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Fossil fuel combustion from point and mobile sources is a key contributor to atmospheric CO2, a 

major greenhouse gas, and NOx, a precursor to acid rain and smog.  Increased concentrations of 

these pollutants are found near the sources, i.e., in urban areas and close to roadways.  

Vegetation in urban and near-road environments represents an important sink for anthropogenic 

inputs of NOx and CO2, and understanding the nutrient dynamics of vegetation in urban and 

near-road ecosystems is critical to understanding budgets of NOx and CO2.  However, little is 

known about how these ecosystems compensate for higher local atmospheric CO2 and NOx 

concentrations.  This study uses stable isotope geochemistry to trace atmospheric nutrients to 

urban and roadway vegetation.   

Chapter 1 presents an introduction to the environmental problems associated with 

atmospheric reactive nitrogen and CO2, the use of stable isotopes to determine the sources of 

these pollutants, and a review of recent studies which use stable isotopes to determine the 

sources of plant nutrient uptake.   

The study described in Chapter 2 examines the fate and transport of gaseous reactive 

nitrogen from mobile sources along a highway road gradient. This study uses stable isotopes of 

nitrogen in dry nitrogen deposition to examine the extent of nitrogen loading along a gradient 

perpendicular to a major highway.  In addition, this study examines the effects of increased 
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 v 

roadway N deposition on local vegetation by using the isotopic composition of plant tissue as a 

biomonitor of atmospheric N exposure.   

Chapter 3 details a similar study; however it is scaled up to an urban to rural gradient.  

This study used similar methods to the road gradient research, but examines N deposition at 

urban, suburban and rural sites in two metropolitan areas.   
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1.0  A REVIEW OF NITROGEN AND CARBON ISOTOPIC TOOLS FOR 

POLLUTION GRADIENT STUDIES 

1.1 NITROGEN 

While reactive nitrogen is an important plant nutrient, in surplus it can have widespread 

detrimental environmental and human health effects.  Reactive nitrogen includes species of 

nitrogen that are “biologically, photochemically and radiatively active” [Galloway et al., 2003] 

and can be rapidly interchanged, including nitrate (NO3-), nitrite (NO2-), ammonia (NH3+), nitric 

acid (HNO3) and nitrous oxide (N2O) [Galloway et al., 2003; Socolow, 1999].  Natural sources 

of reactive nitrogen include lightning and biological fixation.  In dynamic equilibrium, inputs of 

reactive N are roughly equal to outputs of N2 from denitrification, which balances nitrogen 

cycling.  However, human activities have altered the global nitrogen cycle through the 

introduction of additional sources of reactive N, including fossil fuel combustion and fertilizer 

application [Galloway et al., 1995].  Currently, the addition of anthropogenic reactive nitrogen to 

ecosystems exceeds that from natural sources [Galloway et al., 2004].  Moreover, the rate of N 

input to terrestrial ecosystems has more than doubled since the industrial revolution, and N input 

now exceeds the amount of N export from denitrification [Vitousek et al., 1997].   
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A major source of atmospheric anthropogenic reactive nitrogen is combustion of fossil 

fuels for energy production1.  The main product of these reactions is NO, which is produced via 

two pathways [Moomaw, 2002].  The first is through thermal production, in which atmospheric 

nitrogen (N2) and oxygen react at high temperatures to produce NO.  The amount of NO 

produced through this pathway is dependent on flame temperature, gas pressure and time of 

contact between the fuel and the flame [Turns, 1996].  The second pathway to produce NO from 

fossil fuels is through the pyrolysis of organically bound nitrogen (such as amines or volatile 

ammonia) in the fuel.  Once NO is released into the atmosphere it is oxidized to NO2 within 

minutes.  NO2 generally persists between 1 and 5 days in the troposphere, and most NO2 deposits 

on surfaces within hours to days [Galloway et al., 2003].  This leads to a heterogeneous 

distribution throughout the landscape.  Accordingly, anthropogenic reactive nitrogen 

concentrations are usually much higher in polluted urban environments.   

Once generated in the atmosphere, NO2 is quickly transferred to other nitrogen pools.  

For example, in the atmosphere it is further oxidized into other species, including N2O5 and 

HNO3.  This oxidation is the main mechanism removing reactive N from the atmosphere, as it 

combines with water to form acidic precipitation [Moomaw, 2002].  When combined with water, 

oxidized N compounds (like HNO3) dissociate into NO3- and NO2-, and become incorporated 

into soil, surface and ground water supplies.  In addition, biota plays a role in N cycling; 

denitrifying bacteria reduce reactive N back to gaseous N2O and N2, and microbes convert 

organic N compounds to ammonia and nitrate (See Figure 1.1).  Because reactive N affects 

atmospheric, terrestrial and aquatic systems and is rapidly cycled between forms, a single 

                                                 

1 Another major source of reactive N is inorganic fertilizer application, most notably ammonium nitrate.  However, 
full discussion of this source is beyond the scope of this chapter, which focuses on atmospheric fossil fuel 
emissions. 
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molecule can have widespread negative ecological effects in a short time period [Galloway et al., 

2003]. 

 

Figure 1.1:  The Nitrogen Cycle.  From Nadelhoffer and Fry (1994).  Various N pools within a 
forest ecosystem and the associated processes transforming N between pools. 

1.1.1 Reactive nitrogen and human health 

High concentrations of ambient atmospheric NO2 can directly harm humans, causing respiratory 

illness, asthma and increased susceptibility to infection [Wolfe and Patz, 2002].  NO2 in the body 

acts as a strong oxidant; it can lead to toxicity in lung cells through peroxidation of cell 

membrane lipids and proteins.  This increases cell permeability, leading to injury and cell death 

[Wolfe and Patz, 2002].  NO2 can also reduce the effectiveness of alveolar macrophages, which 

increases susceptibility to bacterial and viral infections through a lowered immune response 

[Wolfe and Patz, 2002].  Asthma and other pre-existing respiratory conditions are also 

aggravated by high levels of NO2 [Smith et al., 2000].  Moreover, photochemical reactions 

between NO or NO2 (collectively NOx) and natural or man-made volatile organic compounds 



 4 

leads to the formation of ground level ozone, which can cause inflammation of respiratory 

passages and decrease lung capacity [Koren and Utell, 1997].  This is especially dangerous to 

people with lung disease and the elderly.  In addition to human health effects, ozone can reduce 

visibility and damage plant tissue. 

High NO3- and NO2- concentrations in drinking water can also have detrimental impacts 

to human health.  Excess nitrate and nitrite in the body can cause methoglobinemia (blue baby 

syndrome), wherein nitrate and nitrite ions inactivate hemoglobin in the blood by oxidizing the 

iron in hemoglobin from Fe2+ to Fe3+ [Knobeloch et al., 2000].  This bond between nitrite/nitrate 

and hemoglobin is strong enough that O2 and CO2 cannot break it.  This lowers the oxygen 

carrying capacity of the blood, resulting in tissue hypoxia and can lead to coma and/or death.  

Infants are particularly vulnerable to this condition.  Elevated nitrate concentrations have also 

been linked to stomach, bladder, ovarian and liver cancers because of the formation of N-nitroso 

carcinogens in the body after exposure to high levels of nitrate [Weyer et al., 2001]. 

1.1.2 Reactive nitrogen and environmental health  

N2O is produced by partial denitrification of NO3- by bacteria.  It is a naturally formed, stable 

gas and is well-distributed throughout the troposphere and into the stratosphere.  Excess N2O is 

often formed when denitrification rates increase with human additions of NO3- and NO2- to 

terrestrial and aquatic systems.  When N2O enters the stratosphere, it acts as a powerful 

greenhouse gas.  It has a global warming potential ~200 times that of CO2 [Wolfe and Patz, 

2002] and can thus contribute significantly to global climate change. In addition, N2O is a 

catalyst in the chlorine and bromine reactions that destroy stratospheric ozone [Wolfe and Patz, 

2002], increasing UV radiation reaching the Earth’s surface. 
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The addition of reactive N into terrestrial ecosystems through dry or wet deposition can 

alter ecosystem structure and function.  Most terrestrial ecosystems are naturally N-limited, so 

when excess reactive N is added to a system, it is initially taken up by biota.  This tends to 

increase net primary productivity, especially in forests.  However, with continued inputs of 

reactive N, many systems eventually become “N saturated” [Aber et al., 1998].  At this point, N 

inputs to the forest exceed that which biota can use, and it is exported as both solute and gas 

fluxes.  With additional inputs, forest health can decline and dissolved inorganic nitrogen export 

increases.  Symptoms of an N-saturated ecosystem include decreased tree growth and increased 

tree mortality, decreased net primary productivity and increased nitrification and leaching losses 

[Aber et al., 1998].  In addition, nitrogen to carbon ratios within plant tissue can be altered, 

leading to nutrient imbalances.  This can cause increased plant susceptibility to other stresses, 

such as frost, insects and ozone damage [Matson et al., 2002].  In addition, N-tolerant plants can 

become dominant in N-saturated forests, which can lead to decreased biodiversity [Vitousek et 

al., 1997] and promote the growth of invasive species [Townsend et al., 2003].   

Acidification of terrestrial and aquatic ecosystems can also disrupt ecosystem function.  

Acid precipitation, caused by the dissolution of HNO3 and NOx into rainwater, can decrease the 

pH of surface waters, destroying habitat and causing population decline of sensitive species.  It 

can also leach base cations and metals from sediments and soils into water, which removes 

important plant nutrients from the soil and enhances toxic metal availability [Rabalais, 2002].  

Reactive N also affects surface waters through eutrophication.  Excess reactive N acts as 

a fertilizer for phytoplankton.  Algal blooms, including noxious and toxic algal blooms that 

present a human health risk [Rabalais, 2002], are common in waters characterized by excess N 

loading.  Increased water column turbidity from algal shading consequently alters habitat 
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structure and damages populations of sensitive species.  Decomposing algae can also cause 

hypoxia and anoxia to develop in bottom waters, which can degrade benthic populations, shift 

food webs and cause a loss of aquatic biodiversity [Howarth et al., 1996]. Continued inputs of N 

further degrade the aquatic system, leading to widespread permanent or seasonal hypoxia in large 

water bodies.  For example, both the Gulf of Mexico and the Chesapeake Bay experience “dead 

zones” every summer, when widespread hypoxia develops, prohibiting aquatic organisms from 

inhabiting these zones. 

 

1.1.3  Determining sources of nitrogen pollution 

 

While the consequences of excess N pollution are well characterized, the mechanisms for N 

dispersal through the environment are poorly understood.  For example, it is difficult to 

distinguish between the sources of reactive N in any given location, which is necessary for 

developing regulation strategies for these pollutants.  For example, point and non-point sources 

of air pollution are regulated differently under the Clean Air Act.  About 2/3 of anthropogenic 

atmospheric NOx are estimated to come from fossil fuel combustion from both mobile (e.g. 

automobiles) and stationary sources (e.g. electrical generating units) [Galloway et al., 2004].  

Vehicular sources account for an estimated 34% of NOx pollution in North America [Bradley 

and Jones, 2002], and 54% in the Eastern U.S [Butler et al., 2005].  Automobiles may also be an 

important source of NH3 due to three-way catalytic converters [Cape et al., 2004; Fraser and 

Cass, 1998; Sutton et al., 2000].  The variety of atmospheric reactive N sources can lead to 

ambiguity in how to manage these pollutants.  For example, a roadway is not considered a 

stationary source of pollution; rather it is a conglomeration of many non-point sources.  
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Furthermore, reactive N is prevalent in natural systems.  It is important to be able to differentiate 

and quantify anthropogenic vs. natural sources, as well as the different anthropogenic sources, in 

order to develop reduction strategies and management plans. 

One of the ways we can distinguish the sources of reactive N to a given ecosystem is 

through stable isotope analysis of atmospheric and terrestrial N compounds.2  Major N sources 

have distinct isotopic signatures, which can be used to aid in the differentiation of sources (See 

Table 1.1).    

 

 

 

For example, atmospheric mobile and stationary sources of N compounds have varied 

isotopic signatures.  Coal combustion δ15N-NOx values range from +6 to +20‰ [Felix et al., 

submitted; Heaton, 1990].  Automobile δ15N-NOx values range from -13 to -2‰ from idling 

vehicles [Heaton, 1990] and +3.7 to +5.7‰ from vehicles under high load [Moore, 1977].  

However, δ15N-NOx values up to +9‰ have been measured near roadways [Ammann et al., 

                                                 

2 Expressed in δ notation:  δ= (Rsample/ Rstandard – 1) x 1000‰, where R= the molar ratio of heavy to light 
isotopes and ‰ is parts per thousand.  The standard refers to conventional international standards, which 
is atmospheric N2 for nitrogen isotopes. 

Table 1.1  Isotopic values of varied atmospheric and terrestrial N sources 
Source δ15N Value, ‰ Citation 

Tailpipe Exhaust, high load +3.7 to +5.7 Moore, 1977 
Tailpipe Exhaust, idle -13 to -2 Heaton, 1990 
Coal-fired Power Plant NOx +6 to +13 Heaton, 1990 
Coal-fired Power Plant NOx +10 to +19 Felix, submitted 
Soil NOx -15 to -5 Ammann, 1999 
Soil NO -19 to -49 Li, 2008 
Animal Waste NH3 Emissions <<0 Stewart, 1995 
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1999].  Biogenic soil δ15N-NO emissions have more negative values of -5‰ to -15‰ [Ammann 

et al., 1999].  More recent work by Li [2008] reports values for soil NO are even lower, between 

-19 and -49‰.  NH3 emissions from animal waste sources and agriculture are generally depleted, 

with values much lower than 0‰ [Koopmans et al., 1996; G R Stewart et al., 1995]. 

 

1.1.4   Plants as biomonitors of atmospheric nitrogen pollution 

 

Another way to monitor the contribution of atmospheric N sources to ecosystems is by 

measuring the δ15N value of plant tissue; examining the isotopic composition of plant nitrogen 

can potentially indicate the sources of N to which the plant was exposed during its lifetime.  

However, a wide variety of factors control the nitrogen isotopic composition of plant tissue 

[Högberg, 1997].  Different forms of N are readily interchangeable and affected by microbial 

activity within the soil.  Furthermore, some nitrogen reactions are reversible, depending, for 

example, on soil pH and moisture levels.  Fractionations can occur during cycling due to 

microbial activity and physical and chemical processes [Högberg, 1997].  This causes distinct 

spatial patterns of δ15N within soils and vegetation.  For example, leaf litter and vegetation tends 

to be more depleted in 15N, while humus in soil becomes enriched.  Soils generally become more 

enriched with depth [Nadelhoffer and Fry, 1994].  While these complexities make using N 

isotopes somewhat problematic, they could potentially provide useful information about N 

sources used by plants and fluxes of N within ecosystems.  For example, although different types 

of N are compartmentalized and have varied isotopic compositions, the system average 

composition will remain relatively consistent unless N fluxes with different isotopic 

compositions are added to or subtracted from the system [Högberg, 1997].  Therefore the 
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isotopic composition of a system is a function of the fluxes of N into and out of the system 

[Nadelhoffer and Fry, 1994]. 

The type of nitrogen compound assimilated into plant tissue will also have a direct effect 

on the plant isotopic composition [Högberg, 1997].  Plants generally fall into one of three 

categories:  those which prefer NH3 exclusively, those which utilize NO3- and those which can 

use either type [Pearson and Stewart, 1993].  The category depends on the species of plant, its 

location on the land surface and the amount of either NH3 or NO3- available for consumption.  

Other factors influencing the isotopic composition of plant tissue are the source of the nitrogen, 

the depth in the soil from which the N is taken up and the influence of mycorrhizal symbioses.  

Therefore, 15N studies work best when used in experimental settings, in comparisons within 

ecosystems, or in combination with other stable isotope systems, like oxygen and carbon 

[Högberg, 1997]. 

The uptake of atmospheric N compounds as a plant nutrient source has long been 

overlooked; it is commonly thought that rooted plants get most of their nutrients from the soil, 

including NO3- from soil water and other forms of inorganic N.  However, plants are also able to 

take up atmospheric N through the leaves.  For example, Port and Thompson [1980] found 

landscape plants grown close to highways in poor soil conditions had elevated levels of N in 

their tissue, suggesting uptake of N from automobile NOx.  The uptake of atmospheric N 

compounds has also been demonstrated in chamber fumigation studies and tracer studies using 

15N-labelled NO2 [Thoene et al., 1991], gaseous and particulate NH3 [Garten, 1993] and HNO3 

[Padgett et al., 2009]; all of these studies showed distinct isotopic changes in plant N after 

exposure.  Once inside a plant, 15N can be distributed to all parts (except mature leaves) very 

rapidly [Rowland et al., 1987]. 
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Part of the reason atmospheric sources of N to plants have not been considered important 

is because gaseous NO2 and NO have long been associated with harming plant tissue.  For 

example, studies have found that NO2 is damaging to plant cuticles and can cause decreased 

photosynthesis through lowering stomatal conductance [Wellburn, 1990].    However, these 

harmful effects are confounded by the presence of other pollutants, such as sulfate aerosols, 

ozone and free radicals [Wellburn, 1990].  Furthermore, NO2 and NO must be evaluated 

separately, as one is far more harmful than the other.  NO and NO2 enter a plant through open 

stomata during photosynthesis.  When they come in contact with extracellular water covering 

plants cells, these compounds combine with the water, forming HNO2 and HNO3, respectively, 

and dissociating to produce NO2- and NO3-, respectively.  Through this pathway, NO generally 

forms NO2- and NO2 forms NO3-.  Plant cells readily use NO3- for building amino acids and 

plant metabolism (after reducing it with the nitrate reductase enzyme).  NO2-, on the other hand, 

inhibits plant function, and thus acts as a phytotoxin [Wellburn, 1990].    

Another reason atmospheric N has been overlooked as a nutrient source to plants is that 

in natural systems, it is not typically available in sufficient quantities to become an important 

source.  For example, Hanson et al. [1989] calculated the average annual input of nitrogen to 

forested systems from NO2 deposition was around 1.9 kg ha-1 yr-1, which only represents about 

1-3% of a tree’s annual nitrogen requirements.  In contrast, the same study reported that NO2 

deposition in urban areas is up to 12 kg ha-1 yr-1 of, which could increase the amount of plant 

uptake of atmospheric NO2 [Hanson et al., 1989].  However, these estimates of N deposition are 

very conservative, because NO2 is not the only reactive N species available for foliar uptake.  

Hutchinson et al. [1972] estimated that forest canopies could take up as much as 20 kg ha-1 yr-1 

of NH3.  In addition, particulate HNO3 can be an important source of atmospheric N in rural 
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areas, far from NO2 sources [Bytnerowicz et al., 1987].  In comparison, gaseous HNO3 has a high 

deposition velocity, causing it to rapidly settle out of the atmosphere onto plant foliage.  The 

addition of these other reactive N compounds to previous estimates for nitrogen deposition 

increases estimates for total N deposition substantially.  For example, Pearson and Stewart 

[1993] estimate total N deposition ranging from 5 to 50 kg ha-1 yr-1 in rural locations in Europe.  

This estimate ranges even higher in areas near local pollution sources, such as intensive 

agriculture or near coal-fired power plants. 

 

1.1.5  Examples of the use of stable isotopes of nitrogen in pollution studies 

 

Despite the fact that many plants primarily receive N nutrition through the roots and there are 

complexities in interpreting δ15N values in plant tissue, several studies have demonstrated that 

the δ15N of plant tissue reflects the δ15N of atmospheric sources.  Stewart et al. [2002] found that 

plants in an extremely polluted urban site had low δ15N values relative to plants in a rural area 

several kilometers away, indicating that the cause of the low δ15N values in urban plant tissue 

was exposure to atmospheric pollutants with lower δ15N values.  The main source of pollution at 

the urban site was NH3 from a petrochemical plant, with measured δ15N values of emissions 

around -40‰.  Epiphytes, which are plants that rely exclusively on atmospheric sources of N for 

nutrients, had especially low δ15N values compared to soil-grown plants [G Stewart et al., 2002].  

In comparison, historic plant samples from the urban site were more enriched than modern 

samples; the historic plants were grown prior to the onset of pollution from the petrochemical 

plant.   
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Not all studies of plant isotopes in polluted areas reveal depleted δ15N values; many 

report enriched values (e.g., [Gebauer and Schulze, 1991; Högberg, 1997; Jung et al., 1997]).  

Studies suggest that relatively high δ15N values in plants recovered from polluted sites result 

from uptake of NOx from coal burning power plants and automobiles.  The higher isotope values 

for this source (~+6 to +13) are thus transferred to plant tissue at more polluted sites.  For 

example, Jung et al. [1997] measured δ15N in plant tissue in highly polluted urban locations and 

rural areas with low NOx emissions.  The δ15N values differed by ~10‰, with plants from urban 

locations having more positive values. 

Some studies have examined N isotope compositions of vegetation using much smaller 

gradients.  For example, Ammann et al. [1999] measured the δ15N of atmospheric NOx within 

several hundred meters of a highway and the isotopic composition of tree tissue at varying 

distances from the road.  They found that NOx had high δ15N values, around +5.7‰.  The plant 

tissue reflected the affects of this atmospheric source; tree needles near the road had δ15N values 

2‰ higher than samples farther from the road.  Saurer et al. [2004]  conducted a similar study 

along this same gradient using tree rings.  They report tree tissue near the road had more positive 

N isotope compositions, reflecting the automobile source.  The use of tree rings in this study 

recorded the history of the area as well; tree ring δ15N values became higher after the 

construction of the highway, which was about 40 years before the study. 

This application can also be used to compare different amounts of pollution (rather than 

distance from the source).  Pearson et al. [2000] conducted a study comparing δ15N of moss 

tissue along roadways with varying traffic density.  They showed that mosses exposed to varying 

levels of traffic density had different nitrogen isotopic compositions and levels of heavy metals 

in their tissues.  Mosses near major roadways had higher δ15N values, indicative of an uptake of 
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N compounds from an automobile source.  Near-roadway plants also had much higher 

concentrations of heavy metals, including lead and zinc.   

It is important in these studies that the actual source of N is measured for isotopic 

composition, as this will help interpret the results.  Measuring the natural abundance of 15N in a 

plant will not directly tell us whether it is exposed to pollution or not.  It is crucial to examine the 

concentration and the isotopic composition of the gaseous species of N which is the primary 

pollutant.  In addition, this can help account for mixing of varied sources with different δ15N 

values that may be affecting the plant tissue composition, including both atmospheric and soil 

water sources. 

1.2 CARBON 

1.2.1  Urban areas as proxies for global climate change 

 

CO2 is important in a global context; it is a major greenhouse gas that contributes to global 

climate change.  The Intergovernmental Panel on Climate Change  predicts that global 

concentrations of CO2 will rise to between 500 and 1000ppm by 2100, leading to a projected 

global temperature increase of 1-3.5°C [Trenberth et al., 1996].  Due to high local levels of 

anthropogenic fossil fuel combustion from both mobile and point sources, urban areas are key 

contributors to atmospheric carbon dioxide (CO2) emissions.  Several studies have established 

the existence of a CO2 “dome” in urban locations, where concentrations of CO2 are higher in 

cities than adjacent rural areas [Idso et al., 2001; Pataki et al., 2007; Ziska et al., 2003].  

Furthermore, the well documented urban “heat island” effect may be enhanced by higher CO2 
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concentrations [George et al., 2007].  The urban “CO2 dome” may be used as a proxy for global 

climate change scenarios; elevated CO2 concentrations and temperatures in urban areas are 

analogous to conditions expected globally with continued inputs of CO2 into the atmosphere.   

CO2 emissions in urban areas are heavily influenced by local fossil fuel combustion.  For 

example, diurnal variations in CO2 concentration often track regional traffic patterns, with higher 

concentrations during rush hour [Nasrallah et al., 2003; Velasco et al., 2005].  CO2 

concentrations have also been shown to follow a seasonal pattern, with higher concentrations 

occurring in the winter and summer, corresponding to increased power generation due to heating 

and air-conditioning [Blasing et al., 2005; Pataki et al., 2007].  However, it is difficult to track 

the quantity of CO2 emissions coming from each source using concentration data alone; this 

information could be useful for developing regulation and management strategies of greenhouse 

gas emissions in urban areas. 

 

1.2.2  Vegetation as a sink for CO2 

 

Increased CO2 concentrations in urban areas have implications for vegetation in urban 

ecosystems.  From a management perspective, understanding the nutrient dynamics of vegetation 

in urban ecosystems is critical to understanding carbon budgets.  For example, climate change 

may increase the growing season, leading to alterations in plant phenology, which can disrupt 

ecosystem function [Fitter and Fitter, 2002].  However, while vegetation may represent an 

important sink for excess carbon, it is difficult to quantify how urban vegetation responds to 

increased CO2 levels.  Furthermore, it is poorly understood how the spatial and temporal 

variations in CO2 concentrations from varied sources affect vegetation.  Chamber studies have 



 15 

shown increases in plant biomass with increased concentrations of CO2 [Kimball et al., 1993; 

Wittwer and Strain, 1985], suggesting that plants are an important sink of excess carbon.  

However, in natural systems, other confounding factors, such as disturbance, competition and 

nutrient availability, may prevent excess growth and carbon uptake.  For example,  Ziska et al. 

[2004] found a 115% increase in initial plant productivity at urban sites along an urban to rural 

transect in Baltimore, MD as a result of increased CO2 and temperature in the urban location.  

However, after three years, the numbers of annual herbaceous vegetation decreased at the urban 

site, leading to an overall decrease in productivity [Ziska et al., 2007].   

 

1.2.3  Using stable isotopes of carbon to source CO2 

 

Major sources of CO2, including fossil fuel combustion byproducts and biogenic emissions, have 

distinct isotopic signatures (see Table 1.2).  The δ13C value of global ambient atmospheric CO2 is 

-8‰ [Keeling et al., 1989].  This is lower than δ13C values measured in atmospheric gas of ice 

cores age-dated to 250 years before present, which are approximately -6.3‰ [Marino and 

McElroy, 1991].  In comparison, δ13C values of vehicular CO2 and coal combustion are between 

-27‰ and -25‰ [Clark-Thorne and Yapp, 2003].  The global atmospheric δ13C decrease is a 

function of fossil fuel combustion; adding CO2 depleted in δ13C has caused the global average 

δ13C values to drop since the Industrial Revolution [Keeling, 1979].  This trend is also evident at 

a local scale: environments with major CO2 inputs from fossil fuel combustion have lower δ13C-

CO2 values than the global average [Pataki et al., 2003].  Therefore, urban areas are generally 

expected to have lower δ13C values of CO2 relative to rural areas due to elevated CO2 

concentrations from fossil fuel combustion.  



 16 

 

Table 1.2  Carbon isotopic signatures of CO2 sources and plant tissue 
Source δ13C value, ‰ Citation 

Coal combustion -24.1 Blasing, 2005 
Oil combustion -26.5 Blasing, 2005 
Natural gas combustion -44.0 Blasing, 2005 
Automobile exhaust -27.0 Clark-Thorne, 2003 
Global background -8.0 Keeling, 1989 
C3 Plant tissue -30 to -22 Farquhar, 1989 
C4 Plant tissue -14 to -10 Farquhar, 1989 
 

 

1.2.4  Studies using stable isotopes of carbon in plant tissue 

 

Carbon isotopes have long been used as a tool to study plant function [Farquhar et al., 1989].  

For example, carbon isotopes can be used to differentiate between C3 and C4 plants [O'Leary, 

1981].  As CO2 is incorporated into plant tissue during photosynthesis, the carbon isotopes 

undergo fractionation, resulting in plant tissue δ13C values which are lower than δ13C-CO2 

[O'Leary, 1981].  The fractionation is a function of diffusion of CO2 through the stomatal pore, 

diffusion of CO2 in air through the boundary layer of the stomata, diffusion of dissolved CO2 

through water and the type of photosynthetic enzyme used by the plant [Farquhar et al., 1989].  

C3 and C4 plants each use a different photosynthetic enzyme to convert CO2 into sugars 

(Ribulose bisphosphate carboxylase in C3 plants and Phosphoenolpyruvate carboxylase in C4 

plants); therefore C3 and C4 plants experience different carbon isotope fractionation during 

photosynthesis [O'Leary, 1981].  δ13C values for C3 and C4 plants are about -27‰ and -13‰, 

respectively.  Other factors that can influence δ13C values of plant tissue include fertilization, the 

plant part measured (stem vs. roots), temperature, salinity and CO2 concentration [O'Leary, 

1981].   
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 Another factor influencing δ13C composition of plant tissue is CO2 source.   Previous 

studies have shown that the δ13C composition of plant tissue reflects the δ13C of ambient CO2 

[Farquhar et al., 1989].  As such, tracer studies using 13C-depleted CO2 can be implemented to 

study plant physiology.  For example, Pepin and Korner [2002] conducted a free air CO2 

enrichment study, in which CO2 was pumped into forested plots in order to explore how tree 

canopies respond to increased CO2 concentrations.  Because the pumped-in CO2 was derived 

from fossil fuel sources, it had a more negative δ13C value than ambient atmospheric CO2.  As a 

result, plant tissue δ13C values decreased during the course of the study.  The authors used 

measurements of δ13C in the plant tissue to determine long-term CO2 concentrations across their 

study area.  CO2 concentrations derived from plant tissue isotope values were well-correlated 

with measured CO2 concentrations [Pepin and Körner, 2002]. 

Another novel use of carbon isotopes in plant tissue is determining varying CO2 sources 

to plant tissue along a spatial gradient, though very few studies to date have used this technique.  

Most notably, Lichtfouse et. al. [2002] examined δ13C of grasses along an urban to rural 

gradient.   CO2 concentrations varied along the gradient; urban areas had higher CO2 

concentrations due to fossil fuel emissions.  Because fossil fuel CO2 emissions have lower δ13C 

values than ambient atmospheric CO2, the authors hypothesized that average δ13C value in urban 

areas would be lower than surrounding areas, and this would be reflected in plant tissue.  Their 

results supported this hypothesis; δ13C of grass tissue was ~5‰ lower in urban areas [Lichtfouse 

et al., 2002]. 
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1.3 CONCLUSIONS 

Anthropogenic reactive nitrogen and carbon dioxide can have fundamental consequences for 

human and environmental health.  Reactive N can negatively affect all global systems, including 

atmospheric, aquatic, terrestrial and biotic systems.  In particular, different forms of reactive N 

can impact human health, potentially causing respiratory disease, cancer and other health effects.   

CO2 contributes to global climate change and thus is a factor in observed shifts in temperature, 

sea level, and weather patterns around the globe. 

As such, it is necessary to regulate the varied sources of reactive N and CO2, including 

emissions from automobiles and power generation units.  However, this becomes complicated 

under the Clean Air Act, which regulates sources of pollution differently, and cannot account for 

natural sources of reactive N and CO2. 

One of the ways to ameliorate this issue is to differentiate the sources of reactive N and 

CO2 to any given location.  This may be accomplished using stable isotopes of N and C in 

various pools and comparing those with known or measured source values.  One of the problems 

with this method is the complexity of N and C cycling within environments; the varied pathways 

and transformations can obscure the interpretation isotopic values in natural systems.  This issue 

may be overcome by using N and C in combination with other stable isotope systems like 

oxygen, or by using controlled experimental settings and/or conditions. 

Plants represent an important sink for N and CO2, and can be key to determining the fate 

of varied N and CO2 sources to the environment.  Plant uptake of the varied atmospheric N 

species has been documented in both chamber studies and in the field.  Furthermore, the isotopic 

value of plant tissue has been repeatedly shown to reflect the isotopic signature of the 
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atmospheric source of nitrogen and CO2.  Eventually, isotopic studies of plant tissue may be used 

as a tool to quantify the levels of different sources of N pollution affecting plants. 

 The following chapters describe two studies which use the isotopic composition of plant 

tissue (δ13C and δ15N) to determine the impact of anthropogenic pollution sources on local 

vegetation.  Each study was sited along a pollution gradient; a highway road gradient in Chapter 

2 and two urban to rural gradients in Chapter 3. 
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2.0  ISOTOPIC INVESTIGATION OF DRY NITROGEN DEPOSITION ALONG A 

HIGHWAY ROAD GRADIENT 

2.1 INTRODUCTION 

NOx emissions from vehicular sources can create corridors of increased air pollution near 

highways.  For example, studies document elevated atmospheric NOx concentrations within 

hundreds of meters of roadways [Gilbert et al., 2007; Roorda-Knape et al., 1998; Singer et al., 

2004].  However, there is limited understanding of the effects of these emissions on the 

surrounding environment.  Because vehicle emissions comprise ~50% of Eastern U.S. NOx 

emissions [Butler et al., 2005], it is critical to identify the fate and impact of automobile 

emissions on near-road ecosystems.    Atmospheric NOx and other N pollutants (HNO3 and NH3) 

have relatively short atmospheric lifetimes (1 to 8 days) and high deposition velocities, causing 

them to deposit near their sources as particulates and aerosols in dry deposition [Kirchner et al., 

2005; Moomaw, 2002].  Unlike emissions from regional air pollution sources (e.g., smoke 

stacks), dry deposition from vehicles can deposit within 10s to 100s of meters from roadways 

[Cape et al., 2004; Kirchner et al., 2005].   This spatial pattern of concentrated nitrogen 

deposition has implications for near-road environments.  For example, storm water infrastructure 

can channel near-road deposition directly into surface water.  Excess nitrogen can also have 

adverse effects on near-road plant communities; studies document defoliation and changes in 
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community structure due to nitrogen pollution near roadways [Angold, 1997; Bernhardt-

Römermann et al., 2006; Bignal et al., 2007].  

Most national pollution monitoring facilities in the U.S. (such as the National 

Atmospheric Deposition Program and Clean Air Status and Trends Network (CASTNET)) are 

intentionally located in rural areas, far from major pollution sources and transportation corridors, 

in order to monitor regional air pollution trends.   While this provides long term assessment of 

background N deposition levels, the location of these sites likely underestimates total N 

deposition to the landscape.  Because dry nitrogen deposition from automobiles can deposit 

locally, the spatial distribution of wet and dry nitrogen deposition monitored at these sites may 

not take into account automobile pollution.  Previous research has shown that N deposition from 

these sites reflects NOy derived primarily from stationary sources instead of mobile sources 

[Elliott et al., 2007].  Furthermore, neither monitoring network measures atmospheric NO2 and 

NOx concentrations (though they do measure particulate NO3-, HNO3 and, at some sites, NH3).   

As a result, existing monitoring networks may underestimate NOy and total nitrogen reaching the 

land surface, especially in urban areas and near roadways. 

This study uses stable isotopes of nitrogen in plant tissue and dry nitrogen deposition to 

examine the extent of nitrogen loading along a gradient perpendicular to a major highway.  

Stable isotopes of nitrogen can be an effective tool for tracking the sources of atmospheric 

nitrogen in precipitation and dry deposition.  Major atmospheric NOx sources exhibit distinct 

isotopic signatures, which can aid in differentiating emissions that contribute reactive N to 

gaseous species and wet and dry deposition.  For example, coal combustion generates NOx 

emissions with δ15N values ranging from +6 to +20‰ [Felix et al., submitted; Heaton, 1990].  In 

contrast, automobile NOx is characterized by lower δ15N values, ranging from -13 to -2‰ from 



 22 

idling vehicles [Heaton, 1990] and +3.7 to +5.7‰ for vehicles under high load [Moore, 1977]. 

δ15N values of biogenic soil NO emissions are lower than fossil fuel sources with values between 

-19‰ and -49‰ [Li and Wang, 2008]. 

This study examines the effects of increased roadway N deposition on local vegetation by 

using the isotopic composition of plant tissue as a biomonitor of atmospheric N exposure.  While 

plants assimilate most nitrogen through roots, atmospheric NOx, HNO3 and NH3 uptake through 

leaves can also be an important nutrient source to plants [Wellburn, 1990].  This is evidenced by 

studies that document δ15N composition of plant tissue reflects δ15N of atmospheric NOx 

[Ammann et al., 1999; Pearson et al., 2000; Saurer et al., 2004].  By coupling plant tissue 

isotopic composition with concentration and isotopic composition of atmospheric reactive 

nitrogen, we assess the extent of N transport in near-road environments, the fate of this reactive 

N, and the potential influence on local vegetation. 

 

2.2  EXPERIMENTAL SECTION 

 

2.2.1  Site description 

The road gradient was located at the Carnegie Museum of Natural History Powdermill Nature 

Reserve near Donegal, Pennsylvania (USA) (N 40° 07' 42.2"; W 79° 17' 11.7").  The gradient 

was situated in a meadow that abuts Interstate-76, a five-lane highway that receives ~33,300 

annual average vehicles per day [Pennsylvania_Department_of_Transportation, 2009] and has a 

speed limit of 104 km per hour (65 mph).  Sites along the gradient were established at 2, 12, 30, 

90, 188 and 460 meters away from the roadway (Figure 2.1).   
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Figure 2.1: Map of the road gradient.  Aerial photograph of the road gradient site with sampling 
locations marked by stars. 
 
 
2.2.2 Plant sampling and analysis     

 

Each site contained two pots of plants, one Agrostis perennans (Autumn Bentgrass) and one 

Panicum virgatum (Switchgrass).  The 12m site contained two Panicum virgatum; it did not 
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contain Agrostis perennans due to plant mortality at that site.  No plants were sited at 2m 

because of highway right-of-way restrictions.  Each pot contained approximately fifty individual 

plants.  Pots were doubled to prevent water loss, intrusion of native soil and root growth through 

the bottom of the pots.  Because plant roots could not access soil beyond the pot exterior, it was 

assumed that plants only received nutrients from the soil in the pot and atmospheric deposition.  

All plants along the gradient were grown from seed in the same location, ensuring that all plants 

would start with similar isotopic compositions.  Likewise, all the plants were grown and 

eventually re-potted in well-homogenized potting soil.  With these controls in place, as the plants 

gained biomass throughout the summer, they should acquire the isotopic signature of the reactive 

N and CO2 of the surrounding air in which they were growing.  By controlling the soil media, 

using multiple individuals and effectively restricting the plants to their pots, the amount of 

isotopic variability between individual plants prior to exposure was limited.  Throughout the 

study period, the grasses produced new biomass after each cutting.  Plants were sampled prior to 

deployment and then monthly from July through October 2008.  In addition, soil was sampled 

monthly concurrent with plant sampling.  Samples were cut with scissors, washed with Milli-Q 

water and placed in individual bags.  Approximately 100 grams of soil were spooned out of the 

pots from a depth of 2-5 centimeters and placed in individual bags. All samples were transported 

on ice to laboratories at the University of Pittsburgh and were subsequently frozen to prevent 

tissue breakdown.   Samples were later freeze-dried, ground with a commercial coffee grinder 

and mortar and pestle and packed into tin capsules for isotopic analysis.  Isotopic analysis was 

conducted in a EuroVector high temperature elemental analyzer connected to a GV Instruments 

Isoprime Continuous Flow Isotope Ratio Mass Spectrometer (CF-IRMS). 

 



 25 

2.2.3  Gas sampling and analysis 

 

NO2 and HNO3 were collected with passive diffusion samplers at each site.  This is an effective 

and inexpensive method for monitoring dry deposition [Bytnerowicz et al., 2005] and isotopic 

composition [Elliott et al., 2009] of nitrogen compounds.  Samplers for NO2 were purchased 

from Ogawa, USA, and samplers for HNO3 were similar to the USDA Forest Service design 

described by Bytnerowicz et al. [2005]. These samplers collect atmospheric species on a 

chemically reactive filter pad.  Each gas requires a different filter.  For NO2, pre-coated filters 

purchased from Ogawa, USA were used, whereas HNO3 was collected using 47mm nylon filters 

(Pall Corporation).  Samplers were deployed for one month intervals, allowing adequate material 

for analysis to collect.  Each sampler holds two filters, which ensures that enough material is 

collected each month to perform both concentration measurements and isotopic analysis of each 

species.  Each month the filters were changed in the field at the same time grasses were sampled.  

Exposed filters were loaded into centrifuge tubes and frozen until analysis.  In addition, we used 

a field and laboratory blank to determine background levels of deposition on the filters prior to 

deployment.  Missing data points included the 2m and 12m sites in July (NO2 and HNO3) and the 

30m site in August (NO2) due to highway right of way restrictions and vandalism.   

For concentration measurements of NO2 and HNO3, each filter was eluted with 5mL of 

Milli-Q water to produce NO3- and NO2-.  The eluant was injected into a Dionex ICS2000 Ion 

Chromatograph.  For isotopic analysis of NO2 and HNO3 the second filter of each sample was 

eluted in 5mL of Milli-Q water.  The bacterial denitrification method was used to convert the 

eluted nitrite and nitrate into 10 nanomoles of N2O gas [Casciotti et al., 2002; Sigman et al., 

2001].  The resulting gas was introduced into a GV Instruments Isoprime CF-IRMS.  Samples 
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with eluant concentrations less than 0.23 mg/L were not run for isotopic analysis due to 

insufficient sample mass.  This included four NO2 samples: the 188 and 460m sites from July 

and the 90 and 188m sites from August. 

While it is extremely difficult to directly measure dry deposition and the associated 

deposition velocities, concentrations on passive samplers can be used to estimate N flux.  In this 

study, we estimated flux using two methods.  For the first estimate, we used the method 

described by Golden et al. [Golden et al., 2008], hereafter referred to as the “Golden method” in 

which 

     F = (C × v) / (a × d) 

where F is flux, C is the concentration measured in filter eluant, v is elution volume, a is the 

effective filter area and d is the number of days the filter was exposed.  For the second estimate, 

we used a method described by Roadman et al. [Roadman et al., 2003], hereafter referred to as 

the “Roadman method” in which 

           C = (m / t) / M  

            F = C × Vd 

where C is the average ambient concentration, m is the mass of N on the filter, t is the time the 

filter was exposed, M is the mass transfer coefficient, F is flux and Vd is the deposition velocity. 

For the Roadman method calculations, mass transfer coefficients derived from the literature were 

used for each type of sampler design.  For the NO2 sampler design, there were two mass transfer 

coefficients reported, 12.1 cm3/min [Tang et al., 2001] and 9.5 cm3/min [Yu et al., 2008], 

hereafter referred to as the “Roadman low” and “Roadman high” scenarios, respectively.  To our 

knowledge, only one mass transfer coefficient has been reported for the HNO3 sampler used in 
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this study (31.855 m3/hr [Bytnerowicz et al., 2005]).  As such, only one flux is calculated using 

the “Roadman method” for HNO3. 

Deposition velocities for NO2 and HNO3 were estimated for the road gradient using the 

CALPUFF model.  CALPUFF (EPA, 2009) is a Lagrangian puff dispersion model, which can 

simulate the effects of spatial and temporal variations in meteorological data on dispersion, 

transport, and deposition of pollutant species.  Continuous emissions from air pollution sources, 

such as mobile sources, are simulated by using a series of puffs that are tracked as the puffs are 

carried downwind.  CALPUFF has different options for modeling chemical transformation, 

depending on the species being modeled.  The transformation used in this study simulates the 

oxidation of NOx emissions to nitrate as a function of atmospheric stability, ozone concentration, 

and plume NOx concentration.  CALPUFF then partitions nitrate into gaseous (HNO3) and 

particulate (HNO3(NH4)) forms based on temperature and availability of ammonia.  CALPUFF 

determines dry deposition velocity as a function of land use at the location of each puff, 

calculates deposition flux based on the amount of mass in the puff and the calculated deposition 

velocity, and accounts for the total mass of NOx and NO3 as the puff is advected and dispersed 

downwind.   

The meteorological data used in this analysis was coincident with the ambient monitoring 

effort and covered the period between July and November 2008.  The surface and upper air 

meteorological data were obtained from the Pittsburgh Airport (Wban: 94823).  A single-point 

meteorological data set was developed with the meteorological preprocessor called 

CPRAMMET available with the CALPUFF modeling system.  NOx emissions from the mobile 

sources along I-76 were calculated using the MOBILE6 emissions estimation model, and the 

roadway was modeled as a series of 67 volume sources along a stretch of highway approximately 
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one kilometer to each side of the measurement locations.  A receptor grid was developed for the 

study area covering an area up to approximately one kilometer from the roadway.  Hourly 

concentration and deposition fluxes were calculated for NOx (NO2), nitric acid (HNO3), and 

particulate nitrate (HNO3(NH4)) at each receptor for each hour in the study period.   

CALPUFF-derived deposition velocities for NO2 spanned a range (0.0018 m s-1 and 

0.001 m s-1).  For this study, this range in deposition velocities was combined with the range of 

reported mass transfer coefficients to yield scenarios representing both the highest and lowest 

potential fluxes for the “Roadman high” and “Roadman low” scenarios, respectively.  CALPUFF 

model estimated deposition velocities for HNO3 were 0.0035 m s-1.  The modeled deposition 

velocities were in agreement with literature-reported values for NO2 (0.001 m s-1), but HNO3 

estimated values were lower than literature-reported values (0.04 m s-1 for average continental 

deposition [Hauglustaine et al., 1994] and 0.008-0.033 m s-1 modeled for various land types 

[Clarke et al., 1997]). 

The calculations for the Golden and the Roadman methods yield units of kg ha-1 yr-1, 

which is a standard method of reporting N flux.  However, as the filter concentrations yielded 

monthly average concentrations for five individual months, the kg ha-1 yr-1 estimate for each 

month refers to the estimated amount of N flux in kg ha-1 yr-1 that would occur for the whole year 

if the concentrations for that month were consistent throughout the year.  We use the kg ha-1 yr-1 

convention in order to compare results from our research with other monitoring studies. 
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2.3 RESULTS AND DISCUSSION 

 

2.3.1  Reactive nitrogen fluxes and isotopes 

 

Average NO2 flux for all months ranged from 0.88 to 4.15 kg ha-1 yr-1 for the Roadman high 

estimate, 0.38 to 1.31 kg ha-1 yr-1 for the Roadman low estimate and 0.47 to 2.21 kg ha-1 yr-1 for 

the Golden estimate (Figure 2a).  The highest average fluxes occurred at the 2m site.  Fluxes 

decreased with distance from the road, and the lowest values were at the 460m site.  This pattern 

indicates that NO2 is rapidly deposited, within ~100 meters of traffic corridors.  This is in 

accordance with other studies that document elevated concentrations and flux of NO2 near 

roadways [Cape et al., 2004; Kirchner et al., 2005].  

 NO2 flux also exhibited temporal variation (Figure 3a).  The spatial gradient was 

maintained throughout all months, but with varying intensity.  In August NO2 flux was 3 times 

higher at the site 2 meters from the road than at the 460 meter site.  In September this difference 

was reduced to only a 2.6-fold increase.  In October and November the roadside NO2 flux was 4 

and 4.4 times higher than the 460m site, respectively.  The highest estimated flux throughout the 

study occurred in October at the site 2 meters from the roadway (6.49, 3.46 and 2.83 kg ha-1 yr-1 

with the Roadman high, Golden and Roadman low estimates, respectively).  In addition, at all 

sites, NO2 flux increased in October and November.  This is in agreement with other studies that 

have documented increases in NO2 flux in colder months [Atkins and Lee, 1998; Kirby et al., 

1998].  This may be a function of higher stationary source NOx emissions during colder months 

[Elliott et al., 2009], changing oxidation patterns with lower ozone concentrations in winter, or 

decreased NO2 uptake by stomata [Hargreaves et al., 1992]. 
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Figure 2.2: Road gradient data.  N flux (a- b), atmospheric N isotopes (c-d), plant isotopes (e-h) 
and C:N ratios (i-j), and soil N isotopes (k-l).  For NO2 and HNO3 flux, squares are Golden 
method estimates, triangles are Roadman low estimates and diamonds are Roadman high 
estimates.  Plots c-l are box and whisker plots, in which the box represents the upper and lower 
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quartile and the whiskers represent the minimum and maximum data point.  The center line in 
the box is the median value.  Outliers are shown as black dots with lines through them.  Plant 
data does not include July; as the plants acquired biomass, the N isotopes changed as juvenile 
plants matured.  July data was a mix between seedling values from June and mature plants in 
August. 
 

HNO3 flux exhibited different patterns than NO2 flux.  HNO3 flux was an order of 

magnitude lower than NO2, with average flux for all months ranging from 0.13 to 0.26 kg ha-1 yr-

1 for the Golden method and 0.06 to 0.10 kg ha-1 yr-1 for the Roadman method (Figure 2b).  In 

addition, HNO3 flux peaked at two sites across the gradient (12 and 188m).  Seasonal variation in 

HNO3 flux can help explain this spatial pattern of average deposition (Figure 3b).  For example, 

the first peak was caused by a high August flux at 12 m, whereas the second peak was caused by 

a high fluxes at the 30, 90 and 188 m sites during October and November.  As an oxidation 

product of NO2, HNO3 may be formed at a greater distance from the road and thus account for 

multiple peaks in HNO3 fluxes.  Accordingly, HNO3 fluxes increase in October and November 

when higher NO2 fluxes are observed.  This contrasts other studies, which have found that HNO3 

concentrations increase in the summer and decrease in the winter, due to changing oxidation 

patterns in the NO2 to HNO3 conversion [Kondo et al., 2008; Morino et al., 2006]. 

 Comparison of the total N flux near the roadway with background levels of N deposition 

measured at a local CASTNET site reveals an underestimation of N deposition reaching the 

landscape by regional monitoring networks.  Total dry deposition measured at the nearest 

CASTNET site (Laurel Hill LRL 117, which is 16.09 km from the road gradient) in 2008 was 

1.04 kg ha-1 yr-1.  This included measurements of particulate nitrate, dry NH4, and HNO3 

[U.S._EPA_CASTNET, 2008].  In contrast, at the site 2 meters from the road, the total annual 

deposition was estimated to be 1.87, 2.38 and 4.21 kg ha-1 yr-1 for total N (NO2 plus HNO3), 

using the Roadman low, Golden and Roadman high methods of estimation, respectively.  This 
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deposition is based on monthly observed data for the four months of the study, and multiplying it 

by 3 to account for the entire year.  This calculation facilitates a comparison of our observed data 

with local background levels of dry N deposition.  Although this estimate is based on a partial 

year of data, it is expected that this is a conservative estimate as higher NO2 concentrations are 

expected during the winter months.  At the site 460 m from the road, which is most likely 

reflective of the background regional dry N deposition, the total N flux was estimated at 0.44, 

0.60 and 0.93 kg ha-1 yr-1 with the Roadman low, Golden and Roadman high methods, 

respectively.  The Roadman high estimate at this site is the most similar to the flux measured at 

the CASTNET site; therefore we can use the Roadman high estimate to compare flux along the 

rest of the gradient.  Using the Roadman high estimate for deposition closest to the road, we 

estimate an additional 3.28 kg ha-1 yr-1 falling within 2m of the roadway, which is 4 times higher 

than the CASTNET site.  At the site 12 meters from the roadway, the Roadman high estimate 

was 2.72 kg ha-1 yr-1, which is an additional 1.79 kg ha-1 yr-1 above background (2.6 times 

higher).  These increases in N flux near roadways create corridors of concentrated N deposition 

across the landscape.  This has important implications not only for air quality, but also for water 

quality and ecosystem health, especially in urban areas where road density is high.  Furthermore, 

our findings highlight the need for longer term monitoring of roadside verges to more accurately 

characterize total N flux to the land surface. 
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Figure 2.3: Road gradient monthly data:  Monthly variations in N flux, atmospheric N isotopes, 
plant tissue isotopes and plant tissue C to N ratios at each site.  For NO2 and HNO3 flux, squares 
are Golden method estimates, triangles are Roadman low estimates and diamonds are Roadman 
high estimates.  For atmopheric N isotopes, missing values (due to low concentrations) are 
omitted.  For plant tissue plots, neither grass was placed at the 2m site.  For Switchgrass plots, 
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the 12m site had two pots of grass; all other sites had one pot.  There were no Bentgrass pots at 
the 12m site. 

 

In this isolated roadside environment we expect the dominant sources of NO2 and HNO3 

are biogenic and vehicle emissions.  N isotopes of each gas can give an indication of which 

sources contribute to N deposition at each site, and also to the spatial and temporal patterns of 

deposition coming from vehicle emissions.  Vehicular sources have reported δ15N-NOx of +3.7 to 

+9‰ [Ammann et al., 1999; Moore, 1977].  (Lower values were reported by Heaton [Heaton, 

1990], but these were for idling vehicles.  It would be unlikely to see these values from vehicles 

traveling at interstate highway speed).  Biogenic emissions have much lower isotopic values of -

19 to -49‰ [Li and Wang, 2008]. 

δ15N-NO2 follows a similar spatial pattern as NO2 flux; mean δ15N values decrease with 

distance from the road (Figure 2.2c).  The site at 2m from the road had values ranging from -5.1 

to +7.3‰.  The site 460m from the road had values ranging from -11.9 to -24.6‰.  Values at 

these two sites were significantly different (ANOVA, p=0.02).  Values at the 2m site were within 

the vehicle range for δ15N-NOx, whereas values at all other sites along the gradient showed 

mixing between vehicular and biogenic NOx sources, dependent on distance from the highway.  

A two end-member mixing model reveals that at the site closest to the road, between 61 and 

100% of NO2 comes from automobile sources.    In addition to spatial pattern, δ15N-NO2 

exhibited a seasonal variation similar to seasonal variations in NO2 flux (Figure 2.3c).  δ15N-NO2 

was lowest during September at most sites (12, 90, 188 and 460m).  During October and 

November δ15N-NO2 increased at all sites.  The highest values were in November, which is 

during the period with the highest NO2 flux.    The lower δ15N-NO2 values in August and 

September reflects the influence of biogenic sources during the growing season.  According to 
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the mixing model, at the site 2m from the road, in August and September, automobile sources 

accounted for 61-79% of NO2.   In October and November, 93-100% of NO2 at this site is from 

automobiles.  Despite the seasonal variation, the spatial gradient remained consistent during each 

sampling month, indicating that mobile NO2 emissions continually influence the road gradient 

throughout the study, especially within 12m of the road. 

In comparison, δ15N-HNO3 did not exhibit a defined spatial gradient like the NO2 

isotopes (Figure 2.2d).  Isotope values ranged from -1.1 to +3.3‰, which is within the vehicle 

δ15N-NOx range; however, individual sites were not significantly different each other (ANOVA, 

p=0.05). This suggests that measured HNO3 most likely formed from multiple sources, in 

addition to vehicle-sourced NO2.  This is likely given the atmospheric lifetime of HNO3 of 

several days and the potential for regional transport [Neuman et al., 2006].  Temporal trends in 

δ15N-HNO3 were dominated by lower δ15N values at all sites in September relative to other 

months (Figure 2.3d).  However, relative to NO2, δ15N-HNO3 values spanned a smaller range 

and, apart from September values, were relatively constant across the sites during the study 

period.       

 

2.3.2  Plant tissue isotopic composition 

 

By experimental design, grass nutrient sources were effectively restricted to the potting soil and 

atmospheric deposition/stomatal uptake.  Thus, δ15N values in plant tissue allowed monitoring of 

plant exposure to atmospheric dry N deposition from automobile and biogenic emissions.  We 

observed pronounced spatial gradients in δ15N values of Bentgrass and Switchgrass (Figure 2.2e 

and f); however, Bentgrass was a more robust indicator of atmospheric uptake.  Bentgrass had 
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increased δ15N values close to the road.  Bentgrass at the 30m site was significantly different 

from that at sites at 90, 188 and 460m (ANOVA, p=0.02).  The higher δ15N values in plants near 

the roadway indicate that these plants were taking up excess N from a higher δ15N source, in this 

case automobile pollution.  This is in agreement with other studies which have reported increases 

in plant tissue δ15N near roadways in comparison with control sites [Ammann et al., 1999; 

Pearson et al., 2000; Saurer et al., 2004].  Switchgrass δ15N values also increase near the road, 

but its peak mean value is at 90 meters from the roadway (Figure 2.2f).  Plants at the 12m site 

were the most variable, but on average had higher δ15N than the plants at the 460m site.  

However, the only significant difference between averages at all the sites was 90m and 460m 

sites (ANOVA, p=0.03).  This may indicate that Switchgrass was not receiving N nutrition from 

atmospheric NO2; this species might take up more N through the roots or as atmospheric NH3 or 

HNO3. 

Temporal trends in spatial patterns of δ15N also suggest that Bentgrass is a more robust 

indicator of atmospheric N uptake. Temporally, δ15N-Bentgrass decreased slightly from August 

until October at all sites (Figure 2.3f).  This is not necessarily expected given increasing N flux 

during those months; however, October marks the end of the plant growing season, 

slowing/limiting N uptake during this period.  In comparison, temporal changes in Switchgrass 

δ15N varied by site (Figure 2.3e).  At the 12m and 30m sites, δ15N increased throughout the 

months of the study.  At all other sites δ15N decreased.  Because Switchgrass varied by month 

without clear trends, atmospheric dry N deposition may be a less important nutrient source.  This 

is further reflected in soil δ15N for Switchgrass (Figure 2.2l).  Soil δ15N from Switchgrass pots 

varies most close to the road, with δ15N values peaking at the 90m site and decreasing with 

distance from the road.  The similarity between Switchgrass tissue and soil δ15N values suggests 
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that Switchgrass is primarily receiving N nutrition from the soil.  In contrast, δ15N of Bentgrass 

soil (Figure 2.2k) shows no clear trends across the gradient and is dissimilar to Bentgrass tissue 

δ15N.  These results indicate that Bentgrass tissue incorporates nitrogen derived from 

atmospheric sources and thus is a more robust biomonitor for atmospheric N. 

Because plant tissue total N and δ15N values are not necessarily correlated [Pearson et 

al., 2000], C:N ratios in plant tissue can also be used to evaluate the effects of excess N 

deposition on plants.  For Switchgrass, C:N is lowest closest to the road and increases and 

becomes more variable with distance from the road (Figure 2.2j).  Though not as robust as 

Switchgrass, Bentgrass followed a similar trend (Figure 2.2i).  Bentgrass C:N gradually increases 

with distance from the road, though no site is significantly different from any other (ANOVA, 

p=0.05).  Seasonal variation can help explain the average C:N values for both grasses. While 

Switchgrass C:N starts out with similar values in July at all sites, throughout the months of the 

study, C:N increases at the 188 and 460m site (Figure 2.3g).  In August, September and October, 

C:N ratios at the 12m site were significantly different from those at 460m (ANOVA, p=0.05).  

Bentgrass exhibited a similar response.  Bentgrass C:N was comparable at all sites along the 

gradient in July (Figure 2.3h); however by  August, C:N ratios were higher at the 460m site 

relative to those closer to the road.  The temporal variations observed in Switchgrass and 

Bentgrass C:N ratios indicate that plants far from the road were the most N limited; as plants 

used up the nutrients in the potting soil, the C:N ratios increased throughout the months of the 

study.  In contrast, the plants closer to the road received a continuous supply of N deposition, 

which contributed to their N nutrition and resulted in lower C:N ratios.  This mechanism can 

explain why species compositions in plant communities near roadways often have a greater 

proportion of N-tolerant plants [Angold, 1997; Bignal et al., 2007]. 
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C isotopes provide another way to examine the impacts of fossil fuel emissions on plant 

tissue along the road gradient.  Because plants take up CO2 from the atmosphere during 

photosynthesis, C isotopes in plant tissue can indicate the sources of CO2 to which the plants 

were exposed.  The two sources of CO2 in this system are background atmospheric CO2, 

characterized by δ13C of -8‰ [Keeling et al., 1989], and fossil fuel CO2 from automobiles, with 

a δ13C value of around -27‰ [Bush et al., 2007; Clark-Thorne and Yapp, 2003].  It follows that 

plants that are impacted by fossil fuel emissions would have lower δ13C values than plants that 

are not.  For Bentgrass, C isotopes were more positive farther from the road (Figure 2.2g).  

However, this relationship was not significant (ANOVA, p=0.05) and varied by month.  In July 

and August, Bentgrass-δ13C values were approximately the same across the entire gradient.  In 

September and October, the 460m site had δ13C values approximately 1‰ higher than the 30m 

site, indicating that plants at the sites closer to the road may have been affected by fossil fuel 

emissions.  C isotopes for Switchgrass followed a more defined trend (Figure 2.2h).  δ13C of 

Switchgrass at the 12m site were significantly lower than the 90 and 188m site (ANOVA, 

p=0.05).  In each month, the 460m site had values approximately 1‰ higher than the 12m site.  

This is in agreement with another road gradient study in which δ13C values in plant tissue 1m 

from a roadway were lower than 50m from the road [Lichtfouse et al., 2002].  Because the spatial 

scale of this study was small and CO2 is well mixed in the atmosphere, we would expect the 

variation in δ13C values along the road gradient to be limited (<1‰); larger variations in δ13C 

values (~5‰) were measured in a study of δ13C values in plant tissue along a longer urban to 

rural gradient [Lichtfouse et al., 2002]. 
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2.3.3  Implications 

 

Automobile emissions can contribute up to four times more N deposition to near-road 

environments than regional background deposition.  However, near-road deposition fluxes are 

not necessarily accounted for by sites included in existing national monitoring networks.  These 

sites measure N deposition in locations far from roadways and they also do not measure NO2, 

one of the primary pollutants from automobiles.  This underestimation of N deposition can be 

especially important in urban areas, where there is a high density of roadways and increased 

vehicular traffic.  In order to assess the amount of total atmospheric N deposition reaching the 

landscape, establish accurate N budgets, and develop useful mitigation strategies for atmospheric 

N pollution, monitoring in urban areas and near roadways must occur.   

Furthermore, near-road hotspots of increased N deposition have implications for roadway 

ecosystems.  Roadside water diversion infrastructure can channel excess dry N deposition 

directly into sewers and surface water, where increases in nitrate concentrations in waters can 

lead to acidification and eutrophication.  In addition, excess N can have negative impacts on 

near-road vegetation, leading to increases in N tolerant species near roads and declining 

vegetation health.  However, the increase in plant uptake of N near the roadway may indicate 

that roadside plants could be used to mitigate the effects of excess N, though further research is 

needed to verify this. 
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3.0  ISOTOPIC INVESTIGATION OF ANTHROPOGENIC SOURCES OF CARBON 

AND NITROGEN TO VEGETATION ALONG TWO URBAN TO RURAL GRADIENTS 

3.1 INTRODUCTION 

Excess reactive nitrogen additions to the environment can have widespread detrimental effects 

on ecosystem health.  For example, increased fluxes of N to terrestrial and aquatic systems can 

cause acidification and mobilization of metals and base cations [Rabalais, 2002].  In addition, N 

loading in aquatic systems can cause eutrophication and subsequent dead zones in major water 

bodies [Howarth et al., 1996; Nixon, 1995].  In the absence of other sources, ecosystem inputs of 

reactive N are roughly equal to outputs of N2 from denitrification, which balances nitrogen 

cycling.  However, human activities alter the N cycle through inputs of reactive N from fossil 

fuel combustion and fertilizer application.  Currently, the addition of anthropogenic reactive 

nitrogen to ecosystems exceeds that from natural sources [Galloway et al., 2004]. 

Atmospheric N deposition is a major source of anthropogenic N.  Emissions from fossil 

fuel burning produce nitrogen oxides (NO and NO2), which further oxidize to form HNO3.  

These compounds are removed from the atmospheric in either wet (dissolved in precipitation) or 

dry (aerosols and particulates) deposition.  While wet deposition makes up the majority of total 

N deposition in the eastern U.S., dry deposition accounts for 20-50% [Butler et al., 2005], and 

thus can be a significant source of N to ecosystems. 
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Atmospheric N deposition in urban areas is poorly characterized because N monitoring is 

primarily done at remote locations.  For example, national monitoring networks, such as the 

National Atmospheric Deposition Program- National Trends Network and the Clean Air Status 

and Trends Network (CASTNET), intentionally locate sites in rural areas to capture regional 

background levels of deposition.  This may potentially cause an underestimation of the amount 

of atmospheric N reaching the land surface, as it does not take in to account hotspots of N 

deposition near area sources of pollution, such as roadways and urban areas.  Therefore, in order 

to more accurately characterize the amounts of total N deposition reaching the landscape, it is 

necessary to examine N deposition in urban areas. 

Isotopic studies can give insight into the sources of local N deposition, allowing us to 

separate natural from anthropogenic-sourced N.  The major sources of anthropogenic and 

biogenic NOx have different δ15N values (reported in parts per thousand compared to 

atmospheric N2; See Table 1.1.).  Vehicular sources have reported δ15N-NOx of +3.7 to +9‰ 

[Ammann et al., 1999; Freyer, 1978; Heaton, 1990; Moore, 1977] (more negative values, -13 to -

2‰ [Heaton, 1990], have been reported, but these values were from exhaust of idling vehicles). 

Power plant NOx emissions have δ15N values of +6 to +20‰ [Felix et al., submitted; Heaton, 

1990]. Biogenic emissions have much lower N isotopic values of -19 to -49‰ [Li and Wang, 

2008].  While N isotope studies of wet deposition have been conducted across local and regional 

scales [Elliott et al., 2007; Hastings et al., 2003; Hastings et al., 2004; Kendall and McDonnell, 

1998], there are fewer isotopic studies on dry N deposition.  A study by Freyer [1993] examined 

δ15N of gaseous NO2 in a small German city, while a more recent study by Elliott, et al. [2009] 

investigated patterns in δ15N of HNO3 and particulate NO3- across rural sites in New York, 

Pennsylvania and Ohio.   
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This study characterizes the amount and sources of dry N deposition along two urban to 

rural gradients.  We used passive samplers to collect dry N deposition for analysis of both 

concentration and stable isotopes of nitrogen. This method provides an easy and inexpensive way 

to monitor N deposition across large spatial gradients for extended time periods. 

In addition, we deployed grasses as biomonitors to assess the influence of excess dry N 

deposition in urban areas on N content and isotopic composition of plant tissue.  While plants 

assimilate most nitrogen through the roots, atmospheric NOx, HNO3 and NH3 taken up through 

the leaves can also be an important nutrient source [Garten, 1993; Padgett et al., 2009; Thoene et 

al., 1991; Wellburn, 1990].  This is evidenced by several studies that document that δ15N 

composition of plant tissue reflects δ15N of atmospheric NOx [Ammann et al., 1999; Pearson et 

al., 2000; Saurer et al., 2004].  This study couples passive sampling of dry N deposition and 

plant biomonitors to delineate the sources and magnitude of N deposition to urban and rural 

areas and associated influence on local vegetation.  

Analysis of δ13C of plant tissue provides another way to examine the impacts of fossil 

fuel emissions on urban vegetation.  Several studies document a “dome” of CO2 concentrations 

around urban areas, caused by increased fossil fuel emissions in urban centers [Idso et al., 2001; 

Pataki et al., 2007; Ziska et al., 2003].  The major sources of atmospheric CO2 are global 

background CO2, which has a δ13C isotopic composition of -8‰ [Keeling et al., 1989], and fossil 

fuel emission CO2, which has a δ13C value of -27‰ [Bush et al., 2007; Clark-Thorne and Yapp, 

2003].  Therefore, environments with major CO2 inputs from fossil fuel combustion have lower 

δ13C-CO2 values than the global average, due to the mixing of anthropogenic CO2 with 

background atmospheric CO2 [Pataki et al., 2003].  Furthermore, the isotopic signature of 

atmospheric CO2 can be incorporated into plant tissue through photosynthesis.  Previous studies 
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have shown that the δ13C composition of plant tissue reflects the δ13C of ambient CO2 [Farquhar 

et al., 1989; Lichtfouse et al., 2002; Pepin and Körner, 2002].  It follows that because urban 

areas have elevated CO2 concentrations from fossil fuel combustion, the δ13C values of plant 

tissue in urban areas should be lower than that of rural areas.  In this study, we used plant 

biomonitors to test that hypothesis. 

3.2 METHODS 

3.2.1 Sites 

Research sites consisted of two urban to rural gradients, one in Baltimore, MD and the other in 

Pittsburgh, PA (USA).  Each gradient contained three sampling locales: one urban, one suburban 

and one rural.  The Maryland gradient spanned approximately 209 kilometers from downtown 

Baltimore to the New Jersey Pine Barrens (Figure 3.1).  More specifically, the urban site was 

located at the Maryland Science Center in downtown Baltimore, near the city center.  This site is 

characterized by a high street (and thereby traffic) density and many large buildings.  Suburban 

samples were collected from a U.S. Forest Service eddy flux tower in Cub Hill, MD.  This site is 

surrounded by medium density residential land use.  Rural sampling was conducted at the 

Rutgers University Pinelands Research Center in the U.S. Forest Service Silas Little 

Experimental Forest in New Lisbon, New Jersey.  This site is located in a wooded area with very 

few houses and low traffic density.   
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Figure 3.1:  Baltimore gradient map.  Sites are shown on a land use/land cover map.  Red 

indicates urban areas, pink is suburban, yellow is agricultural and green is forested. 
 

The Pittsburgh urban to rural gradient spanned approximately 80 kilometers from Pittsburgh, PA 

to Rector, PA (Figure 3.2).  Urban samples were collected in Hazelwood, a formerly industrial 

and presently residential neighborhood located about four miles from downtown Pittsburgh.  

This site is within the city limits and is characterized by high street and housing density.  

Suburban samples were acquired from the Westmoreland Conservation District in Greensburg, 

PA, a small city ~35 miles east of Pittsburgh.  Samplers were located near a strip mall and 

several housing developments.  Rural sampling was completed at the Carnegie Museum of 

Natural History Powdermill Nature Reserve in Rector, PA.  This site is surrounded by low-

density housing and forest.   
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Figure 3.2:  Pittsburgh gradient map.  Sites are shown on a land use/land cover map.  Red 
indicates urban areas, pink is suburban, yellow is agricultural and green is forested. 
 
 

3.2.2 Plants biomonitors 

 

All experimental plants were grown from seed in Pittsburgh in an identical potting mixture.  Five 

replicate pots of Agrostis perennans (Autumn Bentgrass) and Panicum virgatum (Switchgrass) 

were set in holes in the ground at each site along the gradients.  Approximately fifty individual 

plants were growing in each pot.  The plastic pots were doubled to prevent water loss and to 

isolate the roots from native soils.  This ensured that the plants effectively only received nutrients 

from the potting soil and atmospheric sources.  Plants were sampled for isotopic analysis prior to 

field deployment to measure similarity in initial isotopic compositions.  During field deployment, 

plants and soil were sampled once a month for four months, July-October, 2008.  Leaf samples 



 46 

were cut with scissors, washed with Milli-Q water and placed in individual bags.  In addition, 

soil was sampled from each pot every month concurrent with plant sampling.  Approximately 

100 grams of soil were spooned out of the pots from a depth of 2-5 centimeters and placed in 

individual bags.  Both plants and soil were stored on ice for transport to the laboratory and then 

frozen to prevent tissue breakdown.  For analysis samples were freeze dried, ground with a 

commercial coffee grinder and with a mortar and pestle and loaded into tin capsules for isotopic 

analysis of C and N.  The samples were combusted in a Eurovector high temperature Elemental 

Analyzer connected to a GV Instruments Isoprime (now Elementar Americas) Continuous Flow 

Isotope Ratio Mass Spectrometer (CF-IRMS) to determine both carbon and nitrogen 

concentration and isotopic composition.  For all analyses in this study, data for July is not shown.  

As the plants acquired biomass, carbon and nitrogen isotopes changed as juvenile plants 

matured.  In July, the isotope ratios measured in the plants were a mix between the seedlings 

started in June and the full grown plants from August and later; therefore our data analyses only 

considers mature plant tissue. 

 

3.2.3 Gaseous sampling 

 

Two forms of dry nitrogen deposition, NO2 and HNO3, were collected with passive diffusion 

samplers at each site.  Samplers for NO2 were purchased from Ogawa, USA, and samplers for 

HNO3 were similar to the USDA Forest Service design described by Bytnerowicz et al. [2005].  

The samplers collect atmospheric species on a chemically reactive filter pad.  Each gas required 

a different filter.  For NO2, we used pre-coated filters purchased from Ogawa, USA.  HNO3 was 

collected using a 47mm nylon filter (Pall Corporation).  These samplers are an effective and 
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inexpensive method for monitoring dry deposition [Bytnerowicz et al., 2005] and isotopic 

composition [Elliott et al., 2009].  Samplers were deployed for one month intervals, allowing 

adequate material for analysis to collect on the filters.  Each sampler holds two filters, which 

ensures that sufficient material is collected each month to perform both concentration 

measurements and isotopic analysis of each species. Each month the filters were changed in the 

field at the same time the grasses and soils were sampled.  In addition, we used field and 

laboratory blanks to determine background levels of deposition on the filters prior to 

deployment.   

For concentration measurements of NO2 and HNO3, we eluted each filter with 5mL of 

Milli-Q water to produce nitrate (NO3-) and nitrite (NO2-).  The eluant was injected into a 

Dionex ICS2000 Ion Chromatograph.  For isotopic analysis of NO2 and HNO3 we eluted the 

second filter of each sample in 5mL of Milli-Q water.  We then used the bacterial denitrification 

method to convert the eluted NO2- and NO3- into 10 nanomoles of N2O gas [Casciotti et al., 

2002; Sigman et al., 2001].  The resulting gas was introduced into a GV Instruments Isoprime 

CF-IRMS.  Samples with eluant concentrations of less than 0.23 mg/L were not run for isotopic 

analysis due to insufficient nitrogen mass.  For HNO3, this included the Baltimore rural site in 

October.  For NO2, this included the Baltimore rural site in August and September, the Baltimore 

suburban site in July, and the Pittsburgh rural site in August. 

In order to calculate a flux in kg ha-1 yr-1 from the concentration data, we used the method 

described by [Golden et al., 2008] in which:  

F = (C × v) / (a × d) 

where F is flux, C is the concentration measured in filter eluant, v is elution volume, a is the 

effective filter area and d is the number of days the filter was exposed.  These calculations yield 
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units of kg ha-1 yr-1, which is a standard method of reporting N flux.  However, the filters 

represent monthly average concentrations.  Therefore, the kg ha-1 yr-1 value for each month is the 

amount of N flux in kg ha-1 yr-1 that would occur for the whole year if the concentrations for that 

month were consistent throughout the year. 

3.3 RESULTS 

3.3.1 Nitrogen flux 

Average total N (HNO3 + NO2) flux for the Baltimore gradient was highest at the urban site and 

lowest at the rural site, 1.26 and 0.84 kg ha-1 yr-1, respectively (Figure 3.3a).  Each site differed 

in the proportion of average HNO3 to NO2 deposition.  At the rural site HNO3 flux was higher 

than NO2 flux, but at the suburban and urban sites NO2 flux was higher.  Fluxes also exhibited 

monthly differences (Figure 3.3c).  For example, HNO3 deposition peaked at the rural and 

suburban sites in September.  In addition, NO2 deposition increased during the colder months 

(October and November) at all sites. 

Along the Pittsburgh gradient (Figure 3.3b), average total N (HNO3 + NO2) flux was 

highest at the urban site (1.70 kg ha-1 yr-1), whereas the suburban site had the lowest total N flux 

(0.72 kg ha-1 yr-1).  The rural sampling location yielded intermediate values, averaging 0.93 kg 

ha-1 yr-1.  At each site, NO2 was the highest contributor to total N flux.   

N flux at the Pittsburgh gradient also varied seasonally (Figure 3.3d).  HNO3 was highest 

in July, relatively low for August and September, and then increased slightly in October.  Like 

the Baltimore gradient, NO2 at the Pittsburgh gradient increased throughout the course of the 
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study, with the highest NO2 fluxes occurring in November at all sites.  This is in agreement with 

other studies which have documented increases in NO2 concentrations in winter months [Atkins 

and Lee, 1995; Kirby et al., 1998]. 

 

Figure 3.3: Nitrogen Flux.  HNO3, NO2 and total N (HNO3 + NO2) flux estimates (kg ha-1 yr-1) 
for the Baltimore and Pittsburgh gradients.  Boxes a and b represent the averages for all months 
of the study.  Boxes c and d are individual monthly values for the rural, suburban and urban sites 
(R, S, U, respectively). 
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3.3.2 Nitrogen deposition isotopes 

 
δ15N-HNO3 at the Baltimore gradient had the highest average values at the suburban site (Figure 

3.4a).  The suburban site was significantly different than the urban site (ANOVA, p=0.05, n=14).  

δ15N-HNO3 did not exhibit consistent seasonal effects along the gradient.  For example, in 

August δ15N-HNO3 values at the suburban and rural sites were the lowest (Figure 3.4c), while all 

other months were ~1 to 2‰ higher.  The urban site did exhibit seasonality; δ15N-HNO3 values 

gradually increased during each month of the study. 

δ15N-HNO3 values for the Pittsburgh site (Figure 3.4b) had the highest mean value at the 

urban site; however, mean values at the three sites were not significantly different (ANOVA, 

p=0.05, n=15).  The Pittsburgh gradient HNO3 isotopes exhibited seasonal variation; lowest 

values for all three sites occurred in September (Figure 3.4d).  Furthermore, in October and 

November, δ15N-HNO3 values were lowest at the rural site and highest at the urban site.  δ15N-

HNO3 did not correspond with HNO3 flux at the Pittsburgh and Baltimore more gradients. 

Average δ15N-NO2 values along the Baltimore gradient were similar between all the sites; 

however these values encompassed a large range (-25 to -7‰) (Figure 3.5a).  No significant 

difference in mean values was observed between any of the sites (ANOVA, p=0.05, n=12).  

However, there was a marked seasonal pattern in δ15N-NO2; in October and November values at 

all three sites increased by 10 to 15‰, with the greatest increase at the urban sites (Figure 3.5c).  

The increase in δ15N-NO2 values in October and November also corresponds with the increase in 

NO2 flux during these months. 
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Figure 3.4 HNO3 Isotopes along the Baltimore and Pittsburgh gradients.  Plots a and b are box 
and whisker plots, in which the box represents the upper and lower quartile and the whiskers 
represent the minimum and maximum data point.  The center line in the box is the median value.  
Outliers are shown as black dots with lines through them.  Plots c and d are monthly values for 
δ15N-HNO3 for the rural, suburban and urban sites (R,S,U, respectively). 
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At the Pittsburgh gradient, the urban site had the highest mean δ15N-NO2 values, while 

the suburban site had the lowest mean values (Figure 3.5b).  These two sites were significantly 

different (ANOVA, p=0.01, n=14), with a 17‰ difference in mean values.  In each month, the 

urban site had the highest δ15N-NO2 values and the suburban site had the lowest values.  δ15N-

NO2 values in the Pittsburgh gradient also showed seasonal variations (Figure 3.5d); values at all 

sites increased in October and were highest in November, corresponding with increases in NO2 

flux.  

 
3.3.3 Plant tissue nitrogen isotopes 
 

δ15N-Bentgrass values showed different patterns in the two urban to rural gradients (Figure 3.6).  

Bentgrass at the Baltimore gradient had the lowest mean δ15N values at the suburban site and 

highest mean δ15N values at the urban site.  Means for the urban and rural site were only 0.1‰ 

apart, while the mean for the suburban site was ~0.5‰ lower.  None of the sites were 

significantly different from each other (ANOVA, p=0.05, n=40).  δ15N-Bentgrass along the 

Pittsburgh gradient showed the opposite trend.  δ15N values were lowest at the urban site and 

highest at the suburban site.  The average δ15N-Bentgrass values at the suburban and rural sites 

were significantly different from the urban site (ANOVA,p=0.03,n=45).  

Across the Baltimore gradient, the urban site had the highest δ15N-Switchgrass values 

and the suburban site had the lowest values.  All three sites were significantly different from 

each other (ANOVA, p=0.01, n=45).  Along the Pittsburgh gradient, the rural site had some of 

the highest δ15N-Switchgrass values, but had the lowest median value.  The suburban site had the 

highest mean δ15N value.  The suburban site δ15N value of Switchgrass was significantly 
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different from the rural site (ANOVA, p=0.05, n=44), but had similar values for Switchgrass 

from the urban site. 

 Figure 3.5: NO2 Isotopes for the Baltimore and Pittsburgh gradients.  Plots a and b are box and 
whisker plots, in which the box represents the upper and lower quartile and the whiskers 
represent the minimum and maximum data point.  The center line in the box is the median value.  
Outliers are shown as black dots with lines through them.  Plots c and d are individual monthly 
values by rural, suburban and urban site (R,S,U, respectively). 
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Figure 3.6: Plant Tissue Nitrogen Isotopes for Pittsburgh and Baltimore Bentgrass and 
Switchgrass. Plots are box and whisker plots, in which the box represents the upper and lower 
quartile and the whiskers represent the minimum and maximum data point.  The center line in 
the box is the median value.  Outliers are shown as black dots with lines through them. 
δ15N-Switchgrass also exhibited different patterns at both gradients (Figure 3.6).   

 

3.3.4 Plant tissue carbon isotopes 

 

For Bentgrass, carbon isotopic values in the Baltimore and Pittsburgh gradients were quite 

different (Figure 3.7).  In Baltimore, Bentgrass δ13C values had the largest range in values at the 

urban site.  Mean δ13C-Bentgrass values were highest at the suburban site and lowest at the rural 

site.  None of the sites were significantly different (ANOVA, p=0.05, n=45).  Bentgrass at the 
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Pittsburgh gradient showed a different trend; at the urban site, δ13C-Bentgrass values were 

lowest, while the rural site had some of the highest values.  δ13C-Bentgrass values at the rural 

and suburban sites were significantly different from the urban site (though not significantly 

different from each other) (ANOVA, p=0.01, n=45).   

Along the Baltimore gradient, δ13C-Switchgrass was lowest at the urban site, while the 

suburban and rural sites had similar values (Figure 3.7).  Both the rural and suburban sites were 

significantly different from the urban site (ANOVA, p=0.01, n=40).  δ13C-Switchgrass along the 

Pittsburgh gradient was lowest at the urban site and highest at the rural site.  All three sites were 

significantly different from each other (ANOVA, p=0.01, n=44), and thus exhibited the strongest 

δ13C gradient of both types of grasses and both urban to rural gradients. 

 

Figure 3.7:  Plant tissue carbon isotopes for Pittsburgh and Baltimore Bentgrass and Switchgrass. 
Plots are box and whisker plots, in which the box represents the upper and lower quartile and the 
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whiskers represent the minimum and maximum data point.  The center line in the box is the 
median value.  Outliers are shown as black dots with lines through them.   
 
 
3.3.5 Plant tissue nitrogen vs. carbon isotope 
 

It is also important to compare δ15N against δ13C in the plant biomonitors (Figure 3.8).  We 

expected rural sites should plot to the upper left of the graph, with more positive δ13C and more 

negative δ15N values, and urban points should plot closer to the lower right of the graph, with 

more negative δ13C and more positive δ15N values (Figure 3.8). 

Bentgrass plots from both gradients did not plot as expected (Figure 3.8).  The Baltimore 

Bentgrass urban points plotted toward the bottom right, except for the points from August, which 

had much higher δ13C values.  Suburban points plotted to the upper left, and rural points plotted 

in between the urban and suburban.   The Pittsburgh Bentgrass plotted with the suburban and 

rural clusters on top of each other, and the urban points to the bottom left. 

Baltimore Switchgrass urban points plotted in the bottom right, as expected, while the 

suburban and rural points plotted next to each other in the top left (Figure 3.8).   Pittsburgh 

Switchgrass plotted with the urban site in the bottom right, the rural site in the top left, and the 

suburban site in between. 

 

3.3.6 Plant tissue C to N ratios 

 

C:N ratios in plant tissue can also be used to evaluate the effects of excess N deposition on 

plants.  Baltimore gradient Bentgrass had similar C:N at the rural and urban site, while the 

suburban site had higher C:N (Figure 3.9).  The suburban and urban sites were significantly 

different (ANOVA, p=0.05).  Pittsburgh gradient Bentgrass showed a clear gradient in C:N, with 
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lowest values at the urban site and highest values at the rural site.  All three sites were 

significantly different (ANOVA, p=0.01).  At both locations, C:N showed seasonal variation.   

Values were lower throughout the growing season and were higher in October, at the end of the 

growing season. 

 

Figure 3.8: Nitrogen and carbon isotope plots for plant biomonitors.  Urban sites are marked with 
closed circles, suburban sites are open triangles and rural sites are closed squares. 
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Figure 3.9 Plant tissue C to N molar ratios of Baltimore and Pittsburgh Bentgrass and 
Switchgrass. 

 

Baltimore Switchgrass had similar values along the gradient, with no significant 

differences between sites (ANOVA, p=0.05) (Figure 3.9).  The Pittsburgh Switchgrass showed a 

more pronounced gradient in C:N values.  Urban sites had the lowest values, while rural sites had 
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the highest.  The urban and rural site were significantly different (ANOVA, p=0.05).  Like 

Bentgrass, Switchgrass at both gradients showed a distinct seasonal pattern, with lower values in 

August and September and higher values in October. 

3.4 DISCUSSION 

3.4.1 N fluxes and isotopes 

Average total N fluxes (HNO3 + NO2) along the Baltimore and Pittsburgh gradients showed 

increased levels of N deposition in urban sites compared to rural sites (Figure 3.3a and b).  This 

was expected due to increased fossil fuel sources in urban areas, particularly from mobile 

sources.  N flux at the urban site was 1.5 times higher than at the rural site along the Baltimore 

gradient, and 2.3 times higher at the Pittsburgh site.  Most national N monitoring network (e.g., 

CASTNET) sites are located in rural areas, thereby avoiding urban N deposition “hotspots”.  

Furthermore, a large component of the N flux measured in this study was from NO2, which is not 

measured by these networks.  As a consequence, the results presented in this study indicate that 

national monitoring networks underestimate total dry N deposition reaching the landscape and 

further that spatial patterns of deposition should be accounted for in watershed N loading 

models. 

While total N flux is on average greater at urban sites, monthly variation in HNO3 and 

NO2 flux reveals more complex deposition patterns (Figure 3.3c and d).  For example, NO2 flux 

increases in October and November at both gradients, corresponding with the winter changeover 

to non-reformulated gasoline, which does not burn as cleanly as summertime reformulated gas; 
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increased winter fossil fuel demand for heating and changes in atmospheric photochemistry in 

winter months.  However, HNO3 does not follow this pattern; highest HNO3 flux along the 

Baltimore gradient was in September and along the Pittsburgh gradient was in July.  In addition, 

relative contributions of HNO3 and NO2 differed by site, with higher proportions of HNO3 

deposition occurring at rural sites.  This may be attributed to competing HNO3 formation 

pathways, seasonal variation in stationary and mobile source emissions, and weather patterns 

(i.e. temperature, relative humidity and wind directions).   

In order to better understand these complex trends in regional N flux, we can use δ15N of 

dry deposition to help determine the sources of HNO3 and NO2 dry deposition (Figures 3.4 and 

3.5).  For example, δ15N-NO2 along the Pittsburgh gradient was 5 to 20‰ higher at the urban site 

than at the rural site in every month.  In contrast, δ15N-NO2 at the Baltimore urban site was only 

higher in October and November. The higher δ15N-NO2 suggests an influence of stationary 

source and vehicular NOx at the urban sites, which is expected in urban areas.  Pittsburgh may 

experience higher values at the urban site in all months of the study because it is downwind of 

the Ohio River Valley, which has the highest concentration of coal-burning power plants in the 

U.S.; thus it is likely that the Pittsburgh urban site is more heavily influenced by anthropogenic 

emissions than the Baltimore urban site. 

Monthly δ15N-NO2 data show temporal variations, with increased values in October and 

November at all sites along both gradients.   Seasonal patterns in δ15N-NO2 are consistent with 

other studies that report the δ15N of dry N deposition in HNO3 and particulate NO3- [Elliott et al., 

2009] and NO2 [Freyer et al., 1993] where values are higher in the winter and lower in the 

summer.  These patterns are attributed to changing NOx oxidation pathways between summer 

and winter [Freyer et al., 1993] and changes in stationary source NOx emissions relative to 
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lightning and biogenic emissions in summer [Elliott et al., 2009].  In this study, both 

mechanisms are likely for causing the seasonal variation in δ15N-NO2.  With the exception of the 

Pittsburgh urban site, which had values between -12 and -5‰ for every month, all sites had 

δ15N-NO2 values between -26 and -22‰ in the summer months (July-September).  In October 

and November, these values shifted upward by as much as 11‰ to a range of about -5 to -15‰.  

At these sites, δ15N-NO2 values were reflective of biogenic NOx emissions in the summer, during 

the growing season, and reflective of increasing proportional contributions from fossil fuel 

emissions during October and November. 

Isotopic analysis of HNO3 and NO2 reveals that in this study, the sources of these two 

species may be different.  For example, we can calculate the approximate δ15N signature of the 

NO2 from which HNO3 originated.  The oxidation of NO2 to HNO3 can result in a fractionation 

of 0.9971, causing δ15N-HNO3 values to be ~3‰ lower than δ15N-NO2 [Freyer, 1991].  

Therefore, in order to calculate δ15N-NO2 we can simply add 3‰ to our δ15N-HNO3 value.  

Accounting for this fractionation, calculated results indicate HNO3 originates as NO2 with δ15N-

NO2 values ranging from 1.8‰ to 5.8‰ for both gradients.  These values fall within the isotopic 

range of fossil fuel combustion from automobiles (-7 to +9‰) [Ammann et al., 1999; Freyer, 

1978; Heaton, 1990; Moore, 1977] and power plant combustion (+6 to +20‰) [Felix et al., 

submitted; Heaton, 1990].   

In contrast, our actual NO2 measurements showed a much larger range in values, ranging 

from -26.4‰ to -7.7‰ for the Baltimore gradient and -26.6‰ to -5.7‰ at the Pittsburgh sites.  

These values are closer to values for biogenic NOx (-19 to -49‰) [Li and Wang, 2008] and 

indicate mixing between biogenic and fossil fuel NO2 sources.  Because HNO3 can have an 

atmospheric lifetime of several days before being deposited, the discrepancy between HNO3 and 
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NO2 δ15N values could indicate that the HNO3 at these sites was subject to atmospheric transport 

and possibly formed further from our study sites.  Furthermore, there was little evidence of a 

gradient in δ15N-HNO3 values along both gradients.  These results suggest that HNO3 forms 

primarily from stationary sources and may be transported across a wide area, encompassing the 

entirety of each urban to rural gradient.  This suggestion is further supported by seasonal 

variation in δ15N-HNO3 values along the Pittsburgh gradient, where δ15N-HNO3 values are 

highest in July and August, dip down in September, and are high again in October and 

November.  This pattern may correspond with regional fossil fuel generation and consumption 

for air conditioning in the summer months and heating in October and November as has been 

documented in other studies [Elliott et al., 2007; Elliott et al., 2009].  In addition, all sampling 

sites across both gradients were located far enough from major roadways that they were not 

likely heavily influenced by locally deposited dry N from automobile emissions (See Chapter 

2.0).   

3.4.2 Plant response to gradients in N flux 

This study was designed to control as many variables as possible with respect to plant isotopic 

composition.  Plants were potted in the same type of potting soil to prevent influences of native 

soil.  Plants were also started from seed in the same location prior to being deployed in the field, 

so seedlings would start out with similar isotopic composition. By using this design, we hoped to 

restrict plant nutrients to the potting soil and atmospheric deposition.  However, despite a 

gradient of N flux and δ15N-NO2 at the Baltimore and Pittsburgh sites, plant tissue δ15N did not 

exhibit a strong gradient for either type of grass (Figure 3.6).   
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For example, δ15N-Bentgrass varied between gradients.  At the Baltimore gradient, the 

suburban site had the lowest values, while at the Pittsburgh gradient the suburban site had the 

highest values.  While δ15N-HNO3 did not exhibit any gradient during the growing season, there 

was a strong gradient in δ15N-NO2 at the Pittsburgh sites during the growing season.  Therefore, 

in Pittsburgh we would expect plants at the urban site to have higher δ15N than plants at the rural 

site.  However, patterns for δ15N-Bentgrass at both gradients did not show a relationship with N 

flux, nor did they track either δ15N-HNO3 or δ15N-NO2.   

In contrast, there was a slight gradient in δ15N-Switchgrass at the Baltimore and 

Pittsburgh sites. δ15N values were highest at the Baltimore urban site.  However, again this was 

not correlated with δ15N-NO2 or δ15N-HNO3, both of which did not exhibit isotopic gradients 

during the growing season at the Baltimore site.  At the Pittsburgh gradient, δ15N-Switchgrass 

was highest at the urban and suburban sites.  We expected the urban site to have the highest 

δ15N, given the strong gradient in δ15N-NO2; however, the suburban site actually had the highest 

values.  One confounding factor in this study is the influence of wet N deposition on the isotopic 

composition of plant tissue.  Because plants were exposed to rain water for the duration of the 

growing season, they may have received nutrients from NO3- in rainwater.  Rain may have had 

variations δ15N values along both gradients, and especially the Baltimore gradient due to the 

length of the gradient (209 kilometers).  This potential exposure may have dampened any 

isotopic variation expected from the influence of dry deposition.  For future studies, it is 

recommended to measure both wet and dry deposition to assess the influence of atmospheric N 

on plant tissue. 

In this study, Switchgrass at both gradients had lower δ13C values at the urban site than at 

the rural site (Figure 3.7), which suggests uptake of 13C-depleted fossil fuel CO2.  This was 
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especially evident along the Pittsburgh gradient where the rural site had the highest δ13C-

Switchgrass values, the urban site had the lowest and the suburban site was in between.  (At the 

Baltimore site, the suburban and rural sites had comparable δ13C values, indicating similar 

influence from fossil fuel CO2 at each of these sites.)  Pittsburgh δ13C-Bentgrass was also lower 

at the urban site and higher at the suburban and rural sites.  In contrast, Baltimore δ13C-Bentgrass 

had very similar values for the urban and rural sites.  Some of the highest δ13C values were at the 

urban site, contrary to our hypothesis.   

The differences in observed δ13C compositions between Switchgrass and Bentgrass along 

these gradients may be attributed to photosynthetic pathway.  Switchgrass uses the C4 

photosynthetic pathway, while Bentgrass is a C3 plant.  By nature of these photosynthetic 

pathways, C3 plants are known to have a higher discrimination against the heavier C isotope 

[Farquhar et al., 1989].  For example, C3 plants have lower δ13C values (-30 to -22‰) and C4 

plants have a higher δ13C values (-14 to -10‰) due to the higher discrimination in C3 plants.  In 

addition, C3 plants generally have a larger range in carbon isotopic values than C4 plants (~8‰ 

vs. ~4‰) [Farquhar et al., 1989].  Because C4 plants have a lower discrimination, they may be 

better indicators of changes in δ13C in polluted areas, and this could explain why Switchgrass 

plants displayed a more robust δ13C gradient than Bentgrass plants in this study. 

The difference in discrimination of C isotopes between Bentgrass and Switchgrass may 

also have affected the δ13C vs. δ15N plots (Figure 3.8).  These plots provide a novel way to 

visualize the isotopic differences in C and N for urban and rural sites for Switchgrass, but not for 

Bentgrass.  The Switchgrass plots show a fairly distinct difference between urban and rural sites, 

with urban sites plotting towards the bottom right, with lower δ13C and higher δ15N, and rural 

sites plotting closer to the top left, with higher δ13C and lower δ15N.  The Baltimore Bentgrass 
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plot, on the other hand, has the urban and rural sites in the same location on the plot.  The 

Pittsburgh Bentgrass also has urban values that plot in the same region as the rural values; it is 

also affected by the unexpectedly low δ15N values for the urban site. 

Another measure used to assess the effects of the N flux gradient on vegetation was 

carbon to nitrogen ratios in plant tissue, which can indicate the relative amount of N taken up by 

the plant.  We would expect that in rural areas with lower N deposition, plants would be more N-

limited and therefore have higher C:N.  Conversely, in urban areas with high N deposition, plants 

would not be as N-limited and would take up excess N, resulting in lower C:N (Figure 3.9).  For 

Baltimore gradient Bentgrass, C:N at urban sites was not much different from rural sites, but 

both were lower than the suburban site.  This may indicate that plants at the rural site were not 

N-limited, as expected.  For Switchgrass, plants at the Baltimore gradient showed a similar trend 

to the Bentgrass, in which C:N at the urban site was only slightly lower than the rural site.  In 

contrast, Bentgrass along the Pittsburgh gradient exhibited a strong C:N gradient, which was 

maintained in all months of the study.  This suggests that the rural site was more N-limited than 

the urban site, which corresponded to N flux at these sites.  Pittsburgh Switchgrass also had a 

gradient in C:N.  Both types of grasses at both gradients exhibited seasonal variation, in which 

C:N ratios increased in October.  This corresponds with the end of the growing season, during 

which time plants relocate N from the shoots to the roots, causing the shoots to have decreased N 

[Dickson, 1989].  
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3.4.3  Conclusions 

 

This study demonstrates the use of passive samplers and plants as biomonitors, which provide a 

relatively inexpensive method to measure and monitor the effects of N deposition in urban areas.  

Measuring and delineating the sources of N deposition in urban areas is crucial to understanding 

N flux across the regional landscape, as urban areas are hotspots for N pollution.  This study 

demonstrated that N flux is greatly increased in urban areas.  N isotopes indicate that this is 

likely due to the influence of fossil fuel combustion from point and mobile sources in urban 

areas.  However, there are few monitoring sites located in or near urban areas, as national 

monitoring networks such as the National Atmospheric Deposition Program- National Trends 

Network and CASTNET have sites intentionally located in rural areas, far from point sources of 

pollution.  While this provides good estimates of regional background levels of N pollution, it 

does not take into account the high levels of N deposition that may be occurring close to urban 

areas.  Further characterization of these hotspots of N pollution is needed to fully comprehend 

the impact of these spatial patterns in reactive nitrogen deposition to human and ecosystem 

health. 

The ambiguity of some of the results in this study points out some of the problems with 

using the traditional urban, suburban and rural convention in studying nitrogen deposition and its 

effects on biogeochemistry.  The delineation of urban, suburban and rural in this study was based 

on descriptive land use characteristics (such as type of neighborhood).  Perhaps it would be 

better to attempt to quantify the urban to rural gradient with a discrete measurement, such as road 

or population density.   For example, the Baltimore urban site was arguably “more urban” than 

the Pittsburgh urban site, due to its proximity to a heavily trafficked and populated downtown.  
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The Pittsburgh urban site, in contrast, was located in a neighborhood about four miles from 

downtown, which did not have nearly as much activity (and therefore exposure to area sources of 

N pollution) as the Baltimore site.  Likewise, the Pittsburgh rural site was probably the “most 

rural” of all the sites, with its location near forested and agricultural areas.  While the Baltimore 

rural site was in the NJ Pine Barrens, it was located downwind of a heavily suburbanized area.  

Further work on this project could include quantifying the “urban level” of the six sites and 

comparing the results along a six-site gradient, rather than by city. 
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APPENDIX A 

DATA TABLES 

Table A1: Road gradient nitrogen isotope data.  Missing data points had insufficient sample mass 
for analysis. 

Distance from 
the Road (m) 

Month  δ15N‐HNO3 (‰)  δ15N‐NO2 (‰)  

2  August  3.1 ‐5.1 
2  September  ‐0.9 ‐3.3 
2  October  3.1 5.3 
2  November  2.4 7.3 
12  August  3.0 ‐11.7 
12  September  ‐0.9 ‐16.7 
12  October  3.3 ‐8.8 
12  November  1.7 0.5 
30  July  1.0 ‐16.3 
30  August  2.1 ‐‐‐‐ 
30  September  ‐1.1 ‐16.5 
30  October  1.9 ‐6.2 
30  November  1.9 0.1 
90  July  5.7 ‐12.4 
90  August  1.8 ---- 

90  September  ‐1.1 ‐24.6 
90  October  1.7 ‐14.5 
90  November  2.1 ‐5.1 
188  July  3.3  ---- 

188  August  2.1  ---- 

188  September  ‐0.8 ‐21.8 
188  October  0.9 ‐12.5 
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188  November  1.9 ‐5.8 
460  July  2.5  ---- 

460  August  2.0 ‐16.2 
460  September  ‐0.6 ‐24.6 
460  October  2.5 ‐18.3 
460  November  1.6 ‐11.9 
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Table A2: Road gradient nitrogen flux data.  All nitrogen fluxes are in kg ha-1 yr-1.  Missing data 
points are due to sampling site vandalism. 

 
Distance 
from 
Road (m) 

Month  NO2  
Golden 
 

NO2 

Roadman 
High 

NO2 
Roadman 
Low 

HNO3 
Golden 
 

HNO3 
Roadman 
 

2  August  0.85 1.60 0.70 0.14  0.06
2  September  1.09 2.05 0.89 0.11  0.06
2  October  3.46 6.49 2.83 0.18  0.07
2  November  3.44 6.45 2.81 0.26  0.10
12  August  0.83 1.56 0.68 0.34  0.14
12  September  0.70 1.31 0.57 0.13  0.06
12  October  1.69 3.18 1.39 0.20  0.08
12  November  2.39 4.48 1.95 0.22  0.08
30  July  0.85 1.59 0.69 0.11  0.06
30  August   ‐‐‐‐ ‐‐‐‐   ‐‐‐‐ 0.09  0.03
30  September  0.88 1.66 0.72 0.08  0.04
30  October  1.38 2.59 1.13 0.13  0.05
30  November  1.42 2.66 1.16 0.42  0.15
90  July  0.80 1.50 0.66 0.11  0.06
90  August  0.06 0.12 0.05 0.09  0.03
90  September  0.51 0.96 0.42 0.09  0.04
90  October  0.75 1.41 0.61 0.43  0.17
90  November  1.31 2.45 1.07 0.26  0.09
188  July  0.03 0.06 0.03 0.12  0.07
188  August  0.00 0.00 0.00 0.09  0.03
188  September  0.43 0.80 0.35 0.08  0.04
188  October  0.77 1.44 0.63 0.56  0.22
188  November  1.27 2.37 1.04 0.42  0.16
460  July  0.00 0.00 0.00 0.19  0.10
460  August  0.29 0.54 0.23 0.06  0.02
460  September  0.42 0.78 0.34 0.07  0.03
460  October  0.86 1.62 0.71 0.18  0.07
460  November  0.77 1.44 0.63 0.17  0.06
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Table A3: Road gradient Bentgrass nitrogen and carbon isotopes, C to N ratios and soil nitrogen 
isotopes 

 

Distance 
from the 
Road (m) 

Month  Grass Type  δ15N (‰)  δ13C (‰)  C:N  δ15N Soil 
(‰) 

30  July  Bentgrass  2.7 ‐30.2 16.2  ‐2.7
30  August  Bentgrass  2.8 ‐29.0 22.3  ‐2.0
30  September  Bentgrass  2.1 ‐28.5 22.2  ‐1.0
30  October  Bentgrass  1.3 ‐27.6 29.8  ‐8.1
91  July  Bentgrass  2.1 ‐30.6 12.4  ‐1.2
91  August  Bentgrass  0.6 ‐28.8 42.0  ‐1.4
91  September  Bentgrass  ‐0.4 ‐27.8 13.0  ‐1.3
91  October  Bentgrass  0.3 ‐29.2 35.7  ‐2.0
188  July  Bentgrass  3.6 ‐29.4 14.1  ‐1.5
188  August  Bentgrass  0.6 ‐28.8 25.9  ‐2.8
188  September  Bentgrass  0.3 ‐27.4 27.6  ‐2.0
188  October  Bentgrass  ‐0.3 ‐26.8 37.8  ‐1.1
460  July  Bentgrass  4.0 ‐30.2 17.4  ‐1.5
460  August  Bentgrass  0.0 ‐29.3 28.3  ‐2.0
460  September  Bentgrass  ‐0.6 ‐27.4 26.1  ‐2.6
460  October  Bentgrass  ‐0.7 ‐26.8 41.5  ‐2.4
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Table A4: Road gradient Switchgrass nitrogen and carbon isotopes, C to N ratios and soil 
nitrogen isotopes 

 

Distance 
from the 
Road (m) 

Month  Grass Type  δ15N (‰)  δ13C (‰)  C:N  δ15N Soil 
(‰) 

12  August  Switchgrass  ‐1.7 ‐11.9 18.51  ‐1.7
12  September  Switchgrass  1.7 ‐13.3 23.80  ‐1.3
12  October  Switchgrass  1.2 ‐13.2 23.16  ‐‐‐‐

12 (2nd)  August  Switchgrass  ‐1.9 ‐13.8 21.43  ‐1.8
12 (2nd)  September  Switchgrass  ‐1.3 ‐12.8 19.78  ‐1.9
12 (2nd)  October  Switchgrass  2.9 ‐13.5 30.79  ‐‐‐‐

30  July  Switchgrass  2.1 ‐13.0 21.14  ‐0.3
30  August  Switchgrass  1.7 ‐13.0 39.86  ‐2.0
30  September  Switchgrass  ‐0.4 ‐12.6 26.62  ‐0.4
30  October  Switchgrass  1.3 ‐12.8 23.42  ‐0.8
90  July  Switchgrass  ‐0.1 ‐12.0 16.83  ‐2.4
90  August  Switchgrass  2.0 ‐11.4 18.22  ‐0.4
90  September  Switchgrass  1.6 ‐12.3 23.48  ‐0.7
90  October  Switchgrass  2.9 ‐12.5 30.13  ‐1.3
188  July  Switchgrass  3.4 ‐12.1 17.12  ‐0.6
188  August  Switchgrass  ‐0.2 ‐11.8 40.26  ‐1.0
188  September  Switchgrass  ‐0.1 ‐12.2 58.84  ‐1.5
188  October  Switchgrass  ‐1.1 ‐12.5 73.00  ‐1.7
460  July  Switchgrass  0.4 ‐12.2 17.95  ‐1.6
460  August  Switchgrass  ‐1.9 ‐12.0 39.42  ‐1.0
460  September  Switchgrass  ‐1.0 ‐12.6 50.83  ‐0.9
460  October  Switchgrass  ‐2.7 ‐12.8 125.41  ‐1.0
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Table A5: Baltimore gradient nitrogen flux and isotopes.  Missing data points are due to 
insufficient sample mass for analysis. 

 

Location 
Description  Location  Month  NO2 Flux 

(kg ha‐1 yr‐1) 
HNO3 Flux  
(kg ha‐1 yr‐1) 

δ15N‐HNO3 
(‰) 

δ15N‐
NO2  
(‰) 

Urban  Baltimore  July  0.46 0.56 0.3  ‐26.4
Urban  Baltimore  August  0.32 0.44 0.9  ‐25.0
Urban  Baltimore  September  0.36 0.43 1.2  ‐24.1
Urban  Baltimore  October  1.37 0.50 1.6  ‐11.3
Urban  Baltimore  November  1.71 0.16 2.1  ‐7.7
Suburban  Cub Hill  July  0.22 0.16 2.1   ----
Suburban  Cub Hill  August  0.69 0.08 ‐0.4  ‐22.1
Suburban  Cub Hill  September  0.23 1.20 2.2  ‐24.0
Suburban  Cub Hill  October  0.88 0.44 2.1  ‐12.1
Suburban  Cub Hill  November  0.99 0.14 2.7  ‐13.0
Rural  Silas  July  0.26 0.68 1.5  ‐24.4
Rural  Silas  August  0.14 0.23 0.3   ----
Rural  Silas  September  0.08 1.64 2.0  ----
Rural  Silas  October  0.32 0.05 ‐5.9  ‐14.7
Rural  Silas  November  0.56 0.22 1.0  ‐12.0
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Table A6: Pittsburgh gradient nitrogen flux and isotopes.  Missing data points are due to 
insufficient sample mass for analysis. 

 

Location 
Description  Location  Month  NO2 Flux  

(kg ha‐1 yr‐1) 
HNO3 Flux 
 (kg ha‐1 yr‐1) 

δ15N‐HNO3 
(‰) 

δ15N‐
NO2 

(‰) 
Urban  Hazelwood  July  0.37 1.54 2.1  ‐11.9
Urban  Hazelwood  August  0.68 0.10 1.5  ‐8.9
Urban  Hazelwood  September  1.49 0.08 0.2  ‐10.5
Urban  Hazelwood  October  1.15 0.45 2.3  ‐6.0
Urban  Hazelwood  November  2.38 0.26 2.0  ‐5.7
Suburban  Westmoreland  July  0.21 0.40 1.9  ‐26.6
Suburban  Westmoreland  August  0.29 0.09 0.7  ‐22.8
Suburban  Westmoreland  September  0.32 0.08 0.4  ‐24.5
Suburban  Westmoreland  October  0.39 0.38 1.4  ‐25.3
Suburban  Westmoreland  November  1.13 0.31 1.2  ‐15.2
Rural  Powdermill  July  0.25 0.53 2.8  ‐22.5
Rural  Powdermill  August  0.13 0.07 1.9   ----
Rural  Powdermill  September  0.33 0.07 ‐1.2  ‐23.7
Rural  Powdermill  October  0.89 0.85 ‐0.1  ‐13.7
Rural  Powdermill  November  1.16 0.40 0.7  ‐9.1
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Table A7: Baltimore gradient Bentgrass nitrogen and carbon isotopes and C to N ratios  

 

Location 
Description  Location  Month  Grass 

Type 
Plant 

Number  δ15N  δ13C  C:N 

Urban  Baltimore  July  Bentgrass  3  ‐1.1  ‐30.5  11.03
Urban  Baltimore  July  Bentgrass  4  ‐0.8  ‐30.0  10.62
Urban  Baltimore  July  Bentgrass  5  ‐0.9  ‐31.0  9.79
Urban  Baltimore  August  Bentgrass  1  ‐0.6  ‐29.5  15.34
Urban  Baltimore  August  Bentgrass  2  0.1  ‐28.7  15.13
Urban  Baltimore  August  Bentgrass  3  0.3  ‐28.9  14.78
Urban  Baltimore  August  Bentgrass  4  ‐0.1  ‐28.6  13.38
Urban  Baltimore  August  Bentgrass  5  ‐0.7  ‐27.0  13.18
Urban  Baltimore  September  Bentgrass  1  ‐0.2  ‐31.0  18.90
Urban  Baltimore  September  Bentgrass  2  0.2  ‐30.5  22.23
Urban  Baltimore  September  Bentgrass  3  0.1  ‐30.8  20.06
Urban  Baltimore  September  Bentgrass  4  0.1  ‐30.5  18.30
Urban  Baltimore  September  Bentgrass  5  ‐1.2  ‐20.9  29.96
Urban  Baltimore  October  Bentgrass  1  1.0  ‐31.2  22.43
Urban  Baltimore  October  Bentgrass  2  ‐0.3  ‐30.9  29.54
Urban  Baltimore  October  Bentgrass  3  0.2  ‐30.2  31.01
Urban  Baltimore  October  Bentgrass  4  ‐0.3  ‐31.2  27.42
Urban  Baltimore  October  Bentgrass  5  ‐0.6  ‐16.0  49.01
Suburban  Cub Hill  July  Bentgrass  1  ‐2.1  ‐31.8  16.81
Suburban  Cub Hill  July  Bentgrass  2  ‐1.8  ‐31.1  22.64
Suburban  Cub Hill  July  Bentgrass  3  ‐1.0  ‐31.6  20.74
Suburban  Cub Hill  July  Bentgrass  4  ‐0.5  ‐31.5  19.77
Suburban  Cub Hill  July  Bentgrass  5  ‐0.5  ‐31.4  21.56
Suburban  Cub Hill  August  Bentgrass  1  ‐1.5  ‐30.3  22.06
Suburban  Cub Hill  August  Bentgrass  2  ‐1.2  ‐29.8  34.23
Suburban  Cub Hill  August  Bentgrass  3  ‐0.6  ‐29.4  33.32
Suburban  Cub Hill  August  Bentgrass  4  ‐0.2  ‐30.2  32.20
Suburban  Cub Hill  August  Bentgrass  5  ‐0.5  ‐30.3  30.73
Suburban  Cub Hill  September  Bentgrass  1  ‐0.2  ‐30.1  8.73
Suburban  Cub Hill  September  Bentgrass  2  ‐1.1  ‐29.3  34.69
Suburban  Cub Hill  September  Bentgrass  3  ‐0.7  ‐28.8  38.94
Suburban  Cub Hill  September  Bentgrass  4  ‐0.6  ‐29.7  32.90
Suburban  Cub Hill  September  Bentgrass  5  ‐0.5  ‐29.7  27.24
Suburban  Cub Hill  October  Bentgrass  1  ‐0.3  ‐29.9  31.56
Suburban  Cub Hill  October  Bentgrass  2  ‐1.2  ‐28.9  34.86
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Suburban  Cub Hill  October  Bentgrass  3  ‐0.7  ‐29.1  57.86
Suburban  Cub Hill  October  Bentgrass  4  ‐0.6  ‐29.7  47.56
Suburban  Cub Hill  October  Bentgrass  5  ‐0.4  ‐30.2  37.76
Rural  Silas  August  Bentgrass  1  ‐0.8  ‐30.6  18.11
Rural  Silas  August  Bentgrass  2  ‐3.1  ‐30.5  15.21
Rural  Silas  August  Bentgrass  4  ‐0.7  ‐30.1  15.97
Rural  Silas  September  Bentgrass  1  ‐0.1  ‐30.5  23.83
Rural  Silas  September  Bentgrass  2  0.4  ‐30.6  21.58
Rural  Silas  September  Bentgrass  4  0.1  ‐30.4  23.07
Rural  Silas  October  Bentgrass  1  ‐0.4  ‐30.4  40.59
Rural  Silas  October  Bentgrass  2  0.2  ‐29.3  41.00
Rural  Silas  October  Bentgrass  3  6.3  ‐31.2  23.70
Rural  Silas  October  Bentgrass  4  0.0  ‐30.1  30.57
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Table A8: Baltimore gradient Switchgrass nitrogen and carbon isotopes and C to N ratios  

 

Location 
Description  Location  Month  Grass Type  Plant 

Number δ15N  δ13C  C:N 

Urban  Baltimore  July  Switchgrass 1  ‐0.7  ‐12.1  11.91
Urban  Baltimore  July  Switchgrass 2  ‐1.5  ‐12.2  12.41
Urban  Baltimore  July  Switchgrass 3  ‐2.7  ‐11.8  12.68
Urban  Baltimore  July  Switchgrass 4  ‐2.2  ‐11.5  11.27
Urban  Baltimore  July  Switchgrass 5  ‐0.2  ‐11.5  13.35
Urban  Baltimore  August  Switchgrass 1  0.9  ‐13.4  26.95
Urban  Baltimore  August  Switchgrass 2  5.5  ‐13.6  27.64
Urban  Baltimore  August  Switchgrass 3  0.3  ‐13.4  34.46
Urban  Baltimore  August  Switchgrass 4  ‐0.7  ‐13.7  26.54
Urban  Baltimore  August  Switchgrass 5  2.1  ‐13.7  21.26
Urban  Baltimore  September  Switchgrass 1  1.7  ‐13.5  38.00
Urban  Baltimore  September  Switchgrass 2  7.6  ‐13.6  27.98
Urban  Baltimore  September  Switchgrass 3  3.1  ‐13.6  35.73
Urban  Baltimore  September  Switchgrass 4  ‐1.1  ‐13.6  38.05
Urban  Baltimore  September  Switchgrass 5  7.5  ‐13.5  28.59
Urban  Baltimore  October  Switchgrass 1  1.6  ‐13.8  32.13
Urban  Baltimore  October  Switchgrass 2  10.1  ‐13.8  34.74
Urban  Baltimore  October  Switchgrass 3  9.4  ‐13.6  35.79
Urban  Baltimore  October  Switchgrass 4  ‐1.4  ‐13.5  60.02
Urban  Baltimore  October  Switchgrass 5  5.6  ‐13.5  30.78
Suburban  Cub Hill  July  Switchgrass 1  ‐2.7  ‐12.9  16.76
Suburban  Cub Hill  July  Switchgrass 2  ‐3.7  ‐13.0  18.71
Suburban  Cub Hill  July  Switchgrass 3  ‐3.1  ‐12.8  23.13
Suburban  Cub Hill  August  Switchgrass 1  ‐2.3  ‐13.2  34.39
Suburban  Cub Hill  August  Switchgrass 2  ‐1.7  ‐12.9  31.30
Suburban  Cub Hill  August  Switchgrass 3  ‐2.1  ‐12.8  22.96
Suburban  Cub Hill  August  Switchgrass 4  ‐1.9  ‐13.0  34.37
Suburban  Cub Hill  August  Switchgrass 5  ‐2.8  ‐12.9  24.89
Suburban  Cub Hill  September  Switchgrass 1  ‐1.4  ‐13.6  31.60
Suburban  Cub Hill  September  Switchgrass 2  ‐0.7  ‐13.3  33.47
Suburban  Cub Hill  September  Switchgrass 3  ‐2.1  ‐13.5  26.92
Suburban  Cub Hill  September  Switchgrass 4  ‐2.3  ‐13.6  31.40
Suburban  Cub Hill  September  Switchgrass 5  ‐1.2  ‐13.5  21.39
Suburban  Cub Hill  October  Switchgrass 1  ‐1.8  ‐13.4  39.08
Suburban  Cub Hill  October  Switchgrass 2  ‐2.1  ‐13.3  66.56
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Suburban  Cub Hill  October  Switchgrass 3  ‐2.2  ‐13.2  48.43
Suburban  Cub Hill  October  Switchgrass 4  ‐1.7  ‐13.3  58.03
Suburban  Cub Hill  October  Switchgrass 5  ‐2.2  ‐13.3  40.86
Rural  Silas  July  Switchgrass 1  ‐1.0  ‐13.0  17.24
Rural  Silas  July  Switchgrass 2  0.4  ‐13.0  17.17
Rural  Silas  July  Switchgrass 3  0.2  ‐12.9  18.20
Rural  Silas  July  Switchgrass 4  0.4  ‐13.2  18.24
Rural  Silas  July  Switchgrass 5  1.7  ‐13.3  18.59
Rural  Silas  August  Switchgrass 1  ‐0.1  ‐13.1  39.89
Rural  Silas  August  Switchgrass 2  1.6  ‐13.1  37.16
Rural  Silas  August  Switchgrass 3  0.7  ‐13.0  38.45
Rural  Silas  August  Switchgrass 4  ‐0.2  ‐12.9  25.55
Rural  Silas  August  Switchgrass 5  2.9  ‐12.9  25.50
Rural  Silas  September  Switchgrass 1  0.4  ‐13.6  34.82
Rural  Silas  September  Switchgrass 2  0.7  ‐13.6  30.16
Rural  Silas  September  Switchgrass 3  0.2  ‐13.4  28.04
Rural  Silas  September  Switchgrass 4  3.6  ‐13.4  24.49
Rural  Silas  September  Switchgrass 5  0.7  ‐13.5  27.45
Rural  Silas  October  Switchgrass 1  ‐1.7  ‐13.5  53.33
Rural  Silas  October  Switchgrass 2  1.9  ‐13.4  45.71
Rural  Silas  October  Switchgrass 3  ‐1.1  ‐12.8  47.93
Rural  Silas  October  Switchgrass 4  ‐1.7  ‐13.3  55.26
Rural  Silas  October  Switchgrass 5  5.0  ‐13.1  35.36
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Table A9: Pittsburgh gradient Bentgrass nitrogen and carbon isotopes and C to N ratios 

 

Location 
Description  Location  Month  Grass 

Type 
Plant 

Number  δ15N  δ13C  C:N 

Urban  Hazelwood  July  Bentgrass  1  ‐4.0  ‐31.0  10.56
Urban  Hazelwood  July  Bentgrass  2  ‐3.7  ‐31.5  10.33
Urban  Hazelwood  July  Bentgrass  3  ‐3.2  ‐31.1  9.40
Urban  Hazelwood  July  Bentgrass  4  ‐3.7  ‐31.4  10.86
Urban  Hazelwood  July  Bentgrass  5  ‐0.7  ‐31.2  9.24
Urban  Hazelwood  August  Bentgrass  1  ‐1.6  ‐28.9  13.89
Urban  Hazelwood  August  Bentgrass  2  ‐2.1  ‐29.0  12.10
Urban  Hazelwood  August  Bentgrass  3  ‐1.8  ‐28.8  12.83
Urban  Hazelwood  August  Bentgrass  4  ‐1.8  ‐29.9  15.72
Urban  Hazelwood  August  Bentgrass  5  0.1  ‐28.5  12.99
Urban  Hazelwood  September  Bentgrass  1  ‐1.2  ‐28.6  13.93
Urban  Hazelwood  September  Bentgrass  2  ‐1.2  ‐28.4  14.16
Urban  Hazelwood  September  Bentgrass  3  ‐0.9  ‐29.1  15.10
Urban  Hazelwood  September  Bentgrass  4  ‐0.8  ‐27.9  16.30
Urban  Hazelwood  September  Bentgrass  5  ‐0.5  ‐28.4  14.23
Urban  Hazelwood  October  Bentgrass  1  ‐1.6  ‐28.8  20.28
Urban  Hazelwood  October  Bentgrass  2  ‐1.2  ‐28.0  18.87
Urban  Hazelwood  October  Bentgrass  3  ‐1.2  ‐27.6  24.76
Urban  Hazelwood  October  Bentgrass  4  ‐1.6  ‐29.5  24.09
Urban  Hazelwood  October  Bentgrass  5  ‐0.9  ‐28.2  22.71
Suburban  Westmoreland  July  Bentgrass  1  2.6  ‐29.1  16.07
Suburban  Westmoreland  July  Bentgrass  2  ‐0.5  ‐29.4  16.78
Suburban  Westmoreland  July  Bentgrass  3  1.8  ‐29.9  16.34
Suburban  Westmoreland  July  Bentgrass  4  2.0  ‐29.1  16.32
Suburban  Westmoreland  July  Bentgrass  5  ‐1.8  ‐29.3  10.97
Suburban  Westmoreland  August  Bentgrass  1  0.4  ‐28.6  21.38
Suburban  Westmoreland  August  Bentgrass  2  ‐0.4  ‐28.0  21.00
Suburban  Westmoreland  August  Bentgrass  3  0.3  ‐28.0  21.23
Suburban  Westmoreland  August  Bentgrass  4  ‐0.5  ‐27.7  19.63
Suburban  Westmoreland  August  Bentgrass  5  0.7  ‐28.2  19.76
Suburban  Westmoreland  September  Bentgrass  1  ‐0.7  ‐26.6  23.10
Suburban  Westmoreland  September  Bentgrass  2  ‐0.4  ‐26.9  19.30
Suburban  Westmoreland  September  Bentgrass  3  ‐0.1  ‐28.0  18.52
Suburban  Westmoreland  September  Bentgrass  4  0.4  ‐27.7  19.70
Suburban  Westmoreland  September  Bentgrass  5  ‐0.4  ‐26.9  20.91
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Suburban  Westmoreland  October  Bentgrass  1  ‐1.0  ‐27.4  33.42
Suburban  Westmoreland  October  Bentgrass  2  ‐1.1  ‐27.5  31.80
Suburban  Westmoreland  October  Bentgrass  3  ‐0.8  ‐28.1  23.97
Suburban  Westmoreland  October  Bentgrass  4  ‐0.1  ‐27.6  26.56
Suburban  Westmoreland  October  Bentgrass  5  ‐0.9  ‐27.1  30.39
Rural  Powdermill  July  Bentgrass  1  1.1  ‐30.2  18.48
Rural  Powdermill  July  Bentgrass  2  0.5  ‐30.0  18.83
Rural  Powdermill  July  Bentgrass  3  ‐0.2  ‐29.4  16.28
Rural  Powdermill  July  Bentgrass  4  2.0  ‐30.0  19.84
Rural  Powdermill  July  Bentgrass  5  1.0  ‐29.3  19.04
Rural  Powdermill  August  Bentgrass  1  ‐0.3  ‐29.1  29.26
Rural  Powdermill  August  Bentgrass  2  ‐0.2  ‐28.4  28.21
Rural  Powdermill  August  Bentgrass  3  ‐0.8  ‐28.4  27.27
Rural  Powdermill  August  Bentgrass  4  ‐0.3  ‐28.5  29.81
Rural  Powdermill  August  Bentgrass  5  ‐0.8  ‐27.3  29.75
Rural  Powdermill  September  Bentgrass  1  ‐1.0  ‐27.7  30.55
Rural  Powdermill  September  Bentgrass  2  0.0  ‐28.4  25.75
Rural  Powdermill  September  Bentgrass  3  ‐0.9  ‐27.2  29.25
Rural  Powdermill  September  Bentgrass  4  ‐0.6  ‐27.7  27.40
Rural  Powdermill  September  Bentgrass  5  ‐0.6  ‐26.9  29.22
Rural  Powdermill  October  Bentgrass  1  ‐1.2  ‐28.4  42.04
Rural  Powdermill  October  Bentgrass  2  ‐1.2  ‐27.5  36.37
Rural  Powdermill  October  Bentgrass  3  ‐1.1  ‐27.7  34.76
Rural  Powdermill  October  Bentgrass  4  ‐0.6  ‐28.0  32.79
Rural  Powdermill  October  Bentgrass  5  ‐1.1  ‐26.2  36.35
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Table A10: Pittsburgh gradient Switchgrass nitrogen and carbon isotopes and C to N ratios 

 

Location 
Description  Location  Month  Grass Type  Plant 

Number  δ15N  δ13C  C:N 

Urban  Hazelwood  July  Switchgrass  1  ‐3.5  ‐13.3  14.75
Urban  Hazelwood  July  Switchgrass  2  ‐3.3  ‐12.9  18.79
Urban  Hazelwood  July  Switchgrass  3  ‐2.4  ‐12.9  16.59
Urban  Hazelwood  July  Switchgrass  4  ‐5.0  ‐12.8  13.98
Urban  Hazelwood  July  Switchgrass  5  ‐2.7  ‐13.2  18.36
Urban  Hazelwood  August  Switchgrass  1  ‐1.2  ‐13.4  26.75
Urban  Hazelwood  August  Switchgrass  2  ‐0.6  ‐13.7  23.17
Urban  Hazelwood  August  Switchgrass  3  ‐0.5  ‐13.0  21.96
Urban  Hazelwood  August  Switchgrass  4  ‐0.4  ‐12.8  23.44
Urban  Hazelwood  August  Switchgrass  5  ‐1.1  ‐13.1  24.75
Urban  Hazelwood  September  Switchgrass  1  ‐1.1  ‐13.9  28.01
Urban  Hazelwood  September  Switchgrass  2  ‐0.5  ‐14.1  23.32
Urban  Hazelwood  September  Switchgrass  3  ‐1.7  ‐13.5  24.07
Urban  Hazelwood  September  Switchgrass  4  ‐1.1  ‐13.8  20.15
Urban  Hazelwood  September  Switchgrass  5  ‐1.4  ‐13.7  32.28
Urban  Hazelwood  October  Switchgrass  1  ‐2.1  ‐13.7  39.68
Urban  Hazelwood  October  Switchgrass  2  ‐0.9  ‐13.9  37.11
Urban  Hazelwood  October  Switchgrass  3  ‐2.0  ‐13.7  44.39
Urban  Hazelwood  October  Switchgrass  4  ‐1.7  ‐13.5  40.44
Urban  Hazelwood  October  Switchgrass  5  ‐1.9  ‐13.3  42.20
Suburban  Westmoreland  July  Switchgrass  1  ‐1.0  ‐12.3  24.13
Suburban  Westmoreland  July  Switchgrass  2  ‐1.6  ‐12.6  19.76
Suburban  Westmoreland  July  Switchgrass  3  ‐0.5  ‐12.5  20.93
Suburban  Westmoreland  July  Switchgrass  4  ‐1.2  ‐12.5  18.26
Suburban  Westmoreland  July  Switchgrass  5  ‐1.2  ‐12.7  21.57
Suburban  Westmoreland  August  Switchgrass  1  ‐0.8  ‐12.4  36.76
Suburban  Westmoreland  August  Switchgrass  2  ‐1.2  ‐12.6  35.98
Suburban  Westmoreland  August  Switchgrass  3  ‐0.7  ‐12.3  32.73
Suburban  Westmoreland  August  Switchgrass  4  ‐0.1  ‐12.8  36.54
Suburban  Westmoreland  August  Switchgrass  5  ‐0.1  ‐12.9  35.72
Suburban  Westmoreland  September  Switchgrass  1  ‐1.7  ‐12.9  72.23
Suburban  Westmoreland  September  Switchgrass  2  ‐0.6  ‐13.3  35.74
Suburban  Westmoreland  September  Switchgrass  3  ‐1.0  ‐13.1  36.20
Suburban  Westmoreland  September  Switchgrass  4  ‐0.7  ‐13.3  33.15
Suburban  Westmoreland  September  Switchgrass  5  0.0  ‐13.4  43.90
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Suburban  Westmoreland  October  Switchgrass  1  ‐3.1  ‐12.8  33.14
Suburban  Westmoreland  October  Switchgrass  2  ‐1.2  ‐12.8  47.63
Suburban  Westmoreland  October  Switchgrass  3  ‐2.3  ‐12.7  62.34
Suburban  Westmoreland  October  Switchgrass  4  ‐2.8  ‐12.9  104.07
Suburban  Westmoreland  October  Switchgrass  5  ‐0.3  ‐13.2  52.77
Rural  Powdermill  July  Switchgrass  1  1.0  ‐12.0  21.71
Rural  Powdermill  July  Switchgrass  2  ‐0.6  ‐11.8  16.42
Rural  Powdermill  July  Switchgrass  3  0.6  ‐12.0  23.54
Rural  Powdermill  July  Switchgrass  4  ‐1.1  ‐11.9  21.02
Rural  Powdermill  July  Switchgrass  5  0.1  ‐11.6  20.72
Rural  Powdermill  August  Switchgrass  1  ‐0.8  ‐11.9  46.88
Rural  Powdermill  August  Switchgrass  2  0.3  ‐11.9  33.50
Rural  Powdermill  August  Switchgrass  3  ‐1.8  ‐12.1  44.62
Rural  Powdermill  August  Switchgrass  4  ‐1.1  ‐11.9  40.12
Rural  Powdermill  August  Switchgrass  5  ‐1.6  ‐12.2  46.48
Rural  Powdermill  September  Switchgrass  1  ‐2.7  ‐12.3  39.15
Rural  Powdermill  September  Switchgrass  2  ‐1.2  ‐12.3  53.93
Rural  Powdermill  September  Switchgrass  3  ‐2.2  ‐12.4  51.48
Rural  Powdermill  September  Switchgrass  4  ‐2.9  ‐12.4  5.03
Rural  Powdermill  September  Switchgrass  5  ‐1.6  ‐12.6  167.60
Rural  Powdermill  October  Switchgrass  1  ‐2.8  ‐12.6  77.50
Rural  Powdermill  October  Switchgrass  2  ‐1.3  ‐12.4  121.01
Rural  Powdermill  October  Switchgrass  3  ‐2.6  ‐12.5  117.91
Rural  Powdermill  October  Switchgrass  4  ‐4.1  ‐12.6  24.96
Rural  Powdermill  October  Switchgrass  5  ‐3.9  ‐12.5  86.68
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