BONE MINERAL DENSITY (BMD), BONE LOSS AND CORONARY CALCIFICATION
IN OLDER MEN

By

Miryoung Lee

B.S., Kyunghee University, Korea, 1992

M.P.H., Seoul National University, Korea, 1995

Submitted to the Graduate Faculty of

the Graduate School of Public Health in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2002
UNIVERSITY OF PITTSBURGH
Graduate School of Public Health

This dissertation was presented

By

Miryoung Lee

It was defended on

September 10, 2002

and approved by

Anne B. Newman, M.D., M.P.H. Associate Professor, Department of Epidemiology, Graduate School of Public Health

Robert E. Ferrell, Ph.D. Professor and Chair, Department of Human Genetics, Graduate School of Public Health

Stephen R. Wisniewski, Ph.D. Assistant Professor, Department of Epidemiology, Graduate School of Public Health

Dissertation Director: Jane A. Cauley, Dr.P.H. Associate Professor, Department of Epidemiology, Graduate School of Public Health

ii
Cardiovascular disease (CVD) and osteoporosis are important public health burdens in older men. Recent epidemiologic studies suggest that osteoporosis and atherosclerosis may be linked. The goals of this study were to determine whether measures of bone strength were related to coronary artery calcification (CAC). To further test the underlying etiologic pathways, we explored 1) the relationship of estrogen and C-reactive protein (CRP) and 2) the genetic contribution of osteoprotegerin (OPG) polymorphisms. A total of 138 Caucasian men aged 51 to 78 years were participated in present study. Hip BMD, CRP and sex steroid hormones were measured, and annualized percent change in BMD was calculated. CAC score was measured by electron beam tomography. Men were genotyped for T-950C and G-1181C polymorphisms in OPG gene. Correlation analysis, analysis of variance (ANOVA), and regression analysis were employed to evaluate the study aims.

The prevalence of CAC increased with age, ranging from median value of 152 at less than 65 years to 788 at 80 years and older. Hip BMD or bone loss at the hip was not correlated with CAC. Neither serum estrogen nor CRP was related to bone loss or coronary calcification. There were no significant differences in BMD across OPG T-
950C or G-1181C genotypes. However, men with T-950C C/C genotype were more likely to lose BMD at the intertrochanter compared with men with T/T or T/C genotypes (p =0.03). Calcaneal BUA significantly differed across G-1181C genotypes; men with C/C genotypes had 25% higher BUA values than men with G/G genotypes. Interestingly, men with C/C genotypes had 0.5SD higher coronary calcification than men with G/G genotypes, which persisted after adjusting for age (p=0.03). There was a significant dose dependent effect across genotypes (p=0.01).

In conclusion, we could not find any relationship between measures of bone strength and coronary calcification in older men. However, our findings suggest that genetic variations in OPG may be of importance to examine its effect on the development of coronary calcification in older men.
ACKNOWLEDGEMENTS

First of all, I would like to give endless thanks to the Lord. To complete this enormous project, I had to be trained, tamed and loved. Also, I would like to deeply appreciate my mentor and advisor, Dr. Jane Cauley for giving me the wonderful opportunities to learn the real-world researches, and guiding me to find my way as an Epidemiologist. I would like to thank my doctoral committee members, Drs. Anne Newman, Robert Ferrell, and Stephen Wisniewski. Thank you so much for letting me look at many aspects of life and researches through you. I must acknowledge our study participants for their efforts in completing this study with their time, and participations. Most of all, thank you so much for your trust and for letting me drive you all the way from Monessen, PA to Pittsburgh! I hope my thanks are enough to acknowledge our Monessen Clinic staffs for their help and cheering.

To all my friends and colleagues, I owe you millions of thanks for your love and support even for my ups and downs. My colleagues in my office, Dr. Joseph Zmuda, many friends including Junghwa Ko, Jeanne Zborowski, Kathleen McHugh-Pemu, Karen Remsberg, Karen Southwick, and Rana Ezzeddine. I would like to thank many friends at the University of Pittsburgh and Department of Epidemiology as well. Finally, to my husband, my mom, and parents-in-law, I am very grateful for your love, patience, and supports for my endless endeavor. Thank you so much for praying and believing in me. Most importantly, to my husband, he was always there to look after, cheer up, guide, and love me during all these hard years. I am so lucky to have you!
TABLE OF CONTENTS

I. INTRODUCTION

II. REVIEW OF THE LITERATURE

A. OSTEOPOROSIS IN MEN

1. Pathophysiology of Osteoporosis
 - a. General bone biology
 - b. Bone growth and modeling
 - c. Bone formation by osteoblasts
 - d. Bone resorption by osteoclasts
 - e. Bone remodeling
 1) Normal regulation and unbalance coupling
 2) Endogenous regulators of remodeling
 - f. Pathogenesis of osteoporosis in men

2. Osteoporosis and Measurements of Osteoporosis
 - a. Definition of osteoporosis
 1) Osteoporosis and WHO criteria
 2) Application of WHO criteria in men
 - b. Invasive assessments for bone mineral density
 1) Conventional Radiography
 2) Single photon and X-ray Absorptiometry (SPA and SXA)
 3) Dual photon and X-ray Absorptiometry (DPA and DXA)
 4) Quantitative Ultrasound Technology
 5) Quantitative Computed Tomography

3. Epidemiology of Osteoporosis and Fractures in Men
 - a. Prevalence of osteoporosis
 - b. Consequences of osteoporosis and osteoporotic fractures in men
 - c. Risk factors for osteoporosis and fractures
 1) Bone mineral density and Peak Bone Mass
 2) Bone loss
 3) Body weight and weight loss
 4) Physical activity and exercise
 5) Smoking
 6) Dietary calcium & Vitamin D intake
 7) Other nutritional intake
 8) Alcohol consumption
 9) Medical conditions

Page

1

4

4

5

5

7

9

9

11

13

15

16

18

20

21

22

23

24

26

27

28

29

30

31

33

35

37

38

40

41

42
10) Medications
11) History of falls
4. Sex steroids and bone metabolism in men
 a. Estrogen and bone in men
 1) Estrogen receptors
 2) Effects of estrogen on bone cells – osteoblasts and osteoclasts
 3) Effects of estrogen on cytokines and growth factors
 4) Estrogen and bone – Animal studies
 5) Effects of estrogen on male skeleton – peak bone mass
 6) Epidemiologic studies supporting a unitary model for involutional male osteoporosis
 b. Androgen and bone in men
 1) Androgen receptors
 2) Effects of androgen on bone cells – osteoblasts and osteoclasts
 3) Androgenic effects on male skeleton
 c. Treatment of men with estrogen and testosterone

B. CORONARY ARTERY DISEASE (CAD) IN MEN
 1. Pathophysiology of CAD and vascular calcification
 a. Pathophysiology of CAD
 1) Vascular biology
 i) Endothelium of arterial wall
 ii) Three layers of arterial wall
 2) Atherogenesis
 i) Lesion initiation and stages
 ii) Type I lesions
 iii) Type II lesions (Fatty streaks)
 iv) Type III lesions
 v) Endothelial and smooth muscle cell changes in type I, II and III lesions
 vi) Type IV lesions (Atheromas)
 vii) Type V lesions
 viii) Type VI, VII, and VIII lesions
 b. Pathophysiology of vascular calcification
 1) Overview
 2) Sequel of vascular calcification
 i) Loss of inhibitory action – Double defense system
 ii) Initiation of calcification: Calcium phosphates, lipid, and apoptosis
 iii) Nucleation of calcium
 iv) Proliferation of calcification
 3) Clinical significance of vascular calcification
 2. Epidemiology of Coronary artery disease in men
 a. Overview
 b. Non-modifiable risk factors of CAD
 1) Age and gender
 2) Race and family history
 c. Modifiable risk factors of CAD
 1) Cholesterol & other lipids
 2) Hypertension
3) Diabetes 91
4) Obesity & overweight 93
5) Smoking 94
6) Alcohol consumption 95
7) Physical inactivity 95
8) Psychosocial factor- Depression 96
c. Emerging risk factors of CAD 98
 1) Inflammation marker - C-reactive protein 98
 2) Atherogenic and prothrombotic factors 99
3. Non-invasive assessment and epidemiology of vascular calcification 102
 a. Non-invasive measurement 102
 1) Plain chest radiography 102
 2) Magnetic resonance imaging (MRI) 103
 3) Fluoroscopy 103
 4) Helical (Spiral Compute Tomography) 104
 5) Electron beam computed tomography (EBT) 105
 6) EBT: Relationship to other techniques 107
 7) Accuracy of EBT 110
 8) Reproducibility of EBT 110
 b. Epidemiology of coronary calcification measured by EBT 112
 1) Measurement of CAC for prediction future events 114
 2) Progression of calcification 115
 3) Risk factor for coronary calcification 119
 i) Age and gender 119
 ii) Lipids 121
 iii) Smoking, blood pressure, and obesity 122
 iv) Inflammation marker – C-reactive protein (CRP) 122
 v) Coagulation factor – Fibrinogen 123
 vi) Psychological factor 123
 vii) Treatment effect – Lipid lowering drugs 124
C. LINK BETWEEN OSTEOPOROSIS AND CAD 126
 1. Epidemiolgy of osteoporosis and coronary heart disease 126
 a. Overview 126
 b. Low bone mass, fracture and cardiovascular disease mortality 127
 c. Bone mass, bone loss and CAD 128
 d. Relation of bone metabolism to coronary or aortic calcification 129
 2. Role of mediator protein in bone mineralization and coronary calcification 136
 a. Matrix Gla protein (MGP) 137
 1) Genomic organization and protein function 137
 2) Results of MGP knockout mouse 138
 3) Relationship to bone mineralization and vascular calcification 138
 b. Osteopontin 140
 1) Genomic organization and protein function 140
 2) Results of osteopontin knockout mouse 141
 3) Relationship to bone mineralization and vascular calcification 141
 3. Hypothesized etiologic mechanisms between two diseases 143
a. Estrogen and inflammation (C-reactive protein) 143
 1) Introduction 143
 2) Estrogen on atherosclerosis – Protective effects on lipids 143
 3) Estrogen receptor mediated mechanism 147
 4) Estrogen and inflammation markers 148
 5) Estrogen and vascular calcification 151
 6) Estrogen, C-reactive protein, and CAD/ Vascular calcification 153
 7) Sexual dimorphism of cardiovascular disease 155
b. Genetics of osteoporosis and CAD – Osteoprotegerin 156
 1) Heritability of complex traits 156
 i) Linkage analysis 158
 ii) Candidate gene studies 160
c. Osteoprotegerin (OPG) 163
 1) Genomic organization, and protein function 163
 2) Animal studies of OPG in relation to osteoporosis and CVD 164
 3) Regulatory factors on osteoprotegerin 165
 4) Epidemiological studies of osteoprotegerin 167
 5) OPG gene polymorphisms and bone density, or CVD 168
4. Paradox between osteoporosis and CVD-obesity 172

III. SPECIFIC AIMS 174

IV. METHODS 176
A. STUDY OF OSTEOPOROTIC RISK IN MEN (STORM) 176
 1. Overview of the current study (EBT) 176
 2. Overview of Baseline and follow-up study 176
 3. Sample recruitment for the current study (STORM-EBT study) 178
B. DATA COLLECTION 179
 1. Clinic examination measurement 180
 a. Bone mineral density measurement 180
 b. Quantitative ultrasound measurements 180
 c. Coronary Calcification measurement 182
 d. Body weight and height 183
 2. Laboratory methods 183
 a. Sex steroid hormone measurement 183
 b. Biochemical bone turnover markers 183
 c. Lipid measurement 184
 d. C-reactive protein measurement 184
 3. Genetic analysis 185
 a. DNA extraction 185
 b. Osteoprotegerin genotyping 185
 4. Questionnaire information 187
 a. Medical history 187
 b. Family medical history 188
 c. Medication use 188
 d. Smoking history 188
 e. Alcohol consumption 189
f. Dietary and supplemental calcium and vitamin D 189

g. Physical activity 189

C. DATA ANALYSIS 190
 1. Data management 190
 2. Statistical Analysis 190
 a. General overview 190
 b. Statistical analysis for primary aims 192
 c. Statistical analysis for secondary specific aims 193
 d. Statistical Power 194

V. Results 196
 A. Overview of Participants and Non-participants in STORM-EBT examination 196
 1. Baseline characteristics of participants and non-participants 197
 2. Follow-up characteristics of participants and non-participants 199
 3. Prevalence of clinical CVD and CAC score of men 204
 a. Prevalence of clinical CVD and Rose questionnaire 204
 b. Distribution of CAC score 206
 B. Determinants of Bone Mineral Density (BMD), bone loss of study participants 208
 1. Characteristics of the participants 208
 2. Determinants associated with percent rate of changes in BMD 211
 C. Determinants of Coronary calcification of study participants 215
 D. Relationships between BMD, bone loss, bone turnover markers, quantitative ultrasound parameters and coronary artery calcification (CAC) score 220
 1. Correlation between BMD and CAC score 220
 E. Sex steroid hormone and C-reactive protein (CRP) with BMD, and CAC score 222
 1. Correlation between sex steroid hormone and CRP 222
 2. Correlation between sex steroid hormone, CRP and bone density, rate of change in BMD bone loss, QUS parameters and bone turnover markers 223
 3. Spearman rank correlation coefficients of sex steroid hormones and CRP with CAC 229
 F. BMD, bone loss and CAC score by Osteoprotegerin (OPG) genotypes 230
 1. Single nucleotide polymorphisms and allele frequencies in OPG 230
 2. Characteristics of participants by OPG T-950C genotype 221
 3. BMD, bone loss, QUS parameters, bone turnover markers and CAC score by OPG T-950C genotype 236
 4. Characteristics of participants by OPG G-1181C genotype 240
 5. BMD, bone loss, QUS parameters, bone turnover markers and CAC score by OPG T-950C genotype 243

VI. DISCUSSION 248
 A. Summary 248
 B. Determinants of coronary calcification 249
 C. Determinants of bone loss 251
 D. Relationship between CAC, bone density, and bone loss 252
 1. BMD, bone loss and CAC 253
 2. QUS and CAC 255
 3. Biochemical markers of bone turnover and CAC 256
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Epidemiologic studies of sex steroids and bone density</td>
<td>54</td>
</tr>
<tr>
<td>Table 2</td>
<td>Characteristics of intimal versus medial wall calcification.</td>
<td>75</td>
</tr>
<tr>
<td>Table 3</td>
<td>Non-collagenous bone matrix proteins and atherosclerotic plaques</td>
<td>78</td>
</tr>
<tr>
<td>Table 4</td>
<td>Related regulatory factors for calcification from In Vitro studies</td>
<td>83</td>
</tr>
<tr>
<td>Table 5</td>
<td>Comparative studies (EBT) with other measurements</td>
<td>109</td>
</tr>
<tr>
<td>Table 6</td>
<td>Progression of coronary calcification in relationship with CAD</td>
<td>117</td>
</tr>
<tr>
<td>Table 7</td>
<td>Coronary calcification in asymptomatic population: relation to conventional risk factors</td>
<td>120</td>
</tr>
<tr>
<td>Table 8</td>
<td>Summary of Epidemiological Studies of Osteoporosis (BMD, bone loss) and aortic/coronary calcification</td>
<td>133</td>
</tr>
<tr>
<td>Table 9</td>
<td>Summary of Epidemiological Studies of Osteoporosis (BMD, bone loss) and cardiovascular disease</td>
<td>134</td>
</tr>
<tr>
<td>Table 10</td>
<td>Summary of Epidemiological Studies of Osteoporosis (BMD, bone loss) and cardiovascular mortality</td>
<td>135</td>
</tr>
<tr>
<td>Table 11</td>
<td>Proposed comparative roles of bone related protein - in vivo/in vitro studies in bone metabolism and atherogenesis</td>
<td>142</td>
</tr>
<tr>
<td>Table 12</td>
<td>Effects of Hormone Replacement Therapy/estrogen on cardiovascular risk factors, and atherosclerosis</td>
<td>145</td>
</tr>
<tr>
<td>Table 13</td>
<td>Cytokine, hormones, and growth factors, its relation to estrogen on bone</td>
<td>149</td>
</tr>
<tr>
<td>Table 14</td>
<td>Selective literatures on inflammation marker (CRP) and CAD or prediction of CVD</td>
<td>150</td>
</tr>
<tr>
<td>Table 15</td>
<td>Hormone Replacement Therapy (HRT), C-reactive Protein and coronary calcification</td>
<td>154</td>
</tr>
<tr>
<td>Table 16</td>
<td>Selected candidate genes for cardiovascular disease and osteoporosis</td>
<td>162</td>
</tr>
<tr>
<td>Table 17</td>
<td>Mouse genetic model for osteoporosis and atherosclerosis (vascular calcification)</td>
<td>165</td>
</tr>
<tr>
<td>Table 18</td>
<td>Regulatory hormones, cytokines of OPG</td>
<td>167</td>
</tr>
<tr>
<td>Table 19</td>
<td>Epidemiological studies examining the association between osteoprotegerin polymorphisms and bone density</td>
<td>171</td>
</tr>
<tr>
<td>Table 20</td>
<td>Summary of Variables in the Study of Osteoporotic Risk in Men (STORM)</td>
<td>181</td>
</tr>
<tr>
<td>Table 21</td>
<td>Multiple Regression Power Analysis</td>
<td>195</td>
</tr>
<tr>
<td>Table 22</td>
<td>Minimal detectable difference in hip BMD between OPG T and C allele</td>
<td>195</td>
</tr>
<tr>
<td>Table 23</td>
<td>Baseline characteristics of participants and non-participants in the STORM-EBT examination</td>
<td>197</td>
</tr>
<tr>
<td>Table 24</td>
<td>Baseline BMD and serum levels of lipid of participants and non-participants</td>
<td>199</td>
</tr>
<tr>
<td>Table 25</td>
<td>Follow-up characteristics of participants and non-participants in the STORM-EBT examination</td>
<td>201</td>
</tr>
<tr>
<td>Table 26</td>
<td>Follow-up BMD, rate of change in BMD, QUS parameters and bone turnover makers of participants and non-participants in the STORM-EBT examination</td>
<td>203</td>
</tr>
<tr>
<td>Table 27</td>
<td>Follow-up serum levels of sex steroid hormones and CRP of participants and non-participants in the STORM-EBT examination</td>
<td>204</td>
</tr>
<tr>
<td>Table 28</td>
<td>Updated clinical CVD and family history of CVD of men who participated in STORM-EBT examination</td>
<td>205</td>
</tr>
</tbody>
</table>
Table 29. Rose questionnaire for angina and intermittent claudication of participants in STORM-EBT examination
Table 30. CAC score of total participants
Table 31. Median CAC scores by age group
Table 32. Correlation coefficients for selected characteristics and QUS parameters, and bone turnover markers
Table 33. Correlation coefficients for baseline characteristics and bone loss of men (n=138)
Table 34. Summary of multivariate association with rate of change in BMD of the total hip and its subregion
Table 35. Spearman rank correlation coefficients for baseline characteristics with CAC
Table 36. Spearman rank correlation coefficients for follow up characteristics significantly related to CAC score in men
Table 37. Summary of multivariate association with CAC score
Table 38. Spearman rank correlation coefficients for updated clinical disease and CAC
Table 39. Spearman rank correlation coefficients between BMD, rates of change in BMD, QUS parameters, and bone turnover markers and CAC
Table 40. Unadjusted correlations between sex steroid hormones and CRP
Table 41. Simple correlation of sex steroid hormones, CRP, with BMD and rate of change in BMD
Table 42. Age, and body weight adjusted partial correlation of sex steroid hormone, CRP with BMD, and bone loss
Table 43. Simple correlation between QUS parameters, bone turnover markers, sex steroid hormones, and CRP
Table 44. Age, and body weight adjusted partial correlation of sex steroid hormone, CRP with QUS parameters and bone turnover markers
Table 45. Unadjusted and adjusted Spearman Rank correlation coefficients of sex steroid hormone with CRP, and CAC
Table 46. Distribution of OPG genotypes
Table 47. Contingency table of the distribution of T-950C and G-1181C genotype
Table 48. Characteristics of OPG T-950C genotypes
Table 49. Serum levels of lipid by OPG T-950C genotypes
Table 50. Sex steroid hormones and C-reactive protein by OPG T-950C genotype
Table 51. BMD, rate of change in BMD, QUS parameters, bone turnover markers by OPG T-950C genotypes
Table 52. Adjusted BMD, rate of change in BMD, QUS parameters, bone turnover markers by OPG T-950C genotypes
Table 53. Comparison of bone loss between OPG T-950C genotypes
Table 54. CAC score by OPG T-950C genotypes
Table 55. Characteristics of OPG G-1181C genotypes
Table 56. Serum levels of lipid by OPG G-1181C genotypes
Table 57. Sex steroid hormone and CRP by OPG G-1181C genotypes
Table 58. BMD, rate of change in BMD, QUS parameters, and bone turnover markers by OPG G-1181C genotypes
Table 59. Adjusted BMD, rate of change in BMD, QUS parameters, and bone turnover markers by OPG G-1181C genotypes
Table 60. CAC score by OPG G-1181C genotypes
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.</td>
<td>Unitary model for bone loss in aging men</td>
<td>51</td>
</tr>
<tr>
<td>Figure 2.</td>
<td>A model for the initiation of calcification by apoptosis, and potential regulatory influences</td>
<td>77</td>
</tr>
<tr>
<td>Figure 3.</td>
<td>Normal distribution of calcium score in men</td>
<td>113</td>
</tr>
<tr>
<td>Figure 4.</td>
<td>Normal distribution of calcium score in women</td>
<td>113</td>
</tr>
<tr>
<td>Figure 5.</td>
<td>Calcium score in symptomatic men and women</td>
<td>121</td>
</tr>
<tr>
<td>Figure 6.</td>
<td>Recruitment scheme and status of participants in the STORM-EBT examination</td>
<td>179</td>
</tr>
<tr>
<td>Figure 7.</td>
<td>Distribution of CAC score in STORM men</td>
<td>207</td>
</tr>
<tr>
<td>Figure 8.</td>
<td>Median CAC score in men by age group</td>
<td>207</td>
</tr>
<tr>
<td>Figure 9.</td>
<td>Percentage rate of changes in BMD by age group</td>
<td>210</td>
</tr>
<tr>
<td>Figure 10.</td>
<td>Moving average plot of total calcium intake at follow up exam and CAC</td>
<td>219</td>
</tr>
<tr>
<td>Figure 11.</td>
<td>CAC score by total calcium intake and OPG G-1181C genotype</td>
<td>247</td>
</tr>
</tbody>
</table>