SCHEMAS
	5.3 CHAPTER SUMMARY

	6.0 AUTOMATED COACHED PROGRAM PLANNING
	6.1 PROPL-C: THE CONTROL SYSTEM
	6.1.1 Interface
	6.1.2 Staged design in the interface
	6.1.3 Design notes

	6.2 PROPL: A DIALOGUE-BASED ITS FOR NOVICE PROGRAM DESIGN
	6.2.1 What happens in a tutoring session

	6.3 DIALOGUE ENGINE AND KNOWLEDGE SOURCES
	6.3.1 Knowledge Construction Dialogues (KCDs)
	6.3.1.1 Effort required for a new problem

	6.3.2 Top-level dialogue control
	6.3.3 Understanding student input
	6.3.4 Differences between ProPl-C and ProPl

	6.4 CHAPTER SUMMARY

	7.0 EVALUATION
	7.1 CPP VERSUS BASELINE
	7.1.1 Design
	7.1.2 Participants
	7.1.3 Materials
	7.1.4 Procedure
	7.1.4.1 Floundering

	7.1.5 Results
	7.1.6 Discussion

	7.2 PROPL EXPERIMENT
	7.2.1 Design
	7.2.2 Participants
	7.2.3 Materials
	7.2.3.1 Class programming projects
	7.2.3.2 Programming tests
	7.2.3.3 Survey

	7.2.4 Procedure
	7.2.5 Intention-based scoring
	7.2.5.1 Inspecting an online protocol
	7.2.5.2 Bug identification
	7.2.5.3 Scoring
	7.2.5.4 IBS Discussion


	7.3 RESULTS
	7.3.1 Pretest
	7.3.2 Programming projects
	7.3.2.1 Final program scores
	7.3.2.2 Composite intention-based scores
	7.3.2.3 Decomposed intention-based scores
	7.3.2.4 Bug frequencies
	7.3.2.5 Summary of IBS results

	7.3.3 Written posttest
	7.3.4 Survey results
	7.3.5 The ``I don't know" crutch
	7.3.6 Discussion

	7.4 ANALYSIS OF KCD-DRIVEN DIALOGUES
	7.5 CHAPTER SUMMARY

	8.0 CONCLUSION
	8.1 SUMMARY
	8.2 CONTRIBUTIONS
	8.3 FUTURE WORK
	8.4 CONCLUDING REMARKS

	APPENDIX A. PROGRAMMING PROBLEMS
	 A.1 ROCK-PAPER-SCISSORS
	 A.2 SNAP
	 A.3 COUNT/HOLD

	APPENDIX B. WRITTEN TESTS
	 B.1 PRETEST
	 B.2 POSTTEST

	APPENDIX C. BUG FREQUENCY RESULTS
	APPENDIX D. SAMPLE KCDS
	 D.1 KCD 1: HAND CALCULATION
	 D.2 KCD 2: ELICITING A GOAL
	 D.3 KCD 3: FILTERING AND FORM-FILLING

	BIBLIOGRAPHY

