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ABSTRACT. 

 

The utilization of high-throughput -omics strategies, such as proteomics, in the analysis of breast 

cancer will function to define central molecular characteristics across a disease that is associated 

with a high degree of molecular heterogeneity. Data reported herein details the investigation of 

key subjects in breast cancer biology focused on the characterization of endogenous and 

experimentally-induced disease biology characteristics utilizing the application of LC-MS based 

proteomic analyses of both in vitro models of breast cancer as well as primary clinical samples. 

Results include a combined global and functional proteomic strategy to identify governing 

functional roles for mutually, differentially abundant proteins observed across three divergent 

cell line models of breast cancer. Further, evidence is presented which provides insights into the 

regulatory activity of the breast cancer-associated microRNA (miR-145) in several cell line 

models of breast cancer in which expression of this microRNA has been restored. Lastly, robust 

analyses are detailed focused on the identification of differential protein characteristics indicative 

of disease stage as well as of recurrent disease in breast cancer derived from proteomic analysis 

of formalin-fixed, paraffin embedded (FFPE) clinical samples. These studies contribute to the 

field of proteomics in the form of 1) providing robust experimental workflows directed towards 

investigation of functional themes and associated functional targets in large protein data sets 2) 

detailing strategies for navigating the application of proteomic analysis to microRNA target 

discovery and 3) further development and utilization of methodologies towards the proteomic 

analysis of clinical, FFPE tissue samples. Furthermore, these studies benefit the breast cancer 

community on several fronts including 1) the elucidation of provocative protein candidates 

which warrant further investigation for their role in regulating disease mechanisms underlying 
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breast cancer biology and 2) through the discovery of diagnostic markers indicative of discrete 

subtypes and stages of disease progression in breast cancer. The results reported herein detail 

disease-specific protein abundance characteristics associated with neoplastic progression in 

breast cancer that will benefit further expansion of the basic biological understanding of this 

disease and describes novel proteins for further evaluation as biomarker candidates for the 

diagnosis of breast cancer. 
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1.0 INTRODUCTION 

1.1: Breast Cancer - Background 

  

Breast cancer is the second leading cause of cancer related death in North American women, 

with greater than 200,000 new cases diagnosed and ~40,000 deaths estimated to occur in the US 

in 2010.1 The onset of breast cancer can occur as a product of genetic pre-disposition or 

sporadically and is associated with a variety of risk factors that include smoking, obesity, post-

menopausal hormone replacement therapy as well as evidence of increased breast density upon 

mammographic examination.2, 3 Inherited forms of breast cancer are commonly associated with 

germline mutations in key tumor suppressor genes, such as the canonical tumor suppressors 

tumor protein 53 (p53) and the phosphatase and tensin homolog (PTEN) as well as in the DNA 

damage sensors breast cancer, early onset 1 or 2 (BRCA1 or BRCA2), with mutations in this 

latter subset of genes increasing breast cancer risk by as much as 10-20%. 3, 4 Sporadic breast 

cancers can similarly occur due to tumor suppressor gene inactivation as well as due to 

overexpression of various oncogenes, such as the cell cycle regulatory factor cyclin D1, the 

proto-oncogene c-myc or the epidermal growth factor receptors ERBB1 (EGFR) or ERBB2 

(HER2/neu).3, 5 These genetic alterations underlie the basis of mammary epithelial cell 

transformation, with the acquisition of further genetic instabilities as nascent tumor cell 

populations expand, resulting in the production of tumor cells which display more aggressive 
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characteristics, such as those capable of localized invasion into adjacent breast tissues and 

metastasis to distal sites (Figure 2).5-7  

The adult human mammary gland is organized into 

systems of ductal structures which bridge lobular 

units, the sites of milk production, and the nipple, 

functioning as conduits for the transport of milk and 

nutrients (Figure 1).8   Ductal structures are lined by 

epithelial cells that face the luminal space of the duct, 

termed luminal epithelium, and are further enveloped 

by myoepithelial cells that interface with an adjoining 

basement membrane (BM), a protein-rich structure 

separating the mammary epithelium from adjacent 

connective, or stromal tissues (Figures 1 & 2).5, 8 

Mammary gland tissue maturation and functional 

activities are predominantly regulated by the cyclical 

modulation of two steroid hormones, estrogen and 

progesterone, that drive the growth and differentiation of these tissues.8 These steroid hormones 

bind to discrete nuclear hormone receptors, estrogen (ER) and progesterone (PR) receptors, 

resulting in nuclear translocation and binding of hormone receptor complexes to ER/PR 

promoter response elements in target genes resulting in their transcriptional activation.7 Breast 

cancer arises as a product of cellular transformation which is characterized by a series of discrete 

phenotypic changes that occur in mammary cells and include a failure to respond to growth 

inhibitory cues resulting in increased proliferative capacity and cell survival.9, 10 Transformed 

Figure 1. Anatomy of the Breast.

(A) – Ducts, (B) – Lobules, (C) –
Milk engorged duct, (D) – Nipple,
(E) – Fat, (F) – Pectoralis muscle,
(G) – Chest wall, (A1) – Ductal

epithelium. (B1) – Basement

membrane. (C1) – Ductal Lumen.

(Adapted from
http://www.breastcancer.org)

1

1

1
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mammary cells commonly originate from luminal epithelial cell types, less so from 

myoepithelial cells and further, recent evidence has revealed these populations may also arise 

from stem-cell like mammary progenitor cells. (Figure 2, normal duct panel).5, 11-14 The majority 

of breast cancers begin as premalignant lesions comprised of populations of hyperplastic 

epithelial cells that are confined to the intraductal space, termed atypical ductal hyperplasia 

(ADH). These lesions then progress to more aggressive localized disease, termed ductal 

carcinoma in situ (DCIS), the most common subtype of in situ disease, typified by increases in 

cell abundance and the acquisition of more aberrant cell morphologies being displayed by 

hyperplastic populations.6, 15 Disease progresses by invasion of tumor cells into adjacent tissues 

through degradation of the BM, a subsequent phase in progression of DCIS termed invasive, or 

infiltrating, ductal carcinoma (IDC) (Figure 2, in situ and invasive panels).5, 6, 11, 12, 16 The BM is 

predominantly comprised of large macromolecular complexes that include extracellular matrix 

Figure 2. Neoplastic Progression of Breast Cancer: Figure details a cross-sction

of the breast ductal epithelium and the progression from nascent through metastatic

disease. (Adapted from Polyak, K. 2007)
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(ECM) proteins, such as collagens, laminins and fibronectin which are actively secreted by both 

epithelial as well as stromal fibroblast cells.6, 11, 12, 16 Normal mammary epithelial cell survival is 

dependent upon interactions with the BM as these contacts provide anti-apoptotic and survival 

cues and is an event termed anchorage-dependence.11, 16, 17 Conversely, mammary tumor cells are 

capable of surviving in the absence of these interactions, so-called anchorage-independence, 

which is a phenotypic hallmark of cellular transformation.11, 16, 17  Degradation of the BM by 

tumor cells is achieved through modulation of ECM protein expression and interactions and as 

well as due to the aberrant expression and activity of various cellular proteases, such as the 

matrix metalloproteinase (MMP) family of endopeptidases.11, 16, 18 Invasion is further 

accompanied by disorganization and decreases in myoepithelial cell populations and increased 

numbers and activation of both stromal and immune cell types, precipitating an increase in 

growth factor and cytokine secretion, including the growth regulatory protein tumor growth 

factor beta (TGF-β) and the pro-angiogenic protein platelet-derived growth factor (PDGF). 5, 16, 18 

This cellular context produces a microenvironment that further drives tumor progression through 

enhancement of cellular signaling which supports pro-growth and invasive cellular behaviors, 

such as the conversion of epithelial tumor cells to mesenchymal-like cell types (EMT)19, which 

embodies tumor cells that exhibit more aggressive invasive potential.5, 16, 18 The evolution of 

tumor cells within this microenvironment results in the formation of hypoxic and acidic 

conditions due to restricted access to vasculature and a greater dependence of tumor cells on 

glycolysis versus oxidative metabolism for ATP production, a metabolic pathway which results 

in the conversion of pyruvate to lactate and lactic acid.20-22 These selective pressures promote 

activation of cell survival and angiogenic signaling resulting in locoregional invasion of tumor 

cells into adjacent lymphovascular tissues, such as to axillary or sentinel lymph nodes (SLN) 
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surrounding the breast, ultimately leading to the formation of metastasis which are distal from 

the primary tumor site, commonly occurring in the bones, lungs and livers of breast cancer 

patients. 11, 23 

 

The inherent genetic instabilities of mammary tumor cell populations and the dynamic 

microenvironments and selective pressures encountered by these cells in situ during neoplastic 

progression produces disease which exhibits high inter- and intra-patient molecular 

heterogeneity. These characteristics thus confound disease classification, prediction of disease 

prognosis and definition of optimal patient treatment options.24-28 The variety of disease 

etiologies and variability in therapeutic responses encountered in the treatment of breast cancer 

during the pre-genomic era underscored the basis for this disease to be one of the first solid 

Breast Cancer Subtype Receptor Status (Characteristics)

Luminal A
ER+/ PR+/ HER2-
(High ER levels)

Luminal B
ER+/ PR+/ HER2 (+/-)
(Lower ER, Higher PR)

(Luminal C? – ER+/PR+/HER2+) 

HER2+
ER-/ PR-/ HER2+
(High HER2 levels)

Basal-like 
(Triple-negative)

ER-/ PR-/ HER2-

Normal-Like
Low expression of luminal-type genes, 

high expression of basal-epithelial genes. 

Table 1. Molecular Subtypes of Breast Cancer – Hormone receptor

and growth factor status. ER – Estrogen Receptor, PR – Progesterone

Receptor, ERBB2/HER2 (Human Epidermal growth factor Receptor 2)
23, 26, 28-31



6 

tumor cancers to be analyzed by global gene expression profiling utilizing complimentary DNA 

(cDNA) microarray analyses. 25, 26, 28, 29 Seminal studies published by Perou et al. 25 

encompassing microarray analyses of 85 tissue samples from 42 breast cancer patients as well as 

cell line models of normal and cancerous breast cells resulted in the identification of 5 

predominant molecular subtypes of breast cancer (Table 1).25, 28, 30-33 These subtypes indicated 

that key molecular signatures are conserved amongst breast cancers which bear specific hormone 

and growth factor receptor expression profiles, i.e. expression of ER and PR and the human 

epidermal growth factor 2 receptor (HER2). 25, 28, 30-33 Assessment of hormone receptor and 

HER2 expression status has been a facet of pathological analyses of breast cancer for over 20 

years and is typically achieved by immunohistochemical (IHC) analysis of biopsied patient tissue 

sections.27, 34-36 Of the five subtypes detailed in Table 1, three predominant subtypes are 

encountered clinically 1) the luminal subtype which is based on ER positivity, with the further 

sub-classification of luminal subtypes which are also HER2+ as being either luminal-b or 

luminal-c as currently being in debate by the community 33, 37, 2) HER2+ or 3) basal-like disease 

(Table 1).31, 32, 38 The majority of breast cancers diagnosed are of the luminal subtype, ~70%, and 

are associated with significantly better 5-year survival rates than the less commonly diagnosed 

HER2+ or basal-like subtypes.26, 39 In addition to insights into disease prognosis, assessment of 

hormone and growth factor receptor expression can further guide the selection of patient 

treatment options.31 Examples include the treatment of luminal breast cancers with estrogen 

receptor-specific antagonists, or selective estrogen receptor modulators (SERMS), such as 

Tamoxifen, as well as usage of a monoclonal antibody-based therapeutic, Trastazumab/ 

Herceptin, which is a  HER2 growth factor receptor antagonist used in the treatment of HER2+ 

disease.31 
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In conjunction with assessment of hormone and growth factor receptor status, a variety of 

clinicopathological analyses are utilized for the classification and determination of disease 

prognosis following an initial diagnosis of breast cancer. These include focused imaging studies, 

such as supplemental mammography with application of Breast Imaging Reporting and Data 

System (BI-RADS) assessment criteria, which provides insights into the likelihood that a 

mammographic finding may be normal, benign or malignant, as well as pathological analysis of 

patient tissue biopsies obtained by fine-needle aspiration cytology, stereotactic core needle 

biopsy or during surgical intervention.40, 41 Aside from determination of hormone receptor and 

HER2+ status, standard pathological analyses performed in breast cancer commonly encompass 

determination of disease stage as well as tumor grade.42-44 The criteria for staging breast cancer is 

summarized by the tumor node metastasis (or TNM) classification system that encompasses 

staging designations ranging from evidence of a carcinoma in situ lacking lymph node or distal 

metastasis, i.e. stage 0 disease, to the presence of tumor with nodal involvement as well as 

evidence of distal metastasis, i.e. stage IV disease.44 Determination of tumor grade (commonly 

the Nottingham grading system in the US), encompasses measures of mitotic rate, tubule 

formation, as well as the prevalence of nuclear polymorphisms in tumor cells.42, 43 Less common 

pathological analyses utilized for disease prognostication include assessment of the tumor 

proliferation index, which is commonly achieved via Ki-67 expression profiling, as well as by 

profiling for specific cytokeratins, such as CK5, CK14 and CK17 and for other growth factor 

receptors, such as human epidermal growth factor 1, or EGFR/ERBB1, which is often performed 

in basal-like breast cancer subtypes.45 These clinicopathological measures, with particular 

emphasis on the expression status of key hormone and growth factor receptors, comprise the 
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standard of care for breast cancer diagnosis and determination of disease prognosis.35, 46 Thus, as 

measures of hormone and growth factor receptor panels are core techniques utilized in the 

clinicopathological diagnosis of breast cancer, “proteomic” analyses have thus been a long-

standing facet of this field. 

 

1.2: Proteomics - Background 

 

Proteomics is defined as the study of global protein expression produced by a genome, cell, 

tissue or organism.47 This strategy is directed towards the high-throughput characterization of the 

full complement of protein species present within a complex protein mixture, enabling protein 

identification, the quantitation of protein abundance as well as characterization of post-

translational modifications (PTM) of proteins, such as phosphorylation and ubiquitination 

status.48-51 Early proteomic methods included two-dimensional gel electrophoresis (2-DE) which 

commonly entail separating a complex protein mixture by 1-D sodium dodecyl sulfate (SDS) 

polyacrylamide gel electrophoresis (PAGE) followed by further separation by isoelectric 

focusing (IEF), resulting in dissemination of heterogeneous protein populations occupying 

similar molecular weights into discrete protein groups.52 When comparing two conditions after 

staining, differential spot intensities provided relative quantitative information about protein 

abundance, and further mobility shifts in protein spots indicated the possibility of differential 

protein modifications between conditions.52 However, protein spot identification was typically 

achieved by direct sequencing of proteins, such as via N-terminal Edman degradation, a method 

which has since been largely displaced by mass spectrometry-based strategies. 52, 53  
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Proteomic strategies which utilize mass spectrometry and the application of so-called “shotgun” 

strategies directed towards the characterization of many proteins in a complex mixture, in 

Figure 3. Liquid Chromatography-Mass Spectrometry (LC-MS), Shotgun 

Proteomics Workflow – Sample preparation entails cell or tissue lysis followed by 

protein digestion, such as with the proteolytic enzyme trypsin. Resulting peptides are then 

separated into a less complex mixture by liquid chromatography and are ionized via 

electrospray ionization, resulting in evaporation of mobile phase and liberation of charged 

peptide ions. Peptide ions are then introduced into a mass spectrometer resulting in initial 

measurement of their intact mass to charge ratio (m/z), hypothetical peptide F-R-I-D-A-Y 

displayed in MS event, followed by a second, tandem MS event (MS/MS) in which an 

isolated peptide is fragmented by collision with Nobel gas molecules (termed collision 

induced dissociation (CID) followed by measurement of subsequent fragment ion m/z 

ratios.  

cellular isolation

Electrospray ionization (ESI)
F R I D

A

Y

Mass Spectrometry (MS)

F R

F R I

F

R

I

D

F

R

I

D

A

Tandem Mass Spectrometry (MS/MS)

Sample Preparation Protein Digestion Peptide Separation (LC)
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conjunction with various upstream fractionation methodologies, such as liquid-chromatography, 

i.e. LC-MS, enable more comprehensive characterization of proteins samples.49, 54 LC-MS-based 

proteomics (Figure 3 – ESI LC-MS/MS workflow) describes a strategy in which a complex 

protein mixture is enzymatically digested into constituent peptides which are then resolved 

utilizing liquid chromatography. This is achieved by binding of peptides onto an analytical LC 

column packed with a stationary phase in which peptides directly bind, such as reversed- phase, 

e.g. C-18 bonded silica beads, or ion exchange resins, such as strong-cation exchange.54 Peptides 

are progressively eluted via introduction of an increasing gradient of non-polar mobile phase, 

such as in the case of reverse-phase resins, over a defined period of time and eluted peptides are 

then introduced into a mass spectrometer via electrospray ionization (ESI) (Figure 3).51, 55,56 ESI 

entails the application of an ambient voltage to an analytical LC column resulting in the 

vaporization of eluting peptide droplets followed by transfer of subsequent gas-phase peptide 

ions into an MS source which is further under vacuum. 51 Intact peptide ion precursor m/z and 

CID spectra are then compared computationally to an in silico digested peptide library 

constructed from a species-specific protein database where CID spectra are scored based on their 

degree of concordance with predicted peptide masses and associated theoretical fragment ions 

masses. The highest scoring comparisons result in the identification of a peptide sequence 

followed by assignment of that peptide to a corresponding parent protein.57-59 Peptide 

identification accuracy is dependent upon the ability of a mass spectrometer to resolve unique 

peptide ion spectra, which aids in the determination of peptide charge state, and to perform 

highly accurate mass measurements of peptide precursors and fragment ions, which affords the 

application of more stringent criteria in peptide searches, thus, assuring more confident peptide 

identifications are obtained.51 Examples of high resolution, high mass accuracy mass 
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spectrometers include the Fourier transform-mass spectrometer (FT-MS) as well the Orbitrap 

MS which are capable of achieving resolutions in excess of 100,000 and mass accuracies of < 2 

parts per million (ppm). Lower resolution instruments include ion trap or TOF instruments which 

achieve average resolutions of 4.0-8.0 X 103 and mass accuracies >100ppm.51, 60 The application 

of further search criteria specifying peptide characteristics that are imposed by experimental 

design, such as the expectation that peptides generated by digestion of proteins with trypsin, a 

proteolytic enzyme which cleaves peptides bonds after lysine or arginine residues, will terminate 

in K or R, further aids to strengthen the validity of peptide identifications observed.61, 62 

Assembly of peptide identifications indicates the degree of protein coverage observed, with the 

general consensus in the proteomics community of a protein being identified by at least two 

peptides as being considered a confident identification.63 

 

Bottom-up, shotgun proteomic strategies, in which peptides produced by protein digestion are 

analyzed by LC-MS and then compiled to identify corresponding parent proteins, facilitates the 

identification and quantitation of many peptides/ protein species within a given sample. 48, 54, 64 

Comparisons of peptide identification rates (or spectral counts), peptide ion peak areas and 

intensities (such as in SILAC-analysis) or the peak intensities of fragmentation spectra derived 

from chemical tags covalently added to peptide species prior to MS analysis (such as in iTRAQ-

technologies), facilitates the quantitative comparison of global peptide species and thus protein 

abundance between multiple experimental conditions.65-67 Like other non-MS based protein 

abundance quantitation strategies, such as western and enzyme-linked immune absorbent assay 

(ELISA) analyses, comparative, quantitative analyses utilizing LC-MS-based proteomics begins 

with equivalent amounts of protein/ peptide concentrations. Spectral count-based quantitative 
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proteome analyses is achieved by comparison of equivalent peptide populations from multiple 

conditions where total numbers of peptides identified for a given protein are quantitatively 

compared across analyses to achieve a measure of differential protein abundance, where a greater 

number of peptides identified for a protein in sample 1 versus 2 would indicate relatively greater 

abundance in sample 1.65 To minimize the contribution of analytical variability imposed by 

differential sample processing or instrument performance, LC-MS analysis of isotopically-

labeled (SILAC) or chemically-tagged peptides (iTRAQ) affords the analysis of multiple 

experimental conditions simultaneously.66 67 For example, the SILAC MS approach affords 

concurrent analysis of up to three different complex protein mixtures as a product of metabolic 

labeling of proteins with either single or multiple amino acids that are labeled with stable isotope 

atoms (13C, 2H, 15N, or 18O) or ‘light’ (12C, etc.), being achieved via supplementation in tissue 

culture media in vitro or by dietary supplementation in in vivo animal studies.66 The result of 

metabolic labeling utilizing ‘heavy’ isotope amino acids is their incorporation into proteins that 

are identical to those from native conditions in all respects with the exception that they possess a 

greater mass according to the number of ‘heavy’ labeled amino acids present in the sequence.66 

Differentially labeled peptide populations are mixed in equivalent ratios and subjected to LC-

MS/MS in which peak areas for identical peptide isotopomers, which exhibit identical LC 

retention times differing only by the mass deflections contributed by the stable isotope-labeled 

amino acids, are thus compared providing quantitative information about the abundances of a 

given peptide/ protein across multiple conditions in a single LC-MS analysis.66, 68 
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Figure 4: Dynamic range of mRNA and protein abundance in cDNA versus LC-MS 

proteomic analyses: The dynamic range of expressed cellular genes and proteins vary 

from those ubiquitously expressed (such as structural/housekeeping factors) to factors 

present at lower abundances (such as kinases, transcription factors). As LC-MS, global 

proteomic analyses depends on de novo peptide/protein identification versus more targeted 

approaches utilized in gene expression / cDNA microarray analyses, the dynamic range of 

proteins poses a challenge to the comprehensive analysis of the full complement of 

proteins present in a cell lysate. The integration of further peptide/protein fractionation 

strategies paired with advances in MS instrument performance have benefited this 

analytical hurdle.  GAPDH: Glyceraldehyde 3-phosphate dehydrogenase, Glut-1: glucose 

transporter 1, MAPK: mitogen-activated protein kinase, p53: tumor protein 53, c-jun: AP-

1 early response transcription factor subunit. 
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The application of proteomic analyses to assess global protein abundance characteristics 

provides insights into the biology at play in a given tissue sample or cell population as it is a 

measure of the end-product of epigenetic, post-transcriptional and post-translational regulatory 

events.69, 70 However, the complexity and expansive dynamic range of the cellular proteome 

poses a challenge to the characterization of the full complement of proteins in a complex sample 

by proteomic analysis as this technique depends on the de novo characterization of proteins and 

peptides. This is in contrast to global gene expression profiling, such as cDNA microarray 

analyses, which affords greater specificity comparatively as observations are derived from the 

interaction of cDNA with pre-determined targets (Figure 4).71 Specifically, peptides 

corresponding to cellular proteins which are in high abundance, such as cytoskeletal or so-called 

“housekeeping” proteins, are over-represented in population of peptides derived from a total 

cellular proteome digest relative to peptides derived from more low abundant proteins, such as 

those which are often of interest in disease-related biological processes, e.g. protein kinases or 

transcription factors. Strategies to decrease the complexity of the cellular proteome prior to MS 

analysis have proven useful in achieving greater depths of proteome coverage, such as the 

application of in-gel digestion, involving separation of a complex protein sample by 1D SDS-

PAGE followed by dissection of gel spots containing protein populations at differing molecular 

weights and subsequent digestion and extraction of peptides. Further strategies which combine 

multiple orthogonal fractionation techniques, such as the multidimensional protein identification 

technology (or MudPIT) strategy, comprising an in-line LC technique which separates peptides 

firstly by strong cation exchange and then by reverse-phase chromatography have also increased 

proteome coverage.72 53 Further, advances in MS instrumentation, such as the recent release of 

the Velos series of mass spectrometers by Thermo Scientific, have resulted in technological 
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capabilities that have increased peptide identification rates by as much as 128% over previous 

technologies.73 With these strategies in place, protein identification capabilities and the high 

throughput nature of modern proteomic workflows have proven fruitful for the purposes of 

discovering biomarkers and elucidating functional biological roles of protein groups in a variety 

of disease-related pathologies including breast cancer. 

 

1.3: Proteomics of Breast Cancer – Biomarker Discovery 

 

The molecular heterogeneity of breast cancer underscores the benefits to be gained from analysis 

of this disease utilizing high-throughput gene and protein expression profiling. The main focus of 

these studies is to discover gene and protein expression characteristics that are conserved across 

breast cancer with the goal of identifying biomarkers which will aid in disease diagnosis by 

better defining disease subtypes and responsiveness to therapeutics as well as towards identifying 

systems of genes and proteins that underlie and drive breast cancer disease biology.74-76 The 

advantages afforded by proteomic analyses are that the targets of these studies are the 

predominant functional mediators of biology, which readily facilitates translation of identified 

proteins of interest to subsequent investigations towards discerning the utility of these candidates 

as therapeutic targets or as factors central to molecular disease mechanisms.74 Protein 

identification is the end product of post-transcriptional regulatory events which are mechanisms 

that can impact the translation of a gene target of interest; a lesson recently underscored by 

evidence which has emerged from the burgeoning field of microRNA-mediated regulation of 

gene translation.77-79 This point further underscores the value of performing multi-platform -

omics analyses of breast cancer in which genomic, differential mRNA, microRNA as well as 
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protein abundance characteristics are integrated at a systems level to provide insights into the 

regulatory dynamics underlying the gain or loss of factors associated with disease biology.80, 81  

 

As a product of the variety of sample types suited to proteomic analyses, such as the ability to 

analyze clinical tissue samples and biofluids as well as to perform high-throughput analyses of 

large sample sets, proteomic research in breast cancer has been largely directed towards the 

discovery of disease-specific protein characteristics that can be directly translated to clinical and 

therapeutic applications.74 The identification of biomarkers in breast cancer via proteomics has 

been approached utilizing models systems ranging from cell lines69, 82-91, animal models of breast 

cancer, including transgenic murine models bearing HER2 gain-of-function characteristics 92 and 

xenograft models of human breast cancer93-96, as well as in clinical samples ranging from blood 

serum97-102, cerebrospinal fluid (CSF)103 and nipple aspirate fluid (NAF)104-114 to clinical breast 

cancer tissues115-118 and breast cancer tissue effluent, or breast tissue interstitial fluid (TIF) 119-121.  

 

Investigations of breast cancer-specific protein abundance characteristics derived from studies of 

cell line models of breast cancer, in vivo breast cancer tissue models and clinical tissue samples 

have been driven by the logic that these sample sources will possess the most robust molecular 

characteristics representative of breast cancer disease biology. For example, a global, proteomic 

analysis utilizing a MALDI-TOF MS/MS approach of pooled membrane proteins derived from 

several human cell line models of breast cancer, namely the ER+ cell lines, MCF7 and T-47D, as 

well as the EGFR-positive cell lines MDA-MB-468 and BT-474, resulted in the identification of 

three novel proteins, i.e. BCMP11, BCMP84 and BCMP101. These proteins were found to be 

specific for cancerous versus normal breast epithelium in subsequent large cohort IHC analyses; 
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with BCMP11 in particular as being observed at high abundances in 43 versus 58 breast cancer 

patients analyzed.82 Further, recent analysis of an isogenic model of breast cancer disease 

progression, termed MCF10AT, which comprises four cell lines representative of discrete stages 

of disease progression, i.e. normal-like breast cells, pre-neoplastic cells, and low and high-grade 

breast cancer cells, initially established from clonal isolates originating from a squamous 

carcinoma derived from a xenograft of a RAS-transformed variant of a cell line model of normal 

human mammary epithelium, MCF10A.93, 95 Global proteomic analysis of this system was 

achieved via a quantitative ESI LC-MS/MS approach in which total peptides derived from each 

cell line model were labeled with iTRAQ-reporter tags, thus facilitating the coordinate 

determination of abundance for a given peptide identification across all conditions. 93 Results 

yielded a total of 1200 protein identifications and revealed protein abundance characteristics 

indicative of disease progression in breast cancer, such as the observed progressive increase in 

vimentin abundance with more aggressive cell types, a marker of mesenchymal cells and 

indicative of breast cells which have undergone EMT.93 Further, these studies resulted in the 

identification of differentially abundant protein profiles which had not been previously 

implicated in breast cancer, namely adenylate kinase-1 (AK1), copper transport protein 

(ATOX1) and histone H2B type 1-M (HIST1H2BM); which were validated in a larger cohort of 

26 matched normal and breast cancer tissue samples by IHC analysis.93  

 

Proteomic analysis of clinical breast cancer tissues have revealed that discrete tissue 

compartments, i.e. tumor epithelium and adjacent stromal tissues, bear unique proteomic 

signatures122, a finding which underscores the value of obtaining homogenous cellular regions 

utilizing laser microdissection (LM) prior to performing proteomic analysis to ensure cellular 
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populations of interest are enriched for.117, 122 A recent global, proteomic analysis utilizing a 

label-free (spectral count) LC-MS method of LM-captured tumor regions derived from fresh, 

frozen breast tissue specimens obtained from one normal patient and three with IDC resulted in 

the identification of a 60 member protein panel specific for IDC tissues.115 The authors further 

validated the differential abundance observed for one factor, nucleoside diphosphate kinase A 

(NDKA), in a subset of patient tissue samples by western and IHC analysis.115 Clinical samples 

analyzed by -omics technologies are often obtained by biopsy or surgical intervention and as 

these samples are often too precious or exhausted through subsequent clinicopathological 

analyses, it is often difficult to amass a large number of fresh clinical tissue specimens to 

perform analyses with sufficient power. One resource of clinical breast cancer specimens which 

addresses this issue are formalin-fixed, paraffin embedded (FFPE) tissues, a common tissue 

preservation technique utilized for the preparation of clinical samples for pathological analysis.80, 

123 Wide-scale usage of FFPE tissue preservation has resulted in the assembly of vast archives of 

clinical breast cancer tissue that represent excellent resources for conducting retrospective 

proteomic analyses.80 Proteomic versus genomic analyses of FFPE tissues have further revealed 

that the impact of formalin fixation on tissues, which produces protein-protein (lysines, backbone 

amides), protein-DNA and DNA-DNA cross-links, more greatly influences the quality of RNA 

that can be obtained from these tissues than protein.124 123, 125-127  Global protein profiling of 

FFPE tissue samples utilizing various proteomic strategies, such as reverse-phase protein arrays 

and LC-MS methodologies, further when paired with LM, have proven robust.123, 126-131 One 

proteomic analysis of FFPE breast cancer tissues has been described132 and encompassed a proof 

of concept analysis towards optimizing protein/peptide recovery from FFPE tissues for utility in 

a MALDI-TOF Imaging MS strategy. Results revealed peptide spectra were optimally obtained 
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after subjecting samples to a heat-induced antigen retrieval and subsequent trypsin digestion 

regimen.132 Further, data presented in chapters 3 and 4 of this thesis describe two LC-MS-based, 

global proteomic analyses utilizing FFPE clinical breast cancer tissues towards the 

characterization of disease specific protein characteristics.  

 

The primary focus of proteomic research in breast cancer has been directed towards the 

discovery of single or multiple biomarker panels which can accurately diagnose disease and 

which can be profiled from sample sources obtained by minimally invasive means, such as via a 

blood sampling, utilizing commonly employed clinical techniques, such as 

immunohistochemical-based analyses.74, 133, 134 Therefore, many discovery efforts have focused 

on proteins which are actively secreted by tumor cells as protein candidates which may enter into 

lymphovascular circulation, such as “secretome” analyses of spent tissue culture media 

containing proteins secreted from cell line models of human breast cancer cells, as well as 

studies of clinical biofluid samples, such as serum, CSF, and fluids proximal to primary tumor 

sites, such as NAF and breast TIF. 84, 91, 96-121. Biomarker discovery efforts which have 

investigated serum derived from breast cancer patients for disease specific protein patterns have 

been confounded by the dynamic range bias imposed by abundant proteins present in serum and 

thus often employ a depletion strategy to remove these high abundant species prior to LC-MS 

analysis, resulting in enrichment of lower abundant proteins which may be of interest to disease 

biology.97, 99, 135, 136 In the case of a recent global proteomic analysis utilizing a MudPIT LC-

MS/MS strategy of serum samples derived from a cohort of patients with benign breast disease 

or presenting with IDC with or without lymph-node metastasis, serum samples were depleted of 

albumin utilizing an EtOH precipitation method.97 Results yielded a total of 2,078 proteins being 
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identified by at least two peptides across all samples analyzed and differentially abundant protein 

populations by hierarchical cluster analysis of spectral count peptides revealed 41 proteins (± 

~16) which significantly differentiated these various patient groups.97 Further analyses of one 

protein, tenascin-XB (TNXB), which was decreased in IDC patient serum with lymph node 

involvement, in a large patient cohort of 131 serum samples revealed this expression profile was 

specific for this subgroup of patients.97 As dynamic range biases imposed by high abundant 

proteins are factors to consider prior to proteomic analysis of both serum and CSF samples, 

alternative strategies towards characterizing protein populations which are more enriched and 

specific for breast tumor cells have been contrived. 84, 91, 104-114, 119-121 In vitro global, proteomic 

analyses of conditioned media derived from cultured breast cancer cell line models has proven a 

robust strategy for the characterization of proteins that are actively shed from breast cancer 

cells.84, 85, 134, 137, 138 One such study utilized an LC-MS/MS approach to characterize conditioned 

media derived from 3 human breast cell lines, i.e. MCF10A and two cancerous cell lines, BT474 

and MDA-MB-468 cells, which were grown to confluency and cultured in serum-free media, 

resulted in the identification of ~600 proteins across these media conditions.84 One issue with 

this strategy is the concern that proteins present in conditioned media may contain carryover 

serum proteins, as cells are typically established in serum containing media prior to being 

transitioned to serum-free conditions, as well as intracellular proteins released by cells which 

have undergone lysis.84, 134 Characterization of the known cellular localization status via 

bioinformatic analyses for these protein identifications did not indicate that specific enrichment 

of known secreted or ECM-localized proteins was achieved and rather showed that proteins were 

identified from various cellular compartments.84 To increase the confidence that those proteins 

identified from conditioned media were actually the product of shedding by tumor cells, authors 
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performed parallel analyses of corresponding total cell lysates; through comparisons of 

proteomic data sets obtained from lysed cells and conditioned media, it was possible to identify 

secreted protein candidates with higher confidence.84 Interestingly, comparative analysis of 

secreted protein candidates from these studies with previously published proteomic analyses of 

NAF and breast TIF derived from tumor samples (described below) revealed a high degree of 

concordance between conditioned media proteins and those observed in proximal fluid 

analyses.84 Further, these authors inspected the levels of one secreted protein candidate, the 

secreted epithelial proteinase inhibitor elafin, by ELISA analysis of serum samples from three 

groups of breast cancer patients reflective of increasing levels of the cancer antigen CA 15-3 as a 

cohort of patients exhibiting progressively more aggressive disease characteristics.84 CA 15-3 is 

a derivative of the cell-surface associated protein, MUC-1 which has been proposed as a serum 

biomarker of breast early breast cancer. 76, 84 Though initial observations revealed a decrease in 

elafin levels in conditioned media derived from tumorigenic versus normal breast cells, no 

significant pattern of elafin levels in serum from the patient cohort was observed.84  

 

Proteomic analyses of clinical fluids immediately proximal to a primary breast tumor, such as 

NAF, have also yielded provocative breast cancer biomarker candidates. 104-114, 119-121. NAF, or 

breast ductal fluid, is produced by the alveolar-ductal system of the breast and has been an 

attractive resource for breast cancer biomarker discovery as it is a breast-specific proximal fluid 

that is attainable by non-invasive means.139-141 Further, profiling of NAF for carcinoembryonic 

antigen (CEA) and HER2 in abnormal nipple discharge has been approved for the diagnosis of 

breast cancer in Japan.139, 142, 143 Several proteomic analyses of NAF have been reported since 

2001 which have focused on optimizing strategies for analysis of NAF,104-114 characterizing 
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inter-patient variability of NAF proteome characteristics144 and establishing proteomic profiles 

and identifying biomarkers in NAF which are specific for breast cancer.107-114 A recent LC-MS 

analysis of the human NAF proteome which compared samples derived from normal and breast 

cancer patients by spectral count revealed this proximal fluid to contain as many as 896 proteins 

with an average of 37% identified as being localized to the extracellular matrix and 27% to the 

plasma membrane of cells with 41% further overlapping with proteins which have previously 

been observed in normal blood serum.108 It was further shown that the NAF proteome of breast 

cancer patients exhibits significant heterogeneity relative to NAF samples derived from healthy 

individuals and reported the identification of several proteins which have been proposed as 

biomarkers for breast cancer, i.e. urokinase-type plasminogen activator (uPA),76, 145  cathepsin-

D,146 cancer antigen (CA) 15.3147 and tissue plasminogen activator (tPA).148  

 

An additional proximal fluid source for analysis of secreted biomarkers from breast tumor cells 

has been breast TIF (tissue interstitial fluid or tumor interstitial fluid).127-129 Breast TIF is 

obtained from fresh breast tissues acquired immediately post-surgical resection where regions of 

normal and tumor-containing tissues are diced and incubated in phosphate-buffered saline (PBS) 

at 37º C to facilitate the efflux of secreted proteins from cell populations.127-129, 149 The logic 

underlying this strategy is that proteins effluxed from tumor tissues will contain high 

concentrations of secreted, tumor-specific proteins that may become diluted in serum and may 

thus be analyzable by more targeted assays in blood.121, 149 One possible issue arising from this 

strategy are the potential biases imposed by incubation of live tissues in PBS due to this solution 

not being representative of the in situ tissue environment, proffering similar concerns as tissue 

culture-based secretome strategies utilize cells cultured in serum-free media. However, recent 
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assessment of various buffer conditions ranging from PBS and serum free tissue culture media 

(DMEM) to tissue preservation solutions utilized for organ transplantation, such as Celsior 

solution S and histidinetryptophan-ketoglutarate (HTK) solution, revealed no specific buffer 

condition significantly modulated the array of proteins identified by cellular localization in 

recursive proteomic analyses of TIF samples harvested from ovarian and kidney tissues 

incubated in these various buffers, indicating PBS as a suitable buffer to utilize for TIF 

acquisitions.149 The seminal proteomic analysis of breast TIF utilized a 2DE, MALDI-MS 

strategy which analyzed TIF obtained from 16 patients with IDC resulting in the identification of 

267 proteins which predominantly comprised proteins previously known to be localized to the 

cellular cytoplasm as well as present in serum.121 Later analyses by this group using identical 

proteomic workflows focused on comparisons of matched normal and breast tumor tissue-

derived TIF from 69 breast cancer patients.150 Initial analyses were performed utilizing a 

matched pair of normal and tumor TIF derived from a single patient which yielded 110 proteins 

candidates that were robustly increased in tumor versus normal TIF. These initial 110 candidates 

then functioned as a training set for the assessment of 2DE gels profiles of tumor TIF acquired 

from the remaining 68 patients with the goal of identifying a subset of proteins exhibiting similar 

expression trends in at least 90% or more of the patients analyzed.150 Results revealed a panel of 

26 proteins which were observed at increased abundances in all 69 tumor TIF patient samples, a 

subset of 9 was further validated in a larger cohort of 70 malignant breast carcinomas by tissue 

microarray analysis.150 The authors further propose future analyses which will test the feasibility 

of profiling expression of this subset of proteins as biomarkers of breast cancer by simple blood 

tests.150   
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Though evidence has been provided indicating that a variety of compelling breast cancer 

biomarker candidates have emerged from proteomic-based discovery efforts, thus far, a lack of 

sufficient vetting of these factors, particularly in large patient cohort studies, has limited the 

translation of these biomarkers to the clinic.76, 133 Further, when metrics which classically define 

a “good” clinical biomarker, such as those detailing that a marker be highly sensitive for 

identifying individuals with disease and produce a low false-positive rate, i.e. be highly specific 

for these individuals, biomarker candidate performance often falters due to significant inter-

patient variability as well as due to inconsistencies in marker profiling strategies utilized.76, 133, 

134, 151  

 

In the context of –omics technologies actively utilized as clinical breast cancer tools, gene-based 

biomarker discovery efforts utilizing cDNA microarray analysis have yielded two gene 

expression profiling strategies, the Oncotype DX and the FDA-approved Mammaprint platforms, 

which are now commonly utilized by the clinical community, further having expanded the 

repertoire of prognostic strategies available to clinicians.26, 28, 46, 76, 125, 152-154 For example, the 

Oncotype DX assay comprises a 21-gene panel designed for assessment of disease prognosis in 

breast cancer patients with early-stage ER-positive (ER+) disease lacking nodal involvement 

(pN0) which has further been shown to accurately predict 10-year disease recurrence rates in this 

subgroup of patients.125, 154 Further, Oncotype DX assay results are provided as a composite 

recurrence score that has been shown to be effective in determining higher risk patients that may 

benefit from extended hormonal therapies.125, 154 These diagnostic platforms underscore the value 

of assessing disease-associated biomarker panels rather than single factors as these strategies 

increase the sensitivity and specificity of the diagnostic endpoint in question.155 
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1.4: Proteomics of Breast Cancer – Functional Proteomics 

 

The utility of data derived from global proteomic analyses not only functions as a resource for 

the discovery of disease-specific protein signatures which can be directly utilized in clinical and 

diagnostic applications, but further, when combined with bioinformatic analyses of functional 

protein databases, such as gene ontology (GO) identifiers, protein-protein interaction and 

biological pathway networks, the potential to provide significant information regarding 

functional biological characteristics associated with a disease subtype or biological event 

becomes possible. 156, 157 These analyses facilitate the ability to investigate novel questions 

regarding protein functionality and activity in breast cancer, yielding insights which can provide 

the basis for further hypothesis-driven research to elucidate the role of factors of interest. For 

example, in the instance of a single proteomic analysis, consideration of trends in functional 

protein subtypes through comparative assessment with protein databases comprising known 

protein functions or peptide sequences with archives of conserved protein domains known to 

mediate specific protein functions, such as protein kinase or DNA-binding domains, can provide 

insights into predominant systems level biological activities.157 In the context of considering 

protein functionality along with protein abundance, if proteins which exhibit common functional 

characteristics occupy similar regions within the dynamic range of the protein abundances 

observed, such as multiple proteins at high abundances associated with, for example, regulation 

of endosomal transport or with specific cellular signaling cascades, this would support the 

hypothesis that the known functional roles associated with these proteins may play key roles in 

the biological system analyzed. Further, as protein abundance does not directly correspond to 
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protein activity, consideration of protein groups which share similar functionalities not only by 

abundance characteristics, but further in relation to their post-translational modification status, 

such as phosphorylation-state, adds further dimensions to assessment of whether a protein group 

may significantly contribute to the underlying biology of a system.157 In addition, these types of 

observations are strengthened by analysis of a large number of samples, being that consideration 

of protein functionality across larger sample sets enables more focused discovery of central 

themes conserved across similar systems, further aiding to highlight characteristics which are 

unique to subtypes that diverge from central system features. This course of logic is particularly 

powerful towards the characterization of conserved and divergent functional protein 

characteristics in cancer biology, particularly in the case of breast cancer, due to the high degree 

of molecular heterogeneity associated with these diseases.  

 

Methods to perform these analyses are diverse and are focused on statistical measurements of 

confidence determining whether a given protein or protein group and corresponding functional 

roles are significantly overrepresented within a given data set versus the possibility that this 

observation is occurring due to random chance, i.e. the null hypothesis.157-161 The most 

commonly utilized strategy to assess functional characteristics within large gene or protein data 

sets utilize GO terms, which are hierarchical categories of specific biological functions that 

correspond to three main functional sub-groups, those associated with 1) biological process 2) 

molecular function and 3) cellular component, and a given gene or protein is assigned to a 

category based on published findings and correlative functional protein domains.157, 162 Various 

tools, such as NIH DAVID163 and the CytoScape plug-in ClueGO161, facilitate calculation of 

enriched GO terms via referencing user-defined data sets against GO databases and provide 
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measures of significance as to whether a given GO category is overrepresented in a data set 

through occupancy of experimental candidates in that GO category.157 Further, proprietary 

functional analysis tools, such as Ingenuity Pathway Analysis (IPA Systems, 

www.ingenuity.com), afford the comparison of multiple functional databases to a user data set to 

discern significantly enriched biological functions, further enabling direct assessment of the 

primary findings in which a given association between a gene/protein and function was initially 

derived, enabling users tools to determine whether an observation is made in a similar species, 

disease subtype or biological system.157 Aside from assessment of enriched functional 

characteristics within proteomic data sets, several tools, including CytoScape and IPA, are also 

focused towards the identification of protein interaction networks derived from comparisons with 

established protein interaction databases compiled from large-scale yeast two-hybrid and 

synthetic lethal screens as well as maps of immunoprecipitated protein complexes and protein-

DNA interaction networks to enable characterization of signal transduction and protein 

interaction networks.158, 159, 164 

 

In the context of breast cancer, several global proteomic analyses of human breast cancer cell 

lines have been published which have focused on elucidation of functional protein characteristics 

associated with breast cancer pathogenesis.69, 89, 90 One such study detailing an LC-MS based 

proteomic analysis of four breast cell lines, one representative of normal mammary epithelium 

(HMEC) and three breast tumor cells (MCF7, MDA-MB-231 and BT-474) resulted in the 

identification of 2235 proteins across all cell lines, 234 of which were mutually observed in all 

conditions. 90 Mutually observed proteins were then 1) compared to microarray data previously 

published for these cell lines, 2) analyzed for the prevalence of underlying protein interaction 
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networks within this group and 3) investigated further for potential PTMs.90 Results revealed 

nine proteins which exhibited similar protein and gene expression trends across the cell line 

conditions which further clustered in discrete protein interaction networks via assessment of 

these factors against the Biomolecular Interactions Database.90 These results further revealed the 

modulation of several integrin isoforms (proteins associated with intercellular interactions) as 

being decreased across tumor cell lines as well as factors which have been shown to be key 

mediators of tumorigenicity in breast cancer cells, such as epidermal growth factor receptor 

(EGFR).90 Assessment of PTMs within this subset of proteins via variable modification searches 

considering phosphorylation, acetylation, O-GlcNAc, palmitoylation, C-mannosylation, 

hydroxylation, glucosylation, and S-nitrosylation PTM events revealed cancer cell line specific 

modifications, such as phosphorylation of alpha catenin (CTNNA1), a key member of cellular 

adherens junctions, as well as O-GlcNAc modification of coronin-1B, a cytoskeletal protein 

associated with cell motility and cytokinesis.90 Additionally, an inferred protein-network analysis 

comparing microarray data generated from two large cohort studies of primary breast cancer 

patients with and without metastatic disease with previously established protein-protein 

interaction databases resulted in the identification of metastasis-specific protein sub-networks.156 

Specifically, the authors identified factors previously associated with breast cancer pathogenesis, 

such as p53 and HER2, as well as interacting network proteins which exhibited discrete 

expression trends in metastatic versus non-metastatic groups.156 Data was further provided 

showing that metastasis-specific sub-networks identified from one microarray analyses could 

accurately predict individuals with metastatic disease in the corresponding data set ~50% of the 

time.156 An additional analysis derived from microarray studies characterizing key oncogenic 

signaling factors in breast cancer further revealed provocative evidence that assessment of 
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pathway activation state can provide another dimension to standard disease subtype classification 

conventions that extend beyond ER, PR and HER2 profiling alone. 165  These findings were 

further proposed as a strategy to identify higher risk patients in these subgroups towards the 

development of more tailored therapeutic strategies.165 Though the utility of functional proteomic 

as well as genomic data are just beginning to be realized, the correlation of a given gene or 

protein group factors of interest with previously published observations associating a factor with 

a specific functional biological role may aid in selecting targets for future investigations for their 

role in a disease state, further expanding the knowledge-base surrounding both the factor of 

interest and the associated disease process.         

 

1.5: Introduction to Data Chapters 

 

The following thesis comprises studies focused on the application of proteomics and subsequent 

bioinformatics towards discerning differential protein abundance and associated functional 

characteristics which underlie tumorigenesis and neoplastic progression in breast cancer. The 

data detailed in chapters one166, 167 and two are focused on in vitro analyses of conserved protein 

abundance and functional characteristics across divergent molecular subtypes of breast cancer as 

well as towards the identification of proteins regulated by the breast cancer associated 

microRNA, miR-145. Data chapters three168 and four are focused on the proteomic analysis of 

formalin-fixed paraffin embedded clinical breast cancer tissues towards the characterization of 

protein abundance characteristics which are indicative of disease stage, stage-specific 

characteristics, such as lymph-node involvement, as well as of disease recurrence in breast 

cancer.   
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2.0. CHAPTER 1: DEFINING CENTRAL THEMES IN BREAST CANCER BIOLOGY 

BY DIFFERENTIAL PROTEOMICS: CONSERVED REGULATION OF CELL 

SPREADING AND FOCAL ADHESION KINASE 

The molecular heterogeneity encountered in breast cancer underscores the importance of better 

defining the gene and protein abundance patterns that are conserved across breast cancer cells 

with the goal of defining context-specific characteristics that will aid in the development of more 

targeted therapeutic strategies. The combination of global proteomic analyses with bioinformatic 

analyses of functional protein databases can provide insights into the overarching biological 

characteristics present in a sample analyzed. The definition of protein abundance and subsequent 

functional biological characteristics that are conserved across breast cancer cells will clarify the 

central themes underlying neoplastic progression and further aid to discern disease subtype-

specific characteristics. 

 

Although several groups have reported global, proteomic analyses of various breast cancer cell 

line models82-88, few focused analyses of the functional biological characteristics associated with 

differentially abundant proteins across breast cancer cell types have been described.69, 89, 90 We 

have therefore undertaken a comparative global, mass spectrometry (MS)-based proteomic 

analysis of three divergent cell line models of breast cancer reflective of the most common 

clinical breast cancer subtypes encountered25, 27, 28, 30 and a model of normal mammary epithelial 

cells with the goal of better defining protein abundance and functional biological characteristics 

which are mutually shared across breast cancer cells. The three breast cancer cell lines 

investigated include: MCF7, an estrogen receptor (ER) positive breast cancer cell line that 

exhibits luminal-like characteristics and is non-invasive, yet tumorigenic in the presence of 
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exogenous estrogen169-173; SK-BR-3, a luminal-like, HER2/neu positive breast cancer cell line 

that is non-invasive, yet tumorigenic; and MDA-MB-231, a basal/mesenchymal-like ER-/PR-

/HER2- (“triple negative”), highly invasive and aggressively tumorigenic breast cancer cell 

line.169-172, 174 The proteomic analyses of these three breast cancer cell lines were compared with 

a model of normal mammary epithelial cells: MCF10A, a non-tumorigenic, spontaneously 

immortalized breast cell line reflective of normal mammary epithelium that exhibits basal-like 

characteristics.169, 171, 172, 175 

 

A systems analysis utilizing Ingenuity Pathway Analysis (IPA) revealed significant modulation 

of extracellular matrix (ECM), plasma membrane and nuclear-localized proteins across tumor 

cell lines relative to MCF10A cells. These characteristics have been previously found to be 

indicative of breast cancer cells, with ECM modulation specifically as being shown to be an 

integral event underlying breast cancer pathogenesis.11, 12, 176 Functional analyses of differentially 

abundant proteins across breast cancer cell lines revealed modulation of proteins associated with 

regulation of cell morphology, specifically with losses of proteins previously shown to promote 

“cell spreading”. These observations are supported by the anchorage-independent phenotypes 

maintained by the breast cancer cell lines analyzed.170, 174 The present investigation further 

resulted in the identification of 82 proteins which are mutually, differentially abundant across 

three divergent cell line models of breast cancer. This subset included proteins which have 

previously been shown to regulate the focal adhesion complex protein focal adhesion kinase 

(FAK), a fundamental regulator of cell spreading and a key player in breast cancer 

pathogenesis.177 Differentially abundant protein populations reveal that modulation of ECM and 

nuclear protein composition, as well as proteins associated with regulation of cell spreading and 
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focal adhesion kinase expression levels and activity are characteristics which are mutually 

conserved across breast cancer cells.  

 

Materials and Methods 

 

Cell Lines and Lysate Preparation 

MCF10A, MCF7, SK-BR-3 and MDA-MB-231 cell lines were purchased from ATCC 

(American Type Culture Collection) and cultured in DMEM/F12K media supplemented with 

10% fetal bovine serum (Hyclone, Logan, UT). Lysates were prepared from ~70% confluent 

plates by scraping cells into 150 µl of 1X SDS buffer (10% SDS and 10 mM Tris-HCl, pH 7.4). 

Samples were sonicated twice for 10 s at an energy of 1.5 W utilizing a micro-tip sonicator 

(Misonix, Indianapolis, IN) followed by centrifugation at 14,000 x g for 10 min. Protein 

concentration of the supernatants was determined by the bicinchoninic assay (BCA) (Pierce, 

Rockford, IL). 

 

Sample Preparation for LC-MS/MS 

Thirty-five µg of total cell lysate were resolved in two consecutive gel lanes via 1D SDS-PAGE 

on a 4-12% Bis-Tris gel (NuPAGE, Invitrogen, Carlsbad, CA). Gels were stained with 

Coomassie blue (SimplyBlue SafeStain, Invitrogen) and duplicate lanes were cut into ten 

equivalently sized slices. Gel slices were de-stained in 50% acetonitrile (ACN) and 50 mM 

ammonium bicarbonate (AMB) at ambient temperature for 3 h followed by dehydration in 100% 

ACN. Reactive cysteine residues were reduced via re-hydration of gel spots in 10 mM DTT, 25 

mM AMB followed by incubation at 56 °C for 30 min and alkyated via incubation in 55 mM 
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iodoacetamide, 25 mM AMB for 30 min at ambient temperature in darkness. Gel slices were 

then washed with 25 mM AMB, dehydrated in 100% ACN and re-hydrated in 25 mM AMB 

containing 20 µg/mL porcine sequencing grade modified trypsin (Promega, Madison, WI) on ice 

for 30 min. Digestions were incubated for 16 h at 37°C. Tryptic peptides were extracted with 

70% ACN, 5% formic acid (FA), dried by vacuum centrifugation and re-suspended in 40 µl of 

0.1% trifluoroacetic acid (TFA). In addition, 10 fmol/µL of three internal standard peptides, 

VTIASLP13C10R, FLVGPDGIPIMox13C10R and TGISPALI13C6K, were added to each sample 

digest to monitor LC-MS/MS analytical performance parameters.  

 

Liquid chromatography-tandem mass spectrometry analyses  

Peptide digests were resolved by nanoflow reverse-phase liquid chromatography (Ultimate 3000, 

Dionex Inc., Sunnyvale, CA) coupled online via electrospray ionization to a hybrid linear ion 

trap-Orbitrap mass spectrometer (LTQ-Orbitrap, ThermoFisher Scientific, Inc., San Jose, CA). 

Duplicate injections of 5 µL of peptide extracts were resolved on 100 µm i.d. by 360 µm o.d. by 

200 mm long fused silica capillary columns (Polymicro Technologies, Phoenix, AZ) slurry-

packed in-house with 5 µm, 300 Å pore size C-18 silica-bonded stationary phase (Jupiter, 

Phenomenex, Torrance, CA). After sample injection, peptides were eluted from the column using 

a linear gradient of 2% mobile phase B (0.1% FA in ACN) to 40% mobile phase B over 125 min 

at a constant flow rate of 200 nL/min followed by a column wash consisting of 95% B for an 

additional 30 min at a constant flow rate of 400 nL/min. The LTQ-Orbitrap MS was conFigured 

to collect high resolution (R=60,000 at m/z 400) broadband mass spectra (m/z 375-1800) from 

which the seven-most abundant peptide molecular ions dynamically determined from the MS 

scan were selected for tandem MS using a relative CID energy of 30%. Dynamic exclusion was 
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utilized to minimize redundant selection of peptides for CID. Analytical metrics of LC-MS/MS 

performance (mass measurement accuracy and retention time) were monitored for each sample 

analyzed using three stable isotope, internal standard peptides by calculating reconstructed mass 

chromatogram areas for each standard peptide using QuanBrowser (XCalibur v2.1, 

ThermoScientific). QuanBrowser processing method parameters tolerated ± 15 ppm mass 

accuracy and ± 5.0 min in retention time relative to monoisotopic masses and retention times 

estimated from manual inspection of internal standard peptides from representative raw data. 

 

Peptide Identification and Spectral Count Analysis 

Peptide identifications were obtained by searching the LC-MS/MS data utilizing SEQUEST 

(BioWorks, v3.2, ThermoScientific) on a 72-node Beowulf cluster against a UniProt-derived 

human proteome database (version 10/08, 56,301 protein entries) obtained from the European 

Bioinformatics Institute (EBI) using the following parameters: trypsin (KR); full enzymatic-

cleavage; two missed cleavages sites; 20 ppm peptide mass tolerance peptide tolerance, 0.5 amu 

fragment ion tolerance; and variable modifications for methionine oxidation (m/z 15.99492) and 

cysteine carboxyamidomethylation (m/z 57.02146); data analysis revealed 10.7% (±1.3%) of all 

cysteine-containing peptides were non-reacted. Resulting peptide identifications were filtered 

according to specific SEQUEST scoring criteria: delta correlation (∆Cn) ≥ 0.08 and charge state 

dependent cross correlation (Xcorr) ≥ 1.9 for [M+H]1+, ≥ 2.2 for [M+2H]2+, and ≥ 3.5 for 

[M+3H]3+. These criteria resulted in a false discovery rate of 0.4% for all peptides identified as 

determined by searching the data set against a decoy human database where the protein 

sequences were reversed.178 Differences in protein abundance between the samples were derived 

by spectral counting (SC) and peptides whose sequence mapped to multiple protein isoforms 
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were grouped as per the principle of parsimony.179 Equivalency in peptide load was also 

determined by comparison of the spectral count values for the protein actin, cytoplasmic 1 

(ACTB) across all samples.180 Differential protein abundance was calculated by normalizing 

total peptide spectral counts observed in the LC-MS/MS analysis of MCF7, SK-BR-3 and MDA-

MB-231 conditions against total spectral counts from MCF10A. A value of 0.5 was added to 

each spectral count value prior to log2 transformation to enable ratio values to be calculated for 

proteins identified in one cell line, but not another.181 Proteins which exhibited a > 95% 

confidence interval from the mean for each comparison performed were considered statistically 

significant. 

 

Bioinformatic Analyses 

Uniprot accessions corresponding to proteins identified by at least two peptides were mapped to 

HUGO (HGNC) gene symbols utilizing Ingenuity Pathway Analysis (IPA) (Ingenuity® 

Systems, www.ingenuity.com). Accessions which failed to map were converted to IPI identifiers 

with the mapping utility available at www.uniprot.org and re-mapped to IPA to maximize 

protein identifications available for downstream bioinformatic analyses. Protein localization and 

subtype assignments were derived from IPA-mapped data sets. Statistical analyses for the 

enrichment of specific protein sub-types amongst differentially-expressed proteins were 

performed utilizing a two proportions–z test, with a significance level set to p ≤ 0.05. Functional 

analysis of significant protein lists were performed utilizing the “Core Analysis” function in IPA 

using default parameters. Significant (p < 0.05) biofunctions containing a minimum of two 

associated proteins were correlated from each “Core Analysis” by functional annotation across 

global significant protein lists. Network and protein interaction analyses were also performed 
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utilizing IPA for mutually, differentially abundant proteins in which a maximum of 35 proteins 

for network assignment were allowed. 

 

Western Blot Analyses 

Twenty-five micrograms of total cell lysate derived from biological replicates of cell line 

conditions analyzed was resolved via 1D SDS-PAGE and resulting gels were transferred to a 

PVDF membrane at a constant 30V / 160 mA for 2 h. Blots were blocked for 1 h at 37 °C in 1X 

blotto (5% dehydrated milk, 0.1% Tween-20 and 1X TBS) followed by incubation in primary 

antibody diluted in 1X blotto overnight at 4 °C. Blots were washed in 1X TBST (1X TBS, 0.1% 

Tween-20 (Sigma Aldrich, St. Louis, MO) followed by incubation in secondary antibody for 1 h 

at ambient temperature. Blots were washed again in 1X TBST followed by incubation in 

chemiluminescent substrate (SuperSignal West Pico or Dura, Rockford, IL) for 5 min at ambient 

temperature. Primary and secondary antibody conditions utilized were as follows: goat anti-

rabbit IgG-HRP (1:10,000) (Abcam, Cambridge, MA: ab6721), goat anti-mouse IgG-HRP 

(1:50,000) (Pierce: 31432), goat, anti-Rat IgG HRP (1:10,000) (RND Systems, Minneapolis, 

MN: HAF005), anti-beta actin (1:10,000) (Abcam: ab6276), anti-Cytokeratin 19 (1:1000) 

(Abcam: ab15463), anti-CD10 (MME/Neprilysin) (1:1000) (Abcam: ab951), anti-integrin alpha 

11 (1:250) (RND Systems: MAB4235), anti-TGFBI (1:1000) (Abcam: ab89062), anti-FAK 

(1:1000) (Abcam: ab40794), anti-Hic5 (1:1000) (TGFBI1I) (BD Biosciences, Franklin Lakes, 

NJ: BDB611164), anti-TNC (1:200) (RND Systems: MAB2138). 
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Results and Discussion 

 

Global proteomic analysis of human breast cell line models  

Global proteomic analyses of three breast cancer cell line models (MCF7, SK-BR-3 and MDA-

MB-231) reflective of the most common clinical breast cancer subtypes encountered were 

compared with a model of normal mammary epithelial cells MCF10A to identify central themes 

in protein abundance and functional characteristics underlying the transformed phenotypes of 

these key model systems of breast cancer (Fig. 5 - Workflow). Duplicate, LC-MS/MS analyses 

of tryptic peptides corresponding to 70 µg of total protein from each cell line condition on an 

LTQ-Orbitrap resulted in a total of 39,158 peptide identifications and 5,030 proteins identified 

Figure 5: Analytical workflow utilized for differential and comparative proteomic analysis

four breast cell lines analyzed.
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by at least two peptides (Fig. 6). Equivalency of protein digest input for each cell line was 

determined by comparison of the total number of peptides identified across all four cell lines 

analyzed by LC-MS/MS, revealing a relative standard deviation (RSD) of 12.3%, with total 

mean RSD peptide identification rates between replicate sample injections of 2.7% (± 2.7%). 

Equivalent peptide digest input was further confirmed by comparison of total peptides identified 

for beta-actin (ACTB, Fig. 11) commonly utilized as a loading control for western blot 

analysis,180 which revealed an RSD value of 23.1% across all cell lines analyzed. Metrics of 

analytical performance were further monitored by comparison of retention time and mass 

chromatogram area variance for three internal standard peptides that were added to each sample 

Figure 6: Protein identification characteristics across four breast cell lines 

analyzed. A four-way Venn diagram detailing the total number of proteins identified and 

co-identified in each breast cell line analyzed. Proteins reported were derived from two 

technical LC-MS/MS replicates of each cell line and were identified by at least two 

peptides.  
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prior to LC-MS/MS analysis. These results show an aggregate peak area RSD of 25.1% (± 9.6%) 

for the three control peptides across the 80 LC-MS/MS analyses that were conducted. Taken 

together, these results provide strong evidence that the global protein digest input into the LC-

MS/MS analyses was equivalent across all cell lines analyzed. This observation critically 

underpins determination of significant, differentially abundant proteins by spectral counting 

without the need for normalization. These analyses resulted in the coincident identification of 

1,778 proteins across all cell lines (Fig. 6, region IX). Proteins identified in both MCF7 and SK-

BR-3 (2,540 proteins, Fig. 6, region VI) revealed the greatest overlap in a qualitative two-way 

comparison and between MCF7, SK-BR-3 and MDA-MB-231 (2,078) in a three-way 

comparison (Fig. 6, region X). Interestingly, the greater overlap of proteins identified between 

MCF7 and SK-BR-3 cells is consistent with these cell lines both exhibiting characteristics of 

luminal-type breast cancer cells.169, 171, 172  

 

Uniprot accessions numbers corresponding to proteins identified were mapped to HUGO gene 

symbols (HGNC) utilizing IPA, yielding a final list of 4,859 proteins that were included in 

subsequent bioinformatic analyses. Comparison of known cellular localization and protein 

subtype characteristics for final mapped data sets revealed that proteins were consistently 

identified from similar cellular compartments and functional sub-types between the four cell 

lines analyzed. 

 

Comparative analysis of proteins differentially abundant in individual comparisons of 

breast cancer cell lines versus non-transformed MCF10A cells. 

 



40 

Spectral count ratios of proteins identified in the breast cancer cell lines MCF7, SK-BR-3 and 

MDA-MB-231 exhibiting a >95% confidence interval relative to proteins identified in MCF10A 

cells were considered as significantly differentially abundant, with the average cut-off for 

increased abundance being log2 (3.48 ± 0.48) and decreased abundance log2 (-3.04 ± 0.14). The 

results revealed a total of 784 unique protein groups as differentially abundant across all breast 

cancer cell lines analyzed, with 379 of these (mean of 163 ± 5) as increased and 405 (mean of 

219 ± 26) as decreased in abundance (Fig. 7A). Significant, differentially abundant proteins 

amongst the breast cancer cell lines include hallmark candidates that are well established in the 

Figure 7: Identification characteristics for significantly, differentially 

abundant proteins in breast cancer cell lines. A. A three-way Venn diagram 

comparing the number of significantly, differentially abundant proteins 

observed across breast cancer cell lines relative to MCF10A cells. The central 

“grayed” region designates the 82 proteins which were observed as being 

mutually, differentially abundant across all breast cancer cell lines relative to 

MCF10A cells. B. Comparison of proteins identified by cellular localization 

across global proteins identified versus significantly, differentially abundant 

proteins observed in breast cancer cell lines. Significant, differential enrichment 

is designated by *, p<0.05.  
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literature, such as increased abundance of E-cadherin (CDH1) observed in MCF7 cells (log2 4.6 

fold-change), high levels of HER2/neu (ERBB2) in SK-BR-3 cells (log2 5.4) and high EGFR 

levels in MDA-MB-231 cells (log2 4.2).169, 172, 182 Significant increases in the number of ECM 

localized proteins and decreases in nuclear-localized proteins were observed amongst 

differentially abundant proteins across breast cancer cell lines (Fig. 7B). This profile is supported 

by the notion that modulation of nuclear and ECM protein composition are characteristic of 

breast cancer cells and occurs during breast tumorigenesis.10-12, 16, 176 To define overarching 

functional characteristics amongst differentially abundant proteins significant (p<0.05) biological 

functions (biofunctions) observed via “Core Analysis” (IPA) of protein lists from each tumor cell 

line were correlated. A total of 10 significant biofunctions overlapped between proteins with 

increased abundance and 147 between proteins decreased in abundance across all tumor cell line 

conditions. These results indicate that proteins decreased in abundance across the breast cancer 

cell lines share greater functional similarities in comparison with proteins increased in abundance 

relative to MCF10A. The top ten scoring overlapping biofunctions between differentially 

abundant proteins from all breast cancer cell lines (Fig. 8) were associated with two predominant 

functional categories, cancer (4/10 total) and “cell morphology” (3/10), and included specific 

sub-categories, such as tumorigenesis, as well as those relating to cell spreading, respectively. In 

comparing these results with the top ten scoring biofunctions observed for proteins exhibiting 

increased or decreased abundance, coordinate losses and gains in proteins associated with the 

functional category of cancer are observed across all breast cancer cell lines (Fig. 8). Proteins 

associated with the biofunction category “cell morphology” were predominantly decreased in 

abundance across tumor cell lines, however, with the majority being associated with the specific 

sub-category of cell spreading (Fig. 8). 
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Cell spreading describes the transition a cell undergoes from a rounded to a more “flattened” 

morphology during anchoring to a substratum.183, 184 This event is mediated via reorganization of 

the cellular actin cytoskeleton and through the establishment of focal adhesion complexes, 

Figure 8: Identification of functional characteristics across proteins 

significantly, differentially abundant in breast cancer cell lines. Top 

10 significant biofunctions observed across differentially abundant 

protein lists identified from each breast cancer cell line. Figure reports 

average p-values observed and mean number of proteins which clustered 

with a given biofunction.  

 



43 

predominantly comprising cellular integrins, that mediate communication between the 

intracellular and extracellular environments through interactions with ECM proteins.12, 183, 184 

ECM anchoring is required for normal epithelial cell survival, which is an event termed 

anchorage-dependence, with survival in the absence of these interactions, or anchorage-

independence, being a hallmark characteristic of cellular transformation17, 184 In the normal 

mammary epithelium, ECM interactions are maintained with the collagen- and laminin-rich 

basement membrane (BM) separating the epithelial compartment from adjacent stromal tissues 

and these interactions provide cues that function to inhibit apoptosis and promote cell survival.16, 

185, 186 Anchorage-dependent MCF10A cells have been shown to actively secrete laminins in 

culture, specifically laminin-5, the expression of which has been further shown to be 

characteristic of non-tumorigenic mammary epithelial cells.12, 185-187 Assessment of laminin-5 

abundance in our data revealed high abundances in MCF10A cells and significantly decreased 

levels in MDA-MB-231 cells, as well as low levels in MCF7 and SK-BR-3 conditions. Further, 

MCF10A cells exhibit morphological characteristics of normal mammary epithelial cells in 

culture, having a flattened appearance and forming defined epithelial sheets.182, 188, 189 MCF7 and 

SK-BR-3 cells deviate from these characteristics in that they form tight colonies of polygonal 

cells in culture, with SK-BR-3 cells exhibiting even greater morphological heterogeneity that 

includes semi-adherent, spheroidal cell populations, and are thus considered less differentiated 

than MCF7 cells.182. Lastly, MDA-MB-231 cells exhibit a mesenchymal or fibroblastic-like 

morphology in culture as they have undergone epithelial to mesenchymal transition, forming 

erratic networks of spindle shaped cells.182 Comparison of cell spreading and subsequent cell 

survival in normal versus H-RAS-transformed fibroblasts has revealed a direct correlation 

between the degree of cell spreading and survival in normal cells that is not observed in 
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transformed cell types.189 These findings clarify the observed loss of proteins associated with cell 

spreading in the breast cancer cell lines analyzed as, unlike MCF10A cells, all three breast 

cancer cell lines analyzed are capable of sustaining anchorage-independent growth.170, 174 

Therefore, as MCF7, SK-BR-3 and MDA-MB-231 cell lines represent a range of more to less 

differentiated breast cancer cell types,182 respectively, and as a significant loss of proteins 

associated with the regulation of cell spreading is observed across all conditions, these alterations 

may represent early events in the transformation of mammary epithelial cells.  

 

Comparative analysis of mutually, differentially abundant proteins observed across breast 

cancer cell lines versus non-transformed MCF10A cells. 

 

A comparative analysis of mutually, differentially abundant proteins revealed a total of 82 

proteins that were identified in all three breast cancer cell lines relative to MCF10A cells (Table 

2). The majority of these proteins were decreased in abundance (n=68) in all breast cancer cell 

lines versus a small subset which were increased (n=13). A single exception to this was filamin 

C gamma (FLNC), a protein commonly increased in mesenchymal cell types,169 which was 

significantly increased in MDA-MB-231 cells (log2 4.1) though decreased in MCF7 and SK-BR-

3 cells (log2 -4.2 (± 1.1). Unlike the other breast cancer cell lines analyzed, this observation is 

consistent with MDA-MB-231 cells having undergone epithelial to mesenchymal transition and 

may be a novel characteristic of this event. Consistent with previous reports comparing normal 

and breast cancer cells and tissues, we observed increased levels of keratin-19 (KRT19) (Fig. 11) 

169, 190, glutathione s-transferase mu 3 (GSTM3)85, as well as decreases in levels of tropomyosin 

1.83 Analysis of protein localization amongst this mutually dysregulated protein subset revealed 
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significant increases in both plasma membrane and ECM proteins and decreases in nuclear 

proteins relative to total, differentially abundant protein populations identified across all breast 

cancer cell lines (Figure 9A). This observation further underscores the modulation of ECM and 

nuclear protein composition as central themes of breast cell transformation, further adding 

modulation of plasma membrane protein composition as a characteristic conserved across breast 

cancer cells.10, 12, 16 Evaluation of this subset of 82 differentially abundant proteins revealed 

decreases in several canonical basement membrane proteins, such as the proteoglycan heparin 

sulfate proteoglycan 2 (HSPG2) as well as several collagen isoforms, including two type 4 

collagens, alpha 1 (COL4A1) and alpha 2 (COL4A2) (Table 2). HSPG2 and type 4 collagens are 

well known constituents of the basement membrane in normal mammary epithelium and loss of 

expression is commonly observed during breast cancer pathogenesis.191-193 Interestingly, a 26-

kDa region of COL4A1, termed arresten, has been shown to possess tumor suppressor and anti-

angiogenic properties in murine models of tumor metastasis.194-196 Further, a 24-kDa region of 

COL4A2, termed canstantin, has also been similarly shown to inhibit tumor growth and 

discourage angiogenesis in xenograft models of tumorigenesis and in in vitro analyses of 

endothelial cells, respectively.194, 196, 197 Indeed, coordinate losses of various basement membrane 

proteins, several of which have been shown to possess tumor suppressor functions, across breast 

cancer cell lines analyzed underscores their anchorage-independent phenotypes and is consistent 

with their tumorigenic phenotypes. 
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Table 2: Mutually, Differentially Abundant Proteins Observed Across B.Cancer Cells
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Modulation of proteins associated with regulation of cell spreading is conserved across 

breast cancer cell lines.  

Further analysis of this protein subset revealed that the top ten significant biofunctions amongst 

this group clustered into two predominant functional categories, cell development (4/10) and cell 

morphology (4/10), including specific biofunctions associated with cell adhesion (adhesion of 

fibroblast cell lines) and overlap between these functional categories and various subcategories 

associated with the regulation of cell spreading (Fig. 9B). The significance of cell spreading 

amongst this mutually dysregulated protein subset underscores this cellular event as being a 

central characteristic of breast cancer cells. The subcategories associated with cell spreading 

encompass proteins derived from in vitro characterization of this event in eukaryotic and 

fibroblast cell types.198-213 A total of eleven proteins were associated with all four cell spreading 

sub-categories combined (Fig. 9B) and each were significantly decreased in abundance across all 

tumor cell lines relative to MCF10A cells, with the exception of FLNC which was observed at 
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increased levels in MDA cells. Of these 11 proteins, nine have been shown to directly promote 

cell spreading (Table 1, HGNC symbols designated as (a), 198, 199, 201-205, 207, 209-211, 213 with the 

remaining two having been found to either decrease or variably impact cell spreading (Table 1, 

HGNC symbols designated as (b).200, 204, 206-208, 212   

  

 

Several of these proteins that promote cell spreading have been shown to be mutated or lost with 

disease progression in breast cancer and include fibrillin (FBN1), fibroblast growth factor 2   

(FGF2), transforming growth factor, beta-induced (TGFBI) and tropomyosin 1 alpha (TPM1).83, 

214-216 In breast cancer, single nucleotide polymorphisms have been observed in the gene 

encoding the structural microfibrillar, ECM glycoprotein FBN1.216  Expression of the ECM 

Figure 9A: Protein identification characteristics for proteins that were 

mutually, differentially abundant across breast cancer cell lines. A: Comparison 

of proteins identified by cellular localization across global significantly, 

differentially abundant proteins versus mutually (co-differentially) abundant proteins 

observed in breast cancer cell lines. Significant, differential enrichment is designated 

by *, p<0.05.  
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protein TGFBI, also known as BigH3 (Fig. 11), the cytoskeletal protein TPM1 as well as the 

growth factor FGF2 have all been shown to be lost with neoplastic progression in breast cancer 

and in cancerous versus normal breast cell types.83, 214, 215 Conversely, three proteins previously 

shown to promote cell spreading, the type 1 transmembrane protein anthrax toxin receptor 1  

(ANTXR1), integrin alpha 11 (ITGA11, Fig. 11) and the putative cell adhesion protein periostin, 

osteblast-specific factor (POSTN), have been found to be increased in breast cancer.217-219 

Expression of ANTXR1, also known as Tem8, has been shown to be increased in breast cancer 

tissues, and further to be a marker of microvasculature in the tumor endothelium of breast 

cancers.217 Further, POSTN has been shown to be increased in expression at both the gene and 

protein levels in breast cancer tissues.218, 219 

 

The remaining two proteins observed in this subset of 11 cell spreading associated 

proteins have been shown to either inhibit or variably impact cell spreading, one being the 

transcriptional regulator transforming growth factor beta 1 induced transcript 1 (TGFB1I1, Fig. 

11) and the other the ECM protein tenascin–C (TNC, Fig. 11), respectively. TGFB1I1, or Hic-5, 

has been shown to decrease cell spreading in fibroblast cells and, in the context of breast cancer, 

TGFB1I1 has been shown to play an integral role in mediating glucocorticoid signaling in breast 

cancer cells and capable of promoting epithelial to mesenchymal transition when ectopically 

expressed in MCF10A cells. 206, 220, 221 Additionally, TNC has been shown to variably impact cell 

spreading in neural and leukemia cancer cells 200, 204, 212 and, in the context of breast cancer, to 

exhibit increased levels in breast tumor stroma as well as in breast cancer cells, including MDA-

MB-231 cells, further being shown to promote angiogenesis and metastasis in breast cancer 

through the activation of oncogenic signaling cascades such as mitogen-activated protein kinase 



50 

(MAPK) and Wnt.222, 223 TNC binds various ECM proteins such as HSPG2 as well as 

fibronectin, which we observe as being significantly abundant in MCF10A cells relative to the 

tumor cell lines analyzed. When taken together, the array of ECM proteins expressed in 

MCF10A cells relative to all breast cancer cell lines analyzed, combined with the propensity of 

Figure 9B: Protein identification characteristics for proteins that were 

mutually, differentially abundant across breast cancer cell lines. Top 10 

significant biofunctions observed across mutually, differentially abundant 

proteins across breast cancer cell lines. Figure reports average, significant p-

values observed and mean number of proteins observed which clustered with a 

given biofunction.  
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TNC to directly interact with these ECM factors, may produce an ECM context discouraging 

induction of aberrant signaling by TNC. The predominant loss of proteins that function to 

promote cell spreading across tumor cell lines is supported by the aberrant morphologies and 

anchorage-independent phenotypes maintained by these cell types.182, 224 Further, as the majority 

of these factors have been shown to be lost with disease progression in breast as well as other 

forms of cancer,83, 214-216, 225, 226this subset of proteins may play an integral role in the onset of 

key events that support mammary epithelial cell transformation, such as promoting a loss of 

contact inhibition as well as anchorage-independent growth.   

Figure 10: Network analysis of mutually, differentially abundant 

proteins observed across breast cancer cell lines. Top protein network 

derived from “Core Analysis” of significant co-identified proteins. Orange 

arrows denote those proteins which clustered specifically with FAK.  

 



52 

 

Network analysis reveals several mutually, differentially abundant proteins cluster with 

focal adhesion kinase, (FAK) a key regulator of cell spreading.  

Investigation of cell signaling networks associated with this subset of differentially expressed 

proteins revealed the top scoring network to include 28 out of the 82 (34%) differentially 

expressed proteins observed across all breast cancer cell lines (Fig. 10). This 28- member 

network comprises predominantly ECM, plasma membrane and cytoplasmic proteins and 

includes several basement membrane proteins, such as HSPG2 and several collagen isoforms, in 

addition to seven proteins associated with regulation of cell spreading, e.g. FBN1, FGF2, 

ITGA11, PALLD, TGFBI, TNC and TPM1. Proteins involved in this network as inferred by IPA 

include the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), platelet-

derived growth factor, BB dimer variant (PDGF-BB) and focal adhesion kinase (FAK). When 

considering this network in the context of the recurring functional theme of cell spreading 

observed amongst differentially abundant proteins across the breast cancer cell lines analyzed, 

the assignment of FAK specifically to this network is noteworthy as this protein plays a central 

role in regulating the event of cell spreading in epithelial, endothelial and fibroblast cell types.177, 

227 In the context of breast cancer, FAK has been shown to play key roles in disease 

pathogenesis, further being found to function as an obligate co-factor underlying the malignant 

transformation of neoplastic breast cells.177, 228, 229 FAK is a non-receptor tyrosine kinase that 

localizes to focal adhesion complexes and is typically activated in response to integrin-ECM 

protein interactions, thus functioning to translate extracellular, growth factor and integrin-

mediated signaling events to the intracellular environment, typically via PI3K and RAS-MAPK 

signaling cascades.177, 230 Activation of FAK has further been shown to occur via epidermal and 
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platelet-derived growth factor signaling directly (EGF and PDGF) and FAK is often found to be 

constitutively activated in transformed, anchorage-independent cell types, including breast 

cancer cells, which are commonly driven by aberrant growth factor signaling.10, 177, 231, 232 In 

evaluating FAK levels in the present analyses, there are modest increases of FAK in MCF7 (log2 

1.32) and MDA-MB-231 (log2 2.17) cells, but decreased levels in SK-BR-3 cells (log2 -1.0) 

relative to MCF10A (Fig. 8). FAK has previously been shown to be expressed in SK-BR-3 cells 

and indeed to be more highly expressed in MDA-MB-231 versus MCF7 cell types.233, 234 

Figure 11: Verification of a subset of mutually, differentially abundant 

proteins observed across all breast cancer cell lines. Western blot 

validation derived from biological replicates of cell lines conditions. 

Adjacent “spectral count” values derived from raw spectral counts observed 

for each protein of interest during initial LC-MS/MS analyses.  
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Interestingly, in non-transformed cells, the activation state of FAK has been shown to be directly 

related to cell spreading as studies of FAK activation in cultured primary endothelial and 

fibroblast cells have revealed that less “spread” cells exhibit  decreased levels of activated FAK 

relative to cells which are more “spread” in culture.227 As FAK has been shown to often be 

overexpressed and constitutively active in transformed cells,177, 231 it is reasonable to hypothesize 

that typical regulation of FAK activation during cell spreading via integrin-ECM interactions 

shifts towards alternate activation mechanisms as transformed cells display greater anchorage-

independent characteristics. This hypothesis is supported by the losses observed in the present 

investigation in proteins across tumor cell lines that have previously been shown to promote cell 

spreading in other cell types. Furthermore, the transformed phenotypes maintained by the breast 

cancer cell lines analyzed have been shown by the literature to be driven largely in part by 

abnormal growth factor signaling, such as through aberrant estrogen responses in MCF7 cells 

and constitutively active EGF signaling in SK-BR-3 cells due to HER2 amplification and MDA-

MB-231 cells due to overexpression of EGFR or through mutant KRAS, which may thus 

produce a signaling context that promotes activation of FAK in the absence of anchorage-

dependent mechanisms.169, 171-174, 232 In support of this notion, silencing of FAK expression in 

breast cancer cell lines, including MDA-MB-231 cells, exhibiting aberrant RAS signaling results 

in growth arrest of these cell types and in HER2 positive breast cancer cell types, including SK-

BR-3 cells, results in diminished growth capacity, underscoring the integral role FAK plays in 

maintaining the transformed phenotype of breast cancer cells.232 

 

Assessment of differentially abundant proteins observed across the breast cell lines analyzed that 

clustered specifically with FAK (Fig. 10) included several factors that have been shown to 
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impact expression levels or activation of FAK, namely the membrane metallo-endopeptidase 

(MME, also known as neprilysin), TNC, KRT19, the ECM proteoglycan versican (VCAN), and 

canstantin, the 24-kDa region of COL4A2.190, 204, 235-237 Proteins exhibiting decreased abundances 

across these breast cancer cell lines that have been shown to inhibit FAK activation include 

MME, TNC (Fig. 8) as well as canstantin.204, 235, 236 Ectopic expression of MME in prostate 

cancer cells has been shown to decrease activation of FAK, with basal MME expression being 

further shown to be inversely correlated with FAK levels in several prostate cancer cell line 

models.236 In breast cancer, MME expression has been shown to be decreased in breast tumor 

tissues with this loss correlating with a decrease in overall disease-free survival.238 However, 

MME expression has also been shown to be increased in breast tumor stroma and this 

observation has further been shown to correlate with an increase in disease recurrence.239 TNC 

has been shown to decrease activation of FAK in glioblastoma cells grown on a matrix 

consisting of fibronectin and TNC versus fibronectin alone.63 Further, co-treatment of human 

umbilical vein endothelial cells with canstantin (the 24-kDa region of COL4A2) and serum 

resulted in decreased activation of FAK which was induced by serum alone.235 

 

Conversely, KRT19 and VCAN have been shown to either decrease expression or increase 

activation of FAK, respectively, and exhibited abundance profiles across breast cancer cell lines 

that are contrary to supporting constitutive activation of FAK in these cell lines.190, 237 

Restoration of KRT19 in the KRT19-negative breast cancer cell line BT-549 has been shown to 

decrease expression of FAK and to promote cell dormancy, which is consistent with the high 

levels of KRT19 observed in dormant, circulating tumor cells.190 This group further showed that 

FAK expression is increased in MDA-MB-231 cells by silencing of KRT19 expression.190 
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Interestingly, KRT19 has recently been shown to be actively released by MCF7, SK-BR-3 and 

MDA-MB-231 cells and evaluation of KRT19 expression in metastastatic tumor cells from the 

bone marrow of breast cancers patients has revealed high levels of KRT19 to correlate with 

disease occurrence, progression and an overall decrease in survival.240 This apparent inverse 

relationship between KRT19 and FAK expression levels in breast cancer cells may be explained 

by context-specific roles for these factors, being that KRT19-mediated cell dormancy may be 

required to survive distal metastasis, whereas the role of FAK in maintaining the tumorigenic 

potential of breast cancer cells may require a cellular or tissue context. 

 

Analysis of integrin beta-1-dependent cell adhesion in U87 glioblastoma cells revealed ectopic 

expression of a c-terminal domain variant of VCAN results in increased cell adhesion and 

activation of FAK.237 Wu and colleagues further showed that MDA-MB-231 cells grown in spent 

media produced by U87 cells overexpressing this variant of VCAN results in increased cell 

adhesion as well, but the subsequent impact on FAK activation in these cells was not noted.237 

Versican has been shown to be highly expressed in the stroma of breast cancer patients with this 

further correlating with a decrease in overall disease-free survival.241 It is reasonable to 

hypothesize that high levels of VCAN in breast tumor stroma may drive FAK activation in in 

situ disease. However, this VCAN variant effect was found to be dependent upon interaction 

with integrin beta-1, which in the present investigation was observed as decreased in abundance 

across all breast cancer cell lines versus MCF10A cells. These findings indicate a subset of 

proteins that have been previously shown to regulate FAK expression and activity in other cell 

types and disease pathologies that therefore warrant further investigation for their roles in 

regulating FAK activation in breast cancer pathogenesis.  
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Conclusion 

 

A comparative, global proteomic analysis and subsequent functional systems analysis utilizing 

IPA software of proteins differentially abundant across three human breast cancer cell line 

models (MCF7, SK-BR-3 and MDA-MB-231) reflective of the most common clinical disease 

subtypes encountered relative to a cell line model of normal, human mammary epithelial cells 

(MCF10A) revealed modulation of ECM, plasma membrane and nuclear protein composition is 

conserved across breast cancer cells. Systems biology analysis revealed predominant losses in 

proteins associated with the regulation of cell spreading and modulation of proteins that have 

previously been shown to impact FAK expression levels and activity in various cell types and 

disease pathologies, such as MME, TNC, COL4A2, KRT19 and VCAN. These analyses thus 

provide a subset of candidates that warrant further investigation for their roles in regulating cell 

spreading and FAK expression and activity in breast cancer. In conclusion, these data provide 

insights into protein abundance and subsequent functional characteristics that are conserved 

across three divergent models of breast cancer cells relative to a model of normal mammary 

epithelial cells, revealing characteristics that represent molecular events central to the 

pathogenesis of breast cancer. 
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3.0 CHAPTER 2: QUANTITATIVE PROTEOMIC ANALYSIS OF MICRORNA-145 IN 

BREAST CANCER. 

Recent efforts in the field of RNA-mediated interference has revealed an endogenous gene 

expression regulatory mechanism that is mediated by small, non-coding RNA segments termed 

microRNAs (miRNA).242 MicroRNAs disrupt gene expression post-transcriptionally by binding 

to discrete, yet potentially multiple target messenger RNA (mRNA) transcripts resulting in their 

degradation or translational repression (Figure 12). miRNA biogenesis begins with transcription 

of a primary miRNA transcript (pri-miRNA) by RNA polymerase II that is then cleaved by the 

nuclear RNase III complex Drosha-DGCR8 or by processing of miRNA-bearing, intronic 

sequences (Mirtrons) by mRNA splicing machinery to produce ~75 nucleotide (nt) stem-loop 

structures termed precursor miRNAs (pre-miRNAs). Pre-miRNAs are then exported to the 

cellular cytoplasm via exportin-5 where they are further cleaved by the RNase III-type Dicer and 

TAR RNA binding protein (TRBP) enzyme complex into mature miRNAs; ~22 nt double-

stranded RNA (dsRNA) containing ~2 nt, 3 prime (3’) - end overhangs. These mature miRNAs 

are then incorporated into a miRNA-induced silencing complex (miRISC) which consists of 

various ribonucleoproteins, such as Dicer and the Argonaute (AGO) protein family which 

mediate the catalytic functions of the miRISC.242-245 This complex is then typically directed to 

target sites within the 3’ untranslated regions (UTR) of mRNAs resulting in the degradation or 

translational repression of gene targets.242-245 The extent to which either mRNA degradation or 

translational repression occurs is dependent on the degree of mismatch between a miRNA and its 

corresponding mRNA target sequence; as greater mismatch results in translational repression and 

lesser mismatch, and therefore greater complimentarity, in degradation.243, 246  
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Recent evidence supports the role of 

miRNAs in oncogenesis, such as in 

cases where miRNAs target tumor 

suppressor genes or conversely when 

the expression of miRNAs responsible 

for targeting proto-oncogenes are 

lost.247 In the context of breast cancer, 

comparison of miRNA profiles 

between normal and tumorigenic breast 

cancer cell lines and tissues has 

revealed aberrant expression of various 

miRNAs accompany breast 

tumorigenesis, including microRNA-

145 (miR-145) which is commonly lost 

in transformed breast cancer cells.248-

250 Further, decreased miR-145 

expression has been correlated with the onset of a pre-neoplastic state in breast myoepithelial cell 

populations indicating that this loss may represent an early event in breast cancer pathogenesis 

and thus may play a central role in underlying disease processes.248 Early in vitro investigations 

of miR-145 in breast cancer revealed expression of this miRNA to be induced by p53 via direct 

interaction with a putative promoter region upstream of the miR-145 gene sequence and that 

restoration of miR-145 in MCF7 breast cancer cells resulted in a growth inhibitory phenotype 

which was shown to be induced by direct targeting of the proto-oncogene c-myc251 or the Rho-

Figure 12: microRNA Biogenesis. Adapted from Filipowich, 

W et al 2008.
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interacting scaffolding protein Rhotekin (RTKN).252 Further, restoration of miR-145 expression 

in divergent cell line models of normal and cancerous breast cells revealed this growth inhibitory 

phenotype was dependent on either the presence of wild-type p53 or estrogen receptor (ER) 

expression, eliciting a pro-apoptotic effect in these cell types and further being shown to directly 

target ERα.253 Later analyses of miR-145 restoration in breast cancer cell lines, including MDA-

MB-231 and SK-BR-3 cells, revealed this miRNA induces decreases in cell motility and invasive 

capacity as well as decreased tumor burden in a xenograft models of tumor metastasis.254, 255 

Decreased cell invasion and metastatic capability was shown to be due to miR-145 directly 

targeting the metastasis-associated gene mucin-1, junctional adhesion molecule A (JAM-A) and 

the actin filament cross-linking protein, fascin.254, 255 

 

Currently, 1048 miRNAs have been identified in humans (Sanger miRBase, 10/2010), though 

very little is known regarding the complete array of mRNA targets that may be regulated by a 

specific miRNA. While this regulatory event is highly effective, it is rather imprecise due to an 

imperfect targeting mechanism that is based on the free energy of binding between the first eight 

nucleotides in the 5’ region of a miRNA, which contains the so-called “seed” region, and the 3’ 

UTR of its target mRNA; an interaction which can be confounded by possible G:U wobble base-

pairing (see Figure 10: miRNA target discovery workflow Figure).256 Current methodologies 

applied in the prediction of miRNA targets utilize computational algorithms (such as 

TargetScan257, MIRANDA258 or PITA259) that score the receptiveness of an mRNA transcript as 

a target for a specific miRNA based on this 5’- end complimentarity and the thermodynamic 

stability of the interaction between the remaining 3’ region of the miRNA and the 3’UTR target 

sequence.256, 260 An evaluation of putative miR-145 targets utilizing TargetScan, MIRANDA 
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(microcosm) and PITA indicates that 1923 (± 2039) unique mRNA transcripts are targeted by 

this miRNA (10/2010), representing an impressive ensemble of targets that have not been 

experimentally observed. As miRNAs regulate their targets post-transcriptionally, the use of RT-

PCR or mRNA microarray profiling to validate miRNA targets provides only limited insight into 

the global effects of this regulatory event as mRNAs translationally repressed by a miRNA 

would fail to be detected by these techniques.256 Therefore, a miRNA target elucidation strategy 

which incorporates global, quantitative proteomic analysis provides a strategy in which to 

measure the impact of a miRNA on mRNA translation. The combination of quantitative 

proteomic and genomic analyses towards miRNA target discovery has confirmed this hypothesis, 

revealing that discrete populations of mRNAs are degraded and/or translationally repressed in 

miRNA loss or gain-of-function studies.77, 78, 261 In the context of breast cancer, the utilization of 

an iTRAQ-based quantitative proteomic strategy to discover miRNA targets has been reported 

for miR-21, a pro-oncogenic miRNA, in which miR-21 expression was silenced in MCF-7 cells 

and proteins increased in abundance were investigated as potential targets of miR-21 via 

screening of corresponding 3’UTR sequences for miR-21 “seed” regions.79  

 

We therefore undertook a miRNA target discovery approach utilizing an LC-MS, quantitative 

proteomics to elucidate targets of miR-145 in MDA-MB-231 and SK-BR-3 human breast cancer 

cells. Investigation of miR-145-specific effects was achieved via sequence analysis of 3’UTR’s 

derived from genes corresponding to proteins which were decreased in abundance in MDA-MB-

231 cells expressing miR-145 (MDA-145) and revealed 33 target candidates that contained a 

miR-145 “seed” motif. Differential proteomic analysis of SKB-145 cells revealed 280 target 

candidates that contained a miR-145 “seed” motif. Correlation of these of miR-145 target 
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candidate populations revealed 11 mutually overlapping targets between MDA-145 and SKB-

145 cells. Furthermore, preliminary analyses of the phenotypic impact of miR-145 restoration on 

cell survival, cell cycle progression and cell migration in MDA-MB-231 cells are presented. 

Results revealed miR-145 did not modulate basal cell survival or cell cycle characteristics in 

MDA-MB-231 cells, ectopic expression however did produce disorganized cell monolayers in 

confluent cultures as well as modest impairment of cell migratory characteristics relative to 

MDA-NEG cells. These observed phenotypic effects in MDA-145 cells have been corroborated 

by other groups253-255, which, upon further examination, indicates that the degree of impact on 

miR-145 on cell migration in MDA-MB-231 cells is concentration dependent.254   

 

Materials and Methods 

 

Generation of MDA-MB-231 and SKBR3 breast cancer cell lines stably expressing miR-

145.  

Pri-miR-145 sequences [native hairpin-loop sequence (pre-miRNA, ~88nt) flanked by ± 80bp of 

genomic DNA]262, 263 were commercially synthesized with 5’ BamHI and 3’ XhoI sites 

(Integrated DNA Technologies, Coralville, IA) and cloned into the pcDNA6.2-GW/EmGFP-miR 

expression vector (Invitrogen, Carlsbad, CA) via BamHI and XhoI restriction sites. MDA-MB-

231 and SK-BR-3 cells (ATCC) cultured in DMEM/F-12 K media supplemented with L-

glutamine and 10% fetal bovine serum were transfected with 5ug of the miR-145 containing 

vector or a negative control variant of pcDNA6.2-GW/EmGFP-miR encoding a scrambled pre-

miRNA sequence. Forty-eight hours post-transfection, cells were selected for stable expression 

in medium containing Blasticidin (MDA-MB-231: 10 µg/mL and SK-BR-3: 5ug/ml, Invitrogen) 
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for up to four weeks, being monitored for EmGFP expression by fluorescence microscopy 

throughout. Further, silencing of restored miR-145 expression in SK-BR-3 cells was achieved 

via transient transfection of 100nM of a miR-145-specific anatgomiR (Ambion) followed by 

incubation for 72 hours. miR-145 expression was confirmed by quantitative PCR via purification 

of small RNA from stable expressing cell populations utilizing the mirVana miRNA Isolation 

Kit (Ambion, Austin TX) and a TaqMan microRNA quantitative PCR assay (ABI, Carlsbad, 

CA) specific for mature miR-145 and RNU43 (a small nucleolar RNA (C/D box 43) which 

functioned as a small RNA loading control) on an ABI 7900HT real-time PCR machine as per 

manufacturer’s recommendations.  

 

Sample preparation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) 

analyses  

Cell lysates were prepared from ~70% confluent plates by scraping cells into 150 µl of 1X SDS 

buffer, sonicating utilizing a micro-tip sonicator followed by centrifugation at 14,000 x g for 10 

min. Protein concentration of the supernatants was determined by the bicinchoninic assay 

(BCA). Thirty-five µg of total cell lysate derived from each conditions was resolved via 1D 

SDS-PAGE on a 4-12% Bis-Tris gel. Gels were stained with Coomassie blue and gel lanes were 

cut into ten equivalently sized slices. Gel slices were de-stained in 50% acetonitrile (ACN) and 

50 mM ammonium bicarbonate (AMB) at ambient temperature for 3 h followed by dehydration 

in 100% ACN. Reactive cysteine residues were reduced via re-hydration of gel spots in 10 mM 

DTT, 25 mM AMB followed by incubation at 56 °C for 30 min and alkyated via incubation in 55 

mM iodoacetamide, 25 mM AMB for 30 min at ambient temperature in darkness. Gel slices 

were then washed with 25 mM AMB, dehydrated in 100% ACN and re-hydrated in 25 mM 
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AMB containing 20 µg/mL porcine sequencing grade modified trypsin on ice for 30 min. 

Digestions were incubated for 16 h at 37°C. Tryptic peptides were extracted with 70% ACN, 5% 

formic acid (FA), dried by vacuum centrifugation and re-suspended in 0.1% trifluoroacetic acid 

(TFA). Peptide digests were resolved by nanoflow reverse-phase liquid chromatography 

(Ultimate 3000, Dionex Inc., Sunnyvale, CA) coupled online via electrospray ionization to an 

LTQ-Orbitrap mass spectrometer for MDA-NEG and MDA-145 samples or to an LTQ-XL for 

SKB-NEG vs. SKB-145 and SKB-145 vs. SKB-145KD sample analyses. Duplicate injections of 

peptide extracts were resolved on 100 µm i.d. by 360 µm o.d. by 200 mm long fused silica 

capillary columns slurry-packed in-house with 5 µm, 300 Å pore size C-18 silica-bonded 

stationary phase. After sample injection, peptides were eluted from the column using a linear 

gradient of 2% mobile phase B (0.1% FA in ACN) to 40% mobile phase B over 125 min at a 

constant flow rate of 200 nL/min followed by a column wash consisting of 95% B for an 

additional 30 min at a constant flow rate of 400 nL/min. The LTQ MS was configured to collect 

broadband mass spectra [m/z 375-1800; LTQ-Orbitrap at high resolution (R=60,000)] from 

which the seven-most abundant peptide molecular ions dynamically determined from the MS 

scan were selected for tandem MS using a relative CID energy of 30%. Dynamic exclusion was 

utilized to minimize redundant selection of peptides for CID. 

 

Peptide Identification and Spectral Count Analysis 

Peptide identifications were obtained by searching the LC-MS/MS data utilizing SEQUEST 

(BioWorks, v3.2, ThermoScientific) on a 72-node Beowulf cluster against a UniProt-derived 

human proteome database (version 10/08, 56,301 protein entries) obtained from the European 

Bioinformatics Institute (EBI) using the following parameters: trypsin (KR); full enzymatic-
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cleavage; two missed cleavages sites; 20 ppm peptide mass tolerance peptide tolerance, 0.5 amu 

fragment ion tolerance; and variable modifications for methionine oxidation (m/z 15.99492) and 

cysteine carboxyamidomethylation (m/z 57.02146); data analysis revealed 10.7% (±1.3%) of all 

cysteine-containing peptides were non-reacted. Resulting peptide identifications were filtered 

according to specific SEQUEST scoring criteria: delta correlation (∆Cn) ≥ 0.08 and charge state 

dependent cross correlation (Xcorr) ≥ 1.9 for [M+H]1+, ≥ 2.2 for [M+2H]2+, and ≥ 3.5 for 

[M+3H]3+. Differential protein abundance was calculated by normalizing total peptide spectral 

counts observed in miR-145 expressing versus negative control conditions (or in SKB-145KD 

vs. SKB-145 in this case). A value of 0.5 was added to each spectral count value prior to log2 

transformation to enable ratio values to be calculated for proteins identified in one cell line, but 

not another.181 Proteins which were decreased below log2  -0.25-fold change in MDA-145 vs. 

MDA-NEG and SKB-145 vs. SKB-NEG conditions (or increased log2 +0.25 fold in SKB-145KD 

vs. SKB-145), as per previous analyses which observed miRNA-specific effects on protein 

abundance as occurring at this fold change 77, were utilized for downstream analysis. 

 

Identification of miR-145 target candidates:  

Uniprot accessions corresponding to proteins decreased in abundance in MDA-145 conditions 

(or increased in SKB-145KD) were converted to Ensemble gene (ENSG) ID’s via biomart.org 

(Database: ENSEMBL GENES 59 (SANGER UK) Homo Sapiens (GRCh37) and subsequent 

3’UTR sequences corresponding to converted ENSG ID’s were similarly obtained. This 

workflow was arrived at empirically and yielded the greatest number of Uniprot accessions 

which mapped to corresponding 3’UTR sequences. Data sets were correlated utilizing 

Cytoscape164 and 3’UTR gene sequences were mined for intact, 6-mer and 7-mer miR-145 target 
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“seed” motifs, i.e. 1) cuggac 2) acugga 3) aacugg 4) acuggac 5) aacugga 6) aaacugg utilizing a 

search algorithm constructed in-house. Proteins containing at least one 6-mer miR-145 “seed” 

motif were considered a putative miR-145 target candidate. miR-145 target candidates were 

correlated from independent analyses of MDA-145 and SKB-145 conditions to discern mutually 

conserved miR-145 targets. Targets of interest were manually interrogated for their potential role 

in breast cancer via assessment of published literature as well as utilizing Ingenuity Pathway 

Analysis software. 

 

MTT growth assay of stable, miR-145-expressing MDA-MB-231 cells: 

MDA-145 or MDA-NEG cells were plated in triplicate at 5 x 103 cells per well in a 96-well plate 

on day 1. On days 2 thru 5, 10 µl of MTT reagent (5 mg/ml 3-[4,5-dimethylthiazol-2-yl]-2,5-

diphenyl tetrazolium bromide, Sigma, St. Louis. MO) was added to each well, plates were 

incubated for an additional 3 h at 37 °C followed by addition of 100 µl of MTT solvent (0.1 N 

HCl in 2-propanol) and measurement of solubilized formazan crystals was performed at 570 nm 

(background at 690 nm) utilizing a microplate spectrophotometer (SpectraMAX, Molecular 

Devices, Sunnyvale, CA).   

 

Cell cycle analysis of stable, miR-145-expressing MDA-MB-231 cells: 

MDA-NEG or MDA-145 cells were plated at 1x105 cells per well in a 6-well plate on day 1. On 

days 2 thru 5, cells were trypsinized, washed with 1X PBS, fixed with ice-cold 70% EtOH for 10 

min followed by re-suspension in 1X PBS, 0.1 mg/ml propidium iodide and 0.04 mg/ml RNAse 

A.264 Stained cells were immediately analyzed on a BD LSR II flow cytometer (Franklin Lakes, 
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NJ) in which 10,000 FSC versus PE (562–588 nm emission) events were acquired. Data was 

analyzed using WinMDI 2.8 flow cytometry analysis software.  

 

Wound healing assay of stable, miR-145-expressing MDA-MB-231 cells: 

MDA-NEG or MDA-145 cells were plated at 2.5 x 105 per well in a 6-well plate on day 1. On 

day 2, confluent monolayers were “wounded” utilizing a sterile 20 µl micropipette tip and 

wounds were demarcated to facilitate monitoring of identical areas by microscopic imaging. 

Wound areas were imaged immediately upon wounding and at ~12-24 h intervals (data shown 

are 16 and 48 hour timepoints).         

Results and Discussion: 

 

Identification of miR-145 targets in breast cancer cell lines ectopically expressing miR-145 

by differential proteomic analysis.   

The focus of these analyses was towards the identification of regulatory gene targets of the breast 

cancer-associated microRNA, miR-145, in MDA-MB-231 and SK-BR-3 human breast cancer 

cells. The workflow utilized to achieve this goal (Fig 13) entailed restoration of miR-145 

expression in MDA-MB-231 (MDA-145) and SK-BR-3 (SKB-145) cells followed by differential 

proteomic analyses of miR-145 expressing and scrambled, negative control miRNA conditions. 

3’UTR gene sequences corresponding to proteins decreased in abundance were obtained from 

ENSEMBL and mined for miR-145 specific target “seed” motifs. Target candidates which 

overlapped between MDA-145 and SKB-145 analyses were investigated for their roles in breast 

cancer pathogenesis via assessment of published literature as well as Ingenuity Pathway Analysis 
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Restore miR-145 expression in 

MDA-MB-231 and SK-BR-3 cells 
Stable: pri-miR-145 (IDT)/ pcDNA 6.2-GW EmGFP miR (Invitrogen)  
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Figure 13: miRNA Target Discovery workflow. 
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software. Further, analysis of the impact of miR-145 restoration in MDA-MB-231 on cell 

survival, cell cycle regulation and migratory characteristics is also discussed.    

 

Differential proteomic analysis of MDA-MB-231 and SK-BR-3 stably expressing miR-145.  

Confirmation of miR-145 restoration in breast cancer cell lines via qPCR analysis revealed 

MDA-145 cells exhibited a 28.5-fold increase in miR-145 levels relative to MDA-NEG cells and 

in SKB-145 cells, a 111.0-fold increase relative to SKB-NEG cells after selection for stable 

expression (Fig 11). Further, qPCR analysis of SKB-145 following transfection with 100nM of a 

Figure 14: Quantitative PCR analysis of miR-145 expression in MDA-MB-231 and SK-BR-

3 cells stably-expressing a vector encoding pri-miR-145 or a scrambled, negative control

miRNA. Further, SKB cells stably expressing miR-145 were transfected with 100nM of a

miR-145 antagomiR (72h). The small RNA RNU43 functioned as a loading control which

miR-145 conditions were normalized against.
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miR-145 specific antagomiR and incubation for 72 h resulted in a 15% decrease in miR-145 

expression levels (Figure 14). The results of global proteomic analyses of the following cell line 

comparisons, MDA-145 vs. MDA-NEG, SKB-145 vs. SKB-NEG and SKB-145 vs. SKB-145KD 

are summarized in (Table 3). Assessment of total proteins identified by at least two peptides in 

MDA-145 and SKB-145 proteomic analyses revealed a RSD of 14.4%, whereas total proteins 

decreased below log2 -0.25-fold between these two analyses yielded an RSD of 47.2%. This 

disparity in proteins decreased in abundance between MDA-145 and SKB-145 is commensurate 

with the markedly increased expression levels of miR-145 achieved in SKB-145, i.e. 3.9-fold 

Table 3: Summary of proteomic analyses and miR-145 specific effects. Quantitative 

proteomic analysis of MDA-MB-231 and SK-BR-3 cells stably expressing miR-145 and 

the prevalence of proteins bearing a miR-145 “seed” motif in corresponding 3’UTR 

sequences.  

Condition Total Proteins by 2 

unique peptides

Total Proteins

-0.25 log2-fold

% Proteins Decreased

MDA-145 vs. MDA-NEG 1294 313 24%

SKB-145 vs. SKB-NEG 1588 627 39%

SKB-145 vs. SKB-145KD 952 387 (increased) 41% (increased)

Condition

Decreased (Increased 

for SKB-145KD)
Proteins with mapped 

3’UTR sequences

Decreased (Increased 

in SKB-145KD) Proteins 
with at least ONE 

3’UTR, miR-145 “seed” 

% Decreased Proteins 

with miR-145 “seed”

MDA-145 vs. MDA-NEG 272 33 12%

SKB-145 vs. SKB-NEG 571 280 49%

SKB-145 vs. SKB-145KD 304 47 15%
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higher levels in SKB-145 vs. MDA-145 cells. Assessment of miR-145 specific activity by 

identification of miR-145 “seed” motifs in 3’ UTR sequences corresponding to proteins 

exhibiting abundances below log2 -0.25-fold change revealed 12% of proteins decreased in 

MDA-145 versus 49% of proteins decreased in SKB-145 analyses contained a miR-145 “seed”. 

This ~4-fold increase in miR-145 “seed” containing proteins in SKB-145 analyses can be further 

explained by the high levels of miR-145 expression achieved in SKB-145 cells, further 

suggesting that the impact of miR-145 on gene regulatory functions may be concentration 

dependent. As the populations of target candidates discerned from MDA-145 and SKB-145 

analyses greatly differed in size, data sets were correlated to discern mutually observed targets, 

revealing 11 proteins which contained a 3’ UTR miR-145 “seed” motif as being decreased in 

Table 4: Mutually-observed miR-145 target candidates. 11 miR-145 target 

candidates mutually observed between MDA-145 and SKB-145 analyses. Proteins in 

bold exhibited reverse expression trends in SKB-145 cells in response to transient 

expression with a miR-145-specific antagomiR.   

HGNC ID Protein Name

Fold-Change 

(STDEV)

Cellular 

Localization

Functional 

Type Predicted?

6mer

SEED

7mer

SEED

CCT7 T-complex protein 1 subunit eta -0.57 ( 0.18) Cytoplasm other yes 1 

ILK Integrin-linked protein kinase -2.81 ( 0.87) Plasma Membrane kinase no 1 

MRPL54 39S ribomal protein L54, mitochondrial -2.32 ( 0.18) unknown other no 1 

NDUFS2 
NADH dehydrogenase [ubiquinone] iron-sulfur 
protein 2, mitochondrial -0.89 ( 0.3) Cytoplasm enzyme yes 1 

PCYT2 Ethanolamine-phosphate cytidylyltransferase -2.32 ( 0.52) Cytoplasm enzyme no 1 

PPP6C Serine/threonine-protein phosphatase 6 -0.29 ( 0.09) Nucleus phosphatase no 1 

RAB5C Ras-related protein Rab-5C -0.34 ( 0.02) Cytoplasm enzyme yes 1 

SLC16A3 Monocarboxylate transporter 4 -2.81 ( 1.69) Plasma Membrane transporter yes 1 

SLC33A1 Acetyl-coenzyme A transporter 1 -2.32 ( 0.52) Cytoplasm transporter no 1 

TXNDC12 Thioredoxin domain-containing protein 12 -0.93 ( 0.05) Cytoplasm enzyme yes 1 

VPS26A Vacuolar protein sorting-associated protein 26A -1.08 ( 0.35) Cytoplasm transporter yes 1 
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both cell lines analyzed (Table 3). Assessment of the status of these 11 candidates as being 

previously predicted as putative miR-145 targets was ascertained by correlation with predicted 

miR-145 targets derived from TargetScan, MIRANDA and PITA prediction algorithms, 

revealing that 6 of these proteins are predicted miR-145 targets, with the remaining 5 therefore 

representing potentially novel target candidates (Table 4). Assessment of the functional roles of 

these 11 target candidates revealed modulation of proteins associated with metabolic and 

mitochondrial functions, such as 39S ribomal protein L54, mitochondrial (MRPL54), NADH 

dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial (NDUFS2) and ethanolamine-

phosphate cytidylyltransferase (PCYT2) as well as proteins associated with regulation of 

molecular transport, such as monocarboxylate transporter 4 (SLC16A3), acetyl-coenzyme A 

transporter 1 (SLC33A1) and vacuolar protein sorting-associated protein 26A (VPS26A) (IPA 

software). Further analysis revealed several of these factors have been implicated in several 

cancers, such as chaperonin containing TCP1, subunit 7 (eta) (CCT7), which has been observed 

as being increased in non-small cell lung cancer tissues derived from smoking vs. non-smoking 

patients via cDNA analysis265, as well as the RAS related protein Rab-5C (RAB5C), which has 

been observed in lipid rafts of cervical cancer cells266, glycolipoprotein-rich regions of the 

cellular plasma membrane which promote the assembly of signaling molecules, and has been 

further implicated in the regulation of the pro-oncogenic mitogen–activated protein kinase 

signaling cascade in these cell types.267 Additional investigations of these 11 miR-145 target 

candidates revealed two factors which have previously been implicated in breast cancer 

pathogenesis, i.e. monocarboxylate transporter 4 (SLC16A3) as well as integrin-linked kinase 

(ILK).268-270 SLC16A3 mRNA has been previously observed in breast cancer tissues, being at 

increased levels in HER2-negative breast cancers specifically, and functional studies have 
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revealed this transporter mediates the cellular efflux of monocarboxylic acids, such as lactate; a 

by-product of pyruvate metabolism during glycolysis which is the predominant mechanism by 

which ATP is produced by metastatic tumor cells. 20-22, 269, 271 Analysis of SLC16A3 in MDA-

MB-231 cells, a model of metastatic breast cancer, revealed expression levels of SLC16A3 were 

significantly increased in this cell line relative to normal mammary tissues and further, that 

silencing of SLC16A3 in MDA-MB-231 resulted in a decrease in cell migration.269 These 

findings are interesting when considered in the context of recent evidence indicating the 

decreases in invasive and migratory activity observed in MDA-MB-231 cells ectopically 

expressing miR-145.254, 255 Though other groups have shown that alternate miR-145 targets 

underlie modulation of cell migration in MDA-MB-231254, 255, miR-145-mediated targeting of 
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Figure 15: Growth curve of MDA-145 vs. MDA-NEG cells. Triplicate wells 

were analyzed via MTT analysis over a four-day time-course. Data displayed is 

normalized to day 1 OD values and is representative of 3 independent replicates.    
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SLC16A3 may also be a factor at play in this event. An additional miR-145 target candidate also 

implicated in breast cancer pathogenesis, integrin-linked kinase (ILK), has been shown to 

function as an oncogene and further, to be overexpressed in various cancers including breast.268, 

270 ILK is a member of a plasma membrane-localized, multi-protein complex which transduces 

signaling from cellular integrins and growth factor receptors, such as receptor tyrosine kinases, 

to the actin cytoskeleton.270 Activation of ILK occurs in response to direct interaction with 

integrin or growth factor receptor proteins in a phosphatidylinositol 3-kinase (PI3K)-dependent 

manner, resulting in phosphorylation of downstream effectors; such as activation of protein 

kinase-B/AKT and inhibition of glycogen synthase kinase 3-beta (GSK3β), yielding a cellular 

phenotype that is resistant to anoikis and which exhibits increased cell survival and proliferation 

characteristics.268, 270 Furthermore, ILK has been shown to promote cell migration and invasion 

of tumor cells, as studies of small molecule inhibitors of ILK have resulted in inhibition of these 

activities.270, 272 Thus, further in the context of recently published data revealing decreased 

migratory activity in miR-145 expressing metastatic breast cancer cells254, 255, miR-145-mediated 

targeting of ILK may also be a factor underlying this event. Additionally, recent evidence 

revealed miR-145 expressing MDA-MB-231 cells exhibited significant remodeling of the actin 

cytoskeleton, resulting in reduced actin stress fiber and filopodia formation, supporting the 

observed decreased in migratory phenotype.254 ILK-mediated promotion of cell migration has 

also been shown to be accompanied by actin remodeling and increased formation of actin stress 

fibers, adding further support to the hypothesis that miR-145-mediated targeting of ILK may 

contribute to the decreases in cell migration. Interestingly however, the use of ILK-specific small 

molecule inhibitors or expression of a kinase deficient variant of ILK in MDA-MB-231 has been 

shown to induce significant anoikis in this cell line.268 These findings are inconsistent with recent 
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evidence indicating that miR-145 expressing MDA-MB-231 cells do not exhibit increases in 

apoptotic or growth inhibitory responses.253 This inconsistency may be due to concentration-

dependent effects of miR-145 on ILK versus alternate inhibitory strategies.268  However, it is 

possible that the panel of genes targeted by miR-145 produces a molecular context which results 

in inhibition of the migratory activity functions induced by ILK, but which does not impact the 

influence of ILK signaling on cell growth and survival. Furthermore, previous evidence has 

shown that the growth inhibitory activity of miR-145 is wt p53 or ERα-dependent, two 

characteristics which MDA-MB-231 and SKBR-3 cells lack. 
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Confirmatory studies involving global proteomic analyses of SKB-145 cells transfected with a 

miR-145-specific anatgomiR vs. SKB-145 are summarized in (Table 3). In this context, proteins 

which were increased above log2 +0.25-fold change in SKB-145KD conditions were 

characterized for the presence of a miR-145 3’UTR “seed sequence”. Assessment of the 11 

mutually, differentially abundant miR-145 target candidates observed between MDA-145 and 

SKB-145 analyses revealed 2 proteins which exhibited a reversed expression profile in SKB-

145KD studies, SLC16A3 and VPS26A (Table 4, bolded). These results support initial 

observations of SLC16A3 and VPS26A as being targets of miR-145, and further that they may 

Figure 17: Wound healing analysis of MDA-145 vs. MDA-NEG cells. 

Wounded cells were imaged in 12-24 hour intervals. Data is representative of 

2 independent replicates.  
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represent candidates which are acutely sensitive to miR-145 levels as SKB-145KD cells 

exhibited only a 15% decrease in miR-145 levels versus SKB-145. 

 

Phenotypic analysis of growth, cell cycle and migration characteristics in MDA-MB-231 

cells stably expressing miR-145.  

Analysis of the impact of miR-145 on basal growth characteristics of MDA-MB-231 was 

achieved by comparative analysis of MDA-145 and MDA-NEG cell growth over a four day 

time-course utilizing an MTT cell proliferation assay (Fig 15). Results revealed that miR-145     

had no impact on the basal growth rate of MDA-MB-231 cells. These findings are further 

corroborated by cell cycle analysis of MDA-145 and MDA-NEG over a four day time-course 

which also revealed no significant variation in cell cycle profiles between these conditions (Fig 

16). These results have been corroborated by another group253, with further evidence, as 

aforementioned, indicating miR-145-mediated growth inhibition as occurring only in breast 

cancer cell lines expressing wt p53 or ERα.253 Assessment of the impact of miR-145 on 

migratory activity of MDA-MB-231 was achieved via comparison of MDA-NEG and MDA-145 

cells utilizing a wound healing assay over a 48 hour period (Figure 17). Results revealed a 

modest phenotype indicating impaired migratory ability in MDA-145 cells, with disorganization 

of cells at the leading edge of the wound at 16 hours and incomplete monolayer formation at 48 

hours post-wound initiation. Impaired migratory, as well as invasive and metastatic potential, 

have also recently been described in MDA-MB-231 cells stably expressing miR-145.254, 255 

Further, the impaired migratory phenotype in MDA-145 cells reported by Gotte et al. was more 

profound than we had observed and is likely due to the miR-145 expression levels in which they 

report in MDA-MB-231 versus our model system; which were over 10,000-fold higher than 
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control cells versus our model in which we achieved only a ~30-fold increase in miR-145 levels. 

These findings again indicate the regulatory impacts of miR-145 likely occur in a concentration-

dependent fashion.  

 

Conclusion 

These analyses have yielded a panel of experimentally observed miR-145 target candidates in 

two cell line models of breast cancer, MDA-MB-231 and SK-BR-3, and further revealed 11 

target candidates which were mutually observed between both analyses, suggesting these factors 

may be conserved regulatory targets. Mutually observed targets reveal modulation of proteins 

associated with cellular metabolism, mitochondrial function and molecular transport, further 

revealing two proteins which have previously been associated with breast cancer, SLC16A3 and 

ILK. The experimental design of this miR-145 target discovery platform was directed towards 

the identification of intact 3’UTR “seed” sequences for miR-145 to increase the confidence of 

target candidates observed. However, significant evidence has been shown that these seed 

regions tolerate mismatches, such as G:U base-pairing256, which has been observed in seed 

regions of validated miR-145 targets, such as c-myc251 or insulin-receptor substrate-1 (IRS-1)273. 

Further discovery of validated miR-145 targets will provide insights into the possible  “seed” and 

downstream binding characteristics which support effective miR-145 activity, offering evidence 

which will guide future target discovery efforts. When pairing target discovery and phenotypic 

data with previously published evidence of miR-145 activity in breast cancer cells, these 

analyses provide evidence to support that miR-145 activity is concentration-dependent. This 

observation is vital when considering the possible therapeutic utility of restoring miR-145 

expression in breast cancer cells, which has been proposed.254 In conclusion, these analyses 
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provide an ensemble of miR-145 regulatory targets in two cell line models of human breast 

cancer which warrant further investigation for their role in breast cancer pathogenesis. 

Furthermore, evidence is provided to support previous observations associated with the 

phenotypic modulation induced by miR-145 in metastatic breast cancer cells as well as the 

application of global, quantitative proteomic analyses as a strategy to elucidate the impact of 

microRNA function on the cellular transcriptome and proteome.  

4.0 CHAPTER 3: DIFFERENTIAL PROTEOMIC ANALYSIS OF LATE-STAGE AND 

RECURRENT BREAST CANCER FROM FORMALIN-FIXED PARAFFIN 

EMBEDDED TISSUES. 

Breast cancers exhibit a high degree of molecular heterogeneity, a characteristic that can 

confound the accurate determination of disease prognosis, thus more incisive tools are required 

to define the molecular characteristics underlying neoplastic progression as well as which 

provide greater insights into risk of disease recurrence.25, 26 In the context of protein-based 

prognostic biomarkers for breast cancer, determination of the ER, PR and HER2 status by 

immunohistochemical (IHC) analysis of patient tumor biopsies remains the gold standard for 

assessment of disease prognosis and provides the foundation for which patient treatment options 

are selected.46, 76 Further, profiling of the urokinase plasminogen activator (uPA)/plasminogen 

activator inhibitor (PAI-1) proteins by enzyme-linked immunosorbent assay (ELISA) in early-

stage breast cancer has been shown to highly correlate with disease prognosis with increased 

expression of either protein being associated with poor disease outcome and an elevated risk of 

disease recurrence.46, 76 Still, the performance of many protein-based biomarkers as prognostic 
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tools in breast cancer, such as biomarkers of cell proliferation, like Ki-67 (proliferating cell 

nuclear antigen, PCNA) or cyclin D, have been criticized due to significant inter-patient 

variability and inconsistent pathological scoring methodologies.76 Discovery of protein 

candidates that function to better discern stages of disease progression and provide insights into 

disease prognosis and recurrence risk would greatly aid in defining the facile molecular tools 

needed to achieve more confident diagnostic and prognostic assessments. 

 

One resource for the discovery of breast cancer biomarkers are formalin-fixed, paraffin 

embedded (FFPE) tissues.80, 123 Gene expression profiling in FFPE tissues has proven fruitful, 

but are often complicated by the impact of formalin fixation on nucleic acids as this can result in 

fragmentation and degradation of mRNA products due to the addition of monoethylol moieties to 

nucleotides and the formation of methylene-bridged, adenine dimers relative to mRNA products 

recovered from fresh tissue sources.125, 126 However, multiple investigations have demonstrated 

high concordance in proteins identified from fresh and FFPE tissues sources indicating that the 

impact of fixation on MS-based analysis of proteins derived from FFPE tissue as being 

minimal.123, 127  

 

Several comparative, global proteomic analyses of tumor samples derived from FFPE tissues 

have been performed 129, 131, 274, though few that have focused specifically on breast cancer.132  

We have undertaken a global proteomic analysis of pathologically-defined tumor regions 

obtained by LM from archival, FFPE tissues from twenty-five breast cancer patients presenting 

with stage 0, II and III disease at the time of diagnosis, with a subset of stage II patients 

exhibiting recurrent (R) disease after initial disease diagnosis. The goal of these analyses was to 
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identify protein abundance characteristics indicative of early to late-stage disease progression as 

well as of recurrent disease in breast cancer. Data analysis revealed 113 proteins that 

significantly differentiated patients diagnosed at early (stage 0, n=7) versus late-stage (stage III, 

n=9) disease and 42 proteins that significantly differentiated stage II patients that did (stage II R, 

n=5) or did not (stage II NR, n=4) exhibit recurrent disease. Verification of differentially 

abundant proteins was achieved via immunohistochemical (IHC) analyses of primary FFPE 

tissue samples for protein candidates from each stage comparison, i.e. thrombospondin-1 (TSP-

1) for stage 0 versus stage III disease and Protein DJ-1 (PARK7) for stage II NR versus stage II 

R. These data reveal differentially abundant proteins indicative of neoplastic progression and 

disease recurrence that provide insights into the molecular characteristics underlying breast 

cancer pathogenesis.  

 

Materials and Methods 

 

Breast cancer tissue sample preparation  

Twenty-five FFPE breast cancer patient tissue samples (Table 5) were sectioned onto LM slides 

(Director Slides, Expression Pathology Inc., Gaithersburg, MD) for tissue microdissection 

(LMD6000, Leica Microsystems, Bannockburn, IL). Disease recurrence in patients presenting 

with stage II disease was determined two years following initial diagnosis. Pathologically-

defined regions of cancerous epithelium were procured from all twenty-five patient samples and 

tryptic digests were prepared for global proteomic profiling utilizing the Liquid Tissue FFPE 

proteomic sample preparation kit (Expression Pathology, Inc., Gaithersburg, MD) as per the 
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manufacturer’s recommendations. Samples were re-suspended at a final concentration of 0.2 

ng/µL in 0.1% trifluoroacetic acid (TFA).    

 

Liquid chromatography-tandem mass spectrometry  

Total peptide digests were resolved by nanoflow reverse-phase liquid chromatography (Ultimate 

3000, Dionex Inc., Sunnyvale, CA) coupled online via electrospray ionization to a linear ion trap 

mass spectrometer (LTQ, ThermoFisher Scientific, Inc., San Jose, CA). Triplicate injections of 

1.2 µg of peptides derived from each patient tissue sample were resolved on a 100 µm i.d. by 360 

µm o.d. by 200 mm long fused silica capillary columns (Polymicro Technologies, Phoenix, AZ) 

slurry-packed in-house with 5 µm, 300 Å pore size C-18 silica-bonded stationary phase (Jupiter, 

Phenomenex, Torrance, CA). After sample injection, peptides were eluted from the column using 

a linear gradient of 2% mobile phase B (0.1% formic acid (FA) in acetonitrile to 40% mobile 

phase B over 125 min at a constant flow rate of 250 nL/min followed by a column wash 

consisting of 95% B for an additional 20 min at a constant flow rate of 400 nL/min. The LTQ 

MS was configured to collect broadband mass spectra (m/z 375-1800) from which the seven-

most abundant peptide molecular ions dynamically determined from the MS scan were selected 

for tandem MS using a relative CID energy of 35%. Dynamic exclusion was utilized to minimize 

redundant selection of peptides for CID. 

 

MS data analysis 

Peptide identifications were obtained by searching the LC-MS/MS data utilizing SEQUEST 

(BioWorks, v3.2, ThermoScientific) on a 72-node Beowulf cluster against a UniProt-derived 

human proteome database (version 10/08, 56,301 protein entries) obtained from the European 
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Bioinformatics Institute (EBI) using the following parameters: trypsin (KR); full enzymatic-

cleavage; two missed cleavages sites; 1.5 Da peptide mass tolerance peptide tolerance, 0.5 Da 

fragment ion tolerance and variable modifications for methionine oxidation (m/z 15.99492). 

Resulting peptide identifications were filtered according to specific SEQUEST scoring criteria: 

delta correlation (∆Cn) ≥ 0.08 and charge state dependent cross correlation (Xcorr) ≥ 1.9 for 

[M+H]1+, ≥ 2.2 for [M+2H]2+, and ≥ 3.5 for [M+3H]3+. These criteria resulted in a false 

discovery rate (FDR) of 5.84% for all peptides identified as determined by searching the entire 

data set against a decoy human database where the protein sequences were reversed.178 Protein 

abundance was derived by spectral counting (SC) and peptides whose sequences mapped to 

multiple protein isoforms were grouped as per the principle of parsimony.179 To determine 

statistically significant changes in protein abundance across patient samples by disease stage sub-

groups, a hierarchical supervised cluster analysis of peptides identified from stage 0 versus stage 

III and stage II NR disease recurrence (Stage II NR) versus stage II with disease recurrence 

(Stage II R) patient samples was performed in which the variance in total spectral count peptides 

identified was determined utilizing the Mann−Whitney rank-sum test (significance level p ≤ 

0.05, Fisher’s exact test) paired with the filter criteria requiring that 60% of the samples in a 

supervised group had a minimum peptide count of 2 or greater for a given protein. 

 

Bioinformatic analyses 

Uniprot accessions corresponding to significantly, differentially abundant proteins were mapped 

to HUGO (HGNC) gene symbols utilizing Ingenuity Pathway Analysis (IPA) (Ingenuity® 

Systems, www.ingenuity.com). Accessions that failed to map were converted to HGNC 

identifiers by manual inspection at www.uniprot.org and re-mapped to IPA to maximize protein 
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identifications available for downstream bioinformatic analyses; a unique HGNC designation for 

accession # P84243 from comparative stage II analysis could not be determined and was thus not 

utilized in downstream functional analysis. Functional analysis of significant protein lists were 

performed utilizing the “Core Analysis” function in IPA and inferred biofunctions exhibiting a p 

< 0.05 and a minimum of two associated proteins were considered significant. 

    

Immunohistochemical Verification 

Immunohistochemical verification (MDR Global Systems LLC, Windber, PA) was performed on 

primary FFPE tissue sections and antigen recovery was achieved utilizing the Dako PT Module 

(Dako, Denmark). Immunostaining was performed on a Dako autostainer and all slides were 

counterstained with hematoxylin and blued with 1% ammonia water.  Antibody conditions were  

as follow: 1: estrogen receptor (ER alpha, ERA), (clone 1D5/mouse, 1:200, Dako), 2: 

progesterone receptor (PGR), (clone PGR636/mouse, 1:400, Dako) 3: Her2/Herceptest, 

(polyclonal/rabbit, FDA guidelines, Dako) 4: Thrombospondin-1 (TSP-1), (1:50, clone 

A6.1/mouse, Abcam) and 5: Park7/DJ1, (1:800, polyclonal/goat, Abcam). 
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Diagnosis Patients (n) Age DCIS LCIS ILC IDC Comb/Other ER+ HER2+ Basal-like 

Stage 0 7 58 (± 11) 4 1 0 1 1 6 1 0 

Stage II NR 4 58 (± 12) 0 0 0 1 3 0 1 3 

Stage II R 5 56 (± 21) 1 0 0 2 2 0 2 3 

Stage III 9 62 (± 11) 0 0 4 4 1 6 0 3 

 

Table 5: Vital statistics of 25 patients presenting with discrete stages of disease.
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Figure 18: Significant, differentially abundant proteins identified in 

comparisons of stage 0 and stage III breast cancer patient tissue samples. 

Hierarchical supervised cluster analysis of stage 0 and stage III patient tissue 

data sets yielded 113 proteins which significantly differentiated these groups.  
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Results and Discussion 

 

Global proteomic analyses of pathologically-defined regions of cancerous epithelium, 

microdissected from FFPE-tissue samples derived from twenty-five breast cancer patients 

presenting with distinct stages of disease (Table 5) yielded 115,549 total peptide identifications 

(FDR of 5.84%) and 9,437 proteins identified by at least two peptides (Figure 18). Merits of 

analytical performance were monitored by comparing peptides identified between replicate 

injections for all 25 patient samples, revealing an average relative standard deviation (RSD) of 

9.5% (± 3.9%). Equivalency of protein digest input for LC-MS/MS analyses was determined by 

comparison of spectral count values for total peptides identified across all twenty-five patient 

samples where an RSD of 13.4 % was found, as well as for total peptides identified that 

corresponded to glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a protein commonly 

utilized as a loading control for western blot analysis, revealing an RSD of 23.0% for this 

protein.180 These measures critically underpin the determination of significant, differentially 

abundant proteins by spectral counting without the need for normalization.  

 

Characterization of differentially abundant proteins between stage 0 and III breast cancer.  

 

Significant, differentially abundant proteins were established by hierarchical supervised cluster 

analysis in which at least 60% of the samples within a supervised group exhibited spectral count 

values of 2 or greater for a given protein of interest (Figures 19 and 23). Characterization of 

differential protein abundance indicative of early versus late-stage breast cancer was achieved by 

comparative analysis of proteomic data sets derived from stage 0 (n=7) and stage 3 (n=9) breast 
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cancer patient tissue samples (Figure 19). Results revealed a total of 113 proteins, 32 that were 

increased and 81 decreased in abundance in stage III vs. 0 disease, which significantly 

differentiated patients presenting with these disease stages. Stage III breast cancer is defined by 

Figure 19: Significant, differentially abundant proteins identified in 

comparisons of stage 0 and stage III breast cancer patient tissue samples. 

Hierarchical supervised cluster analysis of stage 0 and stage III patient tissue data 

sets yielded 113 proteins which significantly differentiated these groups.  
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evidence of tumor cell populations that have invaded from the primary tumor site and spread into 

regional breast lymph nodes, or by a primary tumor that has extended to the chest wall or skin.44, 

275, 276  Locoregional invasion of tumor cells occurs as a product of phenotypic alterations, such 
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Figure 20: Differential abundance profile for Thrombospondin-1 (TSP-1) by 

spectral count peptides (A) and immunohistochemical verification (B) from 

Stage 0 and Stage III breast cancer patient tissue samples. A. Data reported 

indicates average peptides identified for TSP-1 by spectral count between Stage 0 

(n=7) and Stage III (n=9) samples. Results revealed a log
2
 +1.98-fold increased 

in TSP-1 in stage III versus stage 0 patients. B. Data reported indicates the 

percentage of patient tissues exhibiting an IHC score of 0+ or 1+ for TSP-1 in 

Stage 0 (n=6) and Stage III (n=9) samples. Results revealed 44% of stage III 

versus 0% of stage 0 patients exhibited an IHC score of 1+ for TSP-1.  

 



89 

as a loss of contact-inhibited growth and modulation of extracellular matrix (ECM) protein 

composition, which can be precipitated by selective pressures induced by the tumor 

microenvironment that accompany accelerated tumor growth, such as increased hypoxic and 

acidic conditions.9-11, 16, 18 Manual inspection of the 113 differentially abundant proteins observed 

between stage 0 and III patients revealed modulation of several extracellular matrix proteins in 

stage III disease, such as multiple collagen isoforms as well as biglycan (BGN, log2 +2.61-fold 

change in stage III versus stage 0 disease), mucin 5AC  (MUC5AC, log2 +1.32) and 

thrombospondin-1 (TSP1, log2 +1.98) (Figure 19 and Figure 20A and 20B – TSP-1 data). 

Among the differentially abundant collagen isoforms observed, the type I collagens, COL1A1 

(log2 +0.94) and COL1A2 (log2 +1.19), were found to be increased in abundance in stage III 

patients and corresponding mRNA for these factors has previously been shown to be 

overexpressed in invasive breast carcinoma.277 Increased deposition and aberrant cross-linking of 

collagen is associated with the development of invasive breast cancer, the result of which 

contributes to “stiffening” of the ECM and is a factor that has been shown to drive progression of 

in situ disease.278, 279 The ECM-localized proteoglycan BGN was observed as being increased in 

stage III patients and previous evidence has revealed BGN mRNA levels are increased with 

breast cancer disease progression, as evidenced by comparisons of patient-matched IDC versus 

DCIS breast cancer tissues.280 The ECM glycoprotein MUC5AC was also observed as being 

increased in stage III disease, and though this mucin isoform has been previously shown to be 

increased in cancerous versus normal breast tissues281 a lack of correlation between MUC5AC 

expression and other clinicopathological parameters utilized in breast cancer diagnostics, such as 

disease grade, revealed this factor to have weak prognostic value.282 Further, the ECM 

glycoprotein TSP-1 was observed as being increased in stage III patients and previous evidence 
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has indicated that TSP-1 levels are increased in breast cancer tissues as well as found at high 

levels in malignant breast secretions283-285 However, clinical assessment of TSP-1 expression in 

specific histological subytpes and stages of breast cancer disease progression have been 

ambiguous.286, 287 Increased TSP-1 expression is predominantly observed in breast tumor stroma 

A. B.

C. D.

Figure 21: Representative immunohistochemical (IHC) analysis of

Thrombospondin-1 (TSP-1) in stage 0 (A & B) versus stage III (C & D)

patient tissues. A: Hematoxylin and eosin staining of stage 0 patient tissue. B:

IHC staining for TSP-1 in corresponding stage 0 patient tissue. C: Hematoxylin

and eosin staining of stage III patient tissue. C: IHC staining for TSP-1 in

corresponding stage III patient tissue. Observed vacuolar staining pattern for TSP-

1 denoted by arrow.

D: 
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and early studies of this phenomenon comparing invasive ductal carcinoma (IDC) and ductal 

carcinoma in situ (DCIS) breast cancer subytpes revealed TSP-1 levels were significantly higher 

in stromal tissues adjacent to invasive disease as well as in both tumor and stromal cell types in 

malignant versus normal breast tissues.287 Recent evidence characterizing TSP-1 expression in 

DCIS has shown that decreased TSP-1 levels in adjacent tumor stroma is associated with more 

aggressive disease characteristics, such as evidence of high histological grade and increased 

tissue necrosis, correlating with a poorer disease prognosis in these individuals.286 TSP-1 is an 

inhibitor of angiogenesis and exogenous expression of TSP-1 has been shown to elicit both anti-

tumorigenic and anti-angiogenic effects in breast cancer cell lines.283, 285 Assessment of TSP-1 

expression associated with microvessel density, a measure of angiogenesis, in breast cancer 

tissues revealed both positive and negative associations of TSP-1 with these features, findings 

that complicate defining a central role for TSP-1 in angiogenesis.283 We confirmed the increased 

abundance of TSP-1 in stage III patients observed by differential proteomic analysis (Figure 

20A) by IHC of TSP-1 in stage 0 (n=6) and stage III (n=9) patient tissue samples (Figure 20B 

and Figure 21) which revealed a complete lack of TSP-1 staining in stage 0 tissues relative to 

stage III tissues of which 44% exhibited an IHC score of 1+ (Figure 20B). Further, TSP-1 

staining in stage III tissues was observed as being predominantly localized to cellular vacuoles or 

intra-cytoplasmic lumina of tumor cell populations (Figure 21). Interestingly, IHC analysis of 

TSP-1 abundance in stage II patient tissues also revealed increases of TSP-1 in stage II R 

patients versus stage II NR, though this profile was not significantly observed in proteomic 

analyses. Our results therefore substantiate previous reports indicating that TSP-1 expression is 

increased with invasive breast cancer and provide evidence to support this abundance profile that 

indicate a higher risk for developing recurrent disease.           
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Figure 22: Significant, differentially abundant proteins identified in 

comparisons of stage 0 and stage III breast cancer patient tissue samples. Top 10 

significant biofunctions observed in proteins differentiating stage 0 and stage III 

patients. Data reported indicates significant p-values and mean number of proteins 

observed which clustered with a specific biofunction.  
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Analysis of functional biological characteristics amongst differentially abundant proteins 

between stage 0 and III breast cancer.  

Functional analysis of the 113 proteins differentiating stage 0 and stage III patients revealed the 

top ten significant biofunctions to be predominantly related to the overarching theme of cancer, 

specifically being associated with the regulation of tumorigenesis as well as being previously 

implicated in gastrointestinal cancer pathogenesis (Figure 2B). One significant biofunction 

category - namely “compaction of tumor cell lines" - was of interest as this cellular phenomenon 

is associated with the maintenance of intercellular interactions between tumor cells, an event that 

is disrupted in invasive and metastatic breast tumor cells.11, 288 This biofunction category 

contained three proteins, E-cadherin (CDH1, log2 -1.57 in stage III versus stage 0), alpha-catenin 

(CTNNA1, log2 -1.24) and beta-catenin (CTNNB1, log2 -2.56), all of which are core constituents 

of cellular adherens junctions that comprise plasma membrane-localized, multi-protein 

complexes which mediate intercellular adhesion and communication via direct interaction with 

the cellular actin cytoskeleton.11, 284 The formation of intercellular adherens junctions, which is 

facilitated through interaction of adjoining cadherin proteins, produces a contact inhibition signal 

that halts cell proliferation, the response to which is lost during cellular transformation.11 

Modulation of expression of CDH1, CTNNA1 and CTNNB1 are canonical characteristics of 

transformed mammary epithelial cells, with loss of CDH1 specifically being a hallmark of 

invasive and metastatic breast tumor cells, such as those that have undergone epithelial to 

mesenchymal transition, with this decrease further being found to correlate with a poor disease 

prognosis.11, 284, 289 Loss of both CTNNA1 and CTNNB1 have also been reported in breast 

carcinomas, particularly in invasive disease variants or as precursors to these subtypes.284, 290, 291 

Interestingly, loss of expression of CTNNB1 with disease progression in particular is 
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inconsistent with the oncogenic role CTNNB1 plays in the pathogenesis of a variety of cancers 

including breast.288 The canonical role of CTNNB1 is to function as a signaling intermediate 

between CDH1 and cellular actin at cellular adherens junctions.288 However, CTNNB1 can 

further function as a transcriptional co-factor, mediating translation of upstream signaling by the 

Wnt/Frizzled G-protein coupled receptor family via translocation to the nucleus and interaction 

with lymphoid enhancer factor/t-cell factor (LEF/TCF) transcription factors resulting in 

transcriptional activation of LEF/TCF gene targets, such as cyclin D1.288 Insights into the role of 

CTNNB1 dysregulation in cancer have emerged from studies of familial adenomatous polyposis, 

a heritable form of colorectal cancer that often occurs due to mutations in the tumor suppressor 

gene adenomatous polyposis coli (APC), a protein directly implicated in regulating CTNNB1 

stability.292, 293 APC functions as a cytoplasmic scaffolding protein that facilitates the targeting of 

CTNNB1 for ubiquitin-mediated proteolysis. 293 This is achieved through APC recruiting 

glycogen synthase kinase 3 beta (GSK3β) that directly phosphorylates cytoplasmic CTNNB1, 

targeting it for degradation.293 Loss of APC results in increased stability of CTNNB1 and 

increased CTNNB1-dependent transcriptional activity that drives cellular transformation.293 

Notably, we observed APC (log2 -1.1) abundance as being decreased in stage III versus stage 0 

disease. When pairing the observed decrease in CTNNB1 and APC abundance in stage III 

disease, a context is produced in which the diminished population of CTNNB1 may possess 

increased stability and thus function to further drive disease progression. Indeed, modulation of 

APC via mutation or via epigenetic mechanisms has been observed in invasive breast cancers.292-

294       
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Characterization of differentially abundant proteins between stage II non-recurrent and 

recurrent breast cancer.  

Characterization of differential protein abundance in patients diagnosed with stage II disease that 

did (stage II R) or did not exhibit recurrent disease (stage II NR) two years following initial 

diagnosis was achieved by comparative analysis of proteomic data sets derived from stage II NR 
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Figure 23: Significant, differentially abundant proteins and subsequent 

functional characteristics identified in comparisons of stage II NR and stage 

II R breast cancer patient tissue samples. Hierarchical Supervised cluster 

analysis of stage II NR and stage II R patient tissue data sets yielded 42 proteins 

which significantly differentiated these groups.  
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(n=4) and stage II R (n=5) patient tissue samples (Figure 23). Results revealed a total of 42 

proteins, 31 that were increased and 11 decreased in abundance, which significantly 

differentiated stage II NR versus II R patients (Figure 23). Stage II breast cancer is defined as 

Figure 24: Differential abundance profile for Protein DJ-1 (PARK7) by 

spectral count peptides (A) and immunohistochemical verification (B) from 

Stage II NR and Stage II R breast cancer patient tissue samples. A. Data 

reported indicates average peptides identified for PARK7 by spectral count 

between Stage II NR (n=4) and Stage II R (n=5) samples. Results revealed a log2 -

1.9-fold decrease in PARK7 in stage II R versus stage II NR patients. B. Data 

reported indicates the percentage of patient tissues exhibiting an IHC score of 1+ 

or 2+ for PARK7 in Stage II NR (n=4) and Stage II R (n=5) samples. Results 

revealed 20% of stage II R versus 50% of stage II NR patients exhibited an IHC 

score of 2+ for PARK7.  
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evidence of a primary tumor ranging from 2 to 5.0 cm in size with or without locoregional 

invasion of tumor cells to as many as three axillary breast lymph nodes.44, 276 The mechanisms 

 underlying disease recurrence in breast cancer are diverse and include the development of 

acquired resistance in tumor cells to adjuvant therapeutics, such as trastuzumab (herceptin), a 

monoclonal antibody-based therapeutic utilized in the treatment of HER2+ breast cancer295, as 

well as due to the impact of increased immune cell signaling following surgical treatment of 

breast cancer, which has been shown to suppress immune cell function and produce a signaling 

environment that can promote the growth of residual disease or of nascent tumor cell 

A. B.

C. D.

Figure 25: Representative immunohistochemical (IHC) analysis of 

Protein DJ-1 (PARK7) in stage II NR (A & B) versus stage II R (C & D) 

patient tissues. A: Hematoxylin and eosin staining of stage II NR patient 

tissue. B: IHC staining for PARK7 in corresponding stage II NR patient 

tissue. C: Hematoxylin and eosin staining of stage II R patient tissue. D: IHC 

staining for PARK7 in corresponding stage II R patient tissue.  
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populations. 296, 297 Of the 42 proteins that differentiated stage II NR and II R patients, 

adenosylhomocysteinase (AHCY, log2 +2.55 fold in stage II R vs. II NR) was found to be 

significantly increased in patients exhibiting recurrent disease, a protein that has previously been 

shown to be increased in cancerous versus normal breast tissues.298 AHCY catalyzes the 

conversion of S-adenosylhomocysteine to homocysteine and elevated homocysteine levels have 

been associated with increased DNA hypomethylation and subsequent aberrant gene expression 

that has been related to the acquisition of a drug resistant phenotype.299, 300 Indeed, incubation of 

a human cell line model of ER+ breast cancer, MCF-7, with homocysteine resulted in resistance 

to the chemotherapeutic agents doxorubicin and cisplatin as well as upregulation of drug 

resistance markers.300 The increased abundance of AHCY in stage II R patient tissues may thus 

support increased homocysteine production resulting in tumor cell phenotypes that are more 

refractory to chemotherapeutic treatment. Further assessment of proteins differentiating stage II 

NR and II R patients revealed protein DJ-1 (PARK7, log2 -1.91) as being decreased in stage II R 

tissues, a factor that is commonly mutated in early-onset, recessive Parkinson’s disease and 

shown to function as a neuroprotectant against oxidative stress in this context and has further 

been shown to function as an oncogene in various cancer subtypes including breast.301, 302 

Specifically, PARK7 has been observed as being increased in breast cancer tissues and further 

found at increased levels in serum derived from breast cancer patients, a finding that has lead to 

the proposal of PARK7 as a prognostic marker for breast cancer.302-304 Investigations into the 

oncogenic role of PARK7 in lymph node-negative breast cancer tissues has revealed expression 

of this factor to correlate with increased levels of phosphorylated PKB/Akt protein, a 

downstream signaling intermediate of the PI3K pathway that is aberrantly activated in tumor 

cells resulting in an increased cell survival phenotype, as well as decreased levels of the tumor 
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suppressor PTEN, an antagonist of PI3K signaling and a factor that PARK7 has been shown to 

directly suppress.302 However, in instances of breast cancer tissues that exhibited non-

phosphorylated PKB/Akt proteins, evidence of PARK7 expression was less frequent, suggesting 

alternative signaling pathways may be emphasized in these contexts.302 The observed decrease of 

PARK7 abundance in stage II R vs. stage II NR breast cancer tissues, a profile that was also 

observed as significant in comparisons of stage 0 and stage III breast cancer (log2 -1.44), 

supports this hypothesis. We confirmed the decreased abundance of PARK7 in stage II R 

patients observed by differential proteomics (Figure 24A) via IHC analysis of PARK7 in stage II 

NR (n=4) and stage II R (n=5) patient tissue samples (Figure 24B and Figure 25) that revealed an 

equal distribution of stage II NR patients exhibiting a score of 1+ and 2+ for PARK7 and 80% of 

stage II R patients exhibiting a 1+ score versus 20% that were 2+ for PARK7, verifying our 

discovery LC-MS/MS data. However, IHC confirmatory studies for decreased PARK7 

abundance in stage III versus stage 0 patients only modestly recapitulated the LC-MS/MS 

observations (44.4% of stage III samples indicating a +2 score versus 55.5% of stage 0 samples), 

indicating this abundance profile may be more specific for stage II breast tumor cells with the 

capacity to produce recurrent disease.       

 

Analysis of functional biological characteristics amongst differentially abundant proteins 

between non-recurrent and recurrent stage II breast cancer.  

 

Functional analysis of proteins differentiating recurrence in stage II patients revealed the top ten 

significant biofunctions to be related to various functional themes, including neurodegenerative 

(dementia and tauopathy) and inflammatory diseases (rheumatoid arthritis and connective tissue 
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disorders) as well modulation of metabolic functions, such as uptake of calcium, experimentally-

induced diabetes and glycolysis of cells (Figure 26). One candidate of interest, being increased in 

stage II R patients versus II NR, was insulin receptor substrate-1 (IRS-1, log2 +2.14) that was 
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patients. Data reported indicates significant p-values and mean number of
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further associated with five of the top ten significant biofunctions, i.e. skeletal and muscular 

disorder, hematological disorder, connective tissue disorder, uptake of calcium and rheumatoid 

arthritis. IRS-1 functions as a scaffolding protein and signaling intermediate for the insulin-like 

growth factor-1 receptor signaling cascade and has been implicated in the pathogenesis of 

several cancers including breast.305, 306 IRS-1 has been shown to function as an oncogene in 

breast cancer, being associated with regulation of cell proliferation from gain and loss-of-

function analyses in cell line models of breast cancer as well as transgenic murine models.305, 306 

Assessment of IRS-1 expression in clinical breast cancer tissues has revealed ambiguous 

abundance profiles for this factor, with evidence of both increased and decreased levels being 

associated with breast cancer disease progression.305, 306 Interestingly, a study addressing the 

prognostic utility of assessing IRS-1 abundance in clinical breast cancer tissues revealed that 

higher levels correlated with an increased risk of disease recurrence following surgical 

intervention.306, 307 Indeed, the increased abundance profile we observe for IRS-1 in stage II R 

versus stage II NR patients supports these observations and provides provocative evidence that 

assessment of IRS-1 abundance may provide prognostic value in assessing disease recurrence 

risk.           

 

Conclusion 

A comparative, global proteomic analysis of pathologically-defined regions of cancerous 

epithelium, laser microdissected from FFPE-tissue samples derived from twenty-five breast 

cancer patients at distinct stages of disease progression revealed differentially abundant proteins 

indicative of disease stage as well provided functional insights into disease biology underlying in 

situ breast cancer, such as the coordinate modulation of CTNNB1 abundance and related 
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regulatory machinery, i.e. decreased APC abundance, with progression towards stage III disease 

and the increase in IRS-1 abundance in stage II R patient tissues that experienced disease 

recurrence. These data provide robustly, differentially abundant protein candidates that warrant 

further validation for potential prognostic and predictive power as diagnostic tools in breast 

cancer. Verification by IHC analysis of primary breast cancer tissues for two candidates derived 

from these studies support this suggestion, confirming of the observed increase of TSP-1 

abundance and loss of PARK7 abundance in later stage disease (stage III) and in tissues derived 

from patients exhibiting recurrent disease (stage II R) initially observed by proteomic analysis, 

respectively. These data provide evidence to support the utility of FFPE tissues as a robust 

resource for retrospective biomarker studies and functional analyses utilizing MS-based 

proteomics workflows. Further, these data reveal several provocative protein candidates 

indicative of disease stage and recurrence that warrant continued investigation for their 

diagnostic utility and biological relevance in breast cancer pathogenesis. 

5.0 CHAPTER 4: DIFFERENTIAL PROTEOMICS ANALYSIS OF LYMPH-NODE 

METASTASIS IN ESTROGEN-RECEPTOR POSITIVE BREAST CANCER FROM 

FORMALIN-FIXED, PARAFFIN EMBEDDED TISSUES 

Estrogen receptor positive (ER+) breast cancer, also known as luminal breast cancer, is 

characterized by expression of ER as well as variable levels of progesterone receptor (PR) and 

the HER2 growth factor receptor.26, 33, 37, 39, 308 The expression characteristics of these latter 

proteins comprise the basis for further sub-classification, of which there are currently three 

recognized categories; luminal-A, luminal-B and luminal-C (Table 1). 33, 37, 39, 308 A luminal 
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breast cancer diagnosis is associated with better overall survival and prognosis relative to 

HER2+ or basal-like breast cancer subtypes, with luminal-A in particular as exhibiting the 

highest patient outcome relative to the luminal-B subtype due in part to luminal-A cancers 

expressing more ER-associated genes and fewer genes associated with cellular proliferation and, 

further, due to luminal-A cancers tending to be of lower grade than luminal-B.39, 308, 309 

Irrespective of the specific molecular breast cancer subtype identified at the time of diagnosis, 

evidence of locoregional invasion of primary tumor cells, such as into axillary or sentinel lymph 

nodes (LN) of the breast, correlates with a poorer disease prognosis overall.310 Lymph node 

involvement is commonly established by clinicopathological analyses which include the 

utilization of axillary ultrasound and ultrasound guided fine-needle aspiration cytology, as well 

as by characterization of disseminated tumor cell populations in biopsied LN tissues by 

pathological analysis.44, 311, 312 However, even with these diagnostic strategies in place, evidence 

of metastasis has been reported in up to 50% of individuals which initially present with apparent 

localized disease that has further been observed in 30% of individuals diagnosed with disease 

lacking apparent LN involvement, indicating that current methodologies lack the sufficient 

sensitivity needed to identify invasive disease characteristics at the outset of diagnosis.311 

Though the discovery and investigation of biomarkers directed towards the identification of LN 

disseminated tumor cells as well as which identify characteristics of breast tumor cells capable of 

LN invasion have been described, none of these candidates have been adopted into regular 

clinical use.311, 313, 314  

 

Thus, as luminal breast cancers represent the most commonly diagnosed clinical subtype of 

breast cancer, the identification of patients presenting with more aggressive disease 
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characteristics amongst this population, such as those exhibiting locoregional / LN invasion, may 

provide a basis in which to consider more aggressive therapeutic options for these individuals, 

such as treatment with ER-specific endocrine therapy, such as the ER antagonist tamoxifen, or 

aromatase inhibitors, an enzyme responsible for estrogen synthesis.39, 315 We therefore undertook 

a global proteomic analysis of pathologically defined regions of tumor epithelium derived from 

archival, formalin-fixed paraffin-embedded (FFPE) tissues obtained from a large cohort of ER+ 

breast cancer patients (n=35) which did (n=16) or did not (n=19) exhibit LN involvement by 

pathological analysis with the goal of identifying protein abundance characteristics which 

significantly differentiated luminal-type breast cancer tissues which have or have not undergone 

LN invasion. Results revealed 7 proteins which significantly differentiated these subgroups, two 

of which (ARL6IP5, log2 -1.07 in LN+ versus LN- disease) and RNA-binding protein 39 

(RBM39, log2 + 0.66) have been previously implicated in estrogen signaling in breast cancer. 

Validation efforts of these candidates by immunohistochemical analysis utilizing a tissue 

microarray of ER+, LN- and LN+ breast cancer tissues are currently underway.   

 

Materials and Methods 

 

Breast cancer tissue sample preparation 

Pathologically-defined tumor regions from seventy-five formalin-fixed paraffin-embedded 

(FFPE) breast cancer patient tissue samples derived from patients with ER+ or ER- breast 

cancers with (LN+) or without (LN-) lymph node metastasis were processed for global 

proteomic analysis (Dr. Rohit Bhargava, Department of Pathology, Magee Womens Hospital. 

Pittsburgh, PA). Processing entailed de-parrafinization of tissue sections via successive 5.0 min 
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incubations in Xylenes followed by a dehydration and wash regimen consisting of 30 s in 100% 

ethanol (EtOH), 30 sec. in 95% EtOH, 30 sec. in 70% EtOH and 30 sec. in H2O. Sections were 

lightly stained in Harris hematoxylin for 30 s and washed for 1.0 min in tap water, dehydrated 

for 30 s in 95% EtOH and air dried for 10 min. Defined regions were then manually scraped 

from an average of three slides per patient and pooled into 200 µL of 80 mM ammonium 

bicarbonate (AMB) and 20 % acetonitrile (ACN). Samples underwent two freeze-thaw cycles 

before being incubated at 95 ºC for 1 hr followed by 65 ºC for 2 h. 1.0 µg of porcine sequencing 

grade modified trypsin (Promega, Madison, WI) was then added to each sample followed by 

incubation at 37 ºC overnight. Samples were then briefly lyophilized to remove ambient ACN, 

centrifuged and total peptide concentrations were determined from resulting supernatants 

utilizing the bicinchoninic assay (BCA) and a protein standard curve derived from a diluted stock 

of 2.0 µg/mL α-casein (Sigma Aldrich). Samples which yielded at least 3.0 µg of peptide product 

(total: n = 48, i.e. ER+ (n = 35) ER- (n = 13) were utilized for downstream LC-MS analyses and 

were lyophilized and re-suspended to a final concentration of 0.1 µg/µL in 0.1% TFA.                

 

Liquid chromatography-tandem mass spectrometry analyses  

Peptide digests were resolved by nanoflow reverse-phase liquid chromatography (Ultimate 3000, 

Dionex Inc., Sunnyvale, CA) coupled online via electrospray ionization to a hybrid linear ion 

trap-Orbitrap Velos mass spectrometer (LTQ-Orbitrap Velos, ThermoFisher Scientific, Inc., San 

Jose, CA). Quadruplicate injections of 5 µL of peptide extracts were resolved on 100 µm i.d. by 

360 µm o.d. by 200 mm long fused silica capillary columns (Polymicro Technologies, Phoenix, 

AZ) slurry-packed in-house with 5 µm, 300 Å pore size C-18 silica-bonded stationary phase 

(Jupiter, Phenomenex, Torrance, CA). After sample injection, peptides were eluted from the 
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column using a linear gradient of 2% mobile phase B (0.1% FA in ACN) to 40% mobile phase B 

over 125 min at a constant flow rate of 200 nL/min followed by a column wash consisting of 

95% B for an additional 30 min at a constant flow rate of 400 nL/min. The LTQ-Orbitrap Velos 

MS was configured to collect high resolution (R=60,000 at m/z 400) broadband mass spectra 

(m/z 375-1800) from which the twenty-most abundant peptide molecular ions dynamically 

determined from the MS scan were selected for tandem MS using a relative CID energy of 35%. 

Dynamic exclusion was utilized to minimize redundant selection of peptides for CID.  

 

Peptide Identification and Spectral Count Analysis 

Peptide identifications were obtained by searching the LC-MS/MS data utilizing SEQUEST 

(BioWorks, v3.2, ThermoScientific) on a 72-node Beowulf cluster against a UniProt-derived 

human proteome database (version 6/10) obtained from the European Bioinformatics Institute 

(EBI) using the following parameters: trypsin (KR); full enzymatic-cleavage; two missed 

cleavages sites; 20 ppm peptide mass tolerance peptide tolerance, 0.5 amu fragment ion 

tolerance; and variable modifications for methionine oxidation (m/z 15.99492). Resulting peptide 

identifications were filtered according to specific SEQUEST scoring criteria: delta correlation 

(∆Cn) ≥ 0.08 and charge state dependent cross correlation (Xcorr) ≥ 1.9 for [M+H]1+, ≥ 2.2 for 

[M+2H]2+, and ≥ 3.5 for [M+3H]3+. To determine statistically significant changes in protein 

abundance across ER+ patient samples (n=35), a hierarchical supervised cluster analysis of 

peptides identified from ER+/ LN- (n=19) versus ER+/ LN+ (n=16) samples was performed in 

which the variance in total spectral count peptides identified was determined utilizing the 

Mann−Whitney rank-sum test (significance level p ≤ 0.05, Fisher’s exact test) paired with the 
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filter criteria requiring that 50% of the samples in a supervised group had a minimum peptide 

count of 2 or greater for a given protein. 

Results and Discussion: 

 

Global proteomic analyses of pathologically-defined regions of cancerous epithelium scraped 

from FFPE-tissue samples derived from forty-eight ER+ breast cancer patients (n=35) and ER- 

(n=13) disease yielded 19,947 total peptide identifications (Fig 27). Merits of analytical 

performance were monitored by comparing peptides identified between replicate injections for 

all forty-eight patient samples, revealing an average relative standard deviation (RSD) of 5.3% 

(± 5.0%) (Fig 28A). Equivalency of protein digest input for LC-MS/MS analyses was 

Figure 27: Analytical workflow utilized for differential proteomic 

analysis of ER+ formalin-fixed paraffin embedded (FFPE) primary 

breast cancer tissues. 
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determined by comparison of spectral count values for total peptides identified, indicating that an 

average of 1456 (± 417) peptide identifications was achieved across all forty- eight patient 

samples (RSD of 28.7%) (Figure 28B). Compilation of these results revealed an average of 528 

(± 128) proteins was identified by at least two peptides across all samples analyzed (RSD of 

24.3%). These measures critically underpin the determination of significant, differentially 

abundant proteins by spectral counting without the need for normalization. 

Figure 28: Metric of LC-MS performance during analysis of 48 patient samples. 

(A): Assessment of peptides identified between LC-MS/MS technical replicates 

revealed a mean RSD of 5.3% (± 5.0) across data set. (B): Average peptides identified 

for 48 patient tissue samples analyzed in quadruplicate over a ~6-week week period. 

Assessment of peptides identified across data set revealed a 28.7 % RSD in total 

peptides identified.   
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Characterization of differentially abundant proteins in ER+ patients with (LN+) or without 

(LN-) Lymph Node Metastasis.  

 

Significant, differentially abundant proteins were established by hierarchical supervised cluster 

analysis of ER+/ LN+ (n=16) or ER+/ LN- (n=19) proteomic data sets in which at least 50% of 

the samples within a supervised group exhibited spectral count values of 2 or greater for a given 

LN – (n=19)               LN + (n=16)

DMXL1

RMB39

ARL6IP5

ANXA11

HSPA1L
PSME1

PSMD1

Figure 29: Hierarchical supervised cluster analysis of proteomic analysis derived 

from 35 ER+ patient tissue samples ± LN metastasis: Cluster analysis was performed 

on total spectral count peptides utilizing the Mann−Whitney rank-sum test (significance 

level p ≤ 0.05, Fisher’s exact test) paired with the filter criteria requiring that 50% of the 

samples in a supervised group had a minimum peptide count of 2 or greater for a given 

protein. Results revealed a total of 7 proteins which significantly differentiated these 

groups by this criteria.  
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protein of interest (Fig 29). Results revealed 7 proteins which significantly differentiated these 

two sample groups (Table 6). Among these seven candidates, two proteins have previously been 

implicated in estrogen signaling in breast cancer, ADP-ribosylation-like factor 6 interacting 

protein 5 (ARL6IP5, log2 -1.07 in LN+ versus LN- disease)316 and RNA-binding motif protein 

39 (RBM39, log2 + 0.66).317, 318  

 

ARL6IP5, also known as JWA, is a microtubule-localized cytoskeletal protein that has been 

implicated in estrogen signaling as treatment of an ER+ human breast cancer cell line, MCF7, 

with fenvalerate, a pyrethroid insecticide shown to possess estrogenic activity, resulted in a dose-

dependent decrease in ARL6IP5 expression and a coordinate increase in cell proliferation.316   

Additional analyses of ARL6IP5 function have revealed this protein plays a regulatory role in 

cellular differentiation and apoptosis signaling and has been shown to be induced in response to 

cellular stressors, such as heat shock and oxidative stress, in a variety of cellular systems.319-321 

In the context of oxidative stress, ARL6IP5 has been shown to function as a protectant against 

benzo[a]pyrene, an environmental carcinogen, and H2O2-induced DNA damage in NIH-3T3 

fibroblast cells and further has been shown to be induced in MCF7 cells in response to H2O2 

treatment 320, 322, 323 Furthermore, recent evidence investigating this phenomenon has revealed 

that oxidative stress-induced ARL6IP5 promotes expression of XRCC1, a key DNA repair 

mediator associated with the base excision repair pathway, being further shown to complex with 

this protein at single-strand break sites in DNA as well as promote stabilization of XRCC1 

through the prevention of ubiquitin-mediated proteolysis.22 Interestingly, an additional function 

for ARL6IP5 has revealed this factor to be involved in regulation of cell migration, as loss of 

ARL6IP5 expression has been shown to greatly increase cell migratory characteristics of several 
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cancer cell lines including HeLa cells, B16 melanoma cells as well as HCCLM3 hepatocellular 

carcinoma cells.319 Assessment of these findings in the context of the observed decrease of 

ARL6IP5 abundance in LN+ versus LN- disease in our analysis, breast cancer cell types 

comprising ER+/LN+ disease may support a more robust response to estrogen leading to loss of 

ARL6IP5 versus ER+/LN- cells, thus resulting in an increase in cell migratory activity as well as 

impaired DNA repair capabilities which may promote the development of more aberrant and 

aggressive tumor cell types.  

 

RBM39, also known as CAPER, is a nuclear-localized factor that has been observed as being 

associated with spliceosome complexes and further to function as a specific transcriptional co-

activator for AP-1, ER-α and ER-β.317  RBM39 has been shown to directly interact with ER 

isoforms and to promote transcription of genes containing estrogen promoter response elements 

in response to exogenous treatment with E2 estradiol.317 Further analysis of mammary epithelia 

HGNC ID Protein Name

LN+ vs. LN-

Log2 Fold-Change 

Cellular 

Localization

Functional 

Type

ANXA11 annexin A11 -1.261 Nucleus other

ARL6IP5 ADP-ribosylation-like factor 6 interacting protein 5 -1.074 Cytoplasm other

DMXL1 Dmx-like 1 0.499 unknown other

HSPA1L heat shock 70kDa protein 1-like -0.613 Cytoplasm other

PSMD1
proteasome (prosome, macropain) 26S subunit, non-
ATPase, 1 -0.624 Cytoplasm other

PSME1
proteasome (prosome, macropain) activator subunit 1 
(PA28 alpha) -1.004 Cytoplasm other

RBM39 RNA binding motif protein 39 0.663 Nucleus
transcription 

regulator

Table 6: Significant proteins differentiating ER+/LN+ and ER+/LN- breast cancer 

tissues: Seven proteins identified which significantly differentiated ER+/LN+ and ER+/LN- 

groups. HGNC ID’s for proteins previously implication in estrogen signaling in breast cancer 

are in bold.  
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derived from transgenic mice homozygous null for caveolin-1, a plasma membrane-bound 

scaffolding protein that has been shown to be exclusively mutated in ER-α human breast cancers, 

revealed increased expression of RBM39 protein in these tissues which were further hyper-

responsive to exogenous estrogen relative to wild-type controls.318 Our observed increase in 

RBM39 abundance in LN+ versus LN- patients therefore supports the aforementioned 

hypothesis that ER+/LN+ breast tumor cell types may be more responsive to estrogen versus 

ER+/LN- cells. These observed differential abundance profiles for ARL6IP5 and RBM39 in 

LN+ versus LN- disease may thus produce a molecular context which supports more aggressive 

tendencies which translate to greater invasive potential.      

 

Conclusion 

 

These analyses have yielded a panel of seven differentially abundant proteins which significantly 

differentiated a large cohort of ER+ breast cancer patients presenting with or without lymph node 

metastasis. Further inspection of these results revealed two proteins, ARL6IP5 and RBM39, 

which have been previously implicated in estrogen signaling in breast cancer that exhibit an 

abundance profile which supports that ER+/LN+ breast tumor cells may have an increased 

capacity to respond to estrogen and thus may be a factor underlying the invasive characteristics 

exhibited by these cell types. Validation efforts of these candidates by immunohistochemical 

analysis utilizing a tissue microarray of ER+, LN- and LN+ breast cancer tissues are currently 

underway.    
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6.0: SUMMARY AND CONCLUSIONS 

 

The molecular heterogeneity of breast cancer underscores the benefits to be gained from analysis 

of this disease utilizing high-throughput proteomic analyses. This dissertation details the 

investigations of key subjects in breast cancer biology focused on the characterization of 

endogenous and experimentally-induced disease biology characteristics utilizing the application 

of LC-MS based proteomic analyses of both in vitro models of breast cancer as well as primary 

clinical samples. 

 

Data is presented which describes a combined global and functional proteomic strategy to 

discern governing functional roles for mutually, differentially abundant proteins which are 

observed across three tumorigenic cell lines models of human breast cancer corresponding to the 

most common molecular subtypes of disease clinically encountered, ER+, HER+ and basal-like 

disease, relative to a non-transformed model cell line of normal mammary epithelium. Though 

microarray evidence has revealed that breast tumor cells bearing these discrete hormone and 

growth factors receptor profiles exhibit subtype-specific gene expression signatures, observations 

of a mutual population of proteins exhibiting virtually identical abundance trends across these 

three subtypes of breast cancer indicates that there are central molecular characteristics which are 

conserved across breast cancer cells which may represent core characteristics of disease biology 

underlying these systems. Further functional analysis revealed a predominance of differentially 

abundant proteins associated with the regulation of cell spreading, with further analysis 

indicating many of these pro-cell spreading factors being lost across all tumorigenic breast 

cancer cells. Protein network analysis of these mutual candidates revealed a central factor 

associated with regulation of cell spreading , further known to be constitutively active in breast 
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cancer cells, focal adhesion kinase (FAK), as being associated with several of these dysregulated 

cell spreading-associated factors as well as other mutually dysregulated candidates which have 

been shown to inhibit expression of activity of FAK in other cell types and cancer disease 

pathologies. As FAK has been shown to play an integral role in maintaining characteristics of 

breast tumor cell tumorigenicity, these data revealed several targets which warrant further 

investigation for their role in regulating FAK in breast cancer. Further data is provided detailing 

a facile workflow towards the elucidation of functional biological characteristics in complex 

proteome data sets, an area of growing interest in proteomic research. Further analyses are 

described which focus on the fairly novel topic of applying proteomic analysis to the discovery 

of microRNA targets, a research area which has exploded in the last decade with the discovery of 

this previously unknown post-transcriptional gene regulatory mechanism. Investigation into this 

subject has revealed the parameters governing microRNA-mediated gene targeting to be 

complex, such as the tolerance of variable base-pairing within microRNA-target duplex “seed” 

regions as well as the impact of RNA secondary structure on microRNA target site accessibility. 

Further, the clear delineation of the characteristics which govern regulation of microRNA-

mediated target degradation or translational repression have yet to be established. The efforts 

described herein were two-fold in that they were focused on 1) devising a microRNA target 

discovery platform utilizing proteomic analysis and further 2) towards the elucidation of 

experimentally observed targets of a microRNA which has been implicated in breast cancer 

pathogenesis, miR-145. The results of these efforts yielded a proteomics-based microRNA target 

discovery workflow focused on the identification of high confidence microRNA targets bearing 

intact 3’UTR “seed” regions as well as the identification of a panel of microRNA target 

candidates which were mutually regulated across two cell line models of metastatic breast 
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cancer, MDA and SKB cells. Comparative analysis of the robustly different levels of miR-145 

achieved upon restoration of expression in MDA and SKB cells with the prevalence of miR-145 

“seed” containing protein targets observed as decreased in abundance in response to miR-145 

provided evidence to support the hypothesis that microRNA activity is concentration dependent. 

This is a vital issue to consider in the context of therapeutic microRNA restoration or silencing 

strategies which have been proposed for various disease associated microRNAs. Further 

investigation of microRNA activity which attempts to mimic physiologically observed levels of a 

microRNA in endogenous tissue would provide a better experimental context in which to 

investigate microRNA function as well as which would provide expression benchmarks for 

which to achieve in gene therapy strategies aimed at modulating microRNA levels.                     

 

Data is further described which focuses on the global proteomic analysis of clinical breast cancer 

tissues towards the identification of protein characteristics representative of disease stage as well 

as indicative of recurrent disease. As high-throughput sample analysis is suited to proteomic 

workflows, the opportunity to perform large-scale analysis of clinical samples is an attractive 

capability towards the discovery of conserved protein abundance characteristics which are 

indicative of in situ disease. Further, the ability to draw upon basic research findings describing 

the roles of different protein candidates in various cellular systems and disease processes enables 

the elucidation of functional biological characteristics from large-scale proteome analyses which 

may better clarify disease and tissue-specific molecular processes. These data further add to the 

growing arsenal of proteomic analyses utilizing formalin-fixed, paraffin embedded (FFPE) 

tissues samples for retrospective biomarker investigations. The large archives of FFPE tissue 

banks world-wide represent an excellent resource in which to obtain large numbers of clinical 
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samples for analysis which will add sufficient power to observations made that may more readily 

expedite findings to clinical applications. The results of the FFPE proteomic analyses described 

herein adds further evidence to support the utility of these sample sources for retrospective 

proteomic investigations. This was evidenced in comparisons of early and late-stage breast 

cancer revealed differential abundance profiles for several proteins are well established in breast 

cancer pathogenesis, such as a loss of CDH1 (E-Cadherin) as well as modulation of CTNNB1 

(beta-catenin) and CTNNB1 regulatory machinery, i.e. APC (adenamatous polyposis coli). 

Further, the verification of the abundance profiles for two novel factors associated with different 

disease stage and recurrent disease characteristics by immunohistochemical analysis, TSP-1 

(thrombospondin) and PARK7 (Protein DJ-1) adds further credence to the utility of these sample 

sources for proteomic study. Lastly, the identification of factors differentially abundant in ER+ 

breast cancer tissues with and without lymph node (LN) metastasis, which have been previously 

implicated in estrogen signaling and further which exhibited abundance profiles supporting the 

hypothesis that ER+ breast tumor cells capable of achieving LN metastasis may be more 

responsive to estrogen signaling, further adds support to the observations made utilizing these 

sample sources. The differential abundance profiles for proteins associated with disease stage as 

well as indicative of recurrent disease identified in these analyses warrant further investigation 

for their utility in the clinical diagnosis of breast cancer.  

 

The results reported herein overall detail the development of novel proteomic workflows as well 

as the identification of both established and novel protein abundance characteristics associated 

with neoplastic progression in breast cancer which will benefit the further development of 

investigating functional biology in proteomic analyses and further will result in expansion of the 
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basic biological understanding of breast cancer as well as which will provide prospective clinical 

tools towards the more facile diagnosis of this disease. 
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