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DEVELOPMENT OF A PERCEPTUAL HYPERTHERMIA INDEX TO EVALUATE 

HEAT STRAIN DURING TREADMILL EXERCISE 

 

Michael Gallagher, Jr., Ph.D. 

University of Pittsburgh, 2009 

 

Fire suppression and rescue is a physiologically demanding occupation due to extreme external heat as 

well as the additional physical and thermal burden of the protective garments. The hot environment 

challenges body temperature homeostasis inducing heat stress. Accurate field assessment of hyperthermia 

is complex and unreliable. Purpose: The present investigation developed a perceptually based 

hyperthermia metric to measure physiologic exertional heat strain during treadmill exercise. Methods: 

Sixty-five (28.88 ± 6.75 yrs) female (n=11) and male (n=54) firefighters and non-firefighting volunteers 

participated in four related thermal stress investigations performing treadmill exercise while wearing 

thermal protective clothing in a heated room. Physiological and perceptual responses (i.e. body core 

temperature, perceived exertion, and thermal sensation) were assessed at baseline, 20-mins exercise, and 

at termination. Results: Perceived exertion increased from baseline (0.24 ± 0.42) to termination (7.43 ± 

1.86). Thermal sensation increased from baseline (1.78 ± 0.77) to termination (4.50 ± 0.68). Perceived 

exertion and thermal sensation were measured concurrently with body core temperature to develop a two-

dimensional graphical representation of three “colored” exertional heat strain zones. Each exertional heat 

strain zone was representative of a range of mean body core temperature responses such that green 

incorporated 36.0 to 37.4°C, yellow incorporated 37.5 to 37.9°C, and red incorporated 38.0 to greater 

than 40.5°C. Conclusions: A perceptual hyperthermia index (PHI) was developed using ratings of 
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perceived exertion and thermal sensation. The PHI can provide a quick and easy momentary assessment 

of the level of risk for exertional heat strain for firefighters engaged in fire suppression and rescue. This 

metric may be beneficial in high risk environments that threaten the lives of firefighters. 
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1.0  INTRODUCTION 

This investigation developed a Perceptual Hyperthermia Index (PHI) to evaluate exertional heat 

strain during treadmill exercise. It was expected that a standardized index could be developed to 

measure hyperthermia using ratings of perceived exertion (RPE) and ratings of thermal sensation 

(RTS). Data were derived from both firefighters and healthy adult volunteers who performed 

bouts of treadmill exercise. The development of a hyperthermia metric provides a fast and easy 

assessment of exertional heat strain in firefighters during fire suppression and rescue operations. 

1.1 RATIONALE 

Fire suppression and rescue is physiologically very demanding on firefighters due to the extreme 

hot environmental conditions as well as the additional physical and thermal burden of the 

firefighting gear. The hot environment imposes a challenge on the homeostasis of body 

temperature inducing hyperthermia.4,15,43,56 Additionally, the increased metabolic demand 

associated with physical movement while wearing firefighting thermal protective clothing (TPC) 

further increases body core temperature..  

The assessment of hyperthermia is complex, involving both physiological and perceptual 

strain indicators. Heat stress indices assess the combined contributions of metabolic cost, 

environmental factors and clothing requirements. Heat strain indices assess the physiological 
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response resulting from heat stress. A number of indices have been constructed to measure the 

degree of heat stress imposed on an individual. These heat stress indices may be categorized into 

three groups: rational, empirical, and direct.19,45,55,61 Rational indices are based on a heat balance 

equation that includes heat storage rate, metabolic rate, external work rate, radiant heat 

exchange, convective heat exchange, respiratory heat exchange, and evaporative heat loss. The 

heat stress index (HSI)2 and the physiological heat strain prediction model by McPherson45 are 

examples of rational indices. Direct indices are based on actual measures of environmental 

variables. Examples of such direct indices are the wet-bulb globe temperature (WGBT)78 and the 

discomfort index (DI)68 both of which are used to quantify the degree of heat stress imposed on 

an individual in a given set of environmental conditions. Many health and safety standards 

associated with environmental heat stress use a direct approach. Lastly, empirical indices are 

based on objective and subjective strain. One such example of an empirical index based on 

objective measurements is the physiological strain index (PhSI), developed by Moran and 

colleagues.46,50 This index was intended to address measurement limitations associated with 

direct environmental indices. The empirical index incorporates heart rate and core temperature 

response to a thermal load as surrogate measures of heat stress imposed on the individual. 

Epstein and Moran19 suggested that rational and empirical indices provide comprehensive 

assessments of thermoregulation. Direct indices, though, have the benefit of being “more 

friendly and applicable” but only consider environmental variables such as wet-bulb, dry-bulb, 

and black-bulb temperatures.  However, Cheung14 proposed that occupational exposure standards 

should not only use physiological outcomes, but also thermal perceptions reflecting the 

behavioral and exercise response to heat stress. The majority of these safety standards and 

indices of thermal strain do not incorporate perceptual responses to heat stress and hyperthermia. 
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One possible method for monitoring the risk of heat-related injury involves the use of RTS and 

RPE derived from category metrics. Tikusisis et al.70 incorporated these two measures into a 

perceptual strain index (PeSI).  

Hostler et al.31 examined the effects of hyperhydration on emergency responders 

performing treadmill exercise while wearing chemical resistant personal protective equipment 

(PPE). As part of their investigation, PhSI and PeSI were calculated for each subject performing 

under experimentally induced thermal stress. The results indicated that pre-participation 

hyperhydration did not influence perceptual or physiological strain indices and that perceptual 

heat strain was significantly greater than the physiological heat strain for both the control and 

hyperhydrated conditions. The unequal ratings between perceptual and physiological heat strain 

in the presence of a similar heat stress load suggests factors other than body core temperature and 

heart rate may mediate perceived thermal strain. One such factor may be the individual’s 

perception of physical exertion which can interact with the subjective indices of heat strain such 

as thermal sensation during exercise under hot ambient conditions. Perceived thermal strain may 

be a protective mechanism to prevent heat-related injury.  As such, a perceptual heat strain index 

may provide a measure of relative risk for individuals performing exercise while wearing TPC.   

Although the use of perceptual responses to assess thermal strain is not a novel concept, 

the suggestions made by Epstein and Moran19 are important in bridging the gap between the ease 

and applicability of direct indices and the comprehensiveness of empirical indices. The next 

logical step in hyperthermia risk assessment consequent to firefighting while wearing TPC was 

to develop an occupational exertional heat strain metric. This metric incorporated components of 

the PeSI70 into a graphical presentation providing a fast and practical observation tool to assess 

exertional heat strain during actual fire scenarios. The PHI metric was based on a pilot 
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investigation performed in the Emergency Responder Human Performance Laboratory as 

reported by Hostler et al.31 These data demonstrated a moderately strong correlation between 

PeSI and body core temperature under varying environmental heat loads. 

1.2 PURPOSE 

The present investigation developed a perceptually based hyperthermia metric to measure 

physiologic exertional heat strain during treadmill exercise. Data to develop the hyperthermia 

metric were derived from four separate subject cohorts who performed a standard exercise 

forcing function under high environmental temperatures while wearing TPC. The subject cohorts 

were participants in four inter-related laboratory experiments examining various aspects of the 

hyperthermic response during exercise while wearing TPC. The development of a hyperthermia 

metric used RPE and RTS responses to treadmill exercise measured during the four laboratory 

experiments. The RPE and RTS values were incorporated into a graphical presentation forming 

the hyperthermia metric. Measures of body core temperature during exercise were used to 

establish concurrence between body thermoregulation and the degree of exertional heat strain 

predicted by the PHI. Measures of body core temperature during treadmill exercise were used to 

define the limits of each graphically depicted zone (strata), providing physiological 

documentation of the perceptually (PHI) categorized degree of exertional heat strain. 
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1.3 SPECIFIC AIMS 

Houghton et al.32 suggested that for a heat stress index to be applicable, it must meet four 

criteria: 1) the index should be measurable and accurate over a wide range of environmental and 

metabolic conditions, 2) the index should consider all important factors related to heat stress 

such as the environment, clothing, etc., 3) relevant measurements should reflect the worker’s 

exposure without interfering with performance or activity, and 4) worker’s exposure limits, as 

measured by the metric, should be reflected by physiological and/or psychological responses that 

indicate an increased risk to safety or health. Some components of these guidelines are 

impractical and beyond the scope of the current investigation such as examining responses over a 

wide range of environmental and metabolic conditions. Therefore, the outcomes of this study 

were to generalizable to volunteer adult firefighters and non-firefighters performing exercise in 

TPC. The specific aim of the present investigation was to develop the PHI using RPE and RTS to 

assess the level of heat burden during treadmill exercise in subjects wearing TPC. 

1.4 SIGNIFICANCE 

The development of a hyperthermia metric to assess the level of risk for exertional heat strain 

could provide a valuable field-based assessment for firefighters engaged in fire suppression and 

rescue. This metric may be beneficial in very high risk environments that threaten the lives of 

firefighters. 

The application of a hyperthermia metric reflects the importance of monitoring the health 

and well-being of firefighters performing physiologically taxing duties associated with fire 
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suppression and rescue while wearing protective clothing largely impermeable to ambient gases 

and particulates.     
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2.0  REVIEW OF RELATED LITERATURE 

2.1 THERMOREGULATION 

Thermoregulation is the body’s ability to maintain body core temperature around a set-point 

temperature of approximately 37ºC with a normal range of 36.2º to 37.7ºC.13,42 Temperature 

regulation is critical to homeostatic function and is linked to thermogenesis (metabolic heat 

production). The goal of temperature regulation is to maintain this relatively narrow homeostatic 

temperature range for optimal physiological function. Heat balance is generally the sum of heat 

production and heat loss where changes in core temperature are the result of either an increase or 

a decrease in heat storage. The heat balance equation for the storage of heat (S) takes into 

consideration the heat exchange pathways of metabolic heat production (M), evaporation (E), 

radiation (R), convection (C), and conduction (K). Additionally, the heat balance equation may 

incorporate heat production from physical work or exercise (Work). The mathematical relation 

between these variables is described as S = Work + M - E ± R ± C ± K, where positive numbers 

indicate heat gain and negative numbers indicate heat loss.13 

Heat production is primarily the result of metabolic heat production and physical work or 

exercise. Heat loss is the movement of heat down the thermal gradient from high to low 

temperature and primarily occurs by one of more of the following four processes of evaporation, 

radiation, convection, and conduction. Additionally, heat loss is highly dependent of the ambient 

temperature and humidity of environment.  
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Evaporation is heat loss through the conversion of sweat as water on the skin into water 

vapor gas. This process accounts for approximately 25% of heat loss at rest but becomes a 

primary means of heat loss under most environmental conditions during exercise. Radiation 

accounts for approximately 60% of heat loss and is the indirect movement of heat in the form of 

infrared rays or electromagnetic waves. Heat may be lost due to skin temperature exceeding air 

temperature and heat may be gained due to direct exposure to sunlight but varies greatly by 

environmental condition. However, radiative heat loss is minimal during uncompensable heat 

grain found with exercise in thermal protective clothing. Convection is heat loss down the 

thermal gradient by the transference of heat from an object to surrounding liquid mediums such 

as moving water, air, and internal body fluids. During exercise, convection occurs as heat 

produced within the muscle is transferred to the surrounding interstitial fluids. Conduction is heat 

loss down the thermal gradient by transference of heat from two objects in direct contact with 

one another such as feet on the ground surface. 

  This complex coordination of thermoregulatory processes is primarily regulated by the 

preoptic area of the anterior hypothalamus. The preoptic area of the anterior hypothalamus is 

responsible for generating autonomic, endocrine, motor, and behavioral responses to an 

environmental stimulus8.  

Hypothermia and hyperthermia manifest whenever the body is unable to maintain normal 

core temperature due to internal or external factors. Hypothermia is a collection of symptoms 

resulting from a decrease in core temperature due to the body’s inability to increase 

thermogenesis to counter rapid heat loss. At the other end of the thermal spectrum is 

hyperthermia. Hyperthermia is a collection of symptoms resulting from an increase in core 

temperature due to the body’s inability to adequately dissipate heat through increased sweating 
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and skin blood flow in the presence of an uncompensable heat gain. Exercise, clothing, and 

ambient conditions may increase body core temperature exceeding the homeostatic upper limit. 

2.2 HEAT STRESS AND STRAIN 

Heat stress is defined as the “net heat load to which a worker may be exposed from the combined 

contributions of metabolic cost, environmental factors and clothing requirements”. Heat strain is 

defined as the “overall physiological response resulting from heat stress.”1 Heat stress can be 

prevented whereas heat strain requires medical treatment. Heat stress assessments can be used to 

evaluate the risk of heat-related illness.1,11 During compensable heat stress, the thermoregulatory 

system is able to adjust for increases in body heat and thus maintain a physiologically safe core 

temperature. Uncompensable heat stress conditions can be encountered by emergency responders 

and soldiers performing work in chemical or thermal protective clothing. Under these conditions, 

the body is unable to adequately thermoregulate and core temperature increases to dangerous 

levels often associated with exhaustion.37 

2.2.1 Heat Related Illness 

As heat stress surpasses the body’s ability to maintain core temperature, the risk of heat-related 

illness increases. Heat-illness can be divided into two classifications based upon exposure time 

and intensity of the heat-stress. Minor heat-illnesses include heat cramps and heat syncope. Heat 

cramps are characterized as intense muscle spasms in the legs, arms, and abdomen resulting from 

fluid and sodium deficits. Heat syncope is fainting/dizziness during exposure to heat stress 

resulting from the pooling of blood in the venous circulation of the skin and leg muscles. This 
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occurs most commonly during dehydration but may be the first symptom of heat exhaustion. 

Both heat cramps and heat syncope most commonly occur in an individual who is not heat 

acclimatized. 

Major heat-illnesses include heat exhaustion and heat stroke; respectively in order of 

severity. Heat exhaustion is characterized as a mild to moderate illness due to the inability to 

sustain cardiac output and moderate to high core body temperatures (38.5ºC to > 40ºC)11,13 

usually accompanied by wet or clammy skin. Signs of possible heat exhaustion include a rapid 

pulse, headache, syncope, nausea/vomiting, muscle cramps, and chills/goosebumps. 

Heat stroke is characterized by central nervous system dysfunction and extremely high 

core body temperatures (> 40.5ºC).7,11,13 Signs of possible heat stroke include a weak or rapid 

pulse, changes to the central nervous system (confusion, agitation, apathy, delirium, and 

convulsions), hot and wet or dry skin (depending of the variant of heat stroke), vomiting, and 

hyperventilation.5,11,17 There are two types of heat stroke. Classical heat stroke results from 

extended exposure to hot environments that may prevent dissipation of body heat, typically 

occurring during summer heat waves. In these instances, individuals may stop sweating and 

evidence hot and dry skin. Exertional heat stroke occurs from increased metabolic demands of 

physical activity (i.e. running) that is sometimes undertaken in hot environments. The total 

produced heat load exceeds the body’s maximal heat dissipation capacity with the individual 

typically experiencing hot and wet skin due to the enclosed thermal environment.13 Exertional 

heat exhaustion and heat stroke are of concern for firefighters and emergency personnel wearing 

thermal protective clothing or hazardous material personal protective equipment. 
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2.2.1.1 Athletes versus Emergency Responders 

Many thermoregulatory responses to heat stress are similar between athletes performing under 

high ambient temperature and humidity, and emergency responders performing work in thermal 

protective clothing. However, the factors that bring about heat strain may be different depending 

on the exercise to be performed.  

Much of the heat stress literature involving athletic performance primarily deals with the 

sports of football and endurance events such as marathon running. Trained athletes participating 

in competition or a conditioning session perform exercise at a target intensity level for a 

specified duration. Marathon runners will run a sustained performance at a moderate intensity 

over the full 26.2 miles requiring approximately two to three hours at the elite level and upwards 

of 5 hours for the novice. Football players will participate in alactic exercise of short, intense 

bouts of exercise wearing protective clothing that contributes minimally to the thermal load. In 

short, heat stress during athletic performance is mostly associated with the environment (i.e. 

temperature and humidity) and metabolic heat production during exercise as energy requirements 

of muscular action increase. Athletic clothing is normally not a factor in provoking heat stress. 

Emergency responders performing work while wearing chemical or thermal protective 

clothing are at risk for thermal strain. The protective clothing effects heat exchange by thermal 

insulation and evaporative resistance.30 Thermal insulation and evaporative resistance increases 

the physiological and psychological strain on the wearer.44 These conditions can occur during 

both prolonged light work and shorter bursts of high intensity work. Ambient conditions may 

impose another strain on the wearer in addition to that of the protective clothing.  
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2.2.1.2 Epidemiology and Risk Factors 

Exertional heat stress does not similarly affect all individuals. As with any illness, there are 

predisposing risk factors and gradations of symptoms. These risk factors may be divided into 

four categories: individual characteristics, health conditions, medications, and environmental 

factors.1,11,13 

Individual characteristics that may increase the likelihood and severity of exertional heat 

stress or strain include age, gender, a low physical fitness level, excessive body weight, lack of 

heat acclimatization, and dehydration. The thermoregulatory response does not differ between 

adults and children until very hot ambient temperatures are encountered (45ºC). Under these 

environmental conditions, children have a lower heat tolerance than adults primarily due to a 

higher body surface area to mass ratio. Although a high surface area to mass ratio is generally an 

advantage in thermoregulation, this advantage becomes a risk when the environmental 

temperature exceeds skin temperature causing the skin to absorb heat.11 There is some evidence 

that males and females do not differ in response to exertional heat stress when the genders have 

similar cardiorespiratory fitness levels and body composition. However, effects of gender are 

often difficult to ascertain in part by the presence of the confounding variables of heat 

acclimatization and aerobic fitness levels. When males and females perform at the same absolute 

exercise intensity, females exhibited a higher core temperature than males. This response is 

primarily due to females on average having a lower VO2max than men. As such, a given absolute 

exercise intensity represents a higher relative aerobic metabolic rate for females.1,11 Studies 

examining gender differences should be interpreted with caution as basal body core temperature 

is different during the various phases of menstruation. Low aerobic fitness level, which can vary 

with age and gender, is also a risk factor for heat related illness. Thermoregulatory differences 

between children and older adults are often due to differences in the level of physical fitness. It is 
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presumed that older adults will have decreased physical function and increased physical 

impairments. However, when adults are matched on aerobic fitness level using VO2max, the 

cardiovascular and thermoregulatory strain was independent of age.1,11 

In many individuals, a low level of physical fitness is accompanied by higher than normal 

body weight. Excess body weight is evidenced by a high body mass index (BMI) and body fat 

percent (obesity). Gardner et al.24 found that in Marine Corps recruits, a comparatively high BMI 

(≥ 22 kg/m2) or a slower 1.5 mile run time (≥ 12 min) increased the risk for exertional heat 

illness by three-fold. In addition, the recruits with both poor fitness and higher weight increased 

their risk of heat illness by eight-fold. However, many obese individuals perform just as well as 

lean individuals under heat stress. This could be attributed to a form of heat acclimatization that 

occurs in obese individuals secondary to the insulating effect of peripheral body fat. Wallace et 

al.76 indirectly support this notion as after 14 weeks of basic training for Marine Corps recruits, 

only a slow run time was a predictor of exertional heat illness. Initially a high BMI was a 

significant predictor variable in statistical models to estimate heat illness. After training, a high 

BMI was no longer a predictor in the statistical model due to conditioning induced reduction in 

fat mass and increased heat acclimatization. 

Heat acclimatization is one of the more important factors in reducing risk of or the 

severity of heat-related illness. Heat acclimatization involves a series of biological adjustments 

to compensate for the adverse physiological effects of heat stress. Exposure to a hot environment 

over a 10-14 day period (acute acclimatization) or months to years (adapted acclimatization) will 

improve comfort and safety, and exercise performance under hot environments. Prolonged 

exposure to heat of at least 100 to 120 minutes is necessary to elevate core and skin temperature 

to induce sweating is necessary to acclimate to the heat.13 The benefits of heat acclimatization 
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are two-fold: minimize heat strain and improve exercise performance. Heat strain is minimized 

due to a reduction in core temperature that is the byproduct of improved sweating (earlier onset 

and higher rate), improved skin blood flow (earlier onset and higher rate), and a lowered 

metabolic rate.1,11,13 Exercise performance is improved due to an improvement in cardiovascular 

stability that is the product of lowered heart rates, increased stroke volume, maintained blood 

pressure, reduced sodium losses in sweat and urine, and increased plasma volume. In comparison 

to the non-acclimatized individual, the acclimatized individual has better evaporative, radiative, 

and convective heat loss. 

Another factor of equal importance to risk of heat related illness is hydration status. 

Dehydration negatively influences exercise performance and seriously limits the adjustment to 

heat. When exercising in a hypohydrated condition, the onset of sweating is delayed until a 

higher core temperature is obtained, skin blood flow is reduced, and heart rate is increased in an 

attempt to compensate. Thermoregulation is compromised by the reduction in blood volume and 

the increase in hematocrit which increases blood viscosity. As blood viscosity increases, the 

convective distribution of heat is reduced increasing body heat storage and increasing core 

temperature. The advantages of heat acclimatization and high fitness level are lost when 

exercising in a hypohydrated condition.13 

2.2.2 Incidence of Heat Illness 

Bonauto et al.6 examined the incidence of heat related illness among non-military working 

populations in Washington State from 1995 to 2005. During that 11-year span, there were 480 

workers’ compensation claims for heat related illness, of which 78.5% occurred during outdoor 

work. The average annual insurance claim for heat related illness in Fire Protection was 80.8 per 
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100,000 full-time equivalent (FTE). The annual claim for Fire Protection was higher than roofing 

construction (59.0 per 100,000 FTE), and highway, street, and bridge construction (44.8 per 

100,000 FTE). For employment purposes, FTE is defined by the Federal Government 

Accountability Office as the number of total hours worked divided by the maximum number of 

compensable hours in a work year as defined by law. If the work year is defined as 2,080 hours, 

then one worker occupying a paid full time job all year would account for one FTE. Two 

employees working 1,040 hours each would consume one FTE between the two of them. 

Additionally, the heat related illness claim rates in North America were highest in the third 

quarter of each year due to increased exposure to hot environments. The higher outdoor 

temperatures from May to September accounted for 95% of the total heat related illness claims 

during these months. During the third quarter (July through September) alone, the highest rates 

of heat related illness claims were for roofing construction at 161.2 per 100,000 FTE and fire 

protection at 158.8 per 100,000 FTE.  

2.2.3 Physiological Responses to Heat Stress 

Cerebral changes during exercise in the heat may contribute to “central fatigue”.53,54,57 The 

notion of “central fatigue” is supported by the observation that exercise-induced hyperthermia is 

associated with reduced voluntary activation of the alpha motor neurons during sustained 

maximal muscle contractions.58 Furthermore, a reduced level of central activation has also been 

observed during passive hyperthermia.51,71 Mechanisms for the decrease in muscular and 

cognitive performance may be due to the attainment of a critical high core temperature.53 Studies 

by Gandevia22 and Bigland-Ritchie et al.3 found that a high core temperature impaired the ability 

to maintain maximal muscle activation resulting in a reduction of force generated. The reduced 
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force generated seems to relate to reduced motor unit activation secondary to central nervous 

system fatigue. The combined effects of exercise and heat stress further exacerbate failure of the 

central nervous system by introducing competition for blood between the muscles, skin, and the 

brain. Although there is a reduction in cerebral blood flow, cerebral oxygen delivery does not 

appear to be jeopardized during exercise and thermally stressful conditions.59 One apparent 

consequence of reduced cerebral blood flow was a reduction of total body heat removal as there 

was not temperature gradient between the brain and the rest of the body due to increased core 

temperature.  

2.2.4 Perceptual or Cognitive Responses to Heat Stress  

Psychological responses to firefighting activities indicate potential impairments in cognitive 

function.35,66 Kivimaki and Lusa35 found that task-focused thinking decreased as heat stress 

increased during smoke-diving simulations. Using the continuous performance test (CPT), a 

computerized assessment of reaction time and accuracy, Smith et al.66 similarly found that the 

accuracy of responding (number of errors) decreased following the first exposure to a live-fire 

trial. Initially, participants reduced the number of errors by 4.2% following trial one but made 

4.6% and 12.0% more errors following trials two and three, respectively. These data may 

indicate that cognition may decrease as result of extended work performance in thermally 

stressful situations. The underlying explanation of these findings is the combined negative 

effects of hyperthermia and dehydration on cognitive function. Such combined effects of 

hyperthermia and hypohydration during work performed by emergency responders while 

wearing thermal protective clothing may further exacerbate impairments in cognitive function. 
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Maughan et al.42 summarizes in their review that performance on physical and mental 

tasks are significantly reduced by heat stress and dehydration. This response is due to the 

additional stress imposed on the cardiovascular system that may be a detriment to the central 

nervous system. Cheung14 described a fundamental problem with previous research that assessed 

brain activity during hyperthermia. They noted that few studies tracked the effect of thermal 

stress on cognitive and task performance impairments in the presence of concomitant changes in 

physiological and/or perceptual thermal strain. As part of their training, the Australian Defense 

Forces have been exposed to “debilitating” tropical environments that negatively impacts 

physiological performance. Hocking et al.28 observed that in addition to these physiological 

detriments, thermal strain did not impact cognition of those military personnel. It was found that 

even through subjects experienced increased cardiovascular strain, the psychometric test 

batteries showed no significant performance detriments yet there was a marked difference in the 

electrical responses of the brain when thermally strained. Cheung14 suggests that while cognitive 

impairment may be sensitive to thermal stress, it may also be negated or minimized by other 

compensatory mechanisms that limit performance degradation. This may help explain conflicting 

results among studies examining hyperthermia (and the resulting hypohydration) on cognitive 

function. 

2.3 ASSESSMENT OF HEAT STRESS 

Heat stress is measured directly and indirectly through thermometry and heat stress indices that 

may include environmental, physiological, and perceptual variables. 
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2.3.1 Thermometry 

Thermometry is the primary tool to measure core and skin temperature. There are a variety of 

thermometric instruments, each with their own strengths and weaknesses which can be 

categorized as invasive and noninvasive. 

Invasive techniques include rectal, oesophageal, and ingestible thermistors. Rectal 

thermometry is considered the most practical and accurate for measuring core temperature and is 

accepted as the criterion for temperature measurement in hyperthermic athletes12 and for 

scientific research of heat exhaustion or stroke.48 Additionally, rectal temperature is 

recommended in the National Athletic Trainers Association’s position statement regarding 

detection of thermal strain.4 However, rectal thermometry may have a prolonged response time 

compared with other techniques, thereby being relatively slow to capture rapid changes in core 

temperature.48 One alternative to rectal thermometry is oesophageal temperature. The 

oesophagus is preferred by many to assess core temperature because of its location deep within 

the body juxtapositioned to the left ventricle and aorta. Therefore, it reflects the temperature of 

blood flow to the hypothalamus.48 Unlike rectal thermometry; oesophageal temperature has a 

rapid response but comes with high subject burden. The thermistor may be difficult to insert, 

may cause irritation to the nasal passages, and general subject discomfort65 and is not generally 

applicable in clinical settings. Another alternative to rectal thermometry is the use of ingestible 

thermistors that assess the core temperature within the gastrointestinal tract. Intestinal 

temperature has been shown to consistently record higher temperatures than rectal temperature 

when measured simultaneously during cycling exercise.36,38,67 However, intestinal temperature 

provided a better representation of rectal temperature than oesophageal temperature.60 Gant et 

al.23 examined the validity and reliability of intestinal temperature during intermittent running. 
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The results suggested that the test-retest variability of intestinal temperature was acceptably 

small during intermittent shuttle running. The small random measurement error and similar 

thermal responses to exercise suggest that intestinal temperature is appropriate for use in 

research as an alternative to rectal temperature. Additionally, Casa et al.12 found that intestinal 

temperature had a correlation coefficient of 0.86 with rectal temperature and a mean bias of -

0.19°C. The authors suggested that intestinal temperature provided a valid indication of the body 

temperature rise and fall associated with the onset and cessation of exercise performed in higher 

ambient temperatures. 

Noninvasive thermometric techniques typically include oral, aural (tympanic), and the 

temporal artery measurements. Oral thermometry is easy accessible and changes quickly in 

correspondence with changes in core temperature. Oral thermometry may be affected by eating, 

drinking, breathing, swallowing, facial fanning, and air temperature.12,48 Oral temperature during 

exercise and post-exercise has been shown to be consistently lower than rectal temperature. In 

addition, it has been suggested that oral temperature is not be a valid measure to assess 

hyperthermia in exercising individuals.12 Aural temperature is assessed in the ear canal and is 

easy to use.48 The actual temperature that is assessed is the average of the heat in the tympanic 

membrane, the air within the ear canal, and that radiated from the inner canal wall.12 Devices that 

assess aural temperature use conversions to improve accuracy as aural temperature is often lower 

than the more established measures of core temperature. Despite these conversions, aural 

temperature has been shown to be consistently lower than rectal temperature. This may be 

attributed to the low sensitivity of aural temperature to detect internal temperature changes 

resulting from alterations in blood flow to the skin, air or sweat evaporative cooling, and 

moisture or sweat in the ear canal.12 Temporal thermometry is a relatively new, easy to use 
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device that scans the temporal artery.41 Studies examining temporal thermometry have found it to 

be a valid instrument during resting conditions25,26 but not during indoor exercise in the heat.34,41 

Temporal temperature was also found to be significantly lower than rectal temperature before, 

during, and after outdoor exercise in the heat.12  

2.3.2 Heat Stress Indices 

A heat stress index is a single value that integrates the effects of any thermal environment that 

will vary with the thermal strain experienced by an individual.17 All heat stress indices are based 

on one or more of the following parameters: sweat rate, heart rate, core temperature, 

environmental condition.9 Heat stress indices go back over one hundred years to Haldane’s 

suggestion in 1905 that wet-bulb temperature is the most appropriate measure to express heat 

stress.27 Since that time, there have been a large number of indices developed and used 

throughout the world.17 

Heat stress indices can be divided into three groups according to their rationale and 

function: rational indices, direct indices, and empirical indices. 

2.3.2.1 Rational Indices of Heat Stress 

Rational indices are the most comprehensive of the three groups of heat stress indices. These 

indices integrate environmental and behavioral variables and are based on calculations involving 

the heat balance equation.17 In general; these indices are considered impractical with some 

parameters entered as a constant in the calculations. Examples of rational indices include the 

operative temperature, the Belding-Hatch Heat-Stress Index, and skin wettedness. 
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The operative temperature index was derived by Winslow et al.77 to express heat 

exchange between a worker and the surrounding environment by radiation and convection. The 

operative temperature is derived from the heat-balance equation where the combined effect of 

radiation and convection is a weighted sum of the heat-transfer coefficients. However, in order to 

derive the operative temperature, skin temperature must be measured or assumed and air velocity 

must also be measured. Humidity and metabolic heat production were omitted making 

generalizability limited.55 

The Belding-Hatch Heat-Stress Index (BH-HSI)2 has been used widely in laboratory and 

field settings for heat stress studies. It appears in a table format that identifies physiological and 

psychological consequences of exposure time to thermal stress. The BH-HSI is a derivation of 

the heat-balance equation that includes environmental and metabolic factors. It is a ratio 

calculated as the amount of body heat that is required to be lost to the environment by 

evaporation for thermal equilibrium divided by the maximum amount of sweat evaporation 

allowed through the clothing that can be accepted by the environment.55 However, the BH-HSI 

assumes a constant sweat rate for everyone, a constant skin temperature of 35°C, and 

conventional long-sleeved shirt and trouser ensemble.17,55 

Skin wettedness indices are based on the concept that the efficiency of sweat evaporation 

will affect heat strain such that the less efficient the evaporation, the greater the surface area of 

the body that needs to be wetted with sweat to maintain evaporative heat transfer. These indices 

incorporates air temperature, humidity, air movement, radiative heat, metabolic heat, and 

clothing properties which all need to be measured or calculated for each situation. Due to these 

requirements, the skin wettedness indices are time consuming and impractical for routine 

environmental monitoring.55 
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2.3.2.2 Direct Indices of Heat Stress 

Direct heat stress indices are based on environmental variables. These indices are commonly 

used to construct safety regulations by providing a simplified approach to obtain an estimate of 

thermal balance.17 These indices can either directly measure environmental variables to simulate 

heat strain or employ empirical calculations of environmental variables. Examples of direct 

indices include the dry bulb temperature, the wet bulb temperature, the effective temperature, the 

wet bulb globe temperature, and the discomfort index.17,55 

 Dry bulb temperature is an easily measured estimate of comfort conditions for sedentary 

people wearing conventional clothing within a zone of light air movement, relative humidity of 

20% to 60%, and air temperatures of 22°C to 25.5°C. The assumption of dry bulb temperature is 

that as work intensity increases the “comfort” air temperature decreases as a result of the heat 

balance equation. Wet bulb temperature is considered an appropriate metric where radiant 

temperature and air velocity are not large factors in assessing heat stress and predicting heat 

strain. Wet bulb temperature is easily measured and may be used in any hot, humid situation 

where wet bulb temperature approaches skin temperature, radiant heat is minimal, and air 

velocity is light.55 

 The Effective Temperature (ET)30 was developed by Houghton and Yaglou in 1923. The 

ET is an index based on direct measurements of environmental variables and is used to simulate 

heat strain. This index was initially developed to determine the relative effects of air temperature 

and humidity on comfort.17 The ET combines both the dry bulb and wet bulb temperatures, and 

air velocity.55 In 1932, Vernon and Warner74 created a corrected effective temperature (CET) to 

account for the effects of radiation by using black globe temperature instead of dry bulb 

temperature. The ET and CET have been widely used in studies of physical, psychomotor, and 

mental performance changes as a result of heat stress. The World Health Organization 
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recommended that values do not exceed 30°C for sedentary activities, with these critical values 

decreasing as work intensity increases.55 

 The wet bulb globe temperature (WBGT) is now by far the most widely used heat stress 

index throughout the world.17 It was developed by the United States Navy in 1957 as a basis for 

environmental heat stress monitoring to control heat casualties during military training.78 The 

WBGT emerged from the CET and consists of weighting dry bulb temperature, wet bulb 

temperature, and black globe temperature thus combining the effects of humidity, air movement, 

radiation, and outside air temperature.55 The coefficients were determined empirically and the 

index has no physiological correlates. It was found that heat casualties and time lost due to heat 

stress were both reduced by using WBGT to set exposure limits.17 The WBGT criterion (Table 1) 

incorporates acclimatization state, metabolic rate category for the work (Appendix A), and the 

proportion of work within an hour.1   

Table 1. Screening Criteria for Heat Stress Exposure (WBGT values in ˚C) 

 Acclimatized Unacclimatized 
Work Demands Light Moderate Heavy Very Heavy Light Moderate Heavy Very Heavy
100% Work 
 

29.5 27.5 26  27.5 25 22.5  

75% Work; 
25% Rest 

30.5 28.5 27.5  29 26.5 24.5  

50% Work; 
50% Rest 

31.5 29.5 28.5 27.5 30 28 26.5 25 

25% Work; 
75% Rest 

32.5 31 30 29.5 31 29 28 26.5 

*ACGIH. (2001). Heat Stress and Strain. Cincinnati, OH: American Conference of Governmental Industrial 
Hygienists. 
 

The WBGT was eventually adopted by the International Organization for Standardization 

(ISO) as a standard for exposing workers to hot environments as well as the American 

Conference of Government Industrial Hygienists, the Occupational Safety and Health 

Administration, the American Industrial Hygiene Association, and the American College of 

Sports Medicine.17 Although WBGT is a standard for many organizations, the index is limited in 
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its applicability across a broad range of potential heat stress scenarios and environments due to 

the inconvenience of measuring black globe temperature. 

 Since black globe temperature is not easily measured and may be an inconvenience in 

assessing heat stress, Lind and Hellon40 proposed the Oxford Index. This is a simple direct index 

based on a weighted summation of wet bulb temperature and dry bulb temperature. The 

coefficients employed a high weight assigned to wet bulb temperature reflecting the reliance on 

sweat evaporation for thermoregulation in hyperthermic conditions. Physiological strain was 

demonstrated by showing a high correlation between rectal temperature and heart rate with 

exercise tolerance time. However, the index is not appropriate during significant thermal 

radiation.17 In order to broaden application to other environments, a number of similar indices 

were developed that adopted different weights for the temperature variables. These were found to 

correlate with WBGT having r2 values ranging from 0.930 to 0.967. One form of the modified 

Oxford Index is the Discomfort Index (DI) developed by Thom.69 The DI produced similar 

values to the WBGT, having an r2 of 0.947.17 

 The Discomfort Index was highly correlated with ET, and sweat rate during rest and 

exercise. A number of studies have examined the Discomfort Index in a diversed population 

under differing climate conditions which only broadens its appeal for assessing heat stress. 

Particularly, DI can determine the heat load at any given time and can be summed to provide 

information on a daily, monthly, seasonal, or yearly basis. The Israel Defense Forces and the 

Israeli Ministry of Education adopted the DI to provide guidelines for exercising in the heat and 

associated need for fluid intake.17  

 More recently, an Environmental Stress Index (ESI) was developed and validated against 

WBGT.49 The ESI has been evaluated and refined for hot/dry and hot/wet climates.47 The ESI is 
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based on measurements of ambient temperature, relative humidity, and solar radiation. These 

variables were chosen due to common usage, measurement ease, and fast response time.47 High 

correlation (r2 > 0.899) between ESI and WBGT for the 19 different geographic locations in 

Israel, and r2 of 0.985 and 0.982 for the hot/dry and hot/wet geographic locations were found.47 

The evaluations of ESI under extreme climatic conditions provide support for its use as a 

substitute to the WBGT index during athletic and military activity conducted in the heat.47 

2.3.2.3 Empirical Indices of Heat Stress 

However, these “standard” indices (a) assume that all individuals respond similarly to a given 

level of external heat stress, (b) are highly conservative in estimating thermal response and 

tolerance in order to accommodate a wide range of individual responses, and (c) may be 

cumbersome to determine in real-time.14 Empirical indices are based on objective and subjective 

strain17 and may incorporate physiological and perceptual responses to increased heat stress that 

address several limitations of the “standard” heat stress indices. Examples of empirical indices 

include the Cumulative Heat Strain Index (CHSI), the Physiological Strain Index (PhSI), and the 

Perceptual Strain Index (PeSI). 

2.4 PERCEPTUAL HEAT STRAIN INDICES 

One methodological issue is how heat stress may be defined and ultimately perceived. Heat 

stress is perceived as either thermal comfort or thermal sensation. Thermal comfort typically 

relates to how relatively comfortable an individual feels in a thermally stressful condition. 

Perceptual indices of thermal comfort use a Likert format that may range from “Comfortable” to 

“Very Uncomfortable”.20 Thermal sensation typically indicates how hot or cold an individual 
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feels in a thermally stressful condition and are presented in a bipolar format ranging from “Cold” 

to “Neutral” to “Hot”.20 Some perceptual indices combine measures of comfort and sensation. As 

examples, the Bedford Thermal Scale employs descriptors that range from “Much Too Cool” to 

“Comfortable” to “Much Too Warm” while the OMNI Thermal Sensation Scale employs 

descriptors “Comfortable” to “Very Hot.” Additionally, visual analog scales may also assess 

thermal perception 39 that may increase sensitivity to changes in non-uniform conditions on the 

body surface. In essence, the visual analog scale is the developmental precursor or semantic 

differential for many perceptual indices such as the OMNI perceived exertion and muscle pain 

scales. Mower52 proposed that thermal sensation may be determined in part by the regional 

thermo-sensitivity independent of core temperature, and that thermal comfort may be linked to 

effects of sweating rate and skin wetness. 

The concurrent validity of perceptual indices has been undertaken using physiological 

criteria. In the case of ratings of perceived exertion, oxygen consumption and heart rate are the 

two primary criterion physiological variables. Additionally, ratings of perceived exertion, 

although not a measure of thermal perception, do increase with a rise in core temperature.53,58 

Perceived exertion during exercise with progressive hyperthermia has also been shown to 

correlate with reductions in middle cerebral artery mean blood velocity and 

electroencephalographic changes.58 

Specifically, perceptions of thermal stress may be derived from the ambient 

environmental conditions, skin temperature, core temperature, and heart rate. Thermal comfort in 

helicopter aircrew wearing immersion suits seemed to show an anecdotal positive trend with 

ambient temperature, cabin temperature, and the cabin wet-bulb globe temperature index.18 
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Thermal sensation during exercise in cool and cold water is suggested to be moderately 

correlated with skin temperature and rectal temperature.72 

2.5 SUMMARY OF LITERATURE REVIEW 

In summary, the current knowledge base regarding temperature regulation and heat stress indices 

indicated the need to develop user friendly methods to quickly and accurately assess heat stress 

in thermally stressful conditions. These conditions may be imposed by the ambient 

environmental temperature or through the clothing properties (insulation, water vapor 

permeability) of thermal protective clothing and personal protective equipment that are often 

worn by emergency personnel. One possible means to assess homeostatic disruption of 

temperature regulation in firefighters is to develop a single, easy to apply index of thermal strain 

that employs concurrently reported measures of perceived exertion and thermal sensation. 
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3.0  METHODOLOGY 

The PHI was developed using RPE and RTS data derived from the following four interrelated 

investigations involving exercise induced thermal stress: (a) FIRE I (a laboratory study on 

rehydration), (b) FIRE II (a laboratory study of cooling), (c) COG I (a laboratory study of 

cognitive function), and (d) COG II (a laboratory study of cognitive recovery) (Table 2). Each of 

the four interrelated investigations employed partially overlapping subject cohorts performing a 

treadmill exercise forcing function under hot ambient conditions. During exercise, subjects wore 

the same type of TPC. The two FIRE trials are funded by the Federal Emergency Management 

Agency (FEMA) Assistance to Firefighters Grants (AFG) program.  

Table 2. Problem statements for the four interrelated investigations of thermal stress used in the present 

study. 

Investigation N 
(M/F) 

Problem Statement 

FIRE I 16/2 • To examine the effect of rehydration strategies of water, sport drink, and 
intravenous normal saline on the duration of exercise, heart rate response, and 
temperature response during a subsequent bout of exercise in TPC.  

FIRE II 13/4 • To examine the effect of six cooling strategies on duration of exercise, heart 
rate response, and temperature response during a subsequent bout of exercise 
in TPC. 

COG I 10/0 • To identify if a battery of cognitive tests can be used to quantify negative 
changes in cognitive function following treadmill exercise in TPC. 

COG II 14/5 • To document the recovery of cognition after performing strenuous work while 
wearing firefighter protective clothing and equipment.  

• Secondary aims are to, 1) identify the effect of thermal stress on activation of 
coagulation and inflammation and 2) examine possible loss and recovery of 
functional balance following treadmill exercise in TPC. 
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3.1 EXPERIMENTAL DESIGN 

All four interrelated investigations employed similar experimental designs with slight procedural 

differences between experiments (Figure 1). In all four protocols, RPE and RTS data were 

derived prior to starting exercise, following twenty minutes of treadmill walking at 4.5 

kilometers per hour (km·hr-1) and at test termination. Methodological commonalities and 

differences specific to each investigation are addressed below.  

 

Figure 1. Experimental designs across the four interrelated investigations. Data will be taken prior to starting 

exercise and at the conclusion of the initial 20-min exercise block (hyphenated rectangle) and at test termination. 
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3.1.1 Subjects 

A total of sixty-five female (n = 11) and male (n = 54) adults aged 19 to 44 years old who 

comprised the experimental cohorts for the four investigations were subjects in this investigation 

(Table 3).  

Table 3. Descriptive characteristics of the combined sample and the four interrelated investigations. 

Mean ±SD 

 Combined 
(N=65) 

FIRE I 
(n=18) 

FIRE II 
(n=18) 

COG I 
(n=10) 

COG II 
(n=19) 

Age 
(yrs) 

  28.88 ± 6.75   29.89 ± 8.65   29.78 ± 7.38   28.10 ± 5.34   27.47 ± 4.61 

Height 
(cm) 

173.72 ± 8.96 173.11 ± 9.57 172.08 ± 9.31 175.10 ± 6.35 175.13 ± 9.51 

Weight 
(kg) 

  78.34 ± 15.99   89.72 ± 15.81   75.38 ± 14.43   73.20 ± 8.04   73.05 ± 16.17 

VO2max/peak 
(ml·kg-1·min-1) 

  43.82 ± 9.31   37.77 ± 3.87   38.10 ± 6.91   54.52 ± 6.70   49.33 ± 7.87 

Body Composition 
(%Fat) 

--   20.44 ± 5.20   15.08 ± 25.13 -- -- 

BMI 
(kg·m-2) 

  25.74 ± 5.06   30.11 ± 5.42   25.13 ± 3.97   23.97 ± 3.40   23.09 ± 3.74 

 

All subjects were clinically healthy and had no prior experience in rating their perception 

of physical exertion. Subjects were recruited through letters sent to fire departments in Allegheny 

and adjacent counties and recruitment flyers posted throughout the University of Pittsburgh and 

surrounding areas. Interested individuals were asked to contact the Emergency Responder 

Human Performance Laboratory to schedule an initial visit. In this initial visit, individuals 

provided informed consent and completed a survey of demographic information, medical history, 

and physical activity level. Potential subjects underwent a physician administered physical 

examination including a resting 12-lead ECG and a 12-lead ECG recorded during a graded 

exercise test. Both ECGs were interpreted by a cardiologist. Individuals with orthopedic, 

cardiovascular and/or metabolic contraindications to exercise participation (i.e. coronary artery 

disease, prior myocardial infarction, peripheral vascular disease, hypertension, chronic 
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obstructive pulmonary disease and diabetes mellitus) or who were pregnant were excluded from 

participation. Additionally, individuals taking medications that were expected to alter 

physiological response to exercise (i.e. beta blockers) were excluded. 

3.1.2 Baseline Session 

Descriptive characteristics of the subjects were recorded including body height (cm), body mass 

(kg), and body fat (%).  Body height was determined using a Healthometer Scale with an 

attached stadiometer (Sunbeam Products, Inc., Boca Raton, FL).  Fat free mass was measured 

using the Jackson and Pollack 3 skinfold site equation.33 Skinfold measurements were obtained 

using Lange skinfold calipers. Aerobic fitness was assessed using a graded exercise test on either 

a cycle ergometer (FIRE I, FIRE II) or a treadmill (COG 1, COG II). Oxygen consumption 

(VO2; liters per minute; STPD) was measured using an open-circuit respiratory-metabolic system 

(True Max 2400, Parvo Medics, Salt Lake City, UT) during each minute of the exercise protocol.  

Heart rate (Polar Electro, Finland) was measured from 45 to 60 seconds of each minute of the 

exercise protocol. VO2peak/max was established as the highest measured value that occurred when 

the subject was no longer able to perform the exercise test due to fatigue. Secondary criteria for 

peak/maximal measurement included a VO2 plateau (i.e. a change < 3.5 ml⋅kg-1⋅min-1 between 

contiguous stages at maximal intensity), a RER ≥ 1.2, and a peak exercise heart rate ±5 

beats⋅min-1 of age-predicted maximal heart rate. 
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3.1.3 Fifty Minute Exercise Sessions 

The evening prior to each exercise testing session, subjects were provided a thermistor capsule 

(CorTemp; HQ, Inc., Palmetto, FL) and instructed to ingest the capsule eight hours before their 

scheduled exercise session. The thermistor transmitted body core temperature to a hand-held 

monitor during the experimental condition. The subjects were instructed to drink 20 ounces of 

water the night before the scheduled exercise session and to refrain from alcohol, caffeine, and 

nicotine use for 12 hours prior to the exercise session.  Subjects in FIRE I and FIRE II consumed 

meal replacement bars and sport drink to standardize morning caloric intake equal to 40% of the 

basal metabolic rate for a moderately active adult. Upon arriving at the laboratory, subjects 

provided a urine sample for a urine specific gravity (USG) measurement to ensure they were 

euhydrated. In female subjects, this sample was also used for a urine pregnancy test. All of these 

tests were administered by an investigator. 

Subjects were given an opportunity to void and then weighed in short pants (shorts and 

sport bra for females). A heart rate monitor strap was placed around the subject’s chest. Subjects 

then put on a standardized turn-out uniform of cotton-poly pants and a cotton t-shirt. 

Standardized instructions that included definition, scale anchors, frequency of administration and 

answering any questions for the perceptual measures of RPE and TS were read to each subject 

immediately prior to beginning the 50-minute exercise session (Appendix B). Next, subjects 

donned firefighter thermal protective clothing (TPC; heavy pants, heavy coat, nomex hood, 

boots, helmet, and gloves). A self-contained breathing apparatus (SCBA) was positioned on their 

back. After the subjects fully donned the TPC, they were instructed to stand on the treadmill. 

Baseline measures of heart rate, body core temperature, and perceptual measures were assessed 

at this time. 
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Subjects in FIRE I and FIRE II performed an interval treadmill protocol in a heated 

interior room (98 - 100ºF) to simulate a fire suppression environment. This interval protocol 

consisted of 1) walking for 20 minutes at 4.5 km·hr-1 (2.8 mi·hr-1) at an incline of 2.5%, 2) 

walking for three minutes at 2.6 km·hr-1 (1.6 mi·hr-1), 3) standing at rest for four minutes, 4) 

walking for three minutes at 2.6 km·hr-1, and 5) walking for 20 minutes at 4.5 km·hr-1 at an 

incline of 2.5%. With the exception of carrying an 8.2 kg bodybar in FIRE I, this 50-min interval 

protocol was the same for both FIRE I and FIRE II investigations (see Table 1). Subjects in FIRE 

I performed the interval protocol on three separate occasions and subjects in FIRE II performed 

the interval protocol on seven separate occasions. Subjects in COG I and COG II performed a 

50-min continuous treadmill protocol at 4.5 km·hr-1 in a heated interior room (98 - 100ºF). 

Termination criteria for the exercise session were a) at the subject’s request (i.e. fatigue), b) a 

body core temperature > 39.5º C, c) HR > 10 beats·min-1 of age-adjusted HRmax, or d) undertaken 

at the investigators discretion for the subject’s safety (i.e. unsteady gait). Heart rate and core 

body temperature were measured every 2 minutes of the exercise protocol. RPE and RTS 

measured at the conclusion of the initial 20-min exercise and again at test termination will be 

used in the present investigation to develop the PHI. 

3.1.4 Physiological Measures 

Heart rate (HR) was measured using a Polar heart rate monitor (Polar Electro, Finland). Body 

core temperature (Tc) was measured using a pill size indigestible thermistor and a radio receiver 

(HQ Inc., Florida). This device provides a core temperature measurement that is intermediate 

between rectal and esophageal temperature.60 Subjects ingested the capsule approximately 12 

hours before undertaking the protocol to ensure proper location of the capsule within the 
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intestinal tract. Physiological strain was determined by: PhSI = 5 * [(Tc·t – Tc·0) / (39.5 – Tc·0)] + 

5 * [(HRt – HR0) / (HRmax – HR0)]; where t = time of measurement (min), 0 = baseline 

measurement, Tc = body core temperature (˚C), and HR = heart rate (beats·min-1).50 

3.1.5 Perceptual Measures 

Rating of perceived exertion and RTS were measured using previously validated scales. Rating 

of perceived exertion was obtained with the Adult OMNI Walk/Run Perceived Exertion scale 

(Appendix C). This category metric contains a rating range from 0, “extremely easy,” to 10 

“extremely hard”.73 Thermal sensation was obtained with the novel OMNI Thermal Sensation 

Scale (Appendix C) which contains verbal descriptors from the Gagge thermal sensation scale20 

and numerical categories ranging from 1, “comfortable,” to 5 “very hot”. Perceptual strain was 

determined by the equation: PeSI = 5 * [(TSt – 1) / 4] + 5 * (PEt / 10); where TS = thermal 

sensation, and PE = perceived exertion.70 The perceptual strain index used in the investigation 

will be modified from the above original equation by Tikuisis et al.70 This modification will 

incorporate the different perceptual metrics used where PE is perceived exertion as measured by 

the OMNI RPE scale and TS is thermal sensation as measured by the OMNI RTS scale. 
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3.2 DATA ANALYSIS 

Physiological and perceptual responses were measured at baseline, 20-minutes of the treadmill 

protocol and at termination of the full 50-minute protocol. Descriptive values of the combined 

data for anthropometric, physiological, and perceptual variables were calculated as mean ± 

standard deviation (SD) and presented for the separate investigations and the combined data set. 

These responses were statistically examined using a two factor analysis of variance [ANOVA; 

Investigation x Time] to separately identify homogeneity between the four interrelated 

investigations. Data from FIRE I and FIRE II were the mean response of each subject’s trials for 

a given protocol. Separate analyses were conducted for each physiological and perceptual 

response. Statistical significance was accepted at the p < 0.05 level.  

Regression analyses between body core temperature and both RPE and RTS were 

performed separately for data obtained from each of the four interrelated investigations. In 

addition, responses from all subjects in the four interrelated investigations were combined into a 

single dataset. These combined data were used to construct the PHI. Regression analyses 

examined the relation between body core temperature and the perceptual responses. This 

regression analysis provided the level of relation between RPE and RTS for a measured body 

core temperature.  

Using a modification of the concept proposed by Moran et al.50, a graphical presentation 

consisting of RPE on the horizontal axis and RTS on the vertical axis was constructed. As 

employed by Moran et al.50 colored zones representing the different levels of exertional heat 

strain were determined within the ranges of RPE, RTS and Tc recorded across the four 

investigations examined presently. Moran et al.50 used rectal temperature as a measure of body 

core temperature. Each colored zone of the PHI will encompass several levels of exertional heat 
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strain similar to that presented by Moran et al.50 and provided a specific range of Tc (Table 4). 

The body core temperature ranges for each PHI zone used data from the present investigation. 

 

Table 4. Levels of exertional heat strain associated with the 

calculated PSI and the corresponding measured Tre matched with 

the colored zones for the newly developed PHI.  

Strain PSI Tre (˚C) PHI Zone 
 0 37.12 ± 0.03 

Green No/Little 1 37.15 ± 0.04 
 2 37.35 ± 0.03 
Low 3 37.61 ± 0.03 

Yellow  4 37.77 ± 0.04 
Moderate 5 37.99 ± 0.05 
 6 38.27 ± 0.07 

Red 
High 7 38.60 ± 0.04 
 8 38.70 
Very High 9 No data available 
 10 

*Values are means ± SE from Moran, D. S., Shitzer, A., & Pandolf, K. 
B. (1998). A Physiological Strain Index to Evaluate Heat Stress. Am J 
Physiol. Regul Integr Comp Physiol , 275, R129-R134. 

 

 

In order to include the combination of RPE and RTS for the full range of physiologically 

sustainable Tc prior to cell-death (i.e. the full Tc range commensurate with cell life) it was 

necessary to estimate certain sectors of the newly developed PHI. The PeSI was used for this 

purpose by mathematically determining the level of risk for each PHI sector that require 

responses that exceed the measurement limits of the protocols employed presently (Figure 2; 

high RPE/low RTS and low RPE/high RTS). This was done by solving for RPE at a given RTS; 

and solving for RTS at a given RPE using estimated PeSI values.  
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Figure 2. A Hypothetical PHI. Areas of high RPE with low RTS and low RPE 

with high RTS (hyphenated circles) that are mathematically estimated using 

PeSI. The solid arrow represents the increase in body core temperature with 

increases in RPE and RTS. 

 

It was assumed that there is a similar physiological response between the measured sectors of the 

PHI and the estimated sectors of the PHI. An example of this concept is a measured RPE of 5 

and RTS of 4 when entered into the PeSI would result in a calculated value of 6.25. The body 

core temperature measured concurrently with these ratings is 38.0°C with a range of 37.6 to 

38.4°C. Therefore, a PeSI of 6.25 would be linked to a body core temperature of 38.0°C with a 

range of 37.6 to 38.4°C. Using the estimation procedure, an estimated RPE of 10 and RTS of 2, 

which exceed the measurement limits of the protocols employed presently, when entered into the 

PeSI would also result in a calculated value of 6.25. It was assumed then that a RPE of 10 and 

RTS of 2 would produce a similar physiological response as a RPE of 5 and RTS of 4. In this 

case, both sets of responses would be linked to a mean body core temperature of 38.0°C with a 

range of 37.6 to 38.4°C. 
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4.0  RESULTS 

This investigation developed a perceptual hyperthermia index to evaluate exertional heat strain 

during treadmill exercise in firefighters and young adults who did not have firefighting 

experience. The investigation employed a combined data set from four interrelated investigations 

involving exercise induced thermal stress. 

4.1 DESCRIPTIVE INFORMATION 

The means (±SD) of the physiological and perceptual responses for each measurement point are 

presented separately for the four interrelated investigations and for the combined data set (Table 

5).  

Table 5. Physiological and perceptual responses during treadmill exercise in the heat. Mean ±SD 

  Combined FIRE I FIRE II COG I COG II 

Tc  Baseline 37.04 ± 0.35 37.09 ± 0.52 36.96 ± 0.20 36.91 ± 0.28 37.14 ± 0.30 
(°C) 20-min 37.60 ± 0.30 37.76 ± 0.26 37.52 ± 0.20 37.54 ± 0.42 37.60 ± 0.31 
 Termination 38.53 ± 0.58 38.21 ± 0.58 38.24 ± 0.28 39.03 ± 0.48 38.85 ± 0.51 
HR  Baseline    90.54 ± 16.78   98.82 ± 11.5   95.19 ± 10.54 63.00 ± 10.7   92.79 ± 13.9 
(b·min-1) 20-min  147.26 ± 21.60 170.30 ± 11.9 148.64 ± 19.42 129.9 ± 18.8 141.74 ± 18.5 
 Termination  170.29 ± 16.75 178.52 ± 7.50 166.69 ± 16.38 166.6 ± 20.4 166.89 ± 18.9 
RPE Baseline   0.24 ± 0.42  0.15 ± 0.31  0.15 ± 0.20  0.30 ± 0.48   0.37 ± 0.60 
(0-10) 20-min   4.88 ± 1.63  6.52 ± 1.55  4.75 ± 1.50  3.70 ± 0.95   4.68 ± 1.42 
 Termination   7.43 ± 1.86  7.54 ± 1.92  6.96 ± 2.07  7.30 ± 1.83   7.84 ± 1.64 
RTS Baseline   1.78 ± 0.77  1.65 ± 0.68  1.46 ± 0.59  1.60 ± 0.70   2.32 ± 0.82 
(1-5) 20-min   3.65 ± 0.67  4.03 ± 0.52  3.68 ± 0.64  3.10 ± 0.57   3.68 ± 0.67 
 Termination   4.50 ± 0.68  4.28 ± 0.74  4.58 ± 0.68  4.50 ± 0.71   4.63 ± 0.60 

Where Tc is body core temperature, HR is heart rate, RPE is rating of perceived exertion, and RTS is 

thermal sensation. 
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4.1.1 Analysis of Homogeneity 

Homogeneity between the four interrelated investigations was examined with a two-factor 

analysis of variance [ANOVA; Investigation x Time] calculated separately for each 

physiological and perceptual variable. 

4.1.1.1 Body Core Temperature 

The ANOVA of the body core temperature responses indicated that the investigation x time 

interaction (F6,176 = 6.620, p < 0.001, η2 = 0.184) was significant. Additionally, the investigation 

main effect (F3,176 = 6.096, p = 0.001, η2 = 0.094) and the time main effect (F2,176 = 254.659, p < 

0.001, η2 = 0.743) were significant.  

Post-hoc analyses of the interaction examined the simple effect of investigation at each 

time point. There were no significant simple effects of investigation at baseline (F1,176 = 0.002, p 

= 0.965, η2 < 0.001) and at 20-mins (F1,176 = 0.496, p = 0.482, η2 = 0.003). There was a 

significant simple effect of investigation at termination (F1,176 = 52.134, p < 0.001, η2 = 0.229). 

Simple comparisons found that termination body core temperature in FIRE I was significantly 

lower than termination body core temperature in COG I (F1,176 = 29.051, p < 0.001, η2 = 0.142) 

and in COG II (F1,176 = 25.480, p < 0.001, η2 = 0.126). Simple comparisons found that 

termination body core temperature in FIRE II was significantly lower than termination body core 

temperature in COG I (F1,176 = 26.957, p < 0.001, η2 = 0.133) and in COG II (F1,176 = 23.141, p < 

0.001, η2 = 0.116). Termination body core temperature was not significantly different between 

FIRE I and FIRE II (F1,176 = 0.002, p = 0.965, η2 < 0.001) and between COG I and COG II (F1,176 

= 1.420, p = 0.235, η2 = 0.008). 
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4.1.1.2 Heart Rate 

The ANOVA of the heart rate responses indicated that the investigation x time interaction (F6,176 

= 4.045, p = 0.001, η2 = 0.121) was significant. Additionally, the investigation main effect (F3,176 

= 22.967, p = 0.001, η2 = 0.281) and the time main effect (F2,176 = 463.736, p < 0.001, η2 = 

0.121) were significant. 

Post-hoc analyses of the interaction examined the simple effect of investigation at each 

time point. There was no significant simple effect of investigation at termination (F1,176 = 2.588, 

p = 0.109, η2 = 0.014). However, there were significant simple effects at baseline (F1,176 = 

23.383, p < 0.001, η2 = 0.117) and at 20-mins (F1,176 = 31.588, p < 0.001, η2 = 0.152). 

Simple comparisons examined differences between investigations at baseline and 20-

mins. Baseline heart rate in COG I was significantly lower than baseline heart rate in FIRE I 

(F1,176 = 34.816, p < 0.001, η2 = 0.165), in FIRE II (F1,176 = 28.130, p < 0.001, η2 = 0.138), and in 

COG II (F1,176 = 24.547, p < 0.001, η2 = 0.122). Baseline heart rate was not significantly 

different between FIRE I and FIRE II (F1,176 = 0.499, p = 0.481, η2 = 0.003), FIRE I and COG II 

(F1,176 = 1.417, p = 0.235, η2 = 0.008), and FIRE II and COG II (F1,176 = 0.226, p = 0.635, η2 = 

0.001). 

Heart rate after 20-mins exercise in FIRE I was significantly higher than heart rate after 

20-mins exercise in FIRE II (F1,176 = 13.528, p < 0.001, η2 = 0.071), in COG I (F1,176 = 36.101, p 

< 0.001, η2 = 0.170), and in COG II (F1,176 = 24.002, p < 0.001, η2 = 0.120). Heart rate after 20-

mins exercise in FIRE II was significantly higher than in COG I (F1,176 = 9.531, p = 0.002, η2 = 

0.051). Heart rate after 20-mins exercise was not significantly different between FIRE II and 

COG II (F1,176 = 1.859, p = 0.174, η2 = 0.010) and between COG I and COG II (F1,176 = 3.876, p 

= 0.051, η2 = 0.022). 
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4.1.1.3 Ratings of Perceived Exertion 

The ANOVA of the perceived exertion responses indicated that the investigation x time 

interaction (F6,176 = 3.237, p = 0.005, η2 = 0.099) was significant. Additionally, the investigation 

main effect (F3,176 = 3.915, p = 0.010, η2 = 0.063) and the time main effect (F2,176 = 425.783, p < 

0.001, η2 = 0.829) were significant. 

Post-hoc analyses of the interaction examined the simple effect of investigation at each 

time point. There were no significant simple effects of investigation at baseline (F1,176 = 0.278, p 

= 0.598, η2 = 0.002) and at termination (F1,176 = 0.826, p = 0.365, η2 = 0.005). There was a 

significant simple effect of investigation at 20-mins (F1,176 = 14.753, p < 0.001, η2 = 0.077).  

Simple comparisons examined differences between investigations at 20-mins. Perceived 

exertion after 20-mins exercise in FIRE I was significantly higher than perceived exertion after 

20-mins exercise in FIRE II (F1,176 = 11.316, p < 0.001, η2 = 0.060), in COG I (F1,176 = 22.071, p 

< 0.001, η2 = 0.111), and in COG II (F1,176 = 12.423, p < 0.001, η2 = 0.066). Perceived exertion 

after 20-mins exercise was not significantly different between FIRE II and COG I (F1,176 = 3.765, 

p = 0.054, η2 = 0.021), FIRE II and COG II (F1,176 = 0.021, p = 0.884, η2 < 0.001) and COG I 

and COG II (F1,176 = 3.371, p = 0.068, η2 = 0.019). 

4.1.1.4 Ratings of Thermal Sensation 

The ANOVA of the thermal sensation responses indicated that the investigation x time 

interaction (F6,176 = 3.186, p < 0.001, η2 = 0.098) was significant. Additionally, the investigation 

main effect (F3,176 = 3.810, p = 0.011, η2 = 0.061) and the time main effect (F2,176 = 282.886, p < 

0.001, η2 = 0.749) were significant. 

Post-hoc analyses of the interaction examined the simple effect of investigation at each 

time point. There was no significant simple effect of investigation at termination (F1,176 = 0.649, 
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p = 0.422, η2 = 0.004). However, there were significant simple effects at baseline (F1,176 = 5.500, 

p = 0.020, η2 = 0.030) and at 20-mins (F1,176 = 6.302, p = 0.013, η2 = 0.035). 

Simple comparisons examined differences between investigations at baseline and 20-

mins. Baseline thermal sensation in COG II was significantly higher than baseline thermal 

sensation in FIRE I (F1,176 = 9.182, p = 0.003, η2 = 0.050), in FIRE II (F1,176 = 15.000, p < 0.001, 

η2 = 0.079), and in COG I (F1,176 = 7.448, p = 0.007, η2 = 0.041). There were no significant 

differences between FIRE I and FIRE II (F1,176 = 0.692, p = 0.407, η2 = 0.004), FIRE I and COG 

I (F1,176 = 0.031, p = 0.860, η2 < 0.001), and FIRE II and COG I (F1,176 = 0.277, p = 0.599, η2 = 

0.002). 

Thermal sensation after 20-mins exercise in COG I was significantly lower than thermal 

sensation after 20-mins exercise in FIRE I (F1,176 = 10.071, p = 0.002, η2 = 0.054), in FIRE II 

(F1,176 = 4.716, p = 0.031, η2 = 0.026), and in COG II (F1,176 = 4.961, p = 0.027, η2 = 0.027). 

Thermal sensation after 20-mins exercise was not significantly different between FIRE I and 

FIRE II (F1,176 = 1.919, p = 0.168, η2 = 0.011), FIRE I and COG II (F1,176 = 1.858, p = 0.175, η2 

= 0.010), and FIRE II and COG II (F1,176 = 0.002, p = 0.967, η2 < 0.001). 

4.1.2 Relation between Physiological and Perceptual Responses 

Regression analyses examined the relation between physiological and perceptual responses 

across measurement time points separately for each of the four interrelated investigations and for 

the combined data set (Table 6).  
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Table 6. Correlation coefficients between body core temperature (Tc), ratings of perceived 

exertion (RPE), and ratings of thermal sensation (RTS). 

Variables Combined FIRE I FIRE II COG I COG II 
Tc – RPE 0.749* 0.742* 0.759* 0.856* 0.766* 
Tc – RTS 0.713* 0.679* 0.789* 0.826* 0.688* 
RPE – RTS 0.881* 0.931* 0.916* 0.883* 0.822* 
RPE – HR 0.866* 0.916* 0.878* 0.877* 0.862* 
PeSI – PhSI 0.893* 0.940* 0.904* 0.926* 0.862* 

 * p < 0.01 level (2-tailed) 

 

Moderate-to-strong correlations were found between body core temperature and perceived 

exertion (r = 0.742 to 0.856). Similarly, moderate-to-strong correlations were found between 

body core temperature and thermal sensation (r = 0.679 to 0.826). Strong correlations were found 

between perceived exertion and thermal sensation (r = 0.822 to 0.936) and between perceived 

exertion and heart rate (r = 0.862 to r = 0.916). These findings held for the four interrelated 

investigations and the combined data set. 

4.2 HEAT STRAIN INDICES 

Physiological (PhSI) and perceptual (PeSI) heat strain indices were calculated for the combined 

data set. These indices assessed the level of heat strain experienced by the subjects as they 

performed treadmill exercise while wearing thermal protective clothing. 

4.2.1 Physiological Heat Strain Index 

The calculated PhSI rating increased from 0.00 (±0.00) at baseline to 4.71 (±1.16) after 20-mins, 

and reached 8.00 (±1.23) at termination of exercise. The PhSI rating was significantly correlated 

(p < 0.01) with body core temperature (r = 0.877) and heart rate (r = 0.876). Heat strain zones 



 

were formed to encompass a range of responses such that a rating of 0.01 to 1.00 was zone 1, 

1.01 to 2.00 was zone 2, extending up to a rating of 9.01 to 10.00 which was zone 10. Mean 

(±SD) of body core temperatures from the present investigation are presented for each PhSI 

rating from 0 to 10 (Table 7). Three data points appear for each subject in the PhSI ratings 

representing baseline, 20-mins, and termination. The unequal number in the frequency tabulation 

for a given PhSI occurred because not every individual rated perceived exertion and thermal 

sensation the same for similar body core temperatures. 

Table 7. Comparison of body core temperature between those 

reported by Moran et al. and those measured in the present 

investigation.  Mean ±SD 

PhSI Moran 
Tre (˚C) 

Gallagher 
Tc (˚C) 

Response 
Frequency 

0 37.12 ± 0.03 37.04 ± 0.35 65 
1 37.15 ± 0.04 -- 0 
2 37.35 ± 0.03 -- 0 
3 37.61 ± 0.03 37.31 ± 0.26 5 
4 37.77 ± 0.04 37.48 ± 0.26 13 
5 37.99 ± 0.05 37.49 ± 0.20 17 
6 38.27 ± 0.07 37.81 ± 0.27 21 
7 38.60 ± 0.04 37.78 ± 0.31 14 
8 38.70† 38.21 ± 0.16 21 
9 No data available 38.81 ± 0.17 20 

10 39.39 ± 0.15 12 
Tre: rectal temperature, Tc: core temperature using ingestible 

thermometric pill, Response Frequency: number of occurrences for 

a given PhSI. † indicates only one subject achieved the given PhSI 

in the study by Moran et al. 

4.2.2 Perceptual Heat Strain Index 

The calculated PeSI rating increased from 1.10 (±1.01) at baseline to 5.75 (±1.51) after 20-mins, 

and reached 8.09 (±1.59) at termination of exercise. The PeSI was significantly correlated (p < 

0.01) with RPE (r = 0.969) and RTS (r = 0.970). Exertional heat strain zones were formed to 

encompass a range of responses such that a rating of 0.01 to 1.00 was zone 1, 1.01 to 2.00 was 
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zone 2, extending up to a rating of 9.01 to 10.00 which was zone 10. Mean (±SD) of body core 

temperatures from the present investigation are presented for each PeSI rating from 0 to 10 

(Table 8). 

Table 8. Body core temperatures 

(Tc) for each calculated perceptual 

strain rating. Mean ±SD.  

PeSI Tc (˚C) Frequency 
0 37.08 ± 0.38 13 
1 36.96 ± 0.45 19 
2 37.06 ± 0.29 22 
3 37.16 ± 0.29 10 
4 37.43 ± 0.28 11 
5 37.71 ± 0.61 21 
6 38.02 ± 0.45 8 
7 37.91 ± 0.50 22 
8 38.00 ± 0.64 19 
9 38.58 ± 0.61 25 

10 38.54 ± 0.57 18 
Frequency represents the frequency of 

occurrence of the calculated PeSI. 

4.3 DEVELOPMENT OF THE PHI 

Figure 3 presents PeSI ratings for a concurrent rating of perceived exertion and thermal 

sensation. These ratings were used as the initial step in the development of the PHI. Due to the 

use of mean responses in FIRE I and FIRE II, some PeSI ratings were not explicitly presented 

and were rounded up to the next PeSI rating (i.e. 6.33 becomes 6.5). 
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Figure 3. First stage development of the PHI with perceptual strain index rating presented for concurrent 

rating of perceived exertion and thermal sensation. Values in each cell are perceptual strain index 

ratings. 

 

Figure 4 presents the mean body core temperatures corresponding to RPE and RTS 

ratings that equate to a specified PeSI rating. These were reclassified to account for the decimal 

equivalents of the PeSI ratings not listed in Table 8. Such as 0.1 to 1.0 (PeSI 1) zone which was 

split into 0.1 to 0.5 (0.5) and 0.51 to 1.0 (1.0) zones.   

 
Figure 4. Second stage development of the PHI. PeSI ratings were replaced with the concurrent mean 

body core temperatures. Mean body core temperatures presented in each cell were identified by 

measured ratings of perceived exertion and thermal sensation. 
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The clinical definition of heat exhaustion states that it occurs at a body core temperature 

between 38.5 and 40.0°C and that heat stroke occurs at a body core temperature greater than 

40.5°C. Therefore, it was determined that the upper PHI zone should be colored red as the body 

core temperature corresponding to the respective RPE-RTS coordinates are consistent with 

clinical definitions of major heat illness. The lower PHI zone, colored green, includes the normal 

body core temperature of approximately 37ºC (range of 36.2º to 37.7ºC). The PHI zone 

consisting of body core temperatures between the lower and upper PHI zones is colored yellow 

indicating cautionary physiologic thermal conditions (Table 9). 

 
Table 9. Mean body core temperature ranges for the Perceptual 

Hyperthermia Index (PHI). 

 PHI Ratings              PHI Zone Range of Tc (˚C) 
0 to 4                          Green > 36.00 to    37.49 
5 to 8 Yellow    37.50 to    37.99 
9 to 10 Red    38.00 to > 40.50 

  

These mean body core temperatures were then transposed on to the basic conceptual 

framework for the PHI. A few PeSI ratings produced incongruent mean body core temperatures 

as indicated by a star in the box (Figure 5). Incongruent mean body core temperatures are 

temperatures that do not conform to the PHI zone ranges. The mean body core temperature of 

38.32°C for a rating of perceived exertion of 2 and a rating of thermal sensation of 5 would 

technically be classified as part of the red zone. However, that rating is surrounded by mean 

body core temperatures that are representative of the yellow zone. 
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Figure 5. Third stage development superimposes the PHI color scheme over the mean body core 

temperatures (as presented by each cell) for a given PeSI. 

 

In these circumstances, the zone chosen was based on visually identifying the body core 

temperature trend. Resolving the zone-color scheme resulted in a completed PHI (Figure 6).  

 

 
Figure 6. Final Perceptual Hyperthermia Index (PHI). 
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5.0  DISCUSSION, CONCLUSION, AND RECOMMENDATIONS 

This investigation developed the PHI to evaluate exertional heat strain in young adult firefighters 

and non-firefighters performing treadmill exercise. The PHI used RPE and RTS as surrogate 

measures of body core temperature response to treadmill exercise with subjects wearing personal 

protective clothing. The investigation employed an asymmetrical design using the combined data 

set from four interrelated investigations involving exercise induced thermal stress.  

5.1 HOMOGENEITY OF RESPONSES 

A comparison of the physiological and perceptual responses during treadmill exercise between 

the four interrelated investigations indicated that they were not homogenous. This was possibly 

due to the heterogeneous samples across investigations and methodological differences between 

the four experimental paradigms. 

Body core temperature at termination of the experiment was significantly higher in the 

COG I and II trials as compared to the FIRE I and II trials. COG I and COG II trials were 50-min 

continuous treadmill exercise and may have elicited a higher metabolic and associated thermal 

response as compared to the intermittent treadmill exercise protocol employed in the FIRE I and 

FIRE II trials. 
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Baseline heart rate was significantly lower in COG I as compared to the COG II, FIRE I, 

and FIRE II. It is possible that aerobic fitness influenced the baseline heart rates as the subject 

sample in COG I had the highest maximum oxygen consumption. However, it should be noted 

that the difference in aerobic fitness level may also be due to the differences between 

experiments in the testing protocols to establish maximum or peak oxygen consumption. FIRE I 

and FIRE II employed a peak cycle ergometer stress test whereas COG I and COG II employed a 

maximum treadmill stress test. 

Heart rate after 20-mins exercise was significantly higher in FIRE I as compared to FIRE 

II, COG I, and COG II. The higher HR may be due to the protocol requirement that subjects 

carried a bodybar in FIRE I but not in the other trials. This external weight was intended to 

incorporate upper body muscle groups into the exercise forcing function. 

Similar to the HR response after 20-mins of exercise, RPE was significantly higher in 

FIRE I as compared to the FIRE II, COG I, and COG II trials. Here again, the higher RPE may 

have occurred because a bodybar was carried during treadmill exercise in the FIRE I trial but not 

in the other trials. 

Baseline thermal sensation was significantly higher in COG II as compared to COG I, 

FIRE I, and FIRE II. There are no plausible explanations for this difference as all four 

interrelated investigations employed the same thermal protective clothing ensemble and exercise 

was performed in the same heated room environment. It is particularly interesting that COG I 

and COG II differed in RTS yet they employed identical experimental paradigms. 

Thermal sensation, after 20-mins of exercise, was significantly lower in COG I as 

compared to COG II, FIRE I, and FIRE II. Possible explanations for this difference may be that 

COG I employed a smaller sample size (ten subjects) as compared to the eighteen or nineteen 
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subjects in each of the other three trials. In addition, COG I subjects had a higher maximum 

oxygen uptake than subjects in the other trials. Given equal ambient thermal conditions, aerobic 

fitness attenuates thermal strain and by extension thermal sensation. 

Although there were significant differences in body core temperature, HR, RPE, and RTS 

between the four interrelated investigations, these differences may be beneficial and provide a 

more generalizable scenario in which the newly developed PHI could be used. The present 

findings suggest that the PHI could be employed during either continuous or intermittent 

horizontal exercise (treadmill) with the individual holding equipment similar to an ax or ladder 

(bodybar). The PHI also takes into consideration a range of subject characteristics that may 

encompass varying levels of firefighting experience from new recruit to novice to experienced 

firefighter. 

5.2 PHYSIOLOGICAL RESPONSES 

The physiological responses recorded for the four interrelated investigations were similar to 

those published previously for firefighters performing fire-task simulation29,75, during treadmill 

exercise in personal protective equipment31, and in the development of heat strain indices.50,70 

Von Heimburg75 observed heart rate responses of 167 b·min-1 in rescuers upon reaching the top 

of the stairs. The same individuals achieved a heart rate of 182 b·min-1 at the end of the task 

during simulated rescue of hospital patients which included climbing six floors and rescuing six 

manikin patients. Similarly, Holmer and Gavhed29 showed that heart rates averaged 168 b·min-1 

for a 22-min simulated fire fighting activity and an average heart rate of 179 b·min-1 for the 

heaviest of work tasks during the simulation. The mean heart rate achieved at exercise 
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termination for the present investigation was 170 b·min-1. However, the heart rate was 178 

b·min-1 for the subjects in FIRE I who periodically carried a bodybar during the treadmill 

exercise. This value closely resembled the heart rate observed at the end of the simulated fire 

task reported by von Heimburg75 and the heaviest of works tasks used by Holmer and Gavhed.29 

Body core temperatures from the present investigation ranged from 37.04 to 38.53°C and 

are similar to those reported by Moran et al.50 when developing the physiological heat strain 

index (37.12 to 38.7°C) and by Tikuisis et al.70 when developing the perceptual heat strain index 

(37.1 to 38.3°C). The four interrelated experimental paradigms employed presently resulted in a 

range of body core temperatures sufficient for the development of the perceptual hyperthermia 

index (PHI). 

5.3 PERCEPTUAL RESPONSES 

The perceptual responses recorded during the four interrelated investigations were both similar 

and different to those reported previously under thermally stressful conditions during cycling and 

upper body exercise. Galloway and Maughan21 recorded Borg Scale RPE during exhaustive 

cycling exercise at 70% of VO2peak in a warm (31°C, 70% relative humidity) environment. Borg-

RPE was 13 after 20-mins of exercise and 18 after 50-mins of exercise. These Borg-RPEs 

generally convert to OMNI-RPEs of 5 and 9, respectively64. In the present investigation, OMNI-

RPE was 5 after 20-mins and 7 at exercise termination. Using the inter-scale conversion, the 

OMNI-RPE from the present investigation at termination was lower than the Borg-RPE reported 

by Galloway and Maughan21 at 50-mins of exercise. Differences between investigations in the 

RPE at the end of exercise may be due to differences between cycling in comfortable clothing 
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and treadmill walking in thermal protective clothing. However, some of the subjects in the 

present investigation did not complete a full 50-mins of exercise and therefore, did not reach 

RPEs at the high end of the scale. In these individuals, elevated levels of thermal sensation may 

have contributed to shorter durations of exercise. It was expected that treadmill exercise while 

wearing thermal protective clothing would produce a greater thermal strain on the individuals in 

the present investigation than those performing cycling exercise as reported previously. 

More recently, Crewe et al.16 examined the rate of increase in RPE as a prediction of 

cycle exercise duration to fatigue under different environmental conditions. Three of the five 

exercise conditions were performed in a hot (35°C, 50% relative humidity, wind speed at 10 

km/h) environment at intensities of 55%, 60%, and 65% of peak power output. Borg-RPE after 

20-mins of exercise was found to be 14 in the 55% trial, 16 in the 60% trial, and 18 in the 65% 

trial. These RPEs (converted to OMNI: 6, 7, 9) were higher than the rating of 5 after 20-mins of 

exercise in the present investigation. Borg-RPE at termination for all three hot trials was 19 

(OMNI 10) which well exceeds the 7 found in the present investigation. Differences between 

Crewe et al.16 and the present investigation could be attributed to the environmental conditions 

and modes of exercise. Crewe et al.16 used an environmental chamber that allowed convective 

heat loss by the cyclists. The clothing worn in the present investigation provided no heat loss 

mechanisms for subjects and may have contributed to the individuals terminating exercise due to 

thermal stress and not purely a function of exertional intolerance at higher exercise intensity. 

Additionally, Price and Campbell63 examined thermoregulatory responses during 

prolonged upper-body exercise in cool and warm conditions. Borg-RPE was approximately 15 

after 30-mins during exercise in warm ambient conditions (31.5°C, 48.9% relative humidity). A 

Borg-RPE of 15 generally equates to an OMNI-RPE of 764. The OMNI-RPE of 5 recorded in the 
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present investigation after 20-mins of exercise is lower than the level of perceived exertion for 

prolonged upper body exercise as reported by Price and Campbell.63 Although the perceptual 

results differ between investigations, it is plausible to consider that the additional weight of the 

thermal protective clothing and self-contained breathing apparatus would induce greater upper 

body exercise. Price and Campbell63 used 60-mins of arm crank exercise at 60% VO2peak, 

whereas the present investigation employed treadmill mode, i.e. weight bearing aerobic exercise. 

Arm crank exercise targets a comparatively smaller muscle mass and may produce higher ratings 

of perceived exertion than treadmill exercise where comparatively large volume of muscle mass 

is activated. 

5.4 RELATION BETWEEN PHYSIOLOGICAL AND PERCEPTUAL RESPONSES 

The relation between the physiological and perceptual responses to the same thermal stimuli was 

the basis for the development of the PHI. Cheung14 has proposed that occupational exposure 

standards should not only use physiological outcomes, but also thermal perceptions reflecting the 

behavioral and exercise response to heat stress. Previous research has produced conflicting 

results as to the level and the interpretation of the relation between physiological responses and 

their perceptual analog during exposure to thermally stressful environments. Hoster et al.31 

reported PeSI was significantly greater than PhSI after 8-mins, 23-mins, and at termination of 

treadmill exercise for subjects wearing personal protective equipment. Tikuisis et al.70 reported 

that PeSI was lower than PhSI in a trained cohort of highly fit (VO2max ~ 59 ml·kg-1·min-1) 

individuals. However, the PeSI was greater than PhSI for the mid-exercise time points in the 

untrained cohort which consisted of moderately fit (VO2max ~ 44 ml·kg-1·min-1) individuals. At 
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the first measurement time point (15-mins) and the end measurement time point (60-mins), PeSI 

did not differ from PhSI. Petruzzello et al.62 also reported that PeSI was consistently lower than 

PhSI during laboratory and field simulations. In the Petruzzello investigation62, the relation 

between the PeSI and PhSI showed moderate correlations of r = 0.70 for a laboratory protocol 

that examined short-term (15-min) moderate activity in subjects wearing firefighting clothing 

and r = 0.70 for a field protocol that examined short-term (~18-min) firefighting drills. The 

present investigation observed a strong correlation (r = 0.893) between PeSI and PhSI that was 

greater than reported by Petruzzello et al.62 Additionally, in the present investigation PhSI and 

PeSI were similar at baseline and at termination of exercise but PeSI was greater than PhSI after 

20-mins of exercise. These results differ slightly from Petruzzello et al.62 who found that PeSI 

was less than PhSI. The present findings are however, consistent with those reported by Tikuisis 

et al.71 for an untrained cohort. 

Differences between the present investigation and that of Petruzzello et al.62 are primarily 

methodological. Petruzzello et al.62 utilized short-duration activity in both the laboratory and 

field settings as opposed to the longer duration (> 20-mins) employed in the present 

investigation. Petruzzello et al.62 also modified the perceptual heat strain indices for both the 

laboratory and field studies by altering the baseline to a relative value. In this alteration, the 

initial rating of the individual represented the baseline value. Conversely, Tikuisis et al.71 and the 

present investigation used the minimum category scale rating as the absolute baseline value. It is 

possible that the different perceptual metrics may also have influenced the calculations where the 

present investigation is the first to use OMNI RPE and OMNI RTS as compared to previous 

investigations that employed the Borg RPE and Gagge RTS. 
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Brearley and Finn10 examined responses of four motor-sport athletes during V8 Supercar 

racing in hot ambient conditions for both short and long racing distances. During the short race 

format, the PhSI was 6.5 and the PeSI was 6.7. During the long race format, the PhSI was 8.0 

and the PeSI was 7.3. The PhSI was 7.4 and the PeSI was 7.1 for the data when combined over 

the short and long race distances. Interpretation of the data reported by Brearley and Finn10 is 

limited. Only means and standard deviations were presented owing to the small sample size. 

Nevertheless, the authors suggested that the information provided by PhSI and PeSI may not 

differ when employed under the same thermal conditions. Although only an observation, a 

possible explanation for the PeSI being less than the PhSI for the long race distance and also for 

the combined data may be due to the head and torso cooling resulting from the type of driver’s 

ensemble worn during V8 Supercar races in warm to hot conditions.10 These findings support the 

development of the PHI in that thermally induced perceptual responses may be an effective 

surrogate to physiological measures of exertional heat strain. 

5.5 THE PERCEPTUAL HYPERTHERMIA INDEX 

A perceptual hyperthermia index (PHI) was developed using RPE and RTS as surrogate 

measures of exertional heat strain. The PHI was developed using data obtained from four 

interrelated investigations that examined physiological, perceptual, and cognitive responses 

during treadmill exercise for subjects wearing thermal protective clothing. Moderate-to-strong 

correlations were observed between the physiological measures (body core temperature, heart 

rate) and the perceptual measures (perceived exertion, thermal sensation). This relation supports 

the use of perceptual measures to evaluate exertional heat strain. The use of perceptual measures 
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in place of physiological measures may be more convenient in the assessment of hyperthermia 

for individuals performing work under thermal stress, such as firefighting. 

The assessment of heat stress and subsequent heat strain under hot, ambient conditions is 

difficult outside of a laboratory setting. The current knowledge base regarding temperature 

regulation under heat stress indices indicates the need to develop user friendly methods for quick 

and accurate assessments in thermally stressful field conditions. The majority of currently 

employed methods require expensive equipment, planning, and/or physical interaction between 

the investigator and the subject. One possible means to assess homeostatic disruption of 

temperature regulation in firefighters is the PHI. The PHI provides a quick, easy and unobtrusive 

method to assess exertional heat strain while firefighters are actively engaged in fire suppression 

and rescue. 

A few experimental limitations should be noted. The currently developed PHI used four 

separate cohorts. These cohorts were comprised of individuals who ranged in firefighting 

experience and subsequent exposure to the thermal stress induced by fires while wearing thermal 

protective clothing. The PHI may only be generalizable to individuals having the descriptive 

characteristics of subjects in the four investigations. The four interrelated investigations also 

differed slightly in methodology where FIRE I and FIRE II employed intermittent treadmill 

exercise protocols and COG I and COG II employed continuous treadmill exercise protocols. 

Furthermore, the development of the PHI was not a primary objective of the four investigations. 

As such, the exercise paradigm employed may not have been optimal in presenting thermally 

stressful conditions. The PHI range of perceived exertion and thermal sensation that were 

measured only provided a linear trend and did not encompass all possible combinations of RPE 

and RTS. It was assumed that similar physiological responses existed between the measured 
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sectors of the PHI and the estimated sectors of the PHI. It is possible that this assumption is not 

consistent with the actual physiological response associated with high perceived exertion and 

low thermal sensation, or low perceived exertion and high thermal sensation. 

Additionally, the completion of the color scheme of the PHI necessitated visual 

inspection and interpretation for incongruent mean body core temperatures. One possible 

explanation for the incongruent mean body core temperatures may be related to the low 

frequency of perceived exertion and thermal sensation combinations. Another possible 

explanation may pertain to the mix of subject characteristics that involved both volunteers and 

firefighters. Responses from volunteers may not be similar to that of firefighters. One last 

possible explanation may be due to the introduction of an additional load (i.e. carrying a 

bodybar) that may have increased ratings of perceived exertion without a concomitant increase in 

thermal sensation. 

5.6 SUMMARY 

In summary, four interrelated investigations were combined into one data set from which 

the PHI was developed. Moderate-to-strong correlations between the physiological and 

perceptual measures support the use of RPE and RTS to evaluate exertional heat strain during 

exercise. The development of the PHI to assess the level of risk for exertional heat strain could 

provide a valuable field-based metric for firefighters engaged in fire suppression and rescue. This 

metric may be beneficial in high risk environments that threaten the lives of firefighters. The 

application of a hyperthermia metric reflects the importance of monitoring the health and well-

being of firefighters performing physiologically taxing duties associated with fire suppression 
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and rescue while wearing protective clothing largely impermeable to ambient gases and 

particulates.     

5.7 RECOMMENDATIONS 

Recommendations are two-fold for the PHI. The first set of recommendations target limitations 

in the development of the PHI. The second set of recommendations targets the application and 

generalizability of the PHI. 

5.7.1 Future Research – Experimental Design 

Three research limitations were encountered in the development of the PHI and should be 

addressed in subsequent development and cross-validation investigations. 

1. The development of the PHI used four interrelated investigations that had minor 

methodological differences. Future investigations should employ designs that 

focus on the PHI as a primary variable using a single experimental paradigm. 

2. The four interrelated investigations employed an exercise and thermal stress 

forcing function to induce a hyperthermia response. As such, in the development 

of the PHI, it was assumed that similar physiological responses existed between 

the measured sectors of the PHI and the estimated sectors of the PHI. Future 

investigations should examine the physiological and perceptual responses of nine 

discernable sectors within the PHI (Figure 7). The present investigation observed 

an expected dose-response relation between OMNI-RPE and RTS beginning in 

sector one, increasing to sector five, and ending at sectors eight and nine. Sectors 
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should be examined using experimental paradigms that manipulate one perceptual 

variable while holding the other variable constant. Specifically, the RPE and body 

core temperature should be examined under thermal-neutral conditions (i.e. as 

expressed in sectors one, two, and three). 

3. One of the four interrelated investigations (FIRE I) incorporated carrying a 

bodybar during treadmill exercise to simulate transporting firefighting equipment 

while wearing thermal protective clothing. Future investigations should 

specifically examine the effect of carrying equipment on perceived exertion and 

thermal sensation as it pertains to the validity of the PHI. 

 
Figure 7. Proposed nine discernable sectors of the PHI to examine separately in future investigations. 

 

5.7.2 Future Research – PHI Applications 

The applications of the newly developed (prototype) PHI should be examined further in 

subsequent development and cross-validation investigations. 
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1. The sample population employed in the present investigation was comprised of 

firefighters and also healthy volunteers who had no firefighting experience or 

experience wearing thermal protective clothing. The influence of firefighting 

experience on the perceptual responses should be examined further. 

2. The sample population employed in the present investigation included a mix of 

females and males. The influence of gender on physiological and perceptual 

components of the PHI should be examined further. 

3. The present investigation employed four interrelated laboratory investigations. 

Future investigations should examine the perceptual and physiological responses 

in field-based settings such as live-fire simulations and firefighting training drills. 

4. The present investigation examined physiological and perceptual responses in a 

heated interior room (98-100° F). Future investigations should examine the 

validity of the PHI for use in a larger range of environmental extremes of 

temperature and humidity. 

5. The present investigation examined the physiological and perceptual responses in 

response to walking on a treadmill at speeds ranging from 2.6 – 4.5 km·hr-1. 

Future investigations should examine the validity of the PHI for use during 

locomotion speeds and exercise modes unique to firefighting such as climbing, 

carrying, and crawling. 

6. The present investigation developed a perceptual hyperthermia index as a 

momentary assessment of exertional heat strain during fire suppression and 

rescue. The educational component associated with the use of the PHI in a field 

setting should be examined further and may lead to use or modification of the PHI 
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during rehabilitation and the decision to return to fire suppression and rescue 

activities. 

7. The present investigation developed a perceptual hyperthermia index in response 

to a need in fire suppression and rescue. The PHI may be beneficial in other 

populations such as in military personnel and football players. 
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APPENDIX A 

METABOLIC RATE CATEGORIES 
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A.1 EXAMPLES OF ACTIVITIES WITHIN METABOLIC RATE CATEGORIES 

Categories Example Activities 

Resting Sitting quietly 

Sitting with moderate arm movement 

Light Sitting with moderate arm and leg movements 

Standing with light work at machine or bench using mostly arms 

Using a table saw 

Standing with light or moderate work at machine or bench and some walking 

about 

Moderate Scrubbing in a standing position 

Walking about with moderate lifting or pushing 

Walking on level at 6 Km/hr while carrying 3 kg weight load 

Heavy Carpenter sawing by hand 

Shoveling dry sand 

Heavy assembly work on a noncontinuous basis 

Intermittent heavy lifting with pushing or pulling (e.g., pick-and-shovel work) 

Very Heavy Shoveling wet sand 
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APPENDIX B 

STANDARDIZED INSTRUCTIONS FOR PERCEPTUAL MEASURES 
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B.1 INSTRUCTIONS FOR OMNI-RPE 

This scale contains numbers from 0 to 10 that will be used to rate the perception of 

physical exertion. The perception of physical exertion is defined as the intensity of the subjective 

effort, strain, discomfort and/or fatigue that you feel during an exercise task.  We use this scale 

so that you may translate into numbers your feelings of exertion while exercising. These feelings 

should be general about the body as a whole.  

The range of numbers on the scale should represent a range of feelings from "Extremely 

Easy" to "Extremely Hard". In order to help you select a number that corresponds to your 

subjective feelings consider the following. When the exercise feels between "Extremely Easy" 

and “Easy” respond with a number 1. An example of when you would rate a number 1 would be 

when you encounter the same feelings as you have when you are walking very slowly.  

When the exercise feels between “Hard” and "Extremely Hard” respond with a number 9.  

For example, a rating of 9 would be appropriate when your feelings of exertion are the same as 

your memory of how you felt during the most physically exhaustive work you have ever done.  

When rating, think of your feelings associated with the numbers 1 and 9 first.  Then, 

think of the exertion associated with the exercise at the moment and make your judgment.  If the 

exertion feels less than a 1 or greater than a 9, respond with a 0 or 10, respectively.  You should 

only rate a number 0 when you are at rest such as sitting down or standing around. 

 

In summary,  

1. You will be asked to give a rating of perceived exertion every minute of the test.  

2. Give each rating by selecting any number from 0 to 10 that corresponds to the perception of 

exertion for your total body.  

3. Try to estimate the degree of exertion as accurately as possible.  

4. Do not underestimate or overestimate the exertion, simply rate your feelings caused by the 

exercise at the moment. 

5.  There are no right or wrong answers. 

6.  Start with any number that is appropriate 
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B.2 INSTRUCTIONS FOR OMNI-THERMAL SENSATION 

This scale contains numbers from 1 to 5 that will be used to rate the perception of thermal 

sensation. The perception of thermal sensation is defined as the subjective feeling of heat.  We 

use this scale so that you may translate into numbers how hot you feel. These feelings should be 

general about the body as a whole.  

The range of numbers on the scale should represent a range of feelings from 

"Comfortable" to "Very Hot". In order to help you select a number that corresponds to your 

subjective feelings consider the following. When you feel "Comfortable", respond with a number 

1. When you feel “Very Hot”, respond with a number 5.   
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APPENDIX C 

OMNI SCALES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 68 



 

C.1 OMNI-RPE FOR WALK/RUN EXERCISE 
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C.2 OMNI-THERMAL SENSATION 
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