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The Glycine receptor (GlyR) is the major inhibitory neurotransmitter receptor in the spinal cord 

and brainstem. Dysfunction of GlyR causes hyperekplexia, a neurological disease characterized 

by an excessive startle response. However, limited structural information about this 

physiologically important receptor is available. Therefore, direct structural analyses at high 

resolution of truncated ligand binding domains, and possibly full-length GlyR, are required for 

further understanding of this important neurotransmitter receptor. 

This study is focused on purifying and characterizing glycine binding protein (GlyBP), a 

mutant form of the ligand binding domain of the GlyR, in which two hydrophobic loops were 

replaced with corresponding hydrophilic residues in AChBP. GlyBP was overexpressed in Sf9 

insect cells. GlyBP was found in both cytosolic and membrane-bound fractions after subcellular 

fractionation. The cytosolic fraction was misfolded. In contrast, the membrane-bound form is 

functional as shown by its ability to reversibly bind to 2-aminostrychnine resin. After affinity 

purification, membrane-bound GlyBP could be isolated in an aqueous form and a membrane-

associated vesicular form. Radiolabeled binding assays showed both forms of GlyBP retained 

abilities to bind to its ligands, with affinities comparable to those of full-length GlyR. 

Furthermore, studies using chemical crosslinking, light scattering and luminescence resonance 

energy transfer (LRET) showed that both forms of GlyBP are oligomeric, and are very likely 

pentameric. The LRET studies also showed GlyBP undergoes conformational changes upon 
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glycine binding equivalent to changes in full-length GlyR. Further studies using chemical 

crosslinking coupled with mass spectrometry were conducted to probe the low resolution three-

dimensional structure and inter-subunit interactions. A number of intramolecular and/or 

intermolecular Lys-Lys crosslinks were identified. Those crosslinks provided useful information 

about protein folding and validated our computationally-derived model of GlyBP. 

Results from this study indicate that GlyBP adopts a native-like structure and is a 

structural and functional homolog of the extracellular domain of GlyRs and other members in 

Cys-loop receptor family. Further detailed structural studies will lead to further understanding of 

function of the ligand binding domain of GlyRs. In addition, efforts on resolving a high-

resolution structure of GlyBP might result in detailed structural information about this 

physiologically important receptor and also other Cys-loop receptors. 
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1.0  INTRODUCTION 

1.1 INHIBITORY SYNAPSES AND GLYCINE SYNAPTOGENESIS 

1.1.1 Synaptic neurotransmission 

Neurons in the brain and at the neuromuscular junctions communicate at synapses. How 

synapse formation occurs became an intriguing question since the term “synapse” was 

introduced by Charles Sherrington more than a century ago (Shepherd and Erulkar, 1997). 

Synapses may be electrical or chemical. Direct neuronal communication is mediated by 

electrical synapses. The most common type of electrical synapses are mediated via 

neuronal gap junctions (Bennett and Zukin, 2004; Hormuzdi et al., 2004). Specialized gap 

junctions are clusters of transcellular channels composed of connexin proteins, which allow 

ionic current to flow directly between neurons and thus mediate electrical coupling 

between cells (Connors and Long, 2004). However, interneuronal and neuromuscular 

communication is mainly mediated by chemical synapses. A chemical synapse consists of a 

pair of opposing presynaptic and postsynaptic terminals. The presynaptic neuron secretes 

neurotransmitters, which activate a variety of ligand-gated ion channels and G-protein 

coupled receptors on the postsynaptic membrane (Kandel et al., 2000). The arrival of an 

action potential generated in the presynaptic neuron triggers fusion of neurotransmitter-
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containing synaptic vesicles resulting in release of neurotransmitter into the synaptic cleft. 

Released neurotransmitter then binds specifically to receptors residing on the postsynaptic 

membrane, resulting in conformational changes in the receptor and transient opening of 

coupled ion channels. The open ion channels allow influx or efflux of ions causing changes 

in the membrane potential of the postsynaptic cells. The direction of ion flow is determined 

by the concentrations of ions inside and outside of the cell, the membrane potential and the 

permeability (P) of the membrane to those ions. Specifically, the membrane potential is 

described by the Goldman-Hodgkin-Katz equation:  

  

The resulting ion flow, in turn, affects the membrane potential. These effects could 

either be excitatory and inhibitory depending on the ion selectivity of the channels. Influx 

of cations or efflux of anions depolarizes the postsynaptic membrane, potentially resulting 

in generation of an action potential. In contrast, influx of anions, usually Cl- ions, results in 

hyperpolarization of the postsynaptic membrane. Under typical conditions, the ion 

channels, such as AChR and glutamate receptors, which are permeable to Na+ and K+ ions, 

are excitatory, whereas GlyRs and γ-amino-butyric acid (GABA) receptors (GABARs) 

typically mediate inhibitory effects (Kandel et al., 2000).  

 

1.1.2 Glycine as an inhibitory or excitatory neurotransmitter 

Glycine was discovered as a neurotransmitter more than 40 years ago when Aprison and 

Werman found that glycine is much more concentrated in the spinal cord than elsewhere in 
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the brain (Aprison and Werman, 1965). Glycine is most concentrated in the ventral horn, 

where spinal interneuronal terminals are enriched. Thus they postulated that glycine might 

function as a postsynaptic inhibitory neurotransmitter. This idea was supported by 

electrophysiological studies, in which it was found that the action of potential firing in 

spinal neurons is greatly reduced when glycine is applied to these neurons (Curtis and 

Watkins, 1960; Werman et al., 1967). A subsequent study on the rate of glycine synthesis 

in the rat central nervous system demonstrated that glycine is derived by de novo synthesis, 

suggesting that spinal neurons have the ability to synthesize glycine endogenously (Shank 

and Aprison, 1970). In addition, isotopically labeled glycine could be released in rat spinal 

cord slices upon electrical stimulation (Hopkin and Neal, 1970). All those early studies 

demonstrated that glycine fulfilled most criteria set for a neurotransmitter molecule and 

functioned as an inhibitory neurotransmitter by acting on GlyRs in the spinal cord and the 

brainstem. 

In addition to its action on GlyRs, glycine also functions as a co-agonist of N-

methyl-D-aspartic acid (NMDA) receptors. The presence of glycine at nanomolar 

concentrations is a prerequisite for channel activation by glutamate or NMDA (Johnson 

and Ascher, 1987; Kleckner and Dingledine, 1988). Glycine displays different affinities 

within distinct NMDA receptor subtypes and the affinity of glycine can be modulated by 

Mg++ concentrations (Wang and MacDonald, 1995; Parsons et al., 1998).  
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1.1.3 Inhibitory synapses 

A balance of excitation and inhibition is crucial for normal brain function (Cline, 2005). 

Disruption of this balance has been shown to be associated with a number of neurological 

diseases such as Parkinson’s disease, autism and schizophrenia (Llinas et al., 1999; 

Rubenstein and Merzenich, 2003; Wassef et al., 2003). Proper control of excitability of 

neurons is achieved by inter-neuron communication mainly medicated by 

neurotransmitters. GABA and glycine are major inhibitory neurotransmitters in the brain 

and spinal cord (Kuhse et al., 1995; Moss and Smart, 2001; Breitinger and Becker, 2002). 

They both specifically bind to distinct receptors residing in the postsynaptic membrane and 

activate chloride-conducting channels generally resulting in a rapid hyperpolarization of 

postsynaptic neurons (Moss and Smart, 2001). Although they have distinct distribution 

patterns and functions in the nervous system, electrophysiological studies have shown that 

GlyRs and GABAARs may coexist in the same neurons (Barker and Ransom, 1978; Faber 

et al., 1980), suggesting a synergistic role in mediation of inhibitory synaptic transmission. 

In the CNS, GlyRs are predominantly located in the brainstem and spinal cord 

(Legendre, 2001; Breitinger and Becker, 2002). When glycine binds to GlyR on the 

membrane, this ion-conducting pore transiently allows passive diffusion of Cl- across the 

membrane. Once GlyRs are activated, the membrane potential rapidly reaches the Cl- 

equilibrium potential (Lynch, 2004). The Cl- flux could either depolarize or hyperpolarize 

the neuronal membrane depending on the Cl- equilibrium potential relative to the resting 

potential. At early developmental stages, the high intracellular Cl- concentration results in 

depolarization of neuronal membranes after GlyR activation (Flint et al., 1998). In mature 

neurons, the Cl- equilibrium is typically more negative and GlyR activation hyperpolarizes 
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the neurons in which GlyR resides (Lynch, 2004). Thus, GlyRs are generally considered to 

mediate inhibitory neurotransmission in the mature central nervous system. In addition to 

its high concentration in the spinal cord and the brainstem, GlyRs are also highly 

concentrated in the retina (Pourcho, 1996). In addition, immunolabeling experiments 

showed GlyRs are detectable in the cerebellum  (Araki et al., 1988; Takahashi et al., 1992) 

and olfactory bulb (van den Pol and Gorcs, 1988).  

The formation of functional synapses requires selective accumulation of 

neurotransmitter receptors at the postsynaptic site. GlyRs were found to be highly 

concentrated at the postsynaptic site apposed to glycinergic afferent endings (Triller et al., 

1985; Seitanidou et al., 1988). At early developmental stages, newly-synthesized GlyRs are 

randomly distributed in the postsynaptic membrane (Hoch et al., 1989; Kirsch et al., 1993). 

Extensive studies have shown that the postsynaptic scaffolding protein gephyrin plays a 

crucial role in the formation of GlyR clusters (Kneussel and Betz, 2000). Gephyrin was 

originally co-purified with GlyRs (Pfeiffer et al., 1982; Graham et al., 1985) and 

subsequent studies showed that gephyrin directly binds to the cytoplasmic loop of GlyR β 

subunit (Meyer et al., 1995; Kneussel et al., 1999) and anchors the receptor to the 

cytoskeleton (Kirsch and Betz, 1995). In addition, a number of gephyrin binding partners, 

including collybistin (Kins et al., 2000), profilin (Mammoto et al., 1998) and RAFT1 

(Sabatini et al., 1999),  as well as the cytoskeleton, were believed to act in concert with 

gephyrin to mediate postsynaptic accumulation of GlyRs (Kneussel and Betz, 2000). GlyR 

clustering was found to be activity-dependent (Kirsch and Betz, 1998), as blockade of 

neuronal activity with tetrodotoxin prevents the formation of postsynaptic GlyR clusters in 

embryonic spinal neurons. In addition to its location on the postsynaptic membrane, GlyRs 
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are also found in presynaptic (Jeong et al., 2003) and non-synaptic sites (Flint et al., 1998). 

Activation of presynaptic GlyRs was found to facilitate transmitter release in the rat 

auditory brainstem nucleus (Turecek and Trussell, 2001, 2002). Non-synaptic GlyR 

activation seems to be crucial for development in both cortical and hippocampal neurons 

(Flint et al., 1998; Mori et al., 2002) 

1.2 GLYCINE RECEPTOR AND OTHER PENTAMERIC CYS-LOOP 

RECEPTORS 

1.2.1 General structure of Cys-loop receptors and their roles in the central nervous 

system 

Cys-loop receptors, also called pentameric ligand gated ion channels (LGICs) or 

nicotinicoid receptors, are essential mediators of fast synaptic transmission at neuronal and 

neuromuscular synapses (Connolly and Wafford, 2004). The Cys-loop receptor family 

includes nicotinic acetylcholine receptors (nAChR), GlyRs, GABA type A and C receptors 

and serotonin type 3 receptors (5-HT3 receptor) (Connolly and Wafford, 2004; Lester et al., 

2004). Similar to other classical neurotransmitter-gated receptors, Cys-loop receptors are 

usually located on postsynaptic membranes and undergo a conformational change upon 

binding to their respective presynaptically released endogenous agonist. This binding leads 

to the opening of the ion channel pore at a millisecond time scale and allows passive flux of 

selective ions across the postsynaptic membrane. Based on their ion selectivity, the Cys-

loop receptors are divided into two major categories: cation-selective and anion-selective 
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receptors. nAChR and 5-HT3 receptor are selective for cations and mediate excitatory 

neurotransmission in the nervous system and muscles (Barry and Lynch, 2005). GlyR and 

GABAA/C –R channels are anion-selective and primarily conduct chloride ions, so 

activation of these receptors typically produce an inhibitory effect on the postsynaptic cell 

(Legendre, 2001; Luscher and Keller, 2004; Mody and Pearce, 2004). 

All Cys-loop receptors are comprised of a pentameric assembly of subunits 

arranged surrounding a central ion-conducting pore. Each subunit of Cys-loop receptors 

shares a similar topology. The N-terminal extracellular domain is followed by four 

transmembrane segments (M1-M4) that comprise the transmembrane domain. This N-

terminal domain harbors overlapping agonist and antagonist binding sites located at subunit 

interfaces. The presence of a conserved Cys-disulfide pair separated by 13 residues (Cys-

loop) is the defining feature of this receptor family (Schofield et al., 1987). The M2 

segment from each subunit lines the central ion-conducting pore. Each TM segment (M1-

M4) is considered to be α–helical. This four helix membrane topology was originally 

proposed based on hydropathy analysis on nAChR (Karlin and Akabas, 1995) and was 

supported by the structure of the Torpedo nAChR as determined by cryoelectron 

microscopy (Miyazawa et al., 2003). However, previous studies in our lab and others 

showed the original four transmembrane helix model might not be entirely correct for Cys-

loop receptors (Leite et al., 2000; Leite and Cascio, 2001). A large intracellular loop exists 

between M3 and M4 and is important for modulation of channel activity by interaction 

with intracellular proteins. 

The nAChR is the most extensively studied receptor in the Cys-loop superfamily of 

LGICs. Using its competitive antagonist α–bungarotoxin, the nAChR was the first 
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neurotransmitter receptor to be functionally characterized at a molecular level (Changeux et 

al., 1970). nAChRs consist of neuronal- and muscle-type receptors found in the central and 

peripheral nervous systems and in neuromuscular junctions, respectively (Hogg et al., 

2003). Both types of receptors respond to acetylcholine and are involved in many important 

physiological functions. The muscle-type nAChR on the postsynaptic membrane of muscle 

is the key player in neuromuscular transmission (Hogg et al., 2003). Dysfunction of the 

muscle-type nAChR is associated with a number of inherited and acquired diseases 

resulting in impaired neuromuscular transmission and muscle weakness (Kalamida et al., 

2007). Myasthenia gravis and congenital myasthenic syndromes are the most studied 

diseases associated with muscle-type nAChR. The former is the most common autoimmune 

disorder of neuromuscular transmission, in which the presence of autoantibodies to muscle-

type nAChRs cause loss of receptors at neuromuscular junction, leading to defects in 

neuromuscular transmission and muscle fatigue (Vincent et al., 2001). The neuronal-type 

nAChR is involved in many brain functions, such as attention, memory and cognition 

(Lindstrom, 2003). Defects in neuronal-type nAChR are often associated with 

neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and 

schizophrenia (Hogg and Bertrand, 2007).  

GABAA/C receptors are the major inhibitory neurotransmitter receptors and are 

found in about 20-50 % of all neuronal synapses (Bloom and Iversen, 1971). GABAARs 

mediate most of physiological actions of GABA (Sieghart et al., 1999). Dysfunctions of 

GABAA/CR have been implicated in a variety of central nervous system disorders, such as 

stress, sleep disturbances, alcoholism, epilepsy, schizophrenia and insomnia (Mohler, 2006; 

Michels and Moss, 2007).  
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The 5-HT3 receptor is the only ligand gated ion channel among the receptors for 

serotonin. 5-HT3 receptors are located both presynaptically and postsynaptically (Chameau 

and van Hooft, 2006). Activation of presynaptic 5-HT3 receptors mediates an increase in 

intracellular Ca2+, either indirectly via the activation of voltage-gated Ca2+ channels or 

directly via Ca2+ entry through the 5-HT3-receptor-operated ion channel, which controls the 

excitability of neuronal networks (Chameau and van Hooft, 2006).  Dysfunction of 5-HT3 

receptors are involved in nausea, vomiting and autonomic cardiac defect (Costall and 

Naylor, 2004). 

 

1.2.2 Molecular diversity and receptor assembly of Cys-loop receptors  

1.2.2.1 Molecular diversity and assembly of GlyR 

 

Most ion channels are usually formed by multiple identical or homologous subunits (Doyle, 

2004). All Cys-loop receptors are believed to be pentameric, either homopentameric or 

heteropentameric. A large number of subunits of each member have been identified, which 

gives rise to various subunit composition and spatial arrangements within a single complex. 

The GlyR was originally purified from rat spinal cord (Pfeiffer and Betz, 1981; Pfeiffer et 

al., 1982). Subsequent studies using cDNA library screening resulted in isolation of cDNA 

clones that correspond to the 48 kDa (α1) and 58 kDa (β) subunits (Grenningloh et al., 

1987; Grenningloh et al., 1990). To date, four α subunits (α1-4) and one β subunit have 

been identified (Grenningloh et al., 1990; Kuhse et al., 1990a; Akagi et al., 1991; Kuhse et 

al., 1991; Matzenbach et al., 1994). Cloning and isolation of these subunits were mostly 
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from humans, mice, rats (Breitinger and Becker, 2002), chicks (Boehm et al., 1997; Harvey 

et al., 2000) and zebrafish (Legendre and Korn, 1994; Legendre, 1997). In addition, 

alternative splicing contributes to the heterogeneity of GlyR subunits. All α subunits have 

splicing variants (Breitinger and Becker, 2002). For example, GlyR α1 has a splicing 

variant that contains an additional eight-amino acid insert in the large intracellular loop 

containing a phosphorylation site (Malosio et al., 1991a).  Primary sequence of all α 

subunits shares about 80-90% identity (Lynch, 2004). In contrast, the β subunit only has 

sequence identity of less than 50% to α subunits (Grenningloh et al., 1990). While all α 

subunits were found to be predominantly distributed in the brainstem and spinal cord 

(Breitinger and Becker, 2002), the β subunit was transcribed at all developmental stages 

throughout spinal cord and brain (Fujita et al., 1991; Malosio et al., 1991b).  

In adult mammalian animals, functional GlyR is a heteropentamer composed of α 

subunit and β subunit. Chemical cross-linking originally suggested it had a stoichiometry 

of 3α/2β (Langosch et al., 1988). However, a recent study provided evidence that synaptic 

GlyRs assemble in an invariant 2α/3β stoichiometry (Grudzinska et al., 2005). In 

heterologous expression systems, all α subunits could form functional homomeric channels 

with distinct pharmacological properties (Schmieden et al., 1989; Sontheimer et al., 1989; 

Kuhse et al., 1991; Schmieden et al., 1992; Bormann et al., 1993; Laube et al., 2002). 

Functional α homomeric GlyRs have been only found at extrasynaptic sites (Takahashi et 

al., 1992; Singer and Berger, 2000). In contrast, β subunit cannot assemble into functional 

receptors in the absence of α subunit (Bormann et al., 1993; Kuhse et al., 1993). It has been 

shown that membrane targeting of GlyRs to axonal or somatodendritic compartment is 

determined by their subunit composition (Deleuze et al., 2005). 
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1.2.2.2 Molecular diversity and assembly of other Cys-loop receptors 

 

The nAChR subunits could be divided into two categories: α subunits (α1-9) and non-α 

subunits (β, γ, ε, and δ ) (Corringer et al., 2000). The major difference between them is that 

all α subunits have two adjacent cysteines that are critical for ligand binding (Kao et al., 

1984; Karlin and Akabas, 1995) and all non-α subunits do not (Sargent, 1993). Among all 

these subunits, when expressed heterologously, only α7 (Couturier et al., 1990), α8 

(Gerzanich et al., 1994) and α9 (Elgoyhen et al., 1994) are able to form functional 

homopentamers. 

Nineteen homologous GABAA receptor subunits have been identified, which are 

divided into distinct subclasses: α (1-6), β (1-3), γ (1-3), δ, ε, π, θ, and ρ (1-3) (Wilke et al., 

1997; Bonnert et al., 1999; Steiger and Russek, 2004). Despite the extensive diversity of 

GABAA receptor subunits, the most commonly accepted stoichiometry of pentameric 

GABAA receptor in the brain is: α2β2γ (Sieghart et al., 1999). As observed in other Cys-

loop receptors, recombinant GABAA α1, β1, β2, γ2, or δ subunits can form homomeric 

receptors (Blair et al., 1988; Shivers et al., 1989; Verdoorn et al., 1990). GABAC receptor 

is a much less known subtype of GABA receptors. GABAC receptors have distinct 

pharmacological properties compared with those of GABAA receptors (Drew and Johnston, 

1992; Strata and Cherubini, 1994).  Similar to GABAA receptors, GABAC receptors also 

form homo- or hetero-oligomeric receptors when expressed heterologously (Enz and 

Cutting, 1998). In some cases, GABAC receptor subunits can coassemble with GABAA 

receptor or GlyR subunits (Koulen et al., 1998; Pan et al., 2000). 
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In contrast to other members of Cys-loop receptors, the molecular diversity of 5-

HT3 receptor has been much less studied. To date, only two types of 5-HT3 receptor 

subunits (5-HT3A  and 5-HT3B ) have been identified (Maricq et al., 1991; Davies et al., 

1999). While 5-HT3A subunits form functional homomeric receptors (Hussy et al., 1994; 

Gill et al., 1995), 5-HT3B subunits need to co-assemble with 5-HT3A subunits to form 

functional receptors (Davies et al., 1999; Dubin et al., 1999). In addition, 5-HT3A subunits 

are able to functionally co-assemble with the neuronal nicotinic α4 receptor subunit (van 

Hooft et al., 1998; Kriegler et al., 1999). 

1.2.3 Structure and function of the extracellular ligand binding domain of Cys-loop 

receptors 

Since the N-terminal extracellular domain (ECD) contains almost a half of the entire 

sequence and harbors the ligand binding sites, it is as important as the ion-conducting pore 

with regard to normal functioning of Cys-loop receptors. Although sequence alignments of 

the extracellular domain of all Cys-loop members show little conservation in primary 

sequence, a number of residues are found to be almost completely conserved (Srinivasan et 

al., 1999; Deane and Lummis, 2001; Jin et al., 2004). Extensive mutagenesis studies of the 

ECD of Cys-loop receptors, especially nAChR, have identified many important residues 

that are essential for ligand recognition and subsequent channel activation (Corringer et al., 

2000). Before discovery of the crystal structure of AChBP and the cryo-EM structure of 

Torpedo nAChR, most structural information about the ECD of Cys-loop receptors was 

from photo-affinity labeling, protein modification and site-directed mutagenesis studies 

(Corringer et al., 2000). It is generally accepted that the ligand binding pocket is conserved 
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throughout the entire family of Cys-loop receptors and is formed by six distinct regions of 

sequence located in the interface between two neighboring subunits (Corringer et al., 2000; 

Grutter and Changeux, 2001; Lester et al., 2004). The principal side, also called “+” side, 

of this ligand binding pocket contains three loops from the same subunit (Regions A, B and 

C, Figure 1.1). In contrast, three β-strands, instead of loops, contribute to the formation of 

the complementary side (Regions D, E and F, Figure 1.1), also called “-” side. In nAChR, 

extensive affinity labeling and mutagenesis experiments confirmed the presence of ligand 

binding sites in the subunit interface and also identified various residues directly involved 

in ligand binding in both the principal (Kao et al., 1984; Dennis et al., 1988; Pedersen and 

Cohen, 1990; Middleton and Cohen, 1991; Corringer et al., 1995) and complementary sides 

(Chiara et al., 1998; Chiara et al., 1999). While the identified residues in regions A, B, C 

and D are well conserved among distinct subunits in nAChR, residues in regions E and F 

are relatively variable (Corringer et al., 2000).  

Recently, the structure of a monomeric ECD of mouse nAChR α1 subunit was 

resolved at 1.9 Å resolution (Dellisanti et al., 2007), providing the first high-resolution 

structure of the ECD of a mammalian Cys-loop receptor. This structure reveals atomic 

details for a number of structural elements critical for nAChR function. Although the 

mouse α1 ECD retains a similar fold to that of AChBPs, the lack of structural information 

regarding the subunit interface limited the usefulness of the monomeric structure in 

understanding the quaternary structure of pentameric Cys-loop receptors. 
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Figure 1.1 Schematic representation of structure of ligand binding pocket (A) 

and the C-loop (B) of Cys-loop receptors. 

Figures were generated uing the program Visual Molecular Dynamics (VMD), version 

1.8.6 (Humphrey et al., 1996). 

 

1.2.4 Structure and function of transmembrane domains and gating mechanisms of 

Cys-loop receptors 

1.2.4.1 The receptor ion pore and gating mechanisms of GlyR 

 

As for other LGICs, GlyRs exist in at least three functional states: resting state, open state 

and desensitized state. In the absence of agonist, the channels are in the non-conducting 

resting state, which is the most stable state in the absence of bound agonist. Binding of the 

endogenous agonist to a ligand-gated ion channel causes transient opening of the channel, 
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also called “gating”, causing the channel to exist in the short-lived conducting open state. 

In the long-lived desensitized state, the channels are closed and have high affinity to ligand. 

In the presence of agonist, GlyR cycles between these distinct conformational states and 

these transitions are critical for its proper functioning. 

Under physiological conditions, glycine is present in the cerebrospinal fluid of rat 

brain in the micromolar range (Larson and Beitz, 1988; Whitehead et al., 2001). The EC50 

value for GlyR activation ranges from 20 to 100 μM in different isolated neuronal 

preparations or in heterologous expression systems (Krishtal et al., 1988; Akaike and 

Kaneda, 1989; Sontheimer et al., 1989; Fatima-Shad and Barry, 1992; Pribilla et al., 1992; 

Agopyan et al., 1993). Using single channel recording techniques, ion permeation 

mechanisms of GlyR were studied in primary culture of embryonic mouse neurons and in 

rat hippocampal neurons (Bormann et al., 1987; Fatima-Shad and Barry, 1992, 1993). It 

was found in these studies that the relative permeabilities of anions were: SCN- > NO3
- > I- 

> Br- > Cl- > F- , whereas the relative conductances were: Cl- > Br- > NO3
- > I- > SCN- > F-. 

This sequence of permeability is proportional to the ionic hydration energy, which implies 

that hydration force is the major barrier to ion channel entry (Rajendra et al., 1997; Lynch, 

2004). Based on these electrophysiological studies, the pore diameter of GlyR channel is 

estimated to be 5.2 Å in spinal neuron GlyRs (Bormann et al., 1987), 5.5–6.0 Å in 

hippocampal neurons  (Fatima-Shad and Barry, 1993) and 5.22–5.45 Å in recombinant 

receptors (Rundstrom et al., 1994). 

How agonist binding is coupled to channel activation has been an intriguing 

question for many years. Electrophysiological studies on a series of point mutants in the 

intracellular M1-M2 and extracellular M2-M3 loops demonstrated both loops are involved 
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in coupling of agonist binding and channel activation (Lynch et al., 1997). In cysteine 

scanning mutagenesis studies of α1 GlyR, considerable structural changes in the M2-M3 

loop is observed upon channel activation (Lynch et al., 2001). In GlyRs, the involvement of 

the M1-M2 and M2-M3 loops in coupling of agonist binding and channel activation was 

also demonstrated by point mutations observed in startle diseases (Shiang et al., 1993; Rees 

et al., 1994; Shiang et al., 1995; Elmslie et al., 1996; Saul et al., 1999). The Cys-loop in the 

extracellular domain is a defining feature of the Cys-loop receptors. In both GlyR and 

GABA receptors, the extracellular Cys-loop is not directly inovolved in the formation of  

participate in agonist binding site (Vandenberg et al., 1993; Amin et al., 1994). However, 

mutations at Asp148, a conserved residue in this signature Cys-loop, caused a significant 

decrease in receptor efficacy, suggesting a functional role of this residue in channel 

activation (Schofield et al., 2003). In addition, molecular modeling in combination with 

electrophysiological studies showed that charged residues in Loops 2 and 7 interact with 

the M2-M3 loop and those interactions are required for signal transduction process that 

links ligand binding to channel activation (Absalom et al., 2003). 

1.2.4.2 Structure and function of transmembrane domains and gating mechanisms of 

other Cys-loop receptors 

 

The transmembrane domains (TMs) of pentameric Cys-loop receptors are the channel-

forming domains that allow ion conductance across the membrane and thus play an 

essential role in proper receptor functioning. The second transmembrane segments (TM2) 

from each subunit form the ion-conducting pore. A variety of studies using cryo-EM 

(Unwin, 1995; Miyazawa et al., 1999) , NMR spectroscopy (Opella et al., 1999; Tang et al., 
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2002) and cysteine scanning mutagenesis (Karlin and Akabas, 1998) have shown that the 

pore-forming TM2 segment is an α helix. 

In all Cys-loop receptors, significant conformational changes occur during channel 

gating. In Unwin’s refined structure (Unwin, 2005), the TM2-TM3 linker makes contact 

with extracellular loops, which is proposed to be critical for coupling of agonist binding 

and channels activation. In the absence of ligand, the α subunits have a different 

conformation from non-α subunits. When acetylcholine is bound, the α subunits convert to 

a non-α conformation (Unwin et al., 2002). This process is also accompanied by 

displacement in the C-loop (Figure 1.1B) and a 15º clockwise rotation of the inner 

extracellular β sheets, resulting in a more symmetrical structure. In nAChRs and GlyRs, 

channel gating was impaired by mutations in the M2-M3 linker (Rajendra et al., 1995a; 

Lynch et al., 1997; Lewis et al., 1998; Grosman et al., 2000). However, mutations in the 

corresponding region of non-α subunits in muscle nAChR and GlyR have no effects on 

channel activation properties (Grosman et al., 2000; Shan et al., 2003). In addition, a 

number of mutations found in this region in human diseases have also been shown to alter 

channel gating in Cys-loop receptors (Connolly and Wafford, 2004). Currently, the 

molecular mechanisms of channel gating remain controversial and poorly resolved. 

1.2.5 Selective ligands and ligand binding properties of GlyRs 

GlyR function is modulated by specific agonists and antagonists as well as anesthetics, 

neurosteroids and various drugs. The native GlyR is selectively activated by glycine, β-

alanine and taurine (Legendre, 2001), all of which are released in the central nervous 

system (Werman et al., 1967; Rajendra et al., 1995a; Oja and Saransaari, 1996). All these 
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agonists bind to the N-terminal extracellular domain of GlyRs (Kuhse et al., 1990b; 

Schmieden et al., 1992; Vandenberg et al., 1992a). However, under typical physiological 

conditions, neither β-alanine nor taurine have the ability to activate synaptically located 

GlyRs (Legendre, 2001). The pharmacological properties of distinct α- and β-amino acids 

were analyzed using voltage clamp recording in heterologously expressed α1 GlyR in 

Xenopus oocytes (Schmieden and Betz, 1995). This study demonstrated that agonistic 

action of α-amino acids was determined by the size and polarity of their Cα-atom 

substitutions. In contrast, β-amino acids had both agonistic and antagonistic actions on 

GlyR (Schmieden and Betz, 1995). For example, taurine elicit a significant membrane 

current at higher concentrations and competitively inhibited glycine-induced current at 

lower concentrations (Schmieden et al., 1992; Schmieden and Betz, 1995; De Saint Jan et 

al., 2001). These β-amino acids were thus considered as partial agonists. However, 

antagonistic activity was not detectable for β-alanine, which is usually considered as a 

GlyR agonist (Laube et al., 1995). In addition, the affinities and efficacies of those agonists 

vary in different expression systems (Lynch, 2004). 

 

                   

Figure 1.2 Chemical structure of strychnine. 
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Strychnine is a highly potent competitive antagonist of GlyRs in mature neurons 

(Figure 1.2) (Young and Snyder, 1973); (Ehlert, 1988). Displacement studies have shown 

that strychnine and glycine have overlapping, but not identical, binding sites on GlyRs 

(Pfeiffer et al., 1982; Graham et al., 1983; Marvizon et al., 1986).  In an early study, 3H-

strychnine was found to bind irreversibly and photochemically label the GlyR when 

exposed to UV light (Graham et al., 1983). Due to its high selectivity and affinity, 

aminostrychnine agarose is commonly used for GlyR purification (Pfeiffer et al., 1982; 

Graham et al., 1985; Cascio et al., 1993; Morr et al., 1995).  

As observed in all Cys-loop receptors, the ligand binding site in GlyRs is formed by 

three loops that contribute to the “+” side of the ligand binding pocket, and three β-sheets 

that belong to the “-” side of this inter-subunit pocket (Lynch, 2004) (Figure 1.1). Key 

residues located in regions A, B and C that correspond to the “+” side loops have been 

identified to be crucial for agonist binding (Vandenberg et al., 1992a; Schmieden et al., 

1993; Rajendra et al., 1995b; Vafa et al., 1999; Han et al., 2001). However, the role of 

regions D, E and F from three β-strands on the “-“ side in agonist binding have not been 

systematically studied (Lynch, 2004). 

To date, a number of residues/fragments in the GlyR α1 subunit, including Arg52 

(Ryan et al., 1994; Saul et al., 1994), Arg65 (Grudzinska et al., 2005), Ile93 (Vafa et al., 

1999), Asn102 (Vafa et al., 1999; Han et al., 2001), Glu157 (Grudzinska et al., 2005), 

Gly160 (Kuhse et al., 1990b), Phe159-Tyr161 (Vandenberg et al., 1992b; Schmieden et al., 

1993) and Lys200-Lys206 (Vandenberg et al., 1992a) have been shown to be involved in 

glycine binding. All identified residues are located on the regions in the binding pocket 

conserved throughout the entire family of Cys-loop receptors. However, most of these 
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studies were based on changes of EC50 caused by mutations introduced at those specific 

sites and the evidence for direct agonist-receptor binding is lacking. Compared with the α1 

subunit, relatively little attention has been paid to the β subunit in terms of agonist binding. 

A recent report revealed that the β subunit plays a significant role in agonist-receptor 

binding of heterooligomeric GlyRs (Grudzinska et al., 2005). In this study, residues Arg86 

and Glu180 in β subunit, which are homologous to Arg65 and Glu157 in the α1 subunit, 

were found to have direct interactions with glycine. In addition, the β subunit was involved 

in strychnine antagonism. The role of the β subunit was also confirmed by the fact that 

coexpression of β subunits with low affinity α1 subunit binding mutants could rescue high 

affinity binding (Grudzinska et al., 2005).  

1.2.6 Membrane clustering of GlyR at synapses 

Proper neurotransmission is highly dependent on precise location of concentrated 

neurotransmitter receptors at synaptic sites. It has been shown that gephyrin plays an 

important role in membrane clustering of synaptic GlyRs.  Gephyrin is a peripheral 

membrane protein  that was originally co-purified with GlyR (Pfeiffer et al., 1982; Schmitt 

et al., 1987). A variety of gephyrin isoforms exist in the CNS and in most non-neuronal 

tissues (Prior et al., 1992; Kawasaki et al., 1997). In brain, gephyrin colocalized with a 

large subset of GlyRs, especially in the spinal cord (Baer et al., 2003; Waldvogel et al., 

2003). In addition, gephyrin was found to colocalize with a majority of GABAA receptor 

subtypes in various brain regions (Sassoe-Pognetto et al., 2000). Several lines of evidence 

have shown that gephyrin plays a key role in organization of the postsynaptic membrane 

during inhibitory synapse formation. First, gephyrin was reported to bind directly to the 
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cytoplasmic loop of GlyR β subunit, which connects the third and fourth transmembrane 

segments (Meyer et al., 1995; Kneussel et al., 1999). Second, when co-expressed with 

recombinant gephyrin, GlyR β subunits were targeted to intracellular gephyrin aggregates 

while GlyR α subunits were retained in the plasma membrane (Kirsch et al., 1995), 

indicating a crucial role of gephyrin in GlyR clustering via its binding to the β subunit. 

Third, gephyrin has been shown to bind to polymerized tubulin with a high affinity 

(Pfeiffer et al., 1982; Graham et al., 1985; Kirsch et al., 1991). Furthermore, abolition of 

gephyrin expression by antisense oligonucleotides prevents GlyR cluster formation in 

spinal neurons (Kirsch et al., 1993). Gephyrin knockout mice further demonstrated specific 

disruption of GlyR clustering while the overall morphology of glycinergic synapses and 

total GlyR expression level remained normal (Feng et al., 1998), corroborating the role of 

gephyrin in GlyR clustering.  

1.2.7 Functional changes of GlyR during development 

As described above, four α subunits and one β subunit of GlyRs have been identified. It 

was found that expression of mRNAs for rodent GlyR subunits was developmentally 

regulated (Malosio et al., 1991b; Watanabe and Akagi, 1995). The α1 subunit is expressed 

at very low levels in embryonic and neonatal rat spinal neurons and starts to become 

predominant at postnatal day 15. The α3 subunit displays a similar expression pattern to 

that of the α1 subunit during development but is less widely distributed, and the α2 mRNA 

accumulates prenatally and decreases after birth (Malosio et al., 1991b). The α4 subunit is 

expressed in embryonic neurons, although its location is restricted to the white matter 

instead of the grey matter where α2 usually resides at early developmental stages (Harvey 
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et al., 2000). In addition, the β subunit demonstrates a similar expression pattern to the α1 

subunit, indicating a functional correlation between those two distinct types of subunits 

(Malosio et al., 1991b). These changes in the molecular composition of GlyR subunits 

during development are closely associated with changes in the functional properties of 

developing GlyRs in spinal cord and brainstem (Aguayo et al., 2004). In cultured mouse 

spinal neurons, the sensitivity of GlyR to glycine increased transiently with development 

(Tapia and Aguayo, 1998). Glycine-induced current was blocked by strychnine in a 

development-dependent manner (Ye, 2000). A model of developmental changes of the 

subunit composition of GlyRs was proposed based on these experimental observations 

(Aguayo et al., 2004). During development, the GlyR switches from homomeric α or 

heteromeric α2β receptors in immature neurons to α1β receptors in mature neurons, 

mirroring changes in functional properties of the receptors and contributing to its plasticity 

during development.  

1.2.8 GlyR and diseases 

Startle disease, also known as hereditary hyperekplexia, is a rare inherited human 

neuromotor disorder characterized by muscle stiffness in the neonate, hyperrelexia, and an 

exaggerated startle response to sensory stimuli (Zhou et al., 2002). This disease has been 

associated with mutations in genes GLRA1 and GLRB encoding GlyR α1 and β subunits, 

respectively (Shiang et al., 1993; Brune et al., 1996; Humeny et al., 2002; Rees et al., 

2002). GLRA1, localized on chromosome 5q31.2, contains over nine exons (Shiang et al., 

1993; Matzenbach et al., 1994), and many of these mutations are in exons 7 and 8 that 

encode for amino acids ranging from M1 to the extracellular loop connecting M2 and M3 
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(Humeny et al., 2002). Mutations in GLRA1 may be either dominant or recessive in familial 

and sporadic hyperekplexia (Saul et al., 1999; del Giudice et al., 2001; Rees et al., 2001).  

Alteration in channel function caused by point mutations in the GLRA1 gene have 

been confirmed by electrophysiological studies. R271 is located near at the extracellular 

end of M2 domain and forms part of the extracellular loop connecting the M2 and M3 

transmembrane segments (the M2-M3 loop). R271L or R271Q mutations greatly reduced 

agonist sensitivity although ion permeation was largely unaltered (Rajendra et al., 1994). 

This decrease in agonist sensitivity resulted in reduced glycinergic tone in spinal cord 

interneurons, leading to reduction in the recurrent and reciprocal inhibitory feedback that 

modulates motorneuron firing in reflex arcs. Another two startle point mutations, Y279C 

and K276E, both also located in the M2-M3 loop, converted GlyR agonists taurine and β–

alanine into competitive antagonists without alterating their binding affinities (Lynch et al., 

1997). These results suggest that agonist binding and channel activation are uncoupled in 

these mutant GlyRs found in patients with startle diseases.  W243A and I244A mutations, 

located in the intracellular M1-M2 loop, not only reduced agonist efficacy, but also greatly 

increased the desentization rate, suggesting an effect of these intracellular point mutations 

on coupling of channel activation and desentization (Lynch et al., 1997). Q266H, to date 

the only mutation in the transmembrane domain of GlyR in startle disease, greatly 

increased glycine EC50 and the single channel open time without affecting ligand binding 

properties  (Moorhouse et al., 1999). This mutation also converted taurine into a weak 

partial agonist, which is consistent with the hypothesis that the agonist/antagonist behavior 

is determined by channel gating efficacy, not ligand binding affinities (Moorhouse et al., 

1999). Thus the Q266H mutation is considered to directly affect GlyR channel gating. 
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Native GlyRs are typically heteropentameric structures of α and β subunits. 

Although the majority of GlyR point mutations found in startle disease have been identified 

on the α subunit, mutations in GLRB can also cause startle disease. A G229D mutation in 

GlyR β subunit greatly increased glycine EC50 in heterologously expressed heteromeric 

GlyR in HEK293 cells (Rees et al., 2002). The reduction in agonist sensitivity was 

attributed to either a decrease in agonist affinity or a decrease in the ability of the receptor 

to undergo conformational changes that open the channel. 

1.3 ACETYLCHOLINE BINDING PROTEIN (ACHBP) AND CHOLINERGIC 

NEUROTRANSMISSION 

1.3.1 Discovery of AChBP and its role in cholinergic neurotransmission 

Traditionally, synaptic transmission involves participation of presynaptic and postsynaptic 

neurons. Neurotransmitters produced in presynaptic sites are released to the synaptic cleft 

and specifically bind to their cognate receptors in the postsynaptic neurons, which activate 

the downstream signaling cascade in the postsynaptic neurons. However, recent evidence 

has shown that glial cells also play a significant role in chemical neurotransmission. Glial 

cells are involved in the regulation of neural integration in the central nervous system 

(Haydon, 2001; Auld and Robitaille, 2003), in the modulation of efficacy of synaptic 

transmission (Mitterauer, 2000, 2001; Oliet et al., 2001) and in the generation of pacemaker 

rhythms (Mitterauer, 2000; Parri et al., 2001). On the basis of these experimental findings, 

a tripartite synapse model has been proposed (Teichberg, 1991; Araque et al., 1999; 
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Volterra et al., 2002). In this model, glial cells are actively involved in synaptic 

neurotransmission. They respond to neuronal activity with elevation of their internal Ca2+ 

concentration (Araque et al., 1999). This elevation of Ca2+ concentration triggers release of 

chemical transmitters from glial cells and thus, in turn, regulates neuronal activity.  

The neuromuscular junction (NMJ) is the synapse between an axon terminal of a 

motorneuron and the muscular endplate. Acetylcholine released from a nerve terminal 

rapidly diffuses cross the synaptic cleft and binds to nAChRs on the postsynaptic muscle 

membrane (Martyn et al., 1992), resulting in increased cation conductance. Depolarizing 

cation influx allows the endplate potential at the NMJ to reach the threshold for generation 

of an action potential (Martyn et al., 1992). Perisynaptic Schwann cells, the glial cells at the 

NMJ, surround nerve terminals (Colomar and Robitaille, 2004). These cells are sensitive to 

neuronal activity, and high frequency nerve stimulation induces elevation of their 

intracellular Ca2+ concentration (Rochon et al., 2001). In addition, neurotransmitter release, 

including ACh, ATP and adenosine, activates G-protein coupled receptors in perisynaptic 

Schwann cells, resulting in the release of Ca2+ from intracellular stores (Jahromi et al., 

1992; Robitaille, 1995; Robitaille et al., 1997; Bourque and Robitaille, 1998). Perisynaptic 

Schwann cells, in turn, also modulate synaptic neurotransmission as glial Ca2+ increase 

depresses neurotransmitter release at the NMJ (Robitaille, 1998; Castonguay and 

Robitaille, 2001). Synaptic modulation of perisynaptic Schwann cells has been attributed to 

involvement of release of chemical modulators from Schwann cells (Colomar and 

Robitaille, 2004). However, the identity of those modulators has not been experimentally 

validated, although a few candidate molecules such as glutamate and prostaglandin have 

been proposed to be involved in this process. 
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In a recent study, neurons from the CNS of the mollusc Lymnaea stagnalis were 

cultured in a triplet configuration in which the presynaptic neuron forms two synapses with 

postsynaptic partners (Smit et al., 2001). When co-cultured with synaptically paired 

neurons, glial cells specifically inhibit cholinergic neurotransmission. This inhibition is 

mediated by AChBP release from glial cells. AChBP is a naturally occurring homolog of 

the ligand-binding domains of nAChRs and other Cys-loop receptors. It is a soluble 

homopentamer with high affinity to -bungarotoxin and ACh. At cholinergic synapses, 

AChBP captures presynaptically released ACh, and thus inhibits cholinergic synaptic 

transmission (Smit et al., 2001; Brejc et al., 2002). 

1.3.2 Structure of AChBPs 

The first X-ray structure of AChBP was resolved at 2.7 Å resolution from the freshwater 

snail, Lymnaea stagnalis (Brejc et al., 2001). Since then, the structures of AChBPs from 

Aplysia californica (Hansen et al., 2004) and the molluskan species, Bulinus truncates 

(Celie et al., 2005a) have been resolved. In addition, the structures of AChBPs with 

different bound nicotinic ligands, including nicotine (Celie et al., 2004), carbamylcholine 

(Celie et al., 2004), epibatidine (EPI), methyllycaconitine (MLA), and lobeline 

(LOB)(Hansen et al., 2005), as well as peptide toxins from Elapid snakes and Conus snails 

(Bourne et al., 2005; Celie et al., 2005b; Hansen et al., 2005),  have been resolved at atomic 

resolution by X-ray crystallography.  

Lymnaea stagnalis AChBP (Ls-AchBP) assembles as a cylindrical homopentamer 

with the subunits arranged radially about the central axis with a central hole having 18 Å 

diameter lined by hydrophilic charged residues. Each AChBP subunit has an asymmetric 
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shape with a size of about 62 x 47 x 34 Å. From the an N-terminus, it starts with an α–

helix, two short 310 helices, followed by a β–sandwich of 10 β–strands (Brejc et al., 2001). 

As observed in other pentameric Cys-loop receptors, the ligand binding sites in Ls-AChBP 

are located at the subunit interfaces. Each ligand binding site contains residues from three 

loops from the principal side of one subunit and three β–strands from the complementary 

side of an adjacent subunit. The principal side is composed of Tyr-89, Trp-143, Trp-145 

and Tyr-185, which are located in distinct loops forming the ligand binding site. The 

complementary side of the ligand binding site contains residues Trp-53, Gln-55, Arg-104, 

Val-106, Leu-112, Met-114 and Tyr-164, which are located in the three β–strands. All 

these residues in the binding sites correlate with corresponding residues in Cys-loop 

receptors that have been identified to be involved in ligand binding by mutagenesis and 

labeling studies (Kao and Karlin, 1986; Dennis et al., 1988; Galzi et al., 1990; Middleton 

and Cohen, 1991; Czajkowski et al., 1993; Corringer et al., 1995; Sine et al., 1995; Martin 

et al., 1996). Almost all these residues are well conserved in nicotinic receptors. One 

exception is Tyr-164 in the loop-F region, which has low sequence conservation in this 

family. Sequence variation exists in this binding pocket, as this variation is essential in 

order to provide distinct agonist binding affinity and selectivity. The access routes to the 

ligand binding sites are probably from above or below the disulfide C loop (Brejc et al., 

2001). In this region, the ligand binding site is buried from the solvent, which prevents 

access from the outside. Access of ligands with different sizes would require distinct 

conformational rearrangement in this region. The ligand binding properties of Ls-AChBP 

are similar to those of homomeric α7 nAChR, which is the closest mammalian homolog to 

AChBP (Smit et al., 2001). Compared with α7 nAChR, Ls-AChBP has relatively low 
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affinity for acetylcholine and much higher affinity for nicotine (Smit et al., 2001; Hansen et 

al., 2002).  

In the crystal structures of Ls-AChBP in complex with the nAChR agonists 

carbamylcholine and nicotine (Celie et al., 2004), both ligands are bound in the interface 

between subunits, as predicted from studies on nAChRs (Corringer et al., 2000; Karlin, 

2002; Sine, 2002). On the principal side, Trp-143 and Tyr-192 are involved in binding to 

both ligands, while Tyr-185 makes contacts only with carbamylcholine, but not with 

nicotine (Celie et al., 2004). On the complementary side, both ligands make hydrophobic 

contacts with Leu-112 and Met-114, while Try-53 only makes aromatic contact to nicotine 

and Arg-104 is only involved in binding to carbamylcholine. In comparison with the 

HEPES bound form of Ls-AChBP, only the C-loop displays significant backbone 

movement upon binding of either carbamylcholine or nicotine (Celie et al., 2004).  

The AChBP of Aplysia californica (Ac-AChBP) only shares about 33% sequence 

identity with Ls-AChBP, but important functional residues that were identified in Ls-

AChBP are well conserved (Celie et al., 2005b; Hansen et al., 2005). Relative to Ls-

AChBP, Ac-AChBP has distinct ligand binding affinities and specificities. Ac-AChBP 

displays lower affinity for acetylcholine but higher affinity for the small α-conotoxin 

peptides including two α7-specific antagonists, natural ImI (Hansen et al., 2004) and the 

PnIA Ala10Leu variant (Celie et al., 2005b; Hansen et al., 2005). The crystal structures of 

Ac-AChBP in the apo form and as complexes with nicotinic antagonists α-conotoxin ImI 

and the alkaloid MLA and agonistsEPI and LOB reveals the existence of distinct 

conformations when Ac-AChBP is bound with agonists versus antagonists (Hansen et al., 

2005). The apo form of Ac-AChBP displays very similar structure to the HEPES bound 
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form of Ls-AChBP. From the crystal structure of Ac-AChBP in complexes with EPI and 

LOB, it is evident that nicotinic agonists, including EPI and LOB, bind within discrete 

sites. Binding of those agonists induces C-loop closure, which might be critical for 

transition from agonist binding to channel activation in the nAChR (Hansen et al., 2005). In 

contrast, nicotinic antagonists make contacts to nonoverlapping regions of the subunit 

interface and antagonist binding induces an open C-loop conformation, which might be a 

universal feature of antagonist-receptor interaction in nAChR or possibly in other Cys-loop 

receptors. 

The crystal structure AChBP from Bulinus truncatus (Bt-AChBP), a remote 

homolog of Ls-AChBP, reveals both conservation and variation in the ligand binding 

domain of Cys-loop receptor family (Celie et al., 2005a). Bt-AChBP shares 41% amino 

acid sequence identity with Ls-AChBP, 29% Ac-AChBP and 13-25 % with other Cys-loop 

receptor subunits. Similar to both Ls- and Ac-AChBPs, Bt-AChBP is well conserved in the 

ligand binding site. However, the residues involved in subunit interaction are much less 

conserved, which is also observed between other Cys-loop receptors (Brejc et al., 2001). 

The overall structure of Bt-AChBP is similar to that of Ls-AChBP. The variation between 

Bt-AChBP and Ls-AChBP is mostly within each subunit itself and relative orientation of 

subunits remains similar to each other. The most pronounced difference between these two 

AChBPs is the conformation of a number of loops located on the “bottom” side of the 

AChBP, including loop-2, loop-7 and the C-terminus, which correspond to membrane 

proximal domains in Cys-loop receptor family. The conformational difference between 

these two types of AChBPs is probably due to the rigid body shifts, suggesting 

conformational flexibility in these regions that is in agreement with sequence variations in 
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these regions in the entire Cys-loop receptor family. Comparison of subunit interfaces 

reveals that residues involved in subunit interactions share little conservation, although the 

surface area, hydrophobicity and accessibility of the interface between subunits are similar 

(Celie et al., 2005a).  

1.3.3 Structural modeling of ligand gated ion channels based on crystal structure of 

AChBP 

The discovery of AChBPs and subsequent X-ray structures of various species of 

AChBPs in complex with different ligands have greatly advanced our understanding of the 

ligand binding domain of pentameric Cys-loop receptors. Although sequence identity 

between AChBPs is only about 30-40%, all three types of AChBPs whose structures are 

known share similar structures and molecular details of ligand binding. When compared to 

the EM-derived structure of Topedo nAChR (Unwin, 2005) and all biochemical studies on 

ligand-receptor interaction (Smit et al., 2003; Lester et al., 2004), AChBPs mimic the 

ligand binding domain of nAChR very well. In addition, the ECDs of Cys-loop receptors 

are structurally and functionally conserved. Given the similarity of AChBPs with nAChR, 

AChBPs may be good structural templates for comparative homology modeling of the 

ligand binding domains of pentameric Cys-loop receptors. Comparative modeling predicts 

three-dimensional structure of a given protein based primarily on its homology to one or 

more proteins with known structure (Martyn et al., 1992). Based on the high resolution 

structure of AChBPs from different species in complexes with distinct ligands, a number of 

homology models have been proposed for the LBDs of  nAChRs (Le Novere et al., 2002; 

Costa et al., 2003; Gao et al., 2004; Cheng et al., 2006a; Cheng et al., 2006b), GlyR 
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(Speranskiy et al., 2007), GABAA-R (Cromer et al., 2002; Trudell, 2002; Ernst et al., 2005; 

Campagna-Slater and Weaver, 2007), GABAC receptors (Harrison and Lummis, 2006) and 

5-HT3 receptors (Maksay et al., 2003; Reeves et al., 2003; Maksay et al., 2004; Yan and 

White, 2005).  

 Homology modeling of α7 nAChR, the most closely related nAChR subunit to 

AChBP in primary sequence, was conducted using the crystal structure of Ls-AChBP as a 

template (Le Novere et al., 2002). Homology modeling, also known as “comparative 

modeling”, is a classical method for building an atomic-resolution model of a target protein 

by aligning its amino acid sequence with proteins with known atomic structures (Marti-

Renom et al., 2000). In this model, the overall size, surface area and ligand binding pocket 

were very similar to those of Ls-AChBP. The binding site is conserved except for a few 

residues that are considered to be selective for distinct ligands. Using (α7)5 as a template, 

homology models of rat (α4)2 (β2) 3 and (α1)2β1γδ were constructed based on high 

sequence identity between distinct nAChR subunits. These models suggested that the 

ligand binding pocket is well conserved. The neuronal type of nAChR, (α3)2(β4)3, either in 

ligand-free or ligand-bound forms, were also modeled based on its sequence similarity to 

Ls-AChBP (Costa et al., 2003). In this model, the ligand binding site is believed to reside 

in the external side of the protein, which includes a number of aromatic residues on the α 

and β subunits, conferring agonist specificity of this type of nAChR. Agonist docking in 

this model showed that the agonists, ACh and nicotine, bind in a similar fashion to those 

observed in other types of nAChRs (Le Novere et al., 2002). Key residues on the β subunit 

important for pharmacological selectivity were also identified and a binding site for the 

allosteric modulator eserine was also proposed (Costa et al., 2003). 



 32

In collaboration with the Kurnikova lab and based on sequence alignment with both 

Ls- and Ac-AChBPs, a simulated annealing technique was used to build a structural model 

of the ECD of α1 GlyR (Speranskiy et al., 2007). In our model of the GlyR ECD, the entire 

β-sandwich core displays little variation relative to the structure of AChBP. However, 

variations exist in loops connecting neighboring β-strands, which is not unexpected since 

these regions are much less conserved in primary sequence. These residues are expected to 

confer differential ligand binding specificity and selectivity in different receptor classes in 

this superfamily. Docking simulations of strychnine, a potent antagonist of GlyR, showed it 

was restricted to the vicinity of the subunit interface. Its orientation and position clearly 

showed that strychnine is able to interact directly with the residues that were 

experimentally proved to be involved in antagonist binding (Speranskiy et al., 2007). As 

desribed in subsequent chapters, we have also modeled GlyBP for validation by 

experimental characterizations. 

 (α1)2(β3)2γ2 GABAAR was modeled based on its sequence homology with Ls-

AChBP to distinguish possible assembly patterns of these five different subunits in this 

receptor type (Cromer et al., 2002). Of the six possible arrangements containing two α1, 

two β3 and one γ2 subunits, four were ruled out by biochemical and electrophysiological 

studies and, when viewed clockwise from an extracellular viewpoint, only γ2β3α1β3α1 or 

γ2α1β3α1β3 arrangements were possible (Tretter et al., 1997; Taylor et al., 2000; 

Klausberger et al., 2001). Models of GABAARs corresponding to these two arrangements 

were constructed (Trudell, 2002), which are in mirror symmetry relative to each other. The 

γ2α1β3α1β3 model fits really well with these criteria that were previously set for correct 

subunit arrangement of heteropentameric GABAARs (Stephenson et al., 1990; Amin et al., 



 33

1997; Smith and Olsen, 2000), whereas the γ2β3α1β3α1 subunit arrangement clearly does 

not satisfy these criteria (Trudell, 2002).  

Although most of the molecular models described above provide reasonable 

correlations with experimental observations, the accuracy of the models are limited. The 

main limitation arises due to low sequence identity between the ECD of Cys-loop receptors 

and the AChBP templates. The errors in these comparative models might be high since 

most of the ECDs of Cys-loop receptors share less than 30 % sequence identity with any 

AChBP, the template protein used in these models (Johnson and Overington, 1993; Marti-

Renom et al., 2000). This results in a large number of gaps and potential errors in sequence 

alignments (Marti-Renom et al., 2000). Clearly, additional biochemical data are necessary 

to validate these models. 
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2.0  THESIS GOALS 

Membrane proteins play an essential role in many cellular functions, such as ion 

conduction and transport, molecular recognition and response, energy transduction, cellular 

adhesion and catalysis. It is estimated that about 20 - 30 % of a cell’s proteins are 

membrane proteins (Liang et al., 1998) and more than half of all drug targets are membrane 

proteins (Russell and Eggleston, 2000). Our understanding of this important protein family 

is circumscribed by a lack of high-resolution structural information of these very 

hydrophobic proteins. Although significant progress in determining the high-resolution 

structure of various membrane proteins has been made during the last decade, the 

knowledge of membrane protein structure still lags far behind that of soluble proteins. The 

difference may be due to the low natural expression level, high hydrophobicity and 

requirement for membrane mimetic environment for native-like folding of membrane 

proteins.  

Ligand gated ion channels are a group of integral membrane proteins that open in 

response to binding of specific agonists, usually occurring extracellularly, and channel 

opening allows passage of either cations or anions across the plasma membrane. Structure 

and function studies of ion channels are very challenging since most experimental data are 

obtained from functional analyses. Although high resolution structures of a handful of ion 
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channels have been resolved by X-ray crystallography, structure-function relationship in 

ligand gated ion channels remains poorly understood. 

In this study, we apply an alternative strategy and conduct direct structural studies 

on a truncated form of the GlyR, thus avoiding many of the difficulties associated with 

structural studies of full-lengh receptors. To achieve this, we overexpressed a mutant form 

of the extracellular domain of the GlyR and characterized it using a variety of biochemical 

and biophysical approaches. The long term goal of this research project is to determine the 

high-resolution structure of the extracellular ligand binding domain of GlyRs and to 

understand the structural dynamics of the ligand-receptor interactions for this receptor.  
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3.0  OVEREXPRESSION, PURIFICATION AND FUNCTIONAL 

CHARACTERIZATION OF A MUTANT FORM OF EXTRACELLULAR 

DOMAIN OF GLYCINE RECEPTORS 

3.1 SUMMARY 

Glycine binding protein (GlyBP), a mutant form of the GlyBP, a mutant form of 

extracellular domain of GlyR, was overexpressed in Spodoptera frugiperda (Sf9) insect 

cells. After fractionation, GlyBP was found in both cytosolic and membrane-bound 

fractions. The cytosolic fraction was misfolded as demonstrated by its failure to bind to 2-

aminostrychnine affinity resin. The membrane-bound fraction was solubilized by 1.0 % 

digitonin/0.1 % deoxylcholate in the presence of 0.25 mg/ml egg phosphatidylcholine (PC). 

The detergent-solubilzed form of GlyBP was functional as indicated by its ability to bind 2-

aminostrychine resin. The bound GlyBP on 2-aminostrychnine resin was eluted with 1.5 

mM 2-aminostrychnine. After removal of detergent and salts by dialysis, GlyBP was 

isolated in both aqueous solution (aqueous form) and with pelleted lipid vesicles (vesicular 

form). Both forms of GlyBP were functional as indicated by their abilities to rebind to 

aminostrychnine resin and by subsequent biochemical studies. Radio-labeled binding 

assays showed that both forms of GlyBP retain high affinity to strychnine at nanomolar 



 37

level. Competitive binding assays showed that glycine, the endogenous agonist, 

competitively binds to both forms of GlyBP with Ki values consistent with reported values.  

 

3.2 INTRODUCTION 

GlyR, a member of the pentameric Cys-loop receptor family, is one the two major 

inhibitory neurotransmitter receptors in the central and peripheral nervous system. While 

the functional role of GlyR in inhibitory neurotransmission has been well documented, 

many details regarding its proper functioning remain elusive due to the lack of a high 

resolution structure of GlyR. However, our understanding of Cys-loop receptors has been 

greatly advanced by discovery of AChBPs (Brejc et al., 2001). AChBPs are secreted 

soluble proteins that act in the regulation of cholinergic synaptic transmission in the central 

nervous system (Smit et al., 2001), and are structural homologs of the extracellular domain 

of the Cys-loop receptors (Brejc et al., 2001; Smit et al., 2001; Sixma and Smit, 2003). The 

crystal structures of AChBPs in several species have been determined (Brejc et al., 2001; 

Celie et al., 2004; Celie et al., 2005b; Celie et al., 2005a; Hansen et al., 2006). Prior to the 

determination of these structures, much of our knowledge regarding the structure of the 

ECD of Cys-loop receptors was inferred from extensive mutagenic and crosslinking studies 

that had shown that agonist and competitive antagonist binding sites are located at subunit 

interfaces (Corringer et al., 2000; Karlin, 2002; Celie et al., 2004; Lynch, 2004). The 

crystal structures of AChBPs in complex with various agonists or competitive antagonists 

are consistent with the body of knowledge regarding the biochemistry of the intersubunit 
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ligand binding sites (Celie et al., 2004; Celie et al., 2005b; Celie et al., 2005a; Hansen et 

al., 2005; Ulens et al., 2006). While these crystal structures provide appropriate templates 

for modeling of the ligand binding domains of the Cys-loop receptor family and have 

greatly advanced our understanding of these domains (Brejc et al., 2001; Smit et al., 2001; 

Brejc et al., 2002; Maksay et al., 2003; Sixma and Smit, 2003; Smit et al., 2003; Grutter et 

al., 2005), the allosteric changes effected upon ligand-binding are less well-characterized 

and would also be expected to be critically dependent of the fine structure at the subunit 

interfaces, which are less well-conserved between the full-length receptors and AChBP. 

Expression of a soluble native-like ECD of any member of the Cys-loop superfamily has 

the potential to further elucidate the functional mechanism of these receptors. 

Previous attempts in our lab to overexpress the ECD of the α1 subunit of GlyR, 

either as a truncated protein or fusion protein in a variety of expression systems, failed to 

produce soluble native-like oligomers capable of binding strychnine (unpublished 

observations). Given that AChBP is a secreted pentamer, we hypothesized that the ECD of 

GlyR might be more likely to be expressed in a native-like soluble form if two of the 

relatively hydrophobic membrane-proximal loops in the ECD of the full-length receptor 

(loops 7 and 9) were exchanged with their relatively hydrophilic counterparts in AChBP 

(Figure 3.1). Specifically, we substituted the two putative hydrophobic loops (Sequences 

N-F-P-M144-147 and L-T-L-P-Q182-186) in the α1 subunit of human GlyR with the 

corresponding hydrophilic loops (Sequences D-T-E-S129-132 and S-Q-Y-S-R166-170) in the 

homologous AChBP by site-directed mutagenesis. The expressed protein was designated as 

GlyBP. 
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When a recombinant membrane protein is studied, the first task is to choose an 

appropriate expression system. E.coli is used widely for heterologous protein expression 

due to its low cost, high expression level, multiple choices of expression vectors and the 

ease of scale-up. However, it is typically problematic when mammalian membrane proteins 

are expressed in E.coli. Membrane proteins expressed in E.coli lack post-translational 

modification, which is usually essential for proper functioning of mammalian membrane 

proteins. Recombinant membrane proteins in E.coli are often accumulated as misfolded 

proteins within inclusion bodies, which requires subsequent refolding of proteins. 

In this study, we took advantage of a baculovirus expression system. Recombinant 

baculoviruses are widely used for heterologous expression of membrane proteins in 

cultured insect cells and insect larvae. For large scale expression of mammalian membrane 

proteins, a baculovirus expression system has many advantages over other expression 

vector systems: 1) Baculoviruses have a restricted host range, usually limited to some 

specific invertebrate species, and they are nonpathogenic to mammals and plants; 2) 

Production of recombinant proteins is often at high levels and is easy to scale up since 

insect cells are suitable for suspension culture, allowing large scale production of 

heterologously expressed proteins of interest; 3) Recombinant proteins produced in a 

baculovirus expression system can be post-translationally modified as in mammalian cell 

lines, which is critical for many eukaryotic proteins, especially membrane proteins.  
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Figure 3.1 Construction of GlyBP. 

A, Partial sequence alignment of Lymnaea stagnalis AChBP (GenBank accession #: 

AAK64377), human α7 nAChR (GenBan k accession #: NP_000737) and human α1 

GlyR (GenBank accession #: P23415). Shown are Loop 7 (the Cys-loop; upper) and 

Loop 9 (lower) (the Cys-loop) and Loop 9 with flanking sequence.  Numbering refers to 

residue numbers for α1 GlyR. Substituted amino acids are highlighted in gray; B, 

Schematic diagram showing backbone of GlyBP model with putative membrane-

proximal loops facing the viewer. Substituted amino acids are highlighted in red. 
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3.3 MATERIAL AND METHODS 

3.3.1 Construction and generation of donor plasmid pFastBacGlyBP for baculovirus 

expression 

3.3.1.1 Site directed mutagenesis 

To generate a baculoviral construct encoding GlyBP, the plasmid pFastBacNGlyR 

encoding human α1 GlyR, residues 1-214, previously constructed in the lab, was used for 

site-directed mutagenesis. Two pairs of complementary primers (Table 3.1), were 

synthesized, which contain mutated fragments (NFPM144-147  DTES144-147 and LTLPQ182-

186  SQYSR182-186) used in this study. The first PCR reaction was conducted with the first 

pair of primers (primer 1 forward and primer 1 reverse) using Pfu Turbo DNA polymerase 

and buffers included in the QuikChange Site-Directed Mutagenesis kit (STRATAGENE, 

La Jolla, CA). The PCR reaction mixtures with a final volume of 50 μl containing the 

template DNA pFastBacNGlyR, Pfu Turbo DNA polymerase, primers, dNTP mix and 

reaction buffer were incubated at 95°C for 30 sec, followed by 18 cycles with 95°C, 30 sec, 

55°C 1 min, 68°C 6 min and a final incubation on ice for 2 min to cool the reaction to < 

37°C. An aliquot of each PCR product was analysed by gel electrophoresis of 10 μl of the 

product on a 1% agarose gel. 1 μl of Dpn I reaction enzyme was added directly to each 

amplification reaction and incubated at 37°C for 1 hr to digest the parental supercoiled 

double strand DNA. 
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Table 3.1 Primers used for GlyBP construction.  

All mutagenic oligonucleotides used here were purchased from MWG-Biotch. 

Primer Sequence Mutation 

Loop7  

primer 

forward 

GACACTGGCCTGCCCCATGGACTTGAAGGATACC 

GAGTCGGATGTCCAGACATGTATCATGCAACTGG 

Loop7  

primer 

reverse 

CCAGTTGCATGATACATGTCTGGACATCCGACTC 

GGTATCCTTCAAGTCCATGGGGCAGGCCAGTGTC 

NFPM144-147  

↓ 

DTES144-147  

Loop9  

primer 

forward 

GGAACAGGGAGCCGTGCAGGTAGCAGATGGATCACAG 

TACTCCCGGTTTATCTTGAAGGAAGAGAAGGACTTGAG 

Loop9  

primer 

reverse 

GGAACAGGGAGCCGTGCAGGTAGCAGATGGATCACAG 

TACTCCCGGTTTATCTTGAAGGAAGAGAAGGACTTGAG 

LTLPQ182-186  

↓ 

SQYSR182-186 

 

3.3.1.2 Transformation pFastBacGlyBP into XL-Blue supercompetent cells 

The XL-Blue supercompetent cells were gently thawed on ice and 50 μl of cells were 

aliquoted to a prechilled Falcon 2059 polypropylene tubes. 1 μl of the Dpn I treated DNA 

from each PCR reaction was transferred to separate aliquots of the supercompetent cells 

and the mixtures were incubated on ice for 30 min, followed by a 45 sec heat pulse at 42 

°C. After incubation on ice for 2 min, 0.5 ml of NZY+ broth preheated to 42 °C was added 
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and the reactions were incubated at 37 °C for 1 hr with shaking at 250 rpm. Each reaction 

was plated on agar plates containing 50 mg/L ampicillin and incubated overnight at 37 °C.  

3.3.1.3 Mini-preparation of pFastBacGlyBP DNA 

DNA isolation was conducted using a Quantum Prep Plasmid Miniprep Kit (Bio-Rad 

Laboratories, Hercules, CA). A 3 ml culture of TB medium containing 100 μg/ml 

ampicillin was inoculated from single colony transformants and grown overnight at 37 °C. 

Cells were then pelleted at 12,900 rpm for 2 min. 200 μl of cell suspension solution was 

added to each tube after removal of supernatant. 200 μl of neutralization solution (1.32 M 

potassium acetate, pH 4.8) was added and mixed by inverting the tubes 4 times. The lysate 

was centrifuged at 12,900 rpm for 5 min. 1 ml of resuspended resin was added to each 

minicolumn/syringe assembly. Cleared lysates were transferred to the resin in each 

assembly and liquid was passed through by vaccuation. 2 ml of column wash solution (80 

mM postassium acetate, 8.3 mM Tris-HCl, pH = 7.5, 40 µM EDTA and 50 % ethanol) was 

added, vaccuated and dried. After removal of the syringe barrel, minicolumns were 

transferred to a 1.5 ml microcentrifuge tube and centrifuged at 12,900 rpm for 2 min. 

Minicolumns were transferred to a new tube and 50 μl of nuclease-free water was added to 

each tube. The final DNA solution was collected by centrifugation at 11,000 rpm for 1 min 

at room temperature and stored at -20 °C. An aliquot of miniprep product of each sample 

was analyzed by gel electrophoresis on a 1% agarose gel and another aliquot was used for 

DNA sequencing to confirm correct mutation introduced by PCR amplification reactions. 
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3.3.2 Generation of baculovirus encoding GlyBP 

3.3.2.1 Transposition of pFastBacGlyBP 

DH10BAC competent cells were thawed on ice and 100 μl of cells were dispensed into 15-

ml round-bottom polypropylene tubes. About 1 ng of pFastBacGlyBP plasmid (Figure 3.2) 

was added into the competent cells and mixed gently by tapping the side of tubes. The 

mixtures were incubated on ice for 30 min followed by a 45 sec heat pulse at 42 °C. After 

incubation on ice for 2 min, 900 μl of S.O.C medium (2% Bacto tryptone, 0.5% Bacto 

yeast extract, 10 mM NaCL, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, 20 mM glucose, 

filter sterilized) was added. Then the mixture was placed in a shaking incubator at 37 °C for 

4 hr with shaking at 225 rpm. Using S.O.C medium the cells were serially diluted to 10-1, 

10-2, and 10-3, and 100 μl of each dilution was placed and spread on the Luria agar plates 

containing 50 μg/ml kanamycin, 7 μg/ml gentamicin, 10 μg/ml tetracycline, 100 μg/ml 

Bluo-gal and 40 μg/ml IPTG. The plates were incubated for more than 24 hr until colonies 

were visible. 
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Figure 3.2 Vector map of pFastBacGlyBP donor plasmid. 

 

3.3.2.2 Isolation of recombinant bacmid DNA encoding GlyBP 

Single white colonies were inoculated into 2 ml LB medium supplemented with 50 μg/ml 

kanamycin, 7 μg/ml gentamicin, 10 μg/ml tetracycline and grown at 37 °C overnight to 

stationary phase with shaking at 250 rpm. 1.5 ml of culture was transferred to a 1.5-ml 

microcentrifuge tube and centrifuged at 14,000 g for 1 min. After removal of supernatant 

by vacuum aspiration, each pellet was resuspended in 0.3 ml of resuspension solution 

containg 15 mM Tris-HCl (pH 8.0), 10 mM EDTA, 100 μg/ml RNase A, mixed by gently 

vortexing and incubated at room temperature for 5 min. 0.3 ml of 3 M potassium acetate 

(pH 5.5) was slowly added, and mixed gently. A thick white precipitate formed and the 

sample was placed on ice for an additional 5 min. The samples were then centrifuged for 10 
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min at 14,000 g and the supernatant was transferred to a new tube containing 0.8 ml of 

absolute isopropanol. The samples were mixed by inverting the tube a few times and place 

on ice for 10 min. After centrifugation at 14,000 g for 15 min at room temperature, the 

supernatant was removed and 0.5 ml 70% ethanol was added to each tube. The tubes were 

inverted a few times to wash the pellet and centrifuged at 14,000 g for 5 min at room 

temperature. The supernatant was then removed and the pellet was air dried at room 

temperature. The final DNA was dissolved in 40 μl of TE buffer and stored at -20 °C. A 

small aliquot of each sample was analyzed by gel electrophoresis on a 1 % agarose gel.  

3.3.2.3 Transfection of Sf9 insect cells with recombinant bacmid DNA encoding 

GlyBP 

9 × 105 cells per 35-mm well of a 6-well plate were seeded in 2 ml of Sf-900 II SFM 

containing 50 units/ml penicillin and 50 μg/ml streptomycin. The cells used were from a 3- 

to 4-day-old suspension culture in mid-log phase with a viability of >97% and cells were 

allowed to attach at 27°C for at least 1 h. Two solutions were prepared in 12 × 75-mm 

sterile tubes: Solution A, 5 μl of mini-prep bacmid DNA was diluted into 100 μl Sf-900 II 

SFM without antibiotics; Solution B, 6 μl CellFECTIN® Reagent was diluted into 100 μl 

Sf-900 II SFM without antibiotics. For each transfection, these two solutions were 

combined, mixed gently, and incubated for 15 to 45 min at room temperature. The cells 

were washed once with 2 ml of Sf-900 II SFM without antibiotics. For each transfection, 

0.8 ml of Sf-900 II SFM was added to each tube containing the lipid-DNA complexes. The 

samples were mixed gently and wash media was aspirated from cells. The diluted lipid-

DNA complexes were overlaid onto the cells and incubated for 5 h in a 27°C incubator. 

Then the transfection mixtures were removed and 2 ml of Sf-900 II SFM containing 
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antibiotics was added and incubated in a 27°C incubator. At 72 h the baculovirus was 

harvested from cell culture medium and stored at 4°C or at -20°C for long term storage 

with addition of 2% fetal bovine serum (FBS). 

3.3.2.4 Titration and amplification of recombinant baculovirus encoding GlyBP 

The viral titer of baculovirus encoding GlyBP was determined by a FastPlax titer kit 

(Novagen, Madison, WI). 2 ml of Grace’s Insect Medium supplemented with 10% fetal 

bovine serum (FBS) was seeded in a 6-well plate with a total of 1 x 106 cells. The three 

pairs of wells in the 6-well plate were labeled “-5”, “-6”, “-7” respectively. The cells were 

allowed to attach plate for 30 min at 27 °C. The viral stock was serially diluted to 10-5, 10-6, 

10-7 respectively. The 2 ml medium was aspirated from each well and 100 μl of each virus 

dilution was added to each of the duplicate wells, drop by drop in the center starting with “-

7” and then “-6”, “-5”. The cells were incubated at room temperature for 1 hr and then 2 ml 

of Grace’s medium was added carefully to each well and incubated at 27 °C for 30 hr. The 

2 ml of Grace’s medium was aspirated and the cells were washed twice with 2 ml of PBS 

buffer containing 43 mM Na2PO4, 15 mM KH2PO4, 137 mM NaCl and 27 mM KCl, pH 

7.4. The cells were fixed with 3.7 % formaldehyde and incubated for 15 min. After 

formaldehyde solution was removed, the cells were washed twice with PBS, blocked by 2 

ml of 10 % gelatin in TBST (10 mM Tris-HCl, pH 8.0, 150 mM NaCl, 0.1% Tween 20) 

and incubated for 30 min with gentle rocking. The gelatin solution was removed and the 

cells were washed twice with 2 ml of PBS. 1 ml of FastPlax antibody diluted 1:10,000 in 

TBST was added to each well and the cells were incubated for 1 hr with gentle rocking. 1 

ml of goat anti-mouse β-gal conjugate diluted 1:100 in TBST and incubated for 1 hr with 

gentle agitation. The cells were washed three times with 2 ml of Grace’s medium for 10 
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min. The developing solution containing 60 μl of X-gal (50 mg/ml in 100% 

dimethylformamide) and 60 μl of NBT (83 mg/ml in 70% dimethylformamide) per 15 ml 

of PBS plus 5 mM MgCl2 was added to each well and the cells were incubated at 37 °C 

until infected cells appeared medium blue to dark purple. The cells were then washed twice 

with 2 ml of TBST to stop color development and the infected cells were counted under a 

dissecting microscope. The titer of virus was calculated by the following formula: pfu/ml = 

10 (# of infected cells/foci) (dilution factor). The final titer was obtained by the average of 

the 6 wells.   

For amplification of viral stocks, a monolayer culture was infected at a Multiplicity 

of Infection (MOI) of 0.01 to 0.1 (calculated by the following formula: Inoculum required 

(ml) = [desired MOI (pfu/ml) × (total number of cells)]/[titer of viral inoculum (pfu/ml)]). 

The virus was harvested at 48 h post-infection resulting in approximately 100-fold 

amplification of the virus. 

3.3.2.5 Infection of Sf9 insect cells with recombinant baculovirus encoding GlyBP and 

baculovirus tittering 

Sf9 insect cells were infected at an MOI > 5 and harvested at the following time intervals: 

24, 48, 72, 96 and 120 hr. For regular protein production, 750 ml of Sf9 insect cells were 

infected with 30 ml of viral stock solution and harvested at day 4 post-infection. 

3.3.3 Insect cell culture 

Sf9 insect cells were maintained and grown at 27 °C in Grace’s Insect Medium (Invitrogen) 

supplemented with 10% fetal bovine serum (FBS) and 100 U/ml penicillin/100 μg/ml 
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streptomycin as either monolayer culture in T-75 flasks or suspension cultures in spinner 

flasks under constant rotation (120 rpm). Doubling time of Sf9 insect cells was about 36 hr. 

Cell density and viability were checked daily. Cell viability above 95 % was required for 

baculovirus infection. For monolayer cultures, Sf9 cells were passaged at confluency and 

typically diluted at 1:5 dilution in order to maintain log phase growth. Suspension cultures 

were initiated from healthy monolayer adherent cell cultures. The cells in spinner flasks 

were usually passaged before they reached a density of 2.0 to 2.5 x 106 cells/ml and diluted 

back to 0.7 to 1.0 x 106 cells/ml. Suspension cultures were grown in spinner flasks with a 

size range from 100 ml to 1.5 L depending on the experimental needs. 

3.3.4 Expression and purification of GlyBP in insect cells 

Sf9 cells were grown in Grace’s Insect Medium supplemented with 10% fetal bovine serum 

(FBS) and 100 U/ml penicillin/100 μg/ml streptomycin at 28 °C as suspension cultures in 

spinner flasks under constant rotation (120 rpm). To express GlyBP in Sf9 cells, cells were 

infected with virus encoding GlyBP at MOI > 5. Cells were harvested 4 days post-

infection. 

Sf9 cells were gently pelleted by centrifugation at 1000 x g for 10 min, and washed 

three times with ice-cold PBS. Resuspended cell were incubated on ice for 1 hr in 

hypotonic solution containing 5 mM Tris (pH 8.0), 5 mM EDTA, 5 mM EGTA, 10 mM 

dithiothreitol, and an anti-proteolytic cocktail (APC) containing 1.6 μu/ml aprotinin, 100 

μM phenylmethylsulfonyl fluoride, 1 mM benzamidine and 100μM benzethonium chloride, 

and then sonicated eight times for 15 sec on ice at 50% duty cycle. The disrupted cells were 

centrifuged at 100,000 g for 1 hr and the soluble fraction was saved as the cystolic fraction. 
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The insoluble fraction was solubilized by resuspending the pellet and incubating at 4 °C 

overnight in solubilization buffer containing 25 mM potassium phosphate buffer (KPi) (pH 

7.4), 1% digitonin, 0.1% deoxycholate, 0.5 mg/ml egg PC, 500 mM KCl, 5 mM EDTA, 5 

mM EGTA, 10 mM dithiothreitol, and APC. The samples were then centrifuged at 100,000 

x g as before. The supernatant and the solubilized pellet were independently applied to 2-

aminostrychnine agarose at 4 °C overnight with gentle agitation. The agarose was collected 

by gentle centrifugation, washed three times (in the case of the solubilized pellet, the wash 

buffer was the same as solubilization buffer except with reduced (0.1 %) digitonin), and 

then eluted for 2 days with elution buffer containing either 200 mM glycine or 1.5 mM 2-

aminostrychnine in the solubilization buffer. In the latter case, the eluate was dialyzed 

against 25 mM KPi (pH 7.4) and then centrifuged at 100,000 x g. The pellet (vesicular 

form) was resuspended in 25 mM KPi buffer with a final protein-lipid ratio of ~1: 200 

(mol: mol) and the supernatant (aqueous form) was concentrated in an Amicon Ultra-4 

centrifugal filter device with a 10 KDa cutoff. 

3.3.5 Protein assay - Modified Lowry assay 

Protein concentrations were determined by modified Lowry assays (Peterson, 1977).  

Protein samples or bovine serum albumin (BSA) standards were diluted to 1.0 ml with 

dH2O and proteins were precipitated by adding 0.15 ml 1.0% deoxycholate (DOC) and 

vortexing, and incubating for 10 min at room temperature. 0.1 ml 72% tricholoracetic acid 

was then added, mixed by vortexing and span at 11,000 rpm for 10 min. The supernatant 

was discarded and the pellet was resuspended in 0.5 ml dH2O. 0.5 ml alkaline Cu2+ solution 

was added to each sample. The samples were mixed by vortexing and allowed to stand for 
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at least 15 min at room temperature. 0.05 ml phenol reagent was added rapidly and 

immediately mixed vigorously. The color developed for 30 min and Absorbance at 750 nm 

was recorded. All samples were run in duplicate. To determine protein sample 

concentration, the standard curve was plotted using various concentrations of BSA 

standard. The concentration of protein samples was determined by fitting the 

experimentally obtained Absorbance of protein samples to the BSA standard curve.  

 

3.3.6 SDS-PAGE and Western blot 

All protein samples were treated with SDS-PAGE sample buffer containing 2% SDS. 

Proteins were separated on 10% SDS-PAGE gels at a constant voltage of 200 V and 

transferred to a nitrocellulose membrane at 350 mA constant current for 1 hr at 4 °C. The 

membrane was blocked with 5% nonfat milk, washed twice and incubated with the primary 

antibody with a dilution of 1:5,000 (monoclonal anti-mouse antibodies against N-terminus 

of GlyR, Alexis Biochemicals, San Diego, CA) for 1 hr at room temperature in phosphate 

buffered saline with added 0.5% Tween-20 (PBST) containing 1% BSA. The membrane 

was again washed with PBST buffer for 15 min three times and incubated with the 

horseradish peroxidase (HRP)-conjugated anti-mouse secondary antibody with a dilution of 

1:15,000. The membrane was again washed with PBST buffer for 15 min three times and 

incubated with pre-mixed NEN Chemiluminescence luminal and oxidizing reagents for 1 

min at room temperature, followed by exposure to Kodak X-OMAT Blue Autoradiography 

Film for 5 sec to 2 min depending on signal intensity. 
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3.3.7 Radio-labeled ligand binding assay 

For saturation binding assay, purified GlyBP, in either the aqueous form of membrane-

associated form, were incubated with [3H] strychnine at various concentrations on ice for 

30 min in the presence and absence of excess cold strychnine. After precipitation by 15% 

PEG400 or PEG6000, the proteins were applied to GF/A filters and washed thoroughly 

with binding buffer. Radioactivity was determined by liquid scintillation spectrometry. Kd 

and Bmax values were derived using the software GraphPad Prism 3.0. 

For competitive binding assay, purified GlyBP was incubated with various 

concentrations of glycine in the presence of 100 nM of [3H] strychnine overnight. After 

precipitation by 15% PEG6000, the proteins were applied to GF/A filters and washed 

thoroughly with binding buffer. Radioactivity was determined by liquid scintillation 

spectrometry. The IC50 values were determined using the software GraphPad Prism 3.0.  

The Ki (the concentration of the unlabeled drug that will bind to half the binding sites at 

equilibrium in the absence of radioligand) was calculated using the following equation 

(Cheng and Prusoff, 1973): 

 Ki = IC50/(1 + [radioligand]/Kd) 

 

 

3.3.8 Deglycosylation 

For deglycosylation using Endo H (New England BioLabs, Ipswich, MA), purified GlyBP 

was denatured in denaturing buffer containing 5 % SDS and 10 % β-mercaptoethanol with 
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a final volume of 20 μl at 100 °C for 10 min. 2 μl of 0.5 M sodium citrate (pH 5.5) and 2 μl 

of 500,000 U/ml Endo H and incubated at 37 °C for 1 hr. As a control, the same amount of 

denatured protein sample was incubated with sodium citrate buffer only at 37 °C for 1 hr. 

Protein samples were separated by SDS-PAGE followed by Western blot assay. 

For deglycosylation using PNGase F (glycerol free, New England BioLabs, 

Ipswich, MA), purified GlyBP was denatured in denaturing buffer containing 5 % SDS and 

0.4 M DTT with a final volume of 20 μl at 100 °C for 10 min. 2 μl of 0.5 M sodium 

phosphate (pH 7.5), 2 μl of 10% NP-40 and 2 μl of 500,000 U/ml PNGase F were added to 

each reaction and incubated at 37 °C for 1 hr. As a control, the same amount of denatured 

protein sample was incubated with sodium phosphate buffer only at 37 °C for 1 hr. Protein 

samples were separated by SDS-PAGE followed by Western blot. 

 

3.4 RESULTS 

3.4.1 Expression of GlyBP in Sf9 insect cells 

To express GlyBP in a baculoviral expression system, two pairs of specific primers were 

designed to generate a baculovirus encoding GlyBP by amplification of a previous 

construct that encoded the extracellular domain of human α1 GlyR (amino acids 1-214) 

with a hydrophilic randomized 30 amino acid tail appended at its C-terminus (Figure 3.3), 

which might increase the solubility of this mutant receptor ECD. The general strategy is 

summarized in Figure 3.4. After two sequential PCR amplifications, a transfer vector 
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containing the GlyBP construct was isolated. Transposon-mediated insertion of the GlyBP-

encoding sequence into bacmid DNA (Figure 3.5) and isolation of baculovirus and viral 

amplification and titration were conducted as described in Material and Methods. GlyBP 

expression was first detected at day 1 post-infection, and expression increased over time 

and appeared to reach its highest level at day 4 (Fig 3.6A). After cells were harvested by 

centrifugation and washed, they were lysed by sonication and fractionated into cytosolic 

and membrane-associated fractions by ultracentrifugation. The aqueous fraction contained 

cytosolic proteins and the insoluble fraction contained mostly precipitated and membrane-

associated proteins. GlyBP was detected in both fractions in Western immunoblots (Figure 

3.6B). However, attempts to purify GlyBP from the cytosolic fraction were not successful 

as the protein did not bind to a 2-aminostrychnine affinity resin (Figure 3.7A), an initial 

step in the methodology routinely used to purify full-length GlyR (Cascio et al., 1993; 

Cascio et al., 2001). This indicates that GlyBP in the cytosolic fraction is not folded in a 

native-like conformation. In a similar study of heterologous expression of α7 nAChR ECD 

in Xenopus oocytes, secrected α7 ECD displayed a strong ability to bind 125I-α-

Bungarotoxin, while the intracellularly retained fraction lost its ability to bind 125I-α-

Bungarotoxin (Wells et al., 1998), also suggesting that the cytosolic fraction of 

overexpressed membrane receptors might exist in an unfolded state. In contrast, as 

described below in detail, GlyBP in the membrane-associated fraction after lysis and 

solubilization did bind to the 2-aminostrychnine resin (Fig 3.7B), suggesting that the 

membrane-associated GlyBP may adopt a native-like structure. The presence of a large 

fraction of the GlyBP in the membraneous fraction suggests that, despite replacing loops 7 

and 9 of the GlyR ECD with the more hydrophilic sequences from AChBP and the 
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inclusion of a fairly hydrophilic long N-terminal tail, the receptor still partitions on the 

membrane surface (GlyBP lacks any hydrophobic transmembrane segments), consistent 

with a previous study on a refolded form of the extracellular domain of GlyR (Breitinger et 

al., 2004). The strychnine-binding capability of only the membrane-associated fraction also 

suggests that this partitioning may be required for proper assembly of the ECD, possibly 

due to the need for a high local concentration of properly oriented monomers for functional 

assembly. All further experiments in this study have been conducted on the fraction of 

overexpressed GlyBP that remains membrane-associated upon lysis of the insect cells. 

 

 

A  R  S  A  P  K  P  M  S  P  S  D  F  L D  K  L  M  G  R  T  S  G  Y  D  A  R  I  R  P  N  F  

K  G P  P  V  N  V  S  C  N  I  F  I  N  S  F  G  S  I  A  E  T T  M  D  Y  R  V  N  I  F  L  R  

Q  Q  W  N  D  P  R  L  A  Y  N  E  Y  P  D  D  S  L  D  L  D  P  S  M  L  D  S  I  W K  P  

D  L  F  F  A  N  E  K  G  A  H  F  H  E  I  T  T  D N  K  L  L  R  I  S  R  N  G  N  V  L  Y  

S  I  R  I  T  L T  L  A  C  P  M  D  L  K  D  T  E  S  D  V Q  T  C  I  M Q  L  E  S  F  G  Y  

T  M  N  D  L  I  F  E  W  Q  E  Q  G A  V  Q  V  A  D  G  S  Q  Y  S  R  F  I  L  K  E  E  K  

D L  R  Y  C  T K  H  Y  N  T  G  K  F  T  C  I  E  A  R  F P  T  S  T  S  S  L  V  A  A  A  F  

E  S  R  A  C  S  L  E A  C  G  T  K  L  V  E  K  Y  

 

Figure 3.3 Amino acid sequence of GlyBP. 

Substituted residues in loops 7 and 9 are underlined in bold and the C-terminal hydrophilic 

randomized tail is highlighted in italics.    
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Figure 3.4 Strategy of generation of GlyBP. 
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Figure 3.5 Generation of GlyBP bacmid. 

Lane 1: λ-DNA/Hind III fragments; Lane 2-11: mini-preps of bacmid DNA from 

different white colonies. 
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Figure 3.6 Overexpression of GlyBP in Sf9 insect cells as detected by Western 

immunoblot. 

A, Time course of expression. Lanes 1 – 5, GlyBP expression at days 1, 2, 3, 4 and 5 post-

infection, respectively; B, Subcellular fractionation of GlyBP. Lane 1, total extract, Lane 2, 

cytosolic fraction, Lane 3, membrane-associated pellet. 
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Figure 3.7 Western immunoblots of binding of GlyBP to 2-aminostrychnine 

affinity matrix. 

A, Cytosolic fraction. Lane1: total cytosolic protein, Lane 2: protein bound to 2-AS, Lane 

3: unbound protein; B, Membrane fraction. Lane 1: total membrane fraction, Lane 2: 

protein bound to 2-AS, Lane 3: unbound protein; C, Elution of membrane-associated 

GlyBP from 2-AS resin. Lane 1: GlyBP bound to 2-AS after elution with 200 mM glycine, 

Lane 2: protein eluate after incubation with 200 mM glycine, Lane 3: GlyBP bound to 2-

AS after elution with 1.5 mM 2-AS Lane 4: protein eluate after incubation with 1.5 mM 2-

AS; D, Partitioning of purified membrane-bound GlyBP after detergent dialysis (Lane 1) 
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and ultracentrifugation (Lanes 2 and 3). Lane 2: soluble form of GlyBP, Lane 3: vesicular 

form of GlyBP. 

3.4.2 Purification of GlyBP 

In order to purify GlyBP we first solubilized the membrane-associated fraction after lysis 

of the insect cells by incubation with a solubilization buffer containing 25 mM KPi (pH 

7.4), 0.5 M KCl, 1% digitonin, 0.1 % deoxylcholate, 0.2 mg/ml lipid mixture, 5 mM 

EDTA, 5 mM EGTA, 10 mM dithiothreitol and a mixture of antiproteolytics at 4 °C 

overnight. This ratio of the detergents digitonin and deoxylcholate is identical to that used 

to solubilize full-length GlyR in previous studies (Cascio et al., 1993; Cascio et al., 2001). 

After ultracentrifugation, the supernatant containing GlyBP/detergent/lipid micelles was 

incubated with the 2-aminostrychnine affinity resin overnight. In our hands, full-length 

GlyR is routinely eluted from this resin by competition with 200 mM glycine. However, 

unlike the full-length receptor, only ~10% of the solubilized GlyBP that was bound to the 

aminostrychnine resin was eluted from the resin after equilibration with 200 mM glycine. 

Instead, an elution buffer in which 1.5 mM 2-aminostrychnine was substituted for glycine 

resulted in elution of > 90% of GlyBP bound to the affinity resin (Figure 3.7C).  

Purified GlyBP/detergent/lipid micelles were then dialyzed against 25 mM 

potassium phosphate buffer (pH 7.4) to remove detergent and the relatively high 

concentration of salts used during purification, yielding protein and spontaneously-formed 

vesicles in the phosphate buffered solution. After brief probe sonication to make the 

vesicles small and unilamellar, the vesicles and any associated GlyBP were pelleted by 

ultracentrifugation. Western immunoblots of the rehydrated pellet and the supernatant were 
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conducted to determine the partitioning of purified GlyBP between aqueous solution and 

the vesicles (Figure 3.7D). Under the conditions used in this study, GlyBP was found at 

approximately equal levels in both the supernatant, as a soluble protein (aqueous form), and 

with pelleted lipid vesicles (vesicular form) (Figure 3.7D). GlyBP in both fractions retained 

their capability of binding aminostrychnine as assayed in rebinding studies. The aqueous 

form of GlyBP is thus considered to be a purified, water-soluble form of GlyBP capable of 

binding antagonist. The vesicular form of GlyBP is similarly a purified, vesicle-associated 

form of the protein that is also capable of binding antagonist. Isolation of GlyBP as a 

soluble protein (without potentially-interfering associated lipids and/or detergents) is 

especially significant as this protein may be useful in subsequent high-resolution structural 

studies. In our hands, partitioning of GlyBP between association with vesicles or remaining 

free in solution is somewhat variable, and appears to depend on salt concentration, lipid 

composition, and other variables. While this partitioning has not been further explored in 

this study, future investigations of this partitioning may provide insight into the energetics 

involved in interactions between the extracellular domain of GlyR and the surface of the 

lipid bilayer, as well as any preferential selectivity towards specific lipid headgroups. Both 

forms of GlyBP were used for subsequent studies in order to distinguish which (or if both) 

of these may be an appropriate model for the corresponding structure of the ECD in the 

full-length GlyR. 

Both forms of GlyBP appear to run as a doublet on SDS-PAGE gels with apparent 

molecular weight of of 29 and 31 KDa (Figure 3.7). In addition, despite being reduced and 

denatured, higher order bands are observed at elevated apparent molecular weight. A 

similar phenomenon was also observed in full-length α1 GlyR that also ran as a doublet on 
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SDS-PAGE (Cascio et al., 1993; Griffon et al., 1999). The migration of GlyBP as a doublet 

on SDS-PAGE might be due to: 1) heterogeneity in the unfolding of GlyBP and/or 

differential binding of SDS such that two predominant species with altered shape and/or 

charge distribution of the monomeric protein are present giving rise to anomalous 

migration; or 2) differential post-translational modifications of GlyBP in insect cells; or 3) 

partial proteolysis of the protein in vivo or during sample preparation. As described in 

3.3.4, treatment of both forms of GlyBP with either Endo H or PNGase F did not result in 

any significant molecular mass shift observed on SDS-PAGE gel (Figure 3.8), indicating 

that the doublet is probably not due to the presence of differential glycosylation states that 

causes some of the protein to migrate at a higher apparent molecular weight on SDS-

PAGE. While we cannot rule out partial proteolysis or clipping, subsequent 

characterization of GlyBP, as well as binding assays, suggests that this event, if it occurs, 

does not result in misfolding of GlyBP because it continues to bind agonist and antagonist. 

In addition, mass fingerprinting of both bands of the analogous doublet in SDS-PAGE of 

full-length GlyR gave coverage over the entire primary sequence of GlyR, suggesting that 

the doublet, in this case, is not due to any proteolytic degradation at either the amino- or 

carboxy-termini of the full-length receptor (Tillman and Cascio, unpublished observation). 

Given these observations, we propose that the observed GlyBP doublet is most likely due 

to anomalous migration of GlyBP. 

3.4.3 Deglycosylation of GlyBP 

Glycosylation is a common post-translational modification of many membrane proteins and 

may play a significant role in oligomerization of membrane proteins. Both α and β subunits 
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of native functional GlyR are glycosylated (Pfeiffer and Betz, 1981; Pfeiffer et al., 1982). 

The GlyR α1 subunit has a N-glycosylation consensus site at N38, which was shown to be 

critical for oligomerization of homomeric α1 GlyR (Griffon et al., 1999). To determine if 

differential glycosylation may be responsible for the doublet observed in SDS-PAGE, 

enzymatic deglycosylation studies were conducted on both forms of GlyBP. Both forms of 

GlyBP were incubated without or with endoglycosidase H (Endo H) for 1 hr at room 

temperature and samples were analyzed by SDS-PAGE followed western blot as described 

in Material and Methods. Treatment with Endo H did not result in any significant shift in 

molecular weight on SDS-PAGE (Figure 3.8A). Since Endo H removes only high mannose 

and some hybrid types of N-linked carbohydrates, we also incuated GlyBP with N-

glycosidase F (PNGase F), which has a broader substrate specificity for N-linked 

carbohydrates. Similarly, no molecular weight shift was observed for both forms of GlyBP 

after PNGase digestion (Figure 3.8B). Thus, the presence of a doublet observed in SDS-

PAGE is not due to differential glycosylation. 
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Figure 3.8 Deglycosylation of GlyBP. 

A, Aqueous (lane 1 and 2) and vesicular (lane 3 and 4) GlyBP digested with Endo H (lane 

2 and 4 respectively); B, Aqueous (lane 1 and 2) and vesicular (lane 3 and 4) GlyBP 

digested with PNGase F (lane 2 and 4 respectively).  

3.4.4 Ligand binding properties of GlyBP 

The affinity of a receptor to its cognate ligands (agonists/antagonists) is a defining property 

of that receptor and may be used as a diagnostic yardstick to assess the functionality of 

heterologously expressed proteins and/or the integrity of purified products. With respect to 

the Cys-loop receptors, the Kd is also dependent on the composition of the subunits that 

comprise the pentameric assembly. Given that the affinities of full-length homomeric α1 
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GlyR for its agonist glycine or competitive antagonist strychnine have been experimentally 

determined to be between 10-30 nM (strychnine, Kd) and 20-60 μM (glycine, Ki) (Graham 

et al., 1985; Marvizon et al., 1986; Sanes et al., 1987; Rundstrom et al., 1994; Breitinger et 

al., 2001; Grudzinska et al., 2005), we can assess whether the structure of GlyBP 

approximates that of its corresponding domain in the full-length receptor by conducting 

radiolabeled ligand binding assays on both forms of GlyBP and comparing their ligand-

binding properties to that reported for the full-length receptor. Both aqueous and vesicular 

forms of GlyBP were incubated with [3H] strychnine at various concentrations for 30 min 

at 4°C in the presence and absence of excess cold strychnine. The vesicular form of GlyBP 

has a Kd of 119 ± 28 nM for strychnine while the strychnine Kd of the aqueous form of 

GlyBP is 230 ± 88 nM (Figure 3.9A), which are broadly consistent with the reported values 

(Graham et al., 1985; Sanes et al., 1987). There is no statistically significant difference in 

strychnine binding between these two forms of GlyBP. This experiment indicates that both 

forms of GlyBP retain high affinity to this potent antagonist. 

Given the relatively low affinity and high dissociation rate of glycine to the 

receptor, as well as the unavailability of glycine radiolabeled with high activity, glycine 

binding assays were conducted using a displacement binding assay using [3H] strychnine as 

a primary ligand. Both aqueous and vesicular forms of GlyBP were incubated overnight 

with various concentrations of glycine competitor in the presence of 100 nM of [3H] 

strychnine. The displacement experiment indicated a glycine IC50 of 166.2 ± 29.5 μM for 

vesicular form and 132.1 ± 28.4 μM for aqueous form (Figure 3.9B), and calculated glycine 

Ki values are 90.3 ± 16.0 μM and 71.8 ± 15.4 μM, respectively, which is in agreement with 

reported Ki of glycine for full length α1 GlyR (Lynch et al., 1997; Breitinger et al., 2001). 
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These binding studies also suggest that the GlyBP subunits are forming multimers, as the 

binding pocket for glycine and strychnine are located at the interface between adjacent 

subunits. 

In order to assess whether all purified protein retained the ability to bind to the 

GlyR ligands, we calculated Bmax from different protein preparations. Bmax was originally 

to determine the receptor density on membranes in ligand binding assays. In our case, we 

could determine the percentage of GlyBP that bound to strychnine. The Bmax may be 

converted to a mole ratio of strychnine bound per molecule of GlyBP. From these studies, 

it was demonstrated that the ratios were 0.88 ± 0.14 and 0.81 ± 0.16 for vesicular and 

aqueous forms of GlyBP respectively (Table 3.2), strongly suggesting that most, if not all, 

purified protein did bind to the strychnine.  

As described above, glycine was less efficient to elute GlyBP than to elute full-

length GlyR bound to 2-aminostrychnine resin. However, our ligand binding experiments 

showed that glycine retains ability to displace pre-bound [3H] strychnine after removal of 

detergent and lipids. To further evaluate the ability of GlyBP to bind to its endogenous 

ligands, saturation and competitive binding assays were conducted in the presence of 

detergent, lipids and high concentration of salts. Strychnine binding affinity was largely 

unchanged (Kd = 154 ± 37 nM for strychnine) compared to that obtained after dialysis 

(Figure 3.9E). Interestingly, the Ki value (calculated Ki values are 1.45 ± 0.34 mM) of 

glycine to displace [3H] strychnine was significantly reduced as compared to that after 

dialysis (Figure 3.9F), suggesting that the lack of ability of glycine to compete with 

strychnine during elution was due to reduction of glycine binding affinity in the presence of 

detergent and lipids. The possible explanation is either that high concentration of detergent, 
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lipids and salts somehow hinders direct contact between glycine and the receptor or that the 

receptor ECD structure is slightly distorted during elution. In addition, reduction of 

competition ability of ligands in the presence of detergent in competitive binding assays 

was also observed in overexpressed α7 nAChR ECD in Xenopus oocytes (Wells et al., 

1998), which also supports our observation that the presence of detergent might have 

negative effects on the ability of agonist to displace bound high-affinity antagonist either 

by direct modification on GlyBP or its indirect effet on solvent environment. 

 

 

Table 3.2 Calculated Bmax’s and ratio of strychning-bound protein versus 

total protein in ligand binding assays 

 Bmax (nmole/mg of protein) # of protein bound/# of total protein 

GlyBP ves 31.7 ±  4.7 0.88 ± 0.14 

GlyBP aqu 29.2 ± 4.6   0.81 ± 0.16 
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Figure 3.9 GlyBP binding assays. 

 [3H]Strychnine binding curves for soluble (A) and vesicular form (B) of GlyBP. Binding 

curves for glycine competition with [3H] strychnine-bound soluble (C) and vesicular form 

(D) of GlyBP. [3H]Strychnine saturation binding (E) and competitive binding (F) assays of 

GlyBP in the presence of detergent and lipids. 
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3.5 DISCUSSION 

In the initial experiments, we expected to express a mutant form of the extracellular domain 

of GlyR and anticipated that it could function as a homopentamer. Taking advantage of 

baculovirus expression system, GlyBP was functionally overexpressed in Sf9 insect cells 

with a yield of ~ 1.0-2.0 mg of purified protein /L culture. This is a significant amount of 

protein for heterologously expressed ion channel proteins and might be suitable for 

consequent high-resolution structural studies. Heterologous expression of the ECD of a 

membrane protein has long been considered as an alternative strategy when direct 

structural studies on the integral membrane protein are not possible or practical. For Cys-

loop receptors, the ligand binding domain is usually located extracellularly, and it may be 

expected that an overexpressed receptor ECD might be expressed as a functional secreted 

soluble form. However, while GlyBP was found in both cytosolic and membrane fractions 

after subcellular fractionation, only the membrane fraction could be affinity-purified, 

suggesting membrane-association property of GlyBP is required for its proper functioning. 

The biosynthesis of membrane proteins is a complicated and highly regulated process. 

GlyR is synthesized and assembled in the endoplasmic reticulum (ER) and transported to 

the plasma membrane. A model has been proposed for postsynaptic clustering of GlyR 

(Kneussel and Betz, 2000). It has been shown that molecular determinants of GlyR 

assembly are located in the ECD of GlyR (Griffon et al., 1999). Thus, when expressed 

heterologously, GlyBP is expected to be synthesized in the ER, transported to the plasma 

membrane and secreted to the extracellular space since the transmembrane segments are 

missing in GlyBP. However, after subcellular fractionation, GlyBP was present in both 

cytosolic and membrane fractions, but not in the culture media, indicating retention of 



 70

GlyBP. The presence of cytosolic pool of GlyBP might result from 1) its dramatic 

overexpression in a heterologous expression system; or 2) loss of ability to assemble as an 

functional oligomer, which is required for membrane clustering of GlyR in vivo ; or 3) 

alteration in its transport to plasma membrane. The failure of GlyBP in the cytosolic 

fraction to bind to strychnine indicates it is misfolded and/or unassembled in the cytosol. 

While native full-length GlyRs are integrated into the plasma membrane by mutiple 

hydrophobic interactions, membrane association of GlyBP might be just due to non-

specific hydrophobic interaction between the lipid bilayer and one or several hydrophobic 

loops in GlyBP, which is probably similar to the interaction observed in many peripheral 

membrane proteins. 

Interestingly, after detergent/lipid solubilization, GlyBP partitioned into both 

supernatant (aqueous form) and pellet (vesicular form) after ultracentrifugation, indicating 

that GlyBP might be loosely associated the membrane although this interaction is important 

for correct folding in insect cells. Several lines of evidence suggest that both forms of 

GlyBP are correctly folded. First, GlyBP was able to specifically bind to 2-

aminostrychnine resin, suggesting that GlyBP was in a correct folding state and capable of 

binding to native ligands of GlyR. Second, radio-labeled ligand binding assay directly 

demonstrated that both forms of GlyBP retain ability to bind to strychnine with high 

affinity at nanomolar dissociation constants. Competitive binding assays further showed 

that glycine could competitively displace bound 3H-strychnine with a Ki at micromolar 

levels. However, glycine seemed to be less efficient to eluate bound GlyBP on 2-

aminostrychnine resin during purification. This suggested an affinity shift in the presence 

of detergent and lipids. Further ligand binding assay of GlyBP showed that, in the presence 
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of detergent, lipids and high concentration of salts, Kd for strychnine is comparable to that 

of soluble and vesicular forms of GlyBP, but the higher values of Ki for glycine suggests 

GlyBP may be slightly distorted in the presence of detergent and lipids although the 

presence of detergent and high salt concentration helped solubilization of GlyBP. 

Based on crystal structures of GlyBPs and other mutagenesis studies, a number of 

connecting loops exist between neighboring β-strands, some of which are found to be 

involved in transition from ligand recognition to channel activation. Among these loops, 

loops 2, 7 (Cys-loop) and 9 (C loop) are predicted to be involved in interaction with the 

membrane or transmembrane domain of the receptor (Brejc et al., 2001; Unwin, 2005). In 

this study, replacement of hydrophobic residues in Loops 7 and 9 in the ECD of GlyR with 

corresponding hydrophilic ones in AChBP seemed not to affect its folding and ligand 

binding properties. These loops have been shown to be important for coupling agonist 

binding and channel activation, but are not directly involved in ligand binding sites because 

they reside at the “bottom” side of receptor extracellular domain. 

Although two hydrophobic loops were replaced with more hydrophilic loops 

corresponding to those in AChBP, GlyBP still appears to partition on the surface of lipid 

vesicles, indicating that there may be multiple membrane association sites in the 

extracellular domain of GlyR in addition to loops 7 and 9. In addition, GlyBP in cytosolic 

fraction lost strychnine binding property while membrane associated fraction remained 

strychnine binding ability, which indicates that membrane association may be required for 

proper folding and assembly of GlyBP. Based on the crystal structure of AChBP and other 

studies, loop 2 is also a potential membrane-proximal segment. It might be interesting to 
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look at the effect of loop 2 replacement on membrane-association property of GlyR ECD, 

which would possibly result in increased ease of expression and solubility of GlyR ECD. 
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4.0  STRUCTURAL CHARACTERIZATION OF GLYBP 

4.1 SUMMARY 

In Chapter 3, GlyBP, a mutant ECD of GlyR, was expressed in a baculoviral expression 

system. GlyBP protein was observed in both cytosolic and membrane-associated fractions, 

but only the GlyBP in the membrane fraction could be purified by affinity chromatography. 

After the detergent was removed, purified GlyBP partitioned into both aqueous and 

vesicular phases after utltracentrifugation. Ligand binding assays showed that both forms 

of GlyBP retained the ability to bind ligands with affinities comparable to those of native 

GlyR. 

In this chapter, GlyBP is biophysically and biochemically characterized. The 

secondary structure of GlyBP was examined by circular dichroism. Both forms of GlyBP 

have a globular structure with predominant β–sheet structure. Addition of either glycine or 

strychnine did not change their net secondary structure. In order to further characterize 

GlyBP, we sought to determine its oligomeric state. Chemical crosslinking experiments 

showed that both forms of GlyBP are oligomeric. Dynamic light scattering experiments 

demonstrated that the molecular size of GlyBP is consistent with it being a homopentamer.  

Chemical crosslinking coupled to MALDI-TOF mass spectrometry was applied to 

study the protein folding and structure of the subunit interface of GlyBP. A number of K-K 
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crosslinks in GlyBP were observed after crosslinking with dimethyl suberimidate (DMS). 

The intramolecular crosslinks provided a number of distance constraints for GlyBP folding 

and validated the homology model of GlyBP. In addition, inter-subuit crosslinks gave 

important structural information about the subunit interface although addition of strychnine 

did not change the crosslinking profile of GlyBP to a significant extent. 

4.2 INTRODUCTION 

In Cys-loop receptors, oligomerization is essential for activity. Ligand binding sites are 

located at the subunit interface, and disruption of subunit-subunit interactions impairs both 

agonist and antagonist binding. More importantly, oligomerization of Cys-loop receptors is 

critical for channel activation since the ion conducting pore is formed by the M2 domains 

from each subunit of the receptor. A number of mutagenic and biochemical studies have 

shown that the Cys-loop receptors assemble as pentamers both in vivo and in vitro 

(Langosch et al., 1988; Karlin, 2002; Lester et al., 2004), which is further supported by the 

crystal structure of pentameric AChBP (Brejc et al., 2001; Hansen et al., 2004) and cryo-

EM studies of nAChR (Unwin, 2003; Unwin, 2005). 

Native GlyRs assemble as heteropentamers with possible stoichiometry of either 

3α/2β (Langosch et al., 1988), or 2α/3β (Grudzinska et al., 2005). However, α subunits of 

GlyR can assemble as homopentamers when experessed heterologously (Lynch, 2004). For 

example, homomeric assembly of the GlyR α1 subunit resulted in a functional ion channel 

as demonstrated by electrophysiological studies (Gentet and Clements, 2002; Legendre et 

al., 2002). In addition, homomeric assembly of the GlyR α subunit results in the formation 
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of five identical ligand binding sites, which simplifies structural studies on ligand binding 

mechanisms of GlyR. 

In the Cys-loop receptor family, all members share conserved pentameric assembly 

and similar ligand recognition mechanisms. However, the subunit interface is much less 

conserved, which is not unexpected since that variation in primary sequence confers 

selectivity to receptor assembly of any given type of receptor. Some structural information 

with regard to subunit interactions has been obtained for nAChR by a number of 

mutagenesis and crystallographic studies (Karlin, 2002; Unwin, 2005; Dellisanti et al., 

2007). However, detailed analysis of the subunit interface of the nAChR and other 

members in this superfamily, including GlyR, is lacking.  

Although X-ray crystallography and NMR are considered as the most powerful 

tools for understanding high resolution three-dimensional structure of proteins, there are 

some inherent limitations of these two techniques. Both techniques require a large mount of 

protein and are intrinsically time-consuming. NMR spectroscopy is applicable only to 

peptides and relatively small proteins of about 20-25 KD. Crystals of macromolecular 

complexes that refract to high resolution are very difficult to obtain, especially for 

membrane proteins.   However, a number of alternative approaches are also available to 

address the questions of spatial and topological organizations of protein and protein 

complexes, such as chemical modification, circular dichroism and mass spectrometry.     

In structural studies, chemical crosslinkers are widely used and considered as 

molecular rulers that can provide information on distances between crosslinked groups to 

define both tertiary and quaternary structures of proteins of interest (Sinz, 2006). 

Crosslinkers can be either homo- or hetero-bifunctional reagents. They have been used 
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extensively as they are soluble in aqueous solvents and can form stable inter- and intra-

subunit covalent bonds.  DMS, a homo-bifunctional reagent, belongs to the imidoester class 

of crosslinking reagents, which specifically react with primary amine groups (i.e., ε-amino 

groups of lysine residues), resulting in the formation of an amidine linkage that carries a 

positive charge at physiological pH (Kiehm and Ji, 1977; Wilbur, 1992). The N (amidine) 

to N (amidine) distance was used to determine the crosslinking span. This homo-

bifunctional crosslinking reagent has been widely used to map low-resolution protein 

structures (Wang and Moore, 1977; Bauer et al., 1990; Dihazi and Sinz, 2003). To further 

understand the structure of GlyBP, chemical cross-linking studies coupled to mass 

spectrometric analysis was conducted, resulting in identification of a number of K-K 

crosslinks providing distance constraints on folding of this protein. 

In collaboration with Dr. M. Kurnikova at Carnegie Mellon University, a homology 

model of the homopentameric GlyBP was built based on its sequence alignment with 

AChBP. The GlyBP homology model is similar to that of wild-type GlyR ECD 

(Speranskiy et al., 2007). The model provides a framework for interpretation of the 

crosslinking data. In addition, distance constraints obtained from chemical crosslinking 

coupled to mass spectrometry will also be used to validate and/or refine this model. 

4.3 MATERIAL AND METHODS 

4.3.1 Expression and purification of GlyBP 

GlyBP was expressed and purified as described in Chapter 3. 
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4.3.2 Circular dichroism 

CD spectra were recorded on an AVIV Model 202 spectrophotometer. CD spectra of 

aqueous and vesicular forms of GlyBP in 25 mM potassium phosphate buffer, pH 7.4, were 

all collected at a protein concentration of 0.16 - 0.2 mg/ml at 25 °C in the near-UV length 

region (190-280 nm). In parallel studies, concentrated stock solutions of glycine or 

strychnine (in 25 mM potassium phosphate buffer, pH 7.4) were diluted 100-fold by direct 

addition to the cuvette to give 25 mM glycine or 12 μM strychnine (much greater than the 

experimentally determined Ki or Kd, respectively). At least ten reproducible spectra were 

collected for each preparation, averaged, and smoothed (Savitzky and Golay, 1964). All 

reported spectra were baseline corrected by subtraction of similarly collected, averaged, 

and smoothed baselines of appropriate buffer, ligands and/or vesicles identically prepared, 

except without purified protein. Samples containing lipid vesicles were probe sonicated to 

minimize optical artifacts due to differential light scattering and protein to lipid ratios were 

minimized low to ensure negligible absorption flattening effects. The CD spectra of the 

protein in the near UV region were analyzed using DICHROWEB (Lobley et al., 2002; 

Whitmore and Wallace, 2004). Spectra were analyzed using CDSSTR (Sreerama and 

Woody, 2000), or CONTINLL (Provencher and Glockner, 1981) and a normalized root 

mean standard deviation (NRMSD) value was calculated as a measure of the fit of the 

calculated curve to the experimental data (Mao et al., 1982).  
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4.3.3 Chemical cross-linking 

Purified aqueous and vesicular forms of GlyBP were incubated with various concentrations 

of DMS (0.2 →2 mg/ml) at room temperature for 1 hr. Protein samples were also incubated 

at RT without addition of DMS as controls. Reactions were quenched with addition of Tris 

buffer at a final concentration of 50 mM. Crosslinked products were separated by SDS-

PAGE followed by Western blot. 

4.3.4 Dynamic light scattering 

Purified GlyBP, in 25 mM KPi (pH 7.4) and 1 mM DTT was diluted to a final monomer 

protein concentration of 0.4 mg/ml.  Samples were filtered with a 0.22 um Millipore 

Millex-GV filter and analyzed in a Wyatt Protein Solutions DynaPro instrument. Dynamic 

light scattering data were collected in triplicate and analyzed with the Protein Solutions 

DynaPro software.  The hydrodynamic radius (Rh) was calculated based on the following 

equation:         

       (k: Boltzmann constant; T: temperature; η0: solvent viscosity). 

4.3.5 Silver staining and destaining 

Crosslinked or non-crosslinked proteins were separated on SDS-PAGE. After 

electrophoresis, the gel was rinsed briefly with ultrapure water and fixed in 100 ml of 

fixative (40 % ethanol/10 % acetic acid) for 20 minutes with gentle rotation. The fixative 
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solution was decanted and washed in 30% ethanol for 10 minutes. 100 ml of Sensitizing 

solution was added to the washed gel in the staining container. Then the gel was incubated 

in the Sensitizing solution for 10 minutes and washed in 100 ml of 30% ethanol and then 

ultrapure water for 10 minutes respectively. The gel was incubated in 100 ml of staining 

solution for 15 minutes and washed with 100 ml of ultrapure water for 20-60 seconds.  The 

gel was incubated in 100 ml of developing solution for 4-8 minutes until bands start to 

appear and the desired band intensity was reached. Once the appropriate staining intensity 

was achieved, 10 ml of Stopper directly was added to the gel still immersed in Developing 

solution and incubated with gentle agitation for 10 minutes. The Stopper solution was 

decanted and the gel was washed with 100 ml of ultrapure water for 10 minutes. 

For destaining, after silver staining the gel, the gel was washed thoroughly with 

ultrapure water and bands of interest were carefully excised using a clean scalpel and the 

gel pieces were placed into a 1.5 ml sterile microcentrifuge tube.  Another piece of gel of 

the same size from a blank region of the gel was also excised and placed into another sterile 

microcentrifuge tube. This will be used as a control for trypsin digestion. 50 μl of Destainer 

A and 50 μl of Destainer B were added to each microcentrifuge tube and incubated for 15 

minutes at room temperature. The supernatant was removed using a clean pipette tip and 

200 μl of ultrapure water was added to the tube and mix and incubated for 10 minutes at 

room temperature. This washing step was repeated twice and the gel pieces were subjected 

to in-gel trypsin digestion. 
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4.3.6 In-gel trypsin digestion 

Before trypsin digestion, cysteine residues were reduced and alkylated with iodoacetamide. 

Briefly, the gel pieces were incubated with 100 % acetonitrile, and then 10 mM DTT, 100 

mM TrisHCl, pH 8.5 at 55 °C for 1 h. After two washes with 100 mM TrisHCl, pH 8.5, the 

gel pieces were incubated with 15 mM iodoacetamide in 100 mM TrisHCl, pH 8.5 for 1 h 

in dark at room temperature.Then, the gel pieces were washed with 100 ul of wash buffer 

(50:50 methanol: 50 mM ammonium bicarbonate) twice for 30 min with gentle agitation. 

The gel plugs were dehydrated by adding 50 ul acetonitrile. After the gel plugs turned 

whitish, acetonitrile was removed and dried in a SpeedVac for about 15 min. 10 μl of 

Trypsin Buffer (20 µg/ml of porcine trypsin in 20 mM ammonium bicarbonate) was added 

to each sample and put on ice for 15 min and incubated overnight at 37 °C. The 10 ul 

Trypsin Buffer was transferred to a new tube. 60 ul of Extraction Buffer (1% TFA in 50:50 

acetonitrile: H2O) was added to the gel plugs and incubated for 30min with gentle agitation. 

Then the 60 uL of Extraction Buffer was transferred to same labeled sample tube and the 

gel plugs were incubated with 40ul of Extraction Buffer (1% TFA in 50:50 acetonitrile: 

H2O) for 30 min with gentle agitation and then transferred as described above. Samples 

were dried in SpeedVac for about 1.5-2 hr.  

 

4.3.7 Sample purification and spotting for MALDI-TOF MS 

Prior to sample spotting, protein samples were purified and concentrated using C18 Ziptips. 

The Ziptip was prewet by 10 μl of 50 % acetonitrile in Milli-Q water, equilibrated with 10 
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μl of 0.1 % TFA in Milli-Q water. The sample was drawn up into Ziptip and pipetted up 

and down 5-6 times. The Ziptip was then washed twice with 10 μl of 0.1 % TFA to remove 

contaminants. The peptides were eluted with 3 μl of 50% acetonitrile/0.1% TFA in Milli-Q 

into a labeled clean vial. Those samples were used for direct spotting for MALDI-TOF 

analysis. 

The sample preparation method used was the dried-droplet method (Karas and 

Hillenkamp, 1988). Briefly, in a clean microcentrifuge tube, 0.5 μl of each protein sample 

cleaned by C18 Ziptip was mixed with the same volume of 10 mg/ml of α–cyano-4-

hydroxycinnaic acid (CHCA) (Applied Biosystems, Foster City, CA) in 50% 

acetonitrile/0.1% TFA by vortexing. The mixture of sample/matrix was deposited onto a 

welled gold sample plate. The droplets were air-dried at room temperature. A standard 

mixture including des-Arg1-Bradykinin ([M + H]+
mono = 904.47), Angiotensin ([M + 

H]+
mono = 1296.69), Glu1-Fibrinopeptide B ([M + H]+

mono = 1570.68), ACTH (1-17 clip) 

([M + H]+
mono = 2093.09), ACTH (18-39 clip) ([M + H]+

mono = 2465.20) and ACTH (7-38 

clip) ([M + H]+
mono = 3657.93) was used as external calibriants.  

4.3.8 MALDI-TOF MS 

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF 

MS) was performed on a Voager DE Pro Biospectrometry Workstation equipped with a 

nitrogen laser (337 nm). The instrument was run in positive ionization mode and 

measurements were performed in reflector mode.  
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4.3.9 Data analysis of MALDI-TOF mass spectra of GlyBP after chemical 

crosslinking with DMS 

MALDI-TOF mass spectra were analyzed by the Data Explorer ™ software version 4.5 

(Applied Biosystems). Crosslinking products were identified using the General Protein 

Mass Analysis for Windows (GPMAW, version 6.0) (Lighthouse Data, Odense, Denmark) 

and the Automated Spectrum Assignment Program (ASAP) developed at the University of 

California at San Francisco (Young et al., 2000). 

4.3.10 Homology modeling of GlyBP 

In collaboration with Dr. Maria Kurnikova at Carnegie Mellon University, an approach 

similar to that used for wild-type GlyR ECD (Speranskiy et al., 2007) was used to generate 

a homology model of GlyBP. Briefly, the sequence of GlyBP was aligned with those of L. 

stagnalis AChBP and A. californica AChBP using Clustal W (Thompson et al., 1994). The 

program Modeller 7.7 was used to generate a model of the GlyBP pentamer (Sali and 

Blundell, 1993). All five subunits of the pentamer were modeled simultaneously with a 

five-fold symmetry. The Modeller's variable target function method (VTFM) and MD 

simulated annealing were used to generate 15 initially randomized models. The quality of 

these models was characterized in terms of Z-scores using the WHAT_IF program (Vriend, 

1990). Z-scores are standardized statistically-derived structure quality assessment scales 

that include packing quality, Ramachandran plot appearance, chi-1/chi-2 rotamer 

normality, and backbone conformation. The inter-residue distances were calculated based 
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on the homology model of GlyBP using the program Visual Molecular Dynamics (VMD), 

version 1.8.6 (Humphrey et al., 1996). All molecular images were drawn in VMD. 

4.4 RESULTS 

4.4.1 Determination of secondary structure of GlyBP by circular dichroism 

The net secondary structures of both forms of GlyBP were determined by circular 

dichroism (CD) spectroscopy. CD spectroscopy in the low-UV region (190-240 nm) is a 

particularly useful tool since the peptide transitions that give rise to the diagnostic net 

spectrum in this region are sensitive to small changes in backbone conformation. Given the 

achiral nature of the lipids comprising the vesicles, one may directly compare the net 

spectra of the aqueous and vesicle associated forms of GlyBP, providing the lipid-protein 

ratio is sufficiently high and that the vesicles are small and unilamellar in order to minimize 

absorption flattening effects and differential scattering, respectively (Mao and Wallace, 

1984). Purified GlyBP in either its aqueous soluble form or associated with small 

unilamellar vesicles were examined in comparative CD studies. The resulting CD spectra 

of GlyBP in either form are nearly superimposable (Figure 4.1A), strongly suggesting their 

conformations are essentially equivalent. 

Quantitation of the net secondary structure of both forms of GlyBP can determine if 

their secondary structure is consistent with that of the homologous AChBP (Brejc et al., 

2001; Sixma and Smit, 2003) and validates our model. Historically, the ability of CD to 

accurately determine the secondary structure of proteins with reduced helical content, (as 
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expected for GlyBP given that AChBPs are ~ 8-10% α-helical (Brejc et al., 2001; Hansen 

et al., 2004; Celie et al., 2005a)), has been limited by the poor representation of some non-

helical folds in the reference databases, the reduced signal of β-structures relative to that 

from helical components, and the structural variability of non-helical folds that gives rise to 

spectral diversity (Wallace et al., 2003). This has been redressed by the generation of a new 

reference database that more effectively covers secondary structure and fold space (Lees et 

al., 2006). Spectra were analyzed by two independent methods: CONTINLL (Provencher 

and Glockner, 1981) and CDSSTR (Sreerama and Woody, 2000).  Both forms of GlyBP 

contained relatively little helical content and were largely composed of β–sheet, consistent 

with the observed crystal structure of AChBP (Table 4.1) and with the reduced helical 

content determined in CD studies of full-length GlyR reconstituted in vesicles (Cascio et 

al., 2001). It is also consistent with our model of GlyBP, using AChBP as a template. In all 

analyses the NRMSD value was < 0.05, indicating that the reference data set is appropriate 

(a value below 0.10 indicates a reasonably good fit of the calculated and experimental 

spectra). Other reference databases gave significantly higher values for the NRMSD 

(typically above 0.2, data not shown).  

In earlier CD studies of reconstituted full-length nicotinicoid receptors, addition of 

acetylcholine to nAChR (Mielke and Wallace, 1988) or the addition of glycine to GlyR 

(Cascio, unpublished observation) did not result in any significant changes in their CD 

spectra. However, in spectroscopic studies of the holoreceptor, small changes in GlyR ECD 

might be averaged over the net secondary structure of the entire receptor. In order to 

determine if changes in net secondary structure could be detected in the ECD alone, 

comparative CD studies were similarly conducted wherein 25 mM glycine or 12 μM 
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strychnine, concentrations well above each ligand’s Kd or Ki (Figure 3.9), were added to 

both forms of GlyBP (Figure 4.1B & C). The addition of either ligand did not induce any 

significant changes in the CD spectra in the low UV range, indicating that the binding of 

agonist or antagonist does not appreciably alter the net secondary structure of GlyBP. 

Extensive experimental evidence has suggested the occurrence of conformational changes 

upon ligand binding in the ECD of Cys-loop receptors (Unwin, 2005; Sine and Engel, 

2006). However, in the cryo-EM structure of Torpedo nAChR, addition of agonist led to 

rotations of inner β-sheets in the ECD without any significant changes in the composition 

of any secondary structural elements. Our observations on GlyBP are consistent with the 

cryo-EM structure of Torpedo nAChR. The absence of any detectable change in the net 

secondary structure change of GlyBP is consistent with known experimental data. 
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Figure 4.1 CD spectra of soluble and vesicular forms of GlyBP. 

            A, Comparison of CD spectra of aqueous and vesicular GlyBP; B, CD spectra of 

aqueous form of GlyBP in the absence and presence of glycine or strychnine; C, CD 

spectra of vesicular form of GlyBP in the absence and presence of glycine or strychnine. 
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Table 4.1 Calculated secondary structure from CD studies. 

αR and αD are regular and distorted α-helix, respectively, as defined in Lees et al., 2006.  

Reported values for β-sheet are the sum of both its regular and distorted fractions. 

Sample Method αR αD β-sheet β -turn Other NRMSD

GlyBP, aqueous form CONTINLL 0.04 0.09 0.35 0.13 0.39 0.028 

GlyBP, aqueous form CDSSTR 0.02 0.07 0.37 0.13 0.40 0.039 

GlyBP, vesicular form CONTINLL 0.05 0.09 0.33 0.13 0.40 0.050 

GlyBP, vesicular form CDSSTR 0.03 0.04 0.41 0.10 0.40 0.044 

 

4.4.2 Determination of oligomerization state of GlyBP 

Functional GlyRs are pentameric and if GlyBP is to be considered an appropriate structural 

homolog of the ECD of GlyR, it, too, should be pentameric. Affinity chromatography on 2-

aminostrychnine resin strongly suggests some degree of oligomerization of GlyBP since 

the binding sites for strychnine are situated at subunit interfaces. To further examine the 

oligomeric states of GlyBP, crosslinking studies were conducted with DMS, a 

homobifunctional agent that cross-links primary amines of lysines. Diluted preparations 

containing either form of purified GlyBP were incubated with increasing concentrations of 

DMS yielded higher order aggregates in SDS-PAGE gels as compared to control (Figure 

4.2). The absence of any clear intermediate bands corresponding to dimers, trimers, and 

higher order oligomers upon incubation with cross-linking agents did not allow us to 

determine the stoichiometry of a predominant oligomeric state. Nonetheless, a common 

trend was observed in all experiments in that there was an obvious dose-dependent 
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formation of higher-order aggregates upon incubation of dilute GlyBP with increasing 

levels of DMS, suggesting that both forms of GlyBP are oligomeric in nature. 

 

                  

Figure 4.2 Cross-linking of purified GlyBP with DMS detected by SDS-PAGE. 

Lane 1: aqueous form control; Lane 2-5: aqueous form cross-linked with 0.2, 0.5, 1, 2 

mg/ml of DMS respectively; Lane 6: vesicular form control; Lane 7-9: vesicular form 

cross-linked with 0.2, 1 and 2 mg/ml of DMS respectively. 

 

Dynamic light scattering studies were conducted to better assign the oligomeric 

state of the soluble form of GlyBP (the presence of vesicles precludes conducting parallel 

studies on the membrane-associated form). In these studies, GlyBP was observed to have a 

bimodal polydisperse distribution. A small quantity of large aggregates were present with 

an hydrodynamic radius (Rh) ~20 nm. The predominant species yields a peak of Rh = 5.63 

+/- 0.07 nm, with moderate polydispersity. Rh provides the radius of a hypothetical hard 

sphere that diffuses at the same rate as the molecule. The polydispersity of the 5.63 nm 
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peaks makes a specific estimate of the molecular weight unreliable; however, the dynamic 

light scattering study indicates that the soluble form of GlyBP in vitro has a globular 

structure whose dimensions are consistent with those expected for a homopentamers having 

homology with the ECD of GlyR. 

4.4.3 Determination of subunit interface and ligand-receptor interaction in GlyBP 

by chemical cross-linking coupled to mass spectrometry 

Chemical crosslinking studies showed both forms of GlyBP are oligomeric. Furthermore, 

chemical crosslinking was used to examine protein folding and subunit-subunit interactions 

in GlyBP. A summary of the experimental design is shown in Figure 4.3. Mass 

spectrometry has the power to determine the sites of chemical crosslinks generated in 

oligomerized proteins. In GlyBP, there is a total 11 lysine residues which are reactive to the 

amine-specific crosslinker DMS. Lys-Lys crosslinking could ocurr intramolecularly or 

intermolecularly. After crosslinking of purified GlyBP with DMS, crosslinked proteins 

were run in SDS-PAGE, separating GlyBP lower- and higher-molecular weight bands 

corresponding to monomeric and oligomeric GlyBP, respectively. In the lower-molecular 

weight band, any crosslink must be intramolecular, whereas in the higher-molecular weight 

band, both intra- or inter-molecular crosslinks may exist. Lysine crosslinks were then 

identified by mass spectrometry. Comparison of these two crosslinking profiles might 

identify unique crosslinks that represent crosslinking between lysine residues from 

neighboring subunits, which would provide useful information about the subunit interface. 

All possible intramoleclar- and/or intermolecular-crosslinks are useful to validate the 

GlyBP homology model. 
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Figure 4.3 General strategy for mapping intramolecular and intermolecular 

crosslinks using chemical crosslinking coupled to MALDI-TOF MS. 

4.4.3.1 MALDI-TOF MS analysis of GlyBP 

MALDI-TOF mass spectrometry analysis was conducted on both forms of GlyBP. Purified 

GlyBP was separated on SDS-PAGE and stained using silver staining protocol compatible 

with mass spectrometry (see Material and Methods).  The gel bands were excised and 

destained by standard protocol. After trypsin digestion, the tryptic digestion peptides were 

analyzed using MALDI-TOF MS in reflector mode. For both forms of GlyBP, protein 
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coverage of 55-80 % of entire AA sequence was usually obtained (Figure 4.4) and all 

lysine containing peptides were identified. Similar peaks were observed for both aqueous 

and vesicular GlyBPs (Figure 4.5), indicating structural similarity between aqueous and 

vesicular forms of GlyBP. 

 

A  R  S  A  P  K  P  M  S  P  S  D  F  L D  K  L  M  G  R  T  S  G  Y  D  A  R  I  R  

P  N  F  K  G P  P  V  N  V  S  C  N  I  F  I  N  S  F  G  S  I  A  E  T T  M  D  Y  R  V  N  I  

F  L  R  Q  Q  W  N  D  P  R  L  A  Y  N  E  Y  P  D  D  S  L  D  L  D  P  S  M  L  D  S  I  

W K  P  D  L  F  F  A  N  E  K  G  A  H  F  H  E  I  T  T  D N  K  L  L  R  I  S  R  N  G  N  

V  L  Y  S  I  R  I  T  L T  L  A  C  P  M  D  L  K  D  T  E  S  D  V Q  T  C  I  M Q  L  E  S  

F  G  Y  T  M  N  D  L  I  F  E  W  Q  E  Q  G A  V  Q  V  A  D  G  S  Q  Y  S  R  F  I  L  K  

E  E  K  D L  R  Y  C  T K  H  Y  N  T  G  K  F  T  C  I  E  A  R  F P  T  S  T  S  S  L  V  A  

A  A  F  E  S  R  A  C  S  L  E A  C  G  T  K  L  V  E  K  Y  

Figure 4.4 Protein sequence coverage map of GlyBP identified by MALDI-

TOF MS. 

Highlighted in grey are residues that are consistently observed in MALDI-TOF spectra. 
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Figure 4.5 Representative spectra of MALDI-TOF MS of GlyBP without chemical crosslinking. 

A, Representative mass spectrum of aqueous form of GlyBP; B, Representative spectrum of vesicular form of GlyBP. 
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4.4.3.2 Identification of intramolecular chemical crosslinks in GlyBP by MALDI-TOF 

MS 

In order to obtain further structural information of GlyBP, chemical crosslinking coupled to 

mass spectrometry studies were conducted to provide distance constraints for Lys residues, 

which may be used to map the tertiary structure and quaternary structure of GlyBP. In this 

study, DMS, a homo-bifunctional crosslinker was used to probe the structure of GlyBP 

(Figure 4.6). DMS reacts with the amine groups of Lys residue and the N-terminus of a 

given protein. Both forms of purified GlyBP were incubated with 0.2, 0.5 and 1 mg/ml 

DMS or without DMS as a control, for 1 hr at room temperature. Proteins were separated 

on SDS-PAGE, silver-stained and then destained as described above. As described in 4.4.2, 

GlyBP migrated as both a monomer and as a high-order aggregate after crosslinking with 

DMS. Gel bands corresponding monomeric or oligomeric GlyBP were excised, washed and 

digested with 200 ng of trypsin per sample at 37 °C for at least 12 hr. Crosslinking 

reactions of GlyBP were conducted in the low micromolar range to reduce crosslinks 

generated between oligomer-oligomer interactions.  

 

            

Figure 4.6 Structure of amine-specific crosslinker DMS. 
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Table 4.2 Intramolecular crosslinks observed from MALDI-TOF MS analysis 

of GlyBP crosslinked with DMS. 

Parts per million (ppm) indicates the error of a percentage of the measured mass. “N” 

denotes the N-terminus of GlyBP. 

K-K crosslinks Theoreti m/z Observed m/z ΔMass, ppm Cross-linked peptides 

190-193 1498.795 1498.714     - 45 187-196  

193-200 2268.040   2268.133       -41   191-196, 197-206 

200-206 2357.048 2357.009       -16 197-213  

N-6/16 2430.195 2430.245       -20   3- 20, 1-  2 

193-206 2593.214 2593.122        36 201-213, 191-196 

193-200 2652.252 2652.312       -23 194-206, 191-196  

193-206 3145.452 3145.393       19 201-213  191-200 

190/193-200 3153.584 3153.454        41 194-206, 187-196   

193-200 3204.489 3204.330       50 194-206, 191-200  

6-116 3478.711 3478.618        27 105-119,   3- 16 

190/193-200/206 3646.783 3646.624       44 197-213, 187-196 

N/6-116 3705.849 3705.769       22 105-119,   1- 16 
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Figure 4.7 Intramolecular crosslinks observed in GlyBP after crosslinking 

with   DMS. 

A, Representative spectrum of MALDI-TOF MS of GlyBP after crosslinking with 

DMS; B, Schematic representation of intramolecular lysine-lysine crosslinks 

superimposed on the molecular model of GlyBP. A K-K pair was connected by dashed 

lines and distances (Ǻ) between crosslinked K-K pairs were also provided. 
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Table 4.3 Predicted distances in GlyBP homology model of Lys-Lys pairs 

observed in monomeric GlyBP after chemical crosslinking with DMS followed by 

MALDI-TOF MS. 

Crosslinked K-K pairs Cα- Cα distances in homology model of GlyBP 

K6-K116 24.3 Ǻ 

K190-K193 10.9 Ǻ 

K193-K200 20.7 Ǻ 

K193-K206 22.5 Ǻ 

K200-K206 6.6 Ǻ 

 

 

MALDI-TOF spectra were collected on a Voyager DE-Pro spectrometer in reflector 

mode. DMS-modified lysines will not be cleaved by trypsin due to modification of the 

primary amine group.  Masses of tryptic peptides from crosslinked GlyBP were assigned 

from the mass spectra by using ASAP and GPMAW (see Material and Methods). From the 

MALDI spectra, most peaks observed in the absence of DMS were also obtained in the 

presence of the crosslinker (Figure 4.7A), indicating that modification of GlyBP by 

chemical crosslinking did not significantly interfere with tryptic digestion and following 

MS analysis. In addition, 12 masses corresponding to crosslinked peptides are listed in 

Table 4.2. These crosslined peptides could be divided into two classes: 2 of them (K187-

196, K200-206) contain crosslinked K-K pairs within the same tryptic peptides; the rest of 

them have K-K pairs from distinct tryptic peptides. The K190-K193 and K200-K206 

crosslinks were observed within the peptides 187-196 and 197-213 respectively. It is 
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expected that K190 and K193 are in close proximity since they are only separated by 2 

amino acids in the primary sequence and would be expected to be crosslinked in the 

presence of amine-reactive chemical crosslinkers. This is also the case for the lysine pair 

K200 and K206.  

In our GlyBP homology model, K6 and K116 were assigned to the N-terminal α–helix 

and β5 respectively, as shown in Figure 4.7B. The Cα- Cα inter-residue distance was 

predicted to be around 24 Ǻ (Table 4.3). Considering the flexibility of Lys residues, it is 

expected that DMS could cross-link two lysine residues with Cα- Cα distance up to 24 Ǻ 

(the arm length of DMS plus two times the length of lysine side chain, which is about 6.5 

Ǻ) (Young et al., 2000). Also, we must consider that GlyBP is dynamic and its backbone 

has some flexibility. The dynamic nature of GlyBP allows lysine residues to be crosslinked 

distances considerably shorter than that predicted in a static modeling protein molecule. 

K193 was crosslinked with both K200 and K206 and the distances of these two K-K pairs 

were similar our homology model (Table 4.3). In our GlyBP model, while K193 is located 

on β9, K200 and K206 are located in the C-loop region, which is critical for ligand binding 

and subject to significant conformational change upon ligand binding in the entire Cys-loop 

receptor family. Crosslinking of K193 with K200 and K206, both of which are around 20-

22 Ǻ away in the GlyBP model, indicates that the C-loop might be very flexible. Taken 

together, the crosslinks observed in monomeric GlyBP crosslinked provide distance 

constraints in GlyBP, which helps us to understand folding of GlyBP. Those data were 

consistent with the molecular model of GlyBP built on its homology with AChBP. 
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4.4.3.3 Identification of intra-/inter-molecular chemical crosslinks in GlyBP by 

MALDI-TOF MS 

Inter-subunit crosslinks have been used for determination of the tertiary structure and 

arrangement of subunits within homo-oligomeric proteins and intra-subunit crosslinks for 

maintenance of stable tertiary structure.  

As described in 4.4.3b, gel bands corresponding to the oligomeric GlyBP were 

excised, destained and digested with trypsin, followed by MALDI-TOF MS analysis. A 

representative spectrum was shown in Figure 4.8A and masses corresponding to 

crosslinked peptides observed in MALDI-TOF MS are presented in Table 4.4. As 

discussed above, K-K crosslinking of oligomeric GlyBP is expected to result in two types 

of crosslinks: intra- (two crosslinked lysines were crosslinked within the same protein 

molecule) and inter-molecular crosslinks (two crosslinked lysines were from neighbouring 

subunits of oligomeric GlyBP). Lower-molecular weight bands in SDS-PAGE only have 

intramolecular covalent crosslinks, whereas higher-molecular weight bands in SDS-PAGE 

may contain both intramolecular covalent crosslinks and crosslinks resulting from two 

neighboring subunits. Therefore, comparison of crosslinks between monomeric and 

oligomeric GlyBP could provide unique crosslinks that result only from inter-molecular 

crosslinking. These crosslinks might be important to understand the inter-subunit 

interaction in GlyBP oligomers, and furthermore may be used to validate/test our homology 

model of GlyBP. As expected, many masses listed here were also observed in the list of 

mass ions from monomeric GlyBP. However, several crosslinks were uniquely observed in 

high-order GlyBP oligomers, (Table 4.4 highlighted in grey). From this list, a few K-K 

pairs were found to be unique in mass spectra of crosslinked oligomeric GlyBP: K116b-
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K200a, K116b-K206a, K200a-K190b and K200a-K193b (a and b denote two different 

neighbouring subunits). Among these crosslinks, the masses 2652.193 (EEKDLR191-196-

DLRYCTKHYNTGK194-206) and 3153.609 (FILKEEKDLR187-196-DLRYCTKHYNTGK194-

206) are of particular interest since both masses were fit to two crosslinked peptides that 

were not possible from the the same molecules since they have overlapping sequence. Both 

masses indicated that K200 was crosslinked to K193 in a neighbouring subunit. All 

crosslinks identified only from oligomeric GlyBP are consistent with the homology model 

of GlyBP. The calculated distances for intersubunit K-K crosslinks fall within the range of 

possible crosslinking distance with DMS. In contrast, our model showed that, for these 

crosslinked pairs, intramolecular crosslinking of these pairs is not possible since the 

predicted intramolecular distances by the GlyBP model are too far apart to be crosslinked 

by DMS (Table 4.5). One exception is the K200a-K193b pair. Although it’s possible that 

crosslinking between K200 and K193 could occur both intra- and inter-molecularly based 

on the homology model, the observed mass (m/z 2652.193, EEKDLR191-196-

DLRYCTKHYNTGK194-206) corresponded to a crosslink in which two crosslinking 

fragments have overlapping sequence, indicating that those two fragments must be from 

two neighboring subunits. For two lysines from neighbouring subunits, either lysine residue 

could be located either in the principal or complementary site. However, based on the 

GlyBP homology model, if two crosslinked lysine residues were too far away from each 

other, any particular orientation of the crosslinked K-K pair with a distance exceeding that 

predicted from GlyBP homology model could be ruled out. Therefore, a model of 

crosslinks observed from oligomeric GlyBP was proposed as illustrated in Figure 4.8B. 
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Table 4.4 Intra-/inter-molecular crosslinks observed from MALDI-TOF MS. 

Highlighted in grey are unique masses of K-K crosslinks that define the subunit-

subunit interaction. 

K-K crosslinks Theoretical m/z Observed m/z ΔMass, ppm Cross-linked peptides

190-193 1498.795 1498.743 -35 187-196 

193-200 2268.040 2268.105 -29 191-196, 197-206 

200-206 2357.048 2357.113 27 197-213 

190-200 2385.159 2385.088 30 197-206,187-193 

N-6/16 2430.195 2430.126 29 3- 20, 1-  2 

193-206 2593.214 2593.177 15 201-213, 191-196 

193-200 2652.252 2652.193 22 194-206, 191-196 

190-200 2769.371 2769.317 20 194-206, 187-193 

193-206 3145.452 3145.511 -19 201-213  191-200 

190/193-200 3153.584 3153.609 -8 194-206, 187-196 

193-200 3204.489 3204.405 26 194-206, 191-200 

116-200 3230.549 3230.419 40 197-206, 105-119 

190-200/206 3262.571 3262.502 21 197-213, 187-193 

6-116 3478.711 3478.634 22 105-119,   3- 16 

116-206 3555.724 3555.670 15 201-213, 105-119 

116-200 3614.761 3614.823 -17 194-206, 105-119 

190/193-200/206 3646.783 3646.656 35 197-213, 187-196 

N/6-116 3705.849 3705.907 -16 105-119,   1- 16 
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Figure 4.8 Intra-/inter-molecular crosslinks observed in 

GlyBP after crosslinking with DMS. 

A, Representative spectrum of MALDI-TOF MS of GlyBP after 

crosslinking with DMS; B, Schematic representation of unique 

intermolecular lysine-lysine crosslinks superimposed on the molecular 

model of GlyBP. 

699.0 1359.4 2019.8 2680.2 3340.6 4001
Mass (m/z)

0

10

20

30

40

50

60

70

80

90

100

%
 In

te
ns

ity

A B
F G H L O

P Q

842.5720

761.4688

771.5470 1498.7135
2269.40431671.0253735.4709 903.6407 2770.4675 3615.89283231.66262594.3801716.4355 1182.9833954.5482 1401.9667 1673.9672 1988.2245 2383.4619 2885.67482172.3447 3619.1602 3816.5476



102 

 

Table 4.5 Predicted distances in GlyBP homology model of unique 

intermolecular Lys-Lys pairs observed in oligomeric GlyBP after chemical 

crosslinking with DMS followed by MALDI-TOF MS. 

Crosslinked  

K-K pairs 

Intermolecular Cα- Cα distances in 

homology model of GlyBP 

Intramolecular Cα- Cα distances 

in homology model of GlyBP 

K200a-K116b 19.9 Ǻ 31.7 Ǻ 

K206a-K116b 18.2 Ǻ 30.7 Ǻ 

K200a-K190b 20.8 Ǻ 29.0 Ǻ 

K200a-K193b 17.1 Ǻ 20.7 Ǻ 

 

 

4.4.3.4 Identification of intra-/intermolecular chemical crosslinks in GlyBP after 

incubation with strychnine by MALDI-TOF MS 

As with other membrane receptors, the GlyR undergoes conformational changes upon 

ligand binding. It is expected that similar changes would exist in GlyBP. As shown in 

section 4.4.1, there is no net change in secondary structure in GlyBP upon binding of 

strychnine as demonstrated by CD. To test if any conformational change could be detected 

by K-K crosslinking coupled to mass spectrometry, GlyBP was incubated with or without 

strychnine for 1 hr at room temperature, and then crosslinked with DMS. The crosslinked 

products were then separated by SDS-PAGE, stained and gel bands were excised, 

destained, trypinized and analyzed by MALDI-TOF mass spectrometry (Figure 4.9). Table 

4.6 and 4.7 list crosslinked peptides after incubation in the presence and absence of 
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strychnine. Most masses observed in the absence of strychnine were also found after 

incubation with strychnine (Table 4.6). Although the entire list of masses identified were 

not identical to those observed in the absence of strychnine, the identified crosslinked K-K 

pairs were identical under either condition. The crystal structure of AChBP in complex 

with defferent ligands and modeling studies on the ECDs of Cys-loop receptors suggest 

that the β–sandwich core doesn’t undergo significant conformational changes. In constrast, 

the most obvious conformational changes occur in the C- and F-loops (Celie et al., 2004; 

Hansen et al., 2005; Cheng et al., 2006b). However, the similarity between identified K-K 

pairs in Table 4.6 and 4.7 does not absolutely indicate that no conformational changes 

occurred upon strychnine binding. In our crosslinking experiments, residues that were close 

to the C-loop and involved in crosslinking were Lys-200 and Lys-206. In the GlyBP 

homology model, these two lysines were located in the hinge region of the C-loop and, 

therefore, the position of Lys-200 or Lys-206 relative to the β–sandwich core might not be 

subject to significant changes upon strychnine binding.  
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Figure 4.9 Representative spectra of MALDI-TOF MS of GlyBP after crosslinking with DMS in the presence of 

strychnine.  

A, Representative spectrum from intramolecular crosslinking from monomeric GlyBP; B, Representative spectrum of intra-/inter-

molecular crosslinking from oligomeric GlyBP. 
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Table 4.6 Intramolecular crosslinks observed from MALDI-TOF MS analysis of 

GlyBP crosslinked with DMS in the presence of strychnine. 

K-K crosslinks Theoreti m/z Observed m/z ΔMass, ppm Cross-linked peptides 

190-193 1498.795 1498.849 36 187-196 

193-200 2268.040 2268.099 -26 191-196, 197-206 

200-206 2357.048 2357.152 44 197-213 

193-206 2593.214 2593.307 - 35 201-213, 191-196 

193-200 2652.252 2652.177 28 194-206, 191-196 

193-200 3204.489 3204.527 - 12 194-206, 191-200 

6-116 3478.711 3478.627 24 105-119,   3- 16 

190/193-200/206 3646.783 3646.652 36 197-213, 187-196 

N/6-116 3705.849 3705.773 21 105-119,   1- 16 

 

.  
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Table 4.7 Intra-/inter-molecular crosslinks observed from MALDI-TOF MS 

analysis of GlyBP crosslinked with DMS in the presence of strychnine. 

K-K cross-link Theoretical m/z Observed m/z  ΔMass, ppm Cross-linked peptides 

190-193 1498.795 1498.722           -30 187-196  

193-200 2268.040 2268..110           41 191-196, 197-206 

200-206 2357.048 2357.002           -18 197-213  

190-200 2385.159 2385.193          25 197-206,187-193 

N-6/16 2430.195 2430.227           34 3- 20, 1-  2 

193-206 2593.214 2593.194           -19 201-213, 191-196 

193-200 2652.252 2652.122           -55 194-206, 191-196  

190-200 2769.371 2769.399           22 194-206, 187-193 

193-206 3145.452 3145.493           26 201-213  191-200  

190-200/206 3262.571 3262.412           -43 197-213, 187-193 

6-116 3478.711 3478.631         - 49 105-119,   3- 16 

116-206 3555.724 3555.794           36 201-213, 105-119 

116-200 3614.761 3614.809           19 197-206, 105-119 
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4.5 DISCUSSION 

In Chapter 3, we have shown that both forms of GlyBP are correctly folded and retain the ability 

to bind to its ligands with affinities comparable to those observed in native full-length receptor. 

In this Chapter, we further demonstrated both forms of GlyBP are oligomeric, and taken together 

with functional data presented in Chapter 3, GlyBP is very likely pentameric. Oligomerization of 

GlyBP was first supported by the fact that it specifically bound to the 2-aminostrychnine resin, 

which strongly suggested that GlyBP is properly folded as an oligomer since it has been shown 

that ligand binding sites reside at the subunit interface. High affinity binding with 2-

aminostrychnine resin indicated that ligand binding sites remain intact in GlyBP and the local 

environment around ligand binding sites mimics that of native full-length GlyR. Chemical cross-

linking experiments clearly showed that it is oligomeric, although the detailed oligomeric state of 

GlyBP could not be inferred from chemical crosslinking experiment. Data from light scattering 

provided evidence that the size of GlyBP as an oligomer is consistent with it being a pentamer. 

In addition, LRET studies on vesicular form of GlyBP are also consistent with a pentameric 

structure of GlyBP. All data obtained in this study suggest that both forms of purified GlyBP are 

properly folded and are consistent with a pentameric structure. No pentameric structure of the 

ECD of any member in this receptor family has been resolved at atomic levels. AChBP has 

known structure, but it is just a structural homolog of the Cys-loop receptor ECD. Thus, 

characterization of the soluble pentameric GlyBP would provide insights into the structure and 

function of the ECD of GlyR and, possibly other Cys-loop receptors. 

The CD experiments showed that both forms of GlyBP adopt equivalent net secondary 

structures. In addition, using two independent fitting programs, secondary structure analyses of 

the spectra of GlyBP indicated that both forms are predominantly composed of β-structure, with 
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little α-helix. This is consistent with expected secondary structure given the crystal structure of 

AChBP, a structural homolog of the ECD of Cys-loop receptors. 

 Mass spectrometry is a very promising tool applicable to protein structure analysis. Due 

to its high sensitivity, speed of analysis and ability to solve structural problems not easily 

handled by conventional techniques, mass spectrometry has been applied to structural studies of 

proteins and protein complexes (Biemann, 1995; McLafferty et al., 1999). In addition, chemical 

crosslinking in combination with mass spectrometric analysis has been used to provide low-

resolution structure of proteins and interacting sequence within protein complexes (Young et al., 

2000; Back et al., 2003; Sinz, 2003). The crosslinked K-K pairs in the crosslinking experiments 

were analyzed by fitting them with a homology model of GlyBP constructed in collaboration 

with Dr. M. Kurnikoava at CMU. All those crosslinks were found to be consistent with and 

validate this model.  

As indicated in this study and others, crosslinking products are often of low signal 

intensity, which results in difficulties in identification of crosslinking product. A number of 

alternative strategies have been developed to help the identification of crosslinking products, 

including isotope-labeling of crosslinker or proteins, affinity tagged crosslinkers, fluoregenic 

crosslinker and chemically cleavable crosslinkers (Sinz, 2003). In this study, crosslinked 

products were always associated with relatively high masses, which made their identification 

more difficult. In the long run, might be necessary to introduce site-specific amine- (lysine) or 

thiol- (cysteine) reactive mutants, which would help reveal the role of any specific residue of 

interest and improve signal/background ratio in mass spectrometric studies.  

It should be noted that chemical crosslinking methods are not only approaches for 

detecting proximity, but also provide information about dynamic collisions of residues involved 
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in crosslinking reaction (Sun and Kaback, 1997). Since lysine is a flexible residue, it’s possible 

that formation of crosslinks occur even though they are fairly distant in the average structure. In 

our study, the Cα- Cα distance of a few Lys-Lys pairs are longer than the arm length of the 

crosslinker DMS, which is not unexpected due to the high flexibility and relatively long side 

chain of lysine residues. 
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5.0  STRUCTURAL CORRELATION BETWEEN GLYBP AND THE 

CORRESPONDING REGION OF FULL-LENGTH GLYR 

5.1 SUMMARY 

Previous studies in Chapters 3 and 4 have shown that GlyBP appear to be a structural homolog 

of the ECD of GlyR as evidenced by CD experiments, ligand binding assays, dynamic light 

scattering and crosslinking studies. In order to further examine whether GlyBP is both a 

structural and functional homolog of the corresponding region of full-length GlyR, comparative 

studies were conducted on both GlyBP and full-length GlyR using LRET. The LRET studies 

showed two distances were present between the intersubunit Cys-41, supporting the hypothesis 

that GlyBP is native-like. In addition, these two intersubunit Cys-41 distances were shortened 

upon glycine binding, indicating that GlyBP retains ability to undergo conformational changes 

upon agonist binding. Further LRET studies on full-length GlyR in intact Sf9 insect cells 

suggested both GlyBP and full-length GlyR have similar intersubunit Cys-41 distances and 

undergo the same allosteric changes upon agonist binding, which strongly suggests that GlyBP 

mimics the corresponding ECD of GlyR both structurally and functionally and may serve as an 

appropriate subject for high resolution structural studies of GlyR. 
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5.2 INTRODUCTION 

The extracellular ligand binding domain in pentameric ligand gated ion channels is an important 

and inherent part of the whole protein. The receptor ECDs usually harbor the ligand binding sites 

and possess the determinants of ligand selectivity and specificity. In addition, the receptor ECDs 

are also important for pentameric assembly of the receptor (Connolly and Wafford, 2004; Lester 

et al., 2004). The conformational changes induced upon ligand binding are transmitted through 

connecting loops to the channel-forming transmembrane domains, which results in channel 

opening or modulation of the activity of the receptor (Connolly and Wafford, 2004).     

In the previous chapters, we have shown that we are able to overexpress and purify the 

mutant extracellular domain of GlyR, GlyBP, in Sf9 insect cells. Further biochemical studies 

have shown GlyBP is a functional oligomeric protein that is a good structural model of the 

extracellular domain of GlyR in the resting state. However, how well this mutant protein mimics 

native full-length GlyR is unclear. To validate this structure, we used LRET to compare the 

structure of GlyBP with the corresponding region of full-length GlyR. Full-length GlyR has 7 

Cys residues with four of them forming two pairs of disulfide bonds (Cys-138-Cys-152 and Cys-

193-Cys-209) that are essential to activity. Each of the remaining three cysteines, Cys-41, Cys-

290 and Cys-345 (Figure 5.1), has a free reactive thiol group, which might be potential sites for 

specific labeling studies. Since only Cys-41 is present in GlyBP, we chose to target this free 

cysteine residue as a labeling site for LRET studies. Cys-290 is postulated to be located in TM3 

and may only be labeled appreciably in the presence of ligand (unpublished observation by R. 

Clarke, J. Johnson and M. Cascio). It was also found that residues in the TM2-TM3 loop, as well 

as the TM3 domain of the GABAA receptor were accessible only in the presence of ligands when 

it is heterologously expressed in Xenopus oocytes (Williams and Akabas, 1999, 2000), 
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suggesting that this region is less accessible in the resting state and a conformational change in 

TM3 is induced during channel activation. Cys-345 is located in the cytoplasmic loop connecting 

TM3 and TM4 and is therefore inaccessible to externally-labeled membrane-impermeant thiol-

reactive reagents. Based on those facts, we hypothesized that, in studies of full-length GlyR, we 

could label Cys-41 in GlyR expressed in Sf9 insect cells without interference from labeling of 

Cys-290 and Cys-345. Then the intersubunit Cys-41 distances could be measured and compared 

to those obtained in GlyBP by LRET.  

Förster resonance energy transfer (FRET) has been widely used to measure distances 

between molecules or conformational changes within an individual molecule. In this process, the 

excited-state energy of a fluorophore is transferred non-radiatively to a ground state acceptor 

fluorophore by long-range resonance coupling between the donor and acceptor transition dipoles 

(Clegg, 1992). The donor and acceptor molecules must be in close proximity (~10-100 Å) to 

allow efficient energy transfer between those fluorescent moieties (Stryer, 1978). One potential 

problem in these studies on membrane proteins on cell surface using free thiol as a reactive 

group is the presence of high background due to presence free thiol groups present on some 

membrane proteins other than the protein of interest. This problem has been overcome in studies 

on voltage-gated potassium channels expressed in Xenopus oocytes (Mannuzzu et al., 1996), in 

which endogenous free thiols on plasma membrane were pre-blocked by alkylating reagents 

before the bulk of overexpressed protein of interest reached the cell surface. We applied this 

approach to the baculovirus expression system used in this study to probe the intersubunit Cys-

41 distances in GlyR expressed in intact Sf9 insect cells. Within ~6-24 h after infection, an 

infected Sf9 cell ceases synthesis of endogenous surface membrane proteins, and therefore, 

blockade of free thiol on the Sf9 cell surface 6 h after infection should result in only newly 
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synthesized GlyR on the cell surface having free cysteine residues. Thus, only Cys-41 in GlyR 

on plasma membrane surface could be labeled with thiol-reactive reagent and all background 

labeling of any other palsma membrane proteins would be minimized. By determining the 

intersubunit Cys-41 distances in both GlyBP and full-length GlyR, we could validate the 

homology model of GlyBP and determine the structural similarity between GlyBP and the 

corresponding region of full-length GlyR. 

 

Figure 5.1 Schematic representation of Cys residues in full-length human α1 GlyR. 

Cys-41, 290 and 345 are the only three Cys residue with free thiol group in native GlyR. 



 114 

5.3 Material and Methods 

5.3.1 Expression and purification of GlyBP 

GlyBP was expressed and purified as described in Chapter 3. The vesicular form of GlyBP was 

reconstituted in lipid vesicles as described in Chapter 3. 

5.3.2 Fluorophore labeling of purified GlyBP and GlyR in intact Sf9 insect cells 

For the purified vesicular form of GlyBP, 1 μM protein in 25 mM KPi (pH 7.4) with 100 μM 

glycine (Sigma-Aldrich) was labeled with a 1:4 ratio of the maleimide derivatives of fluorescein 

(Biotium, Hayward, CA) and triethylenetetraminehexa acetic acid chelate of terbium (TTHA-Tb) 

(Invitrogen) for the donor:acceptor sample and with terbium chelate alone for the donor-only 

sample. Protein was dialyzed in phosphate buffered saline to remove excess labels.  

For LRET studies on full-length GlyRs, Sf9 cells were infected with either wild-type 

baculovirus (no GlyR) or with baculovirus encoding full-length GlyR with a MOI > 5. Cells 

were pre-labeled by treatment with 10 mM iodoacetamide for 1 hr at 27 °C at 6 hr post-infection 

to block endogenous free thiol groups on the cell surface. Cells were collected by gentle 

centrifuguation at 1000 x g, washed twice with serum-free medium and then resuspended in 

FBS-containing medium and allowed to grow at 28 °C. Thus, only accessible extracellular Cys 

residues of those membrane proteins expressed on the surface after this time are available for 

labeling. Cells were collected 3 days post-infection by gentle centrifugation at 1000 x g, washed 

with extracellular buffer and labeled with the 1:4 ratio of fluorescein and terbium chelate for an 
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hour and a half. Cells were then washed with extracellular buffer for fluorescence lifetime 

measurements. 

5.3.3 Fluorescence measurements and distance calculations 

A TimeMaster Model TM-3M /2003 (Photon Technology International, Lawrenceville, NJ) was 

used for fluorescence measurements. A nitrogen/dye laser system was fiber-optically coupled to 

the sample compartment, which contained a thermostable cuvette holder with a microstirrer. 

Emitted light was collected by quartz optics and passed through a monochromator to a 

stroboscopic detector. Data were collected using Felix software (Photon Technologies 

International, Lawrenceville, NJ) and analyzed using Origin (OriginLab, Northampton, MA). 

The donor-only lifetimes were collected at 488 nm, whereas the LRET lifetimes were obtained 

by studying the sensitized emission of the acceptor, which was collected at the acceptor 

wavelength of 515 nm. The lifetimes calculated are an average of ~6-12 different data sets. Using 

the time constants of the donor fluorescence decay (τD) and the sensitized emission of the 

acceptor due to energy transfer from donor (τDA), the distances between the donor and acceptor 

are calculated by Förster’s theory of energy transfer, with:  

R = Ro 
6

1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− DAD

DA

ττ
τ  

Ro was calculated to be 60 Å using overlap integral as described previously (Du et al., 2005; 

Ramanoudjame et al., 2006).   
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5.3.4 Statistical analysis 

Data from LRET are presented as mean ± SD. The difference of intersubunit Cys-41 distances 

was determined by two-way analysis of variance (ANOVA) for repeated measures or Student’s 

t-test where applicable, and P<0.05 and P<0.01 were considered significant differences. 

5.4 RESULTS 

5.4.1 Determination of intersubunit Cys-41 distances and ligand-induced conformational 

changes of GlyBP by LRET 

Since Cys-41 is the only cysteine residue with a free thiol group in GlyBP, this free cysteine may 

be reacted with donor or acceptor fluorophores and the LRET lifetimes were used to determine 

the Cys-41 distances between subunits. Terbium chelate served as the donor molecule, which is 

characterized by spectra with a large Stokes shift and sharp, distinct emission bands. The terbium 

emission spectrum overlaps well with the excitation spectrum of fluorescein (Figure 5.2). 

Because fluorescein emits within the “silent” regions between the terbium emission peaks, the 

interference from the donor emission is eliminated and the sensitized acceptor emission could be 

measured, which results in increased signal-to-noise ratio. In addition, terbium chelate has a very 

long lifetime, which makes lifetime measurements facile and highly accurate and also minimizes 

orientation effects. LRET studies were conducted on the vesicular form of GlyBP. The 

luminescence lifetime for the protein tagged with donor only (terbium chelate labeled) can be 

well fit by a single exponential decay (Figure 5.3A) and the lifetimes are similar in the absence 
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and presence of glycine (Table 5.1). The LRET lifetime for the donor: acceptor tagged protein 

required two exponentials (Figure 5.3B and Figure 5.4 for single exponential fit), resulting in 

two sensitized emission lifetimes: a shorter lifetime of 44 ± 8 µs and a longer lifetime of 241 ± 

52 µs (n=12), respectively. Based on these LRET lifetimes, the intersubunit Cys-41 distances in 

the apo state of GlyBP are 33.8 ± 1.0 and 46.2 ± 1.6 Å (n=12). 

In order to determine whether GlyBP undergoes any conformational changes upon ligand 

binding, intersubunit Cys-41 distances were also determined in the presence of its endogenous 

agonist glycine. Similarly, the LRET lifetimes were fit by a two exponential decay and the 

corresponding sensitized emission lifetimes are 31 ± 4 µs (n = 8) and 198 ± 14 µs (n = 8) (Table 

5.1). The calculated intersubunit Cys-41 distances in GlyBP in the presence of glycine are 31.9 ± 

0.6 (n =8, p < 0.01) and 44.4 ± 0.7 Å (n = 8, p < 0.05) respectively, which are significantly 

decreased compared with those obtained in the absence of glycine. The decrease in intersubunit 

Cys-41 distances in GlyBP in the presence of glycine strongly suggests that GlyBP retains the 

ability to undergo conformational changes upon agonist binding and this protein is also a 

functional homolog of the corresponding region of full-length native GlyR. 

In addition, based on the geometry of polygons that are possibly formed by GlyBP 

monomers, the presence of two observed distances suggest a tetrameric or pentameric assembly 

of monomers to form GlyBP. In combination with conclusions drawn from previous binding 

assays, cross-linking and light scattering experiments (see Chapter 4), we conclude that GlyBP 

exists as a homopentamer. Furthermore, addition of glycine decreased the distances to a slight, 

but reproducibly degree between inter-subunit Cys-41, indicating glycine-binding induces 

conformational changes in GlyBP. 
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Figure 5.2 LRET of terbium chelate and fluorescein. 

Schematic representation of the structure of terbium chelate (A) and energy transfer between 

terbium and fluorescein (B). 

 

 

 

Figure 5.3 Determination of intersubunit Cys-41 distances in GlyBP by LRET. 

A, The donor only lifetime; B, the LRET lifetime as measured by the sensitized emission for the 

apo (red) and glycine bound (black) forms of GlyBP.  
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Figure 5.4 LRET lifetime of GlyBP fit by a single exponential function (red line), 

and by a two exponential function (black line). 

 

              

5.4.2 Determination of intersubunit Cys-41 distances and ligand-induced conformational 

changes of GlyR in intact Sf9 cells by LRET 

In order to determine whether GlyBP is an appropriate functional homolog of the 

extracellular domain of native GlyR, LRET studies analogous to those conducted on GlyBP were 

conducted on recombinant α1 GlyR expressed on the surface of baculovirus-infected Sf9 cells 

and the inter-subunit distances between labels on Cys-41 were measured. While the full-length 
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receptor contains three unpaired Cys residues, only Cys-41 is accessible to thiol-reactive 

compounds externally applied in the absence of ligand. As a negative control, little significant 

LRET signal was detectable in non-transfected Sf9 cells as compared with that obtained in Sf9 

cells transfected with GlyR (Figure 5.5). Similar to studies on GlyBP, the luminescence lifetime 

for the protein tagged with donor only could be well represented by a single exponential decay 

(Figure 5.6A), while the LRET lifetime for the donor: acceptor tagged protein required two 

exponentials (Figure 5.6B and Table 5.1) with two sensitized emission lifetimes of 44 ± 4 and 

252 ± 27 µs respectively. Based on these LRET lifetimes, the intersubunit Cys-41 distances are 

33.1 ± 0.5 and 45.2 ± 1.1 Å respectively (Table 5.1).  

Intersubunit Cys-41 distances were also determined in GlyR in Sf9 cells in the presence of 

glycine by LRET. In the presence of glycine, the sensitized emission lifetimes were 35 ± 5 (n = 

12) and 225 ± 25 µs (n = 9) respectively. The calculated distances are 31.9 ± 0.7 (n = 12, p < 

0.01) and 43.8 ± 1.0 Å (n = 9, p < 0.01) in the presence of glycine, which decreased significantly 

as compared to those obtained in the absence of glycine. Furthermore, those distances are are 

similar to the distances between Cys-41 in GlyBP (Table 5.1), indicating that neighboring 

subunits in both GlyBP and GlyR moved closer to each other with respect to Cys-41 in the 

presence of agonist. These LRET studies strongly suggest that GlyBP and GlyR have similar 

structures and most likely undergo similar allosteric changes upon binding glycine. 
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Table 5.1 The fluorescence lifetimes and distances for GlyBP and GlyR tagged with 

fluorescein (acceptor) and TTHA-Tb (Donor). 

Construct Ligand 
Donor 

lifetime (µs) 

Sensitized emission 

lifetime (µs) 
Distance (Å) 

44 ± 8 33.8 ± 1.0 
GlyBP Apo  1392 ± 49 

241 ± 52 46.2 ± 1.6 

31 ± 4 31.9 ± 0.6 
GlyBP Glycine 1392 ± 52 

198 ± 14 44.4 ± 0.7 

44 ± 4 33.1 ± 0.5 
GlyR Apo  1680 ± 51 

252 ± 27 45.2 ± 1.1 

35 ± 5 31.9 ± 0.7 
GlyR Glycine 1654 ± 49 

225 ± 25 43.8 ± 1.0 
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Figure 5.5 LRET lifetime of insect cells non-transfected (black) and transfected 

(blue) with GlyRs tagged with donor and acceptor fluorophores. 
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Figure 5.6 Determination of intersubunit Cys-41 distances of full-length GlyR in Sf9 

cells by LRET. 

A, The donor only lifetime; B, the LRET lifetime as measured by the sensitized emission for the 

apo (red) and glycine bound (black) forms of native GlyR expressed in Sf9 insect cells. 

5.5 DISCUSSION 

In this Chapter, we used LRET to study the intersubunit Cys-41 distances in both GlyBP and 

full-length GlyR. Due to the presence of three free Cys residues in wild-type GlyR, we took 

advantage of the fact that only Cys-41 could be labeled when the dye labels are applied 

externally. Thus, LRET studies on full-length GlyR were conducted in intact Sf9 insect cells, 

while GlyBP was studied with purified proteins. The presence of two distinct intersubunit Cys-

41 distances strongly suggests oligomerization of GlyBP. In addition, GlyBP can only be either 

pentameric or tetrameric based on the possible geometry of distinct polygons that GlyBP 

subunits could form. Although the presence of two distances does not allow us to experimentally 
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exclude the possibility that GlyBP could be a homotetramer, we conclude that GlyBP is 

pentameric. First, dynamic light scattering showed the size of GlyBP is consistent with it being a 

pentamer. Second, the observed intersubunit Cys-41 distances fit well with values predicted from 

the structural models of both GlyBP and wild-type GlyR ECD (Speranskiy et al., 2007). Third, 

we observed nearly identical intersubunit Cys-41 distances in full-length GlyR expressed in 

intact Sf9 insect cells, which indicates that GlyBP adopts a native structure similar to that of full-

length receptor. Those distances decreased in the presence of its endogenous agonist glycine, 

indicating that GlyBP is capable of undergoing conformational changes upon agonist binding, 

which further validated the proper functioning of GlyBP. In addition, intersubunit Cys-41 

distances were decreased to a similar extent in both GlyBP and full-length GlyR, indicating they 

might undergo similar conformational changes upon agonist binding. Together, all of our data 

provide strong supporting evidence that GlyBP is pentameric and has a similar structure to the 

corresponding region of full-length GlyR.  

In FRET studies, both donor and acceptor molecules are fluorescent. One limitation of 

FRET is that the signal-to-background ratio of the sensitized emission is low due to interference 

from the donor fluorescence and direct excitation of the acceptor.  A similar technique was 

developed about a decade ago, in which energy transfer occurs between a luminescent donor 

molecule to an fluorescent acceptor molecule and was thus named luminescence resonance 

energy transfer (LRET) (Selvin and Hearst, 1994; Selvin et al., 1994). In LRET studies, 

lanthanide chelates are used as donors, which have several advantages over classical 

fluorophores (Selvin and Hearst, 1994). One important advantage is that, in LRET experiments, 

the luminescence lifetime of the donor could be determined by analyzing sensitized acceptor 

emission decay. The sensitized acceptor emission could be measured without significant 
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interference from donor emission or direct acceptor excitation since the lifetimes of lanthanide 

chelates are in the millisecond range whereas the lifetimes of the acceptor fluorophores are in the 

nanosecond range (Heyduk and Heyduk, 2001). Direct acceptor emission could be eliminated 

since directly excited acceptor decay to zero in a time insignificantly short compared to the 

lifetime of a donor, whereas directly excited donor emission could be eliminated by selecting an 

appropriate emission wavelength. Therefore, the decay of sensitized acceptor emission reflects 

only the decay properties of the donor engaged in energy transfer (Heyduk and Heyduk, 2001).   

When the protein function is probed by Cys modification, it’s essential to choose 

appropriate Cys residues in native proteins or sites at which Cys mutations are introduced. One 

potential problem using Cys substitutions followed by chemical modification is that the 

mutations might directly affect the structure and function of the protein. In some cases, a mutated 

residue might be crucial for subunit-subunit interaction or receptor-ligand binding. Therefore, 

selected Cys substitutions in this study might have a direct effect on the folding and/or ligand 

binding of GlyBP and full-length GlyR. With that in mind, we took advantage of the presence of 

native Cys residues in GlyBP and labeled native Cys residues without Cys substitution. 

However, this approach is limited by the location of native Cys residues in proteins of interest. 

It’s expected the Cys residues studied are located within or near ligand binding sites or subject to 

significant conformational changes upon ligand binding. In LRET studies, we chose Cys-41 to 

study the intersubunit distances and ligand-induced conformational changes. As expected, we 

observed intersubunit interaction of Cys-41 by LRET and ligand-induced conformational 

changes as indicated by shortening of intersubunit Cys-41 distances. However, further structural 

information could not be obtained merely from distance changes in intersubunit Cys-41. 

Therefore, it seems necessary to specifically introduce Cys mutants in GlyBP in order to get 
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further understanding of oligomerization of GlyBP and ligand-receptor interactions. Cys 

mutations would be introducted close to ligand binding sites, such as essential residues in the C-

loop. In combination with LRET, detailed structural information regarding to subunit interaction 

and conformation changes in the C-loop could be assessed by analyzing distances between 

introduced Cys residues. 
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6.0  GENERAL DISCUSSION AND FUTURE DIRECTIONS 

6.1 STRUCTURAL STUDIES ON PENTAMERIC LIGAND GATED ION 

CHANNELS 

To date, our understanding of structures of Cys-loop receptors are mainly from the following 

three structures: 1) the cryo-EM structure of Torpedo nAChR (Unwin, 2003; Unwin, 2005), 2) 

X-ray structures of AChBPs from different species of snail  in complex with distinct ligands 

(Brejc et al., 2001; Smit et al., 2006), and 3) the very recently reported crystal structure of mouse 

α1 nAChR ECD bound to α-bungarotoxin (Dellisanti et al., 2007). The cryo-EM structures of 

Torpedo nAChR is the only resolved structure of a full-length receptor in the Cys-loop receptor 

family. The cryo-EM structure of nAChR provides an overall view of the whole receptor with 

detailed description of the ion channel in both open and closed states. However, due to the 

limited resolution (~ 4Ǻ) compared to X-ray crystallography, detailed structural information 

regarding subunit-subunit interaction, side chain orientation and ligand-receptor interactions, and 

any information on the gating mechanism remain unresloved.  

The crystal structures of AChBPs in complex with various ligands from a few species 

provides more detailed structural information since they were resolved at higher resolutions and 

are useful templates to model the ECDs of Cys-loop receptors. In collaboration with Dr. Maria 

Kurnikova, we have constructed a homology model of GlyBP based on these templates. The 



 128 

AChBP structure is consistent with all previous biochemical and mutagenic data. However, the 

transmembrane domains, which form the ion conducting channel and are essential for receptor 

function, are lacking in AChBPs. Interestingly, coupling of agonist binding and channel 

activation was observed when AChBP was linked to the pore domain of 5-HT3A receptors 

(Bouzat et al., 2004). Thus, AChBPs are still useful models to understand the ECD of Cys-loop 

receptors and may even provide instructive information about the channel activation 

mechanisms. However, there is some controversy regarding whether these binding proteins 

undergo conformational changes similar to full-length Cys-loop receptors upon binding of 

agonist. 

In addition, the most recent crystal structure of mouse α1 nAChR ECD provided the first 

high-resolution structure of the ECD of Cys-loop receptor subunit. This structure is similar to 

those of AChBPs with respect to overall folding pattern, secondary structural composition, 

ligand binding sites and also other essential structural features common in the entire Cys-loop 

receptor family, which further confirms the generally accepted concept that Cys-loop receptors 

are conserved in their three-dimensional structure. However, this nAChR ECD was monomeric 

and thus provided no information regarding the subunit interface and limited our further 

understanding of channel function of a whole receptor with multiple subunits. Thus, a 

pentameric structure of any Cys-loop receptor, even in a truncated form, is still highly desirable. 

Obviously, all these structures are closely related to the structure of nicotinicoid 

receptors, either in part (i.e. the ECD) or the entire receptor. Other biochemical and 

electrophysiological studies have also been conducted on Cys-loop receptors regarding their 

three-dimensional structure to further understand the molecular mechanisms that gives rise to 

gating. To complement our understanding of structure and function of this receptor family, more 
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efforts need to be taken to extend structural studies on other members in this receptor family. In 

this study, we successfully overexpressed and purified GlyBP, a chimeric protein corresponding 

to the GlyR ECD in both a soluble and membrane-associated form. Biochemical and biophysical 

studies have shown that GlyBP is oligomeric and very likely pentameric, which is essential for 

proper functioning of any member of this ligand gated ion channel family. Overexpression and 

purification of a soluble, native-like ECD of the GlyR may enable us to provide detailed 

structural information and to understand the function of receptor ECD of Cys-loop receptors 

once further high resolution structure of this protein is achieved. 

Mutations (NFPM144-147→DTES144-147) in the Cys-loop (loop 7) include a pair of Phe-Pro 

residues. From the crystal structure of mouse nAChR α1 ECD, those residues form type VI turns. 

Phe is packed face-to-face with Pro. Mutagenesis studies have shown that this Phe residue is 

critical for proper functioning of nAChR (Chakrapani et al., 2004). From the EM structure of 

Torpedo nAChR, the Cys-loop was suggested to interact with the loop between TM2 and TM3 

(Unwin, 2005). In particular, a stretch of sequence F-P-F directly interacts with residues at the 

end of TM3. The F-P pair is conserved among all nAChR subunits and most of other Cys-loop 

receptor subunits, including GlyR α1 subunit. Similarly, it is very likely that, in intact GlyR, the 

Cys-loop also interacts with the M2-M3 loop. In LGICs, the loops connecting neighboring β-

strands in the extracellular ligand binding domain are variable in primary sequence even within 

different subunits forming the same receptor (Unwin, 2005). 

In the closed state of Torpedo nAChR, the C-loop is highly flexible. This is not 

unexpected since this loop has been implicated in acetylcholine binding, which might lock the C-

loop in a specific conformation contributing to transactivation of the channel pore upon agonist 

binding. In our LRET studies, overall conformational changes were observed upon glycine 
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binding. We propose that this is due to an allosteric change which is initated in the ligand 

binding sites nearby the C-loop region, giving rise to the receptor residing primarily in the 

desensitized state. CD studies have shown that there is no detectable change in net secondary 

structure between the resting and desensitized states. Chemical crosslinking coupled to mass 

spectrometry studies also did not detect any gross conformational changes upon strychnine 

binding as demonstrated by unchanged Lys-Lys crosslinking pattern. This is not inconsistent 

with the C-loop being involved in antagonist binding and undergoing conformational changes 

upon strychnine binding due to the restricted locations of lysine residues probed by chemical 

crosslinking and also limited capacity of chemical crosslinking with respect to determination of 

conformational changes. 

 

6.2 HETEROLOGOUS EXPRESSION, PURIFICATION AND 

CHARACTERIZATION OF CYS-LOOP RECEPTOR ECDS 

As discussed earlier, due to the difficulty in crystallizing full-length membrane receptors, high-

resolution structural studies on the extramembranous domains of membrane proteins have been 

used as alternative approaches to study the membrane protein structure at atomic levels. This has 

proven to be a successful strategy since a number of domains of membrane proteins have been 

resolved in biophysical studies, such as the X-ray crystallographic structure of the ECDs of the 

human growth hormone receptor (de Vos et al., 1992), the MHC-related neonatal Fc receptor 

(Burmeister et al., 1994), the T-cell receptor (Garboczi et al., 1996; Garcia et al., 1996) and the 

AMPA receptor (Armstrong and Gouaux, 2000). These structures provide detailed information 
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regarding ligand-receptor interactions at the atomic levels, which greatly advances our 

understanding of the molecular mechanisms underlying signal transduction across the plasma 

membrane from distinct perspectives. 

Similarly, attempts have been made to overexpress a significant amount of truncated 

extracellular ligand binding domain of a Cys-loop receptor for further high-resolution structural 

studies. Among Cys-loop receptors, the nAChR is the most extensively studied receptor, and 

accordingly, most overexpressed ECDs were from subunits of nAChR. In addition, 

overexpression of GABAA-R and GlyR ECDs have been reported. The expression and 

biochemical characterization of Cys-loop receptor ECDs are summarized in Table 6.1. However, 

no published reports have shown that the ECD of a Cys-loop receptor was expressed as a 

functional pentamer. 

Common strategies for heterologous expression and purification of membrane receptor 

ECDs include: 1) Epitope-tagged proteins: The receptor ECDs can be attached to an epitope such 

as 6xHis, the FLAG peptide (DYKDDDDK); 2) Recombinant fusion proteins: The receptor 

ECDs may be fused with several anchorage sequences including glycosylphosphatidylinositol 

(GPI), the maltose binding protein and glutathione-S-transferase (GST) protein; 3) proteins 

without any modification: The receptor ECDs were also expressed and purified without any 

modification. While this strategy lacks the beneficial aspects of approaches 1) and 2), by which 

the purification procedure is relatively simple, it reduces the possibility that the three 

dimensional structure of receptor ECDs could be altered by the attached tags. 

These receptor ECDs were mainly expressed in E.coli, Xenopus oocytes, yeast and insect 

cells. E.coli is one of the most commonly used expression system for recombinant membrane 

proteins due to high expression level of protein targets, ease of manipulation and relatively low 
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cost. However, the majority of expressed membrane proteins is found in the inclusion bodies and 

is misfolded. Thus, refolding of misfolded proteins expressed in bacteria under empirically-

determined experimental conditions needs to be conducted when this approach is used to express 

Cys-loop receptor ECDs. ECDs of nAChR Topedo α1 (Schrattenholz et al., 1998; Alexeev et al., 

1999) and α7 subunit (Fischer et al., 2001; Tsetlin et al., 2002), and GlyR α1 subunit were 

renatured from inclusion bodies of E.coli. However, significantly reduced ligand binding affinity 

was observed in several cases when those receptor ECDs are purified as refolded, which 

decreased the usefulness of further structural studies on those receptor ECDs. 

Not surprisingly, nAChR α1 and α7 ECDs were predominant in inclusion bodies when 

expressed in E.coli (Alexeev et al., 1999). One alternative strategy for expression of receptor 

ECDs in E.coli is to take advantage of the signal sequence of proteins that are secreted into the 

periplasm of E.coli. The receptor ECD would be expressed as fusion proteins secreted into the 

culture medium in a correct folding state. However, receptor ECDs expressed as fusion proteins 

might have distorted three dimensional structures and also reduced ligand binding affinities. One 

key problem with heterologously expressed Cys-loop receptor ECDs is protein aggregation at 

higher concentration, which limited further structural characterization. Interestingly, nAChR α7 

C116S mutant decreased the aggregation and increased the stability of expressed proteins in 

solutions (Tsetlin et al., 2002).  

ECDs of nAChR α1 were often expressed as monomers since assembly of native full-

length nAChR requires incorporation of other subunits. However, nAChR  α7 nAChR has been 

known to be able to form a homo-oligomeric ion channel (Couturier et al., 1990). It seems that it 

is more suitable for heterologous expression of a functional receptor ECD. Several independent 

studies reported overexpression of α7 nAChR in different expression systems (Wells et al., 1998; 
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Fischer et al., 2001). In our studies, GlyBP was expressed as an oligomer, very likely a pentamer. 

Although the most recent crystal structure of mouse α1 ECD of nAChR provided the first 

structure of Cys-loop receptor ECD, high-resolution structural determination of oligomeric 

GlyBP and/or α7 nAChR ECD would provide direct detailed structural information on ligand 

binding sites and subunit-subunit interaction. 

Secondary structural analysis of expressed receptor ECDs indicated β–structure 

contributes substantially to the conformation of Cys-loop receptor ECDs although the 

percentages of each secondary structural element vary in distinct receptor ECDs (Table 6.1).  

This difference might reflect subtle differences in the secondary structure of distinct subunits of 

any given type of Cys-loop receptor or possibly result from distinct experimental conditions in 

circular dichroism studies. In our study, we observed comparable percentage of secondary 

structural elements in GlyBP although reduced α-helix was detected in GlyBP. The similarity 

between secondary structure of GlyBP and that of nAChR subunits and AChBPs further 

confirms that all members in this receptor family share similar fold. ECDs of nAChR subunits 

expressed in other expressional systems such as Xenopus oocytes, yeast were usually correctly 

folded, and able to be modified post-translationally. These receptor ECDs retained high affinity 

with ligands and had similar secondary structures, which is more suitable for further high-

resolution structural determination. A problem using these expressional systems is the difficulty 

in obtaining a sufficient amount of purified proteins for further structural studies, which hindered 

the progress on high-resolution determintation of those important receptors. 

The ligand binding of any given receptor ECD is a good index of receptor functionality. 

For many heterologously expressed Cys-loop receptor ECDs, reduced ligand binding affinity 

was observed. This reduction might be due to any of the following: 1) The three dimensional 
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structure of recombinant receptor ECDs was slightly distorted under different experimental 

conditions; 2) The overall strucuture of receptor ECDs was similar to native full-length 

receptors, but the presence of tags or linker sequence interfered with ligand binding properties of 

purified proteins in solutions; 3) For ECDs of nAChR subunits, they were usually expressed as 

monomers; lack of subunit interface interactions might decrease ligand binding affinity although 

monomeric nAChR subunits still retained the ability to bind α-bungaroxin with relatively high 

affinity. High-resolution structure of any kind of Cys-loop receptor ECD could still provide 

insight into the detailed three-dimensional structure of the ligand binding domain and also 

ligand-receptor interaction, if the receptor ECD is resolved as an oligomeric form. 
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Table 6.1 Summary of expression and biochemical characterization of the ECD of 

Cys-loop receptor subunits in various expression systems. 

Receptor Subunit Expression 

constructs 

Expression 

system 

Oligomerization 

state 

Ligand binding 

affinity, Kd 

Secondary 

structure 

Reference 

GlyBP  Hydrophilic 

replacements 

Hydrophilic 

tail 

Sf9 insect 

cells 

Oligomeric 

(pentameric) 

110-130 nM 

for strychnine 

~9-14% α-

helix, ~35-

40% β-sheet 

Chapter 3 & 4  

Torpedo 

α1-209 

No 

modification 

Refolded in 

E.coli 

monomeric 4 nM for α -

bungarotoxin 

15% α-helix, 

45% β-sheet 

(Schrattenholz 

et al., 1998) 

Torpedo 

α1-209 

His tag Refolded in 

E.coli 

monomeric 130 nM for α -

bungarotoxin 

15% α-helix, 

32-35% β-

sheet 

(Alexeev et al., 

1999) 

mouse 

muscle α1 

1-210 

GPI-linked Xenopus 

oocytes, 

CHO cells 

monomeric 3 nM for α -

bungarotoxin 

12-14% α-

helix, 51% 

β-sheet 

(West et al., 

1997) 

mouse 

muscle α1 

1-211 

No 

modification 

yeast monomeric 0.2 nM for α -

bungarotoxin 

14% α-helix, 

46% β-sheet 

(Yao et al., 

2002) 

human 

muscle α1 

1-210 

No 

modification 

yeast monomeric 5.1 nM for α -

bungarotoxin 

N/A (Psaridi-

Linardaki et al., 

2002) 

chicken 

α7 1-208 

No 

modification 

Xenopus 

oocytes 

oligomeric 0.4 nM for α -

bungarotoxin 

N/A (Wells et al., 

1998) 

rat α7 1-

196 

Fusion 

proteins 

Refolded in 

E.coli 

High-molecular 

mass aggregate 

2.5 µM for α -

bungarotoxin 

41% α-helix, 

16% β-sheet 

(Fischer et al., 

2001) 

rat α7 1-

208 

Fusion 

protein 

Refolded in 

E.coli 

Oligomeric, 

High-order 

aggregate 

310 nM for α -

bungarotoxin 

22% α-helix, 

45% β-sheet 

(Tsetlin et al., 

2002) 

nAChR 

human α7 His tag yeast Oligomeric 57 nM for α - N/A (Avramopoulou 
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1-208 bungarotoxin et al., 2004) 

human 

muscle β 

1-221 

FLA/His tag yeast dimeric N/A significant 

% β-sheet 

structure 

(Kostelidou et 

al., 2006) 

human 

muscle γ1-

218 

FLA/His tag yeast oligomeric N/A N/A (Kostelidou et 

al., 2006) 

human 

muscle ε1-

219 

FLA/His tag yeast oligomeric N/A N/A (Kostelidou et 

al., 2006) 

 

Complex 

of Torpedo 

α, β,  γ and 

δ ECDs 

No 

modification 

Insect cells oligomeric N/A N/A (Tierney and 

Unwin, 2000) 

GlyR human α1 

1-219 

His tag Refolded in 

E.coli 

oligomeric 110-130 nM 

for strychnine 

15% α-helix, 

48% β-sheet 

(Breitinger et 

al., 2004) 

 

6.3 EFFECTS OF LIPID COMPOSITION AND DETERGENT ON ION CHANNEL 

STRUCTURE AND FUNCTION 

The lipid bilayer of a cell membrane is not just a physical barrier separating the cell from the 

outside world, but provides an environment for membrane proteins which are important for many 

inter- or intra-cellular processes. It has been shown that lipid composition of a lipid bilayer in 

cell membranes has a significant effect on the functionality of membrane proteins, including ion 

channels (Tillman and Cascio, 2003). Among ligand gated ion channels, the effect of lipid 

composition on receptor structure and function of nAChRs has attracted much attention 
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(Barrantes, 2002; Barrantes, 2004). Biochemical studies showed that a low protein/lipid ratio 

caused a loss of nAChR activity (Jones et al., 1988; Jones and McNamee, 1988). The 

conformational transitions between opening, closing and desensitization were significantly 

affected by lipid composition (Grassi et al., 1995; Lasalde et al., 1996; Barrantes, 2004). Effects 

of the lipid microenvironment on functional properties of the nAChR have been extensively 

examined by mutagenesis studies (Li et al., 1992; Ortiz-Miranda et al., 1997; Tamamizu et al., 

2000; Santiago et al., 2001). Early studies on ion channels and other membrane proteins were 

mostly conducted in reconstituted systems, in which individual contribution of various types of 

lipids could be examined. Using ESR spectroscopy, it was found that the nAChR displayed 

specificity of interaction with spin-labeled neutral and anionic lipid molecules in native 

membranes (Mantipragada et al., 2003). nAChR reconstituted lipid vesicles containing only 

phosphatidylcholine (PC) displayed almost no activity (Ochoa et al., 1983; Criado et al., 1984; 

Fong and McNamee, 1986). Addition of cholesterol and anionic lipids such as phosphatidic acid 

(PA) and phosphatidyl serine (PS) restored its capacity to respond to agonists (Baenziger et al., 

2000). The recovery of functionality of nAChR was attributed to the formation of a lipid bilayer 

with optimal fluidity and special requirement of PA and PS, which are critical for maintenance of 

normal receptor function (Bhushan and McNamee, 1993). However, controversy exists regarding 

the exact effect of distinct types of phosholipids on nAChR functionality. Using chemical 

labeling and radio-labeled ligand binding assays, it was proposed that anionic lipids were able to 

stabilize distinct functional states in nAChRs (McCarthy and Moore, 1992). nAChRs 

reconstituted in either egg PC/cholesterol or egg PC alone existed in a desensitized state (Ryan et 

al., 1996), whereas in either dioleoylphosphatidylcholine (DOPC)/dioleoylphosphatidic acid 

(DOPA) or DOPC alone, nAChRs adopted a resting conformation (Rankin et al., 1997; Raines 
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and Krishnan, 1998). In contrast, FTIR studies showed that neutral or anionic lipids in egg PC 

membranes is sufficient to maintain the functionality of nAChR (Baenziger et al., 2000). In 

addition, a variety of structurally diverse neutral and anionic lipids in DOPC membranes all 

showed an ability to maintain nAChR activity (Sunshine and McNamee, 1994). A recent study 

also proposed that the relatively low levels of PA or cholesterol in a reconstituted membrane 

could affect the equilibrium between distinct conformational states of nAChR (Baenziger et al., 

2000). With increasing levels of PA or cholesterol in egg PC membrane, nAChRs displayed an 

enhanced ability to undergo a conformation transition from resting state to desensitized state 

(Ryan and Baenziger, 1999; Baenziger et al., 2000). Those influences on the equilibria between 

different conformational states of the nAChR were probably due to non-specific effects on some 

bulk property of the membrane since addition of other lipid molecules such as phosphatidyl 

serine (PS) and squalene in reconstituted egg PC membrane also affected nAChR conformational 

equilibria, and a mixture of other neural and anionic lipids could replace PA or cholesterol to 

maintain nAChR functionality (Sunshine and McNamee, 1994; Ryan et al., 1996).   

From studies on nAChRs, it is obvious that lipid composition has a significant effect on 

receptor structure and function. Lipid composition is also expected to affect GlyR structure and 

function, given that GlyRs share similar structural folds and conserved mechanisms of channel 

activation and modulation with nAChR. In this study, we attempted to express a soluble 

extracellular domain of GlyR which might be suitable for high-resolution structural studies. 

However, GlyBP, an extracellular ligand binding domain mutant of GlyR with introduction of 

two hydrophilic loops and one hydrophilic tail postulated to be membrane-proximal in native 

full-length GlyR, still retains ability to bind to the membrane after subcellular fractionation. In 

addition, this membrane-association property helps proper folding of GlyBP as demonstrated by 
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the loss of functionality of GlyBP in the cytosolic fraction. This observation suggested that 

GlyBP is not completely separate from the plasma membrane or other proteins residing on the 

plasma membrane. From crystal structures of AChBP in complex with various ligands and other 

biochemical mutagenesis studies, it has been proposed that Loops 2, 7 and 9 are possible sites of 

contact with transmembrane domains or lipid bilayer in Cys-loop receptors (Brejc et al., 2001; 

Karlin, 2002; Unwin, 2005).  Since the hydrophobic residues in Loop 7 and 9 were mutated to 

hydrophilic ones, it is anticipated that Loop 2 and other additional sequences might be involved 

in membrane association. Membrane-association of this GlyR ECD mutant also indicated that 

lipid-protein interaction is critical for proper folding of GlyR. In this study, we reconstituted 

GlyBP in lipid vesicles containing egg PC, a major component of native lipid bilayer. However, 

as discussed above, lipid composition plays a significant role in maintenance of receptor 

functionality. Thus, it would be interesting to examine what effects addition of other lipid 

molecules with distinct biophysical properties would have on protein folding and ligand binding 

properties of GlyBP or wild type GlyR ECD if either of them could be successfully 

overexpressed in a suitable expressional system. 

6.4 FUTURE DIRECTIONS 

6.4.1 High resolution structural studies on GlyBP 

The best way to examine the structure of the ECD of GlyR at high resolution would be to obtain 

its structure using X-ray crystallography. Since the protein yield of GlyBP expressed in Sf9 

insect cells is moderate (~1.0-2.0 mg/L cell culture), it is possible to conduct crystallization trials 
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on GlyBP and these efforts are currently under way in the laboratory. However, problems exist 

regarding crystallization of GlyBP: 1) Conditions that are best for solubilization and purification 

might not be the best ones for crystallization. In order to successfully crystallize GlyBP, it is 

necessary to conduct a number of preliminary experiments to obtain the best buffering conditions 

for crystallization of GlyBP. 2) Protein heterogeneity. GlyBP appears to migrate on SDS-PAGE 

of GlyBP as a doublet. Although other studies suggest that this does not necessarily mean 

heterogeneity of GlyBP, further analysis will be required to confirm the homogeneity of GlyBP, 

which would be the key factor that determines if a good crystal can be obtained. Otherwise, 

further purification procedure will be conducted to produce a more homogenous GlyBP. 3) Since 

GlyBP retained membrane-association properties, it’s possible that the presence of detergent 

and/or lipids might help crystallization of GlyBP. However, the presence of any type of detergent 

and/or lipids would make crystal growth more difficult. 

6.4.2 Dynamics of GlyBP 

In parallel with crystallization trial studies, further biochemical and biophysical studies would be 

helpful to further understanding of the dynamic nature of GlyBP. The more information we 

obtain about its dynamic structure, the more chance we would gain success on crystallization 

since better crystallization conditions would be designed based on our understanding of its other 

structural features. 

Our crosslinking studies in combination with mass spectrometry provided a significant 

number of distance constraints in GlyBP, which helped us to generate a structural model on the 

ECD of GlyR. All those crosslinks obtained fit well with a structural model of GlyBP built in 

collaboration with Dr. M. Kurnikova at CMU. However, limited dynamic structural information 
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has been obtained since incubation with strychnine did not yield detectable conformational 

changes as demonstrated by the crosslinking data. This might be due to the low resolution of 

chemical crosslinking with respect to stuctural determination of this complex receptor. Another 

reason is that the locations of lysine residues studied are not optimized to probe conformational 

changes upon ligand binding. Thus, in order to study the dynamic nature of GlyBP in greater 

detail, introduction of lysine (or other chemical moieties) mutants at specific sites might be 

required. As suggested in the structural models of GlyR ECD and the ECDs of other Cys-loop 

receptor using AChBPs as templates, the C-loop region is proposed to be highly flexible and 

undergoes putatively significant conformational changes upon ligand binding. In our 

crosslinking studies, changes in the distances between K193 and the neighbouring K200 or K206 

cold not be detected upong strychnine binding. Given the relatively long distance between K193 

and K200/K206 in the neighboring subunit, those two pairs are not the best ones for examination 

of conformational changes upon ligand binding. Therefore, new pairs of lysine residues could be 

introduced in the tip of the C-loop and the neighboring β1, β2 or β5. Chemical crosslinking 

studies on GlyBP with those newly introduced lysine pairs would provide insight into how the C-

loop contributes to global conformational changes in the GlyR ECD upon ligand binding. 

Simiarly, Lys-Lys or even Cys-Lys pairs located in other important sites in the GlyR ECD could 

also be introduced and subsequent analysis by chemical crosslinking would provide more 

detailed dynamic information about the structure of GlyR ECD. In addition, only one crosslinker 

was used in this study, which might limit the power of crosslinking to assess protein structure. 

Crosslinker with different arm lengths could provide more accurate distance constraints for 

GlyBP. 
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In our LRET studies, we examined the intersubunit Cys-41 distances and found that those 

distances were changed upon agonist binding, indicating conformational changes in GlyBP upon 

ligand binding. However, those distance changes were subtle and Cys-41 might not be located in 

a region which undergoes dramatic changes upon agonist binding. Therefore, systematic 

introduction of Cys mutations at other specific sites might be helpful to further understand the 

assembly state, ligand-receptor interaction, and more detailed three dimensional structures. 

In addition, in our preliminary LRET study, when strychnine was applied to GlyR-

infected Sf9 cells, the inter-subunit Cys-41 distances were exactly the same as those obtained 

from the apo state GlyR. Currently, the mechanism of strychnine inhibition is unknown, but our 

results suggest that the strychnine binds to GlyR in a resting state and the antagonism of 

strychnine is due to stabilization of the resting state of the receptor. Further studies wherein 

single cysteine mutants are systematically introduced to GlyR in intact Sf9 insect cells and 

subjected to LRET studies will provide insight into detailed molecular mechanisms of channel 

gating. 
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