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LUMINESCENCE EFFECTS IN QUANTUM WELL STRUCTURES IN

MAGNETIC AND ELECTRIC FIELDS

Sava Atanassov Denev, PhD

University of Pittsburgh, 2004

We have performed experimental studies of the exciton dynamics in coupled quantum wells

in electric and magnetic fields. Being composed of an electron and a hole, the excitons are

Bose particles and there are theoretical predictions that they should undergo Bose-Einstein

condensation (BEC). Coupled quantum wells, a two dimensional system due to the quantum

confinement, are particularly suitable for studying BEC of excitons due to the ability to

extend excitons’ lifetime up to several microseconds. We have found that the disorder in

the structure plays an important role in the properties of the exciton luminescence under

magnetic field. We were also among the first to observe an unique effect—luminescence

rings around the excitation spot that can span over distances of millimeters. We found

that this effect is extremely dependent on the specific experimental conditions as well as

some characteristic properties of the structure, like doping level, that can facilitate charge

separation in two dimensions.
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1.0 INTRODUCTION

The main motivation for this work was to study 2D dynamics of excitons in coupled quantum

wells. The main driving force is the general issue of Bose-Einstein condensation of excitons.

Along the way, however, other related problems attracted our attention. The importance of

disorder in the system, for example, is a very relevant question since in a typical quantum

well structure there is always disorder—at the interfaces, from impurities, from variation of

the well width, etc. Other processes like diffusion and transport of the excitons and trapping

also have an important role in the overall picture of exciton dynamics in two dimensions.

In the course of our studies we have found that disorder, for example, plays a significant

role in the carrier dynamics in the presence of a magnetic field. We have also observed that

under certain conditions the exciton luminescence can exhibit some very unusual and unique

features.

In this introductory chapter we will outline some of the features of the excitons and the

quantum wells, and will describe the experimental setup.

1.1 EXCITONS

If we consider a semiconductor with no impurities at low temperatures, the valence band

will be completely filled with electrons and the conduction band will be empty. If now

an electron is excited from the valence band to the conduction band by, for example, a

photon with appropriate energy, an empty state will be left in the place of the electron. This

“hole” will behave like a positive particle in the valence band, which is filled with electrons.

Naturally there is Coulomb attraction between the hole and the electron and they may form
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a bound state much like a hydrogen atom. Such a bound state is called an exciton. The

states of an exciton can be found by analogy with a hydrogen or positronium atom. The

energy of the hydrogen atom is given by

E =
−Ry

n2
+

~2k2

2(m0 + mp)
, (1.1)

where Ry is the Rydberg energy, Ry =
e2

2a0

= 13.6eV with a0 being the hydrogenic Bohr

radius, and n is the principal quantum number. The second term represents the kinetic

energy of the particle, where m0 and mp are respectively the mass of the electron and the

proton. By analogy one can write a similar expression for the energy of the exciton:

Eex = Egap − e2

2aexε n2
+

~2k2

2(me + mh)
(1.2)

with excitonic Rydberg energy Ryex =
e2

2aexε
, where aex =

~2ε

e2mr

is the exciton Bohr radius

and mr =
memh

me + mh

is the reduced mass of the exciton. Since the excitons are surrounded

by the atoms of the crystal lattice, we have accounted for the screening of the interaction

by inclusion in (1.2) of the static dielectric constant ε. In semiconductors ε is on the order

of 10 so the excitonic Bohr radius is usually much larger than the average lattice constant.

In GaAs, for example, ε = 13 and therefore aex ∼ 120 Å. Egap is the band gap energy of

the semiconductor. From (1.2) we see that if the kinetic energy of the exciton is zero, the

particle has energy less than the band gap energy by the amount Ryex. This is the binding

energy of the exciton.

There are in general two types of excitons. If there is strong interaction between the hole

and the electron they will remain confined to a single lattice site. This kind of exciton is

called a “Frenkel” exciton. If, on the other hand, the interaction is weak, the electron-hole

pair will span over many lattice sites. Then the exciton is called a “Wannier-Mott” exciton.

Excitons are usually created when a photon with certain energy ~ω promotes an excited

electron into the conduction band, generating a hole in the valence band, so that they bind

into an exciton. After a certain finite time, ultimately depending on the overlap of the

electron and hole wave functions, the electron and the hole can recombine to produce a

photon again. By that time the exciton may have moved microns away. This means that
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we can think of the exciton as a quantum of energy moving through the crystal. Since the

exciton consists of two particles with equal but opposite charges, it obviously is a neutral

particle and applying an external electric field will not produce exciton motion. On the other

hand, excitons will react to a local change in the energy of the band structure and will move

to the location with minimum energy. So one way to move excitons would be to create such

local changes, for example by applying nonuniform stress.

Since the electron and the hole both have half-integer spin, the exciton has integer

spin which makes it a boson. As such, it can undergo, at least in principle, Bose-Einstein

condensation where under the appropriate conditions a macroscopic number of particles can

occupy one single quantum state—in equilibrium, the one with lowest energy. The critical

particle density n for a BEC transition of an ideal Bose gas to occur in three dimensions is

given by

n = 2.612

(
2πm kBTc

h2

)3/2

(1.3)

or for the critical temperature Tc

Tc =
h2

2πkB m

( n

2.612

)2/3

, (1.4)

where m is the mass of the Bose particle and Tc is the critical temperature at which the

condensation occurs. The inverse proportionality between m and Tc is part of the appeal to

investigate BEC of excitons in semiconductors. Since the mass of the exciton is on the order

of the effective mass of the electron, which itself is a fraction of the free electron mass, the

critical temperature for given particle density is much higher than the temperature required

for other Bose systems. The BEC of alkali atoms, for example, occurs at the staggering

temperature of a few nanokelvins [1, 2]!

The idea for BEC of excitons has been around for more than forty years [3, 4] and

various theories have been proposed [5, 6], but still solid evidence hasn’t been found. If such

evidence is demonstrated, excitons in semiconductors will be among the few systems other

than superfluid helium, spin polarized hydrogen, and alkali atoms, that can undergo BEC.

Besides the scientific understanding of the processes involved such success may also pave the

way for some novel applications like new switching devices or achieving coherence without a

laser since the luminescence from the condensate should be coherent [7, 8].
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A major difference between the atomic and excitonic systems in respect to BEC is the

finite lifetime of the excitons. If the excitonic gas is to undergo a spontaneous BEC transition

to a thermodynamic state with well defined temperature, the lifetime of the excitons has to

be longer than the thermalization time, i. e. the time required to reach quasi-equilibrium.

In GaAs quantum wells, for example, the exciton thermalization times at low temperatures

have been measured to be up to several hundred picoseconds [9], which in some cases could be

comparable to the exciton lifetime. In such a way the finite lifetime of the excitons imposes

a major limitation to the experiments pursuing BEC.

Equation (1.3) shows the minimum exciton density required for BEC to occur. There is

another limit, however, when the density is so high that the excitons will begin to see the

Fermi nature of the electrons and the holes of the other excitons and overall the gas cannot

be treated as Bose anymore. So, in order that such a treatment to be valid, the density of

excitons should stay below some limit, on average

n ¿ 1/a3
ex. (1.5)

Using the value of aex = 120 Å from above this limit implies densities on the order 5× 1017

cm−3.

There are other types of transitions that can occur in a gas of excitons. If the interaction

between the excitons is attractive they can form pairs similar to the hydrogen molecule,

called biexcitons, which can exist together with the normal exciton gas. In such a state a

phase transition to a liquid state may occur and form a liquid of Fermions called electron-hole

liquid (EHL) similar to metallic hydrogen [10, 11, 12].

If at a certain temperature the dissociation of excitons produces enough free electrons

and holes that they start screening the Coulomb interaction between the electron-hole pairs

thus preventing them from binding into pairs, another thermodynamic phase appears—a

conducting but charge neutral electron-hole plasma (EHP). The transition from EHP to

nonconducting exciton gas is called the Mott transition.
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Figure 1.1: Two different quantum well types: a) type I and b) type II.

1.2 QUANTUM WELLS

If we consider a charge-neutral semiconductor heterojunction where two semiconductors are

in contact along an atomically clean surface (for example, one is grown on top of the other,

and we neglect the lattice mismatch) the vacuum levels of both semiconductors will align.

In general they will have different work functions and band structures which will lead to

abrupt band discontinuities. If a thin layer of semiconductor B is sandwiched between two

layers of semiconductor A, with a proper choice of the materials A and B, the newly formed

conduction and valence band profiles will represent a quantum well for the electrons and the

holes respectively, where they can get trapped. Depending on the alignment of the bands,

there are two types of quantum wells, shown in Figure 1.1. In type I quantum wells, the

electrons and the holes are confined in the same layer, whereas in type II they are in adjacent

layers.

If the well is narrow enough, the motion of the electrons and the holes will be confined to

a two-dimensional plane perpendicular to the growth direction. When excitons are formed,

they will be confined in two dimensions as well. In such a way the quantum wells provide a

convenient environment for studying particle dynamics in 2-dimensional systems.

Excitons in quantum wells exhibit some features not observed in bulk material. First,

in quantum wells the exciton energy is different from the one in bulk. In bulk the energy of

the exciton is the band-gap energy, Eg, minus the exciton binding energy, Ryex (Equation

5



(1.2)), whereas in quantum wells there are additional factors due to the confinement of the

electrons and the holes. A simple estimate of the confinement energy in a square well with

infinitely high walls is E =
π2~2n2

2mL2
, where L is the width of the well and n = 1, 2, 3 . . .

denotes the energy level of the confined particle. Also, due to the confinement, an increase

of the binding energy is observed with decreasing well width. Calculations show that this

increase of the binding energy could be up to several times its bulk value [13, 14, 15, 16, 17].

At low temperatures, excitonic features dominate the absorption spectrum of quantum well

structures (Figure 1.2) and even at room temperature some large excitonic nonlinear optical

effects are observed in quantum well structures [18]. Figure 1.2, from one of the first studies

of quantum wells by Dingle et al. [19], shows the absorption spectra of GaAs quantum wells

at 2 K for different well widths. As the well narrows, quantum confinement takes place and

distinct exciton peaks, corresponding to different n’s in the expression for the confinement

energy above, appear in the spectrum above the GaAs absorption energy. Another feature,

noticeable from Figure 1.2, is the increase of the confinement energy with decreasing well

width—the exciton lines move to higher energies and their separation increases as the quan-

tum wells get narrower—which is expected from the inverse proportionality between E and

L.

The idea of designing and building quantum wells and superlattice structures by growing

alternating thin layers of different semiconductors was proposed back in the 1970s by Esaki

and Tsu [20, 21], but it was the use of advanced growing techniques like Molecular Beam

Epitaxy that allowed the growing of layers with well controlled thickness and atomically

clean surfaces and interfaces, thus drastically improving the quality of the structures. To

achieve quantum confinement the width of the quantum well has to be on the order of the

de Broglie wavelength of the electron, or several hundred ångsröms. This method has been

used successfully but also has intrinsic disorder due to width variation. For example, using

the confinement energy of an electron in the ground state of a infinitely deep quantum well,

E =
π2~2

2mL2
, we find the change of the energy to be proportional to the change of the well

width: |δE/E| = |δL/L|. If we assume a well width of 100 Å then a change of the well

thickness by a single monolayer, which is about 6 Å, will introduce a 6% change of the

confinement energy. If such variations of the well width occur on a macroscopic scale, for

6



Figure 1.2: Absorption spectrum of GaAs/AlxGa1−xAs quantum well structure for different

well widths, Lz. (From Ref. [19])

example the size of the laser excitation spot, the excitation laser will illuminate the sample

over sites with different well widths each with its own confinement energy, and as a result a

smearing of the luminescence line will be observed. The rougher the structure, the broader

the luminescence line will be. Such broadening is known as inhomogeneous broadening.

If two quantum wells are grown close to each other with a thin barrier separating them,

the resulting structure is called coupled quantum wells. Coupled, since the electrons and

the holes, although from two separate wells, are not completely separated, and depending

on the thickness of the barrier their wave functions may have considerable overlap. Using

such coupled quantum wells structures for studying excitons has some advantages that could

be exploited in the pursuit of experimentally achieving BEC. Arguably the most important

or useful one is the ability to separate spatially the electrons and the holes. The separation

occurs in the growth direction where the electrons reside in one of the quantum wells and

the holes reside in the other. In the plane of the wells they could still be located in the same

region but separated by the barrier between the wells. Such separation can be achieved

7



Figure 1.3: Direct (DX) and indirect (IX) excitons

by applying an electric field parallel to the growth direction (perpendicular to the plane

of the wells). In this case the band structure will tilt by an amount proportional to the

electric field, as shown in Figure 1.3. When electrons and holes are created, there will be

an energetically lower state where an electron from one well will bind with a hole from the

other and form the so-called “indirect” exciton (also called a dipole or interwell exciton),

as opposed to the “direct” exciton in which the electron and the hole are in the same well.

The indirect excitons have several advantages over the direct ones. Since the electron and

the hole are separated spatially, the overlap of their wave functions will be reduced and

in such a way the recombination rate will decrease, leading to increased lifetime of the

excitons since the radiative lifetime is proportional to the overlap between the electron and

the hole wavefunctions [22]. Such an increase of the exciton lifetime is advantageous in a

BEC experiment where lifetimes longer than the thermalization time are required.

In type II quantum wells even in single well structures the excitons are naturally indirect

since the electrons and the holes are confined to different spatial regions.

Creating indirect excitons is not without drawbacks, however. Although the semicon-

ductor structure has high electrical resistance along the growth direction, it is not infinite.

This means that, while applying voltage to create indirect excitons, there will be current,

8



albeit small, flowing through the quantum wells which will introduce a concentration of free

carriers that will act as scattering centers for the excitons and in such a way reduce their

mobility.

1.3 SUPERFLUID TRANSITION IN TWO DIMENSIONS

We have to point out that BEC in low dimensional structures is different from BEC in 3D

systems. A gas of free noninteracting bosons with mass m at temperature T has the one

particle distribution function

nk =
1

eβ(εk−µ) − 1
, (1.6)

where εk = ~2k2/2m is the particle energy and β = 1/kBT . The chemical potential µ is

negative and is determined by the condition

∑

k

nk = N . (1.7)

The total number of particles can be written as an integral

N =

∫
g(ε)

1

eβ(ε−µ) − 1
dε (1.8)

where g(ε) is the one-particle density of states. g(ε) depends on the dimensionality of the

system, and for a 3D system it is

g(ε) = 2π

(
2m

~2

)3/2√
ε . (1.9)

In two dimensions the density of states is

g(ε) = π

(
2m

~2

)
= constant . (1.10)

In 3D, the integral in (1.8) has an upper bound when µ = 0, which is equal to the result (1.3).

Extra particles added to the system must go into the ground state, forming the condensate.

In 2D however, the integral has no upper bound and BEC is not possible. This was pointed

out by Hohenberg [23]. A solution of this problem was suggested by Bagnato and Kleppner
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[24]. Hohenberg’s results were calculated for a Bose gas with constant potential confined

by rigid walls. Bagnato and Kleppner have suggested that if the 2D gas is confined by a

spatially varying potential then the integral above can converge (see also Nozieres [25]).

So creating a potential trap in a 2D system, in principle, makes BEC possible. Great

effort was put in our lab to create such varying potentials in 2D systems. A success was

achieved by using a pin to apply stress to the sample mounted between two metal plates

[26, 27]. A more detailed account on the exact mounting of the sample and the way stress

was applied will be given later.

Although BEC cannot occur in translationally invariant 2D systems, another type of

transition is possible. Kosterlitz and Thouless [28, 29] pointed out that a two-dimensional

gas can undergo a Kosterlitz-Thouless superfluid (KTS) transition, the critical temperature

of which is given by

kBTc =
π~2ρs

2m
, (1.11)

where ρs is the superfluid density. The Kosterlitz-Thouless transition occurs in various

systems such as the 2D classical XY model and superfluid helium on a surface [28]. In the

two-dimensional XY model, for example, there is no long range order and a phase transition

with mean magnetization cannot take place. There exists, however, a transition temperature

below which metastable states corresponding to vortices are bound in pairs, and above that

temperature they are free. Similarly, in a Kosterlitz-Thouless superfluid it is required that

BEC occurs only in small regions of the system with locally defined condensate wavefunction

but as a whole there is no long range order. Then in each region vorticity can be defined

in terms of total phase change of the wavefunction along the region boundary. When the

vortices in each region are considered, there will be no free vortices at low temperatures

but only clusters with zero total vorticity. The KTS transition is also characterized by an

infinitely differentiable specific heat at Tc thus making it infinite-order phase transition.

Fisher and Hohenberg [30] have considered the Kosterlitz-Thouless transition in a dilute

2D Bose gas and have found that the critical temperature depends on the particle density

10



as

Tc ≈ 4π~2ρ

2m ln ln(1/ρa2)
, (1.12)

where a is the range of the interactions between the particles and ρ is the total density of

the particles.

A possibility of superfluidity of a 2D system of spatially separated electrons and holes was

envisioned first by Lozovik and Yudson [31]. They did not speak explicitly about excitons but

rather considered the superconductivity of a system of spatially separated electrons and holes

located in two semiconductor sheets separated by a dielectric layer. Fukuzawa [32] claimed

the observation of KTS of indirect excitons in coupled GaAs quantum wells based on the

narrowing of the luminescence peak with increasing electric field and sharp dependence of

the full width at half maximum (FWHM) of the peak on the temperature. Other groups have

also claimed evidence of KTS of excitons in 2D. Larionov have studied GaAs/AlGaAs/GaAs

double quantum wells [33, 34, 35] and observed the appearance of a very narrow peak on

top of the indirect exciton luminescence which disappeared at temperatures higher than 3.5

K. Butov have performed studies of single GaAs/AlGaAs quantum well [36] and a number

of studies of double GaAs/AlGaAs quantum wells [37, 38] with claims of Bose stimulation

of exciton scattering. We should also mention their observation of luminescence rings which

were interpreted as evidence of a superfluid excitonic state [39, 40]. This effect will be

discussed in detail in later chapters.

As mentioned earlier, no quantum well system is perfect. Even though the quality of the

structures has increased in the past few years, there still exists inhomogeneous broadening

due to disorder. This disorder can be, for example, from impurities, quantum well width

variation, or dislocations. In a recent paper Berman discussed the problem of superfluidity

of “dirty” excitons in a 2D system of coupled quantum wells [41]. The term “dirty excitons”

is used to denote excitons in a system with disorder. Berman considered the random field

of the disorder to be larger than the exciton-exciton interaction energy but smaller than the

exciton binding energy. Using the coherent potential approximation he derived a correction
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to the KTS transition temperature that takes into account the random field Q:

Tc =





1 +

√
32

27

(
MT 0

c

πn′

)3

+ 1




1/3

−



√
32

27

(
MT 0

c

πn′

)3

+ 1− 1




1/3

 T 0

c

21/3
, (1.13)

where

T 0
c =

(
2πn′c4

sM

3ζ(3)

)1/3

(1.14)

and

n′ = n− nQ

2Mc2
s

. (1.15)

In the above equations n is the density of the excitons, M is their mass and cs is the speed

of sound in the system. A plot of the Kosterlitz-Thouless transition temperature Tc vs. the

random field Q shows that at fixed n, Tc decreases with increasing Q (Figure 1.4).

This result shows that even though the random field depletes the condensate, superflu-

idity is still possible albeit at a lower transition temperature.
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1.4 EXPERIMENTAL

The general experimental setup is shown in Figure 1.5.

All experiments were performed in a Janis Vari-Temp optical cryostat where the tem-

perature of the samples could be varied from 2 K to room temperature and higher. 2 K

was achieved by submerging the sample in liquid helium and pumping the He vapor thus

reducing the temperature of the superfluid liquid. Higher temperatures could be achieved by

heating the samples locally using heating wire while cold helium vapor provided the needed

cooling power for maintaining constant temperature.

A variety of light sources was used to excite the samples. A modelocked, frequency-

doubled Nd:YAG laser (532 nm) with typical pulse duration of 50-80 ps was used to pump

tunable dye lasers operating in the red or the near infrared region. The typical pulse width

from the dye lasers was 5 ps with repetition rate 3.8 MHz or 76 MHz and maximum average

power of 150 mW. For a large portion of the experiments, a small 4 mW continuous wave

HeNe (632.8 nm) laser was used.

The luminescence from the sample was collected by Oriel MS257TM imaging spectrometer

with 0.1-0.2 nm resolution. There were two detecting systems—an image intensified CCD

camera and a multichannel plate (MCP) type photomultiplier tube (PMT), and the selection

was performed by a flipping mirror. Since the spectrometer is of imaging type (Figure 1.6),

the spatial information of the luminescence along the spectrometer slit is preserved in the

spectrometer focal plane and this allows us to collect and observe simultaneously in real time

spectral and spatial data on the CCD camera. With the PMT we could perform single photon

counting with 100 ps time resolution when pulsed laser sources were used thus enabling us

to take time-resolved data. A beamsplitter was used to pick off part of the laser light which

triggered a fast photodiode, thus generating a start pulse, and a photon from the exciton

luminescence arriving at the PMT served as a stop pulse. If data is collected long enough a

histogram of the times between the start and the stop pulses could be built. This histogram

is essentially a curve of the number of counts versus time and from it we can extract the

temporal evolution of the excitonic light emission. We call this a “time trace.”

The glass block in front of the spectrometer slit, shown in Figure 1.5, was used as a
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Figure 1.5: General experimental setup for time-resolved measurements
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Figure 1.6: Imaging spectrometer. The spatial information along the front slit (i.e. the

order of points A, B, C) is preserved in the image on the CCD.
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scanning device. When turned about a vertical axis, different parts of the sample were

imaged on the spectrometer slit. This allowed us to measure the spatial profile of the

luminescence and identify any narrowing possibly related to BEC.

We can collect essentially two types of time-resolved data—time-resolved spectra and

time-resolved profiles. A time-resolved spectrum measurement consists of a number of time

traces, integrated for a certain amount of time, at different wavelengths, usually through a

relatively narrow spectral range and with a small step. In such a way we build a data matrix

with wavelength information in one dimension and temporal information in the other.

The time-resolved profile is similar to the time-resolved spectrum but in this case the

wavelength of the spectrometer stays fixed and the glass block in front of the spectrometer slit

rotates with small step thus imaging different parts of the sample for each time measurement.

Time-resolved profiles are particularly useful for transport and diffusion measurements.

The samples were square pieces of thin wafer (usually 150 µm thick) with 3-5 mm sides.

The way the sample was mounted is described in detail in [26] and [27]. Schematically

the mount is shown in Figure 1.7. The sample was positioned between two polished metal

plates that were spring loaded to ensure good contact at low temperatures. Because this is a

mechanical contact, however, the contact resistance varied from run to run. The excitation

of the sample and the collection of the luminescence were performed through a 1.5 mm hole

in the bottom plate. A glass prism was used as a mirror. The top plate could also have a

hole in the middle to allow a stressor pin to reach the back surface of the sample. This type

of mounting allowed us to apply voltage bias across the sample and simultaneously create a

potential trap for the excitons by applying stress with the pin. The method of using stress

to create a trap is discussed in [26].
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Figure 1.7: Experimental setup used for the mounting of the sample. It also allows us to

apply stress to the sample.
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2.0 THE In0.1Ga0.9As COUPLED QUANTUM WELLS

2.1 SEMICONDUCTOR PROPERTIES

Most of the experiments were performed on high quality samples consisting of two 60 Å un-

doped In0.1Ga0.9As coupled quantum wells separated by a thin 40 Å GaAs barrier. On the

outside the structure is separated by 50 Å GaAs ledges from thick Al0.32Ga0.68As layers.

This structure along with its band structure (not to scale) is shown in Figure 2.1. The

substrate and the capping layer are GaAs. The thicknesses of the Al0.32Ga0.68As layers are

1000 Å on the substrate side and 300 Å on the capping layer side. The samples were grown

using Molecular Beam Epitaxy by Loren Pfeiffer and Ken West at Bell Laboratories.

Previous coupled quantum well structures that were studied in the lab were based on

GaAs where two GaAs quantum wells were separated by Al0.3Ga0.7As barriers and the whole

system was grown on GaAs substrate with GaAs capping layer. One disadvantage of such a

system is that since the substrate and the quantum wells are grown using the same material,

one has to excite the structure with light with energy above the band gap of that material

and thereby creating photocarriers in the thick substrate and the capping layer. This will

introduce current through the sample and will also lead to charge accumulation as described

in [42]. It will also be difficult to separate the exciton luminescence from luminescence

coming from the substrate. To avoid this, the quantum wells can be grown with material

with band gap smaller than the rest of the structure, thus allowing the use of a laser with

energy below the substrate band gap and avoiding the excitation of carriers in the substrate.

This was one of the main reasons we chose In0.1Ga0.9As as material for the quantum wells.

The top of the valence band of In0.1Ga0.9As lies around 20 meV above the valence band of

GaAs and the conduction band is 163 meV lower than the one in GaAs [46]. This gives
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Figure 2.1: Coupled quantum wells structure used in the experiments

the opportunity for near resonant excitation of the excitons in the In0.1Ga0.9As with a laser

operating below the GaAs absorption edge. The concentration of indium was kept as low as

possible in order to prevent big lattice mismatch with GaAs.

Some of the major properties of GaAs, InAs, AlAs and their alloys In0.1Ga0.9As and

Al0.32Ga0.68As are shown in Table 2.1.

GaAs and AlAs crystallize in a zinc-blende type lattice. It has face-centered cubic sym-

metry where each atom of one type has four nearest neighbors of the other type located at

the vertices of a tetrahedron. In reciprocal space, the top of the valence band of GaAs is

located at the same place in k-space as the bottom of the conduction band, in this case the

Γ point, i. e. the center of the Brillouin zone. This makes GaAs a direct gap semiconductor.

In contrast, AlAs has the minimum of its conduction band at the X point of the zone, while

the top of the valence band is still at the Γ point. Thus the Γ-Γ gap at the center of the

zone is 3.13 eV and the Γ-X gap is 2.229 eV—AlAs is an indirect gap semiconductor. This

means that at a certain concentration x, AlxGa1−xAs will have to change from direct to
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Table 2.1: Material properties of GaAs, InAs, AlAs and their alloys, In0.1Ga0.9As and

Al0.32Ga0.68As, from [43] except where noted (l.a.=linear approximation).

Parameter GaAs InAs In0.1Ga0.9As AlAs Al0.32Ga0.68As

Eg (eV) 1.5194 0.4180 1.376 2.229(ind.)/3.13(dir.) 1.9771 [45]

me (m0) 0.067 0.0239 0.0615 (l.a.) 0.150 0.0869 [44]

mhh (m0) 0.51 0.35 0.501 (l.a.) 0.409 0.6332 [44]

mlh (m0) 0.082 0.026 0.076 (l.a.) 0.153 0.1056 [44]

a (Å) 5.6533 6.0583 5.6938 5.660 5.6556

indirect semiconductor. The exact concentration of Al at this crossover point is not firmly

established but in most references it is assumed to be around x = 0.45.

The highest valence band of GaAs is degenerate and there are two hole masses defined

by the curvature of the energy band with respect to k. They are designated heavy and

light hole masses. Quantum confinement in a narrow well lifts the degeneracy and two

separate bands are formed. They have a very peculiar property—the heavy hole in the

direction perpendicular to the well plane has light hole mass in direction parallel to the well

plane. The same is true for the light hole as well. It has light hole mass in the direction of

confinement and heavy mass in the other, as shown in Figure 2.2.

To describe fully the quantum well structure we need to know how the bands of the dif-

ferent materials align with each other, i. e. we need to know the band offsets between GaAs,

In0.1Ga0.9As and Al0.32Ga0.68As. There are numerous studies of GaAs/AlxGa1−xAs het-

erostructures and the band discontinuity values range between 60:40 and 90:10 for ∆Ec:∆Ev

[44, pp. 180-190]. We accept an average value of ∆Ec(x) = (0.79 ± 0.02)x for the

GaAs/AlxGa1−xAs conduction band offset [44, p. 188]. Then for x = 0.32 this will give

∆Ec = 0.2528 eV, and using the value for the band gap of AlxGa1−xAs from [45] we get

∆Ev = 0.2049 eV, which gives band offset ratio ∆Ec:∆Ev=55:45. It is different from the

60:40 ratio mainly because of the use of a different value for Eg of AlxGa1−xAs.

The exact value of the band offsets between GaAs and In0.1Ga0.9As is also not precisely
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Figure 2.2: Effect of the quantum well on the band structure near the center of the Brillouin

zone of GaAs. k‖ and k⊥ represent directions parallel and perpendicular to the quantum

well plane [44].

established. From [46] we obtain ∆Ec = 0.163 eV and ∆Ev = 0.0196 eV.

2.2 THEORETICAL EXCITON PROPERTIES

Using these values for the band offsets we can now draw a somewhat realistic picture of our

coupled quantum wells structure. A to-scale band structure is shown in Figure 2.3.

We can estimate the confinement energies of the electron and the hole in this structure.

As a zeroth order approximation we can use the naive model of an electron and a hole in a

single infinite quantum well. The energies of the electron and the hole are Ee =
π2~2

2meL2
=

170 meV and Eh =
π2~2

2mhhL2
= 21 meV. Certainly, this very simple estimate doesn’t

work very well as it predicts confinement energies on the order of the depth of the wells.

A better method is needed in order to obtain more realistic values. Since the structure is

very complicated and straight-forward solution of the Schrödinger equation is not trivial, we

will make several simplifications. First, we will consider only a one-dimensional problem,
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Figure 2.3: Band structure of the In0.1Ga0.9As coupled quantum wells.

namely the confinement of the electron and the hole in the z-direction. In the plane of

the quantum wells, the x − y plane, we will assume that the particles are free. As a way

to find the confinement energies we will employ a method of finding the bound states of

a heterostructure proposed by Deck and Li [47]. The method is simple and is based on

calculating the reflection coefficient of the particle from the first interface as a function of

the particle energy and finding its poles, which will coincide with the bound states of the

particle in that structure. We will summarize it below.

Let us consider a particle in a potential that consists of n + 1 regions (layers) each with

thickness Lj and with constant potential Vj (0 ≤ j ≤ n) (Figure 2.4). In each region the

particle has mass mj and wavevector kj:

kj =

√
2mj

~2
(E − Vj), (2.1)

where E is the total energy of the particle. For our calculation we assume the zero of energy

to be at the bottom of the deepest well.

For zero external electric field we can assume that in each region the wave function has

the form

Ψj(z) = aj exp(ikjz) + a′j exp(−ikjz), (2.2)

21



� � �
� � ��� �

� � �
	��

��
 ��� 

� � �
� � ��� �

� � �
� � ��� �

� � �
� � ��� �

� � � � �
� � � � ��� � � �

�� � �

� � ��� �

� 


� �

���

���

� � ��� � �

���

Figure 2.4: Heterostructure with n + 1 layers and n boundaries.

or, in other words, it is a superposition of plane waves. The continuity of the wavefunction

and its derivative at each boundary i-j requires

Ψi(z) = Ψj(z) (2.3)

1

mi

dΨi(z)

dz
=

1

mj

dΨj(z)

dz
, (2.4)

From these equations we can define at each boundary

Sij =
mjki

mikj

(2.5)

and

rij =
Sij − 1

Sij + 1
, (i < j; i, j = 0, 1, . . . , n) (2.6)
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Now we have S01, S12, . . . , S(n−1)n and correspondingly r01, r12, . . . , r(n−1)n. Then we can

define the recursive quantities:

r(n−2)(n−1)n =
r(n−2)(n−1) + r(n−1)n exp(2ikn−1Ln−1)

1 + r(n−2)(n−1)r(n−1)n exp(2ikn−1Ln−1)
(2.7)

r(n−3)(n−2)(n−1)n =
r(n−3)(n−2) + r(n−2)(n−1)n exp(2ikn−2Ln−2)

1 + r(n−3)(n−2)r(n−2)(n−1)n exp(2ikn−2Ln−2)
(2.8)

...

r12345...n =
r12 + r2345...n exp(2ik2L2)

1 + r12r2345...n exp(2ik2L2)
(2.9)

r012345...n =
r01 + r12345...n exp(2ik1L1)

1 + r01r12345...n exp(2ik1L1)
(2.10)

R = r012345...n (2.11)

It can be shown that R is the reflection coefficient of the particle at the interface 0-1.

Obviously R is a complex function (in both meanings) of the energy of the particle E. It

can be shown also that R has poles at the bound state values of E [47]. So if we plot |R|2

vs. E we will obtain a graph with very sharp peaks at the bound states. Since the Q-factor

of these peaks could be extremely high (sometimes > 1013), the bound state energies can be

obtained with very high accuracy from the positions of the peaks.

We can now apply the above procedure to our double quantum well system with values

for the main parameters shown in Figure 2.3. The results for the electron, the heavy and

the light holes are shown in Figure 2.5. On the right we have limited the horizontal axis

only to the depth of the In0.1Ga0.9As well which is 0.163 eV for electrons and 0.0196 eV for

holes. The zero is always at the bottom of the well. The strong peaks are at 53.6 meV for

the electron, 6.6 meV for the heavy hole, and 12.3 meV for the light hole. Adding the 1.376

eV band-gap for In0.1Ga0.9As will give us the energy of 1.4362 eV for the e-hh exciton and

1.4419 eV for the e-lh exciton, not accounting for the binding energy of the exciton. On

the left on Figure 2.5 the plot of |R|2 is shown for the entire range of energies between the

In0.1Ga0.9As and Al0.32Ga0.68As band edges. In that region the electron has 4 bound states

while the heavy hole has 12. We have to point out that this calculation is not exact. The

values of the band offsets are at best approximate since they are not precisely established.
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Figure 2.5: Bound state levels for the electron, the heavy hole, and the light hole (from top

to bottom) in the double quantum well system. The right column shows an enlarged portion

around the lowest levels.
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In a recent paper Szymanska and Littlewood [48] have calculated the binding energies, the

oscillator strength, and the exciton energies of two coupled quantum well structures subject

to an electric field—In0.1Ga0.9As/GaAs and GaAs/Al0.33Ga0.67As. The In0.1Ga0.9As/GaAs

system they have considered is equivalent to our sample—two 60 Å wells separated by

40 Å GaAs barrier and GaAs outside barriers. The GaAs/Al0.33Ga0.67As is the one used

by Butov’s group [39]—two 80 ÅGaAs quantum wells separated by 40 Å Al0.33Ga0.67As

barrier and 2000 Å Al0.33Ga0.67As outside barriers. Szymanska’s method is based on the

effective-mass approximation and is described in detail in [49]. For obtaining the results

they used the following structure parameters: ∆Eg(In0.1Ga0.9As/GaAs)= 1070× 0.1 meV =

107.0 meV, where 0.1 is the indium concentration; ∆Eg(GaAs/Al0.32Ga0.68As)= 1247× 0.32

meV = 399.04 meV; conduction band offset ratio Qc = ∆Ec/∆Eg of 0.65, which gives

offsets ∆Ec(In0.1Ga0.9As/GaAs)= 69.55 meV, ∆Ec(GaAs/Al0.32Ga0.68As)= 259.376 meV,

∆Ev(In0.1Ga0.9As/Gaea)= 37.45 meV, and ∆Ev(GaAs/Al0.32Ga0.68As)= 139.66 meV. The

effective masses used in the calculation are me = 0.061m0, in-plane heavy hole mass mhx =

0.1m0, and out-of-plane heavy hole mass mhz = 0.339m0 for the In0.1Ga0.9As. The results

from such calculation for In0.1Ga0.9As/GaAs couples quantum structures are shown in Figure

2.6.

The dashed line and the diamonds represent the calculation for the In0.1Ga0.9As/GaAs

quantum well structure. The binding energy of the excitons decreases gradually from 6.5

meV at 0 V field to 3.5 meV at 4 meV/nm field. The oscillator strength (in the inset of Figure

2.6) also smoothly decreases. Since the inverse of the oscillator strength is proportional to

the radiative excitonic lifetime, the increase of the electric field increases the lifetime of the

excitons. The change of the binding energy for the GaAs/Al0.33Ga0.67As structure (circles

in the figure) is more dramatic, from 8.5 meV at zero field to about 4 meV at large fields.

Calculation of the electron and hole wave functions shows that for the In0.1Ga0.9As/GaAs

structure, the electron and the hole are less confined than in the case of GaAs/Al0.33Ga0.67As

structure, due to the more shallow wells of the In0.1Ga0.9As/GaAs. Because of the broad-

ness of the wave functions the exciton has 3D character in the absence of electric field.

The separation of electrons and holes is much more dependent on the electric field in the

In0.1Ga0.9As/GaAs QW structure than in the GaAs/Al0.33Ga0.67As, where the quantum wells
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Figure 2.6: Binding energy of the ground-state exciton in coupled quantum wells structures

as a function of the applied electric field: diamonds and dashed line—In0.1Ga0.9As quantum

wells; solid line—indirect exciton in GaAs quantum wells; dotted line—direct exciton in

GaAs quantum wells. Inset: Oscillator strength as a function of the applied field. From Ref.

[48]
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Figure 2.7: Energies of the indirect (solid line) and the direct (dashed line) excitons in

In0.1Ga0.9As/GaAs coupled quantum wells (lower curve) and GaAs/Al0.33Ga0.67As coupled

quantum well structure (upper curve). From Ref. [48]
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are deeper and the barrier between them can provide effective confinement for the particles.

Although the exciton binding energy decreases with the applied electric field, its value at

high fields and low T is still high enough to claim that at low temperatures we have excitons

and not a gas of separate electrons and holes.

Along with the exciton binding energies, Szymanska and Littlewood have also calculated

the energy of the indirect exciton in both structures. The results for the In0.1Ga0.9As/GaAs

(diamonds) and GaAs/Al0.33Ga0.67As (circles) are shown in Figure 2.7. The energy of the

direct exciton (at zero field) for the In0.1Ga0.9As/GaAs structure is calculated to be 1.45 eV,

which compares very well with the experimental value of 852 nm = 1.455 eV. It is also close

to the value we calculated in the beginning of the chapter. The main difference can be at-

tributed to the slightly different structure parameters used in both models. At zero field there

is splitting between the symmetric and the antisymmetric energy states in the wells which is

too small to be resolved in our measurement. When the voltage is increased this splitting is

transformed into direct and indirect states, as shown in the figure. As expected, the energy

of the indirect exciton decreases with the increase of the electric field while the direct exciton

(dashed line) remains at almost constant energy. At high fields the direct state is unpopu-

lated since all excitons occupy the lowest energy state. It could get populated, for example

at high temperature when there are excitons with energy high enough to occupy those states.

2.3 STUDY OF THE In0.1Ga0.9As QUANTUM WELL SAMPLE

Chronologically, we used three different samples with the same 60-40-60 In0.1Ga0.9As/ GaAs

double quantum well structure (60-40-60 refers to the thicknesses in Å of the wells and the

barrier between them). They are summarized in Table 2.2.

The table shows the changes the design of the sample went through in order to make it

more suitable to our specific purposes—study of indirect excitons.

Since the indirect excitons exhibit long lifetimes, they are our primary interest. To create
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Table 2.2: The structure of the samples used in the experiments. S=substrate, CL=capping

layer. The doping of the substrate and the capping layer is designated by i and n+.

Designation Sample structure

S Al0.32Ga0.68As GaAs QWs GaAs Al0.32Ga0.68As CL

sample-1 i 1000 Å no 60-40-60 no 300 Å i

sample-2 i 1000 Å 50 Å 60-40-60 50 Å 300 Å i

sample-3 n+ 1000 Å 50 Å 60-40-60 50 Å 300 Å n+

indirect excitons we need to apply an electric field to the sample. This is usually done by

placing electrical contacts on both sides of the sample and applying voltage between them.

As mentioned earlier, in this case due to the finite resistance of the sample, current will flow,

which will introduce additional scattering for the excitons (besides impurities and phonons)

and this will ultimately reduce their mobility. So in order to minimize the current, the initial

design of the sample included a thick 1000 Å Al0.32Ga0.68As barrier on one side and 300

Å on the other side of the two 60 Å In0.1Ga0.9As coupled quantum wells structure, thus

separating it from the GaAs substrate and capping layer. Al0.32Ga0.68As introduces a barrier

of around 250 meV for the electrons in the conduction band and a 200 meV barrier for the

holes in the valence band. The total thickness of the sample was 150 µm. This sample

(sample-1) didn’t have the GaAs ledges shown in Figures 2.1 and 2.3, and because of that

the performance of the structure was quite poor due to the inhomogeneous broadening from

the disorder and the lattice mismatch at the Al0.32Ga0.68As/In0.1Ga0.9As interface. A typical

CCD image of the luminescence is shown in Figure 2.8. The sample was excited with a 823

nm modelocked laser with power of 10 mW and repetition rate of 76 MHz. There wasn’t

any voltage applied to the sample and the exciton luminescence was observed at 859 nm.

From this spectrum the measured inhomogeneous broadening was 4.3 meV.

In order to create indirect excitons with considerable population, the energy shift between

the direct and the indirect (also called Stark shifted) states has to be greater than kBT , a

few meV for temperatures of the order of 10 K. For quantum well structure with thickness
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Figure 2.8: Image of the luminescence from sample-1 (without GaAs ledges).

of 160 Å (the wells plus the barrier between them) this corresponds to electric fields of the

order of 10 meV/160 Å = 6.25 kV/cm. In our case this field corresponds to voltages of 100

V applied to the 150 µm thick sample. Indeed, the indirect exciton was observed at very

high voltages—around 150 V. A CCD image of the luminescence at 200 V is shown in Figure

2.9. As with the direct exciton, the indirect line is very broad, with FWHM of 15 meV.

The very well-pronounced stripes in the images are due to interference—the 150 µm

thick sample acts like a thin transparent plate for the 860 nm luminescence (the absorption

edge of GaAs is around 820 nm). The sample was mounted between an indium tin oxide

(In2O3-SnO2 – ITO) coated glass plate on the side toward the laser and a brass plate on the

other. The advantage of ITO glass is that it is transparent and provides electrical contact.

The I-V curve is shown in Figure 2.10. Since most of the sample thickness is GaAs, this

curve essentially represents the conduction of undoped GaAs.

We tried several different approaches to eliminate the current through the sample in

order to reduce the inhomogeneous broadening. All evidence, however, showed that the

broadening is due to disorder at the interface between the quantum wells and the barriers
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Figure 2.9: Image of the luminescence at 200 V from sample-1.
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Figure 2.10: I-V curve for the InGaAs quantum wells sample-1.
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Figure 2.11: CCD image of the luminescence of the improved sample-2 (with GaAs ledges).

and not due to scattering off carriers. So in order to reduce the inhomogeneous broadening

the design of the sample was changed and two 50 Å GaAs ledges were added on both sides

of the quantum wells, as illustrated in Figure 2.1. A CCD image of the luminescence from

this new sample is shown in Figure 2.11. There was drastic improvement in the quality.

The inhomogeneous broadening was considerably reduced to 1.7 meV or less. Due to the

very bad performance, sample-1 was no longer used. The difference in the position of the

direct exciton luminescence from the two samples is due to the difference in the structures.

In sample-1 the direct interface of Al0.32Ga0.68As with the quantum wells introduces higher

barriers leading to slightly higher confinement energies.

As we have mentioned earlier, Hohenberg [23] has shown that BEC cannot occur in an

ideal 2D bosonic system while Bagnato and Kleppner [24] have suggested that in one and two

dimensional systems BEC can take place in the presence of a confining or trapping potential.

In previous experiments performed in the lab [26, 27], success has been achieved in creating

such potential traps in quantum well samples using a stressor pin to apply inhomogeneous

stress. In similar fashion we used a metal pin to push the sample from one side against
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Figure 2.12: Shift of the exciton luminescence with applied stress

the observation hole on the other side, as illustrated in Figure 1.7. It was shown [26] that

in such geometry the hydrostatic and shear stress introduced in the sample contribute to

an overall negative shift of the exciton energy as opposed to the geometry in which the

sample sits flat against a glass slide in which case the energy shifts to higher values. Such a

negative shift in energy is evident in Figure 2.12. This is a very long exposure image of the

exciton luminescence taken with the CCD camera while the laser beam was scanned up and

down (effectively the imaging system sums a number of images—about 50—taken in rapid

succession). The image is rotated by 90 degrees to represent a plot of the energy change vs.

position on the sample. The maximum stress is at the contact point between the pin and

the sample surface. That point corresponds to the bottom of the potential trap where we

see maximum shift of the exciton line. The stress decreases with distance from the pin and

with it the shift of the observed luminescence. The very narrow faint line at higher energies

is due to the substrate luminescence.

With a potential trap created in such a way we could try to move the excitons toward
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Figure 2.13: Time-resolved profile of the exciton luminescence in the stress well. The sample

is excited at position -0.4 mm while the potential trap is at 0.4 mm.

the trap. This could be achieved by exciting the sample not exactly at the bottom of the

potential well but slightly to the side, at the steep wall. This, in principle, will cause the hot

excitons to fall down to the bottom of the well. A time-resolved profile of such an experiment

is shown in Figure 2.13. One horizontal axis represents position on the sample surface while

the other represents the time after the laser pulse. The shape of the stress well is the same

as in Figure 2.12. The spectrometer was set at wavelength 863 nm, i.e. at the bottom of the

well. The sample was excited by a 829 nm mode-locked laser and the excitation spot was at

position -0.4 mm form a reference point (Figure 2.13), while the trap was at +0.4 mm. The

laser spot was approximately 0.1 mm in diameter. The most prominent feature of Figure

2.13 is the long lifetime of the luminescence at the bottom of the trap while the excitons

at the excitation spot have lifetime of one nanosecond or less. Although we see excitons at

the bottom of the trap, we didn’t observe any transport—the luminescence from the trap

appears at the same time as the luminescence from the laser spot.
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2.4 LUMINESCENCE ENHANCEMENT BY VOLTAGE

The stressor pin could also be used as one of the electrical contacts for applying voltage

across the sample. In such a configuration the required high electric fields to create indirect

excitons could be achieved at lower voltages due to the high curvature of the pin. Using

this kind of setup we observed that applying voltage caused a sudden increase of the exci-

ton luminescence. The effect under typical conditions is shown in Figure 2.14. The sample

was excited exactly at the bottom of the potential well created by the pin (the laser shines

exactly under the pin, shown in Figure 1.7) by a laser with power of about 3 mW. There

was a voltage of 60 V applied between the bottom metal plate and the pin in Figure 2.14(a).

The image shows the well pronounced potential trap created by stressor. The bright feature

at high energies is due to bulk luminescence. Increasing the voltage to about 80 V resulted

in an abrupt change of the luminescence pattern. The brightness of the exciton lumines-

cence increased with a jump while the substrate luminescence decreased in brightness. The

intensity of the exciton line remained approximately constant upon further increase of the

voltage. A CCD image at 110 V is shown in Figure 2.14(b). There was also observed a slight

shift of the luminescence to longer wavelengths which did not change with the increase of

the applied voltage.

Another notable feature of this effect was the hysteresis with voltage. The voltage at

which the enhanced light emission appeared was higher than the voltage at which it disap-

peared which hinted that there could be a self sustained effect at lower voltages. We have

to point out that the effect was occurring only when the excitation was at the bottom of

the potential trap (Figure 2.15). That point also corresponds to the highest electric field.

Later experiments showed that the stress well wasn’t necessary in order to reproduce the

effect—just a good contact between the pin and the back surface of the sample was enough.

Naturally, the question of the nature of this enhanced light emission arises. One pos-

sibility is that lasing was taking place. We performed several tests to determine if that

was the case. A measurement of the polarization of the luminescence showed that the light

wasn’t polarized. Visual observation of the sample and its projection on the spectrometer

slit couldn’t confirm the presence of bright light which was expected if lasing was taking
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Figure 2.14: Enhanced light emission at high voltage: (a) V=60 V; (b) V=110 V. The jump

in the luminescence brightness occurs at 80 V in this case.
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Figure 2.15: The effect of enhanced light emission occurs only when the laser excites the

sample at the point of highest stress: (a) The laser is slightly off-center; (b) The laser is

under the pin. V=141 V.
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place. Nevertheless, this does not rule out lasing as an explanation of the enhanced light

emission effect. It is possible that the high electric field at the pin’s tip was causing electrical

breakdown of the sample substrate, which led to strong current injection into the quantum

wells.

2.5 DOPED In0.1Ga0.9As SAMPLE

The design of sample-2 proved to be quite successful and the sample had indeed very good

performance with respect to the inhomogeneous broadening. However, using 200 V to create

indirect excitons was not very practical so the design of the sample was modified and heavily

n-doped GaAs was used for the substrate and capping layer. In such a way they become

highly conductive and the voltage needed to create indirect excitons was effectively applied

to the 1560 Å quantum wells/barriers region. Now with only a few volts applied across the

sample the required high electric field across the QW region could be achieved. The change

of the position of the indirect exciton versus the applied voltage for this sample is shown in

Figure 2.16. There is an apparent increase in efficiency of creating indirect excitons at low

voltages.

Again, our interest was centered around observing some transport of excitons. We per-

formed a series of time-resolved measurements. A time-resolved profile of the luminescence

is shown in Figure 2.17. There is a stress well similar to the one shown in Figure 2.12 and

the spectrometer is set to a wavelength corresponding to the bottom of the trap. In this

case the well is at 0◦ position of the scanner and the laser spot is at 2◦. Several important

features are noticeable. The lifetime of the exciton species is extremely short—less than 1

ns—and there isn’t really any measurable transport. The failure to observe any transport

of excitons has two main reasons—short exciton lifetime and low carrier mobility. While

the exciton lifetime can be extended by increasing the voltage, it is still of the order of a

few nanoseconds. The mobility of the exciton as well as the lifetime may be affected by

the fact that the semiconductor material for quantum wells is an alloy with small concen-

tration of indium in it which may introduce disorder and reduce the mobility and shorten
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Figure 2.16: Indirect exciton position vs. the applied voltage for the sample with doped

substrate (sample-3)

the lifetime of the excitons. Wang et al. [50] have performed a calculation of the mobility

of a double GaAs quantum well system with an AlAs barrier separating the wells and have

found a noticeable increase of the mobility as the barrier width is increased. Sakaki et al.

[51] have measured the mobility in single GaAs quantum wells and observed L6 power law

dependence of the electron mobility on the well width. On the other hand, Xu et al. [52]

have studied the dependence of the radiative excitonic lifetime on the well width for high

quality GaAs/AlGaAs double quantum well systems. They also have observed an increase of

the lifetime with the increase of the well width. These and similar observations suggest that

the way to improve the performance of our quantum well structure probably is to increase

the well width. Experiments with samples with 100 Å wells are currently under way.

Finally, on a more applied note, we performed a test to see if the quantum well structure

could be used as a switching device. Since the exciton line shifts with the change of the

applied voltage, it can be used to selectively change the absorption edge of the sample. For

this experiment the sample was mounted in a way so that transmission measurements were

possible. The laser was tuned to the indirect exciton wavelength for a selected voltage, in

our case 5 V. In such a way when the the applied voltage was 0 V the laser energy was below

the band gap and the sample was transparent and most of the light would go through which
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Figure 2.17: Time-resolved profile of the exciton luminescence of the doped sample in the

presence of a stress well. The well is at 0◦ and the laser is at 2◦.
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Figure 2.18: Using the quantum well structure as a switching device. Red trace: the input

signal; black trace: the response of the system.
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then could be detected by a photodiode. When, on the other hand, 5 V was applied, the laser

resonantly excited the indirect exciton line and some of the light would be absorbed and we

would see reduced photodiode current. The results from such an experiment are shown in

Figure 2.18. The applied voltage (red on the figure) has a frequency of approximately 990

Hz. Indeed, the measured voltage through the diode shows modulation with the frequency

of the driving signal. Obviously the performance is not very good—1 kHz is practically DC

compared to the modern switching rates of GHz—but it demonstrates the concept that at

least in principle quantum well structures could find use in optical switching devices.

40



3.0 MAGNETORESISTANCE OF COUPLED QUANTUM WELLS

Magnetoresistance is the property of certain materials to change their electrical resistance

when subject to a magnetic field. Copper at 4 K, for example, can change its resistance 14

fold under fields of up to 10 T. It is an effect known for quite some time but measuring the

change of the resistance of heterostructures in the presence of magnetic fields started in the

early to mid 1980s when quality semiconductor structures could be grown. Choi et al. [53]

studied the effect of the magnetic field on the tunneling current and the negative differential

conductance through structures with multiple GaAs quantum wells. Magnetoresistance in

superlattices was observed by Lee et al. [54]. They used a number of GaAs/Ga0.7Al0.3As

superlattice samples and measured the dependence of the longitudinal magnetoresistance on

the temperature of the samples and the applied magnetic field. A quadratic increase of the

resistance with the magnetic field was observed.

The appeal of the magnetic field to studies of Bose condensation of excitons in quantum

wells is the possibility of creating potential traps using nonuniform fields.

This study [55] is a continuation of previous experiments with GaAs coupled quantum

wells in low and high magnetic fields [56]. The original experiments were done at the National

High Magnetic Field Laboratory in Tallahassee, Florida. The system was subject to magnetic

fields as high as 30 T and the most striking result was the observation of a red shift of the

luminescence line at low fields. The purpose of the current study was to reproduce the results

of [56] at low fields and further investigate the red shift of the exciton line in In0.1Ga0.9As

coupled quantum wells and determine the cause of the effect. Since our interest was in the

low magnetic field region, we decided to build a magnet that could be used in our laboratory

conditions. It had to be able to produce a magnetic field of at least 1 T at the location of

the sample and at the same time to be small enough to fit in our cryostat. The solution
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Figure 3.1: Setup used with the superconducting magnet.

was to use thin superconducting wire and make a solenoid compact enough to be mounted

at the end of the manipulator and capable of generating 1 T. The design is shown in Figure

3.1. The magnet solenoid was 30 mm long and 28 mm in diameter. It was wound using

type 54S43 multistrand superconducting wire with thickness 140 µm (including the Formvar

insulation) manufactured by Supercon, Inc. The setup allowed us to apply simultaneously

magnetic field and voltage bias to the sample.

A calibration curve of the magnet is shown in Figure 3.2. It was calculated using the

geometry of the magnet—the number of layers of wire, the distance of each layer from the

center, and the number of wounds per layer. On the vertical axis is shown the coefficient of

proportionality between the magnetic field B and the electrical current I: B = αI.

Negoita et al. [56] observed that at low fields (up to 1 T) the indirect exciton line

exhibited an unusual red shift (Figure 3.3). The shift was proportional to B2 for both

positive and negative small magnetic fields perpendicular to the plane of the wells. The red

line on the figure is a B2 fit to the data. When the magnetic field was increased further a blue

shift was observed, which showed a linear dependence on the field, and it was attributed to

the electron Landau level energy. The shift was similar to the observations of Krivolapchuk

[57], although much stronger (20 meV vs. 5 meV). The magnitude of the shifts was dependent
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Figure 3.2: Calibration curve for the magnet. The distance is measured from the end of the

solenoid (edge of the wires).

on the applied electric field–the higher the electric field, the stronger the observed shift with

magnetic field.

The low magnetic field results were reproduced with the In0.1Ga0.9As sample-3 with the

doped substrate. This showed that the observed effects were not due to some specifics of the

GaAs structure. The sample was mounted on the magnetic holder and kept at temperature

of 2 K. It was excited with a modelocked laser with wavelength 846.5 nm which, is below

the absorption edge of the GaAs substrate which makes it transparent. A shift with the

magnetic field is shown in Figure 3.4. The fringes are due to interference from the transparent

substrate. The position of the indirect luminescence peak vs. the applied magnetic field with

3.8 V bias is shown in Figure 3.5. The red line is a fit of B2 to the data for B < 0.2 T. The

data also shows one important feature of the effect—the shift is larger than the luminescence

line width, which makes it easy to detect and measure.

The red shift of approximately 12 meV can be understood in terms of change of the

magnetoresistance of the structure. Such an idea is supported by a measurement of the

current through the sample, which changes over the same range of B as the spectral line
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Figure 3.3: Shift of the photon energy of the luminescence of the indirect exciton in GaAs

coupled quantum wells.

position. This is shown in Figure 3.6. Although the sample has very thick barriers (∼1000

Å), there is a finite current due to the tilting of the bands when a high electric field is applied,

which allows a non-negligible tunneling rate for the electrons. The narrowing of the indirect

line observed in Figure 3.4 is in agreement with similar narrowing observed by Aksenov et

al. [58] who studied single GaAs quantum well with 170 Å width in magnetic fields up

to 6 T. The observed width of the exciton line decreased with increasing magnetic field. A

fit to the shape of the line also showed that the Lorentzian contribution to the width (the

homogeneous broadening) also decreases with the increasing the field.

A simple two-resistor model can be used to explain the relationship between the spectral

shift and the current. The sample can be represented as two resistors connected in series—

Rw, which represents the resistance of the quantum well region, and R0, which represents

the resistance of the substrate, capping layer and outer barriers, and the electrical contacts

(Figure 3.7). Rw will depend on the tunneling rate through the inner barrier and will be

much smaller than R0, which includes the thick outer barrier resistance. With constant

R0, the voltage drop across the quantum well region, which will control the band tilt, is
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Figure 3.4: Indirect exciton luminescence shift with magnetic field in In0.1Ga0.9As coupled

quantum wells
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Figure 3.5: Luminescence line positions a function of the magnetic field. Sample is at T=2K

with 3.8 V applied.
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Figure 3.6: Current through the sample as a function of the magnetic field. V=3.8 V

Vw =
RwV

R0 + Rw

=
V

1 + R0/Rw

, where V is the voltage across the whole sample. If Rw

increases with magnetic field, the voltage across Rw will also increase and because of the

quantum confined Stark effect, this will lead to a red shift of the indirect luminescence. In

the opposite event, if Rw is decreased the red shift will be decreased also.

Although the positive magnetoresistance is a plausible explanation, there was at first

no obvious reason why the resistance should change with magnetic field since there is no

magnetic material in our samples. Also, the magnetic field is parallel to the applied electric

field (perpendicular to the wells), in the same direction as the current. In collaboration

with B. Laikhtman we proposed a model which is similar to the one suggested by Lee et al.

[54] to explain the magnetoresistance of superlattices. While they observed a change of the

magnetoresistance by a factor of up to 4 for fields of up to 9 T, the effect in our case occurs

at much lower fields–less than 1 T.

Since the electric and the magnetic fields are parallel, one might think that the influence

of the magnetic field on the current is small. There will be, however, carrier diffusion in

the direction perpendicular to the magnetic field. In general, since the resistance parallel
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Figure 3.7: Two resistor model of the system of quantum wells and barriers

to the quantum wells is less than the resistance perpendicular to them (in which case the

carriers must tunnel through the thick barriers), there will be some carriers that will diffuse

in the plane of the wells, perpendicular to the magnetic field, and the diffusion constant can

depend on the strength of the field.

While moving in the plane of the quantum wells, the carriers will encounter regions

with different barrier thickness or height (due to variation of the In concentration). In

general there is some level of disorder in all quantum well structures. The inhomogeneous

line broadening is an indication of such disorder. In our samples it is quite small—of the

order of 1-3 meV. Figure 3.4 is an example of the line width for the sample used. Usually

this broadening is due to uneven well thickness over the excitation region. In our samples

the quantum wells consist of approximately 10 monolayers (ML) of In0.1Ga0.9As and 1 ML

difference of thickness is 10% of the total well width, which corresponds to 6 meV broadening,

which is much larger than the inhomogeneous broadening we see. This suggests that the

disorder leading to the observed inhomogenous broadening cannot come from the well width

variation. Our system consists of quantum wells composed of In0.1Ga0.9As alloy and GaAs

barriers, so any change of the concentrations in the alloy will result in change of the energy

bands and the band offsets between the wells and the barriers which will lead to change of the

barrier height felt by the carriers. Any such change will create regions where the tunnelling

rate through the barriers, especially the thin 40 Å GaAs barrier between the wells, will be

different. So with high diffusion rate in the plane of the wells, the carriers will be able to
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find regions with high tunneling rate which results in low overall resistance.

On the other hand, when magnetic field is applied, the orbits of the electrons and the

holes will be constrained to the Landau orbits, and the electrons are less likely to move to

regions of high tunneling rate. Essentially, the Landau orbit causes the electrons to feel the

average barrier height instead of local minima. The stronger the field the more constrained

the carriers will be. In such a way the resistance of the sample will increase.

Miller and Laikhtman [59] have developed the theory of the magnetoresistance for su-

perlattices and we use a similar model for quantum wells. In this model the quantum wells

are between contacts with potentials U and −U . The potential of the first quantum well,

separated by a barrier from the contact U , is φ1(r) and the potential of the second quantum

well is φ2(r). We have assumed that the potential in the wells depends on the in-plane co-

ordinate r because of the previously discussed nonuniformity of the barriers. The magnetic

and electric fields are applied in the direction perpendicular to the quantum wells plane (z

direction which is the same as the growth direction). If the conductances of the two outside

barriers are Σ1(r) and Σ3(r), and the conductance of the middle barrier is Σ2(r) then we

can write the current densities across the barriers as

jz1(r) = Σ1(r)[U−φ1(r)], jz2(r) = Σ2(r)[φ1(r)−φ2(r)], jz3(r) = Σ3(r)[φ2(r)+U ]. (3.1)

The current conservation law in the wells gives

jz2 − jz1 = ∇σ̂∇φ1, jz3 − jz2 = ∇σ̂∇φ2 (3.2)

where σ̂∇φ1(2) is the in-plane electric current in the 1st(2nd) well, ∇ is the in-plane gradient,

and σ̂ is the two-dimensional conductivity tensor of the well, which is assumed to be the

same in both wells. It is antisymmetric, σxy = −σyx, and its diagonal elements depend on

the magnetic field as

σxx = σyy ≡ σ‖ =
σ0

1 + (µ B/c2)
(3.3)
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with σ0 and µ being the conductivity and the mobility at zero field. Substituting jz1, jz2,

and jz3 from Eq. (3.1) into Eq. (3.2) we find

Σ2(r)[φ1(r)− φ2(r)]− Σ1(r)[U − φ1(r)] = σ‖∇2φ1, (3.4)

Σ3(r)[φ2(r) + U ]− Σ2(r)[φ1(r)− φ2(r)] = σ‖∇2φ2.

The measured current density can be defined as the current density through the intermediate

barrier averaged over the spatial fluctuations

〈j〉 = 〈jz2〉 = 〈Σ2(r)[φ1(r)− φ2(r)]〉. (3.5)

If we neglect that the resistance fluctuations of the barriers, Σ1 =Σ3≡Σ0 =const, Σ2 =const,

then ∇2φ1(2) = 0 and Eqns. (3.4) and (3.5) lead to

φ1 = −φ2 =
Σ0

2Σ2 + Σ1
U (3.6)

and

j =
2Σ0Σ2

2Σ2 + Σ0

U. (3.7)

This expression is equivalent to total barrier resistance 1/Σ = 1/Σ0 + 1/Σ2 + 1/Σ0.

Our outside barriers are much thicker and much higher than the intermediate GaAs

barrier, so their conductance is much smaller, Σ2 À Σ1, Σ3. This allows us to neglect Σ1

and Σ3 in Equation (3.4) which is reduced to

Σ2(r)[φ1(r)− φ2(r)]− Σ1(r)U = σ‖∇2φ1, (3.8)

Σ3(r)U − Σ2(r)[φ1(r)− φ2(r)] = σ‖∇2φ2.

If we subtract one of these equations from the other we get

2Σ2φ− σ‖∇2φ = (Σ1 + Σ3)U (3.9)

where φ = φ1 − φ2. But according to Eq. (3.5)

〈j〉 = 〈Σ2φ〉 (3.10)
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so Equation (3.9) is sufficient to calculate the average current. According to it the average

current is linear in fluctuations of Σ1 and Σ3, so these fluctuations are averaged and we can

substitute Σ1 = Σ3 = Σ0. Then Eq. (3.9) becomes

2Σ2φ− σ‖∇2φ = 2Σ0U (3.11)

If the fluctuations of Σ2 are small, the average current 〈j〉 can be calculated. But in

the experiment the resistance of the QW structure changes by a factor of three, so the

conductance fluctuations are significant. The analytical solution of Eq. (3.11) is difficult

and the unknown statistics of the fluctuations imposes additional problems. So instead of

trying to solve it analytically we employ a simple model where the circuit of Figure 3.7 is

extended as shown in Figure 3.8. Here the outside barriers have resistance r0, the average

resistance of the second intermediate barrier is rb, and r1 is the sum of the in-plane resistance

and the minimum resistance of the barrier, rm. The in-plane resistance can be written as

l2/σ‖, where l is the characteristic length of the barrier conductance fluctuations. Then the

resistance of the intermediate part of the structure can be written as

1

R
=

1

rb

+
1

rm + l2/σ‖
(3.12)

σ‖ can be substituted from Eq. (3.3) and the above becomes

1

R
=

1

rb

+
1

rm + r‖

[
1 +

r‖
rm + r‖

(µB/c)2

]−1

(3.13)

where r‖ = l2/σ0.
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When the magnetic field is low [r‖/(rm + r‖)](µB/c)2 ¿ 1 and Eq. (3.13) becomes

1

R
=

1

rb

+
1

rm + r‖
− r‖

(rm + r‖)2
(µB/c)2 (3.14)

The minimum resistance at B = 0 is simply the two resistors, rb and r1 = rm +r‖, in parallel:

Rmin = rb(rm + r‖)/(rb + rm + r‖).

At high magnetic fields, on the other hand, [r‖/(rm + r‖)](µB/c)2 À 1 and Eq. (3.13)

leads to

R =
rbr‖

r‖ + rb(c/µB)2
(3.15)

with maximum resistance Rmax = rb as B approaches infinity.

One of the main concepts of the model of positive magnetoresistance is that there are

regions in the intermediate barrier with lower resistance for the carriers. It is then a legitimate

question to ask what happens when rm = rb, i. e. when the resistance variations of the barrier

are smoothed out. According to Eq. (3.13) there will be some magnetoresistance present.

Obviously the model breaks down in this limit. We can think of it in another way, however.

The difference rb−rm represents some characteristic distance the carriers must travel in order

to find a place with substantially lower resistance–the higher the difference, the “rougher”

the barrier is and the shorter the distance the carrier must travel. When rb − rm decreases,

the characteristic distance increases and as rm approaches rb, the distance the carriers must

travel in the lateral direction in order to see changes of the resistance approaches infinity.

So in principle, one might say that there will be magnetoresistance even as rm approaches

rb but in this case it should be considered an infinite current sheet with infinite time for the

carriers to diffuse.

To fit the theory to the experimental data, we use E = E0 − IR, where E is the energy

of the indirect exciton luminescence, E0 is the energy of the direct, unshifted line, I is the

current through the sample, which we assume constant, since it changes less than 4% as

shown in Figure 3.6, and R is the resistance. From Eq. (3.13) we have

R = rb

rm + r‖ + r‖(µB/c)2

rb + rm + r‖ + r‖(µB/c)2
(3.16)
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Figure 3.9: Fit of the magnetoresistance theory to the data from Figure 3.5

with the use of which IR can be rewritten as

IR = a
1 + bB2

1 + dB2
(3.17)

with

a = Irb

rm + r‖
rb + rm + r‖

, b =
r‖

rm + r‖
(µ/c)2, d =

r‖
rb + rm + r‖

(µ/c)2. (3.18)

Then

E = E0 − a
1 + bB2

1 + dB2
(3.19)

where E0, a, b, and d are fit parameters. This system is underdetermined, however, (it

has more fit parameters than degrees of freedom), and as such the parameters are linearly

dependent and their values are strongly dependent on the starting conditions of the fit. To

remedy that we rewrite the above equation as

E = E ′
0 −

b′B2

1 + dB2
(3.20)
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where E ′
0 = E0 − a and b′ = a(b− d). This can be fitted easily and the fit to the data from

Figure 3.5 is shown in Figure 3.9. It implies parameter values E ′
0 = 1.4423 ± 0.0001 eV,

b′ = 0.089± 0.006, and d = 7.4± 0.5.

One may ask what is, if any, the practical application of this effect. While not very

strong, it is still a measurable effect of the magnetic field on the resistance of the sample.

We can imagine a local magnetic probe where the field is measured by shining focused laser

light and the shift of the exciton line is recorded. Or even obtaining a broad picture of the

local magnetic field by flooding the sample area with light. In GaAs the effect appears to

be limited to low temperatures but in other materials with more deeply bound excitons, the

same effect could exist at higher, even room temperature.
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4.0 RING STRUCTURES IN QUANTUM WELLS

Along the way to achieve BEC one wants to use higher exciton densities and low temperature

in order to reach the required critical density for the specific temperature. In that case, in

order to create relatively “cold” excitons, usually a resonant excitation is used, i.e. exciting

the direct excitonic line resonantly or as close as practically possible. Probably this is the

reason why the effect which we will discuss in the next chapters was never seen before

although coupled quantum wells have been studied for a long time. Instead of driving the

sample hard with resonant excitation, this effect requires extremely low powers and non-

resonant laser which can excite the structure above the band gap.

We used a CW HeNe (632.8 nm) laser to excite the doped In0.1Ga0.9As sample (sample-3

from Table 2.2) at 2 K very high above the band gap of the GaAs substrate and thus creating

hot excitons that can fall into the quantum wells. Using very low power this excitation

produced an extremely unusual effect [60]. When voltage was applied to the sample we

observed an indirect exciton line that, as usual, shifted with voltage, but at around 2 V two

bright spots appeared above and below the excitation spot, and the distance between them

could be varied by changing the applied voltage. A typical image is shown in Figure 4.1.

The laser power is 2 mW and the applied voltage is 1.5 V. It should be noted that since

the spectrometer shows just a thin spatial slice of the actual luminescence pattern projected

on its slit, the actual image was determined to be a ring around the central luminescence

spot. This was verified by moving the imaging lens (and thus the image) from side to side

and observing the spots moving closer to each other and finally merging. Later, we took

images by projecting the luminescence directly on the CCD camera through a narrow-band

spectral filter without the use of the spectrometer. Such an image is shown in Figure 4.2

and is the actual shape of the luminescence on the sample. Indeed the bright spots are part
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Figure 4.1: Spectral image of the indirect luminescence for 2 mW power.

of a ring around the central spot. There are several interesting features. First, the region

between the central spot and the ring is completely dark. Second, the ring is very narrow

spectrally and sharp and very narrow spatially—narrower than the excitation laser spot. In

fact, it is spectrally narrower than the central spot. Third, the ring luminescence is slightly

blue shifted with respect to the central luminescence. One can also notice the irregular (not

completely circular) shape of the ring which we attribute to the asymmetry of the applied

voltage. The ring followed the central spot when it was moved around the sample surface.

We should mention that a nearly identical effect was observed independently by Butov et

al. in GaAs quantum wells [39] (Figure 4.3). Their sample was a n+-i-n+ structure consting

of double 80 Å GaAs quantum wells separated by a 40 Å Al0.33Ga0.67As barrier. It was

excited by a red HeNe laser with λ=632 nm, and a voltage of 1.22 V was applied across

the sample. They observed the appearance of a ring structure around the excitation spot at

high laser powers (around 100 µW). The interesting thing was a claim of the existence of a

second ring just at the edge of the excitation spot. The outside ring was as wide as 170 µm
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Figure 4.2: Two false color images of the ring projected directly on the CCD camera. T=2

K.

at 770 µW laser power. We could not verify the existence of a second ring in our samples.

There are two other interesting features of Butov’s result. The first is the breaking of the

outside ring into a periodic structure of bright spots. This periodic structure followed the

ring when the excitation spot was moved and when the ring radius was varied by changing

the excitation power. The spot structure was observed at temperatures as low as 0.5 K and

disappeared when the temperature was increased to 4 K. Again, as with the inner ring, we

could not reproduce this effect with our sample. This could be due to the low temperature

required to observe it (Butov reports temperatures below 1.8 K). We can achieve it but there

may be an issue of thermal equilibration of the carriers. It could be also due to the lack of

enough spatial resolution to discern such fine features.

The second feature is the presence of bright spots in the region between the central spot

and the ring and only there. Butov called them localized bright spots since they did not

follow the excitation spot movement and preserved their position on the sample. We did not

observe this effect either.
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Figure 4.3: Ring pattern observed by Butov et al. Note the fragmentation of the ring into

bright spots and the presence of local bright spots between the central spot and the ring.

From Ref [39]
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Figure 4.4: The size of the ring at different applied voltages and laser powers.

4.1 RADIUS VS. VOLTAGE AND LASER POWER

The first observation was that the ring radius could be manipulated by changing the voltage

applied to the sample. Initial measurements showed that the ring radius decreased with

increasing voltage—it entered the field of view from the outside at around 2 V and merged

with the indirect exciton spot at around 2.5 V. At all times the ring luminescence followed the

indirect luminescence spectrally, but it was at about 1 meV higher energy. This slight blue

shift can be noticed in Figure 4.1. A more detailed investigation, however, showed that the

ring structure actually exhibited a dependence opposite to the initial observation. At certain

laser power lower than the one used initially, increasing the voltage from 0 V produced a

faint ring around the indirect exciton luminescence that increased its radius from 0 (the ring

emerged from the central spot) to a size beyond the field of view.

The dependence of the ring size on voltage is also related to the power of the excitation

laser. We noticed that at higher power a lower voltage was required to create a ring with

the same radius. This means that at higher power the creation of the ring is more efficient.
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We took a series of curves for different voltages and different powers. The resulting graph

is shown in Figure 4.4. It shows the radius of the ring as a function of voltage for several

different powers. It can be noticed that the ring size increases both with increasing voltage

at fixed power and increasing power at fixed voltage. The figure also shows that at fixed

power the ring has a minimum size, which could be hundreds of microns. Although the ring

size depends on the laser power, it is most sensitive to the applied voltage, especially in the

range above 1.5 V. A plot of the ring radius as a function of the applied voltage at 160 µW

laser power is shown in Figure 4.5. Between 3 and 4 volts the ring radius rapidly increases

and at around 4 V is larger than the field of view. Increasing the voltage further brings the

ring back into view and the radius decreases. This is the effect as initially observed.

During the course of these studies it was found that it wasn’t necessary to apply voltage

across the sample in order to observe the ring, as seen in Figure 4.4. However, the voltage

makes the creation of the ring more efficient. This is evident form Figure 4.6. The graph

shows the ring radius versus the laser power for four different voltage biases. The excitation

was with a pulsed red laser with wavelength 612.7 nm and the sample was at 2 K. The ring

can be created even at 0 V but it requires more power. The efficiency of the process is

increased more than twice by just applying 1 V across the sample—just half of the power

at 0 V is required to create a ring with the same radius at 1 V. Figure 4.6 also shows the

rather linear dependence of the ring radius on the laser power with a slope increasing with

voltage, which is an indication of the increasing efficiency of the ring creation process.

4.2 LIFETIME AND TRANSPORT

Observing such an unusual phenomenon one is inevitably tempted to think of it as somehow

related to superfluidity of excitons. So a logical next step is to measure the transport of

excitons from the center to the ring. In order to reach such distances of hundreds of microns

they should have long enough lifetime and we should be able to observe their outward motion.

We performed a time resolved measurement of the ring structure using a modelocked

pulsed red laser with a pulse duration of 50 ps. A time resolved profile is shown in Figure
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4.7. The repetition rate of the pulses was 76 MHz (period 13 ns). The ring is 400 µm away

from the central spot. The central spot is at angle of the glass block at 0 degrees (straight

through) while the ring is projected on the spectrometer slit at an angle of -5 degrees. The

data show that the indirect exciton dies quickly with a lifetime of the order of 3 ns, while

the ring luminescence persists for a very long time—more than 13 ns, the period between

the laser pulses. Another measurement with lower repetition rate of the laser allowed us to

observe lifetimes of the ring in excess of 200 ns—Figure 4.8. The period of the laser was

260 ns and the ring was 500 µm away from the central spot. The intense peak at t = 0

we attribute to overlap of the ring luminescence with the central spot. At long times the

luminescence reaches a saturation level and the counts just before the laser pulse are the

intensity from the previous pulse 260 ns before.

If excitons were moving from the center outward, their transport would show up as

luminescence that shifts with time from the central spot to the ring. A typical phonon speed

in GaAs is on the order of 105 cm/s [61]. With that speed it will take 400 ns for the excitons

to travel a distance of 400 µm. Such an effect is not observed in Figure 4.7. Transport

wasn’t present even with applied stress where we were exciting the sample on the side of the

stress well and were trying to observe luminescence in the bottom of the well. The lack of

transport is mainly due to the very short lifetime of the exciton species at the central spot.

Nevertheless, something must be moving from the center to the ring since our excitation is

confined to the central region. With such a long lifetime it appears to be some kind of a

steady state process.

4.3 HIGH TEMPERATURE MEASUREMENTS

We also performed measurements at high temperature, which provided us with information

about the temperature limits of the ring effect. The ring persisted up to 110 K at which

point it became extremely blurry and disappeared. A CCD image of the luminescence at

90 K is shown in Figure 4.9. The sample was excited by a HeNe CW laser (λ = 632.8nm)

with average power 2.5 mW and spot size of 60 µm. The applied voltage was 5.84 V and
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Figure 4.8: Time trace of the ring with 500 µm radius at T = 2 K.
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Figure 4.9: CCD image of the luminescence at 90 K. Ring is observed for the direct and

indirect exciton species as well as for the free electron-hole recombination.

the current through the sample was 30 µA. The most prominent feature of the luminescence

at high temperature is the appearance of the ring structure not only for the indirect exciton

for which it was observed initially but also for the direct exciton and the free electron-

hole recombination. The latter are thermally excited at this temperatures since the exciton

binding energy is of the order of 10 meV which corresponds to a temperature of 116 K. The

fact that the ring appears also for non-excitonic species suggests that probably this effect is

not entirely related to excitons.

The high temperature results show another difference with the ring effect as observed by

Butov. Their ring structure disappears at around 10 K while ours persists to temperatures

ten times as high. The reason for this difference is probably due to the difference in the

quantum well structures or even the quality of the samples.

63



4.4 OTHER SAMPLES

We used several other samples to explore the ring effect. First, we studied the undoped

In0.1Ga0.9As sample with the same 60-40-60 geometry (again, 60-40-60 refers to the thick-

nesses of the quantum wells and the barrier between them). We couldn’t reproduce the

results at any power and voltage. This suggests that the ring effect is related to the n-i-n

doping, i.e. tunneling current through the barriers.

Another sample we used was an identical In0.1Ga0.9As structure but with p-i-n doping

of the substrate and the capping layer. There wasn’t a ring at any positive voltage bias and

any power.

Probably the most surprising result was when a ring was observed with a single 60

Å In0.1Ga0.9As quantum well sample with similar GaAs and Al0.32Ga0.68As barriers. In a

single QW, the applied voltage is irrelevant to the exciton lifetime since there is no Stark

shift and hence no indirect species. The dependence of the lifetime in the single and double

quantum well samples is shown in Figure 4.10. The excitons in single quantum well have

short lifetime practically independent on the applied voltage, whereas the double quantum

well sample exhibits a noticeable increase of the lifetime with the applied voltage. Theoretical

calculations show a similar result. The inset in Figure 2.6 shows an exponential decrease of

the oscillator strength which is inversely proportional to the exciton lifetime.

Since in the single quantum well we cannot create indirect excitons whose density could

be controlled by changing the applied voltage, the required power to create a ring in this

sample was higher than in the case with the double quantum well.

Another sample that we studied was a 60-40-60 In0.1Ga0.9As double quantum well struc-

ture with 44% Al in the outside barriers. The ring was also observed in this structure. Using

a sample with identical geometry to the one used by Butov we were able to reproduce his

result but without the ring fragmentation. We tried both single and double quantum well

samples and in both a ring was observed.
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65



5.0 AN EXPLANATION OF THE RING EFFECT

After giving the description of the ring phenomenon in the previous chapter we will now

attempt to present an explanation of this unusual effect. Several different explanations were

proposed to explain the ring. Among them are a simple optical effect where the ring is due

to photons propagating in the medium with reabsorption and secondary emission of photons.

Another explanation is a shock wave that piles up excitons at a certain distance from the

central spot. A third explanation is an actual superfluid state of excitons. We will consider

and discuss each one of these.

The first possible explanation that comes to mind is an optical effect of some sort.

While it is not clear how changing the applied voltage across the sample can affect photons

travelling through the sample (if indeed this is an optical effect), we performed an experiment

to rule this option out. We produced the “collision” of two rings created by two separate

laser beams. We used a 50/50 beamsplitter to split the input laser beam into two beams

with approximately equal intensities. The experimental setup is shown in Figure 5.1. The

distance between the two spots on the sample can be controlled by slightly offsetting one of

the mirrors M1 and M2. The beams are then focused on the sample by a single lens.

The results of this experiment are shown in Figure 5.2. When the spots from the two

beams are near each other, the rings don’t overlap or collide with a bright region between

them, but instead merge in a single ring. This argues against a simple optical effect where

the rings would be expected to pass through each other and overlap (very much like Olympic

circles).

This result also rules out a shock wave as an explanation of the ring. If shock waves were

travelling through the sample they would collide in the middle between the spots and form

a bright region instead of a dark one as observed. We can also exclude ballistically moving
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excitons, since they will either pass through each other leading to overlapping rings or, if

the interaction between them is strong enough, will collide as in the case of shock waves and

will form a bright middle region.

Looking at the behavior of the two rings one might speculate that the result looks very

much like two droplets of liquid merging into one.

An explanation given by Butov [39] involves excitons travelling the macroscopic distance

between the central spot and the ring. He suggested that at higher densities the long lifetime

of the indirect excitons permits them to travel large distances and move away from the

central spot. Only excitons with small wave vector k located in the so called radiative zone

determined by the intersection of the photon dispersion cone and the exciton dispersion curve

will be able to emit light, Figure 5.3. The gradient of the exciton density will produce drift

and diffusion of excitons away from the central spot. Also, due to their repulsive interaction,

the same gradient will result in a pressure pushing the excitons outward. Butov’s explanation

of the dark region between the central spot and the ring involves the inability of the excitons

to emit light while not in the radiative zone. Due to the density gradient the excitons will

move outward from the central spot down the potential energy hill and thus will have large

k. Far from the excitation spot the energy gradient disappears and the excitons relax to the

low energy states and enter the radiative zone.

However, as we have pointed out, the two beam experiment argues against ballistic

exciton propagation over macroscopic distances. Butov argued that there is a long-range

attraction, but this is unlikely over distances of 100 µm.

Our time-resolved measurements show that the effect is not due to reabsorption and

secondary emission of photons. If that were the case the ring luminescence would have been

present only during the laser pulse. The data, on the other hand, show that the ring and the

central spot luminescence have different time characteristics. The one from the center lasts

a very short time—a few nanoseconds, while the one from the ring persists for hundreds of

nanoseconds. This fact suggests that the ring luminescence and the central spot luminescence

originate from different species—the central spot from “normal” excitons and the ring from

some sort of quasi-stable state with very long lifetime.

One suggested explanation is superfluidity of excitons. One can imagine a superfluid that
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Figure 5.3: Energy diagram of the exciton and photon dispersion and momentum distribu-

tions of excitons without (red) and with (green) drift velocities. After Ref. [39].

prevents excitons from emitting light as it prevents phonon emission. The observation of

pattern formation and its macroscopic nature, as well as the appearance of bright spots along

the ring, prompted Butov to suggest that the ring could be a superfluid state of excitons,

drawing a parallel with the vortices of the atomic Bose condensates [39]. In the following we

examine arguments for and against the idea of superfluid.

As discussed earlier, in two dimensions Bose-Einstein condensation cannot occur, but a

transition to a superfluid state nevertheless can take place—a Kosterlitz-Thouless transition.

In the dilute Bose gas limit the critical density for the transition is given by [30]

kBTc ≈ 4π~2n

2m ln ln(1/γ)
(5.1)

where

γ = na2 (5.2)

where a is the range of the interaction, which can be approximated by the Bohr radius of the

excitons, m is the mass of the particle, and n is the 2D density of the particles. The factor

1/ ln ln(1/na2) varies between 0.34 and 0.65 for na2 in the range 10−8 < na2 < 10−2 so we
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can approximate n/ ln ln(1/na2) by n/2 and solve (5.1) for n. When the spin degeneracy is

taken into account we have:

nc =
0.32gmkBT

~2
(5.3)

The temperature dependence is the same as in the original Kosterlitz-Thouless prediction

(1.11). If we take into account the disorder in the system, the relation becomes much

more complex as shown by Berman [41], Equation (1.13). Figure 5.4 shows a plot of the

temperature of the Kosterlitz-Thouless transition as a function of the exciton density for

several different magnitudes of the disorder. From the figure for temperature of 2 K and

disorder Q of 0.4 meV, an estimate from the inhomogeneous broadening of our samples, we

find a critical density of ∼ 7×1010 cm−2 (see Eq. (1.13)). In comparison, the critical exciton

density deduced from Equation (5.3) for a temperature of 2 K is 7.2 × 1010 cm−2 using an

exciton mass of 0.25 m0 [62] and a spin degeneracy of 4.

In practice, however, it is usually much easier to control the exciton density than the

temperature. The density of the excitons can be changed by changing the excitation laser

power. Then according to the theory there should be a power at which a ring should not

appear. Indeed, we observed such behavior. Figure 5.5 shows the ring radius vs. power at

applied voltage of 1 V. It can be seen that at powers less than 0.05 mW there is no ring. With

a laser spot of approximately 70 µm in diameter and 76 MHz repetition rate of the pulsed

laser this corresponds to a power density of 1.7×10−8 W/cm2 per pulse, which for wavelength

of 612 nm—the excitation wavelength used—translates to 5.27×1010 photons/cm2 per pulse.

From the absorption of GaAs and the relative intensity of the luminescence from the quantum

wells and the bulk GaAs we estimate that approximately 30% of the input photons excite

excitons in the quantum well region. This gives an exciton density of 1.57 × 1010 cm−2,

which is in the range of the Kosterlitz-Thouless transition calculated both with and without

disorder.

This result seems to support the idea that the ring arises from a Kosterlitz-Thouless

superfluid transition. On the other hand, several other results are inconsistent with such an

explanation.

One basic test for superfluidity is the temperature dependence of the critical density.
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Figure 5.4: Dependence of the Kosterlitz-Thouless transition temperature on the 2D exciton

density for various degrees of disorder. After Ref. [41]

Figure 5.5: Ring radius vs. average excitation power. T = 2 K, modelocked laser, λ = 612

nm, rep. rate 76 MHz, spot size 70 µm.
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Figure 5.6: Critical density for appearance of the ring vs. temperature

The simple relations from Equation (1.11) and (5.3) show that we should expect a linear

dependence. We measured the minimum power needed to create a ring (i.e. ring with

radius almost 0) at various temperatures and from that we calculated the critical exciton

density. The result is shown in Figure 5.6. It displays a different temperature dependence

than Equation (1.11)—it is superlinear, close to quadratic, instead of linear. This seems to

suggest an argument against superfluidity. On the other hand, for a two-dimensional system

in a potential trap the critical density could depend on the square of the temperature [63].

Is it possible for the excitons to be trapped? Initially, Butov suggested that their observed

localized bright spots (Figure 4.3) are due to trapping of indirect excitons in potential traps

formed by in-plane potential fluctuations. One could also speculate that the superlinear

dependence is due to exciton ionization at higher temperatures, which will make their cre-

ation less efficient and hence the need for higher laser powers to achieve the required critical

density.

Another experiment, however, is even more inconsistent with the superfluid transition
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Figure 5.7: Average critical power needed to create the ring vs. applied voltage across the

sample for two different excitation regimes: black dots–pulsed laser with 13 ns period; red

circles–pulsed laser with 260 ns period.

idea. Figure 5.7 shows the average critical power vs. the applied voltage for two different

excitation regimes. One is with a pulsed laser with period between the laser pulses of 13 ns

and the other with period of 260 ns. The two sets of average powers have strikingly close

values. This means that the instantaneous power is not that important for the creation of

the ring but rather the average power is the one that matters—the instantaneous power (or

the energy per pulse) of the 13 ns period pulses is 20 times lower than the 260 ns period

pulses and yet the average critical power is the same. On the other hand the indirect exciton

lifetime is of the order of 5 ns, which is much shorter than the period between the laser

pulses. This means that the ring effect does not depend on the instantaneous population of

the indirect excitons but on the population of another state which has an intrinsically long

lifetime. A Kosterlitz-Thouless superfluid transition, on the other hand, would depend on

the exciton population in one laser pulse.

An important step in the understanding of this unusual ring effect was the dependence

of the critical density on the excitation wavelength. We used a dye laser which allowed us
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to tune the wavelength and changing the laser dye provided a broad range of wavelengths.

For each wavelength the minimum excitation power required to create a ring was measured.

The results are shown in Figure 5.8. The top axis shows the energy of the photons for the

corresponding wavelength. The lack of data points above 660 nm is not due to the lack of

data but due to the fact that the ring wasn’t observed for wavelengths above 660 nm. In

fact, the power was increased up to 1000 times the usual values—up to a few milliwatts—

without success in reproducing the ring. With increasing the photon energy from 1.9 eV (or

decreasing the photon wavelength from 660 nm) one observes a sudden jump of the critical

power at around 630 nm after which it stays almost constant to at least 532 nm, the shortest

measured wavelength. One could argue that the change of efficiency of the ring creation

is due to different absorption in the barriers at different wavelengths. But the difference

should not be so drastic. The total width of the quantum well region is 260 Å and the

Al0.3Ga0.7As barriers are 1300 Å thick or 5 times thicker. This would mean that a laser

with energy slightly higher than the barrier band gap will create excitons in the quantum

well region with density comparable to the density created by a laser with energy lower than

the barrier band gap but with five times lower power. We, however, used laser powers in a

range of three orders of magnitude with no success. The red and the green lines in Figure

5.8 correspond to the energies associated with the indirect and direct transitions shown on

the band diagram on the right. The 660 nm corresponds to indirect transition of 1.88 eV

between the valence band of GaAs and the Γ valley of Al0.3Ga0.7As, and 630 nm corresponds

to the direct transition of 1.98 eV in the Al0.3Ga0.7As barriers. This kind of relation suggests

strongly that the ring effect is related to hot carriers, created by high energy photons jumping

over the barriers.

To confirm that the barrier height was important, similar experiments were performed

with samples with slightly different structure. A sample with identical thicknesses of the

various layers (60-40-60 structure) but with 44% Al in the barrier alloy was grown and

studied as well as a sample identical to Butov’s [39] (i.e. 80-40-80 structure of GaAs wells

and Al0.33Ga0.67As barriers).

The results are shown in Figure 5.9. Indeed, we see a similar cutoff and jump of effi-

ciency at energies consistent with the indirect GaAs–Al0.33Ga0.67As and the direct within the
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Al0.33Ga0.67As transitions. The ring was not observed in the high barrier sample for wave-

lengths longer than 591 nm, which is equivalent to 2.1 eV photon energy which is consistant

with the Al0.44Ga0.56As band gap of 2.16 eV. This leads us to believe that the jumping of

carriers over the AlGaAs barriers plays an important role in the ring effect. The inability to

reproduce a ring in the undoped sample also suggests that the presence of free carriers in the

well region is crucial for the ring. Since the In0.1Ga0.9As has a conduction band lower than

the one of GaAs, the well region of the doped samples will be populated with electrons with

concentration of a few times 1010 cm−2 due to tunneling from the outer n-doped layers. The

observation of the ring in the single quantum well sample shows that the indirect exciton is

not a factor in the process since there are no indirect exciton species in a single quantum

well structure.

After examining all the evidence we proposed the following explanation [64]. Apparently

the ring effect is not entirely related to excitons. Due to modulation doping the quantum

well region will be populated with electrons. When hot carriers are created by above-the-gap

excitation, they will have several options under applied voltage. First, they can cool down

and fall into the well region and get trapped there. They can also drift to the contacts

under the applied voltage. The carriers in the wells can leak slowly through the barriers to

the contacts and contribute to the measured current. Of course, the carriers trapped in the

wells are free to diffuse within the plane of the quantum wells. A diagram of the processes

is shown in Figure 5.10.

Due to their higher mass and slower drift velocity the holes will get trapped in the well

region faster than the electrons. As a result there will be more cold holes than electrons near

the excitation spot. Holes will recombine with the cold electrons trapped in the QW region,

in such a way depleting it. Under the proper conditions with appropriate electron-hole

generation rate, the entire region around the laser spot will be devoid of electrons and filled

entirely with holes. This will result in a “puddle” of holes around the laser spot surrounded

by a “sea” of electrons. Due to diffusion the holes will want to move outward, away from

the excitation spot whereas the electrons will move inward, toward the excitation spot.

As a result, at the border of the hole puddle, electrons will recombine with the holes and

luminescence in the form of a sharp ring will be observed. Figure 5.11 shows schematically
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Figure 5.10: Proposed processes occurring in the coupled quantum wells sample upon light

excitation

the process in the plane of the quantum wells. The size of the ring will be determined by

the size of the hole puddle which is determined by the rate of hole generation and electron

depletion in the central region. This rate ultimately will depend on the excitation power.

The time-resolved measurement from Figure 4.8 shows the luminescence of the ring that

is 500 µm away from the central spot. We observe a dip just after the laser pulse and after

that the count rate recovers to its value at long times. This dip can be understood now

as a propagation of the laser disturbance through the hole puddle. From the distance, 500

µm, and the time it takes the ring to recover to its steady state we can calculate the speed,

with which the disturbance travels: ∼ 5× 106 cm/s. In contrast, the acoustic phonons have

speeds limited to 5× 105 cm/s.

The idea of a puddle of holes is supported also by the results from the two beam ex-

periment. The rings didn’t collide but merged in one without sharp boundary just as two

puddles of liquid.

We also performed several sets of measurements under different conditions. Some of

them can be explained by the proposed model.

The first one is the effect of a magnetic field on the ring properties. The results are shown

in Figure 5.12. It shows the dependence of the ring radius on the applied perpendicular
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Figure 5.11: The in-plane distribution of electrons (red circles) and holes (blue circles). The

laser excites the sample at the center (purple circle) and the ring is formed at the boundary

between the holes and the electrons.

magnetic field, using the setup described in Chapter 3, for two different voltage biases across

the sample. It is not immediately obvious how the magnetic field will influence the ring since

it doesn’t create indirect excitons or change the exciton density as the electric field does.

Nevertheless, the dependence is similar to the external electric field, namely the size of the

ring increases with increasing magnetic field. The interesting feature is the presence of a

plateau at around 0.3 T which wasn’t observed with electric field only.

This effect can be understood in the framework of the hole puddle model by assuming that

the magnetic field changes the electron and hole diffusion coefficients in different manners.

If the hole diffusion increases faster with magnetic field, the holes will travel farther and the

ring will increase its radius, exactly as it is observed in the experiment. Another possible

explanation is the magnetoresistance change as described in Chapter 3. With increase of the

magnetic field the magnetoresistance of the quantum wells will increase which will lead to

an increased voltage drop across the quantum wells and higher electric field. The ring radius

is proportional to the applied voltage and is expected to increase as indeed is observed.

Another set of experiments which is somewhat explainable, although not completely, by
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Figure 5.12: Radius of the ring vs. applied magnetic field for two voltage biases

the model is the influence of stress on the ring. The way the stress was applied is described

in Chapter 1. The best way to observe the effect of stress on the ring was to project the

luminescence on the CCD camera through a long pass filter and polarizer in order to reduce

the reflected laser light as much as possible. The image of the ring in the vicinity of maximum

stress is shown in Figure 5.13. The ring is attracted by the stress and at the point of contact

with the stressor pin where the stress is highest it exhibits very sharp curvature. When

the excitation spot was moved around the ring followed it but it was strongly attracted and

distorted by the high stress point. A sequence of images of the central spot moving through

the point of highest stress is shown in Figure 5.14. On these images the point of maximum

stress is manifested by the dark region with two bright fragments of the ring on its sides.

The sharp ring features in the stress results can be understood as sinkage of the electrons

and the holes toward the point of maximum stress and minimum energy. The dark region

which we sometimes observe at that point can be explained as filling of the available radiative

states.

79



Stress maximum

Figure 5.13: Image of the ring with applied stress to the sample.

Figure 5.14: Sequence of images of the laser spot passing through the point of highest stress.
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6.0 MODELLING OF THE RING

6.1 SIMPLE MODEL WITHOUT COULOMB INTERACTION

A theoretical model which describes the electron-hole dynamics was proposed by D. Snoke

and later refined in collaboration with S. Simon at Bell Labs [65]. A similar model was

simultaneously proposed by Butov et al. [40, 66]. It models the processes taking place in the

quantum well structure upon excitation depicted in Figure 5.10. It does not, however, take

into account the Coulomb interaction between the charged particles. A model including such

an interaction will be discussed in the next section. In this simple model the laser creates hot

electrons and holes that can either drift over the barriers to the contacts or cool down and get

trapped in the wells. Cold carriers also can tunnel through the barriers to the contacts. We

also allow for diffusion in the plane of the quantum wells. These processes can be described

by the following diffusion equations introducing the electron-hole recombination as nonlinear

terms:

∂nhot(r)

∂t
= De

hot∇2nhot(r)− nhot(r)

τ e
cool

− nhot(r)

τ e
drift

+ G(r) (6.1)

∂phot(r)

∂t
= Dh

hot∇2phot(r)− phot(r)

τh
cool

− phot(r)

τh
drift

+ G(r) (6.2)

∂ncold(r)

∂t
= De

cold∇2ncold(r) +
nhot(r)

τ e
cool

− ncold(r)− neq

τ e
leak

− ξncold(r)pcold(r) (6.3)

∂pcold(r)

∂t
= Dh

cold∇2pcold(r) +
phot(r)

τh
cool

− pcold(r)

τh
leak

− ξncold(r)pcold(r) (6.4)

The problem is two dimensional and r represents the in-plane coordinate. Equations

(6.1) and (6.2) describe the dynamics of the hot carriers created by the non-resonant laser.
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nhot(r) and phot(r) are the density distributions of the hot electrons and holes in the plane

of the quantum wells. The first term on the right hand side describes the diffusion of hot

carriers in the plane of the well, the second term describes the cooling of the particles with

characteristic cooling times τ e
cool and τh

cool. The third term is the drift of the particles over

the quantum well barriers toward the contacts. This process is described by the drift times

τ e
drift and τh

drift. The last term is the carrier generation rate, G(r) = Af(r), where f(r) is

the normalized laser beam profile and A is the total flux of absorbed photons.

Equations (6.3) and (6.4) describe the dynamics of the cold particles with diffusion

coefficients De
cold and Dh

cold. The second term on the right hand side describes the generation

of cold carriers by cooling. The third term is the tunnelling through the barriers toward

and from the contacts that tries to bring the electron-hole population to equilibrium with

characteristic times τ e
leak and τh

leak. The equilibrium electron distribution, neq, is determined

by the modulation doping and is assumed to be constant; the equilibrium distribution for

holes is assumed 0. The last term represents the recombination of cold electrons and holes

and is the nonlinear term in the equations. ξ is the electron-hole capture coefficient. We

also make the assumption that the electron and the hole form an exciton after they meet,

since the luminescence from the ring appears to be excitonic. The recombination term is

written as proportional to ncoldpcold which assumes that the electron and the hole recombine

immediately after they find each other. The actual luminescence is also assumed to be

proportional to ncoldpcold.

Some simplifications to these equations can be made. First, the in-plane diffusion of

hot carriers can be neglected compared to the drift and cooling rates—usually the carriers

diffuse much slower than the cooling (scattering off phonons and other carriers) or the drifting

(jumping over the barriers). In these circumstances the first two equations can be solved

exactly for the steady state where ∂nhot/∂t = 0 and ∂phot/∂t = 0:

nhot

τ e
cool

= CeG(r) (6.5)

phot

τh
cool

= ChG(r) (6.6)

where Ce(h) = 1/(1 + τ
e(h)
cool /τ

e(h)
drift) and basically represents the ratio of the carriers cooling

into the wells to the carriers drifting over the barriers.
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Then equations (6.3) and (6.4) become:

∂ncold(r)

∂t
= De

cold∇2ncold(r) + CeG(r)− ncold(r)− neq

τ e
leak

− ξncold(r)pcold(r) (6.7)

∂pcold(r)

∂t
= Dh

cold∇2pcold(r) + ChG(r)− pcold(r)

τh
leak

− ξncold(r)pcold(r) (6.8)

Since the system has azimuthal cylindrical symmetry, the problem can be reduced to

one dimension and ∇2 replaced by the radial second derivative in cylindrical coordinates,
1

r

d

dr

(
r

d

dr

)
. These equations can be solved numerically by discretely propagating the time

with a step ∆t and at each time step calculating the changes ∆n and ∆p by evaluating the

right hand side:

∆n = ∆t

(
De(n

′/r + n′′) + CeG(r)− n− neq

τ e
leak

− ξ n p

)
(6.9)

∆p = ∆t

(
Dh(p

′/r + p′′) + ChG(r)− p

τh
leak

− ξ n p

)
(6.10)

where n′ and p′ are the numerical derivatives with respect to r. For the parameters we can

either use standard values or estimate them from the experimental conditions. The initial

conditions for the electron and the hole distributions are n0(r) = neq and p0(r) = 0. The

intensity of the laser is determined by the value of the total flux A (i.e. the total number

of photons per unit time absorbed over the entire area of the laser spot), while the profile

of the beam, f(r), is usually assumed to be a Gaussian. We are interested in steady state

solutions and the way to find them is to propagate Equations (6.9) and (6.10) until ∆n and

∆p are essentially zero.

A solution of the model for laser power of 94.2 µW at 632.8 nm, which corresponds

to absorbed photon flux of 3 × 105 ns−1 over the entire laser spot, is shown in Figure 6.1.

The laser is modelled as continuous wave, providing constant generation rate, with Gaussian

profile with FWHM of 60 µm. The electron and hole distributions are shown in red and blue,

respectively. Indeed, depletion of electrons is observed for distances less than 350 µm and

after that the density steadily rises to its equilibrium value, neq, shown by a dashed line in the

figure. The hole distribution extends farther than the laser spot (purple dots in Figure 6.1)

due to diffusion. The product of both distributions, np, is proportional to the luminescence

intensity and it is shown in green. A peak in the intensity appears at a distance 357 µm
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Figure 6.1: Solution of the model for CW excitation. Red–electron density profile; blue–

hole density profile; green–their product; purple dots–the excitation profile (×1000); dashed

line–the equilibrium electron density.
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where nonzero values of the electron and hole distributions overlap. Since this is actually

a one-dimensional radial picture, this peak corresponds to a ring as observed in the 2D

luminescence. The calculation is performed with the following parameters: Ce = 0.2; Ch =

1; 1/ξ = 300 ns µm−2; τh
leak = τ e

leak = 20 µs; De = 20 µm2/ns; Dh = Deme/mh = 5 µm2/ns;

and neq = 1011cm−2 = 103µm−2.

For carrier density of 1010 cm−2 = 100µm−2 the value of ξ implies recombination lifetime

τrec = 1/ξn of 3 ns which is close to the one observed in the experiment. Ce = 0.2 and Ch = 1

imply the ratios τ e
cool/τ

e
drift = 4 and τh

cool/τ
h
drift = 0, i.e., the electrons drift over the barriers

four times faster than they cool into the wells and the holes practically don’t drift over the

barriers at all.

The diffusion coefficient can be calculated from the Einstein relation:

µkBT = eD, (6.11)

which for hole mobility µ = 3× 105cm2/V · s gives D ≈ 5 µm2/ns.

We can also calculate the decay of the luminescence when the laser is turned off, simulat-

ing a pseudo-pulsed laser source. The results from such calculation are shown in Figure 6.2.

The laser is turned off at time 0 after we have reached a steady state solution (in practice we

solve Eqns. (6.9) and (6.10) with a steady state solution as an initial condition and without

a generation term). The central spot decays within 40 ps while the ring persists for some

300 ns. Certainly, the model cannot predict the right time behavior with the proper lifetime

but the important feature here is the fact that we indeed see a long lasting ring and quickly

dying central spot, similar to the experimental observations from Figure 4.7.

As a more realistic approach to the temporal behavior of the ring we can attempt to model

a laser source consisting of real pulses and look at the ring after very long time when it has

reached some steady state, if any. In this case, however, since we create hot carriers only

during the short laser pulses, we cannot assume steady state conditions when simplifying

Equations (6.1) and (6.2) and therefore the full set of four equations (6.1)-(6.4) must be

considered. The diffusion of hot carriers can still be neglected since the time scales for carrier

thermalization are on the order of 10 ps. The source used in the calculation has 50 ps pulses

with 10 MHz repetition rate and average photon flux A = 3 × 106 ns−1, which corresponds

85



0 0.02 0.04 0.06 0.08 0.1
Time HnsL0

50

100

150

200

250

300

350

400
D

is
ta

nc
e

HΜmL

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Time HΜsL0

50

100

150

200

250

300

350

400

D
is

ta
nc

e
HΜmL

Figure 6.2: Evolution of the ring when the laser is turned off

to 0.9 mW excitation at 632.8 nm. The spatial profile of the source is a Gaussian with

FWHM of 60 µm. The other model parameters are Ce = 0.2, Ch = 1, b = 100nsµm−2, neq =

1011cm−2, τh
leak = τ e

leak = 2 µs,De = 20 µm2/ns,Dh = 5 µm2/ns, τ e
cool = 10 ps, τh

cool = 5 ps.

Figure 6.3 shows the result of the calculation. It is a steady state with constant ring radius

of 340 µm. A comparison with the experimental data for the temporal behavior of the ring

(Figures 4.7 and 4.8) shows that the model cannot describe exactly the measured results.

It produces the long-time features of the ring but it cannot account for the dip in the time

trace observed in Figure 4.8. The numerical simulation also shows a central spot with a very

short lifetime, which in this particular case is due mainly to the very short cooling times.

Changing the value of ξ while keeping the other parameters constant doesn’t change the

size of the ring but only its width. A log-log plot of the FWHM of the ring vs. 1/ξ is

shown in Figure 6.4. It exhibits a power law dependence. The following parameters were

used for the calculation: A = 3 × 105ns−1, Ce = 0.2, Ch = 1, neq = 103µm−2, τ e
leak = 6 µs,

τh
leak = 200µs, De = 20µm2/ns, Dh = 5µm2/ns, FWHM of the laser spot 60 µm. Since the

radius of the ring doesn’t change with ξ, the ring will have the same long-time behavior as

in Figure 6.2 independent of the value of ξ.
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Figure 6.5: (a) Calculation of the dependence of the ring radius on the laser power for two

different values of the leak time. (b) Logarithmic fit to the numerical data.

The model, Eqns. (6.7) and (6.8), also predicts correctly the increase of the ring radius

with laser power. The results from such calculation for two different leak times, 2 µs and 20

µs, are shown in Figure 6.5. The power is calculated assuming a laser with wavelength 632.8

nm. The figure shows similar increase of the radius with increasing of the power (or the

total photon flux A) as in Figure 4.6 but instead of the pronounced linear dependence of the

experimental data it exhibits more logarithmic growth. Figure 6.5(b) shows a logarithmic

fit to the numerical data. The parameters used in the calculation are the same as the ones

used in Figure 6.1.

One feature we haven’t modelled is the dependence on the applied voltage across the

quantum well structure. Such dependence ultimately will manifest itself in the change of

the equilibrium density of the electrons, since the exciton lifetime depends on the voltage,

as well as in the change of the tunneling times.

There are some features of the ring that the model cannot predict correctly. The most

prominent one is the failure to describe the proper dependence of the radius on the laser spot
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size. The experimental results are shown in Figure 6.6. During the measurement the power

of the laser was kept constant and the size of the excitation spot was changed by means of

a focusing lens. The measurement was repeated at two different temperatures—2 K and 15

K. In both cases a 4 mW HeNe laser at 632.8 nm was used for excitation. The sample was

biased with 0.857 V at 2 K and 0.842 V at 15 K. Both data sets show a monotonic decrease

of the ring radius as the laser spot size is increased. The dashed curve in Figure 6.6 is a fit of

x−2 to the 2 K data. It suggests that the ring radius is proportional to the photon density.

The model prediction, however, differs dramatically from the experimental data. Cal-

culations for two different leak times are shown in Figure 6.7. It is in sharp contrast with

the experimental result from Figure 6.6—the model predicts widening of the ring, while the

experimental data shows narrowing. The calculation was performed using the parameters

from Figure 6.1 and photon flux of 3 × 105 ns−1. A wide range of different parameters was

also used in an attempt to get the correct behavior but without success.

Although we have a pretty good understanding of the ring effect, there are still some

experimental results that cannot fit into the model. First, sometimes we see non-monotonic

dependence of the ring size on the applied voltage and the laser power. Figure 4.5 shows such

behavior—increasing the voltage doesn’t produce an infinitely large ring. After some point

it shrinks back to the central spot. A similar effect at specific conditions was also observed

with the power dependence shown in Figure 6.8. At very low excitation power, but above

the critical threshold, applying voltage creates a ring which then shrinks when the power is

increased while the voltage is kept constant. After reaching a minimum it starts expanding

again.

Another effect that is not well understood is the opposite dependence of the ring radius

on the excitation spot for the single quantum well sample. Figure 6.9 shows a comparison

between the single and double quantum well samples under the same excitation conditions—

using a 4 mW 632.8 nm laser. Although the single quantum well data has dependence similar

to the numerical model, it is not clear why the behavior of the ring in this structure should

differ from the double quantum well sample.

Figures 6.5 and 6.7 also show the increase of the ring when the leak time is increased.

It can be explained by the increased number of carriers in the central region which leads to
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Figure 6.6: Radius of the ring vs. the size of the excitation spot for two different tempera-

tures.
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larger depletion of electrons and thus to larger ring.

Since we assume azimuthal symmetry and solve Eqns. (6.7) and (6.8) in one dimension,

we cannot simulate any features that occur along the ring (in φ direction). Butov et al.

[39, 66, 40] have repeatedly reported the fragmentation of the ring into bright spots. As

discussed, we haven’t succeeded to observe such a phenomenon. In any case, the appearance

of such a pattern along the ring may be due to Coulomb interaction between the electron

and hole gasses. The model described above doesn’t include such interaction but it will

certainly play an important role in the ring dynamics. The competition between attractive

and repulsive forces at the boundary where the hole puddle meets the electron sea, which

marks the location of the ring, may lead to spontaneous breakdown of that smooth boundary

and the formation of electron or hole droplets.

In a very recent paper L. Levitov [67] proposed a mechanism of the ring breakdown and

pattern formation based on stability analysis of the differential equations describing the ring

dynamics. He suggests that local fluctuations in the exciton density can lead to an increase

of the electron-hole binding rate and thus deplete locally the carriers which will cause the

neighboring carriers to stream toward the fluctuation thus providing positive feedback.

6.2 INCLUSION OF A COULOMB INTERACTION TERM

Recently, we proposed an improved model in which the Coulomb forces between the carriers

and their image charge are taken into account [68]. If we consider electrons in the presence

of electric field the diffusion equation will have an additional drift term:

∂n

∂t
= D∇2n + µe∇ · (En) (6.12)

To calculate the electric field in the plane of the wells we consider the effect of the heavily

doped substrate, which in this case will behave almost like a metal and will produce an image

charge which will effectively screen the field. We will consider the metallic surface to be at

a distance d from the charge density in the wells, Figure 6.10. We will also assume slowly

varying charge density over a region of size d. In our case this assumption is reasonable since
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Figure 6.10: The charge density in the quantum well region and its image charge created by

the heavily doped substrate.

d ∼ 1000 Å while the electron and the hole densities change on a scale of microns. Then on

the length scale of d we can assume that the gradient of the charge density is constant:

ρ(r) = ρ0 + r ·G, G = ∇ρ(r) (6.13)

where r is the coordinate in the x-y plane. The in-plane electric field can be written as

E(r) =
1

4πε0ε

∫
ρ(r′)

r− r′

|r− r′|3d2r′ (6.14)

To simplify the calculation we will consider only the x-component of the field and will assume

that the gradient of ρ is in the x direction:

ρx = ρ0 + xGx (6.15)

Then the x-component of electric field from the in-plane charge density and the image charge

at a distance 2d is

Ex =
1

4πε0ε

∫
ρx

[
x

(x2 + y2)3/2
− x

(x2 + y2 + 4d2)3/2

]
dxdy. (6.16)
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The integral over ρ0 will vanish since the integrand will be an odd function of x. Thus the

expression for the field becomes

Ex =
Gx

4πε0ε

∫
x2

[
1

(x2 + y2)3/2
− 1

(x2 + y2 + 4d2)3/2

]
dxdy. (6.17)

The integration over y will produce the integral

∫ ∞

−∞

dy

(x2 + y2)3/2
. (6.18)

Making the substitution y = x tan θ with dy =
xdθ

cos2 θ
we get

1

x2

∫ π/2

−π/2

dθ

cos2 θ(1 + tan2 θ)3/2
=

1

x2

∫ π/2

−π/2

cos θdθ =
2

x2
(6.19)

This gives for the field

Ex =
Gx

4 π ε0ε

∫
2x2

[
1

x2
− 1

x2 + 4d2

]
dx

=
2 Gx

4 π ε0ε

∫
4d2

x2 + 4d2
dx

=
2 Gx d2

π ε0ε

1

2d
arctan

( x

2d

) ∣∣∣
+∞

−∞

=
Gx d

ε0ε
(6.20)

The calculation in the y direction can be performed in a similar fashion. We can now write

the general expression for the field:

E =
d

ε0ε
∇ρ, (6.21)

or expressed in electron and hole population densities

E =
e d

ε0ε
∇(p− n). (6.22)

Then the diffusion equations (6.7) and (6.8) will become

∂n

∂t
= De∇2n + CeG(r)− n− neq

τ e
leak

− ξ n p− eµed

ε0 ε
∇ · n∇ (p− n) (6.23)

∂p

∂t
= Dh∇2p + ChG(r)− p

τh
leak

− ξ n p +
eµhd

ε0 ε
∇ · p∇(p− n) (6.24)
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These two equations when solved in two dimensions may produce an instability that can

result in breaking of the ring into localized spots of bright luminescence. The first step,

however, is to establish if this model can reproduce the ring effect at all.

An estimate for the value of the coefficient of the Coulomb term Me(h) =
eµe(h)d

ε0 ε
gives

8.3 µm4/ns (for µ = 3 × 105cm2/V · s; d = 2000 Å; ε = 13). If we consider a degenerate

Fermi gas in 2D the diffusion coefficient will be D = v2
F τ , where τ is the scattering time. In

2D, however, v2
F is proportional to the density, since the Fermi energy is

EF =
π~2n

m
=

mv2
F

2
. (6.25)

Then D =
2π~2n τ

m2
will depend on the density and the diffusion term D∇2n has to be

changed to ∇ · D∇n = C∇ · n∇n, where C =
2π~2τ

m2
, in which case it will have the same

form as the Coulomb term. An estimate of the constant C gives us C = (8.42τ)µm4/ns2. For

typical values of τ on the order of 10 ps, C ∼ 0.08 µm4/ns which means that the Coulomb

pressure term is the dominating one in (6.23) and (6.24).

Numerical calculations show that indeed the Coulomb pressure term can generate a ring

in a way similar to the simple diffusion case. Some results are shown in Figures 6.11 and

6.12. Figure 6.11 shows the electron and hole distributions (red and blue, respectively),

their product which is proportional to the luminescence intensity, and the profile of the

excitation. The parameters used are as follows: Ce = 0.2; Ch = 1; 1/ξ = 300 ns/µm2;

τ e
leak = τh

leak = 2 µs, De = Dh = 0; Me = 1.5 µm4/ns; Mh = 0.3 µm4/ns, where Me and Mh

are the two Coulomb terms and we have accounted for the reduced mobility of the carriers in

the wells [51]. Figure 6.12 shows a comparison between two excitations with two different

excitation powers and two different excitation spot sizes. The values of the parameters are

the same as in the previous figure. This calculation shows an excitation power dependence in

the right direction—the ring increases with increasing power—but on the other hand doesn’t

produce any dependence on the laser spot size.

Apparently this model is successful in reproducing the ring effect but more detailed study

is required in order to balance all parameters and describe the experimental data.
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Figure 6.11: Solution of (6.23) and (6.24): (a) The electron and hole densities. (b) Blowup of

(a) showing the luminescence intensity. The dotted line in (b) is the profile of the excitation
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Figure 6.12: Solutions of (6.23) and (6.24) for two different excitation powers, (a), and two
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7.0 CONCLUSIONS AND FUTURE DIRECTIONS

The main motivation for the experiments was to study exciton dynamics in coupled quantum

well structures as possible systems for BEC. The advantages of such systems were discussed

earlier. We certainly have not achieved BEC but the work provided us with some very inter-

esting and unique effects. The ring effect was an unexpected surprise and although it may

have little to do with superfluidity of excitons, nevertheless it is an intriguing phenomenon in

a two-dimensional electron system. This shows that the quantum wells indeed have potential

in studies of dynamics of 2D electron gases.

Our sample, In0.1Ga0.9As quantum wells with GaAs barriers, is not perfect for studying

dynamics of excitons. Although it was initially designed so that the band gap of In0.1Ga0.9As

would be below the band gap of GaAs which allowed for resonant excitation without creating

carriers in the sample substrate, still the current through the sample when voltage was

applied was quite high. This ultimately reduces the mobility of the excitons. Another big

factor for the low mobility is the presence of alloy disorder in the quantum well region.

Indium provides the necessary lower band gap, but it is of very low concentration and in

fact can be considered as an impurity. In the pursuit of low current the thick Al0.32Ga0.68As

barriers outside the quantum well region were grown. They, however, turned out to be not

that effective in blocking the current as originally thought. Figure 7.1(a) shows one of the

problems. Because of the tilt of the bands due to the applied voltage the thick Al0.32Ga0.68As

barrier now presents only a portion of its thickness to the electrons which makes it easier

for them to tunnel. A solution to this problem would be instead of one very thick barrier

to build a superlattice of Al0.32Ga0.68As and GaAs as shown in Figure 7.1(b). In such a

way the GaAs wells will be natural traps for the tunneling electrons and the current will

be quenched effectively. Another problem we have encountered was the short lifetime and
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Figure 7.1: (a) Tunneling through the Al0.32Ga0.68As barrier when voltage is applied. (b)

Superlattices in the barriers provide effective traps for the hot carriers.

very low mobility of the excitons. The reason for this could be two fold. On one hand

increasing the quantum well width increases the lifetime and the mobility, but on the other

hand this will reduce the confinement energy and will bring the exciton luminescence from

the quantum well closer to the substrate luminescence.

So there seems to be several things that can be done to improve the performance of

the samples. First, use pure GaAs instead of the In0.1Ga0.9As alloy. This will reduce the

impurities in the quantum wells and arguably will increase the mobility of the excitons.

The problem with this approach is that, since the whole structure is grown on a GaAs

substrate, the exciton luminescence from will be very close to the substrate luminescence

which will make them hard to separate. The increased background from the substrate will

make threshold measurements, like those we performed with the ring, virtually impossible.

Second, make the wells wider. This will increase the exciton mobility [51]. Third, instead

of having one thick Al0.32Ga0.68As barrier build a superlattice of GaAs/Al0.32Ga0.68As which

will act as series of traps for the hot carriers. The current can be reduced further if the

doping is p-i-n instead of n-i-n and apply reverse bias. The n-i-n doping of the In0.1Ga0.9As

sample provided the required high electric field to create indirect excitons. The problem

with it is that the hot carriers are free to flow in both directions through the quantum well

region. A reversely biased p-i-n structure has the benefit of the high electric field across the

quantum wells and at the same time separates the charges so that the current through the
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Figure 7.2: In reversely biased p-i-n structure the electrons and the holes move in opposite

directions, thus reducing the current through the sample.

sample is minimal. Figure 7.2 shows a diagram of such structure. Photogenerated electrons

and holes from the donor and acceptor levels in the doped regions will tend to move in

opposite directions thus reducing the current through the sample.

Taking all these considerations into account, new samples were designed and grown by the

same team at Bell Labs. They consist of two 100 Å GaAs quantum wells separated by a 40

Å Al0.32Ga0.68As barrier. On each side of the QW region there are 300 Å thick Al0.32Ga0.68As

barriers and series of 10 periods of GaAs/Al0.32Ga0.68As with 40-60 Å thickness. The results

from this sample are indeed very encouraging. An image of the indirect luminescence is shown

in Figure 7.3. The sample is excited by an almost resonant laser with 60 µm spot size. The

image is in focus—this is the actual size of the exciton cloud diffusing in the plane of the

quantum wells reaching distances 200 µm away from the excitation spot. The blue shift of

the center is due to band renormalization at high exciton density.

Time traces at various distances away from the central spot are shown in Figure 7.4. In

order to travel such long distances the indirect excitons must have very long life time. It is

indeed on the order of 2 µs. The time traces are consistent with diffusion.

These preliminary results show the huge promise this type of samples has. The next step

is to trap the excitons in a potential trap and manipulate the density in order to investigate

the possibility for superfluidity.
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Figure 7.3: CCD image of the indirect exciton luminescence in the 100-40-100 GaAs QW

sample. Modelocked laser with λ=797 nm and P=1.3 mW was used to excite the sample.
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