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ABSTRACT 
 
 

DESIGN ISSUES IN ELECTROMECHANICAL FILTERS WITH PIEZOELECTRIC 
TRANSDUCERS 

 
Michael P. Dmuchoski, MS 

 
University of Pittsburgh, 2002 

 
 

The concept of filtering analog signals was first introduced almost one hundred years 

ago, and has seen tremendous development since then.  The majority of filters consist of 

electrical circuits, which is practical since the signals themselves are usually electrical, although 

there has been a great deal of interest in electromechanical filters.  Electromechanical filters 

consist of transducers that convert the electrical signal to mechanical motion, which is then 

passed through a vibrating mechanical system, and then transduced back into electrical energy at 

the output.  In either type of filter, electrical or electromechanical, the key component is the 

resonator.  This is a two-degree-of-freedom system whose transient response oscillates at its 

natural frequency.  In electrical filters, resonators are typically inductor-capacitor pairs, while in 

mechanical filters they are spring-mass systems.  By coupling the resonators correctly, the 

desired filter type (such as bandpass, band-reject, etc.) or specific filter characteristics (e.g. 

center frequency, roll-off, ripple, etc.) can be realized.  Even though mechanical filters are in 

general more complex than electrical filters, given the required transducers and the additional 

fabrication steps, they are desirable because of the extremely good resonator characteristics of 

mechanical systems, which can result in superior filter characteristics.  Existing mechanical filter 

technology could be considered to be “macro-scale” (centimeters and up), and the design process 

has been somewhat of an art.  There is interest in developing micro-scale filters that are well-
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integrated with electronics.  This thesis discusses the overall design process of mechanical filters, 

bringing together information from the filter design literature that is somewhat spread out.  An 

example of the design and analysis of a narrow-band mechanical filter with piezoelectric 

transducers is offered.  This design was constructed and tested, and the results are presented.  

Finally, the thesis also presents implications for designing mechanical filters at the micro-scale. 
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1.0  INTRODUCTION 

 Filtering analog signals is certainly not a new topic.  It is essential in a variety of 

applications ranging from communication systems, such as radio, telephone and paging devices, 

to navigation equipment and system control.  It is a subject matter that is more familiar when 

using strictly electrical components.  However, it is known that electromechanical systems can 

also be used to filter signals.   

 Specifically, mechanical filters are utilized where good stability, low loss and 

narrowband selectivity are needed [Johnson, 1983].  A general schematic of a mechanical filter is 

shown in Figure 1.1. 

 
electrical signal in electrical signal out 

kij                   kij         kij 

k                   k          k             k 

m                   m          m             m   transducer transducer 

Figure 1.1  Schematic of mechanical filter 

In a mechanical filter, an electrical input containing wanted and unwanted signals is used 

to actuate an electromechanical transducer.  This transducer can either be magnetostrictive or 

piezoelectric.  The transducer converts the electrical energy to mechanical energy by exciting a 

system of mass and spring elements.  This system of elements, denoted as m and k, are spring-

mass units that are known as the mechanical resonators.  These resonators are connected to each  
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other by spring elements (kij), which represent the coupling stiffness.  They are designed to 

oscillate in accordance with a set of desired filter characteristics.  A second transducer is excited 

by the output of the mechanical system and changes the information back to an electrical signal 

that has been appropriately filtered.   

 Existing mechanical filter technology could be considered to be macro-scale, which 

encompasses dimensions of centimeters and larger.  There is interest in developing micro-scale 

filters that are well-integrated with electronics.  Filter design literature is also quite diversified, 

making for a design process that is neither precise, nor easily understood.  The objective of this 

research is to investigate and build a more structured design procedure for developing 

mechanical filters.  This modus operandi will be applied and analyzed using a macro-scaled 

cantilevered beam system with piezoelectric transducers.  The desire is to use this general 

process to design and fabricate a micro-scaled device in the future.   

1.1  Outline of Thesis 

 The study will be completed in the following stages.  Initially, a filter background is 

given explaining general terminology and response characteristics.  This is followed by a 

literature review that elaborates on the necessary filter knowledge and tools.  The general 

procedure to design a mechanical filter, with the assistance of the aforementioned example, is 

then described.  Testing and analysis of the macro-scale filter will then be presented and 

discussed.  Finally, some general conclusions will be brought forth, along with a discussion of 

future work. 
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The literature review has two main sections.  The first describes the theoretical 

information that is necessary in the development of any filter, whether it is electrical or 

electromechanical.  The second division covers the knowledge and tools that are essential when 

dealing with electromechanical filters.   

 There are three chief subsections within the electromechanical filter division of the 

literature review.  The initial section describes the several forms of electromechanical filters, as 

well as the items such as the transducers and resonators that are required for every type.  In the 

following section, pertinent information relating to macro-scale mechanical filters is conveyed, 

with a depiction of such elements as the coupling wires that are specific to the macro-scale 

mechanical filter.  Finally, an overview of a micro-scale mechanical filter is given.  A description 

of existing micro-scale technology is a key component to this final section. 

 A survey of the information provided in the literature review leads to the formation of a 

design process.  The procedure begins with bandpass filter specifications, such as the center 

frequency, passband and stopband bandwidths, which must be met.  The necessary number of 

resonators needed to achieve the specifications is then determined.  A vibrational analysis of 

continuous systems ensues to establish the necessary dimensions of each resonator, which 

includes the resonators that contain the electromechanical transducers.  The stiffness of the 

coupling wires is finally found to determine the dimensions of the wires.   

 Lastly, a description of the testing procedure on the fabricated mechanical filter is 

portrayed.  The resonance of the individual beams, in addition to the coupled structure will be 

determined.  A magnitude response will show whether the chosen specifications are met.  

Besides those already mentioned, some of the specifications include the passband ripple and the 

insertion loss. 
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2.0  GENERAL FILTER BACKGROUND 

 The most basic information that pertains to filters will be discussed first.  This includes 

terminology that will be used throughout the text, as well as how to determine and analyze the 

frequency responses.   

2.1  Description of What They Are and What They Do 

A filter is used to emphasize, deemphasize, or control the frequency components of either 

a desired or undesired signal, which would otherwise be present [White Electromagnetics, 1963].  

They are used in many devices from wristwatches to telephones and radios to navigation 

equipment, such as radar and sonar.   

 The official creation of filter technology occurred in 1915 when K. Wagner of Germany, 

and G. Campbell of the U.S., working independently, proposed the basic concept of the filter.  

Their findings came from earlier work based on classical vibrational theory and loaded 

transmission lines [Ellis, 1994]. 

2.2  Filter Responses 

There are five principal classifications of attenuation versus frequency filter response 

plots.  They are shown in Figure 2.1.  The figure however does not represent the ideal responses 

though.  An ideal response would demonstrate a completely vertical rolloff, and therefore would 

have no transition region to reach the stopband.  The stopband is defined as the span of 

frequencies that will not be allowed to pass through the filter.  Some common attenuations 

defining the beginning of the stopband range from 20 to 60 dB. 
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When the magnitude is determined in units of decibels, the loss is 

 120log( ) 3
2

A � � � dB . (2.2) 

The above explains the reasoning behind the use of the 3dB attenuation in filter terminology. 

The insertion loss of a filter is the loss of signal caused by the filter being activated.  In 

general, it is the ratio of the amplitude with the insertion of the filter, to the amplitude of a 

perfect, lossless transformer replacing the filter [Aatre, 1986].  With the difference by way of the 

insertion loss, there is a greater maximum signal without the filter inserted, than with it inserted.  

Also, the passband is not measured at zero decibels, but at a reference attenuation that is equal to 

the insertion loss. 

2.2.1  Low-pass Filters 

A low-pass filter, shown in Figure 2.1(a), allows low frequencies to pass through the 

device until the cutoff frequency is reached.  After that point, a transition band ensues through 

which frequencies are attenuated.  At a specified value of attenuation the stopband begins.  In the 

stopband, the filter is considered to reject all frequencies.  The shape factor of a low-pass filter is 

the ratio of the frequency when rejection first occurs to the cutoff frequency. 

 a

c
SF �

�

�  (2.3) 
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2.2.2  High-pass Filters 

 Conversely, a high-pass filter will attenuate the low frequencies, while passing the high 

frequencies until the cutoff point.  This can be found in Figure 2.1(b).  The transition band 

slopesin the opposite direction, when compared to a low-pass filter.  Its shape factor can be 

equated as 

 c

a
SF �

�

� . (2.4) 

2.2.3  Bandpass Filters 

 Seen in Figure 2.1(c), a bandpass filter is the addition of a high-pass and low-pass filter.  

There are now two cutoff frequencies, designated as the upper and lower, as well as two 

transition bands and stopbands.  The difference between the two cutoff frequencies is known as 

the 3dB bandwidth, B, (but will be further referred to as just the bandwidth) while the region 

between the two is identified as the passband.  The difference between the two stopband 

frequencies is known, for example, as the 40 dB bandwidth (B40) if that is where it occurs.   

 Another important term, when speaking of bandpass filters, is the center frequency, �o.  

It is defined as the geometric mean of the upper and lower cutoff frequencies, as in Equation 

(2.5).   

 1 2o� � ��  (2.5) 

The bandpass quality factor, Qbp, is identified as  

 o
bpQ

B
�

� , (2.6) 
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and is a measure of the frequency selectivity of the bandpass filter.  At a particular resonance 

frequency, if the bandwidth is wide, the quality factor, which is inversely proportional, is a small 

value and is therefore considered to have poor selectivity.  Conversely, the filter is said to be 

highly selective if the bandwidth is tight, creating a large Qbp value [Aatre, 1986]. 

For quality factors equaling ten or greater, the center frequency can be characterized as 

Equation (2.7), known as the arithmetic center frequency. 

 1

2
o

� �

�

�
�

2  (2.7) 

This is true because as the bandpass quality factor (Qbp) increases, the response shape near the 

passband approaches the arithmetically symmetrical condition [Williams, 1988].  Therefore, 

Equations (2.5) and (2.7) are nearly equal in value. 

 Phrases such as the fractional bandwidth and the shape factor are also significant when 

speaking of bandpass filters.  Fractional bandwidth, Bf, is the ratio of the bandwidth to the center 

frequency,  

 f
o

BB
�

� , (2.8) 

whereas the ratio of the 40 dB bandwidth to the 3dB bandwidth is identified as the shape factor 

 40BSF
B

� . (2.9) 
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2.2.4  Band-reject Filters 

 Filters known as band-reject filters, represented in Figure 2.1(d), are those that attenuate 

one band of frequencies, while passing both higher and lower bands.  They also commonly go by 

the terms band-stop or notch filter.  The shape factor for the band-reject filter is the reciprocal to 

that of the bandpass.  

 
40

BSF
B

�  (2.10) 

2.2.5  All-pass Filters 

 An all-pass filter is a proper name for this filter.  It is one that passes all frequencies 

equally well.  That is, the magnitude, shown in Figure 2.1(e), is constant for all frequencies it 

sees.  The shape factor will be unity at all points because the all-pass filter experiences no rolloff. 

 The primary purpose of an all-pass filter is for phase shift.  If the amplitude response of a 

system is adequate but the phase needs correction, a filter can be cascaded with an all-pass 

section.  The desired amplitude response will be retained, but a phase shift from the filter will be 

added [D. Johnson, 1976]. 
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3.0  LITERATURE REVIEW 

 The following text provides theoretical information that pertains to mechanical filters and 

their design and development.  The information is broken up into segments.  Initially, pertinent 

general information regarding most bandpass filters is depicted, followed by knowledge 

specifically concerning electromechanical filters.  The divisions become more specialized when 

speaking directly of mechanical filters.  A breakdown of the components of macro-scale 

mechanical filters, as well as their fabrication, is described.  General information pertaining to 

micro-scale mechanical filters is also touched upon.  The final topic includes the initial design 

process of a mechanical filter that stems from electrical filter network theory.  Several design 

approximations are discussed, along with the procedures used to create the electrical values 

needed to translate into mechanical filters. 

3.1  Electrical and Electromechanical Filter Background Information 

 After gaining a background of general filter knowledge via Section 2.0, a more specific 

sector of information is brought forth.  The two major fields of filters, electrical and 

electromechanical, are discussed along with a brief history of the relationship between them.   

 There are two principal genres of filter technology.  They include electrical filters that 

use strictly electrical components and signals.  Electromechanical filters make up the other 

genre.  These filters convert electrical inputs into mechanical energy that is filtered before being 

converted back to the altered electrical output.    

There are several forms of electrical and electromechanical filters, mainly bandpass in 

nature, which are used in industry.  The question becomes which type of filter is most beneficial 
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for different needs.  The passive LC filter was the first developed, and is still widely used.  It 

encompasses a collection of elements where electrical resonances are developed by tuning 

circuits composed of inductors and capacitors.   

 Items such as cost, size, and performance became negative issues with the LC filters.  

Among others, the electromechanical filter was studied to help solve some of the concerns.  It 

was discovered that electromechanical filters, specifically mechanical filters, presented favorable 

results.  Mechanical filters are used in systems that demand narrow bandwidths, as well as low 

loss and good stability.  These characteristics are achieved mainly because of the properties of 

the mechanical resonators.  These include large material property values of quality factor (Q) 

that allow for bandwidths as narrow as 0.05% of the center frequency, without excessive loss.  

Another property of the resonators is the excellent temperature and aging characteristics.  These 

properties prevent problems such as stability and frequency drifting with time and with 

temperature change [Johnson, 1983].   

 The development of mechanical filters can be thought of as an extension of LC filter 

technology.  The mechanical filter devices are developed using existing electrical filter 

knowledge, as well as information pertaining to mechanical vibrations.  The process begins with 

the theory behind narrow-band electrical bandpass filters. 

3.2  Electromechanical Filters 

Before any form of electromechanical filter can be created, or even designed, there is a 

plethora of theoretical information that needs to be brought to the attention of the reader.  This 

includes information that is pertinent to all electromechanical filters, compiled in Section 3.2.1, 
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including the several different types that are used in industry.  A breakdown of the components 

of each filter, such as the electromechanical transducer and the resonator, is also necessary. 

 Section 3.2.2 explains the topics that are specific to mechanical filters.  This includes 

information regarding issues such as the coupling wires, the fabrication of the filter, and their 

support systems.  The subject of micro-scale mechanical filters will also be touched upon in 

Section 3.2.3. 

3.2.1  Knowledge Involving All Electromechanical Filter Sizes 

 Although the electrical filter knowledge is essential, this text will focus on 

electromechanical filters.  Therefore, background information including the different types, as 

well as the differences between them should be clarified.  Also, the development process could 

not take place if the components and their roles are not understood.  With that, the following is 

an overview of electromechanical filters.     

3.2.1.1  Types of Electromechanical Filters 

There are several categories of electromechanical filters, specifically bandpass filters.  

Some use different components.  Some use different materials.  Some use different theory.  In 

the end, they all seek to pass a single band of frequencies, while rejecting those frequencies 

above and below it.  In order to achieve this, each receives electrical energy that is transformed 

into mechanical vibrations.  The unwanted frequencies are next filtered out, before the 

mechanical energy is converted back into electrical energy at the output.  

3.2.1.1.1  Crystal and Ceramic Filters 

Crystal and ceramic filters, monolithic filters in particular, are formed by acoustically 

coupling bulk or lumped resonators on the same substrate.  If the adjacent resonators are 
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physically close enough, acoustic coupling will occur through the wafer, also known as a blank 

[Kinsman, 1987].  The resonator is most often made of crystalline quartz when using the crystal 

filter, while the ceramic filter consists of a resonator made from a piezoelectric ceramic, usually 

PZT (Lead Titanate Zirconate).  The design of the resonators requires a particular blend of 

acceptable mechanical dimensions, as well as the optimal electrode location, to excite the proper 

frequencies.  An interesting property of these resonators is that they have their own built-in 

electromechanical transducer.  Therefore, they can take an electrical signal and convert it to 

mechanical energy, and vice versa.  Both ceramic and crystal filters can operate in frequency 

ranges from several kilohertz up to the megahertz and possibly gigahertz regions. 

Whereas the resonators of a mechanical filter (described in Section 3.2.1.3) are depicted 

as the volume of some metallic geometry, crystal and ceramic resonators are defined differently.  

These resonators are not portrayed as depending on the actual boundaries of the crystal or 

ceramic material.  Electrodes that are deposited on both sides of the substrate create the 

boundaries.  This allows the mechanical energy to be confined to the area of the crystal or 

ceramic material where the electrodes overlap, thus leaving room outside of this area for 

electrical connections and the support structure.  Any small amount of energy that leaks into a 

region of the substrate without any electrode falls off exponentially away from the electrode.  

This phenomenon is known as energy trapping [Sheahan, 1975].       

In terms of frequency stability and quality factor, the ceramic resonator cannot compete 

with those manufactured from quartz.  Ceramics also age more than quartz crystals.  Though, if 

the application calls for a loosely specified, low-cost device, piezoelectric ceramics are the better 

choice [Fujishima, 2000].   
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3.2.1.1.2  Surface Acoustic Wave (SAW) Filters 

 Generally, an SAW filter consists of comb-like, metallic-film electrodes, known as inter-

digital-transducers (IDTs), deposited on the flat surface of a piezoelectric crystal.  When a 

voltage is applied, the generating transducer creates an alternating pattern of material 

deformations just under its finger-like geometry.  When a sinusoidal voltage is applied, a 

standing wave, known as a surface acoustic wave, is formed.  A surface acoustic wave is a mode 

of material deformation that circulates at the surface of a solid, similar to the ones that propagate 

on a water surface. 

When the wavelength of the surface acoustic waves and the period of the electrode 

fingers are the same, the waves are most strongly excited because they are applied at the same 

phase.  Thus, travel to the receiving transducer at these periods is at the highest sensitivity.  This 

results in a filtered response.  Enclosing the transducer pair, diffraction gratings are used to 

compensate for the traveling wave that occurs at the positions before the generating, and after the 

receiving, transducers [Mitra, 1989].   

 By and large, the frequency range for the SAW filter begins at approximately 30 MHz, 

while the highest acceptable frequency is a few GHz.  The dimensions of the device tend to be 

inconveniently large if the frequency is lower than 30 MHz  [Mitra, 1989].  While the opposite is 

true at large frequencies above a few GHz, ever increasing technology in the micro- and nano-

regions can help to raise the higher end frequencies.          
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3.2.1.1.3  Mechanical Filters 

A mechanical filter is a composition of both electrical and mechanical elements to output 

a response that has been filtered from the input.  The schematic for such a filter is given in Figure 

3.1.  A bandpass filter is the most common form, passing the wanted signals while attenuating 

the unwanted.     
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information regarding several of the modes and geometries used in the resonator of a mechanical 

filter.  It will also contain an in-depth description of the functions of the transducers and coupling 

wires. 

3.2.1.2  Electromechanical Transducers 

The electromechanical transducer performs energy conversion within a filter.  This means 

that it creates mechanical energy from an electrical signal, and converts the mechanically filtered 

response back into electrical energy.  The transducer is either integral to the system, such as in a 

crystal filter, or is externally coupled, which takes place in a mechanical filter. 

3.2.1.2.1  Types of Transducers 

 For the several forms of electromechanical filters used in industry, there are only two 

categories of transducers.  They are magnetostrictive and piezoelectric.  Magnetostrictive 

transducers were discovered first, and in the past, played a primary role, especially in mechanical 

filters.  However, piezoelectric transducers have gained acclaim for their broad frequency range, 

as well as their use of many different modes.   

3.2.1.2.1.1  Magnetostrictive Transducers 

A magnetostrictive transducer, as seen in Figure 3.2, is composed of a coil, a rod made 

from a metal alloy or a ferromagnetic material, and a biasing magnet.  The north and south ends 

of the magnet are denoted as N and S, respectively.  Electrically, V and I respectively represent 

the voltage of current of the coil, while the mechanical force and velocity are labeled as F and vp 

respectively.  The material expands or contracts when subjected to a magnetic field, and 

inversely changes in magnetization when the material is externally stressed.  Within the filter, 

these effects change the electrical and mechanical signals from one form to another.    
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These materials are crystalline in form.  The domains of each crystal have a random 

alignment while in the demagnetized state.  When a magnetic field is applied, the domains rotate 

into alignment with the field.  It is this process that can cause large changes in the physical 

stature of the material [Johnson, 1983]. 
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Figure 3.2  Magnetostrictive transducer 

3.2.1.2.1.2  Piezoelectric Transducers 

 As mentioned, the piezoelectric transducer can be utilized for numerous modes of 

vibration, as well as covering a wide range of frequencies.  For these reasons, the piezoelectric 

transducer is more commonly used.  Similarly to the magnetostrictive transducer, the 

piezoelectric is capable of acting as both a sensing and a transmitting element.  When a voltage 

stresses the piezoelectric element electrically, its dimensions change.  Inversely, an electrical 

charge is generated when the element is stressed by a mechanical force.  A piezoelectric 

transducer is shown in Figure 3.3 with the symbols being defined via Figure 3.2.   

 There are two main categories of piezoelectric transducers.  They include crystals and 

ceramics.  Crystal transducers are used in crystal and SAW filters.  In contrast, ceramic filters 

and mechanical filters use ceramic transducers.   

An example of a crystal transducer is quartz.  There are a variety of crystalline materials 

that exhibit piezoelectric properties, but quartz has become the most popular because of its high 
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mechanical quality factor, as well as its exceptional stability with time and temperature.  

Presently, most crystal quartz is cultured which has also helped make it fairly inexpensive 

[Kinsman, 1987].    

 Lead Zirconate Titanate, or PZT, ceramics are the most widely used for both sensing and 

actuating applications.  Domains within the material are randomly oriented in their original, 

unpoled state.  When an electric field is applied, the charge dipoles align with a parallel 

orientation.  As a result, the dimension that is aligned with the field expands, while there is a 

contraction along the axes normal to the electric field [Physik Instrumente, 1998].  
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Figure 3.3  Piezoelectric transducer 

3.2.1.3  Resonators 

The resonators are the heart of the electromechanical filter.  An integral or externally 

coupled transducer excites the resonator within the filter.  The output is a filtered response based 

on the dominant frequency of the oscillations produced by the resonators.  This text will focus 

primarily on resonator information pertinent to mechanical filters.   

The parameters of the mechanical resonators play a vital role in producing the 

characteristics of the filter.  The natural frequencies of the resonators establish the center 

frequency of the filter.  Additionally, the number of resonators used in the system determines the 
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shape factor.  The shape factor (SF) is a measure of the selectivity, or vertical rolloff, of the 

response.  Also, one of the variables that affect the bandwidth is the equivalent mass of each 

resonator [Mitra, 1989].  The equivalent mass is a measure of the distributed-mass of a resonator, 

and corresponds to the mass of a comparable spring-mass resonator tuned to the same frequency 

[Sheahan, 1975].   

3.2.1.3.1  Geometries, Vibrational Modes, and Boundary Conditions 

 A mechanical resonator can oscillate in a number of ways.  Continuous vibration theory 

is used to model mechanical resonators with such geometries as bars, beams, rods, and disks.  

The governing equations of a system are partial differential equations used to solve for the 

characteristic function, or mode, of the structure [Rao, 1995].  In mechanical filter design, the 

end result is to determine the natural frequencies of the resonators.     

 Certain geometries and mode shapes are chosen to fulfill specific filter specifications.  

Figure 3.4 shows geometries and modes generally used in typical frequency ranges for macro-

scale mechanical filters.  The initial and final frequencies of Figure 3.4 can be somewhat 

extended in either direction, but practical limitations must be accounted for.  These include 

manufacturing tolerances and physical thresholds that ensue due to nonlinear vibrational 

behavior [Johnson, 1983]. 
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where C1-4 are constants dependent on the boundary conditions.  The natural frequencies can also 

be expressed as  

 2
4(β )

ρ
EIl
Al

� � , (3.2) 

where �l is a constant based on the mode number and end conditions of the beam (Inman, 2001).  

Young’s modulus and the moment of inertia of the beam are represented respectively as E and I.  

The length (l) and area (A) of the beam are also needed, as well as the material property, density 

(�). 

Examination of the deflection, slope of the deflection, bending moment, and shear force 

is required to solve the governing equations.  One end of the beam vibrates freely; therefore the 

bending moment and shear force must vanish.  Conversely, the other end is clamped creating no 

restrictions on the moment or shear force.  It does, however, force the deflection and slope of the 

deflection to be zero.  The numerical values of �l are determined by implementing the boundary 

conditions to help solve for the natural frequencies, as well as the mode shapes for a cantilever 

beam as 

 sinβ sinhβ( ) (sinβ sinhβ ) (cosβ coshβ )
cosβ coshβ

l lW x x x x x
l l

� ��
� � � �� ��� 	

. (3.3) 

[Rao, 1995] 

 

 

Figure 3.5  Cantilever beam 
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3.2.2  Macro-scale Mechanical Filters 

Whereas Section 3.2.1 dealt with topics that are related to all electromechanical filters, 

the following section shares information specialized to mechanical filters.  Electromechanical 

filters are those that transform electrical signals to mechanical energy, and then back to electrical 

signals after filtering takes place.  Mechanical filters specifically use mechanically coupled 

mechanical resonators.  They differ from other electromechanical filters such as monolithic 

crystal and ceramic filters that are mechanically coupled without physical attachment of the 

resonators.   

Specifically, the text addresses larger, or macro-scale mechanical filters.  These generally 

tend to have dimensions within the centimeter range.  One of the featured topics regards the 

coupling wires, which are exclusive to mechanical filters.   

3.2.2.1  Mathematical Models 

 In order to understand mechanical filters one must comprehend the topic of mathematical 

models.  A filter designer must be able to appreciate the analogous nature of dynamics or 

acoustics with electrical network theory.  These similarities produce equivalent circuits that are 

important because most literature and computer programs used for the design and analysis of 

filters are written in electrical terms [Temes, 1973].  Therefore, it is desirable to convert the 

electromechanical model into electrical terms. 

3.2.2.1.1  Pictorial Form 

 The first stage in generating the mathematical model of a mechanical filter is creating the 

model in pictorial form.  The pictorial diagram takes the essentials of the actual mechanical 

device, and represents it in a spring-mass-damper system [Johnson, 1983].  Figure 3.6 is an 
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example that depicts a pair of mechanically coupled cantilevered beams via a wire, and the 

corresponding reproduction in pictorial form.  The pictorials will be used to determine the 

mechanical and electrical schematic diagrams, which are clarified in Section 3.2.2.1.2.2.1.     
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measured when an instrument is placed across its ends, or nodes, within a system.  A through-

variable is a quantity that is measured by inserting an instrument at a single point in a branch of a 

system [Temes, 1973]. 

 To elaborate on this new terminology, a spring element can be used as an example.  A 

spring has two nodes in which an outside force can be applied.  Since the force is equal at every 

portion of the spring, this quantity is referred to as the force through a spring [Firestone, 1933].  

Similarly, the displacement or velocity is measured between the two ends of the spring.  

Therefore, it is offered as a quantity across the element. 

3.2.2.1.2.1  Conventional Analogy 

 The conventional electromechanical analogy can be derived from the foundation that the 

differential equations of both types of systems will be of the same form, as expressed in terms of 

displacement and charge [Firestone, 1933].  Table 1 shows this form of analogy for each 

element.  The differential equations of both the mechanical and electrical systems, respectively, 

will have the form of 

 1 .

mv cv k vdt F
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 (3.4) 

 There are a few points of interest to note when this analogy is used.  The first point 

occurs when mechanical elements are placed in parallel form.  It is known that the electrical 

equivalent must be connected in series, and vice versa.  This is to employ the fact that the 

velocity across a mechanical system of elements is analogous to the current through an electrical 

system.  Similarly, the combination of mechanical elements in series is equal to the reciprocal of 

the sum of the reciprocals of the elements.  In electrical terms, series elements are additive 

[Firestone, 1933]. 
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 A final point pits elements that are defined as across, to be analogous to through 

elements.  The variable section of Table 1 shows that the velocity, which is measured across an 

element, is analogous to the through element, current.  This is also true for a mechanical force 

and an electrical voltage.  It respectively compares a through element with one that is measured 

across.  This point, in conjunction with the others mentioned, can cause confusion when dealing 

with mechanical filters.   

3.2.2.1.2.2  Mobility Analogy 

 The analogy used more commonly by mechanical filter users and designers is known as 

the mobility analogy.  A categorization of this analogy can also be found in Table 1.  Its basis is 

to relate mechanical through-variables with electrical through-variables.  A similar argument can 

be made for across-variables.  The mobility analogy also assures that the network topologies are 

the same [Johnson, 1983].  Therefore, a series connection in a mechanical circuit can be easily 

converted to an electrical circuit in series.  Also, the summation of series components in both 

mechanical and electrical terms is additive.  Parallel connections and components also behave in 

the same manner in mechanical and electrical terms.  The differential equations obtained by 

using the mobility analogy are    

 1 1 .

mv cv k vdt F
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Table 1  Conventional and mobility electromechanical analogies 

Analogy  Conventional Mobility 
System Mechanical Electrical Electrical 

Velocity across (v) Current through (I) Voltage across (E) Variable Force through (F) Voltage across (E) Current through (I) 
Damping (c) Resistance (R) Conductance (1/R) 

Compliance (1/k) Capacitance (C) Inductance (L) 
Stiffness (k) Reluctance (1/C) Inductance-1 (1/L) 

Network 
parameters 

Mass (m) Inductance (L) Capacitance (C) 
Series connection Parallel connection Series connection Network topology Parallel connection Series connection Parallel connection 

 
 
3.2.2.1.2.2.1  Schematic Form Using Mobility Analogy 

 A schematic diagram is used to convert a pictorial diagram into a network that is easier to 

analyze, using the electromechanical analogies.  Finding the terminals of each mechanical 

element will help in the creation of the schematics.  It is not difficult to determine that both a 

spring and a damping element have two terminals, but a mass element is not as obvious.  A force 

cannot be applied to a spring or damper without grasping it at two points, but a mass can acquire 

an applied force from contact at just one point [Firestone, 1933].  The second terminal of a mass 

element is always connected to a reference ground, which is represented as the earth.  All other 

terminals that are clamped, and do not move, are also connected to the reference ground 

[Johnson, 1983].        

3.2.2.1.2.2.1.1  Mechanical Schematic 

 The information from Section 3.2.2.1.2.2.1 can be used to convert the example pictorial 

diagram of Figure 3.6(b) into the mechanical schematic diagram of Figure 3.7.  The mechanical 

schematic looks similar to an electrical circuit using just the mechanical elements. 
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Figure 3.7  Mechanical schematic diagram 

  Electrical Schematic 

 the mobility analogy, the mechanical schematic in Figure 3.7 can be converted into 

schematic of Figure 3.8.  Except for the addition of a source and load resistance, 

 legitimate electrical representation of a mechanical filter.     
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Figure 3.8  Electrical schematic diagram 
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3.2.2.2.1  Effects and Development 

 The coupling of a mechanical filter affects several features of the device.  The bandwidth 

of the filter is a direct function of the stiffness of the coupling wires.  As the stiffness becomes 

greater, the bandwidth also becomes larger.  Resonator-to-resonator coupling also influences the 

shape of the attenuation versus frequency curve.  A more rounded passband shape, with less 

ripple, is the result of greater coupling between the outer resonators, relative to the inside 

resonators [Johnson, 1983].      

Similar to the resonator concepts clarified in Section 3.2.1.3, continuous, vibrational 

theory is used to develop the coupling wires.  Therefore, the couplers can oscillate in such modes 

as torsional, extensional, and flexural.  Unlike resonator theory though, the natural frequencies of 

the coupling wires are not the focal point of ascertaining the physical dimensions.  The emphasis 

is placed on the determination of the coupling stiffness to establish the size of the wires.  The 

stiffness equation can be found by implementing the numerical technique known as the finite 

element method.  This procedure is used to uncover the stiffness matrix of the element, which is 

a 2n-by-2n matrix where n represents the number of degrees of freedom necessarily applied to 

each end of the element.  The boundary conditions of the wires are next applied to the matrix to 

determine the correct equation for the coupling stiffness.  

3.2.2.2.2  Flexural Beam Coupling Example 

 The technique can be further clarified through the use of an example.  The use of several 

cantilevered beams, such as the one found in Figure 3.5, can be coupled to oscillate in a flexural 

manner, as seen in Figure 3.6(a).  This requires the assumption of a sliding support (strictly 

vertical displacement) at the ends of each flexurally vibrating coupler.     

 28



 

 Because the coupling wires vibrate in a transverse direction, the stiffness matrix for a 

beam element must be determined.  The following stiffness matrix derivation can be found in 

Logan, 2002.  The degrees of freedom considered per node, or endpoint, for a beam element are 

the transverse displacement (dy) and rotation (�).  The first step to develop the matrix is to 

assume a transverse velocity function through the element length as  

 . (3.6) 3 2
1 2 3( )v x a x a x a x a� � � � 4

This cubic function is appropriate due to there being four total degrees of freedom at the two 

nodes.  Equation (3.6) is then expressed as a function of the nodal degrees of freedom by 

evaluating each a term at the nodes.  The new function is used in conjunction with the bending 

moment and shear force equations that are related to the transverse displacement function, 

respectively found as 
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In matrix form, the assembly of the shear forces and moments at each node, as functions 

of displacement and rotation, are 
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Because of the assumed sliding supports, there is no rotation at either node.  Also, the shear 

forces are known to be zero, but no information is known regarding the moments at each end.  

Therefore, Equation (3.8) can be reduced and the stiffness matrix K, can be extracted as 
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The flexural coupling stiffness equation between each flexurally vibrating resonator becomes 

 3

12
ij

EIK
l

� . (3.10) 

The coupling stiffness is determined as a function of filter specifications, as well as the 

normalized coupling coefficient.  Equation (3.10) can then be applied to determine the 

dimensions of the wires. 

3.2.2.2.3  Bridging 

 In an attempt to create a tighter stopband bandwidth, hence a larger shape factor value, a 

technique known as bridging across mechanical resonators is used.  This is accomplished by 

coupling non-adjacent resonators, in addition to the already coupled system.  The idea is to 

produce attenuation poles in the filter stopband to improve the frequency response.  The poles 

are the result of the bridging wire signal canceling the signal through the main coupling wires 

[Mitra, 1989].   

Generally speaking, the bridging of an odd number of resonators will produce a pole in 

either the lower or upper stopband, but not in both.  Conversely, when bridging occurs across an 

even number of resonators, dual poles will result producing a symmetric frequency response 

[Johnson, 1983].   
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3.2.2.3  Fabrication 

There are various assembly processes needed to complete the construction of a 

mechanical filter.  These include the bonding of the piezoelectric transducers to the outer 

resonators, the bonding of the coupling wires to each resonator, and also a filter support system. 

There are several methods that can be used to attach a piezoelectric (ceramic) transducer 

to a metal resonator, but most of which involve solders or epoxies.  The compositions of the 

bonding materials are numerous, with solders coming in foils, pastes, or wire form, and the 

epoxies varying in consistencies, application procedures, cure times, and chemical makeup.   

Stages that are of major importance in the bonding process are the preparation of the 

attached surface and the thickness of the bonding layer.  The resonator surface must be 

thoroughly cleaned before and after the application of a solder or epoxy.  When soldering, the 

surface might need to be primed using tinning, flux, or other necessary treatments [Mitra, 1989].  

A more significant step when bonding with an epoxy is the control of the thickness.  Typically, 

pressure is used to promote a uniform attachment using the minimum amount of epoxy.  A 

minimum volume of epoxy also results in a minimum amount of damping or resistance that is the 

effect of the epoxy bond.   

Soldering or welding processes are normally used in the attachment of coupling wires to 

the resonators.  Epoxy does not result in good coupling because of its damping characteristics.  

Problems that could arise due to soldering or welding include deformation of the wire and/or 

resonator due to thermal effects, and physical deformation of the wire that can occur from some 

welding processes. 

A filter support system is designed with two principal objectives.  The first is to create a 

structure that will allow the components to vibrate consistently and predictably.  The second is to 
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isolate the filter from external shock and vibration that could cause both damage and unwanted 

responses [Johnson, 1983].  Ideally, attachment of the support occurs at the nodes of the 

resonators. 

3.2.3  Micro-scale Mechanical Filters 

 Current micro-scale mechanical filter research has proved to show favorable results.  

Many resonators are developed using polycrystalline silicon, which is a low-loss material, and 

are driven by interdigitated electrodes that provide a linear excitation [Lin, 1998].  They are 

mechanically coupled by soft, flexural-mode springs and are equipped with capacitive-comb-

transducers [Nguyen, 1998].  These developments can provide an ever-growing demand for 

higher quality factors, better stability to aging and temperature, and good signal-to-noise ratios.   

 More recently, studies are being conducted with the interest of using thin film 

piezoelectric transducers on micro-resonators and filters.  This has been a topic that had received 

limited attention in the past, with the exception of acoustic wave devices.  This was primarily 

due to the relative complexity of integrated circuit integration and overall device fabrication 

[DeVoe, 2001].   

 Micro-scale piezoelectric devices do have their advantages.  For example, it is known 

that the theoretical coupling strength of an electrostatic clamped-clamped, beam device is known 

to rapidly drop off as resonant frequencies are increased [DeVoe, 2001].  This is not the case 

with piezoelectric transducers.  According to Devoe, 2001, the electromechanical coupling 

strength, �, of a piezoelectric doubly-clamped beam is greater than an electrostatic parallel plate 

resonator at frequencies greater than approximately 80 kHz.  The piezoelectric coupling strength 

is still increasing after this frequency, while the strength of the electrostatic resonator decays 

considerably as the frequency grows. 
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Piezoelectric coupling strength also declines at a slower rate than electrostatic coupling.  

The regression is slower because capacitive actuation results from a distributed force whereas 

piezoelectric actuation results from a distributed moment independent of the beam length.  This 

improved coupling can potentially lead to enhanced filter performance and reduced noise 

[Piekarski, 2001]. 

3.3  Electrical Bandpass Filter Design 

 The development of a mechanical filter initially begins with the design of an electrical 

filter. The process initiates with a normalized, low-pass prototype model and concludes with an 

electrical bandpass circuit.  The two major divisions known as the wide-band and narrow-band 

filters will be discussed.  The focus turns to the narrow-band approach where several 

approximation methods are brought forth in Section 3.3.2.3 to solve for normalized filter 

elements, clarified further in Sections 3.3.2.4 and 3.3.2.5.  In Section 3.3.2.6, the components can 

be transformed into denormalized values that create a useful electrical schematic.    

3.3.1  Wide-band Bandpass Filter Design 

 While the primary focus of this thesis is narrowband filter design, a brief discussion of 

wide-band filters is given to highlight the differences.  As mentioned, all filter design begins 

with a normalized, low-pass model.  The wide-band approach is used when the ratio of the upper 

cutoff frequency to the lower cutoff frequency is greater than an octave.  The basis behind the 

wide-band process is to separate the bandpass specification into individual low-pass and high-

pass requirements, and then combine, or cascade, the two filters into one bandpass filter.  This is 

a valid approach based on the assumption that the individual responses of each filter are 

maintained even though they are cascaded [Williams, 1988].   
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Once the bandpass specifications are separated, the low-pass and high-pass filters can be 

designed.  The first step is to determine the shape factor, defined in Section 2.0, for each 

respective filter.  This is used to determine the order and the filter approximation necessary to 

create the design.  Specifics regarding the topics of order number and filter approximation will 

be discussed further in the narrow-band approach, found in Section 3.3.2. 

With the order and approximation process known, a normalized lowpass circuit can be 

found for both the low-pass and high-pass filter.  They are denormalized into actual element 

values with the help of some impedance scaling, and then combined.  If the separation of cutoff 

frequencies is insufficient, an attenuator, in the form of a T- or �-circuit of resistors, is 

introduced to minimize interaction of impedance variations [Williams, 1988]. 

3.3.2  Narrow-band Electrical Bandpass Filters  

A narrow-band filter is known to have a ratio of upper cutoff frequency to lower cutoff 

frequency that is less than an octave, while a bandpass quality factor of ten or greater is desirable 

for this design technique.  The design of narrow-band bandpass filters can be realized by using 

coupling techniques where parallel tuned circuits, known as resonators, are interconnected with 

coupling elements such as inductors or capacitors.  These configurations, because the tuning is 

simpler since all inductor-capacitor pairs resonate at the same frequency, are desirable for filters 

that fall into this narrow-band area.  The basis behind the design method is the assumption that 

the coupling elements have a constant impedance with frequency [Williams, 1988]. 

3.3.2.1  All-pole Network 

Every phase that ensues in the development of a filter is dependent upon the choice of 

low-pass filter approximation.  The response approximation approach that could be applied are 
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numerous, including Butterworth, Chebyshev, Cauer, Gaussian, and Legendre, to name a few 

[Zverev, 1967].  However, several of the common ones stem from the use of a normalized, all-

pole, low-pass filter as the basis for obtaining the realizable system responses.  The term, all-

pole, depicts a transfer function that does not contain zeros in the numerator.   

The transfer function that describes a low-pass, all-pole network is found in Equation 

(3.11).   

 1
0 1

( ) n n
n

KH s
r s r s r�

�

� � ��

 (3.11) 

The term, K, represents the gain of the system, whereas the order of the system is represented by 

n, which determines the total number of terms in the denominator.      

 The transfer function of Equation (3.11) is the result of methods used to approximate the 

ideal, rectangular magnitude response.  A general approach used to create this ideal response is 

found in Equation (3.12).  The magnitude can be written as   
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H j�
� �

�
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where the term, �, is never greater than unity and represents the height of the change in 

magnitude of the passband.  The function �n(�) is an nth-order polynomial containing only even 

or only odd powers of the frequency, �.  The function �n(�) is replaced by a function that is 

based on the choice of low-pass filter approximation.  Predetermined filter specifications are 

used to determine a satisfactory approximation method.  Substitutions for �n(�) and � are 

developed further in Sections 3.3.2.3 and 3.3.2.4.  Equation (3.12) is a good approximation of the 

rectangular magnitude response if �n(�) is large in the stopband, and a small value in the 

passband [Blinchikoff, 1976].  
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3.3.2.2  Low-pass Prototype Circuit 

The corresponding network that realizes the transfer function in Equation (3.11) is shown 

in Figure 3.9.  The circuit is normalized, therefore the load resistance is always unity, and the 

circuit elements are dimensionless.  The source resistance is denoted as Rs.  If the order of the 

system is even, the final element is a capacitor in parallel.  An inductor in series with the load 

resistance is used when there is an odd order system.   

 

1/RS

x1 x3

x2

xn

xn 1.0 1.0

n even n odd

E

 

Figure 3.9  Low-pass prototype circuit [Blinchikoff, 1976] 

3.3.2.3  Filter Approximations  

As mentioned, an integral stage of the design process of a filter is the ideal low-pass 

approximation.  It is a convenient method of obtaining realizable system responses that are 

useful for finding other filter types (bandpass, high-pass, etc.) by a suitable transformation 

[Blinchikoff, 1976].  Also, the normalized result does not need to be repeated for each filter type.  

The following sections review three common low-pass filter approximations, the Butterworth, 

the Chebyshev, and the Legendre. 

3.3.2.3.1  Butterworth Approximation 

 The Butterworth approximation is a special form of a Taylor series approximation [Aatre, 

1986].  It is based on the fact that the passband of the filter response is maximally flat, as shown 
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in Figure 3.10(a).  This causes a rolloff that is only moderately steep, as compared to the ideal 

vertical response.  The belief behind this approximation is that a flat response when the 

frequency is zero is more important than the response at any other frequency [Williams, 1988].  

In a normalized Butterworth low-pass filter, when the frequency is at unity, the 3dB attenuation 

is determined.  Also, the poles of the normalized transfer function lie on a unit circle in the 

Laplace domain. 

(a) Butterworth Magnitude Response

Frequency (rad/sec)

M
ag

ni
tu

de
 (d

B)

10
-1

10
0

10
1-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

(b) Chebyshev Magnitude Response
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Figure 3.10  Butterworth (a) and Chebyshev (b) magnitude response plots 

3.3.2.3.2  Chebyshev Approximation 

The basis behind the Chebyshev response is to allow small wavelike variations, known as 

ripple, in the passband of the frequency response to achieve a steeper rolloff, more like the ideal 

vertical shape.  The variations within the passband appear equally in magnitude, thus the 

Chebyshev is also known as the equiripple response.  Figure 3.10(b) shows this response.  The 

ripple value has units of decibels and denotes the height of the variations [Schaumann, 1990].  

The number of half-cycles within the passband represents the order of the Chebyshev system.  

The minimum order of this system is a smaller value than the Butterworth approximation due to 

allowance of the ripples.  Also, unlike those found by the Butterworth approximation, the 

normalized Chebyshev poles form the geometry of an ellipse.  
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3.3.2.3.3  Legendre Approximation 

 Another approximation method that is based on the all-pole network is known as the 

Legendre response.  Its response falls somewhere between the Butterworth and Chebyshev 

functions.  The steepness rate of the transition between the cutoff and stopband frequencies is 

more vertical than the Butterworth, but because it lacks passband variations, the Legendre does 

not compare to the Chebyshev response [Zverev, 1967].  Although somewhat unpopular, the 

Legendre response can be beneficial when a monotonic, or no passband ripple, requirement is a 

necessity.   

3.3.2.4  Normalized Filter Elements 

The end result of the approximation process is to find the normalized filter elements that 

are used to determine the actual elements of a filter.  These normalized elements are the solutions 

to the values of x found in Figure 3.9.  The approach is based on using the minimum order of the 

system, n, that still satisfies the specified filter characteristics. 

3.3.2.4.1  Butterworth Approach 

 Because the Butterworth approximation is a maximally flat response, the ripple factor, �, 

is equal to unity.  From Natarajan, 1987, substituting �n for �(�) in Equation (3.12) will produce 

the Butterworth magnitude response  
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1 n

H j�
�
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�

. (3.13) 

If the minimum stopband attenuation in decibels, Aa, is at and above the stopband frequency, �a, 

then the equation for this attenuation, from Equation (3.13), becomes 

 . (3.14) 210 log(1 )n
aA �	 
 a
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Equation (3.14) can be solved for the order number of the system.  This inequality must be an 

integer, therefore it should be rounded up.   
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The next step is to solve for the poles of the network.  Taking the square of both sides of 

Equation (3.13) is needed because |H(j�)|2 = H(j�)H(-j�) and all poles can be determined.  

After substituting s/j for �, the denominator of Equation (3.13) squared is set equal to zero.   

  (3.16) 2 ( 1) 0n ns 
 � �

The roots, pk, of Equation (3.16) can then be solved as 
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The summation extends until 2n, but because the poles of interest are only those that have 

negative real values, the value of k extends from one to n [Natarajan, 1987]. 

The complex Butterworth poles can be restated as 

 k kp j� �� � . (3.18) 

where the real and imaginary components of each pole are 
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 (3.19) 

The normalized filter elements turn out to be equal to twice the negative of the real part of each 

pole, as shown in Equation (3.20). 
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 (3.20) 

[Blinchikoff, 1976] 
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3.3.2.4.2  Chebyshev Approach 

 A Chebyshev polynomial refers to a class of equations that oscillate within the interval    

-1� x �+1, while increasing in magnitude outside of this interval.  This effect is shown in Figure 

3.11.   
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Figure 3.11  Chebyshev pol
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 Although it seems unlikely, a recursive fo
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 (3.21), and the use of a trigonometric identity, 

re and one after Equation (3.21). 
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The addition of the two equations of Equation (3.23), and the substitution of Equation (3.22) and 

Equation (3.21) will result in 
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To find a Chebyshev polynomial in terms of the two polynomials that are the degrees 

immediately lower than it 
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[Su, 1996] 

 The magnitude response of a Chebyshev approximation can now be formed.  The 

function �(�) of Equation (3.12) is substituted by the Chebyshev polynomial, C(�), determined 

in Equation (3.21).  This allows for small passband deviations.  The term, �, represents the ripple 

height. 
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When the frequency of the system is at zero, 
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In accordance to Equation (3.21), when n is an odd number 
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and when n is even 

 
2

(0) 1
1( 0) .

1

nC

H j
�

� �

�

�

 (3.29) 

[Blinchikoff, 1976] 
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 It is shown by Equation (3.28) that a Chebyshev filter with an odd order has no relative 

attenuation at DC.  However, Equation (3.29) reveals that an even order system has some loss 

when the frequency is zero.  This loss is known as passband ripple.  Odd order filters are able to 

operate with equal source and terminating resistances.  Conversely, because of the ripple, even 

order filters must function with unlike resistances [Williams, 1988].   

 When the attenuation versus frequency response of a filter is analyzed, the passband 

ripple in units of decibels from Equation (3.29) is 

 . (3.30) 210log(1 )pR �� �

The ripple factor is defined in terms of the passband ripple 
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. (3.31) 

 Equations (3.21) and (3.26) can be used to determine the minimum order of the network.  

If the minimum stopband attenuation, Aa, occurs at and above the stopband frequency, �a, 

assuming �a >1 
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Maneuvering Equation (3.32) to solve for the order number, an inequality is formed such as 
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The order of the system must be an integer; therefore the inequality solution must be rounded to 

the next higher integer.   

 It is now an appropriate time to solve for the poles of the corresponding network 

function.  The magnitude function, Equation (3.26), is again used in conjunction with Equation 

(3.21), and after squaring both sides the output becomes 
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after the substitution of s/j for �.  The poles of Equation (3.34) can be determined, via Equation 

(3.35), from the values of s that make the denominator zero, while having negative real parts.   
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 To begin, let us define a new complex variable 
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Substituting Equation (3.36) into Equation (3.35) will produce Equation (3.37), as well as the 

expanded version after using a trigonometric identity 
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The subsequent step is to equate the real and imaginary sections of the second equation of 

Equation (3.37).  Noting that cosh(nv) � 1 for any v, the real portion becomes 
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For any solution of Equation (3.38), it is always true that 

 . (3.39) sin( ) 1nu � �

Therefore, solving the imaginary portion of Equation (3.37) for v equates as 
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To avoid confusion, let s=pi.  Now, in terms of the poles of the system, Equation (3.36) becomes 
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 cos( )i ip j u j� � v . (3.41) 

Expanding the right-hand side of Equation (3.41) will result in a summation where the number of 

poles is twice the order of the system.  This will account for both the positive and negative real 

parts of each pole.   
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Equation (3.42) can be simplified to 

 i ip j� �� � . (3.43) 

The substitution of Equation (3.38), as well as realizing that only the negative real poles are 

wanted, Equation (3.43) can be broken down into 
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[Natarajan, 1987] 

The terms of Equation (3.44) can be combined in such a way to produce the equation of the 

ellipse that contains the poles of the transfer function. 
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 In a normalized response, the 3dB frequency is usually specified when the frequency is 

equal to unity.  In the Chebyshev case, the frequency at unity refers to the edge of the passband 

ripple.  This means that the 3dB value must be found to normalize the poles.  Because the 

maximum response of the denominator of Equation (3.26) is equal to the square root of two, the 

magnitude function becomes   
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Due to Equation (3.46), the following must also be true of the denominator of Equation (3.26).  
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Knowing that �3dB >1, and that it is the value of interest, the variable will change its identification 

to ��, and with the substitution of Equation (3.21) into Equation (3.47) becomes 
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The normalized poles of the system can then be determined by dividing the existing poles of 

Equation (3.44) by the �� value.  These are scaled such that the 3dB attenuation falls at 1 rad/s.   
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[Blinchikoff, 1976] 

Figure 3.12 shows an example of a comparison between the normalized poles of both the 

Butterworth and Chebyshev systems, noting that the Chebyshev shape indicates a steeper rolloff.    
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 All of the necessary components are now completed to determine the normalized 

Chebyshev element values.  A few variables must first be equated though. 
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The normalized element values, x, are a function of the �� value, as well as the values of the 

variable g.  These g values are determined by a backward summation using the a and b values of 

Equation (3.50).   
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[Cohn, 1957] 

 To summarize, the normalized elements values, represented by x, are dependent on which 

approximation method is chosen, as well as on the order of the system.  They correspond to the x 

variables of the low-pass prototype circuit found in Figure 3.9.  They will be employed to find 

the normalized coupling coefficients and quality factors, developed in Section 3.3.2.5. 

The values can be found using Equation (3.20) if the Butterworth approach is chosen.  

Utilizing the Chebyshev approximation results in the use of Equation (3.52) to find the 

normalized elements.   
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3.3.2.5  Dimensionless Ratios 

The normalized filter elements, such as determined in Equations (3.20) and (3.52), can be 

used to transform the lowpass prototype circuit, shown in Figure 3.9, into bandpass elements via 

useful dimensionless ratios.  These ratios include the coefficient of coupling between the 

resonators, and the input and output normalized quality factors. The quality factor (q1…n) is 

defined as the quality of each reactive element influenced by the source and load resistance, if 

present.  The coefficient of coupling (kij) is the ratio of the series-resonant frequency of the ith 

and jth reactive elements to the cutoff frequency [Zverev, 1967].  Explained in Section 3.3.2.6, 

these dimensionless ratios are used to determine denormalized bandpass elements in an electrical 

circuit.  When developing a mechanical circuit, the normalized coupling coefficient is used to 

help develop the stiffness of the coupling wires. 

3.3.2.5.1  Normalized Quality Factor 

The quality factor is used to measure the losses of a reactive component of a filter.  For 

an inductor L in series with a resistor R, and a capacitor C in parallel with a resistor R, as shown 

in Figure 3.9, the respective quality factors are 
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 (3.53) 

 If the capacitive or inductive elements have a finite quality factor when a lossless 

reactance was intended, setbacks could ensue.  A problem that may occur is that the shape at the 

passband edge could become more rounded, therefore outputting a poor response.  Also, if the 

filter calls for ripple in the design, the ripple within the response might be reduced in size or even 

fade away possibly causing unwanted increases in insertion loss and stopband magnitude 

[Williams, 1988]. 
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A lossless network, such as in Figure 3.9, depicts the quality factor being represented at 

the normalized cutoff frequency, at which this frequency is known to equal unity.  The quality 

factor of every element is equal to infinity, except for the first and the last.  These are the only 

reactive elements that are influenced by the source or load resistance.  With a few exceptions, the 

resistances will also become unity for the low-pass prototype circuit.  This will make the 

normalized quality factors, Equation (3.54), equal to their respected normalized filter elements, 

equated in either Equation (3.20) or (3.52). 

 1 1 2 3 1              s n nq x R q q q q x R�� � � � � � �� n L  (3.54) 

3.3.2.5.2  Normalized Coupling Coefficient 

 Coupling is a phrase that is used somewhat loosely when spoken in terms of filters.  The 

reference to coupling in modern filters is only with respect to the parasitic effects of one 

component on another [Zverev, 1967].  However, it is a common approach for normalizing 

configurations including low-pass, high-pass, bandpass, and band-reject filters. 

 With reference to Figure 3.9, the coupling coefficient is defined as 
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with �ij representing the resonant frequency of two adjacent elements.  The term i=1…n-1, while 

the value for j=i+1.  From basic circuit knowledge, this resonant frequency term is identified as 

 1
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Together, the two frequencies represent the normalized coupling coefficient as  
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For lossless networks though, the cutoff frequency is known to be a value of unity.  Therefore, 

Equation (3.57) becomes 

 1
ij

i j
k

x x
� . (3.58) 

3.3.2.6  Electrical Network 

 The information throughout Section 3.3.2.5 is used to determine the electrical network of 

the filter.  The schematic, shown in Figure 3.13, represents an n-order, passive, LC circuit, where 

actual element values can be equated.  The resultant network grows from the roots of Figure 3.9, 

but is transformed from low-pass into bandpass form.  The normalized electrical elements are 

also denormalized into useful inductance and capacitance values.  

 

 

            
                                       L12  L23        L(n-1)n 
 
 
 RS 
 
                   L1           C1              L2           C2                               Cn-1         Ln-1             Cn           Ln                       RL

         node 1           node 2               node n 

Figure 3.13  General electrical network for inductively coupled resonator filter 

 Section 3.3.2.5.1 states that the only reactive elements that are influenced by the source 

or load resistance are the initial and the final.  Therefore, the denormalized quality factors (Q1,n) 

can be determined, with the assistance of the bandpass quality formula, Equation (2.6), and the 

normalized quality factors, as 

  (3.59) 
1 1

.

bp

n bp

Q Q q
Q Q q

�

� n
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The normalized coupling coefficients, as well as the bandpass quality factor, are used to 

determine the denormalized values as 

 ˆ ij
ij

bp

kK
Q

� . (3.60) 

 To determine the source (RS) and load (RL) resistances necessary to activate and terminate 

the circuit, the quality factor for a capacitor can be reworked to solve for the resistances as 
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.
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o

QR
C

QR
C

�

�

�

�

 (3.61) 

The capacitance, C, is necessarily chosen as an arbitrary value, but the value is based on 

convenience.  Each capacitor value will be identical throughout each parallel-tuned section from 

unity to n.  

  (3.62)        1, 2,iC C i n� � �

It is known that each parallel circuit, or node, within the network of Figure 3.13, vibrates 

at a tuned resonant frequency.  Therefore, the total nodal inductance (Lnode) can be found by 

using basic electrical frequency knowledge, and is determined as  

 2

1        1, 2,node
o

L i
C�

� � �n . (3.63) 

In order for all nodes to oscillate at the resonant frequency, a network will include n nodes 

containing the same values of Lnode and C in each.  

The coupling inductors can also be realized, with the help of the denormalized values of 

Equation (3.60), as well as Equation (3.63), by  

 ˆ
node

ij
ij

LL
K

� . (3.64) 
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 Each node is also tuned to a resonant frequency with the coupling inductors (Lij) that are 

adjacent to the ith inductor, shorted to ground.  This occurs so that the coupling inductors 

connected to that node are placed in parallel across the tuned circuit [Williams, 1988].  In 

addition, the inductor of each node (Li) can be manipulated from the equation of the total nodal 

inductance, which is 

 

1, , 1

1        1, 2,1 1 1node

i i i i i

L i

L L L� �

�

� �

�n� . (3.65) 

 The network of Figure 3.13 is the electrical basis for the mechanical filter.  Section 

3.2.2.1 explained how mathematical models are used to create mechanical schematics of Figure 

3.13.  In a mechanical filter that utilizes the mobility analogy, explained in Section 3.2.2.1.2.2, 

the parallel-tuned, LC circuits are the electrical components that are represented in a mechanical 

network by the vibrating resonators, while the coupling inductors are analogous to the coupling 

wires in a mechanical system. 

3.4  Summary of Important Research 

 To review, with the information described in Section 3.0, a design process can be created 

for mechanical bandpass filters.  Facts pertaining to filters, whether purely electrical or 

electromechanical, were presented initially.  All designs begin with a choice of filter 

approximation.  This was explained while specifically describing the basis behind the 

Butterworth and Chebyshev approximations.   
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 Other topics discussed included those that pertained to the electromechanical family of 

filters.  An explanation of the different forms of electromechanical filters was first presented.  

The specific subject matters that are unique to electromechanical filters followed.  These 

included passages regarding the electromechanical transducers and resonators.   

 The strictly mechanical filter was the topic of several subsections.  Within these 

subsections, the subject of mathematical models that are used to describe the filter was included.  

There are two analogies that can be applied to the models when converting from mechanical-to-

electrical terms, and vice versa.  The mobility analogy was explained in detail because that is the 

form that will be exercised in the design example.   

Also specific to mechanical filters, the topic of using wires to couple the resonators to 

create the filter structure was focused on.  The idea behind this technique and the necessary 

derivations were included.  Lastly, a clarification of the types of microstructure 

electromechanical filters was presented. 
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4.0  MACRO-SCALE DESIGN PROCEDURE 

 This section presents the theoretical design procedure used to create a mechanical 

bandpass filter from known filter specifications.  General overviews of each phase will be 

followed by an example that will be designed, fabricated, and tested.  In order to be consistent 

with an approach that a micro-scale filter might use, it was the decision of the author to create a 

filter using a collection of cantilevered beams that vibrate in a bending mode.  The final design 

can be found in Figure 4.1. 

 

 

Figure 4.1  Cantilevered beam mechanical filter design 

4.1  Filter Specifications 

The mechanical bandpass filter design process is somewhat open-ended, with a mastering 

of this skill coming only through experience.  The initial inputs come from filter requirements 

specified by the user.  These include the center frequency (�o), as well as the cutoff and stopband 

bandwidths.  Depending on the requirements, a maximum number of resonators can also be 

specified.  In addition, based on the choice of filter approximation, as seen in Section 3.3.2.3, an 

amount of ripple can be selected.  The attenuation at which the cutoff bandwidth (B) is normally 

found is the 3dB point, while the stopband bandwidth is chosen to occur at 40 dB (B40). 
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4.1.1  Example 

 The Chebyshev, or equiripple, approximation (Sections 3.3.2.3.2 and 3.3.2.4.2) will be 

used to analytically design the amplitude versus frequency response.  The specifications that 

characterize this response include the center frequency, cutoff bandwidth, and stopband 

bandwidth.  A ripple (Rp) of one decibel (1dB) is also considered acceptable within the passband.  

The specifications are shown in Table 2 and a frequency response using the specifications is 

shown in Figure 4.2. 

Table 2  Filter specifications 

Center frequency (�o) 10 krad/s 1590 Hz 
Passband bandwidth (B) 0.5 krad/s 80 Hz 

Stopband bandwidth (B40) 2.77 krad/s 440 Hz 
Passband ripple (Rp) 1 dB  

 
 

Figure 4.2  Frequency response using filter specifications and Chebyshev approximation 
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4.2  Minimum Number of Resonators 

The minimum number of resonators needed to arrive at the chosen filter specifications 

can subsequently be found.  This inequality is solved based on the filter approximation chosen.  

Commonly, the equation is a function of the passband and stopband attenuations, as well as the 

shape factor (B40/B).  The solution is rounded up to the next integer.  The number of resonators 

can also be found using the response curves for attenuation characteristics created in such texts 

as Williams, 1988. 

4.2.1  Example 

The order number, or the number of resonators, for a normalized lowpass Chebyshev 

response is derived as 

 

( *0.1)
1 0

( *0.1)

1

10 1cosh [ ]
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cosh ( )
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�
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�
�

.5

. (3.33) 

To avoid confusion, let the arbitrary normalized frequency value of ��= �.  Once the lowpass-

bandpass transformation is applied, two new frequencies are outputted as 
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The two values of Equation (4.1) are related by 

  (4.2) 2
1 2 o� � ��

and 

 2 1 B� �� � � . (4.3) 
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The bandpass response now has two frequencies in the passband and in the stopband.  Knowing 

that the normalized lowpass cutoff frequency, �c, will occur at 1 and –1 rad/sec, the passband 

frequencies can be found using Equations (4.2) and (4.3) as 

 2
1 2p p� � �� o  (4.4) 

and 

 2 1p p B� �� � . (4.5) 

Similarly, the normalized lowpass rejection band has two frequencies occurring at ��= �a and 

��= -�a.  These are now transformed into bandpass form as 

  (4.6) 2
1 2a a o� � ��

and 

 2 1a a aB� �� � � . (4.7) 

Equation (4.5) can be substituted into Equation (4.7) to produce �a.  This value is also known as 

the shape factor (SF) of a bandpass response. 

 2

2 1

a
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p p
SF � �

� �

�
� � �

�
 (4.8) 

[Natarajan, 1987] 

As a design choice, it is known that the minimum stopband attenuation, Aa, occurs at 

40dB.  Equation (4.8) can be substituted into Equation (3.33) to create a new inequality for the 

order of a bandpass Chebyshev response as 
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Knowing the shape factor due to the specifications in Table 2, the minimum number of 

resonators (n) can be found.  The result, after rounding to the next highest integer, is three (3). 
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4.3  Interior Resonator Dimensions 

The next step in the design process is to produce the dimensions of the interior 

resonators.  Once a material is chosen, the geometry and vibrational mode is decided upon.  

Commonly, lower frequency applications (1-100 kHz) use a beam geometry vibrating in the 

flexural mode, while a disk vibrating in flexure or a longitudinally vibrating bar is used for 

applications where higher center frequencies (50-500 kHz) are desired.  Using vibrational theory 

of continuous systems, the length, width, and thickness, or length and diameter, can be modified.  

Boundary conditions, as well as the excited mode number, are chosen and used in conjunction 

with the center frequency and material properties to solve for the appropriate resonator 

dimensions. 

4.3.1  Example 

 The designed mechanical filter uses flexurally vibrating cantilevered beams, coupled with 

wires, to produce the filter specifications.  The material chosen for both is stainless steel.  

Stainless steel has favorable properties such as excellent temperature stability and high 

mechanical quality factor.   

 The dimensions of the interior Type 316 stainless steel beam will be calculated using 

continuous vibrational beam theory, revealed in Section 3.2.1.3.2.  It is sufficient to excite the 

resonators in the fundamental mode to produce the sought after results.  The equation for the 

resonant frequency of a vibrating beam is 

 2
4

r r
o r

r r r

E Il
A l

� �
�

� . (3.2) 
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The material properties of the resonators are seen in Table 3.  The subscript, r, represents a 

resonator property.  The area and the moment of inertia of each beam can be determined 

respectively as 

  (4.10) r rA w t� r

 
3

12
r r

r
w tI � . (4.11) 

Table 3  Material properties of stainless steel 

Modulus of elasticity (Er) 190e9 Pa 
Density (�r) 7920 kg/m3 

 

Equation (3.2) can be altered, in conjunction with Equations (4.10), (4.11), and Table 3, to find a 

ratio of the resonator thickness to its squared length, Equation (4.12).  It can be shown that the 

final dimensions are independent of the width of the resonator.   

 
2

2

12

o

r r

r r

r

t l
l E

�

�

�

�  (4.12) 

This beam theory is used under the assumption that the beams are slender, that is, the length is at 

least ten times the scale of both the width and the thickness.  Therefore, the final dimensions are 

determined in Table 4. 

Table 4  Interior resonator dimensions 

Length (lr) 3.893 cm 1.533” 
Width (wr) 0.318 cm 0.125” 

Thickness (tr) 0.305 cm 0.120” 
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4.4  Transducer and Outer Resonator Dimensions 

The next stage is to develop the dimensions that pertain to the electromechanical 

transducer.  A decision must be made regarding the material, followed by an examination into 

which mode the transducer is to excite within the resonator.  Typically, the transducer is attached 

to the outer resonators, but this is not always the case.  An assessment of the transducer 

properties will also help to discover the dimensions of the outer resonators.  

4.4.1  Example 

Piezoceramic transducers will be used as the actuator and sensor for the system.  The 

choice of material is PZT-5H manufactured from Piezo Systems Inc.  The material properties can 

be found in Table 5. 

Table 5  Material properties of the piezoelectric ceramic 

Modulus of elasticity (Ep) 50e9 Pa 
Density (�p) 7700 kg/m3 

 

Total coverage of the resonator is used to excite the fundamental mode, and the PZT thickness of 

0.0075” is fixed by the manufacturer.  Therefore, most of the dimensions of the transducer are 

identified.  Because there are two different materials combining to form one beam, the length of 

the outside resonators will be different from the interior in order to resonate at the specified 

center frequency.   

Composite beam theory (Inman, 2001) is used to determine the new moment of inertia, 

Equation (4.15), with Equation (4.14) establishing the position of the centroidal axis.  Figure 4.3 

displays a diagram of the composite beam transformation.  
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Figure 4.3  Diagram showing composite beam transformation 

 p

r

En
E

�  (4.13) 

 
2 2

1

1 2

(1 )
2[ (1 ) ]
y w n y nwy

y w n y wn
� �

�

� �

2  (4.14) 

 
3 3

1 2 1 1 1 22 2
1 2 1

[ ( ) ] ( )( ) ( )[
12 2 2

x
w y n y y y y y ]I y w y nw y y y� � �

� � � � � �  (4.15) 

The same lateral vibration frequency equation, seen in Equation (3.2), is used to determine the 

necessary length of the outside resonators, with the mass per unit length equaling the summation 

of the density multiplied by the cross-sectional area of each material.  
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 (4.16) 

Using Equation (4.16), the final dimensions of the outer resonators are shown in Table 6. 

Table 6  Dimensions of the outer resonators 

Length (lro) 3.887 cm 1.530” 
Width (wro) 0.318 cm 0.125” 

Thickness (tro) 0.305 cm 0.120” 
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The dimensions of the transducers can also be found using the above information.  The 

thickness of the transducers is a known value.  The other dimensions come from Table 6 because 

full coverage of the resonators is desired.  Therefore, the length, width, and thickness of the outer 

resonators are given in Table 7. 

Table 7  Piezoelectric transducers dimensions 

Length (lp) 3.887 cm 1.530” 
Width (wp) 0.318 cm 0.125” 

Thickness (tp) 0.019 cm 0.0075” 
 

The effect of the piezoelectric transducer on the dynamics of the outer resonators is minimal.  In 

this case, when comparing the length of the outer resonators to that of the inner resonator, found 

in Table 4, there was a change of only a few thousandths of an inch. 

4.5  Normalized Quality Factors and Coupling Coefficients 

 In order to determine the values of the final two constituents related to the mechanical 

filter, the elements known as the normalized quality factors and coupling coefficients need to be 

uncovered.  Section 3.3.2.5 explains the purpose of these dimensionless ratios that originate from 

the lowpass prototype circuit, found in Figure 3.9. 

The electrical circuit model, discussed in Section 4.7, is determined with the help of both 

the normalized quality factors (q1…n) and the normalized coupling coefficients (kij).  The 

coupling coefficients also play an important role in finding the dimensions of the coupling wires, 

found in Section 4.6.  As in Section 3.3.2.5, the equations for the quality factors and the coupling 

coefficients are respectively derived as 

  (3.54) 1 1 2 3 1              S nq x R q q q q x R�� � � � � � �� n n L
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 1
ij

i j
k

x x
� , (3.58) 

where i=1…n-1, j=i+1, and x represents each normalized filter element value.  The variables RS 

and RL respectively stand for the source and load resistances of the lowpass prototype circuit.  

The solution for the normalized filter elements is representative of the choice of filter 

approximation.   

The quality value of every element is theoretically equal to infinity, except for the first 

and the last.  These are the only reactive elements that are influenced by the source or load 

resistance.  The values of q1…n and kij can also be found in table form in such texts as Williams, 

1988. 

4.5.1  Example 

 Using the established information regarding the choice of filter approximation, allowable 

ripple, and the number of resonators, the normalized quality factors (q1…n) and coupling 

coefficients (kij) can be found by using Equations (3.54) and (3.58).  In accordance to Section 

3.3.2.4.2, the cutoff frequency for the Chebyshev approach does not occur at unity, but at the 

edge of the ripple band.   Therefore, the 3dB frequency is derived as 

 11cosh[ cosh ]
n

�

�

�

� �
1 , (3.48) 

where the ripple factor, �� is defined as 

 0.1*10 1pR
� � � . (3.31) 

The normalized element values for the Chebyshev response are determined by 

       1, 2, ,i ix g i� �� � � n , (3.52) 

where the values of gi can be found by the algorithm 
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along with the assistance of  
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It is understood that the source and load resistances are unity when the order of the system is an 

odd number.  Therefore, all of the segments can be accounted for and the solutions to Equations 

(3.54) and (3.58), found in Sections 3.3.2.5 and 4.5, are shown in Table 8. 

Table 8  Dimensionless ratios 

Normalized quality factors (q1=q3) 2.210 

Normalized coupling coefficients (k12=k23) 0.645 

4.6  Coupling Wire Dimensions 

The design of the coupling wire found between each resonator is the next step in the 

creation of a theoretical mechanical filter.  This design is introduced by the choice of material 

that suits the needs of the filter, followed by the decision of the vibrational mode in which the 

wires will oscillate.  The geometry of the resonators, as well as the boundary conditions, will be 

used to determine their equivalent mass (Meq) values.  The mass at the coupling position is a 

point of interest to eventually help determine the stiffnesses of the coupling wires.  The 
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importance of this is that the compliances of the coupling wires help determine the bandwidth of 

the filter.  These stiffnesses, known as the required coupling wire stiffnesses, are found by 

 ij ij i j
o

BK k K
�

� K , (4.17) 

where the stiffness of each resonator is found commonly as 

 2
i o eqK M�� . (4.18) 

Incorporation of the end conditions for the coupling wire system is used to help develop a 

finite element stiffness matrix.  The elements within this matrix contain the variables needed to 

complete the design.  Sufficient diameters and lengths for each prospective wire can be extracted 

from the stiffness equation.   

4.6.1  Example  

 The wires, akin to the resonators, vibrate in a flexural mode and are made from a similar 

stainless steel material (Type 302).  The coupling point is at sixty percent (60%) of the length of 

each resonator from the fixed end.  This was a design decision based on the value of the 

equivalent mass at that position.  At this location, the equivalent mass of a cantilevered beam is 

 
60% .

1.176
1.176

normalizedeq

eq r r r

M
M A l�

�

�

 (4.19) 

Equation (4.19) leads to the stiffness solutions for each resonator, which can be found by using 

Equation (4.18).  With that, there is sufficient information, using Equation (4.17), to solve for the 

required coupling stiffnesses of each wire. 

 It is assumed that sliding joints, which constrain the movement to a vertical plane, bound 

the nodes of the wire.  Using this boundary condition information, a stiffness matrix is next 

found using finite element methods.  The method for creating the stiffness matrix is explained 
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comprehensively in Section 3.2.2.2.2.  After the reduction of the matrix, the coupling wire 

stiffness equation becomes 

 3

12
ij

w w
ij

w

E IK
l

� , (3.10) 

with the subscript w representing the wire.  The modulus of elasticity is equal to that of the 

resonators (Table 3), and the moment of inertia of a circular cross-section beam is 
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Therefore, suitable dimensions for the coupling wire are given in Table 9. 

Table 9  Dimensions of the coupling wire 

Wire length (lw12=lw23) 1.415 cm 0.557” 
Wire diameter (dw12=dw12) 0.074 cm 0.029” 

4.7  Electrical Model 

Although not directly associated with the mechanical design process, the creation of an 

electrical network is beneficial. The model is a passive LC circuit using inductive coupling.  

Section 3.3.2.6 explains this topic thoroughly, and a general circuit schematic can be found in 

Figure 3.13.  

The initial stage is to denormalize the previously solved normalized values of q1…n and 

kij.  The bandpass quality factor is used in both equations and is repeated here as Equation (2.6) 

from Section 2.2.3. 

 o
bpQ

B
�
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while the denormalized quality factors and coupling coefficients are respectively found as 
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 The network contains both series-arm inductors, as well as parallel circuits.  These 

circuits, or nodes, are tuned to the same frequency.  Therefore, a nominal capacitance value (C) 

can be chosen, and the corresponding nodal inductance (Lnode) can be equated.  The source and 

load resistances, as well as the coupling inductances are respectively shown as 
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The coupling inductor values are next found with the assistance of Equations (3.60) and (3.63) as  

 ˆ
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Lastly, maneuvering the formula for the total nodal inductance, found in Equation (3.65), can 

help uncover each nodal inductor, Li. 
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4.7.1  Example 

 The necessary tools are now given to produce an electrical model for the passive LC 

circuit.  The system is third order; therefore it will contain three nodes.  Following the steps 

generated in Section 4.7, Table 10 contains the circuit element values, while the network layout 

can be seen in Figure 4.4.   

Table 10  Electrical network values 

Nodal capacitance (C1=C2=C3) 0.295 �F 
Nodal inductance (L1=L2=L3) 33.9 mH 
Coupling inductance (L12=L23) 1.05 H 
Source/load resistance (RS=RL) 15 k� 
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e electrical network of an inductively coupled resonator filter 

4.8  Summary of Design Procedure 

e begins with the selection of filter specifications that are important 

can include such properties as center frequency, bandwidth, and 

f approximating the filter (such as the Butterworth or Chebyshev 

next.  This affects what the frequency response will look like.  The 

nd.  This value is equal to the number of resonators needed to output 
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the desired response.  The interior resonator dimensions are then determined through vibrational 

theory.  The establishment of the outer resonator and electromechanical transducer dimensions 

follows this.  Composite beam theory is used to assist in finding the dimensions.  The normalized 

coupling coefficients and quality factors are found next and help create the final steps of the 

design.  The normalized coupling coefficients, as well as the center frequency and bandwidth, 

are used to determine the dimensions of the coupling wires found between each pair of 

resonators.  Although not necessary, the electrical model is lastly determined with the assistance 

of the normalized quality factors and coupling coefficients.   Table 11 shows all dimensions used 

in the creation of the mechanical filter. 

Table 11  Dimensions of designed mechanical filter 

Interior resonator dimensions 
Length (lr) 3.893 cm 1.533” 
Width (wr) 0.318 cm 0.125” 

Thickness (tr) 0.305 cm 0.120” 
Outer resonator dimensions 

Length (lro) 3.887 cm 1.530” 
Width (wro) 0.318 cm 0.125” 

Thickness (tro) 0.305 cm 0.120” 
Piezoelectric transducer dimensions 

Length (lp) 3.887 cm 1.530” 
Width (wp) 0.318 cm 0.125” 

Thickness (tp) 0.019 cm 0.0075”
Coupling wire dimensions 

Wire length (lw12=lw23) 1.415 cm 0.557” 
Wire diameter (dw12=dw12) 0.074 cm 0.029” 
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5.0  EXPERIMENTAL SETUP AND RESULTS 

Section 5.1 will include a description of the necessary equipment needed for the testing 

of narrowband mechanical filters.  Various tests were run to determine if the assorted parameters 

have been met.  These tests will be described, and a listing of the corresponding data and plots 

will be illustrated throughout Section 5.2. 

5.1  Equipment Setup 

For the example of the mechanical filter made up of the trio of coupled cantilevered 

beams, the primary tests that were run involved obtaining a magnitude vs. frequency plot.  To 

obtain the necessary data points, a frequency sweep in the region of the center frequency of the 

filter was created.  This was achieved by following the schematic shown in Figure 5.1.  A 

photograph of the actual setup follows in Figure 5.2. 

 
   Oscilloscope Amplifier 

Mechanical filter (gray 
color represents transducer)

  Data acquisition manifold 

 

 

 

 

 

 

Figure 5.1  Schematic of testing apparatus 
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Figure 5.2  Photographs of filter testing setup 
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SigLab, a data acquisition hardware and software package developed to interface with 

MATLAB software, was used to carry out the testing.  A voltage was created by the SigLab 

manifold into the ACX power amplifier (1).  From the amplifier, the signal was sent to the 

actuating resonator where the filtering took place (2).  Simultaneously, the signal coming directly 

from the ACX amplifier was sent to channel 1 of the manifold (4).  The output resonator of the 

filter structure acted as a sensor where the signal was sent back to channel 2 of the SigLab 

manifold (3).  The two inputs were used as a comparator in order for the actual voltage signal to 

be presented.  Another cable was connected from the manifold, at channel 2, to an oscilloscope 

(5) to track the sensed voltage levels during the frequency sweep.  The end product was the 

representative Bode plot with the abscissa and ordinate in terms of hertz and decibels, 

respectively. 

5.2  Results 

 Several tests were run on the fabricated filter structure to determine whether the design is 

legitimate.  As mentioned, a frequency sweep was used to create a number of magnitude vs. 

frequency plots.  Plots were generated for every beam of each filter, as well as on the completed 

structure itself.  The target of the testing was to output values that fall within the predetermined 

design specifications.   

Also, a range of terminating resistances was inserted into the filter circuit to determine 

the benefits and setbacks.  Finally, the coupling wire length of one of the fabricated filters was 

varied to determine the effects and how they relate to analytically modeled values.   

 Each filter contains three beams that vibrate individually, but are coupled to create a 

bandpass response.  Naturally, each individual beam was tested first.  A completed beam, such as 

 71



 

shown in Figure 5.3, contains a patch of Piezo Systems Inc. PZT-5H on the top face that 

performs the actuation.  A second, smaller patch is placed on the bottom face of the beam to 

sense the movement.   

 The stainless steel beams were initially cut to size and then ground and polished, using a 

Buehler ECOMET 6 variable speed grinder-polisher, to obtain a better surface finish.  The PZT 

was then cut to size using a Buehler ISOMET 1000 precision saw.  The attachment of the PZT to 

both the top and bottom face of each resonator was achieved by bonding the PZT to the beam 

with Loctite Quick Set epoxy.  Once cured, the coupling wires were attached to complete the 

construction of the filter.  Each coupling wire was cut to size and soldered to the beam at the 

specified coupling point, which is dependent on the position of the equivalent mass.  The solder 

is a 96% tin, 4% silver composite measuring 0.020” in diameter and is manufactured by SRA 

Inc. 

 

  

Figure 5
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 Using the setup described in Section 5.1 and shown in Figures 5.1 and 5.2, a frequency 

sweep was conducted to determine the characteristics of the beam.  Properties such as the 

resonant frequency, 3dB bandwidth (B3), and peak magnitude were determined.  Such an 

example is given in Figure 5.4.  All of the individual beam response plots, as well as their 

relevant characteristics, can be found in Appendix A.  The primary result extracted from these 

plots was the fundamental resonant frequency of the beam.  The center frequency (�o) of the 

mechanical filter stems from the natural frequencies of each beam contained within it.  Therefore 

on occasion, a few of the beams have to be tuned for all to vibrate at the same natural frequency.  

For these samples, the beam with the highest natural frequency value was used as the set point, 

while the others were tuned to that frequency.  Shortening from the length dimension of the 

beam, by grinding, constitutes the tuning step.   

 

 73



 

Figure 5.4  Sample frequency response of individual resonator beam 

 Subsequently, three tuned beams were coupled by a stainless steel wire and were then 

tested as a complete unit.  A frequency sweep was again conducted to determine how closely the 

output appears similar to the theoretical response shown in Figure 4.2.  This plot is used to 

determine whether the filter specifications were met.   
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A total of four (4) sets of mechanical filters were constructed and tested.  Their frequency 

plots can be seen in Figure 5.5 and a photograph of a fabricated filter is shown in Figure 5.6.  

Found in brackets, each response of Figure 5.5 contains the individual sample numbers that were 

used in creating the filter.   
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Figure 5.6  Photograph of fabricated filter 

Figure 5.7 contains the frequency plots for each filter taken over a larger frequency range. 

The range is expanded to show from 1200 to 1800 Hz, where Figure 5.5 shows a tighter range 

from 1400 to 1600 Hz.  Figure 5.7 was created to show the effects of the response in the 

rejection band.   
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(b) 

(c) (d) 

(a) 

Figure 5.7  Magnitude vs. frequency plots of four fabricated filters with larger frequency range 

A set of properties was extracted from Figure 5.5 and the results are shown in Tables 12 

through 15.  Table 12 depicts the frequency peaks and insertion losses in the response plots of 

each filter.  The insertion loss is defined as the loss in magnitude, shown in decibels, that occurs 

when inserting the mechanical filter.  A value of zero decibels is the reference value, and the 

insertion loss is measured at the decibel point where the peak magnitude occurs.  An example of 

the measurement can be seen in Figure 5.5(a).  Tables 13 and 14 compare experimental results to 

those that were called upon in the design specifications.  Shown in Figure 5.5(b), the ripple is 
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measured from the “peak” magnitude to each “valley” in the response.  The center frequency is 

defined again and was measured as 

 1 2o� � ��  (2.5) 

with �1 and �2 representing the cutoff frequencies found at 3dB.  The bandwidth (B) is again 

expressed, as seen in Figure 5.5(c), as the difference between the two cutoff frequencies, while 

the rejection bandwidth (B40) is the difference in the upper and lower rejection band frequencies, 

denoted in Figure 5.5(d).  Table 15 conveys the resonance frequency values for each individual 

beam that was used in the filter structures. 

Table 12  Frequency and insertion loss values extracted from filter response plots found in 
Figure 5.5 

Filter # Frequency 
peak 1 (Hz) 

Frequency 
peak 2 (Hz) 

Frequency 
peak 3 (Hz) 

Insertion 
Loss (dB) 

1 1456 1500 1552 4.3 
2 1460 1505 1556 3.2 
3 1452 1500 1544 3.8 
4 1477 1512 1563 3.7 

Average 1461.3 1504.3 1553.8 3.8 
Standard 
deviation 11.0 5.7 7.9 

 

Table 13  Ripple results from filter response plots found in Figure 5.5 

Filter # Peak-to-valley 
#1 ripple (dB) 

Peak-to-valley 
#2 ripple (dB) 

Average ripple 
value (dB) 

1 15.7 18.7 17.2 
2 16.8 18.8 17.8 
3 19.2 17.2 18.2 
4 14.3 19.3 16.8 

Average value 16.7 18.5 17.6 
Specification value 1 1 1 

 

 78



 

Table 14  Data values extracted from filter response plots in Figure 5.5 when compared to 
designed specification values  

Filter # Bandwidth 
[B] (Hz) 

40dB Bandwidth 
[B40] (Hz) 

Center frequency 
[�o] (Hz) 

1 103 250 1502.6 
2 100 220 1507.2 
3 98 230 1496.2 
4 92 190 1519.3 

Average value 98.3 222.5 1506.3 
Specification value 80 440 1590 
Percent difference 22.8% 49.4% 5.3% 

 

Table 15  Individual beam resonant frequency values used in each filter 

 Individually tuned beam frequencies 
Beam 1 (Hz) Beam 2 (Hz) Beam 3 (Hz) 

Filter 
# Pre-

tuned Tuned Pre-
tuned Tuned Pre-

tuned Tuned

Average 
tuned 

frequency 
(Hz) 

Center 
frequency 
[�o] (Hz) 

Percent 
difference 

1 1477 1495 1444 1500 1504 1504 1499.7 1502.6 0.2% 
2 1488 1488 1474 1474 1488 1488 1483.3 1507.2 1.6% 
3 1467 1473 1474 1474 1476 1476 1474.3 1496.2 1.5% 
4 1516 1516 1451 1511 1497 1507 1511.3 1519.3 0.5% 
  Average value 1492.2 1506.3 0.9% 

 

A mechanical filter calls for terminating resistances within the confines of its circuit.  

These resistances can improve the ripple measurements within the passband of the response.  

The first resistor is placed in series with the input voltage and the actuating resonator, while the 

second is placed in parallel with the outputting resonator and ground, as shown in Figure 5.8.  

Because the order (n) of the system is odd, it is known from the theory that these resistances 

should be equal, but the value is unknown [Williams, 1988].  Therefore, a range of resistances 

was inserted into the circuit of mechanical filter sample #1 in an attempt to improve the ripple 

values. 
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Load 
Resistance

Source 
Resistance 

Figure 5.8  Schematic showing terminating resistances 

 Upon the completion of this test, Figure 5.9 was developed to show the insertion loss that 

occurs because of the addition of the resistances.  Figure 5.10 is a plot that illustrates the 

differences in peak-to-valley ripple that occur throughout the range of inserted resistances.  It is 

important to note that the insertion losses found in Figure 5.9 were negated in Figure 5.10.  In 

Figure 5.10 the magnitudes of each test case were normalized to the original case, where no 

resistance was added, to show the plots on a similar scale.  The two sets of arrows found in 

Figure 5.10 represent the difference in ripple for the original case versus the optimal case. 

 

Figure 5.9  Frequency plot showing insertion loss due to addition of terminating resistances that 
is not shown in Figure 5.10 
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Figure 5.10  Variation of peak-to-valley ripple upon insertion of terminating resistances 

Figure 5.11 simplifies the results found in Figures 5.9 and 5.10.  It depicts the insertion 

loss that occurs for each case of added resistance, when compared to the original.  Also 

represented in Figure 5.11 is the change in the ripple value when the responses with the inserted 

resistances are compared to the original circuit.  Table 16 outlines the results of this test.   
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18.0 dB

Figure 5.11  Measured ripple changes and insertion loss with the addition of terminating 
resistances 

 

Table 16  Modifications created by addition of optimal terminating resistance value 

Resistance value 
(ohms) 

Average 
Ripple (dB) 

Insertion 
Loss (dB) 

0 18.0 3.9 
6.8 k 14.3 14.7 

Change due to 
addition of 

resistances (dB) 
-3.7 10.8 

 

Figures 5.13 and 5.14 show results that were extracted from an analytical model.  This 

model can be seen in Figure 5.12 where the designed mechanical filter was simplified into a set 

of mass and spring elements.  The values obtained from the filter design were inputted into the 

necessary parameters of the model to create results that can be compared to experimental results. 
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k12 
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k2 

k23 

m3 
k3 

Figure 5.12  Analytical model of three DOF vibrational system  

Tests were also run to determine the effects of varying the length of the coupling wire 

between the resonators.  A graph of the analytically predicted and experimentally measured 

changes in 3dB bandwidth over a range of coupling wire lengths can be seen in Figure 5.13.  
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Figure 5.13  Variation of filter bandwidth over range of coupling wire lengths at center 
frequency of 1590 Hz 

The following plots, Figures 5.14 and 5.15, through experimentally and analytically predicted 

results, demonstrate the variations of each vibrational mode of the third order filter over a scale 

of different coupling wire lengths. 
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Figure 5.14  Analytically predicted frequency values at the modes of a third order filter over 
range of coupling wire lengths at center frequency of 1590 Hz  
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Figure 5.15  Experimental frequency values at the modes of a third order filter over range of 
coupling wire lengths at center frequency of 1590 Hz 
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6.0  DISCUSSION 

The results taken from the tests conducted on the mechanical filters bring about many 

interesting and useful observations.  Each set of results was analyzed and an interpretation of the 

analysis ensues.   

The initial testing was conducted to find the frequency responses of each individual beam 

of a filter set.  The natural frequencies affect the center frequency of the completed filter.  

Therefore, each must be tuned to a similar resonance.  As mentioned, of the trio of beams, the 

one with the highest natural frequency became the set point for the others to be tuned toward.  A 

subtraction of the length of a clamped beam increases its natural frequency.  Although not 

through an exact scientific procedure, the trio of resonators was tuned to within 10-15 Hz.  This 

range was considered satisfactory due to the variability of the clamp and the placement of the 

beam within it.  All filters are within this range, with some even tighter.  All individual beam 

plots, containing the resonance frequency, peak magnitude, quality factor, bandwidth, and 

fractional bandwidth (B/�o), can be found in Appendix A. 

The plots of Figure 5.5 show the frequency responses of each of the four tested filters.  

Tables 12-15 outline the results extracted from these plots.  The first, Table 12, shows the 

frequency values found at each peak of the filter response.  The main goal behind these results is 

to show how repeatable the response can be.  Table 12 shows that indeed the frequencies are 

repeatable with standard deviations that range from 5.7 to 11.0 Hz.  Also within this table are the 

values of insertion loss that occur due to the addition of the filters.  The insertion loss is 

measured at the decibel value where the peak magnitude occurs, while being referenced from 

zero decibels.  The average value of 3.8 dB is quite minimal.   
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Table 13 shows results that are far from the design specification.  The amount of ripple 

can be located in this table.  There are two experimental ripple values taken from the highest 

“peak” to each of the two “valleys” of the response plots.  These values were averaged and 

compared to the value that was designed for.  These quantities do not match very well.  The 

results show that the average experimental ripple value is 17.6 dB, while the designed value was 

1 dB.   

The exact cause of this excessive ripple value is unsure, but it is believed that the 

coupling between each outer and inner resonator pair plays a role.  Approaches to remedy the 

situation include tuning techniques.  An analytical model of the mass and stiffness matrices was 

formed; pointing out that the design did not include any form of damping.  When damping 

values were added to the resonators and to the coupled areas of the matrix, the peaks of the 

frequency response were lowered and widened.  This means that both the magnitudes of each 

peak in the frequency response and the quality factors were both lowered.  In future work, a 

possible way of incorporating the damping into the filter is to add PZT shunts to the resonators to 

tune them effectively.  The addition of the damping did not affect the valleys of the frequency 

response.   

Adding terminating resistances into the mechanical filter circuit affects the valleys of the 

frequency response.  This is discussed further later in the section when referring to Figures 5.8-

5.11 and Table 16.  The correct values of resonator damping and terminating resistances should 

create an acceptable ripple value, but further research is needed. 

The next table describes the other experimental values that were compared to the original 

design specifications.  The first set of data in Table 14 describes the 3dB bandwidth of each 

filter.  The specification called for 80 Hz of bandwidth, while the average tested bandwidth 
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measured 98.3 Hz, a 22.8% difference.  The difference is due to losses when coupling the 

resonators.  Discrepancies in the dimensions of the coupling wires, as well as inconsistencies in 

the equivalent mass of the resonators can be reasons for the dissimilarity.  Variations when 

clamping the filter and inconsistent solders can also account for the loss in coupling.  However, 

the bandwidth of the filter can be modified simply.  Shown in Figure 5.13 and explained later in 

the section, increasing the length of the coupling wires slightly will produce a tighter bandwidth 

value. 

The rejection bandwidth results are also portrayed in Table 14.  The average experimental 

value of 222.5 Hz is almost 50% lower than what the specification calls for at 440 Hz.  This is a 

beneficial difference.  Regardless of what a filter specification calls for, a tighter rejection band 

results in a more vertical, and therefore more ideal, transition band within the response. 

Also depicted in Table 14 are the measured center frequency values and the comparison 

to the values designed for.  The average experimental center frequency of 1506.3 Hz is a mere 

5.3% different from the specification value of 1590 Hz.  The experimental center frequency 

comes from the solution of Equation (2.5), found in Sections 5.2 and 2.2.3, which uses the 3dB 

cutoff frequencies determined from the frequency response plots of Figure 5.5.  Inconsistencies 

in the resonator material and dimensions, as well as the level of damping that occurs from the 

epoxy that holds the transducer to the resonator are the causes for why the experimental center 

frequency value is lower than expected.  It is also important to keep in mind that the individual 

resonators were tuned to the highest resonant value of the three, not to the specified center 

frequency.   

Table 15 was constructed to determine the effectiveness of tuning the individual beams 

when their values were compared to the center frequency of the fabricated filter.  It must be 
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noted that the individual beams should have been tuned to the designed center frequency of 1590 

Hz.  The three resonant frequencies of the single beams for each filter were averaged and 

compared to the value of center frequency that was determined from the frequency plots of 

Figure 5.5.  The results show that the average tuned frequency of 1492.2 Hz is only 0.9% from 

the average measured center frequency value of 1506.3 Hz.  This confirms, with confidence, that 

tuning the beams of each filter is a successful way to accomplish a specified center frequency.  

Also, to show the consistency of the beam fabrication, all of the individual beams were tuned 

with a difference of less than 60 Hz from their original “pre-tuned” values. 

The next set of figures show the effects of adding terminating resistances to the 

mechanical filter circuit.  Figure 5.9 shows, in decibels, the amount of loss that takes place with 

the addition of the resistances.  Analytically, it is obvious that this result will take place.  

Resistances are electrically analogous to a damping mechanism in mechanical terminology.  

Therefore, the more resistance that is added, the effect will be a greater loss in magnitude.  Also, 

as mentioned earlier in the section, the terminating resistances are used as a tuning device to 

raise the valleys of the frequency responses of Figure 5.5. 

The actual purpose of Figure 5.9 is to set up Figure 5.10.  Figure 5.10 shows the variation 

in the peak-to-valley ripple values when the resistances are incorporated.  The magnitudes 

though have been normalized to have a maximum value that matches the original circuit peak 

value, where no resistance has been added.  Therefore, Figure 5.9 shows the effects of insertion 

loss that cannot be observed in Figure 5.10. 

Figure 5.10 shows the effects on ripple when using several terminating resistance values.  

It should be noted that the low values of resistance, i.e. 100 Ohms, actually worsen the ripple 

value by making it greater.  Eventually though, the ripple improves with larger resistance values 
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until an optimal value is found.  After this value, the ripple will begin to become greater again.  

Figure 5.11 shows this trend.  The same trend also occurs with the insertion loss.  This plot 

shows how the ripple and insertion loss are affected by the addition of a wide range of 

resistances.  The left ordinate represents the change in average ripple when compared to the 

original circuit, while the ordinate on the right portrays the same comparison for insertion loss.  

The plot shows that 6.8 kOhms is the optimal resistance value.  It decreases the ripple the most, 

while adding the least amount of insertion loss.  Table 16 represents this with a comparison to 

the original values.  

If the ripple values were initially lower, the optimal resistance would have a more 

positive effect on the end result.  In the future, when improvements are made to the filter creating 

a reduction in ripple, this tuning step should move the ripple into within the design 

specifications.  

Analytically predicted and experimentally measured results were measured from tests 

that were run to show the effects on bandwidth when the lengths of the coupling wires are 

altered.  The results are shown in Figure 5.13.  A few points of interest can be discussed 

involving this plot.  In both cases, the bandwidth rises sharply as the length gets smaller, while 

the bandwidth gets tighter with longer wire values.  Experimentally though, the bandwidth 

actually crosses the path of the analytical model meaning that the bandwidth does not drop as 

sharply after the length of 0.440 in (1.12 cm).  As the lengths increase, the stiffness of the 

coupling wires becomes quite low and the beams tend to behave more as if they are separate 

entities.  At the other end of the plot, the trend of the experimental results is similar to the 
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analytical prediction, but does not rise as abruptly with lower coupling wire values.  For shorter 

coupling wires, the trio of beams is coupled closer together, which causes them to behave much 

like a wider, single beam with a single frequency. 

The final two plots, Figures 5.14 and 5.15, illustrate the effects of coupling wire variance 

on the modes of the third order filter, analytically and experimentally.  The results from the two 

plots follow a similar trend.  The first mode stays fairly stationary throughout the range of the 

different lengths.  The second mode begins at a high frequency, and as the length increases, 

asymptotically declines toward the frequency of the first mode, the center frequency.  The third 

mode acts likewise to the second, but begins at an even larger frequency value, and declines at a 

slower rate toward the center frequency.  The experimental frequency value settled upon as the 

coupling wires became longer is slightly lower than the analytically predicted value.  This is 

expected, as mentioned earlier, due to the constructed filters producing an average center 

frequency value 5.3% lower than the designed value.   
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7.0  CONCLUSIONS AND FUTURE CONSIDERATIONS 

This work shows the design process and fabrication of a mechanical filter with 

piezoelectric transducers.  The design began with a set of desired filter specifications including a 

center frequency of 1590 Hz, a 3dB bandwidth of 80 Hz, a rejection band bandwidth of 440 Hz, 

and a passband ripple of 1 dB. 

The filter was created using a Chebyshev filter approximation.  The order of the system 

needed to create a filter within the specifications was three (3).  Stainless steel resonators and 

coupling wires were the materials used for the fabrication of the filter.  The transducers were 

PZT-5H manufactured from Piezo Systems Inc.  Table 11, found in Section 4.8, shows all 

dimensions used to create the mechanical filter. 

The filter was then fabricated and tested.  Frequency responses were created for the four 

fabricated filter samples.  The filters were created by successfully tuning each individual 

resonator to the frequency that was the highest of the three.  The measured center frequency 

value was 0.9% different from the average tuned frequency.  Also, the measured center 

frequency and the designed center frequency were only different by 5.3%.   

 The average bandwidth of the filter was measured as 98.3 Hz, which is 22.8% greater 

than the designed value.  Simply increasing the coupling wire length can improve this value. The 

experimental rejection bandwidth is tighter than the 440 Hz specification value by 49.4%.  The 

measured value of 222.5 Hz is quite beneficial.  The average insertion loss of the filter was 

measured as 3.8 dB.  A designed ripple value of 1 dB was experimentally measured as an 

average value of 17.6 dB.  This was addressed with recommendations to improve the value.   

 Terminating resistances were added to the mechanical filter circuit as one approach to 

improve the ripple value.  A range of resistances was inserted with the 6.8 kOhm value 
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improving the ripple by 3.7 dB, while adding 10.8 dB of insertion loss.  It was also shown that 

larger resistance values improve the rejection band by creating a flatter response, while not 

changing the shape factor. 

 The coupling wire lengths were altered to see the effects on bandwidth and the modal 

frequencies of the filter.  Experimental results were matched against an analytical prediction for 

this set of tests.  The experimental bandwidth matched up relatively well, but did not rise as 

sharply for small coupling wire lengths, and leveled off more than the analytical model when the 

lengths increased.  The experimental frequencies of the three vibrational modes followed the 

same trend as the analytical model.  The first mode stayed fairly level, while the second and third 

modes started at larger frequency values, and asymptotically fell toward the center frequency 

value as the coupling wire length increased.    

 Most of the suggestions that can be denoted as future work have to do with two major 

topics.  The first includes improving the frequency response, while the second entails decreasing 

the dimensions of the filter.  The subject of filtering higher frequencies, such as in the megahertz 

and gigahertz frequency ranges, falls into both categories.  Higher center frequencies are typical 

of improvements made in the frequency response, but a realizable physical size must be 

determined. 

Improvements in the frequency response can come in several ways.  Obvious 

improvements need to be made in the ripple value of the mechanical filter constructed in this 

thesis.  Since adding terminating resistances to the circuit was insufficient, the addition of a PZT 

shunt to one or more of the resonators, to lower the peaks of the frequency response, should be 

investigated to achieve a ripple value within the design limits.  Also, adjustments in the passband 

and stopband bandwidths can be made to account for tighter specifications.  Moving the position 
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on the resonator where coupling takes place or modifying the length of the coupling wires can 

create passband bandwidth improvements.  The addition of bridging wires to non-adjacent 

resonators, as well as the addition of more resonators, can improve the rejection band shape and 

selectivity.   

 The second significant point involves decreasing the size of the mechanical resonators, 

and therefore the whole filter system.  The cantilevered beam example was chosen because it 

was known to be deemed as a design possibility when creating smaller scale structures.  Other 

resonator geometries, vibrational modes, and coupling techniques can also be considered.  In the 

macro-scale, flexural disks and longitudinal bars are used for higher center frequencies due to 

their vibrational properties.   
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Appendix A 
 
 
 

Frequency Response Plots of Individual Beams Contained Within Mechanical Filter  
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Figure A.1  Frequency response plot of tuned, indiv
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Figure A.2  Frequency response plot of pre-tuned, individual beam 1 of filter 1 
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Figure A.3  Frequency response plot of tuned, individual beam 2 of filter 1 
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Figure A.4  Frequency response plot of pre-tuned, individual beam 2 of filter 1 
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Figure A.5  Frequency response plot of tuned, individual beam 3 of filter 1 
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Figure A.6  Frequency response plot of pre-tuned, individual beam 3 of filter 1 
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Figure A.7  Frequency response plot of pre-tuned, individual beam 1 of filter 2 
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Figure A.8  Frequency response plot of pre-tuned, individual beam 2 of filter 2 
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Figure A.9  Frequency response plot of pre-tuned, individual beam 3 of filter 2 
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Figure A.10  Frequency response plot of tuned, individual beam 1 of filter 3 
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Figure A.11  Frequency response plot of pre-tuned, individual beam 1 of filter 3 

108 



 

 

Figure A.12  Frequency response plot of pre-tuned, individual beam 2 of filter 3 
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Figure A.13  Frequency response plot of pre-tuned, individual beam 3 of filter 3 
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Figure A.14  Frequency response plot of pre-tuned, individual beam 1 of filter 4 
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Figure A.15  Frequency response plot of tuned, individual beam 2 of filter 4 
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Figure A.16  Frequency response plot of pre-tuned, individual beam 2 of filter 4 
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Figure A.17  Frequency response plot of tuned, individual beam 3 of filter 4 
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Figure A.18  Frequency response plot of pre-tuned, individual beam 3 of filter 4 
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