BONE MINERAL DENSITY (BMD), BONE LOSS AND CORONARY CALCIFICATION IN OLDER MEN

By

Miryoung Lee

B.S., Kyunghee University, Korea, 1992

M.P.H., Seoul National University, Korea, 1995

Submitted to the Graduate Faculty of

the Graduate School of Public Health in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

UNIVERSITY OF PITTSBURGH

Graduate School of Public Health

This dissertation was presented

By

Miryoung Lee

It was defended on

September 10, 2002

and approved by

Anne B. Newman, M.D., M.P.H. Associate Professor, Department of Epidemiology, Graduate School of Public Health

Robert E. Ferrell, Ph.D. Professor and Chair, Department of Human Genetics, Graduate School of Public Health

Stephen R. Wisniewski, Ph.D. Assistant Professor, Department of Epidemiology Graduate School of Public Health

Dissertation Director: Jane A. Cauley, Dr.P.H. Associate Professor, Department of Epidemiology, Graduate School of Public Health Copyright by Miryoung Lee

BONE MINERAL DENSITY (BMD), BONE LOSS AND CORONARY CALCIFICATION IN OLDER MEN

Miryoung Lee, PhD

University of Pittsburgh, 2002

Cardiovascular disease (CVD) and osteoporosis are important public health burdens in older men. Recent epidemiologic studies suggest that osteoporosis and atherosclerosis may be linked. The goals of this study were to determine whether measures of bone strength were related to coronary artery calcification (CAC). To further test the underlying etiologic pathways, we explored 1) the relationship of estrogen and C-reactive protein (CRP) and 2) the genetic contribution of osteoprotegerin (OPG) polymorphisms. A total of 138 Caucasian men aged 51 to 78 years were participated in present study. Hip BMD, CRP and sex steroid hormones were measured, and annualized percent change in BMD was calculated. CAC score was measured by electron beam tomography. Men were genotyped for T-950C and G-1181C polymorphisms in OPG gene. Correlation analysis, analysis of variance (ANOVA), and regression analysis were employed to evaluate the study aims.

The prevalence of CAC increased with age, ranging from median value of 152 at less than 65 years to 788 at 80 years and older. Hip BMD or bone loss at the hip was not correlated with CAC. Neither serum estrogen nor CRP was related to bone loss or coronary calcification. There were no significant differences in BMD across OPG T-

iv

950C or G-1181C genotypes. However, men with T-950C C/C genotype were more likely to lose BMD at the intertrochanter compared with men with T/T or T/C genotypes (p = 0.03). Calcaneal BUA significantly differed across G-1181C genotypes; men with C/C genotypes had 25% higher BUA values than men with G/G genotypes. Interestingly, men with C/C genotypes had 0.5SD higher coronary calcification than men with G/G genotypes, which persisted after adjusting for age (p=0.03). There was a significant dose dependent effect across genotypes (p=0.01).

In conclusion, we could not find any relationship between measures of bone strength and coronary calcification in older men. However, our findings suggest that genetic variations in OPG may be of importance to examine its effect on the development of coronary calcification in older men.

ACKNOWLEDGEMENTS

First of all, I would like to give endless thanks to the Lord. To complete this enormous project, I had to be trained, tamed and loved. Also, I would like to deeply appreciate my mentor and advisor, Dr. Jane Cauley for giving me the wonderful opportunities to learn the real-world researches, and guiding me to find my way as an Epidemiologist. I would like to thank my doctoral committee members, Drs. Anne Newman, Robert Ferrell, and Stephen Wisniewski. Thank you so much for letting me look at many aspects of life and researches through you. I must acknowledge our study participants for their efforts in completing this study with their time, and participations. Most of all, thank you so much for your trust and for letting me drive you all the way from Monessen, PA to Pittsburgh! I hope my thanks are enough to acknowledge our Monessen Clinic staffs for their help and cheering.

To all my friends and colleagues, I owe you millions of thanks for your love and support even for my ups and downs. My colleagues in my office, Dr. Joseph Zmuda, many friends including Junghwa Ko, Jeanne Zborowski, Kathleen McHugh-Pemu, Karen Remsberg, Karen Southwick, and Rana Ezzeddine. I would like to thank many friends at the University of Pittsburgh and Department of Epidemiology as well. Finally, to my husband, my mom, and parents-in-law, I am very grateful for your love, patience, and supports for my endless endeavor. Thank you so much for praying and believing in me. Most importantly, to my husband, he was always there to look after, cheer up, guide, and love me during all these hard years. I am so lucky to have you!

vi

TABLE OF CONTENTS

I. INTRODUCTION	Page 1
II. REVIEW OF THE LITERATURE	4
A. OSTEOPOROSIS IN MEN	4
1. Pathophysiology of Osteoporosis	4
a. General bone biology	5
b. Bone growth and modeling	5
c. Bone formation by osteoblasts	7
d. Bone resorption by osteoclasts	9
e. Bone remodeling	9
1) Normal regulation and unbalance coupling	9
2) Endogenous regulators of remodeling	11
f. Pathogenesis of osteoporosis in men	13
2. Osteoporosis and Measurements of Osteoporosis	15
a. Definition of osteoporosis	15
1) Osteoporosis and WHO criteria	16
2) Application of WHO criteria in men	18
b. Invasive assessments for bone mineral density	20
1) Conventional Radiography	21
Single photon and X-ray Absorptiometry (SPA and SXA)	22
 Dual photon and X-ray Absorptiometry (DPA and DXA) 	23
4) Quantitative Ultrasound Technology	24
5) Quantitative Computed Tomography	26
3. Epidemiology of Osteoporosis and Fractures in Men	27
a. Prevalence of osteoporosis	27
b. Consequences of osteoporosis and osteoporotic fractures in men	28
c. Risk factors for osteoporosis and fractures	29
1) Bone mineral density and Peak Bone Mass	30
2) Bone loss	31
3) Body weight and weight loss	33
4) Physical activity and exercise	35
5) Smoking	37
6) Dietary calcium & Vitamin D intake	38
7) Other nutritional intake	40
8) Alcohol consumption	41
9) Medical conditions	42

10) Medications	43
11) History of falls	44
4. Sex steroids and bone metabolism in men	46
a. Estrogen and bone in men	46
1) Estrogen receptors	46
Effects of estrogen on bone cells – osteoblasts and osteoclasts	47
3) Effects of estrogen on cytokines and growth factors	47
 Estrogen and bone – Animal studies 	49
5) Effects of estrogen on male skeleton – peak bone mass	49
6) Epidemiologic studies supporting a unitary model for involutional male osteoporosis	50
b. Androgen and bone in men	57
1) Androgen receptors	57
Effects of androgen on bone cells – osteoblasts and osteoclasts	57
3) Androgenic effects on male skeleton	59
c. Treatment of men with estrogen and testosterone	60

B. CORONARY ARTERY DISEASE (CAD) IN MEN	62
1. Pathophysiology of CAD and vascular calcification	62
a. Pathophysiology of CAD	62
1) Vascular biology	62
i) Endothelium of arterial wall	62
ii) Three layers of arterial wall	63
2) Atherogenesis	65
i) Lesion initiation and stages	66
ii) Type I lesions	68
iii) Type II lesions (Fatty streaks)	68
iv) Type III lesions	70
v) Endothelial and smooth muscle cell changes in type I, II and III lesions	70
vi) Type IV lesions (Atheromas)	71
vii) Type V lesions	72
viii) Type VI, VII, and VIII lesions	72
b. Pathophysiology of vascular calcification	73
1) Overview	73
2) Sequel of vascular calcification	75
 i) Loss of inhibitory action – Double defense system 	76
ii) Initiation of calcification: Calcium phosphates, lipid, and apoptosis	77
iii) Nucleation of calcium	79
iv) Proliferation of calcification	80
3) Clinical significance of vascular calcification	83
2. Epidemiology of Coronary artery disease in men	85
a. Overview	85
b. Non-modifiable risk factors of CAD	87
1) Age and gender	87
2) Race and family history	87
c. Modifiable risk factors of CAD	89
1) Cholesterol & other lipids	89
2) Hypertension	90

3) Diabetes	91
4) Obesity & overweight	93
5) Smoking	94
6) Alcohol consumption	95
7) Physical inactivity	95
8) Psychosocial factor- Depression	96
c. Emerging risk factors of CAD	98
1) Inflammation marker - C-reactive protein	98
2) Atherogenic and prothrombotic factors	99
3. Non-invasive assessment and epidemiology of vascular calcification	102
a. Non-invasive measurement	102
1) Plain chest radiography	102
2) Magnetic resonance imaging (MRI)	103
3) Fluoroscopy	103
4) Helical (Spiral Compute Tomography)	104
5) Electron beam computed tomography (EBT)	105
6) EBT: Relationship to other techniques	107
7) Accuracy of EBT	110
8) Reproducibility of EBT	110
 Epidemiology of coronary calcification measured by EBT 	112
1) Measurement of CAC for prediction future events	114
2) Progression of calcification	115
3) Risk factor for coronary calcification	119
i) Age and gender	119
ii) Lipids	121
iii) Smoking, blood pressure, and obesity	122
iv) Inflammation marker – C-reactive protein (CRP)	122
v) Coagulation factor – Fibrinogen	123
vi) Psychological factor	123
vii) Treatment effect – Lipid lowering drugs	124
C. LINK BETWEEN OSTEOPOROSIS AND CAD	126
1. Epidemiology of osteoporosis and coronary heart disease	126
a. Overview	126
b. Low bone mass, fracture and cardiovascular disease mortality	127
c. Bone mass, bone loss and CAD	128
d. Relation of bone metabolism to coronary or aortic calcification	129
2. Role of mediator protein in bone mineralization and coronary calcification	136
a. Matrix Gla protein (MGP)	137
1) Genomic organization and protein function	137
2) Results of MGP knockout mouse	138
3) Relationship to bone mineralization and vascular calcification	138
b. Osteopontin	140
1) Genomic organization and protein function	140

- 2) Results of osteopontin knockout mouse3) Relationship to bone mineralization and vascular calcification
- 3. Hypothesized etiologic mechanisms between two diseases

a. Estrogen and inflammation (C-reactive protein)	143
1) Introduction	143
Estrogen on atherosclerosis – Protective effects on lipids	143
3) Estrogen receptor mediated mechanism	147
4) Estrogen and inflammation markers	148
5) Estrogen and vascular calcification	151
6) Estrogen, C-reactive protein, and CAD/ Vascular calcification	153
7) Sexual dimorphism of cardiovascular disease	155
 b. Genetics of osteoporosis and CAD – Osteoprotegerin 	156
1) Heritability of complex traits	156
i) Linkage analysis	158
ii) Candidate gene studies	160
c. Osteoprotegerin (OPG)	163
1) Genomic organization, and protein function	163
Animal studies of OPG in relation to osteoporosis and CVD	164
3) Regulatory factors on osteoprotegerin	165
 Epidemiological studies of osteoprotegerin 	167
5) OPG gene polymorphisms and bone density, or CVD	168
 Paradox between osteoporosis and CVD-obesity 	172

III. SPECIFIC AIMS

IV. METHODS	176
A. STUDY OF OSTEOPOROTIC RISK IN MEN (STORM)	176
1. Overview of the current study (EBT)	176
2. Overview of Baseline and follow-up study	176
Sample recruitment for the current study (STORM-EBT study)	178
B. DATA COLLECTION	179
1. Clinic examination measurement	180
a. Bone mineral density measurement	180
b. Quantitative ultrasound measurements	180
c. Coronary Calcification measurement	182
d. Body weight and height	183
2. Laboratory methods	183
a. Sex steroid hormone measurement	183
b. Biochemical bone turnover markers	183
c. Lipid measurement	184
d. C-reactive protein measurement	184
3. Genetic analysis	185
a. DNA extraction	185
b. Osteoprotegerin genotyping	185
4. Questionnaire information	187
a. Medical history	187
b. Family medical history	188
c. Medication use	188
d. Smoking history	188
e. Alcohol consumption	189

f. Dietary and supplemental calcium and vitamin D	189
g. Physical activity	189
C. DATA ANALYSIS	190
1. Data management	190
2. Statistical Analysis	190
a. General overview	190
b. Statistical analysis for primary aims	192
c. Statistical analysis for secondary specific aims	193
d. Statistical Power	194

V. Results	196
A. Overview of Participants and Non-participants in STORM-EBT examination	196
1. Baseline characteristics of participants and non-participants	197
Follow-up characteristics of participants and non-participants	199
3. Prevalence of clinical CVD and CAC score of men	204
a. Prevalence of clinical CVD and Rose questionnaire	204
b. Distribution of CAC score	206
B. Determinants of Bone Mineral Density (BMD), bone loss of study participants	208
1. Characteristics of the participants	208
2. Determinants associated with percent rate of changes in BMD	211
C. Determinants of Coronary calcification of study participants	215
D. Relationships between BMD, bone loss, bone turnover markers, quantitative	
ultrasound parameters and coronary artery calcification (CAC) score	220
1. Correlation between BMD and CAC score	220
E. Sex steroid hormone and C-reactive protein (CRP) with BMD, and CAC score	222
1. Correlation between sex steroid hormone and CRP	222
2. Correlation between sex steroid hormone, CRP and bone density, rate of change in BMD hone loss. OUS parameters and hone turnover markers	223
3 Spearman rank correlation coefficients of sex steroid hormones and CPP with CAC	220
E BMD hone loss and CAC score by Osteoprotegerin (OPC) genetynes	229
1 Single nucleotide polymorphisms and allele frequencies in OPG	230
2. Characteristics of participants by OPG T 950C genotype	200
3 BMD bone loss QUS parameters bone turnover markers and CAC score	221
by OPG T-950C genotype	236
4. Characteristics of participants by OPG G-1181C genotype	240
5. BMD, bone loss, QUS parameters, bone turnover markers and CAC score	
by OPG T-950C genotype	243

VI. DISCUSSION	248
A. Summary	248
B. Determinants of coronary calcification	249
C. Determinants of bone loss	251
D. Relationship between CAC, bone density, and bone loss	252
1. BMD, bone loss and CAC	253
2. QUS and CAC	255
3. Biochemical markers of bone turnover and CAC	256

E. Estrogen, C-reactive protein in relationship with BMD, bone loss and CAC	258
F. Effects of osteoprotegerin gene variants on BMD, bone loss, and QUS parameters	261
G. Effects of OPG gene variants on CAC	263
H. Public health implications of the present study	266
I. Strengths and limitations	266
J. Directions for future study	268
K. Conclusions	269
VII. APPENDIX	270
APPENDIX A – Consent Form	271
APPENDIX B – Study Questionnaire	275

VIII. BIBLIOGRAPHY

LIST OF TABLES

Table	Title	Page
Table 1.	Epidemiologic studies of sex steroids and bone density	54
Table 2.	Characteristics of intimal versus medial wall calcification.	75
Table 3.	Non-collagenous bone matrix proteins and atherosclerotic plaques	78
Table 4.	Related regulatory factors for calcification from In Vitro studies	83
Table 5.	Comparative studies (EBT) with other measurements	109
Table 6.	Progression of coronary calcification in relationship with CAD	117
Table 7.	Coronary calcification in asymptomatic population: relation to conventional risk factors	120
Table 8.	Summary of Epidemiological Studies of Osteoporosis (BMD, bone loss) and aortic/coronary calcification	133
Table 9.	Summary of Epidemiological Studies of Osteoporosis (BMD, bone loss) and cardiovascular disease	134
Table 10.	Summary of Epidemiological Studies of Osteoporosis (BMD, bone loss) and cardiovascular mortality	135
Table 11.	Proposed comparative roles of bone related protein - in vivo/in vitro studies in bone metabolism and atherogenesis	142
Table 12.	Effects of Hormone Replacement Therapy/estrogen on cardiovascular risk factors and abterosclerosis	145
Table 13.	Cytokine, hormones, and growth factors, its relation to estrogen on bone	149
Table 14.	Selective literatures on inflammation marker (CRP) and CAD or prediction of CVD	150
Table 15.	Hormone Replacement Therapy (HRT), C-reactive Protein and coronary calcification	154
Table 16.	Selected candidate genes for cardiovascular disease and osteoporosis	162
Table 17.	Mouse genetic model for osteoporosis and atherosclerosis (vascular calcification)	165
Table 18.	Regulatory hormones, cytokines of OPG	167
Table 19.	Epidemiological studies examining the association between osteoprotegerin polymorphisms and bone density	171
Table 20.	Summary of Variables in the Study of Osteoporotic Risk in Men (STORM)	181
Table 21.	Multiple Regression Power Analysis	195
Table 22.	Minimal detectable difference in hip BMD between OPG T and C allele	195
Table 23.	Baseline characteristics of participants and non-participants in the STORM- EBT examination	197
Table 24.	Baseline BMD and serum levels of lipid of participants and non-participants	199
Table 25.	Follow-up characteristics of participants and non-participants in the STORM- EBT examination	201
Table 26.	Follow-up BMD, rate of change in BMD, QUS parameters and bone turnover	203
	makers of participants and non-participants in the STORM-EBT examination	
Table 27.	Follow-up serum levels of sex steroid hormones and CRP of participants and non-participants in the STORM-EBT examination	204
Table 28.	Updated clinical CVD and family history of CVD of men who participated in STORM-EBT examination	205

Table 29.	Rose questionnaire for angina and intermittent claudicaiton of participants in STORM-EBT examination	205
Table 30.	CAC score of total participants	206
Table 31.	Median CAC scores by age group	206
Table 32.	Correlation coefficients for selected characteristics and QUS parameters, and bone turnover markers	211
Table 33.	Correlation coefficients for baseline characteristics and bone loss of men (n=138)	213
Table 34.	Summary of multivariate association with rate of change in BMD of the total hip and its subregion	215
Table 35.	Spearman rank correlation coefficients for baseline characteristics with CAC	217
Table 36.	Spearman rank correlation coefficients for follow up characteristics significantly related to CAC score in men	218
Table 37.	Summary of multivariate association with CAC score	219
Table 38.	Spearman rank correlation coefficients for updated clinical disease and CAC	220
Table 39.	Spearman rank correlation coefficients between BMD, rates of change in BMD, QUS parameters, and bone turnover markers and CAC	221
Table 40.	Unadjusted correlations between sex steroid hormones and CRP	223
Table 41.	Simple correlation of sex steroid hormones, CRP with BMD and rate of change in BMD	226
Table 42.	Age, and body weight adjusted partial correlation of sex steroid hormone, CRP with BMD, and bone loss	227
Table 43.	Simple correlation between QUS parameters, bone turnover markers, sex steroid hormones, and CRP	228
Table 44.	Age, and body weight adjusted partial correlation of sex steroid hormone, CRP with QUS parameters and bone turnover markers	228
Table 45.	Unadjusted and adjusted Spearman Rank correlation coefficients of sex steroid hormone with CRP, and CAC	229
Table 46.	Distribution of OPG genotypes	230
Table 47.	Contingency table of the distribution of T-950C and G-1181C genotype	231
Table 48.	Characteristics of OPG T-950C genotypes	233
Table 49.	Serum levels of lipid by OPG T-950C genotypes	235
Table 50.	Sex steroid hormones and C-reactive protein by OPG T-950C genotype	235
Table 51.	BMD, rate of change in BMD, QUS parameters, bone turnover markers by OPG T-950C genotypes	237
Table 52.	Adjusted BMD, rate of change in BMD, QUS parameters, bone turnover markers by OPG T-950C genotypes	237
Table 53.	Comparison of bone loss between OPG T-950C genotypes	239
Table 54.	CAC score by OPG T-950C genotypes	239
Table 55.	Characteristics of OPG G-1181C genotypes	241
Table 56.	Serum levels of lipid by OPG G-1181C genotypes	242
Table 57.	Sex steroid hormone and CRP by OPG G-1181C genotypes	243
Table 58.	BMD, rate of change in BMD, QUS parameters, and bone turnover markers by OPG G-1181C genotypes	245
Table 59.	Adjusted BMD, rate of change in BMD, QUS parameters, and bone turnover markers by OPG G-1181C genotypes	246
Table 60.	CAC score by OPG G-1181C genotypes	247

LIST OF FIGURES

Figure	Title	Page
Figure 1.	Unitary model for bone loss in aging men	51
Figure 2.	A model for the initiation of calcification by apotosis, and potential regulatory influences	77
Figure 3.	Normal distribution of calcium score in men	113
Figure 4.	Normal distribution of calcium score in women	113
Figure 5.	Calcium score in symptomatic men and women	121
Figure 6.	Recruitment scheme and status of participants in the STORM-EBT examination	179
Figure 7.	Distribution of CAC score in STORM men	207
Figure 8.	Median CAC score in men by age group	207
Figure 9.	Percentage rate of changes in BMD by age group	210
Figure 10.	Moving average plot of total calcium intake at follow up exam and CAC	219
Figure 11.	CAC score by total calcium intake and OPG G-1181C genotype	247