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THE K-EPSILON MODEL IN THE THEORY OF TURBULENCE
Colleen D. Scott-Pomerantz, PhD

University of Pittsburgh, 2004

We consider the k£ — ¢ model in the theory of turbulence:

ke = (’gikx) —c
ee=0 (%%) —75

T
where k is the turbulent kinetic energy, ¢ is the dissipation rate of the turbulent energy, and «,
(8, and y are positive constants. After substituting
B pe .

b= (0, &= 55790, C= T

into the £ — ¢ model, where A > 0isa free scaling parameter, we examine the Barenblatt self-similar

k — ¢ model for turbulence:

o(Zf) + Q- +omf—g=0,  0<(<1
ﬁ(f;zg’),Jr(l—u)Cg’+(1+2u)g—7§:0, 0<¢<,

along with the boundary conditions

1(0) = 0,9'(0) = 0
J(1) =0,9(1) = 0, 2 7(1) = 0, £g'(1) = 0.

Under the assumptions 8 > «, 3a > 20, and v > %, we show the existence of u for which there

is a positive solution to the system and corresponding boundary conditions by proving a series of

lemmas. We also include graphs of solutions (f, g) obtained by using XPPAUT 5.85.
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1.0 INTRODUCTION

Two equation models for turbulence are a popular variety because

.. although a great number of equations should in principle permit greater realism to be achieved,
it has proved hard to demonstrate this advantage in practice [11].

The first two-equation model for predicting the behavior of turbulent flows was proposed in 1942
by A.N. Kolmogorov and used the variables b for fluctuation energy and w for frequency. In 1968

Harlow and Nakayama [6] introduced the k — e model for turbulence:

2

ke=a (L) —c
et =0 (%25:1:) —7%

T

(KE)

where k = k(z,t) is the turbulent kinetic energy, ¢ = ¢(z, t) is the rate of dissipation of the turbulent
energy, and «, (3, and ~y are positive constants. For completeness a derivation [3, 17| of the model
is included in Section 2.

Although the true development of the model is often credited to Jones and Launder [9], it should
be noted that (K E) is sometimes referred to as the b—e model, in acknowledgement of Kolmogorov’s
original insight and the relationship between the variables used: b = %k‘ and wb is proportional to
e [11].

In 1987 Barenblatt, Galerkina, and Luneva [2] found that for the special case of « = =1 and

v > %, (KE) has a family of self-similar compactly supported solutions:

k(@ t) = (y = D)t +t0) ™ (C = Cy(a — w0)*(t + o)) |
ela,t) = (t410) ™7 (C' = Cyla — o) (t + to)™#7)

where t > —tg, to € R, 20 € R, py = %, vy = %, C, = ﬁ, C > 0, and a; = max {a, 0}.
When a = =1 and v > 1, Bertsch, Dal Passo, and Kersner [3] proved an existence result for

the Cauchy problem:



e =0 (%%)m - 7%, in Q

k(x,0) = ko(z), e(z,0) = eg(x), for x € R
where Q = {(z,t)|lz € R,t > 0}, and ko and £ are given bounded, non-negative and continuous
functions. They discovered if k and e are initially bounded, the solutions remain bounded with
respect to = for any t > 0. For v > % they showed that the constructed solutions behave like the
self-similar solutions for large values of t.

In order to obtain physical solutions to (K FE), however, it is usual to take o # 3 [3, 8]. For
example when specifying o = .09, § = .07, and v = 1.92 in (K FE), the resulting Standard k — ¢
model is only useful in regions with turbulent, high Reynolds number flows. Hulshof [8] considered
the existence of compactly supported self-similar solutions for o # 3, by use of the Barenblatt
solutions, but his analysis applies only when « and 3 are sufficiently close to 1 and v > % Further,
his approach proceeds by looking for a perturbation about the known solution when o = (3.

The Barenblatt self-similar solutions can be found by substituting

Ve A?
k= if Q) o= al@) (==

in (KE), where A is a free scaling positive parameter. We will consider the system of ordinary

differential equations which results from the substitution

2 /
a(‘%f’) + (1 —p)ff+2uf—g=0,0<(<1 (1.0.1)

92

2 /
5<f?g/) +(1—M)Cg'+(1+2u)g—fy? =0, 0< (<1, (1.0.2)

along with the boundary conditions
f(0)=0,4'(0)=0 (1.0.3)
2 / f2 /
taken to ensure the symmetry and compactness of the support of solutions.

Given the positive parameters «, (3, and -, we aim to show the existence of p for which there is

a positive solution (f,g) to (1.0.1)-(1.0.4).



1.1 DERIVING THE K-EPSILON MODEL

The k — € model can be derived from the incompressible Navier-Stokes equations

8uZ 8uZ Op
+Z ujs | = =5 Vi, (NS)

where u(z, t) represents the velocity vector field, p(x, t) is the pressure field, p is the density constant,
7 is the dynamic viscosity, and v = % is the kinematic viscosity.

Noting (NS) are derived from the equations for conservation of mass, momentum, and energy,

we have that
dp ap Ou;
— — = — =0. 1.1.1
t+;u]8xj pzd.fvj ( )

Applying statistical averaging to (INV.S) produces the Reynolds equations:

ou; o ou; ,\ 0735
pat+z<puﬂa TP oz ]>— Dz, Zaxj (B)

with v = @ + v’ written in the mean plus fluctuation decomposition, Ti; =1 (gg_; + g—’jj),

nViu; =Y j ?97;; , and averaging satisfying the rules summarized as follows:

v+w=v+w

av = av, a = constant

a=a (1.1.2)
%:%,s:xiors:t
Tw = W

for arbitrary fields v and w.

Some consequences of (1.1.2) applied to u are

Uit = Ui Uj + u;u

Uity = wjuug, -+ wpuy; A+ wu G ug s G g ar, (1.1.3)

ou; ou; — 31’»2 /
ot Wi — T Wi = g Uye

Thus multiplying (NS) by u; and averaging we find

ou; 8uz Op 0T7;j
. w=—P 5 1.1.4
Patu +p2 U o 8:Ciu +§j:8xju ( )

Multiplying (R) by u; gives



8uz_ o op __ oTij__
P T +Z puga T+ p o ’ug | = gt j 9,
\,_z

52 ()

or equivalently

3u_z_ auz 3p _ aTz] aﬂj —
TR —i—pZu] wi= +Z 8x] 8:c]u
with T;; = pu’ ' representing the components of the Reynolds stress matrix 7.

By subtracting (1.1.5) from (1.1.4) we have

ou', , ou; _ Ou; op’ , aTi/j , 8le_
SRS O TR S R CTEDV I T

J —_——
B(T{Ju;)_a“; /
Bzc B.L iJ
where
ou; ou; ou’
—— ;= —U; + —u
ot ' ot ' ot "
W - 8ﬁﬁ+ap/u’
ox; = Ox; = x;
0T oT ou!,
52, Gy o,
J J Lj
and
ou; ou; , Ou ou! ou ——ou!
Uj U — Uj—— Uy = U, —TU; + ——uiu, g + vl —
]ij ' j@:cj ’ ‘Ox;j J Ox; "7 Oxj J J ’8:rj

by the averaging rules.

(1.1.5)

(1.1.6)

(1.1.7)

(1.1.8)

(1.1.9)

(1.1.10)

Since T{ju; represents the viscous transfer of turbulent energy, a very small quantity in contrast

to the terms responsible for the turbulent transfer of turbulent energy in (1.1.6), it is neglected.

Thus (1.1.6) becomes

i

”at

dpull; —— Ou oy ou!
z / ? J [ — vl
—i—Z ( ulu oz Uj + pu] ’8 s u; zj: 8ij + =



by using (1.1.10), or

a(u,)? (u?) T P D o
o A I _</.2 f.)_ Yir 4w Y| a1
> | o +Zj: oz, 2 2%:3% RO ZJ: g, i TP By | (D
T

Summing over i, (1.1.11) becomes an energy balance equation of turbulent flow:

ﬁ"‘ 8k - Z /’-{-pZu’Z/ Z — pE (1112)
P\ ot : 0x; ”a p -

where the turbulent kinetic energy is defined as
1 3
k= 3 E (uf) (1.1.13)

and the rate of dissipation of the turbulent energy is

2

1 oul; v ou, 3“}
= = _ . 1.1.14
© T ;T2 2 (axj * oz, (1.1.14)
1,7 2y

Using the hypotheses from [3] for the class of fluid flow under consideration, the equation for

turbulent energy balance reduces to

ok 9 [ ok
at 61‘( a>5 (K)

where ¢, is the turbulent energy exchange coefficient. Similarly the equation for the balance of the

turbulent energy dissipation rate for flows is

Oe 0 Oe
% om (Qg@) -U (E)

where ¢, is the turbulent energy dissipation rate exchange coefficient and U > 0 is the rate of
homogenization of the dissipation rate.

By Kolmogorov’s similarity hypothesis, ¢k, ¢, and U can be expressed in terms of two kinematic
quantities: L = length and V = characteristic velocity, where ' = LV ! = time. By (1.1.13) and
(1.1.14),

(k] = LT 2

[e] = L*T3.



By (K),
£ ()] e

[er] = LT

which implies

Therefore, for dimensionless constants, a > 0, and 1, o,
L = ak®e%,

Equating powers of the fundamental dimensions:

L: 2 =201 + 26
—1=-20; — 36,

we find that o = —1, 61 = 2, and
k‘2
Cp=oa—.
€

Similarly
[c.] = L*T' and

{%] =[U] = L?T™*.

Therefore, with constants 5 and -, the dimensional analysis yields

2
L
3
2
3

and by applying (K) and (E), we have (KE). An alternative derivation of (KF) is cited in [5, 14].



2.0 NEW RESULTS

Using t in place of { and a > 0 a constant, we note that under the mapping

f—af
g —ag
t— a2t
(1.0.1) becomes
a <a (%Qf’>,+(1—p)tf’+2,uf—g> =0

and similarly for (1.0.2)

2\ g
a (ﬁ (;d) + (L= p)tg' + (1+2u)g — 77> =0.

Indeed (1.0.1)-(1.0.2) are invariant under the mapping, with the constants «, (3, v, and p unaltered.
Thus without loss of generality we may take, for instance, f(0) = 1; and then we notice that (1.0.1)-
(1.0.2) has a unique solutions once we choose p and %. We will show that we can choose p and
% so that boundary conditions (1.0.4) are satisfied at some positive point, tg. Then we will need
to rescale so that ¢g becomes 1 .

Thus we will have
f(to) = 0 and g(to) = 0,

but using the mapping to — a%to =1, we find

1 1
a2 = —
to
and so
1
a = R
to
In rescaling tg we will also scale
f— % and g— %
0 to



We further note that by multiplying (1.0.1) by £, multiplying (1.0.2) by %, and forming their

6% b
difference we have

i ; ' 2 2u+1 2 2
dt<f (fg—fg))+(1—ﬂ) <g§—fﬂg>+fg<:— ”/8 >—i+vgﬁ:0

or equivalently

d (o d\ (L—p), od0 o (2u+1 24 ay—pf (11
i (70 )2 = (5 - 2) (- e ) 00 (54

(2.0.1)
where 6 is defined to be 5
Using (1.0.3) we can express (1.0.1)-(1.0.2) in integrated form as
f2
PEAR SO A / ~Bu—1)f)ds (2.0.2)
2 + 3
ﬁf g+ (1= ptg = /0 7% <9 - ‘;f> ds. (2.0.3)



2.1 ASSUMPTIONS ON THE CONSTANTS
Our particular assumptions on the parameters «, 3, and ~ are such that

3
B> a,3a>28,7> 3" (2.1.1)

We will later demonstrate numerically that solutions (f, g) exist only if % is neither too big nor
too small.

We will be interested in the range of 0 (0) for given u defined by

gl ay—p3
<6(0) < , 2.1.2
2p+1 (0) (2u+ 1)a —2up ( )
where p falls within
1 1
T 1. 2.1.
max<3,2<7_1>)<u< (2.1.3)

We begin by demonstrating why ~ > % is a natural condition, by looking at the case where

a = (. Assuming o = (3, it is clear that § = v — 1 is a solution to (2.0.1). Thus by substituting
_f
0= 9

=~ — 1 into (1.0.2) we have

By —1)7°(g¢') + (1 — p)tg + (1 + 21 — 77_1> g=0 0<t<1. (2.1.4)

since f' = (v — 1)¢. Integrating and applying (1.0.3)-(1.0.4) to (2.1.4),

(1- p) /Oltg’(t)dt + (1 +2u— %) /Olg(t)dt = 0 (2.1.5)

or

Therefore,

(2.1.6)

and so by (2.1.4),



or

By =12 (g¢") + (1= p) (tg)' =0.

Thus integrating again and applying (1.0.3)-(1.0.4) gives

/ 1-—
g(t):_ﬁ((v _’3275
and so
L—p 2
g(t) = B 1) (1-1t%)

Whereg>0if1—p:ﬁ>0. Thus by (2.1.6), if 2 <y < co then & < p < 1.
3(y-1) 2 3

Further note that v > % implies
3
ay—f3 > §a—ﬁ>0,
by the assumptions on « and 3; and also

2u+1)a—2uB>0

as long as p < ﬁ, which is true by 3ac > 2 and (2.1.3). Thus (2.1.2) defines a positive interval

under (2.1.1) and (2.1.3), so

T ay—f
2u+1  2u+1)a—2up

as long as

> 2.1.7)
26 1) (
Also under (2.1.7) we note that
1 gl
— . 2.18
2u < 2u+1 ( )

Lastly the fact that ;1 < 1 means #(0) can be bounded as

w2

ay—p
<0(0)<3a—2ﬂ'

10



2.2 BEHAVIOR OF THE DERIVATIVES

By taking 6(0) > 5, we have at ¢ = 0 that

e
(1+2u)g —77 > 0.

Then for ¢ > 0 sufficiently small we have from (1.0.2)
2\
6 <?g’> + (1 —ptg <0.

Thus ¢’ is initially negative for sufficiently small ¢ > 0.
Supposing that 6(0) < (Mi_ﬁ then by (2.0.1) we have

2u+1)a—2u8"
d [, d0\ (1—p), ,do
. - t -
dt(fgclt)+ o g =0

for t > 0, ¢ sufficiently small; and so 6'(¢) is initially negative.
By applying the above facts we have the following results:

LemMA 1. If (2.1.1)-(2.1.5) hold, and 6(0) is sufficiently close to 51, then there exists t~ >0
such that

Jt)>0 (2.2.1)
while 0'(t) <0, for 0 <t <t . (2.2.2)

LEMMA 2. If (2.1.1)-(2.1.3) hold, and 0(0) is sufficiently close to wfﬁ—léw’ then there exists
tt >0 such that

0'(tT) >0 (2.2.3)
while ¢'(t) <0, for 0 <t <tt. (2.2.4)

Thus under the assumptions of LEMMA 1, although ¢’ is initially negative, it becomes positive
before " becomes 0. Similarly in LEMMA 2 we have that 6'(¢), while initially negative, becomes

positive at small ¢ and before ¢’ becomes 0.

11



Consider the quadrilateral ) bounded vertically by

—max (2, =) and p=1
[ = max 320y = 1) and p =
and horizontally by
Y ay—f
0(0) = d 6(0) = .
(0) =577 2d60) = 5 0 2.5

We define sets:

S ={(u,0(0)) : there exists ¢t~ for which (2.2.1) and (2.2.2) hold}
S" = {(1,0(0)) : there exists ¢+ for which (2.2.3) and (2.2.4) hold} .

By definition the top and bottom boundaries of () are contained in sets ST and S—, where s*
and S are disjoint and, consequently, open relative to ) because of continuity of the solutions
of a differential equation with respect to the initial data. By LEMMAS 1 and 2 the sets are also
non-empty. Therefore, we have shown the existence of some (11,0(0)) ¢ S* US|

0(0)
A

ay=0
Cuila—2uf | [~ - """ T T - - - - === === =

0
2pu+1

max (3, 2(#_1)) 1

Figure 1: Quadrilateral Q with the top and bottom boundaries removed

12



We recall the following proposition from plane point set topology [15], a proof of which is included

in Chapter 3.

PROPOSITION. Let I be the closed unit square {0 <z <1, 0 <y < 1} in the (x,y) plane, and let
S~ and ST be disjoint relatively open subsets of I, respectively containing the lines y = 0 and
y = 1. Then the complement D of ST and S~ in I contains a continuum joining the lines v =0

and ©r = 1.

The proposition then gives the existence of a continuum % that lies entirely in Q@ — (ST U S™)
and which joins a point on p = max (%, #) to a point on p = 1.

2(v-1)
6(0)
A

ay=0

@tDa-af | - -------------—-— - -

2p+1

Figure 2: Plot of continuum

If (1,6(0)) € @ — (ST US™), then

and

11
S ) <u<t
max<3’2<7—1>)_u_

By LEMMAS 1 and 2, neither ¢’ nor 6/ must cross 0 first, and so ¢’ and ¢’ must vanish simultaneously

or neither crosses 0 at all.

13



The former cannot be true, otherwise we could find ¢* > 0 such that

Jgt)=0, O@t)=0, (2.2.5)

while ¢/(t) <0 and 0'(t) <0 for 0 < ¢ < t*. Since ¢"(t*) > 0, then by (1.0.2) and (2.2.5)

2 ’
B (f—g/(t*)> + (1 — )t g (t*) >0, or

g
o gt)?
14+2p)g(t") —v=—5 < 0.
( )g(t") o)
Therefore 0(t*) < 52~. Also #”(t*) > 0, so that by (2.0.1) and (2.2.5), 0(t*) > 1L __ This
2p+1 (2u+1)a—2u8

implies

ay -8 <
u+1a—2u8 ~ 2u+1’

a contradiction to (2.1.2).
Thus neither crosses zero and so ¢’ < 0 and ' = f?/ - J;—%/ < 0, and consequently f’ < 0, for as

long as the solution is defined. We lastly note that g cannot vanish before f, since ¢ is bounded.

14



2.3 DEVELOPING THE MAIN THEOREM

For (1,0(0)) € Q — (ST US™), we define

to, if tg is the first zero of f,
T = (2.3.1)
oo, if always f >0

and from (2.0.2)-(2.0.3), consider the values of

I:/OT(g—(SM—l)f)dt, J:/j& <g—37“ )dt. (2.3.2)

The existence of (i, 0(0)) such that there is a positive solution to (1.0.1)-(1.0.4) will be proved by

use of the following lemmas:

LEMMA 3. If I > 0, then the solution (f,g) exists on [0,00) ,with f' <0, ¢ <0,6 <0, and in
fact I =o0. Also, J =oc0. If A={(,0(0)):1 >0}, then A is open in € and non-empty. Indeed,
if

c o0+ -6

TaBy-2)-p
then (i, 0(0)) € A.

LEMMA 4. A# ¥

LEMMA 5. If (u,0(0)) is a point in € and on the boundary of A, then for the corresponding
solution (f,g) there exists a finite point to such that f' <0, g <0, 60 <0 for t < to, while

2 2
f(to) =0, g(to) = 0, L f'(to) = 0, Lg/(to) = 0.

Now if we rescale tg to become 1, we have the following theorem:

THEOREM. With 0 > «, 3o > 23, and v > %, there exists a p > 0 such that the problem

(1.0.1)-(1.0.4) possesses a solution, and the solution is such that f' <0, ¢ <0,60 <0 in (0,1).

15



3.0 PROOFS

3.1 LEMMA 1

LEMMA 1. If (2.1.1)-(2.1.8) hold, and 6(0) is sufficiently close to ﬁ, then there exists t— > 0
such that

gt )>0

while §'(t) <0, for 0 <t <t .

PROOF.

If 6(0) = % = 7,57, then by (1.0.2) we have that ¢'(0) = 0 and ¢”(0) = 0. Differentiating

(1.0.2) gives

8 ((%2)” g +2 (%2),9” + (%2) g’”) +(1=p)g"+(1—p)tg" +(1+2u)g" <§)/ =0 (3.1.1)

which evaluated at ¢t = 0 reduces to ¢"’(0) = 0.
If we differentiate (3.1.1) and let t = 0 then

2
g
g

At t =0 we also know from (1.0.1) that

(4) i”_ 1.2
g +7f2f =0. (3.1.2)

f2
a;f”%—?,uf—gzo, (3.1.3)

and so
P,
a fP=9-2uf.
Now recalling (2.1.8), then it is clear that 6(0) > ﬁ and so ¢ —2uf < 0 at ¢t = 0. From (3.1.3)
f"(0) < 0 and so by (3.1.2) ¢ (0) > 0.

16



For t > 0 yet sufficiently close to zero, we have

Jo 9D (m)dr = g"(t) > 0,
Jg’”(T)dT =g¢"(t) > 0, and
gg”(T)dT =g'(t) > 0.

By (2.0.1), 0(0) < (Q#wai_’g and the observations made in Section 2.2, for such ¢

Da—2p6?
0 1-— 0
i<f29d_>+( a”)tQQd_<0'

dt dt dt
Thus 6'(t) is initially negative. Consequently, when 6(0) is just greater than ﬁ, by continuity of
the initial data ¢/(¢) becomes positive at small ¢ and so before 6/ = £ ,gg_Qg'f becomes zero.

17



3.2 LEMMA 2

LEMMA 2. If (2.1.1)-(2.1.3) hold, and 6(0) is sufficiently close to mff)i;éw, then there exists
tt > 0 such that

gtt) >0
while g'(t) <0, for 0 <t <tt.
PROOF.

From (2.0.1) it follows that if 6(0) = Migéw, then #'(0) = 0 and #”(0) = 0. Differentiating

(2.0.1) we have

(o) 5 o) = 20 (35 =) (0 i) + 70 (57 %)+

o (3.2.1)
(=) (fg +t7'g +tfg") (- L)

and evaluating the result at ¢ = 0 gives #”(0) = 0. Differentiating (2.0.1) a second time and
evaluating at t = 0 gives
1

since o < 8 and ¢”(0) < 0 from (1.0.2). Thus for ¢t > 0 sufficiently close to zero,

[ 0W(r)dr = 0"(t) > 0,
J50"(r)dr = 0"(t) > 0, and
[50"(T)dr = 0'(t) > 0.

Now by (2.0.1), 6(0) > ﬁ, and the observations made in Section 2.2, ¢’ is initially negative for
sufficiently small ¢ > 0.

By continuity of the initial data, if #(0) is just less than ( =5 then ¢’(t) becomes positive

__oy=p
2p+1)a—2u3"

at small ¢ and before ¢’ becomes 0.
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3.3 PROPOSITION

PROPOSITION. Let I be the closed unit square {0 <z <1, 0 <y < 1} in the (z,y) plane, and let
S~ and ST be disjoint relatively open subsets of I, respectively containing the lines y = 0 and

y = 1. Then the complement D of ST and S~ in I contains a continuum joining x = 0 and = = 1.

PROOF. (Based on the proof in [15].) By setting M to be the closure of the component of S~
that contains the line y = 0, N to be component of I — M that contains the line y =1 , and A to
be the intersection of M with the boundary of N, we aim to show the following about A:

e A is closed
e A contains a point on lines x =0 and z =1
e ACD

e A is connected.

By construction A = M N JN, the intersection of two closed sets, contains exactly the points on
xz = 0 and x = 1 that are furthest away from y = 0 in M. Further, if P € A, then P € M and
there are points close to P in S7; also P € ON and there are points close to P that are not in S™.
Since ST and S~ are open sets, if P € ST or P € S~ then nearby points must also be in ST or S,

which is clearly a contradiction. Consequently, A lies in D, the complement of S™ and S~.

If A is not connected then A = H U K, where H, K are mutually separated, closed sets. Suppose

that H and K are some positive distance, J, away from each other.

1

Figure 3: Sets H and K separated by distance delta

Setting down a grid of closed squares of length %, consider just those squares which intersect

K.
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Figure 4: Grid of closed squares

The boundary of the union of the squares can be expressed as a finite number of simple closed
curves. Let Q" be such a curve picked closest to a point A € H, which by construction is disjoint

from both H and K.

Figure 5: Curve Q’ is disjoint from both H and K

If R is one of the points on @’ closest to A, and @ is the component of ' N I which contains R,
then @ separates A € H C A from some point, say B, in I, where B € K C A lies in the square

corresponding to R.
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Figure 6: Simple curve Q separates A from B

Recalling that A = M U N, both of the regions separated by @ contain points in M and N.
If QN M =0, then M = M, U My, where M; N My = () and My N My = (), M; a region inside of
@, and M> a region outside of Q. Hence, M; and M, are contained in each of the complementary
domains of ), a contradiction to the assumption that M is connected. Similarly, if @ NN = (), then
N = Nj U Ny, the union of two mutually separated sets, each of which is contained in the region
inside or outside of (). As before, this contradicts the assumption that IV is connected.

Therefore, Q N M # () and Q N N # (), implying that we can find points Py; € M and Py € N
which are on Q. If we follow along Q from Py to Py we will reach Py € @, one of the last points

in the closure of V.

N

Figure 7: Existence of points on Q
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By construction of sets M and N, Py € ON UM = A implying that A N Q # 0, although it

was assumed prior that @) is disjoint from both H and K, and thus from A. Hence A is connected.
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3.4 LEMMA 3

LEMMA 3. If I >0, then the solution (f,g) ezists on [0,00) ,with f' <0, ¢ <0, 6 <0, and in
fact I = o0. Also, J =oco. If A={(,0(0)):1 >0}, then A is open in € and non-empty. Indeed,

if

then (u,0(0)) € A.

PROOF. If T is finite then by definition (2.3.1), f(7') = 0, Thus from (2.0.2) we have

af?

However, since f is decreasing,

from which (2.3.2) gives

Lo+ -8
Ta3y-2)-p

liminf f'(t) <0
Tt £ <0,

T
1= [ a-Gu-nna=<o

T
f1(T) = /0 (g— (Bu—1) f)dt.

Therefore by the contrapositive, if we assume I > 0, then 7' = oo and so f(t) > 0 for all ¢ € [0,00).

Since 0 = g is bounded, then g(¢) > 0 for ¢ in [0, 00).

It also must be true that

Otherwise if

, then

lim (g(¢) — (3u —1) f(t)) > 0.

t—o0

lim (g(t) — (3 — 1) f(2)) <0

t—o0

~

(1), 1

1m .
t—oo g(t) — 3u—1

~
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and so

1@ f

1m
g(t) = t=oog(t) — 3u—1

. for t € [0, 00).

since g is decreasing. This implies that

/O (9—(Bp—=1)f)ds <0

for all t € [0, 00), which contradicts our assumption that I > 0.

Also, for all ¢ € [0, 00) we have that

(1-nts® = [ (9= (Bu=1)1)ds (3.4.3)
0
since f' <0. By (3.4.1) )
/O (9—Bur—=1)f)ds>0

for ¢ sufficiently large, and so

ft) >

)

K
t

for a constant K > 0. This implies that

/ fdt =00
andby9:§§M,whereM>O

/ gdtzﬁ/ fdt = oo.

Consequently, we find that I = co. Otherwise, if 0 < I < oo, then

I:/Ooof(%—(3M—1)>dt:/OT*f@—(3u—1)>dt+/iof<%—(3u—1)>dt<oo

for 0 < T™ < oo such that
T+ g
/ f<——(3,u—1)>dt§0
0 /

and
f(%—(?)u—l)) >0, for t > T*.
Thus
/ f<g—(3,u,—1)>dt> Kdt = oo,
* f T*

for some constant K > 0, a contradiction to [ finite. Therefore, I = oc.
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From above I > 0 implies that 7" = oo, and so f > 0 and ¢g > 0 for all ¢ € [0, 00). Recall (2.0.3):

2 _tg<_3_ﬂ>
ﬂgg+(1 u)tg—/ovfg S ds.

Since 6 is bounded
f_2/ ! 2 I _ 2\’
L <|Mfd|<|M gg\—O((g))-

Therefore, there exists a sequence {t,} such that

(tn) — 0, ast, — oo. (3.4.4)
g

Now it also must be that lim;_, (g(t) - 37"]"(75)) > 0 If not, then for all ¢ < oo,

@ > lim &< >
g(t) = t—oo g(t) — 3 mu

and so for all ¢,

implying by (2.0.3) that

f2
ﬂ;g' + (1 —p)tg <0

for all ¢ < oo, a contradiction to the assumption that (3.4.4) holds and g > 0. Hence we have

v

Am o) < 37

and as done above for I,

We now will prove that the set
A= {(1,0(0)): T > 0}

is open. If we have a solution fy such that fo(7p) = 0, so that (ug,6p(0)) ¢ A, and if we also
consider a sequence {(in,0,(0))} tending to (uo,6p(0)), with solutions f,, such that f,(7,) = 0,
then

liminf T}, > Tj.

n—oo
This holds because fy > 0 for all ¢ < Tj, and so while solutions f, are close to fy for t < Tp, fn

cannot disappear before fy does as n — oo.
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Consequently, if (uo,00(0)) € A with corresponding solution (fo, go), then a nearby solution, say
(f,9), must either be in A (and so A is open) or will at least have the behavior that (f,g) is close
to (fo,g0) in [0, 7], where f(T) = 0. By (3.4.1) we have that

) 1
tlggo fo(t) < 3pu—1

but if ( fo, go) is close enough to (f, g) over [0, Tv] there exists a finite value T, such that 6y(7T%) <

3;%1’ which implies that 6(7™) < Tl—l Now 6 monotone implies that

1
3u—1°

tlim 6(t) < 0(T*) <
Then T™ can be chosen so that
T* T*
/ (90 — (3u = 1) fo)dt > 0, and / (9—Bu—1)f)dt >0,
0 0
and so I > 0 and (u,6(0)) € A. Therefore, A is open.

Lastly we note that if 6(¢) < 3;%1 for all t > 0, then [ = fg (9— (Bu—1)f)ds > 0. Further
from (2.1.2)

ay—f
0(t) <0(0) < (2u+ 1)a —2up3

for all ¢ > 0. If we could find appropriate conditions so that

ay—f3 < 1

) 3.4.5
Cu+1)a—2u8 ~ 3u—1 ( )
it would be sufficient for proving I > 0.
Thus in order for (3.4.5) to be true, then
(ay=B)(Bp—1) < (2p+1)a—2up3,
and so
a(y+1)-p
<o) 7P 3.4.6
a(3y—-2)-p (3.46)
If (3.4.6) holds, then (i, 0(0)) € A.
We also note that new bound (3.4.6) for u satisfies
11 aly+1) -8
-0 | < /=<1 3.4.7
m‘”‘<3’2<vl>> aBr-1)+20 (3:47)
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Under the assumptions (2.1.1) and if in particular v > 2, then it is clear that

1 1 1 a(y+1)-p
max<3’2('y—1)> _§<a(3'y—1)+26'

In order to prove
ey +1) -8 _ 1,
a3y —1)+24

we need only show that

a(y+1) =8 < a3y —1)+28,

which again holds under (2.1.1). The remaining case of % <v< % is similar.
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3.5 LEMMA 4

LEMMA 4. A# ¥
PrROOF. We will prove that there exists (i, 0(0)) € € that is not in A.

We note that when p =1 the left-hand side of (2.0.2) becomes

2

gf“=é(g—@u—wﬁds

and since f’ < 0 for all ¢ for which the solution exists, then

A(g—@u—nﬂdséﬁ

Thus I <0 and so (p,60(0)) ¢ A using a result from the proof of LEMMA 3. If we suppose I = 0,

/OT (9—Bu—-1)f)ds = /OT f (% — (3u— 1)) ds =0, (3.5.1)

then since % is increasing,

t
/0 (9—Bu—1)f)ds <0 (3.5.2)

for t small enough, 0 < ¢t < T. We also notice from (2.0.3) with p =1,

2 tg( _ﬁi>
ﬁgg_/ovfg v s

and since ¢’ < 0 for as long as the solution continues to exist, then J < 0.

However, we can express

7= I3 74 (9= %) ds = [ 2% (9= 2L = Bu=1)f + Gu - 1)f) ds
= 3 o= Gu =1 f)ds + J v (G 1) - %) fds

=J1+ Jo.

We notice when p = 1, the integrand of Js is

since v > %, and consequently Jo > 0.
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For Ji we can integrate by parts to get

= Jy 4% (g— (Bu—1)f)ds
=19 (s o= Bu— 0|~ (4) (i (o Gu—1)f)dr) ds

__fo 7( ) (fo 3N_1)f)d7')d3

by (3.5.1). By % > 0 and (3.5.2), J; > 0 which implies that J > 0. This contradicts that above we
found J < 0.
Therefore, it must be that I < 0 when = 1, and so by (2.0.2)

2

af— f < -K
g

for some constant K > 0. This is equivalent to having

re(3);

for a constant K > 0. As % and % increase, f’ is increasingly negative, forcing the existence of a

finite point ¢* > 0 such that f(¢*) = 0.
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3.6 LEMMA 5

LEMMA 5. If (u,0(0)) is a point in € and on the boundary of A, then for the corresponding
solution (f,g) there exists a finite point ty such that f' <0, g <0, 60" <0 for t < tg, while

2 2
F(to) =0, glto) = 0, L-'(t) = 0, L-g'(to) = 0,
PrROOF. From LEMMA 4, if we let (u,0(0)) be one of the first points in % that is not in A, then
T
[ / (g— (31 —1)f)dt < 0. (3.6.1)
0

Consequently the solution (f,g) cannot exist for all ¢ € [0, 00) . If not, we take f > 0 for all ¢ and

use a technique from LEMMA 3 that

‘%Qf’ < [mrr=0(()

means there exists a sequence {t¢,} such that
2
—f'(tn) — 0, ast, — oo. (3.6.2)
g

Then

f2

0< O‘?f/(tn) + (1= wtnf(tn) <1 <0,

so I = 0; and we have
9(T) = Bu—-1)f(T) =0

SO

for all t <T. By (1.0.2) for all t < T,

/O (9—Bu—=1)f)ds <0

or

f2
a?f’+(1—u)tf <0.

Hence



which, for p # 1, becomes more and more negative as ¢ and % increase, a contradiction to the
assumption that f > 0 for all . When p = 1, we have from LEMMA 4 that f does not exist on all
of [0, 00).

This proves there exists T = ¢y < oo, for which f(¢9p) = 0 and so

I= / (g — (Bu—1)f)ds < 0. (3.6.3)
0

Next we let
B = {(u,0(0)) : I <0},

and we want to prove that B is open.

From LEMMA 3 if we have a solution fj such that fo(7p) = 0, so that (ug,6p(0)) € B, and if we
also consider a sequence {(in, 0,(0))} tending to (uo, 0p(0)) , with solutions f,, such that f,,(7},) = 0,
then it must be that

liminf T, > Tj.

n—oo
If we can prove that indeed

lim 7, =Tj

n—oo

then
Tn To
/ <gn—<3u—1>fn>ds—>/ (g0 — (B — 1) fo)ds < 0,
0 0

implying that nearby solutions are also in B.
Suppose for a contradiction that T, — T > Ty. We know, however, that f,, and fy are close for

t < Ty, and since f, is decreasing, f, — 0 in [T T,] .

Now by (2.0.2), for ¢ € [Ty, T},]

2

t Ty t
od2 f (1=t - /0 (g — B — 1) ) ds = /0 (g0 — (3 — 1) fo) ds+ / (g — (31— 1) f) ds

n To

and so
t

2 /
gn = <af—"f,2 + (1 —ptfn +/ (Bp—1) fnds> .

gn To
Since g/, < 0, then

2 t /
<a—"f,’1 + (1= pitfn +/ (3p—1) fnds> <0. (3.6.4)

g n To
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t
0 TO Tn
Figure 8: Plot over [T0,Tn|
Since
Tn f2 Tn f Tn Tn f2 /
—”f;lds‘ = L fhds| < 0,(To) fnfhds| = 0,(Tp) / <—”> ds| — 0
To gn To g?’l To To 2

then for Ty <t < T,

t 2 s
/ (a—"ﬂl + (1 — p)sfn +/ Bu—1) fnd7'> ds — 0.
T, 9n To

Thus by (3.6.4),

S

2
od2 f (1= st + /; ) fudr 0

almost everywhere in [Tp,T},], which means that

t
/ gnds — 0
To

for t € [Ty, T,,] . As above we write

t To t To
/O<gn—<3u—1>fn>ds:/o (go—(3u—1)fo)ds+/ <gn—<3u—1>fn>ds~/0 (g0 — (3 — 1) fo) ds

To

for t € [Ty, T,,] - Since (ug,00(0)) € B, Iy = fOTO (90 — (B3 — 1) fo) ds < 0, this contradicts

2 t
odn (1= pytf = /0 (g — (3 —1) fu)ds — 0,

n

for Ty <t < T,,. Therefore, lim,, .o T, = Ty and so B is open in %.
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Consequently, if (1, 60(0)) is to be one of the first points on % that is not in A, then we also must
restrict (i, 0(0)) ¢ B. Thus by (3.6.3), (1, 6(0)) is such that

I:A°@_@M_Dﬁ@:0

and so
2

oL (1) + (1= )t (1) =0
implying that

f2
Oé?f "(to) = 0.

Letting {(fn,9n)} be a sequence on [0, 00) that approximates (f,g) on [0,%y) where f] < 0, then
fn — Oon [tg, 00) , and as similarly done in the proof of B being open, g—f fl, — 0 almost everywhere

on [tg,00). So
t

2 t
od2 g (U= wth+ [ (G 1) fuds = [ guds— 0

to to

and then g, — 0 on [tg,00).

If we now assume

then at ¢g

and so
v
0 (ty) < —.
(to) 3

Thus there exists T* < tg, large enough and still close enough to tg, for which

T*
/ 79(2—3—'u>d5>0, and
0 o

For ¢t > T*




and so

t
/'ygn<g—n—3—)ds>0
fa

Thus by (2.0.3) for t € (tg, 00),

fnl o t (g_n_3_)
5 +(1 u)tgn—/ofygn A ds > 0,

a contradiction to our results from above that g, — 0 and gjl < 0. Therefore J < 0, which implies

that for t < tg, sufficiently small enough,

Pra—mg= | g_i)
ﬂgg+(1 u)tg—/ofyg(f o ds < 0. (3.6.5)

In order to prove g(tg) = 0, we assume that g(to) = go > 0 and hope for a contradiction. Thus

for t < tg

2
ff+ 1—p)tf = / —Bu—-1)f)ds<I=0, (3.6.6)
and so
2
which implies that

2y
a (5) < —(1 = p)tg. (3.6.7)
As t — tg, g — go, so if we integrate both sides of (3.6.7) from ¢ to tg,
2> K(tg—t),
for positive constant K, and so
F>K(to—t)2

for another constant K > 0.

Now from (3.6.6) and I =0, as t — tg

f2
f + (L= pwtf < K(to—1)

for some constant K > 0, and so

f2
o f' 4 (1= wtf = Oltg 1)

as t — to which implies that
f2
o f (= .
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Since 2
. R ff0 0 limyy ff
lim —=2— = lim = ,
t—to —(L—p)tf  t=to —(1—p)tg  —(1— p)togo

then it is also true that

ff~ =1~ wtogo. (3.6.8)

Additionally by integrating up to to

2y
. (7) r f?
im ————— = lim ———
t—to —(1 — M)tOQO t—to K(tg — t)
for a positive constant K, and thus

f?~ K(to — t) (3.6.9)

as t — tg. For t < tg

then
J < ‘ﬁg
for some K > 0, and so by (3.6.9)
, -K
N

for another positive constant K. Integrating both sides up to ¢y,
to to K
/ g'ds < / ds
t t s—to

g(t) — go > o0

we find that

for all ¢ < tp, which is not possible. Therefore it must be that g(tp) = 0.

L d'(to) = 0. We therefore

It remains to show that J = 0, which will be used to prove that 7

suppose J < 0, in order to get a contradiction. That is from (3.6.5), for ¢ < ¢

2 t 3
6—g’+(1—ﬂ)t9=/ 79(2——M>d8<0
g9 0 [

and for t — tg , ,
_ BLg -ty L
ti>nt1 t 3u - J

Ofofyg<%—7>ds
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so that

2

ﬁ?g’ ~J (3.6.10)
ast — tg.
Now using that % is increasing, as t — tg
to to
g g g
(to—1t) < Zds=o </ —ds) . (3.6.11)
f i f i f?
That is
ftto %ds %
limt_,toﬁ = limt_,to g = limt_wof = f(t()) = 0
Ji* Feds 7
Using (3.6.10), it is true that [ frds =< [/° g'ds, hence of the same order:
to to
0(/ %ds) :0</ g’ds)
t t
as t — top using that
2
BLg
lim —£— — 1
t—to J
and so equally
2
By
lim —2 1.
t—to
When combined with (3.6.11) and
to
0 </ g'ds) o(1),
t
this gives
% (to — 1) = o(1) (3.6.12)
Thus we have that g
9 (tg —t)
. f ( 0
limy ¢, 1
and

0,
(to—t)

implying
7= ()
— =0
f (to — 1)

as t — tg.

From (2.0.2) with ¢ < 1o,
2 t to
ot = [ = Gu-nnds< [la—Eu=1) s

I,
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then

f2 to to to
oLyt = [Ca=Gu-nnas= [a=Gu-nnHas=— [ = @-1nds <o
t t
(3.6.13)
From (2.0.3)
2 t 3
Bf—g' +(1—p)tg= / vg (g - M) ds < J, (3.6.14)
g 0 / Y
then we have
2
ﬁ?g’ +(1—ptg~J (3.6.15)
as t — ty, and since
2
By +(—ptg  BLg (1t
lim = lim - ,
t—to t—to J
g
then
2 J
B=gqg + (1 —p)t~—. 3.6.16
e (1—p) ; ( )
Similarly dividing (3.6.13) by f results in
Iy 1 [
a=f'+(1—pt=~ [ (g—Bu-1)f)ds, (3.6.17)
g f to
where .
—Bu—1 d
i Joo (9= Bu—=1)f) S0
t—to f
since
1 /to g
— ds < =(tg—1t) =o(1
7 ) 9= (to —t) = o(1)
and

3u—1 [t -
7 /t fds =o0(1)

as t — to by (3.6.12). Thus

|

£ e
lim -~ 9/ 1

t=to _Jd
g

by subtracting (3.6.16) from (3.6.17), implying

f_2<f_’_ i)N_Z
g \"7f ﬂg ’

2 o /
r <log (f_6>) N—Z > 0.
g g g
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e a\/
Therefore the function log (J;—B) is increasing, which implies that (g_ﬂ) > 0. Hence for some positive

constant K

R
or more simply
f? 284
By (3.6.14) and (3.6.10)
2
— By ~—J, (3.6.19)
g
so that
g
0<—¢ < Kﬁ (3.6.20)
for a positive constant K. Combining (3.6.18) and (3.6.20) we have
_gl < Kglf%
which implies
g ly > —K.
Thus
‘g%flg’ < K.
Integrating up to tg gives
to 28 / to 23 !
/ (g?> ds g/ (g?) ds < K(to —t)
t t
so that
ge < K(to—t)
or
g < K(tg— ). (3.6.21)

Multiplying (3.6.13) by g,

fW“Hl—Mngg/(g—Qu—Dﬁds

to

we find that

fg>/v - to ; 1 <td>2’
<3 = (1 u)tot fgs+2</togs :
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Now integrating to o we find using (3.6.21)

f? fo 1/ ? a4 CH)
3 <(1- ,u)tof/ gds + B </ 92d8> < Kif(to—1)2"" 4+ Ko (tg— )% (3.6.22)
t t

for positive constants K and K.
If
Kif (to— )% > Ky (tg — )72

then by (3.6.22)
FP<Kf(tg—t)2 T

or

D=

f<K(to—t)int (3.6.23)

for some constant K. If, on the other hand,
Ks(to— )7 < Ko f (to — )57,

then
and thus

for some constant K. We note that if

as t — to, then indeed it still is true that (3.6.23) holds and so

f=0((ts—1)i73).

This is because a;:ﬂzﬁ > O‘Iﬁm and thus

at28 at28
(to—1t) 3% < (to—1t) 47

for t close to tg. Therefore, for either case we have that

a+28

f<K(ty—t)

and from (3.6.15) for ¢t — ¢,
2

B—g' ~J
g
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and so

By integrating both sides

so that as t — tg

f<Mg< Me Kto—t)

a
23

However, from (3.6.13) we had that

f2
a?f/+(1f,u)tf<0
Oéf, < _(1 _”)%tv
and so
f> K(to —t).

We have a contradiction and therefore, it is not possible for J < 0, and thus J = 0. Now from

(2.0.3)

IR (2_3_u> _
ﬁgg(to)—/o W9\ dt =0,

we have that
f2
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4.0 PARTIAL NUMERICS

Using XPPAUT 5.85 we graph solutions (f, g) to (1.0.1)-(1.0.4), which are found using the following
steps:
e fixing values of a, (3, v, and 0(0) subject to the conditions (2.1.1)-(2.1.2).

e integrating over a proper pu—range determined from (2.1.3) and LEMMA 3.
e identifying p and ¢ty < oo such that f/ < 0, ¢’ < 0, for t < to, (1.0.3) hold, and f(to) = 0,
g(to) = 0.

e rescaling ¢y to become 1.

The numerics will be partially incomplete, since we do not specify that the conditions f; f(1)y=0

and f;g'(l) = 0 are satisfied. We begin by rewriting (1.0.1)-(1.0.2) as a first order system:

f{ = fo
f/_i_m_m_ﬁ+m
2 = af12 afi oefl2 f1 g1
91 =92
g, = v9  (142p)gf  (1—p)tgige  2foge + 95
27 B Bf3 813 h 9

where (f17f2791792) - (f7 f/’g7gl) . From (212) we saw that

0 ay —f

— <00 —.

3 <6(0) < 3a—20

For instance if we pick a = 1, § = 1.3, and v = 2 subject to (2.1.1), then f(0) and ¢(0) should be
chosen such that

2 f0) 7

35 9(0) S 4
Indeed if @ = .1, § = .13, and v = 2, the same bound for 0(0) still holds. We will choose f(0) =1.4
and ¢(0) = 1. Additionally from (2.1.3) we find that

1
-—<u<l
3 K
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and from LEMMA 3 that
a(y+1)—-p 17
a(3y—-2)—-3 21

However solving for p in (2.1.2), we actually find that

ay—p—-00)a 35
"7 0 a—p) a2

Thus
B3 <<l (4.0.1)

The following are examples of the ode files used when a =1, 8 = 1.3, v = 2, and 6(0) = 1.4:

#bvpl.ode

par alpha=1, beta=1.3, gamma=2, mu=.834

f1°=£2
£2°=g1~2/(alpha*f1~2)-2*mu*gl/(alpha*f1) - (1-mu) *t*gl*£2/(alpha*f1~2) - (2*x£2~2/£1) + (£2%g2) /g1
gl’=g2

g2’ =gamma*g1~3/ (beta*f1~3) - (1+2*mu) *g1~2/ (beta*f1~2) - (1-mu) *¥t*gl*g2/ (beta*f1-2) - (2x£2*g2) /£1+(g2~2/gl)
bndry £f1°

bndry gi’

bndry £2

bndry g2

init f1=1.4

init £2=0

init gil=1

init g2 =0

@ dt=.001, bell=0, total=2, xhi=2, yhi=1

done

and

#bvp2.ode

par alpha=1, beta=1.3, gamma=2, mu=.834

£1°=£2
£2°=g1~2/(alpha*f1~2)-2*mu*gl/(alpha*f1) - (1-mu) *t*gl*£2/(alpha*f1~2) - (2*x£2~2/£1) +(£2%g2) /g1
gl’=g2

g2’=gamma*g1~3/ (beta*f1~3) - (1+2*mu) *g1~2/ (beta*f1~2) - (1-mu) *¥t*gl*g2/ (beta*f1-2) - (2x£2%g2) /£1+(g2~2/gl)
bndry £1°

bndry gi’

bndry f£1’*£1°*£2° /g1’

bndry f1’*f1’*g2’/gl?

init fi1=1.4

init £2=0

init gi=1

init g2 =0

@ dt=.001, bell=0, total=2, xhi=2, yhi=1

done
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Note that a value of ;1 must be specified in the parameter declaration portion of the code. The
value chosen above is simply the smallest possible value p may attain based on (4.0.1). We then
run the codes integrating over the range of possible py—values, with a time step of dt = .001. The

code produces the following results when varying .84 < p < .9:

Figure 9: Result after integrating over 0.84 < mu < 0.9
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It is particularly easy to identify the curves (f,g) resulting when p = .88 :

-05 .

Figure 10: Setting mu = 0.88
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Table 1: Data for mu = 0.88

Where the graphs approach zero, the data is summarized by the following;:

t f f g g Ly Ly
1.46 0956 | -12.2155 | .0757 | -8.7903 | -1.4728 | —1.0598
1.461 0824 | -14.3608 | .0662 | -10.3379 | -1.47059 | -1.05863
1.462 0663 | -18.2643 | .0547 | -13.1537 | -1.4681 | -1.0573
1.4630001 | .0439 |-29.3803 | .0385 | -21.1726 | -1.4675 | -1.0576
1.464 -.0401 | -36.1895 | -.02206 | -26.06894 | 2.6421 | 1.8891
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We rescale by noting that tg ~ 1.46375, but as tqg — a%to =1 then a = t% Since f — af and
0

g — ag, then the mapping affects the initial condition #(0) by

f(0) — 1.4a and ¢(0) — a

with «, 3, v, and pu unchanged. The following is the plot which results from rescaling the initial

conditions:

05 E ]

-05 -

Figure 11: Rescaled solutions
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Also included is a plot of the rescaled data together with the unscaled curves:

Figure 12: Rescaled and original graphs
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Additionally we demonstrate the requirement of % being neither too big nor too small, by fixing
a, v, 6(0), and u as above and integrating over an interval of § — values. To illustrate what happens

when we vary, for example, 5 € [0.1, 3] in the prior example, the results are:

]
1
]
1
1
]
C |
]
[}
i
1
]
]
1
=

Figure 13: Result from varying beta over [0.1,1.3]
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Figure 14: Result from varying beta over [1.3,3]

It is clear from the varied behavior in the blue and red curves that solutions (f, g) to (1.0.1)-(1.0.4)

do not exist when we vary 3 too far from 1.3.
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5.0 CONCLUSION

In summary, for the case of o < 3, 3a > 203, and ~ > %, we have proven the existence of a solution
(f,9) to (1.0.1)-(1.0.4) by finding (u,0(0)) using a shooting technique developed through a series of
lemmas. Additionally, we have provided graphs of (f, g) obtained by using numerical shooting with
XPPAUT.

To complete the case of o # 3, it remains to consider a > (.
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