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Owens Lake is situated in a mostly-closed basin fed by water and sediments derived

primarily from the eastern Sierra Nevada range. Radiogenic isotope variations in USGS Owens

Lake core OL-92 were used in conjunction with major and trace element concentrations in

streams draining the eastern Sierras to investigate sediment provenance, the chemical weathering

and transport of rare earth elements (REE) in the Owens Lake drainage basin, and possible

climate-related shifts in weathering patterns of the eastern Sierras during the last ~30 ka.

Filtered (<0.45 µm) stream water samples not influenced by hydrothermal fluids or agriculture

fall below world average-normalized values for major cations. Concentrations of Nd in the

stream water samples are less than 1 nmol L-1, too dilute for isotopic analysis. Strontium and

neodymium isotopic analyses were conducted on the carbonate and silicate fractions of sediment

samples representing deposition in Owens Lake from ~30 ka to ~10 ka. The fraction of

carbonate in Owens Lake sediments increases from ~7 to 67 % during this period, reflecting the

desiccation of the lake. Strontium, samarium, and neodymium are strongly partitioned into

Owens Lake chemical sediments. Over the past ~30 ka, εNd values of clastic sediments in Owens

Lake remain relatively constant, near -6.5. Chemical sediments remain approximately one

epsilon unit higher than the clastic sediments until ~12 ka ago, at which time they shift to less

radiogenic values, matching those of the clastic sediment. Differential mineral weathering of
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more common mineral phases over REE-enriched accessory phases is the most likely cause of

the isotopic shift in Owens Lake chemical sediments at ~12 ka ago. Preferential weathering of

hornblende could displace the Nd isotopic composition of Owens Lake chemical sediments away

from that of the clastic fraction. Depletion of hornblende could allow the Nd isotopic

composition of the two sediment fractions to return to similar values. This study represents the

first Nd isotope study of a lacustrine system and suggests Nd isotopes could be a useful

paleoclimate proxy. Additional work in older Owens Lake sediments and in other lake systems

is clearly warranted.
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1. INTRODUCTION

Processes governing the origin and nature of chemical and clastic sediments within lakes

and ocean basins are of great interest because sediments provide a record of past climatic

fluctuations and weathering processes in the source region. Many small or dry lakes of the

western Great Basin were once extensive Pleistocene lakes and contain sensitive indicators of

paleoclimate in their sedimentary record (Benson et al., 1990; Smith and Street-Perrott, 1983).

Regional climatic variations can be constrained by determining lake sediment provenance using

new techniques for tracing the dissolved and suspended loads of streams feeding the

intermontane basins of the west. The trace element chemistry and isotopic composition of

sediments in fluvial, lacustrine, and marine environments have become useful tools in

determining sediment provenance and source rock age and chemistry. The rare earth elements

(REE) comprise a group of trace elements (lanthanum through lutetium) whose chemical

properties systematically change across the periodic table from the lightest to the heaviest

elements (Byrne and Sholkovitz, 1996; Sholkovitz and Szymczak, 2000). This systematic

variation, combined with sensitivity to redox changes and adsorption/complex formation, makes

the REE valuable tools for studying weathering reactions in terrestrial environments as well as

chemical processes operating in rivers, estuaries, and oceans (Elderfield et al., 1989; Öhlander et

al., 1996; Sholkovitz and Szymczak, 2000). Dissolved and suspended loads transported in the

Owens River and its tributaries are deposited in Owens Lake, eastern California, and accumulate
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over time as siliciclastic and carbonate lake sediments. Isotopically distinct igneous and

metasedimentary source rocks drained by a network of perennial streams, which feed an

intermittently closed basin, have resulted in a nearly complete sedimentary record spanning the

past ~800 ka in the Owens Lake drainage basin. Hence, this large and regionally important

drainage basin is an ideal environment to investigate the sources, transport, and deposition of

REE. Moreover, paleoclimate proxies in sediments from Owens Lake, and other Great Basin

lakes, reflect variations in precipitation and temperature associated with changing jet stream

patterns over the during Great Basin glacial periods.

While isotopes of strontium (Sr) and neodymium (Nd) (one of the REE) are useful tracers

of sediment provenance, little is known about Nd isotope and REE systematics in freshwater

systems. In a novel approach to sediment provenance and paleoclimate studies, we use the Nd

isotopic composition of the chemical and clastic sediments in Owens Lake, eastern California, to

investigate these topics. The goals of this work are to use the Nd isotopic record contained in

lacustrine carbonates to study the paleoclimatic history of the Owens Lake drainage basin, and to

elucidate the partitioning behavior of Nd, and the other REE, in fresh water systems.
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2. BACKGROUND

2.1 Geologic and hydrologic setting

Owens Valley is ideally suited for regional paleoclimatic investigations using lacustrine

sedimentary records. The valley is a north-south trending intermontane basin sealed by Tertiary

volcanic rocks on its southern end, and consequently traps runoff, originating primarily in the

eastern Sierra Nevada range, in Owens Lake. Owens Valley was formed during Late Tertiary

extension in the Great Basin, which contributed to the tectonic uplift and tilting of the Sierra

Nevada range. These characteristics have resulted in a continuous sedimentary record of Late

Tertiary erosion of the eastern Sierran Nevada in Owens Lake.

2.1.1 Regional tectonic framework

The Pacific-North American plate has evolved through four major tectonic plate

boundary regimes. During the Latest Pre-Cambrian to Early Cambrian time, rifting of the

western margin of the North American plate induced classic miogeoclinal sedimentation along

an Atlantic-type passive margin (Dickinson, 1981; Moores et al., 1999). Subsequently, a

Japanese-style margin, with an offshore island arc and marginal sea, developed along the western

North American plate. The Late Paleozoic/early Mesozoic Antler and Sonoma orogenies

occurred during this Japanese-style tectonic setting, and most likely reflect collisions between

offshore island arcs and the Early Paleozoic Atlantic-type continental margin (Dickinson, 1981).

Erosional remnants of sediments deposited along the Pacific-North American plate margin

during these two tectonic regimes occur as roof pendants capping plutons in the east central

Sierra Nevada range (Stevens and Greene, 1999). The nature and composition of these roof

pendants will be discussed in detail in section 2.1.2. The onset of an Andean-type margin during
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the Mid-Late Mesozoic developed an arc-trench system with an eastward-dipping subduction

zone and a corresponding terrestrial volcanic chain above what would eventually become the

Sierra Nevada batholith (Figure 1a) (Dickinson, 1981). Concurrent emplacement and

metamorphism of the Franciscan mélange assemblage, deposition of the sedimentary Great

Valley sequence in the arc-trench gap, and emplacement of the Sierra Nevada batholith (SNB)

and Peninsular Ranges Batholith (PRB) occurred from the Late Jurassic to Late Cretaceous

during this penultimate tectonic setting (Dickinson, 1981). Arc magmatism subsided as steep

(Sevier-style) subduction shifted to shallow (Laramide-style) subduction of the Farallon Plate

during Paleocene and Eocene time (Dickinson, 1981). Progressive subduction of the Farallon-

Pacific spreading ridge under the North American Cordillera brought the Pacific plate into

contact with the North American plate along the present California-type plate margin, forming

the San Andreas fault system (Figure 1b) (Dickinson, 1981). Although the two major California

batholiths (SNB and PRB) were created in the same magmatic arc, they have since been

dissected and displaced by strike-slip motion along the San Andreas fault system. Oligocene and

Miocene extension has separated fault blocks in the Great Basin by distances ranging from 10 to

150 km through imbricate normal faulting (Wernicke, 1992). This style of extension formed the

N-S trending basins of eastern California, which include Owens, Panamint, and Death Valleys.

2.1.2 The Sierra Nevada batholith

The Sierra Nevada batholith is part of a northwest trending chain of Mesozoic plutonic

intrusions extending from Baja California, through the Mojave Desert, to the Sierra Nevada

Mountains, and terminating in western Nevada (Bateman and Wahrhaftig, 1966). The west side

of the Sierra Nevada is a long, gently westward-dipping slope, which is contrasted on the east

side by a steep, normal fault scarp resulting from the uplift and tilting of the Sierra Nevada
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(A)

(B)

Figure 1. (A) Schematic cross-section of successive stages of the Mesozoic-Cenozoic Andean-
type plate margin along the Pacific North American plate. Note the emplacement of the Sierra
Nevada batholith. (B) Map view of the Paleo/Neogene tectonic development of the Pacific-
North American plate. Figures from Dickinson (1981).
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batholith. The batholith is comprised of discrete plutons, approximately 90% of which are

Cretaceous in age and range in areal extent from approximately 1 km2 to greater than 1000 km2

(Saleeby, 1999). Compositions vary from quartz diorite in the western Sierras to granite in the

east (Ague and Brimhall, 1988; Bateman and Wahrhaftig, 1966; Saleeby, 1999). The dominant

rock compositions are quartz monzonite and granodiorite in roughly equal parts. Small bodies of

mafic and ultramafic rocks including diorite, quartz diorite, and hornblende gabbro occur as

inclusions within, septa between, or as small roof pendants capping individual plutons (Bateman

and Wahrhaftig, 1966). In the eastern portion of the batholith these mafic masses are associated

with Paleozoic metasedimentary rocks and the Triassic and Jurassic granitoids which intrude

them (Bateman, 1983; Bateman and Wahrhaftig, 1966). Quartz diorite and granodiorite units

contain plagioclase, quartz, orthoclase, amphibole, and biotite with accessory magnetite,

ilmenite, and sphene (Ague and Brimhall, 1988). Quartz monzonite and granite generally

contain significant amounts of microcline, rather than orthoclase, with accessory muscovite and

subhedral garnet (Ague and Brimhall, 1988). Sulfide minerals in the Sierra Nevada Batholith are

rare, but pyrrhotite, pyrite, and chalcopyrite may exist in anhedral or interstitial crystal forms, as

well as inclusions within magnetite or amphibole (Ague and Brimhall, 1988).

Remnants of the Paleozoic metasedimentary belt, which is characterized by greenschist

facies regional metamorphism and Mesozoic volcanic and metavolcanic rocks, occur along the

southwestern foothills of the batholith and as small roof pendants along the crest of the east-

central Sierra Nevada (Bateman and Wahrhaftig, 1966). Nokleberg (1983) identified six

separate, stratigraphically distinct, fault-bounded terranes composing the Sierra Nevada

batholith, which he hypothesized were accreted to the North American continent intermittently

between pulses of magmatism throughout the late Cretaceous period. In the eastern Sierra
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Nevada, roof pendants within what Nokleberg (1983) referred to as the Owens and the High

Sierra terranes are drained by streams flowing into the Owens River, and eventually into Owens

Lake. The Owens terrane is dominated by Cambrian to Silurian metasandstone, pelitic hornfels,

and minor marble and calc-silicate hornfels (Nokleberg, 1983). The High Sierra terrane is

dominated by Permo-Triassic metavolcanic rocks and Mississippian to Permian pelitic hornfels,

marble, calc-silicate hornfels, and minor quartzite (Nokleberg, 1983). The Mount Morrison roof

pendant is a Paleozoic section more than 9700 m thick located along the southern edge of Long

Valley Caldera, southeast of Mammoth Lakes, and constitutes the most complete and areally

extensive roof pendant present in both the eastern Sierra Nevada and the Owens Valley drainage

basin (Bateman and Wahrhaftig, 1966). Eastern Sierra Nevada roof pendants within the Owens

Valley drainage basin are irregularly shaped, typically disconnected rock bodies; however, their

unique mineralogy and chemistry could have significant impacts on the chemical and clastic

sediment contained in the Owens Lake record.

2.1.3 Late Tertiary/Holocene paleoclimate of western North America

Stratigraphic pollen records, macrofossil assemblages, and lake-level records have been

used to reconstruct regional climate in western North America since 18 ka ago (Thompson et al.,

1993). From ~18 to 16 ka temperatures in the southwestern United States were ~10°C lower

than today and pluvial lakes in the Great Basin were filling (Thompson et al., 1993).

Precipitation at this time was augmented as the Westerly jet stream was split, with the southern

branch deflected to the south, in response to Easterlies induced by the Laurentide ice sheet

anticyclone (Figure 2) (Thompson et al., 1993). The southern branch of the jet stream carried

moist air masses over the American southwest (Thompson et al., 1993). Ice sheets and alpine

glaciers retreated in this region by ~12 ka in response to moderating precipitation and
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Figure 2. Estimates of major changes in atmospheric circulation over the last 18 ka for western
North America as simulated by the Community Climate Model of the National Center for
Atmospheric Research. Figure from Thompson et al. (1993).
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temperatures (Thompson et al., 1993). During the glacial-interglacial transition ~12 ka, portions

of the western interior, and perhaps Owens Valley, experienced drier conditions as the jet stream

shifted northward in response to the retreating Laurentide ice sheet (Thompson et al., 1993).

This allowed summer monsoonal precipitation to reach the southern portions of the American

southwest (Thompson et al., 1993). Precipitation was still higher than present-day values at this

time. California and the American northwest experienced their driest Holocene conditions ~9-6

ka, whereas the Great Basin and the southwest deserts experienced their driest Holocene

conditions ~6-3 ka (Thompson et al., 1993). Climate in the eastern Sierra Nevada range and

Owens valley, as reflected in paleoclimate proxies taken from the Owens Lake record, coincide

with the marine oxygen isotope record, suggesting conditions responsible for global climate

cycles are the same as those responsible for eastern Sierran glaciation (Figure 3). The Owens

Lake paleoclimate record will be discussed in detail in section 2.2.

2.1.4 Owens Valley physiography

Owens Valley is the western-most structural graben of the Great Basin. The Valley is a

long, narrow, closed basin bound on the west by the Sierra Nevada Mountains, on the northeast

by the White and Inyo Mountains, on the north by a volcanic plateau composed primarily of 0.76

Ma Bishop Tuff, and on the southeast by the volcanic Coso Range (Figure 4). The valley floor is

composed of thick sequences of unconsolidated to moderately consolidated alluvial fan,

transition-zone, glacial, talus, volcanic, fluvial, and lacustrine deposits which are overlain in

places by Quaternary volcanic rocks and cinder cones (Hollett et al., 1991). Plutons of the Sierra

Nevada are thought to be continuous across the valley floor, under both the Quaternary valley fill

and large portions of the White and Inyo mountains (Hollett et al., 1991).
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Figure 3. Comparison of deep-sea sediment δ18O record to four paleoclimate proxies from
Owens Lake core OL-92, plotted against age. Note: (1) similarity between Owens Lake proxies
and the marine record; (2) the delayed response to the oxygen isotope stage 6/5 boundary
(Termination II); and (3) the reversed X-axes for δ18O and biotite. Taken from Menking (1997b).
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Figure 4. Generalized geology, hydrology, and physiography of the Owens Lake drainage basin
( after Hollett et al., 1991). Labeled streams were sampled at sites indicated by filled circles.
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Tertiary uplift and tilting of the Sierra Nevada batholith during Basin and Range faulting,

in conjunction with an increasingly moist and cool climate associated with changing atmospheric

circulation (see section 2.1.3), triggered alpine glaciation in the region as recent as 0.4 ka ago

(Hollett et al., 1991). Late Pleistocene moraine complexes exist in all of the major valleys

originating in the Sierra Nevada (Phillips et al., 1996). Glaciation produced abundant sediments

which have been transported to the valley floor by perennial streams in the Sierra Nevada,

providing the dominant source of the valley fill (Hollett et al., 1991). Ephemeral streams and

debris flows in the White and Inyo mountains transport a much lesser amount of detritus to the

valley floor (Hollett et al., 1991).

Climate and hydrology in Owens Valley is influenced greatly by the Sierra Nevada

mountain range. Moisture-laden air masses originating in the northern Pacific are forced up over

the Sierra Nevada, cooled by the orographic effect, and precipitate their moisture as snow or rain

in the Sierra Nevada primarily from October to April (Hollett et al., 1991). Consequently a “rain

shadow” occurs in Owens Valley, and all areas east of the crest of the Sierra Nevada, causing the

region’s semiarid to arid climate (Hollett et al., 1991). Average annual precipitation at the crest

of the Sierra Nevada exceeds 100 cm, whereas average annual precipitation on the valley floor is

approximately 13 to 15 cm (Hollett et al., 1991). The White and Inyo mountains receive

approximately 18 to 36 cm of precipitation per year (Hollett et al., 1991). Evidence from the

Owens Lake core (OL-92) indicating precipitation in the Sierra Nevada and White-Inyo ranges

has varied as a function of climate will be discussed in section 2.2.

2.1.5 Owens River system

Owens Lake is the present terminus for surface water, groundwater, and eroded sediment

within the Owens Valley drainage basin. During Pleistocene pluvial stages, this drainage basin
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was linked at various times with Mono, Adobe, Long, Indian Wells, Searles, Panamint, and

Death Valleys which lie adjacent to the north, south, and east of Owens Valley (Figure 5)(Jannik

et al., 1987; Smith, 1984). Owens Lake is a remnant of a larger Pleistocene Lake Owens (Smith,

1984). Glacial episodes in the Sierra Nevada have been correlated with pluvial periods in Owens

Valley when lakes in Indian Wells, Searles, and Death Valleys received overflow from Lake

Owens (Smith, 1984).

The Owens River, fed by perennial tributaries from the Sierra Nevada and ephemeral

tributaries from the White and Inyo Mountains, is the main drainage, or “trunk stream”, for all

surface water in the Owens Valley drainage basin (Hollett et al., 1991). Approximately 16 km

south of Big Pine, water from the Owens River is diverted into the Los Angeles Aqueduct

system and is transported south toward Los Angeles, diverting any additional tributaries along its

path (Hollett et al., 1991). Prior to the development of the Los Angeles Aqueduct system in

1913, Owens Lake was a saline lake about 24 km long, 16 km wide, and 9 m deep (Sharp and

Glazner, 1997). At its greatest extent, Owens Lake was 76 m deep, covering nearly twice its

area prior to diversion (Sharp and Glazner, 1997).

Owens River chemistry is controlled by the chemistry of its tributaries and the chemistry

of hydrothermal fluids circulating through Long Valley Caldera. Hot springs contributing ≤ 1%

of the total discharge of Himalayan rivers have been shown to have a significant impact on solute

chemistry and radiogenic Sr budget (Evans et al., 2001). Similarly, Pretti and Stewart ( in press,

2001) determined hydrothermal activity and weathering of Paleozoic metasedimentary roof

pendants in the Owens Lake drainage basin govern the Sr budget in the Owens Lake drainage

basin.
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Figure 5. (A) Map view of Pleistocene lakes and drainage patterns in Owens Valley and
adjacent basins. (B) Schematic cross-section of Pleistocene lake chain. (Figures from Smith and
Bischoff, 1997)
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2.2 Core OL-92

Owens Lake is the final repository for sediments being shed off the eastern Sierra

Nevada, and its continuous chemical and clastic sedimentary record makes Owens Lake an ideal

location to study Quaternary climate change in the Sierra Nevada. In April-June 1992, the

United States Geological Survey (USGS) drilled core OL-92 to a depth of 322.86 m in Owens

Lake as part of a Pleistocene age-lake core-drilling program developed by the USGS in 1991

(Smith and Bischoff, 1997). A roughly linear time-depth curve has been generated for the entire

core based on a constant average mass accumulation rate, which is constrained by radiocarbon

dates, bulk density reconstruction, and paleomagnetic events from within the core (Bischoff et

al., 1997b). The core represents approximately 800 ka of deposition in Owens Lake, and is

dominated by lacustrine sediments (Smith, 1997). The lower 117 m of the core are

predominantly silt and clay with several sand beds, and have a mean grain size fluctuating

between 10 and 130 µm, indicating moderately deep and shallow conditions (Menking, 1997b;

Smith, 1997). The overlying 201 m of silt and clay have a mean grain size between 2 and 22

µm, and indicate deep-water conditions (Menking, 1997b; Smith, 1997). The uppermost 5-6 m

of the core are composed of an oolitic layer nearly 4 m thick overlain by a salt bed resulting from

the anthropogenic desiccation of the lake (Smith, 1997). Smectite, chlorite, and kaolinite are the

primary clay minerals present in the core, although clay-sized quartz, plagioclase, and K-feldspar

are also present (Menking, 1997b). Pedogenic and authigenic smectite dominates the clay-sized

fraction of closed-lake sediments (sediments deposited during relatively dry interglacial periods

while Owens Lake was not overflowing), while detrital biotite, quartz, and feldspar dominate the

clay-sized fraction of spilling-lake sediments (sediments deposited during pluvial periods when

the lake was spilling over to downstream lakes) (Bischoff et al., 1997c; Menking, 1997b).
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The oxygen isotopic composition, average sediment grain size, and sediment mineralogy

of Owens Lake each respond at different rates to changes in the regional climate (Figure 6).

Therefore, the estimated timing of climatic oscillations in the Sierra Nevada is proxy-dependant

for Owens Lake sediments, and care must be taken when correlating such terrestrial climate

records with the marine oxygen isotopic record (Menking, 1997a). However, these records

indicate periods of overflow in Owens Lake that correspond to glacial episodes in the adjacent

Sierra Nevada range. Solutes delivered by the ancestral Owens River were concentrated in

Owens Lake by evaporation during drier, closed-lake conditions. Deposition rates of calcium

carbonate increased during these periods, preserving higher concentrations of calcium carbonate

in the lake’s sedimentary record. Owens Lake sediments are fine grained with low

concentrations of calcium carbonate from 154 to 120 ka and from 50 to 15 ka, indicating

overflowing conditions persisted during these intervals (Menking, 1997a). Carbonate content

and grain size is variable from 120 to 50 ka, but this interval is dominated by high carbonate and

coarse-grained sediments, indicating mostly-closed conditions with a few brief periods of

overflow (Menking, 1997a). All climate change proxies reflect the desiccation of Owens Lake

from ~15 ka to the present (Menking, 1997a). These data indicate the last glacial maximum in

the Sierra Nevada range occurred ~21 ka ago.
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Figure 6. Paleoclimate proxies from Owens Lake sediments compared to the marine oxygen
isotope record of Martinson et al. (1987) over the last 160 ka. Heavy gray lines represent the
different responses of the carbonate content and the δ18O proxies to climate changes associated
with the 6/5, 5/4, and 2/1 oxygen isotope stage transitions (From Menking, 1997a).
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2.3 Radiogenic isotopes and the REE

Radiogenic isotopes form from the decay of radioactive isotopes, and are useful

geochronologic tools and geochemical tracers. Isotopes of strontium and neodymium have

significantly higher atomic masses than the stable isotopes of hydrogen, carbon, and oxygen, and

therefore isotopic fractionation due to evaporation or other chemical reactions is small and easily

corrected (Stille and Shields, 1997). Different isotopic reservoirs within the Earth are

characterized by unique strontium and neodymium isotope ratios due to the parent-daughter

fractionation of Rb-Sr and Sm-Nd which took place during the differentiation of the earth (Stille

and Shields, 1997). Differentiation of the earth produced continental crustal rocks, which are

enriched relative to the mantle, in Rb and Nd. Therefore, the 87Sr/86Sr of continental crustal

rocks (> approx. 0.715) will be higher than mantle-derived rocks (approx. 0.702-0.704), whereas

the 143Nd/144Nd of continental crustal rocks (approx. 0.5110-0.5125) will be lower than that of

mantle-derived rocks (approx. > 0.5125) (Faure, 1986; Stille and Shields, 1997). The strontium

and neodymium isotopic composition of a mineral should be identical to the fluid phase from

which the mineral crystallized, and, hence, can be used to determine its source (Stille and

Shields, 1997). The isotopic composition of chemical sediments precipitating from Owens Lake,

therefore, reflect the isotopic composition of the lake at the time the sediments formed.

Studies investigating the REE composition and chemistry of major rivers have provided

important information about the extent of elemental fractionation between colloidal, dissolved,

and particulate phases, as well as solution pH and ionic strength controls on REE solubility

(Goldstein and Jacobsen, 1988a; Goldstein and Jacobsen, 1988b; Goldstein and Jacobsen, 1988c;

Tricca et al., 1999). Prior to 1990, the concentration of REE in river waters was assumed to

match mean concentrations in continental shale (Elderfield et al., 1989). Subsequent work has
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demonstrated shale-normalized differences between light REE (LREE) and heavy REE (HREE)

in rivers, oceans, and estuaries (Sholkovitz and Szymczak, 2000; Sholkovitz et al., 1999). The

net effect of chemical reactions taking place in shallow estuaries, where suspended particles and

bottom sediment strongly interact, is a net HREE enrichment of river water as it enters the ocean

(Sholkovitz et al., 1999).

Sediment fluxes from major rivers will locally influence the REE isotopic composition of

sea water (Sholkovitz and Szymczak, 2000; Sholkovitz et al., 1999). Differences in the Sr and

Nd isotopic composition of ocean water among major ocean basins can only exist if the

residence time of dissolved forms of these elements is shorter than the mixing time of the ocean

water (Byrne and Sholkovitz, 1996). The residence time of Sr in seawater (~106 years) is several

orders of magnitude greater than the mixing time of ocean water (~1000 years), whereas Nd (and

presumably the other REE) has a significantly shorter residence time (~200 to 1000 years)

(Piepgras and Wasserberg, 1982; Tachikawa et al., 1999). Therefore, neodymium (t1/2 = 1.06 x

1011 years) and other nuclides, which originate in isotopically distinct source regions and have

sufficiently short residence times in sea water, are useful tracers of oceanic circulation patterns

and mixing rates (Andersson et al., 2001; Piepgras and Wasserberg, 1982). The residence time

of Sr and Nd in lacustrine systems is less well understood. Sedimentary rocks preserve the Nd

isotopic composition of the rocks from which the sediments were derived, although isotopic

systematics can sometimes be disturbed by diagenesis or metamorphism (Bock et al., 1994; Linn

and DePaolo, 1993; Patchett et al., 1999).
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3. FIELD AND LABORATORY METHODS

3.1 Stream water samples

In order to constrain inputs into the Owens Lake system, waters were sampled from a

variety of streams within the Owens Lake drainage basin. Water samples were collected from

eight creeks draining the eastern Sierra Nevada Mountains in May 2000. Major drainages were

sampled at points near the top and bottom of the catchment. Water samples were filtered

through acid-washed 0.45 µm (142 mm diameter) nitrocellulose membrane filters mounted in a

polycarbonate filter holder. Approximately 0.5 L of water was filtered to flush the filter

apparatus before samples were collected. Approximately one liter of filtered water was collected

in acid-cleaned high density polyethylene bottles for isotopic and major and trace element

analysis. Water samples were acidified by adding concentrated Seastar® ultra-pure nitric acid to

make a 1% solution.

Geographic position at each sampling site was determined using a hand-held Garmin

12XL GPS unit (Table 1). Stream discharge was determined by measuring the stream width at

each site and using a Flow Probe hand-held flow meter to measure water velocity and stream

depth in segments across the stream (Table 1). Stream flow was averaged for segments of

roughly equal depth. Alkalinity was determined in the field using a Hach digital titration kit

(Table 1). Phenolpthalein indicator was added to 100 mL of stream water, which were collected

in a pre-contaminated 125 mL Erlenmeyer flask. The sample was titrated with 1.6 N sulfuric

acid to a colorless endpoint and alkalinity was read from the hand-held digital titrator. Specific

conductance and stream temperature were determined with a hand-held Oakton

TDS/Conductivity meter (Table 1). The meter was calibrated with standard conductivity

solutions and conductivity and temperature were measured by immersing the calibrated electrode
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Table 1. Field measurements of stream waters draining the eastern Sierra Nevada Mountains.
Equipment failure (resulting in loss of data) at selected sites is indicated by (--).

Sample Elevation* Site Location† pH Discharge Conductivity Water T Alkalinity

(m) (unadjusted) (L s-1) (µS) (ºC) (mg L-1 as CaCO3)
N37° 27' 22.0"Rock Cr. #1 2951
W118° 44' 05.9"

-- 2620 18.98 6.8 72.1

N37° 29' 34.3"Rock Cr. #2 2719
W118° 43' 03.8"

-- 2674 28.8 7.3 20

N37° 32' 16.0"Rock Cr. #3 2455
W118° 42' 05.0"

7.75 4376 33.1 9.9 17.5

N37° 07' 30.0"Big Pine #1 2408
W118° 26' 14.5"

-- 3958 37.6 9.7 15.4

N37° 07' 57.8"Big Pine #2 1555
W118° 20' 06.3"

7.76 192 54.9 21.8 25.7

N36° 35' 07.1"Lone Pine #1 2548
W118° 14' 28.2"

7.22 472 25.3 8.3 11.8

N36° 35' 50.0"Lone Pine #2 1817
W118° 11' 16.7"

7.38 1585 31.5 6.6 14.9

N36° 27' 34"U. Cottonwood #1 2959

W118° 09' 50"

7.30 765 18.23 5.7 7.6

N36° 27' 34"U. Cottonwood #2 2953
W118° 09' 50"

7.25 2066 11.06 -- 8.6

N36° 26' 23.4"L. Cottonwood 1596
W118° 04' 54.1"

7.52 4510 23.1 -- 16.9

N36° 18' 37.3"Cartago Cr. 1227
W118° 02' 37.5"

8.00 31 72.3 17.2 36.1

N36° 46' 25.7"Independence #1 2785
W118° 20' 12.1"

7.35 1304 32.9 6.2 13.7

N36° 47' 13.4"Independence #2 1981
W118° 17' 51.7"

7.16 2304 49.5 10.5 18.7

N37° 35' 59"Mammoth Cr. 2737
W118° 59' 45"

7.28 1126 35.6 5.7 15.0

N37° 36' 47.1"Twin Lakes Falls 2627
W119° 00' 33.8"

7.38 1536 27.3 4.6 12.1

N37° 40' 25.7"Hot Cr. 2114
W118° 48' 36.8"

8.19 7330 480 25.0 143.5

*relative to sea level
†Based on WGS-84 map datum
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directly into the stream. Stream pH was determined using a hand-held VWR pH/Temp meter

(Model 2000) calibrated with pH 4.0 and pH 7.0 buffer solutions (Table 1). The pH electrode

was immersed directly into the stream and pH was read from the meter. 200 mL aliquots of the

stream water samples were analyzed using a Spectro inductively coupled plasma – atomic

emission spectrometer (ICP-AES) for calcium, magnesium, sodium, potassium, strontium,

barium, silicon, aluminum, iron, sulfur, and phosphorus. Analyses were conducted according to

the U.S. EPA analytical method 6010B guidelines (E.P.A., 1996). Elemental concentrations

were determined by averaging three measurements per element for each sample.

A 100 µL aliquot of a mixed spike solution containing 87Rb, 87Sr, 150Nd, and 147Sm was

added to a 5 mL aliquot of stream water for analysis by isotope dilution thermal ionization mass

spectrometry (ID-TIMS). The remaining volume of water was evaporated to dryness. To isolate

strontium (Sr) from other elements, the evaporated sample was redissolved in a small volume of

3.0 N nitric acid and eluted through quartz columns filled with SrSpec resin. The isotopic

composition of the separated Sr was determined by thermal ionization mass spectrometry

(TIMS) after loading approximately 400 ng of Sr onto rhenium single filaments for analysis on a

Finnigan MAT 262 thermal ionization mass spectrometer.

3.2 Core samples

Core OL-92 comprises three sub-cores of which nine channel samples representing a 10

cm length of core sediment were removed and shipped to the University of Pittsburgh by K.

Menking (Vassar College) in May of 2001 (Table 2). Prior to shipment, the samples were

washed twice in deionized water to remove sodium bicarbonate. At the University of Pittsburgh,

the samples were leached with ammonium acetate buffered at pH 8.2 to remove exchangeable

cations, rinsed with Milli-Q water, and subsequently leached with 8% acetic acid (HOAc) to
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Table 2. Age and proportion of carbonate in samples taken from
USGS core OL-92. (--) indicates datum not available.

OL-92 sub-core* Sample Depth Carbonate Age
(m) (%)† (ka)

OL-92-3 3.52-3.62 67 6.9
OL-92-3 4.82-4.92 60 9.2
OL-92-1 7.5-7.6 7.4 13.9
OL-92-1 8.5-8.53 6.6 15.6
OL-92-1 9.5-9.6 8.8 16.8
OL-92-1 11.1-11.3 9.8 18.8
OL-92-1 13.5-13.6 21 21.8
OL-92-1 15.9-16.0 -- 24.4
OL-92-1 18.1-18.2 -- 28.1

*Core OL-92 is made up of three sub-cores: OL-92-1 (5.49-61.37m), OL-92-2
(61.26-322.86m), OL-92-3 (0.00-7.16m)
†Based on mass leached during acetic acid treatment
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isolate the HOAc-leachable fraction (presumably carbonate) and residue (presumably silicate) of

the samples. The silicate residue was dissolved using a closed-container, concentrated

hydrofluoric and perchloric acid digestion procedure. A 200 µL aliquot of a mixed spike

solution containing 87Rb, 87Sr, 150Nd, and 147Sm was added to an aliquot approximately equal to 1

mg of carbonate of the HOAc-leachable material to determine the concentration of Rb, Sr, Sm,

and Nd by ID-TIMS. A 500 µL aliquot of the same mixed spike solution was added to an

aliquot approximately equal to 2 mg of silicate residue to determine Rb, Sr, Sm, and Nd by ID-

TIMS. Strontium and the rare earth elements (REE) were subsequently separated from the

remaining silicate residue and HOAc-leachable fractions using cation exchange resin in quartz

columns. To obtain the cleanest Sr sample possible, the Sr cuts from the cation columns were

eluted through SrSpec® resin in Teflon columns. The neodymium in the REE cut was separated

from the other REE by eluting both sample fractions through quartz columns filled with

LnSpec® resin. Approximately 400 ng of Sr was loaded onto rhenium single filaments with

tantalum oxide (Ta2O5), and 50-100 ng of Nd was loaded onto rhenium double filaments with 1.0

N hydrochloric acid. The Sr and Nd isotopic composition of the samples was determined by

TIMS.
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4. RESULTS

4.1 Stream water samples

Eastern Sierra Nevada streams are characterized by near neutral pH values ranging from

7.2 to 8.2 (Table 1). Streams in the southern, more arid, portion of Owens Valley generally have

a higher dissolved load than those in the northern portion of the drainage basin (Table 3). The

introduction of hydrothermal fluids into Hot Creek as it flows across Long Valley Caldera

increases its dissolved load to approximately 300 mg L-1, the highest of the eight drainages we

sampled, and an order of magnitude above its source waters at Twin Lakes Falls and Mammoth

Creek (Table 3). The total dissolved load for most samples ranges from 13 to 41 mg L-1 (Table

3). Water samples representing the same stream were averaged and normalized to the world

river average reported by Berner and Berner (1996) for each major solute in order to reveal

variations in individual solutes not caused by inherent differences between streams in contrasting

climates. With the exception of Hot Creek and Cartago Creek, eastern Sierra Nevada stream

water is relatively dilute, with concentrations of Mg and S in some streams more than an order of

magnitude below the world average (Figure 7). Runoff originating in basins characterized by

steep slopes, little vegetation, and young debris, similar to those in the high eastern Sierra, has

been shown to have low concentrations of base cations, dissolved silica, and alkalinity, and are

attributed to the short hydrologic residence times and poor soil development in these areas (Clow

and Sueker, 2000). Hot Creek has higher concentrations of all major cations except Ca, with

more than 10 times the world average Na concentration. Cartago Creek is the southernmost

stream sampled in this study, and it flows through actively grazed pastures and riparian areas.

Inputs of animal waste directly into Cartago creek may contribute the creek’s anomalous Na

value. World average-normalized plots of solutes in Cottonwood Creek, Independence Creek,
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Table 3. Concentrations of major and trace elements in stream waters draining the eastern
Sierra Nevada Mountains. Elemental concentrations were determined by ICP-AES unless
otherwise noted. Note: Upper Cottonwood Creek samples taken from same stream location.
(<DL) indicates value is less than instrument detection limit. (--) indicates datum not
available due to instrument failure or is still being processed.

Stream Site Ca Mg Na K Sr Ba Si Al Fe S P Rb* Sr* Sm* Nd* TDS

- - - - - - - - - - - - - - - - - - - - - µmol L-1- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - nmol L-1 - - - - - - - mg L-1

Rock Cr. #1 61 6.3 57 10 0.10 0.028 93 0.65 0.67 5.5 0.27 9.4 98 0.0086 0.44 --
Rock Cr. #2 78 12 124 15 0.14 0.025 153 0.46 0.86 17 0.29 -- -- -- --. --
Rock Cr. #3 87 15 141 18 0.17 0.033 167 0.62 0.95 16 0.34 13 160 0.029 0.19 --

Big Pine #1 119 18 98 18 0.18 0.034 103 1.0 <DL 32 0.33 7.5 170 0.016 0.13 19

Big Pine #2 18 42 164 30 0.31 0.065 134 2.0 <DL 37 0.39 18 300 0.0040 0.10 28

Lone Pine#1 107 6.8 38 6.4 0.25 0.028 89 1.9 0.61 12 0.24 14 350 0.0073 0.046 13

Lone Pine #2 116 17 66 12 0.31 0.032 118 1.5 <DL 17 0.11 13 230 0.0047 0.030 17

U. Cottonwood #1 40 10 75 10 0.23 0.026 142 2.2 1.22 8.0 0.22 20 220 0.019 0.22 15

U. Cottonwood #2 41 9.7 75 11 0.24 0.030 148 1.9 1.11 6.6 0.24 19 220 -- 0.25 14

L. Cottonwood 94 26 114 16 0.44 0.051 197 0.94 1.09 15 0.47 16 420 -- 0.25 22

Cartago Cr. 242 32 297 18 1.4 0.18 275 1.4 0.44 25 0.18 11 100 0.0067 0.21 41

Independence #1 144 13 39 12 0.25 0.038 88 2.4 <DL 38 0.29 7.3 230 0.025 0.18 18

Independence #2 177 22 135 15 0.36 0.043 101 2.4 <DL 57 0.33 7.0 330 0.0093 0.15 26

Mammoth Cr. 170 6.1 45 8 0.14 0.082 126 0.79 <DL 43 0.20 6.3 130 -- 0.12 21

Twin Lakes Falls 111 10 38 10 0.14 0.054 98 1.7 0.46 21 0.22 8.7 130 0.011 0.15 15

Hot Cr. #2 312 253 3150 203 1.1 0.18 926 1.6 <DL 221 6.5 470 100 0.008 0.21 220
*Determined by isotope dilution thermal ionization mass spectrometry (ID-TIMS)
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and Big Pine Creek reveal increased solute concentrations in samples taken from the lower

reaches of their watersheds (Figure 8). Water entering these streams at lower portions of their

drainage basin, after interacting with solute-laden soil solutions and soluble minerals in the

granitic bedrock, contain relatively high concentrations of dissolved solids which increase the

dissolved load of the trunk stream. Mammoth creek flows into Lake Mary along its southeast

shore, flows out along the northwest shore at Twin Lakes Falls, and eventually forms Hot Creek

as it meanders across Long Valley Caldera. A five- to nearly fifteen-fold increase in major

solutes at the Hot Creek site is caused by mixing of solute-rich hydrothermal solutions with the

relatively dilute waters from Mammoth Creek and Twin Lakes Falls (Goff et al., 1991). Samples

taken from Lone Pine Creek and Rock Creek at downstream sites, where discharge is higher, are

more dilute than samples taken at upstream sites. A similar inverse relationship between

discharge and dissolved load is seen in the Frasier River, Canada, and is attributed to dilution of

mineral-rich groundwater by snowmelt (Cameron, 1996). Pretti and Stewart ( in press, 2001)

sampled the same creeks, except Cartago and Twin Lakes Falls in March and July 1999, as part

of a Sr-isotopic study of stream water in Owens Valley. In all cases, their reported values for

total dissolved solids were higher than those determined in this study. Samples taken in March

may not have been exposed to the seasonal snowmelt present in May when the samples were

collected for the present study. Concentrations of Nd were less than 1 nmol L-1 in all streams,

and were not correlated with stream discharge (Figure 9). The samples were too dilute to

concentrate and separate an adequate amount of Nd for isotopic analysis.
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4.2 Core samples

4.2.1. Elemental concentrations

The proportion of HOAc-leachable material in the core samples increases from

approximately 10% at the last Sierran glacial maximum (see section 2.2) to ~70% at 6.9 ka,

reflecting the onset of the present interglacial period and subsequent desiccation of Owens Lake

(Table 2) (Bischoff et al., 1997a). Strontium, samarium, and neodymium are strongly partitioned

into the HOAc-leachable fraction of the core samples, whereas rubidium is concentrated in the

silicate residue (Tables 4 and 5; Figure 10). The concentration of Nd in the HOAc-leachable

fraction of Owens Lake sediments is 10 to 100 times higher than those found in marine

planktonic foraminifera, which record the Nd isotopic composition of contemporary seawater,

and roughly 10 times higher than bulk sediment values associated with these foraminifera

(Burton and Vance, 2000; Vance and Burton, 1999). Rubidium is consistently an order of

magnitude more concentrated in the silicate residue than in the HOAc-leachable fraction of each

of the core samples (Table 4). Strontium concentrations decrease from 1700 ppm at 24 ka to 240

ppm at 16 ka before increasing to 3600 ppm at 7 ka in the HOAc-leachable fraction of the core

samples (Figure 10). Patterns of Sm and Nd concentrations mimic one another in both core

sample fractions (Table 5). Concentrations of Sm and Nd in the HOAc-leachable fraction are

roughly equal to their corresponding concentrations in the silicate residue for the shallowest

samples; however, at depths greater than 4.92 m, concentrations of Sm and Nd are 2 to 5 times

higher in the HOAc-leachable fraction than in the silicate residue (Figure 10).

4.2.2 Isotope ratios

The 87Sr/86Sr ratios of the HOAc-leachable material resemble that of modern seawater
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Table 4. Rb and Sr concentrations and isotopic composition of Owens Lake core
samples. (--) indicates datum not available.

Depth HOAc leachate Residue
Rb* Sr* 87Sr/86Sr† Rb* Sr* 87Sr/86Sr†

(m) (ppm) (ppm) (ppm) (ppm)
3.52-3.62 0.56 3600 0.709136±09 15 47 0.708790±11
4.82-4.92 0.95 1800 0.709116±08 65 160 0.708373±09
7.5-7.6 32 450 -- 140 260 --
8.5-8.53 21 240 -- -- -- --
9.5-9.6 10 550 0.709247±09 180 250 0.708897±09

11.1-11.3 9.2 700 -- 180 230 --
13.5-13.6 16 850 0.709272±11 240 280 0.709474±10
15.9-16.0 12 1700 0.709194±09 240 270 0.709118±10
18.1-18.2 -- -- -- 190 270 --

*Determined by isotope dilution mass spectrometry.
†Uncertainty shown is in-run 2-sigma uncertainty; estimated external reproducibility is 20 ppm.
University of Pittsburgh value for SRM 987 is 0.71024.
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Table 5. Sm and Nd concentrations and isotopic composition of Owens
Lake core samples. (--) indicates datum not available.

Depth HOAc leachate Residue
Sm* Nd* εNd

† Sm* Nd* εNd
†

(m) (ppm) (ppm) (ppm) (ppm)
3.52-3.62 1.7 7.1 -6.31 0.29 1.6 -6.35
4.82-4.92 1.7 7.8 -6.53 2.2 12 --
7.5-7.6 24 170 -5.46 4.1 24 -6.47

8.5-8.53 19 150 -5.71 -- -- --
9.5-9.6 11 53 -5.84 2.0 18 -7.00

11.1-11.3 11 61 -5.74 3.0 16 -6.88
13.5-13.6 16 69 -5.97 2.6 20 -6.71
15.9-16.0 16 64 -5.75 3.4 18 -6.98
18.1-18.2 -- -- -- 2.2 18 -6.60

*Determined by isotope dilution mass spectrometry
†Relative to 143Nd/144Nd CHUR = 0.511847
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Figure 10. Concentrations of Rb, Sr, Sm, and Nd in Owens Lake core OL-92 sediment samples.
Solid circles represent the silicate residue and the empty boxes represent the HOAc-leachable
fraction.
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(0.7092), whereas the 87Sr/86Sr ratios of the silicate residue are slightly lower, or less radiogenic

(Table 4). Pretti and Stewart (in press, 2001) determined the Sr flux-weighted 87Sr/86Sr ratio of

several streams in the Owens Lake watershed to be 0.70911. The 87Sr/86Sr ratios observed in the

HOAc-leachable fraction of the core samples are clustered around this value, indicating a

relatively unchanging Sr isotopic composition in Owens Lake water over the last 28 ka.

However, significant differences are observed in the Sr isotopic composition of the silicate

residue (Figure 11). The HOAc-leachable fraction and the silicate residue have similar 87Sr/86Sr

ratios from ~24 to 17 ka, near 0.709. After this time, the 87Sr/86Sr ratio of the silicate residue

decreases below 0.7085 at ~9 ka before increasing again to values near 0.709 at 7 ka. The

observed Sr-isotopic excursion below 0.7085 may be a result of changes in source rock lithology

or watershed area. The Sr isotopic composition of Owens Lake sediments is weakly correlated

with εNd, and age, indicating these isotopic systems are governed by similar processes in the

Owens Lake system (Figure 12).

Neodymium isotope ratios are reported as εNd (Table 5) where:

ε Nd =
143Nd /144Nd( )

sample

143Nd /144Nd( )
CHUR

− 1
 

 
 
 

 

 
 
 

104 (1)

CHUR is chondritic uniform reservoir, thought to represent a bulk solar system value. In

sediments older than ~10 ka, εNd values for the HOAc-leachable fraction are approximately 1

epsilon unit higher than that of the silicate residue; however, in younger sediments, the εNd

values for the HOAc-leachable fraction are less radiogenic, matching those of the silicate

residue, near -6.5 (Figure 11). This shift may reflect a change in sediment source area or a

change in source rock chemistry.
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Figure 11. Variations in the Sr and Nd isotopic composition of sediment samples from Owens
Lake core OL-92. Solid circles represent the silicate residue and open boxes represent the HOAc-
leachable fraction.
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silicate residue of Owens Lake sediments.
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5. DISCUSSION

5.1 Causes of isotopic shifts in Owens Lake sediment

The difference in εNd of the chemical and clastic sediments in Owens Lake from ~30 to

12 ka, and subsequent downward shift of the chemical sediments after ~12 ka, indicates separate

sources for the dissolved and suspended load of surface water reaching Owens Lake existed

during this ~18 k.y. period. Potential causes of the offset between the dissolved and suspended

loads include (1) different source regions for the dissolved and suspended load of the ancestral

Owens River; (2) variations in the hydrothermal flux of streams flowing out of the Long Valley

Caldera area; or (3) differential mineral weathering of Mesozoic granitoids in the sediment

source region. These will be considered in turn.

5.1.1 Siliciclastic sediment provenance

The two primary Sr and Nd reservoirs for sediments originating in the eastern Sierra

Nevada range are Paleozoic metasedimentary rocks, which are restricted to several disconnected

roof pendants, and abundant Mesozoic granitic rocks. Estimates of the Nd and Sr isotopic

composition of these two reservoirs have been determined, and are distinct for each source rock

and isotopic system (Table 6). Over the past ~30 ka, the Sr and Nd isotopic composition of

clastic sediments in Owens Lake more closely resembles values characteristic of Mesozoic

granitoids than they do Paleozoic metasedimentary rocks. This indicates streams supplying

sediment to Owens Lake during last ~30 ka drained regions in the eastern Sierra Nevada

underlain by Mesozoic granitoids, and the scattered Paleozoic roof pendants in the eastern Sierra

Nevada do not significantly influence the overall isotopic composition of clastic material

reaching Owens Lake. Moreover, clastic sediment in Owens Lake lacks detrital carbonate or



39

Table 6. Approximate Sr (Kistler and Peterman, 1973) and Nd (Linn
et al., 1991) isotopic composition of Mesozoic granitic rocks and
Paleozoic metasedimentary rocks of the Sierra Nevada range.

Source Initial εNd
* Initial 87Sr/86Sr

Mesozoic granitoids +7 to -6† 0.704 to 0.708
Paleozoic metasedimentary rocks -10 to -14 0.715 to 0.717
*data reported as deviation of sample initial 143Nd/144Nd from CHUR (Chondritic
Uniform Reservoir)
†values decrease from west to east across the Sierra Nevada
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metamorphic minerals associated with sediments derived from metasedimentary rocks (Bischoff

et al., 1997a).

Several studies have identified mineralogic, isotopic, and temporal west-east variations in

the Sierra Nevada (Ague and Brimhall, 1988; Bateman, 1983; DePaolo, 1981). Plotted contours

of isotopic variations in rocks of the Sierra Nevada batholith reveal a general southeast trend of

decreasing εNd values and increasing 87Sr/86Sr ratios in the northern Sierra Nevada range (Figures

13 and 14). The εNd value of plutons of the eastern Sierran crest in the vicinity of Owens Valley

is variable, but εNd values less than -6.0, which correspond to values of clastic sediments found in

Owens Lake over the past ~30 ka, for plutons in this region are likely. Chemical sediments in

the lake at this time, however, are nearly one epsilon unit lower than the clastic sediments until

~12 ka, when the isotopic composition of the chemical sediments shifts to match that of the

clastic sediments. The onset of interglacial conditions at this time, in response to the decreasing

glacial anticyclone discussed in section 2.1.3, may have sufficiently altered precipitation patterns

to cause a shift in the sediment source region for Owens Lake, and a subsequent isotopic shift in

chemical sediments in the lake.

If, during pluvial periods, disproportionately high amounts of precipitation fell in the

northern reaches of the Owens Lake drainage basin, excessive runoff from this region could have

accounted for a majority of the water flowing into the ancestral Owens River, thereby governing

the river’s dissolved and suspended loads in the northern portion of the basin. Moreover, the

Owens River maintains a gentle stream gradient as it meanders across Long Valley Caldera and

the floor of Owens Valley, which may have allowed suspended material in the northern portion

of the drainage basin to settle out of the river before it reached Owens Lake. If this was the case,

a majority of the suspended material reaching Owens Lake at this time may have been
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Figure 13. Contour map showing the regional variation of initial εNd for rocks of the Sierra
Nevada range, eastern California (from Linn et al., 1992). MZ = Mesozoic, PZ = Paleozoic.
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Figure 14. Contour map showing the regional variation of initial 87Sr/86Sr for rocks of the
Sierra Nevada range, eastern California (from Linn et al., 1992). MZ = Mesozoic, PZ =
Paleozoic.
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transported relatively short distances from local drainages in the southern portion of the basin.

This scenario, in which the dissolved load is derived from the northern portion of the drainage

basin and the suspended load is derived from the drainages immediately surrounding Owens

Lake could account for the higher εNd values of the chemical sediment in Owens Lake from ~30

to ~12 ka. As the climate moderated and precipitation patterns across the eastern Sierra Nevada

range changed, the contribution of dissolved and suspended material from the northern portion of

the basin could have significantly decreased. After ~12 ka, precipitation in the southern portion

of the drainage basin may have been high enough for streams in this region to become the

dominant tributaries feeding the Owens River. This type of shift, from a dissolved load derived

from the northern portion of the drainage basin, to a dissolved load derived from the southern

portion of the drainage basin, may be responsible for the downward shift in the isotopic

composition of Owens Lake chemical sediments at ~12 ka. This model is inconsistent with the

onset of the cooler, moist climate across the Sierra Nevada range associated with the southward

shift of the jet stream at ~12 ka (Figure 2). A warmer, drier climate doesn’t occur in this region

until after ~12 ka, as the glacial anticyclone weakens, and the jet stream migrates back toward

the north. As changes in atmospheric circulation evolve over several ka, a precipitation-induced

shift in the source region for Owens Lake sediments after ~12 ka will likely have insufficient

time to produce the downward shift in the εNd values of Owens Lake chemical sediments which

takes place by 9.2 ka.

5.1.2 Variations in hydrothermal activity

Two prominent episodes of hydrothermal activity in Long Valley Caldera are recorded by

hot-spring deposits and inactive thermal areas (Sorey et al., 1991). The oldest episode peaked at

~300 ka, whereas the younger episode began at ~40 ka and persists today (Sorey et al., 1991).
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This current hydrothermal system may be related to the volcanic activity of the Mono-Inyo

craters volcanic chain, which began ~40 ka ago. Temperature/depth patterns of two of the major

aquifers in the caldera indicate a pulse of hydrothermal activity occurred approximately 3 ka ago

(Blackwell, 1985). Hydrothermal fluids can be redistributed, replenished, or diminished by

tectonic events, intrusive/thermal events, or reductions in aquifer porosity due to silicification,

argillization, or zeolitization (Bailey et al., 1976; Blackwell, 1985). Evidence of oscillating

hydrothermal fluxes exists in evaporite deposits of Searles Lake as elevated concentrations of

boron and lithium (Sorey, 1985). Clearly, injections of hydrothermal fluids, similar to the

hydrothermal excursion recorded at ~ 3 ka, influence the composition of downstream lakes, and

could be responsible for the downward shift in the Nd isotopic composition of chemical

sediments in Owens Lake.

No specific hydrothermal anomaly is recorded in temperature profiles or hot-spring

deposits at the time when Owens Lake chemical sediments shift to lower values (14-9 ka).

However, the current Long Valley Caldera hydrothermal system has been active since ~40 ka,

and evidence of a hydrothermal event taking place between ~12 ka and ~7 ka may have been

erased by subsequent events. A significant increase in the flux of hydrothermal fluids circulating

through young volcanic rocks in Long Valley Caldera should decrease the Sr isotopic

composition of the streams receiving hydrothermal discharge as they flow across the caldera

floor. Moreover, as previously stated, hydrothermal activity and weathering of Paleozoic

metasedimentary roof pendants in the Owens Lake drainage basin govern the Sr budget, so any

significant variation in the hydrothermal flux should be recorded in the Sr isotopic record of

Owens Lake chemical sediments. However, over the past ~25 ka these sediments show no sign
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of such an event, remaining relatively constant at 0.709. This Sr isotopic evidence argues against

the hydrothermally-driven isotopic shift in Owens Lake at ~12 ka.

5.1.3 Mineral weathering

Products of chemical weathering reactions on mineral surfaces are the ultimate source of

REE in eastern Sierran streams. Therefore, the REE concentration and isotopic composition of

Owens Lake water is dependant on the nature of the minerals present in rocks at the headwaters

of the drainage basin. Gromet and Silver ( 1983) quantified the distribution of REE comprising

minerals of a granodiorite from the Peninsular Ranges batholith (PRB) of southern California.

The PRB formed from the same magmatic arc which produced the Sierra Nevada batholith

(SNB), and is essentially a southern extension of the SNB displaced by Late Tertiary tectonism

(see section 2.1.1). Therefore, the REE distribution in rocks of the PRB should be similar to the

REE distribution in rocks of the SNB.

The most abundant minerals in granitic rocks have been shown to contain the lowest

concentrations of REE (Gromet and Silver, 1983). Plagioclase, biotite, and K-feldspar combined

account for less than 5% of the REE (except europium) present in the whole rock sample of

granodiorite from the PRB (Gromet and Silver, 1983). Hornblende in these rocks can account

for up to 15% of the HREE, but all remaining REE (80 - 95%) are contained in the accessory

minerals, sphene and allanite (Gromet and Silver, 1983). A theoretical, present-day shift in εNd

from the initial value among minerals in the granodiorite can be calculated based on their Sm/Nd

ratio and age (Table 7). Upon emplacement, the granodiorite is isotopically homogenous and the

εNd value of each individual mineral would be equal. However, each mineral will evolve a

unique εNd value over time based on its Sm/Nd ratio (Figure 16). No correlation exists between

the concentration of Nd and the calculated present-day εNd value of the minerals present in the
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Table 7. Theoretical values of εNd based on Sm/Nd values reported for a granodiorite of the
Peninsular Ranges batholith by Gromet and Silver (1983). Minerals were assumed to have
formed 80 Ma ago with an initial εNd=0. (--) indicates datum is not applicable.

mineral mineral formula* modal analysis [Nd] [Sm] 147Sm/144Nd εNd
†

(wt. %) (ppm) (ppm)

zircon ZrSiO4 0.010 14.9 5.4 0.2193 0.23

hornblende
(Ca,Na)2-3(Mg,Fe,Al)5-

Si6(Si,Al)2O22(OH)2
4.82 27.5 8.67 0.1907 -0.06

sphene CaTiO(SiO4) 0.65 2680 655 0.1479 -0.50

biotite K(Mg,Fe)3(Al3SiO10)(OH)2 10.9 1.03 0.221 0.1298 -0.69

apatite Ca5(PO4)3(F,Cl,OH) 0.11 302 52.9 0.1060 -0.93

epidote
Ca2(Al,Fe)Al2O(SiO4)-

(SiO7)(OH)
0.52 58.5 9.45 0.0977 -1.01

K-spar KAlSi3O8 11.2 0.077 0.011 0.0881 -1.11

plagioclase (Ca,Na)(Al,Si)2Si2O8 45.6 0.252 0.02 0.0480 -1.52

allanite
(Ca,Ce)3(Fe2+,Fe3+)Al2O-

(SiO4)(Si2O7)(OH)
0.077 16060 1260 0.0475 -1.53

whole rock - - 25 4.32 0.1045 -0.94

quartz** SiO2 26.1 -- -- -- --
*from Klein and Hurlbut (1993)
†relative to CHUR = 0.511847
**[Nd], [Sm] in quartz is negligible
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PRB granodiorite (Figure 17). However, when only the common minerals (hornblende, biotite,

plagioclase, and K-feldspar) are considered, εNd values increase with the concentration of Nd in

the mineral. Therefore, weathering of common minerals could produce a systematic trend in the

isotopic composition of their dissolved weathering products The isotopic composition of the

dissolved products of a chemically weathered rock will match that of the remaining whole rock if

the minerals weather in proportion to their abundance in the rock. However, preferential

weathering of individual (or groups of) minerals will displace the isotopic composition of the

dissolved products away from the whole rock value in the direction of the isotopic composition

of the weathering minerals. Minerals are not likely to weather in proportion to their abundance

because some of the most abundant minerals, such as biotite, hornblende, and plagioclase, are

known to be less stable (and more prone to chemical weathering) at surface temperatures and

pressures than minerals such as quarts and K-feldspar. After the feldspar minerals, biotite

contains lowest amounts of Nd in the PRB granodiorite, and, therefore, its impact on the isotopic

composition of weathered mineral products is negligible. Hence, the weathering patterns of

plagioclase and hornblende most likely govern the isotopic composition of the dissolved material

reaching streams in the eastern Sierras. Hornblende has the highest concentration of Nd among

the common minerals in the PRB granodiorite, and can be present in abundances up to 24% of I-

type granites in the Sierra Nevada batholith (Ague and Brimhall, 1988). The theoretical εNd

value of hornblende in the Peninsular Ranges batholith is nearly 1.5 epsilon units more

radiogenic than coexisting plagioclase and allanite (the most Nd-rich mineral in the PRB

granodiorite) (Figure 17). Therefore, the shift in εNd values observed in the chemical sediments

of Owens Lake at ~12 ka may be caused by a change from a hornblende-dominated mineral

weathering regime, to a plagioclase dominated weathering regime. The approximate isotopic
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composition of the present-day whole rock value for the PRB granodiorite can be determined by

summing the relative isotopic composition and Nd concentration of each mineral in the sample:

εNd
wholerock = εNd

phase i( ) fphasei( ) [Nd]phasei

[Nd]wholerock

 

 
 

 

 
 

n=1

i

∑ Cw( ) , (2)

where f phase i = fraction of phase i in the rock, and Cw is the weathering coefficient (from 0 to 1)

representing the extent to which a mineral has been weathered. Equation 2 can be used to

estimate the εNd value of the solution (εNd
solution ) produced by the weathering model by substituting

the term (1 - Cw ) for the Cw term. Equation 2 yields a εNd
whole rock of -0.89 when no minerals have

weathered from the sample. Under a hornblende-dominated weathering regime, when

hornblende is the only mineral being weathered out of the sample, εNd
whole rock increases only

slightly to -0.93, while the εNd
solution acquires the isotopic signature of hornblende (-0.06).

Therefore, preferential weathering of hornblende has a relatively minor impact on the Nd

isotopic composition of the weathered whole rock residue, but has a significant impact on the Nd

isotopic composition of the dissolved weathering products. As hornblende is consumed and the

weathering regime begins to favor plagioclase, the εNd
whole rock remains constant at -0.93 while the

εNd
solution decreases from -0.06 to -0.18. The net effect of the switch from a hornblende- to

plagioclase- dominated weathering regime is a downward shift in the isotopic composition of the

weathered mineral products. Zircon is a stable, non-reactive mineral, and the remaining

accessory minerals do not deviate from the whole rock εNd composition, so sphene and allanite

are likely the only accessory mineral phases capable of producing a significant shift in the Nd

isotopic composition of streams draining the eastern Sierras. Some combination of chemically

weathering sphene, allanite, hornblende, and plagioclase most likely controls the isotopic

composition of these streams; however, the low abundance of the accessory minerals relative to
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the major silicate phases favors the hornblende-plagioclase weathering scheme. The positive

correlation between εNd and Nd concentration for Owens Lake chemical sediments, and

corresponding lack of correlation for Owens Lake clastic sediments supports this idea (Figure

18).

Once the exposed surfaces of rocks are weathered, the isotopic composition of streams in

the eastern Sierra Nevada range should stabilize. However, upon the retreat of alpine glaciers in

the Owens Lake drainage basin, fresh mineral surfaces are exposed, essentially resetting the

chemical weathering scheme in glaciated areas. The last glacial maximum (see section 2.2) in

the Sierra Nevada range occurred 25-17 ka ago, approximately 5 thousand years prior to the shift

observed in Owens Lake chemical sediments (Bischoff et al., 1997a). This may be a sufficient

length of time for the hornblende-plagioclase weathering transition to occur. The glacial-

interglacial transition in the eastern Sierra Nevada range is recorded in Owens Lake sediments by

variations in clay mineralogy, carbonate abundance, and organic carbon, among other proxies

(Figures 3 and 6). During closed-lake conditions, smectite abundance in Owens Lake sediments

increases, indicating active chemical weathering processes are taking place in the sediment

source areas. Increased weathering in the source region during the onset of the present

interglacial period is consistent with an increase in the chemical weathering, and eventually

depletion, of hornblende over other, more stable minerals.

A Sr isotopic study of mineral weathering in a soil chronosequence from the western

Sierras found K-feldspar to be a significant contributor to the 87Sr/86Sr ratio of the cation

exchange pool during the development of young soils, contrary to previous studies which

attribute initial fluxes of Sr to biotite during incipient granitoid weathering. (Bullen et al., 1997).
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Their findings are surprising because K-feldspar is considered resistant to chemical weathering

relative to biotite, hornblende, and plagioclase. These authors attribute this weathering

discrepancy to differential dissolution of Sr from K-feldspar because it is a trace element, and

may behave differently than its stoichiometric counterparts such as K and Na. Similarly, as Nd

is a trace element in hornblende and plagioclase, and is nearly absent in biotite, Nd in these

minerals may not respond to chemical weathering reactions in the same manner as other

coexisting stoichiometric elements.
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6. SUMMARY AND CONCLUSIONS

Samarium and neodymium are highly enriched in Owens Lake carbonate relative to

marine carbonate, indicating strong partitioning of REE into chemical sediments occurs in

Owens Lake. Isotopic analysis of Owens Lake sediments indicates dissolved and suspended

loads of eastern Sierra Nevada streams have isotopically distinct sources from ~30 to ~12 ka ago.

Differences in the isotopic composition of dissolved and suspended loads can be influenced by

changing precipitation patterns in the eastern Sierra Nevada range induced by changing

atmospheric circulation associated with the last glacial-interglacial transition, by pulses of

hydrothermal fluids associated with recent volcanism in the Mono-Inyo volcanic chain injected

into Hot Creek in Long Valley Caldera, or by preferential chemical weathering of different

mineral phases in the sediment source region of the Owens Lake drainage basin. Differential

weathering of hornblende and plagioclase could be responsible for offset in the Nd isotopic

composition of Owens Lake chemical sediments from ~30 to ~12 ka ago. The shift in εNd at ~12

ka could reflect depletion of hornblende in the source region in response to increased weathering

in the sediment source region.

The Nd isotope system has potential as a paleoclimate proxy in freshwater systems, and

can be tested by applying it to older Owens Lake sediments. If this proxy is valid, shifts in the

isotopic composition of Owens Lake chemical sediments should occur at all of the major

glacial/interglacial boundaries preserved in core OL-92
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