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SLE, a severe autoimmune disease is of major public health relevance since it predominantly 

affects women at child bearing age and even though immunosuppressives have increased the life 

span of SLE patients, lack of absolute cure is still troubling. Risk of premature coronary heart 

disease (CHD) is strikingly high in SLE women (35-44 years) than the general population. Low 

paraoxonase (PON) activity is associated with increased CHD as well as SLE risk. PON 

multigene (PON1, PON2 PON3) are anti-oxidants that cluster on chromosome 7q21-22 at 94.5-

94.6 Mb, in close vicinity to a linkage peak for SLE on 7q21.1 at 77.5Mb. PON1 (PON1/192, 

PON1/55) and PON3 (PON3/10340,PON3/2115) single nucleotide polymorphisms (SNPs) are 

the known significant modulators of PON/paraoxon activity. The purpose of this study was to 

determine the impact of PON2 tagSNPs with PON activity, SLE risk, lupus nephritis, parameters 

of LDL oxidation and subclinical carotid vascular disease measures. Nineteen PON2 tagSNPs 

were screened from HapMap and SeattleSNP databases in 489 SLE and 569 healthy control 

women from two recruitment sites (Pittsburgh and Chicago), using Pyrosequencing, RFLP or 

TaqMan allelic discrimination methods. Pairwise linkage disequilibrium (r2≥ 0.8) identified 15 
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tagSNPs that captured all the 19 PON2 variants in our sample. Although none of the PON2 

tagSNPs revealed any obvious association with SLE risk, low PON/paraoxon activity was 

independently associated with SLE. Two PON2 variants [rs6954345(Ser311Cys) and rs987539] 

showed significant association with PON/paraoxon activity in Pittsburgh whites 

(cases+controls). Our data revealed few modest associations of PON2 variants with lupus 

nephritis (rs17876205, rs17876183, rs10261470, rs987539, rs9641164) in white 

(Pittsburgh+Chicago) SLE cases, parameters of LDL oxidation [PON2/rs11545941(Ala148Gly), 

rs13306702, rs2286233, rs10261470, rs17876205, rs4729189] in white (Pittsburgh)  SLE cases 

and consistent association of PON2/rs11981433 and rs12704795 SNPs with carotid intima media 

thickness and plaque in white (Pittsburgh+Chicago) SLE cases. In conclusion, our data suggest 

that PON2 genetic variants have modest effect on serum PON activity, risk of lupus nephritis and 

subclinical carotid vascular disease measures in SLE patients. 
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1.0  OVERVIEW OF SYSTEMIC LUPUS ERYTHEMATOSUS (SLE) 

1.1 INTRODUCTION  

Systemic lupus erythematosus is an autoimmune connective tissue disorder characterized by 

marked inflammation that can affect almost any organ system in our body. An individual is said 

to acquire an autoimmune state, when his or her immune system seizes to recognize its own 

elements as “self” and generates antibodies against it. An autoimmune response in SLE is 

attributed to antibodies generated primarily against the largest cellular organelle in our body, the 

nucleus. American College of Rheumatology (ACR) has assigned 11 classification criteria for 

SLE (Table 1, Table 2), of which the presence of any 4 would call a person with SLE or lupus 

(Tan et al. 1982, Hochberg et al. 1997).  

The most obvious clinical observation in SLE is its predominance in young women at 

their reproductive years (Mills et al. 1994, Beeson et al. 1994). In the Allegany County, 

Pennsylvania, a five year study reported a five fold higher SLE incidence in Caucasian women 

and even greater in African American women compared to men who were diagnosed “definite” 

for SLE (McCarty et al. 1995). In general, incidence rates of SLE in the United States and 

Europe are estimated to be 2-8 cases per 100,000 while the prevalence varies between 20-60 

cases per 100,000 (Cooper et al. 1998, Danchenko et al. 2006). Though use of exogenous 

corticosteroids and immunosuppressants have improved the life expectancy in 80-90% of SLE 
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patients over the last few decades, still the average incidence has been on the rise from 1.51 to 

5.56 per 100,000 over the last 40 years (Uramoto et al. 1999). With no two SLE cases being 

exactly alike, the precise cause of the disease is still unknown and factors that increase the 

likelihood of developing SLE involve a complex interplay of multiple genes, hormones and 

environmental agents. 

SLE is notable for its unpredictable exacerbations and remissions, and follows a bimodal 

pattern of mortality, first identified by Urowitz et al. (1976), where deaths in patients who 

survived longer were attributed to atherosclerotic vascular disease while deaths in those who 

survived less were endowed to active disease, severe infection and high dose of steroids. The 

term SLE generally refers to the systemic form of the disease, while two other forms are discoid 

and drug induced lupus.   

 

 

 

 

 

 

 

 

 

 

  



  3

Table 1.  The 1982 Revised Criteria for Classification of Systemic Lupus 

Erythematosus * 

1. Malar rash Fixed erythema, flat or raised, over the malar eminences, tending to spare the nasolabial folds
2. Discoid rash Erythematous raised patches with adherent keratotic scaling and follicular plugging; atrophic scarring may

occur in older lesions
3. Photosensitivity Skin rash as a result of unusual reaction to sunlight, by patient history or physician observation

4. Oral ulcers Oral or nasopharyngeal ulceration, usually painless, observed by physician 

5. Arthritis Nonerosive arthritis involving 2 or more peripheral joints, characterized by tenderness, swelling, or effusion

6. Serositis a) Pleuritis--convincing history of pleuritic pain or rubbing heard by a physician or evidence of pleural effusi

b) Pericarditis--documented by ECG or rub or evidence of pericardial effusion 

7. Renal disorder a) Persistent proteinuria greater than 0.5 grams per day or grater than 3+ if quantitation not performed 
b) Cellular casts--may be red cell, hemoglobin, granular, tubular, or mixed 

8. Neurologic disorder a) Seizures--in the absence of offending drugs or known metabolic derangements; e.g., uremia, ketoacidosis,

or electrolyte imbalance b) Psychosis--in the absence of offending drugs or known metabolic  derangements,
e.g., uremia, ketoacidosis, or electrolyte imbalance 

9. Hematologic disorder a) Hemolytic anemia--with reticulocytosis,b) Leukopenia--less than 4,000/mm<>3<> total on 2 or more    
occasions c) Lyphopenia--less than 1,500/mm<>3<> on 2 or more occasions 
d)Thrombocytopenia--less than 100,000/mm<>3<> in the absence of offending drugs 

10. Immunologic disorder a) Positive LE cell preparation b) Anti-DNA: antibody to native DNA in abnormal titer c) Anti-Sm: presence
of antibody to Sm nuclear antigen d) False positive serologic test for syphilis known to be positive for at 
least 6 months and confirmed by Treponema pallidum immobilization or fluorescent treponemal antibody 
absorption test 

11. Antinuclear antibody An abnormal titer of antinuclear antibody by immunofluorescence  or an equivalent assay at any point  in tim
and in the absence of  drugs known to be associated with "drug-induced lupus" syndrome

 

*adapted from Tan et al. 1982 
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Table 2. The 1997 Update on immunologic disorder criteria of SLE* 

Immunologic disorder 1982  SLE criteria (Tan et al. 1982)
(criteria #10 of 1982 SLE criteria) a) Positive LE cell preparation b) Anti-DNA: antibody to native DNA in abnormal titer Anti-Sm: presence  

of antibody to Sm nuclear antigen.False positive serologic test for syphilis known to be positive for at 
least 6 months and confirmed by Treponema pallidum immobilization or fluorescent treponemal antibody
 absorption test 

1997 update on SLE criteria  (Hochberg et al. 1997)
1. Delete item 10(a) (“Positive LE cell preparation”), and  
2. Change item 10(d) to “Positive finding of antiphospholipid antibodies based on 1) an abnormal serum 
level of IgG or IgM anticardiolipin antibodies, 2) a positive test result for lupus anticoagulant using a 
standard method, or 3) a false-positive serologic test for syphilis known to be positive for at least 6 
months and confirmed by Treponema pallidum immobilization or fluorescent treponemal antibody 
absorption test.” 

* adapted from Feletar et al. 2003 

 

1.2  DIFFERENT FORMS OF SLE 

Lupus is known as discoid lupus when it exclusively pertains to the cutaneous system of our 

body. This term was framed by Kaposi in (1875). People with discoid lupus develop rashes on 

the skin often observed on the face and scalp which is worsened upon sunlight exposure. With 

time, they may also develop the systemic form, though the percentage is small, varying between 

5-10%.  

Systemic lupus, a more severe form of lupus affects the entire body. Common complaints 

from systemic lupus patients are mostly low grade fever, prolonged fatigue, arthritis, ulcers of 

the mouth, nose, facial rash and sensitivity to sunlight.  
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A butterfly shaped rash over the ridge of the nose, clinically known as the malar rash, is the most 

noticeable feature in both discoid and systemic lupus. Hebra in year 1866 had first used the 

metaphor of a butterfly to describe this classic malar rash, though the history of lupus dates back 

to the 10th century (Mallavarapu et al. 2007). 

Long term use of ceratin medications may also result in a new form lupus, known as drug 

induced lupus (DIL). Symptoms of DIL overlap with that of SLE which include rash, fever, 

pleuritic chest pain. However unlike SLE, drug induced lupus is generally reversible and the 

symptoms go away once the medications are discontinued. 

 

1.3  HISTORY OF LUPUS 

The term lupus was first quoted in the biography of St. Martin, in 963 AD (Mallavarapu et al. 

2007) though most of the authorities associate this term with Rogerius Frugardi who had first 

described the erosive lesions observed in the face in 1230 AD. In 1530 AD, Giovanni Manardi 

further reported the lesions of the lower extremity (Blotzer et al. 1983). Laurent Theodore Biett 

of the Paris School of Dermatology, had initially named lupus as “erythema centrifugum” while 

his student Pierre Louis Alphee Cazenave, coined the more familiar term lupus erythematosus in 

1952 (Smith et al. 1988). 

Kaposi was the first person to differentiate between discoid lupus and the disseminated or 

systemic lupus. He was the first to illustrate the systemic symptoms that were mainly fever, 

weight loss, anemia, arthritis, while the more placeable ones like renal, cardiac and pulmonary 
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manifestations were recognized by Osler (1895-1903) (Hepburn 2001).  Sir William Osler had 

also framed the present day term --“systemic lupus erythematosus.” 

The word lupus is originally a Latin word, meaning wolf, in view of the fact that the 

disease appearance resembled wounds caused by bite of wolf (Blotzer et al. 1983, Holubar et al. 

1980). One of the cornerstone achievements in the history of lupus is the discovery of a lupus 

erythematosus (LE) cell (Hargraves et al. 1969). The name LE cell is derived from its exclusive 

presence in the bone marrow of patients who had confirmed or suspected SLE. The salient 

feature of this cell is that, its nuclei are phagocytosed by mature polymorphonuclear leucocytes. 

This landmark in the history of lupus was followed by innumerable studies which made major 

inroads to our present day knowledge about SLE pathogenesis. 

The current consensus is that the disease burden bears a striking disparity with gender, 

age, region and race, which are discussed in the following sections. 

1.4 RISK FACTORS FOR DEVELOPING SLE 

1.4.1 Gender  

One of the striking epidemiological observations of SLE is that, females are more inclined to the 

likelihood of  developing SLE than males, as clinical evidence alone show that 80-90% of the 

patients are females (Siegel et al. 1973, Jacobson et al. 1997). Although females dominate, both 

sexes do not differ in terms of the disease severity. This female to male preponderance is 

reported as high as 9:1 at their child bearing years which implies that sex hormones play a vital 

role in SLE pathogenesis (D' Cruz et al. 2007).  
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1.4.2 Sex Hormone 

Observational phenomenon on hormonal status indicate that SLE flares highly correspond to the 

periodicity of female menstrual cycle (Rose et al. 1944), where an elevated level of  17β-

estradiol - the principal estrogen present in serum is correlated with an increased lupus risk 

(Lahita et al. 2000, McMurray et al. 2001). Apart from 17β-estradiol estradiol, other hormones 

with immunoregulatory properties like testosterone, progesterone, prolactin and 

dehydroepiandrosterone/dehydroepiandrosteronesulfate (DHEA/DHEAS) can also modulate 

SLE incidence risk (Whitacre et al. 1999, Olsen et al. 1996). In fact, hormone replacement 

therapy and use of oral contraceptives can also trigger SLE risk (Sanchez-Guerrero et al. 1997, 

Meier et al. 1998). However, although the sex hormonal status is found to act upon the tendency 

to SLE risk, the disease can occur at all ages varying from babies in their mother’s womb to 

individuals at their 80s.  

1.4.3 Age  

Based on age of onset, SLE is categorized into 3 subtypes: neonatal lupus, pediatric lupus and 

late onset lupus.  

Neonatal lupus is a rare congenital disorder caused by transfer of maternal autoantibodies 

from the affected mother to the infant through the placenta. Nearly 75% of babies with neonatal 

lupus develop skin rashes at birth.  

Pediatric or childhood onset lupus is usually diagnosed between the ages of seven and 

puberty. Delayed diagnosis in most cases of pediatric lupus results in higher disease activity, 

resulting in damage of the kidneys, heart as well as the central nervous system.  
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The average age of onset for late onset lupus is 59 and interestingly in late onset lupus, 

the female to male ratio is less prominent (3:1) unlike its other forms (Lockshin et al. 2002). 

Symptoms mostly include achy joints, fatigue, and heart disease. The disease severity is also 

reported to be low at age of onset 50 or higher compared to SLE onset prior to age of 50 

(Boddaert et al. 2004).  

In females, the highest incidence and prevalence rates of SLE are observed at 15-44 and 

45-64 years of age, respectively (Siegel et al. 1973, Manzi et al. 1997). In fact within females, 

and also in males, this disease risk highly differs based on the ethnic background of an 

individual. 

1.4.4 Racial differences 

A review article by Dancheko et al. (2006), which evaluates the world wide disease burden of 

SLE, reveals that people with non-white ancestry are at higher risk of SLE compared to the 

whites. African-American women are at 3-4 times higher risk of SLE than Caucasian females, 

which alone indicates that apart from hormonal influence, genetic elements play a major role in 

SLE etiology, which are discussed in the next section. Within racial groups, the highest 

prevalence rates of 21.9 per 100,000 per year have been reported in UK Afro-Caribbean 

residents (D'Cruz et al. 2007). However, in non-whites who have higher disease risk and thereby 

higher mortality rates from SLE compared to the Caucasians, a major confounding factor is their 

low socioeconomic status (SES) (Karlson et al. 1995, Simard et al. 2007).  
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1.4.5 Heredity 

As complex as the name sounds, this trait has 100 or more genes involved in its pathogenesis 

(Tsao et al. 2004, Lindqvist et al. 1999). Genetic predisposition to SLE is substantiated by 

studies reporting a 10-fold higher risk in monozygotic twins than dizygotes with concordance 

rates 24%-58% and 2-5%, respectively, (Deapen et al. 1992), a high degree of familial 

aggregation (Sestak et al. 1999) and high heritability (>66%) (Lawrence et al. 1987). Apart from 

human studies, murine models have also shown that, the phenotypic expression of a lupus 

susceptible gene is highly dependant on the genetic background (Nadeau et al. 2001). 

The two basic strategies that made enormous contribution to unravel the genetic elements 

that confer SLE risk are the genome wide linkage studies and hypothesis driven candidate gene 

association analysis. The potentially susceptible intervals for SLE risk that have been identified 

and replicated in indepedent studies are 1q22-24 (Moser et al. 1998), 1q41-42 (Tsao et al. 1997), 

2q37 (Lindqvist et al. 2000), 4p16 (Gray-McGuire et al. 2000), 6p11-21, 16q12-13 (Gaffney et 

al. 1998, Gaffney et al. 2000) and 11p13 (Kelly et al. 2002), 12q24 (Nath et al. 2004). Apart 

from the strongest susceptibility loci, many other multiple loci with moderate linkage signals 

have been identified in several studies and it is their combined effect that helps in truly 

understanding  the complex nature of the SLE genetics. 

So far, the strongest evidence for linkage with SLE was found near human leukocyte 

antigen (HLA) DR2 and DR3 loci (Graham et al. 2007), other key candidate genes being  

interferon regulatory factor (IRF5) (Demirci et al. 2007, Graham et al. 2006), tyrosine kinase 2 

(TK2) (Sigurdsson et al. 2005), C-reactive protein (CRP) (Russell et al. 2004), protein tyrosine 

phosphatase N22 (PTPN22) (Baca et al. 2006, Orozco et al. 2005), programmed cell death 1 

(PDCD1) (Prokunina et al. 2002), signal transducer and activator of transcription (STAT4) 
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(Taylor et al. 2008). A recent study also confirms that a common haplotype in STAT4 gene 

along with two IRF5 alleles correlate with anti-dsDNA production and SLE risk (Sigurdsson et 

al. 2008). Few studies have also found association of Toll-like receptor (TLR-5, TLR-9) variants 

with SLE pathology (Means et al. 2005), though this has not been confirmed by others (Demirci 

et al. 2007).  

Recently, two genome wide association (GWA) scans on SLE identified many other 

susceptible loci, apart from the established variants on HLA regions. The first GWA study by the 

International Consortium for Systemic Lupus Erythematosus Genetics (SLEGEN) (Harley et al. 

2008), scanned >300,000 SNPs using high–density Illumina HumanHap 300 BeadChip, in a 

European case-control cohort of 720 SLE women and 2337 controls and replicated in two 

independent cohorts. This study identified ITGAM on 16p11.2, KIAA1542 on 11p15.5, PXK on 

3p14.3 and rs10798269 on 1q25.1 and nine other regions that would confer SLE risk in addition 

to the previous SLE susceptible regions on HLA, IRF5, FCGR2A, PTPN22 and STAT4. The 

second GWA study (Hom et al. 2008) screened 13311 and 1783 case-control individuals with 

more number of SNPs  (>500,000) than the first GWA study, using Illumina HumanHap550 

bead chip and replicated in a Swedish case-control cohort, identified more SLE susceptible loci 

which were BLK, C8orf13 on 8p23.1 in addition to the established ones on HLA, ITGAM-ITGAX 

regions. 

In a genomewide microsatellite marker screen performed in 82 sib pair families with SLE 

by Gaffney et al. (2000), reported an interval at 7q21 with a LOD score of 2.40 which satisfies 

the criteria for suggestive linkage of LOD score > 2.2 by Lander et al. (1995). This region 

harbors the paraoxonase (PON) gene cluster with paraoxonase-2 (PON2) gene as one of its 

members, which maps to chromosome 7q21.3 at 94.6 Mb, near to the linkage signal for SLE 
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found at 77.5 Mb on 7q21.3. This qualifies PON2 as positional candidate for SLE. Our group has 

already reported associations of certain haplotypes of PON1 with SLE risk (Tripi et al. 2006) but 

not PON3 variants (Sanghera et al. 2008). To our knowledge, SLE risk with respect to PON2 

variants has not been analyzed yet. 

So this study investigated the role of PON2 SNPs with SLE susceptibility and its 

accompanying phenotypes. 

1.4.6 Environmental triggers 

Environmental agents that are found to increase SLE risk mainly include photosensitivity, 

occupational exposure to silica, and water contaminated with trichloroethate (TCE). 

Photosensitivity or exposure to sunlight acts a major stimulus in triggering certain variants of 

discoid lupus erythematosus.  

Next to sunlight, exposure to silica can also increase SLE risk. Silica particles enter our 

body through the respiratory pathway where it gets ingested by alveolar macrophages. These 

particles are known to play the role of an adjuvant, which stimulates migration of macrophages 

to their site of deposition resulting in an inflammatory response (Parks et al. 2002, Finckh et al. 

2006, Lippmann et al. 1973).  

Exposure to silica is mainly occupational, and men are more exposed than women since 

most of these are traditionally male jobs. Brown et al. (1997) reported that out of 1130 men with 

silicosis who showed a relative SLE risk of 23.8 (95% CI;11.9-86.3) majority had to be treated 

for SLE as well. A very high prevalence of SLE, as high as 93 per 100,000 cases was found in a 

cohort of 1500 miners exposed to silica by Conrad et al. (1996). In case of women who are 
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occupationally exposed to silica, Nagata et al. (1992) reported an odds ratio of 3.9 (95% CI;1.6-

9.7) for SLE risk. 

1.4.7 Smoking, Alcohol consumption and Diet  

Cigarette smoking, alcohol consumption, as well as diet of a person can also add up to SLE risk 

(Hardy et al. 1998, Cooper et al. 1998). Noxious chemicals effused during smoking increase 

systemic inflammation, impair T-cell function and reduce the count of natural killer cells 

(Bermudez et al. 2002, Hughes et al. 1985). A meta-analysis study shows that current smokers 

are at 1.5 times higher risk of SLE than non-smokers (Costenbader et al. 2004), while 

seropositivity for anti-dsDNA antibodies was found to be four times higher than non-smokers 

(Freemer et al. 2006). However unlike a consistent association of SLE with cigarette smoking, 

studies on alcohol consumption show conflicting results (Ghaussy et al. 2001). Interesting 

enough, food habit of a person can also contribute to the development of inflammatory and 

autoimmune disease (Parke et al. 1996). For SLE patients, a diet comprising anti-inflammatory 

agents (omega 3 fatty acids) and anti-oxidants (vitamin A, C, E) are highly recommended. This 

fact has been verified in lupus-prone mice models treated with fish oil rich in omega 3 fatty acids 

or anti-oxidants which showed delayed onset of lupus (Cooper et al. 1998).  

1.4.8  Infectious agents 

In SLE patients, the onset of the disease is often followed by an infection. A possible infectious 

agent that has been identified to trigger SLE is the Epstein Barr virus (EBV). In humans, 

association of EBV with SLE risk is modified by age, gender and race (Parks et al. 2005). 
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Introduction of the whole viral nuclear antigen 1 into lupus prone mouse models is found to 

increase IgG antibody, specific for double stranded and Sm DNA, supporting the role of EBV in 

SLE pathogenesis (Sundar et al. 2004).  

Memory cells or B cells are the main residing places for the EBV virus, which triggers 

proliferation of more memory cells after infection, culminating into an inflammatory response 

(Gross et al. 2005). Inflammatory reaction in SLE is unique as it involves the production of auto-

antibodies against its own components. This autoimmune reaction lies central to SLE 

pathogenesis, which we discuss in the following section. 

1.4.9 Inflammation 

The hallmark feature in SLE inflammation is that, antibodies are mainly produced against the 

chromatin components which encompass dsDNA, histones and nucleosomes. It is interesting to 

note that the body does produce antibodies to nuclear antigens during any protective immune 

response, though they are not sufficient to elicit an autoimmune reaction (Ramanujam et al. 

2008). In SLE, antibodies are generated against a multitude of nuclear antigens.  

Antibodies like antinuclear, anti-Ro, anti-La, and antiphospholipid (aPL) precede the 

onset of SLE by many years, whereas anti-Sm and anti-nuclear ribonucleoprotein antibodies are 

found only months before clinical onset of SLE, the time when the disease manifestations start to 

show. Antibodies to double-stranded DNA (anti-dsDNA), which mainly correlates with disease 

activity (Schur et al. 1968), appear intermediate to that of other antibodies (Arbuckle et al. 2003). 

Higher the disease activity, higher is the inflammatory effecter response, which ends up in wide 

spread organ damage. Organ damage over time is evaluated by the Damage Index assigned by 

the Systemic Lupus International Collaborating Clinics/American College of Rheumatology 
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(SLICC/ACR) (Gladman et al. 1997). Serum CRP level is considered to be a sensitive marker of 

inflammation (Ridker et al. 2000). Some of the severe clinical manifestations which result in the 

irreversible organ damage in SLE are lupus nephritis, accelerated atherosclerosis and an elevated 

level of aPL. 

1.5  CLINICAL MANIFESTATIONS IN SLE 

1.5.1 Lupus Nephritis 

One of the serious and common clinical complications of SLE is lupus nephritis or 

glomerulonephritis. Lupus nephritis or kidney inflammation is caused by an over active immune 

system, as a result of which antigen antibody complexes are deposited in the kidney (Foster et al. 

2007). The immune complex is mainly comprised of DNA and antibodies to it, so majority of the 

patients show serpositivity for anti-DNA antibody. Along with a rising anti-DNA antibody titer, 

a low titer of compliment factors, especially C3, is also seen in most of the lupus nephritis 

patients and these two are considered to be a strong predictor of active lupus renal flares 

(Mortensen et al. 2008, Rovin et al. 2007).  

The clinical spectrum of lupus nephritis ranges from asymptomatic low grade 

proteineuria to a rapidly progressive course with hypertension leading to renal insufficiency 

within days. Eight cohort studies comprising of 2149 SLE patient have reported that, the 

prevalence rate of renal disease varies widely between 31 to 65% (Wallace et al. 1996). The 

general consensus is that 50% of SLE patients at some point of time during their course of illness 

will certainly develop clinically relevant nephritis, though in most of the cases, nephritis is 
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diagnosed in the early stages of the disease. Like the disease risk, lupus nephritis has also gender 

and race specific prevalence while renal involvement is more pronounced in males than in 

females and Africans have more severe kidney inflammation than the Caucasians. Genetic 

elements, like HLA antigens which predispose to SLE risk, are also found to predispose to lupus 

nephritis (Korbet et al. 2007). Maggi et al. (1994) have shown that the renal disease is associated 

with enhanced oxidation of low density lipoprotein (LDL), which is a prerequisite for 

cardiovascular complications. An additional phenomenon that is observed in SLE patients is 

glomerular thrombosis that results from the hypercoagulability, accompanying antibodies 

directed against negatively charged phospholipid-protein complexes. This is observed in a group 

of SLE patients who have higher titers of antiphospholipid antibodies (aPL). Raised 

anticardiolipin antibody (aCL) levels are observed in patients with lupus nephritis (Loizou et al. 

2000). Importance of antiphospholipid antibodies in SLE are therefore discussed in the following 

section. 

1.5.2 Antiphospholipid antibodies (aPL) 

In general, large percentages of SLE patients (20-60%) show persistent positivity for higher 

levels of antiphospholipid antibodies (aPL) that are associated with a spectrum of clinical 

manifestations such as recurrent venous and arterial thrombosis, fetal loss, thrombocytopenia, 

and neurological symptoms (Harris et al. 1983). aPL binds to plasma proteins with an affinity for 

phospholipid and includes anticardiolipin antibodies (aCL), lupus anticoagulant (LAC) and anti 

β2-glycoprotein I or anti-apolipoprotein H, (antiβ2-GPI or anti-apoH).  

Raised levels of aCL and LAC are associated with myocardial infarction (Hamsten et al. 

1986, Petri et al. 2004). Cross reactivity reported between aPL and antibodies to oxLDL 
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(Vaarala et al. 1993), in SLE patients implies a possible link between atherosclerotic and 

inflammatory events in SLE. Among the clinical challenges in SLE, one of the most compelling 

is the high incidence of accelerated atherosclerosis in women at their child bearing age. 

1.5.3            Premature Atherosclerosis  

Given the well known fact that coronary heart disease (CHD) is the leading cause of mortality in 

females, majority of deaths reported in SLE women is also attributed to premature 

atherosclerosis (Manzi et al. 1997, Ward et al. 1999, Petri et al. 1992, Bruce et al. 2005). 

Although coronary heart disease is the prime cause of death in women, incidence of coronary 

events, in particular myocardial infarction is observed 10-20 yrs later compared to the males 

(Kannel et al. 1995). Young women with lupus show 50 times higher morality rates from 

myocardial infarction than the general population (Mosca et al. 1997, Rich-Edwards et al. 1995). 

Traditional risk factors for CHD though increase the risk of atherosclerosis, they do not fully 

rationalize for the observed accelerated atherosclerosis in SLE (Esdaile et al. 2001).  Factors 

which also contribute to premature atherosclerosis in SLE are inflammation, adverse effects of 

corticosteroids, renal involvement, and higher levels of antiphospholipid antibodies. Premature 

atherosclerosis in SLE was first reported in a necroscopy study by Bulkley et al. (1975) while 6 

to 12% of SLE patients show signs of clinical atherosclerotic events, almost half of SLE subjects 

(40%) show subclinical plaque formation. Carotid plaque and carotid intima media thickness 

(IMT) are considered to be the two very sensitive markers of atherosclerosis (Manzi et al. 1999, 

Salonen et al. 1993). Non-invasive techniques like arterial ultrasound of the carotid arteries are 

used to measure the thickness of the specific layers of artery wall (IMT), and carotid plaque 

formation which offers a partial way to track the disease progression.  
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Atherosclerotic plaque formation: 

Atherosclerosis derived from the Greek word “athero” meaning paste and “sclerosis” 

meaning hard, literally stands for hardening of the arteries. This progressive disease is built on a 

“response to injury’ hypothesis, where an endothelial cell gets injured triggering an 

inflammatory response, which may further be aggravated by chronic inflammation and immune 

system dysregulation that are observed in SLE (Ross 1993). Hardening of the artery wall mainly 

occurs due to accumulation of cellular debris, cholesterol, calcium, and fat deposits in the inner 

lining of the vessel wall. This build up is termed as plaque which is a progressive event, where 

the earliest event is the development of a fatty acid streak. A major pre-requisite for this plaque 

formation is the entrapment of oxidized low density lipoprotein (oxLDL)-loaded monocytes into 

subendothelial space of the arteries. For this, both transfer and retention of LDL and other 

lipoproteins to the artery wall are the essential phenomenon (Steinberg  et al. 1989, Young et al. 

1994, Schwenke et al. 1989). 

After its transport, LDL gets oxidized by oxidative wastes secreted into the membranes 

that can literally seed LDL with reactive oxygen species. LDL is first oxidized to a mild form 

(MM-LDL), which is later modified to its higher oxidized form (Palinski et al. 1990, Witztum et 

al. 1991, Witztum etal. 1994, Parthasarathy et al. 1994). This high oxidized LDL then induces 

adhesion of monocytes to the endothelial lining and also acts a potent inducer of other 

inflammatory molecules like MCP-1, M-CSF, GRO and P-selectin which eventually leads to the 

formation of plaque (Vlaicu et al. 1985, Navab et al. 1996). Figure 1 illustrates the role of 

oxidized LDL (oxLDL) in atherosclerosis development. 

Navab et al. (1996) suggested that although these oxidizing forces help in the progression 

of fatty acid streak, at the same time opposing forces try to attenuate the formation of 
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atherosclerosis. These opposing forces comprise of the high density lipoprotein (HDL) 

associated enzyme systems --- paraoxonase-1 (PON1) and PAF acetylhydrolase (Stafforini et al. 

1993, Watson et al.1995, Mackness et al. 1993). These enzyme systems act by preventing 

oxidation of LDL which is illustrated both in vivo (Klimov et al. 1993) and in vitro (Mackness et 

al. 1993) and thereby accounts for the inverse relationship of HDL-level with atherosclerosis risk 

(Parthasarathy et al. 1990). 

 

 
                  Figure 1. Role of oxidized LDL in atherosclerosis development. 

                                   adapted from Navab et al. (1996) 

 
 
In particular, PON1 enzyme is suggested to destroy the biologically active lipid peroxides 

in MM- LDL, which in turn attenuates the inflammatory response at the artery wall (Mackness et 

al. 1987, Mackness et al.1991). Like PON1 enzyme, paraoxonase -2 (PON2) enzyme also has 

anti-atherogenic properties (Ng et al. 2006, Rosenblat et al. 2003), though unlike PON1 enzyme, 

PON2 enzyme is not associated with HDL.  
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The paraoxonase enzyme activity or PON activity is often associated with cardiovascular 

disease risk and many studies suggest that PON activity is better measure for CHD risk than the 

variants in the gene itself. 

1.6 SERUM PARAOXONASE ACTIVITY, CARDIOVASCULAR DISEASE, AND 

SLE 

Serum paraoxonase (PON) is a calcium dependant esterase. Paraoxonase specificity towards 

endogenous serum is not yet well characterized, therefore synthetic substrates are used to 

monitor the enzyme’s activity. PON activity is substrate dependent (Furlong et al. 1988).  

PON activity polymorphism has historical importance as it was the first genetic marker found to 

be linked to cystic fibrosis gene and thereby maps to the long arm of chromosome 7. Several 

studies in non-SLE cohorts (McElveen  et al. 1986, Durrington et al. 2001, Mackness et al. 2004 

, Ayub et al. 1999, Jarvik et al. 2000, Mackness et al. 2001, Jarvik et al. 2003) have implied that 

low PON activity may affect the risk for CHD. Serum PON activity was reported to be low in 

diabetic cases who also show vast cardiovascular complications (Letellier et al. 2002). Our 

previous study has shown that low PON activity is an independent risk factor for SLE (Tripi et 

al. 2006).  
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2.0  OVERVIEW OF THE PARAOXONASE (PON) GENE FAMILY 

2.1 BACKGROUND 

The name paraoxonase (PON) is derived from its catalytic role of hydrolyzing paraoxon. PON is 

an active metabolite of parathion. Parathion belongs to a class of insectides that assumed 

importance when organophosphates came into widespread use over 50 years ago. Liver and other 

tissues catalyze this oxidative desulphuration of parathion to paraoxon. PON enzyme not only 

hydrolyses paraoxon but also hydrolyses a variety of other substrates such as diazinon, 

chlorpyrifos, nerve reagents such as sarin, soman, aromatic esters, and lactones. For PON1,  

phenylacetate is the most commonly used substrate for measuring serum PON activity 

(Draganov et al. 2005), while for PON2, dihydrocoumarin (Rosenblat et al. 2003) is the only 

substrate reported so far. PON1, PON2 and PON3 are the 3 members of the paraoxonase gene 

family that cluster on the long arm of chromosome 7. Similarities at the exon and intronic 

junctions in all three PON multigene members suggest that they arose by gene duplication and 

therefore they share considerable structural and functional similarity. These genes are 70% 

identical at the nucleotide level and 60% identical at the amino acid level (Primo-Parmo et al. 

1996). This high degree of conservation suggests that the entire gene family plays an important 

physiological role, though so far, not completely understood.PON2 and PON3 differ from PON1 

in their cDNA sequences, where PON1 has three nucleotides in its codon 106, which is missing 
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in both PON2 and PON3 (Primo-Parmo et al. 1996, Draganov et al. 2004). Although PON1, 

PON2, PON3 exhibit anti-oxidant properties, they differ in their expression silhouettes. PON1 

and PON3 are primarily synthesized in liver, a portion of which when secreted in the plasma gets 

associated with HDL, while PON2 is ubiquitously expressed in cells including liver, 

macrophage, artery wall, brain and kidney but is not present in plasma (Ng et al. 2005).  

Of all 3 members of the paraoxonase family, our gene of interest in this study is PON2. The 

following sections therefore address the molecular aspects of PON2, PON2 polymorphisms and 

its associations reported so far. 

2.2 MOLECULAR ASPECTS OF PON2 

PON2 is the oldest member of the paraoxonase gene family as suggested by phylogenetic 

reports, followed by PON3 and then PON1 (Draganov et al. 2004). Location of the PON2 in the 

PON multigene family is shown in Figure 2. Similar to their evolutionary time points, PON2 lies 

near to the telomere, while PON1 near the centromere and PON3 in between them, on 

chromosome 7 (Ng et al. 2005, Draganov et al. 2004).  

 

 
Figure 2. Location of PON2 gene in PON multigene family 
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PON2 protein has a molecular mass of 44 KDa (355 amino acids), although its exact 

physiologic or pathophysiologic role is still unknown. PON2 spans 30 kb on chromosome 7.  

PON2 along with PON1 and PON3, lie on the long arm of chromosome 7 (7q21-22) at 94.5-94.6 

Mb which lie in close proximity to the linkage peak on 7q21.1 at 77.5 Mb for SLE (Gaffney et 

al. 2000). Therefore PON2 is a positional candidate gene for SLE. 

 

PON2 expression: 

Anti-oxidant property of PON2 has been evaluated through in vtiro studies, where over 

expression of this gene in HeLa cells was found to inhibit LDL lipid peroxide formation, invert 

oxidation of mildly oxidized LDL (MM-LDL), and thereby inhibit chemotaxis of monocytes by 

MM-LDL  (Ng et al. 2001).  

In vivo studies in mice by Ng et al. (2006) have also shown that an elevated level of 

PON2 expression is capable of preventing LDL oxidation, and PON2 deficient mice with lower 

levels VLDL/LDL cholesterol develop larger atherosclerotic lesions compared to their wild type 

counterparts (Ng et al. 2006). Though some studies claim that PON2 expression levels are 

enhanced during an oxidative stress, unlike PON1, some others report that this is not the case 

always. PON2 expression in mouse macrophages was elevated by oxidative stress (Rosenblat et 

al. 2003, Shiner et al. 2004), while in monocyte-derived macrophages in  hypercholesterolemic 

individuals showed lower PON2 expression compared to subjects with normal cholesterol levels 

(Rosenblat et al. 2004). A recent study also showed that in human carotids both mRNA and 

protein levels of PON2 decline sharply with the progression of plaque (Fortunato et al. 2008), 

and lithium exposure mimicking high oxidative stress was also found to down regulates PON2 

expression (Allagui et al. 2007). This differential response of PON2 may be attributed to its cell 

specific regulatory functions, which remains to be explored. 
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2.3 PON2 POLYMORPHISMS AND THEIR EFFECTS 

PON2 has 9 exons, and approximately 216 polymorphisms have been identified, some of which 

are associated with pathophysiologic conditions (http:// www.ncbi.nlm.nih.gov/sites/entrez). The 

two well-known functional polymorphisms, in PON2 are rs11545941(Ala148Gly), and 

rs6954345(Ser311Cys).  

The Cys311 is hypothesized to be a catalytic center for hydrolysis of oxidized lipids 

(Augustinsson, 1968). Majority of the studies reported so far have examined PON2 variants 

together with PON1 variants, PON2/Ser311Cys polymorphism was found to be associated with 

CHD risk in conjunction with PON1/codon192 polymorphism in Asian Indian and US ancestry 

(Sanghera et al. 1998, Chen et al. 2003). A recent report by Saeed et al. (2007) also supports 

interaction between PON1 variants (Gln192Arg and C-108 T) and PON2 variants (Ala148Gly 

and Ser311Cys) and their association with myocardial infarction in a Pakistani cohort. 

PON2/Ser311Cys is also associated with cardiovascular disease (CVD) in a familial 

hypercholesterolemic cohort (Leus et al. 2001), higher HDL-C (Pan et al. 2002), ischemic stroke 

in patients with diabetes mellitus type 2 (Wang et al. 2003), reduced bone mass in post 

menopausal women (Yamada et al. 2003), microvascular complications in diabetes mellitus 

(Mackness et al. 2005), CAD (Martinelli et al. 2004, Wang et al. 2003), pathogenesis of 

Alzheimer’s disease (AD), either involving apolipoprotein E4 or independent of its status (Shi et 

al. 2004 and  Janka  et al. 2002), albumin excretion rate (Thameem et al. 2008). 

Some studies found association of PON2/Ala148Gly polymorphism with plasma 

lipoprotein levels (Boright et al. 1998) but other studies did not (Sanghera et al. 1997). However, 

a meta-analysis of 43 studies (Wheeler et al. 2004) does not suggest any associations with either 
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PON1/codon55 or PON1/codon192 and PON2/Ser311Cys with CHD. In addition to being a 

positional candidate gene, PON2 is also a biologic candidate gene, for the CHD risk in SLE.  

PON activity is in part genetically determined, however, the correlation between functional and 

non functional PON polymorphisms and PON activity is not a direct one because in many cases 

PON polymorphisms do not predict any risk to cardiovascular disease. However, at the same 

time serum PON activity, using paraoxon as substrate is found to be associated with CHD risk 

(Durrington et al. 2001, Mackness et al. 2004, Ayub et al. 1999, Jarvik et al. 2000, Mackness  et 

al. 2001, Jarvik et al. 2003, Rozek et al. 2005, Bhattacharyya et al. 2008).  

In mouse models, Aviram et al. (1998) showed an inverse relation of serum PON activity 

with atherosclerotic plaque progression. A recent tag single nucleotide polymorphism (tagSNP) 

report on PON gene cluster by Carlson et al. (2006) also provide the evidence that low PON 

activity is a predictor of CHD. For a given individual the serum PON activity remains stable over 

time and patients with familial hypercholesterolemia and diabetes (Mackness et al. 1991, Abbott 

et al. 1995) and children chronic renal failure (Ece et al. 2006) have decreased PON activity. 

PON activity has also been found to be low in SLE cohorts (Tripi et al. 2006, Alves et al. 

2002). Association study of PON activity with antiphospholipid antibodies, however, gave 

inconsistent results (Lambert et al. 2000, Tripi et al. 2006).  

PON activity analyzed with paraoxon as the substrate is credited mostly to the 

PON1/Q192R SNP. Our studies investigating the relationship between PON1 and PON3 SNPs 

and PON activity have confirmed that PON1/Q192R is the major contributor to PON activity, 

others being PON1/L55M, PON3/2115 and PON3/10340 (Tripi et al. 2006, Sanghera et al. 

2008).  
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PON2, the oldest member of the PON multigene family not only qualifies as a positional 

candidate for SLE risk but also as a biologic candidate for CHD risk in SLE. To our knowledge 

the role of PON2 genetic variation in relation to SLE risk,  oxidised LDL, CHD in SLE, nephritis

and PON activity has not been examined. Therefore, we examined PON2 genetic

variation in relation to SLE susceptibility, accompanying phenotypes and PON 

 activity.   

 

     

 

 

 

 

 

 

 

 

 

                          

 

 

 

 



  26

3.0   RESEARCH OBJECTIVES 

The objective of this research was to investigate the role of common PON2 variants with SLE 

risk, SLE-related phenotypes such as lupus nephritis, carotid vascular disease (IMT and carotid 

plaque), parameters of LDL oxidation and variation in serum PON activity. 

  

Following are the specific aims:  

a) To determine the relationship of PON2 tagSNPs and haplotypes with SLE risk in 

Caucasian and African-American subjects who are a apart of SLE case-control cohorts collected 

from Pittsburgh (Pittsburgh Lupus Registry, Central Blood Bank of Pittsburgh) and Chicago 

(SOLVABLE study). 

b) To determine the association of PON2 tagSNPs with lupus nephritis in Caucasian 

 lupus patients. 

            c)        To determine the association of the PON2 genetic variation with parameters of 

 LDL oxidation. 

d)        To determine the association of PON2 tagSNPs with carotid vascular disease 

measures in Caucasian SLE cases. 

e) To characterize the extent of contribution of PON2 tagSNPs on serum 

paraoxonase activity. 
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4.0   EXPERIMENTAL DESIGN 

4.1 SELECTION OF CASE-CONTROL COHORT 

In order to test the role of common PON2 variants with SLE risk and its phenotypes we 

performed a case control study. The case cohort comprised of 489 SLE women (396 from 

Pittsburgh and 93 from Chicago) who fulfill the ACR classification criteria for SLE (Tan et al. 

1982, Hochberg et al. 1997). They are obtained from two sources, the Pittsburgh Lupus Registry 

and the Chicago SOLVABLE study (Study of Lupus Vascular and Bone Long-term Endpoints). 

The control cohort comprised of 569 women (496 from Pittsburgh and 73 from Chicago) with no 

apparent history of SLE, who belong to either the Central Blood Bank of Pittsburgh or the 

SOLVABLE study for the Chicago part. The controls were geographically matched to cases to 

minimize the potential effect of differential sampling. The mean ± SD age of cases were 43.48 

±11.29 years and controls were 45.99 ± 13.01 years. 

Blood samples from all participants were collected at the baseline visit, who gave 

informed consent for this study.  This study was also approved both by the University of 

Pittsburgh Institutional Review Board and Northwestern University Institutional Review Boards,  

Table 3 summarizes the composition of the case-control cohorts for our PON2 study. A further 

detailed description of cases and controls from Pittsburgh Lupus Registry and the Chicago 

SOLVABLE study are summarized below. 
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                                 Table 3. Composition of the case-control cohort 
 

Population White                  Black
Cases Controls Cases Controls

Pittsburgh site 348 454 48 42

Chicago site 68 57 25 16

Total 416 511 73 58  
 

4.1.1  Case-Controls from Pittsburgh site 

 A total of 396 SLE women (348 whites and 48 blacks) from Pittsburgh Lupus Registry were 

enrolled in our study. These women were 17 years of age or older (mean ±SD =43.20±11.48 

years) and were diagnosed and further followed up either at University of Pittsburgh since 1980 

or by private rheumatologists residing in the metropolitan area since 1991. The Pittsburgh Lupus 

registry has 1784 patients (which includes both living and the deceased), majority of which 

reside within a radius of 200 miles which represent an admix of rural and urban community. This 

mix portrays homogeneity with respect to sampling of cases in contrast to sampling of SLE 

patients seen strictly at a referral centre and also in terms of the extensive disease heterogeneity. 

Patients who are diagnosed with lupus nephritis fulfill any of the three criteria a) renal 

biopsy showing lupus nephritis b) at least 2 readings of proteineuria >0.5gm/24 hrs or 3+ protein 

by dipstick c) red blood cell casts. Information on traditional risk factors like age, race, smoking 
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habits, BMI, total cholesterol, LDL, HDL, triglyceride levels, vascular risk factors like carotid

IMT and carotid plaque index measurement, and SLE related disease factors like renal  

disease are described elsewhere (Selzer et al. 2001).  

A total of 496 controls (454 whites and 42 blacks) were recruited from the Central Blood 

Bank of Pittsburgh with a mean ± SD age of 45.62± 13.47 years. 

  

4.1.2  Case –Controls from Chicago site 

The SLE cases that are recruited from SOLVABLE study comprised of 68 whites and 25 blacks 

with a mean ±SD age of 43.67 ±10.47 years, while controls (57 whites and 16 blacks) had a 

mean ±SD age of 48.25±9.49 years. 
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4.2 SELECTION OF PON2 TAGSNPS (HAPMAP AND SEATTLE) 

We selected a total of nineteen PON2 tagSNPs based on the linkage disequilibrium (LD) select 

program provided by international HapMap project (www.hapmap.org) and SeattleSNPs 

database (http://pga.gs.washington.edu/) for this study. 

While SeattleSNPs or Seattle programs for genomic applications (PGA) submitted a total 

of 23 highly informative tagSNP bins for the entire PON2 in its European registry, HapMap 

database tags this information to 11 tagSNPs. This lower number of tagSNP information in 

HapMap compared to the Seattle database is attributed mostly to the following reasons: a) Seattle 

database employed sequencing approach to identify the polymorphic sites whereas HapMap used 

genotyping of selective SNPs to identify the tagSNPs, b) HapMap database has more number of 

people (90) compared to Seattle (23) in their respective Caucasian cohorts.  

The threshold for the minor allele frequency (MAF) for all the tagSNPs except two, 

included in our study is reported to be MAF≥ 5%, in either of the databases. TagSNPs 

PON2/rs17876183 (MAF=3%) and PON2/rs17876205 (MAF=2%) are submitted by 

SeattleSNPs database only. We have included these two SNPs due to their positional relevance 

.[rs17876183 at 5'-UTR and rs17876205 after 3'-flanking region].

The intron and the exon locations of the selected PON2 tagSNPs is illustrated in Figure 3. 

and a summary of the Seattle numbers of each SNP with their corresponding reference ID 

numbers in NCBI Entrez SNP database, their allelic status, their location and their MAFs are 

shown in Table 4. 
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` Figure 3. Intron-Exon locations of the selected 19 PON2 tagSNPs in PON2 gene 
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        Table 4.  Minor allele frequencies (MAF) of the selected 19 SNPs in HapMap (CEU*) and SeattleSNP(ED**) database 

 

 

SNPs dbSNP Seattle ID Location Alleles MAF(CEU*) in HapMap MAF(ED**) in Seattle 
1 rs17876183 680 5'-UTR G>A not reported 0.05
2 rs2299267 3035 intron 1 A>G 0.2 0.28
3 rs10261470 3628 intron 1 G>A 0.108 0.17
4 rs4729189 6998 intron 1 A>T 0.186 0.28
5 rs12534274 7447 intron 1 G>A 0.268 0.196
6 rs11982486 9359 intron 1 T>C 0.333 0.21
7 rs11981433 10621 intron 1 T>C 0.408 0.39
8 rs2286233 10704 intron 1 A>T 0.083 0.07
9 rs12704795 10954 intron 1 T>G not reported 0.39

10 rs17876193 13311 intron 2 C>G not reported 0.2
11 rs17876116 17484 intron 2 G>T not reported 0.12
12 rs1639 21122 intron 3 T>G 0.23 0.3
13 rs11545941(codon 148) 23956 exon5 C>G 0.24 0.2
14 rs987539 27982 intron 6 T>C 0.492 0.46
15 rs3735586 29392 intron 7 T>A 0.233 0.2
16 rs9641164 30153 intron 8 A>T 0.237 0.33
17 rs6954345 (codon 311) 30199 exon 9 C>G 0.24 0.17
18 rs13306702 30931 after 3'-UTR G>C 0.017 0.05
19 rs17876205 31873 after 3'-UTR G>C not reported 0.043

*CEU- also known as CEPH (Centre d'Etude du Polymorphisme Humain) refers to the European Ancestry (90 individuals) in HapMap database
**ED --refers to the European Descent (23 individuals) in Seattle database
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4.3 QUANTIFICATION OF PARAMETERS OF LDL–OXIDATION 

Initially LDL was isolated from plasma by ultracentrifugation followed by copper induced 

oxidation or by malondialdehyde (MDA) as described elsewhere (Palinski et al. 1990). With the 

help of chemiluminescence immunoassay, the amount of antibody (IgG and IgM) bound to both 

copper-modified oxLDL [anti-cu-modified oxLDL (IgG) and anti-cu-modified ox-LDL (IgM)] 

and MDA-modified oxLDL [anti-MDA-modified LDL (IgG), anti-MDA-modified LDL (IgM)], 

were measured, details of which were described in Frostegard et al. (2005). Another LDL 

oxidation parameter the EO6 epitope concentration on Apo B-100 particle (oxLDL-EO6 

epitope), which measures oxPL/ApoB was also determined by chemiluminescence assay, where 

an anti-Apo B-100 antibody, MB47 and a biotin labeled anti-oxLDL antibody (EO6) were used 

to quantify the amount of EO6 epitope on LDL. Parameters like LDL immune complexes [LDL 

immune complexes (IgG), LDL immune complexes (IgM)], were also measured by 

chemiluminescence immunoassays for antibody binding, with IgG and IgM antibodies. Lp(a) 

parameters for LDL oxidation were determined using macro L(p)a enzyme-linked 

immunoabsorbent assay (ELISA) (Ali S. et al. 1998). 

Data from all parameters quantifying LDL oxidation were expressed in relative light units 

(RLUs), measured over 100 msec. 
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4.4  QUANTIFICATION OF PON ACTIVITY 

Serum Paraoxonase (PON) activity was measured in both cases and controls using paraoxon as 

the substrate as described elsewhere (Furlong et al. 1989). All the samples were measured in 

triplicates.  

Briefly, 20 l of serum was diluted in 180 l of dilution buffer (9 mM Tris pH 8.0, 1 

mM CaCl2), then the assay buffer (2.0 M NaCl, 0.1M Tris HCl pH 8.5, 2.0 mM CaCl2) 

containing paraoxon substrate (1.2 mM paraoxon) was added to the samples which are in a 96 

well plate. Next the plate was transferred to the plate reader (Spectramax TM  M2), where it was 

mixed for 5 seconds at 37°C, and read at 405 nm (1 measurement every 15 seconds for 3 

minutes). The output was noted in optical density per minute (OD/minute) and the PON1 activity 

(in units/liter) was calculated using the equation mOD/minute × 11,120. Each sample was run in 

triplicates for the PON activity measurement. The above mentioned procedure for serum PON 

activity measurement was carried out for Pittsburgh case-control cohort while for Chicago 

cohort, keeping everything same, the raw pathlength values were also measured for each sample. 

This time the optical density (OD)/ minute was divided by the pathlength for each sample and 

PON activity (in units/liter) was calculated by [(mOD/minute)/(pathlength)] X 6.1. 
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4.5 DETERMINATION OF PON2 GENOTYPES 

4.5.1           DNA isolation 

Genomic DNA was isolated from buffy coat using QI Amp kit (Qiagen Chatsworth CA). For 

each SNP, the DNA regions of interest were then amplified by polymerase chain reaction (PCR).  

4.5.2  DNA amplification by Polymerase Chain Reaction (PCR) 

PCR was used to amplify the target DNA fragments containing the SNP prior to their 

discrimination by allelic discrimination assay. PCR primers were designed by Biotage software. 

Either the forward or the reverse primer was biotinylated. In short, 1 μg–4 μg of genomic or 

whole genome amplified DNA was amplified in a 25 μL or 50 μL PCR reaction mixture which 

comprised of 5 μL of 10 X PCR buffer, 1-4 mM  MgCL2, 1.25 mM each dNTP (Pharmacia), 0.2-

0.4 uM of each primer, 0-3 mM dimethylsulfoxide (DMSO), 0.3 uL of Taq DNA polymerase

(Invitrogen or Amplitaq). Each PCR reaction starts with an initial denaturation event at 95°C 

followed by denaturation and annealing at lower temperatures for multiple cycles, which is 

terminated by a final extension at 72°C. The annealing and cycling conditions were different for 

each fragment. Thermal cyclers mostly Hybaid and 9700 PCR amplification system were used to 

amplify the fragments whose correct size was checked by running 5 μL of the amplified PCR 
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product in a 2%-3% agarose gel. PCR conditions, sequences of PCR primers and length of the 

fragment amplified for each PON2 variant are summarized in Table 5. 

 

Table 5. PCR conditions, PCR primer sequences and amplicon lengths of PON2 variants 

SNP Primer Orientation           PCR primer sequence   PCR conditions Amplicon length (bp)

rs11982486 Forward TCCTTTGACCACCCACAATTATC 95ºC--5 min 185
Reverse CCAAACCTCAGCATCAGACAATAT 95ºC--30 sec

60ºC--30 sec 45 cycles
72ºC--30sec
72ºC---5min

rs2286233 Forward TGAGGCTTACAGTCATTTTTCACG 95ºC--5 min 86
Reverse GTTGTGGGAAAAGAGTTCCAGAT 95ºC--30 sec

60ºC--30 sec 45 cycles
72ºC--30sec
72ºC---5min

rs17876116 Forward TTGACTGCTCCTGACATAATCACA 95ºC--5 min 69
Reverse GCCACTACTGCAGGAAGGTTTTA 95ºC--30 sec

62ºC--10 sec 45 cycles
72ºC--30sec
72ºC--5min

rs11545941 Forward AACCACCCAGAATTCAAGAATACA 95ºC--5 min 82
Reverse TGACTGTTTTCAGATGCAACAGAG 95ºC--30 sec

59ºC--30 sec 45 cycles
72ºC--30sec
72ºC---5min

rs17876193 Forward CCAACAGAAATAACCCCAAAGA 95ºC--5 min 72
Reverse TGTTTGCAAATGCACTGAAACTA 95ºC--30 sec 45 cycles

58ºC--30 sec
72ºC--30sec
72ºC---5min

rs3735586 Forward GGCAGGAAGGTTACCTCTAAATT 95ºC--5 min 100
Reverse CACCAGTGTATCCAGCTCAAGTA 95ºC--30 sec

61ºC--30 sec 45 cycles
72ºC--30sec
72ºC---5min

rs9641164 Forward ATGCATGTACGGTGGTCTTATATT 95ºC--5 min 68
Reverse AATGTTCTGGATGCGGAGA 95ºC--30 sec

59ºC--15 sec 45 cycles
72ºC--30sec
72ºC---5min

rs13306702 Forward GGCCATATTAATTTCTCTTGTGGA 95ºC--5 min 100
Reverse TGGGAATTTGAGTTGCAATATTT 95ºC--30 sec

58ºC--30 sec 35 cycles
72ºC--30sec
72ºC---5min

rs10261470 Forward GATATGTGGAGCCCCAAATG 95ºC--5 min 51
Reverse CACCACCTACCCCAACATTCT 95ºC--30 sec

58ºC--10 sec 45 cycles
72ºC--30sec
72ºC---5min

rs6954345  Forward AACAGGGCTTATTGATGATTGAGT 95ºC--5 min 145
Reverse ACAGACCCATTGTTGGCATAA 95ºC--30 sec

59ºC--20 sec 45 cycles
72ºC--45sec
72ºC---5min  



  37

 

Next, the allelic status of the amplified DNA product was determined by various 

genotyping methods which are discussed in the following sections. 

 

4.5.3 Genotyping methods 

The allelic discrimination assays that were employed to genotype the 19 tagSNPs were 

restriction fragment length polymorphism (RFLP), Pyrosequencing TM and TaqMan ®. 

 

4.5.3.1 Restriction fragment length polymorphism (RFLP) 

RFLP is one of the commonly used gel electrophoresis based genotyping methods employed for 

screening known polymorphisms. A restriction enzyme is highly specific in nature which cuts 

DNA within its precise recognition sequence known as the restriction site. Presence of a genetic 

variant can either abolish or create a restriction site. TagSNP PON2/rs9954345(Ser311Cys) was 

genotyped by RFLP using endonuclease DdeI, (Table 6) where the genotypes were evaluated by 

counting the number of different sized DNA bands visualized on a 3% NuSieve agarose gel.  

The initial PCR amplified product was 145 bp. Digestion by DdeI gave the following 

restriction patterns: an intact 145 bp fragment corresponds to the minor allele in its homozygous 

form or the GG genotype, coexistence of fragments 100 bp and 45 bp correspond to the major 

CC genotype while the heterozygous CG genotype shows all three fragments sizes (145bp, 

100bp and 45bp) for a particular individual. Figure 4 depicts the RFLP pattern of the fragment 

(145bp) containing the PON2/rs6954345 variant by DdeI.  
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         Table 6. RFLP conditions for tagSNP PON2/rs6954345(Ser311Cys) 

Restriction enzyme           Recognition sequenc Digestion conditions 

   DdeI(NEB cutter)      37ºC for 16 hours 

 

 

 

  Figure 4.  Restriction pattern of PON2/rs6954345(Ser311Cys) SNP by DdeI 

  Restriction patterns of the PCR-amplified 145-bp fragment after digestion      

  with DdeI. Lanes A, C, D E—represent CC genotype. Lanes B, G represent CG  

              genotype. Lane F, H --represent GG genotype. Lane L represents the ladder. 
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4.5.3.2  Pyrosequencing TM 

            Pyrosequencing TM (PSQ) developed by Ronaghi et al. (1998) is based on real time 

pyrophosphate (PPi) detection, released during sequencing-by synthesis-reaction. PSQ technique 

is not only time and cost effective but also can determine bi- tri-, tetra allelic polymorphisms, 

multiple SNPs, deletions/insertions and mutations at the same time. 

In short, 40µL of binding buffer (10mM Tris-HCl pH7.6, 2M NaCl, 1mM EDTA, 0.1% 

Tween20), 2 µL Streptavidin Sepharose beads (Amersham biosciences, Piscataway NJ) and 18 

µL of high purity water were added to 10-15μL of the amplified biotinylated PCR product. This 

mix was then vortexed for 10 min, which allowed binding of the biotinylated PCR DNA to the 

streptavidin beads. DNA molecules once immobilized on the streptavidin beads were next 

captured onto filter probes using a vacuum prep tool, followed by a wash procedure in 70% 

ethanol for 10 sec, in a denaturation solution (0.2M NaOH) for 10 sec, and at last in a washing 

buffer (10mM Tris Acetate pH 7.6) for 20 sec. The theory behind this denaturation step is to 

separate the dsDNA into its single stranded template (ssDNA). In the next step, the vacuum was 

turned off in order to release the ssDNA from the filter probes of the vacuum prep tool to a PSQ 

96 plate containing 9.5 μL of annealing buffer (20mM Tris-Acetate, 2mM MgAc2 pH7.6) and 

0.5μM of sequencing primer in each well. This 96 well plate is next placed on a heating block 

with lid, at 90° C for 2min, followed by another 2 min on the bench top with the heated lid and at 

last without the heated lid for 4 min. This entire heating process promotes annealing the ssDNA 

with the sequencing primer. Table 7 encompasses the sequences of the sequencing primers and 

the target sequence to analyze for each PON2 variants genotyped by Pyrosequencing TM. 
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 Table 7.  Pyrosequencing  primer sequences and the sequences analyzed for PON2 variants 

screened by Pyrosequencing     

rs11982486 Sequence to Analyze       TAC/TA/GTA AACTTTTTTT TTCTCTCTCT CTT 
S1*                        AGATTACTACCACATTAGGC

rs2286233 Sequence to Analyze       GA/TAGCCCT GTCTTCCTTC TGAAGAGTC 
 S1                                  AGTTCCAGATGTAGAACCA 

rs17876116 Sequence to Analyze       CCG/TAAGAG GGGATACACG ATGATAAAAC 
S1                                   GCTCCTGACATAATCACA 

rs11545941 Sequence to Analyze       AAGC/GAGAA AATTCTCTGT TGCATCTGAA A 
S1                                   GGAAATTTTTAAATTTGAAG 

rs17876193 Sequence to Analyze       GCTC/TCC/G TTTTTTATCT TTCCTGATAG TTT 
S 1                                  AAATAACCCCAAAGATAAA 

rs3735586 Sequence to Analyze       ATT/ATTGAC AATTTCT 
S1                                   AAGTTTCTCATGTCATTTAG 

rs9641164 Sequence to Analyze       A/TTGAATAT AAGACCACCG TACATGCA 
S1                                   TTCAGGGGATACAAAGT 

rs13306702 Sequence to Analyze       GG/CACTCTT AATT/GTGAA ACAACAACAA C 
S1                                   GGAAAGCTGAAAGTGAAT 

rs10261470 Sequence to Analyze       AC/TGTGAGA ATGTTGGGGT AGGTGGTGG 
S1                        GGAGCCCCAAATGGGCTG

rs6954345  
S1                       CGCATCCAGAACATTCTA

*S1--Sequencing primer

Sequence to Analyze       GA/TAGCCCT GTCTTCCTTC TGAAGAGTC 

 
 

 



  41

 

 

Pyrosequencing reactions were next performed following the manufacturers instructions 

using PSQ96 SNP Reagent kit, which contains the enzyme, substrate and the nucleotides. The 

enzyme, substrate contains DNA polymerase, ATP sulfurylase, luciferase, apyrase, adenosine 5´ 

phosphosulfate (APS) and luciferin. Analysis starts with the dispensation of enzyme, substrate 

into the plate. Essentially, DNA polymerase catalyses synthesis of a DNA strand complimentary 

to the original sequence, which in turn coupled to a chemiluminescent reaction, generating light 

proportional to the number of nucleotides incorporated and detected by a charge coupled device 

(CCD) camera built inside the PSQ system. PSQ software automatically analyzes the 

quantitative data, which is easily evaluated by the user. Figure 5, 6, and 7 show an outline view of 

Pyrosequencing TM assay, the general principle behind different Pyrosequencing reaction systems 

and a diagrammatic representation of the Pyrosequencing cascade,respectively. 

 

                                     

 
 

                            Figure 5. An outline view of Pyrosequencing  assay       
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Figure 6. The general principal behind Pyrosequencing assay, 

                                           adapted from Ronaghi et al. (2001).   

 

 
Figure 7.  A diagrammatic representation of Pyrosequencing assay 

                                 adapted from Medical Research Council, Available: at   

                                 http://www.har.mrc.ac.uk/services/GEMS/mapping.html,    

                                 accessed, December 2008. 

 

In our study SNP pairs [rs3735586, rs1154594199Ala148Gly)] and (rs10261470, 

rs17876116) were genotyped simultaneously under the duplex Pyrosequencing assay. Examples 
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of pyrograms generated by the PSQ software while analyzing a simplex assay and a duplex assay 

are shown in Figure 8 and Figure 9, respectively. 

 

 

Sequence to analyze: A/TTGAATATAAGACCACCGTACATGCA (rs9641164) 
 
(A)                                                                            (B) 
 

0.0

1.0

2.0

G A T C G A T A T                
 
 
(C)        (D) 
 

0.0

1.0

2.0

G A T C G A T A T                
 
  
(E)                                                                          (F) 

0.0

1.0

2.0

G A T C G A T A T               
Figure 8. Pyrograms of simplex assay PON2/rs9641164 
Part (A) -theoretical outcome of (T/T), Part (B) - experimental outcome of (T/T)  

             Part (C) -theoretical outcome of (A/T), Part (D) - experimental outcome of (A/T)  
Part (E) -the theoretical outcome of (A/A), Part (F) - the experimental outcome of (A/A). 
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Sequence to analyze:  
Position 1: AC/TGTGAGAATGTTGGGGTAGGTGGTGG (rs10261470) 
Position 2: CCG/TAAGAGGGGATACACGATGATAAAAC (rs178761116) 

(A)        (B) 

0

1

2

3

4

5

G C G T G A C T C G T G A G A T A   

 
(C)        (D ) 

            
0

1

2

3

4

5

G C G T G A C T C G T G A G A T A
 

      Figure 9. Pyrograms of duplex assay PON2/(rs10261470 and rs17876116) 

     Part (A) -theoretical outcome of (G/G //C/C), Part (B) - experimental outcome of (G/G// C/C). 
      Part (C) -theoretical outcome of (G/T //C/C), Part (D) - experimental outcome of (G/T //C/C). 
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4.5.3.3 TaqMan ®    

TaqMan ® builds on a homogenous solution hybridization technology. This high 

throughput allelic discrimination assay is based on quantitative real time PCR reaction which 

utilizes the 5' nuclease activity of the Taq polymerase to detect a fluorescent reporter signal 

generated during the reaction (Figure 10). An outline view of TaqMan ®   allelic discrimination 

assay is shown in Figure 11. Though the set up of the reaction is very similar to conventional 

PCR, in TaqMan PCR, the probe is also added at the beginning of PCR reaction, unlike other 

methods where the probe is added after the PCR reaction.  

 

           Figure 10. Diagrammatic representation of TaqMan assay 

                  Graphic adapted from Applied Biosystems, available at  

http://www.icmb.utexas.edu/core/DNA/Information_Sheets/Real-time%20PCR/7900taqAllelicDiscrim.pdf, 

accessed December 2008 
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Figure 11. An outline view of TaqMan   allelic discrimination assay 

 

 

Eight PON2 SNPs: rs2299267, rs12534274, rs987539, rs4729189, rs11981433, rs12704795, 

rs1639 and rs17876205 were screened by TaqMan allelic discrimination assay, using SNP 

Genotyping Assays (Applied Biosystems, Foster City, CA, USA). The SNP genotyping assays 

used for each these SNPs were (C___2630173_1_ for rs2299267),( C__31373224_10 for  

rs12534274),(C___8952813_10 for rs987539),(C__27922117_10 for rs4729189), (C___2630169_10 

for rs11981433), (C__26570646_10 for rs12704795), (C__11708890_10 for rs1639), and 

(C__59001801_10 for rs17876205). 

Briefly, regular DNA or whole genome amplified DNA was aliquoted in 384 well plates. 

DNA was subjected to an initial heating process for 10 min under the following temperatures 94° 

C for 5min, 50° C for 5 min. Next, TaqMan reaction mix was prepared. For a plate which 

comprised of 384 samples, the TaqMan reaction mix had 998 μL of distilled water, 1026 μL of 
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TaqMan master mix and 26 μL of the respective TaqMan assay (40X concentration). 5 μL of this 

reaction mixture was added to each well in the plate, which was next subjected to PCR 

conditions: 95° C for 10 min, 95° C for 15 sec (30cycles),60° C for 1 min (50cycles). The PCR 

condition was the same for all SNPs. Next the plate was read with the help of a TaqMan 

machine. During the assay plate read, the data analysis software (SDS) employs an advanced 

algorithm to calculate the allele/marker signal contributions from each sample well. The 

genotype calls were determined by the SNP auto caller feature, built in within the analysis 

software that generates a cluster plot for each genotype thereby allowing the user to visualize 

data across samples, an example of which is shown in Figure 12.   
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             Figure 12. A display of the TaqMan cluster plot for SNP PON2/rs12704795 

             The blue cluster signifies the major homozygote (TT), the red cluster for  

             minor homozygote (GG) and the green intermediate cluster signifies the heterozygote   

             TG. 
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4.6 STATISTICAL ANALYSIS 

Allele frequency for each tagSNP was calculated by allele counting.  Χ 2 goodness of fit test was 

applied to determine any deviance of the observed genotype frequencies from the frequencies 

expected under Hardy-Weinberg Equilibrium (HWE) measures. For each tagSNP, allele and 

genotype frequencies were calculated by ethnicity (blacks and whites) and further within each 

ethnic group by SLE status, risk of lupus nephritis (within white SLE patients) and risk of carotid 

plaque (within white SLE patients). Z test for binomial proportions was used to evaluate the 

differences between allele frequencies, while Fisher’s exact test between genotype frequencies. 

Covariates, like recruitment site (Pittsburgh and Chicago) and age were included in models when 

testing for association of each SNP with SLE risk and lupus nephritis. Covariates like body mass 

index (BMI), smoking, total cholesterol, triglycerides, LDL-cholesterol and HDL-cholesterol, 

age and recruitment site were included in association models for carotid plaque and carotid IMT. 

Odds ratio adjusted for the appropriate covariates was calculated for different genetic models 

(codominant and recessive). 

PON activity, carotid IMT and oxidized LDL-cholesterol (oxLDL) are continuous traits, 

therefore, they were presented by mean and standard deviation (SD) values. Raw measurements 

of PON activity, carotid IMT and parameters of LDL oxidation [anti-cu-modified oxLDL (IgG), 

anti-cu-modified oxLDL (IgM), oxLDL -EO6 (oxPL/Apo B), LDL immune complexes (IgG), 

LDL immune complexes (IgM), serum Lp(a), Lp(a)Mg, anti-MDA-modified LDL (IgG), anti-

MDA-modified LDL (IgM)] were not normally distributed, so all statistical analyses were 
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performed on transformed data which pertains to their normal distribution. Carotid IMT values 

were transformed by a factor of 1- (1/ raw IMT data)], PON activity by square root 

transformation and oxidized LDL parameters by square root and log transformations. Mean ± SD 

measurements and association values of PON activity were adjusted for age, BMI and smoking. 

Similarly, for carotid IMT, age, BMI, smoking, cholesterol, triglycerides, LDL-cholesterol, HDL- 

cholesterol and recruitment site were used as covariates. For oxidized LDL parameters, which 

were analyzed only in Pittsburgh recruitment cohort, the covariates used were age, BMI, 

smoking,  cholesterol, triglycerides, HDL- cholesterol and high blood pressure.  

Haploview (www.hapmap.org) program was used to compute pairwise LD pattern 

between PON2 tagSNPs and also between the PON2 SNPs and the reported major contributors 

of PON activity (PON1/192, PON1/55, PON3/10340 and PON3/2115) variants, values presented 

in LD parameters of D′ and r2. Taking into account the LD statistics, PON2 haplotypes were 

evaluated for SLE risk. To determine the independent contribution of PON2 variants towards 

PON activity, these variants were further analyzed along with PON1/192, PON1/55, 

PON3/10340 and PON3/2115 SNPs, adjusting for disease status, age, BMI and smoking in 

multiple regression models.  
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5.0  RESULTS 

5.1 AGE DISTRIBUTION

Within each ethnic group (blacks or whites), the cases were slightly younger than controls as 

summarized in Table 8 (whites) and Table 9 (blacks).   

 

                                          

Table 8. Mean ±SD age years in whites 

cases   [n*] controls [n]
All whites 43.56 ± 11.351 [416] 45.676 ± 12.859 [471] 0.01
Pittsburgh white 43.416 ± 11.395 [348] 45.28 ± 13.144 [414] 0.039
Chicago white 44.253 ± 11.258 [68] 48.548 ± 10.211 [57] 0.029
n*--- number of people with age information  

      

                                       

Table 9. Mean ±SD age years in blacks 

cases   [n*] controls [n]
All blacks 41.828 ± 10.824 [73] 48.753 ± 14.133 [54] 0.002
Pittsburgh black 41.688 ± 12.113 [48] 49.395 ± 16.365 [38] 0.014
Chicago black 42.098 ± 8.001 [25] 47.231 ± 6.454 [16] 0.037
n*--- number of people with age information  
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5.2 HARDY WEINBERG EQUILIBRIUM (HWE) 

The statistical results for Hardy-Weinberg equilibrium are shown in Table 10 and Table 11 in 

whites and blacks, respectively. The only polymorphism that was out of HWE was 

PON2/rs12534274 in Pittsburgh white SLE cases (P=0.02). All other 18 PON2 polymorphisms 

maintained HWE in all groups. 
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  Table 10. P value from deviation of the Hardy-Weinberg proportions in whites 

PON2  tag SNP Pittsburgh SLE Chicago SLE Pittsburgh controls Chicago controls
rs17876183 0.779 0.984 0.953 0.996
rs2299267 0.850 0.972 0.632 0.906
rs10261470 0.920 0.854 0.717 0.538
rs4729189 0.171 0.765 0.658 0.780
rs12534274 0.020 0.925 0.090 0.135
rs11982486 0.157 0.304 0.065 0.521
rs11981433 0.117 0.688 0.465 0.151
rs2286233 0.423 0.430 0.398 0.795
rs12704795 0.078 0.248 0.477 0.198
rs17876193 0.886 0.733 0.051 0.944
rs17876116 0.855 0.854 0.954 0.971
rs1639 0.223 0.452 0.821 0.914
rs11545941 0.054 0.750 0.091 0.323
rs987539 0.045 0.989 0.484 0.159
rs3735586 0.046 0.331 0.119 0.115
rs9641164 0.200 0.248 0.783 0.807
rs6954345 0.046 0.939 0.338 0.599
rs13306702 0.834 0.965 0.648 0.941
rs17876205 0.975 0.997 0.974 0.990

                                                           Whites

 

 

Table 11. P value from deviation of the Hardy-Weinberg proportions in blacks* 

PON2  tagSNP Pittsburgh SLE Chicago SLE Pittsburgh controls Chicago controls
rs17876183 NA* NA 0.995 0.987
rs2299267 0.734 0.463 0.998 0.658
rs10261470 0.932 0.863 0.687 0.658
rs4729189 0.702 0.730 0.633 0.695
rs12534274 0.793 1.000 0.890 0.614
rs11982486 0.648 0.701 0.793 0.894
rs11981433 0.744 0.701 0.938 0.729
rs2286233 0.845 0.730 0.988 0.815
rs12704795 0.744 0.701 0.938 0.894
rs17876193 0.949 0.992 0.986 NA
rs17876116 0.996 NA NA NA
rs1639 0.912 0.721 0.683 0.986
rs11545941 0.972 1.000 0.905 0.370
rs987539 0.374 0.096 0.599 0.611
rs3735586 0.453 0.860 0.971 0.778
rs9641164 0.943 0.491 0.974 NA
rs6954345 0.924 0.276 0.971 0.527
rs13306702 0.988 0.929 0.941 0.962
rs17876205 NA NA 0.995 NA
*NA—P  value could not be determined because the SNP was monomorphic

                                                 Blacks

 

             

 



  54

5.3 LINKAGE DISEQUILIBRIUM (LD) STRUCTURE 

Figures 13, 14 and 15 show the LD pattern analyzed for Pittsburgh whites (cases+controls), 

Chicago whites (cases+controls) and the combined (Pittsburgh+Chicago) whites 

(cases+controls), respectively. The LD pattern between PON2 variants in Pittsburgh whites 

(cases+controls) was similar to that of Chicago whites (cases+controls). Therefore, in 

combined (Pittsburgh+Chicago) whites pairwise tagging of PON2 variants (r2  ≥ 0.8)

identified four SNP pairs in high LD [rs3735586 & rs6954345(Ser311Cys), r2= 0.922], 

[rs11545941(Ala148Gly) & rs6954345(Ser311Cys), r2=0.819), [rs1639 & rs9641164, r2=0.871] 

and [rs11981433 & rs12704795, r2=0.989] (Table 12) .  

Since the number of African American sample was considerably small, we analyzed LD 

only for the combined (Pittsburgh+Chicago) blacks (cases+controls) (Figure 16). PON2/SNP 

rs17876205 was monomorphic, therefore pairwise LD was computed for 18 of 19 PON2 

polymorphisms that were included in our study. Although in blacks, tagger analyses (r2 ≥ 0.8) 

identified only one highly correlated SNP pair (PON2/rs11981433 and rs12704795, r2 =0.98), 

there were some similarities in the overall LD pattern to that of whites. 
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                          Table 12. Tagger  analyses  (r2 ≥ 0.8)  of  the selected 19 PON2 variants in whites 

 

Pittsburgh (Whites)(n*=798) Chicago (Whites)(n=124) Overall (Whites)(n=922)
Test Alleles Captured Test Alleles Captured Test Alleles Captured
rs6954345 (Ser311Cys) rs3735586,rs11545941(Ala148Gly) rs3735586 rs6954345 (Ser311Cys) rs695434(Ser311Cys) rs3735586, rs11545941(Ala148Gly)

rs11545941(Ala148Gly)
rs12704795 rs11981433 rs11981433 rs12704795 rs11981433 rs12704795
rs9641164 rs1639 rs9641164 rs9641164 rs1639

rs1639
rs2286233 rs2286233 rs2286233
rs12534274 rs12534274 rs12534274
rs987539 rs987539 rs987539
rs17876183 rs17876183 rs17876183
rs2299267 rs2299267 rs2299267
rs17876193 rs17876193 rs17876193
rs11982486 rs11982486 rs11982486
rs17876116 rs17876116 rs17876116
rs10261470 rs10261470 rs10261470
rs17876205 rs17876205 rs17876205
rs13306702 rs13306702 rs13306702
rs4729189 rs4729189 rs4729189
*n---number of individuals included in tagger analyses  
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Figure 13. LD plot of 19 PON2 SNPs in Pittsburgh whites 

        Total: 798 individuals (after 4 individuals missing >50% genotype are excluded) 
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                                      Figure 14. LD plot of  19 PON2 SNPs in Chicago whites. 

                          Total: 124 individuals (after 1 individual missing >50% genotype are excluded) 
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       Figure 15. LD plot of 19 PON2 SNPs in combined (Pittsburgh+Chicago) whites   

       Total: 922 individuals (after 5 individuals missing >50% genotype are excluded)  
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 Figure 16. LD plot of 19 PON2 in combined (Pittsburgh+Chicago) blacks 

         Total: 129 individuals (after 2 individual missing >50% genotype are excluded) 
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5.4 PON2 SNP DISTRIBUTION BETWEEN WHITES AND BLACKS 

Table 13 shows the comparison of SNP distribution between whites and blacks. Nine PON2 

polymorphic sites (rs11981433, rs2286233, rs12704795, rs17876193, rs17876116, rs1639, 

rs987539, rs9641164, and rs17876205) showed significant difference (P ≤ 0.01) for both allele 

frequency difference and genotype distribution (adjusted for recruitment site) between these two 

ethnic groups. For PON2/rs3735586 variant only the allele frequency difference was significant 

with a  p value of 0.0181. 
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Table 13. Comparison of Genotype and Allele frequencies of PON2 tagSNPs between 

blacks and whites 

rs17876183 Total GG GA AA G A
(5'UTR) Whites 919 883 (96.08) 35 (3.81) 1 (0.11) 0.980 0.020

Blacks 129 127 (98.45) 2 (1.55) 0 (0.00) 0.992 0.008
P 0.0520

rs2299267 Total AA AG GG A G
(intron 1) Whites 919 636 (69.21) 254 (27.64) 29 (3.16) 0.830 0.16975

Blacks 130 93 (71.54) 32 (24.62) 5 (3.85) 0.83846 0.162
P 0.7370

rs10261470 Total GG GA AA G A
(intron 1) Whites 917 694 (75.68) 203 (22.14) 20 (2.18) 0.868 0.132

Blacks 129 89 (68.99) 37 (28.68) 3 (2.33) 0.833 0.167
P 0.1634

rs4729189 Total AA AT TT A T
(intron 1) Whites 914 566 (61.93) 299 (32.71) 49 (5.36) 0.78282 0.217177

Blacks 127 77 (60.63) 46 (36.22) 4 (3.15) 0.787 0.212598
P 0.8674

rs12534274 Total GG GA AA G A
(intron 1) Whites 909 518 (56.99) 314 (34.54) 77 (8.47) 0.743 0.257

Blacks 129 77 (59.69) 46 (35.66) 6 (4.65) 0.775 0.225
P 0.2430

rs11982486 Total TT TC CC T C
(intron 1) Whites 919 426 (46.35) 379 (41.24) 114 (12.40) 0.670 0.330

Blacks 130 65 (50.00) 52 (40.00) 13 (10.00) 0.700 0.300
P 0.3207

rs11981433 Total TT TC CC T C
(intron 1) Whites 914 323 (35.34) 419 (45.84) 172 (18.82) 0.583 0.417

Blacks 127 60 (47.24) 58 (45.67) 9 (7.09) 0.701 0.299
P 0.0001

rs2286233 Total AA AT TT A T
(intron 1) Whites 921 699 (75.90) 203 (22.04) 19 (2.06) 0.869 0.131

Blacks 128 77 (60.16) 45 (35.16) 6 (4.69) 0.777 0.223
P 0.0007

rs12704795 Total TT TG GG T G
(intron 1) Whites 912 318 (34.87) 421 (46.16) 173 (18.97) 0.5795 0.421

Blacks 128 62 (48.44) 57 (44.53) 9 (7.03) 0.707 0.293
P < 0.0001

     P  value for Allele frequency difference, unadjusted 
    *P  value for genotype distribution, adjusted for recruitment site

    P* 0.0007

    P* 0.0008

     P* <0.0001

     P* 0.1300

    P* 0.5400

     P* 0.3123

   P* 0.5700

Genotype ( %) Alleles

     P* 0.3400

     P* 0.8300
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Table 13 (cont’d). 

rs17876193 Total CC CG GG C G
(intron 2) Whites 919 761 (82.81) 147 (16.00) 11 (1.20) 0.908 0.969

Blacks 128 120 (93.75) 8 (6.25) 0 (0.00) 0.969 0.031
P < 0.0001

rs17876116 Total GG GT TT G T
(intron 2) Whites 921 835 (90.66) 84 (9.12) 2 (0.22) 0.952 0.048

Blacks 129 128 (99.22) 1 (0.78) 0 (0.00) 0.996 0.004
P < 0.0001

rs1639 Total TT TG GG T G
(intron 3) Whites 903 583 (64.56) 277 (30.68) 43 (4.76) 0.799 0.201

Blacks 120 104 (86.67) 14 (11.67) 2 (1.67) 0.925 0.075
P < 0.0001

rs11545941  Total CC CG GG C G
(exon5) Whites 919 538 (58.54) 310 (33.73) 71 (7.73) 0.754 0.246
Ala148Gly Blacks 130 72 (55.38) 47 (36.15) 11 (8.46) 0.735 0.265

P 0.5045

rs987539 Total CC CT TT C T
(intron 6) Whites 906 282 (31.13) 418 (46.14) 206 (22.74) 0.542 0.458

Blacks 128 22 (17.19) 54 (42.19) 52 (40.63) 0.383 0.617
P < 0.0001

rs3735586 Total TT TA AA T A
(intron 7) Whites 919 553 (60.17) 298 (32.43) 68 (7.40) 0.764 0.236

Blacks 130 65 (50.00) 50 (38.46) 15 (11.54) 0.692 0.308
P 0.0181

rs9641164 Total AA AT TT A T
(intron 8) SLE 921 604 (65.58) 276 (29.97) 41 (4.45) 0.806 0.194

Controls 130 116 (89.23) 12 (9.23) 2 (1.54) 0.938 0.062
P < 0.0001

rs6954345  Total CC CG GG C G
(exon 9) Whites 916 545 (59.50) 308 (33.62) 63 (6.88) 0.763 0.237
Ser311Cys Blacks 129 75 (58.14) 45 (34.88) 9 (6.98) 0.756 0.244

P 0.7984

rs13306702 Total GG GC CC G C
after 3'-UTR Whites 917 876 (95.53) 38 (4.14) 3 (0.33) 0.976 0.024

Blacks 129 116 (89.92) 13 (10.08) 0 (0.00) 0.950 0.050
P 0.0608

rs17876205 Total GG GC CC G C
after 3'-UTR Whites 916 886 (96.72) 30 (3.28) 0 (0.00) 0.984 0.016

Blacks 128 128 (100.00) 0 (0.00) 0 (0.00) 1.000 0.000
P < 0.0001

     P  value for Allele frequency difference, unadjusted 
    *P  value for genotype distribution, adjusted for  recruitment site

Alleles

    P* 0.0100

     P* 0.1100

    P* <0.0001

     P* 0.9500

     P* 0.0900

    P* <0.0001

   P* <0.0001

    P* 0.8700

    P* <0.0001

    P* 0.0013

Genotype ( %)
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5.5 RELATIONSHIP OF PON2 SNPS WITH SLE RISK 

5.5.1 Univariate analysis of PON2 SNPs with SLE risk 

A summary of the allele frequencies and the genotype distribution stratified by case-control 

status is shown in Table 14 for whites (416 cases and 515 controls) and Table 15 for blacks (73 

cases and 58 controls). In univariate analysis, none of the PON2 variants showed any obvious 

association with SLE disease risk, neither in whites nor in blacks. Whites analyzed by combining 

the Pittsburgh with the Chicago samples identified significant allele frequency difference (P= 

0.0350) for PON2/rs17876116G>T variant (the 17876116T allele frequency was 6%/3.8% in 

white cases/white controls). Similarly, in blacks the difference in allele frequency of 

rs9641164A>T variant was significant (P= 0.0217) (the rs9641164T allele frequency was 

9%/2.6% in black cases/black controls,). However, none of the above variants showed 

association with disease risk in their genotype distribution.  
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Table 14. Univariate analysis of PON2 tagSNPs with SLE risk in whites 

rs17876183 Total GG GA AA G A
(5'UTR) SLE 410 397 (96.83) 12 (2.93) 1 (0.24) 0.983 0.017

Controls 509 486 (95.48) 23 (4.52) 0 (0.00) 0.977 0.023
P 0.3950

rs2299267 Total AA AG GG A G
(intron 1) SLE 410 275 (67.07) 121 (29.51) 14 (3.41) 0.818 0.182

Controls 509 361 (70.92) 133 (26.13) 15 (2.95) 0.84 0.160
P 0.2230

rs10261470 Total GG GA AA G A
(intron 1) SLE 409 316 (77.26) 86 (21.03) 7 (1.71) 0.878 0.122

Controls 508 378 (74.41) 117 (23.03) 13 (2.56) 0.859 0.141
P 0.2420

rs4729189 Total AA AT TT A T
(intron 1) SLE 407 261 (64.13) 126 (30.96) 20 (4.91) 0.796 0.204

Controls 507 305 (60.16) 173 (34.12) 29 (5.72) 0.772 0.228
P 0.2160

rs12534274 Total GG GA AA G A
(intron 1) SLE 406 231 (56.90) 140 (34.48) 35 (8.62) 0.741 0.259

Controls 503 287 (57.06) 174 (34.59) 42 (8.35) 0.744 0.256
P 0.9166

rs11982486 Total TT TC CC T C
(intron 1) SLE 410 189 (46.10) 173 (42.20) 48 (11.71) 0.672 0.328

Controls 510 237 (46.47) 207 (40.59) 66 (12.94) 0.662 0.332
P 0.8570

rs11981433 Total TT TC CC T C
(intron 1) SLE 407 149 (36.61) 184 (45.21) 74 (18.18) 0.592 0.408

Controls 507 174 (34.32) 235 (46.35) 98 (19.33) 0.575 0.425
P 0.4590

rs2286233 Total AA AT TT A T
(intron 1) SLE 412 319 (77.43) 82 (19.90) 11 (2.67) 0.874 0.126

Controls 509 380 (74.66) 121 (23.77) 8 (1.57) 0.865 0.135
P 0.5955

rs12704795 Total TT TG GG T G
(intron 1) SLE 405 146 (36.05) 185 (45.68) 74 (18.27) 0.589 0.411

Controls 507 172 (33.93) 236 (46.55) 99 (19.53) 0.572 0.428
P 0.4670

 P  value for Allele frequency difference, unadjusted 
*P  value for genotype distribution, adjusted for recruitment site and age

     P* 0.7630

    P* 0.3570

    P* 0.7650

    P* 0.4370

     P* 0.7580

     P* 0.9300

    P* 0.8410

Genotype ( %) Alleles

    P* 0.3553

   P * 0.4970
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Table 14 (cont’d). 

rs17876193 Total CC CG GG C G
(intron 2) SLE 408 332 (81.37) 74 (18.05) 4 (0.98) 0.902 0.1

Controls 509 429 (84.28) 73 (14.34) 7 (1.38) 0.915 0.085
P 0.9323

rs17876116 Total GG GT TT G T
(intron 2) SLE 410 362 (88.29) 47 (11.46) 1 (0.24) 0.94 0.06

Controls 511 473 (92.56) 37 (7.24) 1 (0.20) 0.962 0.038
P 0.0350

rs1639 Total TT TG GG T G
(intron 3) SLE 406 254 (62.56) 128 (31.53) 24 (5.91) 0.783 0.217

Controls 497 329 (66.20) 149 (29.98) 19 (3.82) 0.812 0.188
P 0.1330

rs11545941  Total CC CG GG C G
(exon5) SLE 409 234 (57.21) 141 (34.47) 34 (8.31) 0.744 0.256
Ala148Gly Controls 510 304 (59.61) 169 (33.14) 37 (7.25) 0.762 0.238

P 0.3940

rs987539 Total TT TC CC T C
(intron 6) SLE 404 102 (25.25) 183 (45.30) 119 (29.46) 0.479 0.521

Controls 502 104 (20.72) 235 (46.81) 163 (32.47) 0.441 0.559
P 0.1090

rs3735586 Total TT TA AA T A
(intron 7) SLE 509 303 (59.53) 168 (33.01) 38 (7.47) 0.76 0.24

Controls 410 250 (60.98) 130 (31.71) 30 (7.32) 0.768 0.232
P 0.6890

rs9641164 Total AA AT TT A T
(intron 8) SLE 411 261 (63.50) 126 (30.66) 24 (5.84) 0.788 0.212

Controls 510 343 (67.25) 150 (29.41) 17 (3.33) 0.82 0.18
P 0.0930

rs6954345  Total CC CG GG C G
(exon 9) SLE 406 240 (59.11) 135 (33.25) 31 (7.64) 0.757 0.243
Ser311Cys Controls 510 305 (59.80) 173 (33.92) 32 (6.27) 0.768 0.232

P 0.6090

rs13306702 Total GG GC CC G C
after 3'-UTR SLE 410 390 (95.12) 19 (4.63) 1 (0.24) 0.974 0.026

Controls 507 486 (95.86) 19 (3.75) 2 (0.39) 0.977 0.023
P 0.6860

rs17876205 Total GG GC CC G C
after 3'-UTR SLE 407 394 (96.81) 13 (3.19) 0 (0.00) 0.984 0.016

Controls 509 492 (96.66) 17 (3.34) 0 (0.00) 0.983 0.017
P 0.9030

 P  value for Allele frequency difference, unadjusted 
*P  value for genotype distribution, adjusted for recruitment site and age

Alleles

    P* 0.6700

    P*  0.7860

    P* 0.1750

     P* 0.8730

     P* 0.8820

    P* 0.1400

    P* 0.2460

    P* 0.9320

     P* 0.8410

   P* 0.4880

Genotype (%)
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Table 15. Univariate analysis of PON2 tagSNPs with SLE risk in blacks 

rs17876183 Total GG GA AA G A
(5'UTR) SLE 72 72 (100.00) 0 (0.00) 0 (0.00) 1 0.000

Controls 57 55 (96.49) 2 (3.51) 0 (0.00) 0.982 0.018
P 0.1536

rs2299267 Total AA AG GG A G
(intron 1) SLE 72 50 (69.44) 19 (26.39) 3 (4.17) 0.826 0.174

Controls 58 43 (74.14) 13 (22.41) 2 (3.45) 0.853 0.147
P 0.5524

rs10261470 Total GG GA AA G A
(intron 1) SLE 72 50 (69.44) 20 (27.78) 2 (2.78) 0.833 0.167

Controls 57 39 (68.42) 17 (29.82) 1 (1.75) 0.833 0.167
P 1.0000

rs4729189 Total AA AT TT A T
(intron 1) SLE 71 47 (66.20) 21 (29.58) 3 (4.23) 0.81 0.19

Controls 56 30 (53.57) 25 (44.64) 1 (1.79) 0.759 0.241
P 0.3286

rs12534274 Total GG GA AA G A
(intron 1) SLE 72 46 (63.89) 22 (30.56) 4 (5.56) 0.792 0.208

Controls 57 31 (54.39) 24 (42.11) 2 (3.51) 0.754 0.246
P 0.4788

rs11982486 Total TT TC CC T C
(intron 1) SLE 72 34 (47.22) 30 (41.67) 8 (11.11) 0.681 0.319

Controls 58 31 (53.45) 22 (37.93) 5 (8.62) 0.724 0.276
P 0.4433

rs11981433 Total TT TC CC T C
(intron 1) SLE 72 32 (44.44) 35 (48.61) 5 (6.94) 0.688 0.313

Controls 55 28 (50.91) 23 (41.82) 4 (7.27) 0.718 0.282
P 0.5950

rs2286233 Total AA AT TT A T
(intron 1) SLE 72 45 (62.50) 24 (33.33) 3 (4.17) 0.792 0.208

Controls 56 32 (57.14) 21 (37.50) 3 (5.36) 0.759 0.241
P 0.5346

rs12704795 Total TT TG GG T G
(intron 1) SLE 72 32 (44.44) 35 (48.61) 5 (6.94) 0.688 0.313

Controls 56 30 (53.57) 22 (39.29) 4 (7.14) 0.732 0.268
P 0.4331

 P  value for Allele frequency difference, unadjusted 
*P  value for genotype distribution, adjusted for recruitment site and age

        P* 0.6430

        P* 0.6460

        P* 0.4440

      P* 0.614

        P* 0.1050

        P* 0.4230

       P* 0.5800

Genotype ( %) Alleles

       P* 0.0680

     P* 0.608
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Table 15 (cont’d). 

rs17876193 Total CC CG GG C G
(intron 2) SLE 72 66 (91.67) 6 (8.33) 0 (0.00) 0.958 0.042

Controls 56 54 (96.43) 2 (3.57) 0 (0.00) 0.982 0.018
P 0.2530

rs17876116 Total GG GT TT G T
(intron 2) SLE 72 71 (98.61) 1 (1.39) 0 (0.00) 0.993 0.007

Controls 57 57 (100.00) 0 (0.00) 0 (0.00) 1.000 0.000
P 0.3156

rs1639 Total TT TG GG T G
(intron 3) SLE 65 54 (83.08) 10 (15.38) 1 (1.54) 0.908 0.092

Controls 55 50 (90.91) 4 (7.27) 1 (1.82) 0.945 0.055
P 0.2577

rs11545941  Total CC CG GG C G
(exon5) SLE 72 40 (55.56) 27 (37.50) 5 (6.94) 0.743 0.257
Ala148Gly Controls 58 32 (55.17) 20 (34.48) 6 (10.34) 0.724 0.276

P 0.7319

rs987539 Total TT TC CC T C
(intron 6) SLE 72 31 (43.06) 27 (37.50) 14 (19.44) 0.62 0.38

Controls 56 21 (37.50) 27 (48.21) 8 (14.29) 0.62 0.38
P 0.97416

rs3735586 Total TT TA AA T A
(intron 7) SLE 72 35 (48.61) 26 (36.11) 11 (15.28) 0.67 0.33

Controls 58 30 (51.72) 24 (41.38) 4 (6.90) 0.72 0.28
P 0.3145

rs9641164 Total AA AT TT A T
(intron 8) SLE 72 61 (84.72) 9 (12.50) 2 (2.78) 0.910 0.090

Controls 58 55 (94.83) 3 (5.17) 0 (0.00) 0.974 0.026
P 0.0217

rs6954345  Total CC CG GG C G
(exon 9) SLE 71 41 (57.75) 26 (36.62) 4 (5.63) 0.761 0.239
Ser311Cys Controls 58 34 (58.62) 19 (32.76) 5 (8.62) 0.750 0.250

P 0.8445

rs13306702 Total GG GC CC G C
after 3'-UTR SLE 72 66 (91.67) 6 (8.33) 0 (0.00) 0.958 0.042

Controls 57 50 (87.72) 7 (12.28) 0 (0.00) 0.939 0.061
P 0.4806

rs17876205 Total GG GC CC G C
after 3'-UTR SLE 72 72 (100.00) 0 (0.00) 0 (0.00) 1 0.000

Controls 56 56 (100.00) 0 (0.00) 0 (0.00) 1 0.000
P NA

 P  value for Allele frequency difference, unadjusted 
*P  value for genotype distribution, adjusted for recruitment site and age

Alleles

   P* NA

       P* 0.4060

       P* 0.1020

       P* 0.6980

       P* 0.3209

       P* 0.3860

       P* 0.3580

       P* 0.6050

       P* 0.7600

       P* 0.2710

Genotype ( %)
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5.5.2 Haplotype analysis of PON2 variants with SLE risk in whites 

In our combined (Pittsburgh+Chicago) white (cases+controls) sample, tagger analyses using r2 

cut off ≥ 0.8, identified a set of 15 not highly correlated tagSNPs of the 19 PON2 variants that 

were selected in our study. Haplotype analysis with these 15 tagSNPs identified 16 haplotypes 

with a minimum frequency of ≥1% (Table16).  Although, two of the haplotypes (# 6 and #16) 

showed statistically significant difference (p value 0.0404 and 0.0307) between cases and 

controls, after 1000 permutation tests, they were no longer significant (p value 0.242 and 0.163). 

 

           

Table 16. Haplotype analysis of PON2 variants with SLE risk in whites 

# Haplotype Haplotype Block Haplotype Frequency Case,Control Frequencies P Permutation P
(#1000 permutations )

1 GGCACGCACCGAGAG 0.308 0.309, 0.321 0.5659 1
2 GGGATGCATTAAGAG 0.174 0.185, 0.172 0.4695 1
3 GGCTTGGATTGAGGG 0.071 0.079, 0.068 0.3856 1
4 GGCACGCACTGTAAG 0.068 0.065, 0.073 0.5111 1
5 GGCACGCTTTGTGAG 0.053 0.053, 0.056 0.7881 1
6 GGCACGCTTTGTAAG 0.045 0.035, 0.055 0.0404 0.242
7 GGCTTTCATTGAGGG 0.04 0.051, 0.033 0.0698 0.421
8 GGCTTGCATTAAGAG 0.038 0.037, 0.040 0.7149 1
9 GGCTTGCATTGAGGG 0.018 0.022, 0.016 0.3632 0.999

10 GGGATGCATTAAGGG 0.016 0.012, 0.020 0.2083 0.99
11 CGGATGCATTAAGAG 0.016 0.017, 0.015 0.7749 1
12 GGCTTGGATTGAGAG 0.014 0.015, 0.013 0.727 1
13 GGCACGCTTTGTGAA 0.014 0.013, 0.015 0.6378 1
14 GGGATGCATTGAGAG 0.013 0.016, 0.012 0.5233 1
15 GCCATGCATTGTGAG 0.013 0.014, 0.013 0.8811 1
16 GGCACGCACTGAGAG 0.011 0.005, 0.016 0.0307 0.163  
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5.6 ASSOCIATION OF PON2 VARIANTS WITH LUPUS NEPHRITIS 

Table 17 summarizes the single-site association analyses of PON2 variants with lupus nephritis 

in Caucasian SLE cases. In white (Pittsburgh+Chicago) SLE patients (n=416) stratified by the 

presence (n=124) or absence (n=290) of lupus nephritis, five PON2 variants (rs17876183, 

rs10261470, rs987539, rs9641164, and rs17876205) showed modest association (age and 

recruitment site adjusted p values ranging between 0.016-0.033 for genotype distribution) with 

lupus nephritis. Of these 5 variants, allele frequency difference was statistically significant for 2 

variants, PON2/rs17876183(P=0.0267) and PON2/rs17876205(P=0.0475). For 

PON2/rs17876183G>A and rs17876205C>G SNPs, the minor allele frequencies (MAF) in white 

cases with nephritis vs white cases without nephritis was 4% vs 1% and 3% vs 1%, respectively. 

Genotype distribution for these two SNPs in SLE cases with nephritis/SLE cases without 

nephritis was 93.5%/98.26% for GG, 5.69%/1.74% for GA and 0.81%/0.0% AA genotypes of 

PON2/rs17876183G>A variant and  93.5%/98.24% for CC, 6.50%/1.76% for CG, 0%vs0% for 

GG genotypes for PON2/rs17876205C>G variant.  Recruitment site and age adjusted odds ratio    

(OR) was 4.38 (95%CI=1.27-15.07, P=0.02) for GA vs GG genotype of PON2/rs17876183G>A 

variant. Similarly, OR was 4.08 (95%CI=1.26-13.21, P=0.02) for the GC vs GG genotype of 

PON2/rs17876205G>C variant. 
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Table 17. Univariate analysis of PON2 tagSNPs with lupus nephritis in white SLE patients 

rs17876183 Total GG GA AA G A
(5'UTR) Renal Involvement 123 115 (93.50) 7 (5.69) 1 (0.81) 0.96 0.04

No Renal Involvement 287 282 (98.26) 5 (1.74) 0 (0.00) 0.91 0.01
P 0.0267

rs2299267 Total AA AG GG A G
(intron 1) Renal Involvement 123 82 (66.67) 37 (30.08) 4 (3.25) 0.82 0.18

No Renal Involvement 287 193 (67.25) 84 (29.27) 10 (3.48) 0.82 0.18
P 0.9528

rs10261470 Total GG GA AA G A
(intron 1) Renal Involvement 123 100 (81.30) 18 (14.63) 5 (4.07) 0.89 0.11

No Renal Involvement 286 216 (75.52) 68 (23.78) 2 (0.70) 0.87 0.13
P 0.6234

rs4729189 Total AA AT TT A T
(intron 1) Renal Involvement 123 79 (64.23) 35 (28.46) 9 (7.32) 0.79 0.22

No Renal Involvement 284 182 (64.08) 91 (32.04) 11 (3.87) 0.80 0.20
P 0.5957

rs12534274 Total GG GA AA G A
(intron 1) Renal Involvement 123 68 (55.28) 41 (33.33) 14 (11.38) 0.720 0.280

No Renal Involvement 283 163 (57.60) 99 (34.98) 21 (7.42) 0.751 0.249
P 0.3551

rs11982486 Total TT TC CC T C
(intron 1) Renal Involvement 123 63 (51.22) 47 (38.21) 13 (10.57) 0.70 0.30

No Renal Involvement 287 126 (43.90) 126 (43.90) 35 (12.20) 0.66 0.34
P 0.2042

rs11981433 Total TT TC CC T C
(intron 1) Renal Involvement 122 53 (43.44) 47 (38.52) 22 (18.03) 0.63 0.37

No Renal Involvement 285 96 (33.68) 137 (48.07) 52 (18.25) 0.58 0.42
P 0.1806

rs2286233 Total AA AT TT A T
(intron 1) Renal Involvement 124 95 (76.61) 25 (20.16) 4 (3.23) 0.87 0.13

No Renal Involvement 288 224 (77.78) 57 (19.79) 7 (2.43) 0.88 0.12
P 0.7013

rs12704795 Total TT TG GG T G
(intron 1) Renal Involvement 121 52 (42.98) 46 (38.02) 23 (19.01) 0.62 0.38

No Renal Involvement 284 94 (33.10) 139 (48.94) 51 (17.96) 0.58 0.42
P 0.2389

     P  value for Allele frequency difference, unadjusted 
    *P  value for genotype distribution, adjusted for recruitment site and age

         P* 0.0890

          P* 0.9630

         P* 0.2780

         P* 0.0160

       P* 0.425

          P* 0.3600

         P* 0.3520

Genotype (%) Alleles

         P* 0.0330

       P* 0.977
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Table 17 (cont’d). 

rs17876193 Total CC CG GG C G
(intron 2) Renal Involvement 123 104 (84.55) 17 (13.82) 2 (1.63) 0.92 0.09

No Renal Involvement 287 228 (79.44) 57 (19.86) 2 (0.70) 0.89 0.11
P 0.3414

rs17876116 Total GG GT TT G T
(intron 2) Renal Involvement 124 108 (87.10) 15 (12.10) 1 (0.81) 0.93 0.07

No Renal Involvement 286 254 (88.81) 32 (11.19) 0 (0.00) 0.94 0.06
P 0.5004

rs1639 Total TT TG GG T G
(intron 3) Renal Involvement 121 76 (62.81) 33 (27.27) 12 (9.92) 0.76 0.24

No Renal Involvement 285 178 (62.46) 95 (33.33) 12 (4.21) 0.79 0.21
P 0.4052

rs11545941  Total CC CG GG C G
(exon5) Renal Involvement 123 69 (56.10) 40 (32.52) 14 (11.38) 0.72 0.28
Ala148Gly No Renal Involvement 268 165 (57.69) 101 (35.31) 20 (6.99) 0.75 0.25

P 0.3751

rs987539 Total CC CT TT C T
(intron 6) Renal Involvement 122 40 (32.79) 44 (36.07) 38 (31.15) 0.508 0.49

No Renal Involvement 282 79 (28.01) 139 (49.29) 64 (22.70) 0.53 0.47
P 0.6309

rs3735586 Total TT TA AA T A
(intron 7) Renal Involvement 124 78 (62.90) 37 (29.84) 9 (7.26) 0.78 0.22

No Renal Involvement 286 172 (60.14) 93 (32.52) 21 (7.34) 0.76 0.24
P 0.6543

rs9641164 Total AA AT TT A T
(intron 8) Renal Involvement 124 78 (62.90) 33 (26.61) 13 (10.48) 0.762 0.238

No Renal Involvement 287 183 (63.76) 93 (32.40) 11 (3.83) 0.800 0.200
P 0.237

rs6954345  Total CC CG GG C G
(exon 9) Renal Involvement 120 69 (57.50) 41 (34.17) 10 (8.33) 0.75 0.25
Ser311Cys No Renal Involvement 286 171 (59.79) 94 (32.87) 21 (7.34) 0.76 0.24

P 0.6219

rs13306702 Total GG GC CC G C
after 3'-UTR Renal Involvement 123 114 (92.68) 8 (6.50) 1 (0.81) 0.96 0.04

No Renal Involvement 287 276 (96.17) 11 (3.83) 0 (0.00) 0.98 0.02
P 0.1203

rs17876205 Total GG GC CC G C
after 3'-UTR Renal Involvement 123 115 (93.50) 8 (6.50) 0 (0.00) 0.97 0.03

No Renal Involvement 284 279 (98.24) 5 (1.76) 0 (0.00) 0.99 0.01
P 0.0475

     P  value for Allele frequency difference, unadjusted 
    *P  value for genotype distribution, adjusted for recruitment site and age

Alleles

         P* 0.0170

       P* 0.245

         P* 0.0190

         P* 0.9160

          P* 0.0220

        P* 0.402

       P* 0.058

          P* 0.7640

          P* 0.1210

        P* 0.367

Genotype (%)
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5.7 SINGLE-SITE ANALYSIS OF PON2 POLYMORPHISMS WITH 

PARAMETERS OF LDL OXIDATION 

Table 18 shows the PON2 genotype specific mean±SD values for the significant associations 

identified with the parameters of LDL oxidation (oxLDL) in Pittsburgh SLE cases. Data on 

all nine parameters of oxLDL that were evaluated in our study was available for 247/348 

SLE cases for the Pittsburgh recruitment site. The associations that were indentified to be 

significant include PON2/rs13306702 with Ig(M)  antibodies for copper-modified oxLDL (P= 

0.0343), PON2/rs17876205 with E06 antibody (P= 0.031), PON2/rs10261470, PON2/rs4729189 

and PON2/rs2286233 with Ig(M)  antibodies for LDL immune complex with p values of  

0.0193, 0.0282, and 0.0453, respectively, PON2/rs2286233 and PON2/rs11545941(Ala148Gly) 

with Ig(M) antibody for MDA modified LDL with p values of 0.0016 and 0.0282, respectively. 

We also checked for association of oxLDL with PON activity, but could not detect any 

(data not shown). 
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Table 18. Genotype specific values of PON2 associations with parameters of LDL oxidation* 

PON2 SNP Genotype [counts] Mean ± SD OxLDL-Parameter P

rs13306702
GG[281] 4927.31 ± 4094.49 anti-cu-modified OxLDL (IgM) 0.0343

GC[9] 7995.19 ± 4519.51
CC[0] NA NA

rs17876205
GG[275] 7136.17 ± 3782.18 OxLDL-EO6 (oxPL/Apo B) 0.031

GC[9] 9860.58 ± 4496.91
CC[0] NA NA

rs10261470
GG[224] 4289.00 ± 2128.03 LDL immune complexes (IgM) 0.0193
GA[64] 4980.12 ± 2399.39
AA[3] 2063.86 ± 1064.65

rs4729189
AA[187] 4374.52 ± 1961.31 LDL immune complexes (IgM) 0.0282
AT[87] 4793.61 ± 2717.48
TT[13] 2813.77 ± 826.82

rs22862333
AA[226] 4547.98 ± 2139.32 LDL immune complexes (IgM) 0.0453
AT[57] 4084.75 ± 2510.59
TT[5] 2925.54 ± 763.74

rs22862333
AA[226] 15574.93 ± 9301.73 anti-MDA-modified LDL (IgM) 0.0016
AT[57] 12240.66 ± 9207.90
TT[5] 7139.98 ± 6743.77

rs11545941(Ala148Gly)
CC[170] 13370.07 ± 8615.02 anti-MDA-modified LDL (IgM) 0.0282
CG[95] 16750.00 ± 10172.49
GG[24] 16252.39 ± 9568.80

  *Mean ±SD  values are adjusted for age,BMI,smoking,HDL-C, total-cholesterol, triglycerides and high blood pressure. In
parenthesis are the number of  people for a paricular parameter of oxLDL for that genotype. NA--Not applicable for that paricular 
susbet. P values are based on the transformed data, adjusted for age,BMI,smoking, HDL-C, cholesterol,triglycerides.
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5.8 ASSOCIATION PON2 TAGSNPS WITH SUBCLINICAL CARDIOVASCULAR 

DISEASE 

The subclinical cardiovascular disease measures that were examined in our study were carotid 

plaque and carotid IMT. 

5.8.1 Single-site analysis for carotid plaque 

Table 19 shows the univariate analysis of PON2 tagSNPs with carotid plaque in combined 

(Pittsburgh +Chicago) white SLE cases (n=416) which was stratified by the presence (n=102) or 

absence (n=211) of carotid plaque.  Single-site analyses of PON2 variants with carotid plaque 

identified PON2/rs11981433 and PON2/rs12704795 variants with significant association with 

both allele frequency difference (p value 0.0127 and 0.0122) and genotype distribution (P = 0.03 

and 0.01).  The MAF of PON2/rs11981433T>C variant was 33% in white SLE cases with plaque 

and 43% in white SLE cases without plaque while the genotype distribution was 42.42%/35.71% 

for TT, 49.49%/42.38% for TC and 8.08% /21.90% for CC genotype in white SLE cases with 

plaque/white SLE cases without plaque. Similarly, MAF of PON2/rs12704795T>G variant was 

33% in white SLE cases with plaque and 43% in white SLE cases without plaque while the 

genotype distribution was 40.59%/35.75% for TT, 52.48%/41.55% for TG and 6.93% /22.71% 

for GG genotype in white SLE cases with plaque/white SLE cases without plaque. Based on 

biological evidence, these two SNPs were evaluated under recessive model (p value 0.016-0.0099 

for genotype distribution). The covariate adjusted odds ratio (OR) calculated under this recessive 
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model was 0.32 (95% CI= 0.12-0.81,P=0.016) for CCvsTT+TC genotype for 

PON2/rs11981433T>C variant. Similarly, OR was 0.28 (95%CI=0.10-0.73,P=0.0099) for 

GGvsTT+TG genotypes for PON2/rs12704795T>C variant.  For another SNP rs11982486, only 

the genotype distribution was statistically significant with a p value of 0.03 (Table 19).   
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Table 19. Univariate analysis of PON2 tagSNPs with carotid plaque in SLE whites 

rs17876183 Total GG GA AA G A
(5'UTR) With Plaque 101 97 (96.04) 4 (3.96) 0 (0.00) 0.98 0.02

Without plaque 210 204 (97.14) 5 (2.38) 0 (0.00) 0.98 0.02
P 0.7874

rs2299267 Total AA AG GG A G
(intron 1) With Plaque 101 68 (67.33) 27 (26.73) 6 (5.94) 0.81 0.19

Without plaque 211 141 (66.82) 63 (29.86) 7 (3.32) 0.82 0.18
P 0.7518

rs10261470 Total GG GA AA G A
(intron 1) With Plaque 102 78 (76.47) 23 (22.55) 1 (0.98) 0.88 0.12

Without plaque 210 164 (78.10) 43 (20.48) 3 (1.43) 0.88 0.12
P 0.8324

rs4729189 Total AA AT TT A T
(intron 1) With Plaque 100 65 (65.00) 29 (29.00) 6 (6.00) 0.80 0.21

Without plaque 209 136 (65.07) 66 (31.58) 7 (3.35) 0.81 0.19
P 0.6925

rs12534274 Total GG GA AA G A
(intron 1) With Plaque 101 53 (54.08) 36 (36.73) 9 (9.18) 0.724 0.276

Without plaque 207 120 (57.97) 70 (33.82) 17 (8.21) 0.749 0.251
P 0.5266

rs11982486 Total TT TC CC T C
(intron 1) With Plaque 100 48 (48.00) 47 (47.00) 5 (5.00) 0.72 0.29

Without plaque 211 97 (45.97) 81 (38.39) 33 (15.64) 0.65 0.35
P 0.1084

rs11981433 Total TT TC CC T C
(intron 1) With Plaque 99 42 (42.42) 49 (49.49) 8 (8.08) 0.67 0.33

Without plaque 210 75 (35.71) 89 (42.38) 46 (21.90) 0.57 0.43
P 0.0127

rs2286233 Total AA AT TT A T
(intron 1) With Plaque 102 76 (74.51) 21 (20.59) 5 (4.90) 0.85 0.15

Without plaque 211 168 (79.62) 39 (18.48) 4 (1.90) 0.89 0.11
P 0.1679

rs12704795 Total TT TG GG T G
(intron 1) With Plaque 101 41 (40.59) 53 (52.48) 7 (6.93) 0.67 0.33

Without plaque 207 74 (35.75) 86 (41.55) 47 (22.71) 0.57 0.43
P 0.0122

 P  value for Allele frequency difference, unadjusted 
*P  value for genotype distribution, adjusted for recruitment site,age,BMI,smoking and lipid profile

         P* 0.01

         P* 0.76

         P* 0.67

         P* 0.85

           P* 0.03

         P* 0.03

         P* 0.46

Genotype (%) Alleles

        P* 0.39

          P* 0.80
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Table 19 (cont’d). 

Total CC CG GG C G
rs17876193 With Plaque 100 72 (72.00) 27 (27.00) 1 (1.00) 0.86 0.15

(intron 2) Without plaque 211 176 (83.41) 33 (15.64) 2 (0.95) 0.91 0.09
P 0.0439

rs17876116 Total GG GT TT G T
(intron 2) With Plaque 101 94 (93.07) 7 (6.93) 0 (0.00) 0.97 0.04

Without plaque 211 183 (86.73) 27 (12.80) 1 (0.47) 0.93 0.07
P 0.0558

rs1639 Total TT TG GG T G
(intron 3) With Plaque 99 55 (55.56) 37 (37.37) 7 (7.07) 0.74 0.26

Without plaque 210 137 (65.24) 60 (28.57) 13 (6.19) 0.80 0.21
P 0.1511

rs11545941  Total CC CG GG C G
(exon5) With Plaque 100 55 (55.00) 37 (37.00) 8 (8.00) 0.73 0.26
Ala148Gly Without plaque 210 122 (58.10) 70 (33.33) 18 (8.57) 0.74 0.25

P 0.7380

rs987539 Total CC CT TT C T
(intron 6) With Plaque 100 23 (23.00) 46 (46.00) 31 (31.00) 0.46 0.54

Without plaque 208 66 (31.73) 90 (43.27) 52 (25.00) 0.53 0.46
P 0.0860

rs3735586 Total TT TA AA T A
(intron 7) With Plaque 101 60 (59.41) 31 (30.69) 10 (9.90) 0.75 0.25

Without plaque 210 128 (60.95) 68 (32.38) 14 (6.67) 0.77 0.23
P 0.51

rs9641164 Total AA AT TT A T
(intron 8) With Plaque 101 58 (57.43) 36 (35.64) 7 (6.93) 0.750 0.240

Without plaque 211 139 (65.88) 59 (27.96) 13 (6.16) 0.790 0.200
P 0.2016

rs6954345  Total CC CG GG C G
(exon 9) With Plaque 100 59 (59.00) 31 (31.00) 10 (10.00) 0.75 0.26
Ser311Cys Without plaque 208 124 (59.62) 70 (33.65) 14 (6.73) 0.76 0.24

P 0.6014

rs13306702 Total GG GC CC G C
after 3'-UTR With Plaque 101 98 (97.03) 3 (2.97) 0 (0.00) 0.99 0.98

Without plaque 211 201 (95.26) 10 (4.74) 0 (0.00) 0.02 0.02
P 0.4330

rs17876205 Total GG GC CC G C
after 3'-UTR With Plaque 99 94 (94.95) 5 (5.05) 0 (0.00) 0.98 0.02

Without plaque 210 205 (97.62) 5 (2.38) 0 (0.00) 0.99 0.01
P 0.2790

 P  value for Allele frequency difference, unadjusted 
*P  value for genotype distribution, adjusted for recruitment site,age,BMI,smoking and lipid profile

         P* 0.38

        P* 0.33

        P* 0.97

        P* 0.20

         P*  0.87

        P* 0.44

        P* 0.46

         P* 0.55

Alleles

        P* 0.23

         P* 0.31

Genotype (%)

 



  78

                                                          

5.8.2 Single-site analysis for carotid IMT 

Table 20 shows the univariate analysis of PON2 tagSNPs with carotid IMT in combined 

(Pittsburgh +Chicago) white SLE cases (n=416) of which we had data for only 312 individuals 

with carotid IMT. In single-site PON2 variants rs12704795 and rs17876205 showed modest 

association with carotid IMT, with p values of 0.037 and 0.017, respectively under codominant 

model. Under recessive model, p value for the first SNP (PON2/rs12704795) was 0.01, while p 

value for another variant PON2/rs11981433 was reported to be statistically significant (0.03). 

We also checked a possible relation between the parameters of LDL oxidation and 

subclinical CVD measures (carotid plaque and carotid IMT) but did not detect any association 

(results not shown).  Similar to oxidized LDL parameters we also checked for any association 

between carotid plaque or carotid IMT with PON activity, but did not detect any (data not 

shown). 
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Table 20. Carotid IMT measurements (Mean ±SD) by PON2 genotype in white SLE cases * 

PON2 SNP Genotype[counts] Mean ± SD PON2 SNP Genotype [counts] Mean ± SD
rs17876183 GG[272] 0.687 ± 0.108 rs17876116 GG[250] 0.685 ± 0.105

GA[8] 0.678 ± 0.076 GT[31] 0.692 ± 0.120
AA[1] 0.668 ± NA TT[1] 0.749 ± 0.000

rs2299267 AA[187] 0.682 ± 0.108 rs1639 TT[172] 0.680 ± 0.102
AG[83] 0.692 ± 0.093 TG[90] 0.694 ± 0.107
GG[12] 0.724 ± 0.164 GG[18] 0.709 ± 0.150

rs10261470 GG[217] 0.682 ± 0.096 rs11545941 CC[167] 0.685 ± 0.102
GA[61] 0.701 ± 0.138 (Ala148Gly) CG[93] 0.685 ± 0.121
AA[4] 0.749 ± 0.096 GG[20] 0.700 ± 0.068

rs4729189 AA[176] 0.686 ± 0.098 rs987539 CC[82] 0.675 ± 0.085
AT[91] 0.687 ± 0.124 CT[124] 0.687 ± 0.114
TT[12] 0.705 ± 0.084 TT[72] 0.702 ± 0.112

rs12534274 GG[161] 0.682 ± 0.097 rs3735586 TT[175] 0.684 ± 0.100
GA[94] 0.696 ± 0.126 TA[86] 0.689 ± 0.126
AA[22] 0.684 ± 0.088 AA[20] 0.702 ± 0.072

rs11982486 TT[129] 0.695 ± 0.123 rs9641164 AA[176] 0.680 ± 0.100
TC[118] 0.683 ± 0.085 AT[88] 0.693 ± 0.106
CC[34] 0.667 ± 0.104 TT[18] 0.720 ± 0.157

rs11981433 TT[103] 0.693 ± 0.111 rs6954345 CC[170] 0.686 ± 0.100
TC[128] 0.689 ± 0.110 (Ser311Cys) CG[88] 0.692 ± 0.124
CC[49] 0.663 ± 0.082 GG[20] 0.696 ± 0.072

rs2286233 AA[219] 0.686 ± 0.109 rs13306702 monomorphic 0.687 ± 0.107
AT[56] 0.694 ± 0.099 0.664 ± 0.105
TT[8] 0.635 ± 0.091 NaN

rs12704795 TT[101] 0.694 ± 0.112 rs17876205 GG[273] 0.684 ± 0.105
TG[128] 0.692 ± 0.108 GC[6] 0.784 ± 0.153
GG[49] 0.661 ± 0.080 CC[0] Na NA

rs17876193 CC[225] 0.681 ± 0.100
CG[53] 0.716 ± 0.128
GG[3] 0.621 ± 0.052

 apllicable for that particular subset.P values are based on the transformed data, adjusted for recruitment site, age, BMI,smoking,lipid profile
*Mean ±SD, and genotype counts in parenthesis are  adjusted for recruitment site, age, BMI, smoking and lipid profile. NA--not   

P 0.14405

P 0.01671

P 0.12911

P 0.31959

P 0.2613

P 0.59723

P 0.63808

P 0.35364

P 0.59723

P 0.0517

                             

  P 0.08528

P 0.1456

P 0.0372

  P 0.50097

  P 0.95597

P 0.594

  P 0.20874

  P 0.82022

  P 0.23027
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5.9 CORRELATION OF PON2 GENETIC VARIATION WITH PON ACTIVITY 

Tables 21 shows the mean ± SD levels of PON activity in blacks and whites, further stratified by 

case-control status for both the recruitment sites (Pittsburgh and Chicago). Since serum PON 

activity was measured at different time points with slightly different protocols for Pittsburgh and 

Chicago and their mean values stratified by race and case–control status differed for each locale, 

therefore, analyses were done separately for each site. 

For Pittsburgh, the overall mean ± SD values for  PON activity was significantly higher 

in blacks (1096.8071 ± 595.7473 units/liter) than in whites (671.4365 ±   466.8715 units/liter) 

(P<0.0001). A similar trend was observed for the Chicago recruitment samples (whites vs blacks, 

351.4333±292.5718 vs 727.2024±440.1286 units/liter, P<0.001). Association of each PON2 

variant with PON activity was first analyzed in single-site and then in a multiple regression 

model along with the known modulators of PON activity (PON1 and PON3 SNPs) to determine 

the independent contribution of PON2 variants with PON activity. 
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Table 21. Mean ± SD values of PON Activity in Pittsburgh and Chicago site 

Mean  ± SD values of PON/ paraxon activity
(n*) (n)

cases 613.877 ± 412.9438 [291] 1022.2 ± 518.358 [38]
controls 709.854 ± 496.3924 [436] 1164.3 ± 656.933 [42]

P = 0.00653 P = 0.29

Overall (between whites and blacks) 671.437 ± 466.8715 [725] 1096.8 ± 595.747 [79]
P< 0.0001

Mean  ± SD values of PON/ paraxon activity
(n*) (n)

cases 326.53 ± 248.0744 [68] 711.87 ± 470.289 [25]
controls 381.142 ± 338.0211 [57] 751.16 ± 402.106 [16]

P = 0.3 P =0.7843

Overall (between whites and blacks) 351.433 ± 292.5718 [93] 727.2 ± 440.129 [73]
P< 0.0001

             Pittsburgh black         Pittsburgh white

          Chicago white            Chicago black

*[n]-number of subjects with PON activity data  
 

5.9.1 Association of PON activity with PON2 genotype in Pittsburgh cohort 

Table 22 for whites and 23 for blacks show the association (p) values and the PON activity 

(mean ±SD) values of each PON2 variant with PON activity for the Pittsburgh recruitment site. 

Within each ethnic group for the Pittsburgh sample, cases and controls were analyzed together, 

adjusting for disease status in addition to other covariates (age, BMI and smoking).  

In Pittsburgh whites, PON activity data was available for 291/346 SLE cases and 434 

/454 controls. Single-site analyses in combined (cases+controls) Pittsburgh Caucasian sample 

identified eleven SNPs [PON2/rs10261470, rs4729189, rs12534274, rs11982486, rs11981433, 

rs12704795, rs11545941(Ala148Gly), rs987539, rs3735586, rs6954345(Ser311Cys), rs2299267]  
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with significant association (p value ranging between 0.027-2.2x10-16) with PON/paraoxon 

activity after adjusting for disease status, age, BMI and smoking.  

In blacks, PON activity data was available for 38/48 SLE cases and 42/42 controls, where 

single-site analyses in the combined (cases+controls) sample reported modest association with 5  

variants [PON2/rs11545941(Ala148Gly), rs3735586, rs6954345(Ser311Cys), rs9641164 and 

rs1639] (p value ranging between 0.01-0.036) with PON activity, after adjusting for disease status, 

age, BMI and smoking. 

5.9.2 Association of PON activity with PON2 genotype in Chicago cohort

Table 22 for whites and 23 for blacks show the association (p) values and the PON activity 

(mean ±SD) values of each PON2 variant with PON activity for the Chicago recruitment site. 

PON activity analyses for the Chicago recruitment site were performed similar to that of 

Pittsburgh recruitment site, where blacks and whites were analyzed separately, and within each 

ethnic group the cases and controls were analyzed together (adjusted for disease status, age, BMI 

and smoking). For the recently collected Chicago samples, we had data for all 68 SLE cases and 

57 controls that were included in this study. In univariate analyses, 4 SNPs 

[PON2/rs6954345(Ser311Cys), rs12534274, rs11545941(Ala148Gly), rs3735586] showed 

significant association (p values ranging from 0.002-0.0001) with PON activity after 

adjusting for disease status, age, BMI and smoking. 

In Chicago blacks with data available for all 16 SLE cases and 25 controls, only 

PON2/rs987539 SNP showed modest association (p value 0.01) with PON activity in combined 

(cases+controls) blacks, after adjusting for disease status, age, BMI and smoking. 
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Table 22. PON activity, by PON2 genotype in whites *

Chicago whites(cases+controls)

Genotype [Counts] Mean* ± SD Genotype [Counts] Mean ± SD
rs2299267 AA[443] 716.059 ± 508.048 AA[78] 358.2837 ± 277.081

AG[177] 591.322 ± 366.774 AG[30] 294.1194 ± 232.752
GG[21] 618.678 ± 442.365 GG[4] 121.4493 ± 36.5229

rs10261470 GG[472] 712.076 ± 493.132 GG[92] 362.8103 ± 300.923
GA[147] 582.648 ± 396.808 GA[16] 332.8144 ± 234.123
AA[13] 450.395 ± 316.044 AA[4] 72.37211 ± 69.2638

rs4729189 AA[384] 745.129 ± 511.293 AA[72] 377.5407 ± 323.301
AT[209] 582.501 ± 395.509 AT[36] 314.5768 ± 209.117
TT[33] 507.432 ± 349.935 TT[5] 82.33868 ± 69.3882

rs12534274 GG[356] 542.125 ± 380.158 GG[64] 255.526 ± 211.089
GA[208] 786.472 ± 478.366 GA[37] 419.7143 ± 335.109
AA[59] 1109.8 ± 607.821 AA[9] 637.8863 ± 357.035

rs11982486 TT[303] 743.109 ± 499.471 TT[45] 374.3762 ± 287.923
TC[242] 639.447 ± 445.61 TC[53] 316.0525 ± 290.698
CC[86] 551.103 ± 419.672 CC[14] 319.7593 ± 288.616

rs11981433 TT[229] 785.407 ± 489.971 TT[38] 423.5202 ± 299.357
TC[278] 661.08 ± 467.505 TC[50] 350.8275 ± 301.643
CC[126] 517.301 ± 402.545 CC[20] 244.5782 ± 229.98

rs12704795 TT[227] 789.143 ± 490.473 TT[36] 413.961 ± 293.156
TG[275] 659.678 ± 470.226 TG[55] 329.0813 ± 292.134
GG[125] 519.011 ± 404.101 GG[21] 236.3891 ± 232.225

rs11545941(Ala148Gly) CC[387] 595.213 ± 419.246 CC[61] 260.2942 ± 213.049
CG[192] 738.126 ± 469.039 CG[40] 453.0547 ± 354.073
GG[52] 1062.22 ± 631.004 GG[11] 439.4769 ± 278.873

rs987539 TT[147] 821.803 ± 513.86 TT[27] 421.1806 ± 294.424
CT[272] 705.68 ± 474.82 CT[50] 360.2296 ± 309.075
CC[202] 525.872 ± 381.208 CC[34] 249.3817 ± 224.268

rs3735586 TT[386] 585.724 ± 399.476 TT[65] 259.4186 ± 202.317
TA[196] 758.265 ± 493.191 TA[35] 485.7498 ± 356.921
AA[49] 1061.04 ± 655.052 AA[12] 414.4739 ± 327.407

age, BMI, and smoking . NA-- not apllicable for that subset.

   Pittsburgh whites(cases+controls)

 *Values are the mean ± SEM units/ litre for paraoxon, adjusted for disease, age , BMI and smoking. n values in parenthesis 

adjusted for, disease, age , BMI and smoking. # Values are P values based on square root transformed data adjusted for disease,  

0.027# 0.08094

0.0036 0.0815

0.00006121 0.05224

2.20E-16 0.0001

6.12E-05 0.5244

6.12E-05 0.06986

6.96E-08 0.05069

4.487E-11 0.00246

3.38E-09 0.05066

1.43E-11 0.0009299
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Table 22 (cont’d). 

 Chicago whites (cases+controls)

Genotype [Counts] Mean ± SD Genotype [Counts] Mean ± SD
rs17876183 GG[607] 677.4925 ± 475.1301 GG[107] 350.977 ± 294.877

GA[24] 660.9257 ± 439.4486 GA[4] 134.9 ± 64.1465
AA[1] 503.9238 ± NA AA[0] NA ± NA

rs17876193 CC[526] 697.5648 ± 486.9874 CC[91] 348.29 ± 307.024
CG[96] 572.9768 ± 380.8751 CG[21] 303.808 ± 186.626
GG[9] 597.5932 ± 445.5286 GG[0] NA ± NA

rs17876116 GG[577] 682.8981 ± 479.1594 GG[99] 354.868 ± 293.836
GT[55] 631.1826 ± 402.7563 GT[13] 281.339 ± 267.033
TT[5] 71.04268 ± NA TT[1] 130.011 ± NA

rs1639 TT[398] 670.7315 ± 498.6099 TT[73] 353.766 ± 308.551
TG[193] 671.5979 ± 412.0905 TG[31] 343.558 ± 264.379
GG[31] 701.4885 ± 428.2126 GG[5] 292.578 ± 219.208

rs17876205 GG[609] 679.9885 ± 474.2099 GG[110] 343.793 ± 287.024
GC[20] 606.3972 ± 458.1739 GC[2] 74.5235 ± 40.3412
CC[0] ± CC[0] ±

rs13306702 GG[612] 676.2834 ± 474.3334 GG[98] 336.944 ± 272.63
GC[19] 633.2168 ± 381.9003 GC[11] 285.717 ± 204.193
CC[2] 1450.874 ± 422.1571 CC[0] ±

rs9641164 AA[409] 676.136 ± 505.0579 AA[72] 350.054 ± 303.708
AT[194] 671.076 ± 407.3522 AT[36] 336.969 ± 271.995
TT[30] 736.3305 ± 427.3337 TT[4] 362.511 ± 216.775

rs2286233 AA[478] 699.1022 ± 498.9292 AA[87] 338.344 ± 283.647
AT[145] 608.8927 ± 380.2248 AT[20] 309.616 ± 246.46

TT[9] 571.532 ± 299.4656 TT[6] 504.809 ± 449.332

rs6954345(ser311Cys) CC[387] 585.1964 ± 399.6148 CC[69] 256.615 ± 203.596
CG[195] 757.8552 ± 492.4825 CG[39] 471.177 ± 355.927
GG[48] 1082.87 ± 649.7644 GG[8] 460.935 ± 322.859

age, BMI, and smoking . NA-- not apllicable for that subset.

    Pittsburgh whites (cases+controls)

 *Values are the mean ± SEM units/ litre for paraoxon, adjusted for disease, age , BMI and smoking. n values in parenthesis 
adjusted for, disease, age , BMI and smoking. # Values are P values based on square root transformed data adjusted for disease,  

0.9405

0.066007

0.1092

0.7192

0.220123 0.3431

0.831782 0.8655

5.33E-01 0.1623

0.098513

3.19E-12 0.0009928

0.7086

0.673384 0.9538

2.80E-01 0.4952
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Table 23. PON activity, by PON2 genotype in blacks* 

        Chicago whites (cases+controls)

Genotype [Counts] Mean* ± SD Genotype [Counts] Mean ± SD
rs2299267 AA[50] 1117.35 ± 545.502 AA[26] 763.929 ± 467.436

AG[20] 1077.9 ± 705.970 AG[5] 787.047 ± 462.298
GG[1] 335.846 ± NA GG[2] 438.821 ± 80.4196

rs10261470 GG[44] 1118.7 ± 600.711 GG[24] 777.76 ± 455.64
GA[22] 1088.91 ± 616.943 GA[8] 738.971 ± 432.356
AA[2] 873.624 ± 24.611 AA[1] 97.0406 ± NA

rs4729189 AA[37] 1131.9 ± 524.152 AA[18] 854.584 ± 468.526
AT[28] 1115.7 ± 702.618 AT[15] 619.503 ± 409.288
TT[3] 820.825 ± 476.355 TT[0] NA ± NA

rs12534274 GG[41] 966.358 ± 549.118 GG[21] 715.74 ± 501.099
GA[26] 1282.2 ± 644.465 GA[11] 853.971 ± 333.855
AA[3] 1381.98 ± 238.554 AA[1] 715.74 ± NA

rs11982486 TT[35] 1114.38 ± 572.285 TT[17] 686.598 ± 283.492
TC[30] 1101.26 ± 652.150 TC[15] 800.433 ± 602.154
CC[6] 953.364 ± 459.111 CC[1] 996.385 ± NA

rs11981433 TT[32] 1128.26 ± 595.122 TT[15] 756.822 ± 372.864
TC[33] 1080.22 ± 644.842 TC[16] 727.223 ± 548.332
CC[4] 1072.94 ± 143.573 CC[1] 994.934 ± NA

rs12704795 TT[32] 1128.26 ± 595.122 TT[17] 765.598 ± 354.682
TG[33] 1080.22 ± 644.842 TG[15] 710.9 ± 562.441
GG[4] 1072.94 ± 143.573 GG[1] 996.385 ± NA

rs11545941(Ala148Gly) CC[37] 920.224 ± 564.850 CC[21] 752.255 ± 503.494
CG[31] 1275.36 ± 595.694 CG[8] 773.875 ± 403.109
GG[3] 1392.21 ± 247.411 GG[4] 671.67 ± 312.26

rs987539 TT[23] 1271.77 ± 545.241 TT[18] 799.52 ± 445.351
CT[33] 1106.58 ± 603.007 CT[9] 912.814 ± 358.233
CC[13] 805.249 ± 593.986 CC[6] 344.727 ± 415.394

rs3735586 TT[37] 939.979 ± 560.870 TT[17] 629.061 ± 453.422
TA[27] 1179.84 ± 592.200 TA[13] 888.709 ± 396.405
AA[7] 1589.47 ± 486.431 AA[3] 809.262 ± 649.969

age, BMI, and smoking . NA-- not apllicable for that subset.

 *Values are the mean ± SEM units/ litre for paraoxon, adjusted for disease, age , BMI and smoking. n values in parenthesis 
adjusted for, disease, age , BMI and smoking. # Values are P values based on square root transformed data adjusted for 

        Pittsburgh whites (cases+controls)

0.103

0.0187

0.4014#

0.8748

0.542

0.916

0.978

0.978

0.0205

0.8109

0.1952

0.1277

0.0699

0.3074

0.805

0.6934

0.9235

0.01261

0.2499

0.5944
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Table 23 (Cont’d). 

        Chicago whites (cases+controls)

Genotype [Counts] Mean* ± SD Genotype [Counts] Mean ± SD
rs17876183 GG[69] 1105.507 ± 597.963 GG[32] 762.433 ± 450.835

GA[1] 823.8448 ± NA GA[1] 277.173 ± NA
AA[0] ± AA[0] NA ± NA

rs17876193 CC[65] 1122.503 ± 574.165 CC[30] 741.797 ± 464.601
CG[6] 799.737 ± 772.895 CG[1] 462.773 ± NA
GG[0] NA ± NA GG[0] NA ± NA

rs17876116 GG[69] 1110.67 ± 593.894 GG[33] 747.729 ± 451.704
GT[1] 467.3668 ± NA GT[0] NA ± NA
TT[0] NA ± NA TT[0] NA ± NA

rs1639 TT[60] 1165.924 ± 593.045 TT[24] 686.410 ± 432.132
TG[7] 581.8786 ± 442.863 TG[3] 807.886 ± 197.813
GG[1] 561.5474 ± NA GG[1] 610.929 ± NA

rs17876205 GG[70] 1101.483 ± 594.568 GG[32] 757.281 ± 453.546
GC[0] NA ± NA GC[0] NA ± NA
CC[0] NA ± NA CC[0] NA ± NA

rs13306702 GG[64] 1110.254 ± 599.636 GG[28] 764.920 ± 466.053
GC[6] 1007.934 ± 580.047 GC[5] 651.456 ± 390.511
CC[0] NA ± NA CC[0] NA ± NA

rs9641164 AA[64] 1148.419 ± 586.746 AA[30] 763.871 ± 469.346
AT[7] 608.8998 ± 434.344 AT[2] 495.686 ± 206.291
TT[0] NA ± NA TT[1] 631.613 ± NA

rs2286233 AA[38] 1166.023 ± 533.417 AA[19] 748.606 ± 448.896
AT[26] 1089.439 ± 694.531 AT[13] 752.372 ± 491.105
TT[6] 744.9265 ± 419.596 TT[0] ±

rs6954345(Ser311Cys) CC[38] 935.7802 ± 549.982 CC[23] 739.836 ± 487.192
CG[29] 1306.135 ± 595.324 CG[6] 940.929 ± 356.099
GG[4] 1080.888 ± 654.597 GG[3] 562.693 ± 293.168

age, BMI, and smoking . NA-- not apllicable for that subset.

        Pittsburgh whites (cases+controls)

 *Values are the mean ± SEM units/ litre for paraoxon, adjusted for disease, age , BMI and smoking. n values in parenthesis 
adjusted for, disease, age , BMI and smoking. # Values are P values based on square root transformed data adjusted for disease,  

0.701#

0.0777

0.3426

0.0365

0.01107

0.439

0.913

0.963

0.586

0.271

0.218

NA

0.827

NA

0.739

0.0174

NA

0.7445
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5.9.3 Multiple regression analyses of PON2 SNPs with PON activity 

Our previous studies on the SLE cohort have identified PON1/192, PON1/55, PON3/10340 and 

PON3/2115 to be the significant contributors to PON activity variation. Therefore, before 

performing multiple regression of PON2 variants along with these known contributors, pairwise 

LD was analyzed between all the selected 19 PON2 SNPs and PON1/192, PON1/55, 

PON3/10340 and PON3/2115 variants. This pairwise LD was computed separately for each 

ethnic group, at the two recruitment sites  (Pittsburgh and Chicago). 

5.9.3.1 LD pattern of PON2 SNPs with PON1 and PON3 variants in whites 

 Figures 17 and 18 show the LD structure of the selected 19 PON2 variants with PON1/192, 

PON1/55, PON3/10340 and PON3/2115 for the Pittsburgh whites and Chicago whites, 

respectively. Tagger analysis (r2 cut-off ≥ 0.7) of all these variants in Pittsburgh whites 

(cases+controls) was similar to that of Chicago whites (cases+controls), results summarized in 

Table 24. PON2/Ser311Cys(rs6954345) showed significant LD with PON3/10340 in Pittsburgh 

whites (cases+controls) [D'=0.91, r2=0.78) and Chicago whites (cases+controls) [D'=0.88, 

r2=0.74]. This SNP PON2/rs6954345(Ser311Cys) also tagged three other PON2 variants 

[(PON2/rs3735586, PON2/rs12534274 and PON2/rs11545941(Ala148Gly)]. Another PON3 

polymorphism, PON3/2115 was also identified to be in significant LD with PON2/rs17876193 in 

Pittsburgh whites (cases+controls)  [D'=91, r2=0.82] and in Chicago whites (cases+controls) 

[D'=93, r2=0.73]. Two other highly correlated PON2 SNP pairs were PON2/rs11981433 & 

PON2/rs12704795.  Of these highly correlated SNP pairs, the PON2 variants that were included 

in linear multiple regression analyses for PON activity were PON2/rs6954345(Ser311Cys), 

rs11981433, rs9641164 and rs17876193. 
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Figure 17. LD plot of 19 PON2 SNPs with PON1/192(rs662), PON1/55(rs854560),          

               PON3/10340(rs740264) and PON3/2115(rs178764563 in Pittsburgh whites (cases+controls). 

                                                           Total: 797 individuals (after 3 individuals missing >50% genotype are excluded) 
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    Figure 18. LD plot of 19 PON2 SNPs with PON1/192(rs662), PON1/55(rs854560),                        

                PON3/10340(rs740264) and PON3/2115(rs178764563 in Chicago whites (cases+controls). 

                                    Total: 124 individuals (after 3 individuals missing >50% genotype are excluded) 
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Table 24. Tagger analyses (r2≥ 0.7) of PON2  SNPs with PON1* and PON3** in      

Pittsburgh whites# and Chicago whites##                                        

Test Alleles Captured

rs6954345 (Ser311Cys) rs3735586, rs11545941 (Ala148Gly), rs12534274,PON3 /rs740264 (10340)

rs17876193 PON3 /rs17884563 (2115)

rs1639 rs9641164

rs12704795 rs11981433

rs11982486

rs10261470

rs17876183

rs987539

PON1/ rs854560 (L55M)

rs2299267

rs17876116

rs4729189

rs2286233

PON1/ rs662 (Q192R)

rs13306702

rs17876205
 

*PON1 SNPS are PON1/rs662 (Q192R), PON1/rs854560 (L55M), **PON3 SNPs are      
PON3/rs740264(10340) and PON3/rs17884563 (2115) SNPs 
# 797 individuals in Pittsburgh white (cases+ controls) 
##124 individuals in Chicago white (cases+ controls) 
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5.9.3.2 LD pattern of PON2 SNPs with PON1 and PON3 variants in blacks

Table 25 shows the tagger analyses (cut off r2  ≥ 0.07 ) of PON2 variants with PON1(PON1/192 and

PON1/55) and  PON3 (PON3/10340 and PON3/55) SNPs in Pittsburgh blacks (cases+controls).

The black sample in Chicago was considerably small therefore, LD pattern was analyzed only

 for Pittsburgh blacks (Figure 19). In Pittsburgh blacks (cases+controls) significant LD was

 observed between  PON2/rs6954345 (Ser311Cys) and SNPs [PON2/rs3735586, 

PON2/rs12534274], PON3/2115 and SNPs [PON2/rs17876193 and PON2/rs9641164] 

 and PON2/ rs12704795 and SNPs [PON2/rs11981433, rs11982486].  

 

Table 25. Tagger analyses (r2≥ 0.7) of PON2  SNPs with PON1* and PON3** in 

Pittsburgh blacks 

Test Alleles Captured

rs6954345 (Ser311Cys) rs3735586, rs11545941 (Ala148Gly),rs12534274

PON3/rs740264 (10340)

PON3 /rs17884563 (2115) rs17876193,rs9641164

rs1639

rs12704795 rs11981433,rs11982486

rs10261470

rs17876183

rs987539

PON1/ rs854560 (L55M)

rs2299267

rs17876116

rs4729189

rs2286233

PON1/ rs662 (Q192R)

rs13306702

rs17876205--monomorphic not included
 

*PON1 SNPS are PON1/rs662 (Q192R), PON1/rs854560 (L55M), **PON3 SNPs are      
PON3/rs740264(10340) and PON3/rs17884563 (2115) SNPs 
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Figure 19. LD plot of 19 PON2 SNPs with PON1/192, PON1/55, PON3/10340 and 

PON3/2115 in Pittsburgh blacks (cases+controls). 
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5.9.3.3 Multiple regression analyses for PON activity in whites 

Table 26 summarizes the results of multiple regression analyses of PON2 SNPs (along with 

PON1 and PON3) with PON activity in Pittsburgh whites (cases+controls). 

For the Pittsburgh recruitment site in combined (cases+controls) whites, linear multiple 

regression analyses with PON activity-associated but not strongly correlated (r2 < 0.7) SNPs 

which included 7 PON2 SNPs along with PON1/192, PON1/55 and PON3/2115, identified 2 

PON2 associations, PON2/rs6954345(Ser311Cys) and PON2/rs987539 with  a  p value  of 

8.732x10-6  and 0.046, respectively with  PON/paraoxon activity, in addition to  PON1 and 

PON3. The overall contribution of these two PON2 SNPs rs6954345(Ser311Cys)  and 

PON2/rs987539 to the variation in  PON activity were 1.3% and 0.3%, respectively.  

Table 26 summarizes the results of multiple regression analyses of PON2 SNPs (along with 

PON1 and PON3) with PON activity for Chicago whites (cases+controls). For the Chicago 

recruitment site in combined (cases+controls) whites, when PON activity-associated but not 

strongly correlated (r2< 0.7) SNPs [PON1/192, PON1/55, PON3/2115, 

PON2/rs6954345(Ser311Cys)] were analyzed in a multiple regression model, no association was 

observed with  PON2. 

 

5.9.3.4 Multiple regression analyses for PON activity in blacks 

Table 26 shows the results of multiple regression analyses of PON2 SNPs (along with PON1 and 

PON3) with PON activity in Pittsburgh blacks (cases+controls). In combined (cases+controls) 

blacks when PON activity-associated but not strongly correlated (r2 < 0.7) SNPs [PON1/192, 

PON1/55, PON3/2115, PON3/10340, PON2/rs6954345(Ser311Cys), PON2/rs1639] were 
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evaluated in a multiple regression model, no association was observed with any of the PON2 

variants.  
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                                     Table 26. Multiple Linear regression of PON2 variants with PON1 and PON3*  
 

Pittsburgh (white)                                Chicago (white)                           Pittsburgh (black)

FACTORS P R2 FACTORS P R2 FACTORS P R2

disease 6.12E-10 disease 0.270755 disease 0.026637

age 0.18901 age 0.119893 age 0.13728

bmi 0.03749 bmi 0.814689 bmi 0.102469

smokever 0.11464 smokever 0.065752 smokever 0.168158

PON1/192 < 2.2e-16 0.4148 PON1/192 < 2.2e-16 0.4151 PON1/192 5.93E-08 0.3400

PON1/55 1.15E-08 0.0214 PON1/55 0.002538 0.0250 PON1/55 0.330154

PON3/2115 1.79E-05 0.0214 PON3/2115 0.154909 PON3/2115 0.809229

PON2/rs6954345(Ser311Cys) 8.73E-06 0.0128 PON2/rs6954345(Ser311Cys) 0.231924 PON2/rs6954345(Ser311Cys) 0.199363

PON2/rs987539 0.04607 0.0028 PON2/rs1639 0.556426

PON2/rs11981433 0.32783 PON3/10340 0.003333 0.0500

PON2/rs2299267 0.06136

PON2/rs4729189 0.55033

PON2/rs11982486 0.16634

PON2/rs10261470 0.68259

        * PON1 and PON3 SNPs –PON1/192, PON1/55, PON3/10340 and PON3/2115  
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6.0  DISCUSSION 

The Lupus Foundation of America estimates that approximately 1.5 million US residents and 

more than 5 million people all over the world are suffering from SLE with the prevalence 

varying between 20-60 cases per 100,000 (Danchenko et al. 2006), which is more pronounced in 

women than men. Females in their child bearing ages (15-44) years are reported to have the 

highest incidence rates and within the same gender, African American women show 3 times 

higher risk of SLE than Caucasians (Danchenko et al. 2006). Majority of deaths in SLE patients 

are attributed to CHD, which is seemingly high and even exceeds the mortality rates from all 

types of cancer (Manzi et al. 2000).  SLE poses a significant public health problem, since the 

disease symptoms are similar to many other common disorders and often people with SLE go 

unnoticed in their early stages. Medical care by use of immunosuppressive drugs has increased 

the life span of lupus patients, but lack of absolute cure is troubling. Given the heterogeneity in 

SLE symptoms, continuing efforts through research work to understand the underlying 

mechanism for this autoimmune disorder and its related complications would help in better 

prognosis of the disease.  

Like other complex disorders, SLE predisposition is determined by the combined effects 

of genetic and environmental factors. Several studies have established that genetic elements 

strongly influence SLE risk with possible involvement of multiple genes on several 

chromosomes (Deapen et al. 1992, Sestak et al. 1999, Lawrence et al. 1987). A linkage peak with 
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a LOD score of 2.40 on chromosome 7q21.1 at 77.5 Mb for SLE was identified by Gaffney et al. 

(2000).  PON multigene family (PON1, PON2 and PON3), which clusters on 7q21-22 at 94.5-

94.6 Mb, is in close vicinity to this linkage peak for SLE and hence PON2 qualifies as a 

positional candidate for SLE.  PON2, the oldest member of the PON cluster shares high degree 

of sequence and structural and functional similarity with the rest of its members, as all of them 

arose by gene duplication (Primo-Parmo et al. 1996). Although our earlier studies have not found 

any clear cut association with PON1 (except for few modest associations with p value ranging 

between 0.03-0.04) (Tripi et al. 2006), or PON3 (Sanghera et al. 2008) SNPs and SLE risk, we 

and others demonstrated a significant association between SLE risk and PON/paraoxon activity 

(Tripi et al. 2006, Alves et al. 2002, Kiss et al. 2007). In this study we have evaluated the role of 

the genetic variation of the remaining member of this gene family, PON2, with SLE risk and its 

related phenotypes.  

PON activity is under strong genetic influence with a major contribution from the PON1 

genetic variation (Tripi et al. 2006, Carlson et al. 2006). Studies have shown that PON/paraoxon 

activity is a better predictor than PON genotypes for CHD as well as for SLE risk (Durrington et 

al. 2001, Mackness et al. 2004, Ayub et al. 1999, Jarvik et al. 2000, Mackness et al. 2001, Jarvik 

et al. 2003, Rozek et al. 2005, Tripi et al. 2006). PON1/192, PON1/55, PON3/10340 and 

PON3/2115 genetic variants were found to explain ~ 30 % of the variation in PON activity in our 

SLE sample (Tripi et al. 2006, Sanghera et al. 2008). Since role of PON2 genetic variation in 

relation to PON activity has not been reported, another purpose of this study was to evaluate the 

relation of PON2 genetic variation with PON activity regardless of the SLE status. In our study 

sample PON activity was measured using paraoxon, commonly used in human and animal 

models to measure PON activity.  
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CHD develops from atherosclerosis, where LDL oxidation plays a pivotal role. One of 

the major counter forces to this LDL oxidation is credited to the anti-oxidant function of the 

PON gene cluster (Ng et. al. 2005), established both in vivo (Ng et al. 2006) and in vitro 

 (Ng et al. 2001).  Not only PON1, PON2 and PON3 differ in their expression profiles, but 

they also differ in their anti-oxidant properties. Unlike PON1 and PON3, which are mainly 

expressed in liver and secreted in blood where they get bound to HDL, PON2 is not HDL bound 

rather it is ubiquitously expressed and remains intracellular associated with membrane 

components (Ng et al. 2001, Ng et al. 2005). In vitro studies have shown PON2 expression in 

cells (smooth muscle cell, macrophages and endothelial cells) that take part in the atherosclerotic 

process (Ng et al. 2001, Horke et al. 2007). Therefore PON2 is proposed to provide intracellular 

protection against oxidative stress in arterial wall (Reddy et al. 2008). Rabbit PON3 is found to 

inhibit LDL oxidation 100 times more efficiently than rabbit PON1 (Dragonov et al. 2000), 

although PON3 is found in very low levels compared to PON1 in rabbit blood (Dragonov et al. 

2000). On the other hand, human PON2 shows similar ability to that of rabbit PON3 in inhibiting 

LDL oxidation (Rosenblat et al. 2003). Functional studies showing anti-oxidant property of 

PON2 have revealed that over expression of PON2 in HeLa cells can inhibit LDL lipid peroxide 

formation, invert oxidation of mildly oxidized LDL (MM-LDL), and thereby inhibit monocyte 

chemotaxis by MM-LDL (Ng et al. 2001). Although PON2 protein is not detected in human 

serum, LDL isolated from mice serum treated with adenoviral mediated PON2 (AdPON2) 

showed significantly lower levels of oxidation (Ng et al. 2006). Both PON activity and PON2 

genetic variation have been reported to be associated with CHD risk (Sanghera et al. 1998, Chen 

et al. 2003, Leus et al. 2001). Therefore PON2 is a good biologic candidate gene for CHD risk in 

SLE. In this study we have also evaluated the impact of PON2 polymorphisms with different 
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parameters of LDL oxidation and subclinical carotid vascular disease measures (carotid plaque 

and carotid IMT) in our SLE cases. 

A total of 19 PON2 tagSNPs, including two coding SNPs PON2/Ala148Gly 

(rs11545941) and PON2/Cys311Ser(rs6954345), were selected from two databases (HapMap 

and Seattle) in order to maximize the information that would allow covering almost all the 

common genetic variation within the entire PON2 gene span of 30 Kb. All tagSNPs, except 

PON2/rs17876183 (MAF=3%, located at 5'-UTR) and PON2/rs17876205 (MAF=2%, located at 

3'-flanking region) had MAF≥ 5% in either database. Even though all these 19 variants were 

reported as tagSNPs in at least one of the two databases,  a total of 15 tagSNP bins were 

identified in our white (Pittsburgh+Chicago) sample using tagger analysis (r2≥ 0.8). In our black 

sample (Pittsburgh+Chicago), tagger analysis identified a total of 18 tagSNPs (r2≥ 0.8), though 

some similarities in LD pattern have been noted between blacks and whites. One SNP was not 

included in LD analysis because it was monomorphic (PON2/rs17876205) in blacks. The minor 

allele frequencies in whites and blacks for the analyzed SNPs were similar to those reported in 

HapMap database. Genotype distribution in almost half of the selected PON2 tagSNPs were 

significantly different (P<0.01) between Caucasians (n=927) and African Americans (n=131), 

therefore all association analyses were performed separately in blacks and whites. Because our 

black population was small, SLE related sub-phenotype analyses were not performed as it would 

not be statistically meaningful. 

PON/paraoxon activity at the Pittsburgh recruitment site was 59 % higher for blacks than 

whites and within each ethnic group higher in controls than cases (17% in each ethnic group) 

(Tripi et al. 2006). Similarly PON/paraoxon activity at the recently collected Chicago sample 

was higher in blacks (twice as much) and within each ethnic group higher in controls than cases 
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(~16% higher in whites, ~5% higher in blacks).  In combined (cases+controls) Pittsburgh 

Caucasian sample, 11 SNPs [PON2/rs10261470, rs4729189, rs12534274, rs11982486, 

rs11981433, rs12704795, rs11545941(Ala148Gly), rs987539, rs3735586, rs6954345 

(Ser311Cys), rs2299267] showed  significant association with PON/paraoxon activity after 

adjusting for disease status, age, BMI and smoking (p value ranging between 0.027-2.2x10-16). 

These 11 SNPs belonged to 7 tagSNP bins according to our tagger analysis using r2 cut-off  ≥ 

0.7. The most strongly associated tagSNP bin included 4 SNPs (p value ranging between 

1.43x10-11-2.2x10-16) of which two were coding SNPs [PON2/Ala148Gly(rs11545941), 

PON2/Ser311Cys(rs6954345), rs3735586, rs12534274]. One of the PON3 SNPs (PON3/10340) 

that was reported to be strongly associated with PON activity, was in high LD with this most 

strongly associated tagSNP bin of 4 PON2 SNPs (r2 ranging between 0.78-0.57). Among these, 

PON2/rs6954345(Ser311Cys) showed the highest correlation with PON3/10340 (D’=0.91,r2≥ 

0.78). When all PON activity-associated but not strongly correlated (r2 <0.7) PON1, PON2 and 

PON3 SNPs [PON1/192, PON1/55, PON3/2115, PON2/rs6954345(Ser311Cys), 

PON2/rs987539, PON2/rs11981433, PON2/rs2299267, PON2/rs4729189, PON2/rs11982486, 

PON2/rs10261470] were included in a multiple regression model, only two PON2 SNPs 

remained significant [PON2/rs6954345(Ser311Cys),P =8.732x10-6, PON2/rs987539,P=0.046], 

in addition to PON1 and PON3 SNPs. The overall contribution of these two PON2 SNPs to the 

variation in PON activity were 1.3% and 0.3%, respectively. The only noteworthy highly 

significant PON2 SNP rs6954345(Ser311Cys), was the same SNP that was highly correlated 

with the strongly associated PON3 SNP (PON3/10340). In combined (cases+controls) Chicago 

Caucasian sample, 4 SNPs [PON2/rs6954345 (Ser311Cys), rs12534274, rs3735586, 

rs11545941(Ala148Gly),] showed significant association (p values ranging from 0.002-0.0001) 
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with PON/paraoxon activity after adjusting for disease status, age, BMI and smoking. These 4 

SNPs belonged to the same bin that showed highly significant association with PON activity in 

Pittsburgh site and was also in high LD with the PON3 SNP (PON3/10340) that is known to 

modulate the PON activity. Because the pairwise tagging of PON2 SNPs with PON3 and PON1 

in Chicago Caucasian sample were similar to that of Pittsburgh Caucasian sample, again the 

same PON2 SNP rs6954345(Ser311Cys) showed the highest correlation with PON3/10340  

(D’=0.88, r2≥0.74). However, unlike Pittsburgh whites (cases+controls), PON2/rs6954345 

(Ser311Cys) was no longer significant in Chicago whites (cases+controls) when all PON 

activity-associated but not strongly correlated (r2 <0.7) PON1, PON2 and PON3 variants 

[PON1/192, PON1/55, PON3/2115, PON2/rs6954345(Ser311Cys)] were analyzed in a multiple 

regression model. This lack of PON2 association with PON activity in white Chicago sample 

could be attributed to lack of power due to their considerable small size to that of Pittsburgh 

Caucasians, even though few PON2 variants showed significant association in the Chicago 

Caucasian combined (cases+controls) sample.  Similarly in Pittsburgh blacks, PON2 variants 

were no longer significant in multiple regression model again probably due to lack of power in a 

small sample size. Unlike PON1 and PON3 enzymes, that are bound to circulating HDL in the 

blood, PON2 enzyme is known to be predominantly intracellular and membrane bound (Ng et al. 

2006, Levy et al. 2007, Horke et al. 2007). Therefore, one would not expect a major contribution 

of PON2 towards serum PON activity. However, one cannot exclude the possibility of a low 

level background secretion of PON2 enzyme into blood (Ng et al. 2001) and / or the presence of 

a specific secreted isoform which might have been overlooked in previous studies. Although 

recent studies mainly focused on two PON2 isoforms (Shamir et al. 2005, Horke et al. 2007), 

Mochizuki et al. (1998) reported that alternative splicing of PON2 transcript results in several 
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PON2 splice forms. Nevertheless, the fact that we did not identify an independent major effect of 

PON2 variation on serum PON activity argues against the presence of a secreted PON2 isoform 

or even such an isoform exists, it does not seem to exhibit an independent activity for paraoxon 

substrate. A study that used recombinant human PON1, PON2 and PON3 found that PON2 had 

minimal contribution to the paraoxonase or arylesterase activity (Dragonov et al. 2005). Because 

the only PON2 tagSNP bin that showed strong association with serum PON activity is in high 

LD with a strongly associated PON3 SNP, the observed PON2 association is very likely an 

indirect result from this high LD. When the mean PON/paraoxon activities of the 

PON2/rs6954345(Ser311Cys) were compared to the PON3/10340 SNP, both showed an 

increasing PON activity associated with their minor alleles. Unlike the PON2/rs6954345 

(Ser311Cys) SNP, PON3/10340 SNP resides within an intron. However, the latter tags several 

putative functional PON3 promoter SNPs as well as a synonymous PON3 coding SNP. Overall, 

our results support that circulatory HDL-bound PON1 and PON3 are the main modulators of 

serum PON activity, with a major contribution from PON1 (Tripi et al. 2006, Sanghera et al. 

2008, Carlson et al. 2006). Lack of complete knowledge about the natural substrate for PON2 is 

a major limiting factor in evaluating the role of PON2 genetic variation with PON2 enzymatic 

activities. 

 Although several studies linked PON2 variants to various diseases like amyotrophic 

lateral sclerosis (Valdmanis et al. 2008), stroke (Slowik et al.  2007), Alzheimer’s disease (Janka 

et al. 2002), CHD (Sanghera et al. 1998,Chen et al. 2003, Martinelli et al. 2004), and metabolic 

traits (Boright et al. 1998) with some controversial findings (Wheeler et. al. 2004) there is no 

published study that links PON2 with SLE risk. The results of our study do not suggest a major 

contribution of PON2 genetic variation with SLE risk neither in single-site or haplotype 
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analyses. Similarly only modest contribution of the PON1 or PON3 variation to SLE risk has 

been found for the SNPs that have been analyzed to date (Tripi et al. 2006, Sanghera et al. 2008). 

Lupus nephritis and premature cardiovascular disease are the two major causes of 

mortality in SLE patients (Foster et al. 2007, Manzi et al. 1997). Some studies have reported 

associations of PON2 genetic variation and or PON/paraoxon activity with renal 

dysfunction/failure or various nephropathies (Calle et al. 2006, Pinizzotto et al. 2001, 

Hasselwander et al. 1998). Our group has previously reported modest allele and genotype 

associations of 3 PON1 promoter polymorphisms with Caucasian lupus nephritis patients (Tripi 

et. al. 2006). Similarly, we also observed some modest associations of lupus nephritis with PON2 

genetic variation in white cases (rs17876183, rs10261470, rs987539, rs9641164, and 

rs17876205, p values ranging between 0.016-0.033 for genotype distribution). Of these five 

SNPs, only two (PON2/rs17876183 and rs17876205) were significant for both genotype 

distribution and allele frequency difference between Caucasian SLE cases with and without 

nephritis, with their minor alleles associated with increased risk. Because our lupus nephritis 

sample size was relatively small and associations were modest and would not survive multiple 

testing corrections, our findings await replication in larger SLE patient samples. Unlike SLE 

disease status, no association was reported between PON/paraoxon activity and lupus nephritis in 

our sample (Tripi et al. 2006). These five SNPs that showed association with lupus nephritis 

were different from the PON2 SNP that showed association with nephropathy in Type 1 and 

Type 2 diabetes (Calle et al. 2006). 

Given the important role of LDL oxidation in atherosclerosis and CHD risk, and the 

known effect of PON2 on LDL-oxidation, we next evaluated whether PON2 genetic variation 

had any impact on the parameters of LDL oxidation. The data on LDL oxidation were available 
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on nine parameters [antibody (IgG) for copper-modified oxLDL  , antibody for (IgM) for copper-

modified oxLDL , antibody (IgG) for  MDA-modified oxLDL, anti-MDA-modified LDL 

(IgM)], E06 antibody for oxLDL-EO6 epitope, antibody (IgG) for LDL immune complexes , 

antibody Ig(M) for LDL immune complexes , and antibodies for Lp(a) and Lp(a) Mg] in our 

Pittsburgh SLE cases only.  Six SNPs that showed significant association with different 

parameters of LDL oxidation were PON2/rs13306702 with Ig(M)  antibodies for copper-

modified oxLDL (P = 0.0343), PON2/rs17876205 with E06 antibody (P=0.031), 

PON2/rs10261470, PON2/rs4729189 and PON2/rs2286233 with Ig(M)  antibodies for LDL 

immune complex (P= 0.0193, 0.0282, and 0.0453, respectively), PON2/rs2286233 and 

PON2/rs11545941(Ala148Gly) with Ig(M) antibody for MDA modified LDL (P=0.0016 and 

0.0282, respectively). One of these SNPs [PON2/rs11545941(Ala148Gly)] was reported to be 

associated with susceptibility to LDL oxidation in another study that evaluated PON2 tagSNPs 

along with PON1 and PON3 (Carlson et al. 2006). Again our population size was small and 

many of those associations were modest and would not survive corrections for multiple testing. 

Perhaps the most noteworthy was the association of PON2/rs2286233 with two oxLDL 

parameters [P=0.0016 for Ig(M) antibodies against MDA modified LDL and P= 0.0453 for 

Ig(M) antibodies against LDL immune complex]. We did not find any association between 

oxLDL parameters and PON activity, consistent with others (Kiss et al. 2007, Carlson et al. 

2006). Carlson et al. (2006) found association of PON1 genetic variation but not PON activity 

with oxidized LDL. There are conflicting reports about association of oxLDL with 

atherosclerosis in SLE patients (Frostegard et al. 2005, Hayem et al. 2001). Therefore we also 

checked a possible relation between the parameters of LDL oxidation and subclinical CVD 

measures (carotid plaque and carotid IMT) but did not detect any association.  Oxidation of LDL 
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creates antigenic epitopes on the oxLDL particle which leads to antibody production against 

oxLDL. Even though oxidation of LDL is considered to be a key factor in atherosclerosis, not all 

studies support the idea that these antibodies to oxLDL help in accelerating atherosclerosis 

(Shoenfeld et al. 2002, Frostegard et al. 2007, Frostegard et al. 2007). There are conflicting 

reports about the relation between oxLDL parameters and the subclinical CVD measures (Hulthe 

et al. 2002, Wallenfeldt et al. 2004). A recent report by multiethnic study of atherosclerosis 

(MESA) concluded that association of oxLDL with subclinical CVD (P=0.0002) was through its 

relationship with other cardiovascular risk factors, (total cholesterol, HDL-cholesterol and 

triglycerides) as the adjustment for those other factors attenuated this association (P= 0.026) 

(Holvoet et al. 2007).  

Next we wanted to check the association of PON2 SNPs directly with subclinical CVD 

measures. In our study 3 PON2 SNPs (rs11982486, and rs11981433, and rs12704795) showed 

modest association with carotid plaque under codominant model (p value 0.03, 0.03 and 0.01 for 

genotype distribution) in combined (Pittsburgh +Chicago) white SLE sample after adjusting for 

recruitment site, age, BMI, smoking and lipid profile. Two of these 3 PON2 SNPs 

(PON2/rs11981433 and PON2/rs12704795) showed association for both allele frequency 

difference (P= 0.0127 and 0.0122) and genotype distribution (P= 0.03 and 0.01). These two 

variants (PON2/rs11981433 and rs12704795) were also in high LD (D’=0.99, r2=0.98). Based on 

the biological model where PON2 deficient mice developed significantly larger atheromatosus 

lesions (Ng et al. 2006) as compared to their wild and heterozygous counterparts, suggesting a 

recessive model, associations of these SNPs were further checked under recessive model. Under 

recessive model two of these SNPs rs11981433, and rs12704795 showed higher significance for 

their association with carotid plaque (0.016 and 0.0099, respectively) with minor alleles 
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providing a protective effect. The covariate adjusted OR under recessive model, was 0.32 (95%  

CI=0.12-0.81, P=0.016) for PON2/rs11981433T>C SNP, and 0.28 (95%CI=0.10-0.73,P=0.0099)   

for PON2/rs12704795T>G. Carotid IMT analysis in the combined (Pittsburgh+Chicago) white 

SLE cases revealed modest association with 2 SNPs (PON2/rs12704795 and rs17876205) under 

codominant model with p values 0.037 and 0.017, respectively. When analyzed under recessive 

model, rs12704795 showed increased significance with a p value of 0.01, while for 

PON2/rs17876205 no p value could be computed as no individuals were homozygous for the 

minor allele. The latter SNP was associated with increased IMT although there were only 6 

heterozygous individuals with IMT information, because of the low MAF (1.6%). Next we 

checked whether the three SNPs that showed association with carotid plaque would be associated 

with carotid IMT. In fact one of these two SNPs (PON2/rs11981433) was found to be associated 

with carotid IMT (P=0.03) under recessive model in addition of being protective for carotid 

plaque. The 2 SNPs (PON2/rs11981433 and rs12704795) that showed association with both 

protection of plaque and decreasing IMT were in high LD (D’=0.99, r2=0.98).  Consistent 

association of these 2 SNPs (PON2/rs11981433 and rs12704795) with carotid IMT and plaque 

suggest that PON2 genetic variation might have a genuine effect (protective) effect on 

subclinical carotid vascular disease. Both of these SNPs are located in intron1 suggesting that 

they may not be the true causative variants, but rather capturing effects of the functional variants. 

Because those two SNPs (rs11981433 and rs12704795) are different than the PON2 SNPs that 

are found to be associated to oxLDL, we may speculate that they may be exercising their effect 

through mechanisms that are different than LDL oxidation. Recent functional studies have 

reported changes in PON2 expression in human carotids during progression of atherosclerosis or 

in the macrophages in patients with hypercholesterolemia (Fortunato et al. 2007, Rosenblat et al. 
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2003). Unlike PON1 and PON3, PON2 is expressed in several cells that contributed to 

atherosclerotic process (Ng et al. 2001, Horke et al. 2007). It is possible that PON2 protects those 

cells against oxidative stress and impairment of PON2 activity may change the behavior of those 

cells in favor of the atherosclerotic event. Similar to oxLDL parameters, our studies did not find 

any association between carotid plaque or carotid IMT with PON activity. 

The limitations of our study include the lack of a control group with subclinical CVD 

measures (analyses were performed only in SLE cases) that would have allowed us to establish 

SLE related and non-related effects on CVD risk, as well as a lack of a number of elderly 

individuals (>60 yrs of age) that would allow us to distinguish between premature and age-

related CVD risk.  

In conclusion, our results suggest that PON2 may have influence on LDL oxidation and 

subclinical CVD risk. Given the small size of our sample this initial results will need replication 

in larger samples.  
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In summary, the main findings from our study where we analyzed the impact of PON2 tagSNPs 

with PON activity, SLE risk, lupus nephritis, parameters of LDL oxidation and subclinical 

carotid vascular disease (carotid IMT and carotid plaque) in a large biracial population of >1000 

individuals are: 

 

1. Distributions of PON2 SNPs significantly differ between blacks and whites. 

2. Among Pittsburgh whites, PON2/rs6954345(Ser311Cys), and  rs987539 genetic    

    variants showed significant association with PON/paraoxon activity explaining  

                1.3 %, and 0.3, respectively of the variation. 

            3.  PON2 tagSNPs are not obvious contributors to SLE risk, both in whites and blacks. 

            4. Some modest associations were detected between PON2 SNPs (rs17876183,  

    rs10261470, rs987539, rs9641164, and rs17876205) and lupus nephritis in white  

    (Pittsburgh+Chiacago) cases, which warrant further studies with large sample size.  

5. Among Pittsburgh white SLE cases 6 SNPs (PON2/rs11545941(Ala148Gly),  

     rs13306702, rs2286233, rs10261470, rs17876205, rs4729189) showed significant  

    association with different parameters of LDL oxidation (oxLDL). 

6. Among white (Pittsburgh+Chicago) SLE cases, 3 SNPs (PON2/rs12704795,  

    rs11981433, rs11982486) showed significant association with carotid plaque while 3  

    SNPs (PON2/rs12704795, rs11981433, and rs17876205) showed modest associations  

    with carotid IMT. Two highly correlated SNPs (PON2/rs11981433 and  

    PON2/rs12704795) showed association with both carotid plaque and IMT. 
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