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hippocampus  

Barbara Anna Isanski 

University of Pittsburgh, 2007

 

Alzheimer’s Disease (AD) is a chronic neurodegenerative disorder characterized 

clinically by dementia and neuropathologically by the presence of amyloid-β (Aβ) plaques, 

neurofibrillary tangles, and neuronal and synapse loss. AD dementia severity correlates with 

reductions in synapses as well as in cholinergic markers, including choline acetyltransferase 

(ChAT) and acetylcholine esterase (AChE). However, the exact relationship of these changes 

with Aβ metabolism and plaques is unclear. Recently, it has been proposed that reduced 

cholinergic activity can increase levels of Aβ peptide. We investigated this relationship using a 

well-characterized model of hippocampal cholinergic denervation (achieved by fimbria-fornix 

transection) in a unique human Aβ "knock-in" mouse model of AD.  The fimbria fornix lesion 

was effective in diminishing the cholinergic input to the hippocampus; ChAT immunoreactive 

fiber densities were reduced in the hippocampus, and cholinergic enzyme activity levels were 

reduced by almost 50% compared to naïve animals. Fimbria fornix lesions also resulted in a 3-

fold increase in soluble Aβ42 over naives, supporting the hypothesis that loss of  cholinergic 

innervation increases Aβ peptide levels in target fields. Our data indicate that cholinomimetic 

therapies could prove valuable in suppressing increases in potentially neurotoxic soluble Aβ 

levels, and provide a model for evaluating in vivo the relationship between cholinergic function 

and amyloid metabolism.  
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1.0  INTRODUCTION 

Alzheimer’s Disease (AD) is a chronic neurodegenerative disorder characterized clinically by 

dementia and neuropathologically by the presence of amyloid plaques and neurofibrillary tangles 

(Selkoe DJ, 2005). Another common neuropathological finding in AD brains is neuronal loss, 

notably in the cholinergic basal forebrain (Whitehouse PJ et al, 1982), the region providing 

major cholinergic input to the hippocampus and neocortex (Mesulam MM et al, 1983). Neuronal 

loss in AD brains is associated with a loss of synapses (Scheff SW et al, 1990), which correlates 

directly with cognitive impairment (DeKosky ST and Scheff SW, 1990). However, the exact 

nature of the relationship between cholinergic synaptic deficits and the major neuropathological 

hallmarks of the disease (e.g., amyloid plaques) is unclear. Recently, it has been proposed that a 

decrease in cholinergic activity can increase levels of Aβ peptides, creating a cycle of cholinergic 

loss, increased Aβ production, and cognitive impairment (Strandridge JB, 2006).  In this study, 

we wanted to investigate if depriving the hippocampus of cholinergic input would lead to 

increased levels of Aβ peptide, in a mouse model in which rodent Aβ has been replaced by 

knocked-in human Aβ, but with APP being under the control  of the natural promoter (Reaume 

AG et al, 1996). 
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1.1.1 Amyloid precursor protein (APP) and the production of Aβ: amyloidogenic and 

non-amyloidogenic pathways.  

Amyloid plaques are composed mainly of a 4.5 kDa peptide termed amyloid-β (Aβ) peptide 

(Selkoe, 2005). Aβ peptide is released from the larger amyloid-β precursor protein (APP), which 

has been identified as three major isoforms: APP695, APP751, and APP770 (Buxbaum JD et al, 

1992). In humans, the APP gene is located on chromosome 21 (Haass C and Selkoe DJ, 1993).  

The physiological functions of APP are not known for certain, but likely include 

functioning as a growth factor or playing a role in cell survival (Beeson JG et al, 1994). Under 

physiological conditions, APP undergoes metabolic processing via a pathway that precludes Aβ 

formation. In this “non-amyloidogenic” pathway, an enzyme called α-secretase cleaves APP 

within the Aβ sequence, resulting in the release of the secreted 90-100kDa N-terminus domain of 

the protein (also known as sAPPα) into the extracellular space (Buxbaum JD et al, 1992; Vassar 

R et al, 1999). sAPPα is thought to be involved in neuroprotection and it has been implicated in 

neurite extension (Wallace WC et al, 1995). Alternate processing of APP occurs via the 

“amyloidogenic pathway”. This metabolic pathway requires activities of enzymes called β-

secretase (Vassar R et al, 1999) and γ-secretase (Kimberly WT et al, 2003). Firstly, the β-

secretase cleaves APP at the N-terminus of the Aβ sequence, releasing a slightly shorter form of 

the secreted APP N-terminus fragment (sAPPβ). Subsequent cleavage of the APP C-terminus 

fragment occurs, involving γ-secretase (a complex comprised of presenilin, nicastrin, Aph-1, and 

Pen-2), upon which Aβ peptide is liberated and secreted into the extracellular space where it can 

aggregate into amyloid plaques (Kimberly WT et al, 2003). The two predominant forms of Aβ 

are either 40 or 42 amino acids in length. Aβ42 is the more toxic of the two species and more apt 
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to aggregate.  The two additional amino acids on the Aβ42 species are thought to increase its 

hydrophobicity and make it more prone to aggregation, compared to Aβ40 (Gouras GK et al, 

2005).   

Aβ is secreted in a soluble state, polymerizing to form monomers, dimers, trimers and 

larger oligomers (Linder MD et al, 2006). High concentrations of soluble Aβ are harmful to 

neurons. For example, altered synaptic morphology was associated with increased intraneuronal 

Aβ levels (Tseng BP et al, 2004), and Aβ can inhibit neuronal long-term potentiation, which 

serves as a correlate of memory function (Walsh DM et al, 2002). One proposed mechanism for 

soluble Aβ’s deleterious effects on long term potentiation is that soluble Aβ oligomers perturb 

normal expression of a synaptic immediate early gene which is required for memory formation 

(Lacor et al, 2004). Higher levels of soluble Aβ are associated with greater synaptic loss 

(Lindner MD et al, 2006), and cognitive decline (Naslund J et al., 2000) in AD. Furthermore, 

increased soluble Aβ levels also correlate with greater degree of AD severity (McLean CA et al, 

1999).  

 After Aβ oligomers agreed into protofibrils, and insoluble Aβ fibrils are formed, a dense 

β-pleated sheet of Aβ becomes the core of extracellular plaques. It has been suggested that 

fibrillar Aβ can also cause neuronal death by altering calcium homeostasis, increasing levels of 

oxidative stress, and disrupting neuronal synapses (Lahiri DK et al, 2007). 

1.1.2 Anatomy of the cholinergic system 

Acetylcholine is a neurotransmitter implicated in a variety of functions, including cognition,  

regulation of arousal and sleep-wake cycle and selective attention (De LaCalle S et al, 1994). 
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The basal forebrain cholinergic system consists of the nucleus basalis of Meynert, the medial 

septal nucleus, and the horizontal and vertical diagonal bands of Broca (Auld DS et al, 2002). 

The septal complex is further divided into four sections: lateral, medial, ventral and posterior. 

The medial septal area is divided into the medial septum nucleus (which is located dorsally) and 

the ventrally located nucleus of the diagonal band of Broca.  The nucleus of the diagonal band of 

Broca is subdivided into vertical and horizontal limbs (González I et al, 2007).   

The hippocampus receives the majority of its cholinergic input from neurons which 

originate in the medial septal nucleus and the vertical limb of the diagonal band of Broca 

(Mesulam M, 2004). These large cholinergic neurons send their axonal projections to 

hippocampus via the fimbria fornix bundle (Wainer BH et al, 1985). These fibers terminate in all 

areas of hippocampus, but the densest projections are to supra and infragranular regions of 

dentate gyrus, the stratum oriens, and the stratum radiatum (Amaral DG and Kurz J, 1985). 

Retrograde labeling studies in rats indicate that very few medial septum and diagonal band 

neurons innervate frontal or parietal cortices (McKinney M et al, 1983).  

The cerebral cortex and amygdala are innervated by the more caudally located portion of basal 

forebrain, the nucleus basalis of Meynert (Levey AI et al, 1987; Mesulam M, 2004). In rodents 

however, the cortex also contains cholinergic interneurons, which contribute 30% of the total 

cortical cholinergic innervation (Mesulam M, 2004). The areas of basal forebrain which contain 

cholinergic projection neurons receive significant input primarily from prefrontal cortex, as well 

as from piriform and insular cortices (Zaborszky L et al, 1997).  The nucleus basalis complex 

receives cortical input via limbic areas, although it projects to all areas of cortex (Mesulam M, 

2004).  The horizontal limb of the diagonal band of Broca innervates cingulate cortex and visual 

cortex (McKinney M et al, 1983). 
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1.1.3 Biochemistry of the cholinergic system 

Cholinergic neurons contain the acetylcholine synthesizing enzyme, choline acetyltransferase 

(ChAT) (Mesulam M, 2004).  ChAT is involved in the reaction which transfers the acetyl group 

from acetyl coenzyme A to choline, resulting in formation of acetylcholine (Oda Y, 1999). This 

reaction occurs at the axon terminal of cholinergic neurons; ChAT itself is synthesized in the 

perikaryon and is transported to the synapse via anterograde axonal transport (Oda Y, 1999). The 

acetylcholine degrading enzyme, acetylcholinesterase (AChE) is present on both the presynaptic 

and post-synaptic membranes of the cholinergic synapse; the surrounding glia contain 

butyrylcholinesterase (BChE) (Greig NH et al, 2005; Mesulam M, 2004). AChE hydrolyzes 

acetylcholine upon its release from synaptic vesicles into the synaptic cleft and choline is taken 

up by the presynaptic bouton (Ribeiro FM et al, 2006).  High affinity choline uptake (HACU) is 

the rate limiting step in acetylcholine synthesis in vivo (Lapchak PA et al, 1991). 

1.1.4 Animal models of cholinergic dysfunction 

It is possible to disrupt the cholinergic system by mechanically damaging cholinergic pathways, 

producing excitoxic lesions of basal forebrain structures, or by using cholinergic antagonists at 

the cholinergic receptor.  The loss of cholinergic neurons results in decreased acetylcholine 

levels in cortex as well as in other projection areas (Buxbaum JD et al, 1992). Lesioning the 

fimbria fornix causes both degeneration of cholinergic neurons in medial septum and 

significantly decreased levels of cholinergic enzyme activity in hippocampus (Beeson JG et al, 

1994). Bilateral fimbria fornix lesions in rats decreased ChAT activity in hippocampus as early 

as one day following surgery. Three weeks following the lesion procedure, ChAT activity in the 
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hippocampus was still reduced, although ChAT activity in medial septum and diagonal band of 

Broca returned to normal levels (Häge B et al, 1996).  Complete fimbria fornix lesions resulted 

in loss of AChE staining throughout the hippocampus (Lapchak PA et al, 1991; Lewis PR et al, 

1967).  However, lesions of the basal forebrain cholinergic system do not cause a complete 

depletion of ChAT in cortex or hippocampus owing to the presence of cholinergic interneurons 

in the cortex (Blaker SN et al, 1988). Previous work has shown that following fimbria fornix 

lesion, residual cholinergic fibers remain in layers I and III of presubiculum and in the molecular 

layer of hippocampus and subiculum (Blaker SN et al, 1988). 

1.1.5 Cholinergic deficits in Alzheimer’s Disease 

Multiple neurotransmitter systems are affected in AD, including cholinergic, adrenergic, 

dopaminergic and serotonergic (DeKosky ST et al, 2004). However, the most severe 

neurotransmitter dysfunction that occurs in AD is believed to involve dysfunction and 

subsequent loss of the basal forebrain cholinergic neurons (Hellström-Lindahl E, 2000; 

Liskowsky W and Schliebs R, 2006). Diminished cholinergic enzyme activity (i.e. ChAT and 

AChE) has been reported in AD brains (DeKosky ST et al., 1985) and  ChAT mRNA levels are 

decreased in temporal, frontal, and parietal cortices in AD brains (Auld DS et al, 2002).  AD 

patients have a decreased number of synaptic contacts in frontal cortex, compared to controls 

(Scheff SW et al, 1990) and this synapse loss correlates with cognitive decline (DeKosky ST and 

Scheff SW, 1990; Terry RD et al, 1991). Basal forebrain cholinergic neurons are differentially 

affected during the course of AD.  For example, neurons in the posterior nucleus basalis are more 

vulnerable to degeneration compared to neurons in the medial septal/ diagonal band complex 

(DeKosky ST et al, 2002). 
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1.1.6 Relationship between cholinergic neurotransmission and APP processing 

Many studies indicate that there is a relationship between perturbed cholinergic innervation and 

altered APP metabolism. In addition to lowering cholinergic enzyme levels, another effect of 

lesioning cortical-projecting cholinergic neurons in animals was upregulation of APP in cortex 

(Wallace WC et al, 1995), and a significant increase in sAPPβ in CSF (Haroutunian V et al, 

1997). Cutting the fimbria fornix in rats also resulted in greater APP immunoreactivity in 

hippocampus four weeks following the lesion (Beeson JG et al, 1994; Lin L et al, 1999).      

Pharmacological studies suggest that cholinergic neurotransmission “favors” non-

amyloidogenic processing of APP. Chronic treatment with the muscarinic cholinergic receptor 

antagonist scopolamine resulted in lower activity of α-secretase in the cortex (Liskowsky W and 

Schliebs R, 2006). Additionally, scopolamine treatment of APP- overexpressing mice led to 

increased levels of fibrillar Aβ1-40 and Aβ1-42 peptides (Liskowsky W and Schliebs R, 2006).  

Muscarinic receptor activation leads to increased secretion of APPα which results in decreased 

Aβ levels (Lin L et al, 1999). Low doses of nicotine also favor the non-amyloidogenic pathway 

of APP metabolism (Schliebs R and Arendt T, 2006). Chronic treatment of mutant APP-

overexpressing mice (Tg2576) with nicotine reduces plaque deposition (Schliebs R and Arendt 

T, 2006) and nicotine has  been reported to prevent development of cellular toxicity induced by 

Aβ peptides (Terry AV and Buccafusco JJ, 2003). 

Some studies have shown that β-amyloid increases AChE and AChE has been shown to 

co-localize with β-amyloid plaques in Alzheimer brains (Lüth HJ et al, 2003; Schliebs R and 

Arendt T, 2006).  This β-amyloid induced enhancement of AChE occurs via the α7nAChR 

(Schliebs R and Arendt T, 2006).  In vitro studies have shown that AChE inhibitors increase the 

secretion of sAPPα in rat brain slices and cell culture (Liskowsky W and Schliebs R, 2006).  
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Additionally, in vitro studies indicate that AChE increases aggregation of β-amyloid by forming 

complexes with the fibrils (Liskowsky W and Schliebs R, 2006).  The interaction between AChE 

and β-amyloid causes changes in the enzyme properties and results in increased neurotoxicity of 

β-amyloid fibrils (Liskowsky W and Schliebs R, 2006). Double transgenic mice that overexpress 

human AChE and APP have larger plaques and earlier plaque formation compared to APP 

overexpressing mice (Liskowsky W and Schliebs R, 2006).  

APP metabolism is affected by cholinesterase inhibitor treatment, shifting it towards the 

non-amyloidogenic pathway (Zimmermann M et al, 2005).   Cholinesterase inhibitors have been 

shown to effect APP metabolism in vitro by activating cholinergic receptors (Zimmerman M et 

al, 2005).  In vitro studies have also shown that treatment of cells with AChE inhibitors lowers 

levels of soluble Aβ40 and soluble Aβ42 (Pakaski and Kasa, 2003) and  increase secretion of 

sAPPα in cortical rat brain slices and cell culture (Schliebs R and Arendt T, 2006). BChE 

inhibitors increase brain acetylcholine levels and decrease levels of both Aβ40 and Aβ42 in 

transgenic mice (Greig NH et al, 2005). In addition,  post-mortem studies have shown that 

patients with dementia with Lewy bodies that were treated with cholinesterase inhibitors had less 

cortical Aβ deposits compared to non-treated patients (Ballard CG et al, 2007). 

However, there may also be a reciprocal relationship between cholinergic stimulation and 

APP processing.  In vitro, Aβ exerts an inhibitory effect on acetylcholine release, by reducing 

both ChAT activity and pyruvate dehydrogenase (a precursor of acetyl coenzyme A), suggesting 

that Aβ decreases acetylcholine release by modulating acetylcholine synthesis (Kar S et al, 

2004). Injections of Aβ1-40 protein into the retrosplenial cortex of adult rats results in decreases 

in the number of M1 and M2 type muscarinic acetylcholine receptors in medial septum and 

horizontal limb of diagonal band of Broca (González I et al, 2007).    
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The results of these studies, taken together, imply that decreased cholinergic stimulation 

can increase formation of Aβ. This Aβ, in turn, generates conditions which are favorable for its 

release. In AD, this cycle might result in increased Aβ formation, along with increased 

cholinergic deficits (Auld DS et al, 1998). 

1.1.7 Cholinergic dysfunction in mouse models of AD 

Transgenic mouse models of AD exhibit cholinergic system dysfunction. Aged APP 

overexpressing (Tg2576) mice exhibit degeneration of ChAT-immunoreactive fibers in areas of 

Aβ plaque deposition (Klinger M et al, 2003) and cognitive deficits correlate with soluble Aβ 

levels in these animals (Lindner MD et al, 2006). Aged Tg2576 mice also have significantly  

decreased [3H]HCh-3 binding (which measures high-affinity choline uptake) in cortex, indicating 

a loss of cholinergic terminals (Klinger M et al, 2003).  In young adult  Tg2576 mice, there was a 

reduction in [3H]HCh-3 binding in anterior cortical areas, compared to wildtype mice, although 

these young animals did not show cholinergic fiber degeneration, suggesting that the functional 

changes precede structural losses (Klinger M et al, 2003). Tg2576 mice exhibit reduced binding 

of M1-muscarinic acetylcholine receptors compared to wildtypes (Apelt J et al, 2002). This 

reduction in binding is seen by 8 months of age, before cortical plaque deposition (but following 

production of soluble Aβ) and remains low to at least 17 months of age (Apelt J et al, 2002).   

There is no difference in the number of basal forebrain cholinergic neurons between Tg2576 

mice and wildtypes,  at any of the ages examined, nor was there a difference in ChAT or AChE 

activity (Apelt J et al, 2002).  

APP/PS1 transgenic mice exhibit a reduction in size and density of cholinergic synapses 

in hippocampus and frontal cortex (Wong TP et al, 1999). Compared with aged-matched 
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controls, PDAPP mice (another transgenic APP overexpressing strain) have more than a 50% 

decrease in cholinergic nerve terminal varicosities (German DC et al, 2003). The most dramatic 

loss of cholinergic nerve terminals in PDAPP mice occurred between 2 and 4 months, before the 

onset of Aβ plaque deposition (German DC et al, 2003). However, despite the early changes in 

number of ChAT varicosities, there was no decrease in the number of cholinergic basal forebrain 

neurons in aged PDAPP mice (German DC et al, 2003). 

1.1.8 Fimbria fornix lesioned humanized Aβ mouse: cholinergic-amyloid interactions 

In vivo investigations of the effect of fimbria-fornix lesion on Aβ production have been 

hampered by species-specific differences in the Aβ peptide, as rodents have a different Aβ 

sequence than humans. A few recent studies attempted to overcome this problem by employing 

transgenic mice that over-express human APP. van Groen et al reported that 11 months 

following fimbria fornix lesion there was no difference in the number of Aβ plaques in the 

hippocampus (van Groen et al, 2003). Another study in APP/PS-1 mice also showed that fimbria 

fornix lesion did not affect hippocampal APP levels or Aβ production (Liu L et al, 2002). 

Treatment with an α7nAChR agonist in APP/PS1 mice following fimbria fornix lesions results in 

decreased size of cholinergic neurons, unlike wild-type mice which show no change in neuronal 

size following treatment (Ren K et al, 2007).    

However, the transgenic APP and APP/PS-1 mice used in these studies continuously 

overexpress the APP gene and overproduce Aβ which accumulates in plaques (Kurt MA et al, 

2001). This makes it difficult to study more subtle changes in APP processing and Aβ production 

following cholinergic lesions. The animal model we used in our study is a unique “humanized” 
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Aβ (hAβ) mouse model of AD (see Methods). Unless there is an additional PS1 mutation, these 

mice do not deposit Aβ plaques spontaneously (Flood DG et al, 2002).  

This study is the first to employ a non-transgenic hAβ mouse model to examine the association 

between the altered cholinergic neurotransmission and amyloidogenic APP metabolism. The 

results presented here will provide better understanding of this interaction and will help in the 

development of improved therapies for AD. 
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2.0  METHODS 

2.1.1 Humanized Aβ mice 

Adult APPNLh/NLh mice were used in this study. These mice have an Aβ sequence which is 

analogous to human and contain the Swedish APP mutation (FADK670N/M671L), but unlike 

APP/PS1 mice they have normal APP expression under an endogenous promoter (Reaume AG et 

al, 1996). Therefore, these mice produce human Aβ without APP overexpression.  Mice had ad 

libitum access to food and water.  The University of Pittsburgh Institutional Animal Care and 

Use Committee approved all procedures. 

2.1.2 Fimbria fornix lesion 

APPNLh/NLh mice were anesthetized with 4.6ml/kg of Equithesin and placed in Kopf stereotaxic 

device adapted for mice.  Scalp was cut to expose the skull and craniotomy  performed. A 1mm 

hook was lowered and a 3.0mm cut was made (AP +0.7mm to -2.3mm from Bregma, ML 0.5mm 

from midline, DV -3.8mm). The hook was slowly extracted from the brain and the procedure 

was repeated on the contralateral side (adapted from Liu L et al, 2002). Surgical controls 

underwent similar procedure, with corpus callosum being lesioned instead of fimbria fornix. 

Coordinates used for control surgery were: (from Bregma, AP +1.7mm to -0.6mm, ML 0.5mm, 

DV 2.0mm) (adapted from Ginsberg SD and Martin LJ, 1998). Following lesion procedures, 
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bone wax was placed on the edges of the skull and the wound was sutured. Animals remained 

under observation; after regaining spontaneous movement they were returned to mouse room and 

allowed to recover for 2.5 weeks. At designated timepoints post-lesion, mice were overdosed 

with equithesin and perfused transcardially with phosphate buffer. The brain was removed and 

blocked approximately 1mm caudal to the optic chiasm. The rostral portion of brain was 

immersion fixed in 4% paraformaldehyde overnight, then cryoprotected (immersed in 15% 

sucrose solution overnight, followed by immersion in 30% sucrose solution), and 40μm thick 

sections were cut using a cryostat. The cut sections were stored in cryoprotectant until further 

processing for histology and immunocytochemistry. Hippocampi from the remaining caudal 

portion of the brain were dissected out and frozen at -80ºC. 

2.1.3 Nissl Stain 

Slide mounted tissue sections were dehydrated in graded ethanols, from 50% ethanol to 100% 

ethanol, then rehydrated in series of alcohols (from 100% ethanol to 50% ethanol) and dH2O. 

Slides were placed in Cresyl violet solution (500mL dH2O, 1.5mL glacial acetic acid, 2.5g 

Cresyl violet acetate) for 45 sec. Sections were dipped in dH2O, then placed in dH2O for one 

minute. This was followed by one minute in 50% ethanol, 70% ethanol, 95% ethanol, and 2 

minutes in 100% ethanol. Tissue was then cleared in xylenes and coverslipped with Permount. 

2.1.4 Luxol Fast Blue 

Slide mounted tissue sections were dehydrated in series of alcohols from 50% ethanol  to 95% 

ethanol. Slides were placed in 0.1% Luxol Fast Blue solution (100mL 95% ethanol, 0.5ml glacial 
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acetic acid, 0.1g Luxol Fast Blue) for 5 minutes. Slides were dipped in 95% ethanol, then 

differentiated first in 0.05% lithium carbonate solution, followed by 70% ethanol, for 30 seconds 

each. Sections were dehydrated in series of graded alcohols (from 70% ethanol to 100% ethanol), 

cleared in xylenes and coverslipped using Permount.  

2.1.5 AChE Histochemistry 

Free floating mouse tissue sections were rinsed in 0.1M phosphate buffer (pH 7.4) three times, 

for five minutes each time, followed by rinse in 0.1M sodium acetate buffer (pH 6.0) for 15 

minutes. Sections were incubated in AChE solution (65mL of 0.1M sodium acetate buffer, 50mg 

acetylthiocholine iodide, 5mL 0.1M sodium citrate buffer, 10mL 0.03M cupric sulfate, 15mL 

dH2O, 4mL 0.5M potassium fericynide and 1mL 1mM tetraisopropyl pyrophosoramide) for 60 

minutes at room temperature, in the dark.  Sections were rinsed in 0.1M sodium acetate buffer 

(pH 6.0) five times, for three minutes each time. Sections were placed in 4% ammonium sulfide 

for 1 minute, followed by eight rinses, five minutes each,  in 0.1M sodium nitrate buffer. 

Staining reaction was enhanced by incubating sections in 0.1% silver nitrate for 45 seconds. This 

was followed by five rinses in 0.1M sodium nitrate buffer, for three minutes each time. Sections 

were mounted on gelatin-coated slides and allowed to air dry. Slides were dehydrated through 

series of graded alcohols (from 50% ethanol to 100% ethanol), cleared in xylenes and 

coverslipped using Permount. 
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2.1.6 ChAT Immunocytochemistry 

Free floating mouse tissue sections were rinsed in 0.1M phosphate buffer (pH 7.4). Sections 

were incubated in 3% rabbit serum in TBST (0.1M Trizma Base, 9g NaCl, 0.25% Triton-X 100, 

pH 7.4) for 30 minutes. Tissue sections were rinsed two times, for ten minutes each time in 1% 

rabbit serum in TBST, then incubated in primary antibody (anti-ChAT, 1:100, Chemicon) in 1% 

rabbit serum in TBST for 4 nights at 4º. Following incubation in primary antibody, tissue was 

rinsed in 1% rabbit serum in TBST two times, for ten minutes each time, then treated with 

biotinylated rabbit anti-goat secondary antibody (1:250, American Qualex) in 1% rabbit serum in 

TBST for 60 minutes at room temperature. This was followed by three rinses in TBST, for 5 

minutes each, and then a one hour incubation in avidin-biotin solution (ABC Kit,Vector Labs) 

made in TBST. Following ABC incubation, tissue sections were rinsed three times, five minutes 

each in TBST. This was followed by additional rinses (three rinses, five minutes each time) in 

imidazole acetate buffer (0.082M sodium acetate and 0.01M imidazole), pH 7.4. Reaction was 

visualized using DAB (3,3′-Diaminobenzidine tetrahydrochloride) in imidazole acetate buffer 

with 2.5% nickel ammonium sulfate and 0.3% H2O2. Sections were mounted on gelatin-coated 

slides and allowed to air dry. Slides were dehydrated through series of graded alcohols (50% 

ethanol to 100% ethanol), cleared in xylenes and coverslipped using Permount. 

2.1.7 Analysis of ChAT-immunoreactive fiber density 

40x images were taken throughout molecular layer (six images, three from each hemisphere) and 

CA3 (six images, three from each hemisphere) of six fimbria-fornix lesioned mice, three surgical 

controls and five naïve mice.  The density of fibers was assessed by applying stereological 
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principles as described previously. A cycloid grid was overlaid on the images and numbers of 

intersections between ChAT fibers and the cycloids were counted in every image (Ikonomovic 

MD et al, 2007). The counts for every image for each region were then averaged together for 

each animal. 

2.1.8 AChE Activity Assay 

Hippocampi from nine fimbria-fornix lesioned mice, five surgical controls and eleven naïve 

animals were assessed for cholinergic denervation by an AChE activity assay. The AChE activity 

assay is a colorimetric assay based on the principle that AChE hydrolyzes acetylthiocholine (an 

analog of the natural substrate) to produce thiocholine and acetate; the assay measures the rate of 

production of the thiocholine. The resulting thiocholine reacts with DTNB to produce 5-thio-2-

nitro-benzoic acid (a yellow anion) and the rate of color production is then measured using a 

plate reader set at a wavelength of 410nm. 

Frozen hippocampi were weighed, sonicated in 1x phosphate buffered saline, then 

homogenized in buffer containing 10mM disodium EDTA and 0.5% Triton X-100, in dH2O. In 

96-well plates, 5μl of homogenized tissue samples or blanks (only containing homogenizing 

buffer containing 10mM disodium EDTA and 0.5% Triton X-100 in dH2O) were pipetted, in 

triplicate, into wells. 175μl of reaction mix [50mM sodium phosphate buffer, 3.3mM 5,5’-

dithiobis-(2-nitrobenzoic acid) (DTNB) and 0.75mM tetraisopropylpyrophosphoramide (ISO-

OMPA)] was added to each well. Optical density (OD) readings were taken at 410nm 

wavelength. The plate was then covered and incubated at 37º for 30 minutes.  The plate was 

removed from the oven and 20μl of substrate [5 mM acetylthiocholine (AThCh)] added to each 

well. The plate was then covered and incubated for an additional 30 minutes at 37º. Final OD 

  16



reading was taken immediately upon removal from oven, using plate reader set at 410nm 

wavelength. The results were read at time of the linear portion of the enzyme kinetic curve. 

The net change in absorbance was determined by subtracting the final OD reading from 

the initial OD reading of each sample. The change in OD of the blanks was calculated and 

averaged.  The final change in absorbance was calculated by subtracting the average of the 

blanks from every sample. Protein levels (μg /μl) were determined using the BCA protein assay 

(described below) and the final AChE activity for each sample was calculated by using the 

following formula (Ellman GL et al, 1961): 

 
 
ENZYME RATE =                  (Δ Absorbance)  (Reaction Volume) 

 

           (ε) (Sample Conc.)  (Sample Vol.)  (Incubation Time) 
 
 Extinction Coefficient (ε) of DNTB = 13.6 X 103 Molar   = 13.6 mmol / μl 
 
 
 RATE OF            =                    ( Net Δ OD410 )  ( 200 μl )  ( 60 min/hr )            =  mmol / hr / μg   

   

HYDROLYSIS                         (13.6 nmol/μl) (μg/μl) (μl )  ( 30 min ) 
 
 
 
ACHE            =                    (Net Δ OD410)  ( 29.41 )               =    mmol / hr / g 

   

ACTIVITY                                                  (μg )    
 

  17



2.1.9 ChAT Activity Assay 

ChAT activity was determined on nine fimbria fornix lesioned mice, five surgical 

controls and eleven naïve animals to determine the success of the fimbria fornix lesions in 

removing cholinergic input from hippocampus. The ChAT activity assay is a two-phase 

radiometric assay dependent on the fact that ChAT synthesizes acetylcholine. ChAT is an 

enzyme which reacts with acetyl Co-A and choline to produce acetylcholine and coenzyme-A. 

14C-labeled acetyl Co-A is used in this assay. Following the reaction, any unreacted substrate 

remains in the aqueous phase and will not scintillate (water is not a scintillation solvent) 

(Fonnum, 1975). The product (14C-Acetylcholine) is extracted into organic phase and counted.   

Frozen hippocampi were weighed, sonicated in 1x phosphate buffered saline, then 

homogenized in buffer containing 10mM disodium EDTA and 0.5% Triton X-100, in dH2O. The 

reaction was initiated by the addition of 5μl of sample or blanks (only homogenizing buffer 

containing 10mM disodium EDTA and 0.5% Triton X-100 in dH2O), in triplicate, to Eppendorf 

tubes containing 10μl of assay mixture [250μl of incubation buffer (100mM sodium phosphate 

buffer, 600mM sodium chloride, 20mM choline chloride and 10mM disodium EDTA), 250μl of 

14C labeled substrate  (0.4mM [14C]Acetyl Co-A {40-60 mCi/mmol}) and 5μl of 20mM eserine 

salicyclate]. Tubes were incubated a water bath for 30 minutes at 37°C. Following incubation, 

tubes were taken out of the water bath, their lids removed, and tubes were placed into their 

corresponding scintillation vials. The reaction was stopped by adding 4ml of ice cold Reaction 

Rinse (10mM sodium phosphate) to the vials. This was followed by the addition of 1.6ml of 

aqueous extraction solution (acetonitrile and 5mg/ml tetraphenylboron) and 8ml of organic 

extraction fluid (Econofluor). Vials were tightly capped, mixed by inversion and cpms were read 

24 hours later. The results were read at time of linear portion of the enzyme kinetic curve. 
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The cpms of the blanks were averaged together and the cpms of the triplicates were 

averaged for every mouse. Each mouse average was subtracted from the blank average to obtain 

a net cpm reading for every sample.  Protein levels (μg /μl) were determined using a BCA 

protein assay (described below). Final ChAT activity was calculated by using the following 

formula: 

 
CHAT            =                    (Net cpm)  ( 0.11636 )               =    μmol / hr / g 

   

ACTIVITY                                     (total μg)    
 

2.1.10 Soluble Aβ42 ELISA 

Soluble Aβ42 ELISA was performed on hippocampi from nine fimbria fornix lesioned mice, five 

surgical controls and nine naïve mice.  Two naives which were included in the AChE and ChAT 

biochemical experiments were not included in the Aβ42 ELISA; it was determined that they 

were not accurately perfused and excess blood in the cerebrovasculature would affect Aβ42 

ELISA outcomes.  

Frozen hippocampi were weighed and sonicated in 1x phosphate buffered saline.  Brain 

homogenates were sonicated briefly in Aβ extraction buffer [1.5ml 0.4% DEA buffer (200μl 

DEA, 1ml 5M sodium chloride, dH2O), 15μl Sigma protease inhibitor, 37.5μl 40mM AEBSF], 

then centrifuged for 60 minutes at 135,000 x g at 4ºC,  to extract soluble Aβ peptides in the 

supernatant (the remaining pellet contained membrane-bound APP). Soluble Aβ42 ELISA was 

performed on homogenate supernatants using the  Aβ1-42 Kit from Biosource (Carlsbad, CA). 

Standards were prepared according to manufacturer’s instructions, as follows. The human Aβ42 
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standard was reconstituted to 1.0μg/ml with Standard Reconstitution Buffer (55 mM sodium 

bicarbonate, pH 9.0). The reconstituted standard was diluted serially into the provided Diluent 

Buffer to produce standards with final concentrations of: 1000pg/ml, 750 pg/ml, 500pg/ml, 

250pg/ml, 125pg/ml, 62.5pg/ml, 31.3pg/ml, 15.6pg/ml and 0pg/ml. Supernatents were diluted 

(1:2) in Diluent Buffer containing 1mM AEBSF.  50μL of standards or samples/well, along with 

50μl/well of detection antibody (rabbit anti-human Aβ42), were added to an ELISA plate coated 

with a capture antibody generated against the N-terminal portion of Aβ. The  plate was covered 

and incubated overnight at 4°C.  The next day, the plate was rinsed multiple times with the 

provided Working Wash Buffer. Following rinses, anti-rabbit IgG-AP secondary antibody was 

prepared by adding 60μl of 100x concentrate anti-rabbit IgG-AP to 12ml of Secondary Antibody 

Diluent.  100μl of anti-rabbit IgG-AP was pipetted into each well and the plate incubated at room 

temperature for 30 minutes. During secondary antibody incubation, the Fluorescent Substrate 

Solution was prepared by adding 11ml of Alkaline Phosphatase Fluorescent Substrate 

Resuspension Buffer to 6.6mg of Alkaline Phosphatase Fluorescent Substrate.  The plate was 

rinsed multiple times with Working Wash Buffer. Following rinses, 100μl of AP Fluorescent 

Substrate Solution was added to each well. The plate was incubated for 30 minutes in the dark, at 

room temperature, then read at a wavelength of 460nm.  The standard curve was prepared by 

plotting the absorbance reading for each standard vs. its concentration (pg/ml). The triplicate 

samples were averaged and read against the standard curve, to determine Aβ levels. Final Aβ 

levels were normalized to protein levels (as determined by BCA Protein Assay, described below) 

and expressed as pg/mg. 
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2.1.11 BCA Protein Assay 

Protein assays on samples were completed following ChAT assay, AChE assay and soluble 

Aβ42 ELISA. The same aliquots used for each of those experiments were used in determining 

protein concentrations and making final adjustments to the data for each assay. Diluted albumin 

[BSA, 2.0mg/ml in 0.9% saline and 0.05% sodium azide, (Pierce #23209)] standards were 

prepared in distilled H2O (for proteins used in ChAT and AChE assay) or in 50mM Tris buffer, 

pH 6.8 (for proteins used in Aβ42 ELISA) at the following concentrations: 1500 µg/ml, 1000 

µg/ml, 750 µg/ml, 500 µg/ml, 250 µg/ml, 125 µg/ml, and 0 µg/ml. Working reagent was made 

by combining 20 mL of BCA Reagent A [containing sodium carbonate, sodium bicarbonate, 

bicinchoninic acid and sodium tartrate in 0.1M sodium hydroxide (Pierce #23228)] and 0.4 mL 

of BCA Reagent B [contains 4% cupric sulfate (Pierce #23224)]. 10μl of the standards and each 

homogenized sample, in triplicate, were pipetted into each well of a 96-well plate. This was 

followed by the addition of 200μl of working reagent to each well.  The plate was covered, 

briefly vortexed and incubated for 30 minutes at 37º. The plate was removed from the oven and 

absorbance read using the plate reader set at 470nm wavelength. The standard curve was 

prepared by plotting the absorbance reading for each standard against its concentration (μg/ml). 

Triplicate sample values were averaged and measured on the standard curve, to determine final 

protein concentration. 

2.1.12 Statistics 

The effects of fimbria-fornix lesion on ChAT immunoreactive fiber density, ChAT activity, 

AChE activity and soluble Aβ42 levels were analyzed by ANOVA, with post-hoc Bonferroni 
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testing with GraphPad InStat 3.06 for Windows (San Diego, CA).  Correlative analyses were 

determined by Pearson’s correlation coefficient also using GraphPad InStat 3.06 for Windows. 

Outliers were identified using Grubbs’ test for outliers. All values were expressed as means ± 

SE. 
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3.0  RESULTS 

3.1.1 Histological verification of the fimbria fornix lesions 

Analysis of brain tissue sections processed for Nissl and Luxol Fast Blue staining confirmed 

bilateral transection of the fimbria-fornix in all fimbria fornix lesioned animals, while only 

minimal damage was detected to other structures, including cortex and thalamus (Figure 1B). In 

Nissl and Luxol Fast Blue stained tissue sections from the surgical control group, the corpus 

callosum was lesioned bilaterally, with minimal damage to other structures (Figure 1C) and with 

the fimbria fornix remaining intact (Figure 1D). 
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Figure 1 Histological proof of proper lesion placement.  
Nissl stained coronal sections through fimbria-fornix from naïve (A) and fimbria-fornix lesioned (B) mouse 
brain. Note that ffx is intact in naïve mouse, and substantially lesioned bilaterally in the ffx lesioned animal.  
C and D. Nissl stained coronal sections of surgical control mouse, at level of rostral corpus callosum (C) and 
fimbria-fornix (D). There is a bilateral lesion to cc (C), while ffx is intact (D) in the same animal. cc= corpus 
callosum; ffx= fimbria-fornix 

 

 

Table 1 Fimbria-fornix lesion results in decreased ChAT-ir fiber density in hippocampus 
 Naive Fimbria fornix 

lesion 
Surgical 
control 

ANOVA 

DG 
Mean ± SE 

Range 

 
106.77 ± 12.81 
74.33-145.50 

 
65.08 ± 5.39 
46.5-80.67 

 
91.17 ± 8.41 
77.5-106.5 

 
F= 5.832 

P= 0.0188 1,2 
CA3 

Mean ± SE 
Range 

 
119.73 ± 13.19 

89-167.33 

 
69.64 ± 7.41 
41.5-94.17 

 
109.67 ± 4.86 
100.67-117.33 

 
F=7.878 

P=0.00751,2 
                

1 Naïve vs. fimbria-fornix lesion, p<.05 
2 Fimbria fornix lesion vs. surgical control, nonsignificant 
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3.1.2 Fimbria fornix lesion results in reduced densities of cholinergic fibers in the 

hippocampus: AchE histochemistry and ChAT immunocytochemistry 

AChE histostaining and ChAT immunocytochemistry are accepted as  reliable markers of 

fimbria fornix lesion efficacy (Alonso JR et al, 1996). Analyses of AChE-histostained sections 

revealed a dense network of fibers throughout the hippocampus of naïve mice (and surgical 

controls). Compared to the naïve group, fimbria-fornix lesioned mice had decreased density of 

AChE stained fibers in the hippocampus; this was particularly evident in the molecular layer of 

dentate gyrus and in CA3 (Figure 2).   
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Figure 2. Histochemical andimmunohistochemical evidence of fimbria fornix lesion efficacy. 
 AChE-positive (upper row) and ChAT-immunoreactive (lower row) fibers in dentate gyrus have significantly 
lower density in fimbria fornix lesioned mice (right column) compared to naives (left column). gl = granular 
cell layer of dentate gyrus; iml= inner molecular layer of dentate gyrus; oml= outer molecular layer of 
dentate gyrus 

 

Similar results were observed using ChAT immunocytochemistry. In naïve mice, ChAT 

immunocytochemical staining revealed a dense network of fibers throughout the hippocampus. 

The molecular layer of dentate gyrus and CA3 were chosen for analysis of changes in ChAT 

immunoreactive fiber density (Figure 3 and Table 1). The sections from fimbria -fornix lesioned 

animals had decreased fiber density in hippocampus compared to those from naïve animals and 

surgical controls. In the molecular layer of the dentate gyrus, there was a statistically significant 

(p<0.05) 39% decrease in ChAT-immunoreactive fibers following fimbria-fornix lesions 

compared to naïve animals. A non-significant 28.6% decrease in ChAT-immunoreactive fibers 
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was seen in the fimbria fornix lesioned group compared to surgical controls. No significant 

difference in ChAT-immunoreactive fiber densities was detected between surgical controls and 

the naïve group (Figure 3A).  

In the CA3 region, there was a 41.8% decrease in the number of ChAT immunoreactive 

fibers in fimbria fornix lesioned mice compared to the naïve group (p< 0.05; Figure 3B). A non-

significant 36.5% reduction in CA3 ChAT-ir fibers was seen in fimbria fornix lesioned animals 

compared to surgical controls. There was no difference in ChAT fiber number in CA3 between 

surgical controls and naïve animals. 

 

Table 2 Fimbria fornix lesion results in decreased cholinergic enzyme activity and increased soluble Aβ42 
levels 

 Naive Fimbria 
fornix lesion 

Surgical 
control 

ANOVA 

AChE Activity (mmol/hr/g) 
Mean ± SE 

Range 

 
1.16 ± 0.07 
0.72-1.45 

 
0.58 ± 0.05 
0.41-0.81 

 
1.04 ± 0.06 
0.90-1.20 

 
F= 23.96 

P< .00011,2 
ChAT Activity (μmol/hr/g) 

Mean ± SE 
Range 

 
44.49 ± 2.12 
32.83- 58.10

 
22.55 ± 1.93 
15.75-30.69 

 
36.67 ± 2.49 
29.10-42.25 

 
F= 29.81 

P<.00011,2 
Soluble Aβ42 (pg/mg) 

Mean ± SE 
Range 

 
11.51 ± 3.68 
-0.26-30.68 

 
38.88 ± 5.20 
19.58-72.53 

 
22.71 ± 3.63 
9.65-31.85 

 
F=10.66 
P=.00071 

             
1 naïve vs. ffx lesion, p< .01 
2 ffx lesion vs. surgical control, p< .01 

 

3.1.3 Fimbria fornix lesion results in loss of hippocampal AChE activity 

Hippocampal AChE activity assay is a well established method of confirming a successful 

fimbria fornix lesion (Fuxe K et al, 1994). Our analysis was based on an AChE activity assay in 

hippocampal tissue homogenates from nine fimbria-fornix lesioned mice, five surgical controls, 
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and eleven naïve animals (Table 2 and Figure 4). Mice in the naïve group had a mean AChE 

activity of  1.16±.07 mmol/hr/g. Following fimbria fornix lesion, the mean AChE activity was 

reduced to 0.58±0.05 mmol/hr/g. Surgical controls had a mean AChE activity of 1.04±0.06 

mmol/hr/g. 
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Figure 3 The effect of fimbria fornix lesion on ChAT-immunoreactive fiber density in the dentate molecular layer  
(A) and CA3 (B) of hippocampus. A. In fimbria fornix lesioned animals, there is a significant reduction of 
ChAT immunoreactive fiber density in molecular layer of dentate gyrus when compared to naïve mice. B. A 
similar reduction in ChAT immunoreactive fiber density was observed in CA3 region of hippocampus in 
fimbria fornix lesioned mice compared to naïve mice. * p< .05 

 

 

There was a statistically significant decrease (p<0.01) in hippocampal AChE activity in 

fimbria fornix lesioned animals compared to both naives and surgical controls (Figure 4). In the 

fimbria fornix lesioned mice, AChE activity was decreased by 50.1% and 44.2% compared to 

naives and surgical controls, respectively. AChE activity levels in surgical controls and naïve 

mice were not different. 
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Figure 4. The effect of fimbria fornix lesion on AChE activity in hippocampus. 
Bilateral fimbria fornix lesion results in a significant decrease in AChE activity in hippocampus compared to 
both naïve mice and surgical control groups.  * p< .01 
 

3.1.4 Fimbria fornix lesion results in loss of hippocampal ChAT activity 

Hippocampal ChAT activity assay is another well established method of confirming a successful 

fimbria fornix lesion (Fuxe K et al, 1994). ChAT activity was analyzed in the hippocampus from 

nine fimbria fornix lesioned mice, five surgical control mice, and from eleven naïve mice (Table 

2 and Figure 5).  In the naïve group of mice, the mean ChAT activity was 44.49±1.93 μmol/hr/g.  

Post-lesion,  mean ChAT activity in hippocampus was 22.55±2.12 μmol/hr/g. Surgical control 

mice had an average ChAT activity of 36.67±2.49 μmol/hr/g.  
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Figure 5. The effect of fimbria fornix lesions on ChAT activity in hippocampus. 
ChAT activity in hippocampus is significantly decreased following fimbria-fornix lesion compared to naïve 
mice and surgical controls. *p< 0.01 

 
 
 
Fimbria-fornix lesioned mice had statistically significant decreases in hippocampal ChAT 

activity levels (p<0.01) compared to both naive (49.3% decrease) and surgical control (38.5% 

decrease) experimental groups (Figure 5). ChAT activity levels in hippocampus were not 

significantly different between naïve and surgical control groups. 
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3.1.5 Fimbria fornix lesion results in increased soluble Aβ42 levels in hippocampus 

The Aβ42 ELISA analysis was based on data from nine fimbria fornix lesioned mice, five 

surgical controls, and nine naïve mice (Table 2 and Figure 6). In the hippocampi of naïve mice, 

the average amount of soluble Aβ42 was 11.51±3.68 pg/mg. In the fimbria fornix lesioned mice,  
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Figure 6. Effect of bilateral fimbria-fornix on soluble Aβ42 levels in hippocampus. 
There was a significant increase in soluble Aβ42 levels in fimbria-fornix lesioned mice compared to naïve 
animals. *p<0.01 
 

the average amount of soluble Aβ42 in hippocampus was 38.88±5.20 pg/mg, a statistically 

significant (p<0.01) three-fold increase over naïve mice. In the surgical control group, the mean 

amount of soluble Aβ42 in hippocampus was 22.71±3.63 pg/mg. Compared to surgical controls,  
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the fimbria fornix lesioned mice had almost double the amount of soluble Aβ42, although this 

increase was not statistically significant. 

3.1.6 Correlative analyses 

Correlative analyses were performed to determine possible relationships among ChAT activity, 

AChE activity and soluble Aβ42 levels. There was a statistically significant correlation between 

ChAT and AChE activity levels (r=0.85, p<.0001) in hippocampi of animals from all three 

experimental groups (Figure 7).  
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Figure 7. ChAT activity increases as AChE activity increases. 
There  is a significant direct correlation between these two cholinergic enzymes. r=0.85, p<0.0001  
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There was a strong and significant correlation (r=-0.6974, p<.0001) between lower AChE 

activity and elevated soluble Aβ42 levels (Figure 8), and between lower ChAT activity and 

increased soluble Aβ42 levels (r=-0.7285, p<.0001; Figure 9). These correlative analyses, taken 

together, indicate that increases in hippocampal soluble Aβ42 levels are a result of reduced 

cholinergic projections and activity to the hippocampus. 
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Figure 8. Soluble Aβ42 levels increase as AChE activity decreases. 
There is a significant negative correlation between lower AChE activity and increased soluble Aβ42 levels in 
the hippocampus in animals from three experimental groups. r=-0.6974, p<0.0001  
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Figure 9. Soluble Aβ42 levels increase as ChAT activity decreases. 
There is a significant negative correlation between increased soluble Aβ42 levels and decreased ChAT enzyme 
activity in the hippocampus from three experimental groups. p<0.0001 
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4.0  DISCUSSION 

In this study, we investigated whether decreasing cholinergic activity affects soluble Aβ levels in 

hippocampus. Previous studies have suggested that activating cholinergic neurotransmission 

results in a shift of APP processing towards the non-amyloidogenic pathway, causing an increase 

in levels of sAPPα and a decrease in levels of Aβ (Caccamo A et al, 2006). This is thought to be 

neuroprotective, because sAPPα is considered beneficial, and Aβ harmful to neurons (Lahiri DK 

et al, 2007). Earlier studies demonstrated that removing cholinergic input into hippocampus, 

either by fimbria fornix lesion or injection of excitotoxins to the cholinergic basal forebrain, 

increased hippocampal APP mRNA and protein levels (Beeson JG et al, 1994; Lin L et al, 1999).  

The present study tested the hypothesis that depriving the hippocampus of its cholinergic 

input, via bilateral fimbria fornix lesion, would result in increased levels of Aβ42 peptide in that 

brain region. We conducted our analyses at 2.5 weeks following surgery, because a number of 

studies in rodents have reported that at this time point there are significant decreases in AChE 

and ChAT enzyme activity levels in the hippocampus (Häge B et al, 1996; Liu L et al, 2002). We 

demonstrated a significant decrease of ChAT-immunoreactive fibers in hippocampus from 

fimbria fornix lesioned animals compared to naïve mice. The validity of our model, regarding the 

extent of reduction in cholinergic input to hippocampus at this time post-lesion, was further 

confirmed by biochemical assays of AChE and ChAT enzyme activities in the hippocampus. 

There was not a complete loss of cholinergic enzyme activity and this is consistent with evidence 
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in the literature. Partial fimbria-fornix lesions result in a sparing of some cholinergic fibers and 

lead to a significant, although not complete, decline in cholinergic enzyme activity (Piovesan P 

et al, 1995). There was not a significant change in ChAT or AChE activity levels in the surgical 

controls compared to the unoperated group, indicating that bilateral corpus callosum lesions did 

not interfere with cholinergic innervation in hippocampus. Thus, using a variety of histological, 

immunohistochemical, and biochemical methods we were able to demonstrate that our fimbria 

fornix lesioned animals have significantly reduced levels of cholinergic markers. 

Once it was determined in our mouse model that the fimbria fornix lesion reduced 

cholinergic input into hippocampus, Aβ levels in that region were measured. Specifically, we 

focused on measuring changes in soluble Aβ42 peptide. Soluble Aβ has recently been shown to 

adversely affect long-term potentiation and synapses (Klyubin I et al, 2005; Lindner MD et al, 

2006; Lahiri DK et al, 2007). Increasingly, cognitive problems seen in AD are thought to be 

related primarily to increased levels of soluble Aβ and its oligomers (McLean CA et al, 1999). 

Because Aβ42 is abundantly produced in AD, and the cholinergic system is affected very early 

in the disease course, decreased cholinergic neurotransmission may be related to increased levels 

of soluble Aβ42. Using an ELISA, we found a significant increase in soluble Aβ42 levels in 

hippocampus of fimbria fornix lesioned animals. There was also a nonsignificant increase in 

soluble Aβ42 in fimbria fornix lesioned animals compared to surgical controls. The slight 

increase in Aβ42 in the surgical controls was not unexpected. Axons in the cingulate bundle 

innervate the hippocampus at the temporal pole (Gulyas AI et al, 1999). When lesioning corpus 

callosum, some adjacent white matter tracts, including cingulate bundle and hippocampal 

commissure, may be partially affected. This, together with the known response of increased APP 
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accumulation following injury (Ciallella JR et al, 2002) might result in elevated Aβ levels in 

hippocampus.  

The most persuasive results of this study were revealed by the correlative analyses of 

changes in ChAT and AChE enzyme activities and soluble Aβ42 levels. The strong direct 

correlation between ChAT and AChE activity levels indicated that both enzymes were equally 

affected by the lesion, consistent with the loss of cholinergic fiber input to the hippocampus. 

Cholinergic enzyme activity decline correlated strongly with increased soluble Aβ42 levels, 

supporting the hypothesis that impaired cholinergic function enhances amyloidogenic processing 

of APP in the hippocampus. These observations have considerable clinical and pathological 

implications suggesting that impaired cholinergic neurotransmission precedes, and may augment 

development of amyloid pathology in denervated brain regions. 

Previous studies employed the fimbria fornix lesion model of cholinergic denervation in 

transgenic mice, which over-express mutant forms of human APP and deposit Aβ plaques, but 

failed to show changes in numbers of Aβ plaques (Liu L et al, 2002). The mutant APP 

overexpressors used in these studies do not allow for detecting subtle changes in Aβ levels; in 

response to the lesion, these animals may produce Aβ levels that are difficult to discern from the 

constant APP over-production associated with this transgene. In contrast, our humanized Aβ 

mice produce human Aβ without concomitant overexpression of APP, which allows detection of 

even slight changes in Aβ production (Reaume AG et al, 1996). 

Cholinergic enhancing drugs have been the most promising interventions in symptomatic 

AD. Early cholinergic therapies (Tacrine) had beneficial effects on cognition although these 

drugs had significant side effects and hepatic toxicity. The second generation of cholinergic 

therapies more specifically targeted the central cholinergic system, with fewer peripheral side 
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effects. Recently, Caccamo et al reported beneficial results of using a selective M1 agonist in a 

triple transgenic mouse. This drug (AF267B) was effective not only in reducing Aβ plaques and 

tangles, but also in overcoming cognitive deficits in those mice (Caccamo A et al, 2006). 

Therefore, the interplay between enhanced cholinergic neurotransmission and Aβ production 

warrants further investigation to develop effective therapies for AD.  

Our results indicate that Aβ levels in vivo are influenced by cholinergic system 

modulation, and that deficient cholinergic innervation of the hippocampus results in increased 

levels of soluble Aβ42, although the exact mechanism responsible is not clear and needs to be 

investigated. Studies indicate that the increase in Aβ is a result of decreased production of 

sAPPα, a consequence of reduced cholinergic neurotransmission.  Hippocampi from hAβ mice 

which have undergone fimbria-fornix lesions need to be analyzed for levels of sAPPα, sAPPβ as 

well as total APP. In addition, changes in α-secretase activity following fimbria-fornix lesions 

need to be measured. Subsequent experiments should examine changes in α-secretase activity 

following combination of lesions and pharmacological intervention (i.e. cholinergic agonist). 

The results of these studies will indicate how cholinergic denervation affects APP metabolism. 

Another important follow-up set of experiments would involve hAβ mice which also 

contain the PS1 mutation and form Aβ plaques, to examine whether 1) lesioning fimbria fornix 

can enhance Aβ plaque deposition under these conditions, and 2) muscarinic agonist intervention 

can reduce soluble Aβ levels and decrease Aβ plaque deposits in the neuropil. In addition to 

reducing Aβ levels, behavioral tests would be performed to see if the cholinergic agonist can 

overcome the cognitive impairments which occur following fimbria fornix lesions (Galani R et 

al, 2002). The results of these studies would help to better understand the relationship between 
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cholinomimetic drug therapy and how it affects progression of neurotoxic Aβ pathology in AD 

patients.  
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