
EXPERIMENTAL STUDIES ON 2D FLUID SYSTEM

by

Ildoo Kim

M.S in Physics, Yonsei University, Seoul, Korea, 2004

B.S in Physics, KAIST, Daejeon, Korea, 2002

Submitted to the Graduate Faculty of

the Department of Physics and Astronomy in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2011



UNIVERSITY OF PITTSBURGH

DEPARTMENT OF PHYSICS AND ASTRONOMY

This dissertation was presented

by

Ildoo Kim

It was defended on

December 7, 2010

and approved by

Xiao-Lun Wu, Ph.D, Department of Physics and Astronomy

David Jasnow, Ph.D, Department of Physics and Astronomy

Jeremy Levy, Ph.D, Department of Physics and Astronomy

Vladimir Savinov, Ph.D, Department of Physics and Astronomy

Stephen Garoff, Ph.D, Department of Physics, CMU

Dissertation Director: Xiao-Lun Wu, Ph.D, Department of Physics and Astronomy

ii



Copyright c© by Ildoo Kim

2011

iii



EXPERIMENTAL STUDIES ON 2D FLUID SYSTEM

Ildoo Kim, PhD

University of Pittsburgh, 2011

A von Kármán vortex street is two rows of counter-rotating vortices which is observed behind an

obstacle in a uniform flow. In two-dimensional soap films, laminar vortex streets were generated

using obstacles of various shapes. The Strouhal number St = f D/U , where f is the shedding

frequency, D is the size of the obstacle and U is the mean flow speed, is measured and com-

pared to a recently proposed St-Re relationship, St = 1/(A+B/Re), where the Reynolds number

Re = UD/ν , where ν is the kinematic viscosity of the fluid. Our measurements show that in the

asymptotic limit (Re→∞), St∞ = 1/A' 0.21 is constant independent of rod shapes. This suggests

that the potential flow is dominant at high Re and that the potential flow around different shaped

rods are all strongly affected by the dipolar field. Another coefficient B, which is connected to the

thickness of the boundary layer, remains shape-dependent, indicating that for intermediate Re, the

St-Re relation is effected by the geometric shape of the rod.

An interaction between a soap film and a droplet is also studied. When a micron-sized water

droplet impacts on a soap film with speed vi, there exists a critical impact velocity of penetration

vC. Droplets with vi < vC merge and flow with the film after impacts, whereas droplets with

vi > vC tunnel through it. In all cases, the film remains intact despite the fact that the droplet radius

(R0 = 26 µm) is much greater than the film thickness (0 < h . 10 µm). The critical velocity vC

is measured as a function of h, and interestingly vC approaches a non-zero value vC0 ' 520cm/s

in the limit h→ 0. This indicates that in addition to an inertial effect, a deformation or stretching

energy of the film is required for penetration.
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1.0 INTRODUCTION

One of the fundamental difficulties of the fluid dynamics is that the governing equation, the Navier-

Stokes equation, is hardly solvable. The Navier-Stokes equation is, in a non-dimensional form,

∂~v
∂ t

+(~v ·∇)~v =−∇p+
1

Re
∇

2~v, (1.1)

with Reynolds number Re = UD/ν , where U and D are characteristic velocity and length scales

in the system and ν is the kinematic viscosity. There are two complicating factors in the equation.

The first is the nonlinearity. The inertial term (~v ·∇)~v, originated from the momentum transport, is

proportional to v2, and this nonlinearity makes the equation complex and mathematically difficult

to solve. The other difficulty is that when Re is high, i.e., the viscosity effect is much smaller

compared to the inertia effect, the equation becomes a singular perturbation problem.

A perturbation theory is usually characterized by a small parameter in the problem. In a regular

perturbation theory, as the small parameter gets smaller, the solution approaches to the solution that

is acquired by setting the small parameter to zero. In contrast, in a singular perturbation problem,

the solution acquired by setting the parameter at zero is not accurate. This usually happens when

the coefficient of the highest order derivative is such a small parameter. For example, an initial

value problem [49]

ε
du
dx

+u = x (1.2)

with a boundary conditions u(0) = 1 can be considered. This ordinary differential equation has an

exact solution

u(x) = (1+ ε)e−x/ε + x− ε. (1.3)

In the limit ε→ 0, an approximate solution of Eq. (1.2) can be obtained by setting ε to zero. When

ε � 1 and x� ε , the approximate solution u(x) = x may be considered as a good approximation,
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however it does not satisfy the boundary condition. For x ∼ O(ε), the “inner” solution must be

considered. Such a solution can be obtained by rescaling x to x/ε and writing the equation as

du
d(x/ε)

+u = ε
x
ε
. (1.4)

In this case the right hand side of the equation can be ignored and the solution is u = e−x/ε .

The exact solution is compared to two approximated solutions in Fig. 1. The singular pertur-

bation problem is usually associated with multiple regions of variables. In the example above, the

“outer” region where x > ε and the “inner” region where x < ε are very well separated, and the

approximations are different in different regions.

Equation (1.1) is a second order differential equation whose highest order derivative is the

viscous damping term 1
Re∇2~v. When Re−1→ 0 (or the viscosity approaches to zero), the problem

becomes a singular perturbation problem. In other words, the viscosity cannot be ignored even

though it is diminishingly small. This was articulated in the classical literature by Jean le Rond

d’Alambert’s as a paradox in fluid dynamics [18, 19]. He proved that an incompressible and

inviscid fluid flowing past a circular body has symmetric upstream and downstream, thus no drag

force on the body, which is in direct contradiction to our observation in daily life. This was solved

when Prandtl discovered the boundary layer [55, 49]. He derived the boundary layer equation by

rescaling the Navier-Stokes equation with a factor 1/
√

Re. He showed that when a fluid passes by a

thin plate, an inviscid solution works only beyond a certain distance from the plate, in other words,

outside the boundary layer. Within such a boundary layer, viscosity effect cannot be neglected.

The flow is separated into two regime. One is near the static surface where the inner solution of the

boundary layer equation applies, the other is far from the surface where the inviscid outer solution

is valid. This result is striking considering that huge airplanes such as Boeing 747 and Airbus

A380 could not be lifted in air without existence of the thin boundary layer (∼ 10 µm) between the

wing and air.

Here we will discuss a physical phenomenon in which multiple length scales are involved.

When a free stream of fluid encounters an obstacle, e.g., a cylindrical rod of size D, with a flow

speed U , various flow patterns are observed downstream depending on Re. When Re < 1, as the

inertia effect is not so large compared to the viscous effect, the so-called Stokes flow (or creeping

flow) is observed. In this regime, the inertia term in the Navier-Stokes equation can be ignored,
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Figure 1: The exact solution of Eq. (1.2) (black) when ε = 0.1. The outer solution (blue) is not

accurate when x ∼ ε and does not satisfy the boundary condition. For x . ε , the inner solution

(red) is more suitable.
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and the equation can be linearized. Between 10 . Re < 50, a stable pair of vortices is observed in

downstream side of the obstacle. In this regime, the separation of the flow occurs about 90◦ from

the stagnation point and the flow is stable (see Fig. 2). As Re increases beyond 50, the pair of

vortices becomes unstable, and discharged into the flow, forming two staggered rows of counter-

rotating vortices. The pattern of the periodic wake in this regime is called von Kármán vortex

street, named after a Hungarian physicist Theodore von Kármán.

The study of the vortex street may date back to 19th century. In 1878, V. Strouhal studied

Aeolian tone, which is the sound generated by a thin wire moving in air. In the study, he first

introduced the Strouhal number St = f D/V , where f is the shedding frequency, D is the size and

V is the speed of the wire, and he found that this non-dimensional frequency is independent of

V [79]. In 1911, von Kármán [86] observed two staggered rows of vortices behind a cylinder

in a flow tank, and in the following year, he performed the stability analysis by assuming that

vortices are shed from each sides of the cylinder alternatively and they occupy infinitesimal area in

fluid [87]. Considering two infinite rows of pre-deposited point vortices in a perfect inviscid and

incompressible fluid, he concluded that only a vortex street with

h/λ = 0.28, (1.5)

would be stable, where h is the distance between two rows and λ is the distance between vortices in

a row. This so-called Kármán’s ratio was compared to experiments, most of which report somewhat

larger value between 0.28 and 0.5. The discrepancy may be due to the fundamental limitation of

the point vortex model in which a fluid is assumed to be completely irrotational and the vortex

street is only characterized by h, λ and κ , where κ is the strength of individual vortices. Therefore

the finite viscosity or a finite vortex patch size must be considered [73, 74].

Inspired by early experimental observations, in 1915, Lord Rayleigh [58] associated the Aeo-

lian tones to the vortex street. Based on a hydrodynamic similarity hypothesis, he postulated that

St would only depend on Re. Given that Re−1� 1, he wrote a Taylor series expansion in terms of

Re−1. He proposed a St-Re relation as the first order correction to St, yielding

St = a
(

1− b
Re

)
, (1.6)
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Figure 2: Flow past a cylinder (top) Re=1.54 and (bottom) Re=24. Images are from Ref. [85].
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where a and b are constants. After his proposal, a' 0.2 and b' 20 were determined for a cylinder

in three-dimensional (3D) fluids by many experiments among which Roshko’s [63] is the one most

cited, and Eq. (1.6) has been used for many decades. As experimental techniques became better,

more accurate data has been accumulated, and discrepancy between Eq. (1.6) and data has been

revealed near the onset of the vortex street. To fill the discrepancy, in 1998, Williamson and Brown

[93] and Fey et al. [28] independently suggested a St-Re relation using the Re−1/2 expansion

rather than Re−1, hinted by the boundary layer theory. In 2005, another proposed St-Re relation is

suggested by Roushan and Wu [67], for circular cylinders in two dimensions (2D),

St =
1

A+B/Re
, (1.7)

where A and B are constants. This relation is based on the observation that the spatiotemporal

motion of a vortex street behaves like a wave so that the linear dispersion relation vst = f λ holds.

Observations also show that such a wave of a vortex street propagates with a velocity vst that

is a constant fraction of the mean flow speed U , i.e., c = vst/U , and has a wavelength that is

linear in D, the size of the object, with a proportionality constant α and a non-zero intercept λ0,

i.e., λ = λ0 +αD. Equation (1.7) then can be obtained with A = α/c and B = λ0U/(cν). It is

noteworthy that when the right-hand side of Eq. (1.7) is expanded, it becomes an infinite Taylor

series in Re−1, with coefficients that are combinations of A and B. In this sense, Eq. (1.6) is

the truncation of Eq. (1.7). The most interesting part in these observations is perhaps the relation

λ = λ0+αD. Here λ0 divides the vortex shedding into two regime. One is D� λ0, where λ 'αD

is a good approximation, and the other is D . λ0, where such an approximation cannot be used.

Even though λ0� αD for most of regime, λ0 cannot be ignored and is related to the constant B.

The behavior is reminiscent of the singular perturbation discussed earlier.

In this thesis, we study vortex streets generated using rods of different cross-sectional shapes

with a desire to address physical natures of the two coefficients A and B in Eq. (1.7). In chapter

3, we will show that a special parametrizing scheme of length scale D≡{the diameter of the circle

enclosing the cross-sectional shape of the rod} gives rise a universal behavior that A is independent

of shapes at the high Re. The selection of the definition of D is based on following reasons:
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1. The vortex street in 2D soap film can be successfully modeled as an irrotational flow with

vortex patches which occupies finite area in fluid1.

2. As Re increases, such vortex patches become small relative to the rod. When Re is large

enough, the effect of vortex patches is localized, allowing us to idealize the system to potential

flow past a rod of a certain shape, which is a solution of the Laplace equation with boundary

conditions.

3. The solutions of the potential flow past non-circular rods are similar to that of the potential

flow past a circular rod and strongly affected by the dipolar field2.

Thus the apparent universal behavior of A at high Re can be interpreted as the flow being success-

fully approximated as potential without downstream singularity. In contrast, B, which is connected

to λ0, remains shape-dependent, indicating that for intermediate Re, St-Re relation is effected by

the boundary layer whose thickness varies with the geometric shape of the rod.

The study of vortex streets is also important for engineering. Early studies include the prac-

tically useful measurements of CD and CW , the drag coefficient and the base suction pressure,

respectively [27, 64, 6, 20]. As the vortex street can be observed at scale from a thin radio antenna

to as large as an island in the middle of an ocean, this wake structure became a concern in designing

various structures, such as a submarine periscope, overhead electric power lines and skyscrapers

[33]. Such importance may be best illustrated by a catastrophic event occurred on November 1st,

1965 in Pontefract, UK. A coal-powered power station, named “Ferrybridge C”, had eight cooling

towers, arranged in two rows of four. Three of these then the world’s largest cooling towers were

collapsed by a wind of 85 mph (' 38m/s). The towers were supposed to withstand wind speed up

to 200 mph. However, unfortunately, this figure was calculated by assuming the wind speed to be

static. It was witnessed that the vibration of the towers in the second row, induced by the towers in

the first row, produced a high pitched whine [25]. After a formal investigation, it was documented

that vortex streets generated by cooling towers in the first row were responsible for the collapse of

three towers in the second row [23].

In contrast to the destructive case of the Ferrybridge plant, some creatures on the earth utilized

vortex shedding in their favor. In contrast to the case where the trailing vortex street is a source

1See Appendix C and Ref. [73] for detail.
2See Appendix C for detail.
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Figure 3: Collapsed cooling towers in Ferrybridge C power plant. On 1 November 1965, the wind

of 85 mph was blowing from the right to the left side of the photo.
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Figure 4: How do fish swim: a fish reverses the rotational direction of the wake behind it by

oscillating its fin. The reversed vortex street is associated with thrust generation [76].

of the drag force for a passive object [87], fish create a reversed vortex street by moving their

tail fin at a certain frequency range (see Fig. 4) and transforms a drag-producing vortex street to

a thrust-producing one [76]. Insects are also known to utilize vortices produced during a stroke

of wings in their maneuvering. With recent developments of bio-inspired robots [32], the vortex

control became one of important problems in engineering.

As of today, the understanding of the subject still remains incomplete as Roshko pointed out

in his review [65]:

“After over a century of effort by researchers and engineers, the problem of bluff body flow
remains almost entirely in the empirical, descriptive realm of knowledge.” - A. Roshko (1993)

Understanding of a vortex street is demanding as it is also being a fundamental question in turbu-

lence [51, 38, 56], along with practically significant topics such as vortex induced vibration [94]

and vortex control [76, 32].

Throughout the thesis, we used a soap film as a 2D fluid medium. Soap films are practically

2D as their thickness is several microns and much smaller than other dimensions which are some

tens of centimeters. In fluid dynamics, both theoretically and experimentally, a 2D fluid does not

behave like a mere projection of a 3D fluid. The most notable difference may be that the vorticity

is much more persistent in 2D than in 3D. By using a 2D fluid medium, a laminar vortex street

could be studied over much broader range of Re than achievable in 3D.

Despite the fact that it is only recently that soap films have been exploited as a 2D fluid medium

for scientific research, such as the investigating of low-dimensional turbulence [46, 5, 89] and wake
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structures [68], soap films have been studied for many years due to their appealing appearance.

There have been many theoretical and experimental studies of their physical properties, including

Mysels’ early investigation of marginal regeneration [47] and Lucassen’s earlier theoretical work

[44, 14]. These studies provided crucial insight about soap films and allow them to be used in

scientific purposes, but some problems, like the stability of the film, are yet to be understood. We

raise an interesting question about how the film would react upon an external impact. In a similar

context, the feasibility of large liquid films in space was speculated about by Zheng and Witten

[99]. Using an energy analysis that is introduced by Taylor and Michael [83], they concluded that

such a film may be very fragile as even a meteor of a hundred nanometer in size can potentially be

hazardous to it. In contrast, the recent observation [16] shows that a big object, such as a tennis

ball, can pass through a micron thick soap film without breaking it, indicating that the simple

energy analysis would not be appropriate in describing such a physical process.

In chapter 2, we will present the experimental data showing that a liquid droplet of radius

26 µm can tunnel through soap films of thickness less than 10 µm without breaking the film. To

explain this “tunneling” process, the deformation of a soap film must be taken into account. We

also show that experimental data are hardly understood without assuming that the droplet captures

a finite portion of the soap film and increases its mass. The observation may be also crucial to

applications such as a gene gun [43] and a lab-on-chip device [24].
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2.0 TUNNELING OF MICRON-SIZED DROPLETS THROUGH SOAP FILMS

2.1 INTRODUCTION

When a liquid droplet impinges on a surface of liquid or solid, a variety of phenomena occurs.

When a droplet is falling on the surface of the same liquid, that has a finite but large depth, the

impact causes splashing, creating a crown-like structure that had become an iconic piece of Edger-

ton’s then newly invented strobe photography in the late 30’s [22]. If the impact velocity is not fast

enough to produce a splashing, the droplet is merged into the underlying liquid as a van der Waals

force brings two free surfaces closer and the surface tension minimizes the surface area of the coa-

lesced liquid. The coalescence is delayed when the underlying bath of liquid is vertically oscillated

at a high acceleration [15]. In this case, the lubrication effect by the interstitial air between two

free surfaces produces a lift force that would postpone or even prevent the coalescence.

When the droplet impacts the surface of solid, we also observe splashing. If the solid surface is

smooth, a similar corona structure is observed. The dynamics of corona formation is related to the

ambient air. A study shows that the corona structure is strongly suppressed under low air pressure

[97]. If the surface is rough, the splashing occurs at the contact line rather than forming a corona

[96]. If the surface is hydrophobic, the bouncing of the droplet is also observed [60].

When the droplet impacts a thin layer of liquid on a solid substrate, the macroscopic corona

structure disappears altogether and instead a thin ejecta sheet is created [84]. The existence of such

ejecta sheets has only recently been discovered and has captured the attention of scientists [36].

Underlying this seemingly simple phenomenon is complex dynamics [36, 90], whose understand-

ing is currently incomplete.

Studies of these phenomena were strongly motivated by their importance for a variety of indus-

trial processes such as containment of hazardous liquids, uniform coating of surfaces, and efficient
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Figure 5: Milk drop coronet, H. E. Edgerton, 1939

fuel injection. In this chapter, we report a related phenomenon, namely the impact of a water

droplet against soap films. Specifically, we are interested in tunneling of a ballistic droplet through

the film. A classical analysis of Taylor and Michael [83] based on an energy argument suggests that

when a hole is created on a liquid film, it will shrink and heal if its diameter is smaller than the film

thickness. On the other hand, if the diameter is larger than the thickness, an instability that leads

to the rupture of the film will occur. Analyses were also carried out by Zheng and Witten [99] in a

proposal to create a giant liquid film in space that is free of gravitational forces and surrounding air;

both are significant factors complicating the study of two-dimensional fluid flows and turbulence

using these films in ground-based experiments [13, 46, 89]. Their calculation shows that a meteor

of a few nanometer in size can be hazardous to a space-based film. While the energetic argument

is compelling and has found some experimental confirmations [42], the calculation cannot account

for certain observations made in these films. For instance, common experiences show that when a

soap film is perturbed by a foreign object, the film often breaks. However, if the object is wetted by

water, the film is much more resistant to the perturbation. A recent experiment demonstrated that a
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macroscopic object as large as a tennis ball can pass through a micron-thick film without breaking

it [16]. It is evident that the passage dynamics in this latter case cannot be understood unless film

deformation into the third dimension, perpendicular to the film, is taken into account.

To investigate the tunneling process quantitatively we implemented an inkjet technique to gen-

erate uniform sized (R0 = 26 µm) water droplets at a controllable rate. The trajectories of the

droplets before and after impacts were digitized using a high-speed video camera, allowing quan-

titative measurements of momentum and energy transfers between the droplets and the film. It

was observed that droplets can tunnel through the soap film if its impact velocity is higher than a

certain threshold value vC, and in no case rupture occurs as a result of the impact. Using films of

different thicknesses (0 < h . 10 µm), we found that the energy barrier EC = 1
2mv2

C for tunneling

is a linear function of h and can be expressed as EC = Emin(1+αh/R0), where Emin ' 0.01erg and

α ' 3.9 are constants. Kinematically, we found that the tunneling process can be modeled as an

inelastic collision between the droplet and the film. It only requires two parameters, M1 and M2,

which specify respectively the effective mass of the film involved in the collision and the mass that

is transferred to the droplet after the collision.

2.2 EXPERIMENTS

2.2.1 Soap films

Experiments were carried out using vertically flowing and static soap films, which were discussed

in previous publications [70, 69] and in the Appendix. Briefly, a vertically flowing soap film

channel is constructed using two parallel nylon wires, whose two ends are tied together (see Fig.

6). Wires are connected to two soap solution reservoirs, one at the top (R1) and the other at

the bottom (R2) of the channel. The top reservoir feeds the channel with soap solution, whose

composition will be discussed later. The solution flux, FS is regulated by a valve (V) at the top

of the channel. The soap solution is recollected at the bottom reservoir, and then pumped back to

the top reservoir at the pumping flux FP. To maintain the depth of the solution at the top and the

bottom reservoir to be constant, any excess amount of solution at the top reservoir is returned to
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the bottom one through an independent tubing. Since this returning flux FR = FP−FS, the net flux

toward/outward either reservoir is zero, resulting in a long-lasting film once initiated.

To create a soap film, we first let the soap solution flow along the two vertical wires by squeez-

ing them together, and then we separate the wires from each other to form a film. The channel

width W can be varies by adjusting the tension applied to four auxiliary nylon wires which are

connected to the main wires. We set W to be constant at 5 cm. By regulating the solution flux FS,

the film flowing speed VF = FS/(Wh), where h is the thickness of the film, can be varied. For the

vertical film, there is a strong correlation between the flowing speed VF and the film thickness h,

i.e., both VF and h increase with FS, but we measured VF and h independently, using a fast video

camera and a laser transmission interferometer1, which will be described below. With the current

setup, 2.5 < h < 10 µm can be achieved corresponding to 1.5 < VF < 2.5m/s. Note that in our

current setup, h and VF are related.

In the vertical soap film, the velocity of the film is uniform across the spanwise direction, with

the exception near the nylon wires, where shear layers exist. For this reason, the thickness of the

film is not uniform near the nylon wires, i.e., the film is thicker near the wire. A previous study

[95] shows that such non-uniformity is strongly localized near the wires. All of our measurement

were made in the middle of the soap film channel where h is uniform (see Ref. [95]) on scales

much greater than the droplet radius R0.

A large flowing soap film was not stable for VF < 1.5m/s (or h < 2.5 µm). Thus, for measure-

ments with thin h, we generated smaller static films by immersing a thin rectangular metal frame

(3×3cm2×50 µm) into the soap solution and then pulling it out slowly. The soap films formed in

this manner were initially thick, but they were subject to thinning due to gravity. For h < 2.5 µm,

the film was quasi static (VF . 0.02m/s) with h varying slowly with time, and we monitored h by a

laser transmission interferometer2. Compared to flowing soap films, static soap films can be made

much smaller and thinner. With the metal frame we described above, we could easily generate

soap films with h < 1 µm.

To determine the film thickness h, we measured the optical transmittance of the p-polarized

light T⊥ at λ = 685nm as a function of incident angle θ of a semiconductor laser. A rotation

1A laser transmission interferometer is suggested and tested by Mr. Roushan who worked with the Wu research
group in 2005. The instrument is constructed in a help of his documentation.

2Color of the film is also indicative of h.
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Figure 6: The experimental setup. The soap-film channel is formed by two nylon wires, and the

width of the channel is maintained by four side wires (four thin arrow attached to the film) as

depicted in the figure. The soap solution is injected into the film through a valve (V) from the

top reservoir (R1), and recollected at the bottom reservoir (R2) and pumped back to the top. The

net flux is zero at any arbitrary point of the channel, thus a long-lasting film was implemented. A

vertical soap film flows in the ŷ direction with a uniform velocity VF . A water droplet is ejected

horizontally, in the x̂ direction, toward the soap film with an impact velocity vi. The final velocity of

the droplet after impact (vx, vy) is also indicated. To visualize the water droplet and the film, a high-

intensity halogen lamp and a low-pressure sodium lamp were used. The droplet’s trajectories and

their corresponding velocities were recorded by a high-speed video camera. Similar measurements

were also performed in static vertical films created in a rigid metal frame with a surface area

3×3cm2.
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stage was built to allow the laser and a photo-diode to be rotated synchronously on two separate

arms. A computer controlled stepping motor drives the rotation stage, allowing a wide range of

incident angle to be scanned rapidly, i.e., −70◦ ≤ θ ≤ +70◦ in ∼ 5s. We modeled the soap film

as a dielectric slab of thickness h with a refractive index n = 1.33. A calculation shows that T⊥ is

given by [29]

T⊥ =

[
1+
(

2r⊥
1− r2

⊥

)2

sin2 (δ/2)

]−1

, (2.1)

where r⊥ = cosθ−
√

n2−sin2
θ

cosθ+
√

n2−sin2
θ

and δ = 4πh
λ

√
n2− sin2

θ . As shown in Fig. 7, this slab model works

quite well for our soap films, and h can be accurately determined.

The soap solution used consists of 2% (in volume) liquid detergent (Dawn) and 98% distilled

water. The kinematic viscosity of the soap solution, measured by a glass capillary viscometer

(Cannon Instrument Co.), is ν ' 0.012cm2/s, close to water. The surface tension of the liquid/air

interface of the bulk solution was determined by a Du Noüy tensiometer (CSC Scientific) as σ =

32±1erg/cm2.

Measurements of σ as a function of the concentration of the liquid detergent CS (in volume) is

shown in Fig. 8. The figure shows that as CS increases (as we add more soap), σ rapidly decreases

from 72erg/cm2 of pure water to 32erg/cm2 at 0.03%. Further addition of soap does not lower σ ,

indicating that the critical micellar concentration of our soap solution is well below 0.1%. As will

be discussed below, a wave speed measurement in the soap film indicates that the surface tension

of the film is about the same as measured on the free surface of the bulk soap solution, indicating

that at 2% concentration, the surfaces of the film are fully covered by the surfactant.

2.2.2 Making small droplets

Micron-sized water droplets are created by using an inkjet printer cartridge (NEC model #30-060).

This cartridge works by electrically heating water near a nozzle (Diam.=40 µm), which consists

of a small heater with a 30Ω internal resistance. Using a custom-made computer program, we

generated a train of Transistor-Transistor Logic (TTL) pulses, which is 5 V for 10 µs and repeated

periodically with a frequency 10 Hz. TTL pulses are amplified by a custom-made current driving

circuit (see Fig. 9), so rectangular electric pulses of 7.5 V were applied to the heater for 10 µs.

Each electric pulse delivers
(
V 2/R

)
δ t ' 190erg to the heater.
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Figure 7: A typical optical transmittance measurement in a flowing film. The data (squares) show

transmittance T⊥ as a function of the incident angle θ . We found that a soap film can be well

approximated by a dielectric slab with a constant thickness h and a refractive index n = 1.33. This

allows T⊥ to be calculated rigorously. The solid line is a fit to the slab model of Eq. (2.1), resulting

in h' 2.56 µm in this case.
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Figure 8: The surface tension of soap solution σ vs. the soap concentration CS. Here CS is the

volume fraction. Without surfactant, σ ∼ 72erg/cm2 is measured by Du Noüy tensionmeter. As

soap is added to water, σ drops drastically. Already at 0.03 %, the surface tension of soap solution

and air interface reaches to its asymptote value ∼ 32erg/cm2.
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Figure 9: A circuit diagram to generate a droplet using an inkjet cartridge. A TTL pulse from a PC

is amplified by an NPN transistor. As a result, a rectangular electric pulse of 7.5V is applied to the

heater for 10 µs. The pulse is repeated periodically with a frequency 10Hz.

To characterize the system, droplets were injected horizontally inside a chamber which shields

the droplets from the air flow. As air friction rapidly damps their motion, the droplets reached a

terminal velocity vt = 7.6± 1.1cm/s within 20ms. For a small Reynolds number in air, Rea(≡

2vtR/νa) < 1, vt of a sphere is given by vt ' mg
6πηaR , where ηa and νa are respectively the shear

and the kinematic viscosity of air. This yields a droplet radius of 25.4±1.7 µm. Independently we

measured the droplet radius by weighing the cartridge before and after ejecting 9× 104 droplets.

The decrease in the cartridge mass, averaged over several trials, was 6.5± 1 mg. This gives the

average mass per droplet 72±11 ng or a radius R = 26±1 µm, which is in good agreement with

the vt measurement. The difference of 2.5% between the two methods may be due to evaporation

during the 20ms flight time in air, but this difference is barely discernible. In what follows, we will

use R0 = 26 µm as the radius of our droplets.
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Figure 10: Trajectory of a droplet injected horizontally from the cartridge. The image’s contrast is

adjusted for better presentation. Trajectory of a droplet has been digitized using two strobe light

sources. Here 19 strobes were applied at time t =0.3, 2.2, 2.5, 4.4, 4.7, 6.6, 6.9, 8.8, 9.1, 10.9,

12.7, 21.8, 23.6, 32.7, 34.5, 43.6, 45.4, 54.5, 56.3 ms. Initially it travels horizontally, however it

is subjected to a strong damping and quickly (t < 20ms) loses the horizontal momentum. In the

vertical direction, due to gravity, it is accelerated and reaches the terminal velocity vt = 7.6cm/s.

The scale bar is 1 cm.

2.2.3 Setup

To study the interactions with a soap film, a stream of droplets generated by the inkjet nozzle was

aimed normal to the film. For convenience of a latter discussion, a coordinate system is set up

such that the initial velocity is along the x-axis and the film flows in ŷ direction as depicted in Fig.

6. To visualize the droplet’s trajectory, a high-intensity (300 W) halogen lamp and a high-speed

video camera (Phantom V5, Vision Research) were mounted perpendicular to xy-plane facing each

other, so we can capture forward scattering from the droplet and follow their motions. In typical

measurements, the camera operates at 5000 fps with a resolution 256× 512, allowing droplet

velocity to be determined reliably.

In the experiment, the impact velocity vi was varied by adjusting the distance `x between the

nozzle and the film. The particle trajectory remained horizontal for a distance of ∼ 5cm before

noticeable bending took place. Therefore all of our measurements were restricted to `x < 5cm.

For instance, at the critical velocity vC ' 520cm/s, `x was approximately 2.5cm, and the vertical

20



velocity component was only 1% of VF and thus negligible. After the collision, the droplet either

tunnels through with a non-zero vx or is absorbed by the film with vx = 0. We measured the velocity

components (vx,vy) after tunneling as a function of vi and the film thickness h.

2.3 RESULTS AND DISCUSSIONS

2.3.1 The existence of the critical velocity vC and the momentum transfer in x̂ direction

Figure 11(a) displays the horizontal velocity component vx of the droplets after the impact on a soap

film as a function of vi. The measurements were repeated for films of different thicknesses h. We

showed that there exists a critical velocity vC; for vi < vC, the droplet loses its horizontal momentum

(vx = 0) and it flows with the soap film after impact. On the other hand, for vi > vC, the droplet

is able to tunnel through the film with vx > 0. Although the data near the threshold is somewhat

noisy, the critical velocity vC can be determined without much ambiguity by extrapolating the data

below and above the threshold. As delineated in Fig. 12(a), our measurements indicate that vC

increases with h, suggesting that the energy barrier for tunneling becomes greater for a larger h.

We also found that vC does not vanish when h→ 0 but approaches a finite value vC0 ∼ 520cm/s,

which translates to a minimum energy Emin(≡ 1
2mv2

C0)' 0.01erg. This suggests that a considerable

fraction of the tunneling energy EC is in the deformation of the soap film. Another conspicuous

feature seen in Fig. 11(a) is that after tunneling, vx is proportional to the impact velocity vi, and

the proportionality constant is, to a good approximation, unity for all different h.

2.3.2 Momentum transfer in ŷ direction

The momentum exchange in the vertical direction is also significant. Figure 11(b) displays normal-

ized y-component velocity vy/VF as a function of the impact velocity vi. It is shown that if vi < vC,

vy/VF = 1, i.e., the droplet moves with the film. However, for vi > vC, the tunneling causes the

droplet to gain a momentum in the ŷ direction, but in general vy <VF . We give the y-component of

velocity in terms of ε = vy/VF . Figure 11(b) demonstrates that ε is nearly constant in each regime

(merging and tunneling) but changes abruptly at vc. In addition, ε depends on the film thickness
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Figure 11: The droplet velocity (vx,vy) after impact as a function of the impact velocity vi. The

measurements were carried out for different film thicknesses: h =2.6 µm (squares), 7.5 µm (cir-

cles), and 11.4 µm (triangles). The error bars represent the measurement uncertainties, mostly due

to the finite pixel size. In (a), the x-component of the velocity vx is plotted against vi. It is shown

that there exists a critical velocity vC for each film thickness as indicated by the vertical arrows.

In (b), the normalized y-component of the velocity vy/VF is plotted against vi. Here we found that

vy/VF has two discrete values for a given h. It is either +1 when the droplet merges with the film,

or ε ≤ 1 when the droplet tunnels through the film.
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Figure 12: (a) The critical velocity vC and (b) the energy barrier EC ≡ 1
2mv2

C vs. the film thickness

h. In both plots, the triangles and squares are for static and flowing soap films, respectively. It is

shown that EC(h) is approximately linear in h, but it does not vanish as h→ 0, indicating that a finite

film deformation energy is required for tunneling. The solid and the dotted lines are calculations

based on Eq. (2.10) and Eq. (2.9) (with VF = 2.5m/s), respectively. See text for more details.
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h as delineated in Fig. 13. When the droplet passes through a thicker film, it gains more momen-

tum in the ŷ direction than passing through a thin one. Asymptotically, one expects that ε → 1 as

h→ ∞, which is consistent with our observation. We found that a tunneling droplet readily picks

up the y-momentum from the film. For instance, at the current experimental condition, vy is∼ 60%

of VF for a film as thin as a few microns and is ∼ 90% for h' 10 µm.

2.3.3 Deformation and wave propagation

To understand the physical origin of the energy barrier in the tunneling process, we examined the

impact dynamics using fast video imaging with the film illuminated by a monochromatic sodium

lamp. Figures 14(a)-(d) display four consecutive images of a droplet shortly after it had impacted

on a soap film of h = 4 µm. The time interval between the images was fixed at 0.26ms. Here,

the droplet as well as its mirror image on the soap film are clearly visible. Also visible in (b) is a

scar created by the droplet, but the scar disappeared in (c), indicating that its lifetime is less than

0.26ms. Because of the short length and time scales involved, we believe that the scar region is

associated with strong vorticity, which dissipates energy. The use of the monochromatic light also

allowed us to observe waves created by the impact. Here, the wavefront appears as a dark band in

(b) that propagates radially outward. In Figs. 15(a)-(d), another sequence of images is captured

at intervals of 0.2ms with the camera normal to the surface of the soap film. Here the droplet is

merged with the film because it impacts the film at the velocity lower than vC. The merging droplet

is visible as a dark spot at the center of the circular wavefront and is carried downstream by the

film. As it moves downstream, the wavefront propagates radially outward at a constant velocity

vw. By investigating images such as ones in Fig. 15, the wave speed vw on the soap film can be

determined as a function of h, which is displayed as solid squares in Fig. 15(e). The figure shows

that vw increases rapidly as h decreases; for a small thickness, h < 1 µm, vw can be as large as

10m/s. A liquid film in general can support two different types of waves, known as the symmetric

and the anti-symmetric waves [82]. For the symmetric wave, the two surfaces of the film move

out of phase with respect to each other, and is also called peristaltic mode of oscillations [see

Fig. 16(b)]. For the anti-symmetric wave, both surfaces undulate in phase [see Fig. 16(c)]. In

the absence of surfactants (like soap molecules), the restoring force of both waves are due to the
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Figure 13: The normalized vertical velocity after tunneling ε = vy/VF vs. the film thickness h. It is

observed that as h increases, ε becomes larger, indicating that the droplet gains a linear momentum

in the ŷ direction. Asymptotically, vy→ VF (or ε → 1) as h→ ∞ as expected. The solid line is a

calculation based on Eq. (2.11) derived from an inelastic collision model.
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surface tension σ but the dispersion relations are different for the two cases because of different

mass distributions in the film. The anti-symmetric wave is non-dispersive with a constant velocity

given by va =
√

2σ

ρwh , and the symmetric wave, on the other hand, is dispersive with a velocity

vs = k
√

σh
2ρw

that depends on a wave number k. Since vs/va = kh/2, it is expected that va � vs

in the long-wavelength limit. In the presence of surfactants, the restoring force for the symmetric

mode is dominated by the surface (or Marangoni) elasticity E ≡ Adσ

dA , where A is a surface area,

instead of σ . It is shown by Lucassen [44] that in the long-wavelength limit, the elastic wave

is also non-dispersive with a propagation speed ve =
√

2E
ρwh . In our soap film therefore there is

a degeneracy in that both the anti-symmetric capillary wave and the symmetric elastic wave are

possible, and both scale with the film thickness as h−1/2. We found that our experimental data in

Fig. 15 can be well described by the mathematical form vw =
√

2c
ρwh (see the inset), where c is

an adjustable parameter. Using ρw = 1g/cm3, a fitting procedure yields c ' 32.7± 2.6erg/cm2,

which matches very well with the surface tension measurement (σ = 32erg/cm2) using the Du

Noüy ring method. Thus, unless it is an amazing coincidence, where Marangoni elasticity E is

nearly identical to σ for our soap film, we believe that the dominant wave mode in the film created

by the droplet impact is the anti-symmetric wave.

2.3.4 Film structure near the impact point

At the impact point [see Fig. 14(a)], it is observed that the droplet deforms the soap film locally,

forming a cylindrical pouch a few droplet diameters long. Because of smallness of the droplet

and fast dynamics, it was not feasible to follow the spatiotemporal evolution of the cylindrical

pouch. However, inspections of a large number of video images reveal that the longest pouch

is ∼ 4R0, indicating that in order to tunnel through, the soap film must be stretched into a long

cylinder with an excess surface area of ∼ 14πR2
0, where R0 is the radius of the water droplets.

A naive calculation using σ = 32erg/cm2 indicates that this corresponds to a surface energy of

9.5×10−3 erg. Considering the Marangoni effect, we expect that the energy requirement may be

greater.

A question that arises naturally is what determines the maximum length of the cylinder. A

related phenomenon is the Plateau-Rayleigh instability where a uniform circular jet of fluid breaks

26



Figure 14: The tunneling dynamics of a water droplet. The sequence of video images (a)-(d)

were taken at times t = 0, 0.26, 0.52, and 0.78 ms with the resolution of 256× 256 pixels. The

coordinates in (e) are the same as in Fig. 6, and the droplet and its mirror image on the film

are depicted by two droplets. The camera was set at an angle ϕ ' 75◦. The penetrating droplet

and its mirror image are clearly visible in (a)-(d) and are indicated by the pair of arrows. The

dash-dotted lines in (a)-(d) depict the plane of reflection. As a function of time, the droplet-image

pair moves together in the vertical direction but apart from each other in the horizontal direction.

This allows an alternative means to precisely determine vx and vy. Shortly after the impact, an

elongated dark region can be identified in (a), showing that the film is stretched by the droplet. A

moment later in (b), a scar, which is indicated by a large arrow, is left behind in the film. The scar

moves with VF , which is faster than the droplet velocity vy. Interestingly, the scar in (b) disappears

rapidly and is no longer observable in (c). Also seen in (b) is the surface wave (the dark band) that

propagates radially outwards from the impact point. This wave (or the band) is barely seen in (c),

but disappears from the view in (d).
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Figure 15: A wave generated by an impacting droplet. Images (a)-(d) were taken sequentially at

an equal interval, corresponding to t = 0, 0.2, 0.4, and 0.6 ms, respectively. The camera angle

is described in Fig. 14(e) with ϕ ' 0◦. The impact velocity of the droplet is less than vC so that

it merges with the soap film. The droplet appears as a dark spot at the center of the expanding

circular wavefront. In (e), the wave speed vw in the soap films is measured as a function of h. The

scaling relation vw ∝ h−1/2 is delineated in the inset, where the solid line is a fit to vw =
√

2σ

ρwh .
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up into a stream of droplets [10]. For the anti-symmetric undulation to be the dominant mode

of oscillations in our soap film, the instability of a cylindrical soap film is similar to the Plateau-

Rayleigh problem with the simple modification of replacing the surface tension σ by 2σ , due to the

presence of two liquid-air interfaces of the film. It follows that the fastest growing wave number

kmax of the axial undulation is given by kmax ' 0.7/R0, corresponding to λmax(≡ 2π/kmax)' 9R0

[10]. We note that our experimentally observed pouch length 4R0 is about a half of λmax, which

makes physical sense since the front of the pouch, where the water droplet locates, must be the anti-

node and the location of the pinch-off must be the node given by (n+ 1
2)λmax where n = 0,1,2, . . ..

Our observation corresponds to n = 0 [see Fig. 16(a)]. This is possible if the pinch-off time τ is

shorter than the stretching time (∼ λmax/2U), because otherwise a longer pouch will be produced

and it will break in multiple locations, which was not observed. Quantitatively, this scenario

also makes sense since according to our measurement the stretching time is λmax/2U ' 12 µs

and the pinch-off time τ can be estimated by the growth rate of the Plateau-Rayleigh instability

τ ≡
√

ρaR3
0/2σ ' 0.52 µs. Thus the condition τ � λmax/2U is satisfied. The emerging physical

picture is that during transmission, a piece of soap film is extruded by the fast moving droplet. At

the same time an axial undulation grows rapidly on the stretched cylindrical film, and the cylinder

closes off at its base once λmax/2 is reached. As we will show below, in order to explain the

kinematics of the tunneling droplet, a small mass must be transferred from the film to the droplet

and the size of such a mass can be determined from our measurements.

2.3.5 Calculations

It would be desirable to compare our experimental observations with theoretical predictions. Un-

fortunately such theory is not currently available. A back-of-the-envelope calculation shows that

our measurements were carried out in a hydrodynamic regime where Reynolds number Re =

2ρwR0vi
ηw

& 260 and the Weber number We =
2ρwR0v2

i
σ

& 44 are both large. Thus the kinetic en-

ergy or the inertia effect overwhelms energy dissipation and the capillary effect. In the following

we propose a heuristic model that can account for some key features of our observations.

It is apparent that when a collision takes place, only a fraction of film mass in the neighborhood

of the impact is involved in the interaction. Thus an effective mass M1 and its corresponding size
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Figure 16: The schematics depicting different conformations of a soap film. In (a), the film is

stretched by a ballistic droplet, where M2 will eventually engulf droplet m, and M1 provides a

y−momentum to the droplet. (b) and (c) are two possible wave modes in a soap film.
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R1 =
√

M1/πρwh may be specified. After the collision, a part of M1, called M2, is transferred

to the water droplet, increasing its mass from m to m+M2. The emerging droplet travels with

velocity (vx,vy) and the remaining mass M1−M2 travels along the film with velocity (v′x,v
′
y) [see

Fig. 16(a)]. The presence of M2 allows a second length scale R2 =
√

M2/πρwh to be specified. We

treat our problem as an inelastic collision in which linear momentum is conserved but not energy.

The linear momentum conservation demands

mvi = (m+M2)vx +(M1−M2)v′x, (2.2)

M1VF = (m+M2)vy +(M1−M2)v′y. (2.3)

At the moment of separation, when the dressed droplet (m+M2) becomes detached from the rest

of the film, we expect that vx > 0 but v′x ' 0. For the inelastic collision, one also expects vy = v′y at

the separation point. Solving the above equations, we find

vx =
m

m+M2
vi, (2.4)

vy = v′y =
M1

m+M1
VF . (2.5)

The total kinetic energy KE f of the droplet and the film after collision is given by

KE f =
1
2
(m+M2)(v2

x + v2
y)+

1
2
(M1−M2)(v′2y ),

=
1
2

m
m+M2

mv2
i +

1
2

M1

m+M1
M1V 2

F . (2.6)

Neglecting the deformation of the film, this is all the mechanical energy of the system (droplet plus

the soap film) that remains after the collision. It is clear that the collision is inelastic since

∆KE( ≡ KEi−KE f )

=
1
2

m
(

M2

m+M2
v2

i +
M1

m+M1
V 2

F

)
≥ 0, (2.7)

where KEi =
1
2mv2

i +
1
2M1V 2

F is the total kinetic energy of the system before the collision. Physi-

cally, ∆KE is the amount of energy ultimately dissipated by the creation of vorticity in the fluid.

Since both M1 and M2 are proportional to h, we find that energy dissipation vanish when h→ 0.

In other words, no vorticity can be created in a very thin film so the physics of tunneling becomes
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a purely potential flow problem. For a successful transmission, the energy consideration therefore

requires that the initial energy of the droplet should be greater than the sum of the energy dissipa-

tion ∆KE and the film deformation Emin with the result: KEi ≥ ∆KE +Emin (or KE f ≥ Emin). This

yields

1
2

mv2
i ≥ Emin

(
1+

M2

m

)
− 1

2
mV 2

F

(
m+M2

m+M1

)
, (2.8)

or the critical energy of the droplet EC = 1
2mv2

C as:

EC = Emin

(
1+

M2

m

)
− 1

2
mV 2

F

(
m+M2

m+M1

)
. (2.9)

This equation predicts that the motion of the film (VF 6= 0) lowers the energy barrier of tunneling.

For a small VF , e.g., in our experiment (VF/vC)
2 < 0.15, one may neglect the last term to obtain,

EC ' Emin

(
1+

M2

m

)
= Emin

(
1+

3
4

α
2
2

h
R0

)
, (2.10)

where α2 = R2/R0 is a constant. Equation (2.10) is consistent with our observation in that EC is

linear in h with a finite intercept. Using the known parameters of our soap film (Emin ' 0.01erg

and R0 = 26 µm), we found α2 ' 2.2±0.1. Interestingly, this value of α2 implies a rather uniform

coating of the penetrating droplet by the film of thickness h, i.e., ∆V ' 4πR2
0h. In Fig. 12(b) we

plot Eq. (2.9) using a dotted line and Eq. (2.10) using a solid line with VF = 2.5m/s. It is seen

that the reduction in EC due to the film motion is rather small and is hardly distinguishable in the

measurements using static (triangles) and flowing (squares) soap films.

According to Eq. (2.5), the emerging droplet will have a velocity in vertical direction

vy =
M1

m+M1
VF =

VF

1+ 4
3

(
R0

α2
1 h

) , (2.11)

where α1 = R1/R0. This equation yields the correct asymptotic behavior, ε(h)(≡ vy/VF)→ 1

as h→ ∞, as seen in Fig. 13. Using α1 as an adjustable parameter, a fitting procedure gives

α1 ' 4.0±0.4, which is delineated by the solid line in Fig. 13.
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2.4 CONCLUSION

Using well-controlled micron-sized ballistic droplets generated by an inkjet cartridge, we have

characterized the energy requirement for tunneling of these droplets through soap films. The

energy barrier EC(h) is found to be linearly proportional to the film thickness h with the re-

sult: EC = Emin(1 + αh/R0). Here the minimal barrier height Emin(≡ 1
2mv2

C0) ' 0.01erg and

the slope α ' 3.9 are determined. The measured Emin corresponds to the creation of an excess

surface area of ∼ 14πR2
0, which turns out to be consistent with the Rayleigh instability condition

of pinching off at λmax/2. The observed Emin also implies the existence of a critical Weber number

WeC(≡ 2ρwR0v2
C0/σ)' 44, when the film inertia is unimportant, h→ 0.

A self consistent theory is not currently available, and we wish that our observations will pro-

vide a useful foundation for such theory. The dynamics is clearly complex in that it involves mul-

tiple length and time scales. We have identified two such scales, R1 and R2, that are needed to ac-

count for the energy and momentum exchanges between the droplet and the film. A self consistent

theory must deal with additional length scales, corresponding to early-time or short-length-scale

events, where Re is small, and vorticity production, hence energy dissipation, is prominent. The

physics in this regime may explain the intriguing observation that the energy dissipation becomes

negligible for some macroscopically thin but microscopically thick films; i.e., the limit h→ 0 must

correspond to a film that is still thick enough so that it can be stretched to the Rayleigh instability

limit. Another issue of interest is the separation dynamics of a tunneling droplet from the rest of

the film. This is a singular event that produces discontinuities, such as vx 6= v′x at the moment of

separation.

This investigation was initially motivated by our desire to print ink patterns in a turbulent flow-

ing soap film and to study how different spatial modes of the pattern are dispersed by turbulent

eddies. This would allow passive-scalar turbulence to be studied in a controllable fashion with

a defined initial condition. Our measurements presented above give a parameter range for ink

droplets to remain on the surface of a moving film, which is a prerequisite for a successful conduct

of such measurement. We also found that a ballistic water droplet is an effective wave generator;

we had no difficulty of observing the anti-symmetric waves in the film and were able to precisely

determine their speeds for different film thicknesses. Curiously, however, the symmetric waves
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remain elusive. Unlike anti-symmetric waves, the symmetric wave is an important attribute of a

soap film and would allow experimenters to obtain useful information about Marangoni elasticity,

which is not readily measured in a film. The failure to observe such a wave suggests that the peri-

staltic oscillations may decay too fast to be seen in our current experimental setting or a different

means of perturbation may be needed. We wish to examine this issue more carefully in future

experiments.

Aside from its academic interest, the ability of small particles to penetrate a fluid film without

damaging it can have important technological applications such as encapsulation of solid parti-

cles and transmission of genetic materials through biological cells. The latter is a fascinating

application of ballistic transmission in biological systems where gold particles coated with DNA

molecules of interest can be be delivered into plant or animal cells [43]. A better understanding of

transmission kinematics, such as the one studied here, may shed new light on its working principle

and can ultimately improve the quality of this important technology.
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3.0 STROUHAL-REYNOLDS NUMBER RELATIONS OF VON KÁRMÁN VORTEX

STREET

3.1 INTRODUCTION

When a uniform stream of fluid encounters an obstacle, a pattern of repeating pairs of vortices

is formed. This staggered rows of vortices is observed over a broad range of Re, approximately

50 < Re < 107. In this range, the flow behind is not steady, causing a periodic vortex shedding

from each side of the body. Vortices from each side are rotating in opposite directions, and their

interaction produces two rows of counter-rotating vortices.

This so-called von Kármán vortex street has been studied by scientists for many years [79, 58,

7, 63, 92]. Theodore von Kärmän performed the first stability analysis based on a point vortex

model [87]. In this model, a complete separation of the irrotational and rotational part of the fluid

is assumed, i.e., the vorticity is supposed to occupy infinitesimal amount of area in a 2D inviscid

fluid. Subsequent studies include Hooker’s correction by including non-zero viscosity [31] to

the point vortex model and Saffman’s correction by including the finite size of the vortex [74].

However, our fundamental understanding of vortex wake formation, its stability, and evolution still

remain largely incomplete and highly phenomenological. At the heart of the problem is why and

how vorticity created in the boundary layer of an obstacle and discharged into the bulk of fluid

self-organizes into spatiotemporally periodic patterns.

In this work, we wish to address this issue by studying vortex shedding and street formation

using rods of different geometric cross-sectional areas in a freely flowing soap film. The use of the

film strongly suppresses instabilities and turbulence commonly encountered in three dimensional

(3D) fluids, allowing the laminar vortex streets to be studied for Reynolds numbers (Re) much

higher than achievable in bulk fluids. Here we only present measurements with shapes of aspect
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ratios close to unity. Other shapes will be discussed in chapter 4.

We will focus on a Strouhal-Reynolds number relation [58, 93, 28, 54], which connects the

dimensionless frequency St = f D/U to Re = DU/ν , where f is the vortex shedding frequency, D

is a linear dimension of the rod, which will be specified later, U is the mean flow speed, and ν is

the kinematic viscosity. The St-Re relation was proposed by Lord Rayleigh almost a century ago.

Based on a hydrodynamic self-similarity hypothesis, he proposed an empirical relation,

St = a
(

1− b
Re

)
, (3.1)

where a ' 0.2 and b ' 20 [58] for a circular cylinder [63]. Discrepancies between Eq. (3.1) and

measurements exist near the onset of the vortex shedding (Re < 100) and has been recognized

by earlier workers. Despite this, Eq. (3.1) has been used for a long time, until Fey et al. [28]

and Williamson and Brown [93] suggested an alternative equation. Motivated by a boundary layer

theory, they individually proposed,

St = a′− b′

Re1/2 , (3.2)

where a′ and b′ are also constants. Even though Eq. (3.2) provides a much better description of

data near the onset than Eq. (3.1), the relation has not found a wide use because the two parameters

a′ and b′ are piecewisely determined over different regimes in Re.

Here, our focus will be on a quantitative comparison between measurements and a different

St-Re relation:

St =
1

A+B/Re
, (3.3)

that was recently proposed [67]. This relation can be derived based on general physical consider-

ations with inputs from direct observations of vortex shedding from a circular cylinder [67]. The

following experimental observations suffice to obtain Eq. (3.3):

1. f = vst/λ : The spatiotemporal periodicity of the wake implies that the motion of a vortex street

behaves as a wave so that the linear dispersion relation vst = λ f must hold, where vst is the

speed of the vortex street in the lab frame and λ is the wavelength, or the longitudinal spacing

between two adjacent same-sign vortices [see Fig. 20(a)].
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Figure 17: A vortex street produced by Juan Fernández island, Chile.[1]
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2. λ/D = λ0/D+α: Over a broad range of D, λ is a linear function of D, λ = λ0 +αD, with λ0

and α being constant. This is an observational result [67].

3. vst/U ∼ const: vst is a fixed fraction of U and depends on D only weakly, e.g. c(≡ vst/U)' 0.8

for the circular cylinder. This is again an observational result [67].

Using the above three ingredients, one can construct St = f D/U = vst/U
λ/D , and it follows that A

and B in Eq. (3.3) are given by A = α/c and B = λ0U/(cν). Thus, the coefficients A and B are

closely related to the physical processes of boundary layer instability, which gives rise to the wavy

behavior characterized by the parameters α and λ0, and to properties of vortices, whose strength

determines c [7]. Roushan and Wu [67] showed Eq. (3.3) is better than either Eq. (3.1) or (3.2)

for describing vortex shedding for rods of circular shape. The current work is motivated by the

expectation that Eq. (3.3) may be also applicable to slender bodies of non-circular shapes because

Eq. (3.3) is derived using a rather general physical argument.

In this work, we generated vortex streets using rods of both circular and non-circular cross-

sectional shapes. We present the first experimental evidence that Eq. (3.3) is adequate for describ-

ing vortex shedding for rods other than the circular shape. This finding implies that the underlying

physics for different shapes perhaps is simple and can be explained by the same mechanisms dis-

cussed above. Another simplifying feature found in our measurement is that A ' 4.7 turns out to

be nearly identical for all rods, indicating that the asymptotic Strouhal number St∞(≡ 1/A)' 0.21

may be universal for Re→ ∞. Thus, most of the shape-dependence is in B, which is related to λ0

and c.

3.2 EXPERIMENTS

3.2.1 Inclined soap film

Our measurements were carried out in an inclined soap-film channel (see Fig. 18) previously

described in Refs. [70, 69] and in the previous chapter. An inclined soap film was developed by

Mr. Roushan to reduce the effect of the gravity on the vertical soap film channel [68]. As a result,

the flowing speed VF is greatly reduced in the inclined soap film than in the vertical soap film. The
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construction of the inclined soap film is very similar to the construction of a vertical soap film. For

the inclined channel to work properly, it requires that all components of the channel should be able

to rotate together about a pivoting axis. Specifically, the film used was inclined by 78◦, and the

gravity was reduced by a factor of cos78◦ = 0.21. The 200×5cm2 soap film flows continuously

with a speed U , which can be varied from 50 to 130 cm/s by changing the injection flux of the

soap solution. In most runs, the flowing speed was fixed as U ∼ 60cm/s. At such settings, the film

is weakly compressible with a Mach number M =U/vw ∼ 0.1, where vw is the propagating speed

of an antisymmetric wave on the film. Sagged by the gravity, the film is thicker in the middle than

near the wires. However the width of the channel is much larger than the width of the vortex streets,

therefore the thickness variation is negligible and the film thickness h ∼ 3 µm can be considered

uniform. The rms fluctuations of U was a few percent and was the main source of uncertainties in

the measurement.

The soap solution consisted of a mixture of 2% Dawn liquid detergent, 5% glycerol, and wa-

ter. The viscosity of the soap solution, determined by a Cannon viscometer, was ν ' 0.013±

0.001cm2/s.

3.2.2 Tapered rods and definition of the linear dimension D

To create vortex streets, we used tapered rods of different geometrical cross sections, such as

circles, squares, diamonds, and equilateral triangles as delineated in Fig. 19. These tapered rods

were carefully made of titanium or glass, depending on their sizes. Titanium rods were machined

to have tips of size . 10 µm and glass rods were thermally tapered to have tips of size ∼ 1 µm.

By using a motorized translation stage, which is mounted perpendicular to the soap film chan-

nel, a rod can be moved perpendicular to the film plane. By adjusting the depth of insertion of

the rod into the film, its width W facing the flow (see Fig. 19) was varied. Here, W was precisely

measured by a CMOS camera (DCM130, OPLENIC) mounted on a long-working-distance micro-

scope. For each shape, we defined an outer length D, which is the diameter of the smallest circle

enclosing the particular shape. For example, for a circle, D =W , however for a square, D =
√

2W ,

and for for a triangle, D = 2√
3
W . In this experiment, Re =UD/ν was solely determined by D , as

U and ν were fixed. It will be shown that our way of defining D will lead to the observation of a
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Figure 18: Experimental setup. The soap film channel is inclined at 78◦ from vertical. Soap

solution is injected from the top reservoir and collected at the bottom reservoir. The flow speed U

is varied by controlling the injection flux. In the experiment, U is fixed at ∼ 60cm/s. A fast video

camera (C1) and a microscope (C2) are mounted directly above the film.
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Figure 19: Cross sections of tapered rods. (a) A circular, (b) a square, (c) a diamond and (d) a

triangular rod are delineated. When the flow is from the top to the bottom of the page, W denotes

the width of rods facing the flow. The linear dimension of the rod D is defined as a diameter of the

smallest circle enclosing a particular shape.

constant St at large Re.

When a rod is inserted into the film, depending on Re, a vortex street is formed behind the rod.

The wake structure was captured [see Figs. 20(a) and (b)] by a high-speed CCD camera (Phantom

V, Vision Research), while the film was illuminated by a sodium lamp (wavelength 590 nm). By

performing image analyses, U , λ , f , and vst were precisely measured.

3.3 RESULTS AND DISCUSSIONS

In Figs. 20(a) and (b), we present snapshots of typical vortex streets generated using a circular

and a square rods, respectively. Two vortex streets were generated at the same Re, or the same D.

These two vortex streets are very similar in appearance. However, even though they are produced

using rods of the same D, the wavelength λ of the respective vortex streets are different. Inspired

by these observations, we postulate:

1. The underlying physical mechanism for generating vortex streets may not be changed regard-

less the shape used.

2. Different shaped rods may contribute to different boundary layer structures and hence different

wavelengths.
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3. The amount of vorticity injected into fluid may be altered by changing the rod shape.

In the following sections, we will first focus on the structure of the vortex street. We charac-

terize the wavelength λ and vst using four structure parameters λ0, α , c, and the size of the rod D.

Then we will turn our attention to the measurement of vortex shedding frequency f , or the St-Re

relation.

3.3.1 The wavelength

As mentioned in the introduction, the wavelength of the vortex street is defined as the distance be-

tween two adjacent vortices of the same handedness, as delineated in Fig. 20(a). Qualitatively, the

distance between two neighboring vortices increases as the pair moves downstream, and eventu-

ally reaches an asymptotic value. For simplicity of discussion, we define λ ′(y) as the longitudinal

spacing between vortices in a row, which is a function of both D and y, the downstream distance.

At y→ ∞, λ ′ approaches a certain value λ (D).

Figures 21(a)-(d) show the asymptotic wavelength λ as a function of D for circular, square,

diamond, and triangular rods, respectively. A common feature of these measurements is that λ is

linear in D,

λ = λ0 +αD, (3.4)

where the intercept λ0 and the slope α varies depending on rod shapes. Values of λ0 and α for

different shaped rods are given in Table 1.

In an effort to understand the physical origin of α , we made a quantitative investigation of the

evolution of vortex streets as a function of y. Using circular rods, the transient wavelengths λ ′(y)

were measured for different D, and the result is displayed in Fig. 22(a). We found that all the

measurements obey the simple mathematical form,

λ
′(y) = λ (1− e−y/y0), (3.5)

with y0 being a characteristic decay length and λ the wavelength at a large distance. By using

Eq. (3.5), y0 and λ are determined for each D. In Fig. 22(b), ln(1−λ ′/λ )≡ ln(1−Λ) is plotted

against y/y0 ≡ Y . The linearity with zero intercept and the slope -1 observed in (b) provides a
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Figure 20: Vortex streets created by (a) a circular and (b) a square rod of the same D = 0.035cm

(Re = 170). The structures of the vortex streets appear similar, suggesting their underlying gener-

ating mechanism might be also the same.
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Figure 21: Wavelength λ vs. D for (a) circular, (b) square, (c) diamond, and (d) triangular rods.

Here, λ is defined far from the rods, λ ≡ λ ′(y→ ∞). In all cases, λ is linear in D with a non-zero

positive intercept. Both the slope (≡ α) and the intercept (≡ λ0) varies with shapes.
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C S D T

A 4.8±0.1 4.4±0.1 5.0±0.1 4.6±0.2

B 648±46 505±45 410±24 533±41

c 0.8 0.86 0.63 0.7

α 4.5±0.1 3.9±0.2 3.2±0.2 3.1±0.4

λ0 (mm) 1.00±0.05 0.85±0.05 0.75±0.20 1.2±0.2

A = α/c 5.6±0.1 4.5±0.2 5.1±0.2 4.4±0.6

B = λ0U/cν 577±29 456±27 549±147 791±132

Table 1: A and B from direct measurements [see the insets of Figs. 25(a)-(d)] and from calculations

(bottom two rows). These are supposed to be identical, however there exist discrepancies, mainly

due to setting c constant. Using the standard regression analysis method, the limits of significance

(at 95% confidence level) were determined, and the true value of A for a circular rod may exist

between 4.7 and 4.9 at 95% chance [17, 41].

strong verification of Eq. (3.5). As shown by the open circles in Fig. 21(a), λ acquired here is

entirely consistent with the previous measurements

We also found that y0 is proportional to λ , and intriguingly the proportionality constant is very

close to 1/α = 0.22 as depicted in Fig. 22(c). Equation (3.5) suggests that λ ′ associated with the

fundamental shedding frequency f is continuously stretched by the flow and can be reasonably

described by,

λ
′(y) = λ

(
1− e−y/α−1λ

)
. (3.6)

Using Eq. (3.4), Eq. (3.6) can be written as

λ
′(y) = α

(
D+

λ0

α

)[
1− e−

(
D+

λ0
α

)−1
y
]
. (3.7)

In this expression, one can observe that a new length scale λ0
α

emerges, and such a length scale is

stretched by a factor α to give rise the wavelength λ0 that we observe. Note, typically λ0/α ∼
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200 µm, and when D = 200 µm, the boundary layer thickness δb = 5
√

νD/U ∼ 100 µm. There-

fore, λ0/α represents a characteristic length that separates two regimes where δb� D and where

δb� D.

In an effort to understand physical meaning of α , we seek to explain our observation using the

simple picture of stretching of a passive scalar by potential flow near a circular cylinder. Without

a rigorous mathematical description for near-wake dynamics, this is the best we could do, and we

believe that the calculation should be reasonably accurate very close to the onset of the vortex

shedding [35].

Specifically we would like to know how a small fluid element of size l0 near the rod would

be stretched downstream due to the velocity gradient induced by the potential flow. In the laminar

flow regime1, the potential flow in a polar coordinate system (See Fig. 23) is given by

φ(~r) =U
(

r+
D2

4r

)
sinθ . (3.8)

This velocity potential satisfies the boundary conditions:

1. at r→ ∞, vx = ∂xφ = 0 and vy = ∂yφ =U ,

2. at r = D/2, vr = ∂rφ = 0 (slip boundary condition).

The rate of stretching in the radial direction is

∂rvr(≡
∂ 2φ

∂ r2 ) =
U sinθ

2D
·
(

D
r

)3

. (3.9)

At the stagnation point downstream, r = D/2 and θ = π/2, the stretching rate is maximum with

∂rvr = 4U/D. The small fluid element will be stretched when ∂rvr 6= 0. The stretching rate decays

as y−3 in the laminar flow regime. However vortex shedding may alter this y dependence. Accord-

ing to our observation it is appropriate to assume that the stretching rate decays as ∼ exp
(
− y

D

)
.

Using this simple ansatz, the small fluid element of size l0 at y = 0 will be stretched downstream

to the size of l according to

dl = l0 (∂rvr) |θ=π/2dt

' 4l0 exp
(
− y

D

)
d
( y

D

)
, (3.10)

1When Re is slightly above the onset, the vorticity near the rod will be discharged into the flow and will be stretched
by neighboring potential flow.
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Figure 22: The wavelength λ ′ vs. y. In (a), it is depicted that for each D, λ ′ initially increases

with y, but it reaches an asymptotic value λ , implying λ ′ = λ (1− e−y/y0), where λ and y0 are

parameters depends on D. In (b), ln(1−Λ), where Λ ≡ λ ′/λ , is plotted against Y ≡ y/y0. The

observed linearity verifies Eq. (3.5). In (c), y0 is proportional to λ with the proportionality constant
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Figure 23: A polar coordinate system in the uniform fluid flow.
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where dy =Udt and is used. Upon integration, we have

l(y) = l∞−4l0 exp
(
− y

D

)
, (3.11)

where l∞ is the fully stretched length. We determine l0 self consistently with l(0)≡ l0 = l∞−4l0.

This yields l∞ = 5l0, implying that the small fluid element near the rod is eventually amplified by

5 times. This amplification factor is consistent to α in Eq. (3.7),

α = l∞/l0 = 5. (3.12)

Replacing l by λ ′ and l∞ by λ leads to

λ
′(y) = λ

[
1− 4

5
exp
(
− y

D

)]
. (3.13)

Both Eqs. (3.12) and (3.13) are qualitatively consistent with our observations, if one assumes that

vorticity behaves like a passive scalar.

3.3.2 The vortex street velocity

In Figs. 24(a)-(d), we plotted c≡ vst/U vs. Re for different rods. Like λ ′, vst/U is also a function

of the downstream distance and approaches an asymptotic value at y→∞. As can be seen, c is not

a monotonic function of D in general. It is found that c initially decreases with Re (starting from

∼ 0.9), reaches a minimum value cmin at a certain Re, and c may increase again for even larger

Re. In particular, for circular and square rods, c reaches cmin ' 0.8 near Re ∼ 400 and increase

when Re > 1000. For diamond and triangular rods, c reaches cmin ' 0.7 and no further increase

in c was observed for the given range of Re. Physically, c is a measure of vortex strength κ (or

the circulation); the more powerful the vortices are the smaller the value of c. Using a point-vortex

model, von Kármán showed that a vortex street travels against a static background fluid with a

velocity [7]:

v′st =
κ

2λ
tanh

(
hπ

λ

)
, (3.14)

where h is transverse spacing between the vortices, and vst = U − v′st is the velocity of the vortex

street in the laboratory frame. It is clear that for diamond and triangular rods, the trailing edge

reduces the base suction pressure, resulting in a wider wake and a somewhat larger Kármán ratio
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h/λ . The trailing edge also physically separates two sides of the boundary layers, preventing

annihilation of vorticity of opposite handiness. These two effects conspire to give diamond and

triangular rods a lower cmin than that of circular and square rods. It is noteworthy that if we

used the Kármán’s stability condition tanh(hπ

λ
) = 1/

√
2 and assume that vorticity created in the

boundary layer are 100% encapsulated into the eyes2 of vortices, κ ' λU [80], it follows c ≡

(1− v′st/U) = 1− 1
2
√

2
or 0.65. This result is remarkably close to our measured cmin for diamonds

and triangles, suggesting that these geometries permit the maximum preservation of vorticity. On

the other hand, when Re is not so large or when circular and square rods are used, a noticeable

amount of vorticity must have been annihilated before a stable vortex street is formed.

3.3.3 St-Re relation

We next turn our attention to the experimental determination of the St-Re relation. Here, the

shedding frequency f was measured by directly counting the number of vortices peeling off from

a rod in a given time interval. We verified that this counting method is identical to the power-

spectrum measurement downstream using a laser Doppler velocimeter (LDV), showing that vortex

streets are laminar and f represents the global mode of oscillations [56]. Also, in all measurements,

f was equal to vst/λ within the limit of experimental uncertainties, providing a solid support for

the validity of the linear dispersion relation.

Figures 25(a)-(d) display runs with circular, square, diamond, and triangular rods, respectively.

We noted that for all geometries, the laminar vortex shedding persists over a broad range of Re up

to Re∼ 1200. This is about an order of magnitude (or 6 times) greater than in similar measurements

carried out in 3D [91, 48, 98]. All the data exhibit a similar trend, i.e., St increases rapidly with

Re near an onset ReC, and it levels off for large Re. Because of uncertainties in the measurement,

we were unable to determine how ReC varies with the rod geometry. However, all of our data

are consistent with the onsets occurring within 10 < ReC < 30, which are lower than ReC ∼ 47

typically reported for circular rods in 3D [56, 92, 48]. We found that all of our measurements can

be adequately described by Eq. (3.3), which are displayed by solid lines in Figs. 25(a)-(d). The

quality of the fits using Eq. (3.3) can be compared to that using Eq. (3.1) [dotted lines in Figs.

2The eye of a vortex is a circular swirl that is observable in Fig. 20.
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25(a)-(d)] and are quantified by the χ2 values tabulated in Table 2. The appropriateness of the

equation can also be demonstrated by the linear behavior of St−1 vs. Re−1 plots presented in the

insets.

The A and B coefficients determined by fitting the data of Fig. 25 are in reasonable agreement

with those calculated from wake structure measurements (α/c and λ0U/cν), indicating consis-

tency between different types of measurements (see Table 1). Given that the linear dispersion

relation was confirmed experimentally, the discrepancies, sometimes as large as ∼ 30% between

the measured and the calculated B, are mainly due to the approximation of setting cmin to a constant.

A conspicuous feature of the measured St-Re relationships depicted in Figs. 25(a)-(d) is that

as Re→ ∞, St appears to approach a universal asymptotic value St∞, regardless of the shape. We

would like to point out that while α and c (as well as λ0) are shape dependent, the ratio α/c is only

weakly so, indicating that there is a correlation between α and c. It is found that St∞ ' 0.21 and

its variation due to the rod shape is less than 5%. This constant value is obtained only when we

used D instead of W to characterize vortex shedding. If W were used, the asymptotic St∞ differs

significantly from rod to rod. This indicates that D is more relevant than W in the interpretation of

physical process of vortex shedding when Re→ ∞. This asymptotic behavior may be understood

as the instability being associated with the irrotational part of the fluid flow, which becomes more

prominent as Re increases. We posit that for large Re, the shedding frequency f only depends on

the largest dimension of the disturbance, whose relevance to D may be explained by multipolar

expansions of the potential flow. At high Re, as the flow is only slightly compressible (Mach

number M ∼ 0.1) and most vorticity is concentrated inside the vortex eye [68, 8, 2], a flow can

be considered approximately potential in most region of the fluid (see Appendix C.1). Then the

far field of the potential flow for different shapes can be represented as a linear superposition of

singularities of different orders via a multipole expansion.

For a circular cylinder, the potential function is described by

φcircle =U
(

r+
D2

4r

)
cosθ . (3.15)

Without losing generality, we can set U = 1 and D = 1 for simplicity

φcircle = r cosθ +0.25
cosθ

r
. (3.16)
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Figure 25: St vs. Re for (a) circular, (b) square, (c) diamond, and (d) triangular rods. Solid and

dotted lines in (a)-(d) are theoretical predictions according to Eq. (3.3) and Rayleigh’s relation Eq.

(3.1), respectively. The insets are St−1 vs. Re−1 plots.

χ2 (×10−4) Circle Square Diamond Triangle

Eq. (3.3) 0.7 0.3 0.7 0.4

Eq. (3.1) 5.0 1.1 3.1 1.2

Table 2: Unnormalized χ2-square values from fits to two different equations. Equation (3.3) yields

much lower χ2-square values than Eq. (3.1) for all shapes. This means that Eq. (3.3) describes

data better than Eq. (3.1).
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Here the first term represents the mean flow, and the second term represents the dipolar field which

is required to match the boundary condition at the surface of the circular rod. For a square rod, Eq.

(3.15) must be modified to match with the boundary condition for the square. This modification

can be made numerically3,

φsqure = φcircle +0.052× cos3θ

r3 −0.023× cos5θ

r5 + · · · . (3.17)

Similar calculation can be done for a diamond rod with the result,

φdiamond = φcircle−0.0019× cos3θ

r3 +5.5×10−4× cos5θ

r5 + · · · . (3.18)

As can be seen, in addition to the dipolar term, Eqs. (3.17) and (3.18) contain additional multipolar

terms, each of which is associated with a corresponding mode of oscillation. However the strength

of higher order poles are much weaker than that of the dipole, and the potential flow past a non-

circular rod is essentially dominated by the dipolar field with D the same as its equivalent. It

remains an intriguing possibility that the observed oscillation may be due to the instability of this

dipolar field. The universal shedding frequency is thus related to the angular mode of the dipolar

expansion which yield a constant frequency f ∝
U
D when Re→ ∞.

While our parametrization scheme makes A independent of geometry, B, which determines

the crossover from low to high Re regimes, remains strongly dependent on the rod shape. It is

found that rods with sharp corners (square, diamond, and triangular rods) reaches St∞ faster than

the circular rods. Since when Re = B/A, St = 1
2St∞, the value B/A is a measure of how rapidly St

approaches to St∞. The square, diamond, and triangular rods yield, respectively, 1.18, 1.65, 1.17

times greater B/A value compared to the circular rod. Using A = α/c and B = λ0U/cν , it is easy

to see that

St =
1

(A+B/Re)
=

1
A
· D(

D+ λ0
α

) . (3.19)

A simple physical picture that emerges from this study is that the two parameters A and B are

essentially determined by two relevant scales in the problem, D and λ0/α . When Re is large, the

oscillation is governed by the outer scale of the problem D, and the approximation λ ∼ αD is

reasonable or equivalently D� λ0/α . For small and intermediate Re . B/A = (λ0/α)U
ν

, on the

3Details of the calculation can be found in the Appendix C.
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other hand, the influence of the boundary layer thickness, whose significance is characterized by

the scale λ0/α , scales with
√

D and is not negligible compared to D. Our measurements show that

all the shape-dependence is buried in B and is related to the inner scale λ0.

3.4 CONCLUSION

In summary, we demonstrated that the new St-Re relation, Eq. (3.3), is applicable to vortex shed-

ding behind non-circular rods. It is shown that the A and B coefficients in the equation are deter-

mined respectively by two characteristic length scales D and λ0 in the flow. In the high Re regime,

the potential flow dominates and the oscillation frequency appears to be uniquely determined by

the largest length scale D in the problem. On the other hand, in the low and intermediate Re

regimes, where fluid viscosity cannot be neglected, λ0 also contributes to the oscillation, and it is

shape dependent. The work reported herein demonstrates that in a soap film, mixing between the

rotation part and the potential part of fluid flows is weak, giving rise to important features of fluid

dynamics. These include:

1. The vorticity created in the boundary layer is efficiently encapsulated into the eyes of vortices,

particularly for diamond and triangular rods that contains a sharp trailing edge.

2. The laminar wake persists over a broad range in Re, which results from an absence of vortex

stretching in a 2D fluid.

3. Asymptotically, the oscillation is determined by a single scale D.

This last property is remarkable considering that in 3D fluids, the potential part of fluid flow is

rapidly spoiled by small-scale velocity fluctuations as Re increases, which lead to chaotic or tur-

bulent behaviors. In our case, however, since small-scale velocity fluctuations (or strong vorticity)

are well isolated in small regimes, potential flow becomes more prominent as Re increases. The

separation of potential and viscous regions is a hallmark of 2D fluid flow and can be readily seen

in a 2D soap film. This important property may be exploited further to address fundamental issues

in fluid dynamics.
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4.0 ONSET OF TYPE 2 VORTEX STREETS

4.1 INTRODUCTION

Von Kármán vortex streets discussed in the previous chapter are robust over a broad range of

Reynolds number (30 < Re < 107) and stable over a long distance. Using a point vortex model,

Theodore von Kármán performed a stability analysis and suggested two conditions for such a

vortex street to be stable [87]:

1. Two rows of vortices must be out of phase with respect to each other; namely, a vortex must

be located at the same distance from two neighboring vortices of the opposite handedness.

2. The so-called Kármán ratio Kr, the transverse distance h between two staggered rows to the

wavelength λ (see Fig. 20 for definitions), must be 0.28.

Experiments, including those reported in the previous chapter, show that the first condition is satis-

fied most of times. However, the second condition is often violated. Measurements by Rosenhead

and Schwabe showed Kr ' 0.3 [62] whereas Fage and Johansen found Kr = 0.25, 0.38 and 0.52

[26]. Our own data in chapter 3 also indicate that Kr is between 0.3 and 0.5 (see Fig. 27), which

are larger than the proposed value 0.28. However, to our knowledge Kr significantly greater than

0.28, say by a factor of two, or significantly less than 0.28 is rarely observed.

In this chapter, we will discuss the existence of a quasi-steady-state vortex street in which the

second stability condition is significantly violated. We shall call these vortex streets “type II” as

opposed to the normal “type I” streets, which are presented in chapter 3. One such type II vortex

streets is shown in Fig. 26. This vortex street differs from the type I in the following ways:

1. The Kármán ratio Kr is much greater than those of type I (see Fig. 27).
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Figure 26: A snapshot of a typical type I and II vortex street. The type II vortex street is created

by a triangular rod with W = 0.13cm, corresponding to Re = 660. It is evident that the type II

differs from type I in that there exists an irrotational flow region that separates the two staggered

rows of vortices. This zigzag region resembles a snake swimming up stream in our video clips and

hence earns the name “snake region” used in the main text. The type II street is metastable, and it

disintegrates down street and ultimately form the type I street.
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2. There exists a potential flow region between the two rows of the vortices, providing a barrier

between the two signed vortices.

3. They are metastable. After persisting for a certain distance downstream, which depends on Re,

two neighboring vortices of the same handiness merge, forming a bigger vortex.

In our work, we found that type II vortex streets can be readily and reliably created using an

equilateral triangular rod with one of its sharp corners facing the upstream flow. Motivated by this

observation, we manufactured triangular rods with different aspect ratios or acuteness ra = H/W ,

where H is the height and W is the base of the triangle. Measurements showed that type II vortex

streets originates from type I street because the wake structure immediately adjacent to the rod is

always the first type. For the type II vortex street to emerge, the Reynolds number Re must exceed

some critical value ReC2, which depends on ra. When ReC < Re < ReC2, only the normal type I

vortex streets are observed, and when Re > ReC2, both type I and II are observed.

4.2 EXPERIMENTS

Aside from the different shaped rods used, the experimental methods are identical to those dis-

cussed in the previous chapter. Specifically, we used five tapered triangular rods with different

aspect ratios ra =0.3, 0.5, 0.87 (equilateral), 1.5, and 2.5 as depicted in Fig. 28. Similar to the

previous chapter, these rods were made of titanium and precisely machined to a tip size ∼ 50 µm.

Using a translational stage, a rod was mounted and moved through the inclined soap film while its

insertion depth was monitored by the CMOS camera mounted on the long-range microscope. The

downstream wake structures were monitored by the fast video camera.

In this study, the linear dimensions relevant to the flow structures are W and H, and we will use

dimensionless number Re ≡WU/ν and ra to characterize the flow. By this definition, triangles

with the same base W but with different heights H, will have the same Reynolds number Re but

different ra. The net effect is that the triangle with a large H will have a thicker boundary layer

since its thickness scales as δ ∝
√

νH/U .1

1The boundary layer is proportional to
√

νt,where t is the time for transverse momentum diffusion. When a
constant flow speed is assumed, t is proportional to the length to travel, in this case ∼ H.
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Figure 27: Kármán ratio Kr of type I (black) and type II (red) vortex streets. The vertical dotted

line is the classical prediction by von Kármán. Although statistical variations exist, Kr of the type

II is significantly higher than those of type I.
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Figure 28: The cross-sectional areas of five tapered rods used in this experiment. The rods are

made of titanium with a tip size ∼ 50 µm. For the same W , each rod has different streamwise

dimension H, giving rise to a different boundary layer thickness δ . The aspect ratio of the rods are

defined as ra ≡ H/W .
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4.3 RESULTS AND DISCUSSIONS

Figure 29 shows the threshold values ReC2 vs. the aspect ratio ra. It is found that a triangle of

smaller ra will shed the type II vortex street at a lower Re. For instance a rod of ra = 0.3 has

a threshold of ReC2 ∼ 150 but a taller triangle with ra = 1.5 requires ReC2 ∼ 350. For triangles

with ra > 2.5, only type I vortex streets were observed, perhaps due to a unattainably large ReC2.

Since for the same base length W or Re, an acute triangle occupies a larger area in the soap film,

the above observation is somewhat peculiar because it shows that the smaller body is more readily

producing rows of vortices that are more separated in space. For this reason, we postulate that the

creation of type II vortex street may be dependent on the boundary layer thickness δ relative to D.

According to Prandtl’s boundary-layer theory [55, 49], δ near a thin plate is given by

δ = α

√
νy1

U
, (4.1)

where y1 is the distance from the leading edge of the plate, and the α value varies depending

on the definition of the boundary layer. For instance, if one defines the boundary layer thickness

to be at a velocity 99% of U , then α ≈ 5 [75]. There is an issue about whether the Prandtl’s

boundary-layer theory is applicable to a soap film, where fluid flows in the film is coupled to

the surrounding air [70]. Using a laser Doppler velocimeter, Rutgers et al. [70] measured the

velocity profile near a thin plate in a soap film and showed that it could be best described by an

exponential function v(x) = U − v1e−x/l , which yields a linear velocity profile for x� l and is

consistent with Prandtl’s prediction. A conspicuous feature of this measurement however is that

the nonslip boundary condition appears to be violated since v(0) = U − v1 6= 0. The explanation

in Ref. [70] is that for x very close to the boundary, the laser Doppler velocimetry measurement

became unreliable due to strong scattering of light. This peculiar feature aside, the boundary layer

thickness can be predicted with the result δ = l ln(100v1/U). Measurements of δ as a function

of y1 by Rutgers et al. resulted in δ ∼ y1/3
1 instead of y1/2

1 as predicted by Eq. (4.1). In our

measurement, however, we found that the boundary layer discharged from the rear end of a thin

plate appears to be black, indicating that its optical property is quite different from the rest of the

film. The darkness of the region may be due to surface roughness resulting from high vorticity

in the boundary layer, which causes a dramatic decrease in the surface reflectivity as depicted in
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the inset of Fig. 29. We used thin plates of different y1 and measured the width 2δd of the dark

region directly below the trailing edge of the plate. The data displayed in Fig. 30 show that δd is

consistent with Eq. (4.1) and α ' 6 is slightly higher than those determined in 3D fluids. In what

follows we assume that Prandtl’s equation [Eq. (4.1)] is valid in the soap film, and estimate the

boundary layer thickness δe of a triangle according to

δe = 6

√
νL
U

, (4.2)

where L =
[(1

2

)2
+ r2

a

] 1
2
W is the length of the hypotenuse of the triangle. We believe that this is

an overestimate because U would be greater near sharp edges of a triangle than near a flat plate.

For each triangle, the type of vortex street is plotted vs. δe/W in Fig. 31. As can be seen, for a

triangle of ra = 0.3 (black), if δe/W > 0.4, the vortex shedding is type I (closed symbols). On the

other hand, if δe/W < 0.4, the vortex shedding is type II (open symbols). The same trend appears

to be followed by other aspect ratios ra as depicted by different colored symbols. The solid line is

placed at δe = 0.4W , and it reasonably represents the boundary between the two types of vortex

shedding. This suggests that the criterion for type II shedding is given by 2.5δe <W , which yields

ReC2 & 113
√

1+4r2
a. (4.3)

This equation is plotted as a solid line in Fig. 29, which shows a reasonable agreement with the

experimental data.

When the type II vortex street is observed, a potential flow region that separates two rows of

vortices is present. We posit that this potential flow region provides a physical barrier preventing

mixing of vorticity of opposite signs. This effectively prolongs the metastability of the vortex

street and allows the type II street to persist. As delineated in Fig. 26, the potential flow region

appears at a certain downstream distance s from the rod and persists over a distance ∆s. Outside

this region, the vortex street is of the first type. In particular, immediately below the potential flow

region, neighboring vortices of the same sign coalesce, which significantly increases the spatial

periodicity of the wake. By the vortices merging process, the vortex street transforms back to

type I downstream. Figure 32 displays s/W vs. Re/ReC2 for rods of different ra. The larger

the s/W value, the greater the stability of the initial type I vortex street. The graph shows that
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Figure 30: The thickness δd of the dark region observed at the trailing edge of a thin plate immersed

into a soap film vs. the streamwise length y1 of the plate. The Prandtl’s scaling relation δ ∼ y1/2
1 is

reasonably valid over a decade. The inset is a video image showing the dark region shedding from

the plate (yellow line), corresponding to y1 = 1.8cm and δd = 0.09cm. This dark region oscillates

downstream and eventually forms a vortex street.
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Figure 31: For triangles of different aspect ratios ra, the velocity of vortex streets vst/U is plot-

ted against δe/W . Open and closed symbols represents type II and type I vortex streets, respec-

tively. As shown by the vertical line, δe/W = 0.4 is approximately the boundary separating the

two regimes of vortex shedding. The type II vortex streets are moving much slower than type I

vortex streets. This indicates that the vortices are much stronger in type II than in type I.
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when Re�ReC2, s∞/W ' 4 is approximate constant, which corresponds about one wavelength λ ;

namely only a pair of vortices next to the rod is present [see Fig. 26(a)]. When Re→ ReC2, s/W

increases rapidly, and experimentally this value can be as large as 50. This suggests that type I

vortex street may be stable when Re ≤ReC2. In the inset, we plot ∆s/W vs. δe, which is a measure

of the stability of the type II vortex street. The figure shows that the transition to type I shedding

can be significantly delayed when the boundary layer becomes thinner. Interestingly, the size ∆s

seems to be mostly determined by δe, as experimentally no strong trend is observed when ∆s is

plotted against other quantities such as δe/D or Re/ReC2, which is displayed in the inset. This

indicates that the transition from type II to type I vortex street is strongly affected by the boundary

layer instability. As shown in Fig. 31, vst/U is significantly lower for type II than for type I, and

smaller δe yields smaller vst/U values, implying stronger vortices according to Eq. (3.14). It may

be that when δe is small, the vorticity injected into the fluid never gets a chance to annihilate each

other. This gives rise to more powerful vortices and consequently more persistence to the type II

street. We observed that when δe is large, the transition to type I street occurs at ∆s∼ 20W , which

appears to represent the shortest potential region when the type II occurs.

An interesting feature of the type II vortex streets is that despite the two sides of the vortices

are physically isolated by the irrotational region, the shedding of the clockwise and the counter-

clockwise vortices is still synchronized similar to the type I street. We found that the type II vortex

street emerges when the thickness of the boundary layer is thin compared to the separation distance

W between the two boundary layers. When this condition is not satisfied, the boundary layers from

two sides of the body can mix, and a significant amount of vorticity is dissipated. Even if the cri-

terion Eq. (4.3) is met, the phenomenon may not be possible unless the opposite signed vortices

in the fluid are well isolated from each other. To a large extent, this is made possible due to the

two-dimensional nature of fluid flow for which vortex stretching is not present.

4.4 SUMMARY

Flows behind a bluff body often result in vortex streets consisting of two rows of staggered positive

and negative vortices as discussed in chapter 3 and depicted in Fig. 26(b). Here in this chapter
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Figure 32: (a) The distance s from the rod to the starting point of the potential region vs. Re

normalized by ReC2. As Re increases, s rapidly reaches a constant value s∞ ∼ 4W , which is about

one wavelength. It is seen that s becomes longer as Re is closer to the onset ReC2, obeying a power

law (s− s∞)/W ∝ [(Re−ReC2)/ReC2]
−1 (see the inset). In (b), the length the potential flow region

∆s is plotted against δe. It shows that the transition to type I shedding can be delayed when the

boundary layer is thinner. However, when the same quantity is plotted against Re (in the inset), no

strong trend is observed.
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we report that such a normal, or what we called type I, vortex street is not unique. Under certain

conditions, particularly the use of inverted triangular rods, type II vortex streets can be reliably

created in the flow. The type II vortex streets are characterized by their relatively large Kármán

ratios Kr and the metastability, which eventually leads to the more stable type I vortex streets in a

far field.

Using triangular rods of different aspect ratios, we investigate this novel vortex street. Based on

our observations, we postulated that the type II vortex streets are produced when (i) the boundary

layer is much thinner than the width of the triangle W , and (ii) the two rows of counter rotating

vortices are well isolated from each other due the presence of the irrotational flow region, which

has the shape of a wiggling snake.

67



5.0 PRELIMINARY RESULTS ON PREDICTABILITY OF A TURBULENT FLOW IN

A 2D SOAP FILM

5.1 INTRODUCTION

The stochastic time series is easily found in our daily life, e.g., in weather and in stock markets.

Because it is important to understand such time series, there have been great interests of quantifying

the chaotic behavior of these systems. There have been several proposed measures of the chaotic

behavior of the system, including a Kolmogorov-Sinai entropy and a Lyapunov analysis, which are

widely used.

A sample entropy (SampEn) is one of such concepts to quantify the complexity of a stochastic

time series, suggested by S. Pincus [52, 53] and modified by Richman and Moorman [61]. Sample

entropy is not the normal statistical entropy which is given by−∑ p ln p, but rather the information

contents of the system defined as − ln p. For instance, if p = 1, SampEn = 0, meaning that there is

not more information can be extracted from the system. But for p = 0, SampEn = ∞, meaning that

we know nothing about the system, and there are infinite amount of information can be extracted.

Specifically SampEn is defined as a negative logarithm of the conditional probability of finding

a pair of identical values sharing an identical history of a certain length in a time series. As a

negative logarithm of a probability, it has a positive value from 0 to infinity. When the conditional

probability is 1, i.e., all subsets in a time series are identical and followed by the same value,

SampEn will be 0. In the other extreme, if the conditional probability is 0, i.e., each subsets in

a time series are the same but followed by different values, SampEn will be infinity. Therefore,

SampEn can be thought as a measure of the (un)predictability. In the multiscale sample entropy

(MSE) analysis, one calculate SampEn of a coarse-grained time series through a local averaging.

Since it is introduced, the MSE analysis has been utilized in physiology such as heart beat [11, 12],
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postural sway [57], weather forecasting [78], and stock markets prediction [45].

In this work, we present application of MSE analyses to a turbulent flow in 2D soap films,

which was initiated by Dr. Matthew Shtrahman1. Turbulence is characterized by the emergence

of many scales through bifurcation processes, and a comparison of complexities at different time

scales is particularly interesting. While the full physical understanding is yet to be achieved, the

calculation of the sample entropy has never been attempted in analyzing a turbulent time series.

5.2 EXPERIMENTAL AND COMPUTATIONAL METHODS

Our experiments were carried out in a vertically flowing soap film channel, which is identical to

the one used for experiments in chapter 2. The only difference is the channel width W . In this

experiment, two soap films, one with W = 2cm and the other with W = 8cm, have been used.

The flow speed VF was set to ∼ 1.5cm/s for both films. The soap solution consisted of 2% of

liquid detergent (Dawn, P&G) and rest of water. The viscosity of the solution was 0.012cm2/s.

For convenience of discussions below, a coordinate system was set such that x̂ is transverse to the

flow (spanwise direction), and ŷ is longitudinal to the flow, which is the direction of the gravity

(streamwise direction). In the soap film, turbulence was generated using a 2D grid (a comb) which

was placed at ∼ 50cm away from the top of the channel. The size of each tooth of the comb

was ∼ 1mm. At a y distance downstream of the comb, the velocity components vx and vy were

measured as a function of time t using a laser Doppler velocimeter (LDV) (TSI Scientific). The data

acquisition rate was ∼ 10,000Hz. In what follows, we denotes velocity components as v(W )
y,i (t),

where W denotes the width of the soap film used, i stands for either x or y velocity component,

and y is the downstream distance from the grid. The indices might be omitted when there is no

possibility of confusion.

For such measured time series, we calculated the sample entropy using the measured velocity

time series. The calculation has been made using a custom-made software package that is written

in C. Here we will briefly discuss how calculations were carried out.

First, because LDV does not measure the velocity at an equal time interval, the measured time

1Private communication.
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Soap Film VF W

1 1.4 m/s 2 cm

2 1.5 m/s 8 cm

Table 3: Soap films used in the experiments

series first have to undergo a sampling process. Figure 33 shows an example of raw measured

data as red circles. At t ∼ 0.752s, data points are densely populated. In contrast, at t ∼ 0.0753s,

they are sparsely populated. To avoid statistics bias, such irregularities need be eliminated before

any calculation is made. To achieve this, we used the linear interpolation scheme. We first define

tn = nτ0, where n is an integer from 0 to N, and τ0 = 0.1ms is the sampling time interval. We

then interpolated the velocity value v(W )
y,i (tn) using two adjacent measured data points v(W )

y,i (ta) and

v(W )
y,i (tb), where ta < tb. Formally, this is given by

v(tn) = v(ta)+
v(tb)− v(ta)

tb− ta
(tn− ta), (5.1)

where the indices are omitted. In all analysis, N was set to 220 (' 106). As a result, an array of a

million of entries
{

v0, v1, . . . , v(N−1)
}

was constructed, where vn = v(W )
y,i (nτ0).

Next, the interpolated time series are subject to a normalization process. We define the mean

and the standard deviation of a time series as

〈v〉= 1
N

N−1

∑
n=0

vn, (5.2)

σ [v] =

√√√√ 1
N

N−1

∑
n=0

(vn−〈v〉)2. (5.3)

For each entry in a time series vn, the normalization process replace vn by (vn−〈v〉)/σ [v], and the

resultant time series has 〈v〉= 0 and σ [v] = 1.
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Figure 33: Raw data (red) and interpolated data (black).

Once the measured time series were interpolated and normalized, the auto-correlation function

and the sample entropy were calculated. The auto-correlation function of a normalized time series

is calculated in the following way,

AutoCR(s) =
1

N− s

N−s−1

∑
n=0

vnvn+s, (5.4)

where s in an integer.

Next, we introduce the coarse graining time scale τ . It is a dimensionless integer specifying the

number of entries to be averaged over to construct a new time series. Formally, the coarse-grained

time series
{

v(τ)0 , v(τ)1 , . . . , v(τ)N/τ−1

}
can be constructed by local non-overlapping averaging of the

original time series {v0, v1, . . . , vN−1},

v(τ)i =
1
τ

τ−1

∑
j=0

viτ+ j. (5.5)

This coarse-grained time series is the one we want to use for calculating the sample entropy. The

concept and detailed methods to calculate the sample entropy can be found in Ref. [52, 61].

Briefly, the sample entropy is designed to quantify the predictability of the time series. In this
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calculation, one counts how many posteriors were repeated at a certain given prior. In a time series

{v0, . . . , vN−1}, one can find a certain subset of length m, {vn, . . . , vn+m−1}, is the same to the

another subset of the same length {vn+l, . . . , vn+l+m−1}, i.e., |vn+k− vn+l+k|< r for k = 0, . . . , m−

1, where r is the tolerance. Then we define a conditional probability p(τ, m, r) that given the

identical sub-strings, the immediate value that follows is also the same, i.e. |vn+m− vn+m+l| < r.

The sample entropy is defined as

SampEn(τ, m, r) =− ln [p(τ, m, r)] , (5.6)

The sample entropy can be calculated and plotted as a function of the coarse-grained time scale τ ,

the string length m or the tolerance r. This procedure is called a multiscale sample entropy (MSE)

analysis [11, 12]. Throughout the calculations, we fix the tolerance range r to be 15% of σ [v]

determined from a given time series. In practice, the selection of r is limited in two ways. If r

is too large, there is an increasing chance of artifacts due to trivial matchings. Conversely, if r is

too small, there will not be enough counts for meaningful statistics. At r = 0.15σ , the variance of

our sample entropy [39] becomes less than 1 % over a broad range of τ , which we vary from 1 to

500 corresponding to time scales ranging from 0.1 to 50 ms. We also performed the MSE analysis

by varying m from 1 to 8. Unlike the coarse graining process, which acts as a low-pass filter,

increasing m enables us to calculate the probability of occurrence of a long sequence of events

with the elementary time scales set by τ .

5.3 RESULTS AND DISCUSSIONS

5.3.1 Auto-correlation functions

Figure 34 shows the velocity-velocity auto-correlation function for the 2 cm wide soap film.

The auto-correlation functions for the 8 cm wide soap film are similar. We found that the auto-

correlation functions of the longitudinal fluctuations decay monotonically, and those of transverse

fluctuations oscillate once or twice before they fully decay. In all cases, the correlation is almost

zero after ∼ 20 µs. The correlation time is longer for the time series measured at a larger y, with

the exception of y = 0.8cm where the turbulence is not fully developed.
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Figure 34: Auto-correlation functions of (a) the longitudinal and (b) the transverse velocity com-

ponents of the 2 cm wide soap film.

73



5.3.2 Sample entropy calculation

Sample entropies of the longitudinal and transverse components of two soap films (W = 2, 8cm)

are displayed in Figs. 35-38. Each individual plots shows a map of the sample entropy, which

depends on two parameters τ (horizontal axis) and m (vertical axis). For all measurements, N =

220 = 1,048,576 when τ = 1. At τ = 500, N is reduced to∼ 2000. In the figures, a color scale was

applied such that the red indicates that the time series is highly unpredictable (SampEn' 2.5) while

the blue indicates that it is more predictable (SampEn ' 0.2). It is noteworthy that the increase

of m reduces the number of the matching subsets, increasing the noise in the sample entropy. For

example, in Fig. 35, abrupt change of colors at m = 8 is an artifact due to the decrease of the

number of matching subsets.

Several features are interesting. First, for both films, the sample entropy for both longitudinal

and transverse components increases, reaches a maximum value, and then decreases as τ increases.

In case of a white noise, the sample entropy monotonically decreases as τ increase [12] due to

the averaging effect in the coarse graining process. This can be understood because the time

series of the velocity fluctuation in a turbulent flow is not Markovian. The flow is predictable at

small time scales because at these scales the auto-correlation function is not zero. As the auto-

correlation diminishes, the sample entropy increases first and then decreases due to the coarse

graining averaging effect.

The second interesting feature is that the longitudinal and transverse fluctuations are clearly

different. While the sample entropy of the longitudinal fluctuation changes gradually with τ , the

transverse one changes more abruptly. Also the transverse fluctuations have a lower value of

SampEn with a broader range than the longitudinal ones. This is shown by the more extended blue

colors in the plots. The observation indicates that grid turbulence in soap films is not isotropic.

Such anisotropy originates from the fact that the soap film channel has a mean flow and vortices

are injected in that particular direction. Therefore, the transverse time series contain complexities

highly concentrated in a narrow band of τ , and the band of complexity spreads to longer time scales

as the downstream distance y increases. This may be a reflection of an inverse energy cascade

process, which is a characteristic of 2D turbulence. The location of such bands are about several

milliseconds in our measurements. Reciprocally, these are several hundreds of Hertz, roughly
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consistent with the frequency of the vortex shedding from the comb.

Lastly, the notion of a coherent structure must be mentioned. The transverse fluctuation of the

8 cm wide soap film (see Fig. 38) has a smaller sample entropy values at y = 10, 13cm for m > 5

than for m≤ 4. This suggests that the time series may be predicted in a long term but a short term

prediction may not be as accurate. Similarly, SampEn of the longitudinal fluctuation of the 2 cm

wide soap film has a particularly smaller value at y = 3, 4cm. These may suggest the existence of

a large coherent structure in soap film turbulence.

5.4 SUMMARY

The multiscale sample entropy (MSE) analysis is recently used to characterize the complexity of

a time series in weather forecast or physiology. We applied the MSE to our time series of velocity

fluctuations in 2D turbulence in soap films. The analysis indicates that the turbulence in a soap

film is two-dimensional but not isotropic. Some signs of coherent structures are observed, but its

full understanding is yet to be made.
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APPENDIX A

PHYSICAL STRUCTURE OF A SOAP FILM

Soap molecules consist of a hydrophilic polar head and a hydrophobic hydrocarbon tail. When

those molecules are resolved in water, hydrophobic tails of soap molecules tend to face air, while

hydrophilic heads tend to face water [see Fig. 39(a)]. As a result, soap molecules tend to be

placed at the air/water interface, and this give rise them a property of surfactants. In a soap film,

surfactants exist both at the surfaces and in the interstitial fluid between two layers of surfactants

[see Fig. 39(b)].

When soap molecules are formed the film structure, the surfactant concentration at the free

surface cs and in the bulk liquid cb are balanced by the chemical potential of molecules. The

typical relation between cs and cb is depicted in Fig. 40(a). There are two regimes of concentration

in which the cs− cb relation is differently described.

First, when the soap concentration c0 ≡ cb + 2cs/h, where h is the thickness of the film, is

small, cs is linear in cb [see Fig. 40(a)]. At the same time, the surface tension σ decreases linearly

as c0 increases [see Fig. 40(b)]. In this regime, the molecules are sparsely distributed on the

surface, and the equation of state of molecules can be approximated as an ideal gas law.

Second, when c0 is large, the linear relation no longer holds. In this regime, increasing c0

increases only cb but cs. In other words, cs saturates at a certain value of c0, which is called the

critical micelles concentration (CMC), and becomes independent of cb. Above CMC, molecules

start to form micelles, which is an aggregated structure with the hydrophilic heads in contact with

water [see Fig. 39(c)]. In this regime, the surface tension σ becomes constant on the change in c0.

Because the surface tension of a soap film is a function of the local concentration of surfactant
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Figure 39: Possible configurations of soap molecules in water. (a) Soap molecules settle at the

interface. They can form (b) the film structure and (c) micelles.
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Figure 40: (a) Relation between the concentration of soap molecules at the surface cs vs. the

concentration in the bulk liquid cb. (b) The surface tension of the interface σ vs. the concentration

of soap c0.

82



molecules, a soap film has elasticity and is sustainable under certain types of disturbance such as a

local stretching. Depending on the time scale of the disturbance, there are two types of elasticity.

Suppose a film is in an equilibrium state, denote as a point A in Fig. 40(a). When the soap

film is stretched in a time scale smaller than τD ≡ h2/D, where h is the thickness of the film and

D is the diffusion coefficient, soap molecules in the bulk liquid do not have time to diffuse to

the surface. Therefore, in this case, the molecules that covered a smaller area now cover a larger

surface area, and cs decreases while cb is unchanged. This can be represented by the change of state

from A to B in Fig. 40(a). The decrease of cs will increase the surface tension locally, providing a

restoring force. This is called Marangoni elasticity and provides the stability of film under the fast

disturbance. When the film is stretched slowly compared to τD, soap molecules in the bulk liquid

have enough time to diffuse to the surface. In this case cs decreases as a result of the stretching, and

cb also decreases because a certain amount of molecules moved to the surface. This corresponds

the change of state from A to C in the figure, and it is called Gibbs elasticity.
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APPENDIX B

BASIC EQUATIONS OF FLUID MOTION

B.1 NAVIER-STOKES EQUATION AND THE CONSERVATION OF MASS

In a rigid body, the distance between any given two points of the body is unchanged when an

external force is acting on it. As a result of it, one can consider the body as a point mass located

at its center of mass [40]. The motion of any point in a rigid body is represented by that of the

center of mass and the rotation about the center of mass. In a fluid1, the situation is different. Fluid

particles are moving in time, i.e., the position ~x of a particle in a fluid is an explicit function of

time. By taking that account, the convective derivative2 should be defined: using the chain rule of

the differentiation,
d
dt

=
∂

∂ t
+~v ·∇, (B.1)

where~v = d~x/dt is the velocity of the fluid.

Using Eq. ( B.1) and the stress tensor [4], Navier-Stokes equation, the equation of a fluid

motion, can be written:
∂~v
∂ t

+(~v ·∇)~v =− 1
ρ

∇p+ν∇
2~v+

1
ρ
~fext (B.2)

where ρ , p and ν are, respectively, the density, the pressure and the viscosity of the fluid, and ~fext

is an external force acting on the fluid. The inertial term (~v ·∇)~v, originated from the momentum

transport, is the only nonlinear term in the equation which makes the equation complex and math-

1A substance that is continually deformed under an applied stress, such as liquids, gases, plasmas, etc.
2There are many other names for this operator, including “material derivative”, “substantial derivative”, etc
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ematically difficult to solve3. The viscous damping term on the right-hand side of the equation,

ν∇2~v, is responsible for dissipation of energy at small scales. In general, the viscosity ν is a rank-2

tensor, however throughout this thesis, we assume it as a scalar quantity, i.e., the fluid is assumed

Newtonian.

When the motion of fluid can be characterized by a certain length scale D and velocity scale

U , one can non-dimensionalize Eq. ( B.2) using the substitutions ~v
U →~v′, L∇→ ∇′, L

U
∂

∂ t →
∂

∂ t ′

and p
ρU2 → p′, where the primed quantities are non-dimensional. Without a presence of an external

force, the substitutions result in:

∂~v′

∂ t ′
+
(
~v′ ·∇′

)
~v′ =−∇

′p′+
1

Re
∇
′2~v′, (B.3)

where

Re =UD/ν (B.4)

is called Reynolds number4, and it represents the relative importance of the inertial term (~v ·∇)~v

over the viscous damping term ν∇2~v, i.e., when Re� 1, the inertial term is more significant than

the viscous damping term, and Re� 1, the viscous damping term is more significant than the

inertial term.

After the non-dimensionalization process, the only remaining parameter in the Navier-Stokes

equation is Re. Regardless of U , D and ν , Eq. ( B.3) remain unchanged if Re is same. This

observation, by L. Rayleigh [59], was formulated as “the principle of similatude”. This principle

states that the non-dimensional velocity field of the fluid is expressed

v′ = g(x′, t ′; Re), (B.5)

where x′ = x/D is the non-dimensional position vector and g is a function that is determined only

by Re.

Another important equation in fluid dynamics is the continuity equation, which is

∂ρ

∂ t
+∇ · (ρ~v) = 0, (B.6)

3The existence and smoothness of its solution is unknown, and Clay Mathematics Institute has put a bounty of
$1,000,000 for one to solve it.

4Although it was G. Stokes (1819-1903) who first introduced this concept, it is named after O. Reynolds (1842-
1912) by A. Sommerfeld (1868-1951) [66].
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where ρ (~x, t) is the density of the fluid. The continuity equation states the conservation of mass.

When integrated over a volume element, the equation becomes

∂

∂ t

ˆ
ρdV =−

ˆ
(ρ~v) · n̂dA, (B.7)

where n̂ is an outward normal at the surface of the volume element. This states that the rate of

change of mass in the volume element equals the inward flux of matter across the surface.

In general, ρ is a function of~x and t. However it is considered as a constant when the fluid is

not compressible. In such a case, Eq. ( B.6) becomes

∇ ·~v = 0, (B.8)

which is usually called the incompressible condition.

B.2 VORTICITY EQUATION

The vorticity of the fluid can be defined as a curl of the velocity,

~ω = ∇×~v. (B.9)

The vorticity equation is obtained by taking a curl on Navier-Stokes equation [Eq. ( B.2)]:

∂~ω

∂ t
+(~v ·∇)~ω = ν∇

2~ω +(~ω ·∇)~v. (B.10)

When the external force ~fext in Eq. ( B.2) is conservative, its curl ∇× ~fext vanishes, and this

term does not appear in the vorticity equation. Similar to Eq. ( B.2), the convective term (~v ·∇)~ω

signifies the change of vorticity due to the convective transport, and ν∇2~ω represents a dissipation.

The last term of the equation, (~ω ·∇)~v, is called vortex stretching and is only significant in 3D fluid.

In 3D incompressible fluid, it results in the thinning of the fluid elements with vorticity due to the

conservation of angular momentum, and the consequent decrease of radial length scale of the eddy,

which eventually is attributed to the energy cascade in turbulence. In a 2D fluid, in contrast to a 3D
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fluid, there is no vortex stretching. In that case, the motion of fluid is restricted in two-dimension,

i.e., vz = 0 and ωx = ωy = 0, the vortex stretching term vanishes:

(~ω ·∇)~v = ωz∂z~v = 0. (B.11)

The lacking of the vortex stretching in 2D makes a 2D fluid different from a 3D fluid substantially.

Especially, the vortex is not weakened by stretching, a vortex persists more efficiently in 2D than

in 3D.

B.3 COMPLEX POTENTIAL OF A FLUID

In parts of a fluid where the local vorticity is zero, i.e., ∇×~v = 0, one can define a scalar function

φ such that

~v = ∇φ (B.12)

is satisfied. This scalar function φ is called a potential function. When the fluid is incompressible,

i.e., the incompressible condition Eq. ( B.8) holds, one can see that φ is harmonic:

∇ ·∇φ = ∇
2
φ = 0. (B.13)

Likewise, a stream function ψ of a 2D fluid can be defined, in such a way that

~v = ∇× (ψ ẑ) , (B.14)

i.e., vx = ∂yψ and vy = −∂xψ . This definition of ψ satisfies the incompressible condition of the

fluid given that ψ is an analytic function in 2D. Similar to φ , ψ is also harmonic when~v is irrota-

tional:

ωz = ∂yvx−∂xvy = ∇
2
ψ = 0. (B.15)

Given that φ and ψ satisfy Cauchy-Riemann condition

vx =
∂φ

∂x
=

∂ψ

∂y
(B.16)
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vy =
∂φ

∂y
=−∂ψ

∂x
, (B.17)

one can construct an analytic function

W (z) = φ(z)+ iψ(z), (B.18)

of z = x+ iy in a complex plane. The function W (z) is called a complex potential function, and the

above the Cauchy-Riemann condition assures that φ and ψ are complementary. The velocity field

~v = (u,v) can be easily calculated using

u− iv =
dW
dz

. (B.19)

The description of W for several irrotational fluids is known. For example, a point vortex located

at z0 is described by

W (z) =− iκ
2π

log(z− z0) , (B.20)

where κ is the strength of the vortex. Another example is W for von Kármán vortex streets. Using

Eq. ( B.20), W for two infinite array of vortices of strength κ can be calculated:

W (z) =
iκ
2π

log
sin πz

λ

sin π

λ
(z− 1

2λ − ih)
, (B.21)

where λ the longitudinal and h the transverse spacing between vortices.
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APPENDIX C

POTENTIAL FLOW

C.1 VORTEX STREET FLOW AND POTENTIAL FLOW

This appendix is dedicated to present experimental evidences of that when Re is high (Re & 1000),

the vortex street flow in a soap film channel can be treated as potential (~v ' ∇φ ) outside small

patches of vortex that occupies relatively smaller spatial regions. To show that, we observed a

spinning of solid bodies in fluid. When a solid passive scalar is spinning in a fluid, the angular

velocity Ω of the spinning motion is a half of the local vorticity of the fluid.

The circulation Γ is defined as

Γ =

ˆ
~ω ·d~A, (C.1)

using ~ω = ∇×~v and the Stokes’ theorem,

Γ =

ˆ
∇×~v ·d~A =

˛
~v ·d~l. (C.2)

Consider a close circular loop around a point vortex. Using v = aΩ for a solid spinner, it follows

that

Γ = ω ·πa2 = 2πav = 2πa ·aΩ, (C.3)

where a is the radius of the loop. This yields that

Ω =
1
2

ω, (C.4)

which relates the local vorticity of the fluid and the angular velocity of a spinning solid body.
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Figure 41 shows the movement of two thin rectangular rotors in the fluid. The tracers, 1mm×

1mm in size and ∼ 25 µm thick, were deposited ∼ 75cm upstream of the vortex street generated

by a circular rod. They reach & 95% of the fluid velocity when they reach to the circular rod. In

the figure, it is seen that the rotors does not rotate even though their trajectory is not straight. When

they reach to the vicinity of a vortex patch, they start to rotate. This observation indicates that the

vortex street flow is irrotational outside vortex patches of a finite size. Most of vorticity, which are

originated from the boundary layer near the rods, are confined within such patches of vortex.

C.2 POTENTIAL FLOW PAST A CIRCULAR CYLINDER

In a special circumstance in which the flow is irrotational and incompressible, a potential function

of a fluid φ can be defined such as~v = ∇φ , and the potential function satisfies the Laplace equation

∇
2
φ = 0. (C.5)

General solution of the Eq. ( C.5) is obtained by using Green’s function. Using a separation of

variables, the general solution of the Laplace equation in 2-dimension is given by

φ = ln(r)+

 rn

r−n


 sin(nθ)

cos(nθ)

 , (C.6)

where n stands for a summation over integer numbers.

First let us consider a flow past a circular cylinder of radius D with a flow U0 at r→ ∞. In this

example, following two boundary conditions must be satisfied by the solution:

1. vx =
∂φ

∂x =U0 at r→ ∞,

2. vr =
∂φ

∂ r = 0 at r = D (slip boundary condition).

Since the flow has to have a finite velocity at infinity (the first boundary condition above), we can

rule out all diverging solution except one that is proportional to r cosθ . So the solution of the

problem will be reduced to

φ =U0r cosθ +∑
n

Anr−n cos(nθ)+∑
n

Bnr−n sin(nθ), (C.7)
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where An and Bn are coefficients to be determined.

When the mean flow is in x-direction, we can further consider a symmetry. In the case of the

flow is x-axis symmetric, it is demanded that φ(r,θ) = φ(r,−θ), since such a case a flow can be

characterized by the properties ur(r,θ) = ur(r,−θ) and uθ (r,θ) =−uθ (r,−θ). Thus the solution

has to be even for θ and this rules out all sine solutions. Now remaining part of the general solution

is

φ =U0r cosθ +∑
n

Anr−n cos(nθ). (C.8)

A potential flow past a cylinder also a property that ur(r,θ ′)=−ur(r,−θ ′) and uθ ′(r,θ ′)= uθ ′(r,−θ ′)

where θ ′ is measured from the positive y-axis. It is inferred that φ(r,θ ′) = −φ(r,−θ ′). With

the substitution θ ′ = θ − π

2 , φ = U0r cosθ ′ cos π

2 −U0r sinθ ′ sin π

2+∑n Anr−n [cos(nθ ′)cos(nπ

2 )

+sin(nθ ′)sin(nπ

2 )
]
. Given that cos nπ

2 = 0 for odd n and sin nπ

2 = 0 for even n, we can write as

φ =−U0r sinθ
′+ ∑

n=odd
Anr−n sin(nθ

′)sin(
nπ

2
)+ ∑

n=even
Anr−n cos(nθ

′)cos(
nπ

2
). (C.9)

Since φ(θ ′) is an odd function, it is demanded that An = 0 for even n. This symmetry doesn’t hold

for a shape without y-axis symmetry, like a triangle. Finally, the non-diverging x- and y-symmetric

solution is

φ =U0r cosθ + ∑
n=odd

Anr−n cos(nθ). (C.10)

The first term in Eq. ( C.10) corresponds the velocity field at the infinity, or the mean flow.

Each term in the summation, cos(nθ)
rn , corresponds to a multipole of order n that is introduced in

the flow, as they are depicted in Fig. 42. Figure 42 shows the contour plots of cos(θ)
r , cos(2θ)

r2 ,
cos(3θ)

r3 and cos(5θ)
r5 , from left to right. In the n = 1 case, two poles - one sink and one source - are

introduced. For n = 2, the potential function has four singularities, and this case is prohibited in

our soap film flow because it breaks the symmetry. In (c) and (d), n = 3 and n = 5 cases are shown

to have 6 and 10 singularities, respectively. Any potential flow in 2D can be expressed as a linear

superposition of the flow induced by superimposed multipoles.

The strength of each terms can be determined by considering boundary conditions. By taking

radial and azimuthal derivative of Eq. ( C.10), we get the velocity components in polar coordinate,

vr = ∂rφ =U0 cosθ −∑
n

nAnr−n−1 cos(nθ), (C.11)
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Figure 42: Equipotential lines (left to right) n=1, n=2, n=3 and n=5 modes. The flow flows from

the small(blue) to large(red) value of the potential function. Not in scale.

vθ =
1
r

∂θ φ =−U0 sinθ −∑
n

nAnr−n−1 sin(nθ). (C.12)

In the case of the flow past a circular cylinder, the boundary condition on the surface of the

cylinder is vr = 0 at r = D. By using orthogonality of the {cos(nθ)}, An = 0, except A1 = U0D2

is obtained. Thus for the flow around a circle in 2-dimension can be derived from the potential

function

φ =U0r cosθ +U0D2 cosθ

r
. (C.13)

For flow past a circular cylinder of radius 0.5 (diameter 1), D2 = 1/4.

C.3 POTENTIAL FLOW PAST A NON-CIRCULAR CYLINDER

Diamond shape:

We consider the same Laplace equation, but with a different boundary condition from the

previous section. The circular cylinder is replaced by a diamond cylinder, and this changes the

boundary condition to the following:

1. The mean flow is in x̂-direction: φ(r→ ∞) =U0r cosθ ,

2. The normal velocity around a diamond, placed at the origin, is zero.
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We will use the same non-diverging x- and y-symmetric general solution that Eq. ( C.10) and the

velocity components Eq. ( C.11) and Eq. ( C.12). So far only the first boundary condition is

satisfied.

Since we applied x-axis symmetry already, we can consider only two boundary of the diamond:

y = x+D for the second quadrant, y = −x+D for the first quadrant, where D defines the size of

the diamond. Those boundaries are r = D
sinθ−cosθ

, π/2 ≤ θ < π , r = D
sinθ+cosθ

, 0 ≤ θ < π/2,

respectively, in the polar coordinate.

The boundary conditions demand that the normal velocity across each segment of the shape

has to be zero. In the first quadrant,

~v · n̂ = ∇φ · (î+ ĵ)√
2

=

(
U0 cosθ − ∑

n=odd
nAnr−n−1 cos(nθ)

)
·
(

r̂ · î+ r̂ · ĵ√
2

)
(C.14)

+

(
−U0 sinθ − ∑

n=odd
nAnr−n−1 sin(nθ)

)
·

(
θ̂ · î+ θ̂ · ĵ√

2

)
(C.15)

= 0. (C.16)

By using r̂ · î = cosθ , r̂ · ĵ = sinθ , θ̂ · î =−sinθ and θ̂ · ĵ = cosθ ,

~v · n̂ =
U0√

2
− ∑

n=odd
nAnr−n−1 cos [(n+1)θ ]+ sin [(n+1)θ ]√

2
. (C.17)

Once we put the boundary equation r = D
sinθ+cosθ

, and using sinθ + cosθ =
√

2sin(θ +π/4), the

equation becomes

U0√
2
− ∑

n=odd
nAn

1
D′n+1 sinn+1

(
θ +

π

4

)
sin
[
(n+1)θ +

π

4

]
= 0 for 0 < θ < π/2, (C.18)

where D′ = D/
√

2. We can do a similar calculation for a boundary in the second quadrant, and get

− U0√
2
− ∑

n=odd
nAn

1
D′n+1 sinn+1

(
θ − π

4

)
sin
[
(n+1)θ − π

4

]
= 0 for π/2 < θ < π. (C.19)

Finally, a proper set of Ans which satisfies above two equations should be computed numerically.

Square shape:

94



A square shape is bounded by, in a polar coordinate,

r cosθ = D,−π

4
≤ θ <

π

4
(C.20)

r sinθ = D,
π

4
≤ θ <

3π

4
(C.21)

r cosθ = −D,
3π

4
≤ θ <

5π

4
(C.22)

r sinθ = −D,
5π

4
≤ θ <

7π

4
. (C.23)

Each boundary has the surface normal of î, ĵ, −î and − ĵ.

We start from the non-diverging and symmetric solution in Eq. ( C.6). Because of the sym-

metry, we only need to consider only two boundaries, i.g., boundaries from −π

4 ≤ θ < 3π

4 would

be enough to cover the whole space. Using similar arithmetic for the diamond case, boundary

conditions demands

0 =U0− ∑
n=odd

nAn
1

Dn+1 cos [(n+1)θ ]cosn+1
θ for − π

4
≤ θ <

π

4
, (C.24)

0 = ∑
n=odd

nAn
1

Dn+1 sin [(n+1)θ ]sinn+1
θ for

π

4
≤ θ <

3π

4
. (C.25)

Also, a proper set of Ans which satisfies both above two equations should be computed.

C.4 NUMERICAL SOLUTIONS

For a circular cylinder, there exists an exact solution. The solution is

φcircle =U0

[
r cosθ +0.25

cosθ

r

]
, (C.26)

when the diameter of the cylinder is 1.

For a diamond rod, coefficients in the Eqs. ( C.18) and ( C.19) are obtained by a nonlinear

regression. The result is

φdiamond = φcircle +U0

[
−0.0019× cos3θ

r3 +0.00055× cos5θ

r5

−8.3×10−6× cos7θ

r7 +2.8×10−6× cos9θ

r9 + . . .

]
. (C.27)
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Figure 43: Equipotential lines of (a) φcircle and φsquare with the series truncated at (b) n = 3, (c)

n = 5 and (d) n = 7.

For a square cylinder, a similar analysis can be done for coefficients in Eqs. ( C.24) and ( C.25).

φsquare = φcircle +U0

[
+0.052× cos3θ

r3 −0.0023× cos5θ

r5

+0.0045× cos7θ

r7 −0.00037× cos9θ

r9 + . . .

]
. (C.28)

Figure 43 shows equipotential lines for a flow past (a) a circular cylinder and (b)-(d) a square

cylinder. The potential flow near a circular cylinder is the superposition of the mean flow and the

dipolar flow which is depicted in Fig. 43(a). The potential flow near a square cylinder, unlike

the circular one, contains higher order poles. Figure 43(b) shows the potential flow near a square

cylinder when it is summed up to the hexapolar term (n = 3). In (c) and (d), n = 5 and n = 7 terms

are added to the flow, respectively. However the strength of such multipolar terms are weaker

compared to the dipolar term, the flow pattern is similar to the flow near the circular cylinder.
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