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Driving an electric powered wheelchair with a joystick is a complex task for the user who has a 

pathological tremor. Most powered wheelchairs use simple filtering algorithms to reduce the 

effects of tremor. These algorithms work well in most situations, but fall short in others. This 

study addresses the problems associated with pathological tremor associated with Cerebral Palsy 

(CP). The purpose of this study is to know more about the characteristics of CP tremor with 

time-frequency analysis and to improve joystick control with other advanced filtering algorithms. 

We used three estimated parameters, instantaneous frequency (IF), instantaneous 

bandwidth (IB), and instantaneous power (IP), from a time-frequency distribution (TFD), to 

characterize CP tremor and to tune a notch filter for canceling CP tremor noise from a joystick 

signal in an off-line experiment. From the off-line experiment, we showed that our CP tremor 

suppression system performed better with the information of IF, IB, and IP.  

We also conducted an on-line experiment in which we introduced two tremor suppression 

algorithms. One is Weighted-frequency Fourier Linear Combiner (WFLC), which estimates a 

tremor frequency and its weight, and the other is our modified WFLC, which adjusts a notch 

width with respect to the bandwidth of CP tremor additionally. We implemented both algorithms 

on the virtual wheelchair driving test along with a commonly used low-pass filter. We recruited 

ten subjects who have CP tremor and tested them in a virtual wheelchair driving environment. 
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We observed that CP tremors in the joystick signal were suppressed greatly by the new filtering 

algorithms. We learned that the time-delay of a low-pass filter caused serious performance 

degradation of wheelchair driving and observed that most subjects performed better with new 

filtering methods than with a low-pass filter. Furthermore, since our modified WFLC algorithm 

was able to reduce more CP tremor noise than WFLC, we learned that it is important to consider 

the bandwidth information of CP tremor when designing a tremor suppression system.   
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1.0  INTRODUCTION 

1.1 RATIONALE OF PATHOLOGICAL TREMOR STUDY 

Many people with disabilities use electric powered wheelchairs for their mobility. Independent 

mobility reduces dependence on caregivers and family members and promotes feelings of self-

reliance [1]. However, driving an electric powered wheelchair with a joystick is a complex task 

for the user who has a pathological tremor (including athetoid movement). Pathological tremor is 

the most common of all motor disorders. Over three million people in North America are 

affected by pathological tremor [1]. Pathological tremor can prevent the user from generating a 

reliable continuous input signal to the joystick controller. In the worst case, tremor places the 

wheelchair driver at risk for injury, at best, tremor reduces driving efficiency. Most power 

wheelchairs use simple filtering algorithms to reduce the effects of tremor. These algorithms 

work well in most situations, but fall short in others. This study will address the problems 

associated with a pathological tremor associated with Cerebral Palsy (CP). CP is defined as a 

group of disorders characterized by loss of movement or loss of other nerve functions. CP results 

from injury to the cerebrum that occurs during fetal development or near the time of birth. 

To develop a new filtering algorithm for tremor, it is necessary to first know the precise 

characteristics of tremor. Frequency and amplitude are major elements used to characterize 

tremor. Many researchers, [1], [2], and [3], have used  power spectral density to characterize the 

frequency and peak amplitude of tremor and have used this frequency information to filter out 
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unwanted tremor noise from the desired signal. However, precise characterization of the 

frequencies and amplitudes of pathologic tremor are not well defined because the frequency 

varies depending on patient, posture and patient’s condition [2].  

Since the tremor signal possesses spectral characteristics that vary with time, the spectral 

density of the signal indicates only that frequencies occurred, but does not indicate when they 

occurred. Therefore, the power spectral density alone does not enable one to see the whole 

behavior of the time-varying signal. We investigated this problem and other characteristics of the 

tremor by using a joint time-frequency description of the signals. An alterative technique based 

on time-frequency analysis may be a better solution. Time-frequency analysis describes a 

relatively new signal processing technique where instantaneous frequency (IF), instantaneous 

bandwidth (IB), and instantaneous power (IP) of a signal are computed. The use of such 

parameters is likely to give a more complete and accurate characterization of pathological 

tremor. Just as the spectral and temporal densities, respectively, indicate the intensity of the 

signal as a function of frequency and the intensity of the signal as a function of time, a time-

frequency density ideally indicates the intensity of the signal as a function of time and frequency 

[6]. With time-frequency analysis, we are able to find when and where the pathological tremor 

occurs.  

Although many researchers have only concentrated on finding frequency information of 

the pathological tremor for their filtering algorithms, we consider bandwidth information as an 

additional constraint of the filter design since tremor amplitude has a time-varying envelope and 

the bandwidth of tremor varies with respect to the envelope [5]. We need to design a filter that 

responds to time-varying bandwidth information as well as time-varying frequency information 

of CP tremor. We investigated the possibility of using IF, IB, and IP as candidates of the filter 
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constraints to improve the suppression of pathological tremor noise in the joystick signal of 

electric powered wheelchair. Since time-frequency distribution (TFD) is typically used as a time-

varying spectral estimation method, we used TFD to characterize the pathological tremor by 

estimating the IF, IB, and IP of the joystick tremor noise.  

The most popular filtering algorithm in the joystick of power wheelchairs is a low-pass 

filter with 3 Hz cut-off frequency. A serious drawback of using low-pass filter is the problem of 

time-delay. In addition, intentional joystick movement is often at a lower frequency than 

pathological tremor, but intentional joystick movement ranges as high as 5 Hz or as low as 2 Hz 

for CP tremor would also be distorted by a typical low-pass filter. In this case, a notch filter may 

be more suitable. A notch filter only suppresses the tremor frequency rather than all frequencies 

beyond a certain point as is done by the low-pass filter. The notch filter would, therefore, cause 

less distortion of the intentional movement signal.  However, frequency and amplitude of tremor 

are unknown before hand and are time-varying, so a fixed notch filter is generally inappropriate. 

Therefore, it is beneficial to implement a time-varying notch filter where the algorithm learns the 

frequency and amplitude of the tremor in order to suppress it. 

In this study, we introduced two filtering techniques: (1) a time-varying notch filter with 

TFD technique, and (2) an adaptive notch filter based on Fourier Linear Combiner (FLC) 

technique. The time-varying notch filter method uses information gained from the TFD, whereby 

a filter notch is tuned to the IF, IB, and IP of the tremor noise. The time-varying notch filter with 

TFD estimates a tremor frequency, tremor bandwidth, and tremor amplitude in order to suppress 

unwanted tremor noise. The TFD method works very well in off-line implementation, but it is 

not ideal in on-line implementation because of problems with time-delay and computational 

complexity.  
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In contrast to the time-varying notch filter described above, the adaptive notch algorithm 

is well suited to active tremor control due to its computational simplicity and predictive 

capability. Riviere’s Weighted-frequency Fourier Linear Combiner (WFLC) and our modified 

WFLC were implemented as an adaptive notch filter in a real-time tremor suppression system 

and we compared their results to that of the low-pass filter. Riviere’s WFLC acts like an adaptive 

notch filter that controls notch frequency and notch depth, but our modified WFLC controls one 

additional element: notch bandwidth. We implemented both algorithms on a virtual wheelchair 

driving test along with a commonly used low-pass filter and compared their performances. We 

recruited ten subjects who have CP tremor and tested them in a virtual wheelchair driving 

environment. 

1.2 OUTLINE 

This dissertation is organized as follows. Relevant literature and background of time-frequency 

analysis for this study are summarized in Chapter 2. Current characteristics of pathological 

tremor with CP were revealed and current tremor suppression methods were reviewed. Chapter 3 

describes a time-varying notch filter for the off-line experiment. Several IF estimation methods 

including IF estimation based on the TFD technique were reviewed. The importance of IB in the 

time-varying notch filter was demonstrated with a synthetic signal and preliminary joystick data. 

Chapter 4 describes an adaptive notch filter technique for the on-line experiment. We introduced 

Riviere’s WFLC and our modified WFLC as a tremor suppression method. Chapter 5 describes 

the test settings, including human subjects and experimental hardware and software setups. 
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Results for the virtual driving experiment are presented in Chapter 6. Finally, implications of this 

study and future research areas are discussed in Chapter 7. 
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2.0  BACKGROUND 

In this chapter, we review the previous work on tremor characterization and classification, 

tremor suppression schemes for electric powered wheelchair (EPW) joystick use, and other 

tremor suppression algorithms. In addition, we review the fundamentals of time-frequency 

distribution with the definition of instantaneous frequency (IF), instantaneous bandwidth (IB), 

and instantaneous power (IP). 

2.1 CHARACTERISTICS OF TREMOR 

Tremor is an involuntary, approximately rhythmic, and roughly sinusoidal movement [2], [7], 

[8], [10]. There are two types of common tremor, physiological and pathological. Normal tremor, 

commonly known as physiologic tremor, shows very small amplitudes. Its energy is concentrated 

at frequencies higher than 8-12 Hz [10]. Physiological tremor does not represent a serious 

problem for most activities of daily living. Pathological tremor, on the other hand, can severely 

affect activities of daily living. Pathological tremor arises in cases of injury and disease. The 

power spectrum of pathological tremor is concentrated in frequencies ranging from 2-11 Hz, 

which is lower in frequency than physiological tremor [1], [10]. In addition, pathological tremor 

oscillation amplitudes are significantly stronger than those of physiological tremor, introducing 

uncomfortable distortion into purposeful movements [11]. In many instances, the tremor 
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amplitude can be so severe as to make purposeful movement virtually impossible. Three of the 

most common causes of pathological tremor are Cerebral Palsy, essential tremor and Parkinson’s 

disease [7]. 

The first attempts to characterize tremor are found in the scientific literature of the 1960s. 

Stiles et al. analyzed hand tremor characteristics using EMG sensors [29].  Since then, more 

advanced techniques have been developed to analyze tremor. Edwards and Beuter developed 

indices for identification of abnormal tremor using computer tremor evaluation systems [13]. 

Eberhart and Hu analyzed hand tremor using particle swarm optimization to distinguish between 

normal subjects and those with tremor. Then they tried to differentiate between normal 

physiological tremor and pathological tremors. Despite years of effort, the precise 

characterization of pathological tremor has not been well defined. 

Recently, Gonzalez et al. used frequency range to characterize tremors. Cerebral Palsy 

tremor is in the 2-6 Hz range, essential tremor is in the 6-11 Hz range, and Parkinson’s tremor is 

in the 3-7 Hz range typically, while most intended movement is in the 0-1 Hz range [7] (Gillard 

reported a different range of 0.5-2.5 Hz [1]). In addition, the mechanical relationship between 

tremor intensity and oscillation frequency has been outlined. According to Aylor et al., the 

oscillation amplitude diminishes as the mean tremor frequency increases. For the same reason, 

large amplitude tremors are related to low frequencies [12]. These characteristics were then used 

to filter the unwanted tremor from the desired input signal [7]. This technique is likely to yield 

unsatisfactory results due to the time-varying nature of tremor frequency and amplitude [15]. 
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2.2 TREMOR SUPPRESSION SYSTEM FOR ELECTRIC POWERED 

WHEELCHAIRS  

Until recently, only three methods of treating tremor existed: medication, inertial loading, and 

viscous loading [7]. None of these treatments are ideal. Approximately 50% of people with 

pathological tremor do not respond to medication. Viscous and inertial loads provide resistance 

to motion which increases with frequency for viscous damping and the square of frequency for 

inertial loading. Inertial loads are often used to selectively reduce tremor but they also attenuate 

functional movements to some extent and cause muscle fatigue [1], [8]. As an extension of an 

inertial loading study, some researchers [4], [9] developed a force-sensing joystick as an input 

device to the electric powered wheelchair because they believed that an isometrically restrained 

input device limits the effects of tremor. However, Cooper et al. suggested that the isometric 

joystick may be an acceptable alternative for new wheelchair users, but found no significant 

differences between the two joysticks [4], [28]. Riley and Rosen also suggested that filtering and 

control algorithms may be more important than the type of interface [3].  

Most current electric powered wheelchairs use simple filtering algorithms and dead zones 

to reduce the effects of tremor. Such algorithms work well in some situations, but are unreliable 

in many others. To cater to people with a mild tremor, the controller is installed with a time-

delay damping mechanism to slow down the response time. This approach has the disadvantage 

of slowing the wheelchair down, sometimes unnecessarily, as the person’s tremor may vary from 

time to time. In addition, this delay would affect the ability of the driver to navigate safely 

around objects and through doorways. The primary method for more severe cases of tremor is to 

lock the joystick in one direction, the direction first chosen. This device does not let its user 
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move the joystick to the left or right while moving in the forward direction, for example. The 

obvious disadvantage of this method is the difficulty in guiding the wheelchair smoothly. 

Aylor investigated tremor during EPW control through the use of signal processing [12]. 

His approach was to amplify, rectify and then time average the signal to reduce the effect of 

tremor on control. The time averaging rate was used to compensate for varying tremor 

frequencies. Other researchers added a time delay to slow down the response time and then used 

averaging or a low pass filter (LPF) on the input signal [14]. The problem with this approach is 

that low frequency intentional inputs are attenuated along with the unintentional tremor input, 

thus reducing the perceived responsiveness of the wheelchair to the user’s inputs. A lack of 

responsiveness could result in increased instability and could ultimately compromise the user’s 

ability to navigate safely [3], [7], and [11]. Gonzalez and Rahman showed that in some cases, 

depending on the cutoff frequency and the specific user, low-pass filters can degrade 

performance [7]. Their final conclusion is that subject-customized filter design is needed. 

2.3 ADVANCED TREMOR SUPPRESSION ALGORITHMS FOR OTHER 

APPLICATIONS AND OTHER TYPES OF TREMOR 

A number of digital filtering algorithms have been developed for the purpose of removing 

unwanted tremor and noise from signals of interest and have found application in tremor 

suppression. Since in the proposed task we will concentrate on digital filtering techniques for 

reducing the effects of tremor in an EPW control, a brief review of the relevant literature from 

other applications is presented as follows.  
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Some researchers introduced a notch filter to suppress the tremor frequency selectively 

[11], [16]. However, like LPFs, notch filters are not sufficient due to the time-varying nature of 

the tremor amplitude and frequency. Reley and Rosen also suggested that filter settings need to 

be customized for each user [3].  

Riviere and Thakor have investigated the application of adaptive notch filtering for the 

purpose of suppressing pathological tremor noise during computer pen input, and they have 

developed weighted frequency Fourier linear combiner (WFLC) for computer handwriting [11], 

[15]. WFLC is an adaptive noise canceller that models tremor.  It is used to model the 

pathological tremor as a modulated sine wave with time-varying frequency. This algorithm 

estimates tremor frequency as well as amplitude and adapts filtering operations to cancel the 

tremor. We will revisit this algorithm in Chapter 4 in detail. 

2.4 TIME-FREQUENCY DISTRIBUTION  

A signal (including tremor signal) is expanded in term of sinusoids of different frequencies 

 

ωω
π

ω deSts tj∫= )(
2
1)( . (2-1)                       

 
The signal is made up of the addition (linear superposition) of the simple wave forms, , each 

characterized by the frequency, 

tje ω

ω , and contributing a relative amount indicated by the 

coefficient, )(ωS . )(ωS  is obtained from the signal by  

 

dtetsS tj∫ −= ω

π
ω )(

2
1)(  (2-2) 
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where )(ωS   is Fourier transform of ( )ts  and ( ) 2ωS  is the energy density spectrum. 

 
Pathological tremors possess spectral characteristics that vary with time. The energy density 

spectrum of the signal tells us which frequencies existed during the total duration of the signal. It 

gives us no indication as to when these frequencies existed. To acquire this information, a joint 

time-frequency description of the signals is needed. In this research, we have used the Short-

Time Fourier Transform (STFT) (or Spectrogram) as a candidate of TFD, ( )ω,tP , because of its 

simplicity. 

Spectrogram is defined by 

 

( ) ( ) ( )
2

2

2
1),( ∫ −== − τττ
π

ωω ωτ dthseStP j
t  (2-3) 

where  is the window function. Gaussian window function, ( )th ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛=

2
exp

24
1

atath
π

, is a 

good candidate because the Fourier transformation of a Gaussian signal is Gaussian itself, simple 

in mathematical expression. 

 
Although we have used Spectrogram in our study, there are many other time-frequency 

distributions that could be used, including Wigner-Ville, Positive distribution, Multi-window 

Spectrogram, and Jong-Williams distribution. We will test those distributions in further research. 

The Spectrogram is a widely used method for studying non-stationary signals [17]. 

The average frequency and bandwidth are  

 
( ) ωωωω dtP∫= ,  and  (2-4)  

( ) ( ) 2222 , ωωωωωωσω −=−= ∫ dtP . (2-5) 
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However, we are interested in local quantities of pathological tremor noise such as IF, IB, 

and IP in the Spectrogram. Especially, IF and IB are well known components in time-frequency 

study for analyzing the characteristics of any signal.  

IF is defined as the derivative of the phase of a complex representation of the signal by 

Gabor [19]. Generally, a complex signal can be written in the form, 

 
( ) ( ) ( )[ tjtAts ]ϕexp= , (2-6) 

where  is often taken to be the analytic signal (computed via the Hilbert transform of the 

given real signal), is the amplitude part of 

( )ts

( )tA ( )ts , and ( )tϕ is the phase part of .  ( )ts

 

IF for any signal, , is ( )ts

 
( )tIF 'ϕ=  , (2-7) 

 
its first moment [24]. TFD first moment provides another means of estimating the IF. 

The next parameter, IB, is a concept that has been extensively developed by Cohen and 

Lee [17], [18], particularly in the context of joint time-frequency distributions, where it is taken 

to be the standard deviation in frequency at a given time, which is the spread in frequency at a 

particular time. 

IB for any signal, ,is ( )ts

 
( )
( )tA
tAIB '

=  (2-8)  

where  is the derivative of . ( )tA' ( )tA
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The last parameter, IP of any signal, is generally ( ) 2ts  which is same as a time marginal 

distribution, 

 
( ) ( ) (tPdtPts == ∫ ωω,2 ) . (2-9) 

 
However, nature does not break up a signal for us in terms of real and imaginary representations 

or amplitude and phase. Nature only gives us the left-hand side, real part of , [17]. Therefore, 

we can not just apply Eqs. 2-7 and 2-8 to calculate IF and IB. In our study, we needed to estimate 

these quantities. Estimating correct IF is the most critical stage in the suppression system 

because an incorrectly-estimated IF will force the filter notch to be located in the wrong place. If 

the notch location is incorrect, even a good measurement of IB will not be helpful in achieving 

the desired results.  In the next chapter, we will talk about IF estimation and suppression 

techniques for the off-line experiment. 

( )ts
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3.0  TECHNICAL DEVELOPMENT: TIME-VARYING NOTCH FILTER WITH TFD 

(OFF-LINE) 

Estimation problems are typically classified into two categories, non-parametric and parametric 

methods. The difference between the two is the existence and use of a “model” which is used to describe 

the system. If it is explicitly the parameters of the supposed model that are being estimated then we are 

dealing with a parameter method. If, however, the quantities being estimated are not dependent on the 

physical nature or structure of the system then we are dealing with a non-parametric model [26]. There 

is another distinction commonly made in digital signal processing. It is the notion of a real time or “on-

line” algorithm as opposed to an “off-line” one. Strictly speaking, an off-line algorithm would be one 

that is theoretically impossible to implement in real time, for instance a filter which requires future 

points. Many times the term is used to refer to a batch type estimation approach as opposed to a 

recursive one. Also, whether an algorithm can be implemented in real time depends only on a 

processor’s ability to perform the necessary calculations in the allotted time. For example, the FFT is 

commonly used in real time applications and is a batch type algorithm.  

This chapter addresses the instantaneous frequency (IF) estimation techniques and time-

varying notch filters which are used for characterization and suppression of pathological tremors 

in an off-line situation. We will verify the reason why we choose time-frequency distribution 

(TFD) for IF estimation and a second order linear time-varying (LTV) IIR notch filter. 
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3.1 IF ESTIMATION TECHNIQUES 

The IF needs to be accurately estimated in order to obtain an intended joystick movement. Many 

definitions of IF have been proposed which have desirable properties in a given situation. 

Boashash provides comparisons of the different algorithms with noisy non-stationary signals 

[24]. From the results given it appears that TFD peak estimation provides a good estimate. We 

will briefly review currently available IF estimation techniques and provide the reasons why 

estimation via TFD peak was selected. The coverage includes phase differencing of the analytic 

signal, counting the zero crossing, adaptive estimation methods based on the least mean square 

(LMS) algorithm, and estimation via TFD peaks.  

3.1.1 Phase difference IF estimation 

The definition for the IF of a real continuous-time signal is shown in Eq. 2-7. A discrete finite 

impulse response (FIR) differentiator is used to implement discrete-time IF estimators based on 

the definition in Eq. 2-7. The discrete-time IF may then be defined as  

 
( ) ( ) ( )ndtnFI ∗= ϕ
)

 (3-1) 

where  is the impulse response of an FIR differentiating filer, and ( )nd ∗  denotes convolution in 

time.  

 
Such a filter has practical problems since it exaggerates the effects of high frequency 

noise. Good approximations to the differentiation operation in discrete-time can be obtained by 
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using a phase differencing operation [24]. The forward finite difference (FFD) is a commonly 

used phase differencing operation: 

 
( ) ( ) ( )nnnFI ϕϕ −+= 1
)

 (3-2) 

 
The phase difference estimator is unbiased, has zero group delay for linear FM signals, and, 

corresponds to the first moment in frequency of a number of TFD’s. 

3.1.2 Zero-crossing IF estimation 

Zero-crossing IF estimation is extremely simple computationally because it measures the number 

of zero-crossings. For a sinusoidal signal, the frequency is given by half the inverse of the 

interval between zero-crossing. The zero-crossing estimator, assuming the first zero-crossing 

occurs at time index n, can be expressed as 

 

( )
k

nFI
2
1

1 =
)

 (3-3) 

where  is the number of sample intervals between zero-crossings. k

 
The linear average of the k  consecutive FFD estimators may be rewritten as [24] 

 

( ) ( ) ([ nkn )]
k

nFI ϕϕ
π

−+=
2

1)
 (3-4) 

 
Thus the expression for the zero-crossing estimate is simply a linear average of  adjacent FFD 

estimates. It is extremely simple computationally. However, if the interval between zero-crossing 

is not an integer number of samples, then in addition to the linear averaging produced by the 

estimator, quantization “noise” is introduced.  

k
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3.1.3 Adaptive IF estimation 

The most popular form of adaptive IF estimation is based on modeling the data via a linear 

predictive process. The method which may be used for this type of estimation is the least mean 

square (LMS) algorithm. Griffiths proposed an adaptive IF estimation algorithm based on a 

linear prediction filter which has its coefficients updated with each new sample [25]. Griffith’s 

method is based conceptually on extracting the peak of a short-time linear prediction based 

spectral estimate. The resulting algorithm, which is based on gradient descent techniques, is quite 

simple. However, because the recursive algorithm is inherently an IF tracking process, it is 

unable to respond to very rapid (or noisy) IF changes. The estimate may therefore exhibit 

significant noise susceptibility. The main advantage of this algorithm is its computational 

simplicity. 

Details of the algorithm are given below. The vector of data samples at time, , is 

denoted by 

n

 
  (3-5) ( ) ( ) ( )[ T

n Lnznznzz 11 +−⋅⋅⋅−= ]

where L  is the linear prediction filter length, and T represents the transpose operation.  

 
The corresponding vector of liner prediction filter coefficients is 

 
( ) ( ) ( )[ nananaa Ln ⋅⋅⋅= 21 ]  (3-6) 

 
As each new data sample is processed, the filter coefficients should ideally be updated so as to 

minimize the mean square prediction error. The IF estimate is determined from the peak of the 

linear prediction based spectrum, i.e., 
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( ) inFI ω=
)

 which maximizes ( ) [ ]
2

1

exp1
−

=
∑ −+

L

k
ik kjna ω  (3-7)   

 

3.1.4 IF estimation based on TFD 

General interpretation of IF of a mono-component signal in the time-frequency domain is the 

average frequency at each time because the first conditional spectral moment of many TFDs 

equals the IF [17]. Nho and Loughlin proved that IF is the average frequency at each time with a 

symmetry condition. For the mono-component tremor case, the equality of ( ) IFt
t

=′= ϕω   is 

always true [20]. Again, estimation of IF from the TFD is 

 

( ) ( ) ( ) ωωωωωωω dtP
tP

dtP
t ∫∫ == ,1  (3-8)  

 

3.1.5 IB estimation based on TFD 

Estimating IB from TFD is a simple process. The IB can be obtained from the time-conditional 

spectral variance of a TFD of the signal [17].  

 

( ) ( ) ( ) 2222 ,1
tttt dtP

tP
ωωωωωωσω −=−= ∫  (3-9) 

where 
t

nω  is the  conditional moment thn

( ) ( ) ( ) ωωωωωωω dtP
tP

dtP nn

t

n ,1
∫∫ ==  (3-10) 

where  is the time marginal of the TFD, and ( )tP ( )tP ω  is the time-conditional spectral density.  
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3.2 TIME-VARYING NOTCH FILTER 

A notch filter is a filter that contains one or more deep notches or, ideally, perfect nulls in its 

frequency response characteristics [22]. Notch filters are useful in many applications where 

specific frequency components must be eliminated. To create a null in the frequency response of 

a filter at a frequency 0ω , a pair of complex-conjugate zeros on the unit circle at an angle 0ω  is 

introduced. That is, . Thus the system function for an FIR notch filter is simply 0
2,1

ωjez ±=

 
( ) ( )21

0cos21 −− +−= zzGzH ω  (3-11) 

where G  is the filter gain at 0=ω . 

 
The problem with a single pair of FIR notch filters is that the notch has a relatively large 

bandwidth, which means that other frequency components around the desired null are severely 

attenuated. To reduce the bandwidth of the null, a longer FIR filter is required. Alternatively, by 

introducing a pair of complex-conjugate poles at in the system function, we can 

improve on the frequency response characteristics [22]. The effect of the poles is to introduce a 

resonance in the vicinity of the null and thus to reduce the bandwidth of the notch. In this 

research, we have used the IIR filter design method instead of lengthy FIR filter design for the 

adaptive notch filter since the IIR filter can provide better notch capability than the FIR filter and 

has advantages of better control of filter notch characteristics with a lower filter order.  

0
2,1

ωjrep ±=

The traditional transfer function of the second order linear time-invariant (LTI) IIR filter 

used here is given by  
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 ( ) 221
0

21
0

cos21
cos21

, −−

−−

+−
+−

=
zrzr

zz
GrzH

ω
ω

 (3-12) 

where 0ω  is the notch frequency and r  represents the notch width control parameter in the range 

of .  The notch width control parameter 10 << r r  is set to )02.0(*102.1 IBnormalizedr +−= . 

 

 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−100

−80

−60

−40

−20

0

20

normalized frequency

m
a

g
n

itu
d

e
 (

d
B

)

r=0.9
r=0.7
r=0.5

 

Figure 1. Frequency response characteristics of three notch filter with three different bandwidths at 2
π .  
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The magnitude response ( )ωH  of the filter in Eq. 3-12 is plotted in Fig. 1 for 

 with 95.0,85.0,75.0 === randrr 20
πω = . We have used MathWorks Matlab software for 

the experimental simulation. For the constraints on pole-zero placement of the transfer function, 

Eq. 3-12, the zeros lie on the unit circle in order to completely null the desired frequency, and the 

poles lay on the same radial line at a distance r  from the origin. The parameter r  determines the 

bandwidth of the notch and as  the transfer function would describe an ideal notch filter. 1→r

Orfanidis modified Eq. 3-12 further to control the notch depth of the filter [23]. The 

modified transfer function is, 

 

( ) 21
0

21
0

)12(cos21
cos21

, −−

−−

−+−
+−

=
zGainzGain

zz
GainazH

ω
ω

 (3-13) 

where 

a
aBW

Gain
21

2
tan1

1
−

⎟
⎠
⎞

⎜
⎝
⎛+

= , 

where  is the depth control parameter and BW is the notch bandwidth at -3dB. a

 
We can adaptively adjust the notch depth with respect to IB and IP information. We computed a 

time-dependent adaptive notch depth coefficient a  with Eq. 3-13 and replaced BW with IB. 

 
( )
( )( )[ ]

( )
( )( ) 10,1

maxmax 2 ≤≤+−= a
tP

tP
tP

tPa  (3-14) 

 
where  is the time marginal distribution (square root of the instantaneous power) of the 

pathological tremor. 

( )tP
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Fig. 2 illustrates the filter characteristics of the second order IIR notch filter with three 

different notch depth, 00.1,95.0,85.0 === aandaa  with 20
πω = . A second order linear 

time-varying (LTV) IIR notch filter is implemented via the method of Huang and Aggarwal [21] 

(which is a sliding block implementation of successive LTI filters). To eliminate the phase 

distortion that is common in IIR filters, the filter was implemented using forward-backward 

filtering [22]. Therefore, the output of the second order IIR notch filter in this implementation is 

the fourth order IIR notch filter.  
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Figure 2: Frequency response characteristics of three notch filter with three different depths at 2
π . 
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3.3 DEMONSTRATION OF TIME-VARYING NOTCH FILTER 

In this section, we will show how the pathological tremor noise in the joystick signal of an 

electric powered wheelchair is removed by a time-varying notch filter with IF, IB, and IP 

information. From the real joystick signal with tremor, we will compare the performance 

between the time-varying notch filter and the current suppression method which is a low-pass 

filter with 3 Hz cutoff.  

3.3.1 Test signal and local parameters (IF, IB, IP) 

Generally, the amplitude of pathological tremor noise gradually increases and then decreases. 

Depending on the intended movement (especially, direction) of the joystick, the tremor signal 

exists for a short period of time and dies. On the other hand, the range of Cerebral Palsy (CP) 

tremor frequencies is from 2 to 6 Hz constantly or the frequency may change monotonically. To 

model CP tremor, we summarize the characteristics of the pathological tremor from the previous 

studies [1], [2], [7], [8], [10], [11], [12], and [13], 

 

• Roughly sinusoidal movement in 2 to 6 Hz range. 

• The amplitude of CP tremor is significantly stronger than an intended movement. 

• CP tremor occurs with the intended movement. 
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Therefore, it is reasonable to model the life of tremor noise with a Gaussian shape of amplitude 

envelope and a second order of linear frequency modulation.  

We assume that our proposed test signal of CP tremor noise is  

 

( ) ( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−= tttt

Atz 0

22
0

2
cos

2
exp ωβα  (3-15) 

where A is a constant, α  is a variance of Gaussian envelope,  is a time delay and0t β  is the 

chirp rate of the tremor. When α  is close to zero, ( )tz  has a constant amplitude envelope and 

when β  is close to zero, z(t) becomes a tone signal (just one constant frequency).  

 
We need to use an analytic signal (complex representation) of the real signal for the joint 

time-frequency distribution (TFD). The analytic signal of ( )tz  is obtained by using Hilbert 

transformation and rewritten in Eq. 3-16. 

 

 ( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++

−
−= ttj

tt
Ats 0

22
0

22
exp ωβα . (3-16) 

 
The spectrum of the test signal is obtained without difficulty, 

 

 ( ) ( ) ( ) ( )
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Calculated spectrogram of the test signal with Gaussian window is   
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For simplicity, we set 0=β in this demonstration from now. That is, the test signal has a 

constant frequency which is the case of a single constant tremor frequency. The normalized test 

signal of Eq. 3-16 and its corresponding energy density spectrum are shown in Fig. 3. Next, we 

estimated the IF, IB, and IP of the test signal from Spectrogram by using the methods in the 

previous section and drew them in Fig. 4, on top of the time-frequency distribution.  
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   (a)      (b) 

Figure 3: (a) Normalized waveform of the test signal and (b) its corresponding power spectral density ( 100=α , 

0=β , and 5020 ⋅= πω  with 512 is the size of data and FFT point). 
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Figure 4: (a) TFD of the test signal with IF (solid line) and IB (dotted line) and (b) time-marginal distribution, IP. 
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3.3.2 Tuning notch filter with IF, IB, and IP 

With the equations in the section 3.2, the notch width and depth control parameters, r  and  

respectively, are calculated by the values of estimated IF, IB, and IP, therefore the shape of the 

notch is adjusted by them. Fig. 5 shows how those parameters change with respect to time.  At 

time, , those parameters generate the widest and deepest notch that matches with the test 

signal.  

a

5.0=t
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Figure 5: Time-varying (a) notch-width control parameter, r , and (b) notch-depth control parameter, , for the test 

signal. 
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Now, we are able to obtain the adaptive notch filter for the test signal. Fig. 6 shows the 

characteristics of the time-varying notch filter at three different time points, .  5.0,3.0,1.0 andt =
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Figure 6: Characteristics of notch for the test signal at three different time 

 

 

After we apply the notch filter to the test signal, we are able to suppress the signal nicely. Fig. 7 

shows the final result of proposed filtering method for the test signal. In this section, we have 
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demonstrated how the time-varying notch filter is constructed in detail. We also showed the 

importance of IF, IB, and IP in the time-varying notch filter.  
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Figure 7: Final result of proposed filtering method for the test signal. 
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3.4 PRELIMINARY JOYSTICK DATA 

In this section, we applied the time-varying notch filter which is tuned by IF, IB, and IP obtained 

from joint time-frequency distribution to real joystick signals containing Cerebral Palsy (CP) 

tremor noise and compared the results of the notch filter with the results of the commonly used 

low-pass filter (LPF) with 3 Hz cutoff.  

First, we will briefly describe the experimental background and setting for the 

preliminary data. All experiments were performed in the Human Engineering Research 

Laboratories (HERL). Originally, the joystick signals were captured to compare the control 

signals generated during simple driving tasks using a standard position sensing joystick and a 

force sensing joystick (FSJ) with two distinct control algorithms [28]. The FSJ algorithms are a 

simple constant proportional gain with a LPF for both speed and direction, and a variable gain 

algorithm with a low-pass digital filter. Seventeen EPW users with cerebral palsy and upper 

extremity tremor and athetosis performed the test with Quickie P300 (Sunrise Medical, LTD) to 

evaluate these engineering methods for improving the control of an EPW.  

The joystick information was collected at 322 Hz sampling rate while each subject drove 

to the center of nine “targets” arranged at various angles and distance from a common starting 

point (shown in Fig. 8). Fig. 8 is a scale drawing of the testing room and provides the dimensions 

and locations of target. In this experiment, an 8-bit counter is used to measure the displacement 

of the joystick and the range of the joystick movement is ± 54 counts from the center point, 113 

counts. The starting joystick displacement of 113 counts indicates the joystick is at the center 
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position. When the chair speeds up and down, the displacement counts increase and decrease 

respectively.   

 

 

Figure 8: Experiment settings (nine targets) 

 

 

For our preliminary data analysis, we selected raw data from subject number 11, the third 

trial, and speed displacement (y-axis) because it has a clear tremor behavior (athetoid movement) 

and it is easy to assume the intended movement. Fig. 9 shows that the joystick signal is corrupted 

severely by a pathological tremor which creates a serious problem for driving an electric 

powered wheelchair. For this particular data, it is reasonable to use the LPF with a 1 Hz cut-off 
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frequency to obtain the assumed intended movement since we did not observe any abrupt driving 

behavior except that the chair sped up and down slowly to get to the target 7. Fig. 9 shows the 

raw joystick signal with the assumed intended movement.  
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Figure 9: Example of test compromised by CP patient: the wheelchair driving (S11 P3 T7y.txt is the data file name 

where S11 is a subject number 11, P3 is a trial number 3 , and T7y is the joystick displacement in y-axis for a target 

number 7) and dash line is an intended movement. 
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From the figure, we can see approximately little less than 3 Hz of CP tremor frequency 

with high peak to peak variation and mainly in the intervals of 3-7 seconds. Therefore, if we 

apply the 3 Hz of a low-pass filter to the raw data, there is still a high chance that some unwanted 

tremor movement will remain. As we learned about the characteristics of CP tremor in chapter 

two, CP tremor is roughly a high powered sinusoidal movement and is in the frequency range of 

2-6 Hz. Therefore, applying a band-pass filter (BPF) with a 1-7 Hz pass-band is a reasonable 

choice to see the clear picture of the CP tremor without interfering with the intended movement. 

The outcome of the band-pass filtered joystick signal is shown in Fig. 10 and its Spectrogram is 

shown in Fig. 11. From Fig.11, we can assume that CP tremor occurs at 3 Hz frequency and 

mainly in the intervals of 3-7 seconds.  
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Figure 10: Band-pass filtered joystick signal. 
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Figure 11: Spectrogram of CP tremor signal with IF and IB. 

 

With the band-pass filtered signal, we obtained the estimated IF and IB of the test signal 

from Spectrogram by using the methods in the section 3.1 (shown in Fig. 11) and calculated the 

notch width and depth control parameters, r  and  respectively and designed the time-varying 

adaptive notch filter. After we applied the proposed suppression method like we did to the test 

signal, we are able to filter the tremor noise out effectively and the result is shown in Fig. 12. 

Additionally, Fig. 12 shows the visual comparison between the proposed method and LPF with a 

3 Hz cutoff frequency. 

a

The output of the LPF shows that the filter did not filter the 3 Hz tremor noise completely 

because some portion of the unwanted CP tremor noise is still present. If we narrow the pass-

band of the LPF, the oscillation is minimized, but there is a high chance of losing desired 
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information. On the other hand, although the proposed filter did not suppress the oscillating noise 

completely in the entire area, there is a significant improvement in the high-powered noise area 

where it creates a major problem for driving an electric powered wheelchair with a joystick.  

To have a performance comparison between the proposed method and the LPF, we 

calculated mean square error (MSE) for the results of both suppression methods. MSE defined as 

 
( ){ }2xyEMSE −=  (3-16) 

 
MSE for the LPF is 3.5807 counts and MSE for the proposed method is 0.8095 counts. 

Therefore, from MSE numbers, we can conclude that the proposed method is more effective than 

the LPF for this joystick signal. However, depending on where CP tremor noise and an intended 

movement are detected in frequency domain and how much power ratio they have with respect 

to each other, the performance of those suppression methods will be changed. We will deal with 

this problem in next section. 

In conclusion, experimental results show that the proposed suppression method, time-

varying notch filter with IF, IB, and IP, is able to reduce the tremor signals effectively, while 

retaining the features of the desired joystick signal for the off-line experiment. Therefore, 

instantaneous frequency, instantaneous bandwidth, and instantaneous power can be good 

candidates for the suppression process as well as for the characteristics of pathological tremor 

noise. 
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Figure 12: The results for the proposed suppression method and LPF with 3 Hz cutoff frequency (dot line (..) is a 

raw joystick signal, solid line (-) is an assumed intended movement, dash-dot (-.) is a LFP (3 Hz) signal and dash-

dash line (--) is a notched signal with IF, IB, and IP. 
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3.5 PROBLEMS OF TIME-VARYING NOTCH FILTER 

We introduce potential problems associated with the use of a time-varying notch filter with TFD 

method to suppress CP tremor in this section. We will focus on the question: When does our 

proposed CP tremor suppression system break down? We need to be wary of two major cases: 

(1) TFD does not provide us good IF and IB estimations from TFD plane, possibly because of 

unexpected high noise or very low energy CP tremor in the joystick system (unlikely), and (2) 

intended movement and CP tremor frequencies occur very close to each other, such that we face 

severe performance degradation in the CP tremor suppression system. To address these potential 

problems, we need to set constraints for our CP tremor suppression system.  

3.5.1 When noise level is very high or CP tremor power is low 

The intended movement data is corrupted by both additive noise and CP tremor in the EPW 

joystick system. The output signal from the joystick is therefore modeled as 

 
( ) ( ) )()( tNtTtStJ ++=  (3-17) 

where  is an intended movement signal, ( )tS ( )tT  is an unwanted tremor frequency, and ( )tN  is 

zero-mean additive white Gaussians noise (AWGN) with variance . 2σ

 
Depending on the power of intended movement of the EPW joystick, CP tremor, and 

noise, the success of IF and IB estimation is decided based on the use of the peaks and  standard 

deviation from the TFD plane as IF and IB estimators, respectively. We examine the effects of 

AWGN and CP tremor power levels on IF estimation. For computer simulation settings, we use 

simple sinusoidal signals for CP tremor noise ( )tT  with 5 Hz frequency and intended movement 
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signal   with 2 Hz frequency, which are distinctly different. Therefore, real IF of CP tremor 

noise is 5 Hz. We run the simulation with several different combinations of the intended 

movement signal-to-tremor noise power ratio (STR) and the intended movement signal-to-

AWGN power ratio (SNR). An intended movement-to-tremor noise power ratio STR defined as, 

( )tS

 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

T

S

P
P

dBSTR log10  (3-18) 

where  is the intended movement signal power and  is the tremor noise power. SP TP

 
 

 

 

 

 

Table 1: MSE test between real IF and estimated IF with different combinations of SNR and STR. 

         SNR ( ) dB

    at 

MSE 

(STR ( ) = -18.2) dB

         STR ( ) dB

    at 

MSE 

(SNR ( ) = -7.2) dB

9.8518 0 -32.0712 0 

-6.9718 0 -25.1397 0 

-23.0539 0 -18.2082 0 

-29.7279 0 -9.0453 0 

 -35.8550 0.58  -1.0603 1.2154 

-39.5341 72.1670 4.8176 2.998 

 -45.6509 70.88 20.912 2.998 
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We calculate MSE between real IF and estimated IF and the results are shown in Table 1. First, 

we use a fixed STR of -18.2  and vary the value of SNR from 9.8518 dB  to -45.6509  to 

see the effect of the noise on IF estimation, that shows on first two columns of Table 1. And then 

we use a fixed SNR of -7.2  and vary the value of STR from -32.0712  to 20.912 , that 

shows on next two columns of Table 1. From the experiment, we can see the effects of SNR and 

STR on IF estimation. High noise and high intended movement signal powers create problems 

on IF estimation. The same results are found in IB estimation. Incorrectly-estimated IF and IB 

have a detrimental effect on the performance of tremor suppression system.  To avoid this 

problem, we may set power ratio limitation on our suppression system such as a shared control. 

For example, a time-varying notch filter is applied in the case of high powered tremor case, 

otherwise LPF is applied.  

dB dB

dB dB dB

3.5.2 When an intended movement and P tremor frequencies occur very close to each 

other 

Depending on the locations of intended movement frequencies of EPW joystick and CP tremor 

frequency, the performance of suppression methods can be varied. Generally, intended 

movement frequencies are lower than CP tremor frequencies, but intended movement 

frequencies are may also occur very close to or higher than CP tremor frequency. If intended 

movement frequencies are maintained under a low-pass filter and CP tremor frequency is outside 

of the low-pass filter band, then the low-pass filter works best. On the other hand, a time-varying 

notch filter works better than a low-pass filter in cases where the intended movement frequencies 

are close to or higher than the CP tremor frequency.  
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Table 2: Comparison between LPF with 3 Hz and time-varying notch filter results when CP tremor occurs at 3 Hz 

frequency. 

Intended          

Movement Frequency 

   MSE for 

Low-pass Filter with 3 Hz 

    MSE for 

Time-Varying Notch Filter 

1 Hz 0.0086 0.0090 

2 Hz 0.0087 0.0100 

3 Hz 0.0136 0.0107 

4 Hz 0.133 0.0099 

5 Hz 0.133 0.0089 

 

 

For the computer simulation, we use a simple sinusoidal signal with 3 Hz frequency for 

CP tremor noise and several different sinusoidal signals with 1 to 5 Hz frequencies for an 

intended movement signal. For additional test settings, it is reasonable to set the intended 

movement-to-tremor noise ratio (STR) of -16 dB and the intended movement signal-to-AWGN 

ratio (SNR) of 16 dB since the energy level of CP tremor noise is much stronger than that of an 

intended movement and AWGN. The simulated results show in Table 2. From Table 2, if 

intended movement frequency is maintained under 3 Hz, then LPF has better performance results 

than a time-varying notch filter. Otherwise, a time-varying notch filter is a better tremor 

suppression method. We can utilize both of the filtering methods to compensate for their 

individual weaknesses. However, sharing filters for the different cases only works in off-line 

suppression because the time-delay of a low-pass filter presents a greater problem in real-time 

practical environments. 
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4.0  TECHNICAL DEVELOPMENT: ADAPTIVE NOTCH FILTER (ON-LINE) 

In this chapter, we introduce a real-time tremor suppression method. Pathological tremor is a 

non-stationary process exhibiting characteristics of frequency and amplitude modulation. 

Adaptive algorithms are particularly suited to active tremor canceling since they adjust 

automatically to such signal changes over time. Our proposed suppression method to the real-

time joystick operation is a time-varying adaptive notch filter. Two channels of filtering are used 

for the two orientations (x and y) of joystick input. We introduce Riviere’s Weighted-frequency 

Fourier Linear Combiner filter (WFLC) as a time-varying adaptive notch filter in our study since 

it can estimate tremor amplitude as well as tremor frequencies. Riviere and Thakor developed the 

WFLC and applied it to a computer pen and a hand-held surgical device application [15]. They 

demonstrated that WFLC was a good choice for tremor suppression problems. The background 

of WFLC will be shown in the following sections. Since WFLC estimates the notch frequencies 

directly and not indirectly from the transfer function parameters, we do not need to observe a 

stability monitoring as long as the value of step size maintains a stable range. In the last section 

of this chapter, we modified Riviere’s WFLC by adding instantaneous bandwidth (IB) 

information to the algorithm since we had shown a notch filter performed better with IB 

information from the previous chapter. We demonstrated that the modified WFLC performed 

better than Rivere’s WFLC by using a synthetic signal. 
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4.1 ADAPTIVE NOISE CANCELING 

The most relevant technique for tremor suppression application is adaptive noise canceling. An 

adaptive noise canceller is a noise filter that self optimizes on-line as it encounters an input 

signal, adjusting its parameters according to a learning algorithm. The block diagram of the 

adaptive noise canceller is drawn in Fig. 13. As shown in Fig. 13, the system accepts two inputs: 

a primary input , containing a desired signal  and uncorrelated noise ; and a reference 

input , containing noise  correlated with . Then  is subtracted from  to yield 

ks kd kn

kx kn′ kn ky ks kε . 

The adaptive process minimizes the mean square value of kε , thereby minimizing the mean 

square error between and , making kn ky kε an estimate of  . Adaptation is typically 

accomplished using a gradient descent algorithm such as the popular least mean square (LMS) 

algorithm. The reference input is processed by an adaptive filter that automatically adjusts its 

own impulse response through LMS that responds to an error signal dependent on the filter’s 

output. In noise canceling systems the practical objective is to produce a system output, 

kd

kε , that 

is a best fit in the least squares sense to the signal . The objective is accomplished by feeding 

the system output back to the adaptive filter and adjusting the filter through an adaptive 

algorithm to minimize the total system output power. Therefore, the system output serves as the 

error signal for the adaptive process in noise canceling system.  

kd

The output is  

 
kkkk ynd −+=ε  (4-1) 
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ks kε+++

−

 

Figure 13: Adaptive noise canceller. A desired signal, is corrupted by a noise, . The adaptive filter takes in a 

noise , correlated with , and outputs an estimate  of , which is subtracted from the primary input, . 

This yields 

kd kn

kn′ kn ky kn ks

kε , which is an estimate of the desired signal, . kd

 

 

By squaring Eq. 4-1, we obtain 

 
( ) ( )kkkkkkk yndynd −+−+= 2222ε  (4-2) 

 
Taking expectation of both sides of Eq. 4-2, and realizing that is uncorrelated with   and 

with , yields 

kd kn

ky

 
[ ] [ ] ( )[ ]222

kkkk ynEdEE −+=ε  (4-3) 
 
The signal power [ ]2

kdE  will be unaffected as the filter is adjusted to minimize [ ]2
kE ε  Therefore, 

the minimum output power is when 
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[ ] [ ] ( )[ ]2
min

22
min kkkk ynEdEE −+=ε  (4-4) 

 
When the filter is adjusted so that [ ]2

kE ε  is minimized, ( )[ ]2
kk ynE −  is therefore also 

minimized. The filter output  is then a best least squares estimate of the noise . Moreover, 

when 

ky kn

( )[ ]2
kk ynE −  is minimized, ( )[ ]2

kk dE −ε  is also minimized, since  

 
( ) ( kkkk ynd −=− )ε  (4-5) 

 
The output kε  will generally contain the signal  plus some noise. From Eg. 4-5, the output 

noise is given by . Since minimizing 

kd

( kk yn − ) [ ]2
kE ε  minimizes ( )[ ]2

kk ynE − , minimizing the 

total output remains constant, minimizing the total output power maximizes the output signal to 

noise ratio. We see from Eg. 4-4 that the smallest possible output power is [ ] [ ]22
min kk dEE =ε . 

When this is achievable, ( )[ ]2
kk ynE −  = 0. Therefore, kk ny =  and kk d=ε . In this case, 

minimizing output power causes the output signal to be perfectly free of noise. Notice that in this 

application, the error signal actually converges to the input data signal, rather than converging to 

zero.  

This adaptive noise canceling scheme requires a reference signal. In many human-

machine control applications, obtaining a reference signal that contains tremor is not convenient. 

However, there are a number of ways to resolve this difficulty. For periodic interference, one 

such method is to generate a reference input via a tapped delay line that receives the primary 

input, delayed by some amount. This adaptive filter structure therefore attempts a linear 

prediction of the current noise value based on past value, and is known as an adaptive predictor. 

Implementing this type of filter for tremor canceling in control applications is problematic for 
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two reasons. Little is known about the human voluntary motion so it is difficult to determine a 

suitable value for the tapped delay. A more significant drawback is that the system models the 

interference as a linear autoregressive process. Since pathological tremors are non-linear process, 

the linear prediction is therefore unlikely to yield a satisfactory estimate of the tremor, 

particularly when delayed by a potentially large value. 

4.2 FLC 

The roughly sinusoidal nature of tremor makes it well-suited to a Fourier representation. The 

Fourier linear combiner (FLC) is an adaptive filter that forms a dynamic truncated Fourier series 

model of an input signal [30]. The series model 

 

( ) ([∑
=

+=
M

r
rrk krbkray

1
00 cossin ωω )]  (4-6) 

where the Fourier coefficients,  and , are the adaptive filter weights. ra rb

 
The FLC operates by adaptively estimating the Fourier coefficients of the model according to the 

LMS algorithm. The block diagram of the FLC is presented in Fig. 14 and the algorithm is as 

follows, 
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where  is the adaptive weight vector,  is the input signal, [ T
Mk kkk

W 221 ,,, ωωω L= ] ks M  is 

the number of harmonics in the model, and μ  is an adaptive gain parameter. 

 
 The adaptive weight vector, , generates a linear combination of the harmonic 

orthogonal sinusoidal components of the reference input vector, . The FLC effectively 

estimates and cancels periodic interference of known frequency. Several features of the FLC are 

useful for canceling quasi-periodic interferences such as tremor. 

kW

kX
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Figure 14: The Fourier linear combiner. The FLC adaptively creates a dynamic Fourier series model of an input 

signal that can be used to cancel a quasi-periodic interference provided the fundamental frequency is known. 
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The FLC adapts to the amplitude and phase of an oscillation in the primary input and 

tracks their changes. It is computationally inexpensive, inherently zero-phase, and has an infinite 

null. For M=1, the algorithm can be viewed as an adaptive notch filter, the width of the notch 

created at 0ω  being directly proportional toμ  [15]. However, cancellation of periodic 

interference with the FLC depends on determination of the proper reference frequency, 0ω . The 

FLC cannot estimate the proper 0ω  value on-line because the tremor frequency is not known a 

priori. Making the FLC useful for tremor canceling during human-machine control requires a 

method to adapt the reference frequency to the primary input frequency. 

4.3 WFLC 

Due to the non-stationary nature of tremor, effective canceling requires adapting to change in 

both frequency and amplitude, whereas the FLC operates at a preset fixed frequency. To provide 

the needed versatility, the FLC has been extended to the case of time-varying frequency in the 

weighted-frequency Fourier linear combiner (WFLC), shown in Fig. 15. Riviere and Thakor 

modified FLC by replacing the fixed frequency, 0ω , of the FLC with another adaptive weight, 

k0ω , that learns the input frequency via the LMS algorithm, much as the FLC weights learn the 

input amplitudes [15]. Like the FLC, the WFLC forms a dynamic truncated Fourier series model 

of the input. Unlike the FLC, the WFLC adapts the frequency of the model as well as its Fourier 

coefficients to match the input signal. The WFLC is, therefore, well suited to compensating for 

approximately periodic disturbances of unknown frequency and amplitude. 
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The WFLC algorithm is used to model the pathological tremor as a modulated sine wave 

to model the pathological tremor as a modulated sine wave with a time-varying frequency and 

amplitude. At every time step, error is measured between the tremor signal and the reference sine 

wave; depending on the error, frequency and amplitude of the reference sine-wave are adjusted. 

The WFLC algorithm is as follows, 
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where ,   [ ]TMk kkk
wwwW 221 ,,, L= [ ]TMk kkk

xxxX 221 ,,, L=  

 

When M=1, the WFLC acts as a notch filter. 0μ  and 1μ  are adaptive gain parameters. Input 

amplitude and phase are estimated by the adaptive weight vector , as in the FLC, while  

estimates input frequency. It can be shown that, for sufficiently small 

kW
k

w0

0μ ,  converges to the 

frequency of a sinusoidal input signal [15]. If 

k
w0

00 =μ , then the WFLC reduces to the FLC.  

 Using the frequency information obtained from the WFLC reference vector  a second 

set  of amplitude modulation and zero-phase tremor canceling is performed, as follows: 

kX

kŴ
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  k
T

kkk XWs ˆˆ −=ε

  (4-9) kkkk XWW εμ ˆˆ2ˆˆ
1 +=+

where .  [ ]TMk kk
wwW 21 ˆˆˆ L=

 
Thus Eq. 4-9 operates essentially as a FLC with a time-varying reference frequency. A bias 

weight with a separate adaptive gain bμ  is used in parallel with this FLC to minimize distortion 

of lower frequency components. This overall system cancels tremor using an adaptive zero phase 

notch filtering approach which tracks changes in tremor frequency, amplitude, and phase. 
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Figure 15: The Weighted-frequency Fourier Linear Combiner as an adaptive noise canceller. 
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The canceling FLC uses only the frequency information from the WFLC. The WFLC 

amplitude weight information is not used for the actual canceling. The band-pass pre-filter before 

the WFLC causes a small lag in the WFLC output, but this affects only the frequency, and not 

the amplitude, of the final canceling system. Since the WFLC frequency is constructed to change 

slowly for stability, and since tremor frequency, unlike tremor amplitude, tends to change only 

slowly, the effect of this delay on performance is negligible. The FLC operates with no pre-

filtering, providing zero-phase tremor canceling.  

4.4 MODIFIED WFLC 

To improve CP tremor cancellation with WFLC techniques, we decided to use bandwidth 

information of CP tremor in the adaptive notch filter as well since we showed the importance of 

instantaneous bandwidth in the notch filter in Chapter 3. According to Riviere et al, when the 

value of adaptive gain μ  increases, the bandwidth of amplitude weights from FLC also 

increases. To have a closed form expression of μ  with respect to the bandwidth, the transfer 

function of FLC algorithm was needed. Fig. 16 shows the flow diagram of FLC system. 

The transfer function of the path ( ) ( )0cos12 ωμ kkuyk −=  from Fig.16 is 
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Since we have a feedback loop from the joystick input to the noise canceller output, the 

feedback formula is 
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Since Eq. 4-11 and Eq. 3-12 are the same, we can use the bandwidth equation to get the time-

varying adaptive step parameterμ . We can set 

)02.0(*102.121 IBnormalized+−=− μ  and then, ( ) IBIB *102.002.0*102 =−+=μ . 

Therefore, IBnormalized*5=μ  
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Figure 16: Flow diagram showing signal propagation in FLC. 
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Eq. 4-11 shows that the single frequency noise canceller has the properties of a notch 

filter at the reference frequency . The zeros of the transfer function are located in the z-plane 

at  and are precisely on the unit circle at angles of 

k
w0

0ωjez ±= rad0ω± . The poles are located at  

 

( ) ( ) ( )[ ] 2
1

0
22

0 cos121cos1 ωμμωμ −−−±−= jz  (4-12) 

 
The poles are inside the unit circle at a radial distance ( ) 2

1
21 μ− , approximately equal to μ−1 , 

from the origin at the angle of  

 
( ) ( )[ ]0

2
11 cos211cos ωμμ
−− −−−± .  (4-13) 

 
Since the zeros lie on the unit circle, the depth of the notch in the transfer function is infinite at 

the frequency 0ωω = . The sharpness of the notch is determined by a closeness of the poles to the 

zero. Corresponding poles and zeros are separated by a distance approximately equal toμ . 

Fig.17 shows the two different notch widths with two different μ  values. The single frequency 

noise canceller is thus equivalent to a stable notch filter. 

 The overall CP suppression system is shown in Fig. 18. The FLC uses the frequency 

information of CP tremor from the WFLC and time-varying adaptive step gain from 

instantaneous bandwidth of CP tremor. The WFLC amplitude weight information is not used for 

the actual canceling. The band-pass pre-filter before the WFLC causes a small lag in the WFLC 

output, but this affects only the frequency, and not the amplitude, of the final canceling system. 

Since the WFLC frequency is constructed to change slowly for stability, and since tremor 

frequency, unlike tremor amplitude, tends to change only slowly, the effect of this delay on 
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performance is negligible. The FLC operates with no pre-filtering, providing zero-phase tremor 

canceling. 
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Figure 17: Magnitude of transfer function for the two different μ  values at steady state condition. 
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Figure 18: The block diagram of the experimental setup. 

 

4.5 LOW-PASS FILTER 

To compare the performance of an adaptive notch filter, we used a 3 Hz of low-pass filter in our 

virtual driving experiment. Most electric powered wheelchairs use a 3 Hz of low-pass filter to 

extract noises. The low-pass filter was also expected to suppress the CP tremor that normally has 

higher than 3 Hz frequency characteristics. We chose the third order of Butterworth low-pass 

filter because it is easy to implement and it has a good characteristics of low-pass filter. We used 
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100 Hz of a sampling frequency in our experiment. Fig. 19 and 20(a) show the magnitude and 

phase responses of the low-pass filter used in our experiment respectively. Phase delay depends 

on the target signal frequency. We calculated the time-delay of 1 Hz of intended signal from the 

phase response and the time-delay curve of the low-pass filter is shown in Fig. 20(b). From Fig. 

21(b), we can read the time delay for the 1 Hz of intended signal as a 0.12 seconds. Therefore, 

we expected to have 0.12 seconds of time-delay when the low-pass filter was selected as a 

tremor suppression technique. The time-delay of 0.12 seconds created performance degradation 

on our virtual driving test. 
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Figure 19: Magnitude response of 3 Hz Butterworth low-pass filter. 
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Figure 20: (a) phase response of 3 Hz low-pass filter and (b) its time-delay curve. 

 56 



5.0  EXPERIMENT DEVELOPMENT 

 

The aim of this research is to adapt a new filtering technique for electric powered wheelchair 

(EPW) users who have Cerebral Palsy (CP) disorder with an upper extremity tremor (including 

athetoid movement). The technique was expected to effectively suppress the unintended hand 

movement in the joystick signal of EPWs. We used an isometric joystick with a low-pass filter, 

weighted-frequency Fourier linear combiner (WFLC), and a modified WFLC to perform a 

virtual wheelchair driving test on a personal computer display in order to evaluate the efficacy of 

the new filtering techniques.  

5.1 HUMAN SUBJECTS 

Ten adult subjects with Cerebral Palsy (CP) pathological tremor were recruited and tested for 

this study. They were all EPW users with a standard position sensitive joystick. Eight of the 

subjects were men and two were women. 41± 7.2 years of the subjects was the mean standard 

deviation age and they had been using an EPW for 12

±

± 6.9 years. Nine of the subjects were right 

handed while one was left handed. None of the subjects had used an isometric joystick before. 

Subjects were recruited via fliers distributed to United Cerebral Palsy (UCP) Pittsburgh. Testing 
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was conducted in a quiet room at UCP Pittsburgh. All experimental procedures took place during 

one study visit that required approximately one hour per subject.  

Subjects provided written informed consent via a consent form approved by the 

University of Pittsburgh’s Institutional Review Board (IRB) for the Protection of Human 

Subjects.  Some subjects who have a severe tremor requested to have a representative sign the 

consent form on their behalf.  Provision was made in the consent form for a signature from the 

representative of an adult able to provide assent, but unable to provide a signature due to 

physical limitations. Subjects were notified of their right to request to discontinue the study, the 

interview, or refuse to answer questions at any time. Confidentiality was maintained through use 

of an ID number assigned to each subject and used on the data forms. Subjects’ names and 

contact information were kept separate from the corresponding data forms.  

5.2 EXPERIMENT DESIGN 

The testing equipment for our study consisted of the following items: 

• An adjustable height over-bed table; 
• an isometric joystick; 

• a notebook PC computer with a virtual driving software; 

• a 19” flat panel display on an adjustable angle base. 

 

Fig. 26 shows the test equipment. The table had an adjustable height feature with sufficient 

clearance to permit a close fit to the participant’s wheelchair. The table surface allowed the 

joystick to be securely mounted at each subject’s preferred position. The 19” flat panel display 

was mounted on the testing table.  A tilt feature allowed the display to be angled for easy 
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viewing.  The positioning of the monitor stand relative to the subject and its tilt angle were 

optimized based on the subject's expressed preference for head position, comfort and visual 

acuity. 

   

 

 

 

 

 

 

 

 
Figure 21: Experiment equipment setup. 
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5.2.1 Isometric joystick [28] 

We used an isometric joystick that was developed at the Human Engineering Research 

Laboratories (HERL). The joystick produces a voltage output proportional to the force exerted 

on the stick by the user. The joystick voltage varies from 4.57 volts to 7.43 volts with 6 volts at 

the joystick’s null position. A 12 bit counter was used to convert analog voltage to digital values. 

The decimal equivalent of a 12 bit binary number ranges from zero to 1212 − , which equals 4095. 

The halfway point is 2047 and this was used to represent the neutral position on each axis. (From 

our data, we read the null position of joystick at 2047.) On the Speed axis (or x-axis), values 

greater than 2047 represented driving in the forward direction and values less than 2047 

represented reverse driving. On the direction axis (y-axis), values above 2050 represented right 

turns and values below 2050 represented left turns. The isometric joystick was set to block any 

digital value higher than 3003 for the positive offset and 1092 for the negative to match with the 

voltage range of the standard position joystick for the Quickie P300 EPW. Underneath the 

operator controls, a DB-9 serial connector was interfaced to a notebook computer to acquire 

force data.  

5.2.2 Software 

We borrowed a virtual driving simulation software package from HERL and modified the 

software with Microsoft Visual Studio C++. Our main modification was the addition of three 

tremor suppression algorithms: (1) a low-pass filter, (2) WFLC, and (3) modified WFLC. We 

also added the capability of reading an input file, “vdd_wflc.ini“, and writing output data files, 

“vdd_out_xxx.dat” and “vdd_out_xxx_ini.dat” for each trial. The “vdd_out_xxx.dat” and 
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“vdd_out_xxx_ini.dat” output file names were updated with the number of the trial executed (for 

example “vdd_out_001.dat” and “vdd_out_001_ini.dat” for the first trial and so on). We had to 

generate the output file “vdd_out_xxx_ini.dat “ to trace what kind of setting we used for that 

particular trial. The main source code, “VirtualDriving_demo.cpp”, was compiled and created 

the executable file, “vdd_wflc.exe”. The executable file, “vdd_wflc.exe”, called the input ini file, 

ran the simulation, and created the output file. The main source codes are shown in Appendix 

A.1 and we highlighted and bolded the code that we added on the main source code. 

Additionally, we created six supplementary codes related to filtering and reading input settings. 

Those files are shown in Appendix A.2, A3, and A4. Our input file controlled the initial filter 

parameters and was shown in Fig. 27.  An example of the output file is shown in Appendix B.1.  

From the input file, we were able to select the type of suppression method to be used as 

well as the order of filter usage and could adjust the null position of the joystick for purposes of 

calibration. (Tremor suppression techniques were randomly selected by random generation with 

a Matlab script.) We also had three selections of prefiltering methods to extract noise: (1) no 

filter, (2) low-pass filter, and (3) median filter, although we always used a “no filter” option. We 

selected the commonly used third order of Butterworth filter with 3 Hz cutoff as a low-pass filter 

for comparison to our other filtering methods. We used the input file to adjust filter parameters 

for the WFLC algorithm after we observed the practice session. The output file showed all 

information about the simulation. We were able to see data index, time index, joystick x and y, 

low-pass filter x and y, WFLC x and y, modified WFLC x and y, chair x and y, crashes, 

instantaneous frequency, band-passed signal, instantaneous frequency, angular velocity, linear 

velocity, WFLC step gain, track error, and path number.  
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Figure 22: Example of an input file 

 

# Filter parameters 

 

tremor_removal_type=2  # 0(no filter), 1(lowpass), 2(wflc), 3(wflc modified) 

filter_order=3   # Filter order to be used (2 or 3) 

joyStick_idle_pos.X=2047  # Joystick idle position X 

joyStick_idle_pos.Y=2047  # Joystick idle position Y 

sampling_freq(Hz)=100  # sampling frequency 

prefilter_type=0   # 0(No prefiltering), 1(low-pass), 2(median) 

prefilter.cut(Hz)=8  # cutoff frequency of low-pass prefilter 

pre_median_order=3  # order of median prefilter (# of data samples) 

intended_max_freq(Hz)=2.5 # intended movement max freq 

tremor_freq_min(Hz)=2.5  # tremo minimum freq 

tremor_freq_max(Hz)=8  # tremo maximum freq 

alpha=0.01  # used by modified WFLC (removal_type 3) to control FLC's mu 

#   # to control mu of FLC: mu' = mu * (1 + alpha*BW), 

#   # BW = normalized tremor bandwidth at a moment (0 <= BW <= 1) 

 

[WFLC] 

# WFLC parameters (to track tremor frequency) 

# Set mub to zero (or a very small value) 

# 

# mu mub  m0  f0 M w1 wM1 

0.0003 0.       0.0000002     4 1 0. 0. 

 

[FLC] 

# FLC parameters (to track actual intended signal) 

# 1. Set mu0 = 0 (or a very small value) 

# 2. f0 will be from WFLC. 

# mu value will be adjusted by tremor amplitude (envelope) by 

#   mu' = mu * (1 + alpha * tremor_bandwidth) 

# to control WFLC/FLC's the stop band width. 

# 

# mu mub  m0  f0 M w1 wM1 

0.01 0.00002   0.  4 1 0. 0. 
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5.2.3 Virtual driving simulation 

The virtual driving test was similar to a video game environment. The computer display showed 

a wheelchair sprite and a driving course. Subjects guided the modeled wheelchair with a joystick 

to follow the driving path. We used two virtual driving courses. One is a clockwise track course, 

shown in Fig. 28, and the other is right angle turning course, shown in Fig.29. The track course 

has four phases, starting from phase 1 up, phase 2 right, phase 3 down, and ending with phase 4 

left. The right angle turn has two phases, starting with phase 1 up and ending with phase 2 right. 

Initially, we asked subjects to use a track course for their practice session. Some subjects had 

difficulty completing the track course.  In these cases, we requested they use the right angle 

turning course instead. The courses were designed so that a proficient wheelchair driver could 

complete the course in approximately 1 minute without rushing. 

 

 
Figure 23: Track course and wheelchair sprite. 
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Since we did not have any information about the sizes of the virtual driving courses and 

the wheelchair sprite, we had to find numerical information on the virtual driving courses by 

using Adobe Photoshop. The resolution of the entire virtual screen is  and the origin 

(0,0) of the screen is located at the top left corner. The width of the path is 120 pixels and the 

width of the guided yellow lines is 40 pixels. For the track course, the center of the first phase 

(the straight path going upward) is at an x-axis position of 100.  The second phase is at a y-axis 

position of 200.  The third phase is at an x-axis position of 580 and the last phase is at a y-axis 

position of 400. For the right angle turn, the first phase is at an x-axis position of 100 and the 

second is at a y-axis position of 200. 

480640×

 

 

 

 
Figure 24: Right angle turn course and wheelchair sprite. 
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HERL used their speed profile data to model the Quickie P300 powered wheelchair 

manufactured by Sunrise Medical LLC. for the wheelchair sprite on the virtual driving 

simulation [28].  

5.3 PROCEDURE  

After the completion of the consent form, the practice testing session began by selecting the 

appropriate height of the table and the optimum location for the joystick. The computer monitor 

was mounted on an adjustable height table.  A tilt feature allowed the monitor to be angled for 

easy viewing.  The positioning of the monitor stand relative to the subject, the monitor height 

and the tilt angle were optimized based on the subject's expressed preference for head position, 

comfort and visual acuity. We demonstrated the movement of the testing joystick to the subject 

during the first practice session. All test subjects were evaluated by the researcher to determine 

their ability to operate the test joystick safely and properly. This procedure involved assuring that 

the individual could be comfortably seated to use the isometric joystick.  

Test subjects were instructed on the proper use of the joystick and given up to 15 minutes 

to operate the device. We gave instructions on the proper use of the joystick during this 

familiarization period. In this period, we observed the raw joystick data and the outcome of 

WFLC algorithm with 5 different FLC μ  values which are 0.001, 0.002, 0.005, 0.02, and 0.05 

(these values guaranteed a stable system according to [30]) and drew a comparison graph by 

using Matlab software. After comparing the outcomes, we adjusted WFLC parameters to enable 

the subject to have the smallest tremor amplitude, as observed graphically among the 5 different 

μ  values and maintained the parameters until the subject completed all trials. If after 15 minutes 
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or less, the test subject demonstrated the ability to operate the device properly, the subject was 

given the opportunity to continue with the study. We instructed the subject driving the 

wheelchair sprite that remaining in the yellow guided lines was more important than completing 

the entire course quickly. If the subject had difficulty guiding the wheelchair sprite on the virtual 

track course, we switched the subject to the easier right angle turn course instead.  Some subjects 

continued to have difficulty driving the right angle course. We tried to obtain as much data from 

each subject as possible despite these difficulties. Each subject completed 20 trials: 5 trials for 

each filtering method and 5 trials without any filter. After allowing for rest breaks between trials, 

subjects drove the test wheelchair through the course repeatedly until they completed the course 

20 times.  

5.4 DATA ANALYSIS 

Mathworks Matlab7.0, Microsoft Excel, and SPSS were used to analyze the data. When 

evaluating performance on the virtual driving test using the three different filtering algorithms, 

the primary elements considered were accuracy and speed measurements according to [27], [28]. 

Accuracy was determined by the number of crashes into the walls on the course and mean square 

error (MSE) between a guided path and actual wheelchair trajectory. Speed was determined 

using the time needed to complete the course.  

Given the small sample size, the normality of the distribution of the data would likely be 

difficult to verify statistically.  Histograms were created to gain a general sense of the 

distribution of the data.  Both parametric and non-parametric tests were performed to determine 

if any differences in results occurred between the two approaches. For parametric analysis, 
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repeated-measures ANOVA was used to examine differences among the three filtering methods 

for each dependent variable (crashes, MSE, time to complete course) with an alpha level of 0.05.  

Post-hoc testing was performed using paired t-tests.  The Bonferroni correction was used to 

compensate for multiple comparisons, therefore the t-test alpha level was set at 0.017.  For non-

parametric analysis, Friedman’s test was used to examine differences among the three filtering 

methods for each dependent variable.  Post-hoc test testing was achieved using the Wilcoxon 

Signed Ranks Test with a Bonferroni-corrected alpha level of 0.017. 
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6.0  RESULTS  

In this chapter, we analyze the joystick data that we collected from the wheelchair users who 

have Cerebral Palsy (CP) disorder with pathological tremor in order to characterize the CP 

tremor. We also compared the outcomes of the virtual driving test to determine which of three 

tremor suppression techniques performed best: a low-pass filter, WFLC, or modified WFLC.  

6.1 CHARACTERIZATION OF CP TREMOR 

We used the joystick data from all ten subjects to determine the characteristics of CP tremor. 

Subjects #2, #7 and #8 had difficulty completing the track course because of their lack of 

experience on the isometric joystick control. They reported that the virtual driving test was 

uncomfortable for them, and were asked to try the right angle turn course instead. (A right angle 

turn note “RT” appears next to subjects #2, #7 and #8 on the result tables.). We summarized the 

characteristics of CP tremor we captured from the joystick data of ten subjects during the virtual 

test in Table 3. For the clinical evaluation of CP tremor, typically tremor power is used to 

identify abnormalities in CP tremor and classify the types of abnormalities observed. From Table 

3, we observed that average CP instantaneous tremor frequency ranged from 4.05 Hz for subject 

#3 to 5.29 Hz for subject #9. We also measured average CP tremor power which is in a range 

between 12.13 for subject #2 and 111.9 for subject #1.  By using CP tremor power, we were able 
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to divide the ten subjects into two groups. The first group contains those subjects who had severe 

impairments. These were subjects #1, #3, #5, and #10. The second group contains those subjects 

who had mild impairments, including subjects #2, #4, #6, #7, #8, and #9. It matches with our 

observations during the experiment. 

 

 

 

 

 

Table 3: Chracteristics of ten subjects and two CP groups. 

Group 

Classification 
Subject # 

Average Tremor 

Frequency (IF), 

Hz 

Average Conditional 

Standard Deviation of 

IF , Hz 

Average Tremor 

Power (IP) 

1 5.05 0.4150 111.90 

3 4.05 0.4293 86.82 

5 4.98 0.4204 51.71 

Severely 

Impaired 

10 4.83 0.3615 40.83 

2 (RT) 5.25 0.1210 12.13 

4 4.77 0.1432 17.04 

6 4.29 0.1002 20.22 

7 (RT) 5.11 0.1460 15.32 

8 (RT) 5.02 0.1312 26.62 

Mildly 

Impaired 

9 5.29 0.1450 15.67 
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There was a bimodal distribution of the average conditional standard deviation of 

instantaneous CP tremor frequency data with the severely impaired group having a range of 

0.3615 - 0.4293 and the mildly impaired group having a range of 0.1002 – 0.1460 (see Table 3). 

A Mann-Whitney U test was performed to determine if the two groups differed statistically from 

another. (Please note that for this and all subsequent analyses presented in Chapters 6 and 7, 

parametric analysis yielded the same results as non-parametric analysis, therefore only non-

parametric test results are reported.) The severely impaired CP group showed higher average 

conditional standard deviation of instantaneous tremor frequency than the mildly impaired group 

with a p value of 0.01. From Table 3, we observed that the two groups also appear to differ in 

average tremor power, with the severely impaired group showing larger values than the mildly 

impaired group. Subject #6 has narrow range of instantaneous tremor frequency variation 

(0.1002 Hz) and subject #3 has large instantaneous tremor frequency variation (0.4293 Hz). 

Subjects #1, #3, #5, and #10 have higher average conditional standard deviation of instantaneous 

tremor frequency and average tremor power than subjects #2, #4, #6, #7, #8, and #9.  

We also obtained joystick data from a spinal-cord injured (SCI) person with tremor and 

an unimpaired subject without tremor to show how hand movements differ among these subjects. 

Fig. 30 shows examples of different joystick signals of hand shakiness for an unimpaired subject 

in (a), a CP subject in (b), and a SCI subject in (c). While an unimpaired subject does not show 

any hand shakiness, a CP subject and a SCI subject have hand shakiness. A SCI subject has 

faster hand shakiness than a CP subject, but the amplitude variation is smaller as Aylor et al. 

concluded [12]. We presented this example to highlight the significance of the variability in 

joystick amplitudes and this example does not impact the interpretation of the experimental 

results. 
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Figure 25: Different joystick signals among (a) unimpaired subject, (b) CP subject, and (c) SCI subject. 
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6.2 PERFORMANCE  

Of the ten subjects, subject #2, #7, and #8 were unable to complete the track course because they 

were unable to coordinate the isometric joystick with the direction of the virtual wheelchair 

sprite, especially in phases 3 and 4.  These subjects were asked to attempt the right angle turn 

course instead. The right angle turn course is easier than the track course because it has a shorter 

travel distance and requires the user to drive the wheelchair in fewer directions, making joystick 

coordination simpler. Subjects #7 and #8 still could not complete the right angle turn course 5 

times for each filtering technique because they drove the virtual wheelchair extremely slowly. 

We were able to obtain only two sets of data for each filter from these subjects.  Although we 

used two different courses, we are still able to compare the performance of each of the 

suppression methods because we are making comparisons within subjects. To measure 

performance on the virtual test, we used three elements including number of crashes to the wall, 

total traveled time to reach end line, and mean square error (MSE) to show deviation from the 

guided path.  

 Fig. 31 shows an example of one trial for subject #1. In Fig. 31, the red line is the actual 

wheelchair’s trajectory shown with the yellow guided path and the green center line of the path. 

This example shows one crash on the third phase. The highest MSE of the wheelchair trajectory 

occurred in the fourth phase where the wheelchair was driven outside of the guided path most of 

time. Table 4 shows an example of summarized performance for subject #1. Subject #1 

completed all 5 trials for each suppression method (no filter, low-pass filter, WFLC , and 

modified WFLC). Our output data file contains the performance information for this trial.  
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From our data analysis, male CP subjects drove the virtual wheelchair better than female 

CP subjects #2 and #8.  Also, subjects who have experience with a video game performed better 

regardless of the extent of their impairments. Ironically, severely impaired CP subjects #1 and #3 

drove the virtual wheelchair very quickly with few crashes. 

 

 

 

 

 

 

Figure 26: Example of third trial for subject #3 with WFLC algorithm. 
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Table 4: Summary of subject #1 output data 

Average 

Velocity 
Trial  

Total 

time, 

Sec. 

# of 

Crashes
MSE

Average 

Tremor 

Freq. 

(IF), Hz 

Average 

Tremor 

Power 

(IP) 
Linear Angular 

NoF1 19.79 0 0.16 5.13 124.11 94.73 13.89 

NoF2 18.25 0 0.98 5.12 118.40 96.98 13.69 

NoF3 18.15 0 1.98 4.64 108.92 94.72 11.59 

NoF4 18.05 0 1.92 5.17 107.19 95.47 12.08 

NoF5 17.40 0 2.31 5.00 118.21 101.44 13.32 

Avg. 18.32 0 1.47 5.01 115.37 96.67 12.58 

LPF1 21.77 0 0.80 5.07 114.04 86.68 15.16 

LPF2 18.03 0 1.53 5.11 100.88 103.54 18.92 

LPF3 23.74 1 5.21 5.23 105.89 76.07 17.82 

LPF4 17.88 0 2.16 5.04 86.17 96.69 15.87 

LPF5 19.24 0 3.02 5.20 117.51 93.50 15.99 

Avg. 20.13 0.2 2.54 5.13 104.90 91.30 16.75 

WFLC1 19.19 0 1.52 5.05 128.53 94.45 13.94 

WFLC2 19.89 0 1.17 4.87 140.97 91.70 11.22 

WFLC3 20.13 0 0.61 4.91 120.70 90.37 12.33 

WFLC4 18.26 0 1.13 5.28 116.50 97.47 12.61 

WFLC5 19.19 0 3.59 4.97 91.53 85.81 12.99 

Avg. 19.33 0 1.60 5.02 119.65 91.96 12.62 

Mod1 18.28 0 1.28 5.03 116.74 96.43 12.90 

Mod2 18.54 0 0.50 5.00 102.92 95.54 14.59 

Mod3 22.00 0 0.36 5.04 105.86 87.01 12.97 

Mod4 19.06 0 1,24 5.09 126.39 93.31 12.98 

Mod5 21.44 0 0.66 5.03 86.45 87.16 14.62 

Avg. 19.86 0 0.81 5.04 107.67 91.89 13.61 
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6.2.1 Crashes 

We counted the number of crashes into the wall during the virtual driving test. Table 5 shows the 

summary of the number of crashes for ten subjects. Friedman’s test showed that a statistically 

significant difference existed among the three filtering methods (p=.006).  Wilcoxon’s Signed 

Ranks Tests were performed to identify differences between pairs of filtering methods. All 

subjects were able to complete the driving course with significantly fewer crashes using WFLC 

than the low-pass filter (p=.005). We did not observe any statistically significant performance 

difference between modified WFLC and the low-pass filter (p=0.022) and between WFLC and 

modified WFLC (p=0.373) since the p values were greater than the Bonferroni-corrected alpha 

level of 0.017. 

Table 5: Average number of crashes for 20 trials and performance. 

Subject # LPF WFLC Mod. WFLC 

1 0.2 0.0 0.0 

2(RT) 4.8 1.8 1.6 

3 10.4 2.0 1.2 

4 4.4 4.2 4.0 

5 17 7.6 5.8 

6 15.4 8.0 9.2 

7(RT) 9.0 3.5 4.0 

8(RT) 12.5 4.5 6.5 

9 8.0 7.3 8.4 

10 4.0 3.3 4.2 

Average 8.6 4.2 4.5 
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From Table 5, subjects #1, #2, #3, #5, #6, #7, and #8 showed fewer crashes with WFLC 

and modified WFLC than with the low-pass filter.  In contrast, subjects #4, #9, and #10 had 

relatively similar performances for the three filtering techniques.  The percent improvement in 

the average number of crashes for WFLC and modified WFLC with respect to the low-pass filter 

were 50.3% and 46.1% respectively. Subject #3 showed the best performance improvement for 

WFLC and modified WFLC except for that observed in subject #1. Although subject #1 had a 

severe tremor, he performed well in all filter conditions.  

6.2.2 Elapsed time 

We measured the total elapsed time for each trial and for each subject during the virtual driving 

test. Table 6 summarizes the traveled time for ten subjects. Friedman’s test showed that a 

statistically significant difference existed among the three filtering methods (p=.002).  

Wilcoxon’s Signed Ranks Tests were performed to identify differences between pairs of filtering 

methods. Subjects were able to complete the driving course faster using WFLC than the low-pass 

filter (p=.009).  Similarly, subjects were faster with modified WFLC than the low-pass filter 

(p=.005).  Again, we did not observe any significant performance difference between WFLC and 

modified WFLC (p=0.838). 

 From Table 6, all subjects except for subject #9 showed performance improvement with 

WFLC and modified WFLC, but subject #9 had better performance with modified WFLC then 

with the other two methods. Average improvements in traveled time for WFLC and modified 

WFLC with respect to the low-pass filter were 7.2 seconds and 6.4 seconds respectively. Subject 

#3 showed the best traveled time improvement for WFLC and modified WFLC except for that 

observed in subject #1.  
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Table 6: Average traveled time for 20 trials and performance. 

Subject # LPF WFLC Mod. WFLC 

1 20.1 19.3 19.9 

2(RT) 38.6 35.2 28.7 

3 41.0 20.8 26.8 

4 41.1 37.2 32.6 

5 28.9 25.6 22.3 

6 52.3 42.6 49.8 

7(RT) 62.5 46.0 43.8 

8(RT) 34.7 23.9 27.2 

9 42.4 43.3 42.0 

10 28.1 24.2 27.8 

Average 39.0 31.8 32.6 

 

 

6.2.3 Mean square error (MSE) 

We measured the tracking error between a guided path and actual traveled wheelchair trajectory 

and calculated its mean square error (MSE) during the virtual driving test. Table 7 shows the 

summary of the MSE for ten subjects. Friedman’s test showed that a significant difference 

existed among the three filtering methods (p=.001). Wilcoxon’s Signed Ranks Tests were 

performed to identify differences between pairs of filtering methods. Subjects were able to 

follow the guided path better using WFLC than the low-pass filter (p=.007).  Similarly, subjects 
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were able to follow the guided path better with modified WFLC than the low-pass filter 

(p=.005). Once again, we did not observe any significant performance difference between WFLC 

and modified WFLC (p=0.022).  

 

 

Table 7: Mean square error (MSE) between guided path and actual traveled path and performance. 

Subject # LPF WFLC Mod. WFLC 

1 2.54 1.60 0.81 

2(RT) 4.05 3.89 3.45 

3 9.88 3.92 3.52 

4 7.38 6.95 6.25 

5 8.36 7.78 7.99 

6 7.18 6.44 6.03 

7(RT) 5.44 4.52 4.11 

8(RT) 9.33 6.83 5.98 

9 6.67 5.89 6.25 

10 6.19 6.21 6.15 

Average 6.70 5.40 5.15 

 

 

From Table 7, all subjects except for subject #10 showed performance improvement with WFLC 

and modified WFLC. Filtering techniques did not make any difference in the performance of 

subject #10. Average performance improvements for WFLC and modified WFLC with respect to 
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the low-pass filter were 17.9% and 25.0%, respectively. Subject #3 shows the best performance 

improvement again for WFLC and modified WFLC. 
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7.0  SUMMARY, DISCUSSION AND FUTURE RESEARCH  

7.1 SUMMARY 

We have introduced three filtering techniques on Cerebral Palsy (CP) tremor suppression while 

using an electric powered wheelchair joystick. One is a time-varying notch filter based on time-

frequency analysis techniques for off-line tremor suppression, and the other is an adaptive notch 

filter based on the Fourier Linear Combiner (FLC) technique for on-line tremor suppression. We 

recruited ten subjects who have CP tremor and tested them in a virtual wheelchair driving 

environment. We characterized and classified CP tremor using the standard deviation of 

instantaneous CP tremor frequency as well as currently used CP tremor frequency and CP 

amplitude. We also demonstrated the importance of instantaneous bandwidth information on the 

study of CP tremor.  

7.1.1 Characteristics of CP tremor 

Frequency and amplitude have been major elements used to characterize CP tremor until 

now. Many researchers have used power spectral density to find the range of the CP tremor 

frequency and CP tremor peak amplitude to characterize the tremor and the range of CP tremor 

frequency from our joystick study matches with their work [1], [2], [3], and [7]. Since tremor 

signals possess spectral characteristics that vary with time, the spectral density of the signal does 
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not indicate when the frequencies occur. Therefore, the power spectral density is not sufficient to 

observe the behavior of the time-varying signal by itself. We investigated this problem with 

time-frequency analysis. We measured instantaneous frequency, conditional standard deviation 

of instantaneous frequency, and instantaneous power from the time-frequency distribution of CP 

tremor. The use of such parameters gave a more complete and accurate characterization of 

pathological tremor. Furthermore, we found that  conditional standard deviation of instantaneous 

tremor frequency could be a useful indicator to differentiate classes of tremor severity because 

we observed from our data that the severely impaired CP group had three times greater 

conditional standard deviation of instantaneous frequency of CP tremor than the mildly impaired 

CP tremor group. The severely impaired CP tremor group had wider frequency variation than the 

mildly impaired CP tremor group, and the mildly impaired CP tremor group had a roughly 

constant tremor frequency since the frequency variation is only about 0.1 Hz. 

7.1.2 Performance of virtual driving test 

Although many researchers have only concentrated on finding pathological tremor frequency 

information for their filtering algorithms, we considered bandwidth information as an additional 

constraint of the filter design since tremor amplitude has a time-varying envelope and the 

bandwidth of tremor varies with respect to the envelope. We designed a filter that responds to 

time-varying bandwidth information as well as time-varying frequency information of CP 

tremor. We showed improvement of CP tremor suppression with additional instantaneous 

bandwidth information from our simulation by using a synthetic signal.  

In this study, we introduced two filtering techniques for CP tremor suppression: (1) a 

time-varying notch filter with TFD technique for the off-line experiment, and (2) an adaptive 

 81 



notch filter based on Fourier Linear Combiner (FLC) technique for the on-line experiment. The 

time-varying notch filter method uses information gained from the time-frequency distribution, 

whereby a filter notch is tuned to the IF, IB, and IP of the tremor noise. The time-varying notch 

filter with TFD estimates a tremor frequency, tremor bandwidth, and tremor amplitude and uses 

this information to suppress an unwanted tremor noise. TFD method works very well in off-line 

implementation, but it is not ideal in on-line implementation because of its time-delay problem 

and computational complexity.  

On the other hand, the adaptive notch algorithm is generally well suited to active tremor 

control due to its computational simplicity and predictive capability. Riviere’s Weighted-

frequency Fourier Linear Combiner (WFLC) and our modified WFLC were implemented as an 

adaptive notch filter in the real-time tremor suppression system. Riviere’s WFLC acts like an 

adaptive notch filter that controls a notch frequency and a notch depth, but our modified WFLC 

may be used to control one more element, notch bandwidth. We implemented both algorithms in 

the virtual wheelchair driving test along with a commonly used low-pass filter and compared 

their performances.  

The most popular filtering algorithm used in the joystick of power wheelchairs is a low-

pass filter with a 3 Hz cut-off frequency. However, a serious drawback of using a low-pass filter 

is the time-delay problem. We compared the outcomes of the virtual driving test to determine 

which of three tremor suppression techniques performed best: a low-pass filter, WFLC, or 

modified WFLC. We recruited and tested ten adult subjects with CP pathological tremor in this 

study. To measure performance on the virtual test, we used three elements including number of 

crashes to the wall, total traveled time to reach end line, and mean square error (MSE) to show 

deviation from the guided path. We observed poorer performance with the low-pass filter, and 
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believe that this may be explained by the time-delay of 0.12 seconds from the low-pass filter. We 

believe the time-delay contributed to more crashes to the wall and longer total traveled time as 

well as a larger MSE between the actual traveled trajectory of the wheelchair sprite and the 

guided path. When the wheelchair sprite was approaching the wall, we believe the time-delay 

prevented the user from changing the direction of the wheelchair or stopping the wheelchair 

quickly. From our experiment, we showed that an adaptive notch filter, WFLC or modified 

WFLC, is a better choice than the low-pass filter for the suppression of CP tremor.  

7.2 DISCUSSION AND FUTURE RESEARCH 

7.2.1 Adaptive filters 

The virtual test shows almost no performance difference between regular WFLC and modified 

WFLC although we have better simulation results with synthetic data. In the simulation we 

showed that the modified WFLC was performed better than the regular WFLC because the 

modified WFLC would suppress more tremor amplitude through its use of instantaneous tremor 

bandwidth information. However, subjects performed better with the regular WFLC for the 

number of crashes and total traveled time. These findings suggest that suppressing slightly more 

tremor amplitude may not make much performance difference in wheelchair driving 

applications. For the future research, we can apply our tremor suppression method to a 

handwriting device which has higher frequency intended movement than an electric powered 

wheelchair and where tremor amplitude influences handwriting output directly. We also can 

apply our system to spinal-cord injured people because they have 6-12 Hz of high tremor 

frequency. Typically, the adaptive noise-canceling algorithm works better for applications with 
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high frequency ranges and pure sinusoidal signals. However if tremor frequency changes rapidly, 

WFLC algorithm will not response quickly enough to follow the frequency because of the 

limitation of step size μ in LMS technique and characteristics of an adaptive filter. In this case, 

an adaptive filter will track wrong frequency and filter out wrong signal. That is the disadvantage 

of using an adaptive filter over a low-pass filter. 

Finally, we had to choose an adaptive gain μ  of WFLC manually for all subjects because 

they each have their own tremor characteristics. Depending on the value of μ , the ability of 

tremor suppression differs. Although we chose the best performing μ  value from the 5 trials of 

practice sessions, we cannot conclude that the adaptive gain value chosen would necessarily give 

us the best results. In future research, we have to consider updating μ  value often and 

automatically. 

7.2.2 Experimental setup 

From our experiment, we found that our test settings were not ideal for our targeted subject 

population. All ten subjects regularly used an electric powered wheelchair for their daily 

mobility and used a conventional movement joystick. These subjects were presented with an 

isometric joystick control they had never seen or used before. In order to make subjects feel 

comfortable with an isometric joystick, we believe that subjects need to have used the joystick 

for a long perioder of time. However, it is difficult to leave the joystick with the subject for many 

hours for practical reasons. Therefore, using their current joystick, such as a conventional 

movement joystick, would be beneficial to perform the virtual driving test.  

In addition, the current virtual driving course is not practical for subjects who have not 

used video games before because they have a hard time adjusting the direction of the testing 

wheelchair with their current joystick direction, especially when the testing wheelchair is in 
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phases 3 and 4. This may explain why subject #1 and #3, who are experienced with video games, 

performed better than other subjects regardless of the filtering technique employed. Therefore, 

the best scenario would be to have the testing wheelchair face forward all the time and allow the 

testing course to rotate with respect to the direction of the wheelchair movement. Therefore, we 

need to modify our virtual driving simulation package to create more user-friendly software in 

future research. 

There is another area we could improve to better simulate real wheelchair driving. We 

used a simply modeled wheelchair in our virtual driving experiment. The wheelchair was 

modeled with only a speed profile curve by HERL. That does not represent the whole behavior 

of an electric powered wheelchair. We can improve the virtual wheelchair modeling so that we 

may have more similar behavior to that of a real wheelchair. 
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APPENDIX A 

SOURCE CODES 

In this appendix, we included a virtual driving source code with supplementary codes. We 

highlighted and bolded the functions and the modifications that we made on the source code. We 

also added the codes and headers that related with the filter design and input files for our tremor 

suppression system. 

A.1 MAIN SOURCE CODE (VIRTUALDRIVFING_DEMO.CPP) 

 

 

//#include <iostream.h> 
#include <time.h> 
#include <direct.h> 
#include <ddraw.h> 
#include <math.h> 
#include <sstream> 
#include <dinput.h> 
#include <sys/types.h> 
#include <sys/stat.h> 
#include "cSurface.h" 
#include "resource.h" 
#include "cTrack.h" 
#include "cHitChecker.h" 
#include "cTextWriter.h" 
#include "cKeyboard.h" 
#include "stdafx.h" 
#include "iostream" 
 
/*------------------------------------------------------------------------------*/ 
#include "filter.h" 
#include "filter_wflc.h"        // WFLC adaptive filter 
#include "read_ini.h"           // Read parameters from ini file 
 
FILE    *f_out; // result data collection 
char    out_fname[128]; 
char    out_fpara[128]; 
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int     out_count = 1; 
unsigned  int Joy_X[4], Joy_Y[4]; 
extern t_INI_PARAMETERS ini_para; // read_ini.c 
 
void init_filters(void); 
/*------------------------------------------------------------------------------*/ 
 
#define Pi 3.141592653589 
#define ChairBOUND_POINTS 4 
#define ChairSTATE_CRASHED_WALL 0 
#define ChairSTATE_OK 1 
 
 
const int MaxRight = 3000; 
const int MaxLeft = 1100; 
const int MaxForward = 3000; 
const int MaxBackward = 1100; 
const int ThresholdRight = 2100; 
const int ThresholdLeft = 2000; 
const int ThresholdForward = 2160; 
const int ThresholdBack = 2000; 
 
 
//DATA COLLECTION 
 
//COMPUTER AND FILE MANGEMENT*************************************************************** 
 
FILE *fp; 
 
int mkdir(const char* dirname); 
 
//JOYSTICK VARIABLES ************* 
unsigned char InBuff_1[12]; 
unsigned int serial_sample_size_1 = 4; 
unsigned int total_sample_counter_1 = 0; 
//unsigned int sample_counter_1 = 0; 
unsigned  int tempF1; 
unsigned  int tempF2; 
 
//Summary Data 
char* Start_Time; 
int Collision_Count_Sum; 
int Complete_Time_Sum; 
 
//Time-Series Data Buffers 
//char* Data_OK[10]; 
long int Record_Counter = 0; 
long Final_Record_Count = 0; 
 
//ANIMATION VARIABLES 
unsigned int ChairX,ChairY, InitX, InitY; 
int CrashCount=0; 
int displace = 0; 
int arc = 0; 
int position = 0; 
int R_position = 0; 
int iXImage=0, iYImage=0,iRow=0, iCol=0, iCol_18=0, iCol_72; 
bool forward = true; 
static bool startup = true; 
 
//Karl's Ballistic modeling Variables 
const double delta_t = 0.016;  //this will be samples per second 
const double kp = 0.0015; 
const double ki = 0.04; 
const double km1 = 0.00325; 
const double km2 = 1; 
 
static double Vel_Err_Old = 0; //used in get position 
static double Actual_Velocity_Old = 0;//v(i-1) 
static unsigned int Actual_Position_Old = 0;//x(i-1) 
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//Serial port settings 
HANDLE                  hPort_1; 
HANDLE                  hPort_2; 
 
DWORD                   Don_CommMask_Old_1; 
DWORD                   Don_CommMask_Old_2; 
 
COMMTIMEOUTS            Don_ctmOld_1; 
COMMTIMEOUTS            Don_ctmOld_2; 
 
COMMTIMEOUTS            Don_ctmNew_1; 
COMMTIMEOUTS            Don_ctmNew_2; 
 
HWND                    g_hMainWnd; 
HINSTANCE               g_hInst; 
 
LPDIRECTDRAW7           g_pDD = NULL;        // DirectDraw object 
LPDIRECTDRAWSURFACE7    g_pDDSFront = NULL;  // DirectDraw frontbuffer surface 
LPDIRECTDRAWSURFACE7    g_pDDSBack = NULL;   // DirectDraw backbuffer surface 
 
 
DDBLTFX                 ddbfx; 
RECT                    rcDest, rcObj; 
cTrack                  pRaceTrack; 
cSurface                g_surfChair; 
cSurface                g_surfChair2; 
cSurface                g_trajectory; 
cSurface                m_sprChairExplode_0; 
cSurface                m_sprCollisionCount_0; 
cSurface                m_surfTitle; 
cSurface                m_surfHelmet; 
cHitChecker             m_hcBoundingPoly; // holding out-of-track area 
cHitChecker             m_hcRaceChair;    // holding chair (40*40 Rect) 
 
int iCrashTime=0; 
int RAngle[4][40]={ 
    {0, 10, 20, 30, 40, 50, 60, 70, 80}, 
    {90, 100, 110, 120, 130, 140, 150, 160, 170}, 
    {180, 190, 200, 210, 220, 230, 240, 250, 260}, 
    {270, 280, 290, 300, 310, 320, 330, 340, 350} 
}; 
char buffer[255]; 
int terror; 
float ChairAngle=0,SpeedAdj,HistorySpeed; 
int forwardflag[3]={0, 0, 0}; 
bool first=1, flag=0; 
long lStart, iLast=0; 
int m_iChairState=ChairSTATE_OK; 
int k=0, nk=0; 
long int BackX[10], BackY[10], NX=0,NY=0; 
cTextWriter m_txDigital, m_txStatus; 
char pTrackNames[7][30]={"", "Track_leftturn.rxt","Track_rightturn.rxt", 
    "Track_straight.rxt", "Track_3pointturn.rxt", "Track_docking.rxt", "ddtest.rxt"}; 
 
char buf[50]; 
HWND InitWindow(int iCmdShow); 
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam); 
 
/*------------------------------------------------------------------------------*/ 
//  Function Prototypes 
/*------------------------------------------------------------------------------*/ 
void ProcessIdle(); 
void Read_Serial_1(); 
//void Read_Serial_2(); 
void Get_New_Pos(int,int); 
int InitDirectDraw(); 
void CleanUp(); 
void initialize_serial_1(); 
//void initialize_serial_2(); 
void DoIdle(); 
void ShowStats(); 
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void Move_Chair(int,bool); 
void Rotate_Chair(int,bool); 
void Send_Arc_Pulse(bool); 
void Send_Move_Pulse(bool); 
void New_Send_Move_Pulse(bool); 
void DO_JSK(); 
 
bool Speed_Sim(int); 
 
/*------------------------------------------------------------------------------*/ 
//  Wheelchair control data 
/*------------------------------------------------------------------------------*/ 
unsigned int frac_speed[140] = { 
468,936,1404,1872,2341,2809,3277,3745,4213,4681, 
5149,5617,6085,6554,7022,7490,7958,8426,8894,9362, 
9830,10299,10767,11235,11703,12171,12639,13107,13575,14043, 
14512,14980,15448,15916,16384,16852,17320,17788,18256,18725, 
19193,19661,20129,20597,21065,21533,22001,22469,22938,23406, 
23874,24342,24810,25278,25746,26214,26683,27151,27619,28087, 
28555,29023,29491,29959,30427,30896,31364,31832,32300,32768, 
33236,33704,34172,34640,35109,35577,36045,36513,36981,37449, 
37917,38385,38853,39322,39790,40258,40726,41194,41662,42130, 
42598,43067,43535,44003,44471,44939,45407,45875,46343,46811, 
47280,47748,48216,48684,49152,49620,50088,50556,51024,51493, 
51961,52429,52897,53365,53833,54301,54769,55237,55706,56174, 
56642,57110,57578,58046,58514,58982,59451,59919,60387,60855, 
61323,61791,62259,62727,63195,63664,64132,64600,65068,65536}; 
 
unsigned int Ratio_XY[18][2]={ 
{0,65536}, 
{5712,65287}, 
{11380,64540}, 
{16962,63303}, 
{22415,61584}, 
{27697,59396}, 
{32768,56756}, 
{37590,53684}, 
{42126,50203}, 
{46341,46341}, 
{50203,42126}, 
{53684,37590}, 
{56756,32768}, 
{59396,27697}, 
{61584,22415}, 
{63303,16962}, 
{64540,11380}, 
{65287,5712}}; 
 
 
int R_acel[140]={       //Radial acceleration 
0,1,1,2,3,3,3,3,3,2, 
3,2,3,2,2,2,2,2,2,1, 
2,2,1,2,2,1,1,2,1,2, 
1,1,1,2,1,1,1,1,1,1, 
2,1,1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,0,1,1, 
1,1,1,1,1,1,1,1,0,1, 
1,1,1,1,1,1,1,1,1,1, 
0,1,1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1,1,2, 
1,1,1,1,1,2,1,1,2,1, 
1,2,1,2,1,2,2,1,2,2, 
2,2,2,3,2,3,2,3,4,3, 
4,4,5,6,6,8,10,13,19,37}; 
 
int R_acel_source[140]={ 
0,1,1,2,3,3,3,3,3,2, 
3,2,3,2,2,2,2,2,2,1, 
2,2,1,2,2,1,1,2,1,2, 
1,1,1,2,1,1,1,1,1,1, 
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2,1,1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,0,1,1, 
1,1,1,1,1,1,1,1,0,1, 
1,1,1,1,1,1,1,1,1,1, 
0,1,1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1,1,2, 
1,1,1,1,1,2,1,1,2,1, 
1,2,1,2,1,2,2,1,2,2, 
2,2,2,3,2,3,2,3,4,3, 
4,4,5,6,6,8,10,13,19,37}; 
 
 
int acel[140]={  //Displacement acceleration 
0,3,4,0,3,3,3,3,3,2, 
3,2,3,2,2,2,2,2,2,1, 
2,2,1,2,2,1,1,2,1,2, 
1,1,1,2,1,1,1,1,1,1, 
2,1,1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,0,1,1, 
1,1,1,1,1,1,1,1,0,1, 
1,1,1,1,1,1,1,1,1,1, 
0,1,1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1,1,2, 
1,1,1,1,1,2,1,1,2,1, 
1,2,1,2,1,2,2,1,2,2, 
2,2,2,3,2,3,2,3,4,3, 
4,4,5,6,6,8,10,13,19,37}; 
 
int acel_source[140]={ 
0,3,4,0,3,3,3,3,3,2, 
3,2,3,2,2,2,2,2,2,1, 
2,2,1,2,2,1,1,2,1,2, 
1,1,1,2,1,1,1,1,1,1, 
2,1,1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,0,1,1, 
1,1,1,1,1,1,1,1,0,1, 
1,1,1,1,1,1,1,1,1,1, 
0,1,1,1,1,1,1,1,1,1, 
1,1,1,1,1,1,1,1,1,2, 
1,1,1,1,1,2,1,1,2,1, 
1,2,1,2,1,2,2,1,2,2, 
2,2,2,3,2,3,2,3,4,3, 
4,4,5,6,6,8,10,13,19,37}; 
 
int Double_Res[72][2]={ 
{0,0},{0,0},{1,0},{1,0},{2,0},{2,0},{3,0},{3,0},{4,0},{4,0},{5,0},{5,0},{6,0},{6,0},{7,0},{7,0},{
8,0},{8,0}, 
{0,1},{0,1},{1,1},{1,1},{2,1},{2,1},{3,1},{3,1},{4,1},{4,1},{5,1},{5,1},{6,1},{6,1},{7,1},{7,1},{
8,1},{8,1}, 
{0,2},{0,2},{1,2},{1,2},{2,2},{2,2},{3,2},{3,2},{4,2},{4,2},{5,2},{5,2},{6,2},{6,2},{7,2},{7,2},{
8,2},{8,2}, 
{0,3},{0,3},{1,3},{1,3},{2,3},{2,3},{3,3},{3,3},{4,3},{4,3},{5,3},{5,3},{6,3},{6,3},{7,3},{7,3},{
8,3},{8,3}}; 
 
/*------------------------------------------------------------------------------*/ 
//  FILTERS 
/*------------------------------------------------------------------------------*/ 
int tremor_removal_type;        // 0=no filtering, 1=wflc, 2=lowpass 
int prefilter_type;             // low-pass prefiltering: 0=disable, 1=lowpass, 2=median 
double prefilter_lpf_cutoff;   // low-pass prefilter cut-off freq. 
int prefilter_median_order;     // median prefilter order 
 
/*------------------------------------------------------------------------------*/ 
//  Filter Parameters 
/*------------------------------------------------------------------------------*/ 
 
// Prefilter (LPF) 
t_FILTER s_pre_lowpass_filter[2];    // LPF prefilter with wide pass band 
t_FILTER s_median_filter[2];         // median filter parameters 
 
//  WFLC Parameters 
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t_WFLC_PARA s_wflc_para[2]; // WFLC parameters for 2-D input (X, Y) 
t_WFLC_PARA s_flc_para[2];  // FLC parameters for 2-D input (X, Y) 
t_WFLC_PARA s_flc2_para[2]; // modified FLC parameters for 2-D input (X, Y) 
t_FILTER s_bandpass_filter[2]; // bandpass filter parameters used in WFLC 
t_FILTER s_envelope_filter[2]; // median filter parameters 
 
// LPF filters 
t_FILTER s_lowpass_filter[2]; // lowpass filter parameters for 2-D input 
 
t_WFLC_PARA *wflc[2];  // WFLC 
t_WFLC_PARA *flc[2];  // FLC 
t_WFLC_PARA *flc2[2];  // modified FLC 
t_FILTER *bandpass_f[2]; // for WFLC 
t_FILTER *envelope_f[2]; 
t_FILTER *lowpass_f[2];  // 
t_FILTER *prelpf[2];  // lowpass prefilter with wide pass band 
t_FILTER *median_f[2];  // median prefilter 
 
 
/*------------------------------------------------------------------------------*/ 
int APIENTRY WinMain(HINSTANCE hInstance,HINSTANCE hPrevInstance,LPSTR lpCmdLine,int nCmdShow) 
{ 
    int m_iOption; 
    int m_iState=1; 
    int iStart=0; 
    int j; 
    static long lLastOption = 0; 
    cKeyboard m_Keyboard; 
 
    g_hInst = hInstance; 
    g_hMainWnd = InitWindow(nCmdShow); 
    if(!g_hMainWnd) 
 return -1; 
 
    if(InitDirectDraw() < 0) 
    { 
 CleanUp(); 
 MessageBox(g_hMainWnd, "Could start DirectX engine in your computer. Make sure you have 
at least version 7 of DirectX installed.", "Error", MB_OK | MB_ICONEXCLAMATION); 
 return 0; 
 
 
   } 

    ReadIniFile ("vdd_filter.ini"); // read filter parameters 
 
    ShowCursor(FALSE); 
    m_Keyboard.Create(g_hInst,g_hMainWnd); 
 
    pRaceTrack.Getbackbuffer(g_pDDSBack, g_pDD, g_hInst); 
    g_surfChair.Create(g_pDD, 360, 160, RGB(0,0,0)); 
    g_surfChair.LoadBitmap(g_hInst, IDB_CHAIR_BLUE, 0, 0, 360, 160); 
    g_surfChair2.Create(g_pDD, 360, 160, RGB(0,0,0)); 
    g_surfChair2.LoadBitmap(g_hInst, IDB_BITMAP2, 0, 0, 360, 160); 
    m_txStatus.Create(g_pDD,g_hInst,3); 
 
    DDBLTFX ddbfx; 
    RECT    rcDest; 
 
    ddbfx.dwSize = sizeof( ddbfx ); 
    ddbfx.dwFillColor = 0; 
    SetRect(&rcDest, 0, 0, 640, 480); 
 
    while( TRUE ) 
    { 
 MSG msg; 
 
 if( PeekMessage( &msg, NULL, 0, 0, PM_REMOVE ) ) 
 { 
     TranslateMessage( &msg ); 
     DispatchMessage( &msg ); 
 } 
 else { 
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     switch (m_iState) { 
  case 1: 
      g_pDDSBack->Blt(&rcDest, NULL, NULL, DDBLT_WAIT | DDBLT_COLORFILL, &ddbfx); 
      if(iStart == 0) 
      {   // initialize 
   m_iOption = 1; 
   m_txDigital.Create(g_pDD,g_hInst,2); 
 
   m_surfTitle.Create(g_pDD,350,190); 
   m_surfTitle.LoadBitmap(g_hInst, IDB_TITLE); 
 
   m_surfHelmet.Create(g_pDD, 28,26); 
   m_surfHelmet.LoadBitmap(g_hInst, IDB_HELMET); 
 
   iStart = 1; 
      } 
      m_surfTitle.Draw(g_pDDSBack, 145, 30); 
      j=245; 
      if(m_iOption <= 7) 
      { 
   m_txDigital.WriteText(g_pDDSBack, "LEFT TURN", 200, j); 
   j+= 26; 
   m_txDigital.WriteText(g_pDDSBack, "RIGHT TURN", 200, j); 
   j+= 26; 
   m_txDigital.WriteText(g_pDDSBack, "STRAIGHT FORWARD", 200, j); 
   j+= 26; 
   m_txDigital.WriteText(g_pDDSBack, "STRAIGHT BACKWARD", 200, j); 
   j+= 26; 
   m_txDigital.WriteText(g_pDDSBack, "DOCKING", 200, j); 
   j+= 26; 
   m_txDigital.WriteText(g_pDDSBack, "TRACK", 200, j); 
   j+= 26; 
   m_txDigital.WriteText(g_pDDSBack, "QUIT", 200, j); 
   j+= 26; 
   //m_txDigital.WriteText(g_pDDSBack, "ENTER SETTINGS", 200, j); 
      } 
      m_Keyboard.Process(); 
      m_surfHelmet.Draw(g_pDDSBack, 163, 242 + ( ( (m_iOption%10) -1) * 26)); 
      if(GetTickCount() - lLastOption > 200) 
      { 
   if(m_Keyboard.CheckKey(DIK_DOWN)) 
   { 
       m_iOption++; 
       if(m_iOption > 7) m_iOption = 1; 
       lLastOption = GetTickCount(); 
   } 
   if(m_Keyboard.CheckKey(DIK_UP)) 
   { 
       m_iOption--; 
       if(m_iOption < 1) m_iOption = 7; 
       lLastOption = GetTickCount(); 
   } 
   if(m_Keyboard.CheckKey(DIK_RETURN) || 
       m_Keyboard.CheckKey(DIK_NUMPADENTER) || 
       m_Keyboard.CheckKey(DIK_SPACE)) 
   { 
       lLastOption = GetTickCount(); 
       m_iState = 2; 
       iStart = 0; 
   } 
      } 
      if (m_iState==2) 
   pRaceTrack.ReadFromFile(pTrackNames[m_iOption]); 
      break; 
  case 2: 
      if(iStart == 0) { 
   m_surfTitle.Destroy(); 
   m_surfHelmet.Destroy(); 
 
   initialize_serial_1(); //initialize serial port1 for Joystick 
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   init_filters(); // initialize filters and open output file 
 
   iStart=1; 
   first=1; 
   pRaceTrack.GetStartPosition(&InitX,&InitY); 
   InitY -= 35; 
   ChairX=InitX; 
   ChairY=InitY; 
   iLast = GetTickCount(); 
      } 
      m_Keyboard.Process(); 
 
      if(m_Keyboard.CheckKey(DIK_ESCAPE)) 
      { 
   m_iState = 1; 
   iStart = 0; 
   lLastOption = GetTickCount(); 
   SetCommMask(hPort_1,Don_CommMask_Old_1); //clear serial port 
   //SetCommMask(hPort_2,Don_CommMask_Old_2); //clear serial port2 
   PurgeComm(hPort_1,PURGE_RXABORT); 
   //PurgeComm(hPort_2,PURGE_RXABORT); 
   SetCommTimeouts(hPort_1,&Don_ctmOld_1); 
   //SetCommTimeouts(hPort_2,&Don_ctmOld_2); 
   CloseHandle(hPort_1); 
   //CloseHandle(hPort_2); 
 
   fclose (f_out); // close the file opened in init_filters() 
 
   break; 
      } 
      switch(m_iOption) 
      { 
   case 1: 
       if (!(ChairX<220)) { 
    DoIdle(); 
       } else { 
    g_pDDSBack->Blt(&rcDest, NULL, NULL, DDBLT_WAIT | DDBLT_COLORFILL, 
&ddbfx); 
    pRaceTrack.Draw(0, 0, -1, -1, 640, 460); 
    ShowStats(); 
    g_surfChair.Draw(g_pDDSBack, ChairX, ChairY, iXImage, iYImage, 40, 
40); 
       } 
       break; 
   case 2: 
       if (!(ChairX>420)) 
    DoIdle(); 
       else { 
    g_pDDSBack->Blt(&rcDest, NULL, NULL, DDBLT_WAIT | DDBLT_COLORFILL, 
&ddbfx); 
    pRaceTrack.Draw(0, 0, -1, -1, 640, 460); 
    ShowStats(); 
    g_surfChair.Draw(g_pDDSBack, ChairX, ChairY, iXImage, iYImage, 40, 
40); 
       } 
       break; 
   case 3: 
       if (!(ChairY<60)) 
    DoIdle(); 
       else { 
    g_pDDSBack->Blt(&rcDest, NULL, NULL, DDBLT_WAIT | DDBLT_COLORFILL, 
&ddbfx); 
    pRaceTrack.Draw(100, 100, -1, -1, 640, 460); 
    ShowStats(); 
    g_surfChair.Draw(g_pDDSBack, ChairX, ChairY, iXImage, iYImage, 40, 
40); 
       } 
       break; 
   case 4: 
       if (!(ChairX>379)) 
    DoIdle(); 
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       else { 
    g_pDDSBack->Blt(&rcDest, NULL, NULL, DDBLT_WAIT | DDBLT_COLORFILL, 
&ddbfx); 
    pRaceTrack.Draw(0,0, -1, -1, 640, 460); 
    ShowStats(); 
    g_surfChair.Draw(g_pDDSBack, ChairX, ChairY, iXImage, iYImage, 40, 
40); 
       } 
       break; 
   case 5: 
       if (!(ChairY<100)) 
    DoIdle(); 
       else { 
    g_pDDSBack->Blt(&rcDest, NULL, NULL, DDBLT_WAIT | DDBLT_COLORFILL, 
&ddbfx); 
    pRaceTrack.Draw(0, 0, -1, -1, 640, 460); 
    ShowStats(); 
    g_surfChair.Draw(g_pDDSBack, ChairX, ChairY, iXImage, iYImage, 40, 
40); 
       } 
       break; 
   case 6: 
       if (!(ChairX>60 && ChairX<180 && ChairY<250 && ChairY>240)) 
    DoIdle(); 
       else { 
    g_pDDSBack->Blt(&rcDest, NULL, NULL, DDBLT_WAIT | DDBLT_COLORFILL, 
&ddbfx); 
    pRaceTrack.Draw(0,0, -1, -1, 640, 460); 
    ShowStats(); 
    g_surfChair.Draw(g_pDDSBack, ChairX, ChairY, iXImage, iYImage, 40, 
40); 
      } 
      break; 
   case 7: 
       PostQuitMessage(0); 
       exit(0); 
       break; 
      } 
  case 8: 
      break; 
  break; 
     } 
     ProcessIdle(); 
 } 
    } 
 
    CleanUp(); 
 
    return 0; 
} 
 
void initialize_serial_1() 
{ 
    hPort_1 = CreateFile("COM1:",GENERIC_READ,0,0,OPEN_EXISTING,0,0); 
 
// The DCB settings***************** 
    DCB Port1DCB; 
 
    GetCommState(hPort_1,&Port1DCB); 
    Port1DCB.DCBlength = sizeof (DCB); 
 
    Port1DCB.BaudRate=38400; 
    Port1DCB.fBinary=TRUE; 
    Port1DCB.fParity = FALSE; 
 
    Port1DCB.fOutxCtsFlow = FALSE; 
    Port1DCB.fOutxDsrFlow = FALSE; 
    Port1DCB.fDtrControl = DTR_CONTROL_DISABLE; 
    Port1DCB.fDsrSensitivity = FALSE; 
    Port1DCB.fTXContinueOnXoff = TRUE; 
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    Port1DCB.fOutX = FALSE; 
    Port1DCB.fInX = FALSE; 
 
    Port1DCB.fErrorChar = FALSE; 
    Port1DCB.fNull  = FALSE; 
    Port1DCB.fRtsControl = RTS_CONTROL_DISABLE; 
 
    Port1DCB.fAbortOnError = FALSE; 
    Port1DCB.ByteSize = 8; 
    Port1DCB.Parity = NOPARITY; 
    Port1DCB.StopBits = ONESTOPBIT; 
 
    SetCommState(hPort_1,&Port1DCB); 
 
    //New CommMask setup 
    SetCommMask(hPort_1,EV_RXCHAR); 
    //Com Timing*********************************************** 
 
    //Save old 
    GetCommTimeouts(hPort_1,&Don_ctmOld_1); 
 
    //Install New timeout settings 
  #if 0 
    Don_ctmNew_1.ReadIntervalTimeout = 0.01;            //Max time between to characters 
    Don_ctmNew_1.ReadTotalTimeoutMultiplier = .1;       //Max time for each byte 
    Don_ctmNew_1.ReadTotalTimeoutConstant = 0; 
  #else 
    Don_ctmNew_1.ReadIntervalTimeout = 10;            //Max time between to characters 
    Don_ctmNew_1.ReadTotalTimeoutMultiplier = 10;       //Max time for each byte 
    Don_ctmNew_1.ReadTotalTimeoutConstant = 0; 
  #endif 
 
    SetCommTimeouts(hPort_1,&Don_ctmNew_1); 
} 
 
/*------------------------------------------------------------------------------*/ 
void init_filters(void) 
{ 
    int joystick_idle_pos[2]; 
    double fc, fs; 
    struct _stat stat_buf; 
    char buf[256]; 
    FILE *fin; 
    double fc1, fc2; 
    int order; 
 
    tremor_removal_type = (int)ini_para.tremor_removal_type.value; 
 
    order = (int)ini_para.filter_order.value; 
 
    joystick_idle_pos[0] = (int)ini_para.joystick_idle_pos_X.value; 
    joystick_idle_pos[1] = (int)ini_para.joystick_idle_pos_Y.value; 
 
    fs = ini_para.sampling_freq.value; 
    fc = ini_para.intended_frea_max.value; 
 
    // Prefilter 
    prefilter_type = (int)ini_para.prefilter_lpf_cutoff.value; 
    prefilter_lpf_cutoff = ini_para.prefilter_lpf_cutoff.value; 
    prelpf[0] = &s_pre_lowpass_filter[0];       // LPF prefilter with wide pass band 
    prelpf[1] = &s_pre_lowpass_filter[1];       // LPF prefilter with wide pass band 
    init_lowpass_filter (prelpf[0], order, prefilter_lpf_cutoff, fs); 
    init_lowpass_filter (prelpf[1], order, prefilter_lpf_cutoff, fs); 
    // 
    median_f[0] = &s_median_filter[0]; 
    median_f[1] = &s_median_filter[1]; 
    clear_filter (median_f[0]); 
    clear_filter (median_f[1]); 
    prefilter_median_order = (int)ini_para.prefilter_median_order.value; 
    median_f[0]->A.order = prefilter_median_order; 
    median_f[1]->A.order = prefilter_median_order; 

 95 



 
    // Initialize WFLC filter & run-time parameters 
    wflc[0] = &s_wflc_para[0];  // for X-coordinate 
    wflc[1] = &s_wflc_para[1];  // for Y-coordinate 
    init_wflc (wflc[0], 0);    // for X 
    init_wflc (wflc[1], 0);    // for Y 
    wflc[0]->offset = 0;    // zero offset for WFLC for noise frequecy tracking 
    wflc[1]->offset = 0; 
 
    // Initialize band-pass filter to be used in WFLC 
    bandpass_f[0] = &s_bandpass_filter[0]; 
    bandpass_f[1] = &s_bandpass_filter[1]; 
    fc1 = ini_para.tremor_freq_min.value; 
    fc2 = ini_para.tremor_freq_max.value; 
    init_bandpass_filter (bandpass_f[0], 2, fc1, fc2, fs);      // bandpass filter order 2 
    init_bandpass_filter (bandpass_f[1], 2, fc1, fc2, fs); 
 
    // Initialize envelope filter for bandpassed tremor 
    envelope_f[0] = &s_envelope_filter[0]; 
    envelope_f[1] = &s_envelope_filter[1]; 
    init_envelope_filter (envelope_f[0], ini_para.wflc[0].f0, fs); 
    init_envelope_filter (envelope_f[1], ini_para.wflc[1].f0, fs); 
 
    // Initialize FLC filter & run-time parameters 
    flc[0] = &s_flc_para[0];    // for X-coordinate 
    flc[1] = &s_flc_para[1];    // for Y-coordinate 
    init_wflc (flc[0], 1);    // for X (FLC) 
    init_wflc (flc[1], 1);    // for Y 
    flc[0]->offset = ini_para.joystick_idle_pos_X.value; 
    flc[1]->offset = ini_para.joystick_idle_pos_Y.value; 
    // Initialize modified FLC filter & run-time parameters 
    flc2[0] = &s_flc2_para[0];    // for X-coordinate 
    flc2[1] = &s_flc2_para[1];    // for Y-coordinate 
    init_wflc (flc2[0], 1);    // for X 
    init_wflc (flc2[1], 1);    // for Y 
    flc2[0]->offset = ini_para.joystick_idle_pos_X.value; 
    flc2[1]->offset = ini_para.joystick_idle_pos_Y.value; 
 
    // init low-pass filter 
    lowpass_f[0] = &s_lowpass_filter[0]; 
    lowpass_f[1] = &s_lowpass_filter[1]; 
    init_lowpass_filter (lowpass_f[0], order, fc, fs); 
    init_lowpass_filter (lowpass_f[1], order, fc, fs); 
 
    // Prepare output data file 
    do { 
 sprintf (out_fname, "vdd_out_%.3d.dat", out_count++); 
 if (out_count > 1000) { 
     out_count = 1; 
     sprintf (out_fname, "vdd_out_%.3d.dat", out_count++); 
     break; 
 } 
    } while (! _stat(out_fname, &stat_buf));    // Do not overwrite existing data files 
    // Save parameter ini file contents used. 
    sprintf (out_fpara, "vdd_out_%.3d.ini", out_count - 1); 
    f_out = fopen(out_fpara, "w"); 
    fin = fopen ("vdd_filter.ini", "r"); 
    if (fin) { 
 while (fgets(buf, 255, fin) != NULL) { 
     fprintf (f_out, "%s", buf); 
 } 
 fclose(fin); 
    } 
    fclose(f_out); 
    // Prepare output data column headings 
    f_out = fopen(out_fname, "w"); 
    fprintf (f_out, "#   No    Time       X       Y"); 
    fprintf (f_out, "    Lowpass(X,Y)       WFLC(X,Y)   mod_WFLC(X,Y)" 
  "  ChairX  ChairY Crashes   band(X) f0(tremor) ARC   VEL      mu'\n"); 
} 
/*------------------------------------------------------------------------------*/ 
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void Read_Serial_1() //*********************************************************** 
{ 
    DWORD dwBytesRead_1; 
    DWORD dwCommEvent_1; 
    DWORD dwError_1; 
    COMSTAT cs_1; 
    static Last_Sample_ms; 
    static counter; 
    int i; 
    double x[2], y[2]; 
    double env[2], t; 
 
    if (WaitCommEvent(hPort_1,&dwCommEvent_1,NULL))//waits for any comm event 
    { 
 if (dwCommEvent_1 & EV_RXCHAR) // detects whether the EV_RXCHAR flag is set 
 { 
     ClearCommError(hPort_1,&dwError_1,&cs_1); 
     ReadFile(hPort_1,InBuff_1,serial_sample_size_1,&dwBytesRead_1,NULL); 
     ClearCommError(hPort_1,&dwError_1,&cs_1); 
 
     if((InBuff_1[0] & 240)!=16) { 
  serial_sample_size_1 = 5; 
  return; 
     } else { 
  tempF1 = 256 * (15 & InBuff_1[0]) + InBuff_1[1]; 
  tempF2 = 256 * (15 & InBuff_1[2]) + InBuff_1[3]; 
 
  //Last_Sample_ms = GetTickCount(); 
  Last_Sample_ms = GetTickCount() - iLast; 
 
  counter++;//this snippet of code bleeds off extra data in the buffer 
  if(counter == 2) 
  { 
      serial_sample_size_1 = 8; 
      counter = 0; 
  } 
  else 
      serial_sample_size_1 = 4; 
 
  // Prefiltering 
  if (prefilter_type == 1) { 
      // Prefiltering with low pass 
      tempF1 = (int)filter (prelpf[0], tempF1); 
      tempF2 = (int)filter (prelpf[1], tempF2); 
  } else if (prefilter_type == 2) { 
      // median prefilter 
      tempF1 = (int)filter_median (median_f[0], tempF1); 
      tempF2 = (int)filter_median (median_f[1], tempF2); 
  } 
  // No filtering 
  Joy_X[0] = (int)tempF1; 
  Joy_Y[0] = (int)tempF2; 
 
  // Lowpass filtering 
  Joy_X[1] = (int)filter (lowpass_f[0], tempF1 - ini_para.joystick_idle_pos_X.value) 
    + ini_para.joystick_idle_pos_X.value; 
  Joy_Y[1] = (int)filter (lowpass_f[1], tempF2 - ini_para.joystick_idle_pos_Y.value) 
    + ini_para.joystick_idle_pos_Y.value; 
 
  // WFLC filtering 
  x[0] = filter (bandpass_f[0], tempF1 - ini_para.joystick_idle_pos_X.value); 
  x[1] = filter (bandpass_f[1], tempF2 - ini_para.joystick_idle_pos_X.value); 
  y[0] = filter_wflc (wflc[0], x[0]); 
  y[1] = filter_wflc (wflc[1], x[1]); 
 
  // FLC 
  // feed the WFLC-tracked frequency value into the 2nd FLC 
  flc[0]->w0 = wflc[0]->w0; 
  flc[1]->w0 = wflc[1]->w0; 
  Joy_X[2] = (int)filter_wflc (flc[0], tempF1); // FLC 

 97 



  Joy_Y[2] = (int)filter_wflc (flc[1], tempF2); 
 
  // Modified FLC 
  // feed the WFLC-tracked frequency value into the 2nd FLC 
  flc2[0]->w0 = wflc[0]->w0; // modified FLC 
  flc2[1]->w0 = wflc[1]->w0; 
  // feed the tracked frequency value to envelope filter 
  t = (wflc[0]->w0 * wflc[0]->fs / 2 / PI); 
  if (t > ini_para.tremor_freq_max.value) t = ini_para.tremor_freq_max.value; 
  if (t < ini_para.tremor_freq_min.value) t = ini_para.tremor_freq_min.value; 
  envelope_f[0]->fc1 = t; 
  t = (wflc[1]->w0 * wflc[1]->fs / 2 / PI); 
  if (t > ini_para.tremor_freq_max.value) t = ini_para.tremor_freq_max.value; 

  if (t < ini_para.tremor_freq_min.value) t = ini_para.tremor_freq_min.value; 
  envelope_f[1]->fc1 = t; 
 
  env[0] = filter_envelope (envelope_f[0], x[0]); 
  env[1] = filter_envelope (envelope_f[1], x[1]); 
  flc2[0]->mu = (1 + ini_para.alpha.value*env[0])*ini_para.wflc[1].mu; 
  flc2[1]->mu = (1 + ini_para.alpha.value*env[1])*ini_para.wflc[1].mu; 
 
  Joy_X[3] = (int)filter_wflc (flc2[0], tempF1); // modified FLC 
  Joy_Y[3] = (int)filter_wflc (flc2[1], tempF2); 
 
  fprintf (f_out, "%6d %7d", Record_Counter++, Last_Sample_ms); 
  for (i = 0; i < 4; i++) { 
      if (Joy_X[i] > MaxRight) Joy_X[i] = MaxRight; 
      if (Joy_X[i] < MaxLeft) Joy_X[i] = MaxLeft; 
      if (Joy_Y[i] > MaxForward) Joy_Y[i] = MaxForward; 
      if (Joy_Y[i] < MaxBackward) Joy_Y[i] = MaxBackward; 
      fprintf (f_out, " %7d %7d", Joy_X[i], Joy_Y[i]); 
  } 
  fprintf (f_out, " %7d %7d %7d %10.3f %7.3f %5d %5d %12g\n", 
      ChairX, ChairY, CrashCount, x[0], (flc[0]->w0)*(flc[0]->fs)/PI/2., 
      arc, displace, flc2[0]->mu); 
 
  // Compensate Joystick control data by a selected filter 
  tempF1 = Joy_X[tremor_removal_type]; 
  tempF2 = Joy_Y[tremor_removal_type]; 
 
  Get_New_Pos(tempF1,tempF2); 
     } 
 } 
    } 
}//end read_serial_1 function*********************************************************** 
 
void Secure_Data() 
{ 
    int result = mkdir("c:\\SubjectFiles"); 
    result = chdir("c:\\SubjectFiles"); 
    Final_Record_Count = Record_Counter; 
    fp=fopen("trial.txt","w"); 
 
    fclose(fp); 
} 
 
void ShowStats()    //******************************************** 
{ 
    sprintf(buffer, "CHAIRX %03i", ChairX); 
    m_txStatus.WriteText(g_pDDSBack, buffer, 400, 450); 
 
    sprintf(buffer,  "CHAIRY %03i", ChairY); 
    m_txStatus.WriteText(g_pDDSBack, buffer, 300, 450); 
    //lower page display of values 
 
    sprintf(buffer, "JDIRR  %04i", tempF1); 
    m_txStatus.WriteText(g_pDDSBack, buffer, 10,450); 
 
    sprintf(buffer, "JSPD %04i", tempF2); 
    m_txStatus.WriteText(g_pDDSBack, buffer, 10,463); 
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    sprintf(buffer, "ARC %04i",arc); 
    m_txStatus.WriteText(g_pDDSBack, buffer, 150,450); 
 
    sprintf(buffer, "VEL %04i",displace); 
    m_txStatus.WriteText(g_pDDSBack, buffer, 150,463); 
 
 
    sprintf(buffer,  "COLS %02u", CrashCount); 
    m_txStatus.WriteText(g_pDDSBack, buffer, 525, 450); 
 
    m_txStatus.WriteText(g_pDDSBack, "ELAPSE TIME -", 425, 463); 
    sprintf(buffer,"%02d:%02d:%003d", (lStart / 60000), (lStart / 1000) % 60, lStart % 1000); 
    m_txStatus.WriteText(g_pDDSBack, buffer, 525, 463, true); 
} 
 
void DoIdle()// this function detects collisions 
{ 
    g_pDDSBack->Blt(&rcDest, NULL, NULL, DDBLT_WAIT | DDBLT_COLORFILL, &ddbfx ); 
    pRaceTrack.Draw(0,0, -1, -1, 640, 460); 
    lStart=GetTickCount()-iLast; 
    ShowStats(); 
    rcObj.top  = ChairY; rcObj.bottom  = ChairY+40; 
    rcObj.left = ChairX; rcObj.right   = ChairX+40; 
 
    if(RectInRegion(pRaceTrack.m_hcRoadMap.hBoundingPoly, &rcObj) != 0) 
    { 
 if (iCrashTime == 0) 
     iCrashTime = GetTickCount(); 
 // starts a clock to measure the crash inactivity period 
 
 flag=1; //sets a flag indicating a crash inactivity is in progress 
    } 
    if (GetTickCount() - iCrashTime < 75 && flag==1)// here a crash is already started 
    { 
 New_Send_Move_Pulse(!forward); 
 DO_JSK(); 
 g_surfChair2.Draw(g_pDDSBack, ChairX, ChairY, iXImage, iYImage, 40, 40); 
    } else { 
 if(flag==1) 
 { 
     CrashCount++; 
     MessageBeep(200); 
     position =0; 
 } 
 flag=0; 
 ChairX=InitX+ NX; 
 ChairY=InitY+ NY; 
 //ChairX=InitX+(int)NX; 
 //ChairY=InitY+(int)NY; 
 BackX[k]=NX; 
 BackY[k]=NY; 
 k++; 
 if(k>9) k=0; 
 
 DO_JSK(); 
 
 iCrashTime=0; 
 g_surfChair.Draw(g_pDDSBack, ChairX, ChairY, iXImage, iYImage, 40, 40); 
    } 
 
} 
 
void ProcessIdle() 
{ 
    HRESULT hRet; 
 
    static iLastBlit; 
 
    if(GetTickCount() - iLastBlit < 20) return; 
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    while( 1 ) 
    { 
 hRet = g_pDDSFront->Flip(NULL, 0 ); 
 if( hRet == DD_OK ) 
 { 
     break; 
 } 
 if( hRet == DDERR_SURFACELOST ) 
 { 
     g_pDDSFront->Restore(); 
 } 
 if( hRet != DDERR_WASSTILLDRAWING ) 
 { 
     break; 
 } 
    } 
    iLastBlit = GetTickCount(); 
} 
 
//**************************************************************************************** 
void Get_New_Pos(int direction,int speed) 
{ 
    static bool Last_Dir = true; 
    static bool Last_Rotation_Dir = true; 
    bool clockwise = true; 
 
    arc = 0; 
    displace = 0; 
    int Don_iRun = 0; 
    int Don_iRise = 0; 
 
    static int Speed_current = 0; 
    static int Spin_current = 0; 
 
    if(speed > ThresholdForward) 
    { 
 if (speed > MaxForward) speed = MaxForward;// check for over range 
 Don_iRise = speed - ThresholdForward; 
 forward = true; 
 displace = Don_iRise/6; 
 
 if(displace > 139) displace = 139; 
    } 
 
    //Check if moving backward 
    if(speed < ThresholdBack) 
    { 
 if (speed < MaxBackward) speed = MaxBackward;// check for over range 
 Don_iRise =  ThresholdBack - speed; 
 forward = false;//forward is false if going backwards 
 displace = Don_iRise/6; 
 if(displace > 139) displace = 139; 
    } 
 
    //Check if turning Right 
    if(direction > ThresholdRight) 
    { 
 if(direction > MaxRight) direction = MaxRight; 
 Don_iRun = direction - ThresholdRight; 
 clockwise = true; 
 arc = Don_iRun/6; 
 if (arc > 139) arc = 139; 
    } 
 
    //Check if turning Left 
    if(direction < ThresholdLeft) 
    { 
 if (direction < MaxLeft) direction = MaxLeft; 
 Don_iRun = ThresholdLeft - direction; 
 clockwise = false; 
 arc = Don_iRun/6; 
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 if(arc > 139) arc = 139; 
    } 
 
    Spin_current = arc; 
    if((clockwise != Last_Rotation_Dir) && (R_position > 4)) 
    { 
 Spin_current = 1; 
 clockwise = !clockwise; 
    }// trying to reverse spinning without fully stopping 
 
    Last_Rotation_Dir = clockwise; 
 
    if(Spin_current > R_position)//acceleration 
    { 
 if(R_acel[R_position] <= 0) 
 { 
     R_acel[R_position] = R_acel_source[R_position];//resets the pace variable 
     R_position++; //no delay due to inertia 
 } 
 else 
 { 
     R_acel[R_position]--;//decrement the register 
     if(R_acel[position]<=0) 
     { 
  R_acel[R_position] = R_acel_source[R_position];//resets the pace variable 
  R_position++; //move to the next higher pace 
  if(R_position>139) R_position = 139; 
     } 
 } 
 arc = R_position; 
    } 
 
    if (Spin_current <= R_position) 
    { 
 R_position -= 3; 
 if(R_position < 0) R_position = 0; 
 arc = R_position; 
    } 
    
//******************************************************************************************** 
    Speed_current = displace; 
 
    if((forward != Last_Dir) && (position > 4)) 
    { 
 Speed_current = 1; 
 forward = !forward; 
    }// trying to reverse direction without fully stopping 
 
    Last_Dir = forward; 
 
    if(Speed_current > position)//acceleration 
    { 
 if(acel[position] <= 0) { 
     acel[position] = acel_source[position];//resets the pace variable 
     position++; //no delay due to inertia 
 } else { 
     acel[position]--;//decrement the register 
     if(acel[position]<=0) { 
  acel[position] = acel_source[position];//resets the pace variable 
  position++; //move to the next higher pace 
  if(position>139) position = 139; 
     } 
 } 
 displace = position; 
    } 
 
    if (Speed_current <= position) 
    { 
 position--; 
 if(position < 0) position = 0; 
 displace = position; 
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    } 
    Rotate_Chair(arc, clockwise); 
    Move_Chair(displace,forward); 
} 
 
//**************************************************************************************** 
void Rotate_Chair(int ARC, bool clockwise1) 
{ 
    static unsigned int Arc_heap = 0; 
 
    Arc_heap += frac_speed[ARC];  //add the new distance on 
 
    if (Arc_heap >(65536 + (500 * position))) // is there enough acumulation to rotate 10 
degrees? 
    { 
 Arc_heap -=(65536+(500 * position));//subtract off the pulse 
 Send_Arc_Pulse(clockwise1);// send the pulse 
    } 
 
} 
 
//************************************************************************* 
void Move_Chair(int DISPLACE, bool forward1)   //Determines whether to move the chair 
{ 
    static unsigned int Displace_heap = 0; 
 
    Displace_heap += frac_speed[DISPLACE];  //add the new distance on 
 
    if(Displace_heap >65536) // is there enough acumulation to pulse a pixel? 
    { 
 Displace_heap -= 65536;//subtract off the pulse 
 New_Send_Move_Pulse(forward1);// send the pulse 
    } 
} 
 
//****************************************************************************** 
//rotates the chair by changing the image used left or right 10 degs 
void Send_Arc_Pulse(bool CLOCKWISE) 
{ 
    if(CLOCKWISE) 
    { 
 iCol_72++; 
 if(iCol_72 > 71) iCol_72 = 0; 
    } 
 
    if (!CLOCKWISE) 
    { 
 iCol_72--; 
 if (iCol_72 < 0) iCol_72 = 71; 
    } 
 
    iCol=Double_Res[iCol_72][0]; 
    iRow=Double_Res[iCol_72][1]; 
 
    //rotates the chair by changing the image used 
    iXImage=iCol*40; 
    iYImage=iRow*40; 
} 
 
//******************************************************************************************** 
void New_Send_Move_Pulse(bool FORWARD) 
{ 
    int quadrant; 
    static unsigned int X_heap; 
    static unsigned int Y_heap; 
    int X_Pulse = 0; 
    int Y_Pulse = 0; 
 
    iCol_18 = iCol_72%18; 
 
    if(FORWARD) 
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 quadrant = iRow; 
    else //This routine called if chair is driving backwards; flips angles 180 degrees 
    { 
 switch(iRow) 
 { 
     case 0: 
  quadrant = 2; 
  break; 
     case 1: 
  quadrant = 3; 
  break; 
     case 2: 
  quadrant = 0; 
  break; 
     case 3: 
  quadrant = 1; 
  break; 
 } 
    } 
    X_heap += Ratio_XY[iCol_18][0]; 
    Y_heap += Ratio_XY[iCol_18][1]; 
 
    if(X_heap >65536) 
    { 
 X_Pulse = 1; //set a pulse flag 
 X_heap-=65536;//subtract off the pulse 
    } 
 
    if(Y_heap > 65536) 
    { 
 Y_Pulse = 1; //set a pulse flag 
 Y_heap-=65536;//subtract off the pulse 
    } 
 
    switch(quadrant) 
    { 
 case  0: 
     NX+= X_Pulse; 
     NY-= Y_Pulse;     // advance coordinates 
     break; 
 case  1: 
     NX += Y_Pulse;     // advance coordinates 
     NY += X_Pulse; 
     break; 
 case  2: 
     NX -= X_Pulse;     // advance coordinates 
     NY += Y_Pulse; 
     break; 
 case  3: 
     NX -= Y_Pulse;     // advance coordinates 
     NY -= X_Pulse; 
     break; 
    } 
} 
 
HWND InitWindow(int iCmdShow) 
{ 
    HWND      hWnd; 
    WNDCLASS  wc; 
 
    wc.style = CS_HREDRAW | CS_VREDRAW; 
    wc.lpfnWndProc = WndProc; 
    wc.cbClsExtra = 0; 
    wc.cbWndExtra = 0; 
    wc.hInstance = g_hInst; 
    wc.hIcon = LoadIcon(g_hInst, IDI_APPLICATION); 
    wc.hCursor = LoadCursor(NULL, IDC_ARROW); 
    wc.hbrBackground = (HBRUSH )GetStockObject(BLACK_BRUSH); 
    wc.lpszMenuName = TEXT(""); 
    wc.lpszClassName = TEXT("VirtualDriving_demo"); 
    RegisterClass(&wc); 
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    hWnd = CreateWindowEx( 
 WS_EX_TOPMOST, 
 TEXT("VirtualDriving_demo"), 
 TEXT("Virtual Driving"), 
 WS_POPUP, 
 0, 
 0, 
 GetSystemMetrics(SM_CXSCREEN), 
 GetSystemMetrics(SM_CYSCREEN), 
 NULL, 
 NULL, 
 g_hInst, 
 NULL 
    ); 
 
    ShowWindow(hWnd, iCmdShow); 
    UpdateWindow(hWnd); 
    SetFocus(hWnd); 
 
    return hWnd; 
} 
 
LRESULT CALLBACK WndProc(HWND hWnd, UINT message, WPARAM wParam, LPARAM lParam) 
{ 
   switch (message) 
   { 
 case WM_KEYDOWN: 
     if(wParam == VK_ESCAPE) 
     { 
  Secure_Data(); 
  PostQuitMessage(0); 
  return 0; 
     } 
     break; 
 case WM_DESTROY: 
     PostQuitMessage(0); 
     return 0; 
   } 
 
   return DefWindowProc(hWnd, message, wParam, lParam); 
} 
 
int InitDirectDraw() 
{ 
    DDSURFACEDESC2 ddsd; 
    DDSCAPS2       ddscaps; 
    HRESULT        hRet; 
 
    // Create the main DirectDraw object. 
    hRet = DirectDrawCreateEx(NULL, (VOID**)&g_pDD, IID_IDirectDraw7, NULL); 
    if( hRet != DD_OK ) 
 return -1; 
 
    // Get exclusive mode. 
    hRet = g_pDD->SetCooperativeLevel(g_hMainWnd, DDSCL_EXCLUSIVE | DDSCL_FULLSCREEN); 
    if( hRet != DD_OK ) 
 return -2; 
 
    // Set the video mode to 640x480x16. 
    //hRet = g_pDD->SetDisplayMode(640, 480, 16, 0, 0); 
    hRet = g_pDD->SetDisplayMode(640, 480, 16, 0, 0); 
    if( hRet != DD_OK ) 
 return -3; 
 
    // Prepare to create the primary surface by initializing 
    // the fields of a DDSURFACEDESC2 structure. 
    ZeroMemory(&ddsd, sizeof(ddsd)); 
    ddsd.dwSize = sizeof(ddsd); 
    ddsd.dwFlags = DDSD_CAPS | DDSD_BACKBUFFERCOUNT; 
    ddsd.ddsCaps.dwCaps = DDSCAPS_PRIMARYSURFACE | DDSCAPS_FLIP | DDSCAPS_COMPLEX; 
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    ddsd.dwBackBufferCount = 1; 
 
    // Create the primary surface. 
    hRet = g_pDD->CreateSurface(&ddsd, &g_pDDSFront, NULL); 
    if( hRet != DD_OK ) 
 return -1; 
 
    // Get a pointer to the back buffer. 
    ZeroMemory(&ddscaps, sizeof(ddscaps)); 
    ddscaps.dwCaps = DDSCAPS_BACKBUFFER; 
    hRet = g_pDDSFront->GetAttachedSurface(&ddscaps, &g_pDDSBack); 
    if( hRet != DD_OK ) 
 return -1; 
 
   return 0; 
} 
 
void CleanUp() 
{ 
    g_surfChair.Destroy(); 
 
    if(g_pDDSBack) 
 g_pDDSBack->Release(); 
 
    if(g_pDDSFront) 
 g_pDDSFront->Release(); 
 
    if(g_pDD) 
 g_pDD->Release(); 
} 
 
void DO_JSK()// does read Serial 2 about 60 times per second 
{ 
    static iLastRead1 = 0; 
    if(GetTickCount() - iLastRead1 <10) return; 
    Read_Serial_1(); 
    iLastRead1 = GetTickCount(); 
} 
 

A.2 WFLC FILTER (FILTER_WFLC.C & FILTR_WFLC.H) 

//*****************************************Begin filter_wflc.c ************************** 
#include <stdio.h> 
#include <math.h> 
#include <memory.h> 
 
#include "filter.h" 
#include "filter_wflc.h" 
#include "read_ini.h" 
 
extern t_INI_PARAMETERS ini_para; // read_ini.c 
 
/*------------------------------------------------------------------------------*/ 
int init_wflc (t_WFLC_PARA *wflc, int ini_id) 
{ 
    int i; 
 
#if 0 
    memset ((char *)wflc, 0, sizeof (t_WFLC_PARA)); // clear filter memory 
#else 
    for (i=0; i<2*MAX_HARMONICS; i++) 
    { 
 wflc->w[i] = wflc->x[i] = 0; 
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    } 
    wflc->wbias = 0; 
    wflc->count = 0; 
    wflc->error = 0; 
    wflc->w0t = 0; 
#endif 
 
    wflc->M = ini_para.wflc[ini_id].M; 
    if (wflc->M <= 0) return -1;  // data error 
    wflc->fs = ini_para.sampling_freq.value; 
    wflc->mu = ini_para.wflc[ini_id].mu; 
    wflc->mub = ini_para.wflc[ini_id].mub; 
    wflc->mu0 = ini_para.wflc[ini_id].mu0; 
    wflc->w0 = 2.*PI*ini_para.wflc[ini_id].f0/ini_para.sampling_freq.value; 
  // convert frequency f0 into radian unit w0 
    wflc->w[1] = ini_para.wflc[ini_id].w1; // weight vector 
    wflc->w[wflc->M+1] = ini_para.wflc[ini_id].wM1; 
    return 0; 
} 
 
// (Weighted) Fourier Linear Combiner Filter (support both WFLC and FLC) 
/*------------------------------------------------------------------------------*/ 
double filter_wflc (t_WFLC_PARA *wflc, double datum) 
{ 
    double input, tfs; 
    double sumcross; 
    int i; 
    double *w, *x; 
    int M = wflc->M; 
 
    w = wflc->w; 
    x = wflc->x; 
 
    input = datum - wflc->offset; /* remove offset */ 
 
    x[0] = 1; // DC component (to adapt bias) 
    wflc->w0t += wflc->w0; // locate next sine & cosine samples 
    for (i = 1; i <= M; i++) 
    { 
 x[i] = sin(i * wflc->w0t); 
 x[M+i] = cos(i * wflc->w0t); 
    } 
 
    tfs = 0; // tfs = truncated Fourier series (including DC component) 
    for (i = 0; i <= 2*M; i++) tfs += w[i] * x[i]; 
 
    wflc->error = input - tfs; // calculate error 
    wflc->w[0] += 2 * wflc->mub * wflc->error; // update bias weight (dc component) 
 
    if (wflc->mu0 > 0) { 
 /* update frequency weight, 'blind' to harmonics */ 
 sumcross = 0; 
 for (i = 1; i <= M; i++) sumcross += i * (w[M+i]*x[i] - w[i]*x[M+i]); 
 wflc->w0 -= 2 * wflc->mu0 * wflc->error * sumcross; 
 //if (wflc->w0 <= 0) wflc->w0; 
    } 
    /* update amplitude weights */ 
    for (i = 1; i <= 2*M; i++)  w[i] += 2 * wflc->mu * wflc->error * x[i]; 
 
    wflc->count++; // count data samples 
 
    return (wflc->error + wflc->offset); 
} 
 
//***************************************End filter_wflc.c ************************** 
 
//*************************************Begin filter_wflc.h ************************** 
 
#ifndef _FILTER_WFLC_H_ 
#define _FILTER_WFLC_H_ 
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#define MAX_HARMONICS 30 
 
typedef struct  
{ 
    // Fixed or initial parameters 
    double mu;  // adaptive gain for amplitude 
    double mub;  // adaptive gain for bias weight 
    double mu0;  // adaptive gain for frequency 
    int M;  // filter order (usually 1 or 2 for tremor removal) 
    double fs;  // sampling frequency 
    double fc1;  // lower bound cutoff frequency of noise signal (-1 not used) 
    double fc2;  // upper bound cutoff frequency of noise signal (-1 not used) 
    double offset; // constant offset to be subtracted before processing 
    // Parameters keep changing during run-time 
    double w[2*MAX_HARMONICS]; // weights for terms of truncated Fourier series 
    double x[2*MAX_HARMONICS]; // reference vector of truncated Fourier series 
    double w0;  // reference frequency of Fourier series 
    double w0t;  // ref. freq. * time elased 
    double wbias; // bias weight 
    double error; // error computed 
    int    count; // time count 
} t_WFLC_PARA; 
 
int init_wflc (t_WFLC_PARA *wflc, int ini_id); 
double filter_wflc(t_WFLC_PARA *wflc, double datum); 
 
#endif // _FILTER_WFLC_H_ 
 double w0t;  // ref. freq. * time elased 
    double wbias; // bias weight 
    double error; // error computed 
    int    count; // time count 
} t_WFLC_PARA; 
 
int init_wflc (t_WFLC_PARA *wflc, int ini_id); 
double filter_wflc(t_WFLC_PARA *wflc, double datum); 
 
#endif // _FILTER_WFLC_H_ 
 
//***************************************End filter_wflc.h ************************** 
 

A.3 IIR FILTERS (FILTER.C & FILTER.H) 

//***************************************Begin filter.c ************************** 
#include <stdio.h> 
#include <math.h> 
#include <memory.h> 
 
#include "filter.h" 
#include "filter_wflc.h" 
#include "read_ini.h" 
 
extern t_INI_PARAMETERS ini_para; // read_ini.c 
 
/*------------------------------------------------------------------------------*/ 
int init_wflc (t_WFLC_PARA *wflc, int ini_id) 
{ 
    int i; 
 
#if 0 
    memset ((char *)wflc, 0, sizeof (t_WFLC_PARA)); // clear filter memory 
#else 
    for (i=0; i<2*MAX_HARMONICS; i++) 
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    { 
 wflc->w[i] = wflc->x[i] = 0; 
    } 
    wflc->wbias = 0; 
    wflc->count = 0; 
    wflc->error = 0; 
    wflc->w0t = 0; 
#endif 
 
    wflc->M = ini_para.wflc[ini_id].M; 
    if (wflc->M <= 0) return -1;  // data error 
    wflc->fs = ini_para.sampling_freq.value; 
    wflc->mu = ini_para.wflc[ini_id].mu; 
    wflc->mub = ini_para.wflc[ini_id].mub; 
    wflc->mu0 = ini_para.wflc[ini_id].mu0; 
    wflc->w0 = 2.*PI*ini_para.wflc[ini_id].f0/ini_para.sampling_freq.value; 
  // convert frequency f0 into radian unit w0 
    wflc->w[1] = ini_para.wflc[ini_id].w1; // weight vector 
    wflc->w[wflc->M+1] = ini_para.wflc[ini_id].wM1; 
    return 0; 
} 
 
// (Weighted) Fourier Linear Combiner Filter (support both WFLC and FLC) 
/*------------------------------------------------------------------------------*/ 
double filter_wflc (t_WFLC_PARA *wflc, double datum) 
{ 
    double input, tfs; 
    double sumcross; 
    int i; 
    double *w, *x; 
    int M = wflc->M; 
 
    w = wflc->w; 
    x = wflc->x; 
 
    input = datum - wflc->offset; /* remove offset */ 
 
    x[0] = 1; // DC component (to adapt bias) 
    wflc->w0t += wflc->w0; // locate next sine & cosine samples 
    for (i = 1; i <= M; i++) 
    { 
 x[i] = sin(i * wflc->w0t); 
 x[M+i] = cos(i * wflc->w0t); 
    } 
 
    tfs = 0; // tfs = truncated Fourier series (including DC component) 
    for (i = 0; i <= 2*M; i++) tfs += w[i] * x[i]; 
 
    wflc->error = input - tfs; // calculate error 
    wflc->w[0] += 2 * wflc->mub * wflc->error; // update bias weight (dc component) 
 
    if (wflc->mu0 > 0) { 
 /* update frequency weight, 'blind' to harmonics */ 
 sumcross = 0; 
 for (i = 1; i <= M; i++) sumcross += i * (w[M+i]*x[i] - w[i]*x[M+i]); 
 wflc->w0 -= 2 * wflc->mu0 * wflc->error * sumcross; 
 //if (wflc->w0 <= 0) wflc->w0; 
    } 
    /* update amplitude weights */ 
    for (i = 1; i <= 2*M; i++)  w[i] += 2 * wflc->mu * wflc->error * x[i]; 
 
    wflc->count++; // count data samples 
 
    return (wflc->error + wflc->offset); 
} 
 
//***************************************End filter.c ************************** 
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//***************************************Begin filter.h ************************** 
 
#ifndef _FILTER_H_ 
#define _FILTER_H_ 
 
#define PI 3.141592653589 
 
#define MAX_COEFFS 64 
   // maximum number of coefficients of filter 
 
/*------------------------------------------------------------------------------*/ 
// Polynomial 
/*------------------------------------------------------------------------------*/ 
typedef struct 
{ 
    int order;   // order of polynomial 
    double coeff[MAX_COEFFS]; // c[0] + c[1]*x + ... + c[N]*x^N 
} t_POLYNOMIAL; 
 
/*------------------------------------------------------------------------------*/ 
// Filter Parameters 
/*------------------------------------------------------------------------------*/ 
typedef struct  
{ 
    //  y[z] = H[z] * x[z] 
    // 
    //   ( a[0] + a[1]*z^-1 + a[2]*z^-2 + ... + a[N]*z^-N ) 
    // Filter:  H(z) = ---------------------------------------------------- 
    //   ( b[0] + b[1]*z^-1 + b[2]*z^-2 + ... + b[M]*z^-M ) 
 
    char name[32]; 
    // Filter coefficients 
    t_POLYNOMIAL    A;  // numerator polynomial of H(z) 
    t_POLYNOMIAL    B;  // denominator polynomial of H(z) 
 
    // run-time parameters 
    double x[MAX_COEFFS]; // past input x[n] (x[0] is the most recent) 
    double y[MAX_COEFFS]; // past output y[n] (y[0] is the most recent) 
    double fs;   // sampling frequency 
    double fc1;   // cut-off frequency (lower bound of pass band) 
    double fc2;   // cut-off frequency (upper bound of pass band) 
 // low-pass: 0 = fc1 < fc2 <= fs/2 (cut-off at fc2) 
 // high-pass: 0 < fc1 < fs/2 <= fc2 (cut-off at fc1) 
 // band-pass: 0 < fc1 < fc2 < fs/2 
 // band-stop: 0 < fc2 < fc1 < fs/2 
 // notch: 0 < fc1 = fc2 < fs/2 
} t_FILTER; 
 
/*------------------------------------------------------------------------------*/ 
// FILTERS 
/*------------------------------------------------------------------------------*/ 
// 0=no filtering, 1=lowpass, 2=wflc, 3=notch filter 
typedef enum { 
    ALLPASS, 
    LOWPASS, 
    HIGHPASS, 
    BANDPASS, 
    NOTCH, 
} t_FILTER_TYPE; 
 
/*------------------------------------------------------------------------------*/ 
//  Complex data handling 
/*------------------------------------------------------------------------------*/ 
typedef struct { 
    double real; 
    double imag; 
} t_COMPLEX; 
 
/*------------------------------------------------------------------------------*/ 
//  Function prototypes 
/*------------------------------------------------------------------------------*/ 
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//typedef double (*fp_FILTER)(double datum, void *filter_para); 
 
double filter (t_FILTER *f, double x); 
void clear_filter (t_FILTER *f); 
void init_lowpass_filter (t_FILTER *f, int order, double fc, double fs); 
void init_highpass_filter (t_FILTER *f, int order, double fc, double fs); 
void init_bandpass_filter (t_FILTER *f, int order, double fc1, double fc2, double fs); 
void init_envelope_filter (t_FILTER *f, double fc, double fs); 
double filter_envelope (t_FILTER *f, double x); 
double filter_delay (t_FILTER *f, double x, int delay); 
double filter_median (t_FILTER *f, double x); 
void sort (double *arr, int beg, int end); 
void swap (double *a, double *b); 
int Construct_Butterworth_Filter (t_FILTER *f, int type, int order, double fc, double fs); 
 
int poly_mult (t_POLYNOMIAL *A, t_POLYNOMIAL *B); 
void poly_copy (t_POLYNOMIAL *A, t_POLYNOMIAL *B); 
 

#endif // _FILTER_H_ 
//***************************************End filter.h ************************** 
 
 

A.4  READING INPUT PARAMETERS (READ_INI.C & READ_INI.H) 

//***************************************Begin read_ini.c ************************** 
#include <stdio.h> 
#include <string.h> 
#include <sys/types.h> 
#include <sys/stat.h> 
#include "filter.h" 
#include "filter_wflc.h" 
#include "read_ini.h" 
 
t_INI_PARAMETERS ini_para = { 
    { "tremor_removal_type", 2, 2, "0(no filter), 1(lowpass), 2(wflc), 3(wflc modified)"}, 
    { "filter_order", 3, 3, "Filter order to be used (2 or 3)"}, 
    //[JOY_STICK] 
    { "joyStick_idle_pos.X", 2050, 2050, "Joystick idle position X"}, 
    { "joyStick_idle_pos.Y", 2050, 2050, "Joystick idle position Y"}, 
    { "sampling_freq(Hz)", 100, 100, "sampling frequency"}, 
    //[PRE_FILTER] 
    //# To filter out some glitches in input data, we may use a prefilter. 
    { "prefilter_type", 2, 2, "0(No prefiltering), 1(low-pass), 2(median)"}, 
    { "prefilter.cut(Hz)", 8, 8, "cutoff frequency of low-pass prefilter"}, 
    { "pre_median_order", 3, 3, "order of median prefilter (# of data samples)"}, 
    //[LOW_PASS] 
    { "intended_max_freq(Hz)", 2.5, 2.5, "intended movement max freq"}, 
    //[BAND_PASS] //# band-pass parameters are to control WFLC/FLC blocks 
    { "tremor_freq_min(Hz)", 2.5, 2.5, "tremo minimum freq"}, 
    { "tremor_freq_max(Hz)", 8, 8, "tremo maximum freq"}, 
    { "alpha", 0, 0, "used by modified WFLC (removal_type 3) to control FLC's mu\n" 
 "#\t\t# to control mu of FLC: mu' = mu * (1 + alpha*BW),\n" 
 "#\t\t# BW = normalized tremo bandwidth at a moment (0 <= BW <= 1)"}, 
    { "", 0, 0, ""}}; // a null string keyword indicates the end of non-W/FLC parameters 
 
/*------------------------------------------------------------------------------*/ 
//  Read an .ini file 
/*------------------------------------------------------------------------------*/ 
int ReadIniFile (char *fname) 
{ 
    int i, n; 
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    int ini_id; 
    char buf[256]; 
    FILE *fin, *fout; 
 
    t_INI_PARA *ini = (t_INI_PARA *)&ini_para; 
    double mu, mub, mu0, f0, w1, wM1; 
    int M; 
 
    fin = fopen (fname, "r"); 
    if (! fin) 
    { 
 fout = fopen (fname, "w"); 
 fprintf (fout, "#\n" 
  "# Filter parameters\n" 
  "#\n" 
  "# You can modify values after '=' sign as you wish.\n" 
  "# You should not change the keyword before '=' sign.\n" 
  "# (To comment out a line, add '#' or ';' at the first column.)\n#\n"); 
 for (i = 0; i < sizeof(t_INI_PARAMETERS)/sizeof(t_INI_PARA); i++) 
 { 
     if (*(ini[i].keyword) == 0) break; 
     fprintf (fout, "%s=%g\t\t# %s\n", ini[i].keyword, ini[i].default_val, 
ini[i].comment); 
 } 
 // Now for WFLC/FLC parameters 
 fprintf (fout, "\n" 
     "[WFLC]\n" 
     "# WFLC parameters (to track tremor frequency)\n" 
     "# Set mub to zero (or a very small value)\n" 
     "#\n" 
     "# mu mub  m0  f0 M w1 wM1\n" 
     "0.0003 0.       0.0000002     4 1 0. 0.\n" 
     "\n" 
     "[FLC]\n" 
     "# FLC parameters (to track actual intended signal)\n" 
     "# 1. Set mu0 = 0 (or a very small value)\n" 
     "# 2. f0 will be from WFLC.\n" 
     "# mu value will be adjusted by tremor amplitude (envelope) by\n" 
     "#   mu' = mu * (1 + alpha * tremor_bandwidth)\n" 
     "# to control WFLC/FLC's the stop band width.\n" 
     "#\n" 
     "# mu mub  m0  f0 M w1 wM1\n" 
     "0.02 0.00002   0.  4 1 0. 0.\n"); 
 fflush (fout); 
 fclose(fout); 
 fin = fopen (fname, "r"); 
    } 
    if (! fin) return -1;   // fail to read ini file 
    ini_id = 0; 
    while (fgets(buf, 255, fin) != NULL) { 
 if (buf[0] == '#' || buf[0] == ';' || buf[0] == '\n') continue; 
 if (strncmp(buf, "[WFLC]", 6) == 0) { 
     ini_id = 1; 
 } else if (strncmp(buf, "[FLC]", 5) == 0) { 
     ini_id = 2; 
 } else if (ini_id == 0) { 
     for (i = 0; *(ini[i].keyword) && i<sizeof(t_INI_PARAMETERS)/sizeof(t_INI_PARA); i++) 
{ 
  n = strlen(ini[i].keyword); 
  if (strncmp(buf, ini[i].keyword, n)) continue; 
  sscanf (&buf[n], "=%lf", &ini[i].value); 
  break; 
     } 
 } else { 
     sscanf (buf, "%lf %lf %lf %lf %d %lf %lf", &mu, &mub, &mu0, &f0, &M, &w1, &wM1); 
     ini_para.wflc[ini_id-1].mu = mu; 
     ini_para.wflc[ini_id-1].mub = mub; 
     ini_para.wflc[ini_id-1].mu0 = mu0; 
     ini_para.wflc[ini_id-1].f0 = f0; 
     ini_para.wflc[ini_id-1].M = M; 
     ini_para.wflc[ini_id-1].w1 = w1; 
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     ini_para.wflc[ini_id-1].wM1 = wM1; 
 } 
    } 
    fclose(fin); 
 
#if 0 
    // confirm ini read 
    for (i = 0; i < sizeof(t_INI_PARAMETERS)/sizeof(t_INI_PARA); i++) { 
 if (*(ini[i].keyword) == 0) break; 
 printf ("%s=%g\t%g\n", ini[i].keyword, ini[i].default_val, ini[i].value); 
    } 
    for (i = 0; i < 2; i++) 
    { 
 printf ("WFLC[%d]: %11g %11g %11g %11g %6d %11g %11g\n", i,  
     ini_para.wflc[i].mu,  
     ini_para.wflc[i].mub, 
     ini_para.wflc[i].mu0, 
     ini_para.wflc[i].f0, 
     ini_para.wflc[i].M, 
     ini_para.wflc[i].w1, 
     ini_para.wflc[i].wM1 ); 
    } 
#endif 
    return 0; 
} 
//***************************************End read_ini.c ************************** 
 
//***************************************Begin read_ini.h ************************** 
#ifndef _READ_INI_H_ 
#define _READ_INI_H_ 
 
typedef struct { 
    char *keyword; 
    double default_val; 
    double value; 
    char *comment; 
} t_INI_PARA; 
 
typedef struct { 
    t_INI_PARA tremor_removal_type; 
  //=2 # tremor_removal_type=0(no filter), 1(lowpass), 2(wflc) 
    t_INI_PARA filter_order;  //=3 # (now fixed in the program) 
    //[JOY_STICK] 
    t_INI_PARA joystick_idle_pos_X; //=2050 # joystick idle positions of X 
    t_INI_PARA joystick_idle_pos_Y; //=2050 # joystick idle positions of Y 
    t_INI_PARA sampling_freq; //=100 # sampling rate 100 Hz 
 
    //[PRE_FILTER] 
    //# To filter out some glitches in input data, we may use a prefilter. 
    t_INI_PARA prefilter_type;  //=2 # 0(No prefiltering), 1(low-pass), 2(median) 
    t_INI_PARA prefilter_lpf_cutoff; //=10 # cutoff frequency of low-pass prefilter 
    t_INI_PARA prefilter_median_order; //=3 # order of median prefilter (# of data samples) 
    //[LOW_PASS] 
    t_INI_PARA intended_frea_max; //=2.5 # cutoff frequency of lowpass 
(tremor_removal_type=1) 
 
    //[BAND_PASS] 
    //# band-pass parameters are to control WFLC/FLC blocks 
    t_INI_PARA tremor_freq_min; //=2.5 # lower cutoff frequency of bandpass for WFLC 
    t_INI_PARA tremor_freq_max; //=8 # upper cutoff frequency of bandpass for WFLC 
    t_INI_PARA alpha;  //=0. # to control mu of FLC: mu' = mu * (1 + alpha*BW), 
    //# BW = normalized tremo bandwidth at a moment (0 <= BW <= 1) 
    t_INI_PARA empty; 
    //[WFLC] and [FLC] 
    struct { 
 int M; 
 double mu, mub, mu0, f0, w1, wM1; 
    } wflc[2]; 
} t_INI_PARAMETERS; 
 
int ReadIniFile (char *fname); 
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#endif // _READ_INI_H_  
//***************************************End read_ini.h ************************** 
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B.1 EXAMPLE OF OUTPUT FILE (VDD_OUT_001.DAT) 

 

 

 

 

    30     440         2088    2036    2258    2199         2085    2036       2085    2036              100     325       0           -85.902   4.089             0     0     0.0237763                 0                1 

    28     410         2087    2031    2238    2180         2085    2031       2085    2031             100     325       0             9.314   4.077               0     0     0.0240984                 0                1 

    29     420         2088    2034    2251    2193         2085    2034       2086    2034              100     325       0           -41.899   4.080             0     0     0.0238837                 0                1 

    19     260         2090    2031    1747    1702         2094    2028       2095    2028             100     325       0            25.786   4.003             0     0     0.0251648                 0                 1 

    20     280         2090    2032    1839    1792         2094    2030       2095    2029             100     325       0            88.299   4.012             0     0       0.02496                   0                 1 

    21     290         2087    2032    1922    1873         2090    2030       2092    2030             100     325       0           138.064   4.025             0     0     0.0248576                 0                 1 

    22     300         2087    2033    1995    1944         2090    2031       2091    2031              100     325       0           170.557   4.042            0     0     0.0248063                 0                 1 

    23     310         2089    2035    2059    2006         2091    2034       2092    2033              100     325       0           183.444   4.057            0     0     0.0247807                 0                1 

    24     340         2087    2035    2112    2058         2088    2034       2089    2034              100     325       0           176.387   4.068            0     0     0.0247679                 0                1 

    25     350         2091    2030    2156    2101         2091    2029       2092    2029             100     325       0            151.268   4.075            0     0     0.0247615                 0                1 

    26     370         2088    2033    2192    2135         2087    2033       2088    2033             100     325       0           111.676   4.077             0     0     0.0247583                 0                1 

    27     390         2088    2037    2219    2161         2086    2037       2087    2037             100     325       0            62.443   4.076             0     0      0.024528                  0                1 

    14     190         2089    2040    1164    1134         2091    2038       2091    2039             100     325       0          -237.757   4.008            0     0     0.0262711                 0                 1 

    15     200         2089    2039    1293    1260         2092    2037       2092    2037             100     325       0          -214.882   4.009             0     0     0.0262715                 0                 1 

    16     220         2087    2036    1417    1381         2091    2033       2091    2033             100     325       0          -170.768   4.006             0     0     0.0262717                 0                 1 

    17     230         2088    2031    1535    1495         2092    2028       2093    2028             100     325       0          -111.170   4.002             0     0     0.0261142                 0                 1 

    18     240         2088    2031    1645    1603         2093    2028       2093    2028             100     325       0           -43.129   4.000             0     0     0.0255745                 0                 1 

    12     160         2090    2033    1100    1100         2090    2032       2090    2033             100     325       0          -206.991   3.992             0     0     0.0262687                 0                 1 

    13     170         2086    2036    1100    1100         2087    2035       2087    2035             100     325       0          -235.487   4.002             0     0     0.0262703                 0                 1 

     7      80         2089    2039    1100    1100         2084    2040       2083    2041             100     325       0           181.785   3.971            
0     0     0.0261703                 0                 1 

     8     100         2087    2037    1100    1100         2083    2038       2082    2038             100     325       0            96.540   3.967      
0     0     0.0262211                 0                 1 

     9     110         2087    2032    1100    1100         2084    2033       2082    2033             100     325       0             5.755   3.967              
0     0     0.0262465                 0                 1 

    10     120         2089    2031    1100    1100         2087    2031       2086    2032             100     325       0           -80.636   3.972             0     0     0.0262592                 0                 1 

    11     140         2086    2031    1100    1100         2085    2031       2084    2031             100     325       0          -153.893   3.981             0     0     0.0262655                 0                 1 

     1      10         2088    2039    1100    1100         2086    2039       2086    2039             100     325       0           161.416   4.000           
 0     0     0.0218982                0                 1 

     2      20         2089    2035    1100    1100         2086    2035       2086    2036             100     325       0           243.445   3.999           
 0     0     0.0233836                0                 1 

     3      30         2088    2033    1100    1100         2084    2034       2083    2034             100     325       0           295.473   3.997           
 0     0     0.0246465                0                 1 

     4      40         2086    2030    1100    1100         2081    2031       2080    2031             100     325       0           313.593   3.993           
 0     0     0.0254592                0                 1 

     5      50         2088    2032    1100    1100         2083    2034       2082    2034             100     325       0           297.833   3.987            
0     0     0.0258655                 0                 1 

     6      60         2088    2037    1100    1100         2083    2039       2082    2039             100     325       0           251.744   3.979            
0     0     0.0260687                 0                 1 
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     0       0          2087    2034    1100    1100         2087    2034       2087    2034             100     325       0            56.814   4.000            
0     0     0.0205681                 0                 1 
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