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Mitochondria are the primary generators of ATP and are important regulators of intracellular 

calcium homeostasis.  These organelles are dynamically transported along lengthy neuronal 

processes, presumably for appropriate distribution to cellular regions of increased need such as 

synapses.  The removal of damaged mitochondria that produce harmful reactive oxygen species 

and promote apoptosis is also thought to be mediated by mitochondrial transport to 

autophagosomes.  Mitochondrial trafficking is therefore important for maintaining neuronal and 

mitochondrial health while cessation of movement may lead to neuronal and mitochondrial 

dysfunctions. 

The demands for mitochondria differ between developing and mature neurons, and 

separate mitochondrial recruitment signals have been identified in each case.  In the first aim, we 

examined how mitochondrial dynamics are affected by the development of synaptic connections 

in cortical neurons.  We revealed reduced mitochondrial movement and elongated morphology in 

mature neurons which probably serve to optimize mitochondrial contact with synaptic sites.  

Synapses require mitochondria to supply ATP and regulate local [Ca2+]i for 

neurotransmission.  The second aim investigated mitochondrial trafficking patterns relative to 

synaptic sites on axons and dendrites.  We demonstrated that synapses are targets for long-term  
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mitochondrial localization and dynamic recruitment of moving mitochondria, and that trafficking 

patterns are influenced by changes in synaptic activity.  We also found that mitochondrial 

movement in dendrites is more severely impaired by neurotoxic glutamate and zinc exposures 

than in axons.  These findings suggest a mechanism for postsynaptic dysfunction and dendritic 

degeneration in excitotoxicity. 

The third aim examined impaired mitochondrial transport as an early pathogenic 

mechanism in Huntington’s disease.  Recent studies indicate that aggregates composed of mutant 

huntingtin fragments hinder axonal transport by sequestering wildtype huntingtin, cytoskeletal 

components and molecular motors.  Our studies in cortical neurons demonstrated reduced 

mitochondrial trafficking specifically to sites of aggregates and impeded passage of moving 

mitochondria by aggregates resulting in discrete regions of mitochondrial accumulation and 

immobilization. 

In summary, this dissertation provides new insight into our understanding of 

mitochondrial trafficking, morphology and distribution in cortical neurons that are developing, 

synaptically mature, acutely injured, and diseased.  We conclude that mitochondrial movement is 

dynamic in healthy neurons and that injured neurons exhibit different manifestations of impaired 

movement.
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1.0  INTRODUCTION 

1.1 PREFACE 

The dissertation consists of a multi-faceted examination of mitochondrial trafficking and 

morphology in neurons.  Special interest was given to trafficking aberrations as they relate to 

injury and disease.  However, because fundamental regulatory mechanisms involved in 

mitochondrial trafficking are sparsely understood, we also focused a large part of this work on 

investigating mitochondrial movement in healthy neurons.  The introduction broadly covers 

topics in normal mitochondrial physiology, the importance of mitochondrial trafficking and 

morphology in neuronal health, our current understanding of mechanisms that regulate 

mitochondrial movement and morphology, how mitochondrial dysfunction is fundamentally 

harmful to cells, the relevance of mitochondrial defects to neuronal injury and disease, and how 

impairments in mitochondrial trafficking can contribute to pathophysiology.  Thus, when one 

considers the importance of mitochondria in supporting cellular functions and in rendering cell 

death, one can also appreciate the necessity for appropriate mitochondrial trafficking to maintain 

mitochondrial and neuronal health.  By the same reasoning, consequences of impaired 

mitochondrial movement have great breadth and depth in their ability to cause injuries that are 

acute and chronic, severe and subtle, mitochondrial and cellular, and probably relevant to nearly 

all forms of neuronal death. 
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1.2 MITOCHONDRIA: MORE THAN JUST ENERGY POWERHOUSES OF THE 

CELL 

1.2.1 ATP Production 

Mitochondria are vital organelles for cell survival.  They are the primary generators of cellular 

energy and they accomplish this with great efficiency.  By coupling electron transport to the 

generation of proton gradients for oxidative phosphorylation, mitochondria produce 15 times 

more ATP from glucose than the glycolytic pathway in eukaryotic cells.  Highly metabolic cells 

are therefore particularly dependent on mitochondria.  For example, relatively inactive 

lymphocytes contain ~300 mitochondria whereas muscle and liver cells contain 2,000-3,000 

mitochondria (Alberts et al., 1994).  Furthermore, mitochondria can localize to regions of high 

ATP consumption in cells.   They are densely arranged in the clefts between cardiac muscle 

myofibrils that utilize ATP for contraction and are coiled around the base of sperm flagella to 

power motility, implying that mitochondrial distribution serves a functional purpose (Segretain et 

al., 1981; Cardullo and Baltz, 1991). 

Mitochondria are membranous organelles composed of a relatively permeable outer 

membrane, an intermembrane space, and a relatively impermeable, highly folded inner 

membrane that encapsulates the mitochondrial matrix.  The locations of respiratory processes on 

mitochondrial membranes and compartments are depicted in Fig. 1.  Mitochondria generate ATP 

by oxidative phosphorylation.  First, pyruvate and fatty acids enter the mitochondrial matrix and 

are converted to acetyl CoA by pyruvate dehydrogenase and the fatty acid oxidation cycle, 

respectively.  The carbon atoms of acetyl CoA are then oxidized by the citric acid cycle, 

producing NADH and FADH2 as end products.  NADH and FADH2 serve as donors of high 
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energy electrons which are passed down four respiratory enzyme complexes composing the 

electron transport chain on the inner mitochondrial membrane (Fig. 2).   Molecular oxygen is the 

final recipient of low energy electrons.  The energy generated by electron transport is harnessed 

to translocate H+ ions from the matrix to the intermembrane space so that a H+ gradient is formed 

across the inner membrane.  This protonmotive force drives H+ flow back into the matrix through 

ATP synthase to form ATP from ADP and phosphate (Alberts et al., 1994). 

 

 
Figure 1.1  Localization of respiratory processes in the mitochondrion. 

Adapted from Mathews and van Hold (1996). 
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Figure 1.2  Electron transport down respiratory chain enzymes during oxidative phosphorylation. 

Adapted from Sarsate (1999). 

 

The central nervous system has an intense demand for mitochondria, as the human brain 

consumes 20% of resting metabolic energy while only comprising 2% of total body mass 

(Laughlin, 2001).  Mitochondria produce over 95% of the ATP utilized by the brain (Erecinska 

and Silver, 1994).  The generation, processing and transmission of neural impulses relies on Na+, 

K+ and Ca2+ ion gradients across the plasma membrane.  In fact, 50-60% of total brain ATP is 

used to maintain these gradients, especially through Na+/K+ pumps.  Within neurons, 

mitochondria are again distributed to regions of high metabolic demand, including synapses, 

nodes of Ranvier and myelination/demyelination interfaces (Kageyama and Wong-Riley, 1982; 

Berthold et al., 1993; Rowland et al., 2000; Bristow et al., 2002).  The abundance of synapses is 

remarkable; for example, one study reports 2.4 x 104 neurons/mm3 in the human temporal cortex 
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with each neuron containing 3.0 x 104 synapses (DeFelipe et al., 2002).  Therefore, 

mitochondrial ATP generation is important for supporting dense networks of synaptically 

connected neurons. 

1.2.2  [Ca2+]i buffering 

In addition to the generation of cellular energy, mitochondria also play an important role in 

regulating calcium homeostasis.  Calcium serves as a regulator of kinases, phosphatases, 

proteases, transcription factors and ion channels as well as an intracellular messenger for 

membrane excitability, exocytosis, vesicle trafficking, muscle contraction, cell proliferation, 

fertilization, metabolism, crosstalk between other signaling pathways, and apoptosis (Carafoli et 

al., 2001).  These diverse Ca2+-mediated processes, which occur over the course of microseconds 

to hours, are highly dependent on the spatiotemporal distribution of [Ca2+]i (Berridge et al., 2000; 

Berridge et al., 2003).  Indeed, microdomains of high [Ca2+]cyto have been identified near Ca2+ 

channels on the plasma membrane and endoplasmic reticulum (Brini, 2003).  Additionally, Ca2+-

sensitive dehydrogenases can regulate oxidative phosphorylation and ATP synthesis during times 

of high cellular demand in a manner that is dependent on the relationship between [Ca2+]cyto and 

[Ca2+]mito (McCormack et al., 1990).  Therefore, [Ca2+]i must be tightly controlled.  By regulating 

Ca2+ influx, efflux, buffering and storage, cells maintain [Ca2+]i at 100 nM, ten times lower than 

[Ca2+]o, so that small changes in [Ca2+]i are sufficient to activate physiological processes (Sattler 

and Tymianski, 2000). 

Mitochondria play an important role in regulating [Ca2+]i, in concert with the sarco-

endoplasmic reticulum Ca2+-ATPase and the plasma membrane Ca2+-ATPase and Na+/Ca2+ 

exchanger.  In particular, mitochondrial Ca2+ uptake becomes important at [Ca2+]i above 400-500 
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nM (Nicholls and Scott, 1980).  Mitochondria are able to buffer [Ca2+]i by virtue of their 

electrochemical gradient for Ca2+.  This gradient is comprised of (i) the negatively charged 

mitochondrial membrane potential, ψm, which is -150-200 mV relative to the -70 mV potential 

across the neuronal plasma membrane, and (ii) a low [Ca2+]mito relative to the [Ca2+]cyto.  Thus, 

uptake of Ca2+ into the matrix is electrochemically favored, and is largely accomplished through 

the Ca2+-uniporter.  Mitochondrial Ca2+ sequestration is reversible, with Ca2+ efflux back into the 

cytosol occurring through the mitochondrial Na+/Ca2+ exchanger (Duchen, 2004).  Ca2+ release 

from mitochondria also has important physiological functions for prolonging elevated [Ca2+]i 

which can mediate exocytosis and post-tetanic potentiation at presynaptic terminals (Tang and 

Zucker, 1997; Nicholls, 2005). 

1.3 MITOCHONDRIAL LIFE CYCLE IN NEURONS 

1.3.1 Evolution and biogenesis of mitochondria 

Mitochondria in eukaryotic organisms are thought to be the result of engulfment of aerobically 

respiring prokaryotic organisms 1.5 x 109 years ago.  A symbiotic relationship was then forged 

whereby mitochondria were able to rely on the host cell for transcription and protein synthesis 

and the host adopted efficient energy production (Alberts et al., 1994).  Therefore, while present-

day mitochondria still have their own circular double-stranded genomes and protein synthetic 

machinery, evolution probably removed a fair amount of redundancy.  In fact, mammalian 

mitochondrial DNA (mtDNA) encodes only 37 genes: 22 tRNAs, 2 rRNAs and 13 structural 

proteins for oxidative phosphorylation (Garesse and Vallejo, 2001).  All remaining 
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mitochondrial proteins, approximately 850 in total, are encoded by nuclear DNA and imported 

into the appropriate mitochondrial compartments (Scheffler, 2001; Schon and Manfredi, 2003). 

Mitochondria have a limited lifespan, but our observations indicate that the number and 

function of mitochondria seems well preserved through the healthy lifetime of neurons.  

Although de novo synthesis of mitochondria has not been shown explicitly, mtDNA clearly 

replicates, repairs and recombines during the lifespan of a cell (Shadel and Clayton, 1997).  

Mitochondria are also known to arise from fission of preexisting mitochondria, both in dividing 

cells and post-mitotic neurons (Bereiter-Hahn and Voth, 1994; Rube and van der Bliek, 2004).  

Mitochondria seem to proliferate in response to increased energetic demands of cells, such as in 

resting skeletal muscle after prolonged contractile stimulation (Moyes and Hood, 2003).  A 

reasonable proposition is that mitochondrial biogenesis occurs near the cell body in close 

proximity to the transcriptional and translational machinery for nuclear DNA on which mtDNA 

replication depends.  In support of this, mtDNA replication has been shown to occur 

perinuclearly in mammalian cells and distribute peripherally with time (Davis and Clayton, 

1996).  Furthermore, 90% of mitochondria with relatively high membrane potentials were shown 

to move anterogradely toward growth cones in dorsal root ganglia neurons, implying that healthy 

mitochondria are trafficked away from their origins near the cell body (Miller and Sheetz, 2004).  

An important consideration therefore is how the appropriate distribution of mitochondria can be 

achieved in cells, and particularly neurons that have extensive neuronal processes. 

1.3.2 Mitochondrial autophagy 

Like all living things, mitochondria have a limited lifespan.  The half-life of rat brain 

mitochondria has been reported to be ~24-30 days, in contrast to ~9-10 days for liver 

7 



mitochondria (Gross et al., 1969; Menzies and Gold, 1971).  Mitochondria represent an 

interesting paradox because while they provide critical functions for cell survival, their 

dysfunction can be a key determinant of cell death, as discussed in Chapter 1.7.  It is therefore 

imperative for cells to regulate the proper removal of damaged mitochondria, presumably when 

they are functionally impaired or have accumulated mtDNA mutations that generate reactive 

oxygen species (De Grey, 2005).  This is accomplished through autophagy, a process in which 

autophagosomes engulf cytosolic contents and then fuse with lysosomes for proteolytic 

degradation (Lemasters, 2005).  Autophagy can be targeted directly toward mitochondria, which 

is mediated by the outer mitochondrial membrane protein Uth1p (Kissova et al., 2004).  

Mitochondrial autophagy has been shown to occur in cells when apoptosis is induced, in 

hepatocytes with mitochondrial permeability transition pore formation, and in yeast with 

depolarized mitochondria (Elmore et al., 2001; Tolkovsky et al., 2002; Priault et al., 2005).  

Much like the biogenesis of mitochondria, the degradation of mitochondria may occur near the 

cell soma where lysosomes are more prevalent.  Indeed, 80% of low-potential mitochondria in 

dorsal root ganglia neurons were demonstrated to move retrogradely, implying less healthy 

mitochondria may return to the cell body for repair or removal (Miller and Sheetz, 2004).  Again, 

this raises the challenge of retrieving distant mitochondria from axons and dendrites for 

processing in the cell soma. 

1.4 MITOCHONDRIAL TRAFFICKING IN NEURONS 

The movement of mitochondria has been described for many years but only with the recent 

advent of fluorescent labels for mitochondria in live cells, time-lapse microscopy and genetic 
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mutants with abnormal trafficking patterns have we started to understand the phenomenon more 

clearly (Bereiter-Hahn, 1990).  Properties studied include patterns of mitochondrial movement, 

mechanisms of mitochondrial transport, and perhaps most importantly, cellular and 

mitochondrial signals that govern mitochondrial trafficking.  Stationary evidence in neurons, 

muscles cells and sperm cells support the idea that mitochondria are localized to regions of high 

metabolic demand and elevated [Ca2+]i microdomains (Segretain et al., 1981; Cardullo and Baltz, 

1991; Rowland et al., 2000; Brini, 2003).  Only recently are we beginning to elucidate how 

moving mitochondria are dynamically influenced by cellular signals. 

1.4.1 Significance of mitochondrial transport in neurons 

While mitochondrial transport in mature neurons is of great interest as it relates to 

neurodegeneration and aging, it is also important to consider the relevance of mitochondrial 

transport in neurodevelopment.  Neurons develop from undifferentiated neuroblasts that lack any 

sort of axonal or dendritic specializations.  Mitochondria are therefore localized to the cell soma.  

Neuronal morphology then changes dramatically as neuronal processes rapidly elongate.  An 

axon is designated, axonal and dendritic branches form and remodel, and synaptic connections 

are created and matured (Ramoa et al., 1988; Antonini and Stryker, 1993).  These are highly 

dynamic processes marked by an intense need for ATP.  Indeed, mitochondria have been shown 

to localize to growth cones of actively growing axons by chemoattraction to nerve growth factor 

(Morris and Hollenbeck, 1993; Chada and Hollenbeck, 2003, 2004).  Furthermore, neuronal 

growth dictates that energetic demands extend greater distances from the cell body.  Thus, 

appropriate trafficking of mitochondria is a necessary task beginning in the earliest moments of 

neuronal development that becomes increasingly important as development proceeds. 
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Neurons are one of the most specialized cell types and they have an enormous capacity to 

support complex neurotransmission communications with other cells.  They represent a 

particular anatomical and physiological challenge for mitochondrial trafficking because (i) 

neuronal processes are highly branched and extensive, as long as several feet in some cases, and 

(ii) sites with large demands for ATP and local [Ca2+]i regulation, such as synapses, are 

distributed throughout the length of axons and dendrites.  Furthermore, synaptic connections are 

highly plastic, undergoing continuous, spontaneous and directed remodeling to modulate 

information processing (Konur and Yuste, 2004; Hayashi and Majewska, 2005).  Remodeling of 

presynaptic terminals and postsynaptic sites involves not only local cytoskeletal rearrangements 

and protein synthesis, but also recruitment of vesicles and receptors as well as removal and 

degradation of synaptic proteins (Rao and Craig, 1997; Zito et al., 2004; Wiersma-Meems et al., 

2005).  Thus, neuronal processes present many sites of dynamically changing demand for 

mitochondria, and these sites are likely regulators of mitochondrial trafficking.   

Anterograde and retrograde trafficking of mitochondria are not only necessary to support 

active processes throughout the cellular lifetime, but are also required throughout organellar 

lifetime.  Mitochondrial movement facilitates fusion and fission events between individual 

organelles that likely maintain mitochondrial health and homeostasis, as discussed in Chapter 

1.5.  Furthermore, retrieval of damaged mitochondria from distal processes for degradation by 

autophagy in the perinuclear region poses as great a challenge as trafficking newly synthesized 

mitochondria out into neuronal processes. 
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1.4.2 Mitochondrial movement patterns 

It is clear from our and others’ observations that mitochondrial movement in neurons is 

extremely diverse and complex (Morris and Hollenbeck, 1993; Morris and Hollenbeck, 1995; 

Overly et al., 1996; Ligon and Steward, 2000a).  Some mitochondria appear stationary whereas 

others are motile.  The duration that different mitochondria remain stationary has not been well 

described.  Motile mitochondria not only move with different speeds and in different directions, 

but they exhibit saltatory movement, making stops along their trajectory.  These stops are also 

variable.  Mitochondria can stop for seconds, minutes, or much longer time periods.  They often 

stop where other mitochondria already reside, but can also pause along processes where no 

mitochondria are present.  These organelles spontaneously change direction, sometimes 

appearing to shuffle between several specific locations and other times continuing to travel 

consistently in the new direction.  Not only are mitochondrial movement patterns highly variable 

between axons, dendrites and among individual mitochondria in a single neuron, but also in 

different types of neurons at different developmental stages. 

The intra- and intercellular diversity of mitochondrial movement patterns complicates the 

ability to describe such properties with absolute values.  Automated data analysis is often 

unfeasible because it cannot account for the variability in movement patterns.  Consequently, 

some of the most detailed data analysis has been performed manually, which can be complicated 

by subjectivity and labor intensiveness.  Nevertheless, it is useful to review what has been 

quantitatively reported thus far.  Studies in cultured hippocampal neurons found the percentage 

of mitochondria that move > 0.5 µm/sec to be 20% in axons and 7% in dendrites (Overly et al., 

1996).  When mitochondrial movement was defined as > 0.5 µm/15 sec, 47% of axonal 

mitochondria and 35% of dendritic mitochondria were considered mobile (Ligon and Steward, 
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2000a).  These findings consistently indicate that a greater fraction of mitochondria move in 

axons than in dendrites.  Mean mitochondrial speeds are similar in the anterograde and 

retrograde direction, but have been reported as 0.09 or 0.51 µm/sec in axons and 0.007, 0.04 or 

0.42 µm/sec in dendrites (Overly et al., 1996; Ligon and Steward, 2000a; Li et al., 2004).  

Mitochondria seem to have an equal probability of moving anterogradely and retrogradely in 

axons in the range of 30-50%, but at least a 20% increase in probability of moving anterogradely 

in dendrites (Overly et al., 1996; Ligon and Steward, 2000a).  Lastly, paused mitochondria 

resume moving in the opposite direction ~30% of the time in both axons and dendrites, but 

sustained movement in the new direction over at least a 3 µm distance was only observed by 

dendritic mitochondria (Overly et al., 1996). 

1.4.3 Mechanisms of mitochondrial movement 

Three major protein groups mediate mitochondrial movement in neurons: (1) the cytoskeleton on 

which mitochondria are transported, (2) the molecular motors that carry mitochondria as their 

cargos, and (3) a host of adaptor/scaffolding proteins that mediate interactions between motors 

and the cytoskeleton.  Several proteins outside of these classes have also been implicated as 

modulators of movement, including plekstrin homology domain proteins and transiently 

expressed developmental proteins (De Vos et al., 2003; Gross et al., 2003). 

Microtubules and actin microfilaments serve as cytoskeletal substrates on which 

mitochondria are transported.  How exactly these different structural proteins mediate the 

dynamics of saltatory mitochondrial movement is not clear as different studies often report 

different effects of cytoskeletal disruption.  For example, depolymerization of microtubules by 

nocodazole or vinblastine results in fewer moving mitochondria and slower velocities while 

12 



bidirectionality is preserved (Morris and Hollenbeck, 1995; Ligon and Steward, 2000b).  When 

actin filaments are depolymerized or disorganized by latrunculin B, cytochalasin D or E, the 

results include fewer moving mitochondria, increased velocity bidirectionally, or no effect 

(Morris and Hollenbeck, 1995; Ligon and Steward, 2000b).  In neurons, microtubules are likely 

to be tracks for transport over long-distances while actin microfilaments mediate travel over 

short-distances.  Since mitochondrial transport on microtubules is bidirectional, the polarity 

orientation of tubulin filaments may also affect mitochondrial trafficking patterns.  In axons, 

microtubules are uniformly arranged with (+)-ends directed toward the growth cones.  Distal 

dendritic segments display the same orientation, but at distances > 15 µm from the growth cone, 

(+)-ends of microtubules are oriented in both directions with equal frequency (Baas et al., 1989).  

Different microtubule-associated proteins (MAPs) localize to axons, dendrites or throughout 

cells, where they help stabilize and promote oriented microtubule polymerization.  

Phosphorylation of MAPs results in microtubule disassembly (Kandel et al., 1991).  Therefore, 

regulation of MAPs might be another method of modulating mitochondrial trafficking patterns. 

Kinesins and cytoplasmic dynein are ATPases that transport mitochondria toward (+)- 

and (-)-ends of microtubules respectively (Hirokawa and Takemura, 2005).   Generally, kinesin 

superfamily proteins (KIFs) consist of (i) a globular motor domain containing microtubule- and 

ATP-binding sequences, and (ii) a cargo-binding domain that imparts selectivity to different 

isoforms.   Each KIF has an intrinsic velocity, ranging from 0.2-1.5 µm/sec.  Monomeric 

KIF1Bα and homodimeric KIF5 have been shown to transport mitochondria in axons and 

dendrites (Nangaku et al., 1994; Tanaka et al., 1998; Kanai et al., 2000).  Cytoplasmic dynein 

has a globular head from which a stalk and stem extend.  The former binds microtubules and the 

latter binds cargo through association with the dynactin protein complex.  Dynein has been 
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shown to transport organelles retrogradely although it can also localize to those that are 

anterogradely transported (Hirokawa et al., 1990).  Phosphorylation states, conformational 

changes, and abundances of motor proteins and MAPs are thought to regulate aspects of motor 

activity, directionality and association with cargo (Sheetz, 1999; Reilein et al., 2001).  

Furthermore, motor proteins on mitochondria are distributed in discrete clusters that seem to 

generate force independently of each other, suggesting that differential regulation of individual 

motor protein clusters may mediate changes in velocity and direction (Hollenbeck, 1996).  

Interestingly, motor proteins are fully functional at ATP concentrations below normal [ATP]i, 

suggesting that transport of mitochondria is an efficient method of energy dispersal in cells. 

The interaction between motor proteins and their cargos are mediated by 

adaptor/scaffolding proteins.  Milton and syntabulin are two proteins that were recently 

implicated as scaffolding proteins for mitochondria to kinesin heavy chain (Stowers et al., 2002; 

Cai et al., 2005).   When expression of these proteins is reduced, mitochondria exhibit an 

abnormal distribution in agreement with disrupted anterograde transport.  In summary, complex 

mitochondrial movement patterns are likely mediated by complex and dynamic interactions 

between a cohort of regulatable motor proteins, adaptor proteins, and cytoskeletal elements. 

1.4.4 Mitochondrial docking signals 

An important issue is not only what drives mitochondria to move, but also what signals them to 

stop.  A large fraction of mitochondria are stationary for extended time periods and moving 

mitochondria often make stops along their trajectory.  It can be speculated that some pauses may 

be incidental based on the structure and length of cytoskeletal filaments.  However, many stops 
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are likely to occur for functional reasons.  An important physiological question is what signals 

cause mitochondria to stop and how these stops are mechanically executed. 

The rapid dynamics of mitochondrial movement have complicated the ability to study 

specific cellular influences in an isolated manner.  However, the clearest evidence for a 

chemoattractive signal for mitochondria in neurons is nerve growth factor (NGF) (Chada and 

Hollenbeck, 2003, 2004).  Time-lapse microscopy demonstrated more mitochondria moving 

toward and being retained at the focus of NGF-coated beads compared to control beads.  

Furthermore, these “docking” events involved PI 3-kinase-mediated signaling and intact actin 

microfilaments, neither of which were necessary for mitochondrial movement.  One resulting 

theory is that phosphorylation events regulate dislodgement of mitochondria carried by kinesin 

or dynein from microtubule tracks in exchange for a longer-term static interaction of actin with 

myosin or other docking proteins (Reynolds and Rintoul, 2004).  In a more correlational study, 

Li et al. (2004) demonstrated mitochondrial localization at morphogenic spines in dendrites of 

hippocampal neurons over 30 min to hour-long time intervals after synaptic excitation.  Although 

not discussed by the authors, the high concentration of actin in dendritic spines suggests that this 

may be another actin-mediated docking event.  Lastly, interactions between mitochondria and 

neurofilaments, promoted by neurofilament phosphorylation, may also mediate mitochondrial 

stationing (Leterrier et al., 1994; Wagner et al., 2003).   
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1.5 MITOCHONDRIAL MORPHOLOGY 

1.5.1 Morphology is diverse and dynamic 

Mitochondrial morphology varies between different cell types, within individual cells, and under 

different cellular environments.  Mitochondria also undergo fission and fusion with each other 

and elongate or shorten under normal physiological conditions as well as during injurious 

stimuli.  Our laboratory has analogized the shapes of mitochondria in neurons to different foods, 

ranging from discrete spherical bodies (“hamburgers”), to elongated string-like entities 

(“hotdogs”), and even to circular structures (“doughnuts”).  Studies reveal instances where 

mitochondria are electrically isolated from each other, where they form large interconnected 

filamentous networks, and where both morphologies are found in a single cell (Skulachev, 2001; 

Collins and Bootman, 2003).  Progress is being made in identifying the protein mediators and 

mechanistic properties of mitochondrial fusion and fission.  Pharmacologic manipulations are 

also revealing how mitochondrial morphology may relate to mitochondrial function and cell 

survival. 

1.5.2 Regulation of mitochondrial morphology 

Mitochondrial fission and fusion are directly responsible for altering mitochondrial morphology 

in a rapid and dynamic manner in addition to changing the number of independently operating 

organelles.  Fission and fusion are complex processes, involving separate reactions of the inner 

and outer mitochondrial membranes.  Various proteins have been identified that mediate these 

reactions.  Additionally, different physiologic conditions are known to influence the two 

reactions. 
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Dynamin-related GTPases have been shown to mediate division of the outer 

mitochondrial membrane (Rube and van der Bliek, 2004).  Drp1 and its homologues can 

assemble into spiral structures thought to wrap around mitochondrial scission sites.  Studies in 

yeast indicate that outer membrane fission is accomplished in conjunction with other proteins, 

including Mdv1/Fis2/Gag3, Dnm1, and Fis1/Mdv2, that either form or help to assemble a 

division apparatus.  Very little is known about the nature of inner membrane division, which is a 

separate process thought to be mediated by inner mitochondrial membrane proteins.  Electron 

microscopy has revealed that septation of the inner membrane divides the mitochondrial matrix 

prior to outer membrane division (Griparic and van der bliek, 2001).  Inner membrane fission is 

often but not always coupled to outer membrane division. 

  Mitochondrial fusion also involves reactions between the outer and inner membranes 

that are mediated by mitochondrial membrane proteins (Griparic and van der bliek, 2001; Malka 

et al., 2005; Scorrano, 2005).  In mammals, the outer membrane GTPases, mfn1 and mfn2, and 

the inner membrane dynamin-related protein, OPA1, interact to effect fusion events.  However, 

how fusion of the separate membranes is coordinated is still unknown.  Interesting evidence that 

inhibition of glycolysis and ψm depolarization preferentially impaired fusion of the inner 

membrane over the outer membrane supports the idea that fusion of the two membranes is 

separate and differentially regulated (Malka et al., 2005). 

1.5.3 Functional implications of mitochondrial morphology 

There is very little evidence directly relating mitochondrial morphology to mitochondrial 

function.  Experiments in yeast indicate that mitochondria fuse after conjugation and the integrity 

of mtDNA relies on exchanges that occur when mitochondria fuse and divide (Nunnari et al., 

17 



1997).  For example, when fission and fusion are blocked, mitochondrial morphology appears 

normal but the organelles become less capable of respiration and lose their mtDNA more rapidly 

than wildtype mitochondria (Okamoto and Shaw, 2005).  Furthermore, the respiratory defects of 

mutation-harboring mammalian mitochondria were shown to be protected by mitochondrial 

fusion and mtDNA complementation with wildtype mitochondria (Nakada et al., 2001; Ono et 

al., 2001).  The recombination and repair of mtDNA between organelles is important because 

mtDNA is vulnerable to mutations from mitochondrially-generated reactive oxygen species and 

mitochondria have inefficient mtDNA repair mechanisms (Linnane et al., 1989).  However, 

beyond the role of mitochondrial fusion in mtDNA exchange, little is known about why 

mitochondria fuse, divide, elongate and shorten.  Much speculation has been generated about the 

purpose of different mitochondrial morphologies and these theories are discussed in the 

remainder of this section. 

Different mitochondrial morphologies and the ability to rapidly alter morphology during 

normal physiological conditions are speculated to confer certain advantages to the organelles.  

For example, mitochondrial morphology might influence energy distribution.  ATP dispersal 

over a more extensive cytoplasmic area could be facilitated by increasing mitochondrial length 

and thus reducing diffusion distance.  By the same reasoning, longer mitochondria may sequester 

ions over a given surface area more effectively.  This advantage might be particularly relevant to 

Ca2+, which can be cytotoxic in large quantities (Stout et al., 1998; Szabadkai et al., 2004).  

Another bioenergetic advantage can be derived from the electric cable equation, which predicts 

that the energy loss associated with respiration is minimized over longer mitochondrial lengths 

(Skulachev, 2001).  Therefore, mitochondria-requiring sites that are in close proximity to each 

other might be efficiently served by longer mitochondria.  This could be an adaptive response 
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since mitochondria in yeast and plant cells transform from isolated organelles into extended 

networks under conditions of hypoxia and impaired energy production (Foissner, 1983; Bereiter-

Hahn, 1990). 

On the other hand, it is thought, though not experimentally proven, that discrete 

mitochondrial bodies harbor unique benefits over long filamentous mitochondrial structures.  

Mitochondrial mass is limited in cells, so division of mitochondria may be an effective method 

of generating “new” organelles (Posakony et al., 1977).  Mitochondrial fission may also be an 

important response for addressing different energetic demands in postmitotic cells, as newly 

divided mitochondria have been anecdotally reported to adopt different motility patterns from 

each other.  Considering the mechanisms of organellar transport, smaller cargos might require 

fewer motor proteins, and thus less ATP to power motility (Hollenbeck, 1996).  Discrete 

mitochondria could additionally have the advantage of being electrochemically protected from 

mitochondrial damage or depolarization which would spread through an extensive mitochondrial 

network (Szabadkai et al., 2004).  If different morphologies do prove to confer functional 

advantages to mitochondria, then a balance is probably achieved between mitochondrial 

morphology, the functional consequences of altered morphology, and the demands of the cellular 

environment. 

1.6 ALTERED MITOCHONDRIAL MORPHOLOGY IN NEUROTOXICITY 

Not only is mitochondrial morphology regulated for maintaining normal cell health, but it also 

undergoes remodeling during mitochondrial and cellular injury, death and disease.  Typically, 

the morphology change takes the form of fragmentation.  This is likely to be a response with 
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both protective and toxic consequences.  For example, the spread of mitochondrial injury 

through extensive organellar networks can be restricted by physically dividing mitochondria into 

isolated entities (Szabadkai et al., 2004).  Experiments with uncouplers and inhibitors of electron 

transport and ATP synthase in fibroblasts also suggest that intact oxidative phosphorylation is 

necessary to maintain mitochondrial networks (Skulachev, 2001).  Yet drp1 seems to associate 

with proapoptotic Bax proteins on even relatively punctate mitochondria to mediate fission 

during programmed cell death (Karbowski et al., 2002).  Mitochondrial division therefore has 

dual roles in cell survival. 

1.6.1 Mitochondrial rounding after glutamate excitotoxicity 

Our laboratory has a special interest in the role of mitochondria in glutamate excitotoxicity.  We 

previously showed that mitochondria uptake large Ca2+ loads after acute excitotoxic glutamate 

exposure, and that this uptake by mitochondria rather than just elevated cytosolic [Ca2+] has 

direct consequences for cell death (White and Reynolds, 1997; Stout et al., 1998).  However, our 

investigation of the effects of moderately excitotoxic glutamate treatment on mitochondrial 

movement cessation and morphologic remodeling revealed a dependence on cytosolic Ca2+ 

(Rintoul et al., 2003b).  We found that remodeling of mitochondrial morphology, which 

consisted of shortening and rounding of the organelles, was specific to elevated Ca2+ influx 

through N-methyl-D-asparate (NMDA) receptors separately from ψm depolarization and 

inhibition of mitochondrial ATP synthesis.  Glutamate treatment actually caused swollen 

varicosities to form in the cytosol, which could very well influence mitochondrial morphology.  

However, the mechanistic details and functional consequences of mitochondrial remodeling 

remain to be clarified.  It is possible that mitochondrial fragmentation contributes to the punctate 
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morphology of some mitochondria after glutamate exposure, but our limited imaging resolution 

precludes the differentiation of true membrane fission from independent rounding of closely 

apposed mitochondria. 

1.6.2 Mitochondrial fragmentation in neuronal injury and apoptosis 

In contrast to glutamate-induced morphologic remodeling which seems to preserve the continuity 

of individual mitochondria to a large degree, induction of apoptosis by staurosporine clearly 

produces fragmentation of mitochondria.  Frank et al. (2001) demonstrated Drp1 mobilization 

from the cytosol to mitochondria when apoptosis was induced in COS-7 and HeLa cells.  The 

proapoptotic protein Bax localized to discrete mitochondrial foci containing Drp1 during the 

initial stages of apoptosis (Karbowski et al., 2002).  In fact, inhibition of Drp1 prevented not only 

mitochondrial fission, but also ψm depolarization, cytochrome c release, and cell death.  Similar 

findings were also reported in yeast, where the anti-apoptotic proteins Bcl-2 and Bcl-xL inhibited 

Dnm1-mediated mitochondrial fission and cell death (Fannjiang et al., 2004).  It should be noted 

that mitochondrial fragmentation is again difficult to distinguish from mitochondrial rounding by 

fluorescence imaging.  Mitochondrial fission is thought to be related to mitochondrial outer 

membrane permeabilization and release of proteins involved in the cell death cascade, but the 

sequence of events are debatable (Perfettini et al., 2005). 

1.7 MITOCHONDRIAL INJURY WREAKS HAVOC IN CELLS 

Mitochondria provide critical functions for cells, most notably ATP production and intracellular 

Ca2+ regulation.   Loss of mitochondrial function during injury would obviously compromise 
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these abilities.  However, the consequences of mitochondrial damage are not just limited to 

energy deprivation and disrupted [Ca2+]i homeostasis.  Defects in electron transport can increase 

production of harmful reactive oxygen species (ROS) which have a variety of detrimental effects 

on cells and on mitochondria.  Activation of mitochondrial permeability transition is stimulated 

by pathological conditions and is also involved in necrotic and apoptotic cell death (Crompton, 

1999).  Cell survival therefore relies vitally on mitochondrial health. 

1.7.1 Energy deprivation and cell death 

One of the most important consequences of extensive disruption of mitochondrial function is loss 

of ATP.  This causes gross bioenergetic failure that results in necrotic cell death when 

insufficiently compensated for by glycolytic ATP synthesis.  Necrosis is characterized by plasma 

membrane blebbing, mitochondrial membrane permeabilization, lysosomal disruption, leakage 

of cations and anions across the cell membrane, cell swelling, plasma membrane rupture, release 

of cytosolic contents and collapse of electrochemical gradients across the cell membrane 

(Lemasters et al., 2002).  This is most relevant to severe anoxic and ischemic injuries where cells 

are deprived of oxygen for oxidative phosphorylation.  ATP levels are an important determinant 

of whether cells die by apoptosis or necrosis, as ATP is necessary for events preceding apoptotic 

cell death such as apoptosome formation and caspase activation.  Indeed, cells can be rescued 

from hypoxia-induced necrosis when supplemented with glycolytic substrates, and cells induced 

to undergo apoptosis instead die by necrosis when ATP synthase is inhibited (Lemasters et al., 

2002; Bras et al., 2005).  ATP regeneration during reperfusion of ischemic tissues then, is 

important in promoting apoptotic cell death over necrotic cell death. 
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1.7.2 Dysregulation of [Ca2+]i homeostasis 

Consequences of insufficient mitochondrial Ca2+ sequestration in cells are not only disruption of 

normal [Ca2+]i cycling needed to maintain appropriate Ca2+-dependent signaling pathways and 

Ca2+-dependent enzyme activities, but also pathological accumulation of [Ca2+]i.  Ca2+ influx into 

cells is an important event in ischemic injury, glutamate excitotoxicity, epilepsy and trauma.  

Our laboratory and others previously demonstrated the importance of mitochondrial Ca2+ uptake 

in mediating excitotoxic cell death of neurons after glutamate treatment (Budd and Nicholls, 

1996; Stout et al., 1998).  However, grossly elevated [Ca2+]cyto still has important implications 

for cell disruption if not for cell death.  These include the activation of (1) Ca2+-sensitive 

proteases such as calpain that can cause cytoskeletal breakdown, (2) phospholipases that can 

disrupt membranes, activate the arachidonic acid cascade and lead to ROS production, (3) 

endonucleases that cause DNA degradation and (4) Ca2+-binding proteins such as calmodulin 

which activates nitric oxide synthase for creation of reactive nitrogen species (Sattler and 

Tymianski, 2000; Farooqui et al., 2004). 

Chronic conditions of mild mitochondrial injury such as those found in 

neurodegenerative diseases may impart a different type of disrupted Ca2+ homeostasis in cells 

and in mitochondria.  For example, damaged mitochondria likely have reduced ATP synthesis, 

which is exacerbated by the ψm depolarization that accompanies normal Ca2+ cycling between 

cytosol and mitochondria.  Consequently, ATP-dependent Ca2+ extrusion mechanisms from the 

cell may be compromised, causing prolonged periods of harmful elevations in [Ca2+]cyto and 

[Ca2+]mito (Murphy, 1999).  Another possible outcome of damaged mitochondria and their 

reduced ability to uptake Ca2+ is the inability of Ca2+-sensitive proteins in mitochondria to 

upregulate ATP synthesis appropriately during times of high demand (Brini, 2003).  In summary, 
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mitochondrial injury can cause disrupted Ca2+ homeostasis in the cytosolic and mitochondrial 

compartments that lead to separate and interrelated cellular dysfunctions. 

1.7.3 Production of reactive oxygen species 

Oxidative phosphorylation is a key generator of ROS in cells (Duchen, 2004; Andreyev et al., 

2005; Bras et al., 2005).  High-throughput electron transport down the respiratory chain 

inevitably results in the escape of unpaired electrons, largely at complexes I and III.  Reaction of 

electrons with O2 yields the highly reactive superoxide anion, which can convert to other ROS 

such as hydrogen peroxide and hydroxyl radicals.  Mitochondria have a high capacity for 

scavenging ROS by enzymes such as a superoxide dismutase, which converts superoxide anions 

to hydrogen peroxide, catalase, which converts hydrogen peroxide to water and oxygen, and 

glutathione, which can scavenge ROS nonenzymatically as well as donate electrons to other 

ROS-detoxifying enzymes.  However, when ROS generation surpasses these protective 

mechanisms, multiple destructive redox reactions can ensue: (1) lipid peroxidation can 

compromise the integrity of membranes, including mitochondrial membranes, (2) protein 

oxidation can disrupt structures and activities of enzymes and structural proteins, and (3) 

oxidative damage to DNA, including mtDNA.  ROS are therefore harmful to both cells and 

mitochondria. 

Mitochondrial defects can increase ROS production as well as reduce ROS removal.  

Electron leak is heightened during complex I inhibition by rotenone, ψm hyperpolarization, and 

complex IV poisoning by cyanide.  On the other hand, when mitochondrial permeability 

transition is activated in pathological conditions as discussed in the next section, loss of 

glutathione from the matrix can severely compromise ROS removal (Savage et al., 1991).  
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Mitochondria are important normal generators of ROS for cell signaling and because 

mitochondrial damage can alter the balance between ROS production and removal, they can be 

important contributors to oxidative damage.  Chronic oxidative stress is implicated in many 

neurodegenerative conditions, including Parkinson’s disease (PD), Alzheimer’s disease (AD), 

Friedreich’s ataxia, amyotrophic lateral sclerosis (ALS) and aging (Andersen, 2004).  

Additionally, ROS production is promoted by reperfusion after ischemic injury (Lemasters et al., 

2002). 

1.7.4 Mitochondrial release of apoptogenic proteins 

Apoptosis is a highly regulated process of cell killing that is characterized by cell shrinkage, 

caspase activation, DNA fragmentation, chromatin condensation and nuclear fragmentation.  

Proteins released from mitochondria into the cytosol are important inducers of apoptosis.  The 

first molecule to be released is cytochrome c, which forms an apoptosome complex in 

association with apoptosis protease-activating factor 1 (Apaf-1), ATP or dATP, and procaspase-9 

(Liu et al., 1996; Li et al., 1997; Cain et al., 2000).  ATP-dependent activation of procaspase-9 

then occurs, followed by a proteolytic caspase cascade leading to cell death.  The mitochondrial 

intermembrane space proteins Smac/DIABLO and Omi/HtrA2 are also released and promote 

apoptosis by antagonizing inhibitors of caspases (Du et al., 2000; Verhagen et al., 2000; Suzuki 

et al., 2001; van Loo et al., 2002).  Additionally, apoptosis inducing factor and endonuclease G 

are mitochondrial proteins that can exit and mediate caspase-independent DNA fragmentation 

and chromatin condensation (Susin et al., 1999; Li et al., 2001b).  Thus, mitochondria harness a 

cohort of proteins that can lead to the demise of cells. 
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The release of proapoptotic proteins from mitochondria is a critical event that probably 

involves permeabilization of mitochondrial membranes.  Various mechanisms for achieving 

permeability have been suggested although the specific sequence of events and regulations 

thereof are still quite unclear (Lemasters et al., 2002; Duchen, 2004; Bras et al., 2005).  One 

involves activation of the mitochondrial permeability transition pore (mPTP), a large 

conductance channel of solutes up to 1.5 kDa that spans the outer and inner mitochondrial 

membranes.  It is composed of the inner membrane adenine nucleotide translocator (ANT), the 

outer membrane voltage-dependent anion channel (VDAC), and matrix cyclophilin D.  mPTP 

can be opened in pathological conditions of high [Ca2+]mito, high levels of inorganic phosphate, 

oxidative stress, ATP depletion and ψm depolarization (Crompton, 1999).  A second possibility is 

that proapoptotic proteins Bax and tBid interact with ANT and VDAC to cause mitochondrial 

permeability transition.  Lastly, activated Bax or Bak may directly form channels that permit 

release of apoptogenic mitochondrial proteins (Bras et al., 2005).  Ultimately, permeability 

transition of mitochondrial membranes leads to ψm depolarization, uncoupling of oxidative 

phosphorylation, mitochondrial swelling, ATP depletion and cell death. 

1.8 MITOCHONDRIAL DYSFUNCTION IN NEURONAL INJURY AND 

DEGENERATION 

Since mitochondrial damage clearly has multiple severe consequences on cell survival, it is 

important to consider pathological conditions under which mitochondrial injury occur in more 

detail.  These can be both acute insults that cause immediate disruption of mitochondrial function 
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leading to rapid or delayed cell death, or chronic mitochondrial defects that manifest slowly but 

sufficiently to cause neurodegeneration. 

The clinical situations that are most relevant to the dissertation are reviewed here, 

notably ischemic and excitotoxic injury and PD.  Huntington’s disease (HD) is discussed in 

detail in Chapter 4 and so it is omitted in this section.  Additionally, mitochondrial dysfunctions 

involved in the common neurodegenerative disorders of AD and ALS are summarized.  The 

relevance of less common neurodegenerative diseases with mitochondrial defects, including 

Leigh syndrome, Wilson’s disease, Friedreich’s ataxia, hereditary spastic paraplegia, and those 

associated with mtDNA mutations, are discussed in Chapter 5 (Schon and Manfredi, 2003). 

1.8.1 Ischemia and excitotoxicity 

Ischemic events, such as stroke, are characterized by significant reduction in blood flow to target 

tissues.  Depending on the severity and duration of oxygen deprivation, hypoxic ATP loss and 

reduced electron transport chain complex activities can lead to necrosis and/or apoptosis through 

multiple concurrent and interrelated pathways.  These include abnormal ion permeabilities, 

reduced oxidative phosphorylation, increased glycolysis, acidosis, ψm depolarization, mitogen-

activated protein kinase (MAPK) activation, generation of reactive oxygen and nitrogen species, 

oxidation of mitochondrial lipids and proteins, increased glutamate release and increased [Ca2+]i 

(Fiskum et al., 1999; Lipton, 1999).  The damage wrought by free radicals and high [Ca2+]cyto are 

described in Chapter 1.7.  Here we will focus on the role of Ca2+-mediated mitochondrial 

dysfunction in excitotoxicity. 

Glutamate, the major excitatory neurotransmitter, is known to be released during 

ischemic injury in vivo and in vitro (Benveniste et al., 1984; Lobner and Lipton, 1990).  This 
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results in a large Ca2+ influx into cells through glutamate receptors, of which the NMDA receptor 

mediates the most toxic effects. This may be related to neurotoxic second messengers such as 

neuronal nitric oxide synthase (nNOS) that are coupled to NMDA receptors, as nitric oxide (NO) 

has been shown to depolarize mitochondria and inhibit ATP synthesis (Sattler and Tymianski, 

2000).  A substantial amount of the incoming Ca2+ is sequestered by mitochondria, which could 

be particularly important during reperfusion-dependent injury as ATP synthesis resumes and ψm 

repolarizes (White and Reynolds, 1997).  Elevated Na+ influx into cells promotes some Ca2+ 

release from mitochondria through the mitochondrial Na+/Ca2+ exchanger, although this also 

prolongs [Ca2+]cyto elevation (Zhang and Lipton, 1999).  Mitochondria become overloaded at 

[Ca2+]cyto of 1-3 µM, and consequences include ψm depolarization, impaired ATP synthesis, ROS 

generation, permeability transition and cell death (Nicholls and Crompton, 1980; Murphy et al., 

1999).  Importantly, while elevated [Ca2+]cyto has disruptive effects, neurotoxicity can be 

prevented when mitochondrial Ca2+ uptake is prevented by ψm depolarization (Budd and 

Nicholls, 1996; Stout et al., 1998).  The neuroprotective effects were independent of glutamate-

induced changes in intracellular pH, NOS activity and MAPK activity (Stout et al., 1998).  These 

findings point to the specific importance of mitochondrial Ca2+-sequestration in mediating 

glutamate-induced cell death. 

1.8.2 Parkinson’s disease 

PD is a progressive movement disorder characterized by rigidity, bradykinesia and tremor.  

Hallmarks of PD are selective degeneration of dopaminergic neurons of the substantia nigra and 

the formation of Lewy bodies, which are cytoplasmic aggregates composed of ubiquitin, α-

synuclein and other proteins (Baba et al., 1998).  Inhibition of electron transport chain complex I 
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has been identified as a key pathogenic cause of sporadic PD (Betarbet et al., 2000).  Behavioral, 

neurochemical and neuropathological features were recapitulated in rats treated chronically and 

systemically with the specific complex I inhibitor, rotenone.  Thus, while complex I activity was 

impaired in all brain cells, only nigrostriatal dopaminergic neurons showed degeneration.  

Interestingly, only modest complex I inhibition, typically about 25%, is found in PD (Parker et 

al., 1989; Schapira et al., 1989).  In animal models, this partial impairment did not significantly 

impair mitochondrial respiration, nor presumably ATP synthesis (Betarbet et al., 2000).  Instead, 

chronic rotenone exposure in vitro was shown to reduce glutathione levels in cells, cause 

oxidative damage to proteins and DNA, and increase vulnerability to ROS-induced caspase-

dependent cell death (Sherer et al., 2002). 

1.8.3 Alzheimer’s disease 

AD is the most common form of dementia and is characterized clinically by progressive memory 

loss, language disturbance, visuospatial impairment, and behavioral and psychiatric symptoms.  

At the microscopic level, pathologic hallmarks are extracellular amyloid-β (Aβ) plaques and 

intracellular neurofibrillary tangles (NFT) composed of the microtubule-associated protein, tau.  

Familial cases of AD account for 5% of diagnoses and are caused by mutations in amyloid 

precursor protein (APP) or presenilins, which are involved in APP processing (Brunkan and 

Goate, 2005).  The disease has an incompletely understood pathogenesis that probably includes 

mutual and perpetuating harm between injured mitochondria and amyloid- β.  Mitochondrial 

abnormalities include reduction in mtDNA content and mitochondrial mass prior to NFT 

formation, reduced cerebral glucose utilization, reduced activity of mitochondrial enzymes α-

ketoglutarate dehydrogenase, pyruvate dehydrogenase and cytochrome oxidase, and decreased 
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Ca2+ buffering capabilities.  Chronic mitochondrial dysfunction can contribute to ongoing 

oxidative stress in AD, which further damages mitochondria, generates mutations in mtDNA, 

increases production of Aβ from APP and causes oxidative alterations in Aβ that promote plaque 

formation.  Additionally, APP targets and causes injury to mitochondria, and Aβ suppresses 

mitochondrial succinate dehydrogenase activity, impairs respiration, depolarizes mitochondria, 

promotes cytochrome c release, and potentiates Ca2+-induced mPTP opening and mitochondrial 

swelling (Fiskum et al., 1999; Andersen, 2004; Beal, 2004; Duchen, 2004). 

1.8.4 Amyotrophic lateral sclerosis 

ALS is an adult-onset degenerative disease of motor neurons that results in progressive skeletal 

muscle atrophy, paralysis and death.  Mutations in Cu/Zn superoxide dismutase (SOD1) were 

identified as a causal factor in 20% of familial cases.  Mitochondrial vacuolization by 

intermembrane space expansion and subsequent inner membrane disintegration was found to be 

an early pathologic event in SOD1 mutant mice.  Other in vivo and in vitro studies of SOD1 

mutants and ALS tissues demonstrated depolarized ψm, reduced mitochondrial mass, decreased 

activity of the mtDNA-encoded cytochrome c oxidase enzyme, increased toxicity with 

mitochondrial toxins, and impaired calcium homeostasis.  Interestingly, complexes I and II-III 

were shown to have increased activity in various brain regions, although this may be a 

compensatory rather than pathologic effect.  Mutant SOD1 also aggregates in mitochondria and 

associates with mitochondrial membranes, possibly causing direct damage and permeabilization.  

Lastly, evidence exists for slowed axonal transport in ALS motor neurons, leading to 

accumulation of neurofilaments and possibly mitochondria in proximal axons (Collard et al., 

1995; Fiskum et al., 1999; Julien, 2001; Xu et al., 2004). 
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1.9 CESSATION OF MITOCHONDRIAL MOVEMENT AS A MECHANISM OF 

NEUROTOXICITY 

Impaired axonal transport is considered a pathologic process in several neurodegenerative 

diseases, but evidence for specific involvement of mitochondrial trafficking is only beginning to 

emerge.  Examples include HD, spinobulbar muscular atrophy, ALS and AD (Sasaki and Iwata, 

1996; Ebneth et al., 1998; Piccioni et al., 2002; Trushina et al., 2004; Stokin et al., 2005).  

General mechanisms for impaired transport in neurons include mutations in motor proteins, 

defects in proteins that regulate or interact with motor proteins, and nonspecific disease 

processes such as protein aggregation that may affect transport (Goldstein, 2003).  Mitochondria 

represent a special case because transport is also tied to mitochondrial function.  In this section, 

we review how cessation of mitochondrial transport can harm cells and also the high 

susceptibility of mitochondrial movement to impairment.  Thus, while impaired mitochondrial 

movement is only implicated in a few diseases thus far, it is likely to be a pathologic mechanism 

that can be generalized to many situations of neuronal injury and toxicity. 

1.9.1 Immobilized mitochondria can harm cells 

Mitochondria are crucial for energy production and Ca2+ buffering in cells, and dynamic 

distribution of these functions throughout neuronal processes is accomplished by mitochondrial 

trafficking.  Furthermore, transport is necessary to bring unhealthy and healthy mitochondria 

together for fusion-mediated repair and to target damaged mitochondria to sites of regulated 

autophagic degradation.  Impairment of mitochondrial transport would have multiple 

consequences, and the effects probably worsen substantially with longer periods of impaired 

movement.  Maldistribution of ATP and inefficient Ca2+-sequestration are likely to be initial 
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consequences.  Since mitochondria are distributed throughout cells, these effects would probably 

be limited by the diffusional properties of ATP and Ca2+, and the ability of other ATP sources 

and Ca2+-regulators to compensate for ineffective mitochondrial delivery.  The cellular processes 

that are most likely to be at a disadvantage are those that require mitochondria in a rapid and 

dynamic manner.  These processes which remain to be identified but probably include specific 

synaptic sites undergoing morphogenesis or synaptic potentiation, are likely to recruit 

mitochondria actively under normal conditions (Tang and Zucker, 1997; Yang et al., 2003; Li et 

al., 2004). 

Prolonged impairment of mitochondrial movement can impede the repair and removal of 

damaged mitochondria.  As a result, mtDNA mutations can accumulate that cause electron 

transport defects and associated ROS production.  This can not only cause more mtDNA 

mutations but also lead to lipid peroxidation and protein oxidation, as described in Chapter 1.7.  

Therefore, cell death could very well be the ultimate outcome of impaired mitochondrial 

movement.  This could be an acute pathophysiological process if mitochondrial movement stops 

abruptly, as in the case glutamate excitotoxicity which also compromises mitochondrial function 

independently of transport.  Alternatively, cell death could be an insidious process if 

mitochondrial movement is gradually impaired.  Cellular and mitochondrial dysfunctions would 

then develop slowly as is suspected in neurodegenerative diseases. 

1.9.2 Injured mitochondria stop moving 

Our laboratory and others have shown that mitochondria stop moving under a wide variety of 

stimuli that affect mitochondrial and cellular function.  These studies reveal the sensitivity and 
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broad impact of acute and chronic neurotoxic conditions on mitochondrial movement as well as 

possible mechanisms that govern mitochondrial movement. 

First, intact mitochondrial function is an important contributor to mitochondrial 

movement.  Depolarization of ψm with FCCP causes mitochondria to stop moving in a manner 

that is slowly reversible upon repolarization.  FCCP is a protonophore that uncouples oxidative 

phosphorylation.  Dissipation of the proton gradient across the inner mitochondrial membrane 

consequently removes the drive for ATP synthesis and in fact causes reversal of proton flow 

through ATP synthase, resulting in consumption rather than production of ATP (Nicholls and 

Ward, 2000).  If ATP synthase is inhibited selectively with oligomycin, ψm is preserved or 

slightly increased, yet mitochondrial movement still stops (Rintoul et al., 2003b).  Therefore, ψm 

seems important for mitochondrial movement, perhaps because it is a direct requirement for 

mitochondrial ATP synthesis.  These findings are further supported by evidence that other drugs 

that impair respiration, including NO and rotenone, also impair mitochondrial movement 

(Rintoul et al., 2004; Reynolds and Santos, 2005). 

Our studies in models of neuronal injury such as ischemia revealed that mitochondrial 

movement can also be impaired both independently of and probably in cooperation with ψm 

depolarization.  In the first instance, we described the ability of neurotoxic zinc concentrations to 

inhibit movement while maintaining an intact ψm (Malaiyandi et al., 2005).  This proved to be 

mediated by a rapidly activated PI 3-kinase dependent signaling cascade.  On the other hand, we 

showed that more complicated disruption mechanisms accounted for cessation of mitochondrial 

movement after acute exposures to glutamate concentrations that cause excitotoxic cell death 

(Rintoul et al., 2003b).  Here, mitochondrial movement could be affected by cytosolic 

remodeling caused by elevated Ca2+ influx in addition to mitochondrial Ca2+-uptake, ψm 
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depolarization, and inhibition of ATP synthesis.  Therefore, multiple mechanisms are clearly 

able to stop mitochondrial movement, and these mechanisms are relevant to mitochondrial 

dysfunction, neuronal injury and neurodegeneration.  In fact, there may be convergence of 

several injury pathways on mitochondrial movement, suggesting that impairment of movement 

could be a common event in a variety of neuropathological processes. 

1.9.3 Perpetuation of the vicious cycle 

The intertwined relationship between mitochondrial movement, mitochondrial health and cellular 

health dictates that impairment of any one of these properties can negatively impact the other 

two properties.  Mitochondrial movement seems quite sensitive to a variety of changes in the 

physiological state of mitochondria themselves, but also to changes in the cellular environment 

such as shifts in ion concentrations and alterations in cytoskeletal structure.  Impairment of 

mitochondrial movement may have several phenotypes – slow and progressive as with subtoxic 

rotenone treatment, rapid and irreversible as with zinc, or rapid and reversible as with NO and 

glutamate (Rintoul et al., 2003b; Rintoul et al., 2004; Malaiyandi et al., 2005; Reynolds and 

Santos, 2005).  The course of neuronal dysfunction and cell death is likely impacted by the 

timeframes over which movement is impaired and recovers, and any concurrent cellular and 

mitochondrial defects.  Initial consequences such as inappropriate ATP distribution and Ca2+ 

sequestration would have more severe consequences in cells that are already injured and have 

compromised mitochondrial function.  In turn, reduced ATP supply and disrupted [Ca2+]i 

homeostasis compromise the ability of mitochondria to maintain ψm.  Furthermore, worsening 

mitochondrial damage and increased ROS production leads to a cascade of further mitochondrial 

damage coupled to inappropriate repair or removal of the damaged organelles, and activation of 
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cell death pathways.  Therefore, impaired mitochondrial movement has the capability to be a 

highly debilitating pathophysiological process that activates a vicious cycle of injury to the cell 

and to mitochondria. 

1.10 THE DISSERTATION 

The broad aims of the dissertation were to identify cellular signals that control mitochondrial 

trafficking, determine how those signals can contribute to dynamic mitochondrial movements in 

whole neurons, and to examine how impaired mitochondrial movement can cause or be caused 

by neuronal injury and neurodegenerative disease.  As an inevitably related property, we also 

studied mitochondrial morphology in relation to these questions.  Such ambitious goals in a field 

where so little is understood required that these aims be relatively focused in scope.  As such, we 

decided to explore synapses as a target for mitochondrial trafficking.  This rapidly became a 

more complicated task than initially anticipated as dynamic mitochondrial qualities were being 

studied in response to equally complex dynamic synaptic structures.  This aim evolved into two 

chapters, one from the perspective of a synaptic development model and one addressing the 

synaptic requirements in mature neurons.   In addition to answering basic physiological questions 

about mitochondrial trafficking, it was also important for us to understand how trafficking 

aberrations relate to neuronal injury and disease.  It is only then that we can attempt to derive 

pharmacologic solutions to pathophysiological processes.  With such a goal in mind, we 

examined mitochondrial movement in axons and dendrites under conditions of neuronal injury 

which could relate to synaptic dysfunctions, and mitochondrial impairment as a pathogenic event 

in HD. 
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In the first chapter, we investigated how mitochondrial movement and morphology 

change as neurons develop mature synaptic connections.  The mitochondrial recruitment 

properties of NGF in developing neurons and morphogenic spines in mature neurons strengthen 

the idea that younger and older neurons impose very different cellular demands on mitochondria 

(Chada and Hollenbeck, 2003, 2004; Li et al., 2004).  In addition to the synthesis of organelles 

and proteins needed for cell growth, mitochondrial ATP generation must support the dynamic 

and rapid process of synaptogenesis during neuronal development.  In mature neurons, 

mitochondria probably adopt a different role – one of cellular maintenance and repair and 

synaptic support and remodeling.  Not only do mitochondria sustain different processes as 

neurons mature, but the cellular locations and the requirements of these sites of need also 

change.  Moreover, as neurons mature, their exposures and responses to extracellular signals may 

vary and differentially impact mitochondrial homeostasis.  We demonstrated differences in 

mitochondrial movement, morphology and distribution that are probably optimized to best 

provide for the changing energetic needs of synaptically immature and mature neurons. 

The second chapter consists of an in-depth analysis of mitochondrial trafficking relative 

to synaptic sites on axons and dendrites in mature cortical neurons.  We described for the first 

time how populations of mitochondria with different motility patterns are targeted to synaptic 

structures under conditions of normal and altered synaptic activity.  We also demonstrated how 

different synaptic distributions on axons and dendrites correlate with compartmentalized 

differences in mitochondrial trafficking and morphology.  With greatest relevance to neuronal 

injury, we found clear evidence of differential alterations in mitochondrial movement and 

morphology between axons and dendrites under conditions pertinent to ischemia and 

excitotoxicity.  These results implicate impaired mitochondrial trafficking as an effecter of 
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selective dendritic dysfunction, abnormal postsynaptic signal transmission and dendritic 

degeneration. 

Lastly, we examined impaired mitochondrial trafficking as an early pathogenic event in 

HD.  Bioenergetic defects characterize diseased neurons and a growing body of literature 

supports a physical relationship between huntingtin (Htt), motor proteins and accessory proteins 

that can impair protein and vesicle transport (Ludolph et al., 1991; Gutekunst et al., 1998; Li et 

al., 2001a; Gunawardena et al., 2003; Trushina et al., 2004).  Recently, inhibition of 

mitochondrial transport was reported in striatal neurons (Trushina et al., 2004).  Our work 

examined the ability of mutant Htt to impair mitochondrial trafficking, cause mitochondrial 

defects, and increase excitotoxic vulnerability in cortical neurons, which are relatively spared 

compared to striatal neurons.  We revealed a novel mechanism whereby mutant Htt aggregates 

specifically immobilize moving mitochondria in their immediate vicinity.  Furthermore, this 

proved to be an early pathogenic event that probably initiates a prolonged degenerative process 

of mitochondria and neuronal processes as would be expected in HD.  In summary, the 

dissertation work contributes new understanding to multiple facets of mitochondrial movement 

through the lifetime of healthy and injured neurons and paves the way for more sophisticated 

investigation of regulatory mechanisms in the future. 
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2.0  DIFFERENCES IN MITOCHONDRIAL MOVEMENT AND 

MORPHOLOGY IN YOUNG AND MATURE PRIMARY CORTICAL 

NEURONS IN CULTURE  

2.1 ABSTRACT 

Mitochondria have many roles critical to the function of neurons including the generation of 

ATP and regulation of intracellular Ca2+.  Mitochondrial movement is highly dynamic in neurons 

and is thought to direct mitochondria to specific cellular regions of increased need and to 

transport damaged or old mitochondria to autophagosomes.  Morphology also varies between 

individual mitochondria and is rapidly modulated by fusion and fission.  Although mitochondrial 

movement and morphology are thought to be modulated to best meet cellular demands, few 

regulatory signals have been identified.  In this study, we examined how the different cellular 

environments of synaptically immature and mature cortical neurons affect mitochondrial 

movement, morphology, distribution and function.  In younger cells, mitochondria were more 

mobile, were shorter and occupied a smaller percentage of neuronal processes compared to older 

cells.  However, the number of mitochondria per µm of neuronal process, mitochondrial 

membrane potential and the amount of basally sequestered mitochondrial Ca2+ were similar.  Our 

results suggest that while mitochondria in young neurons are functionally similar to mature 

neurons, their enhanced motility may permit faster energy dispersal for cellular demands, such as 
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synaptogenesis.  As cells mature, mitochondria in the processes may then elongate and reduce 

their motility for long-term support of synaptic structures. 

2.2 INTRODUCTION 

Mitochondria are vital to the function of cells not only because they are the main source of 

energy but also because they regulate intracellular Ca2+ homeostasis.  Since mitochondria are 

thought to be synthesized in the perinuclear region, they must be trafficked appropriately to meet 

demands throughout the cell (Wong-Riley, 1989; Miller, 1992; Davis and Clayton, 1996).  This 

has particular relevance to neurons where axons and dendrites can extend well beyond the cell 

body.  In addition to supporting cellular functions, mitochondrial trafficking may be important 

for transporting damaged mitochondria to cellular locations where they can be repaired or 

degraded (Hollenbeck, 1993; De Vos et al., 2000; Tolkovsky et al., 2002; Miller and Sheetz, 

2004).  Mitochondrial movement is dynamic in neurons, and can vary in both velocity and 

motility patterns between individual organelles and between axons and dendrites (Overly et al., 

1996; Ligon and Steward, 2000a).  Microtubules and actin filaments serve as cytoskeletal 

substrates on which kinesins and dyneins transport the organelles (Hirokawa et al., 1990; 

Nangaku et al., 1994; Morris and Hollenbeck, 1995; Tanaka et al., 1998; Ligon and Steward, 

2000b).  Interestingly, mitochondrial morphology is also dynamic and can be regulated 

(reviewed by Rube and van der Bliek, 2004).  For example, mitofusin-1 (mfn-1) mediates 

mitochondrial fusion while dynamin-related protein-1 (drp-1, also referred to as dlp-1) controls 

fission (Pitts et al., 1999; Santel and Fuller, 2001; Smirnova et al., 2001; Legros et al., 2002; 

Chen et al., 2003; Pitts et al., 2004).  Mitochondrial fusion is thought to promote a 
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bioenergetically favorable morphology and to assist in the sharing of membrane and matrix 

proteins and mitochondrial DNA (Nakada et al., 2001; Chen et al., 2003).  Fission, on the other 

hand, may contribute to mitochondrial proliferation as well as apoptosis in neurons (Frank et al., 

2001).  The dynamic processes of mitochondrial trafficking and morphology regulation that 

occur throughout the lifetime of a cell defines a process we term “mitochondrial homeostasis”. 

Recent studies on mitochondrial movement and morphology have been performed largely 

in the context of neuronal injury and cell death.  It is thought that impairment of mitochondrial 

transport could result in inadequate distribution of ATP and sequestration of intracellular Ca2+.  

Accumulation of injured mitochondria due to inefficient removal could also have severe 

consequences, as damaged mitochondria may promote apoptosis by producing reactive oxygen 

species and releasing cytochrome c (reviewed by Lee and Wei, 2000).  Our laboratory and others 

have demonstrated that mitochondrial movement in neurons is inhibited by agents that depolarize 

mitochondria, including glutamate, FCCP and zinc (Rintoul et al., 2003b; Vanden Berghe et al., 

2004; Malaiyandi et al., 2005).  Miller and Sheetz (2004) also showed that mitochondria with 

high membrane potentials (∆ψm) move anterogradely while depolarized mitochondria moved 

back toward the cell body.  Furthermore, mitochondrial morphology undergoes (i) shortening 

and rounding in neurons after excitotoxic glutamate exposure and (ii) drp-1 mediated 

fragmentation in COS-7 cells after induction of apoptosis (Frank et al., 2001; Karbowski et al., 

2002; Rintoul et al., 2003b), suggesting an important relationship between morphology and cell 

viability.  

The signals that govern mitochondrial movement and morphology in healthy cells are 

even less well understood than those that operate in injured cells.  While mitochondria are 

thought to be trafficked in response to cellular signals such as reduced ATP or elevated [Ca2+]i, 

40 



few have been unambiguously identified.  For example, some evidence exists for mitochondrial 

recruitment to dendritic spines during synaptic excitation in hippocampal neurons (Li et al., 

2004).  Nerve growth factor in active growth cones was also recently identified as a 

chemoattractive signal for mitochondria in developing neurons (Chada and Hollenbeck, 2003, 

2004).  In the present study we have investigated neuronal maturity as a variable affecting 

mitochondrial morphology and trafficking in healthy neurons, and show significant changes in 

mitochondrial characteristics associated with the development of mature synaptic connections. 

2.3 EXPERIMENTAL PROCEDURES 

Cell culture 

All animals used for this study were maintained in accordance with the University of Pittsburgh 

Guidelines for the Care and Use of Animals.  Primary neurons were isolated for culture from 

embryonic day 17 Sprague Dawley rat pups and grown in a 37˚C incubator containing 5% CO2.  

Cortices were removed, trypsinized at 37˚C for 30 minutes, and plated on poly-D-lysine-coated 

31 mm glass coverslips.  Cells were plated in medium containing Dulbecco’s Modified Essential 

Medium (DMEM) with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin.  Five 

hours after plating, plating medium was completely removed and replaced with N2-NB media 

(Neurobasal media with 0.5% penicillin/streptomycin and 1% N2 supplement).  Four days after 

plating, approximately one-third of the media was removed and replaced with an equal volume 

of fresh N2-NB media.  Eight and 11 days after plating, approximately one-third of the media 

was removed and replaced with B27-NB media (Neurobasal media with 0.5 % 
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penicillin/streptomycin and 2% B27 Supplement Minus antioxidants).  All cell culture reagents 

were purchased from Invitrogen (Carlsbad, CA). 

 

Transfection of cortical cultures 

The mito-eYFP construct obtained from Dr. Roger Tsien (Llopis et al., 1998) was produced by 

insertion of the gene for eYFP into the mammalian expression vector pcDNA3 (Invitrogen) and 

containing the cytochrome c oxidase subunit IV mitochondrial localization sequence.  The 

plasmid was purified and amplified using the Qiagen Plasmid Maxi Kit according to 

manufacturer’s instructions.  Transfections were performed on neurons from the same culture 

after 3 or 12 days in vitro (DIV), using 2 µg mito-eYFP and 5 µl Lipofectamine 2000 reagent 

(Invitrogen) in an added volume of 250 µl DMEM.  Media was completely replaced with 

conditioned media 24 hours after transfection and neurons were imaged 48 hours after 

transfection. 

 

Immunocytochemistry 

The primary antibodies used were mouse anti-PSD-95 IgG (Affinity Bioreagents, Golden, CO) 

and mouse anti-synaptophysin monoclonal antibody (Chemicon, Temecula, CA).  Alexa 546 

goat anti-mouse polyclonal antibody (Molecular Probes, Eugene, OR) was used as the secondary 

antibody.  Coverslips containing transfected neurons were removed from culture plates and 

rinsed once with Dulbecco’s PBS (Invitrogen) for 1-3 min.  Cells were then fixed for 10 min at 

room temperature (RT) with 4% formaldehyde/PBS.  Coverslips were rinsed, permeabilized for 

30 sec with -20°C acetone, re-rinsed, and blocked with 10% goat serum/PBS for 1 hr at RT.  

Cells were incubated with anti-PSD-95 diluted 1:500 or anti-synaptophysin antibody diluted 

1:100 in 3% bovine serum albumin (BSA)/PBS for 2 hr at RT.  Cells were then rinsed, incubated 
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with secondary antibody diluted 1:500 in 3% BSA/PBS for 30 min at RT, and re-rinsed.  

Coverslips were rinsed and stored in PBS at 4ºC until visualization.  All rinses were with PBS 

and performed in quadruplicate for 3 min each. 

 

Immunoblotting 

Immunoblotting for mfn-1 was performed using rabbit anti-mfn-1 antibody (provided by Dr. 

Ansgar Santel) and goat anti-rabbit IgG coupled to horseradish peroxidase as the secondary 

antibody.  Normalization was performed using mouse anti-β-actin (Sigma, St. Louis, MO) and 

goat anti-mouse IgG coupled to horseradish peroxidase.  Immunoblotting for drp-1/dlp-1 was 

performed using mouse anti-dlp-1 IgG (BD Bioisciences, San Jose, CA) and goat anti-mouse 

IgG coupled to horseradish peroxidase as the secondary antibody.  Normalization was performed 

using rabbit anti-β-actin (Biolegend, San Diego, CA) and goat anti-rabbit IgG coupled to 

horseradish peroxidase.  All horseradish peroxidase-coupled antibodies were purchased from 

Pierce Biotechnology (Rockford, IL). 

Cells were scraped from 6-well plates after 5 or 14 DIV, collected in PBS and centrifuged 

at 14,000 rpm for 5 minutes.  Pellets were washed twice with PBS and lysed for 45 min in buffer 

containing 50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1.5 mM MgCl2, 1 % Triton X-100, 5 mM 

EGTA, 20 µM Leupeptin, 1 mM AEBSF, 1 mM NaVO3, 10 mM NaF, and 1 tablet of protease 

inhibitor.  Protein was collected from the supernatant after a 5 min spin at 14,000 rpm and 

concentration was determined using a micro-protein assay using the BCA protein assay kit 

according to manufacture’s instruction (Pierce Biotechnology).  20 µg protein were loaded with 

6x SDS sample loading buffer (60 mM Tris-HCl, pH 7.5, 2 mM EDTA, 10 mM 2-

mercaptoethanol, 20% glycerol, and 2% SDS) and size-fractionated by electrophoresis on 4-15 

% Tris-HCl Ready Gels (Bio-Rad Labs, Hercules, CA) at 20-30 mA for 1 hr.  Protein was 
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transferred to a nitrocellulose membrane at 80 V for 2 hr at 4°C.  The membrane was blocked 

with 5% dry milk for 1 hr at RT, rinsed in 1% Tween/PBS (PBS-T), incubated in primary 

antibody diluted 1:500-1:1000 in PBS-T overnight at 4°C, rinsed in PBS-T, incubated in 

secondary antibody diluted 1:1000 in PBS-T for 1 hr at RT, and rinsed in PBS-T.  

Chemiluminescence was performed using the SuperSignal West Dura Extended Duration 

Substrate Kit (Pierce Biotechnology). 

 

Imaging 

Cells were perfused with HEPES-buffered salt solution (HBSS) adjusted to pH 7.4 with NaOH 

and composed of (in mM) NaCl 137, KCl 5, NaHCO3 10, Hepes 20, glucose 5.5, KH2PO4 0.6, 

Na2HPO4 0.6, CaCl2 1.4 and MgSO4 0.9.  CaCl2 was omitted from the buffer for experiments 

measuring [Ca2+]i after FCCP treatment.  HBSS was warmed to 37°C and flowed at a rate of 5 

ml/min throughout the duration of each experiment.  Imaging was performed at a rate of 1 

frame/6 seconds except where noted, at a magnification of 40x using Compix Inc. imaging 

systems and SimplePCI software (Compix Inc., Cranberry PA).  The excitation wavelengths 

used were 495 nm for eYFP and rh123, 340/380 nm for mag-fura-2AM and fura-2AM, and 540 

nm for Alexa 546 goat anti-mouse polyclonal antibody. 

 

Analysis of mitochondrial movement, length, occupancy and number 

Using SimplePCI, 1-3 circular regions of interest (ROIs) of 1.81 µm diameter were evenly 

spaced along the processes of each neuron.  Mitochondrial movement was measured as the 

average number of mitochondria entering a ROI over time, as detected by an increase in 

fluorescence of at least 20 units.  SimplePCI functions were employed to determine average 

mitochondrial length, occupancy and number in a 255 x 255 pixel subfield that excluded 
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proximal processes clearly containing more than one mitochondrion in their cross-section.  

Briefly, user-defined thresholds for pixel intensity and object size were used to identify the total 

number of measurable mitochondria in a frame.  Length was calculated from skeletonized 

objects, which consisted of a 1 pixel-wide line running the length of each mitochondrial object.  

All neuronal processes in the field were then converted into line objects, their total length was 

calculated, and mitochondrial occupancy was computed as total mitochondrial length/process 

length.  A paired t-test was used for statistical analysis. 

 

Measurement of [Ca2+]i and mitochondrial membrane potential 

Spontaneous intracellular Ca2+ transients were identified as transient changes in fura-2AM ratios 

that were synchronous across neurons in the recording field.  Cells were loaded with 5 µM fura-

2AM/HBSS (Molecular Probes) for 15-20 min at 37°C.  Neurons were imaged at excitation 

wavelengths of 340/380 nm at a rate of 1 frame/3 sec before and during a 3 min perfusion of 200 

nM TTX (Sigma, St. Louis, MO).  Using SimplePCI, [Ca2+]i was represented as the fura-2 ratio 

of cell bodies after subtraction of background ratio. 

Intracellular Ca2+ changes after glutamate or FCCP treatment was measured as previously 

described (Brocard et al., 2001).  Briefly, neurons were loaded with 5 µM mag-fura-2AM 

(Molecular Probes) in 5 mg BSA/ml HBSS for 10 minutes at 37°C.  Neurons were imaged at 

excitation wavelengths of 340/380 nm during a 5 minute treatment with 30 µM glutamate/1 µM 

glycine or 750 nM FCCP followed by a 10 minute washout.  The area under the mag-fura-2 ratio 

curve (AUC) after subtraction of background fluorescence was calculated for the 0-6.5 minute 

time point after each drug was applied.  BaselineAUC was extrapolated from the AUC during the 

1 minute immediately preceding drug treatment.  A paired t-test was used for statistical analysis. 
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Mitochondrial membrane potential (∆ψm) was measured as the increase from baseline 

rhodamine 123 (rh123) fluorescence after dissipation of ∆ψm by FCCP.  Briefly, neurons were 

loaded with 5 µM rh123 (Molecular Probes) in HBSS for 10 minutes at 37°C and rinsed 

thoroughly until baseline rh123 fluorescence stabilized.  Cells were imaged during a 3 minute 

treatment with 750 nM FCCP.  Mean background fluorescence was subtracted from the mean 

fluorescence of each non-saturating cell body, fluorescence values were normalized to baseline 

fluorescence taken 30 seconds before FCCP treatment, and ∆ψm was calculated as the difference 

between normalized maximum fluorescence after FCCP and baseline fluorescence.  A paired t-

test was used for statistical analysis. 

2.4 RESULTS 

Functional synapses are rare in young cortical neurons 

In vitro synaptic development of cortical neurons was visualized by immunostaining for the pre-

synaptic vesicle protein, synaptophysin, and the post-synaptic scaffolding protein, PSD-95 in 

neuronal cultures of different developmental stages.  Representative images at 2, 5-6, 8 and 12 

days in vitro (DIV) are shown in Figure 1.  Synaptophysin expression was detectable at earlier 

time points than PSD-95 expression.  In general, neurons from 2-6 DIV had considerably less 

immunostaining of pre- and post-synaptic components compared to 8 DIV neurons and mature 

12 DIV neurons.  This is consistent with a previous report of the development of synaptic 

contacts in neurons in culture (Weiss et al., 1986).  Therefore, we performed experiments at 5 

DIV when expression of synaptic components is minimal, and at 14 DIV when neurons contain 

many synapses. 
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Figure 2.1  Synaptic structures were uncommon in young neurons but abundant in mature neurons. 

Immunostaining for synaptophysin (A) and PSD-95 (B) of neurons aged 2 through 12 DIV demonstrated the time 

course of expression of pre- and post-synaptic components, respectively.  Synaptophysin expression was rare at 2 

DIV and gradually increased through 12 DIV.  PSD-95 expression was not observed until after 5 DIV and was 

pronounced by 12 DIV.  Images are representative of 2-3 separate cultures. 

 

Five DIV neurons had negligible intracellular Ca2+ influx after treatment with 30 µM 

glutamate/1 µM glycine, as measured by the fluorescent [Ca2+]i indicator mag-fura-2 (Figure 

2A).  On the other hand, 14 DIV neurons had a nearly 5-fold greater response to glutamate (p < 

0.01; Figure 2A, B).  Furthermore, our examination of spontaneous [Ca2+]i transients 

representative of spontaneous synaptic activity in cortical neurons demonstrated prominent 

synchronous fluxes at 14 DIV which were completely absent at 5 DIV (Figure 2C, D).  We 

confirmed that these [Ca2+]i transients were mediated by synaptic activity by perfusing neurons 

with 200 nM tetrodotoxin (TTX), a blocker of voltage-sensitive Na+ channels in excitable 

membranes.  Transients in 14 DIV neurons were abolished after approximately 30 seconds and 

the pattern of [Ca2+]i fluxes reverted to that seen in 5 DIV neurons.  Therefore, we conclude that 

our cortical neurons are functionally synaptically immature at 5 DIV and mature at 14 DIV.  
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Throughout the remainder of the text, we will refer to 5 DIV neurons as “young/immature” and 

14 DIV neurons as “old/mature”. 

 

 
Figure 2.2  Functional synaptic activity was absent in 5 DIV cortical neurons but apparent in 14 DIV 

neurons. 

(A) Intracellular Ca2+ influx after a 5 min perfusion with 30 µM glutamate/1 µM glycine was minimal in 5 DIV 

neurons and robust in 14 DIV neurons.  Traces are mean mag-fura-2 ratios after subtraction of background 

fluorescence and represent 3 coverslips each from 3 separate cultures.  (B) [Ca2+]i was depicted as the area under 

mag-fura-2 ratio curves (AUC) for 6.5 min after treatment with 30 µM glutamate/1 µM glycine with baseline AUC 

subtracted.  [Ca2+]i influx was significantly greater in 14 DIV neurons (p < 0.01).  Values are shown as mean ± SE 

of 3 coverslips each from 3 separate cultures. (C, D) Spontaneous calcium fluxes measured by fura-2 were 

indicative of basal synaptic activity and were inhibited by 200 nM TTX.  Such fluxes were absent in immature, 5 

DIV neurons but prominent and synchronous in mature, 14 DIV neurons.  Traces represent 13-14 cells from a single 

coverslip.  Experiments were repeated 2-3 times each on 3 separate cultures. 

 

Mitochondrial movement, morphology and distribution vary with neuronal maturity 

We next investigated the impact of the development of synaptic connections on mitochondrial 

movement, morphology and distribution.  Interestingly, transfection of cortical neurons with the 

mitochondrially-targeted mito-eYFP plasmid revealed that mitochondria have markedly different 
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movement patterns and appearances depending on the maturation state of the cells.  Figure 3A 

illustrates the typical appearance of mitochondria in 5 and 14 DIV transfected neurons.  

Mitochondrial movement was measured over time by recording the number of mitochondria 

moving into 1.81 µm diameter regions of interest (ROIs) that were evenly spaced along neuronal 

processes and that were initially unoccupied by mitochondria.  It is important to note that our 

measurement of mitochondrial movement can be influenced by both the number of moving 

mitochondria and the velocity with which they move.  Significantly fewer mitochondria were 

found to enter any given ROI per minute in synaptically mature cells compared to mitochondria 

in immature cells (0.32 ± 0.072 vs 0.49 ± 0.083 p < 0.05; Figure 3B).  We therefore conclude 

that mitochondria become less motile with neuronal maturity. 

The fractional occupancy of neuronal processes by mitochondria (Figure 3C) was 

increased in 14 DIV neurons (Figure 3C).  That is, in a given 255 x 255 pixel subfield, the 

fraction of total neuronal process length that was occupied by mitochondria was 24.8 ± 2.4% in 

14 DIV neurons compared to 16.8 ± 1.5% in 5 DIV neurons (p < 0.05).  Interestingly, the 

number of mitochondria per µm of neuronal process did not differ with neuronal age (Figure 

3D).  The main contributor to increased fractional occupancy of neuronal processes by 

mitochondria was therefore mitochondrial length, which was significantly greater in 14 DIV 

neurons, measuring 2.44 ± 0.12 µm versus 2.01 ± 0.14 µm in 5 DIV neurons (p < 0.05; Figure 

3E).  Recent studies suggest that mitochondrial morphology is controlled by the balance of 

effects of proteins that promote fission or fusion of mitochondria (Rube and van der Bliek, 

2004).  However, in this case the difference in morphology was not mirrored by the elevated 

expression of a mitochondrial fusion protein or reduced expression of a fission protein in older 

neurons.  Mature neurons had about one fourth the expression of the fusion protein, mfn-1, and a 
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nearly 2-fold increase in expression of the fission protein, drp-1, compared to immature neurons 

(p < 0.05; Figure 4A-C).  Thus, although the expression of these proteins suggests that fission 

should be enhanced in mature relative to immature neurons, the data show that neurons are 

actually longer, consistent with fusogenic activity. 

 

 
Figure 2.3  Mitochondrial movement, morphology and distribution differ between synaptically immature and 

mature neurons. 

(A) Transfection of cortical neurons with mito-eYFP revealed a different mitochondrial morphology and distribution 

in 5 DIV neurons compared to 14 DIV neurons.  Images are representative of 4-5 separate cultures.  (B) The mean 

number of mitochondria entering a given region of interest (ROI) on a neuronal process per minute was significantly 

lower in 14 DIV neurons compared to 5 DIV neurons.  (C) Mitochondria in mature neurons were significantly 

longer than in immature neurons.  (D)  Mitochondrial occupancy of neuronal processes was significantly greater in 

mature neurons.  This was measured as the total length of all mitochondria divided by the length of all neuronal 
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processes in a given field.  (E) The number of mitochondria/µm of neuronal process did not differ in neurons of 

different age.  Values are shown as mean ± SE from at least 3 coverslips each from 4-5 separate cultures.  P-values < 

0.05 were considered significant. 

 

 

 
Figure 2.4  The expression levels of mitochondrial morphology-regulating proteins differed between 

immature and mature neurons. 

(A) Immunoblot for the mitochondrial fusion protein, mfn-1 and the fission protein, drp-1, at 5 DIV and 14 DIV.  

(B) Mfn-1 expression was significantly lower in 14 DIV neurons.  (C) Drp-1 expression was significantly greater in 

14 DIV neurons compared to immature neurons.  Data represent 4-5 separate cultures (mean+/- SE, with p-values < 

0.05 considered significant). 

 

Mitochondria in immature and mature cortical neurons have similar membrane potential and 

Ca2+ sequestration properties 

We next investigated whether the neuronal age-dependent differences in mitochondrial 

movement, morphology and distribution seen in Figure 3 could be caused by an inherent 

dissimilarity in mitochondrial function.  Mitochondrial membrane potential (∆ψm) was measured 

using the potentiometric dye, rhodamine 123 (rh123), which is sequestered and then quenched by 

mitochondria in a ∆ψm-dependent manner.  Upon dissipation of ∆ψm with a 3 min perfusion of 

750 nM FCCP, mitochondria release rh123 into the cytosol, which is detected by an increase in 

rh123 fluorescence.  Therefore, ∆ψm is represented by the difference in baseline fluorescence and 

maximum fluorescence after FCCP treatment.  Figure 5A-B demonstrates that mitochondria in 5 
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DIV neurons indeed maintain a membrane potential that is equivalent to that seen in 14 DIV 

neurons (p < 0.05). 

In agreement with our findings of similar ∆ψm in younger and older neurons, we also 

observed that mitochondria sequestered comparable concentrations of Ca2+ when neurons were 

in the basal state.  Using mag-fura-2, we measured Ca2+ release from mitochondria into the 

cytosol after dissipation of ∆ψm with a 5 min perfusion of 750 nM FCCP (Figure 5C).  [Ca2+]mito, 

represented by calculating the area under the mag-fura-2 ratio curve, was almost identical 

between 5 DIV and 14 DIV neurons (Figure 5D).  Therefore, we conclude that mitochondria in 

synaptically immature neurons are functionally capable of maintaining ∆ψm and sequestering 

intracellular Ca2+ in a manner that is largely comparable to mitochondria in mature neurons. 

 

 
Figure 2.5  Mitochondrial function is broadly similar between synaptically immature and mature neurons. 

(A) Mitochondria in immature neurons maintain a membrane potential that is dissipated upon a 3 min perfusion with 

750 nM FCCP, as measured by change in rh123 fluorescence.  (B)  ∆ψm was similar in 5 DIV and 14 DIV neurons.  

This was measured as the difference between maximum normalized rh123 fluorescence after FCCP treatment and 

baseline fluorescence taken 30 sec before FCCP.  (C) Mitochondria in immature neurons basally sequester similar 
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amounts of intracellular Ca2+ compared to mature neurons, as determined by the mag-fura-2 ratio curve after a 5 min 

perfusion with 750 nM FCCP.  (D) There was no difference in FCCPAUC calculated as the area under the mag-fura-2 

ratio curve (AUC) for 6.5 min after the start of FCCP treatment with baselineAUC subtracted.  Mean traces represent 

3 coverslips each from 3-4 separate cultures; corresponding chart values are shown as mean ± SE calculated from 

the same experiments. 

2.5 DISCUSSION 

Our results show that mitochondria in synaptically immature cortical neurons are more mobile, 

are shorter, and occupy a smaller percentage of total neuronal process length compared to 

synaptically mature neurons.  However, the number of mitochondria per neuronal process length 

was similar between the two age groups.  These findings demonstrate that mitochondrial 

morphology and trafficking vary as a function of synaptic maturity.  Several developmental 

issues that might affect mitochondrial movement, morphology and distribution should be 

considered: (i) mitochondria in young neurons are functionally different or immature, and this 

difference is manifest as altered morphology and increased movement, (ii) the intracellular 

environment in young developing cells may have different energetic demands compared to 

mature cells, especially with regard to synaptogenesis and neurite outgrowth, and (iii) the 

maintenance and modulation of synaptic communication between mature neurons may impart 

special demands on mitochondrial movement and morphology. 

We demonstrated that mitochondria in 5 DIV and 14 DIV neurons were capable of 

maintaining equivalent ∆ψm (Figure 5B).  This is a new finding in cortical neurons isolated from 

the same source but aged for different time periods in vitro.  Figure 5D shows that mitochondria 

in immature and mature cells also basally sequester comparable amounts of intracellular Ca2+, 

possibly because cells of both ages are similar with regard to resting intracellular Ca2+ 
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homeostasis and mitochondrial calcium cycling.  We previously showed that mitochondria in 

mature neurons stop moving when ∆ψm is dissipated and adopt a shorter, rounder morphology 

when the cell is exposed to large Ca2+ loads after glutamate treatment, especially in the cytosolic 

compartment (Rintoul et al., 2003b).  In contrast to those findings in injured neurons, we now 

demonstrate that mitochondrial movement in young, healthy neurons is increased, but not 

because they have larger ∆ψm.  Furthermore, mitochondria in young neurons are shorter, but in a 

manner that is independent of [Ca2+]cyto large enough to increase mitochondrial Ca2+ uptake.   

The different cellular processes and energetic demands of 5 DIV neurons compared to 14 

DIV neurons may impose important requirements on mitochondrial movement, morphology and 

distribution.  Developing neurons must not only actively synthesize the bulk of cellular proteins 

and organelles, but also elongate axons and dendrites and form new synapses.  Synaptogenesis is 

rapidly dynamic and energy-demanding, involving the contact of advancing axon growth cones 

and motile dendritic filopodia, recruitment of synaptic vesicle and receptor components over the 

course of 1-2 hours, and functional and morphological differentiation at pre- and post-synaptic 

sites (reviewed by Cohen-Cory, 2002).  It is possible that the enhanced mitochondrial mobility 

we observed in developing neurons exists to provide adequate ATP to multiple sites of need at 

any given time.  Increased mitochondrial movement may be assisted by shorter mitochondrial 

length, so that less energy is required to drive molecular motors for organelle transport.  It is also 

possible that specific docking sites for mitochondria develop subsequent to the formation of 

relatively stable synaptic contacts in these cultures.  Although no specific docking mechanisms 

have been identified for mitochondria in neurons, the presence of such a mechanism has been 

inferred by the studies of Chada and Hollenbeck (2004) who found that NGF decreased 

mitochondrial motility in axons.  In this way, the decreased movement of mitochondria in mature 
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neurons could be the consequence of a decrease in the need for motility as the energy demands 

change, and also an increase in the impact of docking signals. 

Interestingly, our measurements of mitochondrial morphology did not correlate with the 

expression levels of mitochondrial fusion and fission proteins, mfn-1 and drp-1, respectively 

(Figures 3D, 4A-C).  Given that the number of mitochondria per µm of neuronal process is 

similar at 5 and 14 DIV (Figure 3C), it is logical to consider that the longer mitochondrial length 

in mature neurons is the result of either increased mitochondrial biogenesis with fusion to 

already existing mitochondria, or elongation of initial mitochondria over time (Bakeeva et al., 

1981; Chen et al., 2003).  The low level of mfn-1 expression we observed at 14 DIV supports the 

latter.  Furthermore, the heightened expression of drp-1 in mature neurons might allow division 

and distribution of healthy mitochondria to meet the changing energetic demands of local 

environments distal to the cell body, and to compensate for the removal of unhealthy 

mitochondria (Smirnova et al., 1998; Pitts et al., 1999; Smirnova et al., 2001; Priault et al., 

2005).  In contrast, mitochondrial fission may be less important in young neurons where 

neuronal processes do not extend as far from the large mitochondrial pool in the cell body and 

mitochondrial turnover may be less frequent.  One important caveat to our experiments, 

however, is that mitochondrial morphology was measured exclusively in neuronal processes, 

whereas immunoblotting for protein expression was performed on whole cells.  It is possible that 

the population of mitochondria in the soma may have different characteristics than those in the 

processes, although the extent to which somatic vs. distal mitochondria contribute to the 

immunoblotting results remains unclear.  Differential expression patterns of proteins that 

regulate mitochondrial morphology other than mfn-1 and drp-1 may also account for the 

observed differences in morphology, as could post-translational processes that affect the activity 
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of fission and fusion proteins (Fekkes et al., 2000; Mozdy et al., 2000; Tieu and Nunnari, 2000; 

Bach et al., 2003; Varadi et al., 2004).  

After the organellar and synaptic pool are established in mature cells, mitochondrial 

homeostasis may become relatively more static for long-term support of energy-demanding 

processes.  An obvious site of high demand for mitochondria in neuronal processes is the 

synapse.  In mature neurons, mitochondria closely associate with synapses in electron 

micrographs and even tether to vesicle release sites (Kageyama and Wong-Riley, 1982; Rowland 

et al., 2000).  Synaptic transmission requires mitochondrial ATP generation and control of local 

Ca2+ concentrations  for neurotransmitter exocytosis, vesicle recruitment, activation of ion 

conductances, signaling at ionotropic glutamatergic synapses and synaptic plasticity (Bindokas et 

al., 1998; Zucker, 1999; David and Barrett, 2000; Zenisek and Matthews, 2000; Calupca et al., 

2001; Billups and Forsythe, 2002; David and Barrett, 2003; Yang et al., 2003).  The reduction in 

mitochondrial movement we observed in mature neurons suggests that the demands for 

mitochondria are more stably located throughout neuronal processes than in immature neurons, 

as would be expected from mature synapses.  Mitochondrial morphology may also be elongated 

to better serve multiple synapses and to optimize mitochondrial function.  This may be a 

particularly advantageous morphology since there is minimal requirement for increased energy 

expenditure for motility. 

In conclusion, our study provides the first comparison of mitochondrial movement, 

morphology and distribution between synaptically immature and mature cortical neurons.  We 

suggest that the dynamic energetic requirements of developing neurons, especially with regard to 

synaptogenesis, are met by highly motile mitochondria that adopt a shortened morphology to 

optimize motility.  As neurons age and establish mature synapses, mitochondria move less and 
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elongate to better serve multiple synaptic sites simultaneously over longer time periods.  

Mitochondria in 5 DIV and 14 DIV neurons had identical ∆ψm and sequestered similar amounts 

of intracellular Ca2+.  Therefore, we propose that mitochondrial movement and morphology are 

governed by cellular demands in healthy neurons and that the regulating mechanisms are 

independent of ∆ψm of [Ca2+]mito, which have been implicated in injury models. 
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3.0  MITOCHONDRIAL TRAFFICKING TO SYNAPSES IN CULTURED 

PRIMARY CORTICAL NEURONS 

3.1 ABSTRACT 

Functional synapses require mitochondria to supply ATP and regulate local [Ca2+]i for 

neurotransmission.  Mitochondria are thought to be transported to specific cellular regions of 

increased need such as synapses.  Yet little is known about how this occurs, including the 

spatiotemporal distribution of mitochondria relative to pre- and postsynaptic sites, whether 

mitochondria are dynamically recruited to synapses, and how synaptic activity affects these 

trafficking patterns.  We studied primary cortical neurons in culture because they form synaptic 

connections and show spontaneous synaptic activity under normal conditions.  Moreover, 

mitochondria must be transported over extensive distances to reach synapses on distal processes.  

Neurons were cotransfected with mitochondrially-targeted CFP and eYFP-tagged presynaptic 

label, synaptophysin, or postsynaptic label, PSD-95.  Fluorescence microscopy revealed longer 

dendritic mitochondria that occupied a greater fraction of neuronal process length than axonal 

mitochondria.  Mitochondria localized significantly to pre- and postsynaptic sites; but while this 

localization was preserved during synaptic inactivity, it was elevated in dendrites and reduced in 

axons during overactivity.  Mitochondrial movement and recruitment to synapses also differed 

between axons and dendrites under basal conditions and when synaptic activity was altered.  

Additionally, we show that movement of dendritic mitochondria can be selectively impaired by 

58 



neuronal insults.  We conclude that mitochondrial trafficking to synapses is dynamic in neurons 

and is modulated by changes in synaptic activity.  Furthermore, mitochondrial morphology and 

distribution may be optimized differentially to best serve the synaptic distributions in axons and 

dendrites.  Lastly, selective cessation of mitochondrial movement in dendrites suggests early 

postsynaptic dysfunction in neuronal injury and degeneration. 

3.2 INTRODUCTION 

Mitochondria are vital to the function of cells not only because they are the main source of 

energy but also because they regulate intracellular Ca2+ homeostasis.  Since mitochondria are 

thought to be synthesized in the perinuclear region, they must be trafficked appropriately to meet 

demands throughout the cell (Wong-Riley, 1989; Miller, 1992; Davis and Clayton, 1996).  This 

has particular relevance to neurons where processes can extend well beyond the cell body.  

Mitochondrial movement is dynamic, with individual organelles exhibiting various velocities 

and motility patterns in axons and dendrites (Overly et al., 1996; Ligon and Steward, 2000a).  

Microtubules and actin filaments serve as cytoskeletal substrates on which kinesins and dyneins 

transport the organelles, likely through interaction with accessory proteins such as Milton and 

syntabulin (Hirokawa et al., 1990; Nangaku et al., 1994; Morris and Hollenbeck, 1995; Tanaka et 

al., 1998; Ligon and Steward, 2000b; Stowers et al., 2002; Cai et al., 2005).  Interestingly, 

mitochondrial morphology is also dynamic and can be regulated, for example through fusion and 

fission (reviewed by Rube and van der Bliek, 2004).  An elongated morphology may confer 

bioenergetic advantages to ATP generation and dispersal (reviewed by Skulachev, 2001).  

Additionally, it is speculated that Ca2+ may be buffered over a greater surface area by longer 

59 



mitochondria, whereas shorter mitochondria may be transported more efficiently by molecular 

motors. 

While mitochondria are thought to be trafficked to specific cellular regions such as those 

with high metabolic demand or elevated [Ca2+]i, few targets for mitochondrial recruitment have 

been unambiguously identified (Morris and Hollenbeck, 1993; Yi et al., 2004).  An obvious site 

of high demand for mitochondria in neuronal processes is the synapse.  An analysis of mature 

neurons by electron microscopy demonstrated that mitochondria closely associate with synapses 

and tether to vesicle release sites (Kageyama and Wong-Riley, 1982; Rowland et al., 2000).  

Synaptic transmission requires mitochondrial ATP generation and control of local Ca2+ 

concentrations for neurotransmitter exocytosis, vesicle recruitment, activation of ion 

conductances, signaling at metabotropic receptors, potentiation of neurotransmitter release and 

synaptic plasticity (Bindokas et al., 1998; Zucker, 1999; David and Barrett, 2000; Zenisek and 

Matthews, 2000; Calupca et al., 2001; Billups and Forsythe, 2002; Vanden Berghe et al., 2002; 

David and Barrett, 2003; Kann et al., 2003; Yang et al., 2003).  However, recent studies in 

mutant Drosophila neurons with perinuclearly clustered mitochondria also suggest that direct 

mitochondrial localization to presynaptic terminals may be less critical for neurotransmission 

processes under physiological conditions than for Ca2+ buffering and mobilization of reserve 

pool vesicles during tetanic stimulation (Guo et al., 2005; Verstreken et al., 2005).  The question 

then arises if and how dynamic mitochondrial trafficking patterns and regulation of morphology 

mediate appropriate synaptic support, both presynaptically and postsynaptically.  Some evidence 

exists for mitochondrial recruitment to dendritic spines during morphogenesis in hippocampal 

neurons after repetitive depolarizing stimulation (Li et al., 2004).  However, the normal 
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trafficking patterns of mitochondria to synapses in spontaneously active neurons remains to be 

elucidated. 

Since mitochondria are important for supporting synaptic transmission, it is likely that 

impairment of mitochondrial transport could result in synaptic dysfunction in addition to 

inadequate distribution of ATP and sequestration of [Ca2+]i.  This is particularly critical in 

injured neurons because many insults are known to stop mitochondrial movement (Rintoul et al., 

2003; Malaiyandi et al., 2005; Reynolds and Santos, 2005).  The work of Li et al. (2004) and 

Guo et al. (2005) suggests that different mechanisms account for mitochondrial distribution in 

axons and dendrites.  For example, formation of dendritic spines but not of synaptic boutons may 

require local recruitment of mitochondria.   Therefore, if mitochondrial movement in axons and 

dendrites has different susceptibilities to neuronal insults, the result could be selective 

dysfunction of pre- or postsynaptic neurotransmission.  In this study, we show not only the 

differential trafficking patterns of mitochondria to presynaptic terminals and postsynaptic 

densities, but also reveal dynamic modulation of mitochondrial trafficking, morphology and 

distribution that accompany changes in synaptic activity.  Additionally, we provide evidence for 

heightened vulnerability of dendritic mitochondria to movement cessation after neurotoxic 

glutamate and zinc exposure, suggestive of dysfunction in dendrites prior to axons. 

3.3 EXPERIMENTAL PROCEDURES 

Materials 

All reagents were purchased from Sigma (St. Louis, MO) unless otherwise noted. 
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Cell culture 

All animals used for this study were maintained in accordance with the University of Pittsburgh 

Guidelines for the Care and Use of Animals.  Primary neurons were dissociated for culture from 

the cortices of embryonic day 17 Sprague Dawley rat pups and grown under serum-free 

conditions as previously described (Malaiyandi et al., 2005). 

 

Transfection of cortical cultures 

The mito-CFP construct was obtained from Clonetech (Mountain View, CA) and targets 

cytochrome c oxidase subunit VIII.  The PSD-95-eYFP and synaptophysin-eYFP plasmids were 

provided by Dr. Ann Marie Craig.   The mito-eYFP construct obtained from Dr. Roger Tsien 

(Llopis et al., 1998) employs a cytochrome c oxidase subunit IV mitochondrial localization 

sequence.  Plasmids were purified and amplified using the Qiagen Plasmid Maxi Kit (Valencia, 

CA) according to manufacturer’s instructions.  Cotransfections were performed on neurons after 

11 days in vitro (DIV), using 1 ug each of mito-CFP and PSD-95-eYFP or synaptophysin-eYFP 

and 2.5 µl Lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA) in an added volume of 250 µl 

DMEM.  Transfections with mito-eYFP were performed with 1 ug plasmid and otherwise 

identical conditions.  Media was completely replaced with conditioned media 6-8 hours after 

transfection and neurons were imaged 3-4 days after transfection. 

 

Imaging 

Cells were perfused with HEPES-buffered salt solution (HBSS) adjusted to pH 7.4 with NaOH 

and composed of (in mM) NaCl 137, KCl 5, NaHCO3 10, Hepes 20, glucose 5.5, KH2PO4 0.6, 

Na2HPO4 0.6, CaCl2 1.4 and MgSO4 0.9.  HBSS was warmed to 37°C and flowed at a rate of 5 

ml/min throughout the duration of each experiment.  For fluorescence recording, we used a 
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BX61WI Olympus Optical (Tokyo, Japan) microscope, a CCD camera (Hamamatsu, Shizouka, 

Japan) and a Lambda-LS xenon arc lamp light source with a Lambda 10-2 optical filter changer 

(Sutter, Novato, CA).  Imaging was performed at a rate of 1 frame/10 seconds at a magnification 

of 60x except where noted, using Compix Inc. imaging systems and SimplePCI software 

(Compix Inc., Cranberry PA).  Dual wavelength fluorescence imaging was performed using the 

following excitation wavelengths: 440/495 nm for mito-CFP and eYFP-tagged synaptic 

components, and 340/380 nm for fura-2AM.  Single wavelength fluorescence imaging of mito-

eYFP was performed at a 495 nm excitation wavelength. 

 

Measurement and pharmacologic modulation of spontaneous [Ca2+]i fluxes 

Spontaneous [Ca2+]i
 transients were represented by fluxes in fura-2AM ratios.  Cells were loaded 

with 5 µM fura-2AM/HBSS (Molecular Probes, Eugene, OR) for 15-20 min at 37°C.  Neurons 

were imaged at a rate of 1 frame/3 sec at 40x magnification.  [Ca2+]i was represented as the fura-

2 ratio of cell bodies after subtraction of background fluorescence using SimplePCI.  Drug 

treatments were 1 hr pre-incubation with 200 nM TTX prepared from a 1 mM stock dissolved in 

distilled water, 24 hr pre-incubation with 1 µM TTX or 30 min pre-treatment with 250 nM 

veratridine prepared from a 1 mM stock dissolved in ethanol.  Experiments were performed 

during the 30 mins following each pre-treatment with continuous perfusion of 200 nM TTX or 

250 nM veratridine. 

 

Analysis of mitochondrial length, occupancy and number 

SimplePCI functions were employed to determine average mitochondrial length, occupancy and 

number in a subfield that excluded proximal processes clearly containing more than one 

mitochondrion in their cross-section.  User-defined thresholds for pixel intensity and object size 
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were used to identify the total number of measurable mitochondria in a frame.  Length was 

calculated from skeletonized objects, which consisted of a 1 pixel-wide line running the length of 

each mitochondrial object.  All neuronal processes in the field were then converted into line 

objects, their total length was calculated, and mitochondrial occupancy was computed as total 

mitochondrial length/process length.  A student’s t-test was used for comparisons between 

axonal and dendritic controls.  A one-way ANOVA with Dunnett’s Multiple Comparison Test to 

control was used to analyze data in axons or dendrites after pharmacologic treatments. 

 

Analysis of synapse number, mitochondrial localization and movement parameters relative to 

synaptic sites 

Synapses were designated using only the eYFP image so that the observer was blinded to the 

location of mitochondria.  Clusters of eYFP labeled PSD-95 and synaptophysin proteins were 

identified as stable synaptic components if they were approximately 1 µm in diameter and did 

not display net lateral movement > 1 µm during the course of each 30 min experiment.  

Therefore, small or mobile fluorescent clusters were excluded from our analysis.  The total 

number of synaptophysin or PSD-95 clusters identified in this manner was divided by the total 

neuronal process length in a given subfield to yield the number of synapses/µm.  A student’s t-

test was used for comparisons between axonal and dendritic controls.  A one-way ANOVA with 

Dunnett’s Multiple Comparison Test to control was used to analyze data in axons or dendrites 

after pharmacologic treatments. 

Using SimplePCI, rectangular regions of interest (ROIs) with a width of 1.1 µm were 

placed around each identified synaptic component cluster using the eYFP image.  As controls, 

ROIs were placed along the same neuronal processes in locations that were void of eYFP-labeled 

clusters during the 30 min experiment.  Mitochondrial parameters were then analyzed from 
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imaging files containing the ROIs and only the CFP image so that the observer was blinded to 

the synaptic contents of each ROI.  The mitochondrial localization and movement parameters 

that were measured are shown in Table-1.  Mitochondria occupying at least half of the width of 

an ROI were considered to be localized in that ROI.  A mitochondrion was considered to occupy 

an ROI for as long as the mitochondrial edge did not completely move out of the ROI.   The 

number of mitochondria moving past each ROI was counted over the entire course of each movie 

and those that localized in the ROI according to the definition above were considered to stop 

during their trajectory.  The length of time that these moving mitochondria stopped in ROIs was 

also measured.  A student’s paired t-test was used for comparisons between synaptic and 

nonsynaptic sites in the same cells.  A one-way ANOVA with Dunnett’s Multiple Comparison 

Test to control was used to analyze data in axons or dendrites after pharmacologic treatments. 

 

Measurement of drug-induced changes in mitochondrial movement and morphology 

For experiments with glutamate treatment, axons were identified in cortical neurons by selective 

expression of synaptophysin-eYFP and dendrites were identified by selective expression of PSD-

95-eYFP.  Proximal and distal axon segments were imaged 3-4 and 10-12 imaging fields away 

from the cell soma, which corresponded to 200-500 µm and 1-1.4 mm, respectively.  Cells were 

perfused for 10 min with HBSS, followed by 10 min with 30 µM glutmate/1 µM glycine, 

followed by a 10 min HBSS wash.  Mitochondrial length was measured as described above using 

frames corresponding to the start of HBSS perfusion, the end of glutamate treatment, and the end 

of HBSS wash.  Mitochondrial roundness was computed from the same frames as length using a 

Simple PCI function as 4π*area/√perimeter.  Overall mitochondrial movement was measured 

during the first 190 sec of HBSS perfusion, the last 190 sec of glutamate treatment, and the last 

190 sec of HBSS wash as previously described (Rintoul et al., 2003).  Briefly, a custom Visual 
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Basic macro was used to quantify movement as average event count/average number of 

mitochondrial pixels, where event count is the number of corresponding pixels that vary by at 

least 20 fluorescence units between 2 consecutive frames, and the number of mitochondrial 

pixels is the number of pixels per frame that are 20 fluorescence units above background 

fluorescence.  The value of 20 units was chosen because a masking function in SimplePCI 

software effectively identified mitochondria as pixels 20 units above background fluorescence. 

For experiments involving FCCP, oligomycin, zinc, rotenone and 4-bromo-A23187 

treatment, neurons were transfected with mito-eYFP and axons and dendrites were imaged at a 

rate of 1 frame/6 sec.  Movement was analyzed using the macro described above during the 

following 2 min time periods: before drug treatment, at the end of drug perfusion, and at the end 

of a 15-20 min HBSS wash.  The treatment conditions were either 5 min perfusion with 750 nM 

FCCP, 10 min perfusion with 10 µM oligomycin, 5 min perfusion with 2 µM rotenone, 5 min 

perfusion with 1 µM 4-bromo-A23187, or 10 min perfusion with 3 µM ZnCl2/20 µM Na-

pyrithione.  ZnCl2 treatment was followed by a 5 min perfusion with 25 µM zinc chelator 

N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN).  CaCl2 was omitted from HBSS in 

experiments involving FCCP and ZnCl2.  For each cell, mitochondrial movement during 

treatment and after washout was normalized to movement prior to treatment.  A student’s paired 

t-test was used for statistical analysis of movement recovery. 

3.4 RESULTS 

Mitochondria are visualized concurrently with pre- and postsynaptic labels 
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Mitochondria were imaged simultaneously with pre- or postsynaptic sites by cotransfecting 

primary cortical neurons with a mitochondrially-targeted cyan fluorescent protein (mito-CFP) 

and either the presynaptic vesicle protein, synaptophysin, or the postsynaptic density protein, 

PSD-95 tagged to an enhanced yellow fluorescent protein (eYFP).  A single neuron transfected 

with mito-CFP, synaptophysin-eYFP and PSD-95-mRFP is shown in Fig. 1A.  Fig. 1B and C 

show labeled mitochondria with PSD-95 clusters in a dendrite and with synaptophysin clusters in 

axon branches, respectively.  Axonal and dendritic differences in synaptic density and 

mitochondrial morphology and distribution were readily observed.  Localization of mitochondria 

to a subset of pre- and postsynaptic sites was also seen.  These mitochondrial morphology and 

distribution patterns were quantified and are discussed below. 

 

 
Figure 3.1  Mitochondrial localization and trafficking were visualized relative to pre- and postsynaptic sites 

by cotransfecting neurons with fluorescent proteins. 

(A) Primary cortical neuron transfected with mito-CFP (red), presynaptic label synaptophysin-eYFP (green) and 

postsynaptic label PSD-95-mRFP (blue).  (B) Dendritic segment from a transfected neuron showing mito-CFP 

labeled mitochondria (green) and PSD-95-eYFP clusters (red).  (C) Axonal branches from a transfected neuron 

showing mito-CFP labeled mitochondria (green) and synaptophysin-eYFP clusters (red).  Images are representative 

of 3-5 cultures.  Scale bar, 10 µm. 
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Time-lapse fluorescence imaging permitted us to measure multiple parameters of 

mitochondrial movement patterns.  Imaging movies demonstrated the variability and complexity 

of mitochondrial trafficking to pre- and postsynaptic sites.  Specifically, we observed 

mitochondria that (1) localized to synapses for long or short time periods, (2) paused at synaptic 

sites as they traveled unidirectionally along a neuronal process, (3) shuttled bidirectionally 

between multiple neighboring synapses, (4) moved to and briefly resided at a synapse before 

dividing and leaving one fragment at the synapse while the remaining fragment moved elsewhere 

and (5) elongated to bridge nearby synapses.  To study the more accessible characteristics of 

mitochondrial trafficking to synapses, we measured the parameters listed in Table 1.  Three 

populations of mitochondria with specific movement patterns emerged from our data, as 

diagramed in Fig. 2A.  These included relatively immobile mitochondria that remained stationary 

for long time periods (generally > 15 min), and mobile mitochondria that paused at specific 

locations for shorter (< 20 sec) or longer (mean 1.5-2 min, data not shown) time periods.  We 

distinguished sites where mitochondria halted by whether they contained a synaptic component.  

The trafficking patterns of these mitochondrial populations are discussed in detail below. 
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Parameter Method of measurement 

Mitochondrial localization frequency Fraction of ROIs that contain mitochondria 

Mitochondrial residence time 

 

Fraction of total movie length (~ 30 min) that the 

mitochondria initially found in an ROI remained 

stationary  

# passing mitochondria/min Calculated from the number of mitochondria 

moving past each ROI during the entire movie 

Fraction of passing mitochondria that stop Fraction of mitochondria moving past an ROI that 

localized in that ROI for at least 1 imaging frame 
 

Table 1  Parameters of mitochondrial movement measured. 

Regions of interest (ROIs) were placed around synaptophysin and PSD-95 clusters and measurements were 

performed in a blinded manner using mitochondrial images.  As a comparison with mitochondrial localization and 

trafficking to nonsynaptic sites, measurements were also made at ROIs placed throughout neuronal processes where 

synaptophysin and PSD-95 clusters were absent. 
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Figure 3.2  Populations of mitochondria with different movement patterns were observed and their 

trafficking patterns were analyzed in a blinded manner. 

(A) Mitochondria that were relatively immobile tended to remain stationary at synaptic and nonsynaptic sites for > 

15 min.  Relatively mobile mitochondria exhibited saltatory movement, making stops at synaptic and nonsynaptic 

sites for shorter or longer time periods.  (B) Representative axonal image prepared for blinded data analysis shows 

regions of interest (ROIs) placed around synaptophysin clusters (red boxes) and ROIs placed at nonsynaptic 

locations (blue boxes).  (C) Corresponding mitochondrial image with ROIs, shown here before box colors were 

made uniform, was used to measure the localization and trafficking parameters listed in Table 1.  Scale bar, 10 µm. 

 

Since mitochondria localized to synapses are thought to be functional in providing ATP 

or regulating local [Ca2+]i, we predicted that synaptic overactivity would induce mitochondrial 

recruitment to synapses and synaptic quiescence would release localized mitochondria to 

perform other duties.  The spontaneous synaptic firing of neurons in culture was overactivated by 

veratridine, an inhibitor of Na+ channel inactivation.  As a counterpart, we silenced synaptic 

activity with tetrodotoxin (TTX), a blocker of voltage-sensitive Na+ channels in excitable 
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membranes.  Synaptic activity was monitored by the fluorescent [Ca2+]i indicator, fura-2AM, as 

the spontaneous and synchronous [Ca2+]i transients that cultured neurons exhibit when firing.  As 

shown in Fig. 3, veratridine caused intense, high-magnitude [Ca2+]i spiking activity while TTX 

treatment completely obliterated [Ca2+]i transients.  We confirmed that these activity patterns 

were maintained throughout the duration of our drug treatments, and drug was continuously 

perfused on cells during each imaging experiment. 

 

 
Figure 3.3  Spontaneous synaptic activity of cultured neurons was pharmacologically modulated to determine 

the effects on mitochondrial trafficking. 

(A) Spontaneous [Ca2+]i fluxes measured by fura-2AM were indicative of basal synaptic activity and were amplified 

in magnitude by 250 nM veratridine.  (B) [Ca2+]i spiking was inhibited by 200 nM TTX.  Traces represent 11-13 

cells from a single coverslip.  Experiments were repeated 2-3 times each on 3 separate cultures. 

 

Mitochondrial morphology and distribution differ in axons and dendrites and are differentially 

modulated by changes in synaptic activity 

The morphology of mitochondria and their distribution relative to synaptic sites was clearly 

variable between axons and dendrites (Fig. 1).  First, mitochondria were more fully distributed 

through dendrites, occupying a large fraction of neuronal process length.  In contrast, 

mitochondria were visibly shorter and more sparsely distributed throughout axons.  The 
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distribution of presynaptic sites and postsynaptic densities also differed; axons were far less 

densely populated by synaptophysin clusters than were dendrites populated by PSD-95 clusters. 

In accordance with these observations, we found that mitochondria occupied 26.3 ± 

0.02% of any given dendritic segment, which was significantly greater than the 17.4 ± 0.02% 

mitochondrial occupation of any given axonal segment (p < 0.01; Fig. 4A).  This increase in 

mitochondrial occupancy of dendritic process length was attributed to a remarkable increase in 

mitochondrial length, 2.2 ± 0.1 µm in dendrites compared to 1.4 ± 0.1 µm in axons (p < 0.0001; 

Fig. 4B).  However, the number of discrete mitochondria per µm of neuronal process was 

equivalent in axons and dendrites (Fig. 4C).  Interestingly, the increased mitochondrial length 

and occupancy in dendrites correlated with a 2-fold increase in density of PSD-95 clusters on 

dendrites compared to synaptophysin clusters on axons (p < 0.01; Fig. 4D).  Therefore, 

mitochondria seem to be more fully distributed through processes that have high synaptic 

density. 
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Figure 3.4  Mitochondrial distribution and morphology differed between axons and dendrites and was 

differentially modulated by changes in synaptic activity. 

(A) Mitochondrial occupancy of axons was significantly lower than that of dendrites.  This was measured as the 

total length of all mitochondria divided by the length of all neuronal processes in a given field.  Treatment with 1 

µM TTX for 24 hr or 250 nM veratridine for 30 min reduced mitochondrial occupancy of axons but increased 

occupancy of dendrites.  (B) Mitochondrial length was significantly shorter in axons than in dendrites.  Treatment 

with TTX for 24 hr increased mitochondrial length in dendrites.  Veratridine also reduced mitochondrial length in 

axons.  (C) Number of mitochondria per µm of neuronal process was similar between axons and dendrites and was 

not affected by changes in synaptic activity.  (D) Significantly more stationary clusters of PSD-95 populated 

dendrites compared to synaptophysin clusters on axons. TTX and veratridine treatments reduced the number of 

stationary PSD-95 clusters.  Values are shown as mean ± SE from 2-3 coverslips each from 4-5 separate cultures.  p 

< 0.05 was considered significant, where + represents comparisons between axons and dendrites of untreated cells, 

and * represents comparisons between untreated cells and pharmacologically treated cells. 
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When synaptic activity was modulated, mitochondrial morphology and distribution 

surprisingly changed in opposite directions on axons compared to dendrites.  Fig. 4A 

demonstrates that 24 hr TTX treatment reduced mitochondrial occupancy of axons from 17.4 ± 

0.02% to 11.2 ± 0.01% (p < 0.05) but increased mitochondrial occupancy of dendrites from 26.2 

± 0.02% to 38.8 ± 0.03% (p < 0.01).  The change in mitochondrial occupancy in dendrites was 

coincident with a significant increase in mitochondrial length but no significant change in the 

number of mitochondria in neuronal processes (Fig. 4B, C).  Veratridine treatment resulted in a 

significantly shorter mitochondrial length and a trend toward reduced mitochondrial occupancy 

in axons but increased mitochondrial occupancy in dendrites.  It is important to note that all 

pharmacologic manipulations of synaptic activity reduced the number of stationary PSD-95 

clusters per µm of dendritic processes (p < 0.05; Fig. 4D).  However, treatments never altered the 

total number of labeled clusters (data not shown); thus, the effects seen in Fig. 4D are a result of 

increased cluster mobility.  For our measurements, mobility was considered to be net movement 

greater than 1 µm over the course of 30 mins.  In summary, these results demonstrate the ability 

of mitochondrial morphology to be dynamically modulated by global changes in synaptic 

activity.  Furthermore, axonal and dendritic mitochondria responded differently to single 

pharmacologic manipulations, suggesting that distinct mechanisms operate within these neuronal 

compartments to alter mitochondrial morphology and distribution. 

 

Mitochondria localize to synaptic sites on axons and dendrites for extended time periods 

We observed mitochondria localized to subsets of pre- and postsynaptic sites for varying time 

periods.  To measure mitochondrial localization frequency at synaptic sites, we placed regions of 

interest (ROIs) of width 1.1 µm around synaptophysin and PSD-95 clusters as well as throughout 

neuronal processes where such clusters were absent (Fig. 2B).  The presence of mitochondria in 
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ROIs and the length of time those mitochondria remained stationary were then blindly scored 

(Fig. 2C).  During a 30 minute span of imaging, we found that the mitochondria that were 

localized in ROIs tended to reside there for at least 15 min and therefore likely represented a 

generally stationary pool of mitochondria (Fig. 2A). 

Our results demonstrate that mitochondria localized significantly to pre- and postsynaptic 

sites.  The percentage of synaptophysin clusters that contained mitochondria was 36.1 ± 0.06% 

compared to the 14.3 ± 0.03% chance of finding mitochondria at locations on axons that did not 

contain synaptophysin clusters (p < 0.05; Fig. 5A).  Furthermore, mitochondria that localized to 

labeled presynaptic terminals remained stationary for 77.0 ± 0.09% of the movie duration, 

significantly more than the 47.4 ± 0.07% that mitochondria resided at nonsynaptic sites (p < 

0.05; Fig. 5B).  Interestingly, veratridine treatment caused mitochondria to (i) localize to 

synaptic sites and nonsynaptic sites at similar frequencies and (ii) remain stationary at synaptic 

sites for similar time periods as at nonsynaptic sites (Fig. 5A, B). 
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Figure 3.5  Mitochondria localized significantly to pre- and postsynaptic sites and their distribution relative 

to synapses changed in response to altered synaptic activity. 

(A) Mitochondrial localization frequency to presynaptic sites was measured as the fraction of synaptophysin clusters 

that contained mitochondria compared to the fraction of randomly selected sites void of synaptophysin clusters that 

contained mitochondria.  Mitochondria localized preferentially to synaptophysin clusters in untreated and TTX-

treated cells but not in veratridine-treated cells.  (B) Residence times of the mitochondria localized to synaptic and 

nonsynaptic sites in A were compared.  Residence time was calculated as the length of time that the colocalized 

mitochondria remained stationary divided by the duration time of the imaging movie.  Mitochondria resided 

significantly longer at synaptophysin clusters than nonsynaptic sites in untreated and TTX-treated cells but not 

veratridine-treated cells.  (C) Mitochondrial localization frequency at PSD-95 clusters was measured as in A.  

Mitochondria localized preferentially to PSD-95 clusters and veratridine treatment increased this localization 

frequency relative to untreated cells.  (D) Residence time of mitochondria at PSD-95 clusters was measured as 

described in B.  Treatment with 200 nM TTX for 1 hr reduced mitochondrial residence times in dendrites, yet 

mitochondria resided at PSD-95 clusters longer than at nonsynaptic sites.  Values are shown as mean ± SE from 2-3 

coverslips each from 3-5 separate cultures.  p < 0.05 was considered significant, where * represents comparisons 

between synaptic sites and nonsynaptic sites in the same cells, and + represents comparisons between untreated cells 

and pharmacologically treated cells. 
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Mitochondria also localized to postsynaptic sites on dendrites, but exhibited different 

patterns of distribution than on axons.   Mitochondria colocalized to 39.3 ± 0.05% of PSD-95 

clusters compared to 27.4 ± 0.05% at sites that did not contain postsynaptic densities (p < 0.05; 

Fig. 5C).  The increased frequency of finding mitochondria at nonsynaptic sites on dendrites 

compared to axons can be attributed to the higher fractional occupancy of dendrites by 

mitochondria (Fig. 4A).  We found mitochondria were relatively stationary in dendrites, and as a 

result, they resided at both synaptic and nonsynaptic sites for nearly the entire duration of our 30 

min imaging experiments (Fig. 5D).  However, results from TTX treatment show that after 1 hr, 

mitochondria remained stationary for shorter time periods, and actually resided at sites 

containing PSD-95 clusters significantly longer than at sites void of clusters (p < 0.05; Fig. 5D).  

On the other hand, veratridine treatment caused mitochondria to associate with 59.2 ± 0.06% of 

PSD-95 clusters compared to 39.3 ± 0.05% of clusters in control (p < 0.05; Fig. 5C).  These 

results indicate that mitochondria associate significantly with a subset of pre- and postsynaptic 

sites and selectively reside at presynaptic terminals for extended time periods.  Furthermore, 

changes in synaptic activity can modulate mitochondrial distribution to synaptic sites differently 

in axons and dendrites. 

 

Mitochondrial movement is greater in axons than dendrites and increases during synaptic 

inactivity 

We measured mitochondrial movement as the number of mitochondria that move past ROIs 

placed along neuronal processes over the course of 30 min.  It is important to note that our 

measurement of mitochondrial movement can be influenced by both the number of moving 

mitochondria and the velocity with which they move.  Mitochondrial movement past synaptic 

sites was identical to nonsynaptic sites (data not shown).  This suggests that we were measuring 

77 



a population of highly mobile mitochondria that made brief stops lasting well under 30 minutes.  

We therefore distinguish this population of mitochondria from the generally immobile 

population described above and in Fig. 5. 

Remarkably more mitochondrial movement was observed in axons compared to 

dendrites: 0.13 ± 0.02 vs 0.03± 0.008 mitochondria moved past a given point per minute in axons 

and dendrites, respectively (p < 0.001; Fig. 6A).  Synaptic silence by TTX for 1 hr caused 

mitochondrial movement to increase dramatically in all neuronal processes.  The number of 

mitochondria passing a given point increased to 0.21 ± 0.02 (p < 0.05) in axons and to 0.09 ± 

0.01 (p < 0.01) in dendrites.  Movement remained somewhat elevated in dendrites after 24 hr of 

TTX treatment, but completely returned to control values in axons.  On the other hand, 

veratridine treatment had no significant effects on movement in either axons or dendrites. 
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Figure 3.6  Mitochondrial movement patterns differed between axons and dendrites and was altered in 

response to changes in synaptic activity. 

(A) Mitochondrial movement was greater in axons than dendrites and was increased in all processes by 1 hr 

treatment with 200 nM TTX.  Movement was measured as the number of mitochondria passing a given point on a 

neuronal process over time.  (B) The fraction of passing mitochondria measured in A that paused at synaptophysin 
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clusters on axons was compared to the fraction that paused at nonsynaptic sites.  Mitochondria that stopped ≥ 10 sec 

(average 1.5 min) showed a preference toward synaptophysin clusters after 30 min treatment with 250 nM 

veratridine.  Mitochondria that stopped for < 20 sec showed a preference toward synaptophysin clusters after 24 hr 

treatment with 1 µM TTX.  (C) The fraction of passing mitochondria measured in A that paused at PSD-95 clusters 

on dendrites was compared to the fraction that paused at nonsynaptic sites.  Mitochondria that stopped ≥ 10 sec 

(average 2 min) showed a preference toward PSD-95 clusters after veratridine treatment.  Mitochondria that stopped 

for < 20 sec showed a preference toward nonsynaptic sites after TTX and veratridine treatments.  Values are shown 

as mean ± SE from 2-3 coverslips each from 3-5 separate cultures.  p < 0.05 was considered significant.  In A, + 

represents comparisons between axons and dendrites of untreated cells, and * represents comparisons between 

untreated cells and pharmacologically treated cells.  In B and C, * represents comparisons between synaptic sites and 

nonsynaptic sites in the same cells. 

 

 

Saltatory movement of mitochondria is modulated by changes in synaptic activity 

Overall mitochondrial movement in neuronal processes can be largely attributed to a mobile 

subset of mitochondria that is distinct from a stationary subset of mitochondria.  Mobile 

mitochondria have been reported to account for 5-20% or 35-45% of the total mitochondrial pool 

in cultured hippocampal neurons (Overly et al., 1996; Ligon and Steward, 2000a).  These 

mitochondria exhibit saltatory movement, pausing briefly along their trajectory and also 

changing direction mid-course.  As diagramed in Fig. 2A, some mitochondria, most often those 

that travel with high velocity, paused for increments less than 20 sec; others paused for longer 

time periods, on average 1.5 min in axons and 2 min in dendrites (data not shown).  Therefore, 

we separated these two groups of mitochondria as those that stopped for < 20 sec and those that 

stopped for ≥ 10 sec.  Some obligatory overlap in these groups exists due to limitations of time-

lapse image acquisition, but no mitochondria were counted in both groups. 

Our measurements of mitochondria that stopped at synaptic sites and at sites that did not 

contain synaptophysin or PSD-95 clusters indicate that such movement patterns change in 

response to altered synaptic activity (Fig. 2B, C).  In the basal state, moving mitochondria were 
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equally likely to stop at a given location regardless of whether a synapse was present (Fig. 6B, 

C).  However, among mitochondria that paused for < 20 sec, a greater fraction stopped at labeled 

presynaptic terminals after 24 hr TTX treatment (p < 0.01), and a greater fraction stopped at 

PSD-95 clusters after 1 hr and 24 hr TTX compared to sites that did not contain synaptic 

components (p < 0.05).  The same pattern of selectivity toward pausing at synaptic sites was 

found after veratridine treatment among mitochondria that stopped for ≥ 10 sec on axons and < 

20 sec on dendrites (p < 0.05).  There was also a notable increase in the fraction of mitochondria 

that stopped for ≥ 10 sec at nonsynaptic sites relative to postsynaptic sites on dendrites after 

veratridine treatment (p < 0.05).  Therefore, saltatory movement to both synaptic and 

nonsynaptic sites was altered by changes in synaptic activity. 

 

Axonal and dendritic mitochondria exhibit different susceptibilities to drug-induced cessation of 

movement and morphological remodeling 

Our data demonstrate that axonal and dendritic mitochondria have different patterns of 

movement, morphology and distribution under control conditions and when synaptic activity is 

altered (Fig. 4-6).  We next sought to determine whether drugs that trigger mitochondrial or 

neuronal injury impair mitochondrial movement or cause morphologic remodeling of 

mitochondria selectively in one compartment over the other.  Mitochondrial movement is 

thought to be crucial for neuronal health and mitochondrial morphology is thought to impart 

some functional property to the organelles.  Therefore, if mitochondria in certain neuronal 

processes are more vulnerable to cessation of movement or morphological remodeling during 

injury, then those processes may also be more likely to degenerate.  This could provide a 

mechanism for selective axonal or dendritic dysfunction and degeneration in neuronal injury and 

disease. 
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We and others previously showed that mitochondria in injured and apoptotic neurons and 

other cell types stop moving and adopt a punctate, fragmented morphology rather than the 

traditional thin, elongated shape (Bossy-Wetzel et al., 2003; Rintoul et al., 2003; Vanden Berghe 

et al., 2004).  The remodeling of mitochondrial morphology can be directly visualized during an 

acute excitotoxic glutamate exposure and is thought to be mediated by Ca2+ influx into the cell 

(Rintoul et al., 2003).  To further that investigation, we examined the ability of glutamate to stop 

movement and cause rounding of mitochondria in dendrites, proximal axon segments and distal 

axon segments.  Remodeling of mitochondrial morphology was observed in dendrites (Fig. 7A, 

B), but not in axonal segments at least 200 µm from the cell body (Fig. 7C, D).  Quantification 

revealed that glutamate reduced the length of dendritic mitochondria to approximately one-fourth 

the initial length and well below the length of axonal mitochondria (Fig. 7E).  Additionally, only 

dendritic mitochondria rounded after glutamate treatment (Fig. 7F). 
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Figure 3.7  Acute treatment with excitotoxic glutamate concentrations caused remodeling of mitochondrial 

morphology solely in dendrites and cessation of mitochondrial movement in dendrites and proximal axon 

segments. 

(A, B) Dendritic mitochondria displayed morphological remodeling and are shown before and after a 10 min 

treatment with 30 µM glutamate/1 µM glycine.  (C, D) Axonal mitochondria did not demonstrate morphological 

remodeling and are shown before and after glutamate treatment.  (E) Mitochondrial length shortened in dendrites but 

not axons after glutamate treatment.  No recovery was observed after a 10 min wash.  (F) Mitochondria rounded 

selectively in dendrites after glutamate treatment with no recovery after a 10 min wash.  (G) Mitochondrial 

movement in dendrites and proximal axon segments decreased significantly after glutamate treatment, but was 
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unaffected in distal axon segments.  (H) Mitochondrial movement was reduced in all neuronal processes when 

[Ca2+]i was uniformly increased by a 5 min treatment with 1 µM 4-Br-A23187, a Ca2+-ionophore.  Note that the 

difference in mitochondrial morphology precludes the absolute values for axonal and dendritic movement to be 

compared by our measurement technique in G and H.  Also, movement values should not be compared between G 

and H because images were acquired at different rates.  Values are shown as mean ± SE from 2-3 coverslips each 

from 3-4 separate cultures.  p < 0.05 was considered significant. 

 

Analysis of mitochondrial movement after glutamate treatment revealed an interesting 

susceptibility of mitochondria in dendrites and proximal axon segments to cessation, while 

mitochondria in distal axons were unaffected (Fig. 7G).  We tested the hypothesis that the spatial 

differences in cessation of movement were due to [Ca2+]i gradients after glutamate treatment, 

which were expected to be elevated near glutamate receptors on dendrites and the cell body, and 

decline progressively from the cell body into the axonal compartment as [Ca2+]i is buffered.  

Perfusion of cells with the Ca2+ ionophore, 4-Br-A23187, stopped mitochondrial movement in all 

neuronal processes (Fig. 7H).  At higher concentrations of ambient Ca2+, 4-Br-A23187 also 

caused rounding of mitochondria in all cellular compartments (data not shown).  Therefore, 

short-term excitotoxic glutamate treatment causes mitochondria to stop moving before rounding 

and these effects are most likely caused by the distribution of elevated [Ca2+]i, which is 

particularly elevated in the dendritic compartment where glutamate receptors are located. 

We next tested whether other drugs that impair mitochondrial function or are related to 

neurotoxicity also stopped mitochondrial movement selectively in dendrites.  Unlike glutamate 

treatment, which causes elevated [Ca2+]i largely in the dendritic compartment, the drugs we 

tested here presumably gain equivalent entry into axons and dendrites.  We examined the effects 

of acute (1) depolarization of mitochondrial membrane potential (ψm) by FCCP, (2) inhibition of 

mitochondrial ATP synthase by oligomycin, (3) elevation of intracellular zinc to neurotoxic 

concentrations followed by chelation with TPEN, and (4) inhibition of electron transport chain 
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(ETC) complex I by rotenone, which is implicated in Parkinson’s disease (Betarbet et al., 2000).  

Unlike glutamate, these four drug treatments reduced mitochondrial movement to a similar 

degree between axons and dendrites.  However, we found an interesting difference in acute 

recovery of mitochondrial movement after washout of drug (Fig. 8).  Only axonal mitochondria 

regained movement after FCCP (p < 0.01) and zinc/TPEN treatment (p < 0.05).  It is important 

to note that mitochondrial movement in axons did not recover after zinc treatment unless TPEN 

was applied (data not shown).  Movement also did not recover in axons or dendrites after 

oligomycin or rotenone, both of which are nearly irreversible inhibitors.  In summary, 

mitochondrial movement in dendrites was shown to be selectively impaired or unable to acutely 

recover from glutamate, FCCP and zinc/TPEN treatment.  This has important implications for 

abnormal dispersion of ATP and sequestration of Ca2+ by mobile mitochondria in dendrites 

following neuronal insults. 

 
Figure 3.8  Axonal and dendritic mitochondrial movement were equally susceptible to cessation after FCCP, 

oligomycin, rotenone and zinc exposures, but only axonal mitochondria acutely recovered movement after 

washout of FCCP and chelation of zinc. 

(A) Mitochondrial movement in axons significantly recovered 15 min after depolarization with 5 min 750 nM FCCP 

treatment, and 20 min after exposure to 10 min 3 µM ZnCl2/20 µM Na-pyrithione treatment followed by chelation 
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with 5 min 25 µM TPEN.  Movement did not recover after 10 min treatment with 10 µM oligomycin or 5 min 

treatment with 2 µM rotenone.  (B) Mitochondrial movement in dendrites did not acutely recover after treatment 

with FCCP, oligomycin or zinc/pyrithione followed by TPEN.  Movement continued to decrease significantly in 

dendrites 20 min after rotenone was washed out.  Values were normalized to mitochondrial movement before 

treatment and are shown as mean ± SE from 2-6 coverslips each from 2-4 separate cultures.  p < 0.05 was 

considered significant. 

3.5 DISCUSSION 

Our results demonstrate that mitochondrial morphology, distribution and movement are different 

in axons and dendrites, yet mitochondria in both compartments localize to and remain stationary 

at a subset of synaptic sites.  Furthermore, we reveal that these dynamic properties of 

mitochondria change under conditions of synaptic silence and overactivity.  Many studies 

examining synaptic mitochondria employ electron microscopy and are limited to static images 

(Rowland et al., 2000; Sakata and Jones, 2003; Briones et al., 2005).  More recently, synaptic 

function was investigated in mutant neurons that exhibited abnormal distribution and transport of 

mitochondria (Guo et al., 2005; Verstreken et al., 2005).  However, it is difficult to account for 

the dynamics of normal mitochondrial movement and morphology in these models.  Li et al. 

(2004) recently demonstrated recruitment of mitochondria to developing and morphogenic 

dendritic spines.  We now provide new insight into the normal trafficking of mitochondria to 

both pre- and postsynaptic sites, thereby advancing our understanding of how the mitochondrial 

pool is allotted to meet dynamic demands throughout the cell. 

 

Axonal and dendritic mitochondria differ in morphology, distribution and movement 

We show that the number of mitochondria per µm of neuronal process is the same in axons and 

dendrites of primary cortical neurons, but mitochondria occupy a smaller fraction of axonal 
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process length due to a shorter morphology (Fig. 4A-C).  Furthermore, we correlate this with a 

smaller number of presynaptic terminals per µm on axons than postsynaptic densities on 

dendrites (Fig. 4D).  This compartmental difference in mitochondrial morphology may be 

functionally relevant in that longer mitochondria could more efficiently distribute energy to 

multiple, closely apposed sites of high metabolic demand on dendrites (reviewed by Skulachev, 

2001).  This explanation coincides with evidence that mitochondria in hippocampal neuron 

dendrites are more metabolically active than in axons, as measured by the mitochondrial 

membrane potential sensitive dye JC-1 (Overly et al., 1996).  Popov et al. (2005) recently used 

3D ultrastructural reconstructions to describe long filamentous networks of mitochondria in 

dendrites and discrete mitochondrial bodies in axons of hippocampal slices from adult ground 

squirrels and rats.  As discussed in that paper, differences in experimental procedures may 

explain why such extensive mitochondrial networks have not been seen by others; however, we 

certainly observed similar patterns of mitochondrial distribution and morphology in cortical 

neurons. 

Unlike postsynaptic densities on dendrites, presynaptic terminals are not only farther 

spaced from each other on axons, but are also distributed across a much longer and more 

extensively branched distance.  Presynaptic terminals require mitochondria at least for 

sequestering Ca2+, powering the plasma membrane Ca2+-ATPase and releasing Ca2+ for post-

tetanic potentiation (Tang and Zucker, 1997; Zenisek and Matthews, 2000; Calupca et al., 2001; 

Medler and Gleason, 2002).   Mitochondrial ATP generation may also prove important for the 

dynamic actin rearrangements associated with synaptic vesicle cycling and synaptic plasticity 

(reviewed by Dillon and Goda, 2005).  Since mitochondria were found to occupy only 17.4 ± 

0.02% of axonal length and associate with only 36.1 ± 0.06% of labeled presynaptic terminals at 
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any given time, it is likely that mitochondrial transport plays a more important role in delivering 

mitochondria throughout axons than dendrites (Fig. 4A, 5A).  This conjecture is supported by a 

greater than 4-fold increase in the number of mitochondria found to pass a given point on axons 

compared to dendrites (Fig. 6A).  Our finding could be the result of both a larger number of 

motile mitochondria and a greater distance traveled by mitochondria in axons, as was concluded 

in hippocampal neurons by Overly et al. (1996) but not by Ligon and Steward (2000) who found 

similar movement profiles in axons and dendrites.  Furthermore, it is possible that a shorter 

mitochondrial morphology is maintained in axons so that molecular motors can more efficiently 

transport the organelles. 

Manipulation of spontaneous synaptic activity of cultured neurons demonstrated that 

mitochondrial morphology and distribution can be differentially altered in axons and dendrites 

by a single drug treatment.  Specifically, we observed that after 24 hr TTX treatment, the 

fractional occupancy of axons by mitochondria decreased, yet that of dendrites increased (Fig. 

4B).  Unlike Li et al. (2004), who found a similar effect in hippocampal dendrites after 20 min 

TTX treatment, we did not see an acute difference after 1 hr TTX.  Mitochondria may elongate 

only following prolonged TTX treatment in an attempt to bridge stationary postsynaptic densities 

that became fewer and farther apart (Fig. 4B, D).  The reduced number of stationary PSD-95 

clusters we observed was due to increased cluster mobility since the total number of clusters was 

not changed by drug treatments (Fig. 4D and data not shown).  Since our criteria for cluster 

motility was necessarily strict to permit data to be analyzed blindly, the cluster movements we 

observed may represent changes in the motility, restructuring and turnover of spines, all of which 

are known to be modulated by synaptic activity (Kirov and Harris, 1999; Okabe et al., 1999; 

Konur and Yuste, 2004).  Additionally, PSD-95 proteins themselves exhibit a degree of 
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dynamics (Rasse et al., 2005).  In summary, we provide the first evidence for the distinct 

compartmental regulation of mitochondrial morphology and distribution in axons and dendrites, 

both in the basal state and during altered synaptic activity.   

 

Mitochondrial localization and trafficking to pre- and postsynaptic sites 

Presynaptic terminals have been described as containing abundant mitochondria (Kageyama and 

Wong-Riley, 1982; Nguyen et al., 1997; Popov et al., 2005).  It was therefore surprising that 

when measuring within the 1 µm surrounding synaptic sites, we found mitochondria at only 36.1 

± 0.06% of presynaptic labels at any given time (Fig. 5A).  This is similar to an electron 

microscopy study finding only 41% of synaptic boutons in CA3→CA1 axons in rat hippocampal 

slices (Shepherd and Harris, 1998).  Given the ability of mitochondria to rapidly move through 

processes, it is likely that transient metabolic demands are met by moving mitochondria or 

maybe by nearby but not specifically localized mitochondria.  On the other hand, synaptic sites 

requiring longer-term support, perhaps for post-tetanic potentiation and mobilization of reserve 

pool vesicles, may act as more stable “docking sites” for mitochondria (Tang and Zucker, 1997; 

Verstreken et al., 2005).  Indeed, we found that mitochondria that localized to synaptic sites 

remained stationary for the majority of our 30 min imaging experiments (Fig. 5B).  Furthermore, 

our examination of developing neurons that had not yet formed functional synapses revealed 

significantly more mitochondrial movement, presumably due to the absence of synaptic “docking 

sites” (submitted manuscript).  In general, our findings that not all presynaptic terminals have 

associated mitochondra agree with recent reports of normal neurotransmission during 

physiological levels of stimulation in mutant Drosophila axons with perinuclearly distributed 

mitochondria (Guo et al., 2005; Verstreken et al., 2005).  However, the importance of 

mitochondria at presynaptic terminals, especially during overstimulation, suggests that 
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mitochondria would be recruited to presynaptic sites during veratridine treatment.  Yet we did 

not observe any redistribution of mitochondria to synaptophysin clusters other than a modest 

increase in the fraction of moving mitochondria that paused at synaptic sites relative to 

nonsynaptic sites on axons (Fig. 5A, 5B, 6B).  In fact, the redistribution trend of relatively 

stationary mitochondria was more toward nonsynaptic sites on axons, possibly to power ion 

channels for membrane repolarization (Fig. 5A, B).  A possible explanation is that the normal 

mitochondrial distribution still allowed adequate Ca2+ buffering, as [Ca2+]i transients continued 

to show full recovery (Fig. 3A). 

The distribution of mitochondria in dendrites relative to postsynaptic densities and spines 

is not clearly defined.  Unlike presynaptic terminals, mitochondria in hippocampal neurons are 

not usually found in dendritic spines, although they have been seen penetrating the bases of 

thorny excrescences (Popov et al., 2005).  Our results show 39.3 ± 0.05% of labeled PSD-95 

clusters were associated with mitochondria at any given time, which was significantly higher 

than the distribution of mitochondria at nonsynaptic sites (Fig. 5C).  Stimulation with veratridine 

caused significantly more PSD-95 clusters to be associated with mitochondria and more moving 

mitochondria to pause at postsynaptic densities for less than 20 sec (Fig. 5C, 6C).  This suggests 

mitochondrial proximity is important for supporting processes at excitatory postsynaptic sites, 

such as local [Ca2+]i regulation in conjunction with smooth ER (Pivovarova et al., 2002).  

Additionally, local ATP supply may power synapse-associated polyribosome complexes and 

clathrin-dependent endocytic machinery at postsynaptic sites  (Steward and Levy, 1982; Racz et 

al., 2004).  Unfortunately we could not precisely resolve spine morphology at PSD-95 clusters; 

thus, it is possible that subtypes of spines, such as those with shorter necks or fewer spine Ca2+ 

pumps, are more dependent on mitochondrial uptake of Ca2+ that diffuses into the dendrite 
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(Pivovarova et al., 1999; Majewska et al., 2000; Pivovarova et al., 2002).  Some PSD-95 clusters 

that recruited mitochondria after stimulation could also represent morphogenic spines (Li et al., 

2004).  Alternatively, mitochondria may be recruited to provide ATP for ubiquitination and 

proteasome-dependent degradation of PSD-95, which has been shown to occur after NMDA 

treatment of hippocampal neurons in the time frame of our experiments (Colledge et al., 2003). 

The dramatic increase in mitochondrial movement in both axons and dendrites after 1 hr 

TTX treatment suggests a transition of mitochondria from the stationary state to the mobile state, 

as well as an increase in mobility of already moving mitochondria (Fig. 6A).  In support of this, 

we observed that dendritic but not axonal mitochondria remained stationary for significantly 

shorter time periods after 1 hr TTX (Fig. 5B, D).   Therefore, moving mitochondria likely have 

increased velocity in axons and dendrites; additionally more mitochondria probably become 

mobile in dendrites.  Our results are in agreement with the effects of TTX in hippocampal 

dendrites, but not in myenteric nerve fibers where TTX was shown to reduce the fraction of 

moving mitochondria and have no effect on velocity (Li et al., 2004; Vanden Berghe et al., 

2004). 

Interestingly, we found that despite the remarkable increase in mitochondrial movement 

during TTX treatment, there were negligible or modest changes in the fraction of passing 

mitochondria that stopped at synaptic and nonsynaptic sites (Fig. 6B, C).  In other words, 

mitochondria increased overall mobility but without targeted destinations.  Furthermore, the 

fraction of synaptic sites associated with mitochondria was unaffected by TTX up to 24 hr after 

treatment (Fig. 5A, C).  Therefore, we conclude that inactive synapses still serve as targets for 

mitochondrial localization.  This suggests several possibilities: (i) structural rather than activity-

dependent mechanisms may cause mitochondria to stop at synaptic sites, (ii) pre- and 
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postsynaptic compensation mechanisms may require mitochondrial support, as evidenced by a 

moderate preference for moving mitochondria to stop at synaptic sites during TTX treatment 

(Fig. 6B, C). 

 

Dendrite-specific impairments of mitochondrial movement in injury 

Our results that movement of dendritic mitochondria were more susceptible than axonal 

mitochondria to impairment by neurotoxic concentrations of glutamate and zinc, as well as by 

depolarization of ψm, suggest that inadequate mitochondrial movement may be a more important 

pathogenic process in dendrites than axons.  We previously showed that acute exposure to 

excitotoxic glutamate concentrations caused mitochondria to stop moving and round in dendrites 

due to elevated intracellular Ca2+ influx through NMDA receptors that disrupts cytosolic 

structure (Rintoul et al., 2003).  We now confirm that this is a regional effect related to the 

distribution of glutamate receptors on dendrites since axonal mitochondria exhibited the same 

response only when [Ca2+]i was elevated with a Ca2+-ionophore (Fig. 7).  Furthermore, our 

observation that mitochondria in proximal but not distal axons also stopped moving after 

glutamate treatment suggests that [Ca2+]i is relatively well buffered spatially and that movement 

cessation precedes morphological remodeling.  However, an important implication is that despite 

preserved mitochondrial movement in the majority of the axon, impaired trafficking to and from 

the cell body could have consequences on the distribution of mitochondria and clearance of 

damaged organelles by retrograde transport (Hollenbeck, 1993). 

Interestingly, whereas dissipation of ψm is also known to stop mitochondrial movement, 

we now demonstrate that only axonal mitochondria recover movement within 15 min of FCCP 

washout (Fig. 8) (Rintoul et al., 2003; Vanden Berghe et al., 2004).  The question then arises if 

this recovery is due to a faster rate of mitochondrial repolarization in axons, perhaps because the 
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electrochemical gradient can be better re-established in mitochondria of smaller volume.  

However, we have observed mitochondria in the cell body fully repolarize 8-10 min after 

identical FCCP treatments, well before dendritic mitochondria recover movement (data not 

shown).  A closer examination of ψm in axons and dendrites could resolve this issue.  

Alternatively, subtle cytoskeletal rearrangements in dendrites may be responsible for delayed 

recovery of mitochondrial movement.  In contrast to the reversible effects of FCCP, 

mitochondrial movement in neither axons nor dendrites recovered from inhibition of ATP 

synthase and ETC complex I by oligomycin and rotenone, respectively.  These data confirm that 

mitochondrial ATP production is important for mitochondrial movement throughout all neuronal 

processes. 

Lastly, we show that zinc chelation caused an interesting selective recovery of movement 

by axonal mitochondria after treatment with neurotoxic concentrations of zinc that do not cause 

significant ψm depolarization (Fig. 8) (Malaiyandi et al., 2005).  In these experiments, zinc was 

applied concurrently with the zinc ionophore, pyrithione, so axons and dendrites received the 

same zinc exposure.  Chelation of zinc in all processes was then effected with TPEN.  We 

previously reported that the Zn2+/TPEN treatment conditions used here cause irreversible, PI-3 

kinase-dependent cessation of mitochondrial movement in undistinguished neuronal processes 

and over 75% cell death in cultured primary cortical neurons (Malaiyandi et al., 2005).  We now 

advance those findings by showing that zinc chelation actually leads to significant acute recovery 

of mitochondrial movement selectively in axons, which does not recover without chelation.  

Therefore, it seems that the TPEN-independent PI3-kinase signaling cascade that is activated by 

acute zinc exposure occurs either only in dendrites or at a much slower rate in axons.  

Regardless, this data strongly suggests that our previous finding of significant neurotoxicity after 
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acute Zn2+/TPEN treatment is related to a dendritic pathology in which impaired mitochondrial 

movement is an early event. 

Not only are mitochondria crucial for supporting cellular functions, but mitochondrial 

trafficking is also important for transporting damaged mitochondria to cellular locations where 

they can be repaired or degraded (Hollenbeck, 1993; De Vos et al., 2000; Tolkovsky et al., 2002; 

Miller and Sheetz, 2004).  Therefore, selective impairment of mitochondrial movement in 

dendrites may cause abnormal distribution of ATP and regulation of [Ca2+]i in these processes, in 

addition to production of harmful reactive oxygen species from damaged mitochondria that are 

not properly removed.  In light of the findings in this study that mitochondrial morphology, 

localization and trafficking to synapses are dynamic in the basal state and when synaptic activity 

is altered, we predict that impaired mitochondrial movement will also lead to aberrant support of 

synaptic transmission.  This may become particularly important if moving mitochondria support 

presynaptic compensation in response to the reduced postsynaptic reception of signal, which 

could then lead to overstimulation if and when dendritic mitochondrial movement recovers.  In 

summary, we provide the first evidence for selective dendritic alterations in mitochondrial 

morphology and movement after neurotoxic glutamate and zinc treatments that may prove 

crucial to our understanding of cell death in excitotoxicity and ischemia. 
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4.0  MUTANT HUNTINGTIN AGGREGATES IMPAIR 

MITOCHONDRIAL MOVEMENT AND TRAFFICKING IN CORTICAL 

NEURONS 

4.1 ABSTRACT 

Huntington’s disease (HD) is a neurodegenerative disorder caused by a polyglutamine repeat in 

the huntingtin gene (Htt).  Mitochondrial defects and protein aggregates are characteristic of 

affected neurons.  Recent studies suggest that these aggregates impair cellular transport 

mechanisms by interacting with cytoskeletal components and molecular motors.  Here, we 

investigated whether mutant Htt alters mitochondrial trafficking and morphology in primary 

cortical neurons.  We demonstrate that full-length mutant Htt was more effective than N-terminal 

mutant Htt in blocking mitochondrial movement, an effect that correlated with its heightened 

expression in the cytosolic compartment.  Aggregates impaired the passage of mitochondria 

along neuronal processes, causing mitochondria to accumulate adjacent to aggregates and 

become immobilized.  Furthermore, mitochondrial trafficking was reduced specifically at sites of 

aggregates while remaining unaltered in regions lacking aggregates.  We conclude that in cortical 

neurons, an early event in HD pathophysiology is the aberrant mobility and trafficking of 

mitochondria caused by cytosolic Htt aggregates. 
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4.2 INTRODUCTION 

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder characterized 

by uncontrolled movement, dementia, emotional disturbance and premature death.  HD is caused 

by an expanded CAG repeat in the first exon of the huntingtin (Htt) gene.  However, it is not 

fully understood how the expanded polyglutamine repeat makes the Htt protein neurotoxic.  It is 

evident that fragments of Htt containing the mutant polyglutamine tract aggregate in various 

subcellular compartments within transfected cells and neurons of transgenic mice and HD 

patients (Cooper et al., 1998; Hazeki et al., 1999; Kuemmerle et al., 1999; Meade et al., 2002).  

Cell death may result from disruption of transcription factors or by sequestration of other 

important proteins into nuclear Htt aggregates (Perez et al., 1998; Chai et al., 1999; Steffan et al., 

2000; Nucifora et al., 2001; Mitsui et al., 2002).  Interestingly, Htt aggregate-like structures are 

also found surrounding mitochondrial membranes in neurons of transgenic mice (Li et al., 2001; 

Panov et al., 2002).  Mitochondrial involvement in HD is further implicated by the observation 

that animals and humans exposed to the mitochondrial toxin 3-nitropropionic acid exhibit 

neuropathological outcomes similar to HD patients (Ludolph et al., 1991; Sipione and Cattaneo, 

2001; Rubinsztein, 2002).  Furthermore, lymphoblast mitochondria from HD patients have lower 

membrane potentials and depolarize in response to smaller calcium loads than controls (Panov et 

al., 2002).  Defects in mitochondrial calcium homeostasis caused by mutant Htt may trigger 

neuronal injury through enhanced cytochrome c release, caspase activation and increased 

vulnerability to excitotoxicity (Jana et al., 2001; Zeron et al., 2001; Panov et al., 2002). 

Mitochondria are vital to the function of cells not only because they are the main source 

of energy but also because they regulate intracellular Ca2+ homeostasis.  Therefore, mitochondria 

must be trafficked appropriately to meet energy demands throughout the cell.  This has particular 
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relevance to neurons where axons and dendrites can extend well beyond the cell body.  In 

addition to supporting cellular functions, mitochondrial trafficking may be important for 

transporting damaged mitochondria to cellular locations where they can be repaired or degraded 

(Hollenbeck, 1993; De Vos et al., 2000; Tolkovsky et al., 2002; Miller and Sheetz, 2004).  

Impairment of mitochondrial transport could then result in the persistence of injured 

mitochondria in the cell.  This would have severe consequences, as damaged mitochondria 

promote apoptosis by producing reactive oxygen species and releasing cytochrome c (Lee and 

Wei, 2000).  Our laboratory and others have demonstrated that mitochondrial movement is 

inhibited by agents implicated in neurological diseases, including glutamate, rotenone and zinc 

(Rintoul et al., 2003b; Vanden Berghe et al., 2004; Malaiyandi et al., 2005).  Therefore, defects 

in mitochondrial transport could have important implications for a wide range of 

neurodegenerative diseases, as cellular energy and Ca2+ homeostasis may be further 

compromised if energy-generating and Ca2+-buffering mitochondria are not appropriately 

distributed. 

A mechanism for mitochondrial dysfunction in HD that has only been described by one 

group is the impact of mutant Htt on mitochondrial transport (Trushina et al., 2004).  Electron 

microscopy has revealed mutant Htt aggregates to be so large as to occupy almost the entire 

axonal cross-sectional diameter (Li et al., 2003).  Indeed, aggregates in axons and dendrites 

associate with mitochondria, block protein transport in neurites, and lead to neuritic degeneration 

(Li et al., 2001).  While vesicular transport defects are emerging as an important pathologic 

contributor in HD, mitochondrial transport is subject to different modes of regulation, and 

therefore may exhibit different susceptibilities to mutant Htt (Li et al., 2001; Gunawardena et al., 

2003; Szebenyi et al., 2003; Lee et al., 2004).  In fact, recent work demonstrated global 
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disruptions of vesicular transport and mitochondrial motility in mouse striatal neurons (Trushina 

et al., 2004).  We previously utilized primary cortical neurons for in depth analyses of 

mitochondrial mobility, morphology and the impact of various insults on these properties 

(Rintoul et al., 2003b; Malaiyandi et al., 2005).  Although the cortex is the second most afflicted 

region in HD, different cell vulnerabilities probably account for there being only one-third to 

one-half as much loss in cross-sectional area compared to the neostriatum (de la Monte et al., 

1988; Mann et al., 1993).  We therefore performed detailed examinations of mitochondrial 

dynamics and function in primary cortical neurons expressing N-terminal and full-length mutant 

Htt and revealed selective defects that are likely to contribute to neuronal cell demise. 

4.3 EXPERIMENTAL PROCEDURES 

Materials 

All reagents were purchased from Sigma (St. Louis, MO) unless otherwise specified. 

 

DNA constructs 

The mito-eYFP construct obtained from Dr. Roger Tsien (University of California, San Diego) 

was produced by insertion of the gene for eYFP into the mammalian expression vector pcDNA3 

(Invitrogen, Carlsbad, CA) and employs the targeting sequence of cytochrome c oxidase subunit 

IV (Llopis et al., 1998).  The mitochondrially-targeted mRFP construct was generated by cloning 

in-frame with a cytochrome c oxidase subunit VIII targeting sequence (Invitrogen).  The 

truncated Htt constructs (provided by Dr. Christopher Ross, Johns Hopkins University) were 

composed of the NH2-terminal 63 amino acids of huntingtin with a normal (Htt-N63-19Q) or 
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expanded (Htt-N63-99Q) glutamine repeat inserted into the pcDNA3.1-Myc-His vector (Jiang et 

al., 2003).  The full-length Htt constructs (provided by Dr. Michael Hayden, University of 

British Columbia) contained 15 or 138 glutamine repeats inserted in exon 1 of the Htt gene and 

were cloned as described (Wellington et al., 2000).  The GFP-tagged Htt constructs (provided by 

Dr. Steven Finkbeiner) encoded the first exon of human Htt containing 25 or 103 glutamine 

repeats (Kazantsev et al., 1999).  The P-LUC plasmid consisted of the luciferase gene placed in a 

mammalian expression vector under the control of a CMV promoter (Gossen and Bujard, 1992).  

Plasmid constructs were purified and amplified using the Qiagen Plasmid Maxi Kit (Valencia, 

CA) according to manufacturer’s instructions. 

 

Cell culture 

All animals used for this study were maintained in accordance with the University of Pittsburgh 

Guidelines for the Care and Use of Animals.  Primary neurons were isolated for culture from 

embryonic day 17 Sprague Dawley rat pups and grown in a 37˚C incubator containing 5% CO2.  

Cortices were removed, trypsinized at 37˚C for 30 minutes, and plated on poly-D-lysine-coated 

31 mm glass coverslips.  Cells were plated in medium containing Dulbecco’s Modified Essential 

Medium (DMEM) with 10% fetal bovine serum (FBS) and 1% penicillin/streptomycin.  Five 

hours after plating, plating medium was completely removed and replaced with N2-NB media 

(Neurobasal media with 0.5% penicillin/streptomycin and 1% N2 supplement).  Four days after 

plating, approximately one-third of the media was removed and replaced with an equal volume 

of fresh N2-NB media.  Eight and 11 days after plating, approximately one-third of the media 

was removed and replaced with B27-NB media (Neurobasal media with 0.5 % 

penicillin/streptomycin and 2% B27 Supplement Minus AO).  All cell culture reagents were 

purchased from Invitrogen. 
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Cell transfection 

All transfections were performed on neurons after 11-15 days in culture, with no further media 

changes.  By this time point, neurons exhibit physiologic maturity and are responsive to 

excitotoxicity.  Modified calcium phosphate transfections with 2 µg eYFP plasmid or 

cotransfections with 2 µg each of eYFP and Htt-N63-19Q, Htt-N63-99Q, Htt-25Q or Htt-103Q 

plasmids were performed according to Xia et al. (Xia et al., 1996), resulting in efficiencies of 1-

2%.  Neurons were then returned to the incubator until time of use.  Alternatively, for 

experiments with mito-mRFP and GFP-tagged Htt plasmids, transfections were performed using 

1 µg of each plasmid per 1.25 µl Lipofectamine 2000 reagent (Invitrogen) in an added volume of 

250 µl DMEM.  Media was completely replaced with conditioned media 24 hr after transfection 

and cells were incubated until time of use. 

 

Imaging 

Cells were perfused with HEPES-buffered salt solution (HBSS) adjusted to pH 7.4 with NaOH 

and composed of (in mM) NaCl 137, KCl 5, NaHCO3 10, HEPES 20, glucose 5.5, KH2PO4 0.6, 

Na2HPO4 0.6, CaCl2 1.4 and MgSO4 0.9.  HBSS was warmed to 37°C and flowed at a rate of 5 

ml/min throughout the duration of each experiment.  Imaging was performed at a rate of 1 

frame/6 seconds using Compix Inc. imaging systems and SimplePCI software (Compix Inc., 

Cranberry, PA).  The excitation wavelengths used were 495 nm for eYFP and GFP, 560 nm for 

mRFP, 340/380 nm alternatively for mag-fura-2, 540 nm for Alexa 546 goat anti-mouse 

polyclonal antibody, and 340 nm for Hoechst dye. 

 

Immunocytochemistry and quantification of Htt aggregates 

100 



Coverslips containing transfected neurons were removed from culture plates and rinsed once 

with Dulbecco’s PBS (Invitrogen) for 1-3 min.  Cells were then fixed for 10 min at RT with a 

freshly made solution of 4% paraformaldehyde and 4% sucrose in PBS composed of 90 mM 

dibasic sodium phosphate and 10 mM monobasic sodium phosphate, adjusted to pH 7.4 with 

NaOH.  Coverslips were rinsed, permeabilized for 30 sec with ice-cold acetone and re-rinsed.  

Incubation with mouse monoclonal anti-HA antibody diluted 1:200 (Santa Cruz Biotechnology, 

Santa Cruz, CA) or mouse anti-Htt aa 2146-2541-antibody (Chemicon, Temecula, CA) diluted 

1:500 in 1% bovine serum albumin (BSA)/PBS was performed for 1 hr at RT.  Cells were then 

rinsed, incubated with Alexa 546 goat anti-mouse polyclonal antibody (Molecular Probes, 

Eugene, OR) diluted 1:500 in 1% BSA/PBS for 30 min at RT, and re-rinsed.  DNA was stained 

by incubation of cells in 1.5 µM Hoechst 33258 dye for 10 min.  Coverslips were rinsed and 

stored in PBS at 4ºC until visualization.  All rinses were with PBS and performed in 

quadruplicate for 3 min each.  The time-course of Htt aggregation was scored by a blinded 

observer.  Transfected cells were first identified under the eYFP fluorescence wavelength; the 

wavelength was then changed to 540 nm to determine the presence, number and localization of 

stained aggregates. 

 

Analysis of mitochondrial movement 

Cells transfected with the non-GFP-tagged Htt constructs were imaged at a magnification of 40x 

for 2 min 2-4 days after transfection, and mitochondrial movement was determined as we 

previously described (Rintoul et al., 2003b).  Briefly, a custom Visual Basic macro was used to 

quantify movement as average event count/average number of mitochondrial pixels, where event 

count is the number of corresponding pixels that vary by at least 20 fluorescence units between 2 

consecutive frames, and the number of mitochondrial pixels is the number of pixels per frame 
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that are 20 fluorescence units above background fluorescence.  The value of 20 units was chosen 

because a masking function in SimplePCI software effectively identified mitochondria as pixels 

20 units above background fluorescence.  A student’s t-test was used for statistical comparison. 

For experiments with the GFP-tagged Htt constructs, dual-wavelength fluorescence 

imaging of mitochondria and Htt was performed for 4.5 minutes at a magnification of 60x.  

Using SimplePCI, circular regions of interest (ROIs) of 1.81 µm diameter were evenly spaced 

along the processes of each neuron.  These ROIs either contained an Htt aggregate or did not, for 

a controlled comparison.  The GFP-Htt images were then removed from the mito-mRFP images 

so that the presence of aggregates in the ROIs was unknown.  An observer who was also blinded 

to the transfection conditions then scored whether a mitochondrion was present in the ROI, 

whether that mitochondrion displayed net movement, and the number of mitochondria outside of 

the ROI that moved into and out of the region during the course of imaging.  A one-way 

ANOVA with Dunnett’s Multiple Comparison Test to GFP-Htt-25Q was used for statistical 

analysis. 

 

Glutamate-induced excitotoxicity, mitochondrial remodeling and mitochondrial Ca2+-buffering 

capacity 

Excitotoxic cell death was measured by cotransfecting neurons with p-LUC, a luciferase –

expressing plasmid, along with the Htt constructs in a 1:1 ratio as described above.  

Approximately 72 hr after transfection, coverslips were rinsed twice with HBSS, treated with a 

solution of 30 µM glutamate/1 µM glycine for 10-15 min, and rinsed 3 times with HBSS, all at 

37°C.  This treatment resulted in approximately 35-50% decrease in luminescence compared to 

controls.  Control cells were subject to the same procedures except replacing the glutamate 

treatment with a 10-15 min incubation in HBSS.  Twenty-four hr after glutamate treatment, cells 
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were scraped off coverslips, collected in PBS and the Gene-Lux (Perkin Elmer, Boston, MA) 

luciferase assay was performed according to manufacturer’s instructions.  Samples were 

measured on a Victor 2 luminometer.  A student’s t-test was used for statistical comparison. 

The effects of intense glutamate stimulation on mitochondrial morphology were observed 

as we previously described (Rintoul et al., 2003b).  Cells were imaged 3-4 days after transfection 

during a 5 min treatment of 30 µM glutamate/1 µM glycine.  SimplePCI functions were 

employed to determine the average mitochondrial length and roundness for each imaging frame.  

Briefly, user-defined pixel intensity and object size thresholds identified measurable 

mitochondria in a frame.  Length was calculated from skeletonized objects, which consisted of a 

1 pixel-wide line running the length of each object.  Roundness was calculated by the formula 

4π*area/√perimeter. 

Mitochondrial Ca2+ buffering capacity after glutamate treatment was measured as we 

previously described (Brocard et al., 2001).  Briefly, neurons were loaded with 5 µM mag-fura-

2AM (Molecular Probes, Eugene, OR) in 5 mg BSA/ml HBSS for 10 min at 37°C.  Neurons 

were imaged at excitation wavelengths of 340/380 nm during the treatment sequence of 5 min 

with 30 µM glutamate/1 µM glycine, 10 min washout, 5 min with 750 nM FCCP in Ca2+-free 

HBSS and a 5 min washout.  The area under the mag-fura-2 ratio curve after subtraction of 

background fluorescence was calculated during the 6.5 min after glutamate (glutamateAUC) or 

FCCP (FCCPAUC) was applied.  Thus, the mitochondrial Ca2+ buffering capacity was represented 

by FCCPAUC/glutamateAUC.  A student’s t-test was used for statistical comparison. 
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4.4 RESULTS 

Huntingtin expression and aggregation 

Immunostaining of primary neurons cotransfected with mitochondrially-targeted eYFP (mito-

eYFP) and N-terminal mutant Htt revealed various forms of Htt expression.  Pilot data indicate 

that >95% of cotransfected neurons express both plasmids.  As shown in Fig. 1, N-terminal 

mutant Htt was found in “small” (diameter < 1.6 µm), “large” (1.6 µm ≤ diameter ≤ 3.3 µm) and 

“giant” (diameter > 3.3 µm) nuclear aggregates as well as diffusely throughout the nucleus.  

Interestingly, some Htt aggregates were also colocalized with mitochondria in neuronal 

processes (Fig. 1).  Fig. 2 demonstrates that full-length Htt was robustly expressed in the cytosol 

where we predicted interactions with mitochondria would occur, although there was no clear 

visual evidence of cytosolic aggregates. 
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Figure 4.1  Htt-N63-99Q transfected in primary cortical neurons forms intracellular aggregates of variable 

size, often in nuclei. 

Htt (red) expression was identified by immunostaining and nuclei (blue) were labeled with Hoechst dye.  An 

aggregate was considered “small” if the diameter < 1.6 µm, “large” if 1.6 µm < diameter < 3.3 µm, and “giant” if 

the diameter > 3.3 µm.  Diffuse expression of mutant Htt throughout the nucleus was also observed.  Neurons were 

simultaneously transfected with mito-eYFP, which revealed colocalization of cytosolic aggregates with 

mitochondria (green).  Neurons are shown 2-5 days after transfection and are representative of 3-5 cultures.  Scale 

bar, 10 µm. 
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Figure 4.2  Full-length Htt-103Q transfected in primary cortical neurons was expressed diffusely in the 

cytosol with no clear evidence of aggregation. 

Htt (red) was identified by immunostaining, mitochondria (green) were identified by cotransfection with mito-eYFP 

and nuclei (blue) were stained with Hoechst 33258.  Neurons are shown 3 days after transfection.  Scale bar, 20 µm. 

 

Aggregation of N-terminal mutant Htt was found to be a time-dependent process 

beginning in the cytosol and progressing to the nuclear compartment.  The percentage of cells 

with nuclear aggregates increased to 70.0 ± 0.09% over the course of 4 days after transfection 

with N-terminal mutant Htt (Fig. 3A).  On the other hand, cytosolic aggregates were generally 

maintained in less than 10% of cells regardless of time.  Interestingly, the number of nuclear 
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aggregates per cell did not increase over time.  An initial peak of 5.6 ± 1.1 aggregates per cell 

were seen on the second day after transfection, which declined to 2.3 ± 0.7 aggregates on day 3 

and decreased slowly thereafter (Fig. 3B).  This decline in the of number aggregates after an 

early surge may result from proteasomal degradation (Martin-Aparicio et al., 2001).  There were 

no remarkable changes in aggregate sizes from the third through fifth day after transfection, 

suggesting that aggregates were stably established in transfected cells by the third day. 

 
Figure 4.3  Mutant N-terminal Htt formed aggregates in transfected neurons. 

(A) Aggregation was a progressive process with a greater fraction of cells expressing nuclear aggregates over time.  

Cytosolic aggregates were observed in a small fraction of cells.  Values are represented as mean ± SEM from 2-3 

coverslips each from 3 separate cultures.  (B)  The number of nuclear aggregates declined on the third day after 

transfection and was stable thereafter.  The size distribution of aggregates was also relatively constant after the third 

day.  Values are represented as mean ± SE taken from aggregate-positive cells observed in 3A. 
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Global mitochondrial movement and morphology 

Mitochondria were fluorescently labeled by cotransfecting neurons with eYFP fused to the 

cytochrome c oxidase subunit IV mitochondrial localization sequence (mito-eYFP).  Global 

mitochondrial movement was measured as the net movement of mitochondrial pixels over time 

in a field of neuronal processes.  We did not differentiate between axons and dendrites or the 

nature of Htt expression in measured cells.  Analysis of normalized global mitochondrial 

movement revealed a modest 17.4% decrease in movement in neurons transfected with full-

length but not N-terminal mutant Htt (p < 0.05; Fig. 4).  Presumably, this results from heightened 

expression of full-length mutant Htt in the cytosolic compartment (Fig. 1-3) where interactions 

with mitochondria, molecular motors and cytoskeletal components would be maximal.  In 

comparison, N-terminal mutant Htt fragments seem to be largely sequestered into the nucleus 

where they cannot interact with mitochondria.  The observation that global mitochondrial 

movement continues to occur rather effectively suggests that at this stage of mutant Htt 

expression, mechanisms of mitochondrial trafficking are largely able to bypass the impediments 

that are posed.  However, given the likely importance of mitochondrial trafficking in sustaining 

cellular and mitochondrial health, it is possible that even moderate impairments in mitochondrial 

movement can cause pathogenic defects over the long course of HD. 
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Figure 4.4  Global mitochondrial movement was modestly but significantly impaired in neuronal processes 

transfected with mito-eYFP and full-length mutant Htt but not N-terminal mutant Htt. 

Values are represented as mean ± SE event count/mitochondrial pixels taken from at least 3 coverslips from 3-4 

cultures and are normalized to neurons from respective cultures transfected with only the mito-eYFP plasmid. 

 

We also examined whether mutant Htt expression caused aberrant mitochondrial 

morphology.  We and others previously showed that mitochondria in injured and apoptotic 

neurons and other cell types adopt a punctate, fragmented morphology rather than the traditional 

thin, elongated shape (Bossy-Wetzel et al., 2003; Rintoul et al., 2003b; Vanden Berghe et al., 

2004).  This remodeling of mitochondrial morphology can be directly visualized during an acute 

excitotoxic glutamate stimulus and is thought to be mediated by influx of Ca2+ into the cell 

(Rintoul et al., 2003b).  This paradigm was important to test because increased excitotoxic 

susceptibility, as seen in HD, could manifest as altered mitochondrial remodeling in response to 

glutamate.  However, Fig. 5A-C revealed no differences in initial mitochondrial length, 

roundness or distribution in neurons expressing N-terminal or full-length mutant Htt, nor in start-

time or rate of remodeling during a 5 minute perfusion with 30 µM glutamate/1 µM glycine.  

The final remodeled mitochondrial morphology was also identical between mutant Htt-

transfected cells and controls.  Therefore, we conclude that full-length mutant Htt reduces global 
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mitochondrial movement, but not mitochondrial morphology or the gross mitochondrial 

remodeling response to an excitotoxic glutamate stimulus. 

 
Figure 4.5  N-terminal or full-length mutant Htt does not alter mitochondrial morphology or glutamate-

induced remodeling in transfected neurons. 

(A) Mitochondrial remodeling after a 5 min perfusion of neurons with 30 µM glutamate/1 µM glycine is observed as 

a shortening and rounding of mitochondrial morphology.  Scale bar, 20 µm.  (B) Quantification of mitochondrial 

length and roundness during glutamate-induced remodeling revealed no differences in initial or terminal 

morphology or rate of remodeling in neurons transfected with N-terminal mutant Htt.  (C) Transfection of neurons 

with full-length mutant Htt also revealed no differences in mitochondrial morphology or remodeling.  Values are 

represented as mean ± SE from at least 3 coverslips each from 3-4 separate cultures. 

 

Excitotoxicity and Ca2+-buffering capacity 

The mitochondrial remodeling response we observed is an immediate and robust effect 

presumably caused by elevated intracellular Ca2+ entry through NMDA receptor activation 

(Rintoul et al., 2003b).  We next tested whether neurons expressing N-terminal and full-length 

mutant Htt were more vulnerable to delayed glutamate excitotoxicity due specifically to altered 
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mitochondrial Ca2+-buffering capabilities.  The fraction of cells susceptible to glutamate 

excitotoxicity was determined by cotransfecting neurons with a luciferase-expressing plasmid 

and assaying for luminescence 24 hr after treatment with 30 µM glutamate/1 µM glycine.  As 

shown in Fig. 6, expression of either full length or N-terminal mutant Htt did not render neurons 

more susceptible to excitotoxicity.  In fact, N-terminal mutant Htt expression exhibited a trend 

towards neuroprotection against glutamate excitotoxicity. 

 

 
Figure 4.6  Impact of mutant Htt on excitotoxic injury. 

Mutant Htt did not reduce fractional cell survival 24 hr after treatment with 30 µM glutamate/1 µM glycine, but the 

trend was in the opposite direction, particularly with N-terminal mutant Htt.  Cell survival was measured by 

cotransfecting neurons with the luciferase-expressing plasmid, p-LUC, and assaying for luminescence from an entire 

coverslip.  Dead cells lose luciferase expression; thus, fractional cell survival is calculated as the luminescence from 

glutamate-treated cells divided by luminescence from buffer-treated cells.  The dotted line labeled “no death” 

represents mean luminescence of p-LUC-transfected neurons treated with buffer alone; the dotted line labeled 

“control death” represents mean (luminescence of p-LUC-transfected neurons treated with glutamate)/(luminescence 

from p-LUC-transfected neurons treated with buffer alone).  Values are shown as mean ± SE luminescence units of 

glutamate-treated cells divided by that of untreated cells from 3 coverslips each from 3-6 separate cultures, and are 

normalized to values obtained from neurons from respective cultures transfected with only the p-LUC plasmid 

(dotted line labeled “control death”). 

 

111 



Using a paradigm we previously described (Brocard et al., 2001), we then examined 

whether intracellular Ca2+-influx or mitochondrial Ca2+-uptake after glutatmate treatment were 

altered.  [Ca2+]c was monitored using mag-fura-2AM (Fig. 7A); the area under the 340/380 nm 

ratio curve (AUC) after glutamate treatment represented Ca2+ entry into the cell and the AUC 

after application of the uncoupler FCCP represented mitochondrial uptake of intracellular Ca2+ 

(Fig. 7B).  Thus, the mitochondrial contribution to removal of elevated cytosolic Ca2+ was 

calculated as FCCPAUC/glutamateAUC (Fig. 7C).  In accordance with the pattern seen in Fig. 6, we 

found a significant 17.9 ± 4.8% reduction in normalized [Ca2+]c changes after glutamate 

treatment in neurons transfected with N-terminal mutant Htt compared to controls (p < 0.05).  

Despite this observation, we did not find any overall effect on the mitochondrial ability to 

maintain Ca2+ homeostasis following an excitotoxic glutamate exposure as reflected by the 

accumulated mitochondrial calcium load.  In summary, we conclude that neurons expressing 

mutant Htt generally resemble control neurons in their mitochondrial and cellular responses to 

excitotoxic glutamate treatment. 

 

112 



 
Figure 4.7  Neurons expressing mutant Htt demonstrated relatively normal calcium handling in response to 

an excitotoxic treatment of 30 µM glutamate/1 µM glycine. 

(A) Intracellular Ca2+ influx after glutamate/glycine treatment and mitochondrial Ca2+ release after 750 nM FCCP 

treatment are shown in neurons transfected with either N-terminal (left panel) of full-length (right panel) mutant Htt.  

Traces are mean mag-fura-2 ratios after background subtraction and represent at least 3 coverslips each from 3 

separate cultures.  (B) Areas under mag-fura-2 curves (AUC) were calculated for 6.5 min after the start of 

glutamate/glycine and FCCP treatments.  GlutamateAUC was significantly smaller in neurons transfected with N-

terminal mutant Htt than controls (p < 0.05).  (C) The mitochondrial contribution to buffering Ca2+ after 

glutamate/glycine treatment was calculated as FCCPAUC/glutamateAUC.  Values in panels B and C are shown as mean 

± SE from at least 3 coverslips each from 3 separate cultures and are normalized to neurons from respective cultures 

transfected with only the mito-eYFP plasmid. 

 

Localized inhibition of mitochondrial movement by Htt aggregates 

Various mechanisms have been proposed by which mutant Htt is able to impair axonal transport.  

These include the binding of cytoskeletal components and the titration of molecular motors, 

113 



perhaps through interactions with wildtype Htt (Gunawardena et al., 2003; Lee et al., 2004; 

Trushina et al., 2004).  We therefore examined whether the slight reduction in global 

mitochondrial movement we observed in neurons expressing full-length mutant Htt (Fig. 4) was 

the result of (i) general slowing of all mitochondrial transport, as might be expected if molecular 

motors or cytoskeletal components were titrated out of operational pools, or (ii) mutant Htt 

aggregates acting as localized blockades of mitochondrial trafficking in neuronal processes.  

Neurons were cotransfected with GFP-tagged mutant Httexon1-103Q or wildtype Httexon1-25Q and 

a mitochondrially-targeted monomeric RFP (mito-mRFP).  These experiments allowed us to 

directly measure the movement of mitochondria relative to cytosolic Htt aggregates.  Wildtype 

Httexon1 was expressed diffusely throughout the cytosol while mutant Httexon1 was either diffusely 

expressed or aggregated (Fig. 8A-E). 

 

 
Figure 4.8  GFP-tagged mutant Htt formed cytosolic aggregates colocalized with mitochondria. 

(A) Mitochondria were labeled by cotransfecting neurons with mito-mRFP (green).  (B) Wildtype GFP-Httexon1-25Q 

(red) was expressed cytosolically.  (C, D) Mutant GFP-Httexon1-103Q (red) was expressed either diffusely throughout 
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the cytosol or as aggregates colocalized with mito-mRFP-labeled mitochondria (green) as well as.  (E) Large 

accumulations of mitochondria (green) could be seen surrounding aggregates (red) in neurons transfected with 

mutant GFP-Httexon1.  Neurons are shown 3 days after transfection and are representative of at least 3 coverslips each 

from 5 separate cultures.  10 µm scale bars are shown. 

 

We first examined whether mitochondria colocalized with Htt aggregates by assessing 

the normal characteristics of mitochondria distribution in processes.  The probability that a 

mitochondrion would normally occupy any given point on a neuronal process was calculated by 

dividing the length of all mitochondria by the length of all neuronal processes in a field.  

Mitochondria were found to occupy 27.2 ± 3.7% of the length of the processes.  If one assumes 

that this distribution is essentially random then for any given point on a process mitochondria 

should be found 27% of the time.  However, we found that a remarkable 99.1 ± 0.9% of sites 

where aggregates were present also contained mitochondria (p < 0.0005; Fig. 9A), which 

suggests that the presence of aggregates changes the distribution of mitochondria in processes.  

This may be the consequence of close if not direct physical contact between aggregates and 

mitochondria that could impair movement of mitochondria, especially since aggregates were 

immobile.  In addition, our results revealed that mitochondria which were colocalized with 

aggregates were less likely to be mobile than controls (p < 0.05; Fig. 9B) and also that 

aggregates significantly limited the passage of non-colocalized mitochondria (p < 0.05; Fig. 9C).  

Intriguingly, we also observed a significant decrease in the number of mitochondria entering 

regions of neuronal processes occupied by aggregates (p < 0.05; Fig. 9D).  It is important to note 

that these effects on movement and trafficking were observed only at sites where aggregates 

were present.  That is, in cells expressing aggregates, mitochondria that were not colocalized 

with aggregates moved in the same manner as controls.  In cells expressing mutant Htt diffusely 

throughout the cytosol, mitochondria also moved similar to controls.  Therefore, we conclude 
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that mutant Htt aggregates are immobile obstacles in cortical neuronal processes that locally 

impair mitochondrial trafficking and cause gradual accumulation of mitochondria out of the 

cellular pool and into the peri-aggregate region (Fig. 8E).  However, mitochondria outside of the 

immediate vicinity of an aggregate or in cells expressing mutant Htt diffusely seemed unaffected. 

 

 
Figure 4.9  Mitochondria colocalized with and were immobilized by mutant Htt aggregates. 

Mitochondrial movement was specifically impaired at the sites of aggregates and fewer mitochondria were 

trafficked to these sites.  (A) The probability that a mitochondrion was located at the site of an aggregate was 

significantly higher than the chance of finding a mitochondrion at any randomly selected site, as determined by the 

average fraction of neuronal process length occupied by mitochondria (p < 0.0005).  Values are shown as mean ± 

SEM from at least 2 coverslips from 4 cultures.  (B) A significantly smaller fraction of  mitochondria that 

colocalized with aggregates were motile compared to mitochondria not colocalized with aggregates in the same 
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cells, mitochondria in cells expressing diffuse mutant Htt, and mitochondria in controls (p < 0.05).  (C) The ratio of 

mitochondria moving to:away from the site of an aggregate was significantly increased compared to sites where 

aggregates were absent in the same cells, and compared to randomly selected sites in cells expressing diffuse mutant 

Htt and in control cells (p < 0.05).  (D) The number of mitochondria moving to site of an aggregate was significantly 

reduced compared to sites where aggregates were absent in the same cells, and compared to randomly selected sites 

in cells expressing diffuse mutant Htt and in control cells (p < 0.05).  Values are shown as mean ± SE from at least 3 

coverslips each from 5 separate cultures and are normalized to respective cultures transfected with only the mito-

mRFP plasmid. 

4.5 DISCUSSION 

Our results show that Htt aggregates act as physical roadblocks for mitochondrial transport in 

cortical neurons with the consequence that healthy, motile mitochondria gradually accumulate 

around aggregates and are also less frequently trafficked toward aggregates.  Our findings shed 

new light on the sequence of events in HD pathophysiology and the possible cell selectivity for 

mitochondrial trafficking defects.  Specifically, we conclude that abnormal mitochondrial 

trafficking in cortical neurons manifests as small subpopulations of mitochondria becoming 

trapped and immobilized by mutant Htt aggregates, while the vast majority of mitochondria that 

do not contact aggregates have normal movement patterns, regardless of whether aggregates are 

present in the processes or if mutant Htt is expressed throughout the cytosol (Fig. 9B-D).  We 

propose that this impairment in mitochondrial movement is an early pathogenic event, occurring 

before mitochondrial and cellular dysfunction in cortical neurons.  Blockage of mitochondrial 

transport by aggregates could gradually titrate healthy mitochondria out of the operating pool 

and lead to neurodegeneration. 

Trushina et al. (2004) recently concluded that in mouse striatal neurons, an early step in 

HD pathology is aberrant mitochondrial motility caused by sequestration of wildtype Htt and 
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trafficking proteins by mutant Htt.  To gain further insights beyond collective mitochondrial 

populations, we examined movement of mitochondria that were (i) specifically colocalized with 

cytoplasmic aggregates, (ii) upstream or downstream of but not colocalized with aggregates, and 

(iii) in cells expressing mutant Htt diffusely throughout the cytosol.  We were thus able to 

carefully dissect the role of aggregates as physical roadblocks for mitochondria separately from 

the effects of aggregated or non-aggregated mutant Htt interactions with cytoskeletal and motor 

proteins that others have found to broadly affect protein and vesicle transport in rat striatal 

neurons, Drosophila larval neurons and axoplasm isolated from squid giant axons (Li et al., 

2001; Gunawardena et al., 2003; Szebenyi et al., 2003; Lee et al., 2004).  That is, if aggregates in 

cortical neurons also sequestered transport proteins to the extent described by others, or if 

diffusely expressed mutant Htt disrupted wildtype Htt interactions with transport molecules, then 

we would expect mitochondrial movement to be reduced accordingly in conditions (ii) and (iii) 

above.  However, in neither condition did mitochondria have a smaller probability of moving or 

did fewer mitochondria move past a given point on a neuronal process over time (Fig. 9B-C). 

Physical blockage of mitochondria by aggregates may be one of the first signs of 

abnormal trafficking in cortical neurons, with substantial global disruption of mitochondrial 

movement developing at a delayed pace relative to prior reports in striatal neurons, if at all.  In 

fact, there is the distinct possibility that local disruption of cytoskeletal components by 

aggregates may have caused our observations of decreased mitochondrial trafficking specifically 

to sites of aggregation (Fig. 9D) (Trushina et al., 2003).  It is also possible that mitochondria 

trapped in the vicinity of aggregates stopped moving because they became damaged and 

depolarized or that local ATP depletion occurred in these regions, as would be expected from the 

bioenergetic defects associated with HD (Schon and Manfredi, 2003).  This is supported by our 
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previous findings that mitochondrial motility depends on ψm and mitochondrial ATP synthesis 

(Rintoul et al., 2003b).  It remains to be learned whether such trafficking defects radiate out from 

locations of aggregates to encompass entire neuronal processes over time.  If this does prove to 

be the case, then it is likely that the global mitochondrial trafficking defects described by 

Trushina et al. (2004) in striatal neurons may eventually develop in cortical neurons.  Another 

possibility is that cellular signals may locally protect the mitochondrial pool from damaging 

regions in the cell by limiting trafficking to those locations.  Regardless of whether 

mitochondrial trafficking to aggregates is purposely or inadvertently reduced, a likely result is 

that neuronal processes will degenerate at sites of aggregates because mitochondria are not 

shuttled to these regions and those organelles that do enter are trapped and deteriorate.  Local 

regions of degeneration could very well expand and cause broad mitochondrial and cellular 

dysfunctions over time as a result of the loss of function in distal processes. 

Indeed, we show that mitochondrial movement was blocked by aggregates before 

neurons displayed heightened glutamate excitotoxicity or any overall alterations in mitochondrial 

Ca2+-handling or morphology (Fig. 4-7).  Our results therefore confirm that aberrant 

mitochondrial transport is an early event in the pathogenesis of HD associated with the formation 

of Htt aggregates in neuronal processes, even though the trafficking defects manifest differently 

in cortical and striatal neurons (Trushina et al., 2004).  Long term consequences of impaired 

mitochondrial movement by aggregates and a gradual decline in functional mitochondria from 

the cellular pool could be neurodegeneration and cell death mediated by the combination of 

insufficient ATP for cellular processes, dysregulation of local [Ca2+]i, mitochondrial dysfunction, 

release of reactive oxygen species and induction of apoptosis.  Our proposed mechanism 

accounts for the mitochondrial defects and oxidative damage observed in HD, and additionally 
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provides information into the role of cytosolic aggregates in impairing cellular transport (Browne 

et al., 1997; Panov et al., 2002; Panov et al., 2003; Choo et al., 2004; Ruan et al., 2004; Saulle et 

al., 2004).  Furthermore, a longer time course for development of global mitochondrial 

trafficking defects may account for the improved health of cortical neurons which are less 

susceptible to glutamate excitotoxicity than striatal neurons, possibly due to reduced calcium-

induced mitochondrial permeability transition (Greene et al., 1998; Brustovetsky et al., 2003; 

Snider et al., 2003).  The surprising lack of glutamate excitotoxicity we observed in Htt-

transfected cells could also be accounted for by mitochondrial depolarization at lower [Ca2+]i, 

thus preventing uptake of pathological amounts of Ca2+ and inorganic phosphate that would 

activate mitochondrial permeability transition and cell death (Panov et al., 2003; Panov et al., 

2005). 

Several recent studies on mutant Htt focused on impaired vesicular transport, and suggest 

aggregation in small-diameter axons and synaptic terminals may lead to neuronal and synaptic 

defects (Gunawardena et al., 2003; Li et al., 2003; Lee et al., 2004; Gunawardena and Goldstein, 

2005).  Our examination of spontaneous intracellular calcium fluxes due to synaptic activity did 

not reveal any differences, supporting the idea that impaired mitochondrial movement is an 

earlier pathogenic event than synaptic dysfunction (data not shown).  Interestingly, there also 

appeared to be no selectivity for aggregation in neuronal processes of smaller diameter or any net 

movement of aggregates as these reports suggest.  In fact, large aggregates that were prominently 

surrounded by mitochondrial accumulations were more often found proximal to the cell body 

(Fig. 8E).  This is probably because the most mitochondrial traffic occurs in the large-diameter 

processes to and from the cell soma where mitochondrial density is high.  Thus, mitochondria 

traveling anterogradely and retrogradely rapidly build up around such aggregates, further 
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enlarging the “roadblock” and impairing transport of smaller particles such as vesicles.  We 

propose that the large size of mitochondria renders these organelles the most vulnerable to 

impaired transport by mutant Htt aggregates, and aggregates may have the most severe 

consequences when they form in the proximal axon.  It is important to note that mitochondrial 

movement may also be unaffected by separate but concurrent trafficking disruptions mediated by 

wildtype Htt and its associated proteins.  For example, Gaulthier et al. demonstrated reduced 

transport velocity of BDNF vesicles but not of mitochondria in neuronal cell lines derived from 

mutant Htt knock-in mice (Gauthier et al., 2004).  Our data agrees with their findings, as we 

found normal movement in mitochondria that were not associated with mutant Htt aggregates. 

We conclude from our results comparing the effects of N-terminal and full-length mutant 

Htt that the context of the polyglutamine repeat influences its pathologic function, as others have 

(Hackam et al., 1998; Yu et al., 2003).  We found a significant difference in global mitochondrial 

movement only in full-length mutant Htt-transfected neurons (Fig. 4).  Our GFP-tagged Htt 

experiments reinforce the importance of cytosolic aggregates as the pathologic entity (Fig. 9).  

This agrees with findings that neuropil aggregates associated with structures resembling 

mitochondria are more commonly found in striatal neurons and lead to selective 

neurodegeneration (Li et al., 2001).  We therefore suspect that N-terminal Htt was largely 

localized to the nucleus whereas full-length Htt formed more cytosolic aggregates in transfected 

neurons (Cooper et al., 1998; Xia et al., 2003; Cornett et al., 2005).  In other words, the context 

of the polyglutamine tract in the Htt gene might be influential in its provision of different 

proteolytic cleavage sites that optimize cytosolic rather than nuclear aggregate formation.  

Furthermore, it is likely that the earlier onset and enhanced formation of aggregates that occurs 

with increased polyglutamine length leads to more rapid and substantial impairment of 

121 



mitochondrial transport, thus worsening disease severity (Scherzinger et al., 1999; Chen et al., 

2001; Chen et al., 2002). 

In conclusion, our study provides evidence for impairment of mitochondrial transport in 

cortical neurons by the physical blockage of neuronal processes by mutant Htt aggregates, as 

well as reduced trafficking of motile mitochondria to aggregates.  We suggest that this is one of 

the earliest steps in the molecular pathogenesis of HD, as the titration of mitochondria out of 

operational pools and into accumulations localized around aggregates is likely to be a gradual 

process.  Furthermore, global mitochondrial trafficking defects may develop slower in cortical 

neurons than in striatal neurons, resulting in selective neurodegeneration.  Since mitochondria 

are numerous and exhibit dynamic motility, it is likely that considerable time is required before 

unaffected mitochondria fail to compensate for the reduction in number of functional 

mitochondria, the growing impediments in neuronal processes, and the localized sites of 

disrupted mitochondrial delivery.  We predict that cellular and mitochondrial dysfunctions 

manifest slowly, just as HD symptoms and neurodegeneration occur over the course of many 

years. 

122 



5.0  DISCUSSION 

5.1 OVERVIEW 

Mitochondrial trafficking in neurons is a fundamental property with vast implications for normal 

and abnormal cellular and mitochondrial function.  The explosive interest in the field over the 

three years during which this dissertation was completed is a clear indication of the growing 

appreciation of its importance.  However, mitochondrial trafficking and morphology are 

extraordinarily complex in neurons, and as such, their study is riddled with difficulty.  

Furthermore, because mitochondrial movement is so intimately tied with the functional status of 

cells and of mitochondria themselves, results obtained from experimental manipulations, whether 

intended to be physiological or injurious, can be a challenge to interpret. 

This discussion is organized into two major parts.  The first reviews the complexities of 

studying mitochondrial trafficking, describes approaches that could be adopted for the future 

(5.2), and evaluates what can be learned from recent examinations of mitochondrial trafficking to 

synapses (5.3).  The second part concentrates on impaired mitochondrial movement as a cause of 

neuronal dysfunction, with an emphasis on the pathologic implications (5.4) and possible 

mechanisms (5.5) of heterogeneous movement abnormalities in neurons.  The discussion closes 

with a look into what the future will uncover about mitochondrial trafficking and how that 

knowledge can be harnessed to develop pharmacologic therapies for neuronal injury and disease. 
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5.2 ADOPTING A REDUCTIONIST APPROACH TO THE INVESTIGATION OF 

MITOCHONDRIAL TRAFFICKING 

5.2.1 Too many mitochondria moving for too many reasons 

Mitochondrial movement in neurons is extremely diverse with velocity, direction changes and 

pauses during movement varying among individual organelles, different neuronal processes, and 

different cells.  There is also likely to be tremendous variability in the regulatory influences on 

movement between individual mitochondria such that (i) they may be targeted to different cues 

in cells, (ii) these cues may have various distributions in different neuronal processes, (iii) the 

characteristics of motor and adaptor proteins that mediate movement may differ between 

organelles and may be subject to different functional modifications, and (iv) cytoskeletal 

arrangements and interactions with microtubule-associated proteins can vary between neuronal 

processes and among different regions of a single process (discussed in Chapter 1.4).  For 

scientists, the diversity of mitochondrial movement is both a gift and a curse.  On the one hand, it 

is fascinating because there are multiple levels of complexity to explore.  But ultimately, the 

complexity makes it nearly impossible to study any single variable in a controlled manner.  

There are several oversimplified schemes that can be adopted for the study of mitochondrial 

movement.  One approach starts with mitochondria and tries to identify trafficking cues by 

observing where mitochondria stop and go.  Another method starts with a cellular signal and 

determines how mitochondria move relative to that signal.  Ultimately, the results from one 

approach are tested by the other approach to confirm the identity and effects of a physiological 

signal on normal mitochondrial trafficking. 
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5.2.2 Subdividing the mitochondrial pool for analysis 

5.2.2.1 Nonspecific mitochondrial measurements 

There are two theoretically straightforward approaches to studying trafficking of the 

mitochondrial pool – either in totality or in partiality.  The first involves measuring movement of 

all mitochondria in entire cells.  This is not so much of an issue in cell lines with relatively 

indiscriminate distributions of cellular contents, but polarized neurons provide a different 

challenge.  Sampling from the whole mitochondrial pool usually has little or no regard for the 

anatomic regions or activities of neuronal processes being examined, and sometimes even with 

processes from more than one cell at a time being imaged.  Most experiments are done in this 

manner, as it is simpler, yields data more rapidly, and in many cases, pharmacologic treatments 

seem to affect mitochondrial movement quite uniformly in cells (Rintoul et al., 2003b; Vanden 

Berghe et al., 2004; Yi et al., 2004; Verstreken et al., 2005).  Yet true differences in 

mitochondrial movement in various cellular regions after drug application can easily be 

overlooked when those regions comprise a small fraction, if any, of the imaging field.  For 

example, we uncovered a dendrite-specific rounding of mitochondria after acute glutamate 

exposure and a preservation of mitochondrial movement in distal axons that were previously 

concealed by the all-inclusive imaging approach (Chapter 3). 

5.2.2.2 Measuring regional subpopulations of mitochondria 

The next step toward achieving specificity of measurements is distinguishing between anatomic 

regions of neurons, such as axons and dendrites or proximal and distal segments of processes.  

The axon-dendrite comparison has been made in previous reports characterizing mitochondrial 

movement patterns in hippocampal neurons (Overly et al., 1996; Ligon and Steward, 2000a).  A 
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differentiation between proximal and distal dendrites, where microtubule polarities are known to 

differ, was performed as well (Overly et al., 1996).  Additionally, mitochondrial movement was 

compared in proximal and distal axons to determine the effect of growth cone proximity on 

trafficking (Morris and Hollenbeck, 1993).  A portion of this dissertation work was also devoted 

to the study of differential regulation of mitochondrial morphology and movement relative to 

synapses on axons compared to dendrites (Chapter 3).  These studies have been important in 

describing mitochondrial movement activities on a smaller spatial scale, but still suffer from lack 

of specificity because mitochondria with varying movement patterns almost always occupy a 

given region.  In terms of studying the mitochondrial pool, the finest detail can be achieved by 

tracking the movement of an individual mitochondrion. 

5.2.2.3 Studying trafficking of an individual mitochondrion 

An understanding of how the variable movement patterns of single mitochondria contribute to 

the diversity observed in the whole mitochondrial pool can be derived from observing the 

trafficking of individual mitochondria.  This can best be achieved by time-lapse imaging of 

neurons transfected with a photoactivatable fluorescent protein targeted to mitochondria (Rintoul 

et al., 2003a).  Focal photoactivation would result in the labeling of a discrete group of 

mitochondria which could be analyzed individually once they moved away from each other.  

This method would be a marked improvement over current techniques which employ fluorescent 

lipophilic cationic dyes or transfection of neurons with fluorescent plasmids containing 

mitochondrial targeting sequences.  Commonly used dyes for labeling mitochondria in live cells 

are rhodamine 123 and MitoTracker variants (Overly et al., 1996; Ligon and Steward, 2000a; 

Chada and Hollenbeck, 2003; Vanden Berghe et al., 2004; Cai et al., 2005).  With the exception 

of MitoTracker Green, the sequestration of these dyes into mitochondria relies on the negative 

126 



mitochondrial membrane potential.  Therefore, de-energized mitochondria which may possess 

certain characteristics that influence movement patterns such as respiratory damage or increased 

metabolic activity, could be excluded from labeling.  Perhaps more importantly, these dyes have 

the ability to uncouple and inhibit respiration and depolarize ψm depending on cell type and dye 

concentration (Nicholls and Ward, 2000; Buckman et al., 2001).  Compromised mitochondrial 

function can clearly alter mitochondrial movement (Chapter 1.9).  Technically, loading cells with 

fluorescent dyes also poses a problem because the mitochondria of all cells on a coverslip 

become labeled, making it nearly impossible to distinguish mitochondria in one overlapping 

process from another. 

A fairly effective solution to the overlabeling problem, and the method we used in the 

dissertation work, is to transfect neurons with a mitochondrially targeted fluorescent protein (Li 

et al., 2004; Guo et al., 2005; Verstreken et al., 2005).  Transfection efficiencies of primary 

neurons are low, typically 1-5%, which permits individual neurons to be imaged independently.  

An additional advantage is that localization of eYFP to the mitochondrial matrix using a 

cytochrome c oxidase subunit IV targeting signal does not appear to compromise cell or 

mitochondrial function (Llopis et al., 1998 and our own observations).  However, even when 

only one cell is considered, the abundance of mitochondria in a single process, combined with 

their dynamic movements, fusions and fissions, can significantly complicate the ability to track a 

single organelle.  This difficulty is exacerbated as mitochondria move past each other, often 

pausing where other mitochondria are located and sometimes fusing with those mitochondria or 

undergoing fission.  The identity of the departing mitochondrion can therefore be obfuscated.  

The ability to photoactivate only a subset of mitochondria provides an additional level of 

sophistication that would allow more detailed and explicit tracking of individual mitochondrion. 
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Observing the movement patterns of an individual mitochondrion would reveal basic 

trafficking properties that are still undefined.  A fundamental question is if mitochondria with 

different motility properties serve different trafficking functions, or if all mitochondria are 

subject to the same movement and recruitment cues in cells.  For instance, if a particular site on a 

neuronal process requires ATP, does it indiscriminately recruit passing mitochondria until the 

demand is met, or does it recruit faster or slower moving mitochondria depending on the 

expected duration on demand?  By the same token, are mitochondria that travel with high speed 

more likely to serve sites with transient demands, or is their observed speed a result of being 

targeted to a distant destination where they will become stationary?  The idea of a destination 

also raises the question of whether individual mitochondria are targeted to specific sites, or if 

they just continuously circulate along neuronal processes and respond to recruitment signals as 

they are encountered.  Observations by Chada and Hollenbeck (2004) over a 10 minute interval 

where many but not all mitochondria moving past an NGF-coated bead stopped, and almost half 

of these mitochondria continued to move away from the bead after pausing, suggest that (i) 

almost all moving mitochondria can respond to a strong recruitment stimulus, (ii) mitochondrial 

residence time at a single recruitment signal varies between individual organelles, and (iii) some 

mitochondria may not veer from their intended trajectory or may not recognize certain 

recruitment signals. 

Separately tracking the movement trajectories of individual mitochondria could very well 

reveal that organelles with certain velocities also exhibit different trafficking patterns.  

Mitochondria with different speeds and movement patterns have been anecdotally described, but 

it is unclear whether distinct populations of moving mitochondria really exist.  For example, an 

oversimplified scheme may categorize mitochondria as (i) relatively stationary, (ii) slow movers 
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or (iii) fast movers.  Frequency distributions of mitochondrial velocities indicate that velocities 

exist on a continuum up to approximately 1 µm/sec, and are found in more discrete distributions 

at velocities greater than 1 µm/sec (Morris and Hollenbeck, 1995; Ligon and Steward, 2000a, b).  

This agrees with the thought that structural properties of individual motor proteins dictate that 

protein’s power stroke, and there must be a finite number of motor protein isoforms associated 

with mitochondria (Trinczek et al., 1999).  Alternatively, a combination of differentially 

regulated isoforms may transport a single organelle, thus allowing for marked velocity changes 

during its trajectory.  Collecting movement data from single mitochondria could easily reveal if 

this is the case.  Furthermore, correlating velocity with the frequency with which individual 

mitochondria stop, the time duration for which they stop, and whether stopping points are 

distributed at similar intervals for different organelles would provide invaluable information on 

whether mitochondria tend to be equally responsive to cellular cues or if different mitochondria 

respond to different cues, perhaps because of different mobility characteristics. 

5.2.3 Studying cellular targets and modulators of mitochondrial movement 

5.2.3.1 Measuring mitochondrial trafficking to a single cue 

An alternative to deriving cellular cues from mitochondrial movement patterns is to select some 

cellular signal and study mitochondrial trafficking in response to changes in that signal.  This 

was accomplished quite elegantly by Chada and Hollenbeck (2004), who plotted incoming and 

outgoing mitochondrial movements in the vicinity of an NGF-coated bead placed next to an 

axon.  In contrast to control beads which mitochondria moved past with relatively continuous 

motion, more mitochondria moved toward NGF beads and tended to remain stationary after 

arrival.  This resulted in a net accumulation of mitochondria specifically around the NGF beads, 
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which was not observed with endosomes, lysosomes or vesicles.  As a valuable counterpart, the 

authors demonstrated that elevated NGF must be applied focally to recruit mitochondria because 

addition of high NGF concentrations to the culture medium dissipated the effects of NGF beads 

(Chada and Hollenbeck, 2003).  It should be noted that the researchers did not explore the 

possibility that whole-cell application of NGF prevented recruitment of mitochondria to NGF 

beads simply by stopping general mitochondrial movement.  In summary, their work provides an 

example of a single chemical target to which mitochondria are recruited and when the target is 

effectively diffused, mitochondrial recruitment ceases. 

The experimental system used in the NGF studies offers several conveniences to the 

investigation of mitochondrial movement (Chada and Hollenbeck, 2003, 2004).  First, large focal 

concentrations of NGF are not distributed throughout neuronal processes, but are instead found 

specifically at growth cones of developing axons where NGF promotes elongation and sprouting 

of collateral branches (Letourneau, 1978; Diamond et al., 1992; Gallo and Letourneau, 1998).  

This allowed the investigators to largely avoid the effects of confounding mitochondrial 

trafficking to high physiological NGF concentrations by placing experimental beads at regions of 

axons at least 100 µm from the growth cone.  It should be noted however, that while the effects 

of exogenous and endogenous NGF sources could be isolated quite effectively, the measurement 

of mitochondrial movement to NGF beads is probably somewhat confounded by the signals that 

govern where mitochondria would normally move.  This was addressed by the use of control 

heat-denatured NGF beads; thus the increased mitochondrial trafficking to NGF beads compared 

to control beads convincingly represented recruitment of mitochondria away from their normal 

trajectories.  Another advantage of the Chada and Hollenbeck system is that they used young, 

developing neurons that were still elongating their axons.  Synapses, which have dynamic 
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influences on mitochondrial movement, are probably not structurally assembled at this time.  Our 

own work confirms that mitochondrial movement is significantly greater in synaptically 

immature neurons (Chapter 2).  Therefore, a large contribution to confounding mitochondrial 

“docking” signals along axons was avoided. 

Obviously, the advantages of the system used to study mitochondrial trafficking to focal 

NGF stimulation cannot be easily translated to broader examinations of mitochondrial movement 

to cues such as ATP and [Ca2+]i gradients.  In these cases, there are many endogenous sources 

that are distributed throughout axons and dendrites.  Furthermore, synaptically mature neurons 

are likely to provide more physiologically relevant information.  Neurons are post-mitotic and 

therefore almost their entire lifespan is spent in the mature state.  Synaptic transmission is the 

major specialized function of neurons.  Ideally, an understanding of how mitochondrial 

trafficking to synapses operates in healthy mature neurons will help us deduce how disruptions 

of trafficking could lead to synaptic dysfunction in aging, neuronal injury and 

neurodegeneration.  Approaches that have been used to examine mitochondrial trafficking to 

synapses and to [Ca2+]i gradients, including our own, are discussed in the following sections. 

5.2.3.2 Studying mitochondrial movement responses to global pharmacologic treatments 

The adoption of a reductionist approach to studying mitochondrial trafficking is also relevant to 

pharmacologic manipulations.  Although describing normal mitochondrial movement patterns is 

highly informative, it is rarely enough to answer mechanistic questions about movement 

regulation.  Studying the response of mitochondrial movement to pharmacologic alterations in 

cellular ion concentrations, neuronal activity and mitochondrial activity can elucidate some 

aspects of movement regulation.  Almost every study to date has applied drugs universally to 

cells on a coverlip through pre-incubation and/or perfusion.  This is more physiologically 
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relevant in some cases than in others.  For example, in a model of ischemic excitotoxicity during 

which glutamate release is known to increase profoundly and cause elevated Ca2+ entry into 

cells, global perfusion of neurons with glutamate seems appropriate (Rintoul et al., 2003b).  

During ischemia, physiologic glutamate release from cells occurs at presynaptic terminals with 

glutamate-containing vesicles as well as by reverse transport of glutamate through glutamate 

transporters (Nishizawa, 2001).  Presumably, drug perfusion might activate some glutamatergic 

receptors that would not normally encounter physiologically released glutamate, but this is 

probably a minor concern given the substantially overactivated glutamatergic signaling that 

occurs during excitotoxicity. 

In another situation where researchers attempted to conclude that locations of 

physiological [Ca2+]i spikes recruit mitochondria for Ca2+ uptake, vasopressin was applied 

systemically to mobilize Ca2+ from ER/SR stores in the H9c2 cardiac cell line (Yi et al., 2004).  

This resulted in increased [Ca2+]cyto that was roughly simultaneous with reduced mitochondrial 

motility.  However, the authors’ conclusion that mitochondria stop specifically at ER/SR where 

[Ca2+]i might be highest was weakened by their findings that (1) cessation of mitochondrial 

movement occurred throughout entire cells, (2) no colocalization was shown between ER and 

mitochondria and (3) mitochondrial Ca2+ uptake was not even demonstrated except in cells 

where microtubules were disrupted by nocodazole.  Furthermore, no difference in [Ca2+]i was 

seen between vasopressin-treated control cells and cells where mitochondria were depolarized 

with extremely high concentrations of FCCP/oligomycin.  This argues against the idea that 

mitochondria were needed to uptake the Ca2+ concentrations released in their experiments.  On 

the other hand, their [Ca2+]cyto measurements, which were performed with the fluorescent Ca2+-

indicator fura-2, did not have the spatial resolution to detect microdomains of more elevated 
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[Ca2+]i that would be expected near ER.  Since most mitochondria already stopped moving when 

[Ca2+]cyto reached 500 nM, recruitment to [Ca2+]i microdomains in their experiments is unlikely 

and actually suggests impaired movement might be an inadvertent rather than intentional 

consequence of elevated [Ca2+]cyto.  Regardless of the flaws in this study, [Ca2+]i microdomains 

are still highly regarded as potential targets for mitochondrial trafficking. 

Previous examinations of intact mitochondrial function in the form of ψm or ATP 

synthesis as a requirement for normal mitochondrial movement have also employed global drug 

perfusion.  Use of uncouplers such as FCCP indicates that ψm depolarization inhibits 

mitochondrial function (Rintoul et al., 2003b; Vanden Berghe et al., 2004).  However, by 

applying the drug to entire coverslips, certain confounding factors are exacerbated.  For example, 

uncoupling oxidative phosphorylation alone dissipates ψm and consequently removes the driving 

force for protons into the mitochondrial matrix through ATP synthase.  Instead, protons flow in 

the opposite direction and cellular ATP can be rapidly depleted (Nicholls and Ward, 2000).  

Thus, mitochondrial movement could be impaired largely due to lack of mitochondrially-

produced ATP rather than just ψm depolarization.  Indeed, perfusion with the ATP synthase 

inhibitor oligomycin, which also results in ~5 mV ψm hyperpolarization, has been shown to stop 

mitochondrial movement (Chapter 3) (Scott and Nicholls, 1980).  Yet this is also not a 

straightforward conclusion because ATP is still provided through the glycolytic pathway and 

molecular motors are known to operate at very low ATP concentrations (Hollenbeck, 1996).  

Another problem with FCCP is that it is a protonophore which is not necessarily selective for 

mitochondrial membranes and it can also disrupt ion homeostasis either directly or as a result of 

effects on mitochondrial ψm and ATP synthesis.  Plasma membrane depolarization, elevated 

[Na+]i and cytoplasmic acidification were observed in isolated nerve terminals with nM 
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concentrations of FCCP (Tretter et al., 1998).  Importantly, intracellular Ca2+ homeostasis can be 

influenced by altered Na+ homeostasis since the ions are often exchanged in unison.  In carotid 

body cells, FCCP also blocked K+ conductances and caused voltage-gated Ca2+ entry due to 

plasma membrane depolarization (Buckler and Vaughan-Jones, 1998).  Although mitochondrial 

sequestration of Ca2+ is relatively minor in the basal state, we have demonstrated a small increase 

in [Ca2+]i after FCCP treatment (Chapter 2).  This can further complicate interpretation of the 

effects of drugs that dissipate ψm and inhibit ATP synthase because elevated cytosolic Ca2+ is 

known to impair mitochondrial movement (Rintoul et al., 2003b; Yi et al., 2004).  Furthermore, 

the mitochondrial rounding seen after excitotoxic elevations of [Ca2+]i can still be observed, 

albeit to a lesser degree, with FCCP treatment alone (unpublished observations).  Therefore, 

while investigations of mitochondrial function yield some interesting interpretations about 

movement regulation, the global perfusion of drugs produces multiple physiological changes in 

whole cells that can also influence movement indirectly. 

A third tactic used to understand the regulation of mitochondrial movement was by 

global pharmacologic modulation of synaptic activity.  Our analysis of mitochondrial 

localization and trafficking to pre- and postsynaptic sites relied on long- and short-term 

treatments of neurons with modulators of Na+ channel activity to achieve synaptic silence and 

overactivity (Chapter 3).  This is a reasonable approach to gaining a global view of 

mitochondrial trafficking in entire cells when all synaptic sites are presumed to be behaving 

similarly.  The case is simpler when considering synaptic silence by TTX treatment because 

action potential propagation is blocked, thus activation of postsynaptic receptors do not result in 

signal transmission down axons and presynaptic terminals do not depolarize for neurotransmitter 

release.  Cell-to-cell communication ceases as evidenced by lack of synchronous [Ca2+]i 
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transients in cultures.  Our global approach to silencing synaptic activity actually was ideal for 

revealing an overall increase in nonspecific mitochondrial movement that was corroborated by 

different qualitative measurements by Li et al. (2004).  This finding would clearly be obfuscated 

if fewer mitochondria or smaller regions of neuronal processes were studied.  Interestingly, this 

mitochondrial movement response existed concurrent with the synaptic remodeling that is known 

to occur with prolonged inactivity, although that was not explicitly shown in these experiments 

(Kirov and Harris, 1999; Murthy et al., 2001). 

Unfortunately, the examination of mitochondrial movement during global synaptic 

overactivity is much more complicated.  We perfused cells with an inhibitor of Na+ channel 

inactivation which produced robust, recoverable Ca2+ transients as neurons fired spontaneously 

(Chapter 3).  Presumably, this causes larger or prolonged neurotransmitter release that leads to 

postsynaptic overactivation.  Postsynaptically, we looked at mitochondrial trafficking to PSD-95 

clusters, a marker for glutamatergic synapses containing NMDA receptors.  However, we could 

not identify locations of non-PSD-95-labeled postsynaptic sites which surely contribute an 

important population on dendrites.  These include at least GABAergic and cholinergic synapses 

which have been shown to mediate spontaneous synaptic firing in our cultures (data not shown).  

Therefore, the possibility exists that many “nonsynaptic” sites that were used as a control 

comparison to demonstrate specificity for PSD-95-targeted trafficking actually contained 

unlabeled postsynaptic sites.  This is a background signal that probably could not be avoided 

with global drug application even if all true postsynaptic sites could be visualized because the 

high synaptic density on dendrites prevents one active postsynaptic site from being effectively 

resolved from its neighbor.  The complexity is enhanced when activity-dependent synaptic 
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remodeling is considered, which can be a highly variable process in different synapses (Okabe et 

al., 1999; Konur and Yuste, 2004). 

Alternate approaches to overactivating synaptic firing with agents such as agonists of 

excitatory receptors or antagonists of inhibitory receptors would also be experimentally 

complicated.  Perfusion of excitatory stimuli or agonists can result in sustained receptor 

stimulation, thus eliminating the physiological transient [Ca2+]i spiking to be studied.  Membrane 

depolarization by perfusion with high KCl, such as that used by Li et al. (2004) also seemed 

excessively nonphysiological, as it resulted in large sustained Ca2+ influx that slowly recovered, 

following which spontaneous [Ca2+]i were substantially dampened (data not shown).  The use of 

bicuculline, an antagonist of inhibitory GABAA receptors, was quite successful in increasing the 

amplitude of [Ca2+]i transients while maintaining the typical spiking pattern.  However, we also 

uncovered a degree of heterogeneity in our cultured neurons such that a small population of 

neurons actually became synaptically silent during bicuculline treatment, perhaps because they 

received excessive inhibition by non-GABA neurotransmitters.  Concurrent calcium imaging 

would have to be performed during mitochondrial trafficking experiments to confirm that we had 

not selected an anomalous cell.  This would introduce another variable in an already complicated 

system in addition to bordering on practical unfeasibility.  Therefore, while our method of 

measuring mitochondrial trafficking to synapses during synaptic overactivation with veratridine 

was not void of experimental pitfalls, we considered it the most physiological approach to using 

global drug treatment. 
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5.2.3.3 Local pharmacologic manipulations as a future approach for studying mitochondrial 

movement 

The investigation of targets for mitochondrial trafficking, how the functional status of 

mitochondria affects motility, and the functional role that mitochondria play at specific neuronal 

locations can all greatly benefit from shifting pharmacologic modulations from a macro-scale to 

a micro-scale.  For example, instead of perfusing drugs over entire coverslips, a micro-perfusion 

system can be utilized to apply drugs locally over a small segment of neuronal process or over a 

small population of mitochondria.  With regard to the studies described above, local application 

of (1) a Ca2+-mobilizing drug, Ca2+ ionophore or an NMDA receptor agonist could reveal 

mitochondrial recruitment to regions of elevated [Ca2+]i requiring mitochondrial buffering, (2) an 

uncoupler could successfully depolarize a small subset of mitochondria without resulting in 

substantial loss of ATP synthesis or disrupted ion homeostasis, and (3) global TTX treatment 

combined with local application of a postsynaptic receptor agonist or depolarizing agent could 

selectively activate synapses on a very small and measurable segment of neuronal process. 

Measuring mitochondrial trafficking under conditions of locally controlled synaptic 

activity actually opens a wealth of opportunity for the study of the mitochondrial support 

required at different types of synapses with different activities and plasticities, especially when 

combined with electrophysiological techniques.  Furthermore, the function of mitochondria at 

these different synaptic sites as Ca2+-buffers or ATP synthesizers can be explored in detail with 

the combined use of locally applied modulators of ψm and mitochondrial ATP synthesis as well 

as fluorescent calcium- and ψm-indicators.  Some highly informative experiments include (i) 

measuring mitochondrial trafficking to excitatory or inhibitory synapses containing different 

receptor types under various stimulation protocols, (ii) determining how local mitochondrial 
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ATP depletion and/or impairment of mitochondrial Ca2+-uptake influence synaptic firing during 

physiological and long term stimulations, (iii) investigating whether local inhibition of 

mitochondrial function causes recruitment of normally functioning mitochondria and (iv) 

studying whether mitochondria are recruited when synapses are stimulated to undergo short or 

long-term plasticity and what Ca2+-buffering and ATP generating roles they play once recruited.  

In summary, the ease of pharmacologic manipulation of whole neurons has contributed over a 

short time period a great deal to our understanding of mitochondrial movement and the 

influences thereupon.  However, the yield of such methodology is rapidly diminishing because 

there is a real difficulty in achieving specificity of results when drugs can have a host of 

undesired effects on whole cells that alter movement, and the diversity in mitochondrial 

populations and physiological responses to changes in whole neurons can complicate data 

interpretation.  The future of the mitochondrial movement field will benefit substantially from 

more sophisticated, local manipulations and mitochondrial measurements. 

5.3 AN EVALUATION OF STUDIES OF MITOCHONDRIAL TRANSPORT TO 

SYNAPSES 

5.3.1 Using genetic mutants to study mitochondrial movement 

The complexity of studying mitochondrial movement in a controlled manner in wildtype neurons 

has led to the recent use of genetic mutants with disrupted mitochondrial distribution as a tool to 

derive the functions of normal mitochondrial movement (Stowers et al., 2002; Li et al., 2004; 

Guo et al., 2005; Verstreken et al., 2005).  To emphasize the relevance of the dissertation work, 

these reports are all related to proper mitochondrial localization for synaptic function.  These 
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studies contribute some of the most mechanistic details to our understanding of mitochondrial 

distribution and synaptic function.  However, an important caveat is that any genetic alteration 

that grossly affects mitochondrial transport or morphology is also bound to have complex effects 

on ATP distribution and Ca2+ homeostasis that are not only restricted to synaptic sites.  

Additionally, these studies did not usually emphasize the possibility of altered mitochondrial 

function when normal movement and morphology are disrupted. 

5.3.2 Significance of mitochondrial transport to presynaptic terminals for synaptic 

function 

5.3.2.1 Milton mediates mitochondrial transport and distribution in Drosophila neurons 

Stowers et al. (2002) were the first to describe a genetic mutant with disrupted axonal transport 

of mitochondria and defects in synaptic transmission.  They employed a genetic screen of 

Drosophila for mutants with defective photoreceptor function.  Flies were further analyzed by 

electroretinogram to identify those with intact phototransduction but disrupted synaptic 

transmission to second-order cells.  This method identified Milton as a novel protein that when 

homozygously mutated, caused disrupted transmission of a light-evoked response that was 

similar to that seen when synaptotagmin, a protein mediating neurotransmitter release, was 

mutated.  The investigators then showed that endogenous Milton and transfected Milton 

colocalized with mitochondria in peripheral nerves of Drosophila larvae and in HEK293T cells, 

respectively, and that Milton coimmunoprecipitates with kinesin heavy chain (KHC).  

Furthermore, Milton immunostaining was present in synaptic regions of adult brains, and 

mitochondria in Milton mutants and null larvae were absent in photoreceptor terminals and 

instead located entirely within cell bodies.  The overall conclusions were that Milton, through 

139 



some association with KHC, mediates axonal transport of mitochondria to synapses, and that the 

lack of mitochondria at synaptic terminals prevents normal neurotransmission by photoreceptors. 

The Milton study is important as an identifier of a novel protein that is likely to mediate 

mitochondrial transport.  However, their suggestion that Milton is responsible for synapse-

specific mitochondrial trafficking is much less convincing.  This conclusion was largely based on 

finding heavy immunostaining of Milton in brain regions containing high densities of synaptic 

terminals and axons.  The high metabolic activity and Ca2+ fluxes of these regions may simply 

require more mitochondria so that Milton staining indicates overall mitochondrial distribution 

rather than selective transport to synapses over other locations.  This is supported by their data of 

somatically accumulated mitochondria in Milton mutants, rather than a phenotype of normal 

mitochondrial distribution in axons but absent in synaptic terminals.  Another concern is the 

health of the Milton larval mutants used, which were sluggish, did not progress past the second 

larval instar and died 3-5 days after hatching.  Mitochondria are known to redistribute 

perinuclearly in HeLa cells treated with hydrogen peroxide as well as in heat-shocked or TNF-α-

treated fibroblasts (De Vos et al., 2000; Lyamzaev et al., 2004).  Additionally, mitochondria can 

localize around the nucleus when cells are treated with uncouplers and inhibitors of respiration 

(Lyamzaev et al., 2004).  Even if cell health was not compromised enough in Milton mutants to 

cause the abnormal mitochondrial distribution, defects in mitochondrial function were certainly 

possible and could have accounted for the observed phenotype.  No examination of 

mitochondrial function was performed.  In spite of the questionable health of the mutants, 

photoreceptor axons seemed structurally normal and capable of phototransduction.  However, 

terminals were populated by about half the normal amount of synaptic vesicles.  It is really quite 

surprising then that electroretinogram transients associated with synaptic transmission were 
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completely absent unless mitochondrial function or some other mechanism associated with 

neurotransmitter release was also severely compromised.  Neither of these possibilities were 

examined by the authors, but more recent studies have characterized synaptic dysfunctions in 

different mutants in much greater detail (Guo et al., 2005; Verstreken et al., 2005). 

5.3.2.2 Drosophila dmiro mutants lack presynaptic mitochondria and exhibit abnormal 

synaptic transmission with prolonged stimulation 

The study by Guo et al. (2005) provides an interesting contrast to the Stowers work whereby 

disrupted mitochondrial distribution to Drosophila neuromuscular junctions (NMJs) was 

achieved by mutating the mitochondrial Rho-GTPase dMiro.  The Miro family proteins are 

found on the outer mitochondrial membrane and may link cellular signaling events with 

mitochondrial morphology dynamics (Frederick et al., 2004).  Genetic screens identified the 

dmiro mutants as having defective activity-dependent synaptic transmission.  Like the lethal 

Milton mutants, homozygous dmiro mutants displayed abnormal locomotion, paralysis and death 

in the larval to early-pupal stage.  Mitochondria were scarce in NMJ axons and presynaptic 

terminals and were instead arranged in rows in neuronal cell bodies.  Additionally, there were an 

increased number of synaptic boutons but they were abnormally small and clustered and lacked 

typical microtubule loops.  Although some vesicular transport impairment was found in mutant 

axons, NMJs contained the normal number of synaptic vesicles and synapses.  Interestingly, 

reintroducing dMiro presynaptically in mutants largely restored normal synaptic bouton 

structure, microtubule loops and vesicular transport but mitochondrial distribution was 

abnormally restored with accumulations in the most distal bouton of each terminal branch.  

Prolonged or high frequency NMJ stimulation evoked reduced excitatory junctional potentials 

(EJPs) that could not be attributed to defective vesicle recycling since miniature EJP frequency 
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actually increased after stimulation.  Lastly, [Ca2+]i was elevated in resting mutant boutons and 

reached higher amplitude during stimulation than control boutons.  Therefore, the authors 

concluded that dMiro specifically controls anterograde mitochondrial transport and that 

mitochondrial localization to presynaptic terminals is required for adequate neurotransmitter 

release and mitochondrial Ca2+-buffering at NMJs during prolonged stimulation. 

While the dMiro study adds a level of sophistication to the Milton study, the defects in 

their Drosophila mutants are more complicated to interpret.  It is difficult to reconcile that dMiro 

specifically mediates anterograde mitochondrial transport when so many other defects are seen 

with synaptic and microtubule structure as well as vesicle transport.  The likelihood that 

inappropriate mitochondrial distribution alone could account for these other phenotypes does not 

agree with their findings of (1) just a modest 10-45 nM difference in resting [Ca2+]i in boutons, 

which is probably smaller in the remaining cytosol, suggesting that [Ca2+]i homeostasis is not 

grossly disrupted by somatically clustered mitochondria, (2) normal mitochondrial ultrastructure 

and ψm, which indicates mitochondrial ATP synthesis is intact, and (3) microtubule defects in 

dmiro mutant muscles where clustered mitochondria remained distributed throughout the tissue 

so insufficient ATP diffusion could be excluded as a cause.  It should be noted, however, that ψm 

was concluded from only visual observation of the presence of polarized mitochondria using the 

fluorescent dye, JC-1, which accumulates in mitochondria and exhibits different fluorescence 

properties in a ψm-dependent manner.  Although mutants resembled controls, few polarized 

mitochondria were seen in either case and no quantification of ψm was performed. 

While presynaptic expression of dMiro in mutant NMJs restored many synaptic defects 

and redistributed mitochondria to synaptic terminals, the functional consequence of these effects 

were not explored.  Demonstration that mitochondria in “rescued” synaptic terminals uptake 
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Ca2+ during stimulation, which they showed in controls, and that normal [Ca2+]i at boutons and 

EJPs are restored during prolonged stimulation would have supported their case.  Alternatively, 

the rescued synaptic function could be attributed to some restoration of synaptic structure, 

although they had already excluded a problem with the physical ability of vesicles to release 

neurotransmitter and recycle.  Another possibility is that restored vesicle density at terminals 

could account for a rescue of activity.  Impaired vesicle transport in dmiro mutants may have 

caused subtle changes in synaptic vesicle content at boutons that were not detected by their 

measurements.  Proper redistribution of vesicles to synaptic terminals could further complicate 

the attribution of a rescued phenotype to restored mitochondrial transport since vesicles are also 

thought to contribute to Ca2+ regulation at synapses (Israel et al., 1980; Parducz and Dunant, 

1993).  In summary, this investigation provides a great deal of insight into an evolving picture of 

the extent that direct mitochondrial localization to presynaptic terminals is required for 

appropriate function.  It no longer seems that general synaptic function is strictly dependent on 

local supply of ATP and Ca2+ sequestration properties by mitochondria.  Since reduced EJPs and 

elevated bouton [Ca2+] were only observed during prolonged stimulation, mitochondria may 

actually play a role in supporting synapses with heightened activity. 

5.3.2.3 Drp1 mutant synaptic terminals have reduced mitochondria and abnormal 

neurotransmission; mitochondrial ATP facilitates mobilization of the synaptic vesicle reserve 

pool 

Verstreken et al. (2005) used another genetic mutant to study the importance of proper 

mitochondrial distribution for mobilization of reserve pool vesicles in Drosophila NMJs.  The 

animals they used were mutant for an ortholog of the mitochondrial fission protein, drp1.  

Mitochondria in mutant motor neurons had normal ψm but showed increased density in cell 
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bodies whereas mitochondria in axons displayed an elongated morphology.  Synaptic structure 

was not disrupted except for a reduction in the number and hence volume of mitochondria in 

boutons.  Like the dmiro mutants, drp1 mutant NMJs exhibited reduced EJP amplitude during 

prolonged stimulation as well as increased [Ca2+]i at rest and after prolonged stimulation.  

Bathing motor nerves in ATP resulted in a significant but not full recovery of EJP amplitude; it 

was concluded from this finding that ATP depletion in mutants impairs regaining fusion-

competent vesicles.  This is an interesting interpretation given that (1) ~70% of mutant synaptic 

boutons still contained mitochondria, (2) elongated mitochondria were still distributed 

throughout axons, and (3) mitochondrial function was presumably normal.  Furthermore, 

processes at synaptic terminals necessary for neuronal signaling such as recycling of second 

messengers and neurotransmitters consume under 10% of total energy usage for neuronal 

signaling (Laughlin, 2001).  The suggestion then seems to be that a ~75% reduction in 

mitochondrial volume in boutons causes a severe reduction in ATP supply that cannot be met by 

diffusion of ATP from the abundant mitochondria in the axon shaft but can be partially met by 

diffusion of exogenously supplied ATP.  It might be considered that more synaptic dysfunctions 

would be observed if ATP depletion were such an issue.  Yet Ca2+ clearance from terminals, 

which depends on ATP-powered pumps and direct mitochondrial uptake, was normal during 

stimulation periods under 30 seconds and vesicle endocytosis and exocytosis were fully 

operational even after prolonged stimulation.  One other caveat to their findings of rescued EJP 

potentials after nerves were bathed in ATP is that extracellular ATP can also cause synaptic 

excitation by activating purinergic receptors.  In fact, exogenous ATP application at 

concentrations 1-2 orders lower than that used by Verstreken et al. has been shown to promote 

144 



excitatory postsynaptic currents and [Ca2+]i increases in rat hippocampal neurons, vagus neurons 

and cerebellar Purkinje neurons (Illes and Alexandre Ribeiro, 2004). 

 The authors then used the membrane probe FM1-43 to demonstrate an interesting 

difference in vesicle pool mobilization in drp1 mutants that they again attributed to insufficient 

mitochondrial ATP supply.  FM1-43 dye is nonfluorescent in aqueous solution but becomes 

fluorescent when it inserts into cell membranes.  It is a valuable tool for labeling actively firing 

synaptic terminals because recycling vesicles uptake the dye and become highly fluorescent.  

Drp1 mutants exhibited normal endocytosis and exocytosis of vesicles into the recycling pool, 

which is mobilized and continuously recycled during moderate physiological stimulation 

(Rizzoli and Betz, 2005).  However, when the stimulation protocol was modified to label both 

the recycling and reserve vesicle pool, which is seldom recruited during physiological activity, 

less dye was taken up by mutant synapses and less dye was retained after the recycling pool was 

unloaded.  This was said to indicate a defect in reserve pool vesicle cycling so they were not 

loaded during the protocol.  Yet it is also possible that the elevated bouton [Ca2+] in mutants 

facilitated the release of reserve pool vesicles during stimulation of the recycling pool.  The 

recycling vesicle pool loading and unloading profiles in mutants were almost identically 

recapitulated in controls treated with either the electron transport chain inhibitor antimycin or 

ATP synthase inhibitor oligomycin.  Lastly, more retained dye was evident in oligomycin treated 

terminals compared to control when high stimulation was provided to unload the reserve pool.  

While the conclusion was made that mitochondrial ATP synthesis was required for reserve pool 

vesicle loading and/or mobilization, these drugs were applied to entire larval preparations rather 

than just at the boutons being measured.  Therefore some disagreement exists between their 

similar findings in neurons with global block of ATP synthesis compared to drp1 mutants where 
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mitochondria are theoretically capable of normal ATP synthesis but a problem might exist in 

locally distributing that ATP to boutons.  It should be noted that glycolytic ATP synthesis is 

unaccounted for, although this is thought to contribute under 5% of cellular ATP in the brain 

(Erecinska and Silver, 1989).  Treatment of drp1 neurons with ATP restored the vesicle 

loading/unloading profile, but this may also be an effect on ATP-dependent restoration of [Ca2+]i 

homeostasis in terminals which might affect vesicle release.  Their attempt to rule out 

mitochondrial Ca2+ sequestration as an influence using TPP+ was not adequate because TPP+ 

inhibits mitochondrial efflux rather than uptake by blocking the mitochondrial Na+/Ca2+ 

exchanger (Karadjov et al., 1986).  In fact, there are no known permeable blockers specifically of 

mitochondrial Ca2+ uptake.  Finally, their results suggest that the drp1 blockage of reserve pool 

mobilization is mediated by inhibition of myosin light chain kinase (MLCK) which normally 

activates MLC for binding with actin.  Myosin mediates vesicle transport on actin filaments, but 

it may also mediate mitochondrial docking on actin (Chada and Hollenbeck, 2004).  

Maldistribution of mitochondria at synaptic terminals in their control neurons treated with 

MLCK inhibitors was not examined and could alter their data interpretations. 

 In summary, Verstreken et al. offer a mechanistic study of unprecedented detail for the 

mitochondrial ATP dependence of vesicle pool dynamics in Drosophila NMJs.  However, the 

lack of characterization of mitochondrial function coupled with the global application of drugs 

that significantly affect function of all mitochondria results in ambiguities about (1) the role of 

ATP supply in general to power vesicle cycling vs. local ATP supply by mitochondria at 

presynaptic terminals and (2) the role of altered [Ca2+]i homeostasis in terminals that can be 

affected by both local mitochondrial sequestration and ATP production and have important 

implications for neurotransmitter release especially during potentiating stimuli (Tang and 
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Zucker, 1997).  This study would benefit greatly from adapting pharmacologic applications to a 

more minute scale, as discussed in Chapter 5.2.3, which might also remove the need to perform 

studies in an inadequately characterized genetic mutant. 

5.3.3 Mitochondrial transport to morphogenic dendritic spines 

Finally, an investigation by Li et al. (2004) of mitochondrial localization at dendritic spines 

provides an interesting postsynaptic comparison to the previous presynaptic studies that also 

highlights the compartmental differences in mitochondrial movement and morphology that we 

describe in Chapter 3.  Using hippocampal neurons, the authors conclude that mitochondria 

localize to spines during their development and their morphogenesis after stimulation in a 

manner dependent on drp1-mediated mitochondrial fission.  First, mitochondrial association with 

dendritic protrusions was shown to decline as hippocampal neurons aged in vitro.  Although it is 

logical that mitochondria are needed to support recruitment of synaptic components and 

assembly of postsynaptic specializations during synaptogenesis, it is somewhat surprising that 

mitochondria are not retained locally to mediate Ca2+ signaling at excitatory synapses.  If 

developing spines act as mitochondrial “docking” signals, then their finding also contrasts with 

our observations of increased rather than decreased mitochondrial movement in synaptically 

immature neurons.  However, the authors only report an 8-12% association between developing 

spines and mitochondria that could be overlooked in our study.  Additionally, the neurons we 

used, which were cortical rather than hippocampal, may not have contained enough sites of 

synaptogenesis to exert a noticeable effect on mitochondrial movement.  After intense 

stimulation of cultured neurons and hippocampal slices, formation of new dendritic protrusions 

were seen, the association between mitochondria and protrusions increased, mitochondria 
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occupied a smaller fraction of the dendrite shaft and mitochondria moved at slower velocities.  

This was suggested to be due to fission of mitochondria and redistribution out of the dendrite 

shaft into protrusions.  However, it should be noted that the stimulation protocol used – 3 min 

perfusions with 90 mM KCl at 10 min intervals repeated in quadruplicate – causes substantial 

Ca2+ influx into cells that recovers slowly.  In fact, we tested this very protocol on our cortical 

neurons and found that recovery of spontaneous synaptic activity was markedly reduced after 

each KCl pulse and completely lost by the end of the protocol.  Elevated [Ca2+]i is an important 

consideration because it can cause mitochondria to stop moving and shorten as Li et al. 

described.  They confirm that blocking Ca2+ entry through L-type Ca2+ channels or NMDA 

receptors prevents the reduction in movement.  Therefore, the cessation of mitochondrial 

movement could very well be a broad consequence of elevated [Ca2+]i with little relation to 

localization into new spines. 

To test the role drp1-mediated mitochondrial fission in redistributing mitochondria into 

dendritic protrusions after stimulation, the investigators transfected neurons and slices with drp1 

and a dominant negative mutant, drp1-K38A.  Strangely, mitochondrial morphology was longer 

in drp1-transfected dendrites where fission was shown to predominate.  Likewise, mitochondrial 

morphology was shorter and even punctate in drp1-K38A-expressing dendrites where fusion was 

more frequent than fission.  Compared to controls, more spines were seen in drp1-transfected 

cells and more PSD-95 puncta formed after KCl treatment.  Fewer spines were seen and no 

increase in PSD-95 density was observed after KCl treatment in drp-K38A-transfected cells.  

The interpretation that modifying mitochondrial morphology independent of some regulatory 

signal in the cell can cause mitochondria to adopt a new function, such as the formation of new 

spines, suggests morphology regulation might be an initial signaling step rather than an effecter.  
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This is somewhat difficult to reconcile with the identification of regulatory proteins for 

mitochondrial morphology and the ability to alter morphology with different stimuli as described 

in Chapters 1.5 and 1.6.  Furthermore, it seems to shift the prevailing theory about mitochondrial 

trafficking and morphology from (A) mitochondria being recruited to signals originating at 

morphogenic spines or other sites of mitochondrial demand to (B) smaller or divided 

mitochondria providing a novel function in neurons such as inducing spine formation 

irregardless of the physiological state of the neuron.  This seemingly counterintuitive conclusion 

suggests that divided mitochondria would have increased metabolic activity, which has not been 

reported thus far.  Another possibility is that the increased number of mitochondria generated by 

fission may now be freely recruited to targeting factors that could not be served by the normal 

number of mitochondria. 

The authors argue that drp1 is required for activity-dependent regulation of mitochondrial 

movement since drp1-K38A transfected cells did not demonstrate any changes in movement with 

TTX or KCl treatment that were seen in controls.  However, if mitochondrial movement is 

related to recruitment into spines which might explain why TTX increases movement in controls, 

then movement would be expected to be elevated in drp1-K38A-transfected cells because they 

have fewer spines and do not demonstrate KCl-induced increase in PSD-95 density.  

Alternatively, drp1-K38A may be toxic to cells.  This is supported by their results in transfected 

neurons because (1) mitochondria were punctate and resembled that which is observed in injured 

cells, although no measure of mitochondrial function was made, (2) mitochondrial movement 

was reduced as is the case in injured cells, although there was a large inconsistency between 

separate measurements in drp1-K38A transfected cells, (3) spine number was markedly reduced 

perhaps due to degeneration, (4) PSD-95 density was not upregulated after KCl treatment 
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perhaps because neurons were unhealthy and did not confer the appropriate ion changes and 

signaling events necessary for postsynaptic remodeling, and (5) activity-dependent alterations in 

fusion and fission events was absent, even though mitochondrial fusion mechanisms should still 

be intact and were shown to predominate after TTX treatment in control and even drp1-

expressing cells. 

Although this study uses the much simpler experimental system of cultured cells and 

slices rather than genetic mutants, it is perhaps the least clear story.  The mitochondrial 

morphology of transfected cells contradicts the known function of drp1 as a fission protein and 

the data are too incohesive to implicate drp1-mediated fission as a regulator of mitochondrial 

morphology and distribution dynamics for spine morphogenesis.  What is most convincing 

though, is that mitochondria can be observed extending into dendritic protrusions over the course 

of a few hours after stimulation.  This implicates morphogenic spines as a new target for 

mitochondrial trafficking.  The fact that only a small fraction of protrusions seemed to recruit 

mitochondria, approximately 3% before and 12% after stimulation, further suggests that 

mitochondria are dynamically trafficked to subsets of synapses with specific activity 

characteristics.  The dissertation work examined mitochondrial trafficking with high temporal 

resolution while the work of Li et al. achieved high spatial resolution, and both studies are in 

agreement.  The next logical step is to identify distinguishing functional qualities of synaptic 

sites that recruit mitochondria.  Perhaps it is also these very qualities that serve as cues for 

mitochondrial targeting. 
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5.4 IMPAIRMENT OF MITOCHONDRIAL MOVEMENT IN INJURY AND 

DISEASE 

Mitochondrial trafficking is emerging as a more complex process than previously appreciated.  

On the one hand, neuronal development seems to proceed even when anterograde movement of 

mitochondria is hindered, and presynaptic function is even intact during short stimulations.  

Although the requirements for mitochondrial localization and recruitment to synapses may be 

dictated by other qualities of individual synaptic firing, mitochondrial distribution throughout 

axons and dendrites seems important for neuronal health.  After all, defective mitochondrial 

movement likely contributes to the early death of mutant Drosophila larvae where mitochondria 

are clustered near the cell body.  In this section, we discuss how acquired impairments in 

mitochondrial movement can be related to neuronal injury and disease.  Although this has been 

implicated in a few studies, a clear cause and effect has yet to be demonstrated.  We address 

mitochondrial trafficking impairments in both acute, severe insults as well as in the development 

of localized synaptic dysfunctions and neuritic degeneration relevant to chronic 

neurodegeneration. 

5.4.1 Neuritic degeneration 

Central neurons are highly susceptible to injury.  They are postmitotic and therefore cannot 

reproduce after injury like cells of many other tissues.  Unlike peripheral neurons, central 

neurons also have a highly limited capacity for axonal regeneration.  This is because brain 

extracellular matrix lacks proteins such as laminin and fibronectin that promote axon growth, and 

mature neurons typically stop synthesizing intracellular proteins, such as GAP-43, that mediate 

axon growth during development.  Neuronal injury can also be extensively destructive because 
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cells that synaptically connect to or receive synaptic connections from injured neurons often 

degenerate (Kandel et al., 1991). 

Axonal degeneration may be a more substantial process than dendritic degeneration and it 

has certainly been studied more extensively.  Axons are much longer than dendrites and distal 

regions are therefore more removed from protein synthetic machinery near the cell soma and 

proximal dendrites that could facilitate reaction to injury.  Also, the highly branched nature of 

axons might make segments downstream from the site of injury more vulnerable to deterioration.  

Wallerian degeneration is activated after severe traumatic injury such as axotomy and is 

characterized by swelling of the axon stumps due to continued axonal transport, rapid loss of 

synaptic transmission in the distal terminals, cytoskeletal breakdown and degradation of the 

distal axonal segment.  Glial cells assist in removing cellular debris and synaptic contacts 

between the injured cell and postsynaptic neurons (Griffin et al., 1995).  Elevated Ca2+ entry also 

occurs in the damaged axon and can disrupt cell function extensively as described in Section 1.7.  

Chromatolysis occurs in some cells, which involves restructuring of the nucleus and ER for 

increased RNA and protein synthesis likely related to repairing the severed axon (Kandel et al., 

1991).   

Selective elimination of neuronal processes also occurs during less severe neuronal 

injury, disease and aging.  This can have a protective role by removing sources of dysfunctional 

synaptic transmission.  “Dying back degeneration” is a term used to describe initial degeneration 

of distal axon segments that proceeds back toward the cell body and results in axon 

fragmentation resembling Wallerian degeneration (Cavanagh, 1964).  The mechanisms of 

neuritic degeneration are not well understood, but probably involve some sequence of NAD 

metabolism, microtubule and neurofilament breakdown, and activation of the ubiquitin-
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proteasome system perhaps for degradation of neuroprotective proteins (Zhai et al., 2003; Araki 

et al., 2004).  Neuritic degeneration has been shown to be independent of caspase-dependent cell 

death such that caspase inhibition and Bcl-2 overexpression can prevent apoptosis but not axon 

degeneration.  However, delaying axonal degeneration in a genetic mouse model of spinal 

muscular atrophy actually improved symptoms and increased lifespan (Luo and O'Leary, 2005).  

Gradual degeneration of neuronal processes therefore seems to be an important contributor to 

neurodegenerative symptoms before overt neuron loss. 

Since trafficking of mitochondria through axons and dendrites is important for 

appropriate ATP distribution and Ca2+-buffering, notably for neurotransmission, impaired 

mitochondrial movement would likely cause synaptic dysfunctions, ATP loss, altered [Ca2+]i 

homeostasis and production of ROS.  Some or all of these pathological findings characterize HD, 

PD, AD, ALS, spinobulbar muscular atrophy and ischemic injury.  Furthermore, our dissertation 

work and other studies confirm that mitochondrial transport is defective in these conditions and 

suggest that it may be a pathologic contributor common to many neurodegenerative processes. 

5.4.2 Extent and distribution of stopped mitochondria as a determinant of pathology 

The dissertation work contributes an exciting perspective for future studies whereby 

mitochondrial movement may actually be impaired with regional selectivity in neurons under 

different injury conditions (Chapter 3).  Not only is the spatial distribution of impaired 

mitochondrial transport important, but the temporal span and intensity of the insult also 

contribute to the degree of impaired movement.  Therefore, pathophysiological events, neuritic 

degeneration and clinical manifestations may have remarkably different manifestations 

depending on whether mitochondrial transport is affected throughout neurons, in axons, 
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dendrites, or in localized regions of certain neuronal processes, and whether movement recovers.  

For example, when mitochondrial movement is slowly and progressively impaired, degeneration 

will probably start in distal neuronal processes where transport from the cell body poses the 

greatest challenge.  When mitochondrial movement halts suddenly, neuritic degeneration might 

be expected to proceed rapidly to cell death, unless mitochondrial movement recovers before 

irreversible downstream signaling cascades are activated.  The discussion that follows speculates 

on the degenerative processes involved in various neuronal injuries as the characterization of 

mitochondrial movement impairments causing clear pathological consequences remains largely 

undefined. 

5.4.2.1 Whole-cell impairments in mitochondrial movement 

Our findings indicate that pathological conditions that cause ψm depolarization, inhibition of 

mitochondrial ATP synthesis, and elevated [Ca2+]i throughout entire neurons will also impair 

mitochondrial movement uniformly in axons and dendrites during the insult (Chapter 3).  As 

discussed in Chapters 1.7 and 1.8, these three attributes are highly intertwined.  Mitochondrial 

Ca2+-uptake can depolarize ψm which would reduce the drive for ATP synthesis.  Depolarization 

of ψm can also result from electron transport chain defects, which would limit ATP synthesis and 

mitochondrial Ca2+ uptake.  Elevated cytosolic [Ca2+] may also mediate morphologic remodeling 

of mitochondria, the physiological consequence of which is yet to be determined.  The effects of 

impaired mitochondrial ATP synthesis on powering active Ca2+ clearance and maintaining ion 

gradients that can affect oxidative phosphorylation depend on the compensatory ability of 

glycolytic ATP production and probably become more important over long time periods. 

 Impairment of mitochondrial movement in a cell by mechanisms that involve 

dysfunctions of any given mitochondrion is probably most relevant to genetic diseases of 
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mitochondrial proteins, but could also include chronic neurodegenerative diseases.  First, let us 

consider diseases caused by mtDNA mutations.  Mitochondria contain multiple copies of 

mtDNA which can be nonidentical, so respiratory chain malfunction and expression of a 

diseased phenotype depends on adequate accumulation of mtDNA mutations within both 

mitochondria and cells, the severity of the mutation, the replicative advantage of the mutation 

over the normal allele, and the cell’s vulnerability to the mutation (Graff et al., 2002).  Even 

though mutated mtDNA may initially be contained in a subpopulation of mitochondria, sharing 

of mtDNA varies between organelles and can contribute to distribution of mtDNA mutations 

throughout the entire mitochondrial population.  As a few examples, mitochondrial damage that 

impairs movement could result from respiratory defects due to mutations in mtDNA encoding 

mitochondrial tRNA causing mitochondrial encephalopathy lactic acidosis and stroke-like 

episodes (MELAS) and myoclonus epilepsy and ragged red fibres syndrome (MERFF) and 

mtDNA mutations encoding complex I genes leading to Leber’s hereditary optic neuropathy 

(LHON). 

Defective mitochondrial proteins can also be acquired from mutations of nuclear-encoded 

genes.  The incorporation into mitochondria of abnormal proteins transported from the cytoplasm 

is probably nonspecific and heterogeneous between individual organelles.  Diseases arising from 

mutated nuclear-encoded mitochondrial genes include Leigh syndrome caused by a complex II 

defect and encephaolomyopathy resulting from a complex I gene mutation (Orth and Schapira, 

2001; Graff et al., 2002).  Other diseases caused by genetic mutations in nuclear genes encoding 

mitochondrial proteins unrelated to oxidative phosphorylation, including Friedreich’s ataxia, 

hereditary spastic paraplegia and Wilson’s disease involve pathogenic processes such as 

disrupted metal homeostasis and oxidative stress that are not as easily attributable to the entire 
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mitochondrial population.  As we have shown, zinc impairs mitochondrial movement differently 

in axons and dendrites, and a compartmental distinction for the cessation of movement by 

oxidative stressors has not yet been made. 

The pathogeneses of chronic neurodegenerative diseases are also highly complex.  

However, common features of AD, ALS and HD are ψm depolarization, respiratory defects and 

abnormal [Ca2+]i homeostasis (Chapter 1.8).  It is reasonable to predict that prolonged disease 

courses, coupled with ongoing disruptions such as oxidative stress and mtDNA damage, may 

predispose the vast mitochondrial population to injury.  Our findings of indiscriminately 

impaired mitochondrial movement with rotenone, the complex I inhibitor implicated in PD, 

provides a disease correlate where oxidative stress is thought to be the primary effecter of 

neuronal death, although our laboratory has also found that chronic subtoxic rotenone treatment 

depolarizes ψm (unpublished data).  It should be noted that global mitochondrial trafficking 

defects in chronic disease can also be caused by factors other than mitochondrial dysfunctions, 

such as interactions between diseased proteins and cytoskeletal or motor protein constituents 

(Trushina et al., 2004).  Additionally, concurrent local mitochondrial trafficking defects can be 

contributed by insoluble protein inclusions that form with or without compartmental specificity 

in AD, ALS and HD as discussed later in this chapter. 

Chronic mild mitochondrial dysfunction can gradually slow mitochondrial transport and 

lead to synaptic and cellular dysfunctions at an even slower pace corresponding to the protracted 

course of neurodegenerative disease.  This is supported by findings of only modest disruption in 

vesicle cycling at synaptic terminals when mitochondrial ATP synthesis is blocked, with the 

greatest defects in mobilization of the reserve pool which is not recruited at physiological 

stimulation levels anyway (Verstreken et al., 2005).  Furthermore, if mitochondrial movement 
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stops “in place” as our experiments show, then mitochondria that presumably still retain some 

functional capacity would continue to be well distributed in neuronal processes and support cell 

demands statically.  The overall consequence of persistent and progressive mitochondrial 

movement impairment can be considered nonspecific dysfunction at pre- and postsynaptic 

terminals and degeneration of axons and dendrites.  This would likely progress in a dying back 

degenerative pattern initiating in distal neuronal process segments, especially axons, that are less 

likely to receive ATP from the large mitochondrial population in the cell body.  Similarly 

nonspecific degeneration of pre- and postsynaptic neurons contacting the diseased cells could 

then follow, probably with postsynaptic neurons degenerating first in correspondence with the 

earlier axonal degeneration of the injured neurons.  In summary, impaired mitochondrial 

trafficking can be an early initiator of synaptic dysfunction and neuritic degeneration that may 

take years to cause substantial neuron loss and clinical symptoms in progressive diseases. 

5.4.2.2 Axon- or dendrite-specific impairments in mitochondrial movement 

One of the most important contributions of this dissertation work is the discovery that 

mitochondrial movement can be impaired differently in axons and dendrites after neuronal 

insults relevant to acute injuries such as ischemia and trauma.  Movement impairment could be 

characterized as either cessation during the insult or the irrecoverable persistence of that 

cessation after drug is washed away.  Both situations were demonstrated selectively in dendritic 

mitochondria – the former after glutamate treatment and the latter after zinc/chelation treatment.  

Additionally, acute recovery of mitochondrial movement after uncoupling oxidative 

phosphorylation was only observed in axons. 

These are interesting findings because studies on neuritic degeneration often focus on 

axons rather than dendrites.  In fact, it might be presumed that dendrites are less vulnerable to 
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dysfunction and degeneration because even their most distal ends are relatively close in 

proximity to the cell body from where proteins mediating repair can be more rapidly recruited.  

Additionally, mitochondria are more fully distributed through dendrites, so it might be predicted 

that ATP can be spatially dispersed over a reasonable area even as mitochondrial movement and 

function become compromised.  The most significant consequence of impaired mitochondrial 

trafficking in dendrites might therefore be the dynamic recruitment of mobile mitochondria into 

excitatory spines.  This may be especially relevant as remodeling of postsynaptic structures 

might be relevant during intense release of neuromodulators of excitatory synapses, including 

glutamate and zinc, into the extracellular space during ischemic or epileptic events (Benveniste 

et al., 1984; Lobner and Lipton, 1990; Bresink et al., 1996; Paoletti et al., 2000).  Postsynaptic 

dysfunction might therefore be an early consequence of selectively impaired mitochondrial 

movement or slow recovery of movement in dendrites during excitotoxic injury involving 

glutamate and zinc. 

The idea that irreversible cessation of mitochondrial movement in dendrites leads to 

degeneration and cell death is supported by the finding that under our experimental conditions, 

chelation of zinc after a neurotoxic exposure selectively restores axonal mitochondrial movement 

but does not provide any protection against neurotoxicity (Chapter 3 and Malaiyandi et al., 

2005).  If impaired dendritic mitochondrial movement and subsequent dendritic degeneration 

significantly mediate zinc-induced toxicity, then findings in other experiments demonstrating 

chelation-mediated protection from cell death may have been performed during the permissive 

exposure durations or concentrations where dendritic mitochondrial movement could still be 

reversed (Canzoniero et al., 2003).  Further support for cessation of mitochondrial movement and 

general disruption in dendrites comes from our studies with glutamate.  After an intense, acute 
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glutamate exposure, mitochondria stop moving in all dendrites with recovery over hours and in 

proximal axons with recovery over minutes while mitochondria in distal axons are spared.  Yet 

30-50% neurons proceed to die by delayed excitotoxicity.  Prolonged cessation of movement and 

mitochondrial dysfunction in dendrites may exacerbate recovery of cytoskeletal disruptions, 

[Ca2+]i homeostasis and synaptic function.  Indeed, loss of dendritic spines after severe ischemia 

and recovery of spine structure after reperfusion may be mediated in part by effects on 

mitochondrial movement (Zhang et al., 2005). 

While our results strongly implicate regional selectivity of impaired mitochondrial 

movement as a potential cause of dendritic degeneration during acute neuronal injury, the same 

reasoning may be applied to axonal degeneration in AD.  One aspect of AD pathophysiology 

begins with overexpression of tau, a microtubule-associated protein (MAP) found in axons, 

which blocks motor protein binding sites on microtubules and thus reduces axonal transport of 

mitochondria, vesicles and endoplasmic reticulum (Ebneth et al., 1998).  Tau 

hyperphosphorylation is thought to be a protective measure taken by the cell to dislodge the 

protein from microtubules.  However, hyperphosphorylated tau forms neurofibrillary tangles in 

axons that can further act as physical roadblocks for transport.  Lastly, the dislodgement of tau 

exposes microtubules to severing proteins that can ultimately result in axonal degeneration (Baas 

and Qiang, 2005).  Therefore, mitochondrial movement can be selectively impaired in axons or 

dendrites, contributing to degeneration of the affected processes. 

5.4.2.3 Discrete sites of impaired mitochondrial movement 

Mitochondrial transport can be inhibited by roadblocks of insoluble protein accumulations in 

neuronal processes.  This mechanism is implicated in several neurodegenerative diseases with 

protein abnormalities and probably occurs concurrently with the gradual decline in trafficking of 
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damaged mitochondrial described in the previous sections.  Discrete sites of movement 

impairment represent a different pathology where the mitochondrial pool as a whole probably 

retains normal function, but gradual titration of organelles out of the pool reduces the availability 

of recruitable mitochondria and the efficiency with which ATP can be dispersed and [Ca2+]i can 

be buffered.  Since mitochondrial movement is so dynamic and can probably compensate for 

reduced mitochondrial number quite effectively, synaptic and neuritic degeneration likely 

develops over a very long time period.  Synaptic dysfunction may actually be one of the first 

manifestations since we and others have shown mitochondrial trafficking to synaptic sites over 

minute to hour timeframes (Chapter 3 and Li et al., 2004). 

Cytosolic aggregates and transport defects are part of the pathology of multiple diseases, 

although it is not always clear if the aggregates are acting as physical roadblocks or if they 

impair trafficking more broadly by interactions with transport-related proteins and chaperones.  

Furthermore, the conclusion that transport is inhibited often relies on fixed images revealing 

particle accumulations rather than dynamic particle tracking that would provide qualitative and 

quantitative information about the defect.  With relation to HD, we specifically found 

mitochondria to accumulate around and become immobilized by mutant Htt aggregates (Chapter 

4).  In AD, neurofibrillary tangles and altered APP expression are associated with axonal 

transport defects (Ebneth et al., 1998; Torroja et al., 1999; Gunawardena and Goldstein, 2001).  

Formation of neurofilament “torpedoes” and a corresponding reduction of organelles were found 

in Purkinje cell axons of a patient with the polyglutamine disease spinocerebellar ataxia type 6 

(Yang et al., 2000).  In spinobulbar musclar atrophy, androgen receptors containing a mutant 

polyglutamine repeat aggregate in neurites and colocalize with mitochondria (Piccioni et al., 

2002).  As a final example, increased mitochondria, especially with a rounded morphology, were 
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observed in axon hillocks and initial axonal segments of anterior horn cells in human and mouse 

models for ALS (Sasaki and Iwata, 1996; Sasaki et al., 2005).  This is thought to be caused by 

impeded axonal transport of mitochondria by neurofilament accumulations near the cell soma, 

ultimately causing axonal degeneration (Collard et al., 1995). 

It is less straightforward to predict how neuronal processes will degenerate in diseases 

where insoluble proteins aggregates form indiscriminately in a cell.  One possibility is that 

blockage and accumulation of mitochondria by aggregates in distal processes will be more 

severe because those regions receive less total mitochondrial traffic that could help compensate 

for reduced mitochondrial numbers.  Alternatively, it can be predicted that mitochondrial 

movement would be most significantly impaired where aggregates are largest and where titration 

of organelles is facilitated by high mitochondrial traffic.  The most mitochondrial traffic 

converges on proximal branches of axons and dendrites and the larger caliber of these segments 

probably also permits larger aggregates to form.  It is in these regions where perpetuation of 

mitochondrial accumulation around aggregates and increasing aggregate size is probably 

maximal.  Severe blockages in proximal segments of axons and dendrites could facilitate 

degeneration of all downstream branches.  It is important to note that cytosolic aggregates often 

block other transported proteins and organelles as well, so titration of synaptic vesicles, 

receptors, chaperones and proteasomes can also contribute to cellular dysfunction and 

degeneration. 
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5.5 MECHANISMS FOR REGIONAL DIFFERENCES IN MOVEMENT 

IMPAIRMENTS 

5.5.1 Source of insult 

One potential mechanism to account for mitochondrial movement to preferentially stop in one 

cellular region over another is that the insult is targeted to or distributed over a specific region.  

We showed that mitochondrial movement in axons and dendrites is equally susceptible to 

impairment by elevated [Ca2+]i, but intense Ca2+ entry is rarely distributed over entire neurons 

under pathological conditions.  Instead, the source of stimulus for Ca2+ entry must be considered, 

as well as the locations of Ca2+ entry points in the affected cell.  Elevated glutamate release has 

been demonstrated during ischemic events and traumatic brain injury (Nishizawa, 2001).  

Activation of ionotropic glutamate receptors on dendrites mediates the profound and neuroxtoxic 

Ca2+-influx into cells.  Therefore, it can be expected that cessation of mitochondrial movement 

will be most severe in the dendritic compartment, with axonal involvement dependent on the 

ability for neurons to spatially buffer the elevated Ca2+.  Indeed, our results confirmed this 

regionally selective effect on mitochondrial movement after acute treatment with an excitotoxic 

glutamate stimulus.  NMDA receptors are also known to mediate elevated [Ca2+]i in hippocampal 

neurons during seizures, acquired epilepsy and excitotoxic susceptibility during alcohol 

withdrawal (Nagy, 2004; Raza et al., 2004).  Selective impairments in mitochondrial movement 

may therefore play a pathophysiological role in dendritic degeneration observed in injuries 

involving Ca2+ influx through glutamate receptors (Lin et al., 1997). 

Another example of a localized source of pathologic Ca2+ influx is that which occurs 

during axon shearing and stretch injury after head trauma.  The pathophysiologic process in these 
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cases involves axonal deformation triggering Na+ influx through voltage-gated Na+ channels, 

followed by inward flow of Ca2+ through the Na+/Ca2+ exchanger and voltage-gated Ca2+ 

channels.  Influx of Na+ and Ca2+ may be potentiated by Ca2+-mediated proteolysis of the Na+ 

channel α subunit that prevents its inactivation (Wolf et al., 2001; Iwata et al., 2004).  Altered 

[Ca2+]i homeostasis and prolonged elevations in [Ca2+]i result in secondary damage to axons 

from downstream signaling cascades and mitochondrial failure (Weber et al., 1999).  

Mitochondrial movement can be predicted to stop at the site of axonal injury and may involve 

expanding regions of elevated [Ca2+]i.  Clearance of [Ca2+]i may be further compromised by the 

inability of healthy mitochondria to transport to the damaged axon segment.  Therefore, impaired 

mitochondrial movement in axons may be an important contributor to axonal degeneration after 

traumatic injury. 

A third example of source-specific impairments in mitochondrial movement is that which 

is produced by insoluble protein aggregates in neuronal processes.  The underlying pathologic 

processes governing aggregate formation would dictate any selectivity for axons or dendrites and 

a proximal or distal distribution.  For example, the axonal distribution of tau means 

neurofibrillary tangles form preferentially in axons and block axonal transport in AD.  At least in 

our investigation of mutant Htt aggregates, we found no preference for axonal or dendritic 

aggregate formation nor in the vulnerability of mitochondrial transport in any specific region to 

blockage.  The degree of impairment may therefore rely on qualities such as aggregate size, time 

required for aggregate formation, and amount of mitochondrial traffic in the vicinity of the 

aggregate.  In summary, while all mitochondria may exhibit the same physiological vulnerability 

to movement cessation by certain insults, the physiology of injury and disease can stop 

mitochondrial movement and cause neuritic degeneration with regional selectivity. 
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5.5.2 Influences of axonal and dendritic physiology 

Axons and dendrites differ vastly with regard to anatomy and function, so compartmental 

differences in protein distributions, signaling mechanisms and cytoskeletal arrangements could 

cause mitochondrial movement to stop or recover in different manners.  Studies of C. elegans 

and mammalian motor proteins suggest that different kinesins can display selectively for axons 

or dendrites (Setou et al., 2004).  This allows cargos such as synaptic vesicles or neurotransmitter 

receptors to be transported to the appropriate neuronal processes. If the same targeting rules 

apply to mitochondrial cargos, then molecular motor isoforms in axons and dendrites probably 

differ and their differential regulations could very well affect movement cessation and 

subsequent recovery.  Any compartmental differences in cytoskeletal properties that mediate 

mitochondrial movement and docking may also affect how rapidly mitochondria stop moving or 

recover after cytoskeleton-modifying insults like glutamate.  Examples of cytoskeletal properties 

to consider are microtubule assembly and disassembly processes, volume of cytoskeletal 

substrates, activities of microtubule-severing proteins, and phosphorylation states of 

microtubule-associated proteins that are themselves often distributed preferentially in axons or 

dendrites (Baas et al., 2005; Baas and Qiang, 2005).  Movement recovery may also be delayed in 

dendrites if the relatively longer mitochondria require reformation of longer microtubule tracks 

for transport. 

With regard to our studies with zinc, either separate signaling pathways or faster 

activation of the same pathway may account for zinc’s ability to cause irreversible cessation of 

mitochondrial movement in dendrites but chelation-dependent recovery of movement in axons 

during a single exposure.  Zinc-mediated inhibition of mitochondrial movement and toxicity 

depends on the concentration and duration of zinc treatment.  Impaired movement after less 
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severe zinc exposure can be reversed by chelation in axons and dendrites, but increased exposure 

activates a PI3-kinase mediated signaling cascade of movement cessation that can no longer be 

reversed by chelation in dendrites (Malaiyandi et al., 2005).  This may be due to (1) improved 

Zn2+-buffering in axons by greater availability of Zn2+-binding proteins such as metallothioneins 

which can protect against zinc toxicity, (2) enhanced efflux of toxic cytoplasmic Zn2+ levels into 

the extracellular space or into cellular compartments by metal transporters and (3) the presence 

of high capacity zinc storage vesicles in presynaptic terminals whose release onto postsynaptic 

neurons might promote excitotoxicity (Palmiter et al., 1996; Aschner et al., 1997; Cole et al., 

1999; Frederickson et al., 2004; Liuzzi and Cousins, 2004).  These possibilities suggest that the 

[Zn2+]i needed to activate downstream pathways mediating irreversible movement inhibition can 

eventually develop in axons once Zn2+-clearance mechanisms are saturated.  An alternate 

hypothesis is that zinc signaling actually differs in axons and dendrites so that either PI 3-kinase-

mediated inhibition of movement is never activated or downstream effecters are effectively 

neutralized perhaps by increased phosphatase activity in axons.  Interestingly, movement 

cessation in dendrites upon PI 3-kinase activation may also be mediated by phosphorylation of 

neurofilaments which has been shown to increase mitochondrial binding and immobilization 

(Wagner et al., 2003). 

5.5.3 Functional differences in individual mitochondria 

The mitochondrial population is diverse at least with regard to trafficking and morphology, so it 

makes sense that functional variation also exists between individual organelles.  First of all, 

mitochondrial lifespan is limited so there will inevitably be a subset of unhealthy mitochondria in 

a cell, even if they are being transported for removal (Miller and Sheetz, 2004).  Among healthy 
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mitochondria, functional heterogeneity in ψm may result from different numbers of oxidative 

phosphorylation enzymes or ion pumps that maintain appropriate gradients across mitochondrial 

membranes.  Functional heterogeneity of mitochondria could very well influence how the 

movement of a given organelle will be affected by injurious stimuli.  Since ψm-depolarization 

reduces movement, mitochondria with inherently lower ψm might reach the threshold for 

movement cessation more rapidly when faced with depolarizing insults including elevated 

[Ca2+]i.  Similarly, mitochondria that can regenerate ψm faster could also recover movement 

earlier after an insult is removed. 

Variation in the capacities of individual organelles to safely uptake Ca2+ before frank ψm 

depolarization and activation of membrane permeability transition is another important 

consideration.  In order to sequester large amounts of cytosolic Ca2+ without dangerously 

increasing matrix free [Ca2+], the mitochondrial matrix contains inorganic phosphates (Pi) that 

precipitate out Ca2+ as well as various Ca2+ binding proteins (David, 1999).  Thus, mitochondrial 

heterogeneity in Ca2+ uptake can be achieved by differences in ψm, numbers of Ca2+ uniporter, 

and concentrations of Pi and other Ca2+ buffering proteins in the matrix.  Indeed, we have seen 

that individual mitochondria isolated from rat brain exhibit heterogeneity in ψm depolarization in 

response to Ca2+, although the mechanism for this has yet to be determined (Vergun et al., 2003).  

Individual mitochondrial Ca2+ uptake properties can modulate movement by their influences on 

ψm and [Ca2+]cyto. 

Mitochondrial morphology also has important implications for movement because it can 

impact the volume of mitochondrial compartments, the ion concentrations within them, and 

consequently the ability of enzymes to maintain ψm and efficiently generate ATP.  Given the 

dynamic fission and fusion events and the interchange of membranes, enzymes and mtDNA that 
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occur between mitochondria, it is doubtful that functional homogeneity can be conserved 

between all mitochondria.  However, it is interesting to consider that if mitochondria of similar 

morphology are functionally similar, then this could contribute to a general difference in 

mitochondrial movement response in axons and dendrites since the axonal population of 

mitochondria are stereotypically shorter than that of dendrites.  Additionally, mitochondria are 

exposed to different local demands for [Ca2+]i uptake in cells that could impact the energetic 

state of individual mitochondria (Park et al., 2001).  A last possibility unrelated to mitochondrial 

function per se, is that mitochondrial motor isoforms which are known to be differentially 

modulated by phosphorylation and protein interactions, may be variably distributed on individual 

organelles (Sheetz, 1999; Reilein et al., 2001).  This may account for different motility responses 

between different mitochondria, and may also explain the axonal and dendritic difference if each 

compartment employs separate motor isoforms. 

It is important to note that while the end result of many of our pharmacologic 

manipulations is homogenous cessation of mitochondrial movement in the affected 

compartment, individual organelles with increased duration of retained motility can certainly be 

identified.  Even more striking is the heterogeneity of movement recovery after drug washout.  

Sometimes a sole moving mitochondrion can be observed in a given field; other times a small 

population of mitochondria regain motility.  Unquantified observations suggest that the 

mitochondria that regain movement earliest tend to travel with high velocity.  It is interesting to 

speculate on whether some functional properties of fast-moving mitochondria predisposes them 

to rapid movement recovery, or if certain mitochondrial recruitment sites develop after drug 

treatment to which the small number of mitochondria that have regained motility are rapidly 

targeted after washout.  It should be noted that we often applied relatively sizeable 
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concentrations of drugs to attain robust drug actions.  The organellar heterogeneity in movement 

cessation is accentuated when concentrations are significantly reduced, as we have observed with 

glutamate and rotenone (unpublished observations and Reynolds and Santos, 2005). 

5.6 OVERALL ASSESSMENT AND FUTURE DIRECTIONS 

The discussion thus far has reviewed why mitochondrial trafficking is challenging to 

quantitatively and mechanistically study, what the dissertation work and past studies have 

revealed about mitochondrial trafficking patterns and the regulation thereof, and the limitations 

of those studies.  We proposed that reducing the scale of pharmacologic and imaging techniques 

should be adopted in future experiments to gain unprecedented resolution of trafficking 

mechanisms among individual mitochondria.  By combining fluorescence imaging, 

electrophysiology and local pharmacologic manipulations of individual synapses, we will be able 

to uncover the dynamics and functional purposes of mitochondrial localization and recruitment 

for supporting synapses during physiological synaptic activity, short and long term plasticity.  

Local irreversible inhibition of ATP synthesis by mitochondria normally localized at a synapse 

could reveal not only what neurotransmission properties depend on local ATP supply but also 

whether compensatory recruitment of intact mitochondria occurs.  This would provide crucial 

information on the significance of mitochondrial trafficking in normal neurotransmission related 

to learning and memory, as well as how synaptic transmission and plasticity can fail if 

mitochondrial movement is impaired.  Elucidating these physiological and pathophysiological 

properties would be relevant to any neurodegenerative disease characterized by synaptic 

dysfunction and especially to AD where memory loss is an early and devastating clinical feature. 
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Studies often focus on where and why mitochondria are transported to specific locations, 

but much is still unknown about the mediators of the physical trafficking of mitochondria.  This 

includes the individual motive properties of mitochondria-transporting motor protein isoforms, 

the identity of scaffolding proteins that associate motor proteins with mitochondria, and how 

mitochondrial motility patterns can be modulated by regulatory modifications of scaffolding 

proteins, motors and other accessory proteins.  More detailed analysis will reveal whether certain 

mitochondrial populations, for example those in axons or dendrites or those with shorter or 

longer morphology, tend to associate with certain scaffolds and motors that dictate motile 

capabilities.  In terms of the saltatory properties of mitochondrial movement, chemical and 

physical cues that recruit mitochondria need to be clarified, as do signals, mediators and 

regulatory events required for physical docking of mitochondria on the cytoskeleton.  

Understanding how mitochondrial trafficking is executed and how those executioners can be 

regulated will provide insight into how dysregulation during injury alters mitochondrial 

movement.  Just as importantly, it will provide specific targets for pharmacologic manipulations 

developed to restore impaired mitochondrial movement. 

We then discussed the relationship between impaired mitochondrial movement and 

neuronal injury and disease.  This is a logical relationship but one that is difficult to elucidate 

because of concurrent and ongoing pathophysiological events in acute and chronic neurological 

conditions.  It is necessary to determine whether impaired mitochondrial movement is a cause of 

further pathology or if it is an effect of more significant effecters of injury.  Our examination of 

mutant Htt aggregates offers an example of a subtle trafficking defect that precedes other 

mitochondrial, synaptic or cellular disruptions.  However, the story is rarely so simple.  

Cessation of mitochondrial movement is highly sensitive to many stimuli present in disease 
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states such as elevated [Ca2+]i, oxidative stress, inhibition of electron transport and uncoupling of 

oxidative phosphorylation.  In most cases mitochondrial movement can therefore be predicted to 

stop as a result of some other pathophysiological effecter.  The important questions that need to 

be addressed in the future then, are at what point in the injury process mitochondrial trafficking 

is compromised, what the functional consequences of stopped movement are, and the time 

required for irreversible cellular damage and overt phenotypic expression.  Understanding these 

qualities will allow researchers to decide what pharmacologic interventions should be targeted to 

preserving mitochondrial movement and when those interventions should be performed. 

While a great deal is understood about mitochondrial physiology and cell survival and 

death mechanisms in neurons, our grasp of mitochondrial trafficking is only beginning to 

emerge.  Despite all the complexities, the last decade has been especially fruitful in producing 

detailed descriptions of movement patterns, identifying potential targets and functional roles for 

mitochondrial trafficking, and implicating disrupted mitochondrial transport in injurious and 

degenerative conditions in neurons.  Efficient progress is largely contributed by the growing 

appreciation for the importance of mitochondrial movement and the interdisciplinary enthusiasm 

in studying mitochondrial function in neurons, trafficking mechanisms, and mitochondrial 

dysfunction in disease.  Increasingly sophisticated experimental techniques can be harnessed to 

finally study mitochondrial trafficking at the microscopic level needed to make specific 

mechanistic conclusions.  Ultimately, it is from our understanding of how normal mitochondrial 

trafficking supports cellular function that we can derive how abnormal trafficking will cause 

cellular dysfunction and neuritic degeneration in injury and disease. 
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