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Approximately ¼ of AIDS patients develop HIVE, the pathologic entity associated with 

cognitive, motor, and behavioral deficits attributed to synaptic damage and neuronal loss. It still 

remains unclear why only a subset of HIV-infected individuals develops abundant central 

nervous system (CNS) macrophage/microglia infection that characterizes HIVE. The 

overarching hypothesis of this body of work is that simian immunodeficiency virus (SIV) 

encephalitis (SIVE) is the CNS manifestation of a systemic increase in SIV infection and 

activation of monocyte/macrophage elements. Specifically, we examined the relationship of 

infected and activated monocyte/macrophage elements outside of the CNS during the evolution 

of lentiviral encephalitis to the presence of infected macrophages in the CNS.  We studied three 

models of SIV infection:  SIV-infection of rhesus and pigtailed macaques and SIV-infection of 

CD8+ T cell depleted macaques. Antibody-mediated CD8+ T cell depletion did not increase the 

incidence of SIVE in infected rhesus macaques.  In SIV-infected rhesus macaques, we examined 

whether presence of activated macrophages or SIV-infected macrophages is associated with the 

presence of neuronal damage. The presence of abundant infected macrophages in the CNS is 

related to postsynaptic neuronal damage in macaques with SIVE.  At the same time 

cerebrospinal fluid viral load increased in SIV-infected CD8-depleted rhesus and non-depleted 

pigtailed macaques that developed encephalitis, monocyte-derived macrophages produced more 

virus ex vivo than macaques that did not develop encephalitis. Compared to pigtailed macaques 
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that did not develop SIVE, the monocyte associated SIV-DNA load of monocytes was elevated 

in macaques that developed SIVE.  Pigtailed macaques with SIVE had more infected 

macrophages in peripheral organs, with the exception of lymph nodes, than macaques without 

SIVE.  Longitudinal analysis of phenotypic markers of monocyte activation show that increases 

in proportion of CD14+/CD16+ monocytes is associated with chronic disease. Brains with SIVE 

have greater numbers of T cells with cytotoxic potential.   In conclusion, these findings suggest 

that inherent differences in host macrophage viral production or immune response to macrophage 

infection are associated with development of encephalitis.  Further understanding of the 

differential role monocyte/macrophages have in the development of lentiviral encephalitis will 

identify therapeutic targets to halt this public health epidemic. 
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1. INTRODUCTION 

1.1. The AIDS epidemic.   

As of 2004, the Joint United Nations Programme on HIV/AIDS (UNAIDS) estimates that 

39.4 million people are infected with Human Immunodeficiency Virus (HIV), the etiologic agent 

that causes acquired immune deficiency syndrome (AIDS) (see http://www.unaids.org) (372). 

Children under 15 years of age comprise 2.2 million of the people living with HIV/AIDS (372). 

Approximately 4.9 million people were expected to acquire HIV infections in 2004, and 3.1 

million people were expected to die as the result of AIDS in 2003 (372). The HIV/AIDS 

epidemic shows no sign of abating and remains a global public health epidemic.  Sub-Saharan 

Africa is the most severely affected region, with an astonishing average adult prevalence of 7.4% 

(372).  HIV prevalence among pregnant women in sub-Saharan Africa ranges from almost 40% 

in Botswana and Swaziland to ~3% in Angola (372).  Antiretroviral treatment in sub-Saharan 

Africa is unavailable to most infected individuals.  Lack of effective prevention programs, social 

inequality, and social traditions of the region combine to make effective policies and practices to 

combat HIV/AIDS challenging.  A small glimpse of hope exists in Uganda where HIV 

prevalence has fallen from 13% to 4.1% during the last decade (372). Disturbingly, several other 

regions such as China, Indonesia, Viet Nam, Russia, the Baltic States, Papua New Guinea, and 

North Africa are experiencing growing epidemics.  In the United States and other high-income 

countries, the total number of people infected with HIV continues to increase especially among 

minority populations such as African-American females.  It appears that effective prevention 

programs have been given less priority in recent years leading to resurgence of high-risk sexual 

behaviors in several high-income countries.   

http://www.unaids.org
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In the United States, it is estimated that there are ~40,000 newly acquired infections each 

year (372).  African Americans currently bear the brunt of the epidemic.  ~25% of all AIDS 

cases and over 50% of new HIV diagnoses have been reported in African Americans despite 

comprising only 12% of the United States population (372). African American women account 

for a staggering 72% of new HIV diagnoses in all US females (372). Whereas the proportion of 

AIDS cases have declined among Caucasians and remained stable for Hispanics, AIDS is one of 

the top three causes of death for some African American age groups.  This may be partly due to 

decreased assess to antiretroviral therapy which has decreased AIDS-related deaths in 

Caucasians (372). It is clear the poverty and socioeconomic status in the United States and the 

rest of the world increase risk for HIV infection. 

The expanding HIV/AIDS epidemic threatens the health and economy of the human 

population.  Despite enormous advances made in understanding this virus, there is currently no 

licensed vaccine to prevent or eliminate HIV infection.  Fortunately, there are effective 

antiretroviral drug regimens that prolong lives of people infected with HIV, but these regimens 

do not clear HIV from infected individuals, do not work for all individuals, and are not available 

to all individuals.  Ultimately, until treatments that eliminate HIV infection are available, all 

HIV-infected people will die from AIDS.  It is imperative that implementation of efficacious 

prevention programs and innovative study of HIV infection be continued in order to curb this 

pandemic.    
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1.2. Lentiviruses and lentiviral infection. 

1.2.1. Retroviruses. 

In 1904, one of the first viruses discovered was the equine infectious anemia virus 

(EIAV) (357, 375).  This virus was identified decades later as a retrovirus.  Retroviruses are a 

large family of enveloped RNA viruses containing reverse transcriptase that share structural, 

genomic, and replicative characteristics (57). Most known retroviruses infect vertebrates but 

have been found in invertebrates such as insects and mollusks.  Retroviral infection can result in 

a broad spectrum of diseases such as malignancies, wasting diseases, neurological diseases, and 

most famously immunodeficiencies.  The most unique characteristic of retroviruses is it contains 

an enzyme, reverse transcriptase (RT), which is able to convert its single stranded RNA to linear 

double stranded DNA (18, 358, 359). Isolation of reverse transcriptase in 1970 transformed the 

field of molecular biology, providing a means to convert RNA to cDNA (357). After reverse 

transcription, the viral double-stranded DNA is able to stably integrate into the host DNA.  

The family Retroviridae consists of 7 genera: Alpharetrovirus, Betaretrovirus, 

Gammaretrovirus, Deltaretrovirus, Type D Retrovirus group, spumaviruses, and lentiviruses 

(68, 69, 357). Alpharetrovirus, Betaretrovirus, Gammaretrovirus, and Deltaretrovirus infection 

can cause leukemia, lymphoma, sarcomas, and other malignancies (68, 357).  Spumaviruses are 

apparently benign.  Lentivirus infection typically exhibits a chronic course of disease resulting in 

immunodeficiency, autoimmunity, pneumonitis, and neurological disease (193). 
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1.2.2. Lentiviruses. 

Members of this genus of retroviruses historically appeared to result in a slow (Latin: 

lentus, slow) viral infection.  Examples of lentiviruses include HIV-1 and –2, simian 

immunodeficiency virus (SIV), feline immunodeficiency virus (FIV), bovine immunodeficiency 

virus (BIV), visna/maedi virus, caprine arthritis-encephalitis virus, and EIAV (193).  Infection 

with lentiviruses usually leads to an assortment of neurological and/or immunological disease in 

their host (193). The CNS is prone to infection by lentiviruses.  In addition to the retroviral genes 

gag, protease, polymerase, integrase, and envelope, lentiviral genomes contain a complex 

combination of accessory genes that aid in regulating viral mRNA and protein expression, 

increasing virus infectivity and transmission, transactivation, inhibition of host’s immune 

response, and viral release (Figure 1) (193). 

 

1.2.3. HIV infection in humans. 

In 1983, a retrovirus later called HIV-1 (referred to as HIV from this point) was identified 

as the cause of AIDS in humans (21). HIV-2 infection was discovered in 1986 (65) and is 

genetically closer to SIV from sooty mangabeys.  HIV is transmitted through contact with 

infected blood or blood products, sexual fluids, or mother-child transmission (193).  

During acute infection, HIV infected individuals experience headaches, rash, retro-orbital 

pain, muscle aches, sore throats, fevers, nausea, lethargy, or lymphadenopathy (9).  Acute 

infection lasts ~9-10 weeks and is associated with high levels of viral replication, dissemination 

of virus throughout the body, increased CD8+ T cell counts, and decreased CD4+ T cell counts 

(193, 275).  
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Figure 1. Genomic organization of HIV-1.Typical elements of retroviral genomes include the 
LTRs and genes for core proteins (gag), reverse transcriptase (pol), and the viral envelope (env).  
Genes encoding accessory proteins are also depicted with descriptions of some of their known 
functions.  (Reproduced with permission from Cohen et. al. (70)© Lippincott Williams and 
Wilkins).  
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Following acute infection, patients experience a long clinically asymptomatic stage 

(clinical latency) where viral replication continues, but viremia is reduced by the host immune 

response (Figure 2).  This lasts from many months to years. The decrease in the number of blood 

virions plateaus to a ‘set point’ which is a prognostic indicator of the survival time of the 

infected individual (237).  Individuals with lower set points generally have greater survival 

length than those with higher set points.  The number of CD4+ T cells generally rebounds; 

however, CD4+ T cell counts gradually decline during this stage.   

AIDS is the final stage of infection.  During this stage, CD4+ T cell counts are reduced to 

a level where viral replication cannot be effectively controlled (Figure 2).   Once AIDS develops, 

lymphadenopathy, fever, diarrhea, cachexia, and other symptoms can be chronic.  The patient 

easily acquires opportunistic infections such as P. carinii pneumonia, toxoplasmosis, 

cryptosporidiosis, candidiasis, Mycobacterium spp., listeriosis, Kaposi’s sarcoma, Burkitt’s 

lymphoma, progressive multifocal leukoencephalopathy, histoplasmosis, and others.  Eventually, 

the patient succumbs to these infections.   

   The disease course of HIV infection varies from patient to patient, even when the 

primary infection is acquired from the same source (201). About 5% of infected individuals are 

termed long-term non-progressors (chronic infection for greater than 7 years without 

development of AIDS) whereas others have a rapid progression of disease.  Determinants of 

progression are related to host factors (e.g. competence of immune system in combating HIV 

infection and genetic factors) and less frequently the virulence of the primary source of HIV 

(171).   
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Figure 2.  Typical Clinical Course of HIV Infected Patients.  After primary HIV infection, a 
burst of plasma viremia occurs in concert with a transient decline in the CD4+ T-cell count.  
Partial immune control over viral replication ensues, resulting in a variable period of clinical 
latency.  As the CD4+ T-cell count declines, the risk of developing constitutional symptoms and 
opportunistic diseases increases. (Reproduced with permission from Cohen et. al. (70)© 
Lippincott Williams and Wilkins). 
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1.2.4. HIV virion. 

 Retroviral virions are 80-100 nm in diameter with outer envelopes derived from the host 

cell membrane.  There are two viral glycoproteins and various host proteins of unknown 

significance incorporated into the outer envelope. The glycoprotein complexes are trimers of 

external glycoprotein gp120 and membrane spanning protein gp41 (193).  Host proteins such as 

human leukocyte antigen (HLA) class I and II proteins and ICAM-1 adhesion protein are 

incorporated into the membrane during the budding process.  The outer envelope surrounds the 

internal cone-shaped nucleocapsid that contains several viral proteins and surrounds the virion 

RNA. RT, integrase, and protease are contained in the virion.  The viral genome consists of two 

linear, nonsegmented single strands of RNA with positive polarities that are 7-12 kb long.  

Retroviral genomes contain gene coding domains gag-pro-pol-env that encode for structural, 

protease, polymerase, and envelope proteins, respectively (Figure 1) (68). These coding domains 

are flanked by noncoding long terminal repeats (LTR) that include redundant repeats (R) along 

with unique sequences, U5 on the 5’ end and U3 on the 3’ end.   

 

1.2.5. HIV life cycle. 

 The replication cycle of HIV-1 is completed in ~28-32 hours and can be separated into 

early and late steps (Figure 3).  The first step of HIV infection is attachment of gp120, the 

envelope glycoprotein, to the host cell surface receptor CD4 (or alternative receptor).  

Attachment induces a conformational change in gp120 allowing subsequent binding to a co-

receptor (CCR5 or CXCR4) and fusion of viral envelope protein gp41 with the host cell 

membrane (68).  The viral RNA associated with the nucleocapsid is released into the cytoplasm 

where initiation of reverse transcription occurs after partial uncoating of the nucleocapsid.  Host-



 9 

derived tRNAlys binds to the primer binding site downstream of the 5’ LTR to initiate reverse 

transcription using viral RNA-dependent DNA polymerase and RNase H activity (68, 193).  

Viral cDNA is produced and duplicated into double-stranded DNA structures.  Early steps of the 

life cycle are completed when noncovalently bound circular viral cDNA is transported in a 

preintegration complex with integrase matrix proteins to the nucleus, where it is randomly 

integrated into host chromosomal DNA (193).  Integration is required for production of 

infectious progeny.     

 The late steps of HIV infection proceed with production of viral mRNA and viral 

genomic RNA from the integrated proviral DNA.  Transcription is initiated by host RNA 

polymerase II at a TATA box on the U3 region of the LTR (68). The LTR contains binding sites 

for other transcription factors such as NF-κB, Sp1, AP-1, NFAT-1, Ets-1, USF-1, LEF, and 

C/EBP/β (68, 383).  The transactivating regulatory protein, Tat, increases transcription initiation 

and elongation.  Regulatory proteins Tat, Rev, and Nef are the earliest mRNA species found in 

infected cells.    

 Transcription results in full-length RNA species that are polyadenylated at the 3’ end and 

capped at the 5’ end.  Doubly spliced transcripts are detected at 12-16 hours post-infection (p.i.) 

followed by full-length genomic RNA and unspliced mRNA at 24 hours p.i. (168).  Precursor 

HIV structural proteins are synthesized as polyproteins and incorporated into the immature 

virions at the cell surface (68).  Viral genomic RNA is incorporated into the capsid proteins that 

assemble at the cell membrane.  These immature nucleocapsids associate with envelope proteins 

that are incorporated in the host cell membrane.  The virion buds through the cell membrane with 

a coat of viral glycoproteins and host membrane proteins.  Gag and Gag-Pol polyproteins are 

cleaved by viral protease into individual proteins to generate mature virions (68).  
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 Productive infection of macrophages differs in many respects from CD4+ T cells.  

Whereas CD4+ T cells require cellular DNA synthesis to produce virus, macrophages are 

productively infected without cell division or DNA synthesis (390).  It is thought that productive 

HIV infection can only be supported in macrophages that maintain some form of proliferative 

capacity because macrophage activation is required for completion of reverse transcription (177, 

326). Some reports state integration of provirus can occur without cellular activation (326); 

whereas others observe HIV nuclear import is blocked in freshly isolated monocytes, but not 

marcrophages (260).  C/EBP/β transcription factor is necessary for HIV replication in 

macrophages but not in T cells (141, 192). Inhibitory isoforms of C/EBP/β  are potentially 

expressed in response to interferon-β (148, 389).  HIV accessory genes appear to function 

differently in macrophages and T cells (352, 353).  Viral assembly and budding can occur in 

cytoplasmic vacuoles in macrophages (271). 
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Figure 3.  HIV Life Cycle.  (Reproduced with permission from Freed, E.O. (108) © 1998 
Elsevier) 
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1.2.6. Viral entry and viral tropism. 

 Initial studies showed that HIV bound to and infected cells bearing the CD4 receptor (76, 

173).  Subsequently, it was discovered that infection was more efficient in the context of a co-

receptor.   The designation of receptor versus co-receptor is arbitrary and predominantly based 

upon historical considerations that CD4 was discovered first (167, 403).  HIV and SIV 

coreceptors include the chemokine receptors CXCR4 (105) or CCR5 (86, 91). In the case of SIV, 

CCR5 appears to play a greater role in promoting infection than the originally discovered CD4 

molecule (93, 98, 217).  In vitro, it was recognized that viral strains utilizing CCR5 are 

macrophage tropic (7), while strains utilizing CXCR4 are T cell-tropic (91).  Most viral strains 

are able to use both receptors for entry with varying efficiency. Other co-receptors, including 

CCR2, CCR3, CCR8, BOB, and AJP, can be used by some viral strains in vitro (Reviewed in 

((64))).  These latter co-receptors have reduced infection efficiency compared to CCR5, and it is 

still debatable whether they are important during in vivo infection (For review, see (25, 273)). 

HIV infects and replicates in CD4+ T cells and monocyte/macrophages.  These primary 

cellular targets are believed to be the predominant viral producers throughout the course of 

infection (72). Several other hematopoietic cell types have been reported to be infected, 

including dendritic cells (299), CD8+ T cells (202), natural killer cells (374), and natural killer T 

cells (107). Many non-hematopoietic cells have also been reported to be infected by HIV 

including: epithelia (216, 261, 387), endothelia (83, 250), cardiomyocytes (306), striated 

myocytes (328), podocytes (309), hepatocytes (50), and others.  However, it is unclear what role 

infection of these cell types may play in vivo.   The number of peripheral blood mononuclear 

cells that harbor HIV DNA is variable (338) (~0.1%-15% [(16, 280)]).  It has been estimated 

using PCR techniques that asymptomatic patients carry 1 in 100 to 40,000 infected CD4+ T cells 
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(39, 292, 325), while patients with AIDS carry ~1 in 100 to 10,000 infected CD4+ T cells (325) 

or up to 10% of blood CD4+ T cells (149). Using in situ PCR, others have observed that either 

0.2% to 69% of CD4+ T cells (17) or 4% to 15% of peripheral blood mononuclear cells (280) 

harbor proviral DNA. Of the few reports that have examined blood monocyte infection, it seems 

relatively few peripheral monocytes are infected (17).  This issue has never been fully 

illuminated. 

 

1.2.7. Infected tissue macrophages in HIV pathogenesis. 

During early stages of HIV infection, it is widely thought that macrophages and dendritic 

cells are the key tissue elements that propagate virus due to their migratory properties (49, 380, 

412).  However, others have recently observed that CD4+ T cells are the predominant infected 

cells in lymphoid tissues during acute infection (321, 346).  During early time points in infection, 

it is estimated that a median of 90% of productively infected lymphoid cells are CD4+ T cells, 

while a median of 7% are macrophages.  The frequency of productively infected cells per gram 

of lymphoid tissue has been reported to be ~500,000 to 5,000,000 (321).  During late stages of 

infection, most of the remaining CD4+ T cells in the lymph nodes are infected (266).  In early 

and late stages of infection, variable numbers of latently infected CD4+ T cells and macrophages 

are found throughout all lymphoid tissues (99). 

In opposition to CD4+ T cells, viability of HIV-infected macrophages seems to be 

unaffected by the virus. However, lentiviral infection may alter or impair macrophage functions.  

For these reasons, it is believed that macrophages might act as a reservoir for persistent viral 

infection and produce chronic inflammation and tissue damage.  
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1.3. HIV and CNS infection. 

1.3.1. HIV-associated dementia. 

 Approximately 25% of immunosuppressed AIDS patients develop a neurodegenerative 

disorder clinically characterized as HIV-associated dementia complex (HIVD) (6, 38, 61, 77, 90, 

232).  This syndrome is associated with cognitive, motor, and behavioral abnormalities that are 

thought to arise from subcortical damage (125, 241, 286, 287).  Symptoms include impaired 

short-term memory, concentration deficits, leg weakness, personality changes, apathy, and social 

withdrawal.   During life, diagnosis of HIVD is generally attained after excluding numerous 

potential central nervous system (CNS) opportunistic infections and neoplasms such as 

toxoplasmosis, cryptococcal meningitis, cytomegalovirus encephalitis, malignant lymphoma, and 

progressive multifocal leukoencephalopathy.   No consensus has been established regarding the 

pathologic substrate of HIVD.  This might be due to differences in clinical and pathological 

definitions and because not all studies concerning HIVD are followed up by autopsy 

confirmation of clinical diagnoses.  However, autopsy findings have shown that AIDS patients 

who become demented for reasons other than opportunistic infections demonstrate HIV 

encephalitis (HIVE) by immunohistochemistry (3).    

    

1.3.2. HIV encephalitis. 

 After the development of severe immunodeficiency, ~1/4 of HIV infected individuals 

develop HIVE (15, 79, 209, 223).  HIVE is a pathological disease that develops when HIV 

invades the brain parenchyma.  Consensus regarding the diagnostic criteria for HIVE has been 

published (42).   HIVE is characterized by the presence of microglial nodules, multinucleated 

giants cells, and abundant HIV-infected macrophages as determined by immunohistochemistry, 

in situ hybridization, or quantitative HIV RNA assessment (42, 43, 259, 395).  Abundant 
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activated macrophages are found distributed throughout deep gray and white matter structures 

(138, 238, 265, 282, 296, 404).  Multinucleated giant cells are thought to form when infected 

cells bearing viral envelope glycoproteins fuse with other cells bearing receptors for the virus 

(332, 392). 

The frequency of HIV in these brain macrophages is controversial (3, 30, 124, 125) 

because variation in probes used to detect virus and variation in tissue preservation brought about 

inconsistent estimates of the abundance of virus.  Some of these early studies concluded that the 

amount of virus in the brain could not account for the extent of clinical symptoms or 

neuropathology; therefore, it was suggested that neuronal damage was mediated by presence of 

activated brain macrophages rather than amount of viral infected macrophages (124).  The 

preponderance of studies argue that neuronal damage in lentiviral encephalitis is linked to 

regional presence of both activated and infected macrophages (22, 213, 287, 371, 394, 395).  It is 

still unexplained why only a fraction of individuals develop HIV encephalitis, though length of 

survival with severe immunosuppression may be a factor (343, 391). 

 

1.3.3. Infected cells in the CNS. 

 In the brain, potential cellular targets for HIV infection include perivascular and 

parenchymal macrophages/microglia, neurons, astrocytes, oligodendrocytes, and endothelia.  

The literature is replete with confusing and conflicting reports claiming HIV infection of brain 

cells of multiple lineages.  There is consensus that microglia/macrophages are the predominant 

infected cell in brains with HIVE (44).  Endothelia and neurons derived from fetal tissue have all 

been shown to be susceptible to productive HIV infection in vitro (8, 100, 139, 249, 349), but 

there is little pathological evidence to support that these cells are susceptible in vivo (30, 364, 
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369, 393).  Astrocytes may be susceptible to HIV infection in vivo but do not support productive 

infection (267, 298, 354, 363, 369).  This makes HIVE unlike most previously described viral 

encephalitides since the virus predominantly infects microglia/macrophages rather than neurons 

or macroglia (156). 

There is some controversy as to whether perivascular or parenchymal 

microglia/macrophages comprise the majority of infected cells (73, 398).  Using the simian 

model for HIV infection, a report concluded that perivascular macrophages and not parenchymal 

microglia are infected by SIV (398).  This report relies on using CD14 and CD45 to distinguish 

macrophages and microglia, respectively, but this distinction is highly problematic (reviewed in 

(30)).  Studies of human autopsy tissues suggest that while there is an angiocentricity to the brain 

lesions, at least 2/3 of HIV p24+ cells in HIVE brains are parenchymal microglia (73).  Since 

microglia and macrophages are derived from the same monocyte lineage precursors, this 

distinction may be more a question of semantics.    

   

1.3.4. HIV entry into CNS. 

 The brain is separated from the rest of the body (periphery) by the blood-brain barrier 

(BBB), while the cerebrospinal fluid (CSF) is separated from the periphery by the epithelium of 

the choroid plexus (produces CSF).  In order for encephalitis to develop, virus must cross the 

BBB.  Soon after lentiviral infection, virus or viral DNA can be recovered from the CSF and 

brain in addition to most body compartments (9, 11, 62, 80, 101, 121, 180, 302, 341).  The 

source of this early virus is not clear, and it is unknown whether the early virus detected in the 

CNS is cleared or remains as a potential viral reservoir. Studies that have looked at CNS viral 

load during acute and asymptomatic infection support both scenarios (9, 66, 395).  It is well 
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accepted that virus enters in the end stages of infection, so the small potential proviral reservoir 

might have limited contribution to the development of encephalitis.  Others have hypothesized 

that HIV enters the CNS at distinct time points during the course of infection since different 

brain regions contain discrete viral variants (331).  These data suggest that HIV encephalitis 

develops as the result of entry of new virus (most likely within monocytic elements) or an 

uncontrolled recrudescence of the small amount of virus that entered during acute stages of 

infection.   

There are several hypotheses that address the entry of HIV into the brain.  The hypothesis 

with the most supporting evidence is that monocytes act as “Trojan horses” trafficking HIV 

through the BBB into the brain (80, 281).  Evidence supporting this is derived from 

immunohistochemical studies that have shown viral infected macrophages are often found in 

perivascular sites with little to no evidence of endothelial cell infection (30, 398).  This is 

consistent with the normal process of immune cells crossing the BBB for immune surveillance in 

a carefully regulated process (143). Using in vitro models, some researchers postulate that 

endothelial cells (infected or not) are the portals through which cell-free HIV enters the brain 

(20, 200).  HIV is able to transcytose cultured endothelia (200), but little evidence supports this 

mechanism in vivo.   

The majority of HIV strains isolated from the CNS are macrophage tropic (110, 133).  

Phylogenetic analysis of viral sequences show that viruses isolated from the CNS are more 

genetically related than viruses isolated from other tissue such as blood, lymph nodes, and spleen 

(175).  It has not been established whether the genetic difference seen in the CNS results from 

independent entry at distinct times or whether HIV genetically adapts to replicate in the 

microenvironment of the CNS more efficiently. 
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1.3.5. Mechanisms of nervous system damage. 

 Despite the absence of convincing evidence of neuronal infection, neurodegeneration has 

been reported in both lentiviral infected and encephalitic individuals (22, 42, 44, 75, 333). Since 

neurons are not infected, neuronal damage seen in HIV-infected patients is thought to be 

mediated by indirect mechanisms.  Theories regarding the mechanism of neuronal damage can 

be divided into two groups that are not necessarily mutually exclusive.  The first group of 

theories considers HIV proteins neurotoxic (Figure 4) (81, 92, 122, 196, 207, 257, 289, 294, 

320).  Neurons in adult human brains express the two co-receptors required for HIV entry, 

CXCR4 (191, 317) and CCR5 (310), and some neuronal populations possibly express CD4 

(110), so it is possible that direct interaction of HIV envelope proteins with neuronal chemokine 

receptors mediate neurotoxicity (6, 24, 92, 122, 123, 144, 159, 160, 176, 197, 210, 239, 257, 320, 

407).  Beyond HIV envelope protein, Tat, Vpr, Nef, Vpu, and Rev proteins have also been 

implicated in initiating neuronal dysfunction (123, 140, 258, 279, 311, 334, 370, 376, 378). 

 The second group of theories builds on the concept that neuronal dysfunction is caused 

by the gamut of host factors that are released from brain macrophages (Figure 4) (88, 142, 225).  

These secreted products might directly act on neurons or indirectly act on supporting glial cells 

initiating synaptic damage and neuronal death (41, 114, 117, 142, 198, 262, 293, 294). Functions 

of astrocytes include removal, metabolism, and recycling of excess glutamate (a major excitatory 

neurotransmitter) from neuronal synapses.  Secreted products from macrophages are known to 

inhibit this critical function of astrocytes (27).  Excess glutamate and oxidative stress are thought 

to contribute to neurodegeneration by an unknown mechanism.  It is controversial whether these 

insults result in neuronal apoptosis or whether degeneration is mediated by other mechanisms 

(159, 163).     
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1.3.6. Effect of HAART on CNS disease. 

With the advent of highly active antiretroviral therapy (HAART) in 1995, mortality and 

morbidity have decreased in HIV-infected patients.   As with opportunistic infections and HIV-

related tumors of the CNS, the incidence of HIVD has decreased to ~10% in patients treated with 

HAART, although it has been suggested that the prevalence will increase due to patients living 

longer (373).  Many patients treated with HAART clinically exhibit a more mild form of CNS 

dysfunction termed minor cognitive motor disorder (MCMD).  Losses in higher cortical 

functions such as memory and computational skills are subtler with MCMD compared to HIVD.  

It is unclear whether this form of dysfunction has become more common, become more obvious 

because it does not progress to overt dementia, or arisen as a side effect of HAART.  Recent 

estimates suggest MCMD might affect 30% of HIV-infected individuals.  Individuals with 

MCMD have a worse overall prognosis of disease progression (58, 313).   As with HIVD, 

MCMD is associated with neuropathology typical of that seen in HIVE.  It has been suggested 

that MCMD may result from a slower progressive neurodegeneration mediated by lower levels 

of HIV replication in the CNS of patients on HAART.   
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Figure 4.  Mechanisms of Neurodegeneration During AIDS.  a.  Infected, activated 
perivascular macrophages/microglia produce HIV and release viral proteins that can be 
deleterious to the CNS.  HIV gp120 envelope protein, Tat, and Vpr have been shown to be toxic 
in vitro to neurons and/or astrocytes.  Infected, activated cells also produce other factors – such 
as cytokines (e.g. TNF), quinolinic and arachidonic acid, platelet-activating factor (PAF) and 
nitric oxide – that are known to have neurotoxic effects.  b.  These factors promote further 
activation of macrophages and proliferation and activation of astrocytes.  c.  Activated astrocytes 
modify permeability of the blood-brain barrier and promote migration of more monocytes into 
the brain.  d.  Increased release of intracellular Ca2+ and glutamate through decreases in 
glutamate uptake results in excitotoxic death of neurons.   (Reproduced with permission from 
Gonzalez-Scarano, F. et. al. (132) © 2005  Nature Publishing Group) 

http://www.nature.com/nri/journal/v5/n1/abs/nri1527_fs.html
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Despite the observation that few antiretroviral drugs attain effective concentrations in the 

CNS, the incidence of HIVE has decreased in patients on HAART (137).  However, the 

prevalence of HIVE has increased with some estimates stating 45% of AIDS autopsies 

demonstrate HIVE (190).  With HAART, HIV infection has been reported to be associated with 

a more subtle degeneration of dendritic arbors and interneuron populations compared to 

widespread degeneration of excitatory pyramidal neurons (190, 224).  A comprehensive 

pathological survey is needed to verify these reports.  Abundant HIV infected macrophages are 

still observed in brains with HIVE in HAART patients, and more extensive white matter 

destruction is observed than prior to HAART. 

Potential influences of HAART on HIV-associated neuropathology are mediated by 

suppressed HIV replication, increased cell mediated immunity, increased survival, and 

interactions of antiretroviral drugs with brain endothelia.  Since HAART is probably unable to 

completely suppress HIV replication in the CNS, the CNS may act as a reservoir (189).  Yet, 

although HAART may alter brain disease, it is unclear whether compartmentalized virus 

evolving under suboptimal antiretroviral levels in the CNS will be virulent. 

 

1.3.7. Blood brain barrier defects during HIV infection. 

 The BBB is a selectively permeable layer of brain endothelial cells that are packed tightly 

together by tight junctions (or zonula occludens). Tight junctions block many molecules from 

gaining entry into the CNS.  Lipid soluble molecules such as oxygen and carbon dioxide cross 

the BBB readily.  There are also selective transport systems for molecules such as sugars and 

amino acids.  Immune cells cross the BBB normally in order to survey the CNS; however, this 
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process is carefully regulated (143).  Several reports show that the BBB is abnormal during HIV-

infection (48, 120, 283). Alterations in the BBB are more common in patients with HIVD 

compared to nondemented AIDS patients and seronegative controls (287).  Some investigators 

believe that deterioration of BBB integrity allows HIV entry into the CNS and subsequent 

development of HIVE.  However, it is difficult to distinguish whether CNS infection leads to 

BBB breakdown or whether BBB breakdown allows infected cells or free virus to invade the 

brain.  Since BBB breakdown is seen in many patients without HIVE or HIV-associated CNS 

pathology, BBB alterations probably do not lead to development of encephalitis but might 

contribute to entry of HIV after initiation of CNS disease.   

 

1.4. SIV-infected macaque model for HIV infection in humans. 

1.4.1. SIV-infection of natural hosts. 

Primate lentiviruses have been detected in wild African monkeys from the genus 

Ceropithecus, Chlorocebus (African green monkeys), Cercocebus (mangabeys), Colobus, and 

Pan (chimpanzees) (145, 251).  These primate lentiviruses are divided into at least six distinct 

lineages that share 40 to 50% identity in Gag and Pol proteins (145).  HIV is closely related to 

SIV-chimpanzee strains.  Most SIV strains used in research were derived from sooty mangabeys 

and are closely related to HIV-2.  In wild African monkeys, SIV infection does not result in 

immunodeficiency despite active ongoing viral replication at comparable levels to macaques 

experimentally infected with pathogenic SIV (55). Natural hosts generally have asymptomatic 

infection that has been attributed to a much more mild immune activation than seen in hosts with 

pathogenic disease (56, 337). 
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1.4.2. SIV-infection in Asian macaques. 

 After HIV was determined to be the cause of AIDS in humans, SIV was isolated from 

captive Asian macaques (78, 251).  Originally named STLV-III, SIV was determined to be a 

lentivirus that caused a chronic, lethal infection similar to AIDS in humans.  A variety of 

macaque species are susceptible to pathogenic SIV infection (145, 170, 186), and rhesus 

macaques (Macaca mulatta), pigtailed macaques (M. nemestrina), and cynomolgus macaques 

(M. fascicularis) are the common species utilized to study the pathogenesis of AIDS when 

experimentally infected with SIV.  Lentivirus infection in Asian macaques or orangutans has not 

been detected in the wild.   

 The disease course of SIV-infected Asian macaques has considerable interspecies and 

intraspecies variation even when infected with identical SIV strains.  SIV causes disease within 

months to years after infection.   As seen in humans, but with shorter lengths of time, SIV-

infected macaques exhibit rare, long-term non-progression of disease as well as rapid 

progression to disease in a period of less than six months post-inoculation (146).  The 

pathogenesis of SIV infection in Asian macaques is very similar to HIV-induced AIDS in terms 

of viremia, immune response, progression to AIDS, opportunistic infections, and infection of the 

CNS. 

 

1.4.3. Disease progression rates in SIV-infected macaques. 

 Similar to HIV infected humans, SIV-infected macaques have three types of disease 

progression determined by survival time after inoculation.  Rapid progressors succumb to AIDS 

within six months of infection due to persistent high-level viremia (95, 411).  These animals are 

sometimes coined as ‘non-responders’ because they are often unable to control viremia during 



 24 

acute infection and have little or no detectable virus-specific immune responses.  Intermediate or 

typical progressors exhibit characteristic disease progression with establishment of clinical 

latency and development of simian AIDS in 1-3 years (367).  Slow progressors stay 

asymptomatic for long periods after more substantial containment of acute viremia (195).  Slow 

progressors can survive for greater than 5 years. 

 

1.4.4. CNS disease in SIV-infected macaques. 

 Descriptions of SIV encephalitis (SIVE) have been reported ever since the discovery of 

simian models of lentiviral infection.  SIVE shares many features with HIVE in that the 

neuropathology is similar and only a fraction of infected macaques develop encephalitis.  As in 

humans, microglia/macrophages are the predominant infected cell in the CNS of macaques with 

SIVE.  This is distinct from less immunosuppressive lentiviral encephalitides like Visna that 

have intense lymphocytic infiltrates (156).  In brains with HIVE, the distribution of viral infected 

macrophages is mostly subcortical while the cortical regions are also involved in SIVE.  

However, both diseases show significant inter-individual variation.   

 SIV infection of macaques illuminates the importance of viral strain and species 

differences in determining the neuropathological outcome after infection (75).  As seen in 

humans with HIVE, the predominant strain of SIV in the CNS of macaques with SIVE is 

macrophage-tropic.  In order to explain why only a fraction of lentiviral-infected individuals 

develop encephalitis, it has been theorized that evolution of “neurovirulent” viral strains with 

certain unknown genetic attributes must be present in the host in order for brain infection to 

occur.  However, it is difficult to tease apart whether these neurovirulent strains developed in the 

periphery, allowing infection of the brain or whether viral strains that infect and replicate in the 
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CNS evolve in the microenvironment of the brain to allow more efficient replication.  Pigtailed 

macaques are also known to develop encephalitis at a higher incidence than rhesus macaques.  

Cynomolgous macaques rarely show lesions associated with SIV-infected macrophages.   

Efforts at determining correlates of encephalitis have been made using a variety of 

primate models.  A model of using co-infection with SIV/DeltaB670 and a “neurovirulent” clone 

(SIV/17E-Fr) that is macrophage-tropic is reported to induce encephalitis in 90% of infected 

pigtailed macaques (418).   This model finds that both CSF and CNS parenchymal viral load are 

tightly associated with extent of SIVE.  This is similar to reports in HIV-infected humans (395, 

397).  Another model using a different viral strain and macaque species showed no apparent 

relationship between presence of brain lesions and viral load (32).  Rapid disease progression 

(268, 391), elevated CSF monocyte chemotactic protein (MCP)-1 concentrations (63, 417) and 

low anti-SIV antibody titers 1 month after infection (268) have also been associated with 

development of encephalitis.  

 

1.4.5. CNS disease in animal retroviral infection. 

 Several retroviruses cause neurologic diseases in animals.  Non-lentiviral murine 

leukemia virus (MLV) infection of mice leads to intracellular vacuolization, neuronal loss, and 

gliosis in absence of an inflammatory response (40).  Neurovirulence, or ability to replicate and 

cause disease in the CNS, of MLV infected mice has been localized to the env gene, while 

incidence of disease and where lesions develop are influenced by the LTR (277).  However, 

unlike HIV, MLV is thought to infect neurons, endothelial cells, and perivascular macrophages 

although, this is a point of contention (23, 135, 156). 
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Sheep, horses, cows and cats are affected by lentiviral diseases (156).  As with HIV 

infection, these diseased are characterized by long asymptomatic periods that either progress 

slowly or relapse/remit.  Most lentiviral illnesses have a fatal outcome although horses infection 

by equine infectious anemia virus can survive.  Common complications include 

lymphadenopathy, pneumonitis, hemolytic anemia, thrombocytopenia, and encephalitis.  

Ruminant and equine lentiviruses only infect macrophages and are associated with intense 

inflammatory disease.  Feline and primate lentiviruses infect both macrophages and CD4+ T cells 

resulting in immunodeficiency and opportunistic infections.   

Within one month of infection, visna virus infection of sheep leads to mononuclear 

infiltrate in meninges and perivascular spaces (284).  Lesions and demyelination are 

predominantly seen in the white matter (284).  Macrophages and their progenitors are reported to 

be infected and virus-producing macrophages in the CNS leads to cytokine production by T cells 

that recruit T cells to the CNS (115, 116, 165, 256). 

Although some cats infected with feline immunodeficiency virus exhibit neuropathology 

characteristic of HIV encephalitis (2, 31), SIV infection of macaques have provided the most 

insight on pathogenesis of HIV encephalitis.  Most studies of other animal lentiviruses have shed 

light on how macrophage infection leads to disease in the CNS in response to cytokines (156). 
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1.5. Immune response to primate lentivirus infection. 

 The explosion of viral replication during primary infection in both HIV-infected humans 

and SIV-infected macaques initiates antibody, cytotoxic T lymphocytes (CTL), and CD4 helper 

responses that decrease viremia to a set point.  It has been suggested that variation in the antiviral 

immune response influences differences in viral load set points during acute phase of infection 

(113). 

 High concentrations of HIV-specific antibodies develop within one to three months of 

infection (113).  Antibodies recognizing linear portions of structural proteins Gag p24 and p17 

are developed first with antibodies to Env and Pol detected thereafter (327).  Since HIV-infected 

patients usually show decreased viremia during acute infection prior to appearance of HIV 

neutralizing antibodies, the role antibodies play in controlling HIV infection is unclear (178).  

Due to high mutation rates of virus during infection, hindered antibody access to epitopes by V1 

and V2 loops, and heavy glycosylation of the envelope (53, 278, 301), HIV and SIV elude 

antibody responses. 

 Appearance of HIV-specific CD8+ CTL responses coincides with reduction in viremia 

during acute stages (214).  Macaques depleted of CD8+ T cells at time of SIV inoculation exhibit 

substantial sustained increases in viremia (154, 324).  CTL control HIV and SIV infection by at 

least three mechanisms.  Virus-specific CTL lyse infected cells after recognition of viral peptides 

presented in the context of major histocompatibility complex (MHC) class I molecules on cell 

surfaces (406). In an antigen specific, MHC class I-restricted manner, CTL secrete β chemokines 

such as MIP-1α and β and RANTES that can bind HIV co-receptors and block viral entry (385).  

CD8+ T cells secrete CD8+ T cell antiviral factor (CAF) that can decrease viral transcription 

(382) and IFN-γ that initiates anti-viral responses.   
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1.6. The role of host factors in susceptibility of cells to lentiviral infection. 

 Since the disease course of SIV-infected Asian macaques has considerable interspecies 

and intraspecies variation even when infected with identical SIV strains (128, 329), it is apparent 

that host factors influence the outcome of disease.  Several human genes have been associated 

with susceptibility of HIV infection, disease progression, and clinical outcome.  Individuals with 

a truncation of the HIV co-receptor CCR5 protein due to a homozygous 32-base pair deletion 

within the CCR5 gene are resistant to HIV infection, while heterozygotes have slower disease 

progression rates (82, 150, 240, 242, 316).  MHC proteins present antigens to lymphocytes and 

are the most polymorphic human genes.  In both humans and macaques, particular MHC alleles 

are associated with either rapid or slow disease progression (33, 51, 208). Humans with 

polymorphisms in the promotor region of the IL-10 gene have increased susceptibility to HIV 

infection and rapid disease progression (336).  Individuals with a low number of duplications in 

MIP-1αP gene segments have increased susceptibility to HIV infection and disease progression 

(129).  Despite associations of genetic polymorphisms on HIV disease outcome, no consensus of 

what factors play the greatest role in determining disease outcome has been reached.   
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2. SPECIFIC AIMS 

Human immunodeficiency virus (HIV) associated dementia complex (HIVD) occurs in 

~25% of AIDS patients leading to cognitive, motor, and behavioral deficits that are attributed to 

synaptic damage and neuronal loss. AIDS patients that become demented in absence of 

opportunistic infection demonstrate brain pathology associated with HIV encephalitis (HIVE).  

Simian immunodeficiency virus (SIV) infection of macaques is a well-established model of HIV 

infection as it mimics disease progression and pathogenesis in humans and, most importantly for 

this study, leads to the development of SIV encephalitis (SIVE) in a fraction of infected 

macaques.  We proposed to use SIV infection of Macaca mulatta and Macaca nemestrina to 

study infection and activation markers of peripheral monocyte and macrophages during the 

evolution of lentiviral encephalitis.   

While macrophage/microglia are the predominant infected cell type associated with 

lentiviral encephalitis, the relationship between the monocyte/macrophage infection within and 

outside of the brain are not known.  Our overarching hypothesis was: Development of SIV 

encephalitis and ensuing neurologic damage results from a generalized increase in the 

numbers of SIV infected and activated monocyte/macrophages both inside and outside of 

the brain.  To test portions of this global hypothesis, we constructed associated aims that were 

studied in SIV-infected macaques with and without encephalitis. 
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Specific Aim 1: Compare quantification of macrophages, virus and presynaptic and 

postsynaptic proteins in macaques with SIV encephalitis to macaques without SIV 

encephalitis (Chapter 3.1). 

Since neurodegeneration observed in SIVE has been linked to viral-infected and activated CNS 

macrophages, we examined the relationship between virus, macrophages, and neurologic damage 

in multiple brain regions in SIV-infected rhesus macaques with and without encephalitis. 

Formalin-fixed paraffin embedded brain tissue was immunostained for SIV envelope, CD68 

(marker for macrophages/microglia), presynaptic protein synaptophysin, and postsynaptic 

protein microtubule-associated protein-2. Using laser confocal microscopy, pixels corresponding 

to each stain were quantified and correlated to the presence or absence of SIVE.  In addition, 

brain SIV RNA was quantified in frontal cortical gray and white matter, occipital cortical gray 

and white matter, caudate, putamen, globus pallidus, hippocampus, and cerebellum. 

Specific Aim 2: Examine the relationship between peripheral SIV infection and the 

development of SIV encephalitis in CD8 depleted rhesus macaques (Chapter 3.2). 

CD8 depletion of macaques at the time of infection leads to rapid progression of disease.  Since 

rapid progression is associated with the development of SIVE, we hypothesized that macaques 

treated with an anti-CD8 antibody would be more likely to develop CNS disease.  Using this 

model, infection of circulating infected monocytes and CD4+ T cells were assessed during the 

course of infection. CD4+ T cell, CD4+/CD29+ T cell, CD8+ T cell, and monocyte absolute 

counts or percentages were monitored in addition to plasma viremia to assess systemic disease 

progression.  CSF viral load was monitored to assess CNS disease progression.  Based on 

histological findings, macaques were retrospectively classified at post-mortem for presence of 

SIVE and compared to macaques without SIVE.  To determine whether SIV macrophage 
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infection was unique to the CNS in animals that developed encephalitis, a survey of the number 

of infected macrophages and T cells in the liver, lung, small bowel, spinal cord, spleen, and 

thymus was performed on necropsy tissue.  In addition, analysis of postsynaptic and presynaptic 

proteins and macrophages in the brains from these macaques was performed to determine the 

amount of neuronal damage in CD8-depleted SIV infected macaques. 

Specific Aim 3: Examine the relationship between peripheral SIV infection and the 

development of SIV encephalitis in pigtailed macaques (Chapter 3.3 and 3.4). 

Using SIV infection of pigtailed macaques, infection of circulating infected monocytes and 

CD4+ T cells, phenotypic markers of monocyte activation, CSF viral load, and lymph node 

macrophage infection were assessed during the course of infection. In addition to plasma 

viremia, absolute counts of CD4+ T cells, CD8+ T cells, and monocytes were monitored to assess 

systemic disease progression.  Based on histological findings, macaques were retrospectively 

classified at post-mortem for presence of SIVE and compared to macaques without SIVE.  To 

determine whether SIV macrophage infection was unique to the CNS in animals that developed 

encephalitis, a survey of the number of infected macrophages and T cells in the liver, lung, small 

bowel, spinal cord, spleen, and thymus was performed on necropsy tissue.  
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3.1.1.  Abstract 

Neurodegeneration observed in lentiviral-associated encephalitis has been linked to viral-

infected and –activated central nervous system macrophages. We hypothesized that lentivirus, 

macrophages, or both lentivirus and macrophages within distinct microenvironments mediate 

synaptic damage. Using the simian immunodeficiency virus (SIV)-infected macaque model, we 

assessed the relationship between virus, macrophages, and neurological damage in multiple brain 

regions using laser confocal microscopy. In SIV-infected macaques with SIV encephalitis 

(SIVE), brain tissue concentrations of SIV RNA were 5 orders of magnitude greater than that 

observed in nonencephalitic animals. In SIVE, staining for postsynaptic protein microtubule 

associated protein-2 was significantly decreased in the caudate, hippocampus, and frontal 

cortical gray matter compared to nonencephalitic controls, whereas staining for presynaptic 

protein synaptophysin was decreased in SIV-infected macaques with and without encephalitis. 

These data suggest that presynaptic damage occurs independent of pathological changes 

associated with SIVE, whereas postsynaptic damage is more tightly linked to regional presence 

of both activated and infected macrophages. 



 34 

 

3.1.2.  Introduction 

Approximately 25% of human immunodeficiency virus (HIV)-infected patients develop 

human immunodeficiency virus encephalitis (HIVE) (15, 79, 209, 223). A more variable 

percentage of simian immunodeficiency virus (SIV)-infected macaques develop SIVE, 

depending on macaque species and viral strain (22, 75, 155, 213, 333, 349, 391, 415).  HIVE, the 

pathological substrate of HIV-associated dementia, generally develops in AIDS patients with 

advanced immunosuppression (259, 290, 394).  Pathologically, HIV-associated dementia is 

characterized by the presence of microglial nodules, multinucleated giant cells, and abundant 

HIV-infected macrophages as determined by immunocytochemistry, in situ hybridization, or 

quantitative HIV RNA assessment (42, 395).  Clinically, patients experience cognitive, motor, 

and behavioral deficits (345) that are attributed to neuronal damage and loss (3, 102, 103, 166, 

222, 394, 396).  

Despite the absence of convincing evidence of neuronal infection, neurodegeneration has 

been reported in both HIV and SIV infection (22, 42, 44, 75, 333).  Some studies suggest neural 

damage can occur even in the absence of significant infection within the brain. SIVmac251-

infected cynomolgus monkeys exhibit dendritic damage even in the absence of encephalitis or 

detectable central nervous system (CNS) virus (246). However, the majority of studies link 

profuse activated and lentiviral-infected brain macrophages to neurodegeneration (3-5, 22, 124, 

213, 222, 287, 371, 394, 395, 397, 415).  It is unclear whether neurodegeneration is caused by 

direct effects of the virus, indirect effects of infection, or both. Many studies have suggested the  
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secreted products of activated macrophages might directly act on neurons or indirectly act on 

supporting glial cells initiating synaptic damage and neuronal death (41, 74, 114, 123, 142, 159, 

199, 204, 289, 291, 293, 294).   

Both presynaptic and postsynaptic damage have been reported during HIVE (3, 102, 103, 

131, 166, 222, 226, 246, 396). This suggests that there is disruption in neuronal circuitry that 

could cause neurological deficits and lead to neuronal loss. Synaptophysin (SYN), a 38-kd 

calcium-binding protein associated with membranes of neuronal presynaptic vesicles and 

involved in neurotransmitter release, is widely used to mark presynaptic terminals and to 

approximate synaptic density (96, 229, 231, 247, 314, 396).  Loss of synaptophysin 

immunoreactivity has been interpreted as morphological evidence of presynaptic neuronal 

damage and is closely associated with signs and symptoms observed in several chronic 

dementias (47, 131, 185, 227, 228, 315, 339, 355).  Similarly, microtubule-associated protein-2 

(MAP-2), a high molecular weight protein found in neuronal cell bodies and dendrites, is widely 

used to mark postsynaptic elements (47, 185, 230, 246, 305). MAP proteins are involved in the 

polymerization of tubulin into microtubules and help provide physical stability to microtubule 

formations. Loss of MAP-2 immunoreactivity has been interpreted as morphological evidence of 

dendritic pathology (230, 305).  The universal response of CNS tissue to any nonspecific damage 

is gliosis. Gliosis is readily identified by immunohistochemical staining for glial fibrillary acidic 

protein (GFAP), a 52-kd intermediate filament protein found in astrocytes.  

There is substantial controversy regarding the relative role of virus and activated 

macrophages in mediating lentiviral- associated neurodegeneration. Using the SIV-infected 

macaque model, we assessed the relationship between virus and macrophages and neurological 

damage by laser confocal microscopy. We found that some regions of the CNS in infected 
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macaques showed presynaptic damage during systemic infection independent of the presence of 

encephalitis. However, we observed that lentiviral encephalitis was distinctly associated with 

severe synaptic damage and tightly linked with the presence of both activated and infected 

macrophages. The microscopic multifocality of the infectious process was similarly reflected in 

the focality of the neurological damage. 

3.1.3. Materials and Methods 

Animals 

Rhesus macaques (Macaca mulatta) were housed and maintained according to strict 

American Association of Laboratory Animal Care standards. Macaque infection parameters are 

described in Table 1. Six rhesus macaques derived from vaccine trials, challenged with viral 

swarm SIVdeltaB670 (SIV/dB670), and sacrificed were used in this study. Two macaques were 

involved in vaccine studies. Two macaques were administered PMPA [9-R-(2-

phosphonomethoxypropyl)adenine] 24 hours before inoculation with SIV. Macaques were 

infected intravenously with SIV/deltaB670 (n = 4), via bronchoscope with bronchial alveolar 

lavage from an animal infected with SIV/dB670 (n = 1), or rectally with SIV/dB670 and a 

subsequent infection via bronchoscope with bronchoalveolar lavage from an animal infected 

with SIV/dB670 (n = 1). Because the focus of this study was on CNS manifestations due to CNS 

SIV infection, the divergent routes of infection and clinical history in this group of animals does 

not impact directly on the final outcome of CNS disease. Ages of the macaques used in this study 

ranged from 33 to 100 months. Length of infection varied from 37 to 379 days. Macaques were 

sacrificed when moribund with AIDS (Table 2). Only two macaques (macaques 603 and 221) 

exhibited neurological signs consisting of decreased feeding, decreased spontaneous movement,  
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neglect of novel environmental stimuli, lethargic response to physical stimulation, and variable 

focal neurological signs. Two noninfected macaques served as controls. Complete necropsies 

were performed after humane sacrifice. 

CD4+ Cell Counts 

Buffy coats from peripheral blood obtained from SIV-infected macaques immediately 

before euthanasia were labeled with fluorochrome-conjugated monoclonal antibodies against 

CD4 (OKT4; Coulter, Hialeah, FL). Two-parameter light-scatter profiles were used to gate the 

lymphocyte population and to determine the percentage of CD4+ lymphocytes.  Absolute 

CD4+cell numbers were calculated using percent CD4+ lymphocytes and differential cell counts 

from the blood as previously described (219). 

Tissue 

Brains were removed immediately after euthanasia and processed for analysis. The left 

hemisphere was cut into regional blocks and stored at 80°C. The right hemisphere was fixed in 

10% buffered formalin (Fisher Scientific, Pittsburgh, PA). Coronal sections were made, and 

tissue blocks were paraffin-embedded. Six-µm sections were made for pathological analysis.  

Quantitation of SIV RNA in Brain Tissue 

For real-time polymerase chain reaction (PCR) analysis, total RNA was isolated from 

~100 mg of frozen (-80°C) brain tissue from frontal neocortical gray and white matter, occipital 

neocortical gray and white matter, caudate, putamen, globus pallidus, hippocampus, and 

cerebellum. RNA isolation was performed using Trizol reagent (Life Technologies, Inc., 

Rockville, MD) according to the manufacturer’s recommendations. Pelleted total RNA isolated 

from brain tissue was dissolved in molecular biology grade water and SIV gag-encoding 
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sequences quantified by real time PCR in an Applied Biosystems Prism 7700 (Applied 

Biosystems, Foster City, CA) as previously described (418).  The threshold sensitivity of this 

method was 10 copy Eq/reaction, typically corresponding to 1 µg of input total RNA, or the 

equivalent of ~0.9 mg of brain tissue. The RNA assay was normalized based on input RNA but 

reported here as copy Eq/mg tissue.  The RNA yield from animal to animal was very consistent 

at 0.87 µg of RNA/mg tissue ± 0.15 (mean ± SD). Region to region RNA yield varied as 

expected (0.6 to 1.4 µg of RNA/mg tissue) with cerebellum > neocortical gray matter = caudate 

= putamen = globus pallidus = hippocampus > neocortical white matter. 

Quantitation of SIV RNA in Plasma 

Quantitation of virion-associated RNA in plasma was performed by real-time PCR in a 

Prism 7700 (ABI). Virions were pelleted from 1 ml of plasma by centrifugation at 14,000 x g for 

1 hour. Total RNA was extracted from the virus pellet using Trizol (Life Technologies, Inc.) and 

20 µl of each sample was analyzed in a 96-well plate. Synthesis of cDNA was accomplished in 

triplicate reactions containing 5.0 nmol/L MgCl2, 1X PCR buffer II, 0.75 mmol/L of each dNTP, 

RNase inhibitor, 1.2 U MULV reverse transcriptase, 2.5 µmol/L random hexamers, and 10% of 

total viral RNA. Samples were mixed and incubated at room temperature for 10 minutes 

followed by 42°C for 12 minutes and the reaction terminated by heating at 99°C for 5 minutes 

then cooling to 4°C for 5 minutes. The PCR reaction was then initiated by adding 30 µl of a PCR 

master mix containing 1X PCR buffer A, 5.5 mmol/L MgCl2, 2.5 U of AmpliTaq Gold, 200 

mmol/L of each dNTP, 450 nmol/L of each primer, and 200 nmol/L of probe. The primers and 

probe used were: forward primer U5/LTR, 

5’AGGCTGGCAGATTGAGCCCTGGGAGGTTTC3’; reverse primer 5’ R region of LTR, 

5’CCAGGCGGCGACTAGGAGAGATGGGAACAC3’; and probe 6FAM, 
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5’TTCCCTGCTAGACTCTCACCAGCACTTGG-3’ TAMRA. The amplification was 

performed by heating at 95°C for 10 minutes to activate AmpliTaq Gold (Perkin Elmer), 

followed by 40 cycles of 95°C for 15 seconds, 55°C for 15 seconds, and 72°C for 30 seconds.  

Serial dilutions of RNA ranging from 108 to 100 copies/reaction obtained by in vitro 

transcription of a plasmid containing the target LTR region were subjected to RTPCR reaction in 

triplicate along with the samples to generate the standard curve with a sensitivity threshold of 

100 copies/reaction. RNA copy numbers from the unknown plasma samples were calculated 

from the standard curve and expressed as RNA copies/ml plasma. 

Histology 

Paraffin sections of brain tissue containing putamen, caudate, neocortical gray and white 

matter, and hippocampus were stained with hematoxylin and eosin (H&E) and assessed for the 

presence of SIVE. SIVE was empirically defined as the presence of microglial nodules and 

multinucleated giant cells, and profuse perivascular mononuclear infiltrates. To assess the 

distribution and abundance of macrophages and SIV morphologically, we used a monoclonal 

antibody against a macrophage/ microglia-associated protein CD68 (clone KP1;DAKO, 

Carpinteria, CA) and a polyclonal antibody against the SIV envelope gp110 (generously 

provided by Dr. Kelly Stefano Cole and Dr. Ron Montelaro, University of Pittsburgh, Pittsburgh, 

PA), respectively. Three of the infected macaques showed histological findings of SIVE. The 

remaining three SIV-infected macaques did not show histopathological features of SIVE, 

however, neuropathological findings in these three SIV-infected macaques included rare 

perivascular infiltrates. Each SIV-infected macaque used in this study showed no 

histopathological abnormalities outside those associated with SIV encephalitis/ infection. The 

noninfected control macaque brains showed no histopathological abnormalities. 
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Immunofluorescent Histochemistry 

Paraffin sections containing putamen, caudate, neocortical gray and white matter, and 

hippocampus were deparaffinized in Histoclear (3 x 5 minutes) (National Diagnostics, Atlanta, 

GA). Sections were rehydrated as follows: 100% ethanol (2 x 5 minutes), 95% ethanol (1 x 5 

minutes), 70% ethanol (1 x 5 minutes), and H2O (1 x 5 minutes).  Rehydrated sections were 

immersed in 3% H2O2 (Sigma, St. Louis, MO) in 70% methanol (J. T. Baker, Phillipsburg, NJ) 

(1 x 30 minutes) to block endogenous peroxidase activity. To unmask antigens, sections were 

incubated in Target Retrieval Solution (DAKO) at 97°C for 1 hour. Sections were cooled (1 x 30 

minutes, room temperature) and blocked with 10% normal goat serum (DAKO). Sections were 

incubated with mouse monoclonal antibody against a macrophage lysosomal-associated protein 

CD68 and rabbit polyclonal antibody to the SIV envelope protein SIV-gp110 (1:50,000 and 5 

µg/ml dilutions, respectively, at 4°C overnight). The mouse monoclonal antibody CD68 could 

not be detected by Cy3-conjugated goat anti-mouse IgG at the concentration used in this staining 

protocol, so the CD68 signal was amplified using the commercially available Tyramide Signal 

Amplification kit (NEN Life Science Products, Boston, MA) (386).  Sections were incubated 

with biotinylated goat anti-mouse IgG serum (Jackson ImmunoResearch Laboratories, Inc., West 

Grove, PA) (1:200, room temperature, 1 hour). After being washed with 0.5% Tween-20 buffer, 

sections were incubated with blocking buffer (room temperature, 30 minutes) followed by 

horseradish peroxidase-conjugated streptavidin (1:500 in blocking buffer, room temperature, 30 

minutes). Sections were washed with 0.5% Tween-20 buffer and incubated with fluorescein-

conjugated tyramide (1:100 in 1X Amplification Diluent, room temperature, 10 minutes). After 

washing with 0.5% Tween-20 buffer, sections were incubated with one of the following mouse 
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monoclonal antibodies:  MAP-2 (1:1500, SMI 52; Sternberger Monoclonals Inc., Lutherville, 

MD), synaptophysin (1:100, SY 38; DAKO), or GFAP (1:500, 6F2; DAKO). Sections were 

incubated with Cy5-conjugated goat anti-mouse IgG and Cy3-conjugated goat anti-rabbit IgG 

(Jackson ImmunoResearch Laboratories, Inc.) (1:200, room temperature, 1 hour).  The fluorogen 

tags used to detect synaptic proteins are noted in the figure legends. Slides were mounted in 

gelvatol (13) and fluorescence quantified as described below in the laser confocal microscopy 

quantification section.  

Peroxidase Immunohistochemical Staining 

Paraffin-embedded tissue sections were deparaffinized by incubation at 60°C for 15 

minutes, immersion in xylenes twice for 8 minutes each, and dehydration in graded ethanols. 

Tissues were pretreated by microwaving at 2-minute intervals for a total of 10 minutes at settings 

between 60 to 20% maximal power in 0.01 mol/L of citrate buffer (pH 6.0). The buffer was 

replenished as needed to ensure that the tissue sections did not dry out. Slides were then blocked 

in 5% nonfat dry milk in 1X phosphate-buffered saline (PBS) for 1 hour. Tissue sections were 

then incubated with a CD68-specific monoclonal antibody at a 1:50 dilution for 45 minutes and 

washed with 1X PBS three times, 5 minutes each. The bound monoclonal antibody was then 

detected using the avidin-biotin complex approach with the Vectastain Elite System (Vector 

Laboratories, Burlingame, CA). Sections were incubated with biotinylated goat anti-mouse 

secondary antibody for 30 minutes and washed as before. They were then incubated with an 

avidin/horseradish peroxidase conjugate for 30 minutes and again washed as before. All 

incubations were performed at room temperature. Immunohistochemical signal (brown staining) 

was provided by the action of horseradish peroxidase on the substrate 3,3’-diaminobenzidine. 

Slides were counterstained with propidium iodide to stain the nuclei by incubating in 1X PBS 
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containing 10 mg/ml of propidium iodide for 30 minutes at room temperature in the dark. Slides 

were then washed by rinsing in 1X PBS and double-distilled water, dehydrated in graded 

ethanols, cleared in xylenes, and mounted with Permount (Fisher). 

Laser Confocal Microscopy Quantification 

Consecutive sections were stained with H&E or immunohistochemically stained as 

described above. A dissecting microscope was used to identify anatomical regions on the H&E-

stained section. Five regions of the SIV-infected macaque brains containing putamen, caudate, 

neocortical frontal gray and white matter, and hippocampus were identified on the 

immunofluorescent stained slides. The marked H&E tissue section was matched with the 

consecutive, immunostained tissue section, and the marked regions were traced on the 

immunofluorescent section. Immunohistochemically stained sections containing regions of 

interest were analyzed by laser confocal microscopy (Molecular Dynamics, Sunnyvale, CA).  

The illumination was provided by an argon/krypton laser with 488-, 568-, and 647-nm primary 

emission lines. Each image was scanned along the z-axis and the middle sectional plane was 

found (262,144 pixels per plane; 1 pixel, 0.25 µm2). Images were collected on a Silicon Graphics 

Inc. computer (Operating System Release 5.3, Farmington, MI) and analyzed using the Image 

Space software (Version 3.2, Molecular Dynamics). All multiple-label immunofluorescent 

images are 10-section projections.  

Each brain region from every macaque was randomly scanned in 10 microscopic areas 

(40X). The specimen was first scanned for fluorescein isothiocyanate (FITC) and Cy3 signals. 

Subsequently, the specimen was rescanned for Cy5 signal in the same sectional plane.  All  
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specimens were scanned at the same laser power aperture, gain, and photomultiplier tube settings 

for each wavelength. The number of pixels emitted by each signal was counted using the same 

collection parameters. Each area scanned encompasses an area of 67,600 µm2. 

For quantification of SIV-gp110 or CD68 pixels, pixel counts were obtained from 10 

microscopic areas within five brain regions. To compare the pixel counts collected in each brain 

region, the average pixel count was determined for each brain region within the three SIV-

infected macaques without encephalitis. Then for every macaque, each pixel value in a brain 

region was divided by the average pixel count in the analogous brain region of the SIV-infected 

macaques. The means of the normalized values were then calculated for each brain region in the 

SIV-infected macaques with and without encephalitis and control macaques and reported as fold 

difference in pixel counts. The fold difference in pixel counts for SIV-infected macaques with 

and without encephalitis each represent three macaques in which 10 areas in each brain 

region/macaque were scanned, giving a fold pixel count from 30 total areas. Fold difference in 

pixel counts for control macaques represent two macaques in which 10 areas in each brain 

region/macaque were scanned, giving a fold pixel count from 20 total areas. 

For quantification of MAP-2, synaptophysin, or GFAP pixels, pixel counts were obtained 

from 10 microscopic areas within five brain regions. To compare the pixel counts collected in 

each brain region, the average pixel count was determined for each brain region within the three 

SIV-infected macaques without encephalitis. Then for every macaque, each pixel value in a brain 

region was divided by the average pixel count in the analogous brain region of the normal, 

control macaques. The medians of the normalized values were then determined for each brain 

region in the SIV-infected macaques with and without encephalitis and control macaques, 

averaged, and reported as fold difference in pixel counts. The fold difference in pixel counts for 
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SIV-infected macaques with and without encephalitis each represent three macaques in which 10 

areas in each brain region/macaque were scanned, giving a fold pixel count from 30 total areas. 

Fold difference in pixel counts for control macaques represent two macaques in which 10 areas 

in each brain region/macaque were scanned, giving a fold pixel count from 20 total areas. 

Image Capture and Peroxidase Immunohistochemistry Quantitation 

Quantitation of the CD68-specific immunoreactivity of stained tissue sections was 

performed by capturing bright-field microscopic images in five random fields for each 

microanatomic location. Images were captured with a Spot RT Camera mounted on a Nikon 

E600 fluorescence microscope using a 60X Plan Apochromat objective. Image capture and 

analysis was performed using the Metaview software package (Universal Imaging Corporation).  

Each image was subjected to red, green, and blue color separation and the green signal was 

converted to monochrome. The image was then thresholded to highlight immunoreactive areas of 

the field and the percentage of surface area that was CD68-immunoreactive was measured. For 

each image the corresponding propidium iodide-stained image was captured using a FITC filter 

cube and the number of nuclei in each field was counted manually. 

Statistical Analysis 

Comparisons of pixel count, SIV RNA, and clinical parameter variances among groups 

were analyzed by two-way, unpaired Student’s t-test. A P value of <0.05 was considered 

significant. Correlation coefficients and t-tests were determined using Microsoft Excel:Mac 

2001. 
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Table 1. Macaque Infection Parameters        

      

 
*Severe SIVE is defined as the histopathological presence of abundant SIV-infected microglial 
nodules and multinucleated giant cells. Rare/no microglial nodules and no multinucleated giant 
cells were observed in SIV-infected macaques without encephalitis. Each macaque used in this 
study showed no histopathological abnormalities outside those associated with SIV 
encephalitis/infection. Control noninfected macaques showed no gross or microscopic 
pathological changes. 
 
†Some macaques were inoculated by intravenous (i.v.) routes. Macaque 221 was inoculated via 
bronchoscope with the bronchial alveolar lavage (BAL) from another macaque infected with 
SIV/dB670. Macaque 9221 was initially infected by rectal inoculation followed by another 
infection with the BAL from a SIV/dB670-infected macaque via bronchoscope. 
 
NA, not applicable; SIV/dB670, SIV/deltaB670. 

Monkey group* 
Monkey 
number Sex 

Age, 
months Virus 

Inoculation 
route† 

Length of 
infection, 

days 
604 F 33 SIV/dB670 i.v. 116 
603 M 75 SIV/dB670 i.v. 81 

Severe SIVE 

221 M 70 SIV/dB670 BAL 37 

9221 M 100 SIV/dB670 Rectal/BAL 379 
234 M 44 SIV/dB670 i.v. 360 

SIV without 
  encephalitis 
 236 F 42 SIV/dB670 i.v. 367 

421 F 66 NA NA NA Control 
422 M 53 NA NA NA 
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Table 2. Clinical Symptoms and Peripheral Blood Studies 

 

*Numbers reflect the total SIV/RNA copies/ml plasma at time of death. 
†Neurological signs are described in the Material and Methods section. 
NA, not applicable 

Monkey 
group 

Monkey 
number 

Peripheral 
viral load* 

Lymphocytes, 
% 

Total % 
CD4 cells Clinical symptoms† 

604 6.00 x 107 21 47 Anorexia, weight loss, electrolytes 
deteriorating 
 

603 5.30 x 108 37 37 Anorexia, weight loss, neurological 
signs  
 

Severe SIVE 

221 1.90 x 108 14 32 Weight loss, neurological signs 
 

9221 6.40 x 105 34 20 Weight loss, upper respiratory 
symptoms 
 

234 2.06 x 105 43 39 No symptoms 
 

SIV without 
  encephalitis 
 

236 4.70 x 102 32 33 No symptoms 
 

421 NA NA NA No symptoms 
 

Control 

422 NA NA NA No symptoms 
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3.1.4.  Results 

Total CD4+ T Cell Counts Were Not Different in SIV-Infected Macaques with and without 

Encephalitis, However, Plasma SIV RNA Concentrations Were Higher in Macaques with SIVE 

Tables 1 and 2 summarize clinical data from the six SIV-infected and two noninfected 

rhesus macaques evaluated in this study. Macaques that developed neurological signs had to be 

euthanized because of declining health after shorter periods of infection (P = 0.004) (Table 1). 

The two macaques (macaques 603 and 221) with neurological signs had SIVE, however, we had 

no direct means of determining how long they had encephalitis.  The plasma viral loads at time 

of sacrifice for each macaque in the severe SIVE group were 2 to 5 orders of magnitude higher 

than those measured in SIV-infected macaques without encephalitis (P = 0.2) (Table 2, Figure 

5B). Absolute CD4 counts between SIV-infected macaques with and without encephalitis were 

similar (Table 2). However, because of the heterogeneity of the peripheral infection in these 

macaques (eg, length of infection) these observations have no direct reflection on the CNS 

infection in these macaques. 

 

SIV-Infected Macaques with Encephalitis Had Concentrations of SIV RNA in Multiple Brain 

Regions that Were Five Orders of Magnitude Greater than Macaques without Encephalitis 

Most brain regions analyzed in macaques with SIVE contained 106 to 107 copies of SIV 

RNA/mg brain tissue (Figure 5A). Nonencephalitic SIV-infected macaques with mild 
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Figure 5. Macaques with histological evidence of SIVE had brain SIV RNA concentrations 5 
orders of magnitude greater than macaques without SIVE.  A: The number of SIV RNA 
copies/mg tissue extracted from different brain regions is shown for three macaques with SIVE 
( ) and two SIV-infected macaques without encephalitis ( ). Tissue from the globus 
pallidus for macaque 604 was not available. Quantitation of SIV RNA copies was determined by 
RT-PCR as described in the Materials and Methods.  SIV-infected macaques without 
encephalitis contained <200 SIV RNA copies/mg tissue in each brain region (average of 67 and 
median of 35 SIV RNA copies/mg tissue for all regions analyzed). Error bars for FC GM, FC 
WM, OC GM, and OC WM indicate the SD of the average of two separate brain areas for each 
region. Asterisks indicate statistically significant differences in number of SIV RNA copies/mg 
brain tissue between SIVE macaques with and without encephalitis. *, P < 0.05. B: Peripheral 
SIV load in the plasma at time of death. The number of SIV RNA copies/ml plasma for each 
macaque was determined by RT-PCR. The gray bars represent animals with SIVE, whereas the 
black bars correspond to SIV-infected macaques without encephalitis.  On average, macaques 
with encephalitis had 3 orders of magnitude greater concentrations of plasma SIV RNA than 
SIV-infected macaques without encephalitis. (The individual macaque number is shown on the x 
axis.) 
Abbreviations: SIVE, simian immunodeficiency virus encephalitis; MGN, microglial nodule; 
MGNC, multinucleated giant cell; FC GM, frontal neocortical gray matter; FC WM, frontal 
neocortical white matter; OC, occipital cortex; CAU, caudate; PUT, putamen; GP, globus 
pallidus; HIP, hippocampus; CB, cerebellum. 
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perivascular chronic inflammation contained <4 x 102 SIV RNA copies/mg brain tissue (Figure 

5A).  Most brain regions from these macaques had significantly less SIV RNA concentrations 

(101 to 102 SIV RNA copies/mg brain tissue) (P < 0.03) (Figure 5A) than macaques with SIVE. 

High Concentrations of SIV RNA in Brains of Macaques with SIVE Correlated with Profuse 

Microglial Nodules and Multinucleated Giant Cells 

H&E staining and immunohistochemical staining for SIV envelope protein gp110 

(SIVgp110) and macrophage/microglia-related molecule CD68 were performed on paraffin 

sections to determine the histological presence of encephalitis. Noninfected macaques showed no 

histopathological changes or cells stained positively for SIV proteins. Macaques with high CNS 

tissue concentrations of SIV RNA had profuse microglial nodules, severe perivascular chronic 

inflammation, and multiple multinucleated giant cells (Figure 6; A, B, and C). SIV-infected 

macrophages were observed in both parenchymal and perivascular locations.  

Although neuropathology was widespread in macaques with high CNS tissue 

concentrations of SIV RNA, the histopathological changes were most abundant in midfrontal 

neocortical white and gray matter and caudate regions. Substantial SIV RNA concentrations in 

the cerebellum were associated with abundant white matter macrophages that stained for SIV 

and relative sparing of cerebellar cortical foci. Rare SIV-infected perivascular macrophages were 

seen in macaques with brain SIV RNA concentrations lower than 4 x 102 SIV RNA. In SIV-

infected macaques without encephalitis, we observed rare or no monocytic infiltrates. 
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Figure 6. Immunofluorescent staining for macrophages and SIV envelope protein showed extensive co-
localization in SIVE. A, B, and C: Histological sections from the white matter of a macaque with SIVE 
(macaque 221). D, E, and F: Histological sections from the white matter of a SIV-infected macaque 
without encephalitis (macaque 236). A and D illustrate immunofluorescent staining for the SIV envelope 
protein gp110 (red, Cy3), and B and E show immunofluorescent staining for the macrophage-related 
protein CD68 (green, FITC) visualized by double-label immunofluorescent confocal microscopy. C and F 
show merged images with yellow indicating co-localization of SIV-gp110 and CD68. A, B, and C from a 
macaque with SIVE demonstrate a microglial nodule containing a multinucleated giant cell (arrow). A 
rare field in a macaque without SIVE (D, E, and F) shows a perivascular macrophage. Scale bar, 50 µm. 
G–J: To confirm the immunofluorescent quantification, a peroxidase-based technique was used to 
quantitate the percent surface area CD68+ macrophages cover in macaques with and without encephalitis. 
G and I show a histological section from the caudate of a macaque with SIVE (macaque 221). H and J 
show a histological section from the caudate of a SIV-infected macaque without encephalitis (macaque 
236). G and H show peroxidase staining for the macrophage-related protein CD68 (reddish-brown, 3,3’-
diaminobenzidine), and I and J show the nuclear counter stain of G and H (red, propidium iodide) 
visualized by fluorescence microscopy. 



 51 

CD68 Staining Was Most Abundant in the Putamen, Caudate, Hippocampus, and Frontal Cortex 

of Macaques with SIVE 

All brain regions of macaques with SIVE showed increased CD68 staining. Quantitation 

of pixels corresponding to CD68 immunostaining showed the greatest fold increase in the 

caudate and midfrontal neocortical gray matter (16- and 25-fold increase, respectively) (Figure 

7C). SIV-infected macaques without encephalitis showed more pixels corresponding to CD68 

than the noninfected control macaques, but this increase was not statistically significant (Figure 

7C). Using an enzymatic colorimetric method to quantitate CD68 staining in the same brain 

regions of the same macaques, we observed that ~1% of the surface area in each brain region 

was stained for CD68 in macaques with SIVE. The putamen showed the largest percentage of 

surface area stained for CD68 (1.4%). In SIV-infected macaques without encephalitis, <0.4% of 

surface area was stained for CD68 in all brain regions (Figure 7A). Compared to SIV-infected 

macaques without SIVE, all brain regions analyzed in macaques with SIVE showed a 3- to 11-

fold increase in the percentage of surface area stained for CD68 (Figure 7, A and B). 
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Figure 7. Quantitation of immunohistochemical staining for macrophages (CD68) and  
SIV envelope protein shows a 4- to 25-fold increase in brain regions with encephalitis versus 
those without encephalitis. A: CD68 staining covers ~1% of the surface area in most brain 
regions with encephalitis. The average percentage of surface area stained with CD68 was 
determined for each brain region of the SIVE and SIV without encephalitis groups. B: The 
neocortical white and gray matter exhibit the greatest difference in the percentage of surface area 
stained for CD68. Histogram plots show the fold increase of surface area stained for CD68 in 
macaques with or without SIVE compared to SIV-infected macaques without encephalitis. C: 
Quantitation of fluorescent pixels corresponding to CD68 is significantly increased in all brain 
regions of macaques with SIVE. Pixels were quantified in indicated brain regions using 
immunofluorescent laser confocal microscopy as described in the Materials and Methods.  
Average pixels staining for CD68 in each animal group were compared to SIV-infected 
macaques without encephalitis and reported as fold difference in pixel counts.  D: The number of 
pixels corresponding to SIV-gp110 envelope protein is significantly higher in the caudate, 
hippocampus, and white matter. Average immunofluorescent pixels for SIV-gp110 in each 
animal group were compared to SIV-infected macaques without encephalitis and reported as fold 
difference in pixel counts. Gray bars, SIVE; white bars, SIV without encephalitis; black bars, 
controls. Fold pixels listed on y-axes represent fold difference in pixel counts. *, P < 0.05. 
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Macaques with SIVE Had Increased Staining for SIV Envelope Protein in the Caudate, 

Hippocampus, and Frontal Cortex 

Figure 6 shows representative fields used to quantify CD68 and SIVgp110 in five brain 

regions of SIV-infected macaques with and without encephalitis. Quantitation of pixels 

corresponding to SIVgp110 staining was 2- to 13-fold higher in the caudate, hippocampus, and 

white matter of macaques with SIVE compared to nonencephalitic macaques (P < 0.005) (Figure 

7D). The midfrontal neocortical gray matter exhibited a 25-fold increase in SIVgp110 staining in 

macaques with SIVE, however, because of large variations in SIVgp110 staining the difference 

in this region was not statistically significant (P < 0.05). 

 

SIVE Is a Multifocal Disease with Tight Correlation between the Presence of Macrophages and 

SIV Antigen 

Wide variation within all brain regions analyzed demonstrated the multifocal nature of 

SIVE. As an example, the mean ± SD of the fold increase in SIVgp110 and CD68 staining 

within the midfrontal neocortical gray matter was 25 ± 86 and 25 ± 60, respectively. In macaques 

with SIVE, the majority of cells that were immunostained for CD68 also stained for SIVgp110 

(Figure 6C). Pixel quantification of CD68 and SIVgp110 staining showed a correlation 

coefficient of 0.91 in the putamen, 0.99 in the midfrontal neocortical gray matter, and 0.97 in the 

hippocampus. 
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Macaques with SIVE Showed Less Abundant Postsynaptic Protein MAP-2 Staining in the 

Caudate, Hippocampus, and Frontal Cortical Gray Matter than Macaques without Encephalitis 

To determine the relationship between postsynaptic damage and SIVE, quantification of 

postsynaptic protein MAP-2 staining was performed in gray matter regions from all macaque 

groups. A representative histological section from the caudate of a macaque with SIVE showed 

decreased MAP-2 staining (Figure 8A) compared to equivalent sections from SIV-infected 

macaques without encephalitis (Figure 8E). MAP-2 staining in the caudate, hippocampus, and 

midfrontal neocortical gray matter was 66 to 70% lower in macaques with SIVE than in both 

SIV-infected and noninfected macaques without encephalitis (Figure 9A). MAP-2 staining was 

also 37% lower in the putamen of macaques with SIVE, but this decrease did not achieve 

statistical significance. SIV-infected macaques without encephalitis exhibited significantly lower 

staining for MAP-2 in the midfrontal cortical gray matter than noninfected macaques (50% 

lower), however, the decrease was not as great as that observed in macaques with SIVE (Figure 

9A). 
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Figure 8. Macaques with SIVE show decreased staining for MAP-2 and synaptophysin. A–H: The 
relationship between MAP-2 staining and the presence of macrophages and SIV can be qualitatively 
appreciated in this triple label image. Images such as this were quantitated and plotted in Figures 9. A to 
D show histological sections from the caudate of a macaque with SIVE (macaque 603) immunostained 
for MAP-2 (A; blue, Cy5), SIV-gp110 (B; red, Cy3), and CD68 (C; green, FITC) visualized by triple-
label immunofluorescent laser confocal microscopy. E to H show histological sections from the caudate 
of a SIV-infected macaque without SIVE (macaque 236) immunostained for MAP-2 (E; blue, Cy5), SIV-
gp110 (F; red, Cy3), and CD68 (G; green, FITC). An overlay of the three preceding images is shown in D 
and H. Yellow shows co-localization. Scale bar, 20 µm. I–L: The relationship between synaptophysin 
staining and the presence of macrophages and SIV can be qualitatively appreciated in this triple label 
image. Images such as this were quantitated and plotted in Figures 9. I to L show histological sections 
from the hippocampus of a macaque with SIVE (macaque 604) immunostained for synaptophysin (SYN) 
(I; blue, Cy5), SIV-gp110 (J; red, Cy3), and CD68 (K; green, FITC) visualized by triple-label 
immunofluorescent laser confocal microscopy. M to P show histological sections from the hippocampus 
of a normal uninfected macaque (macaque 421) immunostained for SYN (M; blue, Cy5), SIV-gp110 (N; 
red, Cy3), and CD68 (O; green, FITC). An overlay of the three preceding images is shown in L and P. 
Yellow shows co-localization. Scale bar, 50 µm. 
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Immunostaining for the Presynaptic Protein Synaptophysin Was Decreased in SIV-Infected 

Macaques with and without Encephalitis 

To determine the relationship between presynaptic damage and SIVE, quantification of 

presynaptic protein synaptophysin staining was performed in gray matter regions from all 

macaque groups. A representative histological section from the hippocampus of a macaque with 

SIVE showed decreased synaptophysin staining (Figure 8I) compared to a noninfected macaque 

without encephalitis (Figure 8M). In contrast to MAP-2 staining, the number of pixels 

corresponding to synaptophysin was decreased in both SIV-infected macaques with and without 

encephalitis compared to noninfected macaques(Figure 9B). The putamen and hippocampus of 

SIV-infected macaques with and without encephalitis showed 60 to 80% lower synaptophysin 

staining than noninfected macaques without encephalitis (Figure 9B). Macaques with SIVE 

exhibited similar fold staining for synaptophysin in the caudate and frontal neocortical gray 

matter as noninfected controls, whereas SIV-infected macaques without encephalitis showed a 

significant decrease in synaptophysin staining in the frontal neocortical gray matter compared to 

noninfected controls (Figure 9B). 

 



 57 

Figure 9. MAP-2 staining is decreased in the brains of macaques with SIVE, whereas synaptophysin 
staining is decreased in the brains of SIV-infected macaques with and without encephalitis. A: The 
number of pixels corresponding to MAP-2 is significantly decreased in the caudate, neocortical gray 
matter, and hippocampus of macaques with SIVE compared to nonencephalitic and noninfected controls. 
Each indicated brain region was immunostained for MAP-2 and visualized by immunofluorescent 
confocal microscopy. Ten areas in each brain region were quantified for each animal and marker. To 
obtain the fold difference in pixel counts for MAP-2, the median pixel count for each animal, brain 
region, and marker was divided by the average pixel count for the corresponding brain region and marker 
of the control animals. B: The number of pixels representing synaptophysin is significantly decreased in 
the putamen and hippocampus of SIV-infected macaques with and without encephalitis. Each indicated 
brain region was immunostained for SYN and visualized by immunofluorescent confocal microscopy. 
Ten areas in each brain region were quantified for each animal and marker. To obtain the fold difference 
in pixel counts for SYN, the median pixel count for each animal, brain region, and marker was divided by 
the average pixel count for the corresponding brain region and marker of the control animals. C: GFAP 
staining is increased in the brains of macaques with SIVE. Each indicated brain region was 
immunostained for GFAP and visualized by immunofluorescent confocal microscopy. Ten areas in each 
brain region were quantified for each animal and marker. To obtain the fold difference in pixel counts for 
GFAP, the median pixel count for each animal, brain region, and marker was divided by the average pixel 
count for the corresponding brain region and marker of the control animals. The number of pixels 
corresponding to GFAP is significantly increased in the putamen, caudate, and neocortical gray and white 
matter of macaques with SIVE compared to nonencephalitic and noninfected controls. Error bars reflect 
positive error. Fold pixels listed on y-axes represent fold difference in pixel counts. Abbreviations are 
listed in Figure 9. CTX, neocortical frontal gray matter. *, P < 0.01. 
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Quantitative Immunostaining for GFAP Showed Prominent Gliosis in the Putamen, Caudate, 

and Frontal Cortex of Macaques with SIVE 

To determine the relationship between nonspecific CNS damage and SIVE, 

quantification of GFAP staining was performed in gray and white matter regions from all 

macaque groups. SIV-infected and noninfected macaques without encephalitis showed 2- to 100-

fold lower GFAP staining than macaques with SIVE (Figure 9C). The greatest fold increase in 

GFAP staining in macaques with SIVE compared to SIV-infected macaques without encephalitis 

was present in caudate and white matter (100-fold and 8-fold, respectively) (Figure 9C). 

Surprisingly, the hippocampus showed similar GFAP staining in all macaques.  SIV-infected 

macaques without encephalitis showed up to fivefold higher GFAP staining in putamen, caudate, 

and white matter than noninfected macaques. 

 

3.1.5. Discussion 

In lentiviral-associated dementia there has been considerable controversy regarding the 

relationship between neurological damage and the abundance of virus in the CNS (3, 32, 85, 124, 

125, 157, 187, 288, 394, 395, 397, 415, 418).  Because some investigators have found little HIV 

antigen in the brains of individuals with HIV-associated dementia, it has been suggested that the 

presence of activated macrophages/microglia in the CNS is a better correlate of dementia than 

the presence of HIV-infected macrophages (124).  Similar observations have been reported in the 

SIV model in which no clear relationship was discerned between neuropathology and the number 

of SIV-infected cells (32).  However, these reports used nonquantitative methodology, relying on 

nonquantitative scoring of immunohistochemistry and in situ hybridization in selected brain 

regions. Preservation and accessibility of viral proteins and nucleic acids using these techniques 
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is technique-dependent. Several other studies have shown that the severity of HIV and SIV 

encephalitis correlates with higher viral RNA concentrations in several brain regions using 

sensitive, quantitative RNA assays (85, 395, 397, 418). 

We have confirmed that the histological presence of encephalitis is associated with high 

concentrations of SIV RNA in most brain regions. Brains of SIV-infected macaques with 

histological findings of SIVE contained 5 orders of magnitude greater concentrations of SIV 

RNA than SIV-infected macaques without encephalitis. Because the macaque brains used in this 

study were not perfused with buffer after sacrifice, brain tissue extracts were necessarily 

contaminated with blood. Whether blood contamination contributed to the amount of SIV RNA 

quantified in brain tissue extracts depends on two factors: the level of virus in blood and the 

amount of blood in the tissue. Blood-borne SIV could be cell-associated or within the plasma. 

Because CD4 counts in these SIV-infected macaques were low, the amount of viral RNA derived 

from infected CD4+ T cells would not be expected to significantly contribute to the levels of SIV 

RNA measured in the brain. The SIV RNA load in plasma of macaques with SIVE was 5.3 X 108 

SIV RNA copies/ml plasma or less. If we assume the blood contaminating brain tissue extracts 

contained an upper limit of 1 X 106 SIV RNA copies/ml plasma, we would estimate that blood 

contamination of brain extracts would account for less than 1 X 104 copies/mg. Thus, the high 

RNA concentrations observed in most brain regions must be attributed to virus in brain tissue 

rather than blood contamination.  Lastly, we are assured blood contamination was not a factor in 

quantification of viral RNA in brain tissue extracts because the SIV-infected macaques without 

encephalitis had greater than 105 SIV RNA copies/ml plasma but less than 102 SIV RNA 

copies/mg brain tissue. 
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It is interesting that regions such as the cerebellum that traditionally have been reported 

to lack overt histopathology have similar concentrations of SIV RNA as regions with more 

abundant pathology. It has been reported that cerebellar cortex is not as affected 

histopathologically as the basal ganglia structures during lentiviral encephalitis (418).  We have 

observed such a pattern in patients with HIV encephalitis (397).  It has been reported that the 

deep cerebellar gray nuclei have abundant macrophages that stained for HIVgp41 

(transmembrane protein), whereas infected cells are rare in the cerebellar cortex (181).  In the 

animals used in this study, cerebellar white matter was also heavily infiltrated with SIV-infected 

macrophages (data not shown). Seemingly conflicting observations in cerebellar viral RNA 

concentrations might result from sampling different portions of the cerebellum. 

Vast differences in viral RNA concentrations between SIV-infected macaques with and 

without encephalitis makes the readily quantifiable RNA assay an unbiased tool for diagnosing 

lentiviral encephalitis. However, this approach quantifies the average amount of RNA within 100 

mg of brain tissue that contains ~500 million cells with abundant microenvironments potentially 

disparate in lentiviral presence. Defining proximal relationships between macrophage and viral 

factors requires more selective analysis than averages derived from measurements of 500 million 

cells. Using confocal microscopy, we quantified markers of virus and macrophages within 

discrete microenvironments and assessed the relationship of these markers to neuronal damage. 

There are three potential drawbacks to microscopy-based quantification of viral and host 

cell markers: necessity of using fixed tissue, observer bias in selecting regions for quantitation, 

and variability within individual microscopic fields. All of the macaque CNS tissues were fixed 

by immersion in 10% formalin. To control for any potential differences in antigen preservation 

during immersion fixation, we compared MAP-2 fluorescent staining in cerebellar cortical gray 
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matter (data not shown). No significant interspecimen variation was observed for this control 

antigen. To prevent observer bias, brain regions were defined by gross inspection of the slide and 

then circled. Random selection of microscopic regions within the encircled areas was performed 

by an observer blinded to animal disease status. Finally, to accommodate variability encountered 

within individual microenvironments (eg, presence of vessels of various calibers, presence of 

white matter tracts within basal ganglia structures, intranuclear histological variability), we 

acquired optical images within 10 fields for each brain region. Individual microenvironments 

showed the expected variability, however, comparison of the fluorescent-labeling averages 

between macaques with and without encephalitis showed significant differences. 

We compared our technique of quantifying fluorescent markers in microscopic fields to 

an enzymatic colorimetric quantification method. Using the colorimetric method, white matter of 

macaques with SIVE had the greatest fold increase in surface area stained for CD68, whereas 

with the confocal method frontal neocortical gray matter showed the greatest fold increase in 

fluorescent pixels stained for CD68. However, overall the two methods showed parallel trends in 

quantifying macrophages. 

Both CD68 and SIVgp110 staining were elevated in all brain regions of macaques with 

SIVE compared to SIV-infected macaques without SIVE. The greatest increases were seen in the 

midfrontal cortical gray matter and caudate suggesting that neurons in these regions are at greater 

risk of damage from soluble products secreted by activated and infected macrophages. Regions 

receiving projections from the caudate and midfrontal cortical gray matter would be at risk of 

secondary damage because of downstream events initiated at the soma of these neurons. 

The majority of activated macrophages in the brains of macaques with SIVE were 

infected with SIV. Examining individual microscopic fields, we estimated ~70 to 80% of 
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macrophages stain for SIVgp110. This observation is different from some previous reports. For 

instance, it has been reported that 16 to 25% of brain macrophages stained for HIV antigen 

(134).  However, this study analyzed a wide variety of neuropathological conditions (eg, 

opportunistic cytomegalovirus, Toxoplasma, cryptococcus) and was not restricted to assessment 

of lentiviral encephalitis. Other studies have also suggested that the majority of CD68-positive 

macrophages did not stain for SIV gp41 (418).  Some of the discrepancy between previous 

studies and ours might be attributed to differing sensitivities of antibodies for transmembrane 

(gp41) and surface unit glycoprotein (gp110). Additionally, in our studies raw pixel counts 

indicate that CD68 staining corresponded to more pixels than SIV staining in most microscopic 

foci.  Because CD68 is a marker of lysosomes and the antibody we used to stain SIV-infected 

cells is specific for viral envelope protein, it may not be appropriate to directly compare absolute 

CD68 and SIVgp110 pixel counts. Perhaps more meaningful is to compare fold changes in CD68 

and SIV immunostaining between encephalitic and nonencephalitic brains. 

Lentiviral encephalitis is a multifocal process with significant variation between 

microscopic regions. This is best shown by the large standard deviations in CD68 and SIVgp110 

quantification seen within all brain regions. To assess an individual brain nucleus, an average of 

numerous fields is required to compensate for microscopic variation. Microscopic foci within 

brain regions of macaques with abundant macrophage infiltration and viral infection show loss of 

synaptic proteins. Compared to macaques without encephalitis, macaques with SIVE had 

significant decreases in MAP-2 staining in the caudate, midfrontal cortical gray matter, and 

hippocampus suggesting primary postsynaptic damage. Others have also reported decreases in 

dendritic proteins in SIV-infected cynomologus macaques soon after infection, but these 

decreases were independent of concentrations of SIV DNA in the brain (246).  It is surprising 
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that staining for MAP-2 was increased in the putamen of SIV-infected macaques without 

encephalitis compared to both encephalitic and noninfected controls. It is possible to hypothesize 

that neurons that have postsynaptic processes in the putamen generate a temporary response to 

acute damage by dilating postsynaptic processes, but ultimately undergo atrophy because of the 

chronic insult of encephalitis.   

Staining for the presynaptic protein, synaptophysin, was also decreased in the putamen 

and hippocampus of macaques with SIVE and the putamen, caudate, midfrontal cortical gray 

matter, and hippocampus of SIV-infected macaques without encephalitis. This finding is 

consistent with a recent report showing decreased synaptophysin immunoreactivity in macaque 

brains soon after infection with SIV (131).  However, it is puzzling that greater decreases in 

synaptophysin staining were not observed in the encephalitic macaques in this study. The vast 

interconnectivity of the brain complicates this analysis by requiring some means of dissecting 

out synaptic damage distal to affected neuronal soma. In support of indirect mechanisms leading 

to decreases in synaptic proteins, we have shown that GFAP staining is increased in most brain 

regions in macaques with SIVE. As we and others have observed, SIV-infected macaques 

without encephalitis also showed increases in GFAP staining compared to noninfected controls 

although far less than that observed with encephalitis (131). As the hippocampus is particularly 

sensitive to hypoxia/ischemia, the absence of increased gliosis in the region suggests that the 

neuropathological damage observed in SIVE is not related to diffuse ischemic injury, but more 

specifically related to the encephalitis itself. 

Finding presynaptic damage in SIV-infected macaques independent of encephalitis and 

postsynaptic damage dependent on local presence of encephalitis suggests the following 

hypothesis: presynaptic components are susceptible to systemic toxins generated as a result of 
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lentiviral infection, whereas postsynaptic elements are susceptible to degradation by products of 

locally activated and infected macrophages within the CNS. In support of this hypothesis, we 

observed less synaptophysin staining in neocortical gray matter, caudate, and putamen of SIV-

infected macaques without encephalitis than in SIV-infected macaques with encephalitis. The 

SIV-infected macaques had longer periods of infection, raising the possibility that presynaptic 

damage is a consequence of longer peripheral infection. Because synaptophysin is a functional 

protein and MAP-2 is a structural protein, this hypothesis may extend to functional proteins 

being susceptible to systemic toxins produced during lentiviral infection, whereas structural 

proteins are damaged by CNS lentiviral infection.  Presynaptic and postsynaptic damage may 

progress to neuronal loss in the brains of lentiviral encephalitic macaques. MAP-2 functions are 

modulated by phosphorylation through NMDA receptor-associated signal transduction pathways 

and subsequent activation of nitric oxide synthase and MAP kinase (203).  Secretion of NMDA 

receptor agonists such as quinolinic acid by activated macrophages might result in 

hyperphosphorylation of MAP-2 and subsequent destabilization of microtubules leading to 

neuronal degeneration (59).   

In the current study we have attempted to examine the hypothesis that loss of synaptic 

proteins may spatially correlate with the presence of pathology in macaques with SIVE. We 

quantified increases in CD68, SIV envelope protein gp110, and GFAP in encephalitic macaques. 

Presynaptic proteins were decreased in SIV-infected macaques independent of encephalitis, 

whereas loss of postsynaptic proteins was linked to encephalitis. Quantitation of synaptic 

proteins in brain regions with abundant SIV-infected and -activated macrophages points to  
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indirect mechanisms of neuronal damage. Future studies to elucidate mechanisms of neural 

damage will require compensating for the high degree of microregional variability in 

neuropathology of lentiviral encephalitis. 
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3.2.1. Abstract 

 The histopathological hallmark of lentiviral-associated encephalitis is an abundance of 

infected and activated macrophages within the brain.  Why a subset of infected hosts develop 

lentiviral encephalitis and others do not is unknown. Using a CD8+ T cell-depletion model of 

simian immunodeficiency virus (SIV)-infected rhesus macaques, we examined the relationship 

between peripheral SIV infection of monocyte/macrophages and the development of 

encephalitis.  At the same time CSF viral load increased in macaques that developed 

encephalitis, we observed that monocyte-derived macrophages from these macaques produced 

more virus than macaques that did not develop encephalitis.  However, during the course of 

infection, the number of blood monocyte-associated SIV DNA copies did not distinguish 

macaques that developed SIVE from macaques that did not develop encephalitis.    

Paradoxically, in this model, macaques that developed encephalitis had fewer SIV-infected 

macrophages in lungs and thymus at postmortem than macaques that did not develop 

encephalitis.  These findings suggest that inherent differences in host monocyte viral production 

are related to development of encephalitis.   
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3.2.2.  Introduction  

Approximately 1/4 of immunosuppressed AIDS patients develop a neurodegenerative 

disorder clinically characterized as HIV-associated dementia complex (HIVD) (79).  HIVD is a 

clinical syndrome associated with cognitive, motor, and behavioral deficits that are thought to be 

mediated by diffuse neuronal damage and loss.  In the absence of opportunistic infections of the 

central nervous system (CNS), HIV encephalitis (HIVE) appears to be the pathological substrate 

for HIVD (394).  The pathological hallmarks of HIVE are microglial nodules, multi-nucleated 

giant cells, and the presence of abundant activated or HIV-infected macrophages (42).  The 

pathogenesis of neuronal injury is unknown as there is little evidence of convincing neuronal 

infection.  Current hypotheses suggest a myriad of secreted products from infected and activated 

macrophages might interact with neurons or activate astrocytes to initiate synaptic damage 

followed by neuronal death (123, 198, 262, 293). 

Simian immunodeficiency virus (SIV)-infected macaque models share numerous 

characteristics with human HIV infection including development of encephalitis in a variable 

percentage of infected macaques (~25%).  Factor(s) determining whether macaques develop 

simian immunodeficiency virus encephalitis (SIVE) have not been defined; however, incidence 

of encephalitis and speed of onset (~6-36 months) vary with primate species and viral strains (22, 

75, 415).  Macrophage-tropic SIV is the predominant virus found in the CNS of macaques with 

SIVE (155, 213).  Abundance of macrophage-tropic variants within the host is necessary, but not 

sufficient, for development of encephalitis (155, 213)  This suggests that either additional viral  
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determinants or host factors influence the ability of virus to replicate in brain macrophages.   

Macaques that exhibit rapid disease progression (391) or low anti-SIV antibody titer one month 

after infection (268) are more likely to develop encephalitis.   

Development of two macaque models that have rapid disease progression are associated 

with increased incidence of CNS disease (80-90%)(323, 324, 416). One model uses infection of 

pigtailed macaques with two viral strains that results in immunosuppression and replication in 

macrophages (416).  The second model uses treatment of rhesus macaques with an anti-CD8 

antibody at the time of infection resulting in decreased control of viral replication due to 

depletion of CD8+ T cells and NK cells (323, 324).  These models suggest innate host factors are 

important determinants of encephalitis.   However, it is still unclear why activated and infected 

macrophages are abundant in the CNS of only some lentiviral-infected hosts.     

Since HIV and SIV can be recovered from the cerebral spinal fluid (CSF) during the 

acute phase of infection (11, 62, 101, 121, 180, 252, 302, 341), it is possible that virus enters the 

brain and establishes either a chronic active or a latent infection.  Most studies suggest that CNS 

infection is suppressed while the host has an intact immune response.  Both HIV DNA (89, 134, 

360) and SIV DNA (66) are present at low levels in brain tissue from asymptomatic individuals.  

This leaves open the possibility that late stage encephalitis may result from activation of latent 

CNS virus seeded at the time of primary infection or may result from newly trafficked virus 

entering the brain within infected macrophages. 

It has been reported that the incidence and severity of HIVD (37, 90, 118, 136, 312) and 

HIVE have decreased since the advent of highly active antiretroviral therapy (HAART) (223).  

Since HAART is usually not administered during primary infection, a decrease in incidence of 

HIVE in individuals on HAART suggests that suppression of later plasma viremia decreases the 
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incidence of encephalitis.  Infected macrophages in the brains of HIV- and SIV-encephalitic 

individuals are predominantly distributed in perivascular areas suggesting recent entry (259, 

400). These observations suggest that development of HIVE may be the result of new virus 

entering the CNS; however, it is unclear whether these recently entered macrophages were 

infected prior to entering the brain or became infected after entering the brain.  Since disruption 

of the physical blood brain barrier is a late event, cell free plasma virus is unlikely to enter the 

CNS but rather virus probably enters the CNS within monocytic elements (Trojan Horse Theory) 

(80, 281).  Alternatively, cell free virus may enter the CNS throughout the course of infection or 

at late stages of infection and only when the immune system fails to curb infection of CNS 

macrophages does encephalitis develop.   

It has been theorized that development of encephalitis may be due to increased trafficking 

of HIV-infected monocytes. (54, 188)  Infection of circulating CD4+ T cells has been studied 

extensively in both HIV and SIV (12, 194, 275), but much less is known regarding infection of 

circulating monocytes.  To begin to understand the role of monocyte infection outside of the CNS 

during the development of SIVE, it is necessary to longitudinally compare infection of circulating 

monocytes with the systemic parameters of disease progression and the presence or absence of 

SIVE at necropsy.  We sought to determine whether monocyte/macrophage elements from 

macaques that develop SIVE harbor more productive infection than macaques that do not develop 

encephalitis.  Using the CD8+ T cell-depletion model, we addressed the following questions with 

the aim to examine the relationship between peripheral SIV infection of macrophages and the 

development of SIV encephalitis.  During the time course of infection do macaques that develop  
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encephalitis have more circulating infected monocytes or do their monocytes produce more virus 

after differentiation into macrophages? Is robust macrophage infection unique to the brain or 

present throughout the body? 

 

3.2.3. Materials and Methods 

Animals 

Rhesus macaques (Macaca mulatta) were housed and maintained according to American 

Association of Laboratory Animal Care standards.  Macaque information is described in table 3.  

Ten rhesus macaques were treated with CD8 depleting antibody (324) at –3, 0, and 4 days post-

infection.  Depletion of CD8+ T cells was confirmed by flow cytometry.  At day 0, macaques 

were inoculated with SIVDeltaB670 viral swarm by intravenous injection.  Macaques were 

observed daily for clinical signs of anorexia, weight loss, lethargy, or diarrhea.  Two of the 

macaques were humanely sacrificed at two and four weeks post-infection prior to onset of 

clinical signs.  The eight remaining macaques were euthanized upon development of AIDS.  A 

macaque is considered to have AIDS when SIV infection has progressed to the end stage with 

severely depressed T cell counts and is non-responsive to treatment as determined by clinical 

observations (e.g. increased body temperature, sustained weight loss of 20% or greater, anorexia, 

lymphadenopathy and splenomegaly, changes in activity, diarrhea unresponsive to treatment, or 

opportunistic infections).  Animals moribund with AIDS were euthanized.  Ages of the 

macaques ranged from 22 to 46 months (age at time of necropsy). Complete necropsies were 

performed after humane sacrifice. 
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Cell counts 

Whole peripheral blood samples obtained from SIV-infected macaques at –3, 0, 4, 7, 14 

days post-infection and every 2 weeks thereafter were incubated with fluorochrome-conjugated 

monoclonal antibodies for 30 minutes, 4˚C.  For CD4+ and CD8+ T cell count determination:  

100-µl of blood was stained with PerCP-conjugated anti-CD4 (clone L200; BD Biosciences 

Pharmingen, San Diego, CA), fluorescein isothiocynate (FITC)-conjugated anti-CD3 (clone 

FN18; Biosource, Camarillo, CA), and phycoerythrin (PE)-conjugated anti-CD8 (clone DK25, 

DakoCytomation; Carpinteria, CA).  For CD4+CD29+ T cells, 100-µl of blood was stained with 

PerCP-conjugated anti-CD4, FITC-conjugated anti-CD3, and PE-conjugated anti-CD29 (clone 

4B4LDC9LDH8; Beckman Coulter, Hialeah, FL).  For monocyte count determination:  100-µl 

of blood was stained with FITC-conjugated anti-CD14 (clone RM052; Beckman Coulter).  Red 

blood cells were lysed using 2 ml Vitalyse (BioE, Inc., St. Paul, MN), 30 min, room temperature.  

Cell suspensions were centrifuged and washed with phosphate buffered saline (PBS) containing 

4% fetal bovine serum.  Cell suspensions were centrifuged and resuspended in PBS containing 

1% paraformaldehyde.  The percentage of CD8+/CD3+, CD4+/CD3+, CD4+/CD3+/CD29+, and 

CD14+ cells was determined on an XL2 flow cytometer (Beckman Coulter).  Absolute cells 

numbers were calculated by multiplying the percentage of cells by the absolute lymphocyte or 

monocyte counts obtained from blood differential cell counts as previously described (219). 
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CD8 depletion 

The cMT-807 mAb was obtained from Dr. Keith A. Reimann through the National 

Institutes of Health National Center for Research Resources.  Ten rhesus macaques were treated 

with anti-CD8 monoclonal antibody cM-T807 as previously described (324).  Briefly, 3 days 

before inoculation with SIVDeltaB670, each macaque was administered 10 mg/kg cM-T807 

subcutaneously.  On day 0 and 4 post-infection, each macaque was administered 5 mg/kg cM-

T807 through intravenous injection.  

 

Tissue 

Blood samples were obtained immediately pre-infection and on post-infection days 3, 7, 

14, 21, 28 and every two weeks thereafter.   

CSF draws were attempted every two weeks post-infection.  CSF was aliquoted and 

stored at –80˚C.   

Brains were removed immediately after euthanasia and processed for analysis.  With the 

exception of M141, who died unexpectedly, all macaques were perfused with saline before 

necropsy.  Regional samples were cut from the left hemisphere, snap-frozen, and stored at –

80˚C.  The right hemisphere was fixed in 10% buffered formalin (Fisher Scientific, Pittsburgh, 

PA).  Coronal sections were made, and tissue blocks were paraffin-embedded.  Six-µm sections 

were made for histopathological analysis.   

Portions of liver, lung, small bowel, thymus, spleen, and spinal cord were removed 

immediately after euthanasia and fixed in 10% buffered formalin.  Sections of each organ were 

made, and tissue blocks were paraffin-embedded.  Six-µm sections were made for 

histopathological analysis. 
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Histology 

To assess each macaque brain for the presence of SIVE, paraffin sections of brain tissue 

containing neocortical gray and white matter, caudate, putamen, hippocampus, occipital cortex, 

and cerebellum were stained with hematoxylin and eosin (H&E).  SIVE was empirically defined 

as the presence of microglial nodules, multinucleated giant cells, and profuse perivascular 

mononuclear infiltrates.  The morphological distribution and abundance of 

macrophage/microglia and SIV-infected cells was assessed using a monoclonal antibody against 

macrophage/microglia-associated protein CD68 (clone KP1; DakoCytomation) and a polyclonal 

antibody against the SIV envelope gp110 (generously provides by Dr. Kelly Stefano Cole and 

Dr. Ron Montelaro, University of Pittsburgh, Pittsburgh, PA), respectively.  Three of the ten 

macaques showed histological findings of SIVE.  The remaining seven macaques did not show 

histopathological features of SIVE.  However, some of the macaques showed rare perivascular 

infiltrates with three of the non-encephalitic macaques showing histological signs of meningitis 

(Table 3).   

 

Quantitation of SIV RNA in Plasma and CSF 

Virions from either 1 ml of plasma or 500 µl CSF were pelleted by centrifugation at 

16,000 x g or 23,586 x g for 1 hour.  Total RNA was extracted from the virus pellet using Trizol 

(Life Technologies, Inc.).  Real-time reverse transcriptase (RT)-PCR was performed with 20 µl 

of each RNA sample as previously described (28).  Primers and probes were specific for the SIV 

U5/LTR region. 
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SIV DNA quantitation 
 

PBMC were isolated by density gradient using Ficoll-Paque (Amersham Biosciences, 

Piscataway, NJ).  107 PBMC were incubated with CD14 Microbeads (Miltenyi Biotec, Bergisch 

Gladbach, Germany).  Magnetic separation was performed using MiniMACS Separator with MS 

Columns (Miltenyi Biotec) according to manufacturer’s recommendations.  Purified monocytes 

were obtained from the positive fraction.  Purity was evaluated by incubating a portion of the 

positive fraction with FITC-conjugated anti-human CD14 (clone RM052, Beckman Coulter) and 

PE-conjugated anti-human CD3 (clone FN18; Biosource) and analyzing using an EPICS XL-2 

flow cytometer (Beckman Coulter).  Purity ranged from 95-98%. Cells were pelleted at 14,000 

rpm for 1 minute and frozen.  DNA was isolated from thawed samples using Qiagen DNA Blood 

Mini Kit (Qiagen, Valencia, CA) and resuspended in 50 µl of H20.  The total amount of DNA 

was measured using the NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies, 

Wilmington, DE).  

Quantitation of cell-associated DNA was performed by real-time PCR in a Prism 7700 

(Applied Biosystems (ABI), Foster City, CA).  The PCR reaction was performed in triplicate 

adding 47 µl of a PCR master mix containing 5.5 mM MgCl2, 1X PCR buffer A (ABI), 300 mM 

of each dNTP, 400 nM of each primer, and 200 nM of probe to 3 µl of each samples in a 96-well 

plate.  The primers and probe used were described previously (28, 109).  To generate a standard 

curve, serial dilutions of DNA containing the SIV target region, ranging from 101 to 106 

copies/reaction, were subjected to PCR in triplicate along with experimental samples.  SIV DNA 

copy numbers from unknown experimental samples were calculated from the standard curve.   
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This result was normalized for volume adjustments (# SIV DNA copies/cell), multiplied by the 

number of circulating monocytes/ml blood as determined by complete blood count and 

differential, and reported as number of SIV DNA copies from CD14+ monocytes/mL blood. 

 

Ex vivo cultures to assess p27 production 

 PBMC were isolated from whole blood by Ficoll-Paque (Amersham Biosciences).  For 

monocyte-derived macrophage (MDM) cultures, 3 x 106 PBMC were plated in 2-well Lab-Tek 

Permanox Chamber Slides (Nalge Nunc International, Rochester, NY) in AIM-V media 

(Invitrogen - Gibco, Carlsbad, CA) supplemented with 20% fetal calf serum (FCS), 10 ng/ml 

monocyte-colony stimulating factor (Sigma-Aldrich, St. Louis, MO), and 10 ng/ml granulocyte 

monocyte-colony stimulating factor (Sigma-Aldrich).   On day 4 of culture, chamber slides were 

washed three times with sterile PBS to remove nonadherent cells and maintained in AIM-V 

supplemented with 20% FCS.  Complete media changes were performed at 7, 10 and 14 days 

post-incubation. Virus production was measured on day 14 supernatants using the SIV Core 

Antigen ELISA kit (Beckman Coulter) according to manufacturer’s recommendations.  The 

MDMs in the chamber slides were washed 3 times with PBS and fixed with 4% 

paraformaldehyde.  In order to assess the purity and infection of MDM cultures, slides were 

immunofluorescently stained for macrophages as described for formalin fixed paraffin-

embedded tissue (28).  This affirmed the majority of cells in the culture were MDMs. 

 For nonadherent cell cultures, 1 x 106 PBMC were added to 12-well plates in RPMI-1640 

containing L-Glutamine (Invitrogen – Gibco) supplemented with 10% FCS, 40 U/ml 

recombinant human interleukin-2 (IL-2) (Roche Diagnostics Corporation, Indianapolis, IN), and 

5 µg/ml phytohemagglutinin-L (PHA) (Roche Diagnostics Corporation).  On day 4, PHA was 
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removed by washing the cells in RPMI-1640 containing L-Glutamine supplemented with 10% 

FCS and 40 U/ml IL-2. Complete media changes were performed at 7, 10 and 14 days post-

incubation.  Cells were maintained at a concentration of 1 x 106 cells/ml. Virus production was 

measured on day 14 culture supernatants using the SIV Core Antigen ELISA kit (Beckman 

Coulter) according to manufacturer’s recommendations.  

 

Immunofluorescent Histochemistry 

Paraffin sections containing neocortical gray matter, basal ganglia, and hippocampus 

were stained for macrophage associate lysosomal marker CD68, SIV envelope protein 

SIVgp110, microtubule-associated protein-2 (MAP-2) (SMI 52; Sternberger Monoclonals Inc., 

Lutherville, MD), synaptophysin (SY 38; DakoCytomation), or glial fibrillary acidic protein 

(GFAP) (6F2; DakoCytomation) and detected with fluorogen tags as described previously (28).  

Double-label immunofluorescence stains using antibodies from the same species were performed 

using Tyramide Signal Amplification (PerkinElmer Life and Analytical Sciences, Boston, MA) 

for one of the labels (386).   

For triple-label immunofluorescence, double-label immunofluorescence staining without 

tyramide amplification was performed first followed by incubation with a directly conjugated 

fluorescent monoclonal antibody. GFAP mouse monoclonal antibodies were conjugated with 

Alexa Fluor 555 using Zenon Tricolor Mouse IgG1 Labeling Kit (Molecular Probes, Eugene, 

OR) according to manufacturer’s recommendations.  The double- labeled immunofluorescent 

slides were incubated with the conjugated antibody for 2 hours at room temperature.  Slides were 

washed in 0.5% Tween-20 buffer followed by PBS and fixed in 4% formaldehyde in PBS for 15 

minutes at room temperature.  Slides were mounted in gelvatol (1). 
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Double-label immunofluorescence was performed on paraffin sections of liver, lung, 

small bowel, thymus, spleen, and spinal cord in order to assess the number of SIV-infected T 

cells and macrophages.  Staining of the organs was performed as described for brain.  A 

polyclonal antibody (DakoCytomation) or monoclonal antibody (CD3-12; Abcam, Cambridge, 

MA) against CD3 was used to visualize T cells.  The following monoclonal antibodies against 

macrophage markers were used in order to determine the identity of SIVgp110+ cells that did not 

co-label with CD68 or CD3:  HLA-DR (DK22; DakoCytomation), HAM56 (HAM56; 

DakoCytomation), and CD163 (Ber-MAC3; DakoCytomation). 

 

Laser Confocal Microscopy Quantification 

 Quantification of immunofluorescent staining was performed as described previously (28, 

158).  Regions of macaque brains containing neocortical frontal gray matter, basal ganglia 

(caudate and putamen), and hippocampus were identified on slides immunofluorescently stained 

with antibodies to MAP-2, CD68, or synaptophysin.  The regions of interest were analyzed by 

laser confocal microscopy (LSM 510, Zeiss, Jena, Germany).  The illumination was provided by 

Argon (458, 477, 488, 514 nm, 30mW) lasers.  Each image was scanned along the z-axis and the 

middle sectional plane was found (262,144 pixels per plane; 1 pixel, 0.25 µm2).  Digital images 

were captured and analyzed with LSM 510 3.2 software (Zeiss).   

 Each brain region from every macaque was randomly scanned by an individual blinded to 

the status of the macaques in 10 microscopic areas (40X) encompassing 106,100 µm2.  Scanning 

parameters such as laser power, aperture, gain and photomultiplier tube settings for each 

wavelength were kept constant for each macaque specimen.  The number of pixels (area) and the 

intensity of staining (mean fluorescent intensity (MFI)) emitted by each signal were enumerated 
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using a constant threshold that minimized signal due to autofluorescence.  The MFI was 

multiplied by the area stained to measure the total staining for each label in the scanned area.  

The total staining value (MFI * area) enumerated from the average of ten scanned areas in a 

brain region represents a measure of the label in that brain region. 

 

Organ SIV-Infected Cell Counting 

 Slides with sections of liver, lung, small bowel, thymus, spleen, and spinal cord were 

immunofluorescently stained with antibodies to CD68 and SIVgp110 or CD3 and SIVgp110. 

Digital images were captured using the LSM 510 3.2 software (Zeiss).  Each organ from every 

macaque was randomly scanned by an individual blinded to the status of the macaques in 10 

microscopic areas (40X) encompassing 106,100 µm2.  Scanning parameters such as laser power 

aperture, gain and photomultiplier tube settings for each wavelength were kept constant for each 

macaque specimen. Three blinded reviewers enumerated the number of double-labeled cells 

(CD68+SIVgp110+ or CD3+SIVgp110+) and single-labeled SIV+ cells.  The three values from 

each observer were averaged to represent the number of infected cells in that organ area.   

 

Statistical Analyses 

 Data were analyzed using PRISM 4.0b software (GraphPad Software, Inc., San Diego, 

CA).  We compared each separate variable in two independent, unpaired groups using two-tailed 

Mann-Whitney tests for non-parametric independent comparisons with 95% confidence 

intervals.  Data were analyzed comparing macaques with SIVE to macaques without encephalitis 

at each time point rather than comparing the longitudinal trend within the same group. Since two  
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macaques were experimentally sacrificed prior to developing symptoms that required humane 

sacrifice, they were not included in statistical analyses comparing macaques with SIVE to 

macaques without encephalitis. 

 

3.2.4. Results 

CD8 Depletion of SIV-Infected Macaques Led to Rapid Progression and SIVE in Three 

Macaques. 

Table 3 summarizes clinical and pathological data from ten SIV-infected and two non-

infected rhesus macaques followed in this study.  Two of the ten SIV-infected macaques were 

sacrificed at pre-determined time points while they were asymptomatic.  These macaques were 

not included in the statistical analysis.  The brainstem of one of these macaques (M154) had been 

accidentally nicked by a needle during a CSF draw. Interestingly, based on 

immunohistochemical staining, the numerous infiltrating macrophages were not infected with 

SIV.  Inflammation was observed in the choroid plexus of each of the time sacrificed macaques 

at necropsy.  In M152, there were SIV-infected macrophages in the inflamed choroid plexus.  

The remaining eight macaques were euthanized upon development of clinical AIDS.  Three of 

the eight (38%) macaques developed SIVE (Figure 10). Three other macaques developed 

meningitis without encephalitis.  One macaque (M135) had a mild, focal leukoencephalitis, but 

this was not classified as SIVE since there were no SIV-infected cells present on 

immunohistochemical evaluation. 

With CD8 depletion, survival time after infection was short for all macaques (range = 56-

192 days; mean = 103.4 days; median = 80.5 days). If rapid progression is defined as death from 

AIDS within 200 days of infection (391), then all eight CD8 depleted macaques were rapid 
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progressors. The average survival time for macaques that developed SIVE (mean = 71 days; 

median = 56 days) was shorter than macaques that did not develop SIVE (mean = 122.8 days; 

median = 81 days), but this was not statistically significant (P = 0.48).  

Monoclonal antibody against CD8 administered around the time of infection effectively 

reduced circulating CD8+ T cells to ~3% (0-14 days post-infection) and ~15% (21-28 days post-

infection) of pre-infection levels (Figure 11b).  CD8+/CD3- cells were also depleted during this 

time period (data not shown).  Surprisingly, macaques that developed SIVE regained circulating 

CD8+ T cells sooner than macaques that did not develop encephalitis at two weeks post-infection 

(P < 0.05), although they never reached pre-infection levels during the course of infection 

(Figure 11b).  Previous studies treating macaques with the same CD8 depleting antibody or an 

irrelevant antibody showed preservation of function in other arms of the immune system (323, 

324).  General immune activation was not observed in non-infected macaques treated with the 

CD8 depleting antibody.  As noted in these previous studies, histological evaluation of lymph 

node biopsies did not demonstrate evidence of pathological changes associated with antibody 

treatment.   

 

Peripheral Blood CD4+CD29+ T Helper Cells Diminished Earlier In Macaques That Developed 

SIVE. 

 The average absolute CD4+ T cell and monocyte counts between macaques with and 

without encephalitis were similar (Figure 11a and c).  Pre-infection average CD4+ T cell counts 

were lower in macaques that developed SIVE (Figure 11a), but in this small number of animals 

the difference was not statistically significant.  The same trend was observed with average pre-

infection CD8+ T cell counts (Figure 11b).  The peripheral CD4+CD29+ T cell subset declined 
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from day 4 to 14 after infection (mean of 24. 4% to 3.3%; median of 22.5% to 0%) in macaques 

that developed encephalitis, while macaques that did not develop encephalitis had a less steep 

decline (mean of 32.8% to 22%; median of 31.3% to 18.7%) (Figure 11d).  The difference in 

mean percentage of CD4+CD29+ T cells between macaques that did and did not developed 

encephalitis approached statistical significance (P = 0.067) at 2 weeks post-infection. 

 

Plasma Viremia Was Greater at One and Three Weeks Post-Infection In Macaques That 

Developed SIVE.  

 Plasma viremia in all CD8 depleted macaques was high (Figure 12a).  In macaques that 

developed encephalitis, mean/median plasma viremia was 1.5 orders of magnitude higher at 1 

and 3 weeks post-infection compared to SIV-infected macaques that did not develop encephalitis 

(P < 0.05).  The two macaques that survived for 192 days (M145 and M147) suppressed plasma 

viremia at six weeks post-infection (1-2 log drop in plasma viremia), while all other macaques 

exhibited unsuppressed plasma viremia throughout the course of infection.   

 

CSF of Macaques That Developed SIVE Contained More SIV RNA Beginning at Six to Eight 

Weeks Post-Infection.  

CSF viral load was similar in all macaques during the first four weeks after infection 

(Figure 12b).  Between six and eight weeks post-infection, macaques that developed encephalitis 

showed higher mean/median CSF SIV RNA copies/ml.  By eight weeks post-infection, CSF viral 

loads in macaques that developed SIVE were two orders of magnitude higher than macaques that 

did not develop encephalitis.  Median CSF SIV RNA viral loads were two orders of magnitude 

higher in macaques that developed SIVE at the time of death (Figure 12c). 
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Figure 10.  Triple-label immunofluorescent staining for macrophage marker SIV envelope 
protein (red, Cy5), CD68 (green, Alexa488), and astrocyte marker GFAP (blue, Alexa Fluor 555) 
shows infected macrophages in a microglial nodule from a CD8+ T cell-depleted rhesus macaque 
with SIVE. Yellow indicates co-localization of CD68 and SIV. Aqua would show co-localization 
of SIV and GFAP, however no productively infected astrocytes were detected.  Scale bar: 20 
µm. 
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Table 3.    Rhesus macaque Age, Sex, Infection Parameters, and Neuropathological and Clinical 
Diagnosis. 

 

 
Monkey 
Number 

Age 
(mo) 

Disease at 
time of 

sacrifice 

Length of 
Infection 

(d)& Neuropath Dx Clinical Dx 
SIV 

encephalitis 
M139 34 AIDS 56 SIVE, 

meningitis, SIV 
myelitis 

open-mouth 
breathing; 
anorexia; diarrhea 

 M140 46 AIDS 56 SIVE, SIV 
myelitis 

anorexia, diarrhea 

  M144 39 AIDS 101 SIVE, SIV 
myelitis 

bloody nose; 
lethargic; difficulty 
breathing 

SIV without 
encephalitis 

M141 22 AIDS 69 NPC diarrhea 

 M135 34 AIDS 80 leukoencephalitis*, 
meningitis 

scrotal and facial 
edema 

  M158 23 AIDS 81 meningitis anorexia, diarrhea 
 M145 45 AIDS 192 NPC lymphadenopathy 
 M147 41 AIDS 192 NPC lymphadenopathy 
SIV without 
encephalitis  

M154 32 asymptomatic 16 choroid plexitis  ataxic 

timed 
sacrifice% 

M152 39 asymptomatic 30 meningitis: 
choroid plexitis 

diarrhea 

non-infected 
controls 

M405 na NA NA control NA 

  M421 66 NA NA control NA 
mo, month; wpi, week post-infection; d, day; NA, not applicable; na, not available; NPC, no pathological changes; 
Dx, diagnosis 
*This monkey had a mild, focal leukoencephalitis that did not contain SIV.   
& A macaque is considered to have end stages AIDS as determined by clinical observations and 
T cell subset changes.  See Materials and Methods for detailed description. 
% The two macaques that were sacrificed before developing AIDS were not included in the 
statistical analyses or displayed in graphs unless noted. 
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Figure 11. Longitudinal peripheral blood counts for CD4+ lymphocytes (a and b), CD8+ 
lymphocytes (c and d), and monocytes (e and f) of eight CD8 depleted rhesus macaques infected 
with SIV/DeltaB670.   
 
Figure legend continued on next page. 

g h 
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Figure 11 legend continued.   
 
Based on post-mortem histological findings, macaques were retrospectively classified for 
presence of SIV encephalitis.  CD4+ and CD8+ lymphocyte profiles of animals that did or did not 
develop encephalitis were similar, however, peripheral blood CD4+CD29+ T helper lymphocytes 
(g and h) decreased at two weeks post-infection in macaques that developed encephalitis.  
Macaques that developed encephalitis had lower average white blood cell count prior to infection 
or CD8 depletion.  a and b:  Peripheral blood absolute CD4+ lymphocyte counts decreased 
throughout the course of infection.  (a) Median peripheral blood absolute CD4+ lymphocyte 
counts for the three macaques with SIVE are shown in red and the five macaques without 
encephalitis are shown in blue.  (b) Average peripheral blood absolute CD4+ lymphocyte counts 
with standard deviation. c and d: Peripheral blood CD8+ lymphocytes were suppressed for 2-4 
weeks in macaques administered cM-T807 during primary infection. (c) Median peripheral blood 
absolute CD8+ lymphocyte counts for the three macaques with SIVE are shown in red and the 
five macaques without encephalitis are shown in blue.  The asterisk at day 14 post-infection 
indicates a statistically significant difference in the peripheral blood absolute CD8+ lymphocyte 
count between macaques with and without encephalitis.  *, P<0.05.  All other time points are not 
statistically different. (d) Average peripheral blood absolute CD8+ lymphocyte counts with 
standard deviation.  e and f: Peripheral blood absolute monocyte counts were not statistically 
different between macaques with and without encephalitis. (e) Median peripheral blood absolute 
monocyte counts for the three macaques with SIVE are shown in red and the five macaques 
without encephalitis are shown in blue. (f) Average peripheral blood absolute monocyte counts 
with standard deviation.  g and h:  Peripheral blood CD4+CD29+ T helper lymphocytes 
decreased earlier in macaques that developed SIVE.  (g) Median percentages of peripheral blood 
T helper lymphocytes (%CD4+CD29+/Total % CD4+ cells) for the three macaques with SIVE are 
shown in red and the five macaques without encephalitis are shown in blue. (h) Average 
percentages of peripheral blood T helper lymphocytes (%CD4+CD29+/Total % CD4+ cells) with 
standard deviation. 
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Figure 12.  SIV RNA of eight CD8 depleted rhesus macaques infected with SIV/DeltaB670.  
Based on necropsy histological findings, macaques were retrospectively classified for presence 
of SIV encephalitis. Plasma viral load (a-b) in macaques that developed encephalitis was 
significantly higher at 1 and 3 weeks post-infection compared to macaques that did not develop 
encephalitis.  Between six and eight weeks post-infection, higher CSF viral load (c-f) 
distinguishes macaques that developed encephalitis from macaques that did not develop 
encephalitis.  a: Median longitudinal plasma SIV RNA for the three macaques with SIVE are 
shown in red and the five macaques without encephalitis are shown in blue.  Plasma SIV RNA 
of macaques that developed encephalitis was significantly higher than macaques without  
 
Figure legend continues on next page. 
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Figure 12 legend continued. 
 
encephalitis at one and three weeks post-infection. *, P<0.05.  b: Average longitudinal plasma 
SIV RNA with standard deviation. c:  Median longitudinal CSF SIV RNA for the three 
macaques with SIVE are shown in red and the five macaques without encephalitis are shown in 
blue.  CSF SIV RNA of macaques that developed encephalitis was higher than macaques 
without encephalitis throughout the length of infection, especially during the end stages of 
infection.  Due to unavailable CSF samples, statistical analyses could not be completed for all 
time points.  d: Average longitudinal CSF SIV RNA with standard deviation. e:  Median CSF 
SIV RNA for macaques with SIVE (red) and macaques without encephalitis (blue) in weeks 
before death.  Macaques that develop SIVE have more virus in CSF than macaques that do not 
develop encephalitis in the weeks leading up to death.  f: Average CSF SIV RNA in weeks 
before death with standard deviation. 
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Figure 13. Analysis of blood monocyte SIV DNA and SIV p27 production in MDM and 
nonadherent PBMC from CD8 T cell-depleted rhesus macaques during SIV/DeltaB670 infection.  
Based on necropsy histological findings, macaques were retrospectively classified for presence 
of SIV encephalitis.  a:  Peak number of SIV DNA copies assessed in CD14+ blood monocytes.  
b: The number of SIV DNA copies was assessed in CD14+ blood monocytes isolated by 
magnetic bead separation every two weeks post-infection from macaques with SIVE (red) and 
macaques without encephalitis (blue).  There was a peak in SIV DNA in CD14+ monocytes in 
two of the three macaques with SIVE from 2-8 weeks post-infection and one of five macaques 
without encephalitis at 2 and 10 weeks post-infection.  Regardless of the development of 
encephalitis, all but one macaque (145) had detectable SIV DNA in CD14+ blood monocytes at 
least one time during infection. c:  Peak p27 production in MDMs cultured ex vivo.  d: During 
the course of infection, p27 production of MDMs (adherent PBMC) cultured ex vivo for 14 days 
showed that the three macaques with SIVE (red) produce more p27 in culture than the five 
macaques without encephalitis (blue).  This graph shows p27 values from MDM of each 
macaque every two weeks post-infection. SIV p27 production peaked in macaques that 
developed SIVE for one or two consecutive time points measured between 4-8 weeks post-
infection.  Average p27 production in MDMs from macaques that developed encephalitis was 
significantly higher than macaques without encephalitis at four weeks post-infection. *, P<0.05.  
Since macaques 152 and 154 were experimentally sacrificed, they were not included in statistical 
analysis. e:  Representative image of MDM cultures that were assayed for SIV p27 production  
 
Legend continued on next page. 
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Figure 13 legend continued. 
 
by ELISA.  The culture was immunostained for CD68 (upper left, blue, Cy5), SIVgp110 (upper 
right, red, Cy3), and CD3 (lower left, green, Alexa488) and visualized by triple-label 
immunofluorescent laser confocal microscopy.  An overlay of the three preceding images is 
shown in the lower right.  Purple shows co-localization of MDMs and SIVgp110.  Scale:  50 µm.  
f: Peak p27 production in non-adherent PBMC cultured ex vivo. d: Longitudinal p27 production 
of non-adherent PBMC cultured ex vivo for 14 days shows that two of three macaques with SIVE 
(red) produce more p27 in culture than the five macaques without encephalitis (blue) at week 2 
post-infection. Due to unavailable PBMC samples, statistical analyses could not be completed 
for week 2 post-infection. Since macaques 152 and 154 were experimentally sacrificed, they 
were not included in statistical analysis. 
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During the Course of Infection, Monocyte Associated SIV DNA Did Not Distinguish Macaques 

That Developed SIVE From Those That Did Not Develop Encephalitis. 

 The infection of monocyte/macrophage elements outside of the brain was compared 

between macaques that developed SIVE and macaques that did not develop encephalitis.  The 

number of SIV DNA copies associated with CD14+ blood monocytes was assessed every two 

weeks post-infection in each macaque.  For all macaques, the number of SIV DNA copies in 

monocytes varied from 0-1974 SIV DNA copies/ml blood (Figure 13a).  One macaque (145) that 

did not develop encephalitis did not have any detectable monocyte-associated SIV DNA.  Two 

of the three macaques that developed SIVE (139 and 144) had higher numbers of SIV DNA 

copies in CD14+ monocytes at six and eight weeks post-infection than macaques that did not 

develop SIVE, however one macaque that did not develop encephalitis (158) had comparable 

monocyte-associated SIV DNA levels as macaques that developed SIVE at two and ten weeks 

post-infection.  

 

Ex Vivo SIV p27 Production from Monocyte-Derived Macrophages of Macaques That Developed 

SIVE Was Higher than Macaques That Did Not Develop Encephalitis.  

The ability of infected monocytes to replicate virus was assessed ex vivo.  Cultured 

monocyte-derived macrophages were monitored for SIV p27 production every other week after 

infection to assess viral production in each macaque.  Adherent peripheral blood MDM of 

macaques that developed encephalitis produced more p27 ex vivo than did MDM of macaques 

that did not develop encephalitis (Figure 13b and c).  This difference was observed within 4-8 

weeks of infection.  In order to control for potential variability in the number of monocytes 

plated in each culture, the p27 values were also analyzed by normalizing to the number of input 
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monocytes.  Normalization showed the same trend and statistical differences (data not shown).   

Figure 13b shows a representative MDM culture used to assess p27 production.  Rare non-

infected T cells were occasionally observed, however, all infected cells in these cultures were 

macrophages.  Separate non-adherent PBMC cultures were also monitored for viral production.  

At two weeks post-infection, SIV p27 production in non-adherent PBMC cultures (i.e. cultures 

with CD4+ T cells) was higher in two macaques that developed encephalitis than in macaques 

that did not develop encephalitis, however, after two weeks there was no difference in PBMC 

viral production between macaques that did or did not develop encephalitis (Figure 13d).   

 

At Necropsy, Macaques with SIVE Had More SIV-Infected Cells in Small Bowel and Spinal Cord 

But Less SIV-Infected Cells in Lung and Thymus than Macaques Without Encephalitis. 

The number of SIV-infected macrophages and SIV-infected T cells in the liver, lung, 

small bowel, spinal cord, spleen, and thymus at the time of necropsy were compared between 

macaques with and without encephalitis.  Formalin-fixed paraffin-embedded tissue was 

fluorescently immunostained for macrophages (CD68), T cells (CD3), and virus (SIVgp110).  

Three observers enumerated the number of infected macrophages (CD68+/SIV+ cells), infected T 

cells (CD3+/SIV+cells), and SIV-infected cells that did not co-localize with either CD68 or CD3 

(SIV+/CD3-/CD68- cells).  Figure 14 shows representative fields used to enumerate the number 

of SIV-infected macrophages and CD3+ T cells in the spinal cord, lung, and thymus (Figure 15).  

While many SIV-infected cells in the tissues did not co-label with either CD3 or CD68, of those 

cells that did double-label for SIV and cell-lineage antigens, macrophages were the most 

common tissue-based infected cell.   
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Figure 14.  Double-label immunofluorescent staining for macrophage marker CD68 or T cell 
marker CD3 and SIV envelope protein shows macaques with SIVE have more infected 
macrophages in the spinal cord but less infected macrophages in the thymus and  
 
Legend continued on next page. 
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Figure 14 legend continued.   
 
lung than macaques without encephalitis.  Images such as these were used to count the number 
of infected macrophages and T cells for tabulation in Figure 15.  A-F:  Small images on the left 
illustrate individual channels for CD68 (red, Cy5) and SIVgp110 (green, Alexa488).  The large 
image on the right shows a merged image of the red and green channel with yellow indicating 
co-localization of CD68 and SIVgp110.  G & H: Small mages on the left illustrate individual 
channels for CD3 (red, Cy5) and SIVgp110 (green, Alexa488).  The large image on the right 
shows a merged image of the red and green channel with yellow indicating co-localization of 
CD3 and SIVgp110.  A shows a histological section of spinal cord from a macaque with SIVE 
(M139).  Macrophages are the predominant SIV-infected cell with rare non-infected T cells.  B 
shows a histological section of spinal cord from a macaque without encephalitis (M158).  
Macrophages are less abundant and not infection with SIV.  C and H show histological sections 
of thymus from a macaque without encephalitis (M135).  Some of the infected cells in the 
thymus of macaques without encephalitis were macrophages, fewer were T cells, but the 
majority of SIV-infected cells did not co-label with either CD68 or CD3. D shows a histological 
section of thymus from a macaque with SIVE (M144).  There are few SIV-infected cells and 
less macrophages than in macaques without encephalitis.  E, F, and G show histological sections 
of lung from a macaque without encephalitis (M135) (E and G) and a macaque with SIVE 
(M139) (F).  Some of the infected cells in the lung of macaques without encephalitis were 
macrophages, but the majority of cells did not co-label with either CD68 or CD3.  Macaques 
with SIVE had few SIV-infected cells in their lungs. Scale bars: 20 µm. 
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Figure 15.  Necropsy survey of the number of infected macrophages and T lymphocytes 
observed in peripheral organs from eight CD8 depleted rhesus macaques infected with 
SIV/DeltaB670. Based on post-mortem histological findings, macaques were retrospectively 
classified for presence of SIV encephalitis.  Each organ was immunostained for both 
CD3/SIVgp110 and CD68/SIVgp110 and visualized by immunofluorescent confocal 
microscopy. Three observers enumerated the number of infected macrophages (CD68+/SIV+ 
cells), infected T cells (CD3+/SIV+cells), and SIV-infected cells that did not co-label with either 
CD68 or CD3 (SIV+/CD3-/CD68- cells).  The black bars represent the median number of infected 
cells enumerated for each group (each dot represents the enumeration from an individual field).  
Macaques with SIVE show more SIV-infected cells in the small bowel and spinal cord but less 
SIV-infected cells in the lung and thymus than macaques without encephalitis.  Many organs 
have  
 
 
Legend continued on next page. 
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Figure 15 legend continued. 
 
SIV-infected cells that do not co-label with CD3 or CD68.  Macrophages are the most  
common SIV-infected cell in these organs.  a:  Liver.  Median number of infected T cells and 
macrophages per field in the liver was similar in macaques with and without encephalitis.  b:  
Lung. The median number of infected macrophages and infected cells that did not label with 
CD68 or CD3 was statistically significantly higher in macaques without encephalitis compared 
to macaques with SIVE.  c:  Small bowel. Median number of infected cells that did not label 
with CD3 or CD68 was statistically significantly higher in macaques with SIVE compared to 
macaques without encephalitis.  d:  Spinal cord.  Median number of infected macrophages and 
infected cells that did not label with CD3 or CD68 was statistically significantly higher in 
macaques with SIVE compared to macaques without encephalitis.  e:  Spleen.  Median number 
of infected T cells and macrophages per field in the spleen was similar in macaques with and 
without encephalitis. f:  Thymus.  The median number of infected macrophages and infected 
cells that did not label with CD3 was statistically significantly higher in macaques without 
encephalitis compared to macaques with SIVE.  *, P<0.05.  **, P<0.01. ***, P<0.001. 
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SIV-infected cells that did not co-label with CD3 or CD68 had a cytomorphology of 

macrophages with abundant cytoplasm.  In an attempt to identify the origin of these cells, we 

examined sections of lung from a macaque that had several unidentified SIV-infected cells by 

staining with macrophage markers HLA-DR, HAM56 and CD163 (data not shown).  The SIV-

infected cells in the lung were mostly located in the stroma (Figure 14E).  Of this array of 

macrophage markers, CD68 identified the most SIV-infected cells; however, as noted above, 

many SIV-infected cells did not co-label with these markers.  Not surprisingly, SIV encephalitic 

macaques had more abundant SIV-infected cells in the spinal cord than macaques without 

encephalitis (Figures 14A, 14B and 15d).  However, in other organs (i.e. lung and thymus) 

macaques without encephalitis had more infected cells than encephalitic macaques (Figures 14 

C-H, 15b and 15f). 

 

The Number of SIV-Infected Cells in Longitudinal Lymph Node Biopsies Did Not Distinguish 

Macaques That Developed SIVE From Those That Did Not Develop SIVE. 

The number of SIV-infected macrophages and SIV-infected T cells were also enumerated 

in lymph node biopsies throughout the course of infection.  Two of the three macaques that 

developed SIVE had more CD68+/SIV+ cells in lymph nodes at six weeks post-infection than 

macaques that did not develop encephalitis (data not shown).  At four weeks after infection, 

lymph nodes in most macaques had an increase in SIV-infected cells (CD3+/SIV+ and CD3-

/CD68-/SIV+ cells) regardless of development of encephalitis.  At death, few SIV-infected cells 

were present in lymph nodes.  Most of these lymph nodes were depleted of cells and involuted.   
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Figure 16.  Analysis of post- and presynaptic proteins and macrophages in the brains from eight 
CD8 depleted rhesus macaques infected with SIV/DeltaB670 at necropsy. Based on histological 
findings, macaques were retrospectively classified post-mortem as having SIV encephalitis (enc), 
without encephalitis (no enc), or non-infected controls (con).  Each indicated brain region was 
immunostained for MAP-2 (a), synaptophysin (b), and CD68 (c) and visualized by 
immunofluorescent confocal microscopy.  Ten microscopic fields in each brain region were 
quantified for each animal and marker.  Mean fluorescent intensity (MFI) multiplied by the 
number of pixels (area) covered by  
 
Legend continued on next page. 
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Figure 16 legend continued. 
 
fluorescence was quantified in each brain region using immunofluorescent confocal laser 
microscopy as described in Materials and Methods.  For the basal ganglia region, average MFI 
and pixels for MAP-2 and synaptophysin were compared to macaques without encephalitis and 
reported as average MFI * area due to limited availability of basal ganglia tissue from non-
infected macaques. The black bars represent the median number of infected cells enumerated for 
each group, while each dot represents the enumeration from an individual field.  Macaques with 
SIVE showed less postsynaptic protein (MAP-2 staining) but not presynaptic protein 
(synaptophysin staining) in cortical regions than macaques without encephalitis.  Macaques with 
SIVE showed more CD68 staining in cortical regions than macaques without encephalitis.  a:  
MAP-2.  MAP-2, post-synaptic protein, staining is decreased in the brains of macaques with 
SIVE.  b:  SYN.  Synaptophysin, pre-synaptic protein, staining is similar in the brains of 
macaques with and without encephalitis.  c:  CD68.  CD68, a macrophage/microglia associated 
protein, staining is significantly increased in the brain regions of macaques with SIVE. *, 
P<0.05.  **, P<0.01. ***, P<0.001. 
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Macaques with SIVE Showed More Abundant CD68 Staining in Cortical Regions than Macaques 

Without Encephalitis.  

All brain regions of macaques with SIVE showed increased CD68 macrophage staining 

compared to non-infected macaques.  The greatest fold increase in CD68 staining was seen in the 

CA1 and CA4 regions of the hippocampus (~11,000- and 10,000-fold, respectively) (Figure 16c).    

Frontal cortical gray and white matter also exhibited 29- and 25-fold increased CD68 staining 

respectively, compared to non-infected macaques (P > 0.001).  Increased CD68 staining was also 

significantly higher in the hippocampus and frontal cortical gray matter of macaques with SIVE 

compared to macaques without encephalitis.   Macaques with SIVE showed greater CD68 

staining in the basal ganglia compared to non-infected macaques, however the increase did not 

achieve statistical significance. 

 

Macaques with SIVE Showed Less Abundant Postsynaptic Proteins but Not Presynaptic Proteins 

than Macaques Without Encephalitis. 

 To determine whether postsynaptic and presynaptic damage was present in CD8 depleted 

macaques with and without encephalitis, quantification of postsynaptic protein MAP-2 and 

presynaptic protein synaptophysin (SYN) was performed in gray matter.  Average MAP-2 

staining in frontal cortical gray matter and basal ganglia was 44 and 57% lower in macaques with 

SIVE compared to controls (P < 0.001 and 0.05, respectively) (Figure 16a).  Average MAP-2 

staining in the CA4 region of the hippocampus and frontal cortical gray matter was 69 and 71% 

lower in macaques with SIVE than non-infected macaques (P < 0.01 and P < 0.001, respectively) 

(Figure 16a).   Macaques without encephalitis exhibited lower staining for MAP-2 in the CA4 
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region of the hippocampus and frontal cortical gray matter, but the decrease did not achieve 

statistical significance.    Average presynaptic synaptophysin staining in the CA4 region of the 

hippocampus, frontal cortical gray matter, and basal ganglia was similar in macaques with and 

without encephalitis and non-infected macaques (Figure 16b). Macaques with SIVE exhibited a 

significant increase in synaptophysin staining in the CA1 region of the hippocampus compared 

to non-infected macaques (P > 0.05).   

 

 
3.2.5. Discussion 

Correlates of SIVE. 

 We examined the development of lentiviral encephalitis using a CD8+ T cell-depleted 

SIV-infected rhesus macaque model.  Some previously published correlates of development of 

lentiviral encephalitis include:  elevated CSF viral loads after acute infection (418), rapid disease 

progression (268, 391), elevated CSF monocyte chemotactic protein (MCP)-1 concentrations 

(63, 417), and low anti-SIV antibody titer at 1 month after infection (268). It has been proposed 

that CSF viral loads that exceed 106 copies/mL might be a surrogate marker for high viral loads 

in the brain (397). In this study, we examined the relationship between peripheral SIV infection 

of monocyte/macrophages and the development of encephalitis with the goal of determining 

whether macrophage infection is unique to the CNS in animals that develop encephalitis. 
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Features Distinguishing Macaques That Developed SIVE from Those That Did Not Develop 

Encephalitis.   

  MDM from macaques that developed SIVE produced more virus ex vivo at 4-8 weeks 

post-infection. Because the peak viral production of MDM from the three macaques that 

developed encephalitis occurred at different time points after infection, a statistical difference 

was only seen at 4 weeks post-infection.  Since there are several time points where viral 

production can be measured from MDM cultures but not from nonadherent PBMC cultures 

containing lymphocytes, we are confident that the monocytes were not infected in culture by 

virus derived from peripheral blood lymphocytes. It would be interesting to determine whether 

development of SIVE is the result of recent entry of infected monocytes that are capable of 

producing more virus by labeling blood monocytes and following their trafficking.  Although 

there was no observable or statistical difference in SIV p27 production in nonadherent PBMC 

cultures containing CD4+ T cells, SIV production was increased in two of the macaques in the 

SIVE group at two and six weeks post-infection.  This opens the possibility that development of 

SIVE could be associated with the magnitude of total viral production rather than number of 

circulating infected monocytes.  Differential capability of replicating virus during development 

of SIVE suggests an inherent difference in the ability of individual host monocytes to become 

infected and/or to produce virus.  

  In our study, macaques that developed SIVE had unsuppressed plasma viremia after six 

weeks of infection and significantly higher plasma viremia at one and three weeks after infection 

compared to macaques that did not develop SIVE.  In the literature, the relationship between 

high plasma viremia and development of encephalitis is unclear.  Some studies have found no 

correlation between plasma viremia and SIVE (85, 418), while other studies reported 62% of 
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macaques with elevated antigenemia had SIVE, when only 9% without elevated antigenemia 

developed SIVE (22).  These differences might be attributed to macaque species or differences in 

evolution of viral strains.  For several reasons, we do not believe that the increased plasma 

viremia is due to increased blood monocyte production of virus.  First, although blood 

monocytes do harbor evidence of multiply spliced mRNA indicating ongoing HIV replication 

(413), prior to differentiation into macrophages blood monocytes are not active producers of 

virus in vitro (71, 255, 303, 342).  Second, although we see increased viral production from 

adherent cells (macrophages) of macaques with SIVE, the amount of virus the monocytes are 

producing is unlikely to account for extremely high plasma viremia.  Third, activated CD4+ T 

cells found in peripheral tissues and tissue macrophages are thought to be the source of plasma 

viremia (reviewed in (348)). For two macaques in our study, host ability to suppress plasma viral 

replication 6-weeks after infection was independent of CD8+ T cell reconstitution and predictive 

of longer survival and protection from developing encephalitis. This suggests there was not 

complete depletion of tissue CD8+ T cells.  It is possible that host ability to replicate virus, other 

arms of the immune system such as antibody responses, or evolution of different genotypic viral 

strains might be involved in controlling monocyte viral replication.  Alternatively, non-CD8-

dependent mechanisms might contribute important control of monocyte viral replication and host 

survival.   

  CSF viral load was persistently elevated in macaques that developed encephalitis as 

previously reported by others (85, 418).  This highlights a potential difference between the CD8+ 

T cell-depleted rapid progression simian model and human disease.  In HIV-infection, virus can 

be isolated from the CSF during acute infection (179); however, during asymptomatic phases 

CSF viral load is low. After the development of AIDS, some HIV-infected individuals develop 
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HIVE associated with increased CSF viral load (62, 233, 397).  The persistent elevated CSF viral 

load and severity of CNS disease observed in CD8+ T cell-depleted macaques might indicate 

SIVE develops at early stages of disease rather than at late stages as seen in humans.   

Interestingly, CSF viral load increased during the same time periods after infection (4-8 weeks 

post-infection) as ex vivo production was increased in cultured MDM in macaques that develop 

SIVE.  Further studies are needed to determine if this association is indicative of the time period 

when encephalitis develops.   

  Although absolute CD4+ T cell counts were not predictors of encephalitis, the 

CD4+CD29+ subset of CD4+ T cells declined more rapidly in macaques that developed SIVE 

compared to macaques that did not develop encephalitis. CD4+CD29+ T cells declined during the 

same time periods after infection as ex vivo production was increased in cultured MDM in 

macaques that develop SIVE.  CD29 (β1 integrin) is part of a heterodimer that binds to vascular 

cell adhesion molecule-1 (VCAM-1) that is expressed on activated endothelial cells (285).  Since 

expression of CD29 is associated with an activated phenotype (205), macaques that develop 

encephalitis might selectively lose activated CD4+ T cells.  Selective loss of this subset of T cells 

has been shown to be associated with rapid disease progression, another correlate of SIVE (218-

220, 329).  

 

Factors Not Distinguishing Macaques That Developed SIVE from Those That Did Not Develop 

Encephalitis.  

  In this study, CD8+ T cell-depletion at the time of infection led to encephalitis in 38% of 

the macaques that progressed to AIDS.  This percentage is similar to non- CD8+ T cell-depleted 

macaques (22, 391). Williams et al. have found a higher incidence of encephalitis in macaques 
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that remain CD8 depleted for longer than 28 days (399, 401). In our study, CD8+ T cells began to 

reappear in circulation two-three weeks after depletion. We did not monitor the reemergence of 

NK cells depleted by anti-CD8 antibody treatment. It is possible that other mechanisms of viral 

suppression (as mentioned above) might be important determinants of encephalitis.  

 As previous reports (28, 391) have shown no correlation between CD4+ T cell count 

dynamics and development of encephalitis, these CD8+ T cell-depleted rhesus macaques also did 

not show any relationship between total CD4+ T cell and monocyte counts and the development 

of encephalitis. 

 The number of SIV DNA copies in CD14+ blood monocytes was not consistently higher 

in macaques that developed SIVE compared to macaques that did not develop SIVE.  Although 

two of the three macaques had higher monocyte associated SIV DNA at two time points during 

infection, one macaque that did not develop SIVE had equivalent monocyte-associated SIV 

DNA at two other time points. Higher loads of monocyte associated DNA was not associated 

with increased viral production from ex vivo MDM in animals that did not develop SIVE.  

Williams et al observed peak monocyte associated SIV DNA in CD8+ T cell-depleted macaques 

between 7 and 14 days post-infection.  (399)  Although this analysis did not distinguish 

macaques with and without encephalitis, it is possible assessing monocyte associated SIV DNA 

earlier in infection or in subsets of CD14+/CD16+ cells may better predict development of 

encephalitis.  These data suggest host factors (such as APOBEC family members (211, 408), 

mutant MCP-1 alleles (130), and TRIM-5alpha(350)) may be more important during the 

development of encephalitis than the number of circulating infected monocytes.   

 Unexpectedly we did not observe a clear relationship between systemic macrophage 

infection and CNS infection.  We initially hypothesized that infected macrophages in other solid 
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organs would correlate with development of encephalitis as reported previously in two animals 

(87).  Since both lentiviral encephalitis and lentiviral pneumonitis are associated with replication 

in macrophages (14), it is thought that there might be a connection between development of SIV 

encephalitis and SIV pneumonia.  As with previous reports (34), we examined the cell lineage of 

infected cells in necropsy tissues.  In our small study, the lung, thymus and lymph nodes at week 

six after infection had greater numbers of SIV-infected macrophages in macaques without 

encephalitis compared to macaques with SIVE.  This suggests that development of encephalitis 

in this model is not associated with a general increase in the number of infected macrophages 

throughout the body.  Few infected CD3+ T cells were observed in any organ including 

secondary lymphoid tissue.  This may simply reflect severe depletion of CD4+ T cells in tissues 

at the end stages of disease (276, 308, 381).   

A large number of SIV-infected cells that did not co-label with either T cell marker 

(CD3) or macrophage marker (CD68) were observed in all tissues.  It is possible that infected 

cells might down-regulate cell-lineage proteins, complicating immunodetection.  Since many of 

these infected cells have the morphological appearance of macrophages, an array of antibodies 

against macrophage proteins was tested to determine if other markers (HLA-DR, HAM56 and 

CD163) would better identify the lineage of the SIV-infected cells; however CD68 remained the 

best marker.  Interestingly, we do not observe this technical difficulty in tissues from SIV-

infected pigtailed macaques (unpublished observations).   Because infected cells may assume 

aberrant morphology, other probes will be needed to identify the lineage of these infected cells. 

 By chance, the macaque with an accidental needle nick in the brain stem during a routine 

CSF draw was time sacrificed at 16 days post-infection.  This animal had 1.9 x 108 RNA 
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copies/ml plasma.  It is remarkable that this three-day old breech in the blood brain barrier did 

not lead to a robust infection of the infiltrating macrophages.  This unplanned experiment implies  

that some innate immunity is preserved at early stages precluding infection of receptive host cells 

in the host brain.  Although an isolated incident, it hints that development of CNS infection 

depends upon factors other than blood brain barrier defects, high plasma viremia, and lack of 

CD8+ T cells. 

 Presynaptic and postsynaptic damage have been reported during HIVE (103, 166, 222, 

226, 396). Compared to macaques without encephalitis, macaques with SIVE had significantly 

lower postsynaptic proteins (MAP-2) in midfrontal cortical gray matter and basal ganglia as we 

have observed previously (28). Since macaques with encephalitis had short survival times, this 

suggests that primary postsynaptic damage occurs quickly.  Macaques without encephalitis also 

had decreased MAP-2 staining in hippocampus and frontal cortical gray matter raising the 

question whether a robust systemic infection may contribute to postsynaptic damage.  Staining 

for presynaptic protein (synaptophysin) was paradoxically increased in the hippocampus and 

cortical gray matter of macaques with SIVE compared to non-infected macaques.  It is possible 

that presynaptic proteins may increase in SIVE as a temporary response to acute neuronal 

damage (e.g. perineuronal net disturbance with formation of aberrant synapses (234)). 

 In this study we focused on the relationship between peripheral SIV infection of 

monocyte/macrophages and the development of encephalitis. At the same time that CSF viral 

load increased in macaques that developed encephalitis, we observed that viral replication in 

MDM from macaques that eventually developed SIVE produced more virus than macaques that 

did not develop encephalitis independent of CD4+ and CD8+ T cell counts.  However, the 

number of blood monocyte-associated SIV DNA copies did not distinguish macaques that 
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developed SIVE from those that did not develop encephalitis.  Paradoxically, macaques that did 

not develop encephalitis had more SIV-infected macrophages in the lungs and thymus than 

macaques with SIVE.  This suggests that there may be inherent differences in the ability of 

individual host monocytes to become productively infected or produce virus in macaques. Future 

studies will be needed to elucidate whether monocytes from macaques that develop SIVE have 

greater susceptibility to be infected, produce virus, or traffic into the brain. 
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3.3.1. Abstract 

The brains of individuals with lentiviral-associated encephalitis contain an abundance of 

infected and activated macrophages. It is hypothesized that encephalitis develops when increased 

numbers of infected monocytes traffic to the CNS during end stages of immunosuppression.  The 

relationship between development of encephalitis and circulation of infected monocytes and why 

only a fraction of infected hosts develop lentiviral encephalitis is unknown. We proposed to 

examine whether monocyte/macrophages from pigtailed macaques that develop simian 

immunodeficiency virus (SIV) encephalitis (SIVE) contain more replication competent virus 

than macaques that do not develop SIVE during the course of infection and at necropsy using 

SIV-infected pigtailed macaques. Compared to macaques that did not develop SIVE, the 

monocyte associated SIV-DNA load of monocytes and the capability of monocyte-derived 

macrophages and nonadherent PBMC to produce virus ex vivo was increased in macaques that 

developed SIVE.  Macaques with SIVE had more infected macrophages in peripheral organs 

with the exception of lymph nodes.  Brains with SIVE had greater numbers of T cells and NK 

cells with cytotoxic potential than brains without encephalitis.  However, T cell and NK cell 

infiltration in SIVE was more modest than that observed in classical acute viral encephalitides. 

These findings support the hypothesis that inherent differences in host monocyte/macrophage 

viral production are associated with the development of encephalitis. 
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3.3.2. Introduction 

Prior to the era of highly active antiretroviral therapy (HAART), approximately 25% of 

human immunodeficiency virus (HIV)-infected individuals exhibited the pathological hallmarks 

of HIV encephalitis (HIVE) at autopsy.  These hallmarks are microglial nodules, multinucleated 

giant cells, and the presence of abundant activated or HIV-infected macrophages (15, 42, 79, 

209, 223).  As with other HIV-related sequelae since the advent of HAART, the incidence of 

HIVE is decreasing (137, 190); however, prevalence of HIVE is increasing with one report 

estimating  approximately 45% of AIDS autopsies exhibiting HIVE (190).  The pathogenesis of 

simian immunodeficiency virus (SIV)-infected macaque models is remarkably similar to human 

HIV infection with a variable percentage of SIV-infected macaques also developing SIV 

encephalitis (SIVE) with similar pathological changes in the central nervous system (CNS) (22, 

75, 155, 213, 333).  Both of these lentiviral encephalitides show extensive neuronal damage 

despite an absence of significant neuronal infection (42, 44, 75, 333).  Secreted molecules from 

abundant activated and infected macrophages are thought to interact directly with neurons or 

alter supporting glial cell functions to indirectly mediate synaptic damage and subsequent 

neuronal death (74, 123, 198, 264, 289, 293). 

 Correlates of lentiviral encephalitis have not been fully identified, and it still remains 

largely unclear why only a fraction of infected individuals develop encephalitis.  Incidence and 

rate of onset (approximately 6-36 months) vary considerably among different macaque species 

and with inoculation of different viral strains (22, 75, 415).  Virus isolated from the CNS is 

macrophage-tropic, but inoculation of macaques with macrophage-tropic SIV is not adequate to 

induce SIVE (155, 213).  Retrospective studies show macaques that exhibit rapid disease 

progression (<6 months) are more likely to develop SIVE (391).  Even when inoculated with 
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identical viral strains, pigtailed macaques develop a greater incidence of SIVE than rhesus 

macaques (212), while cynomolgus and rhesus macaques of Chinese origin rarely exhibit SIV-

related neurologic sequelae.  These observations suggest host factors influence the ability of 

virus to enter the CNS or replicate in CNS macrophages.   

 The ability to control SIV replication is thought to influence disease progression rates 

(95, 128, 323, 329, 340, 347, 388) and possibly development of encephalitis (169, 215, 245, 268, 

344).  Rhesus macaques depleted of CD8+ T cells at time of infection fail to reduce acute viremia 

accompanied by significantly shorter survival times (323).  It has been suggested that these 

macaques have increased incidence of encephalitis (398, 399).  Low anti-SIV antibody titers one 

month after infection are also associated with development of SIVE in pigtailed macaques (268). 

In the CSF or brain parenchyma of macaques with frequent neurologic symptoms, SIV-specific 

antibody or antibody-secreting cells are not detected (344).  The prevalence of CD8+ T cells in 

the CNS is unclear.  Increased numbers of CD8+ T cells correlates with CNS impairment or 

SIVE in SIV-infected rhesus macaques (169, 215).  However, rhesus macaques with gag-specific 

CD8+ T cells in the CSF had minimal CNS infection (245), however, increased presence of SIV-

specific CD8+ T cells in the CSF were detected in macaques with slow progression and little 

neurologic symptoms (344).  These data suggest that the ability of CNS macrophages to produce 

virus or the ability of the immune system to control macrophage viral replication within and 

outside the CNS influence susceptibility to encephalitis.   

 Because monocyte/macrophages are the predominant infected cell in the CNS in SIVE 

and development of SIVE may be due to increased trafficking of SIV-infected monocytes (54, 

188), we proposed to determine whether monocyte/macrophages from macaques that develop 

SIVE harbor more replication competent virus than macaques that do not develop SIVE.  Our 
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previous evidence suggested endogenously infected monocyte-derived macrophages (MDM) 

from rhesus macaques depleted of CD8+ T cells produced more virus than depleted macaques 

that did not develop encephalitis.  Paradoxically, fewer productively infected macrophages were 

observed in peripheral organs of macaques with SIVE (29).  Here, we show that MDM from 

SIV-infected pigtailed macaques that develop SIVE also produce more virus ex vivo, have 

greater number of SIV-infected monocytes, contain more productively infected macrophages in 

peripheral organs (but not lymph nodes), and have greater number of activated T cells in the 

CNS.  These findings support the hypothesis that inherent differences in host 

monocyte/macrophage viral production are related to development of encephalitis.   

 

3.3.3. Materials and Methods 

Animals 

Pigtailed macaques (Macaca nemestrina) were housed and maintained according to 

American Association of Laboratory Animal Care standards.  Macaque information is described 

in Table 4.  Six pigtailed macaques were inoculated with SIVDeltaB670 viral swarm by 

intravenous injection at day 0.  Macaques were observed daily for clinical signs of anorexia, 

weight loss, lethargy, or diarrhea. Macaques were euthanized upon development of AIDS-like 

clinical symptoms.  Ages of the macaques ranged from 50 to 59 months (age at time of 

necropsy).  Length of infection varied from 83-300 days (median = 128 days). Complete 

necropsies were performed after humane sacrifice. 
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Cell counts 

Whole peripheral blood samples (100 µl) obtained from SIV-infected macaques at 0, 7, 

14, 21, and 28 days post-infection and every 2 weeks thereafter were stained with fluorochrome-

conjugated monoclonal antibodies against CD4 (clone L200; BD Biosciences Pharmingen, San 

Diego, CA), CD3 (clone FN18; Biosource, Camarillo, CA), and CD8 (clone DK25, 

DakoCytomation; Carpinteria, CA) for 30 min, 4˚C.  Red blood cells were lysed using 2 mL 

Vitalyse (BioE, Inc., St. Paul, MN), 30 min, room temperature.  Cell suspensions were 

centrifuged and washed with phosphate-buffered saline (PBS) containing 4% fetal bovine serum.  

Cell suspensions were centrifuged again and resuspended in PBS containing 1% 

paraformaldehyde. The percentage of CD8+/CD3+and CD4+/CD3+ cells was determined on an 

XL2 flow cytometer (Beckman Coulter, Hialeah, FL) within 24 hours of staining.  T cells were 

gated by CD3 fluorescence and side scatter log.  At least 10,000 events were analyzed, and the 

percentage of CD4+ and CD8+ T cells was determined within the gate.  Compensation was done 

by singly stained peripheral blood mononuclear cells (PBMC) from each animal.  Data analysis 

was performed using FlowJo (Tree Star, Inc., Ashland, OR). Absolute cells numbers were 

calculated using percentage of cells and differential cell counts from the blood as previously 

described (219).  

 

Tissue 

Blood samples were obtained prior to infection and on post-infection days 7, 14, 21, 28 

and every two weeks thereafter.   

CSF draws were attempted every two weeks post-infection.  CSF was aliquoted and 

stored at –80˚C.   



 115 

Lymph node biopsies were performed at 2, 4, 12, 16 weeks post-infection and at 

necropsy under ketamine anesthesia at inguinal or axillary sites.  Lymph nodes were fixed in 

10% buffered formalin (Fisher Scientific, Pittsburgh, PA) and paraffin-embedded. Six-µm 

sections were made for histopathological analysis. 

Brains were removed immediately after euthanasia, with the exception of M158 and 

M159, and processed for analysis. M158 and M159 died unexpectedly and their brains were 

removed upon discovery.  Regional samples were cut from the left hemisphere, snap-frozen, and 

stored at –80˚C.  The right hemisphere was fixed in 10% buffered formalin.  Coronal sections 

were made, and tissue blocks were paraffin-embedded.  Six-µm sections were made for 

histopathological analysis.   

Portions of liver, lung, small bowel, thymus, spleen, and spinal cord were removed 

immediately after euthanasia and fixed in 10% buffered formalin.  Samples of these organs were 

not available for M159.  Sections of each organ were made, and tissue blocks were paraffin-

embedded.  Six-µm sections were made for histopathological analysis. 

 

Quantitation of SIV RNA in Plasma. 

Virions from 1 ml of plasma were pelleted by centrifugation at 16,000 x g or 23,586 x g 

for 1 hour.  Total RNA was extracted from the virus pellet using Trizol (Life Technologies, Inc.).  

Real-time reverse transcriptase (RT)-PCR was performed with 20 µl of each RNA sample as 

previously described (28).  Primers and probes were specific for the SIV U5/LTR region. 
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Histology 

To assess each macaque brain for the presence of SIVE, paraffin sections of brain tissue 

containing neocortical gray and white matter, caudate, putamen, hippocampus, occipital cortex, 

and cerebellum were stained with hematoxylin and eosin (H&E).  SIVE was empirically defined 

as the presence of microglial nodules, multinucleated giant cells, and profuse perivascular 

mononuclear infiltrates.  The morphological distribution and abundance of 

macrophage/microglia and SIV-infected cells was assessed using a monoclonal antibody against 

macrophage/microglia-associated protein CD68 (clone KP1; DakoCytomation) and a polyclonal 

antibody against the SIV envelope gp110 (generously provides by Dr. Kelly Stefano Cole and 

Dr. Ron Montelaro, University of Pittsburgh, Pittsburgh, PA), respectively.  

 
Ex vivo cultures to assess p27 production 

 PBMC were isolated from whole blood by density gradient centrifugation using 

Lymphocyte Separation Medium (Mediatech, Inc., Herndon, VA).  For monocyte-derived 

macrophage (MDM) cultures, 3 x 106 PBMC were plated in 2-well Lab-Tek Permanox Chamber 

Slides (Nalge Nunc International, Rochester, NY) in AIM-V media (Invitrogen - Gibco, 

Carlsbad, CA) supplemented with 20% fetal calf serum (FCS), and 10 ng/ml monocyte-colony 

stimulating factor (Sigma-Aldrich, St. Louis, MO).  On day 4 of culture, cultures were washed 

three times with sterile PBS to remove nonadherent cells and maintained in AIM-V 

supplemented with 20% FCS.  Complete media changes were performed at 7, 10 and 14 days 

post-incubation. Virus production was measured on day 14 supernatants using the SIV Core 

Antigen ELISA kit (Beckman Coulter) according to manufacturer’s recommendations.  The 

MDMs in the chamber slides were washed 3 times with PBS and fixed with 4% 

paraformaldehyde.  In order to assess the purity and infection of MDM cultures, slides were 
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immunofluorescently stained for macrophages (CD68), SIV envelope protein (SIVgp110), and T 

cells (CD3) as described for formalin-fixed paraffin-embedded tissue (28).  This affirmed the 

majority of cells in the culture were MDMs.   

  

For nonadherent cell cultures, 1 x 106 PBMC were added to 12-well plates in RPMI-1640 

with L-Glutamine (Invitrogen – Gibco) supplemented with 10% FCS, 40 U/ml recombinant 

human interleukin-2 (IL-2) (Roche Diagnostics Corporation, Indianapolis, IN), and 5 µg/ml 

phytohemagglutinin-L (PHA) (Roche Diagnostics Corporation).  On day 4, PHA was removed 

by washing the cells in RPMI-1640 with L-Glutamine supplemented with 10% FCS and 40 U/ml 

IL-2. Complete media changes were performed at 7, 10 and 14 days post-incubation.  Cells were 

maintained at a concentration of 1 x 106 cells/ml. Virus production was measured on day 14 

culture supernatants using the SIV Core Antigen ELISA kit (Beckman Coulter) according to 

manufacturer’s recommendations.  

 
SIV DNA quantitation 
 

PBMC were isolated by density gradient centrifugation using Lymphocyte Separation 

Medium (Mediatech, Inc., Herndon, VA).  107 PBMC were incubated with CD14 Microbeads 

(human) (Miltenyi Biotec, Bergisch Gladbach, Germany).  Magnetic separation was performed 

using MiniMACS Separator with MS Columns (Miltenyi Biotec) according to manufacturer’s 

recommendations.  Purified monocytes were obtained from the positive fraction.  Purity was 

evaluated by incubating a portion of the positive fraction with FITC-conjugated anti-human 

CD14 (clone RM052, Beckman Coulter) and PE-conjugated anti-human CD3 (clone FN18; 

Biosource) and analyzed using an EPICS XL-2 flow cytometer.  Purity ranged from 95-98%.  

The negative fraction was incubated with CD4 Microbeads (human) (Miltenyi Biotec) and 
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separated using the MiniMACS separation system.  Purified CD4+ T cells were obtained from 

the positive fraction and purity evaluated as described for monocyte fraction.  Purity ranged from 

90-98%.  Cells were pelleted at 14,000 rpm for 1 minute and frozen.  DNA was isolated from 

thawed samples using Qiagen DNA Blood Mini Kit (Qiagen, Valencia, CA) and resuspended in 

50 µl of H20.  The total amount of DNA was measured using the NanoDrop ND-1000 

Spectrophotometer (NanoDrop Technologies, Wilmington, DE).  

 Quantitation of cell-associated DNA was performed by real-time PCR in a Prism 7700 

(Applied Biosystems (ABI), Foster City, CA).  The PCR reaction was performed in triplicate 

adding 47 µl of a PCR master mix containing 5.5 mM MgCl2, 1X PCR buffer A (ABI), 300 mM 

of each dNTP, 400 nM of each primer, and 200 nM of probe to 3 µl of each samples in a 96-well 

plate.  The primers and probe used were described previously (28, 109).  To generate a standard 

curve, serial dilutions of DNA containing the SIV target region, ranging from 101 to 106 

copies/reaction, were subjected to PCR in triplicate along with experimental samples.  SIV DNA 

copy numbers from unknown experimental samples were calculated from the standard curve.  

This result was normalized for volume adjustments (# SIV DNA copies/cell), multiplied by the 

number of circulating monocytes/ml blood as determined by complete blood count and 

differential, and reported as number of SIV DNA copies from CD14+ monocytes/mL blood. 

 
Immunofluorescent Histochemistry 

For lymph nodes:  Paraffin sections containing biopsy tissue were stained for macrophage 

associated lysosomal marker CD68 or a polyclonal antibody against CD3 (DakoCytomation) and 

SIV envelope protein SIVgp110.  Double-label immunofluorescent detection was performed 

with fluorogen tags as described previously (28) in order to assess the number of SIV-infected T 

cells and macrophages.    
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For liver, lung, small bowel, thymus, spleen, and spinal cord: Paraffin sections were 

stained for CD68, SIVgp110, and CD3 in order to assess the number of SIV-infected T cells and  

macrophages. Triple-label immunofluorescence staining was performed as described previously 

(28, 386) using Tyramide Signal Amplification (PerkinElmer Life and Analytical Sciences, 

Boston, MA) for CD68. This was followed by staining for CD3 and SIVgp110. 

For brain:  Paraffin sections containing midfrontal cortex and basal ganglia were stained 

for CD3 and TIA-1 (clone 2G9A10F5, Beckman Coulter) in order to assess the number of 

cytolytic effector cells.  Double-label immunofluorescent detection was performed with 

fluorogen tags as described for lymph node staining. 

 

Counting of SIV-Infected Cells in Organs and Lymph Nodes  

 Slides with sections of lymph nodes were immunofluorescently stained with antibodies to 

CD68 and SIVgp110 or CD3 and SIVgp110, while slides with sections of liver, lung, small 

bowel, thymus, spleen, and spinal cord were immunofluorescently stained with antibodies to 

CD68, CD3, and SIVgp110. The regions of interest were analyzed by laser confocal microscopy 

(LSM 510, Zeiss, Jena, Germany).  The illumination was provided by Argon (458, 477, 488, 514 

nm, 30mW) lasers.  Each image was scanned along the z-axis and the middle sectional plane was 

found (262,144 pixels per plane; 1 pixel, 0.25 µm2).  Digital images were captured and analyzed 

with LSM 510 3.2 software (Zeiss).  Each organ or lymph node from every macaque was 

randomly scanned by an individual blinded to the status of the macaques in 10 microscopic areas 

(40X) encompassing 106,100 µm2.  Scanning parameters such as laser power aperture, gain and  

photomultiplier tube settings for each wavelength were kept constant for each macaque  
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specimen. Three or four blinded reviewers enumerated the number of double-labeled cells 

(CD68+SIVgp110+ or CD3+SIVgp110+) and single-labeled SIV+ cells.  The three or four values 

from each observer were averaged to represent the number of infected cells in that organ area.  

  

Counting of CD3+ and TIA-1+ Cells  

 Slides with sections of midfrontal cortex and basal ganglia were immunofluorescently 

stained with antibodies to CD3 and TIA-1.  The regions of interest were viewed using an 

epifluorescence microscope (Nikon). Each brain section from every macaque was randomly 

scanned by an individual blinded to the status of the macaques in 10 microscopic areas (20X) 

encompassing 212,200 µm2.  Blinded reviewers enumerated the number of double-labeled cells 

(CD3+TIA-1+) and single-labeled cells (CD3+ and TIA-1+).  Values from each observer were 

averaged to represent the number of cells in the brain.  

 

Statistical Analysis 

 Data were analyzed using either Microsoft Excel or PRISM 4.0b software (GraphPad 

Software, Inc., San Diego, CA). We compared each separate variable in two independent, 

unpaired groups using two-tailed Mann-Whitney tests for non-parametric independent 

comparisons with 95% confidence intervals.  Data were analyzed comparing macaques with 

SIVE to macaques without encephalitis at each time point rather than comparing the longitudinal 

trend within the same group. 
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3.3.4. Results 

Four of Six SIV-Infected Pigtailed Macaques Developed Encephalitis. 

Six pigtailed macaques were infected with SIVDeltaB670 and followed during the course 

of infection until clinical symptoms required humane sacrifice.  Table 4 summarizes clinical and 

pathological diagnoses for each macaque.  Upon histopathological evaluation, four macaques 

developed SIVE (67%).  One macaque that developed SIVE had concurrent gram-positive 

bacterial meningitis.  Two macaques did not show evidence of SIVE based on 

immunohistochemical evaluation for SIV-infected cells.  One macaque without encephalitis 

showed acute hypoxic changes in the CA1 region of the hippocampus.  The average length of 

infection for macaques with SIVE was 131 days (median = 128 days; range = 83-185 days) and 

191.5 days (median = 191.5 days; range = 83-300 days) for macaques without encephalitis.  

 

CD4+ and CD8+ T Cells Were Higher During Acute Infection In Macaques That Developed 

SIVE. 

 Pre-infection average CD4+ and CD8+ T cell counts were higher in macaques that 

developed SIVE compared to SIV-infected macaques that did not develop SIVE (Figures 17a 

and b) and remained higher until 10 and 18 weeks post-infection for CD4+ and CD8+ T cells, 

respectively.  In this small number of animals, these differences were not statistically significant.  

The relative loss of CD4+ T cells showed similar trends in both macaques that did and did not 

develop encephalitis with very few CD4+ T cells present at death (Figure 17a).
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Figure 17.  Mean longitudinal peripheral blood counts for CD4+ and CD8+ T cells of six 
pigtailed macaques infected with SIV/DeltaB670.  Based on histological findings, macaques 
were retrospectively classified at post-mortem for presence of SIVE.  Macaques that developed 
encephalitis had lower average CD4+ and CD8+ T cell counts prior to infection and maintained 
higher average T cell counts. a:  Mean peripheral blood absolute CD4+ T cell counts decreased 
during the first week post-infection (wpi) and remained decreased for the duration of infection. 
Macaques that developed SIVE (red) had greater average CD4+ T cell counts than macaques 
without encephalitis (blue) until 10 wpi. b:  Mean peripheral blood CD8+ T cell counts 
decreased during the first wpi then made a partial recovery before decreasing again.  Macaques 
that developed SIVE (red) had greater average CD8+ T cell counts than macaques without 
encephalitis (blue) until 18 wpi.   
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Table 4.  Pigtailed Macaque Age, Sex, Infection Parameters, and Neuropathological and Clinical 
Diagnosis. 

Monkey 
Number 

Age 
(mo) Sex 

Disease at 
time of 

sacrifice 
Length of 

Infection (d) Neuropath Dx Clinical Dx 
M156 52 m AIDS 83 normal Cough, epistaxis, 

interstitial pneumonia, 
scrotum & enlarged and 
necrotic prepuce 
 

M157 50 m AIDS 137 subacute SIVE 
with diffuse 
granulomas, low 
grade meningitis, 
poliomyelitis 
 

screaming, orchitis, 
muscle tics 

M158 55 m AIDS 185 SIV encephalitis, 
SIV myelitis 

died unexpectedly, SIV 
hepatitis, SIV enteritis 
 

M159 51 m AIDS 83 SIV encephalitis, 
severe meningitis 
(gram-positive 
bacteria), severe 
edema with 
ischemic changes 
 

died unexpectedly, CMV 
pnemonitis, 
glomerulosclerosis 

M160 52 m AIDS 300 normal, acute 
hypoxic changes 

hemorrhagic lung, 
pneumonitis 
 

M161 59 m AIDS 119 SIV encephalitis, 
SIV myelitis 

ataxia, splenomegaly, 
severe pneumonia  
(Pneumocystis carinii) 
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 Plasma Viremia Was Increased From 6-12 Weeks Post-Infection In Macaques That Developed 

SIVE. 

 During the first four weeks of infection, both macaques that did and did not develop 

encephalitis had high plasma viremia (Figures 18a and b).  Beginning at six weeks post-

infection, mean plasma viremia was approximately 1 order of magnitude higher in macaques that 

developed SIVE compared to non-encephalitic macaques, but this did not reach statistical 

significance.   

 

During the Course of Infection, Monocyte-Associated SIV DNA Was Increased At Various Time 

Points Post-Infection in Three of Four Macaques That Developed SIVE. 

 In order to compare the viral load of blood monocytes between macaques that did and did 

not develop SIVE, the number of SIV DNA copies associated with CD14+ blood monocytes was 

assessed at 1, 2, 3, and 4 weeks post-infection and every two weeks thereafter when enough 

blood was available to isolate the cells.  For all macaques, the number of SIV DNA copies in 

monocytes varied from 0-9823 SIV DNA copies/ml blood (Figure 19a). Three of the macaques 

that developed SIVE had higher numbers of SIV DNA copies in monocytes at either 2, 4, and 8 

weeks post-infection than macaques without SIVE. Monocyte-associated viral loads of macaques 

that did not develop SIVE were lower than seen in three of the four macaques that developed 

SIVE. 
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Figure 18. Plasma SIV RNA of six pigtailed macaques infected with SIV/DeltaB670.  Based on 
histological findings, macaques were retrospectively classified at post-mortem for presence of 
SIV encephalitis.  Plasma viral load in macaques that developed encephalitis was higher from 6-
12 weeks post-infection compared to macaques that did not develop encephalitis.  a:  
Longitudinal plasma SIV RNA for the four macaques with SIVE are shown in red and the two 
macaques without encephalitis are shown in blue.  b:  The mean longitudinal plasma SIV RNA 
for macaques shown in a.  Plasma viremia was similar for macaques with and without 
encephalitis during the first four weeks post-infection.  From 6-12 weeks post-infection, plasma 
viremia was higher in macaques that developed encephalitis compared to macaques that did not 
develop encephalitis. 
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Figure 19. Longitudinal analysis of blood monocyte SIV DNA and SIV p27 production in MDM 
and nonadherent PBMC from six pigtailed macaques infected with SIV/DeltaB670. Based on 
necropsy histological findings, macaques were retrospectively classified for presence of SIVE. a:  
The number of SIV DNA copies was higher at various times post-infection in macaques that 
developed SIVE (red) than macaques that did not develop encephalitis (blue).  The number of 
SIV DNA copies was assessed in CD14+ blood monocytes isolated by magnetic bead separation 
at 1, 2, 3, 4 weeks post-infection and every two weeks thereafter from macaques with SIVE and 
macaques without encephalitis.  b:  Peak SIV DNA copies.  c: At various times during the 
course of infection, p27 production of MDMs (adherent PBMC) cultured ex vivo for 14 days 
showed that the four macaques that developed SIVE (red) produced more p27 in culture than the 
two macaques without encephalitis (blue).   MDM from each macaque that developed SIVE had 
peak ex vivo virus production at different times post-infection, mostly within the first eight 
weeks post-infection.  d:  Peak p27 production from MDMs cultured ex vivo.  e:  Longitudinal 
p27 production of non-adherent PBMC cultured ex vivo for 14 days is increased at various times 
post-infection from the four macaques that developed SIVE (red) compared to the two macaques 
without encephalitis (blue).  f:  Peak p27 production from non-adherent PBMC cultured ex vivo. 
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Ex Vivo SIV P27 Production from Monocyte-Derived Macrophages and Nonadherent PBMC of 

Macaques That Developed SIVE Was Higher than Macaques That Did Not Develop 

Encephalitis.   

 The ability of infected monocytes to replicate virus was assessed ex vivo.  Cultured MDM 

were monitored for SIV p27 production at 1, 2, 3, and 4 weeks post-infection and every two 

weeks thereafter when enough blood was available to isolate the cells.  Adherent peripheral 

blood MDM of the four macaques that developed encephalitis produced more p27 ex vivo than 

did MDM of the two SIV-infected macaques that did not develop SIVE (Figure 19b).  The time 

points post-infection that these differences were observed was variable for each macaque.  All 

macaques showed higher ex vivo p27 production from MDM within the first eight weeks post-

infection.  M158 showed peak virus production at 16 weeks post-infection.   

 Separate non-adherent PBMC cultures were also monitored for viral production.  Non-

adherent cells were capable of producing more virus than adherent MDM cultures, but there 

were time points where MDM cultures produced more virus than non-adherent PBMC cultures 

from the same macaque.  Longitudinal p27 production of non-adherent PBMC cultured ex vivo 

for 14 days is increased at various time post-infection from the four macaques that developed 

SIVE compared to the two SIV-infected macaques that did not develop encephalitis (Figure 19c).  

As with MDM cultures, the majority of the viral production occurred at earlier time points post-

infection. 
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The numbers of infected cells in lymph nodes from macaques with and without encephalitis are 

similar. 

There were few infected cells in the lymph nodes during the course of infection (Figure 

20).  The average number of macrophages infected in lymph nodes throughout the course of 

infection was less than one infected macrophage/field except for M158 at necropsy (average = 

4.7 infected macrophage/field).  The average number of CD3+/SIVgp110+ cells was 1-2 infected 

cells/field at two weeks post-infection and <1 at four, twelve, and sixteen weeks post-infection.  

There was no distinction between the number of infected cells observed in lymph nodes in 

macaques that did and did not develop SIVE. 

 

At Necropsy, Macaques with SIVE Had More Productively Infected Macrophages in Liver, Lung, 

Small Bowel, Spleen, Thymus, and Spinal Cord than Macaques Without Encephalitis. 

 The number of productively infected macrophages and T cells in the liver, lung, small 

bowel, spinal cord, spleen, and thymus were compared between macaques with and without 

SIVE.  Formalin-fixed paraffin embedded tissue was fluorescently immunostained for 

macrophages (CD68), T cells (CD3), and virus (SIVgp110).  Four observers enumerated the 

number of macrophages (CD68+/SIV+ cells), infected T cells (CD3+/SIV+ cells), and SIV-

infected cells that did not co-localize with either CD68 or CD3 (SIV+/CD3-/CD68- cells).  There 

were very few cells that did not co-label with either CD3 or CD68 in these tissues (Figure 21).  

Macrophages were the most common infected cell in lung, small bowel, spleen, and thymus 

(Figures 21b-f), while similar numbers of macrophages and T cells were infected in the liver 

(Figure 21a). In all organs examined, the median number of productively infected macrophages 

was statistically significantly higher in macaques with SIVE compared to SIV-infected 
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nonencephalitic macaques.  The small bowel had the highest number of infected macrophages of 

all organs examined.  The median number of productively infected T cells was statistically 

significantly higher in liver and spinal cord of macaques with SIVE compared to SIV-infected 

nonencephalitic macaques (Figures 21a and d) although few infected T cells were observed in 

the spinal cord.   

 

At Necropsy, Macaques with SIVE Had More CNS T Cells With Cytolytic Potential than 

Macaques Without Encephalitis. 

 To begin to examine local immune response to SIV replication in CNS macrophages, the 

number of CD3+ T cells expressing the T cell intracellular antigen 1 (TIA-1) was analyzed in 

midfrontal cortical and basal ganglia regions of the brain.  TIA-1 is a cytoplasmic granule-

associated protein expressed in cells with cytolytic potential (10).  In the brains of macaques with 

SIVE, there were statistically significantly more CD3+TIA-1+ cells than in brains of SIV-infected 

macaques without SIVE (Figures 22a and 22c).  The number of CD3+TIA-1- and CD3-TIA-1+ 

was also greater in brains of macaques with SIVE, but this did not achieve statistical 

significance.  Compared to SIVE, a human brain exhibiting herpes simplex virus (HSV) 

encephalitis had a five-fold increase in the number of CD3+TIA-1+ cells and a 12.8-fold increase 

in the number of CD3+TIA-1- cells.  75% and 66% of CD3+ cells co-labeled with TIA-1 in brains 

of macaques with SIVE and SIV-infected macaques without SIVE, respectively (Figure 22 c and 

data not shown).  Macrophages did not co-label with TIA-1, but TIA-1+ cells were adjacent to 

perivascular cuffs of macrophages in brains of macaques with SIVE. 
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Figure 20.  Longitudinal biopsy survey of the number of infected macrophages and T cells 
observed in lymph nodes from six pigtailed macaques infected with SIV/DeltaB670. Based on 
histological findings, macaques were retrospectively classified at post-mortem for presence of 
SIVE.  Each lymph node sample was immunostained for both CD3/SIVgp110 and 
CD68/SIVgp110 and visualized by immunofluorescent confocal microscopy.  Three observers 
enumerated the number of infected macrophages (CD68+/SIV+ cells) and infected T cells 
(CD3+/SIV+ cells).  There are few infected cells in the lymph nodes during the course of 
infection, and there is no distinction between the number of infected cells in lymph nodes from 
macaques with and without encephalitis.  a:  Average number of infected macrophages per 
microscopic field for each macaque.  Four of five macaques showed slight increases in the 
number of CD68+/SIV+ cells at necropsy.  Lymph node samples were not available for M159 at 
8, 12, 16 weeks post-infection and at necropsy.  b:  Mean number of infected macrophages per 
microscopic field was similar in macaques with (red) and without encephalitis (blue).  c:  
Average number of infected T cells per microscopic field for each macaque.  d:  Mean number 
of infected  T cells per microscopic field was similar in macaques with (red) and without 
encephalitis (blue). 
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Figure 21. Pigtailed macaques with SIV encephalitis have more infected macrophages in peripheral 
organs than macaques without encephalitis.  Organs obtained at necropsy were immunostained for CD68, 
CD3, and SIVgp110 and visualized by immunofluorescent confocal microscopy.  Four observers  
 
Legend continued on next page. 
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Figure 21 legend continued. 
 
enumerated the number of infected macrophages (CD68+/SIV+ cells), infected T cells (CD3+/SIV+ cells), 
and SIV-infected cells that did not co-label with either CD68 or CD3 (SIV+/CD68-/CD3- cells).  The 
black bars represent the median of infected cells enumerated for each group (each dot represents the 
enumeration from an individual field).  a and d: Liver and Spinal Cord.  The median of infected 
macrophages was statistically significantly higher in macaques with SIVE compared to macaques without 
encephalitis.  More infected T cells were also enumerated in macaques with SIVE compared to macaques 
without encephalitis. Macrophages were the most common SIV-infected cell in the spinal cord. b, c and 
f: Lung, Small Bowel and Thymus.  The median number of infected macrophages was statistically 
significantly higher in macaques with SIVE compared to macaques without encephalitis.  A small number 
of SIV-infected cells that did not co-label with CD68 or CD3 were found in the thymus, small bowel and 
lung. The small bowel had the highest number of infected macrophages of all organs examined. e:  
Spleen.  The median number of infected macrophages was statistically significantly higher in macaques 
with SIVE compared to macaques without encephalitis. *, P<0.05.  **, P<0.01. ***, P<0.001. 
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Figure 22. Pigtailed macaques with SIV encephalitis have more CD3+TIA-1+ cells in the CNS 
than macaques without encephalitis. For this analysis, we used banked tissue from six macaques 
with SIVE and six nonencephalitic SIV-infected macaques. Brain tissue obtained at necropsy 
was immunostained for TIA-1 and CD3 and visualized by immunofluorescent confocal 
microscopy. Observers enumerated the number of CD3+TIA-1- cells, CD3+/TIA-1+ cells, and 
CD3-/TIA-1+ cells.  Human brain tissue obtained from autopsy of a case of herpes simplex virus 
(HSV) encephalitis was analyzed for comparison.  a:  The number of CD3+TIA-1+ cells were 
significantly greater in macaques with SIVE compared to nonencephalitic SIV-infected 
macaques.  However, the number of CD3+TIA-1+, CD3+TIA-1-, and CD3-TIA-1+ cells was more 
abundant during HSV encephalitis than SIVE.  *, P<0.05.  b:  A perivascular cuff containing 
macrophages (green, CD68) abutted  by TIA-1+ cells (red) from a macaque with SIVE .  c:  
Most CD3+ cells in macaques with SIVE are TIA-1+.  Cells were stained for CD3 (red) and 
TIA-1 (green) with yellow indicating co-localization of CD3 and TIA-1. 

b c 
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3.3.5. Discussion 

 
 Infection of brain macrophages is the predominant feature of lentiviral encephalitis (15, 

42, 79, 209, 223). Infected macrophages can be found in the CNS during acute stages of 

infection (66); however, productively infected CNS cells during the asymptomatic stage of 

disease are rare (397).  Since not all macaques develop encephalitis upon commencement of 

immunosuppression, the role these early infected macrophages play in development of 

encephalitis is not clear.  During late stages of immunosuppression, encephalitis is thought to 

develop when increased numbers of infected monocytes traffic to the CNS (54, 188).  It is not 

known whether macrophage infection is unique to the CNS in animals that develop encephalitis 

or whether these animals also exhibit abundant blood monocyte and systemic tissue macrophage 

infection. To begin to determine whether there is an association between systemic and CNS 

macrophage infection, we analyzed monocyte/macrophage infection during the course of 

infection in six SIV-infected pigtailed macaques that were retrospectively classified for presence 

of SIVE.   

 

Monocyte/Macrophage Infection During the Course of Infection 

 During the course of infection, the viral load of monocytes and their capability to produce 

virus ex vivo was analyzed approximately every two weeks post-infection.  Three of the 

macaques that developed SIVE had higher numbers of SIV DNA copies than the SIV-infected 

macaques that did not develop SIVE.  Each of these three encephalitic macaques had peak 

monocyte-associated viral load at different time points post-infection indicating there is 

variability in disease progression even among animals that develop encephalitis.  All four 
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macaques that developed SIVE had MDM that produced more virus ex vivo than the SIV-

infected macaques that did not develop SIVE.  Interestingly, peak monocyte-associated viral 

loads and peak SIV production from MDM did not temporarily coincide.  MDM viral production 

usually followed 1-2 weeks after peak monocyte-associated viral loads.  This suggests that even 

though infected monocytes are in circulation, they might be poor producers of virus.  When 

MDM are producing high levels of virus, it appears that a few monocytes are capable of 

producing more virus.  These data suggest there are inherent differences in the individual 

macaque monocytes to harbor virus and to produce virus during the course of infection. 

 The highest levels of monocyte-associated SIV DNA and SIV production from MDM in 

macaques that developed SIVE were observed during early or mid stages of infection.  It is 

surprising that peak virus loads and production were not seen at the time points immediately 

before death when the immune response is ablated.  The same trend is seen in the nonadherent 

PBMC cultures that contain the CD4+ T cells.  This is most likely due to host cell depletion.  As 

with the ex vivo MDM cultures, all four macaques that developed SIVE had nonadherent PBMC 

that produced more virus ex vivo than the SIV-infected macaques that did not develop SIVE.  It 

is not surprising that nonadherent cultures fail to produce virus at end stages of infection since 

the blood CD4+ T cell numbers are drastically reduced.  Since MDM produce more virus during 

earlier stages of infection rather than prior to death, it suggests that ability of cells to produce 

virus during earlier time points of infection may be more important in the development of 

encephalitis.   

 Previously, we analyzed viral load in monocytes and their capability to produce virus ex 

vivo in a group of eight rhesus macaques treated with a CD8+ T cell depleting antibody (29).  

The MDM from the three macaques that developed SIVE in this group also produced more virus 
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than macaques that did not develop encephalitis; however, the number of blood monocyte-

associated SIV DNA copies did not distinguish macaques that developed SIVE from macaques 

that did not develop encephalitis during the course of infection.  Although this could be 

attributed to species and experimental differences, it suggests that the ability of MDM to produce 

virus during the course of infection is more tightly associated with the development of SIVE than 

the number of infected monocytes. 

 Inguinal or axillary lymph node biopsies at 2, 4, 12, and 16 weeks post-infection were 

performed to analyze the number of infected macrophages during the course of infection.  In 

both macaques that did and did not develop SIVE, there were few infected macrophages present 

in lymph nodes at the time points analyzed.  More surprising was the small number of infected T 

cells observed at these time points, less than 2 cells/field.  High levels of infected cells are 

generally seen in lymph nodes of rhesus macaques during asymptomatic infection (300).  In this 

study, the pigtailed macaque lymph nodes might have experienced massive replication and cell 

death prior to the first lymph node biopsy.  This is in agreement with the dramatic decrease in 

peripheral blood CD4+ T cells seen by the first week after infection. Neither macrophage or T 

cell infection of the lymph nodes correlated with SIVE.   

 

Macrophage Infection At Necropsy 

 In pigtailed macaques, animals with SIVE exhibit greater numbers of infected macrophages 

in all peripheral organs (except lymph nodes) than macaques without SIVE.  The number of 

infected T cells was also greater in the liver of the macaques with SIVE than SIV-infected non-

encephalitic macaques; however, there are few infected T cells in other peripheral organs at 

necropsy. This may simply reflect severe depletion of CD4+ T cells in tissues at the end stages of 
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disease (276, 308, 381).  It is surprising that the number of infected macrophages in the lymph 

nodes did not mirror the other organs given that the spleen (another secondary lymphoid tissue) 

showed abundant macrophage infection in macaques with SIVE. Since most lymph nodes were 

depleted and involuted by necropsy, it is possible that monocytes were migrating to other organs.  

This suggests that the ability of pigtailed macaque macrophages to produce virus in the CNS and 

other organs is related to the development of encephalitis.  

 Such dramatic differences in macrophage infection in peripheral organs were not 

observed in the group of eight rhesus macaques treated with a CD8+ T cell depleting antibody 

(29).  Paradoxically, in this other model, macaques that developed encephalitis had fewer SIV-

infected macrophages in lungs and thymus at postmortem than macaques that did not develop 

encephalitis. We hypothesized for both species of macaques that infected macrophages in other 

solid organs would correlate with development of encephalitis.  It is possible that rhesus 

macaques treated with a CD8+ T cell depleting antibody have such rapid disease progression that 

macrophage infection does not have time to develop in every organ.  This leaves unexplained why 

the CNS would be the only organ to show increased macrophage infection in this model. 

 

Immune Response to Macrophage Infection 

 Although we did not analyze the immune response to peripheral infected 

monocyte/macrophages during the course of infection, there was no significant difference in the 

level of CD4+ and CD8+ T cell decline or plasma viremia between macaques that did and did not 

develop encephalitis.  Macaques that developed SIVE had greater average CD4+ and CD8+ T cell 

counts than macaques that did not develop SIVE, but the magnitude of loss of CD4+ T cells was 

similar.  Interestingly, the numbers of CD8+ T cells in the macaques that develop SIVE 
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fluctuated greatly during the course of infection even though plasma viremia is similar between 

macaques that did and did not develop encephalitis.  These data confirm other reports that there 

is no clear relationship between total CD4+ T cell or plasma viremia and the development of 

encephalitis (28, 391). 

 There are few reports that have examined immune control of viral infected macrophages 

in humans or macaques with lentiviral encephalitis (95, 169, 335, 340, 347, 388).  This is due to 

lack of reagents to examine the immune response and difficulty in isolating immune cells from 

autopsy brain tissue.  Others have identified and described the distribution of CD8+ T cells in 

association with SIV lesions in the brain (169) and presence of NK cells has been observed by 

TIA-1 staining (335).  We performed a survey of TIA-1+ cells in the brain.  TIA-1 is a 

cytoplasmic granule-associated protein expressed in cells with cytolytic potential (10).  In 

macaques with SIVE, the number of T cells with cytotoxic potential was significantly higher 

than SIV-infected macaques without encephalitis.  It is likely that the majority of these cells were 

CD8+ T cells since only a small fraction express TIA-1 and CD4+ cells are rare in the brains of 

macaques with SIVE.  There were five times as many T cells with cytolytic potential than T cells 

that did not co-label with TIA-1.  The numbers of NK cells (CD3-TIA-1+) in the brains of 

macaques with SIVE were also increased compared to macaques without SIVE.  Presence of T 

cells and NK cells with cytolytic potential in brains with SIVE indicates that development of 

SIVE induces an immune response to control CNS viral infection that is not present in the CNS 

of macaques without SIVE.  This suggests that during asymptomatic phases of infection there is 

insufficient viral production locally in the CNS to induce a substantial immune response.  In the 

future, it will be necessary to determine whether the local CNS immune response during 
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asymptomatic infection or in animals that do not develop SIVE is sufficient to contain viral 

production or whether development of encephalitis is determined by factors outside of the CNS. 

Comparison of T cells and NK cells with cytolytic potential found in the CNS of 

macaques with SIVE compared to humans with HSV encephalitis shows that other viral 

encephalitides induce a much greater local T cell response than SIVE.  This was also observed in 

human brains with West Nile Virus encephalitis (data not shown).  These classical acute 

encephalitides have viral infected neurons, and frequently affect older and immunosuppressed 

individuals.  It will be interesting to determine why the immune responses differ in magnitude in 

these different encephalitides. 

 In this study we examined on the relationship between peripheral SIV infection of 

monocyte/macrophages and the development of encephalitis and the presence of cells with 

cytolytic potential in macaques with SIVE. Compared to macaques that did not develop SIVE, 

the monocyte associated SIV-DNA load of monocytes and the capability of MDM and 

nonadherent PBMC to produce virus ex vivo was increased in macaques that developed SIVE.  

Macaques with SIVE had more infected macrophages in peripheral organs with the important  

exception of lymph nodes.  Brains from encephalitic macaques had more T cells and NK cells 

with cytotoxic potential than brains from non-encephalitic macaques; however, there were far 

fewer activated immune cells in SIVE compared to classic acute HSV encephalitis.  These 

results suggest that the inherent differences in host viral production by monocyte/macrophages 

and T cells during the course of infection and macrophages at the end stages of infection are 

associated with the development of encephalitis.  Future studies will determine what host factors 

account for these inherent differences and why SIVE does not induce as strong of an immune 

cell infiltrate as other encephalitides.   
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3.4.1. Abstract 

Twenty-five percent of HIV-infected patients develop a clinical syndrome known as 

HIV-associated dementia (HAD) that is associated with lentiviral encephalitis. Since lentiviral 

encephalitis has been hypothesized to be associated with monocytes that have the capacity to 

migrate into the brain, we have prospectively analyzed the percent expression and mean 

fluorescent intensity of a panel of phenotypic activation markers on CD14hi and CD14lo 

monocytes from SIV-infected macaques that did or did not develop encephalitis. CD16, CCR5, 

CD69, HLA-DR, CD62L, CD40, CD64, and CD163 expression were analyzed every two weeks 

after infection. CD14hi/CD16+ and CD14lo/CD16hi monocytes were expanded during acute 

infection and at various time points during the course of infection; however, this expansion was 

not unique or greater in macaques that developed encephalitis. The proportion of monocytes that 

expressed CD62L, HLA-DR, CD16, CD64, and CD40 were either higher or lower in macaques 

that developed encephalitis at single time points during the course of infection.  However, none 

of the tested phenotypic markers predicted development of encephalitis.  Taken together, these 

results suggest that changes in the proportion of circulating activated monocytes do not directly 

determine development of encephalitis, but this does not rule out the importance of activated 

monocytes in the development of encephalitis. 
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3.4.2. Introduction 

Twenty-five percent of HIV-infected patients develop a clinical syndrome known as 

HIV-associated dementia (HAD) (6, 36, 61, 77, 90, 232).  In the absence of opportunistic 

infections, HIV encephalitis (HIVE) is the pathological correlate of HAD. Within the central 

nervous system (CNS), the predominant infected cell in HIVE is the macrophage (104, 138, 238, 

296, 392).  Although virus can be detected in the CNS soon after infection (80), dementia and 

encephalitis develop late in disease when the patient is severely immunosuppressed (36). 

Development of encephalitis is thought to be the result of activated infected blood monocytes 

trafficking into the CNS. 

By migrating from blood into tissue, monocytes differentiate into macrophages (377). 

While trafficking of activated T cells into the CNS has been studied in a variety of diseases, 

much less is known about monocyte trafficking.  Migration of activated T cells is directed by 

tissue specific chemokines and integrin receptors (97).  T cells found in CSF express CXCR3, 

CCR5, and CCR6 (172), and inflammatory chemokine CXCR3 is thought to be involved in T 

cell accumulation in the CNS (366).  Little is known about the normal turnover of CNS 

macrophages (microglia) (402) or how this might be augmented during disease (151).   

It is reasonable to speculate that migration of activated monocytes is regulated by 

expression of integrins such as LFA-1 and VLA-4 and chemokine receptors.  Monocytes 

integrins adhere to endothelial cell adhesion molecules ICAM-1 and VCAM-1 in order to 

migrate into tissue (153, 330).  It is largely unknown how monocytes cross the brain 

endothelium, but it is believed that that VLA-4/VCAM and PECAM/PECAM interactions are 

important in facilitating transmigration (60, 235, 263, 318, 384).  Monocyte α4β1 integrin and 

endothelial VCAM-1 interactions are thought to be necessary for transmigration into the CNS 
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during SIV encephalitis (318).  Recent reports indicate that monocytes express high amounts of 

monocyte chemotactic protein-1 receptor CCR2 (162).  Upon differentiation into macrophages, 

CCR2 expression progressively decreases and CCR1 and CCR5 expression progressively 

increases (162).   In multiple sclerosis, reports suggest CCR1+/CCR5+/CD14+ cells are the sub-

population of monocytes able to enter the inflamed CNS (365).  CCR1 is thought to play an 

integral role in the migration of monocytes into CNS (366). 

Blood monocytes can be defined on the basis of CD14 and CD16 expression with 

CD14++CD16- monocytes as the major population and CD14+CD16+ monocytes as the minor 

population (414).  Cross-linking of immunoglobulin receptors expressed on monocytes is 

thought to either inhibit or activate monocytes.  Binding of FcgammaIIb inhibits monocytes 

while activation of FcgammaRIIa, FcgmmaRI (CD64), and FcgammaRIII (CD16) activates 

monocytes (67, 119, 368).  Activation of monocytes by CD16 binding IgG immune complexes 

initiates cellular responses such as phagocytosis, antibody-dependent cellular cytotoxicity, and 

release of inflammatory molecules such as cytokines (119). 

It has been shown that CD14+CD16+ cells are expanded during pro-inflammatory 

conditions such as infectious diseases (414), including bacterial infections (161), and other 

disorders such as patients with coronary artery disease (322), rheumatoid arthritis (164), acute 

Kawasaki disease (161), and asthma (304). This minor monocyte population is also increased 

within minutes after exercising (111). HIV-infected patients also have increased percentage of 

CD14/CD16 cells (94, 362), and patients with HAD have increased proportion of CD14+CD16+ 

and CD14+CD69+ blood monocytes (183, 295).  
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Since lentiviral infection of the brain has been hypothesized to be associated with 

augmented monocyte migration into the CNS and an increased proportion of blood monocytes 

that express CD16 and CD69 has been reported during HAD, we prospectively analyzed the 

percent expression and mean fluorescent intensity (MFI) of a panel of phenotypic markers on 

CD14+ monocytes during disease progression using a primate model.  Blood monocytes from 

SIV-infected macaques that did or did not develop encephalitis were retrospectively analyzed for 

CD16, CCR5, CD69, HLA-DR, CD62L, CD40, CD64, and CD163 expression. We hypothesized 

that blood monocytes from macaques that developed encephalitis would have increased 

proportion of cells expressing these activation markers compared to macaques that would not 

develop encephalitis during the course of infection. 

 

3.4.3. Materials and Methods 

Monkeys and blood 

Six male pigtailed macaques (Macaca nemestrina) were inoculated intravenously with 

the viral swarm SIVDeltaB670. Whole blood was collected from each monkey in heparinized 

tubes once weekly through the first month of infection and every two weeks thereafter.  Activity, 

stool consistency, appetite, and general condition were observed daily.  Physical examinations 

were performed at each blood draw.  Examinations consisted of body temperature and weight 

measurements, palpation and size grading of lymph nodes and spleen, abdominal palpation, and 

assessment of general condition.  Macaques were provided full supportive care and humanely 

euthanized when they became non-responsive to treatment.  The presence of SIV encephalitis 

was determined for each macaque brain by assessing hematoxylin and eosin stained brain 

sections for the presence of microglial nodules, multinucleated giant cells, and profuse  
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perivascular infiltrates followed by immunohistochemical detection of macrophages (CD68; 

clone KP1; DakoCytomation) and SIV gp110 (generously provides by Dr. Kelly Stefano Cole 

and Dr. Ron Montelaro, University of Pittsburgh, Pittsburgh, PA). (28) 

 

Preparation of peripheral blood monocytes for flow cytometry 

100 µL whole heparinized blood was incubated with fluorescein isothiocyanate (FITC)-

conjugated anti-CD14, clone RM052 (Beckman Coulter, Hialeah, FL), phycoerythrin (PE)-Cy5-

conjugated anti-CD16, clone 3G8 (Beckman Coulter), and one of the following:  PE-conjugated 

anti-human CCR5, clone 3A9 (BD PharMingen, San Diego, CA), CD69, clone TP1.55.3 

(Beckman Coulter), HLA-DR, clone G46-6 (BD PharMingen), CD62L, clone SK11 (BD 

PharMingen), CD64, clone 22 (Beckman Coulter), CD40, clone MAB89 (Beckman Coulter), 

CD163, clone GHI/61 (BD PharMingen) for 30 min, 4˚C.  Red blood cells were lysed using 2 

mL Vitalyse (BioE, Inc., St. Paul, MN), 30 min, room temperature.  Cell suspensions were 

centrifuged and washed with phosphate-buffered saline (PBS) containing 4% fetal bovine serum.  

Cell suspensions were centrifuged again and resuspended in PBS containing 1% 

paraformaldehyde. 

 

Flow cytometric and statistical analysis 

Cells were analyzed with an EPICS XL-2 flow cytometer (Beckman Coulter) within 24 

hours of staining.  At least 100,000 total events per sample were collected. Monocytes were 

gated by CD14 fluorescence and side scatter log (SS Log). Proper compensation was set by 

singly stained PBMC from each animal.  Data analysis and graphic representations were  
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performed using FlowJo (Tree Star, Inc., Ashland, OR).  The percent marker expression of 

CD14+ cells was derived by the number of events in the upper right (CD14+ double positives) 

quadrant.   

 Statistical analysis of the difference in the percent expression and mean fluorescent 

intensity (MFI) of activation markers on CD14hi or CD14lo cells between macaques that did or 

did not develop SIVE was performed using Student’s T tests (Microsoft Excel, version 11.1.1, 

Redmond, WA).  Mean percentage expression and MFI is displayed as mean ± SEM.  Statistical 

analysis of the difference between the proportions of CD14/CD16 subsets from all six macaques 

at baseline vs. time of infection was performed using paired Student’s T tests (Prism, version 

4.0b, GraphPad Software, Inc., San Diego, CA).   Changes in the mean percentage of 

CD14/CD16 subsets as a function of duration of infection were estimated using a linear 

regression analysis (Prism). P < 0.05 was considered to be statistically significant.   

 

3.4.4. Results 

CD14 expression on pigtailed macaques monocytes can be divided into two subsets. 

Based on side-scatter log and CD14 expression, monocytes can be classified as CD14hi or 

CD14lo (Figure 23).  Each of these monocyte subsets was followed every two weeks throughout 

the course of SIV infection in six pigtailed macaques and analyzed for percentage expression and 

mean fluorescent intensity of a panel of activation markers.  A description of each activation 

marker is listed in Table 5.  Phenotypic changes in monocyte subsets were evaluated 

retrospectively in macaques that developed SIVE and compared to macaques that did not 

develop encephalitis.   
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Table 5.  Description of activation markers analyzed on monocyte subsets during the 
course of SIV infection. 
Phenotypic 

Marker 
Other 
names 

Ligand/ 
Receptor 

Description and Function of 
Marker 

Expression changes in disease states 

CCR5 CD195 RANTES, 
MIP-1α, 
MIP-1β, 

HIV 

β-chemokine receptor.  Co-
receptor for HIV and SIV 

entry (86). Involved in 
regulation of lymphocyte 

and phagocyte 
transendothelial migration 

to sites of inflammation and 
lymphocyte chemotaxis 

(126, 297). 

Increased expression on CD14+ blood 
monocytes in patients with multiple sclerosis 
(221) and on CD4+ T cells in HIV+ patients 

(269).  Increased frequency of blood CD8+ T 
cells in early SIV infection (244).  

CD69 Activation 
Inducer 

Molecule 
(AIM),    
EA 1, 

MLR3, 
gp34/28 

 Early activation marker.  
Pluripotent signaling 

molecule thought to be 
involved in cell aggregation, 
cytotoxicity, and release of 
cytokines (52, 248, 361). 

Increased expression on CD14+ blood 
monocytes in patients with HAD (183, 295) 

and Alzheimer’s Disease (184). 

HLA-DR   MHC class II molecule.  
Found on antigen presenting 
cells and activated T cells. 

Decreased expression on monocytes from 
patients with systemic lupus erythematosus 
(254), Hodgkin’s disease (253), and acute 

pancreatitis (409).  Increased expression on 
monocytes from patients in recent chronic 

phase of Trypanosoma cruzi infection (319). 
CD62L LECAM-1, 

L-selectin, 
LAM-1 

 
CD34, 

GlyCAM-1, 
M 

Involved in binding to High 
Endothelial Venules or 

peripheral lymphoid tissue 
(112) and in leukocyte 

rolling on activated 
endothelium (307). It is also 

a peripheral lymph node 
homing receptor (46). 

Increased expression on monocytes from 
patients with diabetes type II (379) and PBMC 
from patients with rheumatoid arthritis (182). 

CD40 Bp50 CD40 ligand Involved in development of 
cell-mediated immune 

responses and control of 
thymus-dependent humoral 

immunity. Promotes 
cytokine production.  

Rescues cell from apoptosis.  
Involved in B cell growth, 
differentiation, and isotype 

switching. (reviewed in 
(19)) 

Increased expression on monocytes after in 
vitro treatment with interferon-β (214). 

CD64 FcγRI IgG High affinity receptor for 
IgG.  Involved in antigen 

capture for presentation to T 
cells, antibody dependent 

cell-mediated cytotoxicity, 
and receptor mediated 

endocytosis of IgG-antigen 
complexes (119). 

Decreased expression on monocytes from 
patients with acute hemolytic uremic 

syndrome (106) and Bordetella pertussis 
infection (147).  Increased expression on 

monocytes from patients with hemoglobin H 
disease. 

Table continued on next page. 
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Table 5 continued. 

CD163 Scavenger 
receptor, 
M130, 

GHI/61, 
RM3/1 

Hemoglobin-
haptoglobin 

complex 

Scavenger receptor for 
hemoglobin-haptoglobin 
complexes.  Expression 
increases as monocytes 

mature into macrophages 
(45). 

Increased on patients who underwent coronary 
artery bypass graft surgery. (127) 

CD16 FcγRIIIa Aggregated 
IgG 

Low-affinity receptor for 
IgG (119). 

Increased proportion or expansion of CD14+ 
blood monocytes in patients with HIV (94, 

362), SIV (272), HAD (183, 295), hemolytic 
uremic syndrome (35), bacterial infections 
(161), asthma (304), rheumatoid arthritis 

(164), acute Kawasaki Disease (161), 
sarcoidosis (270), liver cirrhosis (274).  
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Figure 23. CD14 expression on monocytes can be divided into two subsets.  Whole blood was 
stained with anti-CD14 and one of the antibodies listed in Table 1.  Based on CD14 expression 
and side-scatter log characteristics, monocytes can be divided into a CD14hi and CD14lo subsets.  
Each of these gated populations was monitored for changes in expression of phenotypic markers 
(Table 1) throughout the course of disease in 6 SIV-infected pigtailed macaques.  Isotype 
controls from CD14hi and CD14lo subsets are shown. 
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Figure 24.  Proportion of CD14hi cells that expressed phenotypic markers of activation during the course 
of infection in six pigtailed macaques infected with SIV/DeltaB670. Based on histological findings, 
macaques were retrospectively classified at post-mortem for presence of SIV encephalitis.  Macaques that 
developed SIVE (M157, M158, M159, and M161) are shown in red, while macaques that did not develop 
SIVE (M156 and M160) are shown in blue.  At each week post-infection (wpi), whole blood was stained  
 
Figure legend continued on next page. 
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Figure 24 legend continued. 
 
with anti-CD14 and the panel of antibodies listed in Table 1. CD14hi cells were gated as shown in Figure 
1.  Shown here are longitudinal changes in percent expression of each phenotypic marker:  a. 
CCR5+/CD14hi b. CD69+/CD14hi c. HLA-DR+/CD14hi d. CD62L+/CD14hi e. CD40+/CD14hi f. 
CD64+/CD14hi g. CD163+/CD14hi h. CD16+/CD14hi.  Significant statistical differences between macaques 
that did and did not develop SIVE are shown below the corresponding time points on the x-axis.  * P < 
0.05 proportion of cells that expressed marker was greater for SIVE and * P < 0.05 proportion cells that 
expressed marker was less for SIVE (Student’s t test). 
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Figure 25.  Proportion of CD14lo cells that expressed phenotypic markers of activation during the course 
of infection in six pigtailed macaques infected with SIV/DeltaB670. Based on histological findings, 
macaques were retrospectively classified at post-mortem for presence of SIV encephalitis.  Macaques that 
developed SIVE (M157, M158, M159, and M161) are shown in red, while macaques that did not develop 
SIVE (M156 and M160) are shown in blue.  At each week post-infection (wpi), whole blood was stained 
with anti-CD14 and the panel of antibodies listed in Table 1. CD14lo cells were gated as shown in Figure 
1. Shown here are longitudinal changes in percent expression of each phenotypic marker:  a. 
CCR5+/CD14lo b. CD69+/CD14lo c. HLA-DR+/CD14lo d. CD62L+/CD14lo e. CD40+/CD14lo f. 
CD64+/CD14lo g. CD163+/CD14lo h. CD16+/CD14lo.  Significant statistical differences between macaques 
that did and did not develop SIVE are shown below the corresponding time points on the x-axis.  * P < 
0.05 proportion of cells that expressed marker was greater for SIVE and * P < 0.05 proportion cells that 
expressed marker was less for SIVE (Student’s t test). 
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Macaques that would or would not develop encephalitis were not distinguished on the basis of 

monocyte CCR5 expression during the course of infection. 

Prior to infection, 10% or less of CD14hi and CD14lo cells expressed CCR5 in all but one 

macaque (Figure 24a and 25a). Three macaques exhibited increased proportions of 

CD14hi/CCR5+ cells (range = 19.2% - 31.1%, median = 15.2%, mean = 25.2 ± 3.4%) and 

CD14lo/CCR5+ cells (range = 11.7%-16.9%, median = 25.3%, mean = 13.9 ± 1.5%) at  one week 

post-infection (wpi) regardless of whether the macaque developed encephalitis (Figures 24a and 

25a).  In the weeks prior to death, there was a general increase in proportion of CD14hi/CCR5+ 

cells in most macaques. CCR5 MFI varied during the course of infection on both CD14hi (Figure 

26a) and CD14lo cells, but this was independent of development of encephalitis.  

 

CD69+ Monocyte percentage and intensity varied during the course of infection but was 

independent of the development of encephalitis. 

The proportion of CD14hi cells that expressed CD69 at baseline was 1.12% or lower 

(median = 0.41, mean = 0.49 ± 0.13) for all macaques (Figure 24b), while 0.28% to 4.58% 

(median = 0.67, mean = 1.38 ± 0.67) of CD14lo cells expressed CD69 (Figure 25b).  During the 

first week of infection, there was a 3.3 - 57.3 fold increase in the proportion of CD14hi cells that 

expressed CD69 and a 1.3 – 27.7 fold increase in the proportion of CD14lo cells that expressed 

CD69 (Figures 24b and 25b).  At 1 wpi, CD69 MFI on CD14hi cells decreased from baseline for 

all macaques (Figure 26b).  At two weeks before death CD69 MFI on CD14hi cells was 

significantly lower in macaques that developed SIVE compared to macaques that did not develop 

SIVE (P = 0.006).  At 8 wpi, CD69 MFI on CD14lo cells was significantly increased in 

macaques that developed SIVE (P = 0.01, data not shown).   



 155 

Monocyte HLA-DR MFI Was Lower in Macaques That Would Develop Encephalitis During the 

First Weeks of Infection. 

The proportions of CD14hi and CD14lo cells that expressed HLA-DR were variable prior 

to SIV infection (median = 36%, mean = 36.1 ± 10.2%, range = 6.01% - 70% and median = 

24%, mean = 30.3 ± 4.8%, range = 15% - 54%, respectively) (Figures 24c and 25c).  At 2 wpi, 

all but one macaque had decreased proportions of CD14hi and CD14lo cells that expressed HLA-

DR (Figure 24c and 25c). After acute infection, the percentage of CD14hi and CD14lo cells that 

expressed HLA-DR remained variable with all macaques showing decreased proportions of 

CD14hi /HLA-DR+ and CD14lo/HLA-DR+ cells during the weeks before death.  Macaques that 

developed SIVE had a significantly lower proportion of CD14hi /HLA-DR+ cells four weeks 

before death (P = 0.02).  HLA-DR MFI was higher for macaques that did not develop 

encephalitis for the CD14hi population at 1 and 8 wpi (Figure 26c) and for the CD14lo subset at 1 

and 4 (P = 0.02) wpi (data not shown).  

 

Early in infection, macaques that would develop encephalitis showed increased proportion of 

CD62L+ monocytes. 

Prior to infection, the proportion of CD14hi cells that expressed CD62L was higher in 

macaques that developed SIVE (mean = 47.2%) than macaques that did not develop encephalitis 

(24.6%) (Figure 24d).  Baseline CD62L expression was not available for one macaque that 

developed SIVE and one macaque that did not develop SIVE.  At 1 wpi, the proportion of 

CD14hi cells that expressed CD62L decreased in all macaques, however macaques that  
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developed SIVE had a significantly higher proportion of CD14hi/CD62L+ cells (P = 0.03) 

(Figure 24d).  The proportion of CD14hi/CD62L+ cells was variable for the remainder of 

infection.  Macaques that developed SIVE had significantly decreased CD62L MFI on CD14hi 

cells at 1 wpi (P = 0.05) (Figure 26d).  

 

Monocytes of macaques that would develop SIVE showed higher expression of CD40 prior to 

infection that decreased below that of macaques that would not develop SIVE at 4 weeks. 

Prior to infection, the proportion of CD14hi/ CD40+ cells was significantly higher for 

macaques that developed SIVE (P = 0.009) (Figure 24e).  After infection, the proportions of 

CD14hi/CD40+ and CD14lo/CD40+ cells were variable for most macaques (Figure 25e). 

Macaques that developed SIVE had significantly lower percentages of CD14hi/ CD40+ cells (P = 

0.02) and CD14lo/CD40+ cells (P = 0.05) at 4 and 6 wpi, respectively (Figures 24e and 25e).  

CD40 MFI was greater in macaques that developed SIVE at baseline (P = 0.04 for CD14hi 

subset), during the second wpi for both CD14hi and CD14lo populations, and at 6 and 10 wpi for 

the CD14lo subset (P = 0.05 and 0.04, respectively) (Figure 26e and data not shown).  Four 

weeks prior to death, macaques that developed SIVE had significantly higher CD40 MFI on 

CD14hi cells than macaques that did not develop SIVE (P = 0.05). 
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Four weeks prior to death, macaques that would develop SIVE had greater proportion of 

CD64+/CD14+ cells. 

The percentage of CD14hi cells that expressed CD64 either increased or remained high 

for most macaques during the course of infection (Figure 24f). Four weeks prior to death, 

macaques that developed SIVE had significantly higher proportions of CD64+CD14hi and 

CD64+CD14lo cells than macaques that did not develop SIVE (P = 0.04 and 0.008, respectively) 

(Figure 26f and data not shown).  

 

Two weeks prior to death, CD14lo monocytes of macaques that would develop SIVE had greater 

CD163 MFI than macaques that would not develop encephalitis. 

During the first two wpi, the percentage of CD14lo cells that expressed CD163 was higher 

in macaques that developed SIVE (Figure 25g).  Both CD14hi and CD14lo subsets showed large 

increases and decreases in the proportions of cells that expressed CD163 through the length of 

infection (Figures 24g and 25g). Two weeks prior to death, macaques that developed SIVE had 

significantly higher CD163 MFI on CD14lo cells than macaques that did not develop SIVE (P = 

0.04) (data not shown).  

 

Increased Proportions of CD14+/CD16+ Cells Occurred in All SIV-Infected Macaques 

Regardless of Development of Encephalitis. 

Prior to infection, the mean proportion of CD14lo cells that expressed CD16 was 52.19 ± 

10.1% (median = 51.2%) (Figure 3h) and 8.65 ± 1.57% (median = 8.4%) for CD14hi cells 

(Figure 24h).  All macaques had an increased percentage of CD14hi/CD16+ cells at 1 wpi (Figure 

24h), while the proportion of CD14lo/CD16+ cells decreased in four macaques at 1 wpi (Figure 
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25h).  Regardless of development of encephalitis, the proportion of CD14hi/CD16+ cells 

remained high for most time periods for the duration of infection.  However, at 4 wpi, macaques 

that developed SIVE showed significant decreases in both proportion (P = 0.05) (Figure 2h) and 

CD16 MFI (P = 0.008) (Figure 26h) for the CD14hi/CD16+ subset compared to macaques that 

did not develop SIVE.  CD16 MFI increased in most animals at 1 and 3 wpi for both CD14hi and 

CD14lo subsets (Figure 26h and data not shown).  

Figure 27a is a representative example of the changes in the proportions of CD14+/CD16+ 

cell populations during the course of infection.  Three CD16+ cell populations can be observed as 

shown in Figure 27a, week 0; A = CD14hi/CD16+; B = CD14lo/CD16hi; C = CD14-/CD16hi. The 

proportion of cells in C decreased during the course of infection (A = 0.18 ± 0.05, P = 0.001) 

(Figures 27a and 27d). The A and B subsets were present at smaller proportions than the C 

subset (means ± SD: A = 0.53 ± 0.15%; B = 0.89 ± 0.32%; C = 7.77 ± 1.95%), but the proportion 

of CD14hi/CD16+ subset increased at least 2-3 fold or higher during the course of infection (A = 

0.05 ± 0.01, P = 0.006) for all monkeys especially during 2 and 6 wpi (P = 0.03 and 0.003, 

respectively) (Figures 27a, b, c, d).  The proportion of CD14lo/CD16hi cells mirrored the trend of 

the CD14hi/CD16lo population for most macaques with an increase at 1 wpi (P = 0.058).  

However, due to variability, the mean percentage as a function of duration of infection showed 

no estimated change (A = 0.004 ± 0.01, P = 0.774) (Figure 27c).    
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Figure 26.  Mean fluorescent intensity (MFI) of activation markers on CD14hi cells during the course of infection in 
six pigtailed macaques infected with SIV/DeltaB670. Based on histological findings, macaques were retrospectively 
classified at post-mortem for presence of SIV encephalitis. Macaques that developed SIVE (M157, M158, M159, 
and M161) are shown in red, while macaques that did not develop SIVE (M156 and M160) are shown in blue.  At 
each week post-infection (wpi), whole blood was stained with anti-CD14 and the panel of antibodies listed in Table 
5. MFI of each phenotypic marker on CD14hi cells was followed every two wpi:  a. CCR5 b. CD69 c. HLA-DR d. 
CD62L e. CD40 f. CD64 g. CD163 h. CD16. Statistically significant differences between macaques that did and did 
not develop SIVE are shown below the corresponding time points on the x-axis.  * P < 0.05 = SIVE macaques with 
significantly greater percent marker expression.  * P < 0.05 = SIVE macaques with significantly less percent marker 
expression (Student’s t test). 
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Figure 27. The proportion of CD14hi/CD16+ cells increased while the percentage of CD14-/CD16hi cells decreased 
during the course of infection in six pigtailed macaques infected with SIV/DeltaB670 regardless of development of 
encephalitis.   
 
Figure legend continued on next page. 
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Figure 27 legend continued. 
 
At each week post-infection (wpi), whole blood was stained with anti-CD14 and anti-CD16 antibodies.  These 
representative pseudo-color plots (ungated) from M156 show the proportions of CD14hi/CD16+ and CD14lo/CD16hi 
cells increased during the course of infection.  The baseline plot shows three CD16+ cell populations: A = 
CD14hi/CD16+; B = CD14lo/CD16hi; C = CD14-/CD16hi.  b-d:  Macaques that developed SIVE (M157, M158, 
M159, and M161) are shown in red, while macaques that did not develop SIVE (M156 and M160) are shown in 
blue.  The A, B, and C subsets cells were gated as shown in a.  Insets show changes in the mean  
percentage of each subset as a function of duration of infection (wpi). b: A subset.  The proportion of 
CD14hi/CD16+ cells increased during the course of infection, r2 = 0.55, m = 0.05 ± 0.01 and P = 0.006.  c: B subset.  
The proportion of CD14lo/CD16hi cells was variable during the course of infection.  Most macaques showed 
increased proportions at 1 wpi (P = 0.058).  However, there was no estimated change in mean percentage during the 
course of infection, r2 = 0.006, m = 0.004 ± 0.01 and P = 0.774. d: C subset. The proportion of CD14-/CD16hi cells 
decreased during the course of infection, r2 = 0.51, m = -0.18 ± 0.05 and P = 0.001. Statistically significant 
differences between the proportions of each subset from all macaques at baseline (0 wpi) vs. time of infection are 
shown below the corresponding time points on the x-axis. * P < 0.05 (Student’s t test, paired).  r2 = measure of 
goodness of fit.  m = slope of line.  Since only one animal survived after 26 wpi, the insets show data from 0-26 wpi 
to avoid inaccuracies of statistical analysis presented. 
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3.4.5. Discussion 

In the past decade, it has been suggested that patients with HAD demonstrated increased 

CD14+/CD16+ monocytes (295).  Several reports have described increases in the proportion or 

absolute number of CD14+/CD16+ monocytes during HIV or SIV infection (94, 295, 362, 399).  

During acute SIV infection of pigtailed and cynomolgus macaques, increased numbers of 

monocytes (152) and specifically CD14loCD16+ monocytes were found in the blood (272). We 

have performed a longitudinal analysis of CD14+/CD16+ monocyte subsets along with other 

phenotypic markers of activation on monocytes in a group of six SIV-infected pigtailed 

macaques.  The SIV-infected macaque provides an excellent model to determine whether 

expansion of the CD14+/CD16+ monocyte subset is predictive of the development of lentiviral 

encephalitis.   

 

Activation markers that distinguished macaques that would develop encephalitis from macaques 

that would not develop encephalitis. 

Prior to SIV infection, macaques that would develop SIVE had a higher proportion of 

CD14hi monocytes that expressed CD62L and CD40 than macaques that would not develop 

SIVE.  CD40 MFI on CD14hi monocytes was also increased in macaques that would develop 

SIVE compared to macaques that would not develop SIVE.  Although the proportion of 

monocytes that expressed CD69 was similar, the MFI varied from animal to animal.  Even 

before infection, the proportion and MFI varied greatly in all macaques. 

After infection, macaques that would develop SIVE had a higher proportion of 

CD62L+CD14hi monocytes than macaques that would not develop SIVE, but this was 

accompanied by decreased CD62L MFI.  During the course of infection, the proportions of 
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CD40+CD14hi, CD40+CD14lo, and CD16+CD14hi cells were decreased in macaques that 

developed SIVE.  Interestingly, CD16 MFI was also decreased on CD16+CD14hi cells, while 

CD40+CD14hi cells showed increased CD40 MFI.  Although these markers distinguished 

macaques that would develop SIVE from those that would not, differences were observed at 

single time points during the course of infection.  All other activation markers fluctuated but 

showed no correlation with the development of encephalitis. 

Prior to death, the proportion of CD64+/CD14+ monocytes was higher in encephalitic 

macaques, while the proportions of HLA-DR+/CD14hi and HLA-DR+/CD14lo monocytes were 

decreased compared to nonencephalitic macaques.  MFI for CD40 and CD163 on CD14hi and 

CD14lo cells, respectively, was also increased prior to death.  Decreased proportions of HLA-

DR+/CD14hi cells in the weeks before death suggests circulating cells might have trafficked into 

the CNS and other tissues.   

 

Activation markers that did not distinguish macaques that would develop encephalitis from 

macaques that would not develop encephalitis. 

Since much emphasis has been placed on potential expansion of CD14+/CD16+ 

monocytes being associated with presence of HAD, it is curious why the macaques that 

developed SIVE in this study were not distinguished from macaques that did not develop SIVE 

by an expansion of CD14+CD16+ cells over the course of infection.  This does not rule out the 

possibility of increased numbers of SIV-infected CD14+/CD16+ cells in macaques that developed 

SIVE.   

Since neither the proportion of CD14+/CCR5+ cells nor the MFI of CCR5 on CD14+ cells 

distinguished macaques that would develop SIVE from those that would not, increased presence 
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of SIV-infected CNS macrophages was not associated with increased proportion or intensity of 

CCR5 (a co-receptor for SIV associated with macrophage infection) on blood monocytes.   It has 

also been suggested that CCR1+/CCR5+/CD14+ cells are the population of monocytes that are 

able to enter the inflamed CNS (365), but we were unable to detect such trafficking by assessing 

the peripheral blood. Our results in a small number of SIV-infected macaques do not support the 

observation that the proportion of circulating CD14+CD69+ monocytes is elevated during 

encephalitis (183, 295). 

 

Activation markers that changed during the course of infection in all macaques regardless of 

development of encephalitis. 

Interestingly, CD16 expression on ungated cells changed during the course of SIV 

infection in macaques that would and would not develop encephalitis.  We analyzed changes in 

the proportion of three CD16+ cell populations.  The CD14-CD16+ subset (population C) likely 

contained NK cells.  We observed a decrease in the proportion of NK cells during the course of 

SIV infection.  This corroborates reports that the frequency of the cytolytic subset of NK cells 

(CD16+) decreases during HIV infection (206, 236, 356).   

The other two CD16+ cell populations were CD14hi/CD16+ and CD14lo/CD16hi.  These 

subsets contained the monocyte populations described in previous reports, CD14++CD16+ and 

CD14+CD16+ (414).  As others have described, our study showed that the proportion of 

CD14hiCD16+ cells changed significantly as a function of duration of infection, but this was 

regardless of whether the macaque developed encephalitis. An increased percentage was also 

observed in the CD14lo/CD16hi subset during the course of infection, but this was not statistically 

significant.  This was probably due to the presence of CD14+/CD16+ granulocytes.  We have 
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expanded previous observations by following the macaques throughout the course of infection. 

The strength of our longitudinal study suggests that increases in the proportion of CD14+/CD16+ 

cells are not predictive of the development of encephalitis but rather an indication of chronic 

disease. 

The changes in CD16+ populations could have arisen due to two possibilities:  either 

these populations expanded over time (increased number of cells) or the proportions of these 

subsets increased because other populations were decreasing.  Assuming the number of events in 

each subset is a rough indication of the actual number of cells in each subset, it appears that 

during acute infection, the increased proportion of monocytes seen was due to an expansion in 

the number of monocytes in both subsets.  After acute infection, the increased proportion of 

monocytes was due to expansion of the number of monocytes alternating with times where 

changes in other cell populations increased the proportion of monocytes.  At the last time point 

analyzed, approximately half of the macaques had expanded monocyte populations.  Expansion 

of the monocyte subsets and loss of the NK cell subset did not correlate with viral load or CD4+ 

T cell counts (data not shown).  

The data presented here reports the proportion of cells that expressed activation markers, 

not actual cell numbers.  Determining absolute cell numbers by multiplying the proportion of 

each subset by the number of monocytes present in whole blood at each time point confirmed 

that both percentage and actual number of cells that expressed activation markers had similar 

trends (data not shown).   

It is possible that we did not observe differences between activation markers on 

monocytes from macaques that did and did not develop SIVE because we did not look at the 

correct activation marker(s). We have also analyzed these activation markers along with others 
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on monocytes from a group of eight rhesus macaques. Longitudinal analysis of the proportion of 

monocytes that expressed CD49 (α4 integrin), CD80, CD86, CD166, and any of the markers 

listed in Table 5 did not reveal any differences between macaques that did and did not develop 

encephalitis (unpublished observations).  Inclusion of CCR1 on monocytes would be germane 

since the chemokine ligand of this receptor is reportedly involved in monocyte CNS trafficking, 

but there are no commercial antibodies available to this marker.  

 The present study followed activation markers on blood monocytes from six SIV infected 

pigtailed macaques during the course of infection.  Analysis of blood monocytes showed there 

was an expansion of CD14hi/CD16+ and CD14lo/CD16hi monocytes during acute infection and at 

various time points during the course of infection; however, this expansion was not unique or 

greater in macaques that developed SIVE.  The proportion of monocytes that expressed other 

activation markers was variable for all macaques during the course of infection and none of the 

tested phenotypic markers predicted development of encephalitis.  Taken together, these results 

suggest that changes in the proportion of activated monocytes do not direct development of 

SIVE, but this does not rule out the importance of activated monocytes in the development of 

encephalitis.  
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4. DISCUSSION 

 

HIV-infection has touched nearly every corner of the world and the epidemic remains an 

increasing public health problem.  Approximately ¼ of AIDS patients develop HIVE, the 

pathologic entity associated with cognitive, motor, and behavioral deficits attributed to synaptic 

damage and neuronal loss. The neuropathogenesis of this disease has been studied intensely over 

the past 25 years, but it still remains unclear why only a subset of HIV-infected individuals 

develop the abundant CNS macrophage infection that characterizes HIVE. The concentration of 

this body of work was to study the relationship of infected and activated monocyte/macrophage 

elements outside of the CNS during the evolution of lentiviral encephalitis to the presence of 

infected macrophages in the CNS of rhesus and pigtailed macaques infected with SIV.  In order to 

understand the pathogenesis of the development of lentiviral encephalitis, knowing whether 

robust production of virus in monocyte/macrophage elements is unique to the CNS or whether it 

is a system-wide phenomena will have beneficial public health significance by helping define 

therapeutic targets to halt the development or progression of lentiviral encephalitis.  

The overarching hypothesis of this body of work is development of SIV encephalitis and 

ensuing neurologic damage is associated with increased SIV infection and activation of 

monocyte/macrophage elements both inside and outside of the brain.  We have examined 

whether the presence of infected CNS macrophages or only activated macrophages is associated 

with neuronal damage in macaque brains with SIVE.  Using SIV-infected pigtailed macaques 

and an antibody mediated CD8+ T cell depletion model in SIV-infected rhesus macaques, we 

longitudinally examined whether monocyte/macrophages from macaques that develop SIVE 
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contain more replication competent virus than macaques that do not develop SIVE during the 

course of infection and at necropsy.  Finally, we longitudinally examined whether blood 

monocytes from macaques that developed SIVE would have increased proportion of monocytes 

expressing activation markers compared to macaques that would not develop SIVE. 

 

CNS macrophage infection is related to neuronal damage in lentiviral encephalitis 

In the field of lentiviral-associated dementia, there has been considerable controversy 

regarding the relationship between neurological damage and the abundance of virus in the CNS 

(3, 32, 85, 124, 125, 157, 187, 288, 394, 395, 397, 415, 418). Some investigators believe that the 

presence of activated macrophages/microglia in the CNS is a better determinant of neuronal 

damage than the presence of HIV-infected macrophages (124), while other studies have shown 

that the severity of HIV and SIV encephalitis correlates with higher viral RNA concentrations in 

several brain regions using sensitive, quantitative RNA assays (85, 395, 397, 418). 

We used a combination of quantitative RT-PCR and quantitation of 

immunohistochemical staining to show that encephalitis is associated with high concentrations of 

SIV RNA and SIV protein in most brain regions. Brains of SIV-infected macaques with SIVE 

contained 5 orders of magnitude greater concentrations of SIV RNA than SIV-infected macaques 

without encephalitis (Figure 5).   Although using quantifiable RNA assays to determine viral 

load in macaques with SIVE is a valuable, unbiased tool, it does not define the spatial 

relationship between macrophages, virus, and neurons in the microenvironment of the CNS.  

Macrophage and SIV envelope protein staining were elevated in all brain regions of macaques 

with SIVE compared to SIV-infected macaques without SIVE, especially in the midfrontal 

cortical gray matter and caudate (Figures 6 and 7).  This suggests that neurons in midfrontal 
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cortex, caudate and the regions receiving projections from these areas are at greater risk from 

damage mediated by soluble products secreted by infected macrophages and secondary 

downstream events initiated in the soma of neurons.   

In encephalitic regions we estimated ~70 to 80% of macrophages stain for SIVgp110.  

However, SIVE is a multifocal disease with significant variation between microscopic regions.  

There is significant variation in the abundance of infected macrophages between individual 

microscopic fields.  This necessitates evaluating large areas of brain tissue to objectively assess 

the severity of SIV lesions.  Despite many focal areas being free of infected macrophages, SIV 

RNA measurements and evaluation of infected macrophages at the microscopic level shows that 

infection of brain macrophages is abundant. 

In order to determine whether abundant infected macrophages present in the CNS are 

related to neuronal damage, we examined neuronal proteins associated with both presynaptic and 

postsynaptic processes. Microscopic foci within brain regions of macaques with abundant 

macrophage infiltration and viral infection show loss of synaptic proteins (Figures 8 and 9).  

MAP-2 staining was decreased in the caudate, midfrontal cortex, and hippocampus of macaques 

with SIVE compared to macaques without SIVE.  This suggests primary postsynaptic damage.  

Presynaptic protein synaptophysin was decreased in brain regions from both macaques with and 

without SIVE. Finding presynaptic damage in SIV-infected macaques independent of 

encephalitis and postsynaptic damage dependent on local presence of encephalitis suggests the 

following hypothesis: presynaptic components are susceptible to systemic toxins generated as a 

result of lentiviral infection, whereas postsynaptic elements are susceptible to degradation by 

products of locally activated and infected macrophages within the CNS.   
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In support for this hypothesis, SIV-infected macaques without SIVE also showed 

increased astrocyte (GFAP) staining compared to noninfected controls although far less than that 

observed with SIVE (Figure 9).  This suggests that SIV-infected macaques without SIVE show 

presynaptic neuronal damage due to extended peripheral infection and extended periods of 

systemic toxins affecting the CNS as evidenced by increased astrocyte staining.  Presynaptic and 

postsynaptic damage may progress to neuronal loss in the brains with SIVE.  These studies show 

that without viral infected macrophages in the brain, presynaptic damage can occur in lentiviral 

encephalitic individuals; but viral infected macrophages clearly are important in mediating 

structural neuronal damage crucial to the pathogenesis of neurodegeneration in this 

encephalitides. 

 

Antibody-mediated CD8+ T cell depletion of rhesus macaques  

 Antibody-mediated CD8+ T cell depletion of macaques has been used to show the 

importance CD8+ T cells in controlling SIV replication and subsequently length of disease (154, 

323).  Development of SIVE has been associated with rapid disease progression (391).  

Therefore, we hypothesized that antibody-mediated CD8+ T cell depletion, which leads to rapid 

disease progression, would lead to greater incidence of encephalitis.  If validated, this would 

provide a useful model that because of decreased time to disease would be cost-efficient.  Of the 

eight CD8-depleted macaques that progressed to AIDS, 38% developed SIVE (Table 3).  This is 

not strikingly different compared to non-depleted macaques; however, the three macaques that 

developed SIVE progressed to AIDS in 8-14 weeks.  Given model variability, it is unclear what 

percentage of SIV-infected macaques developed SIVE in these studies (399). 
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 Two of the CD8-depleted macaques that did not develop SIVE had meningitis with SIV-

infected cells.  Two additional CD8-depleted macaques were sacrificed at two and four weeks 

post-infection, and the macaque sacrificed at 4 weeks post-infection showed meningitis with 

SIV-infected cells.  The macaque sacrificed at 2 weeks post-infection had an accidental needle 

nick in the brainstem during a routine CSF draw.  Remarkably, none of the 3-day old infiltrate 

was infected with SIV despite considerable plasma viremia. These data suggest that few infected 

macrophages can be found in the CNS at acute stages of infection.  These results indicate that 

development of SIVE involves mechanisms beyond massive viremia, BBB breaches, and SIV-

infected cells in the meninges.   

The rapidity of the CD8 depletion model may result in death before SIVE or other organs 

show massive infection (Figure 15).  Since pigtailed macaques have higher percentages of 

animals that develop SIVE naturally, this may ultimately be a better model to answer questions 

regarding neuropathogenesis than the more manipulated depletion model. 

 

Monocyte-associated SIV DNA and capability to produce virus during development of 

SIVE 

 One of the most interesting findings of this work is that MDM from macaques that 

developed SIVE produced more virus ex vivo than SIV-infected macaques that did not develop 

SIVE in both rhesus and pigtailed models (Figures 13 and 19).  Peak MDM SIV production was 

observed at different time points post-infection, usually early or mid-infection, indicating there is 

variability in disease progression even among animals that develop encephalitis.  The capability 

of monocytes to produce virus upon differentiation did not appear to be directly related to the 

monocyte-associated SIV DNA viral load. In pigtailed macaques, three of the macaques that 
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developed SIVE had higher numbers of SIV DNA copies than the SIV-infected macaques that 

did not develop SIVE (Figure 19).   However, in the CD8-depleted rhesus macaques, the number 

of SIV DNA copies in monocytes was not consistently higher in macaques that developed SIVE 

compared to macaques that did not develop SIVE (Figure 13).  Additionally, peak monocyte-

associated viral loads and peak SIV production from MDM did not coincide during the same 

time points. This suggests that even though infected monocytes are in circulation, they might be 

poor producers of virus.  When MDM are producing high levels of virus, it appears that a few 

monocytes are capable of producing more virus.  These data suggest there are inherent 

differences in the individual macaque monocytes to harbor virus and to produce virus during the 

course of infection.  These differences are associated with development of encephalitis. 

  Interestingly, CSF viral load increased during the same time periods after infection (4-8 

weeks post-infection) (Figure 12) as ex vivo production was increased in cultured MDM in CD8-

depleted rhesus macaques that eventually developed SIVE.  Further studies are needed to 

determine if this association is indicative of the time period when encephalitis develops. 

  In pigtailed macaques, nonadherent PBMC containing CD4+ T cells produced more virus 

ex vivo in macaques that developed SIVE compared to SIV-infected macaques that did not 

develop SIVE (Figure 19).  While in CD8-depleted rhesus macaque, there was no observable or 

statistical difference in SIV p27 production in nonadherent PBMC cultures (Figure 13); however, 

SIV production was increased in two of the macaques in the SIVE group at two and six weeks 

post-infection.  Both MDM and nonadherent PBMC produce more virus earlier infection than 

prior to death, suggesting the ability of cells to produce virus during earlier time points of 

infection is more important in the development of encephalitis.  These data leave open the 

possibility that development of SIVE could be associated with the magnitude of total viral 
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production rather than number of circulating infected monocytes.  Differential capability of 

replicating virus during development of SIVE suggests an inherent difference in the ability of 

individual host monocytes to become infected and/or to produce virus. 

 

Phenotypic monocyte-activation markers during the development of SIVE   

Past reports have suggested that patients with HIVD demonstrated increased 

CD14+/CD16+ monocytes (295).   We preformed analysis of CD14+/CD16+ monocyte subsets 

along with other phenotypic markers of activation on monocytes during the course of disease in a 

group of six SIV-infected pigtailed macaques.  Some markers, such as CD62L, CD40, CD16, 

CD64, HLA-DR, and CD163, were expressed on different proportions of monocyte subsets or 

with different MFI in macaques that would develop SIVE compared to those that did not 

(Figures 24, 25, 26).  However, these differences were observed at single time points during the 

course of infection.  Many activation markers fluctuated but showed no correlation with the 

development of encephalitis, including viral co-receptor CCR5. 

The strength of our longitudinal study suggests that increases in the proportion of 

CD14+/CD16+ cells are not predictive of the development of encephalitis but rather an indication 

of chronic disease (Figure 27).  Although CD16 expression on monocyte subsets did not 

distinguish macaques that did and did not develop SIVE, it is still plausible that macaques that 

develop SIVE contain increased numbers of SIV-infected CD14+/CD16+ cells since these cells 

are associated with an activated phenotype that may be more susceptible to infection in a fraction 

of animals.  We determined that none of the tested phenotypic markers predicted development of 

encephalitis. 
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Peripheral macrophage infection in macaques with SIVE 

 In animals that develop SIVE, it is not clear whether the presence of abundant infected 

macrophages is unique to the CNS or whether infected macrophages are abundant in peripheral 

organs. In pigtailed macaques, animals with SIVE exhibit greater numbers of infected macrophages 

in all peripheral organs except lymph nodes compared to macaques without SIVE (Figure 21). 

Unexpectedly, we did not observe a clear relationship between systemic macrophage infection 

and CNS infection in CD8-depleted rhesus macaques (Figure 15).  The difference between these 

models is difficult to interpret, but it may be due to death of CD8-depleted animals before 

peripheral organs show massive infection.  Few infected CD3+ T cells were observed in any 

organ including secondary lymphoid tissue, but this may simply reflect severe depletion of CD4+ 

T cells in tissues at the end stages of disease (276, 308, 381). These data suggest that the ability 

of pigtailed macaque macrophages to produce virus in the CNS and other organs is related to the 

development of encephalitis.  

 

Immune response to CNS macrophage infection 

 The ability for macrophages to produce more virus in the CNS of macaques that develop 

encephalitis might be due to differential immune response, divergent evolution of viral strains 

that better infect macrophages, or disparate host factors. Although we did not analyze the 

immune response to peripheral infected monocyte/macrophages during the course of infection, 

we preformed an initial survey of cells with cytolytic potential in the brain of SIV-infected 

pigtailed macaques. In macaques with SIVE, the number of T cells with cytotoxic potential was 

significantly higher than SIV-infected macaques without encephalitis (Figure 22).   Numbers of 

NK cells and T cells without cytotoxic granules were also elevated in macaques with SIVE.  
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Interestingly, analysis of cells with cytolytic potential in humans with HSV encephalitis shows 

that other viral encephalitides (e.g. West Nile Virus encephalitis) induce a much greater local T 

cell response than SIVE. In the future, it will be necessary to determine whether the CNS 

immune response during asymptomatic infection or in animals that do not develop SIVE is 

sufficient to contain viral production or whether development of encephalitis is determined by 

other host factors. 

 

Summary of correlates of SIVE 

 In our studies, we continue to observe elevated CSF viral loads in macaques that 

developed SIVE compared to SIV-infected macaques that did not develop SIVE as in previous 

studies (397, 418).  Macaques with SIVE have higher SIV RNA concentration in brain tissue 

than macaques without SIVE.  Although macaques without SIVE have mild gliosis, SIVE is 

accompanied by widespread gliosis.   Although others have reported that the number of activated 

macrophages is a better indication of the extent of neuronal damage than the number of infected 

macrophages in HIV-infected individuals (124), the presence of abundant infected macrophages 

in the CNS is related to postsynaptic neuronal damage in macaques with SIVE.  Brains with 

SIVE have greater numbers of T cells and NK cells with cytotoxic potential.   

 Compared to macaques that did not develop SIVE, the monocyte associated SIV-DNA 

load of monocytes and the capability of MDM and nonadherent PBMC to produce virus ex vivo 

was increased in macaques that developed SIVE.  Pigtailed macaques with SIVE had increased 

virus production ex vivo in nonadherent PBMC.  The number of infected macrophages in  
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peripheral organs was greater in pigtailed macaques with SIV with the exception of lymph 

nodes.  Finally, the percentage of CD4+/CD29+ T cells decreased more rapidly in macaques that 

developed SIVE compared to macaques that did not develop encephalitis. 

 

Summary of factors that did not correlates with development of SIVE 

Although plasma viremia was significantly higher in CD8-depleted macaques that 

developed encephalitis at 1 and 3 weeks post-infection, there is no consistent increase in plasma 

viremia in macaques that develop SIVE compared to those that do not develop SIVE.  There is 

no correlation between CD4+ and CD8+ T cell count dynamics and development of encephalitis.  

In our study group, antibody mediated CD8+ T cell depletion did not lead to an increased 

incidence of SIVE.  None of the tested phenotypic activation markers on monocytes predicted 

development of encephalitis.  The number of infected macrophages in lymph nodes during the 

course of disease was not different in macaques that did and did not develop SIVE.  Post-

synaptic neuronal damage was present in both macaques with and without SIVE.    

 

Future directions 

 We found that MDM and macrophages in systemic tissues produced more virus in 

macaques that developed SIVE compared to SIV-infected macaques that did not develop SIVE.  

A number of questions arise from this finding.  First, do the monocytes that are capable of 

producing more virus and harbor more monocyte-associated SIV DNA selectively traffic to the 

CNS or other peripheral organs? It would be interesting to determine whether development of 

SIVE is the result of recent entry of infected monocytes that are capable of producing more virus 

by labeling blood monocytes and following their trafficking.  This could be potentially done in a 
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couple of different ways.  Monocytes take up intravenously administered superparamagnetic iron 

oxide.  Monocytes that traffic to organs or brain can be detected in vivo by magnetic resonance 

scanning and potentially immunohistochemistry (84, 174, 405, 410).  Endogenous hemosiderin 

precludes detection of iron by immunohistochemistry, but the sugars present on the 

superparamagnetic iron oxide are not found in mammalian bodies.  Use of quantum dots, nano-

sized fluorophores with cadmium-based cores, could be used in vivo by intravenous delivery.  

Alternatively, isolated monocytes could be labeled ex vivo and autologous cells intravenously 

delivered (243, 351).  If trafficking of monocytes to the CNS were determined by these methods, 

it would provide a valuable tool to determine if therapies to block cell trafficking into the CNS 

were effective. 

 Secondly, administration of an antibody against the α4 integrin on leukocytes to SIV-

infected macaques may halt the development of SIVE by preventing the accumulation of 

leukocytes in the CNS.  α4β1 integrin interactions with VCAM-1 on brain endothelial cells are 

though to be important in mediating monocyte adhesion in SIV infection (318).  Administration 

of a monoclonal antibody that binds the α4 integrin subunit has shown promise in preventing or 

ameliorating relapses in clinical trials in humans with multiple sclerosis (MS) (26).  However, 

two treated MS patients developed progressive multifocal leukoencephalopathy caused by JC 

virus production in the CNS (26), suggesting that immune cells responsible for containing JC 

virus infection were unable to gain access to the CNS.  Treatment of SIV-infected macaques at 

different points post-infection will produce valuable insights to the kinetics and pathogenesis of 

lentiviral encephalitis.  
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Thirdly, future studies will be needed to elucidate by which mechanisms 

monocyte/macrophages from macaques that develop SIVE are more susceptible to infection or to 

produce virus.  We have already observed there was no difference in the proportion of cells 

expressing co-receptor CCR5 in animals that did or did not develop SIVE.  By comparing the 

viral life cycle in macaques that will or will not develop encephalitis, we can systematically 

dissect at what point in the viral life cycle infected macrophages might be different between 

encephalitic and non-encephalitic macaques.  This will yield valuable insights to host factors that 

potentially mediate differential virus production in macrophages and subsequent development of 

encephalitis. Host factors such as APOBEC family members (211, 408), mutant MCP-1 alleles 

(130), TRIM-5α (350), C/EBP/β  (383), reverse transcription efficiency, or the ability to 

disseminate virus during acute infection may be important during the development of 

encephalitis.   

 Lastly, extending observations of the immune response to CNS and systemic macrophage 

infection in macaques that will and will not develop encephalitis will determine whether 

differential ability to control virus production is related to the development of encephalitis.  A 

few observations have been made regarding CD8+ T cell, NK cell, and antibody response in 

macaques with neuro-involvement during SIV infection (95, 169, 335, 340, 347, 388), but 

detailed analysis has not been preformed.  One interesting area to begin would be to determine 

why the immune responses differ in magnitude in different types of encephalitides. 
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Summary 

These studies have provided a better understanding of the relationship between the ability 

of monocyte/macrophage elements to produce virus and the development of encephalitis. The 

presence of abundant infected macrophages in the CNS is related to postsynaptic neuronal 

damage in macaques with SIVE.  At the same time CSF viral load increased in macaques that 

developed encephalitis, we observed that monocyte-derived macrophages from these macaques 

produced more virus ex vivo than macaques that did not develop encephalitis. Compared to 

macaques that did not develop SIVE, the monocyte associated SIV-DNA load of monocytes was 

elevated in macaques that developed SIVE.  Macaques with SIVE had more infected 

macrophages in peripheral organs with the important exception of lymph nodes.  Antibody-

mediated CD8+ T cell depletion did not increase the incidence of SIVE in infected rhesus 

macaques.  Brains with SIVE have greater numbers of T cells and NK cells with cytotoxic 

potential; however, other encephalitides induced a more robust T cell and NK cell infiltration. In 

conclusion, these findings support the hypothesis that inherent differences in host monocyte viral 

production or immune response to macrophage infection are associated with the development of 

encephalitis. 
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