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Head and neck squamous cell carcinoma (HNSCC) is a commonly occurring malignancy 

associated with severe morbidity, persistently high mortality rates, frequent recurrence, and the 

appearance of second primary tumors (SPTs). A great need exists, therefore, for new therapies, 

including complementary and preventive approaches to treating HNSCC. Signal transducer and 

activator of transcription (STAT)-3, an oncogenic transcription factor, shows promise as an 

important therapeutic target in the treatment of HNSCC. The current study focuses on the 

STAT3-targeting activities of two natural compounds, guggulsterone and honokiol, and 

investigation of their antitumor activity in HNSCC.  Guggulsterone, a compound contained in 

the resin of the Commiphora mukul plant, used in Indian Ayurvedic medicine, is widely available 

as a dietary supplement and associated with few side effects. Honokiol is a naturally-occurring 

compound that has been used in traditional Chinese medicine and is derived from the plant, 

Magnolia officinalis. Both compounds have been shown to have anticancer activity in various 

models and to inhibit nuclear factor kappa B (NFκB), an oncogenic transcription factor. NFκB 

and STAT3 interact with one another in various ways. Therefore, we hypothesized that 

guggulsterone and/or honokiol might be useful in targeting STAT3. Both compounds inhibited 

growth and invasiveness and induced apoptosis in HNSCC cell lines, in addition to decreasing 

levels of phosphotyrosine STAT3, and, for guggulsterone, total STAT3. Guggulsterone was also 
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found to cause cell cycle arrest and to target hypoxia-inducible factor (HIF)-1α, a potential 

therapeutic target whose expression is correlated with poor clinical outcome in HNSCC. 

Guggulsterone-induced growth inhibition relied partly on its ability to inhibit STAT3. Both 

compounds enhanced the activities of current HNSCC therapies and modestly inhibited tumor 

growth in the xenograft model of HNSCC. To test the chemopreventive potential of STAT3 and 

epidermal growth factor receptor (EGFR) inhibition, a study administering Guggulipid, a 

guggulsterone-containing nutraceutical, or erlotinib, an EGFR-targeting tyrosine kinase inhibitor 

(TKI) to mice treated orally with a carcinogen is currently underway. Our results so far suggest 

that guggulsterone and honokiol-mediated inhibition of STAT3 and guggulsterone-mediated 

inhibition of HIF-1α provide a biologic rationale for further clinical investigation of these 

compounds as complementary and preventive treatments for HNSCC.  
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1.0 INTRODUCTION 

1.1 THE GOAL OF HEAD AND NECK CANCER CHEMOPREVENTION 

1.1.1 Head and neck squamous cell carcinoma 

Head and neck squamous cell carcinoma (HNSCC) carries a mortality rate of over 50%, which 

has not changed in decades. It is the sixth most common cancer in the United States (1) and the 

single most common cancer in many developing countries, where two-thirds of new cases arise 

(2, 3). HNSCC is thought to be caused by the molecular effects of environmental carcinogens. 

Many studies have conclusively identified links between exposures to tobacco, alcohol and betel 

quid and HNSCC (4). Additionally, several epidemiological studies have identified occupational 

exposures that are associated with an increased risk of HNSCC, including asbestos (5), coal dust 

(6), organic solvents (6, 7), welding fumes (8), polycyclic aromatic hydrocarbons (8), and 

formaldehyde (9), among others. Predispositions to HNSCC include genetic phenomena that 

affect the cell’s ability to respond to carcinogen exposures (4, 10). Slaughter et al. define the 

concept of “field cancerization” to describe molecular changes that arise throughout the upper 

aerodigestive tract in response to carcinogen exposure and to explain observations that 

histologically normal epithelium in the oral cavities of HNSCC patients contain cancer-like 

molecular alterations (11). This results in frequent second primary tumors (SPTs), which occur at 
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a rate of 3-6% per year, among the highest for any neoplasm (12, 13, 14). HNSCC therapies 

include surgical intervention, radiation, conventional chemotherapy (e.g. cisplatin), and 

strategies to inhibit the epidermal growth factor receptor (EGFR) (e.g. cetuximab). Those 

patients who survive their initial treatment often suffer severe morbidity resulting from damage 

to the upper aerodigestive tract secondary to treatment or from tumor invasion. A great need 

exists, therefore, for new therapies, including complementary and preventive approaches to 

treating HNSCC. 

1.1.2 Cancer prevention studies 

As cancer is a devastating and frequently fatal disease, studies identifying methods for 

preventing cancer are very important. Cancer is thought to develop in various stages termed, 

initiation, which refers to changes in DNA, often caused by exposure to a carcinogen or virus, 

promotion, which includes other molecular, tissue-specific changes, such as alterations in growth 

factors, that encourage the affected cells to grow abnormally, and progression, during which the 

affected cells acquire new phenotypes that make them cancer cells (Figure 1). Upon histologic 

examination of tissue, carcinogenesis can, to some extent, be visualized, beginning with mild 

dysplasia, as initiation and promotion cause cells to grow abnormally, and ultimately leading to 

invasive cancer. The goal of cancer prevention is to inhibit the process of carcinogenesis. 

Primary prevention strategies, such as smoking cessation, aim to decrease the risk of cancer 

initiation. Secondary prevention strategies, such as surgical removal of pre-neoplastic lesions, is 

directed at preventing cancer promotion and progression. 
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Field cancerization: 
mutations (e.g. p16)

IRREVERSIBLE CHANGE

1) Initiation 2) Promotion 3) Tumor progression   4) Recurrence 

Field cancerization: 
mutations (e.g. p16, Ras) 

Irreversible change 

Increased expression of 
growth factors and growth 

factor receptors (e.g. EGFR 
and TGFα), aberrant activity 
of signaling molecules (e.g. 

STATs, NFκB), new 
mutations (e.g. p53) 

Figure 1. Steps in carcinogenesis, highlighting changes that occur in head and neck carcinogenesis 

Chemopreventive agents, drugs used for cancer prevention, can be applied to secondary 

prevention of HNSCC, for example in patients with a pre-malignant lesion or in patients who 

have had HNSCC and are at high risk for recurrence and/or SPTs, or even in patients whose 

epithelium displays molecular changes associated with high risk.  If the agent is very safe and 

devoid of major side effects, it may also be used in primary prevention to prevent risk of cancer 

initiation, from carcinogen exposure, for example. 

Both preclinical and clinical studies of potential chemopreventive agents present unique 

challenges. Clinical prevention studies require administration of interventions to patients who do 

not, at the time, have disease. Furthermore, following completely healthy individuals for years, 

in order to determine whether or not they eventually develop cancer, is a difficult and expensive 

study design. More realistic trial endpoints, which may include effects of the chemopreventive 

agent on biomarkers or rates of recurrence in patients who have had cancer, reveal valuable but 

more limited information about the efficacy of a chemopreventive agent. 
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The challenges posed by clinical trials of preventive agents underscore the importance of 

preclinical trials in first determining a biologic rationale for use of the agent in chemoprevention. 

In vitro studies, which are limited, due to a general lack of cellular models that truly mimic 

carcinogenesis, are nonetheless important in identifying molecular alterations that can be 

targeted by a specific agent.  Additionally, if an agent inhibits the mechanisms that cause cancer 

cells to grow, for example, this may sometimes be reflective of the agent’s ability to halt cancer 

promotion and progression. True preclinical evidence of cancer prevention, however, requires in 

vivo investigation, employing carcinogen-induced and transgenic animal models of cancer. 

1.1.3 HNSCC chemoprevention to date 

Because HNSCC is a common and devastating cancer that: a) has a limited response to currently 

available treatments b) results from carcinogen exposure and c) commonly recurs and has a high 

rate of SPT development, primary and secondary prevention strategies represent an important 

approach to this neoplasm. Based on early observations that tumors of the upper aerodigestive 

tract and lungs occurred more frequently in cattle who were deficient in vitamin A (15), studies 

investigating high-dose retinoids as chemoprevention for HNSCC demonstrated efficacy in 

delaying carcinogenesis in humans but were associated with considerable toxicity (16, 17). Since 

then, trials involving administration of tolerable doses of retinoids have not demonstrated 

chemoprevention of HNSCC (18, 19). The need for identification of new approaches to prevent 

HNSCC became apparent. Recent clinical trials demonstrating chemoprevention of HNSCC 

have employed green tea (20, 21) and Bowman-Birk inhibitor derived from soybeans (22). 

Studies investigating potential roles for cyclooxygenase (COX)-2 and epidermal growth factor 
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receptor (EGFR) inhibition in HNSCC chemoprevention are also currently underway (23). 

Preclinical and clinical studies have arrived at various potential molecular targets for 

chemoprevention of HNSCC. In the current study, we focus on one plausible target of HNSCC 

chemoprevention: signal transducer and activator of transcription (STAT)-3.   

1.2 ONE TARGET OF HNSCC CHEMOPREVENTION: STAT3 

1.2.1 Introduction to STATs 

The signal transducer and activator of transcription (STAT) proteins are so named due to the role 

they play in relaying signals received by specific cell surface receptors to induce transcriptional 

changes within the cell (Figure 2). So far, seven distinct STAT molecules have been identified. 

These include STATs 1, 2, 3, 4, 5a, 5b and 6. STATs were originally discovered in the context of 

cytokine signaling (24-26). Many cytokine receptor proteins, including those for most of the 

interleukins, the interferons and colony-stimulating factors, have a receptor component, but not 

an enzymatic component (27). Instead, Janus kinase (Jak) proteins are constitutively non-

covalently associated with cytokine receptors (26, 27). Following ligand binding and aggregation 

of the receptor subunits, two associated Jaks transphosphorylate at tyrosine residues, thereby 

undergoing reciprocal activation (28, 29). These activated Jaks transmit the cytokine signal via 

recruitment and activation of STATs through Src homology 2 (SH2) domains on STATs (26, 29
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32). Signaling through receptor tyrosine kinases, including growth factor receptors such as 

epidermal growth factor receptor (EGFR) and platelet-derived growth factor receptor, also leads 

to STAT activation via direct recruitment of the STAT SH2 domains by the receptor itself (24, 

33-35). Specific tyrosine residues on the EGFR, Y1068 and Y1086, have been found to recruit 

STAT3 proteins in head and neck squamous cell carcinoma (HNSCC) (36). Non-receptor 

tyrosine kinases, in addition to Jaks, such as Src and Abl, have also been found to activate 

STATs (29, 37, 38). It was previously assumed that tyrosine phosphorylation was required for 

STAT activation, as is the case with STAT1 (39). Recent studies have shown that STAT3 can be 

activated and imported into the nucleus independently of tyrosine phosphorylation (40). There is 

conflicting evidence regarding whether or not STAT activation may also be regulated by 

arginine methylation (41, 42). 

Following activation, STATs dimerize, forming either homodimers, such as serum-

inducible factor (SIF)-A, a STAT3 dimer, or heterodimers, such as SIF-B, a STAT1–STAT3 

dimer. Acetylation of a single lysine residue on STAT3 is required for formation of these dimers 

(43). STAT dimers translocate to the nucleus, where they bind gene-regulatory elements, such as 

the serum/sis-inducible element (SIE) in the promoter of the c-fos gene (26, 35, 44) or the IFN-γ 

activated sequence (GAS) in the promoter of the guanylate-binding protein gene, and alter 

transcription of specific genes (45, 46). Within the nucleus, STATs can associate with other 

transcription-regulatory proteins. For example, STAT3 has the ability to bind c-Jun as well as a 

gene regulatory element next to an activator protein (AP)-1 site on DNA, and the ability to work 

synergistically with AP-1 in transcriptional regulation (47, 48). The various STAT target genes 

(Table 1) play diverse roles in normal cellular functions, including growth, apoptosis and 
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differentiation. Each receptor that transduces its signal via STATs activates a specific STAT or 

set of STAT molecules. Some of the activated STATs have been identified as potential 

oncogenes (STAT3 and STAT5) or tumor suppressors (STAT1) (49). 
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Figure 2. STAT signaling and molecular inhibitors of STATs. Receptor tyrosine kinases such as EGFR bind 

growth factors (e.g. TGF-α), and cytokine receptors such as IL-6R dimerize following binding of their ligand. 

Cytokine receptors are constitutively associated with Jaks. Following dimerization, transphosphorylation occurs. 

STAT proteins are then recruited to phosphotyrosine residues, specifically Y1068 and Y1086 on the EGFR in 

HNSCC, through their SH2 domains. Activated NRTKs, such as Src and Abl, can also recruit STATs to 

phosphotyrosine residues. Activated STATs form homo- or heterodimers through their SH2 domains and translocate 

to the nucleus where they bind gene regulatory elements, including the SIE or the GAS, resulting in the transcription 

of specific STAT target genes. Small molecule inhibitors of STAT3 have been developed to interfere with 

dimerization of STAT3 by interacting with the SH2  domain and surrounding regions. Inhibition of dimerization 

prevents STAT3 from translocating to the nucleus. Other small molecule inhibitors of STAT3 have been developed 

to inhibit DNA binding by STAT3 by interacting with the DNA-binding site of STAT3. 
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1.2.2 Role of STAT3 in oncogenesis 

The role of STAT3 in oncogenesis first became evident with the discovery that activated STAT3 

was required for cellular transformation by the viral oncogene v-src, as well as observations that 

inhibition of STAT3 with a dominant-negative mutant prevented v-src-mediated transformation 

(37, 50). Subsequently, using a constitutively active form of STAT3 (STAT3C), it was shown 

that activated STAT3 alone has the capacity to transform immortalized fibroblasts (51). In 

addition to its role in transformation, STAT3 levels are elevated in numerous human 

malignancies, including leukemias, lymphomas, multiple myeloma, breast cancer, prostate 

carcinoma, renal cell carcinoma, lung cancer, ovarian carcinoma, pancreatic adenocarcinoma, 

melanoma, and head and neck squamous cell carcinoma (HNSCC) (52). Further evidence of the 

importance of STAT3 in oncogenesis is supported by studies demonstrating growth inhibition of 

myeloma, breast cancer, melanoma and HNSCC cells using a dominant-negative STAT3 mutant 

construct (STAT3β) (53-56). The growth and survival of normal fibroblasts, however, were not 

affected by the dominant-negative STAT3 construct, suggesting that only the proliferation of 

neoplastic cells depends on STAT3 (57). 

1.2.3 STAT3 target genes 

The oncogenic effects of STAT3 are mediated, at least in part, through the expression of STAT3 

target genes. STAT3 target genes have been identified in a number of tumor and non-tumor 

systems via the expression of dominant-negative STAT3, constitutively activated STAT3 

(STAT3C), or specific targeting of STAT3 by siRNA or the STAT3 decoy described below. The 
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number of reported STAT3 target genes is increasing (Table 1). Among the known STAT3 target 

genes are cell cycle regulators, antiapoptotic genes and pro-angiogenic factors. B cells lacking c-

Rel, a transcription factor that modulates Bcl-xL, which is also a STAT3 target gene, can be 

partially rescued from a hypoproliferative phenotype by IL-6, but not through STAT3-activated 

transcription of Bcl-xL (58). This suggests that multiple pathways are involved in proliferation 

and survival of B cells, at least. Interestingly, STAT3 regulates its own expression and induces 

expression of negative regulators of STAT3, such as the suppressor of cytokine signaling 

(SOCS)3. A recent study by Dauer et al. demonstrated that STAT3 regulates genes that are 

common both to cancer and wound healing (59). It is worth noting that some STAT3 target 

genes are also shared by other members of the STAT family, such as STAT5 (e.g., cyclin D1, 

pim-1 and p21/waf1). The exact mechanisms underlying such a redundancy are unknown. The 

structural homology shared among the STAT family members, as well as the existence of 

heterodimers between STAT3 and other members of the STAT family, may play a potential role. 

Although constitutive activation of STAT3 is believed to be crucial for oncogenic transcriptional 

control, the function of unphosphorylated STAT3 has also been investigated. Stark et al. showed 

that overexpression of an unphosphorylable STAT3 (Y705F mutation) could induce the 

expression of some genes that are regulated by activated STAT3 (e.g., c-fos, c-jun, bcl-xL, c

myc, dp1) (60). Interestingly, they also identified a set of genes that were only induced by the 

expression of unphosphorylable STAT3 (Y705F), such as meiosis-specific nuclear structural 

protein 1 (mns1), p21-activated kinase-3 (mpak-3) and transcription factor IIH. These results 

suggest that unphosphorylated STAT3 may contribute to carcinogenesis. 
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Table 1. STAT3 Target Genes 

Class Gene Regulated by STAT3 and/or 
other STATs 

Cell cycle regulator Cyclin D1 STAT3 (129); STAT5 (152) 
Cyclin D3 STAT3 (153) 
c-Myc STAT3 (154);  STAT5 (155) 
p19INK4D STAT3 (156) 
p21 waf1 STAT3 (157);  STAT5 (158) 
Pim-1 STAT3 (159);  STAT5 (160) 
p27 STAT3 (161);  STAT5 (162) 

Anti-apoptotic Survivin STAT3 (163) 
Mcl-1 STAT3 (164) 
TIMP1 STAT3 (176) 
Bcl-2 STAT3 (165);  STAT5 (155) 
Bcl-xL STAT3 (54); STAT5 (166)  

Angiogenesis VEGF STAT3 (167)  
Metastasis HIF-1α STAT3 (168) 

MMP-2 STAT3 (169) 
MMP-9 STAT3 (170) 

Negative regulator of STAT3 SOCS-3 STAT3 (171) 
TEL/ETV6 STAT3 (172) 

Others α2-macroglobulin STAT3 (173) 
α-antichymotrypsin  STAT3 (174) 
(Serpin A3) 
Jun B STAT3 (175) 

1.2.4 Proteins regulating STAT3 activity in cancer 

As of yet, no naturally occurring constitutively active mutant of STAT3 has been detected in 

cancer cells or human tumors. In general, elevated levels of activated STAT3 are due to 

aberrations in other proteins involved in STAT3 signaling, including proteins upstream in the 

STAT3 signaling pathway and physiological regulators of STAT3. Approaches that block 
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molecules upstream from STAT3 (e.g., EGFR, Src, Jak2) have been developed and have been 

approved for use in cancer patients (e.g., cetuximab, erlotinib) or are being tested in clinical trials 

(61). Another possible approach would enhance the proteins that negatively regulate activation 

of STAT3, such as SOCS-1, SOCS-3 (62), protein inhibitor of activated STAT (PIAS)3 (63) and 

GRIM-19 (64). 

1.2.4.1 The role of proteins upstream of STAT3 in cancer 

Among the proteins upstream of STAT3 in the STAT3 signaling pathway, several, including 

TGF-α, EGFR, Jaks, Src and p38, have been shown to play a role in STAT3-mediated 

oncogenesis. Some of these upstream proteins have been targeted in efforts to develop cancer 

therapeutics. EGFR inhibitors have been reported to abrogate STAT3 activation and are 

currently approved for use in several cancers (61, 65). A mutation causing constitutive tyrosine 

phosphorylation and, therefore, activation of Jak2, a tyrosine kinase upstream of STATs, has 

been found in subsets of patients with several different myeloproliferative disorders (66, 67). c-

Src, an oncoprotein, requires STAT3 activation for cell transformation (68). Src-specific small 

molecule inhibitors cause inhibition of STAT3 activation in the platelet-derived growth factor 

receptor pathway (68) and in cells with otherwise constitutively active STAT3 (56). Treatment of 

human melanoma cells with Src inhibitors PD180970 and PD166285 blocks STAT3 DNA 

binding and expression of STAT3 target genes, and results in decreased cell growth and 

increased apoptosis (57). Src inhibitors are now being tested in Phase I/II trials in cancer 

patients, including HNSCC. 
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1.2.4.2 The role of physiological regulators of STAT3 in cancer 

Although mechanisms of STAT3 activation, deactivation, expression and degradation are 

incompletely understood, several proteins have been found to regulate STAT3 activity in the cell 

(69, 70). Mutations resulting in aberrant functioning of some of these STAT3 regulatory proteins 

have been found in various human malignancies (71-78). Some of the SH2-domain containing 

SOCS molecules associate with phosphorylated Jaks to block STAT3 activation (71-78). SOCS

1, whose transcription is regulated by STAT3, and possibly by other STATs as well, inhibits 

STAT3 activation (79-81). Hypermethylation-associated transcriptionally silent mutants of 

SOCS-1 have been found in several human cancers (71-74). A peptide mimetic of SOCS-1, 

Tkip, has been shown to inhibit both constitutive activation of STAT3 and IL-6-induced STAT3 

activation in prostate cancer cells (82). A hypermethylation associated silent mutant form of 

SOCS-3, a protein that can also inhibit Jak activation (83), was found in human lung cancer (75). 

The PIAS proteins specifically associate with and negatively regulate the transcription factor 

activity of STATs. PIAS3 blocks DNA binding by STAT3 by interrupting dimerization or 

causing dissociation of dimers (63, 69, 84). An absence of PIAS3 expression has been observed 

in anaplastic lymphoma kinase-positive T/null cell lymphoma (76). SH2-containing phosphatase 

(SHP)-1 has been found to regulate STAT signaling by dephosphorylating Jak1 (85) and Jak2 

(69, 70, 86, 87). Hypermethylation-associated transcriptionally silent mutants of SHP-1 have 

been detected in leukemias, lymphomas and multiple myeloma (77, 78). The STAT3-interacting 

protein (StIp1) regulates STAT3 activation and transcription factor activity. StIp1 interacts with 

both Jaks and STAT3, and may promote Jak/STAT3 interactions (88). A gene associated with 

retinoid-IFN-induced mortality (GRIM-19) has been identified and found to associate with 

STAT3 and inhibit STAT3-mediated gene expression and proliferation of v-Src-transformed 
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cells (64). Strategies to enhance negative regulators of STAT3 have not been developed to date, 

but may contribute to STAT3 targeting for cancer therapy. 

1.2.5 STAT3 in head and neck squamous cell carcinoma 

1.2.5.1 Constitutive activation of STAT3 in HNSCC 

HNSCC cell lines and tumors have been found to contain constitutively active SIF-A (STAT3) 

homodimers and SIF-B (STAT3 and STAT1) heterodimers. Levels of expression and 

phosphorylation of STAT3, but not STAT1, were elevated in HNSCC cells as compared with 

levels in normal epithelial cells (53), and in HNSCC tumor samples compared with normal 

epithelium (89). Both tumor and normal epithelium from HNSCC patients were found to have 

higher levels of STAT3 expression and activation than did epithelium from non-cancer patients 

(89). The increased expression and activation of STAT3 in HNSCC has been found to be 

associated with elevated transforming growth factor (TGF)-α/EGFR signaling. TGF-α treatment 

of HNSCC cells led to an increase in expression and phosphorylation of STAT3. Both activated 

STAT3 complexes (SIF-A and SIF-B) were found to increase in a dose-dependent manner with 

TGF- α treatment of HNSCC cells, and to decrease with TGF-α-neutralizing antibody treatment 

(53). In HNSCC cell lines, levels of activated STAT3 closely paralleled levels of EGFR mRNA 

and protein, but not TGF-α mRNA, implying that levels of STAT3 activation are limited 

primarily by amounts of EGFR and not by EGFR ligand levels (90). STAT3 is also activated by 

an interleukin (IL)-6/gp130 interaction in an EGFR-independent fashion in HNSCC. 

Immunodepletion of IL-6 secreted by HNSCC cells in vitro resulted in abrogation of STAT3 

phosphorylation. Thus, IL-6 autocrine/paracrine stimulation of STAT3 may contribute to 

HNSCC tumorigenesis (91). 
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1.2.5.2 STAT3 mediates proliferation and survival in HNSCC 

Activated STAT3 is necessary for the growth of HNSCC lines. Transfection of HNSCC cells 

with dominant-negative STAT3 mutant constructs or treatment with antisense oligonucleotides 

specific for STAT3 resulted in growth inhibition, apoptosis and decreased STAT3 target gene 

expression (53, 90, 92). Cells containing a dominant-active STAT3 mutant construct proliferated 

independently of EGFR ligand and EGFR activity, indicating that STAT3 activation can lead to 

HNSCC growth without EGFR activation (90). Bcl-xL, an antiapoptotic protein and STAT3 

target gene, may contribute to the survival of HNSCC cells containing activated STAT3. 

Decreased expression of Bcl-xL was observed in HNSCC xenografts treated with STAT3 

antisense gene therapy (89). STAT3 alters cell cycle regulation in HNSCC. HNSCC cells 

transfected with a dominant-active STAT3 mutant construct contained fewer cells in G1-G0 and 

more cells in G2-M than did samples of HNSCC cells transfected with the vector control. The 

cells expressing a dominant-active STAT3 construct also continued cycling during serum 

starvation, unlike cells containing the vector control. However, little, if any, change in expression 

levels of cell cycle regulatory proteins was observed by immunoblot (90). 

1.2.5.3 Src kinases and STAT3 activation in HNSCC 

Src family kinases have been implicated in the control of STAT3- and STAT5-mediated HNSCC 

cell growth. TGF-α treatment of HNSCC cells resulted in increased activation of several Src 

family kinases, including lyn, fyn, yes and c-Src. Activation of these Src family kinases was 

found to be dependent on activation of EGFR, which forms a complex with both STAT3 and 

STAT5. Activated STAT5 and STAT3 levels paralleled levels of activated Src. Inhibition of c-

Src or transfection of HNSCC with a dominant-negative c-Src mutant construct resulted in 
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decreased levels of STAT3 and STAT5 activation, suggesting that both STAT3 and STAT5 

activation-mediated growth in HNSCC are also dependent on c-Src activation (93). 

1.2.5.4 STAT3 in human HNSCC tumors 

Immunohistochemistry studies using an antibody specific for phosphotyrosine STAT3 found that 

activated STAT3 was detected only in the basal epithelium in non-cancer patients. In HNSCC 

patients, however, STAT3 was found throughout both normal epithelium and, at higher levels, in 

HNSCC tumors. These results suggest that STAT3 activation may be an early step in 

oncogenesis (89). The finding of increased STAT3 activation in the adjacent histologically 

normal mucosa suggests that STAT3 activation may result from ‘field cancerization’, a 

phenomenon described by Slaughter to indicate early changes in tissue, following exposure to 

carcinogens, that predate histological evidence of neoplasia. Investigations of tumor samples 

from HNSCC patients who had chewed tobacco for > 10 years support this hypothesis. In these 

studies, STAT3 protein levels were shown to be high in early-stage tumors compared with late-

stage tumors (94). Differentiation of head and neck cancer cells may also depend on STAT3 

activation. In tumor samples from head and neck cancer patients, STAT3 expression levels were 

found to be highest in poorly differentiated tumors, whereas STAT1 levels were highest in well-

differentiated tumors (95). It has been suggested that differentiation of HNSCC may depend on a  

STAT1/STAT3 balance within the cell (95). These cumulative observations have led to the 

development of strategies to target STAT3 for cancer therapy. 
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1.2.6 Therapies targeting STAT3 

In addition to the aforementioned therapies targeting proteins upstream of STAT3, several 

strategies to directly target STAT3 signaling have been proposed as cancer therapies and tested 

in preclinical studies (Table 2). These include molecular therapies that directly inhibit STAT3 

dimerization, the interaction of STAT3 with gene-regulatory elements, or expression of STAT3. 

In addition, chemical compound screens have identified several molecules, such as cucurbitacin, 

that appear to specifically alter the STAT3 pathway (96). 

Table 2. Strategies to Target STAT3 

MechMechananisism ofm of IInhinhibbiititionon MethodMethod

BBllooccksks SSTTAT3AT3 DNA-biDNA-bindndiningg ssiittee DupDupllexex decodecoyy oolliiggononucucleleoottiiddee ((111133))

SinSinggllee ststrraandnded oed olliiggoonnuuccleotleotididee 113413410 (110 (1177))

PPeeppttiiddee apapttaammeerr tthhaatt bibinnddss SSTTAT3AT3 DNA-biDNA-bindindingng sisitete 
(1(103)03)

IInntteerrurrupptsts STSTAT3AT3 didimmeeririzzaatitionon tthhrourouggh SH2h SH2 
dodomaimainn

PhoPhossopophohottyyrosrosyyll ppepeptitidodomimimetimeticscs (9(99)9)

PePeptptididee aappttaamemerr tthhaat bt biindnds SHs SH2 d2 doomamainin aanndd 
susurrourroundindingng reregigionon (1(103)03)

G quG quartarteetsts (105(105))

IInhinhibbiitsts ttrransansllatiatioonn ooff STATSTAT3 mRNA3 mRNA sisiRNARNA ((11111)1)

AAnntitisseennssee ttheherarappyy ((5533,, 9090))
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1.2.6.1 STAT3-specific molecular therapies 

Peptidomimetic inhibitors of STAT3 dimerization 

Fusion peptides consisting of specific protein domains have been used to interrupt the 

dimerization of Myc, a transcription factor associated with oncogenesis, with another protein 

necessary for its transcriptional activity, Max. These small-molecule inhibitors of dimerization 

have been shown to prevent Myc-induced transformation of fibroblasts (97). A similar approach 

has been taken to inhibiting STAT3 dimerization. Phosphotyrosyl peptides have been designed 

based on the SH2-binding domain of phosphorylated STAT3 and modified to improve potency 

(98-100). As STATs possess transcription factor activity only once they have dimerized via their 

SH2 domain (51), blocking the SH2 domain with phosphotyrosyl peptides should theoretically 

prevent STAT3-mediated transcription of STAT3 target genes. Treatment with peptidomimetic 

STAT3 inhibitors has resulted in inhibition of STAT3 transcriptional activity, growth inhibition 

and apoptosis in Src-transformed mouse fibroblasts and human breast carcinoma cells (98, 99). 

Peptide aptamers 

A modified yeast two-hybrid screen has been developed to select peptides that bind specific 

known regions of proteins. These peptides are known as aptamers and are being developed as 

agents to disrupt interactions between proteins (101). For example, peptide aptamers specific for 

EGFR have been shown to inhibit tyrosine phosphorylation of both p46 Shc and STAT3 by 

EGFR, and inhibited proliferation of vulval carcinoma cells (102). Aptamers that bind to the 

dimerization domain (SH2 and surrounding region) or the DNA-binding domain of STAT3 were 

identified using a modified yeast two-hybrid screen. The aptamer that bound to the DNA-binding 
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domain of STAT3 proved to effectively prevent DNA binding by STAT3 and transcription of the 

STAT3 target gene, Bcl-xL, and to cause caspase-dependent apoptosis in murine melanoma and 

human myeloma cells (103). 

G quartets 

The correct ionic environment, particularly K+, can induce G-rich lengths of DNA to form a G 

quartet structure that may then bind specific sites on target proteins to inhibit the function of the 

protein. For example, G-rich oligonucleotides that form G quartets have been found to bind a 

cellular protein, most likely nucleolin, which is associated with cell proliferation, to inhibit 

proliferation of prostate, breast and cervical carcinoma cells (104). STAT3-specific G quartets, 

which form hydrogen bonds with the SH2 region of the STAT3 protein, thus destabilizing the 

STAT3 dimer, have been reported (105). When used to treat hepatocellular carcinoma cells and 

breast and prostate cancer xenografts, G quartets were shown to inhibit STAT3 activation, 

expression of antiapoptotic STAT3 target genes Bcl-XL and Bcl-2, and the growth of tumor 

xenografts, in addition to inducing apoptosis within the tumor xenografts (105-108). The G 

quartets used to target STAT3 were relatively specific, showing fourfold greater inhibition of 

STAT3 over STAT1 in vitro and even greater inhibition of STAT3 compared with STAT1 in IL

6-stimulated hepatocellular carcinoma cells (105, 108). 

Inhibition of STAT3 expression 

Oligonucleotide therapies targeting the expression of several oncogenic proteins have been tested 

in clinical trials (109). Treatment with an antisense oligonucleotide or plasmid directed against 

the STAT3 translation start site resulted in growth inhibition, apoptosis and decreased STAT3 
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target gene expression in HNSCC cells and tumor xenografts (53, 92). STAT3-specific siRNA 

has been used to specifically knockdown STAT3 expression in a laryngeal cell line, which 

resulted in growth inhibition (110). Treatment of an astrocytoma cell line with STAT3-specific 

siRNA also caused knockdown of STAT3 expression, increased caspase-dependent apoptosis 

and decreased expression of STAT3 target genes, survivin and Bcl-XL (111). These results 

indicate that specific targeting of STAT3 gene expression can be therapeutic. However, the 

delivery of such a gene to the tumor is still the major obstacle for clinical use. 

STAT3 transcription factor decoy 

One approach to directly targeting a transcription factor is a double-stranded transcription factor 

decoy oligonucleotide, which interacts with the DNA-binding domain of a transcription factor to 

prevent its actions. A transcription factor decoy specific for nuclear factor-κB has been shown to 

prevent hepatic metastases of murine reticulosarcoma in vivo (112). To target STAT3, a 15-mer 

double-stranded oligonucleotide with phosphorothioate modifications has been designed based 

on the SIE sequence within the promoter region of the c-fos gene and modified to have higher 

affinity (113). Theoretically, the STAT3 decoy should bind to the DNA-binding region of the 

activated STAT3 dimer, preventing it from interacting with gene regulatory elements in the 

promoter regions of STAT3 target genes and abrogating STAT3-mediated transcription of 

STAT3 target genes. Treatment of HNSCC cells with the STAT3 decoy resulted in specific 

killing of three different HNSCC cell lines and inhibited transcription of Bcl-XL within these 

cells (113). In in vivo studies of HNSCC xenografts, intratumoral injection with the STAT3 

decoy decreased STAT3 activation in the tumors, tumor size and expression of Bcl-XL, cyclin 

D1 and VEGF (114). A Phase 0 clinical trial with the STAT3 decoy in HNSCC patients has 
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opened in September, 2008. The therapeutic effects of the STAT3 decoy have also been shown 

in tumor models other than HNSCC. In a study investigating the role of STAT3 in skin tumor 

development using a two-stage chemical carcinogenesis model, the STAT3 decoy demonstrated 

antitumor effects on initiated keratinocytes possessing an activated Ha-ras gene, both in vitro and 

in vivo (115). Therefore, the STAT3 decoy may prove useful as an anticancer strategy in 

malignancies where STAT3 activation contributes to tumor development. 

Single-stranded oligonucleotide inhibitor 

In most efforts to use a nucleic acid sequence to block a transcription factor, a double-stranded 

oligonucleotide, such as the aforementioned STAT3 decoy oligonucleotide, is used. A 

palindromic, single-stranded oligonucleotide, which forms a hairpin loop, has been employed to 

block the cyclic AMP response element (CRE) and block transcription activated by CRE and 

AP-1, and has been shown to abrogate the proliferation of MCF-7 breast cancer cells (116). In 

targeting STAT3, however, one study found that a single-stranded oligonucleotide, 13410, 

representing the sequence of the consensus STAT3 DNA-binding site, was more efficient at 

inducing apoptosis in human prostate cancer cells than double-stranded transcription factor 

decoys. This single-stranded oligonucleotide induced apoptosis in a caspase-dependent manner 

and prevented binding of STAT3 to the promoter of survivin, a STAT3 target gene. In vivo 

studies with 13410 demonstrated a decrease in prostate cancer xenograft tumor volume and an 

increase in cell death within the tumors (117). Barton et al. present a model suggesting that, 

similar to the STAT3 decoy oligonucleotide, 13410 may inhibit STAT3 target gene transcription 

by preventing binding of the STAT3 dimer to DNA. Future studies are necessary to determine 

the mechanism of action of this single-stranded oligonucleotide (117). 
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1.2.6.2 Compounds that alter the STAT3 pathway 

STAT3 inhibition by various natural compounds has been demonstrated. Resveratrol, auranofin, 

magnolol, curcumin, epigallocatechin-3-gallate, curcurbitacin I, indirubin, flavipiridol, 

piceatannol, and parthelonide have all been shown to inhibit STAT3 tyrosine phosphorylation 

(96, 118-125). With each of these compounds, inhibition of STAT3 tyrosine phosphorylation has 

been shown to be mediated through effects on signaling mediators upstream of STAT3, 

including IL-6, Jak1, Jak2, Src, EGFR and SHP-2, a physiological STAT3 inhibitor (96, 118

125). 

Treatment of HNSCC cells with retinoids, both LGD1069, specific for the RXR receptor, 

and LGD1550, specific for the RAR receptor, alters the TGF-α/EGFR signaling pathway, 

resulting in growth inhibition and a decrease in levels of activated STAT3 (126, 127).  When 

human oral squamous cell carcinoma (OSCC) cells were treated with the non-steroidal anti

inflammatory drug sulindac, decreased expression and activation of STAT3, accompanied by 

growth inhibition, resulted (128). The same effects were observed following treatment with a 

peroxisome proliferator-activated receptor-γ agonist, 15-PGJ2 (129). 

1.2.7 Interactions between STAT3 and NFκB 

The two natural compounds investigated in the present study, guggulsterone and honokiol, both 

of which are discussed below, have been found to inhibit a different oncogenic transcription 
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factor, nuclear factor kappa B (NFκB). Based on information regarding interactions between 

NFκB and STAT3, we hypothesized that these two NFκB-inhibiting natural compounds might 

also target STAT3. 

1.2.7.1 NFκB activity 

NFκB is a family of transcription factors including NFκB1, NFκB2, RelA, c-Rel and RelB. 

These transcription factors form dimers that are sequestered in the cytoplasm by the inhibitors of 

NFκB (IκBs). Upon signaling through inflammatory cytokines or carcinogen exposure, for 

example, the IκBs are proteolyzed, releasing the NFκB dimer and allowing it to enter the nucleus 

and bind a gene regulatory element (130). NFκB target genes include antiapoptotic genes, such 

as the inhibitors of apoptosis (IAPs), Bcl-xL and Bcl-2 family genes, cell cycle regulatory genes, 

such as c-myc, c-myc-b, cyclins D1, D2, D3, and E, and molecules that mediate tumor invasion 

such as adhesion molecules and matrix metalloproteinases (130-132). In HNSCC, NFκB 

promotes survival, growth, invasion, pro-inflammatory cytokine expression, and expression of 

other genes that promote malignancy (133-136). Several cellular proteins are believed to regulate 

NFκB. A recent study implicated protein kinase casein kinase 2 activity in HNSCC’s aberrant 

activation of NFκB through activation of an NFκB activator, IκB kinase (137). 

1.2.7.2 Pathways Converging to Promote HNSCC 

Signal Transducer and Activator of Transcription (STAT)-3 and Nuclear Factor Kappa B 

(NFκB) are both oncogenic transcription factors that have been found to be constitutively active 

in HNSCC (133). Both bind gene regulatory elements and activate transcription of target genes 

involved in the control of critical cellular processes such as the cell cycle, apoptosis, and 
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invasion. HNSCC therapeutics under investigation have been shown to inhibit growth through 

downregulation of STAT3 or NFκB activity (138, 139). The molecular pathways involving each 

of these transcription factors converge in HNSCC to promote transcription of some of the same 

oncogenes, including cyclin D1, which is often overexpressed in HNSCC (140). Molecular 

crosstalk between STAT3 and NFκB has been observed in HNSCC cell lines (141). Interleukin-6 

(IL-6) secretion, which stimulates STAT3 signaling in HNSCC, was found to be dependent on 

IL-6 promoter binding by NFκB (141). Furthermore, STAT3 and NFκB have been found to 

affect one another’s binding to other gene regulatory elements (142, 143) and even to form a 

complex in certain systems (144-146). Figure 3 outlines the interactions between STAT3 and 

NFκB. 
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Figure 3. Interactions between NFκB and STAT3 (A) IKK phosphorylates IκB, signaling it for 

proteolysis and releasing NFκB, which translocates to the nucleus and binds DNA as a transcription factor. 

(B) NFκB and STAT3 have various target genes, which are involved in tumorigenesis, in common. (C) NFκB 

and STAT3 interact directly in regulating certain target genes. (D) Crosstalk between NFκB and STAT3 in 

HNSCC cells: NFκB regulates the expression of IL-6, which stimulates STAT3 activation (141). 
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1.3 THE ROLE OF NATURAL COMPOUNDS IN CANCER PREVENTION AND 


THERAPY 


Human health is greatly impacted by our diet. One example of this is evidenced by observational 

and case controlled studies about the effects of dietary plants on cancer risk, which have shown 

that the risks of developing various types of cancer, including HNSCC, decrease with an 

increased consumption of plants (147-149). Studies indicating the molecular factors and cellular 

processes targeted by plant-derived compounds have led to several clinical trials to test their anti

tumor properties (150, 151). Plant extracts often contain complex mixtures of compounds that 

have diverse effects on cell signaling, an advantage over single agent therapies. Additionally, as 

opposed to engineered molecular inhibitors, these compounds are often more available and less 

expensive. Many plants, including those that contain the compounds investigated in the current 

study, have been used, over generations, for therapeutic purposes in Eastern and alternative 

medicine, resulting in informal testing for toxicity, bioavailability and efficacy long before the 

advent of the modern day clinical trial. 

1.4 RATIONALE FOR THE CURRENT STUDY 

Various studies have demonstrated the important role that STAT3 plays in HNSCC and have 

focused on devising therapies that target STAT3 (138). Clinical trials of chemopreventive agents 

for HNSCC have not focused on directly targeting STAT3, however, despite evidence that 

aberrant activation of STAT3 may be an early step in HNSCC carcinogenesis (89, 94). The 
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current study aims to identify and characterize natural compounds that target STAT3 to 

investigate their potential for use in the treatment and prevention of HNSCC.  
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2.0 ROTATION REPORT: SCREENING NATURAL COMPOUNDS FOR 

ANTICANCER ACTIVITY IN HNSCC 

2.1 INTRODUCTION 

In order to identify candidate agents for HNSCC chemoprevention and treatment, various natural 

compounds and analogues of natural compounds were screened for efficacy in HNSCC cell 

lines. The compounds investigated included ginsenosides, isothiocyantes and guggulsterone. In 

vitro growth inhibition of two human HNSCC cell lines and STAT3 inhibition were parameters 

used to investigate candidate compounds.  

2.1.1 Ginseng 

Panax ginseng, a plant used for treatment of various ailments in Eastern medicine, contains 

several compounds, referred to as “ginsenosides,” some of which have been shown to have 

anticancer properties. These compounds have been found to induce differentiation, cause 

apoptosis and inhibit growth in various cancer cell lines. Possible mechanisms of ginsenosides’ 

activity include their ability to inhibit the effects of carcinogens and their antioxidant activities 

(177, 178). 

28




2.1.2 Isothiocyanates 

Certain cruciferous vegetables like cabbage, broccoli and cauliflower contain high 

concentrations of isothiocyanates (ITCs). Epidemiological studies have shown decreased risk of 

developing prostate cancer, breast cancer, non-Hodgkin’s lymphoma, and bladder cancer in 

humans with increased consumption of cruciferous vegetables (149). Upon chewing of these 

vegetables, ITCs are released by the hydrolytic action of myrosinase, an enzyme present in plants 

but separated cellularly from their substrates, glucosinolates, of which over 120 have been 

identified (149, 179). ITC’s actions include induction of phase I and phase II enzymes of drug 

and carcinogen metabolism, induction of growth arrest and apoptosis in cancer cells, and 

changes in certain signaling pathways, including MAP kinase signaling pathways (149, 180, 

181). In a study by Lui et al., benzyl ITC (BITC) was shown to cause apoptosis in HNSCC cells 

and to activate the p38 MAPK and MEK/MAPK pathways (182). In this study, we examine both 

aromatic ITCs and aliphatic ITCs, including sulforaphane, an ITC found in broccoli and other 

cruciferous vegetables, and its analogues, in HNSCC.  

2.1.3 Guggulsterone 

Guggulsterone, a compound derived from the plant, Commiphora mukul, has been used in Indian 

Ayurvedic medicine for thousands of years and has anticancer activity in various cancer models 

(183). This compound, which has two stereoisomers, has been shown to have complex effects on 

cell signaling in cancer. Guggulsterone will be discussed in greater detail in Chapter 3. 
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2.2 MATERIALS AND METHODS 

2.2.1 Cell culture 

1483 and UM-22b human HNSCC cells were grown and maintained in DMEM containing 10% 

FBS. These two cell lines were chosen in order to lend diversity to the study and to provide for 

easy translation into the xenograft model of HNSCC.  

2.2.2 Trypan blue survival assay 

1483 and UM-22b cells were plated and, the following day, were treated with DMEM/10% FBS 

containing a ginsenoside, isothiocyanate or isomer of guggulsterone (1, 2.5, and 5 μM) or 

DMSO, the vehicle for each drug. Each sample contained 0.5 µl/ml DMSO. All experiments 

were performed with triplicate samples. On the day of cell collection, either 24 hours or 72 hours 

post treatment, both floating and attached cells were collected and resuspended in trypan blue 

dye Invitrogen, Carlsbad, CA).  Live cells were counted under an inverted microscope using a 

hemocytometer.  

2.2.3 Western blot 

1483 and UM-22b cells were plated and, the following day, were treated with DMEM/10% FBS 

containing a ginsenoside, isothiocyanate or isomer of guggulsterone (1, 2.5, and 5 μM) or 

DMSO, the vehicle for each drug. Each sample contained 0.5 µl DMSO per ml of medium. On 
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the day of collection, either 24 or 72 hours post-treatment, medium was removed, cells were 

washed in cold phosphate buffered saline (PBS), were scraped from the plate into lysis buffer 

(Tris-HCl, pH 7.6(10mM), 0.5M EDTA (5mM), NaCl (50mM), Na4P2O7 (30mM), NaF (50mM), 

Na3VO4 (1mM), 1% Triton X-100), sonicated and lysates collected. Lysates were separated by 

SDS-PAGE and transferred to a Trans-blot nitrocellulose membrane (Bio-Rad Laboratories, 

Hercules, CA).  The membrane was rinsed in Tris-buffered Saline – Tween (TBST) and then 

blocked with 5% milk in TBST. Primary antibodies against P-tyr705-STAT3 (Cell Signaling 

Technology, Beverly, MA), total STAT3 (Cell Signaling Technology, Beverly, MA) and β-actin 

was diluted in 5% milk/TBST. The appropriate hrp-linked secondary antibodies (Bio-Rad 

Laboratories, Hercules, CA) were diluted in 5% milk/TBST. The membrane was finally 

developed using luminol solutions (Santa Cruz, Santa Cruz, CA) and visualized by 

autoradiography. 

2.3 RESULTS 

2.3.1 Screening compounds for cytotoxicity against HNSCC cells 

Trypan blue dye exclusion assays were used to compare the effects of various compounds on 

growth of 1483 and UM-22b cells. In addition to their ability to grow in vivo, thus having 

potential for use in continuation of this study in the xenograft model of HNSCC, they were also 

chosen because the anticancer properties of aromatic isothiocyanates had been tested in these 

two cell lines (182). Figures 4a, 4b, and 4c show graphs of the results of trypan blue dye 
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exclusion assays with 1483 and UM-22b cells treated with up to 5 μM concentrations of non

isothiocyanate compounds, aromatic isothiocyanates, and aliphatic isothiocyanates, respectively. 

Figure 4d shows the cumulative data for screening of all compounds in 1483 and UM-22b cells. 

Our observations indicate that, of all of the compounds screened, 1-Isothiocyanato-9-methyl

sulfinyl nonane was the most effective at inhibiting growth of HNSCC cells. In general, the 

longer-chain aliphatic sulforaphane analogues, including 1-Isothiocyanato-9-methyl-sulfinyl 

nonane, 1-Isothiocyanato-6-methyl-sulfinyl hexane, Alyssin and Alyssin sulfone, inhibited 

growth more effectively than the non-isothiocyanate compounds and the aromatic 

isothiocyanates. 

32




40 
50 
60 
70 
80 
90 

100 
110 

A 
Ginsenoside Rg1 (24) 

UM-22b 1483 Ginsenoside Rh2 (24) 

140 Ginsenoside Rg3 (72) 140 
130 130 Z Guggulsterone (72) 
120 120 

110 
100 

Pe
rc

en
t s

ur
vi

va
l 

Pe
rc

en
t s

ur
vi

va
l 

Pe
rc

en
t s

ur
vi

va
l 

Pe
rc

en
t s

ur
vi

va
l 

Pe
rc

en
t s

ur
vi

va
l 

90 
80 

30 
20 
10 
0 

70 
60 
50 
40 
30 
20 
10 
0 

0 1 2 3 4 5 6 0 1 2 3 4 5 6 
Micromolar Concentration Micromolar Concentration 

B UM-22b 1483 

140 140

130
 130

120
 120 BITC (24) 

100 
PPITC (72) 
PEITC (24) 

110 110 
100 
90 
80 
70 

90 
80 
70 PBITC (72) 6060 

50 
40 
30 

50 
40 
30 
20 
10 
0 

20 
10 
0 

0 1 2 3 4 5 6 0 1 2 3 4 5 6 

Micromolar Concentration Micromolar Concentration 

C UM-22b 1483 
140 140 
130 130 

0 1 2 3 4 5 6 

Iberverin (72) 
120 120 

Erucin (72) 110 110

Pe
rc

en
t s

ur
vi

va
l 

100 100 Berteroin (72) 90 90 
8080 Iberin (72) 

70 70 

50 Alyssin (72) 
Sulforaphane (72) 6060 

50 
40 40 

30 
20 

1ITC-methylsulfinyl-hexane(72) 30 
20 1ITC-methylsulfinyl-nonane(72) 

1010 Alyssin Sulfone (72) 00 
0 1 2 3 4 5 6 

Micromolar Concentration Micromolar Concentration 

UM-22b Ginsenoside Rg1 (24) 
Ginsenoside Rh2 (24) D
 Ginsenoside Rh2 (24) 1483 

Z Guggulsterone (72) 
Ginsenoside Rg3 (72) 140 

Ginsenoside Rg3 (72) 140130 
130120 Z Guggulsterone (72) BITC (24) 120110 

Pe
rc

en
t s

ur
vi

va
l 

BITC (24) 

PPITC (72) 80

Pe
rc

en
t s

ur
vi

va
l 110100 PEITC (24) 10090 PEITC (24) 

90PPITC (72) 80 
70 Iberverin (72) 7060 PBITC (72) 60Erucin (72) 50 5040 Iberverin (72) 40Berteroin (72) 30 Erucin (72) 3020 Iberin (72) 2010 Berteroin (72) Sulforaphane (72) 100 0 Iberin (72) 0 1 2 3 4 5 6 Alyssin (72) 0 1 2 3 4 5 6 Sulforaphane (72) 1ITC-methylsulfinyl-hexane(72) Micromolar Concentration Micromolar Concentration 

Alyssin (72) 1ITC-methylsulfinyl-nonane(72) 
1ITC-methylsulfinyl-hexane(72) Alyssin Sulfone (72) 
1ITC-methylsulfinyl-nonane(72) 
Alyssin Sulfone (72) 

Figure 4. Screening natural compounds and their analogues for growth inhibition of HNSCC cell 

lines. 1483 and UM-22b cells were treated with (A) non-isothiocyanates, including Z-guggulsterone and three 

different ginsenosides (Rg1, Rg2, Rg3) (B) aromatic isothiocyanates, including Benzyl-ITC (BITC), 2

Phenylethyl-ITC (PEITC), 3-Phenylpropyl-ITC (PPITC), and 4-Phenylbutyl-ITC (PBITC) and (C) aliphatic 

isothiocyanates, including sulforaphane and its analogues. Duration of treatment, in hours, is shown in 

parentheses. Cells were stained with trypan blue dye and counted. (D) Consolidated data for all compounds 

screened in each cell line. Each experiment was performed once. 
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Table 3. Structures of and Growth Inhibition by Compounds Screened 

Structure %growth %growth 
inhibition at 5μM inhibition 
(1483) at 5μM 

(UM-22b) 
31.9  (72h) 7.42 (72h) 

37.0  (24h) 

0.81 (24h) 15.75(24h) 

Class

Non-
Isothiocyanate 

Aromatic 
Isothiocyanate 

Methylsulfenyl 
Isothiocyanate 

Methylsulfinyl 
Isothiocyanate 

Methylsulfonyl 
Isothiocyanate 

 Compound 

Guggulsterone 

Ginsenoside Rg1 

Ginsenoside Rh2 

Ginsenoside Rg3 

Benzyl-ITC (BITC)

2-Phenylethyl-ITC (PEITC) 
3-Phenylpropyl-ITC 
(PPITC) 
4-Phenylbutyl-ITC (PBITC) 
Iberverin 
(3-(Methylthio)propyl-ITC) 
Erucin
 (4-(Methylthio)butyl-ITC) 
Berteroin
 (5-(Methylthio)pentyl-ITC) 
Iberin 
(3-(Methylsulfinyl)propyl-
ITC) 
Sulforaphane
 (4-(Methylsulfinyl)butyl-
ITC) 
Allysin
 (5-(Methylsulfinyl)pentyl-
ITC) 

 1-Isothiocyanato-6-methyl
sulfinyl hexane 

 1-Isothiocyanato-9-methyl
sulfinyl nonane 
Alyssin Sulfone (5
(Methylsulfonyl)pentyl-ITC) 

 Ph-CH2-N=C=S

Ph-(CH2)2-N=C=S
Ph-(CH2)3-N=C=S

Ph-(CH2)4-N=C=S
CH3-S-(CH2)3-N=C=S 

CH3-S-(CH2)4-N=C=S

CH3-S-(CH2)5-N=C=S

CH3-SO-(CH2)3-N=C=S

CH3-SO-(CH2)4-N=C=S

CH3-SO-(CH2)5-N=C=S

CH3-SO-(CH2)6-N=C=S

CH3-SO-(CH2)9-N=C=S 

CH3-SO2-(CH2)5-N=C=S

1.04  (72h) 0 (72h) 

 61.70 (24h) 26.02(24h) 

 33.15 (24h) 14.50(24h) 
 47.10 (72h) 33.94(72h) 

 59.24 (72h) 
15.38 (72h) 7.19 (72h) 

 41.77 (72h) 48.68(72h) 

 48.36 (72h) 38.83(72h) 

 11.53 (72h) 17.89(72h) 

 54.52 (72h) 26.85(72h) 

 77.33 (72h) 66.99(72h)

 76.72 (72h) 48.66(72h)

94.99 (72h) 87.1 (72h) 

 72.12 (72h) 73.19(72h) 
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2.3.2 Effects of tested compounds on STAT3 activity in HNSCC cells 

Compounds were screened for their ability to alter the activity of STAT3 in 1483 and UM-22b 

cells. Western blots probing lysates from cells treated with some of the isothiocyanates screened 

are shown in Figure 5. Not all compounds tested for their growth inhibitory activity were 

screened for STAT3 targeting. In this preliminary study, the ginsenosides Rg1 and Rh2, and the 

isothiocyanate PPITC, did not inhibit STAT3 in HNSCC cells. On the other hand, the 

isothiocyanates, PBITC, sulforaphane and alyssin all induced modest decreases in 

phosphotyrosine STAT3 in individual experiments. Chapter 4 will discuss the STAT3 inhibitory 

activity of guggulsterone, which was later determined.  

PBITC (24h) SFN (72h)   Alyssin (72 h) 

UM-22b UM-22b        1483      UM-22b 

vh 5μM vh 5μM  vh  5μM  vh 5μM 

PSTAT3 
STAT3 
β-actin 

Figure 5. STAT3 inhibition by isothiocyanates. 1483 or UM-22b cells were treated with PBITC (5 

μM, 24 h), alyssin (5 μM, 72 h) or sulforaphane (5 μM, 72 h) or with DMSO as a vehicle control. Whole cell 

lysates were probed for phosphotyrosine STAT3, total STAT3 and β-actin, as a loading control. 
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2.4 DISCUSSION 


The current study was performed to screen naturally occurring compounds and their analogues 

for their anticancer and STAT3-targeting activity in HNSCC cells, in hopes of identifying a 

candidate chemopreventive agent for HNSCC. Although growth inhibition and STAT3 targeting, 

on their own, are not indicative of a compound’s chemopreventive activity, these parameters 

were chosen in consideration of the important role that STAT3 plays in HNSCC and the 

assumption that growth inhibition of HNSCC cell lines might reflect a compound’s ability to 

inhibit head and neck carcinogenesis. 

Definite conclusions about which class of aliphatic isothiocyanates, defined by the 

oxidation state of sulfur, is most cytotoxic to HNSCC cells cannot be drawn from these data. 

These data do suggest a general trend within each class of aliphatic isothiocyanates, however. 

Compounds with longer hydrocarbon chains more effectively inhibit growth of 1483 and UM

22b cells. Also, other studies have found that aromatic hydrocarbons with longer chain spacers 

beyond the aromatic ring have greater anticancer activity (182, 184). In general, however, longer 

chain length does not necessarily indicate optimal activity in all malignancies (184). It seems that 

there is more complexity to the structural basis of a compound’s activity against cancer.  Future 

experiments with require examination of the specificity of each compound’s growth inhibitory 

effect in cancer cells as compared to normal cell lines. 

STAT3 activity may be an early event in HNSCC carcinogenesis, suggesting that STAT3 

targeting may potentially prevent HNSCC. To our knowledge, alterations in STAT3 activity after 

treatment with ginsenosides and isothiocyanates have not been previously examined. In the 
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current study, the isothiocyanates PBITC, alyssin, and sulforaphane were found to induce modest 

decreases in phosphotyrosine STAT3 (Figure 5). These experiments have not been repeated. 

After conducting this screen for candidate chemopreventive agents, our strategy for 

choosing a compound to investigate changed. We realized that in vivo growth inhibition is an 

imperfect parameter for measuring the chemopreventive activity of a compound and that almost 

all of the compounds screened are unavailable as clinical formulations. This would pose 

significant barriers to their translation into the clinic, were they found to have chemopreventive 

activity. Upon determining the STAT3-inhibitory effects of guggulsterone (Chapter 3), we 

decided to focus our study on guggulsterone, despite our observations that HNSCC cell lines 

were much more sensitive to some of the other compounds screened. Guggulsterone is widely 

available as a dietary supplement and has been used in clinical trials, demonstrating few and mild 

side effects (183, 185). These characteristics make guggulsterone a very good candidate 

chemopreventive drug, at least in terms of practical considerations.  
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3.0 GUGGULSTERONE INHIBITS GROWTH OF HEAD AND NECK SQUAMOUS 

CELL CARCINOMA VIA TARGETING OF SIGNAL TRANSDUCER AND 

ACTIVATOR OF TRANSCRIPTION-3 SIGNALING 

3.1 INTRODUCTION 

3.1.1 Guggulsterone 

For over 2000 years, the extract of the plant Commiphora mukul has been used in Indian 

Ayurvedic medicine as a treatment for numerous ailments. Guggulsterone, a compound 

contained in this plant resin, is widely available as a dietary supplement and has been used in 

many clinical trials that have focused on its cholesterol-lowering potential. The steroid-like 

structure of guggulsterone contains four hydrocarbon rings and has two isomers, Z and E. In 

clinical studies with guggulsterone, human subjects experienced decreased cholesterol and 

triglyceride levels and mild side effects, including rash, headache and diarrhea (183, 185). The 

relative safety of this drug makes it a good candidate for complementary and preventive therapy.   

3.1.2 Guggulsterone’s NFκB inhibiting activity 

Guggulsterone’s anticancer activity was first demonstrated by Shishodia et al. who, based on an 

earlier study demonstrating guggulsterone’s anti-inflammatory activity (186), hypothesized that 
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guggulsterone may affect nuclear factor kappa B (NFκB), a transcription factor that plays a role 

in both inflammation and cancer (187). Guggulsterone treatment of lung cancer cells was then 

shown to inhibit both nuclear factor kappa B (NFκB) and its activator, IκB (inhibitor of NFκB) 

kinase, promoting apoptosis and decreasing the expression of antiapoptotic genes, cell cycle 

promoting genes, and genes that control metastasis (187). NFκB DNA binding was shown to 

decrease with guggulsterone treatment of various cell lines, including the HNSCC cell line 

MDA1986 (187). 

3.1.3 Guggulsterone’s anticancer activity 

Subsequent studies demonstrated guggulsterone-induced apoptosis that was mediated by 

caspases and changes in expression of Bax and Bak in prostate cancer cells (188). In acute 

myeloid leukemia cells, apoptosis was induced through mitochondrial dysfunction, 

differentiation and the generation of reactive oxygen species (189). Two studies have implicated 

c-Jun N-terminal kinase (JNK) as a mediator of guggulsterone’s anticancer effects on human 

monocytic leukemia cells (190) and prostate cancer cells (191). One study reported inhibition of 

tumor angiogenesis in both in vitro assays and, using an animal model of prostate cancer, in the 

first reported in vivo demonstration of guggulsterone’s anticancer activity (192). Finally, a very 

recent study has demonstrated inhibition of NFκB signaling and inhibition of skin tumorigenesis 

in vivo by topical guggulsterone administration (193). 
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3.1.4 Rationale for investigating guggulsterone’s STAT3-targeting activity 

Based on previous reports of interactions between NFκB and STAT3 (Figure 3), we 

hypothesized that guggulsterone may target STAT3 in HNSCC. Attempts to target STAT3, a 

putative therapeutic target in HNSCC, have been the focus of various preclinical studies using, 

nucleic acids, like the STAT3 transcription factor decoy, and proteins, such as peptidomimetics, 

for example. For the most part, several obstacles need to be overcome before molecules like 

these can be successful in the clinic, much more so than a safe and widely available nutraceutical 

like guggulsterone. In a very recent study, Ahn et al. demonstrated guggulsterone-induced 

decreases in levels of phosphotyrosine STAT3 in both multiple myeloma and HNSCC cell lines 

(194). In the same study, guggulsterone’s effect on phosphotyrosine STAT3 was shown to be 

mediated through activity of the protein tyrosine phosphatase and physiological regulator of 

STAT3, SHP-1 (194). 

In the current study, we investigated guggulsterone’s effects in HNSCC preclinical 

models and the role of STAT3 signaling in mediating these effects. Our results demonstrate that 

guggulsterone induces apoptosis, cell cycle arrest and decreases in invasiveness of HNSCC cells. 

Further investigation suggested that guggulsterone enhances the effects of currently available 

HNSCC therapies. Furthermore, the expression of HIF-1α, an important therapeutic target and 

marker of poor prognosis, which is downstream of both NFκB and STAT3, was found to 

decrease dramatically with guggulsterone treatment. Guggulsterone’s growth inhibitory effects 

were mediated, at least in part, by modulation of STAT3 signaling, notably characterized by 

decreases in both total STAT3 as well as phosphotyrosine STAT3 expression. Guggulsterone 
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inhibited HNSCC tumor growth in vivo, thereby supporting the future clinical development of 

this compound in HNSCC. 

3.2 MATERIALS AND METHODS 

3.2.1 Cell lines and reagents 

The HNSCC cell lines used in this study were derived from human HNSCC tumors (195). The 

PCI-37a cell line was created at University of Pittsburgh (196). UM-22b cells were provided Dr. 

Thomas Carey (University of Michigan, Ann Arbor, MI) (197) and 1483 cells by Dr. Gary 

Clayman (MD Anderson Cancer Center, Houston TX) (198). All HNSCC cell lines were 

cultured in Dulbecco’s modification of eagle’s medium (Mediatech, Manassas, VA) with 10% 

heat-inactivated FBS (Invitrogen, Carlsbad, CA).  E and Z guggulsterone (Steraloids, Inc, 

Newport, RI) were both dissolved in 100% dimethylsulfoxide (DMSO) when used to treat cell 

cultures and suspended in saline for animal treatments. Guggulipid (Sabinsa Corporation, 

Piscataway, NJ) was suspended in 5% ethanol/corn oil for animal treatments. Cisplatin (Bedford 

Laboratories, Bedford, OH) and cetuximab (ImClone, New York, NY), both diluted in saline, 

and erlotinib (OSI Pharmaceuticals, Melville, NY), dissolved in DMSO, were also used in the 

described studies. The characteristics of HNSCC cell lines used in this study are shown in Table 

4. 
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Table 4. Characteristics of HNSCC Cell Lines 

1483 UM-22b PCI-37a 
TNM stage T2N1M0 T2N1M0 T3N2M0 
Gender male female male 
p53 mutation unknown yes unknown 
Tumor site oral cavity lymph node 

metastasis from 
hypopharynx 

larynx 

Doubling time ~36h ~24h ~80h 
Tumors in nude mice yes yes no 

3.2.2 Guggulsterone treatment of cell cultures 

Unless otherwise specified, HNSCC cell lines were treated with DMEM containing an even 

mixture of guggulsterone’s E and Z stereoisomers (Steraloids, Inc, Newport, RI) dissolved in 

100% dimethylsulfoxide (DMSO). Each given concentration of the even mixture represents E

guggulsterone as one half the concentration and Z-guggulsterone as the other half. Vehicle 

control cells were treated with an equal volume of DMSO. 

3.2.3 Trypan blue dye exclusion assay 

Following 72-hour treatments with guggulsterone or vehicle, floating cells were collected as well 

as adherent cells, which were harvested by trypsinization. Cells were resuspended in trypan blue 

dye (Invitrogen, Carlsbad, CA). Live cells, as judged by exclusion of trypan blue dye, were 

counted under an inverted microscope, using a hemocytometer.  Percent survival was calculated 

relative to the number of surviving cells from cultures treated with vehicle. Data from cell-

counting experiments represent averages from triplicate wells in multiple separate experiments. 

EC50s were calculated using Graphpad Prism software version 4.03 (GraphPad Software Inc.). 
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3.2.4 MTT assays 

HNSCC cells were plated and treated with guggulsterone for 72 hours. Medium was removed 

and replaced with thiazolyl blue tetrazolium (Sigma Chemical) solution in PBS. Cells were 

incubated at 37˚C until appearance of blue color. Thiazolyl blue tetrazolium was removed and 

replaced with 100% DMSO. Optical density of each sample was measured using a plate reader 

(μQuant, Bio-tek Instruments, Inc). Blanked readings of guggulsterone-treated cells were 

compared to those for vehicle-treated cells. 

3.2.5 Cell death detection ELISA 

HNSCC cells were treated with guggulsterone for up to 12 hours. Floating cells were collected as 

well as adherent cells, which were harvested by trypsinization. Apoptosis was assayed through 

detection of histone-associated DNA fragments present in cell lysates using a Cell Death 

Detection ELISA (Roche Diagnostics, Indianapolis, IN) according to the manufacturer’s 

instructions. The enrichment factor represents the ratio of histone-associated DNA fragments, 

represented by duplicate, blanked OD readings from multiple experiments, such that enrichment 

factor=(average blanked OD of guggulsterone-treated cells)/(average blanked OD of vehicle-

treated cells).  
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3.2.6 Cell cycle analysis 

HNSCC cell lines were treated with guggulsterone or vehicle for 24 hours (triplicate cultures in 

each of multiple experiments). Floating cells were collected as well as adherent cells, which were 

harvested by trypsinization. Cells were fixed in 70% ethanol/PBS for at least one hour at 4°C and 

stained with propidium iodide/RNase A reagent (BD Biosciences, San Diego, CA) for one hour 

at room temperature in the dark. Cells underwent flow cytometric analysis with a BD 

FACSCalibur flow cytometer. BD CellQuest software was used for acquisition of data and BD 

Modfit software for data analysis. 

3.2.7 Matrigel invasion assays 

UM-22b cells were plated, in serum free DMEM in matrigel-coated modified Boyden inserts 

with a pore size of 8 µm (BD Biosciences, San Diego, CA), the lower well containing 

DMEM/10% FBS. Both the insert and outer well also contained 10 ng/ml epidermal growth 

factor (EGF) and either one or a combination of the following treatments: an even mixture of 

guggulsterone’s stereoisomers (8.3 μM), erlotinib (5 μM), cetuximab (4 μg/ml), or vehicle. 

Matrigel inserts were fixed, stained with Hema 3 (Fisher Scientific), and counted (at least 4 

fields per insert) as previously described (199).  
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3.2.8 Immunoblotting 

HNSCC cells were treated with guggulsterone or vehicle for 72 hours. Cells were harvested by 

scraping in lysis buffer (Tris-HCl, pH 7.6 (10mM), EDTA (5mM), NaCl (50mM), Na4P2O7 

(30mM), NaF (50mM), Na3VO4 (1mM), Triton X-100 (1%) (200), and briefly sonicated. Protein 

concentration in lysates was quantified using protein assay solution (Bio-Rad Laboratories, 

Hercules, CA) and comparing lysates to a standard curve of bovine serum albumin solutions. 

Approximately 40 μg of protein were loaded onto an 8% polyacrylamide gel. After SDS-PAGE, 

lysates were transferred onto a Trans-blot nitrocellulose membrane (Bio-Rad Laboratories, 

Hercules, CA). The membrane was blocked in blocking solution of 5% nonfat dry milk in TBST 

(0.2% Tween 20 in PBS) for one hour at room temperature. A primary antibody for 

phosphotyrosine (Y705) STAT3, total STAT3 (Cell Signaling Technology, Beverly, MA) or 

HIF-1α (BD Biosciences, San Diego, CA), at a 1:1000 dilution in blocking solution, was used to 

probe the membrane overnight at 4°C. The primary antibody for β-actin (Calbiochem, San 

Diego, California) was diluted at 1:5000 in blocking solution and used to probe membranes for 

45 minutes at room temperature. Membranes were then incubated with secondary antibodies 

(1:3000 in blocking solution) for 15 minutes in the case of blots probed for β-actin (secondary is 

goat anti mouse IgM-horseradish peroxidase conjugate; Bio-Rad Laboratories, Hercules, CA) 

and for 1 hour in the case of blots probed for phosphotyrosine STAT3, STAT3 (secondary is 

goat anti rabbit IgG- horseradish peroxidase conjugate; Bio-Rad Laboratories, Hercules, CA) or 

HIF-1α (secondary is goat anti mouse IgG- horseradish peroxidase conjugate; Bio-Rad 

Laboratories, Hercules, CA). Membranes were washed in TBST three times after incubation with 

each antibody. Membranes were developed using luminol reagents (Santa Cruz, Santa Cruz, CA) 

and visualized by autoradiography. Densitometric analyses were performed using DigiDoc1000 
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software (Alpha Innatech Corporation, San Leandro, CA). Densitometric values for bands 

representing STAT3 or PSTAT3 were normalized to β-actin such that relative 

units=densitometric value for protein of interest/densitometric value for corresponding β-actin 

band. Displayed values represent the relative units for each sample divided by the relative units 

for vehicle control. 

3.2.9 STAT3 siRNA transfection 

1483 and UM-22b cells were transfected with STAT3 siRNA (siGenome Duplex STAT3) or 

GFP siRNA (GFP duplex 1), (Dharmacon, Lafayette, CO) plus 6 µl Lipofectamine 2000 

(Invitrogen, Carlsbad, CA), per well of a 6 well plate, in 1.5 ml OPTIMEM 1 medium 

(Invitrogen, Carlsbad, CA) for 4 hours. DMEM/10% FBS was then replaced.  

3.2.10 Realtime RT-PCR for STAT3 

1483 and UM-22b cells were treated with vehicle or guggulsterone for 1, 4, 6, 8, 12, 16 and 24 

hours or transfected with STAT3 siRNA, as described above. Other controls were untreated 

wildtype and STAT3-knockout mouse embryonic fibroblasts. RNA was extracted using the 

Versagene RNA-Cell Kit with on-column DNase treatment according to the manufacturer's 

instructions (Gentra Systems, Minneapolis, MN). Reverse transcription of the isolated RNA was 

then performed using SuperScript First-Strand Synthesis System for RT-PCR (Invitrogen, 

Carlsbad, CA) according to the manufacturer’s instructions. Real time PCR employed the 
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Applied Biosystems ABI Prism 7000 Sequence Determination System (Applied Biosystems, 

Foster City, CA). Samples were prepared using TaqMan Universal PCR Master Mix and 312.5 

ng of cDNA (Applied Biosystems, Foster City, CA). The thermocycler conditions were as 

follows: 1x 95 °C for 5 min; 40x (30sec 95 °C denaturation, 1 min 60 °C annealing, 45 sec 72 °C 

extension); 1x 72 °C for 5 min. Primer and probe sequences: STAT3F 5’

ATCCTGAAGCTGACCCAGGTA-3’; STAT3R 5’-AGGTCGTTGGTGTCACACAGA-3’; 

STAT3 Probe 5’-CGCTGCCCCATACCTGAAGACCAAGTTT-3’; β-ActinF 5’

GCAAAGACCTGTACGCCAACA-3’; β-ActinR 5’-TGCATCCTGTCGGCAATG-3’; β-Actin 

Probe 5’-TGGCGGCACCACCATGTACC-3’ (39).  

3.2.11 RT-PCR 

Cell homogenization was completed using the QIAshredder kit (Invitrogen, Carlsbad, CA) and 

subsequent RNA isolation was performed with the RNeasy Mini Kit (Invitrogen, Carlsbad, CA) 

with the optional on column DNase treatment. Reverse transcription of the isolated RNA was 

performed using SuperScript First-Strand Synthesis System for RT-PCR (Invitrogen, Carlsbad, 

CA). PCR was performed using PCR Master Mix (Promega, Madison, WI) and 125 ng of 

cDNA. Primer sequences for amplification of FXR: FXRsense 5'

TGCTGAAAGGGTCTGCGGTTG-3'; FXRantisense 5'-CACGTCCCAGATTTCACAGAG-3'. 

Primer sequences for amplification of Bcl-XL: Bcl-XLsense 5’

CCCAGAAAGGATACAGCTCG-3’, Bcl-XLantisense 5’-AAAGTATCCCAGCCGCCGTTCT

3’. Primer sequences for amplification of Cyclin D1: cyclinD1sense 5’

CTGTGCTGCGAAGTGGAAACC-3’, cyclinD1antisense 5’

CAGGAAGCGGTCCAGGTAGTT-3’. Primer sequences for amplification of house-keeping 
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gene, GAPDH: GAPDH Fwd 5'- TGGAATTTGCCATGG GTG -3'; GAPDH Rev 5'

GTGAAGGTCGGAGTCAAC -3', The thermocycler conditions were as follows: 1x 94 °C for 5 

min; 35x (1 min 94 °C denaturation, 30 sec 56 °C annealing, 30 sec 72 °C elongation); 1x 72 °C 

for 7 min. RT-PCR products were resolved on a 1.5% agarose gel containing 3% ethidium 

bromide. 

3.2.12 Luciferase assay 

UM-22b cells were transfected with an NFκB-luciferase construct using Lipofectamine 2000 

(Invitrogen, Carlsbad, CA) in OPTIMEM 1 medium (Invitrogen, Carlsbad, CA) for 4 hours. 

DMEM/10% FBS was then replaced. The following day, cells were treated with guggulsterone 

(10 μM) for 4 hours, collected, and lysed, using a syringe. The Luciferase Reporter 1000 Assay 

System (Promega) was used, according to the manufacturer’s instructions and a luminometer to 

measure relative light units (RLU). Protein assay solution (Bio-Rad Laboratories, Hercules, CA) 

was used to quantify the amount of protein in each sample, for comparison to RLUs. 

3.2.13 In vivo tumor xenograft studies 

3.2.13.1 Guggulsterone study, pretreatment model 

Female nude mice (6-8 wks old; 8 in each of 2 groups) were treated daily, by oral gavage, with 2 

mg guggulsterone (Steraloids, Inc., Newport, RI) suspended in 200 µl saline, for two weeks prior 

to tumor cell inoculation or with saline, as a vehicle control. One million 1483 and UM-22b 

cells, in 100 μl Hank’s balanced salt solution (Invitrogen, Carlsbad, CA), were subcutaneously 

injected into the animals left and right flanks, respectively. Daily treatments with guggulsterone 
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or saline continued for another three weeks. Mice were euthanized one week after the last 

guggulsterone treatment. Tumors were fixed in 10% formalin and sectioned onto glass slides. 

Slides were stained with TUNEL or with an antibody specific for STAT3 (Cell Signaling 

Technology). Slides were scored by a pathologist (Dr. Raja Seethala) who was blinded to 

treatment groups. Immunohistochemical score=(%of tumor section scored as 1+) x 1 + (% of 

tumor section scored as 2+) x 2+ (percent of tumor section scored as 3+) x 3.  

3.2.13.2 Guggulipid studies, therapy model 

Experiment 1. 1483 cells: 16 female nude mice (6-8 weeks old) were subcutaneously 

injected with one million 1483 cells. After tumor outgrowth, mice were randomized to two 

groups, based on tumor volumes and treated daily by oral gavage, with 25.9 mg Guggulipid 

(7.73% guggulsterone; Sabinsa Corporation, Piscataway, NJ), resuspended in corn oil/5% 

ethanol to a total of 200 µl, or with the vehicle alone. Blinded tumor measurements were taken 

three times per week.  

Experiment 2. UM-22b cells and combination with cetuximab: 40 Female nude mice (6-8 

wks old) were subcutaneously injected into each animal’s right flank with two million UM-22b 

cells, in 100 μl Hank’s balanced salt solution (Invitrogen, Carlsbad, CA). After tumor outgrowth, 

10 days later, mice were randomized to four groups, based on tumor volumes and treated, 

depending on the group, daily by oral gavage, with 25.9 mg Guggulipid (7.73% guggulsterone; 

Sabinsa Corporation, Piscataway, NJ), resuspended in corn oil/5% ethanol to a total of 200 µl, 

twice per week with 0.8 mg cetuximab (ImClone, New York, NY), by intraperitoneal injection in 

100 μl saline, with both drugs, or with the corresponding vehicles. Treatments continued for 

three weeks. Blinded tumor measurements were taken three times per week. 
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3.2.14 Statistical analyses 

All statistical analyses of in vitro results and tissue stains were done using the 

nonparametric Mann-Whitney or Wilcoxon tests. All tests were two-tailed and exact. The in vivo 

tumor xenograft experiments were analyzed with a general linear model that assumed animals 

were random effects.  Data were examined for the interaction between treatment group and day 

of observation, testing whether the slopes of the growth curves (volume vs. day of observation) 

were significantly different for the control and treatment groups. 

3.3 RESULTS 

3.3.1 Guggulsterone inhibits the growth of HNSCC cell lines 

To begin to identify a compound with anti-cancer activity in HNSCC cells, a series of 

naturally-occurring compounds or analogues of naturally occurring compounds, including 

isothiocyanates, ginsenosides and guggulsterone, which has two stereoisomers, E and Z, were 

screened in vitro for growth in two human HNSCC cell lines, 1483 and UM-22b (Chapter 2). 

Trypan blue dye exclusion assays demonstrated that, E-guggulsterone, Z-guggulsterone, and an 

even mixture of the two stereoisomers decreased numbers of viable cells in a dose-dependent 

manner after 24 hours of treatment (Figure 6a, 6b and 6c). Trypan blue dye exclusion assays also 

demonstrated that after 72 hours of treatment of 1483, UM-22b or PCI-37a cells with the even 

mixture of guggulsterone’s  stereoisomers, inhibition of HNSCC cell growth in vitro occurred 

with EC50s of 7.0 μM for 1483, 8.3 μM for UM-22b, and 5.1 μM for PCI-37a (Figure 6d). These 
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concentrations are comparable to those observed in guggulsterone treatment of various other 

cancer cell lines, including other HNSCC cell lines (187, 188, 190). Furthermore, the 

concentrations required to inhibit the growth of HNSCC cell lines are physiologically attainable 

in vivo. Even though pharmacokinetic parameters for guggulsterone have not been determined in 

humans, the maximal plasma concentration of guggulsterone (Cmax) in rats was shown to be 

about 3.3 μM following oral gavage with 50 mg guggulsterone/kg body weight (201). The plant 

extract, sold as a nutraceutical dietary supplement, contains both stereoisomers of guggulsterone 

in nearly equal amounts (data from the laboratory of Dr. Shivendra Singh).  Since the plant 

extract is more likely than the synthetic compound to be used as a clinical formulation and 

because, based on our observations, there does not seem to be an advantage to using one 

stereoisomer over the other, subsequent in vitro studies were performed using an even mixture of 

the two stereoisomers. Of note, the cell lines used in the following studies were found to be the 

most sensitive to guggulsterone (10 μM) in a panel of cell lines treated for 72 hours and assessed 

for viability with an MTT assay (Figure 6e), which we have found is less sensitive than the 

trypan blue dye exclusion assay. 
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Figure 6. In vitro growth inhibition with guggulsterone treatment. 1483 (left) and UM-22b (right) 

cells were treated with (A) an even mixture of guggulsterone’s stereoisomers (B) Z-guggulsterone or (C) E

guggulsterone, for 24, 48 and 72 hours, stained with trypan blue dye and counted. (D) UM-22b, 1483 and 

PCI-37a cells were treated with an even mixture of guggulsterone’s isomers for 72 hours, trypan blue survival 

assays performed, and EC50s calculated. (E) A panel of HNSCC cell lines were treated with an even mixture 

of guggulsterone’s isomers for 72 hours. MTT assays were performed to determine viability. (F) Four non-

tumor cell lines, including primary oral keratinocytes (OKF6), immortalized esophageal epithelial cells (Het

1a), mouse embryonic fibroblasts (MEF), and fibroblasts cultured from benign uvuloplasty tissue (UP3), were 

all treated with an even mixture of guggulsterone’s isomers for 72 hours, stained with trypan blue dye and 

counted. 
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We were interested in determining whether or not guggulsterone’s in vitro growth 

inhibitory effects were specific for cancer cells. Despite data showing that, at very high 

concentrations, primary cultures of normal prostate epithelial cells are insensitive to 

guggulsterone (188), primary oral keratinocytes (OKF6), immortalized esophageal epithelial 

cells (Het-1a), mouse embryonic fibroblasts, and primary pharyngeal fibroblasts (UP3), were all 

sensitive to guggulsterone-induced growth inhibition at similar concentrations as HNSCC cell 

lines (Figure 6e). We did observe that the rate of UP3 cell growth, which increased as the cells 

were in culture for a longer period of time, affected their sensitivity to guggulsterone, such that 

slower growing UP3 cells appeared insensitive to guggulsterone. If guggulsterone had never 

been used in the clinic, these results, demonstrating nonspecific growth inhibition of normal cell 

lines, would certainly indicate a potential for toxicity and side effects from this drug. However, 

as guggulsterone has been found to be safe, these in vitro results are less relevant and 

concerning. 

3.3.2 Guggulsterone induces apoptosis and cell cycle arrest and inhibits invasion in 

HNSCC cell lines. 

Guggulsterone has been reported to induce apoptosis in other cancer cell lines, including prostate 

carcinoma (188), monocytic leukemia (190) and multiple myeloma (194). We therefore tested 

the ability of guggulsterone to induce apoptosis in HNSCC cell lines. We first looked at 

guggulsterone’s effect on DNA degradation, a marker of apoptosis. This was examined through 

detection of histone-associated DNA fragments in cell lysates. Treatment of UM-22b cells with 

guggulsterone at 10 μM induced a time-dependent increase in histone-associated DNA 
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fragments. 12 hours of treatment resulted in a 3.2-fold increase in histone-associated DNA 

fragments (p=0.03, all time points up to 12 hours) (Figure 7a). The enrichment factor on the y 

axis is a measure of the levels of histone-associated DNA fragments in lysates of treated cells 

compared to the vehicle control. In UM-22b cells, levels of histone-associated DNA fragments 

were also found to increase, dose dependently after 24 and 48 hours of treatment (Figure 7b). We 

also examined levels of caspase 3, an enzyme mediator of apoptosis that is inactive in its pro-

form and cleaved upon activation. 1483 and UM-22b cell lines were treated with guggulsterone 

for 72 hours. Immunoblots demonstrated that 72-hour guggulsterone treatment of both 1483 and 

UM-22b results in a relatively modest, but statistically significant by densitometric analysis, 

decrease in pro-caspase 3, indicating cleavage to the active form and an increase in apoptosis 

(p=0.03 for both cell lines, Figure 7c). Furthermore, this effect was found to be dose dependent 

in 1483 cells treated for 48 and 72 hours (Figure 7d). These results indicate that guggulsterone 

induces apoptosis in HNSCC cell lines.  
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Figure 7. Guggulsterone induces apoptosis in HNSCC cell lines. (A and B) UM-22b cells were treated 

with guggulsterone (10 μM). Histone-associated DNA fragments were detected through ELISA of cell lysates. 

(*For all timepoints in (A), p=0.03). UM-22b (C) and 1483 (C and D) cells were treated with guggulsterone 

(10 μM) for 48 (D) and 72 (C and D) hours. Whole cell lysates were probed for full-length caspase 3. Graphs 

of densitometric analyses accompany each western blot. (p=0.03 for both experiments in (C)). 

We next examined the effects of guggulsterone on the cell cycle, which is often 

aberrantly regulated in cancer cells. Both 1483 and UM-22b cell lines were treated with the even 

mixture of guggulsterone stereoisomers for 24 hours. Staining of treated cells with propidium 

iodide followed by flow cytometric analysis revealed a dose-dependent increase in the proportion 

of cells in the G0/G1 phases of the cell cycle as compared to vehicle control. This population 
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increased by 13.3% and 53.6% at 10 and 20 μM, respectively, in 1483 cells and by 9.5% and 

33.2%, respectively, in UM-22b cells (Figures 8a and 8b). These results were statistically 

significant at 20 μM guggulsterone (p=0.008 for 1483 and p=0.03 for UM-22b). Similar results 

have previously been reported in human monocytic leukemia and multiple myeloma cells (190, 

194). We have found the cell cycle inhibitory effect to be reversible as, after replacing the 

guggulsterone containing medium (20 μM, 24 h) with drug free medium for an additional 24 

hours, the cell cycle profile of guggulsterone-treated cells resembled that of vehicle treated cells 

(Figure 8c). In UM-22b cells, expression levels of proteins that promote the transition from the 

G1 to the S phase of the cell cycle, including phosphorylated Rb, Cyclin dependent kinase 

(CDK) 4, and Cyclin D1, which is a target gene for both STAT3 and NFκB (129, 202), showed a 

subtle decrease following 16 hours of guggulsterone (10 μM) treatment (Figure 8d). 
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Figure 8. Guggulsterone induces cell cycle arrest in HNSCC cells. (A) HNSCC cell lines, 1483 and 

UM-22b were treated with guggulsterone (10 and 20 μM) for 24 hours. Cells were fixed with 70% 

ethanol/PBS, stained with propidium iodide and analyzed by flow cytometry. The y axis represents the 

percentage of the entire cell population within each sample currently in each phase of the cell cycle. All 

experiments were done with triplicate samples. Each experiment was performed at least 4 times with similar 

results. (p=0.008 for 1483 and p=0.03 for UM-22b). (B) Representative cell cycle histograms of 1483 cells 

treated with vehicle or guggulsterone (20 μM). (C) UM-22b cells were treated either with vehicle or 
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guggulsterone and then collected or were treated with vehicle or guggulsterone, switched to drug-free 

medium for 24 hours, and collected, followed by propidium iodide staining and cell cycle analysis. (D) UM

22b cells were treated with guggulsterone (10 μM) for 16 hours. Whole cell lysates were probed with 

antibodies for cell cycle regulating proteins: cyclin D1, cyclin E, CDK4, CDK6, CDK2, Cdc25a, Rb and pRb. 

The experiments in part D were performed twice with similar results.  

The invasive properties of HNSCC cells contribute to the morbidity and mortality 

associated with this neoplasm. An in vitro matrigel invasion assay was used to determine the 

effect of guggulsterone treatment on the invasive potential of UM-22b, a cell line derived from a 

cervical lymph node HNSCC metastasis. Epidermal growth factor (EGF) was used to stimulate 

invasion and 10% FBS added to the lower well as a chemoattractant for cells to invade through 

the matrigel, which resembles an extracellular matrix. Cells were treated with 8.3 μM 

guggulsterone, the 72-hour EC50, which results in only small decreases in viability of UM-22b 

cells after 24 hours, for 24 hours before matrigel inserts were fixed and stained. Guggulsterone 

treatment resulted in a 56.8% decrease in average numbers of invasive cells, bringing numbers of 

invaded cells close to those for EGF-unstimulated samples (Figure 9).  

Figure 9. Guggulsterone inhibits invasiveness of HNSCC cells. 

UM-22b cells were plated, in serum-free DMEM, on top of 

matrigel inserts in wells containing DMEM/10% FBS.  Both 
p=0.03 

inserts and outer wells contained EGF (10ng/ml) and 

100 guggulsterone (8.3 μM) or DMSO as a vehicle control. Matrigel 

inserts were fixed and stained after 24 hours. Numbers of cells 75 

invading the matrigel were counted. The experiment was 50 

performed 4 times, using duplicate samples and counting at 

least 4 fields per well (p=0.03). 

25 

0 
vh EGF EGF+guggul 

A
ve

ra
ge

 p
er

ce
nt

 in
va

de
d 

pe
r 

fie
ld

(c
om

pa
re

d 
to

 E
G

F 
al

on
e)

 

58




3.3.3 Guggulsterone enhances the growth inhibitory and anti-invasion activities of 

HNSCC therapies. 

Guggulsterone has recently been shown to inhibit drug efflux transporters involved in multi-drug 

resistance to cancer therapies (203). Therefore, we examined the effect of combining 

guggulsterone with two different therapies for HNSCC, the widely used chemotherapeutic drug, 

cisplatin, and the small molecule EGFR tyrosine kinase inhibitor, erlotinib (TarcevaTM), which is 

in advanced stages of clinical testing (Figure 10a). A different EGFR-inhibiting therapy, 

cetuximab, has been approved for treatment of HNSCC but is known to only inhibit growth in 

vivo, and not in vitro, perhaps because its efficacy relies on the presence of extracellular factors. 

Combining the approximate EC50 concentration of each drug (1.5 μM for cisplatin and 10 μM for 

erlotinib) with guggulsterone at its EC50 (7.0 μM in 1483 cells) significantly enhanced each 

drug’s growth inhibitory effect (p=0.03 for both drugs; Figure 10b). Similar results were seen in 

UM-22b cells. The inhibitory effect that both erlotinib (5 μM) and cetuximab (4 μg/ml) have on 

HNSCC invasion was also enhanced with the addition of guggulsterone at its EC50 (8.3 μM in 

UM-22b cells) (p=0.03) (Figure 10b). 
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Figure 10. Guggulsterone enhances the activities of cisplatin, erlotinib and cetuximab in 

HNSCC cells. (A) 1483 cells were treated with guggulsterone (7 μM) and/or erlotinib (10 μM) or 

cisplatin (1.5 μM). After 72 hours, cells were trypsinized, stained with trypan blue dye and 

counted. Each experiment was performed with triplicate samples a total of 4 times with similar 

results (p=0.03 for both experiments) (B) UM-22b cells were plated in serum-free DMEM, on top 

of matrigel inserts in wells containing DMEM/10% FBS. Both inserts and outer wells contained 

EGF (10 ng/ml) and either an even mixture of guggulsterone’s isomers (8.3 μM) or DMSO as a 

vehicle control, with or without erlotinib (5 μm) or cetuximab (4 μg/ml). Matrigel inserts were 

fixed and stained after 24 hours. Numbers of cells invading the matrigel were counted. The 

experiment was performed 4 times, using duplicate samples and counting 4 fields per well 

(p=0.03 for both drugs). (C) 686LN and 686LN-R30 cells were treated with guggulsterone (0.01

100 μM) for 72 hours, stained with trypan blue dye, and counted. 
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A clone (686LN-R30) that arose from selective pressure inducing resistance to EGFR-

targeting TKIs (204), in which erlotinib has an EC50 of over 40 μM as compared to an EC50 of ~4 

μM in the parental cell line (686LN) (204) (134.70 μM and 15.13 μM, respectively, in the 

Grandis lab; personal communications, Kelly Quesnelle). This erlotinib-resistant clone is also 

relatively resistant to guggulsterone-induced growth inhibition having an EC50 of 14.3 μM, as 

compared to 8.6 μM in the parental cell line (Figure 10c).  Although the mechanisms resulting in 

resistance to EGFR inhibition in this clone are not completely overcome by guggulsterone, these 

cells are much more sensitive to guggulsterone than to erlotinib. 

3.3.4 Guggulsterone decreases total and phosphotyrosine STAT3 expression levels in 

HNSCC cell lines. 

STAT3 contributes to oncogenic signaling in HNSCC and interacts with NFκB, another 

transcription factor that has been found to be inhibited by guggulsterone (187). Therefore, we 

chose to assess the effects of guggulsterone on STAT3 expression and activity in HNSCC cell 

lines. 1483, UM-22b, and PCI-37a cells were treated with the even mixture of guggulsterone’s 

stereoisomers followed by assessment of phosphotyrosine STAT3 and total STAT3 protein 

levels. All three cell lines demonstrated dose-dependent decreases in both phosphotyrosine 

STAT3 and total STAT3 that were statistically significant, upon densitometric analysis (p=0.03) 

(Figure 11a). This effect, though less pronounced, was seen as early as 24 hours after treatment 

(Figure 11b). In contrast to results reported by Ahn et al, who demonstrated decreases in 

phosphotyrosine STAT3, but not total STAT3, upon treatment of HNSCC cells with the Z but 

not the E isomer (194), in our study, decreases in both phosphotyrosine and total STAT3 were 

seen with each stereoisomer of guggulsterone alone (Figure 11c). STAT1, which is thought to be 
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a tumor suppressor in HNSCC and which is known to have a very similar protein sequence and 

structure to STAT3, does not decrease with guggulsterone treatment of 1483 cells treated with 

guggulsterone for 48 or 72 hours (Figure 11d). Guggulsterone’s effects on phosphotyrosine and 

total STAT3 suggest that the anti-proliferative properties of guggulsterone may be due, at least in 

part, to abrogation of STAT3 signaling. 
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Figure 11. Guggulsterone treatment decreases levels of total and phosphotyrosine STAT3 in 

HNSCC cell lines. (A) HNSCC cell lines, 1483, UM-22b and PCI-37a were treated with an even mixture of 

guggulsterone’s isomers (5 or 10 μM) for 72 hours. (B) UM-22b cells were treated with an even mixture of 

guggulsterone’s isomers (5 or 20 μM) for 24 hours. (C) UM-22b cells were treated with either E- or Z

guggulsterone (5-20 μM) for 72 hours.  (D) 1483 cells were treated with an even mixture of guggulsterone’s 

stereoisomers (2.5-10 μM) for 48 and 72 hours. Whole cell lysates were probed, on immunoblot, with 

antibodies specific for total and phosphotyrosine STAT3 and STAT1. β-actin was used as a loading control. 

For (A), densitometric analyses of blots, normalized to β-actin, appear below each blot. Each experiment in 

(A) was performed 4 times with similar results (p=0.03 for all three cell lines). 
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3.3.5 STAT3 contributes to the growth inhibitory effects of guggulsterone in HNSCC cell 

lines. 

To determine whether or not the observed decrease in STAT3 contributes to 

guggulsterone’s anticancer activity in HNSCC cell lines, STAT3-specific siRNA was used to 

knock down STAT3. Transient transfection of both 1483 and PCI-37a cells with STAT3-specific 

siRNA results in optimal knockdown of STAT3 by 48 hours (Figure 12a). 1483, PCI-37a, and 

UM-22b cells were treated with guggulsterone 48 hours after transfection with STAT3 or GFP 

siRNA and harvested at 96 hours after transfection, resulting in 48 hours of guggulsterone 

treatment. Cells were then stained with trypan blue dye and counted. At this time point, STAT3 

siRNA transfection results in a small effect on cell viability. To account for this, the percent 

survival of each guggulsterone-treated sample was calculated as a comparison to the vehicle 

control sample transfected with the corresponding siRNA. 1483 cells transfected with GFP 

siRNA (negative control), showed a 32.5% decrease in the number of viable cells after 48 hours 

of guggulsterone treatment, but only a 9.7% decrease in cell viability in STAT3 siRNA

transfected cells treated with guggulsterone. PCI-37a cells transfected with GFP siRNA 

demonstrated a 43.0% decrease in cell viability with guggulsterone treatment compared with a 

22.0% decrease in cell viability in the same cells transfected with STAT3 siRNA (Figure 12b; 

p=0.015 for 1483, p=0.03 for PCI-37a). The effects of guggulsterone treatment, therefore, were 

abrogated by siRNA-mediated knockdown of STAT3. Thus, effects on STAT3 signaling are 

required, at least in part, for the growth inhibitory effect of guggulsterone in 1483 and PCI-37a 
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cells. On the other hand, under these conditions, STAT3 siRNA transfection did not abrogate the 

growth inhibitory effects of guggulsterone in UM-22b cells (Figure 12b).  
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Figure 12. Knockdown of STAT3 inhibits guggulsterone’s effect on viability of HNSCC cells. (A) 

1483 and PCI-37a cells were transfected with STAT3 siRNA, or GFP siRNA as a control, for 48 hours. Whole 

cell lysates were probed, on immunoblot, with an antibody specific for total STAT3. β-actin was used as a 

loading control and NFκB as a negative control for protein knockdown by siRNA. (B) 1483, PCI-37a and 

UM-22b cells were transfected with STAT3 siRNA, or GFP siRNA as a control, for 48 hours. Cells were then 

treated with guggulsterone (10 μM) for an additional 48 hours. Attached and floating cells were collected and 

stained with trypan blue dye. Live cells were counted. The y axis represents the percentage of live cells in each 

sample compared to a vehicle control. All experiments were done with triplicate samples. The experiments 

shown in (B) were performed 5 times for 1483 and 4 times for PCI-37a with similar results (p=0.015 for 1483 

and p=0.03 for PCI-37a). 
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3.3.6 Guggulsterone inhibits the expression of HIF-1α 

Levels of tumor hypoxia have been found to have prognostic significance in many 

cancers, including HNSCC (205, 206). HIF-1α is a transcription factor that is induced under 

hypoxic conditions and whose expression has been shown to correlate with invasiveness of 

HNSCC cell lines, including UM-22b (207), resistance of HNSCC to radiotherapy and poor 

clinical prognosis in HNSCC patients (208). HIF-1α overexpression has also been found to be an 

early change in preneoplastic tissue and is thought to be important in carcinogenesis (209). HIF

1α is known to be regulated by both NFκB (210, 211) and c-Jun-N-terminal kinase (JNK) (212), 

which has also been implicated in guggulsterone’s anticancer activity (11, 34). Therefore, we 

chose to investigate guggulsterone’s effect on HIF-1α. Upon 48 hours of treatment of UM-22b 

and 1483 cells with guggulsterone (10 μM), protein levels of HIF-1α decreased dramatically 

(Figure 13a). A similar trend was also observed under hypoxia in UM-22b cells (Figure 13b).  
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Figure 13. Guggulsterone inhibits expression of HIF-1α in HNSCC cells. (A) UM-22b and 1483 

cells were treated with guggulsterone (10 μM), under normoxia, for 48 hours. (B) UM-22b cells were 

treated under normoxia and hypoxia with an even mixture of guggulsterone’s isomers (10 μM) for 48 

hours. (C) UM-22b cells, including the parental line, those stably transfected with the constitutively active 

STAT3 (STAT3C) construct and those stably transfected with the vector control were treated, under 

normoxia, with an even mixture of guggulsterone’s isomers (10 μM) for 48 hours.  Whole cell lysates were 

probed, on immunoblot, with antibodies specific for HIF-1α and β-actin, which was used as a loading 

control. The experiment in (A) was repeated at least twice for each cell line. 
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We attempted to discern whether or not guggulsterone’s effect on HIF-1α was dependent 

on inhibition of STAT3 signaling. HNSCC cells transfected with STAT3 siRNA and fibroblasts 

derived from embryonic STAT3  knockout mice do not express HIF-1α (data not shown) and 

thus were not useful as models in this case. UM-22b cells stably transfected with the 

constitutively active STAT3 construct (STAT3C), in which STAT3 molecules exist as 

constitutive dimmers (51), do express HIF-1α. However, treating these cells with guggulsterone 

decreases levels of total and phosphotyrosine STAT3 as well as HIF-1α (Figure 13c). The 

STAT3C model, therefore, is also not useful in determining whether guggulsterone-induced 

downregulation of HIF-1α is dependent on effects on STAT3 signaling. 

3.3.7  Guggulsterone’s effects on mRNA levels of other STAT3 target genes 

Standard RT-PCR for two STAT3 target genes, cyclin D1 and Bcl-xL, was performed on 

mRNA from guggulsterone-treated HNSCC cells. Detectable changes in expression of either 

target gene were extremely modest and inconsistent between 1 and 72 hours of guggulsterone 

(10 μM) treatment. At later time points, subtle decreases in cyclin D1 and Bcl-XL could be 

visualized in certain individual experiments (Figure 14).  
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Figure 14. Changes in STAT3 target gene expression with guggulsterone treatment (A) 1483 and (B) 

UM-22b cells were treated with guggulsterone (10 μM) for up to 72 hours. After RNA extraction and reverse 

transcription, cDNA transcripts of bcl-XL and cyclin D1 were amplified by PCR and resolved on an agarose 

gel containing ethidium bromide. GAPDH, a housekeeping gene, was used as a control. 

3.3.8  Potential mechanisms of STAT3 inhibition by guggulsterone 

The mechanism of guggulsterone’s inhibition of STAT3 reported by Ahn et al. was 

induction of the protein tyrosine phosphatase SHP-1. This mechanism explains changes in 

phosphotyrosine STAT3 but does not account for the decreases in total STAT3 that we have 

observed. The cellular mechanisms of regulating STAT3 levels through transcription, translation 

and degradation are incompletely understood. Using Realtime PCR of mRNA from 1483 and 

UM-22b cells treated with guggulsterone (10 μM) for up to 24 hours, we were unable to detect 
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changes in mRNA levels of STAT3 with guggulsterone treatment (Figure 15), indicating that 

guggulsterone may affect either translation or degradation of the STAT3 protein. Studies have 

demonstrated STAT3 degradation by caspases (213), calpain (214), the proteosome (214-217), 

and serine proteases (218, 219). Small molecule proteosome inhibitors, MG132 and velcade 

(bortezomib), were not found to abrogate guggulsterone-induced down-regulation of STAT3 

(Figure 16a and 16b), suggesting that proteosomal degradation may not be the mechanism of 

guggulsterone-induced STAT3 downregulation. Cyclohexamide, an inhibitor of translation, 

clearly affects levels of STAT3 but does not abrogate the STAT3 targeting effect of 

guggulsterone (Figure 16c). 

UM-22b 1483 

0 

10 

20 

30 

40 

C
t 

0 

10 

20 

30 

40 

C
t 

Figure 15. Guggulsterone does not induce a change in STAT3 mRNA levels. 1483 and UM-22b cells 

were treated with guggulsterone (10 μM) for 1, 6, 8, 12, 16 and 24 hours. After RNA extraction and reverse 

transcription, quantitative (Realtime) PCR was performed to amplify the STAT3 cDNA transcript. The y axis 

displays Ct values, which represent the cycle at which a threshold of amplification was reached, such that 

higher Ct values represent lower amounts of transcript. 48-hour transfection with STAT3 siRNA was used as 

a negative control for levels of STAT3 transcript. Similar results were seen at 4 hours of guggulsterone 

treatment. 
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We hypothesized that guggulsterone-induced STAT3 inhibition may be related to effects 

on some of the known targets of guggulsterone. The molecular target that has gained the most 

attention in studies of guggulsterone’s anticancer activity is NFκB. In a reporter assay with UM

22b cells transiently transfected with a vector containing luciferase downstream of the NFκB 

promoter, guggulsterone treatment  (4 hr, 10 μM) did not induce a decrease in promoter activity, 

with a very slight decrease at higher concentrations (20 μM) (Figure 17). While Shishodia et al. 

had shown dramatic decreases in NFκB DNA binding in an HNSCC cell line, this was with 
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guggulsterone at 50 μM, a concentration that is unlikely to be relevant to the mechanism of 

STAT3 inhibition at much lower concentrations.  

Figure 17. Guggulsterone’s effect on NFκB 
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little or no decrease in NFκB promoter activity inNFκB-luc 

UM-22b cells. UM-22b cells were transfected with 

an NFκB-luciferase construct and, the following day, 

treated with guggulsterone (10 μM) for 4 hours, 

collected, lysed and assayed for promoter activity 

using the Luciferase Reporter 1000 Assay  System 

(Promega). Relative light units (RLU) are compared 

to total protein in each sample. 

Guggulsterone antagonizes the farnesoid X receptor (FXR), a nuclear receptor, which is 

known as a regulator of bile acid and lipid metabolism but also known to play a role in the 

invasive properties of breast cancer cells (220). The FXR has also been implicated in 

guggulsterone-induced apoptosis in a Barrett’s esophagus cell line (221). We observed FXR 

expression in 1483, UM-22b, UM-22a and PCI-37a HNSCC cell lines (Figure 18), suggesting 

only the possibility of an FXR-mediated effect of guggulsterone in HNSCC cells. 

14
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Figure 18. FXR is expressed in HNSCC cell lines. 

FXR 
RT-PCR was used to amplify the FXR cDNA 

transcript in four human HNSCC cell lines. GAPDH 
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3.3.9 Guggulsterone’s and Guggulipid’s in vivo effects on HNSCC tumor xenografts 

A xenograft model of HNSCC was used to investigate the in vivo effects of 

guggulsterone in this neoplasm, specifically on STAT3. In each study with the xenograft model, 

at least 8 mice per group were used, in order to detect a 30% or greater change in average tumor 

volume with a power of 0.8 and a power of 0.9 to detect a 40% or greater change. Although the 

xenograft model, which requires already-transformed cancer cells, is inadequate for the study of 

prevention, we attempted to make the model slightly more relevant to prevention by pretreating 

the animals for two weeks with guggulsterone before tumor inoculation, as described in Figure 

19a. 

We later determined, through studies described below, that separating mice into treatment 

groups, prior to tumor cell inoculation, which precludes randomization to groups by tumor 

volume, is problematic. In the two studies performed with this pre-treatment model, tumor 

volumes reflected the order of inoculation by cage (Figure 19b), probably due to decreases in cell 

viability over time before injection, invalidating our studies of differences in tumor volume using 

the “pretreatment model.” Following this observation, all other studies were done using the 

standard “therapy model,” inoculating and randomizing mice by tumor volume before beginning 

treatments (Figure 19c).  
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Figure 19. HNSCC pretreatment versus therapy xenograft models.  (A) Design of the pretreatment 

model. (B) Tumor volumes on last day of measurement for two studies done using the pretreatment model. 

Mice were pretreated for two weeks by daily oral gavage with guggulsterone (2 mg/mouse, left) or saline in 

the first study and Guggulipid (25.9 mg/mouse=2mg/mouse guggulsterone, right) or the vehicle (5% 

ethanol/corn oil) in the second study. Mice were then inoculated with 1 x 106 1483 and UM-22b cells into the 

left and right flanks, respectively. Blinded tumor measurements were taken 3 times per week. Tumor volumes 

are shown compared to order of inoculation in each experiment. (C) Design of the HNSCC therapy xenograft 

model. 
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In our first study with the “pretreatment model”, 8 athymic nude mice per group were 

treated with an even mixture of the two guggulsterone stereoisomers, or with saline as a vehicle 

control, by daily oral gavage of 2 mg guggulsterone for two weeks prior to tumor inoculation. 

Oral administration was selected as it resembles the most likely eventual usage of guggulsterone 

for cancer therapy. After two weeks of treatment, mice were inoculated subcutaneously with 1 x 

106 1483 cells or UM-22b cells on either flank. Daily guggulsterone treatments continued for an 

additional 3 weeks. Tumor volumes were measured, by an investigator blinded to treatment 

group, three times per week. Synthetic guggulsterone (Steraloids, Inc), which was used in this 

study, was very expensive and was expended after 3 weeks post inoculation, 5 weeks total of 

treatment. One week after completing treatment, the animals were sacrificed and tumors stained 

with TUNEL for detection of apoptosis and, by immunohistochemistry, for total STAT3. Slides 

were also stained, by immunohistochemistry, for total STAT3 but were unusable due to poor 

staining quality with this antibody. Slides stained for TUNEL were scored based on the 

percentage of positively staining nuclei in the overall section. Slides stained for STAT3 were 

scored by assigning a subjective score related to the darkness of the stain, ranging from 1+ to 3+, 

multiplying the approximate percentage of the tumor sample composed by the corresponding 

scored area by the assigned score, and adding together these normalized scores for all regions of 

the tumor section (i.e. score=(%of tumor section scored as 1+) x 1 + (% of tumor section scored 

as 2+) x 2+ (percent of tumor section scored as 3+) x 3). This scoring was performed by a head 

and neck pathologist (Dr. Raja Seethala) who was blinded to treatment groups. Percentages of 

TUNEL-positive cells increased 2.2-fold in 1483 xenografts and 4-fold in UM-22b xenografts 

from mice treated with guggulsterone versus vehicle, indicating that guggulsterone induced 
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apoptosis in these xenografts (Figure 20a). In this tumor model, we observed a decrease in total 

STAT3 of 87.3% in UM-22b- derived tumors and of 44.3% in 1483-derived tumors (Figure 

21b). These results suggest that guggulsterone downregulates total STAT3 in vivo as well as in 

vitro. Note that one UM-22b tumor in each group did not form so that results for the UM-22b 

cell line represent 7, rather than 8, tumors. A second study was performed with the “pretreatment 

model,” employing Guggulipid (described below) instead of synthetic guggulsterone, but was 

clearly affected, in both cell lines, by order of inoculation (Figure 19b).  
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Figure 20. Guggulsterone’s in vivo effects in the HNSCC pretreatment model. (A) and (B) Nude mice 

(8 per group) were treated orally with 2 mg/mouse/day of guggulsterone or with saline. After two weeks, mice 

were inoculated with 1 x 106 UM-22b and 1483 cells, in the right and left flank, respectively. Treatments 

continued for 3 weeks following inoculation. One week after discontinuation of treatment, mice were 

sacrificed and tumors harvested, sectioned, and stained with (A) TUNEL and (B) by immunohistochemistry, 

for STAT3 (20x photomicrographs). Internal controls for STAT3 include vascular endothelial cells, 

inflammatory cells (positive), and nerves (negative). Immunohistochemical score= (% tumor section scored as 

1+) x 1 + (% tumor section scored as 2+) x 2+ (% tumor section scored as 3+) x 3. 
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Guggulipid (Sabinsa Corp.) represents one of several guggulsterone-containing dietary 

supplements. It is a standardized extract of C. Mukul, and is sold by General Nutrition Centers 

(GNC). Because Guggulipid is more likely to be administered clinically than the synthetic 

guggulsterone used in our in vitro studies and in our first xenograft study with the “pretreatment 

model,” we chose to test the in vivo effects of Guggulipid in the xenograft model of HNSCC, 

both alone and in combination with the EGFR-targeting antibody approved for use in HNSCC, 

cetuximab. Correcting for the amount of guggulsterone present in Guggulipid, this extract 

inhibited the growth of HNSCC cell lines in vitro with EC50’s slightly lower than those observed 

for synthetic guggulsterone (Figure 21a) and decreased expression levels of phosphotyrosine 

STAT3 and total STAT3 at the same concentrations and to a comparable degree as synthetic 

guggulsterone (Figure 21b). 
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Figure 21. Guggulipid inhibits growth and decreases total and phosphotyrosine STAT3 in HNSCC 

cells. (A) 1483 and UM-22b cells were treated with Guggulipid (to equal 0.01-100μM guggulsterone) for 72 

hours, stained with trypan blue dye and counted. Data are shown compared to growth curves for cells treated 

with the even mixture of synthetic guggulsterone isomers (from Figure 6d). (B) UM-22b cells were treated 

with Guggulipid (to equal 5-10 μM guggulsterone) for 72 hours. Whole cell lysates were probed for 

phosphotyrosine and total STAT3. β-actin was used as a loading control. 
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In the first study treating with Guggulipid in the “therapy model,” 8 athymic nude mice 

were inoculated with 1 x 106 1483 cells and after tumor outgrowth, randomized to two groups. In 

all xenograft studies with Guggulipid, mice received daily oral treatments of 25.9 mg/mouse/day 

of Guggulipid, the equivalent of 2 mg/mouse of guggulsterone (7.73% of Guggulipid), 

suspended in corn oil/5% ethanol. Blinded measurements of tumor volume were taken three 

times per week. On its own, Guggulipid did not inhibit the growth of 1483 xenografts (Figure 

22a). 

In the study investigating the combination of Guggulipid and cetuximab, forty athymic 

nude mice were inoculated subcutaneously with 2 x 106 UM-22b cells and, following tumor 

outgrowth, randomized to four groups. The groups were treated either orally with 25.9 

mg/mouse/day of Guggulipid, the equivalent of 2 mg/mouse of guggulsterone (7.73% of 

Guggulipid), suspended in corn oil/5% ethanol, twice weekly with 0.8 mg cetuximab in saline by 

intraperitoneal injection, with both drugs or with the corresponding vehicles. A suboptimal dose 

of cetuximab was purposely chosen so that a combination effect would be detectable. Treatments 

continued for 3 weeks. Blinded measurements of tumors were taken three times per week (Figure 

22b). The average rate of tumor growth for the vehicle only group was 35.0 mm3/day. The 

average rate of tumor growth for the Guggulipid-treated group was 24.3 mm3/day, a 30.7% 

decrease in growth rate.  The average rate of tumor growth for the cetuximab/Guggulipid 

combination group was 18.9 mm3/day compared to 24.3 mm3/day for the group treated with 

cetuximab alone, representing a 27.0% decrease in growth rate. Using a general linear model 

analysis, rates of tumor growth were found to be significantly different for the vehicle and 

Guggulipid alone groups (p=0.0007) and between the cetuximab and cetuximab/Guggulipid 
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combination groups (p=0.0017).  In this study, tumors from the vehicle and Guggulipid groups 

were harvested and stained with TUNEL and, by immunohistochemistry, for total STAT3, as 

was done in our first study with the “pretreatment model.” In this study, however, Guggulipid 

did not induce an increase in apoptosis or a decrease in STAT3 expression, contradicting what 

was seen in both cell lines in the “pretreatment model” study with synthetic guggulsterone 

(Figures 20a and 20b). 
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Figure 22. Guggulipid’s effect on tumor growth in the xenograft model of HNSCC. (A) Nude mice 

(N=16) were subcutaneously inoculated with 1 x 106 1483 cells and, after tumor outgrowth, randomized into 

two groups of 8. Mice were then treated daily, by oral gavage, with 25.9 mg Guggulipid (Sabinsa 

Corporation), which is the equivalent of 2 mg/mouse/day of guggulsterone, suspended in 200 µl corn oil/5% 

ethanol or with vehicle alone. Tumors were measured three times per week. (B) Nude mice (N=40) were 

subcutaneously inoculated with 2 x 106 UM-22b cells and, after tumor outgrowth, randomized into four 

groups of 10. Mice were then treated daily, by oral gavage, with 25.9 mg Guggulipid as in (A), with 0.8 mg 

cetuximab in 100 μl saline, twice weekly by intraperitoneal injection, with a combination of both drugs or 

with the corresponding vehicles. Tumors were measured three times per week. Average rates of tumor 

growth were found to be significantly decreased in the Guggulipid-treated group compared to vehicle 

(p=0.0007) and in the cetuximab/Guggulipid combination group compared to cetuximab alone (p=0.0017). 
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3.4 DISCUSSION 


Guggulsterone is a widely available natural compound that has been shown to have 

hypolipidemic activity (222, 223). The safety profile of this drug (183, 185) makes it a good 

candidate for complementary and preventive therapy.  In the present study, guggulsterone was 

found to induce growth inhibition in HNSCC cell lines associated with apoptosis, cell cycle 

arrest, decreased invasiveness and enhancement of the effects of current therapies including the 

chemotherapy agent cisplatin and EGFR inhibitors cetuximab and erlotinib. The growth 

inhibitory effect of guggulsterone is mediated, at least in part, through inhibition of STAT3 

signaling. Guggulsterone also abrogated expression of HIF-1α, a therapeutic target downstream 

of STAT3. In vivo, guggulsterone treatments resulted in increased apoptosis and decreased 

expression of STAT3, as well as growth inhibition and enhancement of the efficacy of the 

EGFR-targeting antibody, cetuximab, when given in the form of Guggulipid, a plant extract that 

contains guggulsterone. 

We investigated the effect of combining guggulsterone with cisplatin, erlotinib and 

cetuximab. Because cetuximab, which is FDA approved for the treatment of HNSCC and has 

been clinically efficacious, does not inhibit HNSCC growth in vitro, here we investigated 

guggulsterone’s effect on cetuximab’s anti-invasion activity in vitro (Figure 10b) and growth-

inhibitory activity in vivo (Figure 23), finding that both were at least modestly enhanced by the 

addition of guggulsterone, as were the in vitro growth-inhibitory effects of cisplatin and erlotinib 

(Figure 10a). In vivo, Guggulipid alone was found to inhibit UM-22b tumor growth as compared 

to the vehicle control and also to enhance the activity of cetuximab (Figure 22b). As HNSCC 

treatments are often limited by side-effects and/or resistance to therapy, a compound that 

81




enhances the effect of a particular dose of each drug may potentially have an important clinical 

impact. Resistance to EGFR-inhibiting therapies like cetuximab is thought to result, partially, 

from alternative pathways of STAT3 activation, including signaling through Src kinases and IL

6, which are known to play a role in HNSCC. Figure 23 outlines the potential mechanism behind 

the observed enhancement of erlotinib’s and cetuximab’s activities. Guggulsterone decreases 

levels of total STAT3, an effect that precludes STAT3 activation through alternate pathways.  
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Figure 23. Rationale for combining guggulsterone with EGFR inhibitors. (Left) Therapeutic 

resistance to EGFR inhibition is thought to result partly from signaling through alternative pathways that 

activate STAT3 (e.g. IL-6 and Src). (Right) Direct inhibition of STAT3 by guggulsterone may preclude 

STAT3 activation through alternative pathways, inhibiting the transcription of STAT3 target genes and 

resulting in enhancement of antitumor activities associated with EGFR inhibition. 
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The in vivo anticancer activity of synthetic guggulsterone, as opposed to a C. mukul 

extract like Guggulipid, has been previously shown in a model of prostate cancer, employing 

matrigel plugs containing prostate carcinoma cells grown as xenografts (192), and in a chemical 

carcinogenesis model of skin cancer (193). Here, we chose to test the guggulsterone-containing 

nutraceutical, Guggulipid, whose anticancer activity has not previously been demonstrated in 

vivo, because pure, synthetic guggulsterone is expensive and currently unavailable as a clinical 

formulation.  

Xenograft tumor models are limited by the requirement for cells that are already fully 

transformed, rendering them inappropriate for study of an agent’s chemopreventive potential. 

Furthermore, as we found in our studies employing the “pretreatment model,” even if we hope to 

use xenografts to demonstrate any chemopreventive activity through effects on extracellular 

factors (e.g. extracellular matrix and establishment of tumor, tumor angiogenesis) the clear 

importance of randomizing mice before treatment makes this pseudo-prevention model 

impractical. The model is also inappropriate for studying prevention as tumors are established 

and grow quickly, which, while a toxic chemotherapeutic drug may be able to inhibit this 

process, the effect of a non-toxic, less potent natural compound may be obscured by the speed of 

tumor growth. This is combined with other complicating factors such as large variance in tumor 

sizes within groups and frequent necrosis of tumors over time. Investigation of the potential in 

vivo chemopreventive effects of guggulsterone in HNSCC will require the use of transgenic and 

carcinogen-induced animal models of HNSCC, as is described in Chapter 4.  
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Our interest in guggulsterone’s potential for targeting STAT3 in HNSCC stemmed from 

evidence of this compound’s ability to inhibit NFκB (187). Molecular crosstalk between STAT3 

and NFκB has been observed in HNSCC cell lines (141). Furthermore, STAT3 and NFκB have 

been found to affect one another’s binding to other gene regulatory elements (141) and to form a 

complex in certain systems (144-146). As STAT3 has been found to play an important role in 

many cancers, including HNSCC, a compound that targets STAT3 may be especially useful in 

cancer therapy. 

Our findings suggest that guggulsterone inhibits the growth of HNSCC, at least in part, 

via decreases in STAT3 (Figure 12b). Ahn et al. (194) have reported decreases in 

phosphotyrosine but not total STAT3 induced by the Z but not the E stereoisomer of 

guggulsterone. This is in contrast to our observations that either stereoisomer alone (Figure 11b) 

as well as the even mixture decrease levels of both total STAT3, which was seen in vitro (Figure 

11a) and in vivo (Figure 20b), as well as phosphotyrosine STAT3 (Figure 11a). Guggulsterone’s 

effect on total STAT3 levels is of interest, particularly in light of evidence that STAT3’s 

translocation to the nucleus may occur independently of tyrosine phosphorylation and that 

STAT3 activity may be regulated by other posttranslational modifications, aside from tyrosine 

phosphorylation (40, 41, 43, 60). Using Realtime PCR of mRNA from 1483 and UM-22b cells 

treated, for up to 24 hours, with guggulsterone, we were unable to detect changes in mRNA 

levels of STAT3 with guggulsterone treatment (Figure 15). Our investigations, using small 

molecule inhibitors of the proteosome (Figures 16 a and 16b) and cyclohexamide (Figure 16c), 

which inhibits translation, have been unsuccessful in revealing the mechanism of guggulsterone

induced decreases in total STAT3. Future mechanistic studies will require more specific 
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methods, such as S35-methionine pulse chase experiments to detect changes in STAT3 

translation and assays to detect ubiquitination of STAT3, as well as investigations of other 

potential mechanisms and enzymes involved. HNSCC cell lines transfected with STAT3 siRNA 

(Figure 12a) were significantly less susceptible to guggulsterone-induced growth inhibition 

(Figure 12b), demonstrating that in these cell lines, a decrease in STAT3 is at least partly 

responsible for guggulsterone’s effect on viability, lending relevance to demonstrations of 

guggulsterone-induced inhibition of STAT3 signaling. 

Several cancer therapies that are currently under investigation in preclinical studies, 

including various natural compounds, inhibit STAT3 tyrosine phosphorylation (96, 118-125, 

138). With many of these natural compounds, inhibition of STAT3 tyrosine phosphorylation has 

been shown to be mediated through effects on signaling mediators upstream of STAT3 (96, 118

125, 138). To our knowledge, these natural compounds have several targets and have not been 

shown to induce a decrease in total STAT3 levels as we have observed with guggulsterone 

treatment of HNSCC (Figure 11). Synthetically enhanced compounds that resemble naturally-

occurring compounds are also under study as potential cancer therapeutics, including two 

synthetic triterpenoids found to inhibit STAT3 and prevent lung tumorigenesis in vivo (224). 

Mechanisms of guggulsterone’s anti-cancer activity upstream of STAT3 and its direct 

inhibitor, SHP-1, have not been studied in HNSCC. Guggulsterone is known for its ability to 

antagonize the FXR, prompting studies of its hypolipidemic activity. The FXR, which is 

involved in the invasive properties of breast cancer cells (220) and in guggulsterone-induced 

apoptosis in a Barrett’s esophagus cell line (221), was found to be expressed in HNSCC cell 
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lines (Figure 18). Guggulsterone is also an agonist of the pregnane X receptor (PXR) (225), 

which regulates expression of CYP3a, an enzyme involved in carcinogen metabolism and whose 

expression is decreased in HNSCC tumors compared to adjacent normal tissue (226). Agonists of 

the retinoid X receptor (RXR), which dimerizes with both the FXR and PXR, have been found to 

inhibit STAT3 in HNSCC cell lines (126) and have shown promise as chemopreventive therapies 

for HNSCC, albeit with unacceptable toxicity. Investigation into guggulsterone’s effects on the 

FXR, PXR and RXR in HNSCC cell lines may possibly help to elucidate the mechanisms of 

guggulsterone’s anti-cancer activity in HNSCC. Figure 24 outlines a model for guggulsterone’s 

general mechanism of action downstream of one of these nuclear receptors.  

86




Increased degradation or 
decreased translation 

Nuclear 
Receptor 

Inhibition of HIF-1α, Cyclin D1,  other 
STAT3 target gene transcription 

STAT3 

STAT3 

Apoptosis, cell cycle arrest, 
decreased invasion 

Effects on other signaling pathways 
involved in HNSCC: NFκB, JNK 

Effects on proteins involved in STAT3 
degradation or translation 

Figure 24. General model of guggulsterone’s mechanism of action in HNSCC cells.  Guggulsterone is 

known to bind various nuclear receptors. Genes regulated by one or more of these affected nuclear receptors 

may result in complex signaling changes in the cell, affecting proteins involved in regulation of STAT3 

translation and/or degradation as well as other signaling pathways. STAT3 inhibition combined with effects 

on JNK and NFκB result in guggulsterone’s antitumor activities, including apoptosis, cell cycle arrest and 

decreased invasiveness.  

Guggulsterone’s effect on inflammation may contribute to its effects on HNSCC growth 

and apoptosis. In addition to directly regulating the expression of oncogenes, both NFκB and 

STAT3 have been shown to promote tumorigenesis via their role in inflammation (227-229), 

which plays an important role in HNSCC (228, 230). Guggulsterone’s use, in Ayurvedic 

medicine, for treatment of arthritis, as well as a study demonstrating guggulsterone’s ability to 

inhibit nitric oxide production by lipopolysaccharide (LPS)-stimulated macrophages (186), were 

87




early clues leading to investigation into the effect of guggulsterone on NFκB activity (187). 

Furthermore, guggulsterone has been found to ameliorate dextran sulfate sodium (DSS)-induced 

murine colitis and to inhibit activation of NFκB in this model (231). The involvement of reactive 

oxygen species (ROS) in HNSCC carcinogenesis has also been found to be associated with the 

actions of inflammatory mediators, including NFκB (232). Guggulsterone has been shown to 

function as an antioxidant (233, 234) as well as induce increases in ROS in prostate carcinoma 

and acute myeloid leukemia cells (189, 191).  Guggulsterone may have complex effects on levels 

of ROS that depend on the individual system and have implications for guggulsterone’s 

therapeutic potential. 

HIF-1α is a transcription factor whose expression is directly correlated with increased 

invasiveness (207), resistance to radiotherapy and poor clinical outcome (208). A recent study 

has shown that STAT3 is required for the expression of HIF-1α in a human melanoma cell line 

(168). In our study, dramatic abrogation of HIF-1α expression was seen in treatment of UM-22b 

cells with guggulsterone (Figure 13). To our knowledge, this is the first evidence of 

guggulsterone’s effect on HIF-1α. Various pre-clinical studies have been devoted to targeting 

HIF-1α with specific inhibitors and natural products (235-237). 

Further investigation is required to determine both the mechanism of guggulsterone

induced decreases in total STAT3 and guggulsterone’s potential for use as a chemopreventive 

therapy in HNSCC. The data presented here, demonstrating guggulsterone’s ability to target 

STAT3 and HIF-1α and to enhance the efficacies of therapies for HNSCC, are suggestive of the 
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clinical utility of guggulsterone, a safe and inexpensive nutraceutical, as a potential 

complementary therapy for the treatment of HNSCC. 
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4.0 GUGGULSTERONE’S AND ERLOTINIB’S EFFECTS IN A PREVENTION 

MODEL OF HNSCC 

4.1 INTRODUCTION 

4.1.1 Animal models of cancer 

One common way to model cancer in animals is through xenografts, cancer cells introduced into 

an immunodeficient host, often of a different species. In the case of our studies of HNSCC, we 

use human HNSCC cell lines injected into athymic nude mice. If we want to investigate the 

anatomic spread of the tumor, we can, to some extent, approximate an actual HNSCC tumor by 

injecting the tumor cells into the floor of the animal’s mouth. Xenograft models are useful in 

examining the effects of potential therapeutics in already-formed tumors and, because they 

employ actual human cancer cell lines, may best reflect the molecular phenotype of a human 

tumor. As described in Chapter 3, however, because these models require cancer cells that are 

already transformed and able to propagate in vivo, xenografts carry serious limitations in their 

relevance to the process of carcinogenesis. Other animal models of cancer include transgenic 

models, in which specific genes are altered, resulting in tumor formation, and carcinogen-

induced models, in which a chemical is used to induce carcinogenesis. Many of these models are 

characterized by gradual progression from normal tissue, through dysplasia, carcinoma in situ 
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and invasive carcinoma. These models, therefore, more closely resemble tumor formation in 

humans and are more useful in studies of potential chemopreventive agents that may target some 

of the molecular mechanisms involved in early stages of carcinogenesis, such as DNA damage, 

tumor initiation and promotion.   

4.1.2 Animal models of HNSCC 

4.1.2.1 Transgenic models: 

Cyclin D1/p53 

An early transgenic model employed the Epstein-Barr virus lytic promoter (ED-L2), as the 

Epstein-Barr virus specifically infects the squamous mucosa of the oropharynx. This was used to 

induce expression of the cyclin D1 transgene in the upper aerodigestive tract of mice. However, 

after 16 months, these animals developed dysplasia but not tumors. HNSCC was produced by 

crossing these mice with p53 heterozygotes. The major disadvantage of this model was that p53 

heterozygosity was not tissue specific, so that animals were compromised by tumors that arose 

from various organ sites (238, 239). 

TGFβRII/K-ras 

A more tissue-targeted transgenic model is the inducible K-ras12D/+/TGFβRII-/- mouse. Upon 

treatment of this mouse with the progesterone receptor antagonist, RU-486, a Cre 

recombinase/progesterone receptor fusion protein driven by the keratin 5 promoter induces 

deletion of TGFβRII and mutation of K ras, specifically in the upper aerodigestive tract 

epithelium. Tumors that bear great microscopic and molecular resemblance to human HNSCC 
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arise around 5 weeks after RU-486 application (240). Increased protein levels of the oncogenic 

proteins H ras and K ras have been shown to occur in human HNSCC (241). In mice, K ras 

activation has been shown to induce the formation of benign squamous papillomas of the oral 

cavity (242). The role that TGFβ receptor II plays in HNSCC has yet to be determined, though it 

has been associated with the pathogenesis of other squamous cell carcinomas (243). The 

phenotype of this transgenic mouse, however, suggests that is may be important in HNSCC 

pathogenesis as well (240). Additionally, tumors resulting from this model demonstrate changes 

in other proteins known to play important roles in human HNSCC, including epidermal growth 

factor receptor (EGFR), STAT3 and the cell cycle regulators p15, p21 and cyclin D1 (240). 

We considered using this model to assess the chemopreventive activities of 

guggulsterone and erlotinib. Dr. Xiao-Jing Wang, OHSU Cancer Institute had offered to 

collaborate with us and provide us with these mice. One problem with using this model is that 

guggulsterone promiscuously binds various steroid receptors, including the progesterone receptor 

(225). However, the amount of RU-486 that would be used, which is sufficient for induction of 

Cre recombinase fusion protein activity, is 1000-fold lower than the amount of the drug required 

to antagonize a steroid receptor and does not cause abortion in pregnant mice co-treated with 

progesterone (244). To ensure that guggulsterone was not interfering with the Cre 

recombinase/progesterone receptor fusion protein, we had planned to test tissue samples for the 

TGFβRII deletion after sacrificing the mice. Dr. Eva Szabo, an expert on clinical trials of 

chemopreventive agents, advised us that a chemical carcinogenesis model would be more 

appropriate, as it is more relevant to human carcinogenesis. 
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4.1.2.2 Carcinogen induced models: 

Hamster cheek pouch 

Traditionally, the most commonly used animal model of HNSCC was the chemically induced 

Syrian hamster cheek pouch model. This model involved topical application of the carcinogen, 

7,12-dimethybenzanthracene (DMBA) to the cheek pouch, but resulted in tumors that did not 

resemble human HNSCC, possibly because the anatomic site is so different from the human oral 

cavity (239). 

4-nitroquinoline-1-oxide 

Another carcinogen-induced model employs 4-nitroquinoline-1-oxide (4-NQO), a carcinogen 

that resembles some of the carcinogens present in tobacco smoke and, like those compounds, 

causes DNA adducts. Oral administration of this compound to mice has been shown to result in 

temporally progressive carcinogenesis forming dysplastic lesions and, eventually, neoplasia 

(245). Additionally, the resulting oral squamous cell carcinomas have been found to resemble 

human HNSCC both histologically and in terms of molecular changes that often characterize 

human HNSCCs, including changes in levels of EGFR and the cell cycle regulator p16 (246). 

This carcinogen has been used to induce HNSCC in rats and mice, through topical application. 

More recently, optimal tumor formation has been attained through administration in the animals’ 

drinking water (246). 

We are collaborating with Dr. Mark Lingen from the University of Chicago, who has 

extensive experience using this model. Though Dr. Lingen’s group is still currently determining 
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the kinetics of this model, he has provided us with protocols for 4-NQO administration to mice 

in their drinking water, information about expected toxicity and methods for tissue analysis.   

4.1.3 Agents under study 

We are using the 4-NQO chemical carcinogenesis model to investigate the chemopreventive 

properties of both guggulsterone and erlotinib. Using HNSCC cell lines and xenografts, we have 

demonstrated the anticancer and STAT3-targeting activities of guggulsterone, the natural 

compound in the extract of C. mukul (Chapter 3). These data are supportive of the potential for 

use of guggulsterone as a chemopreventive agent. Furthermore, guggulsterone’s safety in clinical 

trials and availability in inexpensive clinical formulations, such as Guggulipid (Sabinsa 

Corporation, Piscataway, NJ), makes it a good candidate for chemopreventive use.  

Erlotinib (TarcevaTM) is an EGFR-targeting tyrosine kinase inhibitor (TKI) that has 

shown promise in clinical trials with HNSCC and is currently in advanced stages of clinical 

testing for treatment of this disease. EGFR, which is upstream of the STAT3 signaling pathway, 

is overexpressed in over 80% of HNSCCs (247) and is also overexpressed in the 4-NQO model 

of HNSCC (245). It is an important therapeutic target in HNSCC. Cetuximab (C225), an EGFR-

inhibiting antibody, is approved for use in the treatment of HNSCC. Erlotinib is currently in 

advanced stages of clinical testing. Clinical trials investigating the chemopreventive activity of 

EGFR inhibitors, including erlotinib, in patients with pre-malignant lesions of the upper 

aerodigestive tract are currently underway. To our knowledge, there is no data from animal 

studies indicating the chemopreventive activity of EGFR inhibition for HNSCC.   
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4.2 MATERIALS AND METHODS 

4.2.1 Reagents: drugs and animal diets 

4-NQO (Sigma Chemical) was dissolved in 100% DMSO (final concentration 50 mg/ml) 

and kept at -20°C. Guggulipid (solid, 2.65% guggulsterones by hplc) was provided by Sabinsa 

Corporation (Piscataway, NJ) and erlotinib by OSI Pharmaceuticals (New York, NY). Harlan 

Teklad prepared custom erlotinib (diet 08141, 300 mg/kg) and Guggulipid (diet 08142, 28.3 

g/kg, equivalent of 750 mg/kg guggulsterone) containing formulations in their 18% rodent diet. 

Assuming diet consumption of 3 g/mouse/day and average mouse weight of 22.5 g (both change 

as mice age), mice would receive 2.25 mg guggulsterone/day, 3.77 g/kg Guggulipid (equivalent 

to 100 mg/kg guggulsterone) or 40 mg/kg erlotinib. Diets were stored in vacuum-sealed bags at 

4°C. 

4.2.2 Study design and statistics 

The study was designed to detect a 25% or greater difference in incidence of 

preneoplastic and neoplastic lesions in the treated mice versus controls with a power of 0.85. 

This design requires 75 mice per group, relying on the presence of preneoplastic or neoplastic 

lesions in at least 80% of the control group at the end of the experiment. As, based on the 
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observations of Dr. Mark Lingen, ~5% of mice are expected to die from 4-NQO toxicity, 80 

mice were used per treatment group. Additionally, as the kinetics of the 4-NQO model have not 

been conclusively determined, we employed an adaptive study design. 50 more mice were added 

to the control group so that over time, 10 at a time could be sacrificed at various time points. If 

10/10 mice have preneoplastic or neoplastic lesions, there is a probability of 0.89 that at least 

80% of mice in the control group should have lesions as well. These samples are necessary 

because, while it is important, in order for us to have enough power to detect a difference, that at 

least 80% of the control group have lesions by the time of sacrifice, it is also important not to 

wait too long, until all mice in both treatment and control groups have lesions, obscuring any 

effect of the drugs under investigation. In immunohistochemistry studies, quantitative scores will 

be assigned to each histologic section and groups compared using a Wilcoxon test. Results will 

be judged for significance at an α of 0.05. 

4.2.3 Animal treatments 

Female CBA/J mice (5-6 weeks; Jackson Laboratories) mice were treated with either the 

control diet or one of the drug-containing diets for 2 weeks prior to initiating 4-NQO treatments 

and for 1.5 weeks of 4-NQO treatment. Administration of drug-containing diets was stopped at 

this point, due to unforeseen toxicity of combining 4-NQO with either erlotinib or Guggulipid 

(see Results). 4-NQO water was prepared by thawing stock solutions, diluting to 12.5 mg/ml in 

propylene glycol and adding 2 ml to each bottle of 250 ml sterilized water (final concentration is 

100 μg/ml). 4-NQO water was made and changed once per week and continued for 8 weeks. 5 
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Guggul/ErlotGuggul/Erlot

mice in each treatment group received the special diet but no 4-NQO in their water. Figure 25 

outlines the study design.  

Tissue Harvesting 

Guggul/Erlot Guggul/Erlot 

Pretreatment Carcinogen Treatment Treatment and 
Carcinogenesis 

Days 1-14: Daily treatment with 
guggulipid/erlotinib/vehicle 

Days 15-70: Administration of 
4-NQO in drinking water Days 15-~182: Continued daily 

treatment with 
~Day 182: Euthanasia and 
harvesting of tongues, lungs 

guggulipid/erlotinib/vehicle and neck. 

(update: stopped special diets 
due to toxicity and large die-off 
on day  26. Resumed special 
diets on day 73) 

(update: mice developed 
lesions earlier than 
expected. Euthanasia 
planned for day 128). 

Figure 25. Design of the study of erlotinib’s and Guggulipid’s in vivo chemopreventive activities 

4.2.4 Dissection and tissue processing 

Tongues of euthanized mice were removed by cutting through the angle of the mouth, 

thus disconnecting the jaw, and removing the tongue by cutting through connective tissue on the 

ventral side of tongue and making one cut at the root of the tongue. The lungs, as well as the 

entire neck will also be removed to later examine metastases to lungs and lymph nodes. All 

tissues will be fixed in 10% formalin. Ventral tongues will be inked and tongues cut in multiple 

horizontal sections. Tongues will then be processed, paraffin embedded, sectioned completely 

and every tenth slide stained with hematoxylin & eosin. Multiple slides per mouse will be kept 

for immunostaining. Tongues will be categorized (mild/moderate dysplasia, severe 

dysplasia/carcinoma in situ, or invasive SCC) by the most advanced lesion seen in reviewing 
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multiple sections. The lungs and lymph nodes from the necks of mice with invasive SCC will be 

processed and stained with hematoxylin & eosin in order to detect micrometastases. The 

investigator reviewing slides will be blinded to treatment groups. 

4.2.5 Immunostaining 

Immunostaining will be performed using antibodies specific for STAT3, phosphotyrosine 

STAT3, NFκB, HIF-1α, phosphoEGFR, total EGFR and cyclin D1. Immunohistochemical 

score=(%of tumor section scored as 1+) x 1 + (% of tumor section scored as 2+) x 2+ (percent of 

tumor section scored as 3+) x 3. The investigator scoring slides will be blinded to treatment 

group. 

4.3 RESULTS 

4.3.1 Preliminary studies 

Although Dr. Mark Lingen employs male mice in his studies, we planned to use female mice, 

based on the methods used by Tang et al. in their original study administering 4-NQO, in 

drinking water, to female mice (246). Therefore, 4-NQO treatment of 5 female mice was 

performed in order to test for overwhelming toxicity and for differences in the kinetics of tumor 

development in females. These 5 mice were treated with 4-NQO water for 8 weeks. By 16 
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weeks, all 5 had preneoplastic or neoplastic lesions, one with severe dysplasia, 2 with carcinoma 

in situ, and 2 with invasive oral SCC. Representative photomicrographs are shown in Figure 26a. 

Another preliminary study was performed in order to test average consumption and 

toxicity of both the erlotinib and Guggulipid-containing diets. The mice ate both drug-containing 

diets in amounts comparable to control diet (~2-3 g/mouse/day), with no discernible weight loss 

or toxicity over one month of treatment.   

4.3.2 Ongoing study of Guggulipid and erlotinib in the 4-NQO model 

When Dr. Lingen employs the 4-NQO model to investigate a potential chemopreventive 

therapy, compounds under investigation are administered following the 8-week period of 4-NQO 

treatment. In the current study, in order to maximize exposure to erlotinib and Guggulipid, mice 

were treated for two weeks prior to 4-NQO administration. We had intended to continue 

administering the special diet with 4-NQO. However, after 1.5 weeks of 4-NQO treatment, 28 

mice in the erlotinib group and 5 mice in the Guggulipid group died suddenly. None of the mice 

in either the group treated with the control diet nor in either cage treated with the special diet, 

without 4-NQO, died. We concluded, therefore, that the deaths resulted from unforeseen toxicity 

of combining 4-NQO with either Guggulipid or erlotinib. We promptly took all mice receiving 

4-NQO treatments off of the drug-containing diets until completion of the course of 4-NQO, at 

which point the drug-containing diets were resumed. Although the death rate slowed 

dramatically after withdrawal of the drug-containing diets, more mice died over the course of the 
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experiment. Necropsy of one of the mice that died after combining 4-NQO with erlotinib 

indicated, according to DLAR veterinarians, that it had died of hemorrhagic gastroenteritis.  

Based on observations by Dr. Mark Lingen, we had not expected mice to develop any 

preneoplastic lesions until 12 weeks after the end of 4-NQO treatments, at the earliest, and had 

planned to sacrifice our first sample group of 10 mice at 10 weeks after 4-NQO. However, at 5 

weeks after completing 4-NQO treatment, some of the mice were noted to have lost a lot of 

weight. This prompted examination of mouse tongues and, though only one out of the 5 that had 

lost considerable amounts of weight had a visible tumor on its tongue, surprisingly, so did 

several other mice, including 9 in the control group and 5 in the Guggulipid group (~7% of 

each), but none in the erlotinib group. Figure 26b shows representative tumors from the control 

group. The 5 mice that had lost weight were sacrificed and their tongues harvested, sectioned and 

H & E stained. Of these 5 mice, 4 had preneoplastic or neoplastic lesions. At 6 weeks after 4

NQO treatment, 10 more mice, the first real sample, were sacrificed.  
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Figure 26. Representative tumors derived from the 4-NQO-induced model of HNSCC. (A) and (B) 

Histologic sections of tongues harvested from mice in a preliminary study of 4-NQO’s activity, at 16 weeks 

post-carcinogen treatment. (A) Severe/moderate dysplasia (B) Invasive SCC (C) Representative tumors from 

the control group of the chemoprevention study, 7 weeks post carcinogen treatment, on dorsal tongue (left), 

right lateral border (middle), and left lateral border (right). Arrow heads indicate tumors. 
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4.4  DISCUSSION 

The 4-NQO model of oral carcinogenesis provides us with the opportunity to examine the 

chemopreventive activities of different agents. The current study examines guggulsterone, in the 

form of Guggulipid, and erlotinib, as potential chemopreventive therapies. The primary endpoint 

is detection of a difference in incidence of pre-malignant and malignant lesions of 4-NQO treated 

mice receiving either drug, compared to the control group. We will also examine differences in 

expression of certain biomarkers that serve as intermediate endpoints regarding the antitumor 

and chemopreventive activities of the drugs administered. These will include phosphotyrosine 

and total STAT3, HIF-1α, NFκB, phosphoEGFR, total EGFR and cyclin D1. Finally, we will 

examine the lungs and cervical lymph nodes of animals that have invasive SCC at the time of 

sacrifice, in order to investigate the ability of each drug to prevent metastasis.  

The results of this study are pending. If either drug is efficacious in the 4-NQO model of 

oral SCC, this will provide a rationale for clinical study of this compound as a chemopreventive 

agent. In the case of erlotinib, it would justify ongoing clinical studies targeting the EGFR as a 

strategy for chemoprevention. In the case of Guggulipid, it would suggest that this inexpensive 

and safe natural product be investigated in clinical trials to prevent HNSCC.  Potential clinical 

trials are discussed in Chapter 6. 
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5.0 	 HONOKIOL TARGETS STAT3 AND ENHANCES EGFR-INHIBITION IN THE 

TREATMENT OF HNSCC 

*Note: Contributions to this chapter represent experiments performed by Dr. Quan Cai. 

5.1 INTRODUCTION 

5.1.1 Honokiol’s therapeutic potential 

Honokiol is a natural compound derived from the bark of the magnolia tree and used in 

traditional Chinese medicine. The structure of honokiol is shown in Figure 27. Studies have 

demonstrated various ways in which honokiol may have a therapeutic benefit, including its 

ability to behave as a muscle relaxant (248), to have anti-inflammatory (249-251), antimicrobial 

(252) and antioxidant (253) activity, and indications that it 

may be useful in protecting against hepatotoxicity (254), 

neurotoxicity (255), thrombosis (256) and angiopathy 

(257). Interest in the role that honokiol may fill in cancer 

therapy began with a study demonstrating prevention of 

skin papillomas in mice (258). Several studies have Figure 27. Chemical structure of honokiol 
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demonstrated the anticancer activities of honokiol in cancer cell lines (259-269) and xenograft 

tumor models (257, 259, 261, 263, 267, 270-272). 

5.1.2 Honokiol’s anticancer activity 

In cancer models, honokiol has been found to alter various molecular targets that are known to 

affect tumor cell growth and survival.  One of the most commonly proposed mechanisms of 

honokiol’s antitumor activity is inhibition of the nuclear factor kappa B (NFκB) signaling 

pathway. NFκB is a transcription factor that contributes to several physiological processes (e.g. 

inflammation) but also regulates the expression of genes that are involved in cancer, including 

genes that control the cell cycle, apoptosis, tumor angiogenesis, and invasion (130-132). NFκB 

and upstream signaling mediators have been found to be inhibited by honokiol treatment of 

human monocytes (250), embryonic kidney cells (273), endothelial cells (257), lymphoma (268, 

273), promyelocytic leukemia (268), multiple myeloma (273), breast cancer (268), cervical 

cancer (268), and HNSCC cells (273). 

5.1.3 Rationale and hypothesis 

In HNSCC cell lines, NFκB has been reported to interact with STAT3 (141), which is a potential 

molecular target for the treatment of HNSCC. In addition to regulating several genes involved in 

cancer (138), including some that are also regulated by NFκB, STAT3 has been found to be 

important for growth and survival of HNSCC cell lines and tumor xenografts (53, 90, 92) and is 

the target of many cancer therapies currently under investigation in preclinical models (138). 
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Honokiol has been shown to inhibit several proteins that are known to interact with STAT3 

including, Src (259) and the IL-6 receptor (264), each of which directly activate STAT3 in 

HNSCC (91, 93), and NFκB (250, 257, 268, 273). Additionally, honokiol has been found to 

decrease the expression of various STAT3 target genes, including cyclin D1 (273-276), p21Waf1 

(275, 277), c-Myc (273, 276), Mcl-1 (260, 263), Bcl-xL (263), survivin (263), and VEGF (265, 

273). STAT3 inhibition by honokiol in a multiple myeloma cell line has been reported (264). To 

our knowledge, the effect of honokiol on STAT3 in epithelial malignancies has not been 

determined. We hypothesized that honokiol can be used to target STAT3 in the treatment of 

HNSCC. 

5.2 MATERIALS AND METHODS 

5.2.1 Reagents and cells 

HNSCC cell lines Cal-33, derived from an oral squamous cell carcinoma (SCC) (278), UM-22B, 

from a cervical lymph node metastasis of hypopharyngeal SCC (279), and 1483, from an 

oropharyngeal SCC (197), were maintained in DMEM/10% heat-inactivated FBS at 37˚C in a 

humidified incubator with 5% CO2. Cal-33 cells were provided by Dr. Gerard Milano (Centre 

Anotoine-Lacassagne, Nice, France) (278), UM-22b cells by Dr. Thomas Carey (University of 

Michigan, Ann Arbor, MI) and 1483 cells by Dr. Gary Clayman (MD Anderson Cancer Center, 
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Houston TX). Honokiol is a natural product extracted from the seed cone of Magnolia 

grandiflora as previously described (259). In treatments of cell cultures, honokiol was dissolved 

in 100% ethanol as a vehicle and in 20% Intralipid (Baxter Healthcare, Deerfield, IL) for animal 

treatments. Erlotinib (OSI Pharmaceuticals, Melville, NY), was dissolved in 100% dimethyl 

sulfoxide (DMSO) as a vehicle.  

5.2.2 Trypan blue dye exclusion assay 

HNSCC cells were cultured overnight and treated with honokiol, erlotinib or the corresponding 

vehicles, in DMEM/1% serum, the following day. After 72 hours, cells were harvested by 

trypsinization and live cells counted after staining for trypan blue dye exclusion. Each 

experiment was performed with triplicate samples and the average percent survival calculated as 

a comparison to cells treated with the vehicle alone. The EC50 was calculated using Prism 

software version 4.03 (GraphPad Software Inc). 

5.2.3 Annexin V apoptosis assay 

Cal-33 cells were plated and, the following day, treated with either honokiol (10 μM) or ethanol, 

as the vehicle, for 72 hours. Cells were then harvested and stained with Cy3 labeled annexin V, 

according to the manufacturer’s instructions (Annexin V-Cy3 Apoptosis Detection Kit, 

BioVision). Stained cells were imaged using a fluorescent microscope (Nikon) and the numbers 

of annexin V-positive cells counted (at least 3 fields per sample) using ImageJ software (NIH).  
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5.2.4 Matrigel invasion assay 

The invasion assay was performed as previously described (199). Briefly, HNSCC cells were 

plated in serum-free DMEM containing epidermal growth factor (EGF) alone (10 ng/ml), EGF 

with honokiol (5 μM) and/or erlotinib (5 μM) or the corresponding vehicles, in a matrigel 

invasion chamber insert (BD Biosciences, San Diego, California). The outer well contained 

DMEM/10% FBS, as a chemoattractant. After 24 hours incubation, uninvaded cells were 

removed and the invaded cells in the matrigel were fixed, stained with Hema 3 (Fisher Scientific) 

and counted. 

5.2.5 Western blotting 

Immunoblotting was performed as previously described (199). Briefly, the proteins from whole 

cell lysates were resolved by SDS-PAGE and transferred onto nitrocellulose membranes (Bio-

Rad, Hercules, CA) by a semi-dry transfer apparatus (Bio-Rad, Hercules, CA). The membrane 

was blocked with 5% skim milk in Tris-buffered saline-Tween (TBS-T) solution (100 mM Tris, 

150 mM NaCl and 0.125% Tween 20). Membranes were incubated overnight with primary 

antibodies with 5% skim milk in TBS-T. After washing in TBS-T, membranes were incubated 

with secondary antibodies (anti-rabbit or anti-mouse IgG-horseradish peroxidase conjugate from 

Bio-Rad Laboratories, Hercules, CA). The blots were washed and developed with a luminol kit 

(Santa Cruz Biotechnology, Santa Cruz, CA). Primary antibodies for STAT3 and 
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phosphotyrosine STAT3 (Cell Signaling Technology, Boston, MA) and β-actin (CalBiochem, 

Gibbstown, NJ) were used. Densitometry was performed using DigiDoc1000 software (Alpha 

Innatech Corporation, San Leandro, CA).  

5.2.6 In vivo tumor xenograft studies 

Female athymic nude mice (5-6 weeks old, N=8) were inoculated with 1483 and UM-22b cells 

(1 x 106) into the right and left flank of each mouse, respectively. Upon outgrowth of palpable 

tumors (2 to 3 mm in diameter), 14 days following tumor cell inoculation, mice were 

randomized, by tumor volume, to two groups of four. The treatment group received 

intraperitoneal injections of honokiol (3 mg/mouse/day, five days/week) in 20% Intralipid 

(Baxter Healthcare, Deerfield, IL). The control group received the 20% Intralipid vehicle. 

Tumors were measured using digital calipers (Control Company, Friendswood, TX) at least three 

times per week and tumor volumes calculated using the following formula: volume= L x (W)2/2 

(L: longest diameter; W: shorter diameter). 

5.2.7 Statistical analyses 

All statistical analyses of in vitro results were done using the nonparametric Mann-Whitney or 

Wilcoxon tests. For matrigel invasion assays, p values were calculated using EGF alone as 100% 

invasion for the comparison of EGF versus honokiol and EGFR plus erlotinib as 100% invasion 

for the comparison of erlotinib versus the honokiol/erlotinib combination.  
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5.3 RESULTS 

5.3.1 Honokiol inhibits growth and induces apoptosis in HNSCC cells  

The in vitro growth inhibitory and pro-apoptotic activities of honokiol have been demonstrated 

in several cancer cell lines (259-269, 280). In the current study, 3 HNSCC cell lines, 1483, UM

22b and Cal-33, were treated for 72 hours, with honokiol at concentrations ranging from 0.01 

μM to 100 μM and compared to the vehicle (ethanol) alone. EC50 values were 7.44 μM for 1483, 

7.36 μM for UM-22b and 3.90 μM for Cal-33 (Figure 28a). These values are comparable or 

lower than EC50 values seen in other cancer cell types (260, 263, 267, 269, 276). Honokiol was 

not found to be specific for cancer cells as it induces growth inhibition in a normal, immortalized 

esophageal cell line, Het-1a, with an EC50 of 3.09 μM (Figure 28b) 

To determine the role of programmed cell death in the growth inhibitory effects of 

honokiol, HNSCC cells were treated with honokiol, followed by annexin V staining. As shown 

in Figure 28c, some of the growth inhibitory properties of honokiol in HNSCC cell lines can be 

attributed to increased apoptosis, as a 7.4-fold increase in apoptotic cells was detected after 72 

hours of treatment with 10 μM honokiol, compared to the vehicle (p=0.03).  
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Figure 28. Honokiol inhibits growth and induces apoptosis in HNSCC cell lines. (A) HNSCC cells 

(UM-22b, 1483, and Cal-33) and (B) Het-1a cells were treated with honokiol or vehicle, stained in trypan 

blue dye and counted. The experiment was performed twice for each HNSCC cell line with similar results. 

(C) Cal-33 cells were treated with either honokiol (10 μM) or vehicle for 72 hours. Cells were then 

harvested and stained with Cy3-labeled annexin V. Images of stained cells were obtained with a fluorescent 

microscope and the percentage of annexin V positive cells counted. The experiment was repeated 4 times 

with triplicate samples and similar results. 

5.3.2 Honokiol decreases levels of phosphotyrosine STAT3 in HNSCC cells 

STAT3, an oncogenic transcription factor, represents a promising therapeutic target in the 

treatment of HNSCC. Various potential therapeutics that target STAT3, including 

oligonucleotides, peptidomimetics, and natural compounds, are currently under preclinical 

investigation (138). Treatment of UM-22b and Cal-33 induced a decrease in phosphotyrosine 

STAT3, after 24 hour serum starvation followed by 24 hours of honokiol (10 μM) treatment 
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(Figure 29). Average densitometric values are shown below each western blot and indicate a 

63.3% and 35.5% decrease in UM-22b cells and Cal-33 cells, respectively, treated with honokiol 

as compared to the vehicle (p=0.03 for Cal-33 and p=0.05 for UM-22b). Similar results were 

seen in 1483 cells (data not shown). As STAT3 is known to play a key role in HNSCC growth 

both in vitro and in vivo (53, 90, 92), these data indicate that honokiol may have potential utility 

in the treatment of HNSCC.  
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Figure 29. Honokiol inhibits STAT3 in HNSCC. Cells were cultured in serum containing medium for 

24 hours, in serum free medium for another 24 hours, followed by 24 hour treatment with either honokiol (10 

μM) or vehicle in serum free medium. Whole cell lysates were probed for phosphotyrosine STAT3 and total 

STAT3, with β-actin as a loading control. 
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5.3.3 Honokiol enhances the activity of erlotinib in HNSCC cells  

Honokiol has been shown to enhance the effects of bortezomib (264), fludarabine (260), 

cladribine (260), chlorambucil (260), doxorubicin (272, 273), adriamycin (281, 282), paclitaxel 

(272, 273), docetaxel (267), SAHA (272), lapatinib (276), rapamycin (276) or cisplatin (270) in 

different cancer models. Erlotinib is an epidermal growth factor (EGFR)-targeting small-

molecule tyrosine kinase inhibitor that has shown promise, in clinical trials, as a treatment for 

HNSCC. A different EGFR-targeting therapy, the anti-EGFR antibody, cetuximab, is FDA 

approved for the treatment of HNSCC. Cetuximab is known to inhibit HNSCC growth in vivo, 

but not in vitro, perhaps due to reliance on extracellular matrix components or the immune 

system. Therefore, in our studies of honokiol’s effect in combination with EGFR inhibition in 

vitro, we used erlotinib instead. Combining honokiol at its EC50 (7.4 μM) with the approximate 

EC50 for erlotinib (10μM) resulted in a 77.0% growth inhibition, compared to 46.1% growth 

inhibition for erlotinib alone, a 1.7-fold enhancement of growth inhibition (Figure 30a; p=0.03).  

Honokiol has been shown to decrease the invasiveness of fibrosarcoma (283) and breast 

cancer cells (276). We assayed the invasiveness of UM-22b cells, which are derived from an 

HNSCC lymph node metastasis, using matrigel invasion assays. Cells were plated in serum-free 

medium containing EGF (10 ng/ml) as a stimulant and either honokiol (5 μM), erlotinib (10 μM), 

a combination of both drugs or their corresponding vehicles. Medium containing 10% serum was 

present in the lower chamber as a chemoattractant. After 24 hours, honokiol was found to inhibit 

invasion on its own and also to enhance the anti-invasion activity of erlotinib. Considering the 

large impact of invasion and metastasis on the clinical outcome of HNSCC, these data suggest 
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Figure 30. Honokiol enhances the effects of erlotinib. (A) UM-22B cells were treated with either 

honokiol at its EC50 (7.4 μM) or erlotinib (10 μM), both drugs, or their corresponding vehicles. After 72 

hours, cells were stained with trypan blue dye and counted. The experiment was performed 4 times with 

triplicate samples and similar results (p=0.03). (B) UM-22b cells were plated in serum-free DMEM, on top of 

matrigel inserts in wells containing DMEM/10% FBS. Both inserts and outer wells contained EGF (10 ng/ml) 

and either honokiol (5 μM), with or without erlotinib (5 μm), or the vehicle. Matrigel inserts were fixed and 

stained after 24 hours. Numbers of cells invading the matrigel were counted. The experiment was performed 

6 times, using duplicate samples and counting at least 4 fields per well (p=0.002 for EGF versus 

EGF+honokiol; p=0.015 for EGF+erlotinib versus EGF+combination). 
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5.3.4 Honokiol’s in vivo effect in the xenograft model of  HNSCC 

Honokiol has been found to prevent the formation of skin papillomas in vivo (258) and to inhibit 

growth of xenografts derived from angiosarcoma (259), colorectal (261), prostate (263, 267), 

gastric (266), breast (272), lung (270), and ovarian (265, 271) cancer cells, in vivo. Using an 

HNSCC xenograft model, 1 x 106 1483 cells and UM-22b cells were injected into the animals 

right and left flanks, respectively. Mice were then randomized to two groups by tumor volume 

and treated, 5 days per week, with 3 mg/mouse of honokiol, by intraperitoneal injection, or with 

20% intralipid, as the vehicle control. Although, due to small numbers of animals and a modest 

treatment effect, differences in tumor volume were not statistically significant between the two 

groups, growth rates of xenografts derived from both cell lines were slightly lower in animals 

treated with honokiol compared to the vehicle (Figure 31). 1483-derived xenografts in the 

honokiol-treated group grew at an average rate of 14.31 mm3/day, 28.0% slower than the control 

group, which grew at a rate of 19.87 mm3/day. The UM-22b-derived xenografts in the honokiol 

group grew 21.6% slower, at a rate of 15.01 mm3/day, compared to 19.14 mm3/day for the  

control group. To our knowledge, this is the first study demonstrating the in vivo anticancer 

activity of honokiol in HNSCC.  
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Figure 31. Honokiol’s in vivo effects in the HNSCC xenograft therapy model. Nude mice (4 per 

group) were inoculated with 1 x 10 6 UM-22b and 1483 cells, subcutaneously, into opposite flanks. After 

tumor outgrowth, 14 days later, mice were randomized to two groups, based on tumor volume and 5 times 

per week with intraperitoneal injections of honokiol (3 mg/mouse) dissolved in Intralipid or with Intralipid 

alone. Tumor measurements were taken at least three times per week. 
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5.4  DISCUSSION 

The therapeutic potential, including antitumor activity of honokiol, a natural product derived 

from the magnolia plant and used in traditional Chinese medicine, has been reported in various 

preclinical trials. In the current study, we investigated honokiol’s potential utility in the treatment 

of HNSCC. Honokiol was found to inhibit growth and induce apoptosis in HNSCC cell lines and 

to enhance the growth-inhibitory and anti-invasion activities of EGFR-targeting therapies. 

Furthermore, STAT3, a potential therapeutic target in HNSCC, was inhibited upon honokiol 

treatment. Finally, honokiol was found to inhibit the growth of xenografts derived from two 

HNSCC cell lines, in vivo. 

Many preclinical studies have focused on targeting STAT3 with engineered 

oligonucleotides, peptidomimetics and other molecules (138). Several natural compounds have 

also been found to inhibit STAT3 in different models (96, 118-125, 138, 194). Our rationale for 

investigating the ability of honokiol to target STAT3 included evidence of STAT3 inhibition in 

honokiol treatment of a multiple myeloma cell line (264) and of honokiol-induced inhibition of 

signaling molecules upstream of STAT3, including Src (259) and the IL-6 receptor (264), 

inhibition of NFκB (250, 257, 268, 273), which is known to experience crosstalk with STAT3 in 

HNSCC (141), and downregulation of STAT3 target genes, including cyclin D1 (273-276), 
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p21Waf1 (275, 277), c-Myc (273, 276), Mcl-1 (260, 263), Bcl-xL (263), survivin (263), and 

VEGF (265, 273). Future studies of honokiol’s activity should focus on both the upstream 

mechanism of STAT3 inhibition, which may include effects on receptor tyrosine kinases (e.g. 

EGFR), non-receptor tyrosine kinases (e.g. Src), or phosphatase inhibitors of STAT3 (e.g. SHP

1), and on whether or not the reported decreases in expression of STAT3 target genes, which are 

regulated by other transcription factors, as well, actually depend on alterations in STAT3 

signaling. 

Currently available treatments for HNSCC are themselves responsible for much of the 

morbidity and mortality associated with this disease and are also often limited by drug resistance. 

Therefore, administration of a compound that enhances the activity of an HNSCC treatment may 

be useful in complementary therapy. In this study we investigated honokiol’s ability to enhance 

the activity of erlotinib (TarcevaTM), a small molecule inhibitor that has shown promise in 

clinical trials in HNSCC. The problem of resistance to EGFR-targeting therapy is thought to 

stem partly from activation of STAT3 through alternative signaling pathways, including Src and 

the IL-6 receptor, which both play a role in HNSCC.  A molecule that targets one of these 

alternative pathways, like honokiol, which inhibits Src and the IL-6 receptor, may potentially be 

useful in overcoming resistance to EGFR inhibition. Liu et al. have shown that honokiol 

synergizes with lapatinib, another EGFR-targeting therapeutic, in the treatment of HER2

overexpressing breast cancer cells (276). Honokiol was found to enhance both the growth 

inhibitory and anti-invasion activities of erlotinib in HNSCC cells.  
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An in vivo study of honokiol’s growth inhibitory activity in HNSCC xenografts 

demonstrated decreases in tumor growth rates. Future in vivo studies should use larger numbers 

of animals, allowing for sufficient power to detect a significant difference in growth rates, and 

should investigate the in vivo efficacy of combining honokiol with EGFR-inhibiting therapies in 

HNSCC. Our observations of a modest growth-inhibitory effect in vivo, coupled with 

demonstrations of honokiol’s ability to target STAT3 and enhance erlotinib’s activity in vitro, 

suggest a potential role for honokiol in the treatment of HNSCC, particularly in combination 

with EGFR-inhibiting therapy. 

118




6.0 GENERAL DISCUSSION  


This thesis focused on the use of STAT3-targeting natural compounds in HNSCC treatment and 

chemoprevention. The studies described reveal the STAT3-targeting, anticancer activity of two 

natural compounds, guggulsterone and honokiol. One study, the results of which are still 

pending, focuses on the potential chemopreventive properties of two agents, Guggulipid and 

erlotinib. 

6.1 STAT3 TARGETING BY NATURAL COMPOUNDS 

STAT3, an oncogenic transcription factor is a plausible therapeutic target for the treatment and 

prevention of HNSCC. This is true for many other malignancies, in which STAT3 is 

constitutively activated, as well. Various preclinical studies have focused on the development of 

specific STAT3 inhibitors for the treatment of cancer. Natural compounds, like guggulsterone 

and honokiol, are not specific molecular inhibitors, which can be either a disadvantage or an 

advantage, depending on which other molecules are affected. One advantage of guggulsterone 

over oligonucleotide and peptidomimetic STAT3 inhibitors is that it is known to be safe and can 

be easily administered. In this study, guggulsterone was found to decrease phosphotyrosine and 

total STAT3 levels in vitro and total STAT3 levels in vivo. Honokiol was found to decrease 
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levels of phosphotyrosine STAT3 in vitro. Most natural compounds known to inhibit STAT3, 

like honokiol, only affect levels of phosphotyrosine  STAT3, implying that the mechanism is 

indirect and involves either increases in activity of the physiological inhibitors of STAT3 (e.g. 

SOCS-1, SOCS-3, GRIM-19, PIAS and PTPRT) or decreases in signaling through upstream 

molecules (e.g. EGFR, Src, IL-6 receptor). Guggulsterone, on the other hand, is unique in that it 

affects levels of total STAT3. Although, to my knowledge, there are no published reports of 

natural compounds that decrease total STAT3, total STAT3 was also found to decrease slightly 

in a single experiment treating UM-22b cells with the aromatic isothiocyanate, PBITC (Figure 

5), so this may not be so uncommon in natural compounds but merely unreported.  

Although, in the case of guggulsterone, inhibition of STAT3 signaling was found to be 

responsible for part of guggulsterone’s in vitro growth inhibitory activity, the mechanism of 

STAT3 inhibition was not determined. Realtime PCR did not demonstrate changes in levels of 

STAT3 mRNA. Inhibitors of proteosomal degradation and translation did not abrogate 

guggulsterone-induced STAT3 inhibition, though the nonspecific nature of these inhibitors is 

problematic and future studies should employ more specific methods for investigation of these 

potential mechanisms, in addition to investigating the possible involvement of other enzymes, 

aside from the proteosome, which are known to degrade STAT3. In addition to proteosomal 

degradation, studies have previously reported STAT3 degradation by caspases, calpain and 

serine proteases in certain systems (213-219). In general, however, while mechanisms of STAT3 

phosphorylation and dephosphorylation have received a lot of attention, very little is known 

about cellular mechanisms of regulating STAT3 protein levels.  

120




Honokiol, on the other hand, affects phosphotyrosine but not total STAT3 levels. Some 

of the signaling molecules upstream of STAT3, IL-6 receptor and Src, are also inhibited by 

honokiol (259, 264). Whether or not honokiol’s STAT3 inhibition relies on alterations in these 

signaling pathways, or on others (e.g. EGFR, NFκB), remains to be determined. Because 

guggulsterone seems to cause somewhat more dramatic decreases in phosphotyrosine than in 

total STAT3 (Figure 11), it’s possible that a second mechanism, which inhibits phosphorylation 

of STAT3, may also result from guggulsterone treatment. Possible mechanisms include increases 

in activity of the phosphatase SHP-1, as was reported by Ahn et al. (194), or decreases in the IL

6-mediated crosstalk between NFκB and STAT3, which was demonstrated, in HNSCC, by 

Squarize et al. (141). 

Although the mechanisms of guggulsterone’s activity upstream of STAT3 have not been 

revealed, I would speculate that the ultimate upstream target is a nuclear receptor, perhaps more 

than one. Brobst et al. have found that guggulsterone, a steroid-like molecule, promiscuously 

binds various steroid receptors (284). In fact, although guggulsterone’s antagonism of the FXR 

has gained the most attention, as a mechanism for guggulsterone’s hypolipidemic activity (223), 

and more recently for its involvement in breast cancer cell migration (220) and survival of 

Barrett’s esophagus cell lines (221), guggulsterone binds various other steroid receptors even 

more strongly. Guggulsterone is a strong agonist of the progesterone receptor (PR), estrogen 

receptor (ER)-α, and pregnane x receptor (PXR). (284) The PXR regulates the CYP3A genes, 

which are involved in drug and carcinogen metabolism (226). Recent evidence indicates negative 

crosstalk between FXR and NFκB in hepatocytes (285). Whether or not this information is 

relevant to signaling in epithelial malignancies is unknown. FXR also dimerizes with the RXR, 
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the target of retinoids originally identified as potential chemopreventive agents for HNSCC 

(126). The possibility of multiple steroid receptor targets suggests a very complex, non-specific 

downstream signaling mechanism that may differ between cell types.  

One likely mechanism of honokiol’s activity, on the other hand, is direct scavenging of 

reactive oxygen species. Honokiol’s structure contains two phenolic groups that can scavenge 

free radicals, which has been shown by Dikalov et al. (286). As NFκB is induced by reactive 

oxygen species, the aforementioned crosstalk between NFκB and STAT3, via IL-6 (141) may 

decrease after scavenging of free radicals by honokiol. Guggulsterone has been found to increase 

or decrease levels of reactive oxygen species, depending on the system, though it has been 

hypothesized that this is an indirect effect, involving signaling through cellular proteins, rather 

than direct scavenging of free radicals (189, 191, 233, 234).  

6.2 ANTICANCER EFFECTS OF GUGGULSTERONE AND HONOKIOL IN 

PRECLINICAL MODELS OF HNSCC 

In the described studies, two STAT3-targeting natural compounds, guggulsterone and honokiol, 

have been found to have anticancer activity in preclinical models of HNSCC. Both compounds 

were found to induce apoptosis and to inhibit invasiveness of HNSCC cell lines. Guggulsterone 

was also found to induce cell cycle arrest, associated with decreases in various cell cycle 

regulating proteins (Figure 8). Both compounds enhanced the activities of HNSCC therapies, 
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particularly EGFR-targeting molecules. This enhancement was also demonstrated in in vivo 

combination of Guggulipid and cetuximab.  

These data are supportive of a clinical use for guggulsterone and honokiol in HNSCC 

treatment. Based on our observations, particularly in vivo, neither compound is potent enough to 

be used as a single agent. However, both may have a role in complementary therapy. Combining 

guggulsterone, a direct STAT3 inhibitor, with an EGFR-targeting therapy may preclude 

activation of alternate pathways that are thought to lead to therapeutic resistance to EGFR 

inhibition (Figure 23). Honokiol, on the other hand, may inhibit one or more of these alternate 

pathways, IL-6 receptor and/or Src signaling. While guggulsterone has already been used and 

found to be safe in clinical trials investigating its potential hypolipidemic activity, to my 

knowledge, honokiol has not been used in any published clinical trial. Honokiol has been 

commonly used in Chinese medicine, however, suggesting that it is also probably safe and a 

good candidate for combination treatment.  

Guggulsterone’s effects varied between cell lines, both in vitro, in examining growth 

inhibition, levels of apoptosis and the role of STAT3 inhibition, and in its in vivo effects on 

tumor growth, suggesting that guggulsterone may only be useful in a subset of patients. Despite 

guggulsterone’s safety in clinical trials, another important concern is its activation of various 

steroid receptors, particularly the PXR, as this may alter the metabolism of other therapies. 

Indeed, Guggulipid, has already been shown to decrease plasma levels of diltiazem and 

propranolol in humans (183). 
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6.3  HNSCC CHEMOPREVENTION 


The original aim of this project was to identify and characterize a potential chemopreventive 

agent for HNSCC, as a great clinical need for such a therapy exists. Based on evidence of its role 

in HNSCC carcinogenesis, STAT3 was chosen as an appropriate molecular target for HNSCC 

chemoprevention. The preclinical models typically used to investigate HNSCC therapies were 

inadequate for testing an agent’s chemopreventive activity. Therefore, we chose to use a 

carcinogen-induced animal model for this purpose. The results of this study, investigating the 

chemopreventive activities of Guggulipid and the EGFR-targeting TKI, erlotinib, are pending.  

The relevance of my studies of guggulsterone’s anticancer activity as a treatment for 

HNSCC, in vitro and in the xenograft model, to guggulsterone’s potential chemopreventive 

activity is unclear. These models employ cells that have already progressed through the process 

of carcinogenesis. However, demonstrating inhibition of a molecular target, STAT3, in these 

preclinical models, is helpful in providing a rationale for studying guggulsterone as a 

chemopreventive agent. Furthermore, evidence that guggulsterone inhibits the cellular processes 

that cause cancer cells to proliferate, suggests that it may also be able to target these processes in 

precancerous cells that have molecular alterations predisposing them to uncontrolled growth, 

thus inhibiting tumor promotion.  

If either compound decreases the incidence of preneoplastic or neoplastic lesions in the 

oral mucosa of 4-NQO treated mice, these data will justify the compound’s use in a clinical trial 

for chemoprevention of HNSCC. In fact, erlotinib is already in clinical trial for 

chemoprevention, despite the lack of supporting data in an animal model. Clinical trials 
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investigating chemopreventive agents are plagued by logistical problems, including, for example, 

the fact that they require patients who do not have cancer and also the large numbers and long 

periods of time required to draw conclusions about whether or not administration of a compound 

actually decreases the incidence of cancer. For these reasons, many chemoprevention trials rely 

on intermediate endpoints, such as expression of biomarkers or rates of recurrence in a 

population that has previously had cancer. 

If Guggulipid is found to have chemopreventive activity in the 4-NQO model, we will 

propose a clinical chemoprevention study using changes in certain biomarkers as an intermediate 

endpoint. Patients with oral leukoplakia, a premalignant lesion that can progress to HNSCC, will 

be treated with Guggulipid for a short period of time. After excision of the lesion, we will use the 

tissue to assay levels of certain biomarkers of progression to HNSCC, perhaps STAT3 and 

phosphotyrosine STAT3 or others identified in our animal study.  

6.4 CONCLUSIONS 

Improvements in the therapeutic approach to HNSCC, a common and devastating disease with a 

50% mortality rate and frequent second primary tumors (SPTs), are greatly needed. One possible 

method of improving therapy is to enhance currently available treatments. Another is to prevent 

the initial malignancy, recurrence, or SPT.  In the studies described in this thesis, we have 

identified two natural compounds that target STAT3, a therapeutic target for the treatment and 

prevention of HNSCC. Our data from preclinical models provide a rationale for use of either 
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guggulsterone or honokiol in combination with current HNSCC therapies. Results of an ongoing 

study may reveal the potential for use of either guggulsterone or the EGFR-targeting molecule, 

erlotinib, in HNSCC chemoprevention.  
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