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Phosphatidylinositol (PI) and its phosphorylated derivatives, phosphatidylinositides 

(PIPs), are versatile cellular regulators participating in myriad events including signal 

transduction, cytoskeleton organization, protein targeting and many steps of 

membrane traffic. Different PIPs exhibit non-overlapping distributions on cellular 

membranes. This feature contributes to organelle identities and is tightly controlled by 

kinase/phosphatase-mediated PIP synthesis and turnover. Mechanisms regarding 

compartment-restriction and detailed functions of many PIPs and PI/PIP metabolizing 

enzymes remain largely unknown. My dissertation focuses on the cellular targeting 

mechanism of a PIP kinase and the pathogenesis of a disease caused by mutations 

in a PIP phosphatase. 

Phosphatidylinositol (4,5)-bisphosphate (PIP2), an apical-surface-enriched PIP in 

polarized epithelial cells, is primarily synthesized via phosphorylation of 

phosphatidylinositol 4-phosphate (PI4P) in the presence of type I PI 5-kinases 

(PI5KIs). Previous studies have suggested that the three isoforms of PI5KI (α, β, and 

γ) exhibit distinct cellular functions. Data from our lab indicate that these three PI5KIs 

are differentially localized in polarized renal cells. While the majority of α and γ 



 iv

isoforms are present on lateral cell surface, the β isoform strikingly localizes to the 

apical plasma membrane. Using mutagenesis, immunofluorescence, and confocal 

microscopy, I have found that the apical surface distribution of PI5KIβ is nonsaturable 

and does not require catalytic activity or the presence of PIP2. These results provide 

useful information for future studies on PI5KIβ-regulated cellular activities. 

PIP2 turnover can be catalyzed by a variety of enzymes, one of which is OCRL1. 

OCRL1 is a PI 5-phosphatase that preferentially hydrolyzes PIP2, producing PI4P, 

and is associated with the trans-Golgi network, endosomes, and clathrin-coated-pits. 

Genetic defects of OCRL1 cause Lowe syndrome, a disease manifested by 

congenital cataracts, mental retardation, and renal tubular dysfunction. By examining 

cultured renal epithelial cells acutely depleted of OCRL1 via RNA interference, I have 

found that loss of OCRL1 does not interfere with endocytic trafficking of the 

multiligand receptor megalin, or uptake of megalin ligands. OCRL1 knockdown did 

appear to disrupt delivery of newly-synthesized lysosomal hydrolases and alter 

distribution of primary cilia length in renal epithelial cells. These findings suggest that 

multiple pathways may contribute to development of renal symptoms in Lowe 

patients. 
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1.0 INTRODUCTION 

 

1.1 STRUCTURE AND FUNCTION OF THE KIDNEY 

1.1.1 Anatomy of the kidney 

The kidneys are urinary organs found in many types of animals including vertebrates 

and some invertebrates. During evolution, main functions and efficiency of the 

kidneys adapted to the living environment of every species, giving rise to functionally 

and structurally heterogeneous urinary systems in different animals (1). For example, 

the main function of the kidneys in freshwater fish and amphibians is to get rid of 

excessive water from the hypotonic aqueous environment, although the amphibians 

are also able to cope with the land environment by restricting the renal filtration and 

by other mechanisms. Metabolic wastes of the freshwater animals usually diffuse out 

directly into the surrounding water without passing through the kidney tubules. Marine 

animals, on the contrary, live in a constantly hypertonic environment. They therefore 

need to preserve body water by either developing concentrated isotonic blood or an 

active system to desalt the sea water. Their kidneys act as excretory organs 

responsible for clearing metabolic wastes. Some reptiles live in extremely dry 

environments and their nitrogenous wastes are transformed into the insoluble uric 

acid, secreted into renal tubules, and excreted without the need of a big volume of 

waterous solvent. Very little water is lost everyday so that these animals can survive 
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without drinking water. As direct descendants of the reptiles, birds inherited the uric 

acid based mechanism to eliminate their metabolic wastes. Mammals, including 

human, utilize urea as the major form of nitrogenous waste. Urea is water-soluble and 

needs to be excreted in an aqueous solution. Therefore mammalian kidneys are mini 

urinary factories producing the end-product urine by filtering the blood and adjusting 

the filtrate composition by active absorption and secretion (2).  

In humans, the kidneys are paired bean-shaped retroperitoneal (lying behind the 

peritoneum) organs present in the abdominal cavity (1). Sizes and locations of the left 

and the right kidneys are slightly asymmetric due to the intrinsic organic asymmetry 

within the abdominal cavity (1). The kidneys and the adjacent adrenal glands are 

protected by ribs, layers of fat and connective tissue structures. 

  Encapsulated in a thick strong connective tissue layer called the renal capsule, the 

kidney gross structure is visually divided into two parts, the cortex and the medulla (1). 

These two parts differ in both structure and function. The kidneys are most 

well-known as urinary organs in which the smallest functional unit is called a nephron. 

There are approximately 1 million nephrons per kidney (1). Each nephron is a blind 

beginning tube composed of six main sections: Bowman’s capsule, proximal tubule, 

thin limbs of the loop of Henle (descending & ascending), thick ascending limb of the 

loop of Henle, distal convoluted tubule, and collecting duct (1). Every section, 

according to its unique function, exhibits a specific structural relationship to 

surrounding blood vessels (2). The morphological and functional differences between 

the renal cortex and medulla are due to uneven distribution of the nephron sections 
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and blood vessels (2). Additionally, the medulla can be further divided into sub-zones 

and stripes depending on the renal tubule composition (1). 

  The kidneys are among the most versatile organs in the body, serving multiple 

important roles. Besides the main function in waste excretion and urine production, 

the kidney also participates in other critical processes including the maintenance of 

acid-base homeostasis, osmolality regulation, blood pressure regulation, metabolic 

processing and hormone secretion (2). 

1.1.2 Glomeruli and renal filtration 

The kidney excretory function starts with blood filtration. Bowman’s capsule, the blind 

beginning of the nephron tube, is a bulbous expansion closely surrounding a tuft of 

capillaries, namely the glomerulus, where filtration takes place. Together, Bowman’s 

capsule, blood vessels (the glomerulus), the intervening basement membrane, and a 

stalk of supporting mesangial cells form an elaborate spheric structure called the 

renal corpuscle, which is the filtration unit of the kidney (3). Blood enters the 

glumerulus via the afferent arteriole which branches into a fenestrated capillary bed 

allowing passage of serum components through the capillary endothelium (3). 

Glomerular capillaries are covered by podocytes, specialized visceral epithelial cells 

continuous with the parietal epithelium of Bowman’s capsule at the vascular pole 

(where blood flows in and out) of the glomerulus. Each podocyte expands its cell body 

to form numerous end processes or trabeculae interdigitating with processes from 

neighboring podocytes (3). The spaces between the series of foot processes, also 

known as pedicels, are spanned by a specialized junctional complex called the 
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filtration slit diaphragm (3). There is a 320-330 nm thick basement membrane lying 

between the endothelia of glomerular capillaries and the foot processes of podocytes 

(3). The basement membrane appears to consist of three heterogeneous layers when 

examined by electron microscopy. The two lighter staining outer layers are negatively 

charged and therefore, together with podocyte processes that are also anionic, 

selectively facilitate passage of positively charged plasma components (2). The 

electron-dense central layer, at the same time, is enriched with collagen type IV which 

serves as a molecular filter with a cutoff size of roughly 40KDa (2). After blood has 

passed through the capillary bed, it exits the glomerulus via the efferent arteriole at 

the vascular pole. In summary, the fenestrated endothelium, the glomerular basement 

membrane and the podocyte pedicels with filtration slit diaphragms are the three 

histological layers that comprise the glomerular filtration barrier. The glomerular 

filtration rate (GFR) through these three layers is fine tuned by smooth muscle fibers 

present in the media of afferent and efferent arterioles and contractile intraglomerular 

mesangial cells (3). Alterations in any part of the delicate filtration barrier can result in 

diseased conditions. 

1.1.3 Proximal tubules and renal reabsorption 

The simple squamous parietal epithelium of Bowman’s capsule is continuous with the 

proximal tubule at the urinary pole of the glomerulus. The proximal tubule epithelium 

consists of simple cuboidal cells with prominent surface specializations important for 

their functions. 

  The kidneys generate ~180 liters of filtrate each day, however only one to two liters 
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are excreted as the urine (3). Most volume of the glomerular filtrate is therefore 

reabsorbed in kidney tubules. The proximal tubule is where the majority of 

reabsorption takes place. Materials reabsorbed from the tubular fluid back into the 

blood circulation include: 65-70% water, 65-70% Na+ and K+, ~100% glucose, ~100% 

amino acids, ~100% citrate, ~100% small peptides, ~80% bicarbonate ions, 40-50% 

of the Ca2+, and 80-95% of the PO4
3- (3). Histologically, two distinct proximal tubule 

segments, the proximal convoluted tubule and the proximal straight tubule, can be 

identified (1). The convoluted portions coil around the glomeruli and occupy much of 

the cortex while the straight portions cluster with other straight tubules and find their 

way to the medulla (1).  

The renal proximal tubule epithelium faces the luminal fluid with a characteristic 

apical brush border. The brush border consists of numerous regular plasma 

membrane protrusions called microvilli, which increase the total epithelial luminal 

surface area by more than 36 times (3). The dramatic increase in membrane surface 

area is a big advantage in nutrient reabsorption, which primarily depends on 

membrane localized receptors and channels. The proximal tubule epithelium is a 

‘leaky’ one that allows paracellular movement of water and Ca2+ (3). While 

protein-based junctional complexes, including tight junctions (which seal off adjacent 

membranes) and desmosomes (which stabilize cell-cell connections), are present 

between neighboring proximal tubule epithelial cells, they are considerably thinner 

compared to those in other renal tubules (3). Also, specific claudins (major 

transmembrane protein components of the tight junction) that give rise to relatively 



 6

leaky tight junctions are found throughout the proximal tubule (4,5). Additionally, 

aquaporin channels insert to the apical plasma membrane of proximal tubule 

epithelial cells, allowing water to pass directly through the cells. 

The basolateral plasma membrane of the proximal tubule epithelial cells is folded 

extensively to provide surface area for Na+K+ATPase transporters (3). Na+K+ATPase 

actively pumps Na+ out of the cell and is responsible for creating a cross-membrane 

electrochemical gradient used to power the secondary active transport events at the 

apical brush border. A large number of cytoplasmic mitochondria is found at the 

basolateral invaginations to provide ATP for the enormous energy demands of active 

transport (3). 

The nephron components distal to the proximal tubule have a limited ability to 

reabsorb water, salt and selected ions. Their main function is to fine tune the volume 

and composition of urine and regulate GFR though secretion and hormone-mediated 

responses (2). 

1.1.4 Megalin and endocytosis 

One of the most important receptors functioning in the renal proximal tubule is 

megalin. Megalin, also known as Low Density Lipoprotein-Related Protein 2 (LRP2) 

or GP330, is a 600-kDa type I transmembrane protein and a member of the 

LDL-receptor family (6). Megalin is able to bind multiple ligands, including proteins, 

polypeptides, Ca2+, and others. It localizes to the apical/luminal domain of a wide 

variety of epithelial cells and has distinct functions at different organs. The most 

studied role of megalin is its involvement in proximal tubule mediated renal 
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reabsorption. 

  Megalin is the major receptor involved in the low-molecular-weight protein 

reabsorption (7). It is found at the renal proximal tubule epithelial brush border 

membrane where it scavenges multiple protein ligands from the luminal flow. Ligands 

bound to megalin undergo clathrin mediated endocytosis (7). Endocytosed ligands 

separate from megalin once exposed to the low pH environment inside endosomes. 

Free luminal ligands are subsequently destined for lysosomal degradation while 

megalin is recycled back to the plasma membrane for the next round of ligand binding. 

Megalin normally undergoes proteolytic cleavages at different sites, generating an 

N-terminal extracellular fragment shed in the urine and a short C-terminal piece with 

unknown functions (8,9) Megalin proteolysis can both happen constitutively and be 

regulated by ligands (8). A role of the megalin intracellular fragment in regulating 

selected gene expression was hypothesized although there is no direct evidence so 

far (8). 

 



 8

 

Figure 1.1 Domain structure of the multiligand receptor megalin. Megalin 

consists of 4 ligand-binding domains (shown in red), a transmembrane domain and a 

short cytoplasmic tail. Proper folding and localization of megalin require binding to the 

chaperone RAP. Structural elements as well as a list of ligands of megalin are 

depicted. This figure is adapted from (10). 
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  Megalin consists of a long extracellular domain, a transmembrane domain and a 

short cytoplasmic tail (10) (Figure 1.1). The extracellular domain contains four 

cysteine-rich ligand binding regions separated by epidermal growth factor (EGF)–like 

repeats and cysteine-poor spacer regions. The cytoplasmic tail contains two NPXY 

motifs that are required for efficient endocytosis (11,12) and an NPXY–like motif in 

between, which was reported to be critical for apical sorting and targeting of megalin 

(13). Proper folding and localization of megalin require the chaperone 

receptor-associated protein (RAP) (14). The four ligand binding motifs of megalin 

interact with a variety of low molecular weight proteins and other ligands (10) (Figure 

1.1). In addition, megalin is reported to facilitate ligand uptake mediated by a 

peripheral multi-ligand receptor cubilin (7,10,15,16).  

  Patients with renal proximal tubule related disorders tend to develop characteristic 

low molecular weight proteinuria, namely the abnormal excretion of low molecular 

weight proteins (including many megalin ligands) in the urine, suggesting possible 

megalin dysfunction. One example of these disorders is Dent disease, which is 

caused by genetic defects in the endosome-localized chloride/proton antiporter CLC5. 

(17,18). Reduced renal tubular epithelial expression and disrupted recycling of 

megalin have been reported to account for the various renal symptoms (including 

proteinuria, hypercalciuria, and etc.) of Dent patients (17-19). Involvement of megalin 

in the pathogenesis of other proximal tubule associated diseases, like Lowe 

syndrome, remains a hypothesis. 
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1.1.5 Cilia in the kidney 

The rates of renal filtration and reabsorption are tightly controlled by a variety of 

hormones and small molecules (3). Production, release and degradation of those 

specific regulators are often coupled to changes in the kidney tubular flow rate (3). 

Renal flow is sensed by multiple types of different structures, one of which being cilia 

present on tubular epithelial cells (20-22). The importance of kidney cilia and their role 

in the development of various renal diseases have been appreciated especially in the 

recent years.  

A cilium is a plasma membrane-bound hair-like eukaryotic organelle projecting from 

the much bigger cell body. Cilia exist as two types: motile cilia and non-motile, or 

primary, cilia. Inside of a cilium is the axoneme, a microtubule-based structure. The 

axoneme of motile cilia consist of two central microtubule singlets surrounded by a 

ring of nine outer doublets (namely a 9+2 axoneme). Inner and outer microtubules are 

connected by motor and ancillary protein complexes important for regulated 

movement. The axoneme of primary cilia, however, usually lack the inner pair of 

microtubules as well as many motion-related structures. It is therefore non-motile and 

is called the 9+0 axeneme. Axonemes of either cilia type anchor into the microtubule 

organizing center, also known as the basal body. Motile cilia are present, usually in 

clusters, on the luminal side of selected organs (e.g. trachea and female Fallopian 

tubes). They are able to beat and facilitate local content movement. In comparison, 

primary cilia usually occur one per cell and are present on almost every known 

mammalian cell type. Their functions have only begun to be revealed in recent years. 
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The non-motile primary cilia act as “sensory cellular antennae” (23) that respond to 

various extracellular signals (e.g. mechanical stimuli, lights, odors, and etc.) 

depending on the function of the cells. These cilia have also been shown to 

participate in multiple conserved signaling pathways crucial for embryonic 

development (22,24-26). The ciliary membrane of both cilia types has a unique lipid 

composition and proteome compared with the bulk plasma membrane (22,24,27). 

Biogenesis, turnover and maintenance of cilia are mediated by specialized cellular 

machineries. A process called intraflagellar transport (IFT) is responsible for moving 

the axoneme materials along the length of cilia. Multiple IFT proteins form complexes 

(IFT particles) that carry the cargoes and move along the microtubules by attaching to 

motor proteins (20,22,24). The anterograde IFT, delivering newly synthesized 

axoneme precursors from the cell body to the growing ciliary tip, and the retrograde 

IFT, sending disassembled axoneme materials back to the cell body, use distinct IFT 

complexes/particles and motor proteins to assure opposite directional movements 

(20,22,24). The net consequence out of these two opposing processes determines 

the status of every single cilium (growing, retrieving or at an equilibrium). Dynamic 

regulations on both the anterograde and the retrograde transports ultimately 

determine the cilia length and morphology, which change under shifted or diseased 

conditions (21,28-30). The vesicular transport of ciliary membrane proteins to cilia is 

mediated by a stable protein complex call the BBsome (31,32). The BBsome consists 

of several conserved Bardet-Biedl Syndrome (BBS) proteins (31,32). Mutations in 

one or more BBS protein encoding genes have been associated with Bardet-Biedl 
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Syndrome, a severe disorder affecting multiple organ systems by disrupting cellular 

cilia functions (21,32-34). Membrane recruitment and proper functions of the BBsome 

require Rab proteins (Rab8 and Rab11) localized to recycling endosomes as well as 

the phospholipid phosphatidylinositol (3,4)-bisphosphate (31,35). Detailed 

mechanisms regarding many aspects of BBsome functioning remain unknown. 

Genetic defects in cilia themselves or the cilia anchoring basal bodies result in a 

variety of disorders. As a group, these are often referred to as “ciliopathies”. 

Bardet-Biedl Syndrome is one example of a ciliopathy (21,33,34). 

  Cilia found in healthy kidneys are generally primary (non-motile) ones, although 

renal cells displaying multiple motile “9+2” cilia have been reported to present in 

injured or diseased kidneys (36-40).  Renal tubular primary cilia are present on the 

luminal side of epithelia. They are thought to be mechanosensors responding to fluid 

change and possibly facilitating intercellular communications (20-22). Some 

cilium-specific transmembrane proteins, including polycystin-1 (PC1), polycystin-2 

(PC2) and polyductin/fibrocystin, have been reported to participate in the flow-sensing 

function of renal primary cilia. Post-translational cleavage of these cilium resident 

proteins and translocation of cytosolic fragments to other compartments (nuclei, 

cytosol, extracellular space, and etc.) have been associated with the 

mechanosensory and paracrine roles of renal cilia (20-22). Flow induced deflection of 

the cilium results in an immediate calcium influx mediated by PC1 and PC2 (20-22). 

This calcium signal subsequently initiates cascades of cellular events. Defects in PC1, 

PC2 or other important cilium resident signaling molecules result in loss of the 
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calcium signaling and abnormal renal functioning, for example renal cyst formation 

observed in certain diseases (20-22,33,34). Thanks to the extensive research on 

primary cilia in recent years, the number of diseases attributed to cilia malfunctioning 

is growing quickly, indicating the importance of cilia in many critical organ systems. 

Several cultured kidney cell lines, including MDCK (Madin Darby Canine Kidney) cells, 

retain the ability to form apical primary cilia when polarized in culture. These cilia 

have similar functions to those found in vivo (41). 

 

1.2 STRUCTURE, FUNCTION, AND METABOLISM OF 

PHOSPHATIDYLINOSITIDES 

1.2.1 Structure of phosphatidylinositol and phosphatidylinositides 

Phosphatidylinositol (PI) is a negatively charged phospholipid that represents a minor 

component of the cytosolic face of cellular membranes. Its glycerol backbone is 

linked to a sixfold alcohol, inositol, via a phosphate group (Figure 1.2A). The inositol 

ring can be phosphorylated on positions D-3, D-4 and D-5, giving rise to a family of 

derivatives called phosphatidylinositides (PIPs) (Figure 1.2A,B). 
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Figure 1.2 PI structure and metabolism. The molecular structure of 

phosphatidylinositol is shown on the left. Phosphorylation of the 3,4, and/or 5 position 

via the pathways depicted on the right generate physiologically relevant PIP lipid 

species. Note that PIP2 can be “degraded” either by dephosphorylation to yield PI4P 

or by phospholipase-C mediated cleavage to yield inositol 1,4,5-tripsphosphate (IP3) 

and diacylglycerol (DAG). Dotted arrows indicate reactions confirmed only in vitro. 

Red arrows: kinase pathways; blue arrows: phosphatase pathways. This figure is 

adapted from (42). 
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So far there are 7 known PIPs found in a wide spectrum of living species ranging 

from unicellular organisms to mammals (43). Those PIPs include: 

phosphatidylinositol 3-phosphate (PI3P), phosphatidylinositol 4-phosphate (PI4P), 

phosphatidylinositol 5-phosphate (PI5P), phosphatidylinositol (3,5)-bisphosphate 

(PI(3,5)P2), phosphatidylinositol (3,4)-bisphosphate (PI(3,4)P2), phosphatidylinositol 

(4,5)-bisphosphate (PI(4,5)P2 or PIP2) and phosphatidylinositol (3,4,5)-trisphosphate 

(PI(3,4,5)P3 or PIP3) (Figure 1.2B). The conserved nature of PI and PIPs among 

different organisms indicates that these lipids appeared early during the evolution and 

are involved in important cellular functions (43). 

1.2.2 Functions of phosphatidylinositol and phosphatidylinositides 

Foremost, PIPs were viewed as signaling molecules responsive to extracellular 

stimuli. It has been known for almost half a century that the action of 

neurotransmitters and hormones results in changes of intracellular PIP populations in 

selected cell types (43,44). In 1983, inositol 1,4,5-trisphosphate (IP3) was identified 

as a second messenger capable of increasing cytoplasmic Ca2+ (45,46). This 

milestone discovery initiated a decade of intensive research leading to identification 

of many important components of the IP3 pathway, including the IP3 receptors, and 

revelation of the general mechanism of IP3/Ca 2+ signaling (45,47-49). Briefly, upon 

activation of various cell surface receptors (including receptors for growth factors, 

antigens, neurotransmitters, odorants or light, etc.) by extracellular stimuli, specific 

isoforms of the plasma membrane bound enzyme phospholipase C (PLC) are 

activated to hydrolyze cell surface PIP2 to produce IP3 and diacylglycerol (DAG), both 
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of which act as second messengers (45,49). DAG remains at the cell surface and 

activate protein kinase C (PKC) which passes on the signaling by phosphorylating 

other proteins. Meanwhile, IP3 diffuses through the cytosol and binds to IP3 receptors 

present at the smooth endoplasmic reticulum (sER) membrane, resulting in release of 

Ca2+ from the sER lumen into the cytosol, which in turn triggers a cascade of 

intracellular changes and activities (49). Ca2+ also cooperates with DAG to activate 

PKC at the plasma membrane (50). 

While the signaling related roles of PIPs are widely accepted and studied, other PIP 

functions started to emerge and be appreciated by the scientific world in the early 

1990s. When a mammalian PI 3-kinase, which phosphorylates the D-3 position on 

the inositol ring, was cloned (43,51,52), it was found that the kinase exhibited strong 

sequence homology to Vps34p, a yeast protein important for the vacuolar protein 

delivery in the strain of Saccharomyces cerevisiae (43,53,54). Subsequent studies on 

PIP regulating enzymes and binding proteins have led to our current knowledge 

about the diversified functions of PI and PIPs in multiple cellular events besides signal 

transduction. 

One important feature of the PIPs is that each member of the family has its distinct 

cellular localization, For example, PI4P is primarily localized to the Golgi membrane, 

PI3P is mostly found on early endosomes, and PIP2 is predominantly present on the 

plasma membrane. This feature facilitates identity establishment and maintenance of 

cellular membrane compartments and ensures delicate regulation of local events. 

The mechanism of how the highly dynamic PIPs are compartmentally confined is not 
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fully understood, however regulated synthesis and turnover have been suggested to 

play a role. (43,55). PIPs are able to recruit various proteins to the membrane by 

binding to specialized motifs within those proteins. Conserved PIP-binding motifs, 

each of which only binds selective PIP species, have been found in many cytosolic 

proteins [Table 1.1; (43,56)]. PIP-mediated protein nucleation represents a crucial 

initiating step in many important cellular events. One example is the function of PIP2 

in clathrin mediated endocytosis at the plasma membrane (57-60). Additionally, the 

activity of some proteins changes upon binding to specific PIPs, suggesting that PIPs 

can also act as allosteric regulators (43). Also, PI/PIP phosphorylation and 

dephosphorylation have been proposed to facilitate the changes of membrane 

curvature during trafficking events including membrane fission and fusion (43,61). 
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Table 1.1 PI binding modules. Typical sizes and preferred targets of seven 

conserved PI binding domains are listed. This table is adapted from (56). 
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The PIP populations at any given cellular membrane are dynamic. Efficient PIP 

synthesis and turnover are crucial to normal cellular functions. PIP metabolism is 

mediated by a large group of kinases, phosphatases and phospholipases. Each 

enzyme has its specific substrates, products, regulators and cellular localization. 

Enzyme-mediated PIP metabolism happens constitutively in the cell and responds to 

specific signals as well. 

1.2.3 PI kinases 

Phosphorylation on the inositol D-3, D-4 and D-5 positions is catalyzed by a group of 

highly specific lipid kinases, the PI kinases (Table 1.2). Depending on substrate 

selectivity, PI kinases can be roughly divided into three groups: PI 3-kinases, PI 

4-kinases, and PI 5-kinases. Within each group, the kinases are further categorized 

into different types depending on the amino acid sequence homology (Table 1.2).  

1.2.3.1 PI 3-kinases PI 3-kinases selectively phosphorylate the D-3 position of the 

inositol ring. This group of kinases consists of 3 sub-classes, namely class I, II, and III 

enzymes, differentiated by sequence analysis and by their sensitivity to the kinase 

inhibitor wortmannin. Specifically, class I PI 3-kinases mainly phosphorylate PI4P and 

PIP2 and are inhibited by low nanomolar concentrations of wortmannin (43). Class II 

PI 3-kinases can phosphorylate PI, PI4P and PIP2 in vitro, however their in vivo 

substrate preferences are largely unkown (43,62). These (class II) enzymes are 

inhibited by micromolar concentrations of wortmannin. The class III 3-kinase, named 

PI3KIII in the mammalian nomenclature, only phosphorylates PI and is responsible 

for production of the majority of PI3P in mammalian cells (43,63). PI3KIII is sensitive 
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to wortmannin at low nanomolar concentrations. In contrast, Vps34p, the yeast 

homolog of PI3KIII, can only be inhibited by wortmannin at much higher micromolar 

concentrations (64-66). Every PI 3-kinase has its specific cellular localization. Cellular 

functions of these enzymes have started to be revealed and they include roles in 

signal transduction, endocytic and biosynthetic protein deliveries (43,67-73). 

1.2.3.2 PI 4-kinases There are 2 distinct types of kinases, PI4K type II and type III, 

that specifically phosphorylate PI to produce PI4P (the original type I enzyme was 

later found to be a PI 3-kinase) (43). PI4KIIIα and β are homologues of yeast proteins 

STT4 and PIK1, respectively (74-80). Cellular localizations and functions of STT4 and 

PIK2 are non-overlapping in yeast (81-83). Similar characteristics have also been 

reported for PI4KIIIα and β (43,76,84-86). Mammalian type II PI4Kα and β were found 

to lack the signature PIK domain found in other PI 3-/4-kinases, and therefore belong 

to a novel family of lipid kinases (43). Their yeast ortholog is Lsb6p (87,88). PI4KIIα is 

a primarily Golgi-membrane localized protein and the major producer of PI4P in 

mammalian cells (43,89). It has been reported to function in membrane traffic 

processes involving the trans-Golgi network (TGN) (90). Meanwhile, PI4KIIβ is a 

largely cytosolic protein recruited to plasma membrane ruffles in response to 

extracellular stimuli (89). The membrane translocation and subsequent activation of 

PI4KIIβ is Rac dependent (89). A separate class of kinases has been identified to 

phosphorylate the D-4 position of selected PIPs. They were originally discovered in 

an effort looking for PI5Ks (therefore named type II PI5Ks back then), but were 

subsequently found to actually be PI 4-Kinases (91-96) and named PIP4KIIs to avoid 
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confusion. There are three isoforms in this group. Isoform α, the earliest discovered 

isoforms, is able to phosphorylate PI3P and PI5P, but not PI(3,5)P2 or PI (43,96-98). 

This group of PI4Ks only exists in metazoa and is found at the cytoplasm, the nucleus, 

the ER, and actin cytoskeletal structures (99-105). They have been suggested to play 

a role in regulated secretion and signal transduction, although the detailed 

mechanisms remain elusive (94,99,106). 

1.2.3.3 PI 5-kinases There are 2 classes of PI 5-kinases that differ in substrate 

specificity. One includes the yeast protein Fab1p and the mammalian ortholog 

PIKfyve (43,107). These 2 kinases phosphorylate the D-5 position of PI or PI3P. They 

both contain a FYVE domain which specifically binds PI3P and therefore contributes 

to the kinases’ cellular localizations to PI3P-rich compartments (43,108). Fab1p has 

been shown to be required for yeast vacuolar functions (109-111) while PIKfyve, 

similarly, plays a role in the mammalian endosomal functions (112). 

The other class of the PI 5-kinases consists of the type I 5-kinases (as mentioned 

above, the original type II PI5Ks were later found to be PI4Ks and renamed), which 

phosphorylate the D-5 position of PI4P and are the major producers of cellular PIP2. 

Mammalian cells express three isoforms of type I PI5K (α, β and γ), each consisting 

of a relatively homogeneous ~400 amino acid central kinase domain and more 

flexible amino- (N-) and carboxyl- (C-) terminal tails (43,113). The kinase domain 

contains a small activation loop that contributes to substrate specificity (99,105). 

Additionally, PI5KIγ exists predominantly in two splice forms (PI5KIγ635 and 

PI5KIγ661) that differ by a 26-amino-acid C-terminal extension (113,114). The α and 
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β isoforms of mammalian type I PI5K were cloned by 2 separate groups at around the 

same time from mouse or human and named in a reversed manner (113,115,116). 

The human nomenclature is used in the present introduction and all later chapters 

according to the GenBank guidelines.  

PI5KIs all appear to be plasma membrane bound, but exhibit distinct distributions in 

polarized cells; their recruitment to specific cell surface domains is not fully 

understood. Their functions in membrane traffic have started to be revealed. 

Conflicting results have been reported regarding the role of different PI5K isoforms in 

endocytosis of nonpolarized cells (115,117). In polarized renal cells, our lab has 

observed that PI5KIβ is apically localized and selectively regulates biosynthetic 

delivery of a subset of apical cargoes (118). Increased PIP2 mediated by PI5KIβ 

overexpression has been shown to decrease apical surface epithelial sodium channel 

(ENaC) levels in polarized epithelial cells presumably by stimulating epsin (a clathrin 

adaptor) mediated endocytosis from the apical plasma membrane (119). Separately, 

PI5KIγ 661 has been suggested to function in delivery to and endocytosis from the 

basolateral surface of polarized Madin-Darby canine kidney (MDCK) cells via direct 

interaction with and activation by the µ2 subunit of AP-2 complex (114,120,121). 

PI5KIα and β were shown to interact with AP-2 as well (121). The yeast homologue of 

mammalian type I PI5Ks is MSS4 (122,123). MSS4 is an essential yeast protein 

shown to be involved in actin cytoskeleton organization (43,122-124). Type I PI5Ks 

and PIKfyve can both be autophosphorylated. Their lipid kinase activity is inhibited by 

autophosphorylation (125,126). 
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Although several mechanisms have been implicated for membrane recruitment of 

PI5KIβ, the signal(s) that mediates apical targeting of the kinase in polarized cells 

remains unknown (99,105,127-129). This question will be examined in chapter two of 

my thesis. Determination of the apical targeting signal(s) will be very useful in 

identifying the domain-specific interactors of PI5KIβ and in elucidating how the 

enzyme specifically regulates apical membrane traffic in polarized cells.  

1.2.4 PI phosphatases 

To complete the delicate network regulating PI/PIP metabolism, phosphatases that 

remove the inositol-bound phosphate groups are needed to balance the PI kinase 

activities discussed above. A long list of PI phosphatases has been identified (Table 

1.2). Each one of them has its unique domain structure and substrate preference. 

Their cellular localizations and functions have been studied and considered together 

with our knowledge on PI, PIPs, PI kinases and PIP binding proteins. Using systems 

biology approaches, the increasing amount of information available for PI/PIPs and 

their related proteins can help us understand how the various PI/PIP-related cellular 

events are globally and as well locally coordinated (130). Meanwhile, 

protein-protein/protein-lipid interactions and macromolecular machineries discovered 

along the way can potentially serve as molecular targets of pharmaceutical studies. 

  Based on their substrate selectivity, PI phosphatases are divided into three groups, 

the PI 3-phasphatases, the PI 4-phosphatases and the PI 5-phosphatases, although 

selected enzymes are capable of hydrolyzing phosphate groups present on more 

than one inositol positions (for example, synaptojanin 1 and 2 are dual-function 
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mammalian enzymes that can hydrolyze both D-4 and D-5 phosphate groups on PIP2 

to produce PI) (43,131,132) (Table 1.2). Based on their domain structures, the 

phosphatases are further categorized into sub-families. The relatively conserved 

domain types found in PI phosphatases include: 1) phosphatase activity-related 

domains, e.g., the Sac domain and the conserved substrate-selective phosphatase 

domains; 2) PIP-binding domains, for example the FYVE (Fab1 YOTB Vac1 EEA1) 

domain, the PH (pleckstrin-homology) domain, and the PH-GRAM (pleckstrin 

homology glucosyltransferases, Rab-like GTPase activators and myotubularins) 

domain; 3) membrane-binding domains like the C2 (conserved region 2) domain; 4) 

protein-interacting domains, including the SH2 (phosphotyrosine-binding module 2) 

domain, the coiled-coil domain and the PRD (proline-rich domain) (43,130). While 

domain types 2), 3), and 4) are all involved in cellular targeting of PI phosphatases, 

type 2) is by far the most common localization cue. PI-phosphatases with different 

domain combinations exhibit specialized substrate preferences and targeted to 

non-overlapping cellular compartments. Locally, these phosphatases coordinate with 

PI-kinases and other regulators for tight spatial-temporal controls of PI/PIP 

metabolizing events. Roles of PI-phosphatases in a variety of cellular processess, 

including signal transduction, membrane traffic, and cytoskeleton remodeling, are 

being revealed. Despite extensive research, many aspects regarding the detailed 

regulations and functional redundancies remain open questions (43,130).  

1.2.5 PI/PIP related human diseases 

Considering the versatility of PI/PIPs in numerous cellular activities, it is not surprising 



 25

that impaired PI/PIP synthesis, turnover or localization often results in diseased 

conditions. Cellular PI/PIP metabolism is tightly controlled by PI kinases and 

phosphatases. Therefore genetic defects of these enzymes have been associated 

with a wide variety of human disorders. 

  Shown in Table 1.2 are human diseases identified to relate to known PI kinases or 

phosphatases. Most of these diseases are severe and life-threatening, consistent 

with the involvement of PI/PIPs in many foundamental cellular events. Organs often 

affected by these diseases include the central and peripheral nervous system, the 

eyes, the skeletal muscle and the kidney. The pathogenesis of most known PI/PIP 

related disorders is not fully understood. 
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Table 1.2 Mammalian PI kinases and phosphatases: their substrates, products 

and relationships to human diseases. Note that the myotubularin-related protein 

family includes active lipid phosphatases, for example MTM1, and 

pseudophosphatases, such as SBF1 and SBF2. Pseudophosphatases do not exhibit 

catalytic activity due to lack of a crucial cysteine residue. Information in this table is 

mostly based on (43,130,133). 

 

Enzyme In vivo 
substrate(s) Product(s) Human genetic 

diseases 
KINASES 

PI3Ks 

PI3KIα,β,γ,δ PI4P, PIP2 PI(3.4)P2, PIP3 Cancer (α,β) 

PI3KIIα,β,γ PI, PI4P, PIP2 PI3P, PI(3,4)P2, PIP3 -- 

PI3KIII PI PI3P 
Bipolar disorder 

(tentative?) 
PI4Ks 

PI4KIIIα,β PI PI4P Bipolar disorder (α) 

PI4KIIα,β PI PI4P -- 

PIP4KIIα,β,γ PI3P, PI5P PI{3,4}P2, PIP2 

Bipolar disorder, 
schizophrenia (α); 
mouse PIP4KIIβ 
knockout causes 
hypersensitivity to 

insulin and reduced 
body weight 

PI5Ks 

PI5KIα,β,γ PI4P and others (?) PIP2 and others (?) 
Lethal congenital 

contractual syndrome 
type 3 (LCCS3) (γ) 

PIKfyve PI, PI3P PI5P, PI(3,5)P2 

Francois-Neetens fleck 
cornea dystrophy 

(CFD) 

 

PHOSPHATASES 

3-Pases 
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Table 1.2. (continued) 

PTEN PIP3, PI(3,4)P2 PIP2, PI4P 

Cowden syndrome 
(CS) and 

Bannayan-Zonana 
syndrome (BZS), 

cancer, 
macrocephaly/autism 

MTM1,R1,R2 PI3P, PI(3,5)P2 PI 

X-linked myotubular 
myopathy (XLCNM) 

(MTM1), 
Charcot-Marie-Tooth 

4B1 (CMT4B1) 
(MTMR2) 

MTMR3,4,6,7,8 PI3P, PI(3,5)P2 PI -- 

MTMR9,10,11,12 
Inactive 

phosphatases 
-- -- 

SBF1,SBF2 
(MTMR13) 

Inactive 
phoaphatases 

-- 
Charcot-Marie-Tooth 

4B2 (CMT4B2) (SBF2)
4-Pases 

INPP4A 
Ins(3,4)P2, 

Ins(1,3,4)P3, 
PI(3,4)P2 

Ins3P, Ins(1,3)P2, 
PI3P 

Not clear in human; a 
frame shift mutation in 
mouse INPP4A gene 
results in the weeble 

mutant mice 
characterized by 

neuronal loss 

INPP4B 
PI(3,4)P2; in vitro, 
also Ins(3,4)P2, 

Ins(3,4,5)P3 

PI3P; Ins3P, 
Ins(3,5)P2 

-- 

TMEM55A,B PIP2 PI5P -- 

SACM1L PI3P, PI4P PI -- 

5-Pases 

SKIP PIP3, PIP2 PI(3,4)P2, PI4P -- 

PIB5PA/PIPP 
PIP2, Ins(1,4,5)P3, 

Ins(1,3,4,5)p4 

PI4P, Ins(1,4)P2, 
Ins(1,3,4)P3 

-- 

INPP5B 
PIP2, PIP3, 

Ins(1,4,5)P3, 
Ins(1,3,4,5)P4 

PI4P, PI(3,4)P2, 
Ins(1,4)P2, 

Ins(1,3,4)P3 

-- 

OCRL1 PIP2 PI4P 
Lowe syndrome, Dent 2 

disease 

INPP5D/SHIP1 PIP3, Ins(1,3,4,5)P4 
PI(3,4)P2, 

Ins(1,3,4)P3 

Acute myelogenous 
leukemia (AML) 
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Table 1.2. (continued) 

INPP5E PIP3, PIP2 PI(3,4)P2, PI4P 

Ciliopathies, e.g. 
Joubert syndrome (JS) 

and MORM (mental 
retardation, truncal 

obesity, retinal 
dystrophy and 

micropenis) syndrome

INPPL1/SHIP2 PIP3 and others (?) PI(3,4)P2 
Diabetes type II, 

metabolic syndrome 

SYNJ1,2 PIP2 PI 
Bipolar disorder 

(SYNJ1) 
INPP5F PIP2>PIP3 PI4P, PI(3,4)P2 -- 

FIG4 
PI(3,5)P2 and others 

(?) 
PI3P 

Charcot-Marie-Tooth 4J 
(CMT4J); mouse FIG4 
knockout results in the 

pale tremor mice 
characterized by 

massive 
neurodegeneration 
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  Several hypotheses have been made regarding how certain PI/PIP related 

diseases develop. A 2008 review by Nicot and Laporte (133) provided a very nice 

description and dissection of human diseases caused by defects of endosomal 

PI/PIPs. They pointed out a hypothetical “common pathological mechanism” of 

endosome-related PI/PIP disorders, which are diseases caused by impaired 

metabolism of endosome localized PI3P and PI(3,5)P2 (133). In their model, 

compromised membrane fission and retrieval resulting from abnormal levels of 

PI3P/PI(3.5)P2 are the underlying reasons for defective nerve myelination in 

CMT4B1/B2 (MTMR2/MTMR13 defects), accumulation of late endosomal 

compartments in selected cell types of the CFD and CMT4J patients (PIKfyve and 

FIG4 defects respectively) and altered skeletal muscle cell membrane remodeling in 

XLCNM (MTM1 defect) (133). They also suggest that certain types of cancer and 

psychiatric disorders caused by defective PI3Ks are results of impaired cell 

antophagy (133). This hypothesis is supported by research data showing that PI3Ks 

are involved in autophagy and that autophagy is altered in cancers and neurological 

diseases (133-137).   

  Other disorders that have been associated with defective PI/PIP metabolizing 

enzymes include LCCS3 [a severe form of arthrogryposis hypothetically caused by 

defective neuronal membrane traffic as a result of PI5KIγ mutations that eliminate the 

kinase activity (138)], type 2 diabetes [suggested to result from the abnormal 

increases in INPPL1/SHIP2 amount and activity, which result in impaired insulin and 

insulin-like growth factor 1 (IGF-1) signaling, brain dysfunction and insulin resistance 
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(139-141)],  acute myeloid leukemia [since loss of INPP5D/SHIP1 has been 

associated with unregulated proliferation of CD34(+) cells in AML patients (142)], 

cancer as well as other diseases associated with the tumor suppressor PTEN 

(143,144) and Lowe syndrome [caused by OCRL1 defects (145)]. A detailed 

introduction to Lowe syndrome can be found in the next section. Recently, mutations 

in the PI 5-phosphatase INPP5E have been related to defective primary cilia 

functions and subsequent abnormalities in the eyes, the brain and the kidneys of 

human and mouse (29,30). This novel implication of PI/PIP metabolism in cilia 

structure/signaling and ciliopathies can potentially open a new field to study the 

PI/PIP related diseases that are currently not well understood. 

1.2.6 Lowe syndrome 

Lowe syndrome, also known as Oculocerebrorenal Dystrophy, was first described in 

1952 by Lowe and colleagues as a “clinical entity” manifested by “organic-aciduria, 

decreased renal ammonia production, hydrophthalmos, and mental retardation” (146). 

As more patients were described subsequently, diagnostic symptoms of Lowe 

syndrome have evolved into the current triad including congenital cataracts, mental 

retardation and renal tubular dysfunction. An X-linked pattern of family inheritance 

was also documented, consistent with the later localization of the Lowe disease gene 

OCRL to the chromosomal location Xq 26.1 (147-152). Lowe syndrome is a rare 

panethnic genetic disorder with an incidence of 1 in every 200,000 to 500,000 

newborns worldwide (153). The pathophysiology of Lowe syndrome comprises 

changes and defects in a wide variety of organ systems. The severity of many 
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symptoms varies broadly among different patients.  

  As an X-linked recessive disease, Lowe syndrome almost always affects males 

(although chromosomal translocations affecting the OCRL gene locus have been 

reported to cause Lowe syndrome phenotypes in a very small number of female 

cases). It is often diagnosed at very early stages (at birth or in the first years of life) 

based on physical abnormalities. All known Lowe patients are born with bilateral 

cataracts and have impaired vision (154,155). Impaired lens development has been 

reported in human fetuses with inherited Lowe mutations (153,155). Glaucoma, 

keloids, strabismus and even blindness are common in those patients too (153,154). 

Hypotonia is usually evident during the early infancy of Lowe patients and progresses 

into the adulthood, resulting in problems including impaired mobility, skeletal 

deformation, feeding difficulty, coughing inability, and pneumonia (153,154,156,157). 

Moderate to severe mental retardation develops in most of the Lowe syndrome boys 

whose facial characters usually include small deep-set eyes, prominent foreheads 

and abnormally lengthened faces. Renal tubular dysfunction is normally detectable by 

12 months after birth. Plasma and urinary creatinine levels, however, remain in the 

reference range until the patients reach their early teens (153,154,158). Chronic 

kidney dysfunction is associated with many Lowe patients in their late teens and 20s. 

A high rate of infantile mortality has been noted for Lowe syndrome. These early 

deaths are often linked to severe metabolic impairments due to excessive urinary loss 

of water and electrolytes, however fatal infections, neurological symptoms and 

sometimes unknown reasons have been associated with deaths as well (153). Lowe 
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patients who survive infancy normally live into the 2nd or 3rd decade of their lives and 

sometimes further. The lifespan of a Lowe patient is rarely longer than 40 years 

(153,154). Deaths are often due to the kidney failure derived from chronic renal 

problems, however other complications can be fatal as well (154). 

  The renal tubular dysfunction associated with Lowe syndrome is characterized by 

urinary loss of pathological levels of low-molecular-weight proteins, amino acids, 

calcium, bicarbonate, phosphate, L-carnitine and excessive water (153,159,160). 

Massive wasting of these important nutrients results in conditions including 

systematic acidosis (due to the loss of bicarbonate), bone problems like rickets and 

osteomalacia (due to the loss of calcium and phosphate), and dehydration (due to the 

excessive loss of water) (153). Additionally, older Lowe patients often have 

glomerular sclerosis, nephrocalcinosis, and/or nephrolithiasis (154). Pathological 

renal features including epithelial atrophy, filled tubular lumens and fibrosis have also 

been reported (153,154).  

  The currently available treatments for Lowe syndrome involve replacement therapy 

(to compensate for the urinary loss), surgery (to correct eye problems and other 

defects), dialysis [kidney transplantation remains an option although very few cases 

have been reported (153,161)], and physical therapy (to alleviate mobility constraints) 

(153,156). Genetic counseling, maternal detection and prenatal examination are often 

suggested to families at risk (153,154,156). 
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Figure 1.3 Domain structure of OCRL1 isoform b. Dark blue: N-terminal domain; 

light blue: 5 phosphatase domain; green: RhoGap domain; Red: ASH domain. Yellow 

stars indicate amino acids mutated in chapter 3. OCRL1 isoform a has an extra 

8-residue stretch in the C-terminal RhoGap domain. This figure is adapted from (162). 

 

  OCRL, the disease gene of Lowe syndrome, encodes the PI 5-phosphatase 

OCRL1 (147,163,164). The domain structure of OCRL1 (162) (Figure 1.3) consists of 

a short N-terminal domain, a central PI 5-phosphatase homology domain, an ASH 

(ASPM, SPD-2, Hydin) domain (which will be discussed in detail later) and a 

C-terminal Rho-GAP like domain (inactive due to the lack of a catalytic arginine 

residue, but suggested to be important for OCRL1 enzymatic activity) (162,165,166). 

In mammalian cells, OCRL1 primarily localizes to the trans-Golgi network and 

endosomal compartments (162,167-169). It can also be found in clathrin coated pits 

and is present at plasma membrane ruffles upon growth-factor stimulation (170,171). 

How mutations in the OCRL gene result in Lowe symptoms remains largely unknown 

although megalin malfunction has been suggested by several groups as a reason for 

the characteristic low-molecular-weight proteinuria (18,172). Interestingly, OCRL 

knockout mice do not develop Lowe syndrome phenotypes and are largely healthy 

(173,174). This is due to intrinsic expression of the functional redundant PI 
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5-phosphatase INPP5B in these mice (173,174). Loss of the OCRL1 activity can not 

be compensated in humans because of low expression levels of INPP5B (173,174). 

OCRL mutations have been found in a subgroup of patients originally diagnosed 

with Dent disease, another X-linked recessive disorder affecting only the kidneys but 

typically not other organs (175-178). These patients do not carry mutations in the 

Dent disease gene CLCN5 and have been re-categorized into the novel group of 

Dent 2 patients (175-178). Why Dent 2 OCRL mutations do not cause extra-renal 

defects is unclear. Domain-restricted mutations and alternative splicing have been 

hypothesized as the underlying mechanisms (176). Dent disease symptoms are 

similar, but not identical (for example, Dent patients rarely develop kidney tubular 

acidosis), to the renal manifestations of Lowe syndrome (153,177). The CLCN5 gene 

encodes the chloride/proton antiporter CLC-5 whose cellular functions include 

endosomal acidification (179-181). Abnormal renal tubular expression and 

localization of megalin have been reported in both Dent patients and the CLCN5 

knockout mice (17,18). Impaired megalin functions have therefore been suggested to 

account for the proteinuria as well as other renal symptoms found in Dent patients 

(17,18).  

Notably, urinary megalin shedding was reported to decrease in both Lowe and Dent 

patients (18). It will be interesting to examine whether, like in the case of Dent disease, 

megalin defects are associated with the renal manifestations of Lowe syndrome as 

well. Separately, a novel ASH domain was recently reported to present at the 

C-terminus of the OCRL1 5-phosphatase domain (182,183). The ASH domain has 
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been found in many ciliary proteins, although its exact cellular functions remain 

elusive (182). The identification of OCRL1 as an ASH-domain containing protein 

potentially suggests a novel direction of Lowe syndrome-related studies to look into 

the relationship between this disease and cellular cilia. Chapter three and four of my 

thesis focus on elucidating the renal pathogenesis of Lowe syndrome using renal 

epithelial cells as the model. A variety of experiments were performed to separately 

evaluate cellular functions of megalin (chapter three) and primary cilia (chapter four) 

in response to acute OCRL1 depletion [mediated by RNA interference (RNAi)]. 

Results of these experiments should contribute to our understanding of Lowe 

syndrome and to development of therapeutic interventions to this severe genetic 

disorder. 

 

1.3 SUMMARY 

PI and PIPs are important cellular regulators. Besides their long-appreciated 

functions in signaling, these lipids also have crucial roles in membrane traffic. 

Delicate control of the dynamic cellular PI/PIP pools is dependent upon a variety of 

metabolizing enzymes, namely the PI kinases and phosphatases. Thanks to 

extensive research efforts, our knowledge about the structures and functions of PI 

kinases/phosphatases is increasing steadily. However, due to complexity of the 

PI/PIP regulation network, many questions remain unanswered. Among them are 

how specific PI/PIP metabolizing enzymes are compartmentally restricted and how 

specialized cellular localizations contribute to the functions of those enzymes. These 
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questions are particularly intriguing when cells assume polarity (in vivo or in culture) 

and therefore, compared to their non-polarized counterparts, exhibit more divergent 

cellular compartmentalization and functional specialization. 

  A large group of human disorders has been attributed to genetic defects in selected 

PI/PIP metabolizing enzymes. These diseases often lead to severe consequences 

since PI and PIPs are involved in many fundamental cellular processes. The kidneys 

are among the most disease-prone vital organs and are affected by mutations in 

genes including those encoding the PI phosphatases OCRL1 and INPP5E. The often 

present renal tubular dysfunction has led to the hypothesis that functional defects in 

selected kidney-tubule resident proteins, likely receptors (for example megalin), are 

responsible for the disease-genesis. However there is not enough evidence so far to 

verify this hypothesis. Interesting enough, recent studies have linked renal cilia 

abnormalities to mutations in the PI/PIP regulating gene INPP5E. Given the 

established role of cilia in renal tubular flow-control and the fact that many PIPs are 

critical signaling and trafficking regulators, it is likely that there is an unsolved 

mechanism connecting PI/PIP metabolism to the cilia related signaling cascades and 

membrane traffic in renal tubular cells. Researching and understanding this 

mechanism can help us appreciate the currently not-so-well-understood roles of 

PI/PIPs in cilia genesis, maintenance and functioning and can potentially reveal 

valuable information on pathogenesis as well as therapeutic control of known and 

unknown PI/PIP diseases. 

  The three aims of my thesis are: 1) to determine the role of megalin in the renal 
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pathogenesis of Lowe syndrome; 2) to understand the relationship between OCRL1 

and renal primary cilia, and to evaluate this potential relationship in Lowe syndrome 

development; 3) to study the apical targeting mechanism of PI5KIβ in polarized renal 

epithelial cells. By focusing on these aims, I expect to improve our knowledge on 

compartmentalized regulation of PI/PIP-related events in polarized cells (as 

discussed above, the current knowledge in this area is far from complete) and to 

further the long-standing effort in preventing and treating Lowe syndrome. 
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2.0 DETERMINING THE APICAL TARGETING MECHANISM OF 

PI5KIβ IN POLARIZED EPITHELIAL CELLS 

 

2.1 INTRODUCTION 

The epithelium is the layer or layers of cells lining the surfaces, lumens and cavities of 

the body. Its main roles include protection, secretion, absorption and sensation. On 

the one hand, there are widely diversified types of epithelium, each with a specific 

morphology-structure combination and carrying specialized cellular responsibilities 

designated by its organic context. On the other hand, as a tissue family, all epithelial 

types share several characters that distinguish them from other biological tissues. 

One of these characters is being the physical as well as functional division between 

luminal/external substances (for example bacteria, air, water, half-digested food, renal 

filtrate, and etc.) and structures underneath (including a fibrous basement membrane, 

connective tissue, blood vessels and nerves). The barrier function of epithelia is 

achieved by formation of intercellular tight junctions, which consist of joined networks 

of transmembrane protein complexes from two adjacent cells and seal off the 

intercellular space (184). Tight junctions anchor into the actin cytoskeleton (184). 

Number and composition of tight junctional protein complexes vary in different 

epithelia, resulting in distinct sealing strengths that are function-related (184). In a 

single epithelial cell, the tight junction presents a physical barrier to lateral diffusion of 
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selected cell surface proteins and lipids (184,185). The plasma membrane is, 

therefore, divided into two compartments, one on each side of the tight junction. 

These two compartments are in contact with very different environments and 

therefore develop distinct cellular roles accompanied by dissimilar structural features. 

Separation of the luminal/external (apical) cell surface from the rest (basolateral) of 

plasma membrane is the basis of apical-basal polarity universally found in various 

epithelial cells. Functional details and structural specializations of the apical and 

basolateral epithelial membranes vary broadly among organs. 

  To achieve specialized apical and basolateral functions, the two plasma membrane 

domains of each polarized epithelial cell develop asymmetric compositions crucial for 

domain identities. Notably, the asymmetry is not limited to membrane proteins, but 

also present in lipid components on both the outer and the inner leaflets of plasma 

membrane (55,186). This is somewhat surprising considering the fact that 

inner-leaflet lipids can diffuse freely across the tight junction (185). The delicate 

spatial compartmentalization of PIP family members is clearly manifested in the 

apical-basal polarity. Specifically, PIP2, while present on the entire cell surface, is 

selectively enriched on the apical plasma membrane and crucial for the recruitment 

and activity of many apical proteins (55,119,186). On the contrary, PIP3, a minor PIP, 

is almost exclusively found on the basolateral cell surface and is required for 

establishment of the basolateral identity (55,186). Elegant studies from the Mostov 

laboratory have partially tackled this conundrum (55,186). By examining developing 

MDCK 3D-cysts, his group discovered that the apical localized PI 3-phosphatase 
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PTEN was critical for apical-basal polarity initiation as well as cyst lumen formation 

presumably by hydrolyzing any PIP3 that diffused to the apical surface and spatially 

segregating PIP2 and PIP3 (55,186). In accordance with these results, his lab also 

showed that the PI 3-kinase activity, which catalyzes synthesis of PIP3 out of PIP2, 

was required for the formation of epithelial basolateral cell surface (186).  

Separately, the importance of PIP3 in sorting and membrane delivery of basolateral 

protein cargoes has been revealed by several groups. The Sheff laboratory 

suggested a role of PI 3-kinases in basolateral sorting and AP (adaptor protein 

complex) -1B (an epithelial-specific clathrin adaptor complex selectively participating 

in sorting and trafficking of newly synthesized or recycled proteins to the basolateral 

cell surface) dependent trafficking from the recycling endosomes in polarized 

epithelial cells (187), Also, Fölsch and colleagues showed that PIP3 was found in the 

recycling endosomal membrane of AP-1B positive epithelial cells, and that the 

presence of PIP3 was crucial for recruitment of AP-1B to recycling endosomes and for 

correct sorting and targeting of AP-1B dependent basolateral cargoes in polarized 

epithelial cells (188). Participation of PIP3 in basolateral membrane traffic further 

indicates the importance of this lipid in normal functions of the basolateral plasma 

membrane. 

While generation and maintenance of the basolateral PIP3 pool have started to be 

understood, mechanisms regarding formation of the apically concentrated PIP2 

reservoir remain largely unknown. Although PIP2 can be generated by 

PTEN-mediated PIP3 hydrolysis, that is far from the major PIP2 synthesizing pathway 
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due to the much higher cellular abundance of PIP2 compared to that of PIP3. In fact, 

the majority of cell surface PIP2 is synthesized via phosphorylation of PI4P by type I 

PI 5-kinases (43).  

  The three known isoforms of PI5KI, α, β and γ, are cytosolic proteins that associate 

with cell membranes. They share a domain structure featuring a conserved central 

kinase homology domain and relatively flexible N- and C- termini [(43,113); Figure 

2.1A]. The γ isoform exists predominantly as two alternative splice variants 

differentiated by a 26-amino-acid C-terminal unstructured tail [(114); Figure 2.1A]. 

The kinase domain of each isoform contains a 22-amino-acid stretch, the activation 

loop, which determines the substrate specificity (for PI4P) (99,105). All three PI5KI 

isoforms are capable of binding µ-2 subunit of the classical cell surface clathrin 

adaptor AP-2 (114,120,121). Additionally, the nerve-enriched longer PI5KIγ splice 

variant, γ661, has been shown to specifically interact with the AP-2 β-2 subunit via its 

short extra 26-amino-acid tail (189). This interaction is regulated by clathrin and is 

therefore suggested to facilitate temporally controlled regional production of PIP2, 

which then interacts with and functionally regulates virtually all known cytosolic 

proteins involved in clathrin coated pit assembly (189). Studies on involvement of 

PI5KI isoforms in endocytosis of nonpolarized cells have yielded conflicting results 

(115,117,120). Barbieri et al. found that PI5KIα, not Iβ, was required for the 

endocytosis of epidermal growth factor (EGF) receptor in NR6 fibroblasts (117), 

whereas Padrόn et al. observed that overexpression of either PI5KIα or Iβ increased 

endocytosis of transferrin receptors, membrane association of AP-2 complexes, and 



 42

the number of clathrin coated pits in CV-1 cells (115). In addition, through knockdown 

studies, Padrόn et al. also concluded that PI5K1β played a primary and irreplaceable 

role in constitutive endocytosis in CV-1 and HeLa cells (115). Surprisingly, the same 

study found no involvement of PI5KIγ in endocytosis within their nonpolarized system 

(115), contrary to more recent studies suggesting a role for the γ isoform in 

basolateral endocytic traffic in polarized cells [(120), and see below].  

  In polarized epithelial cells, the enrichment of PIP species in distinct plasma 

membrane domains has added an additional layer of complexity to cellular 

localizations and functions of type I PI5Ks. As mentioned previously, our lab showed 

that PI5KIβ strikingly localized to the apical plasma membrane of polarized MDCK 

cells and selectively regulated surface delivery of a subset of newly synthesized 

apical cargo proteins (118). Also, overexpression of PI5KIβ was able to stimulate 

endocytosis of the apical proteins ENaC and megalin, presumably by increasing 

apical PIP2 (119,174). In contrast, PI5KIγ661 was found to localize to the basolateral 

surface of polarized epithelial cells where it associates with AP-1B and regulates 

basolateral trafficking events as well as adherens junction dynamics (114). Therefore, 

apical and basolateral membrane traffic events seem to be modulated by separate 

isoforms of PI5KIs. However what triggers the polarized localizations of PI5KI family 

members remains elusive. 

  Previous studies have indicated that the activation loop as well as multiple 

dibasic-amino-acid motifs present in the kinase homology domain are required for the 

membrane attachment of all isoforms of type I PI5Ks (99,105,129). It has also been 
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reported by Dr. Yin’s group that Ser/Thr as well as tyrosine phosphorylation status 

(which responds to and changes upon different stress signals) of PI5KIβ directly 

correlates with the membrane bound versus cytosolic ratio of the enzyme and as well 

as with lipid kinase activity (127,190). Regarding the apical-basal polarized 

localizations of different PI5KI isoforms, very little information is currently available. 

Considering that the central kinase domain is highly conserved among PI5KIs, it is 

likely that the polarized targeting signals reside within the more variable N- and/or C- 

tails. Interestingly, one study indicated that the C-terminus of PI5KIβ was required for 

the enzyme’s polarized localization to the uropod of neutrophils, a different polarity 

model (128). It is not known whether the same sequence functions similarly in 

polarized epithelial cells. 

  Determination of apical targeting signal(s) is critical for identifying apical-specific 

PI5KIβ interacting proteins and for understanding the roles of this kinase in apical 

membrane traffic. By comparing localization signals and other structural features 

between the β and γ isoforms, I expect to be able to answer some fundamental 

questions regarding polarized epithelia. These questions include: 1) why PI5KIβ and 

γ localize to separate plasma membrane domains in polarized epithelial cells; 2) why 

apical and basolateral PIP2 levels are considerably different when PI5KIs with very 

homologous kinase domains are present; 3) whether there are distinct requirements 

for PIP2 and/or other proteins/lipids by apical versus basolateral endocytic events; 4) 

whether the potential difference in PIP2 (or other molecules) requirement accounts for 

the different endocytic rates observed from the two epithelial cell surface 
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compartments (191). Additionally, understanding of type I PI5K functions in epithelial 

cells can provide useful information for studies in other polarized models (e.g. 

neurons and migrating cells). 

 

2.2 RESULTS 

2.2.1 Three isoforms of the type I PI5K exhibit non-overlapping localizations in 

polarized renal epithelial cells 

To determine the expression levels of type I PI5K isoforms in mCCD cells, RT-PCR 

using specific primers against PI5KIα, β or γ was performed. The PI5Kγ primers were 

able to amplify both the shorter and the longer transcript variants. As shown in Figure 

2.1B, all three kinases were detectable in the mCCD lysate under our RT-PCR 

conditions. While PI5KIα and γ are relatively abundant in mCCD cells, PI5KIβ is 

expressed at a lower level. Samples generated with actin primers or no RT enzyme 

added were included as the positive or the negative control respectively.  
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Figure 2.1 Type I PI5K isoforms. A: amino, kinase, and carboxy terminal domains of 

the three type I PI5K isoforms are depicted. The number of amino acids in each 

domain is shown. B: RT-PCR using mCCD cell lysate to detect endogenous 

expression levels of the three PI5KI isoforms. C: mCCD cells plated sparsely on 

coverslips (top row) or plated on transwells for three days were infected with 

adenoviruses encoding HA-PI5K1α (mouse), HA-PI5K1β (mouse), or HA-PI5K1γ661 

(human) prior to fixation and processing for immunofluorescence imaging using an 

anti-HA-epitope antibody. Confocal sections of the polarized cells are shown to 

demonstrate kinase localization to the apical (second row) and/or lateral (third row) 

regions of the cells. XZ sections of deconvoluted images are shown on the bottom 

row. Figure 2.1B was generated by Christina M. Szalinski (C.M.S.) from University of 

Pittsburgh; figure 2.1C was generated by Christopher J. Guerriero (C.J.G.) from 

University of Pittsburgh. 
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  We subsequently determined the localizations of type I PI5K isoforms in 

nonpolarized mCCD cells or polarized mCCD cells grown on transwell filters using 

immunofluorescence. Due to the lack of high-quality antibodies for all the 

endogenous PI5KIs, this experiment was done by virally expressing (with a 

multiplicity of infection (MOI) of 125) exogenous tagged kinases. As indicated by 

Figure 2.1C, in nonpolarized mCCD cells, all three kinases were found both on the 

plasma membrane and in the cytosol. When expressed in polarized mCCD 

monolayers, PI5KIβ appeared enriched on the apical plasma membrane, PI5KIα was 

mostly on the lateral surface, while PI5KIγ661 was present at the cell periphery and 

slightly concentrated at the lateral plasma membrane. Similar results were seen in 

polarized MDCK cells (data not shown). Therefore, in polarized renal epithelial cells, 

the three type I PI5K isoforms assume distinct distributions that are potentially 

relevant for their non-overlapping cellular functions. 

2.2.2 Endogenous PI5KIβ localizes to the apical plasma membrane of polarized 

renal epithelial cells 

We were able to detect the endogenous localization of PI5KIβ in both polarized 

mCCD cells and rat cortical renal tissue by immunofluorescence. Shown in Figure 2.2 

upper and middle rows are confocal XY images of rat kidney cortex slices either 

selectively labeled for PI5KIβ or treated in the absence of primary antibodies during 

immunofluorescence. Compared to the no-primary-antibody control, which does not 

show any specific staining, samples treated with the PI5KIβ antibody are selectively 

labeled on the apical surface of epithelia lining both distal (characterized by wide 
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lumens; Figure 2.2 DT) and proximal (characterized by collapsed lumens; Figure 2.2 

PT) tubules. In cultured polarized mCCD cells, PI5KIβ is enriched on the apical 

plasma membrane as illustrated by XZ confocal images of cells stained with a specific 

PI5KIβ antibody (Figure 2.2 bottom row). These results are consistent with previous 

data acquired using HA-tagged exogenous PI5KIβ in polarized renal epithelial cells 

[(118,119), Figure 2.1]. 
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Figure 2.2 Apical localization of endogenous PI5KIβ in renal epithelia.  The 

upper confocal micrographs show anti-PI5KIβ immunolabeling of proximal (left, PT) 

and distal (right, DT) tubules in a four µm rat kidney cortex slice.  Below is a control 

section without primary antibody but was processed and imaged directly.  The 

bottom panel shows an xz section of filter grown mCCD cells with indirect 

immunofluorescence staining for endogenous PI5KIβ.  Note the apical localization 

of this enzyme.  The arrow head denotes the apical surface whereas F marks the 

filter. Images of rat kidney tissue slices were provided by Nuria M. Pastor-Soler 

(N.M.P.) from University of Pittsburgh; images of mCCD cells were provided by 

C.J.G.. 
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2.2.3 Chronic expression of exogenous PI5KIβ leads to compromised polarity 

in renal epithelial cells 

I generated a GFP-tagged PI5KIβ construct to facilitate cellular detection of the 

enzyme by immunofluorescence. After generation of clonal stable MDCK cells 

expressing GFP-PI5KIβ, I screened the clones, picked one that had 30-40% GFP 

expressing cells and subjected that clone to FACS to recover high and low expressor 

populations. The high-expressing population originally exhibited 70-80% GFP 

positive cells; however, the percentage of GFP positive cells dropped to 20-30% after 

~ 2 weeks of culture under selection and continued to decrease. Moreover, as shown 

by confocal XZ images of the remaining GFP positive cells, localization of 

GFP-PI5KIβ is largely non-polarized (Figure 2.3, both panels). This is inconsistent 

with the apical localization of the same protein when transiently transfected by 

electroporation (albeit low expression efficiency) in polarized MDCK cells. The 

nonpolarized localization of chronically expressed GFP-PI5KIβ may indicate cell 

toxicity, although ZO-1 (an apical-basal cell polarity marker) distribution in these cells 

looks normal by immunofluorescence (Figure 2.3).  
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Figure 2.3 Chronic expression of exogenous PI5KIβ causes nonpolarized 

localization of the kinase in MDCK monolayers. Clonal MDCK cells stably 

expressing GFP-tagged PI5KIβ were plated at confluence on 12-well transwells and 

cultured for four days under selection. They were then fixed and stained for ZO-1 

using immunofluorescence. Two representative XZ confocal images are shown. Note 

that the stably expressed PI5KIβ appears nonpolarized on the plasma membrane. 

Red: ZO-1; green: GFP. Scale bar: 10 µm. 

 

2.2.4 Apical expression of PI5KIβ is not saturable 

Determining the saturability of apical PI5KIβ expression can help us estimate what 

type of apical targeting mechanism is used by this kinase. Therefore, I infected 

polarized filter-grown MDCK cells with either a control AV or increasing amounts of 

AV-HA-PI5KIβ. The infected cells were subsequently fixed, subjected to 

immunofluorescence against the HA-tag and ZO-1, and imaged using a confocal 

microscope. Cells infected with the control AV did not show any specific staining in 

the channel of the HA-tag (data not shown). A broad spectrum of single cell 

expression levels was observed in each MDCK transwell infected with AV-HA-PI5KIβ. 

In cells expressing relatively high amounts of PI5KIβ, abnormal doming of the apical 

surface was frequently apparent (Figure 2.4B). As shown in Figure 2.4A,B, 
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exogenous HA-PI5KIβ was enriched at the apical plasma membrane (above the ZO-1 

staining), even in the highest expressing cells. No detectable fluorescence signal was 

observed in the cytosol. I measured the average and total fluorescent signals (in the 

HA channel) at the apical and the basolateral plasma membrane domains of 37 

randomly chosen cells. The ratios representing apical average to basolateral average 

were plotted against the total cellular fluorescent signals. As shown in Figure 2.4C, 

the top left panel, cells expressing low levels of HA-PI5KIβ display extremely variable 

apical/basolateral ratios (Y values) ranging from ~5 to ~600. This is due to very low 

basolateral signals (that are hard to pick up by the imaging scope and software) in 

those cells. The graph was replotted, with adjusted Y axis ranges, to eliminate points 

with exceptionally high Y values (Figure 2.4C top right and bottom two panels), There 

is no obvious trend in the distribution of points as the total pixels increase (especially 

from ~10000 to ~46000), indicating that the apical localization of PI5KIβ in polarized 

renal epithelial cells is nonsaturable, at least within the expression range tested. This 

suggests that binding to lipid components, which are usually much more abundant 

than proteins on cellular membranes, likely contributes to the apical localization of 

PI5KIβ in polarized epithelial cells. 
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Figure 2.4 The apical plasma membrane localization of PI5KIβ is nonsaturable. 

MDCK cells were plated at confluence on 12-well transwells and cultured for three 

days before being infected with AV-HA-PI5KIβ at increasing MOIs. One day after the 

infection, cells were fixed and stained for the HA epitope and ZO-1 using 

immunofluorescence. Confocal XZ images of normal looking (A) and domed (B) cells 

are shown. Note that the virally overexpressed PI5KIβ primarily localizes to the apical 

plasma membrane of polarized MDCK cells even when cell morphology changes. C: 

the average and total fluorescent signals (in the HA channel) at the apical and the 

s 

s 

s 

s 



 53

basolateral plasma membrane domains of 37 randomly chosen cells were quantitated. 

The ratios representing apical average to basolateral average were plotted against 

the total cellular fluorescent signals/pixels. The graph is replotted four times with 

differing Y scales. Scale bar: 10 µm. 

 

2.2.5 PIP2 binding does not contribute to the apical localization of PI5KIβ 

Because PIP2 is enriched at the apical surface, I asked whether this lipid contributes 

to the polarized localization of PI5KIβ. To address this, I conducted a PIP2 competition 

experiment in which increasing amounts of the specific PIP2 binding domain of PLCδ 

tagged with GFP (GFP-PH-PLCδ) was virally expressed in polarized MDCK cells. 

Localization of co-expressed HA-PI5KIβ (AV-HA-PI5KIβ infected at MOI 50 for all 

samples) was determined in cells expressing different levels of PH-PLCδ. If PIP2 is 

required for the correct localization of PI5KIβ, sequestration of PIP2 by excessive 

PH-PLCδ should be able to dislocate the kinase. When expressed in polarized MDCK 

cells, as shown by confocal XZ images in Figure 2.5A,B, GFP-PH-PLCδ appeared 

mostly on the plasma membrane, although there was a diffuse cytoplasmic 

population as well. The membranous GFP-PH-PLCδ was enriched on apical plasma 

membrane, consistent with the distribution of PIP2 on polarized epithelial cell surface. 

I quantitated average HA-PI5KIβ fluorescent signals at apical and basolateral plasma 

membrane domains of 32 random cells expressing both PI5KIβ and GFP-PH-PLCδ 

as well as 6 random cells expressing PI5KIβ and a control AV (images of cells 

expressing the control AV are shown in Figure 2.5C). The ratio of “apical average 
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HA-PI5KIβ fluorescence intensity/basolateral average HA-PI5KIβ fluorescence 

intensity” was determined for each cell and plotted against the total pixels of plasma 

membrane bound GFP-PH-PLCδ signal in the same cell (Fig 4.5D). Compared to 

cells infected with the control AV (represented by dots with an X value of 0), 

increasing cellular expression of GFP-PH-PLCδ (X value) did not have a discernable 

effect on the polarity of PI5KIβ (Y value). This result indicates that PIP2 is most likely 

not involved in the apical targeting of PI5KIβ in polarized epithelial cells. 
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Figure 2.5 High levels of GFP-PH-PLCδ are not able to compete PI5KIβ off the 

apical plasma membrane. MDCK cells were plated at confluence on 12-well 

transwells and cultured for three days before being co-infected with AVs encoding 

HA-PI5KIβ (low MOI) and increasing amounts of GFP-PH-PLCδ (or a control AV). A 

large variation in single cell expression level was observed in every sample. Shown in 

A and B are representative XZ confocal images of polarized MDCK cells imaged for 

ZO-1, HA-PI5KIβ or GFP-PH-PLCδ using immunofluorescence. Merged images are 

also shown. Note that PI5KIβ is enriched at the apical plasma membrane in cells 

expressing high (A) or low (B) levels of GFP-PH-PLCδ. C represents confocal XZ 

images showing the localizations of PI5KIβ and ZO-1 in polarized MDCK cells 

infected with a control AV instead of AV-GFP-PH-PLCδ. D. the (apical 

average/basolateral average) ratios of cellular PI5KIβ signals were quantitated as in 

Figure 2.4C and plotted against the total plasma membrane bound GFP-PH-PLCδ 
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signals/pixels. 38 random cells were quantitated. Data points from cells infected with 

the control AV are represented by a zero X value. Scale bar: 10 µm. 

 

2.2.6 Catalytic activity is not required for the apical localization of PI5KIβ 

It has been reported before that the activation loop is crucial for both substrate 

specificity and plasma membrane localization of type I PI5Ks (99,105). In comparison, 

the kinase activity is not necessary for membrane attachment of PI5KIs (105). It is not 

known whether the catalytic activity of PI5KIβ is required for apical targeting of the 

kinase. To address this question, I infected polarized MDCK cells with low MOIs (~50, 

titrated to achieve comparable expression efficiencies and levels by 

immunofluorescence and immunoblot respectively using an anti-HA tag antibody) of 

AVs encoding either the wildtype HA-PI5KIβ or one of 4 known kinase-dead PI5KIβ 

mutants (HA tagged). The K138A mutation disrupts ATP binding while the D203A and 

D227A mutations abolish kinase activity via unknown mechanisms. The infected cells 

were fixed one day after and stained for the HA tag and ZO-1 using 

immunofluorescence. As shown by XZ confocal images in Figure 2.6A, localization of 

the D203A and the K138A mutants are comparable to that of the wildtype kinase, 

indicating that the catalytic activity is not required for the apical plasma membrane 

localization of PI5KIβ. However, the D227A mutation, either by itself or in combination 

with D203A, results in a partially cytosolic protein distribution. When probed with an 

anti-HA antibody by Western blotting, the wildtype HA-PI5KIβ appears to be a doublet, 

presumably due to constitutive Ser/Thr phosphorylation [Figure 2.6B, (127,190,192)]. 
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Interestingly, as shown in Figure 2.6B, proteins with the D227A mutation 

(HA-PI5KIβD227A and HA-PI5KIβD203A,D227A) are devoid of the characteristic 

upper band when blotted for the HA tag, suggesting decreased phosphorylation of 

these mutants. Notably, despite the increased cytoplasmic pool, HA-PI5KIβD227A 

remaining on the plasma membrane retains the apically enriched distribution (Figure 

2.6A), further indicating that kinase activity, as well as other possible changes 

associated with the D227A mutation, is not required for the polarized localization of 

PI5KIβ. 
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Figure 2.6 Localization of kinase-dead PI5KIβ mutants in polarized MDCK cells. 

MDCK cells were plated at confluence on 12-well transwells and cultured for three 

days before being infected with the AV encoding one of the 4 HA-tagged kinase-dead 

point mutants labeled in the figure (low MOIs). One day after the infection, cells were 

fixed and probed for ZO-1 (red) and the HA epitope (green). Representative XZ 

confocal images are shown in A. Note that, compared to the wildtype kinase, the 

presence of D227A mutation results in partially cytosolic localizations of PI5KIβ 

mutants, whereas other point mutations have no effect on localization. Scale bar: 10 

µm. B: a parallel set of cells infected with different PI5KIβ point mutants were 

collected and lysed for Western blotting using an anti-HA-epitope antibody. Specific 
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protein bands representing PI5KIβ are shown. Note that the D227A mutation results 

in loss of the upper band (please see the text for details). 

 

2.3 DISCUSSION 

Our lab is interested in the regulation of PI/PIP metabolism in polarized renal 

epithelial cells. We have found distinct localizations of the three 

plasma-membrane-bound PI5KI isoforms in polarized cells, indicating that they most 

likely function in a non-redundant fashion and participate in distinct local cellular 

events that require PIP2. In the present study, my aim was to determine the 

mechanism leading to highly selective apical localization of PI5KIβ. Understanding 

this unique localization (in comparison to the more laterally enriched distribution of 

isoforms α and γ661) can provide information on how PIP2 metabolism is regulated 

on the apical plasma membrane and how PIP2 related processes are differentially 

modulated at the apical and basolateral cell surface domains of polarized epithelial 

cells. 

2.3.1 The apical localization of PI5KIβ 

I have shown here that PI5KIβ selectively localizes to the apical plasma membrane of 

polarized renal epithelial cells both in vivo and in culture. What mediates this 

characteristic localization remains unclear. As described above, my data indicate that 

the apical cell surface localization of PI5KIβ is non-saturable. Therefore a lipid 

component of the plasma membrane is most likely involved in apical targeting of the 

kinase. My data also suggest that PIP2 is not required for cellular localization of 
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PI5KIβ because high expression of the PIP2 sequestering protein GFP-PH-PLCδ did 

not reduce apical plasma membrane enrichment of the enzyme. Another possible 

lipid candidate is phosphatidic acid (PA), which is known to specifically stimulate 

kinase activity of type I PI5Ks (193,194). A role of PA in membrane recruitment of 

cellular proteins was reported before (195). In a recent study, a membrane-targeted 

PA biosensor based on fluorescence resonance energy transfer (FRET) was 

developed to detect cellular localization of PA (196). Interestingly, PA concentrations 

detected (by the biosensor) were consistently higher on free plasma membrane 

domains than on cell-cell contact regions in nonpolarized COS7 cells, especially upon 

stimulation by growth factors (196). A similar asymmetrical distribution of PA can 

possibly exist in polarized epithelial cells and facilitate polarized localization of PI5KIβ. 

To test this possibility, future studies are needed to determine the plasma membrane 

distribution pattern of PA in polarized cells, perhaps using the same biosensor (196), 

to examine whether PI5KIβ interacts directly with PA using methods described before 

(195), and to investigate whether loss of PA (for example by knocking down PA 

synthesizing enzymes) leads to mislocalization of PI5KIβ in polarized epithelial cells. 

While the above mentioned experiments are warranted, it is noteworthy that the basal 

level of PA in unstimulated cells is relatively low due to the presence of various 

PA-degrading enzymes, including lipins [Mg2+-dependent PA phosphatases; 

(197,198)] and lipid phosphate phosphatases [Mg2+-independent and 

N-ethylmaleimide-insensitive; (197,199-203)]. Most newly synthesized PA serves as 

precursors for a number of other cellular products and is rapidly transformed (204). 
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Therefore, it is unlikely that PA alone is responsible for the enrichment of PI5KIβ at 

the apical surface of unstimulated cells observed through my study. Other lipid and/or 

protein factors are possibly involved in the apical targeting of PI5KIβ regardless of the 

role of PA in this process. 

  A rapid decrease of GFP-PI5KIβ expression was observed in clonal MDCK stable 

cells (chronically expressing this construct) under selection. This could result either 

from apoptosis of cells expressing the kinase or from intrinsic cellular responses that 

silenced the expression of exogenous PI5KIβ or degraded the plasmid. Loss of the 

polarized PI5KIβ distribution was also observed in these cells, indicating 

compromised cell polarity. Since PIPs are critical and versatile regulators of many 

cellular signaling and trafficking pathways, it is possible that excessive PI5KIβ 

disrupts the balance between different PIP populations and results in aberrant 

signaling cascades and/or protein targeting events that eventually lead to impaired 

polarity. Further research is needed to verify this hypothesis. Interestingly, transient 

virally overexpression of PI5KIβ, especially at high levels, often causes doming of the 

apical plasma membrane of polarized (manifested by correct localization of PI5KIβ) 

epithelial cells (Figure 2.4B). This abnormal phenotype can be a sign of cell toxicity by 

excessive PI5KIβ and may prelude loss of epithelial polarity and cell apoptosis in 

chronic expressions.  

  I have generated truncation mutants of PI5KIβ (GFP-tagged) to examine what 

portion of the kinase is required for its correct cellular targeting. Since chronic 

expression of PI5KIβ causes polarity problems, as described above, and transient 
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transfection yielded very low expression efficiency, completion of these studies will 

require generation of AVs encoding these constructs. Once the AVs are made, 

localizations of virally expressed PI5KIβ mutants will be determined by 

immunofluorescence in polarized epithelial cells and compared to that of the virally 

expressed wildtype kinase. Domain(s) identified to play a role in apical targeting will 

be further dissected by additional mutagenesis, AV-mediated expression and 

immunofluorescence to pinpoint minimal sequence motifs/residues required in 

polarized cellular localization of PI5KIβ. These motifs/residues can then be used as 

bait to identify specific apical interactors of PI5KIβ and determine whether any of 

these interactors contribute to apical targeting of the kinase.  

  As described above, catalytic activity is not required for apical localization of PI5KIβ 

in polarized epithelial cells. This result does not rule out the possibility that selected 

portions of the kinase homology domain are important for apical targeting of the 

enzyme. However, due to the high level of sequence homology between the kinase 

domains of PI5KI isoforms, my prediction is that the apical targeting signal(s) of 

PI5KIβ lie within the N- and/or C- terminal flexible regions. This would be consistent 

with the reported result that the C-terminus of PI5KIβ contributes to polarized 

localization of the kinase in neutrophils (128). 

2.3.2 Phosphorylation of PI5KIβ 

Unlike the wildtype HA-tagged kinase, HA-PI5KIβD227A does not exhibit the upper 

protein band [suggested to represent the Ser/Thr phosphorylated HA-PI5KIβ 

(127,190,192)] when blotted with an anti-HA antibody (Figure 2.6B). Phosphorylation 
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of PI5KIβ has been linked to reduced catalytic activity and compromised membrane 

association of the kinase (127,190,192). It is therefore curious that D227A associated 

dephosphorylation, manifested by loss of the upper band, results in loss, instead of 

an increase, of kinase activity and reduced membrane localization of PI5KIβ [Figure 

2.6A, (205)]. A very similar observation was reported by Dr. Yin’s group when they 

treated cells expressing HA-PI5KIβ with H2O2 [oxidative stress, (127)] and discovered 

that the kinase lost the upper band by blot, redistributed to the cytosol, and had 

decreased lipid kinase activity. Yin and colleagues observed that, in spite of the 

massive decrease in Ser/Thr as well as net phosphorylation of PI5KIβ, the enzyme 

was selectively phosphorylated on a Tyr residue upon H2O2 treatment (127). They 

concluded that the effect of Tyr phosphorylation on PI5KIβ kinase activity and 

localization was much more potent than that of Ser/Thr phosphorylation (127). A 

similar balance shift between Ser/Thr and tyrosine phosphorylation events might be 

responsible for the abolished catalytic activity and the partial cytosolic localization 

associated with PI5KIβD227A. Future studies are needed to evaluate this hypothesis. 

2.3.3 Differential localizations of type I PI5Ks 

Localization of PI5KIγ661 in polarized epithelial cells is largely nonpolarized with a 

slight enrichment on the lateral surface (Figure 2.1C). The γ661 isoform has been 

implicated in basolateral membrane traffic in polarized epithelial cells and has been 

shown to regulate synaptic endocytosis by PIP2 synthesis as well as direct 

interactions with key components of clathrin coated pits (114,120,121,189). If the 

minimal apical targeting motif of PI5KIβ can be isolated, it will be transplanted into the 
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γ661 isoform to determine if the sequence is able to re-direct PI5KIγ661 to the apical 

plasma membrane. Meanwhile, I have generated GFP-tagged domain chimeras of 

PI5KIβ and γ661 (by mixing and matching their N- terminal, C- terminal and kinase 

homology domains). These constructs will be subcloned to make AVs as described 

above. If, as I predict, the apical targeting signal of PI5KIβ is within the N- and/or C- 

flexible regions, a chimeric construct consisting of the N- and C- tails of the β isoform 

as well as the kinase domain of the γ isoform should localize to the apical plasma 

membrane of polarized epithelial cells. If not, either the apical signal is within the 

kinase domain, or the signal is not transplantable (requiring collaboration from other 

β-specific sequences within the kinase domain or silenced by a dominant 

basolateral/non-polarized signal in the γ kinase domain). Further studies are then 

needed to verify these possibilities. 

  The β-γ chimeras mentioned above can also be used in functional studies. For 

example, by expressing a non-polarized chimera with intact PI5KIβ kinase activity in 

polarized epithelial cells depleted of the endogenous PI5KIβ (and probing for PIP2 by 

immunofluorescence using GFP-PH-PLCδ), we will be able to determine whether the 

higher PIP2 concentration on apical plasma membrane is simply due to higher activity 

of the β isoform (supported if apical and basolateral surface GFP-PH-PLCδ signals 

appear comparable) or is regulated by other mechanisms (supported if the apical 

plasma membrane still has more PIP2). Similar strategies can be utilized to evaluate 

whether differentially localized PI5KI isoforms contribute to different endocytic rates 

on apical and basolateral plasma membrane domains (191). Moreover, PI5KIα, which 
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is mostly on the lateral surface of polarized epithelial cells, can also be studied by 

making chimeras with the apically localized PI5KIβ. 

2.3.4 Summary 

The present study focuses on apical localization mechanisms of PI5KIβ. My data 

suggest that an unknown membrane lipid is likely involved in apical targeting of the 

kinase and that PIP2 is most likely not that lipid. Other possibilities include PA as 

discussed above. We are currently in the process of generating AVs encoding PI5KIβ 

truncation mutants. These mutants will be used to determine the apical targeting 

signal sequence within PI5KIβ and to identify specific interactors of the kinase that 

possibly contribute to its cellular localization. We are also generating chimeras of 

different PI5KI isoforms that localize differentially in polarized epithelial cells. These 

chimeras will be useful in localization and functional studies of the type I PI5Ks. 
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3.0 OCRL1 FUNCTION IN RENAL EPITHELIAL MEMBRANE TRAFFIC 

 

3.1 INTRODUCTION 

OCRL1, the Lowe disease protein, is a lipid phosphatase that preferentially converts 

PIP2 to PI4P by hydrolyzing the 5’ phosphate of PIP2 (163,164). OCRL1 is localized 

primarily at the trans-Golgi network (TGN) and is also associated with a subset of 

endosomes and with clathrin coated pits, suggesting a potential function of this 

enzyme in membrane traffic through these compartments (162,167,168,170,206). 

While mutations throughout the 970 amino acid protein encoded by the OCRL1 gene 

can result in Lowe syndrome, cell extracts from fibroblasts cultured from Lowe 

syndrome patients universally exhibit a markedly reduced ability to dephosphorylate 

PIP2 (163,207). OCRL1 appears to be the major PIP2-hydrolyzing enzyme in human 

kidney proximal tubule cells, and kidney cells derived from Lowe syndrome patients 

have roughly double the normal cellular contingent of PIP2 (208). Thus, the OCRL1 

phenotype correlates well with loss of phosphatase activity.  

Lowe syndrome patients almost universally have renal tubular dysfunction, 

including acidosis, amino aciduria, phosphaturia, and proteinuria (209). The defect in 

protein reabsorption has been suggested to result from improper function or 

trafficking of the cell surface receptor megalin (18,172). Megalin recycles at the apical 

domain of polarized epithelial cells (6). It binds to numerous protein ligands that 
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dissociate from the receptor after internalization and are targeted to lysosomes for 

degradation. In patients with renal tubular dysfunction, ligand handling is somehow 

compromised, resulting in excess secretion of filtered proteins into the urine. Whether 

proteinuria in Lowe syndrome patients is due to aberrant megalin trafficking as a 

result of the defect in OCRL1 activity has not been directly tested experimentally. 

In addition to its role in signaling, PIP2 also regulates cytoskeletal dynamics as well 

as numerous steps in membrane traffic (42,210). We have previously found that 

increases in cellular PIP2 mediated by overexpression of PI5KIβ in MDCK cells 

stimulated delivery kinetics of a subset of apical membrane proteins by increasing the 

frequency of actin comets, short branched actin structures (rapidly nucleated by the 

Arp2/3 protein complex) capable of propelling the movement of transport vesicles in 

the cytosol (118,211). Similarly, increased PIP2 has been correlated with an increase 

in clathrin-mediated endocytosis (115,117,119).  

Given the known stimulatory roles of PIP2 in these processes, it is not immediately 

obvious how loss of OCRL1 function might lead to renal tubular dysfunction in Lowe 

syndrome patients. Additionally, it is difficult to describe a mechanism leading to the 

ancillary renal defects that accompany proteinuria in Lowe Syndrome patients, 

including acidosis, amino aciduria, and phosphaturia. Nevertheless, the idea that 

OCRL1 directly regulates megalin traffic has been reinforced by the recent 

demonstration that some patients with Dent disease, originally described as resulting 

from defective function of the CLC-5 Cl-/H+ antiporter, in fact have mutations in 

OCRL1 (178,212). There is strong evidence that loss of CLC-5 function leads to 
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decreased uptake of fluid phase markers and megalin ligands in knockout mouse 

models (213-219), although direct studies on megalin endocytosis have not been 

performed. The recent demonstration by De Camilli’s group that a small 

subpopulation of OCRL1 binds to APPL1 in clathrin coated pits has fueled this 

speculation (170). OCRL1 also interacts with clathrin, α-adaptin and several Rab 

proteins, including Rabs 5 and 6 (206,220). 

Although the OCRL1 protein is ubiquitously expressed in mouse and human 

tissues and cell lines, only a subset of organs are functionally impaired by OCRL1 

mutations (169). It has been hypothesized that expression of other inositol 

polyphosphatases can compensate for loss of OCRL1 function in some cells. 

Interestingly, knockout of the OCRL1 gene in mice does not recapitulate Lowe 

syndrome, as the mice do not develop cataracts or renal tubular dysfunction (173). 

Expression of the homologous 75 kDa inositol polyphosphate-5-phosphatase 

INPP5B in mice has been suggested to compensate for loss of OCRL1 function, as 

INPP5B is expressed at considerably higher levels in mice compared with humans. In 

support of this idea, knockout of INPP5B in mice had no discernible renal phenotype; 

however a cross between OCRL1 and INPP5B knockout mice did not produce any 

viable double-knockout mice (173). However, in contrast to OCRL1, INPP5B is largely 

localized to the early biosynthetic pathway although it is also present on some early 

endocytic compartments. INPP5B does bind to APPL1 in vitro but unlike OCRL1, 

does not interact with clathrin or α-adaptin (170,221). Moreover, a recent study 

argues that OCRL1 and INPP5B do not access the same pools of PIP2, as 
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expression of INPP5B does not rescue membrane ruffling in OCRL1 deficient 

fibroblasts (220). 

In the absence of an animal model, we have used siRNA mediated knockdown in 

human (HK-2) and canine (MDCK) renal epithelial cells to model the disease and 

examine the consequent effects on the trafficking of megalin and other proteins. 

MDCK cells establish well differentiated monolayers and provide a good model in 

which to investigate apical biosynthetic and endocytic traffic; however, they also 

express significant levels of INPP5B, which could complicate dissection of the cellular 

role of OCRL1. The human proximal tubule cell line HK-2 is less well differentiated 

but expresses no INPP5B. We find that knockdown of OCRL1 in either cell line 

recapitulates key features of cells cultured from Lowe Syndrome cells, including a 

trend towards increased cellular PIP2 and alterations in cytoskeletal dynamics. We 

found no effect of depleting OCRL1 on either biosynthetic or endocytic membrane 

traffic. However, we did observe increased lysosomal hydrolase secretion in 

OCRL1-deficient cells, consistent with a role for this enzyme in post-Golgi delivery to 

lysosomes (168,222). 

 

3.2 RESULTS 

3.2.1 Characterization of OCRL1 knockdown in human and canine kidney cells  

To examine the consequences of disrupting OCRL1 function in renal epithelial cells, 

we optimized approaches to knock down the protein using siRNA. We previously 

showed that biosynthetic delivery in polarized MDCK cells is sensitive to 
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overexpression of wild type OCRL1 (118). However, because canine cells, like mice, 

might express a redundant inositol polyphosphate 5’-phosphatase that could 

compensate for loss of OCRL1, we also developed methods to knock down OCRL1 in 

human renal proximal tubule HK-2 cells. Endogenous OCRL1 localized largely to the 

Golgi complex in both of these cell lines (Figure 3.1A and data not shown). Other 

groups have previously reported that a small subpopulation of OCRL1 also localizes 

to endosomes and the cell surface (162,168,170). Introduction of siRNA 

oligonucleotides by electroporation resulted in efficient reduction in OCRL1 levels in 

both cell lines, as measured by western blotting (Figure 3.1B) or using a PCR-based 

assay (performed using HK-2 cells only, Figure. 3.1C). Importantly, we could detect 

no endogenous expression of INPP5B message in either HK-2 or HeLa cells, 

although our primers efficiently amplified a heterologously expressed human INPP5B 

cDNA construct when expressed in HeLa cells (Figure 3.1D). Thus, any functions of 

OCRL1 that are disrupted upon knockdown of this enzyme are unlikely to be restored 

by compensatory expression of INPP5B in these cells. However, MDCK cells do 

express significant levels of INPP5B (Figure 3.1D). 
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Figure 3.1 SiRNA-mediated knockdown of OCRL1 in human and canine cells. A: 

MDCK cells were fixed, processed for indirect immunofluorescence to detect OCRL1 

and the TGN marker furin, and examined using confocal microscopy. The images are 

maximum projections of ten confocal slices. Scale bar: 10 µm. B: Low passage 

MDCK or HK-2 cells were nucleofected with control or OCRL1 siRNA as described in 

Materials and Methods. Cells were plated directly onto permeable supports (MDCK) 

or in 12-well dishes (HK-2) for three days. Samples were harvested and analyzed by 

Western blotting (WB) to detect OCRL1 and actin (as a loading control). The 

migration of molecular mass standards is indicated on the right. C: siRNA knockdown 

of OCRL1 in HK-2 cells was confirmed using a PCR-based assay as described in 
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Materials and Methods. D: Primers specific for human INPP5B were used to amplify 

mRNA isolated from HK-2 or HeLa cells. HeLa cells transfected with a cDNA 

encoding human INPP5B were included as a positive control to demonstrate the 

efficacy of the primers. Figure 3.1A was generated by C.J.G.; figure 3.1D was 

generated by C.M.S.. 

 

Kidney proximal tubule cell lines derived from Lowe syndrome patients have been 

reported to have elevated levels of PIP2 compared to normal human kidney cells 

(208); however, no other studies have reported changes in cellular PIP2 in 

OCRL1-deficient cells. This is consistent with the fact that most of the cellular PIP2 is 

present at the plasma membrane, whereas OCRL1 is largely excluded from this site. 

We compared cellular PIP2 extracted from control and OCRL1 knockdown cells after 

radiolabeling with 32Pi for 4 h. We reproducibly observed a tendency towards 

increased cellular PIP2 in MDCK cells treated with siRNA directed against OCRL1, 

although this was not statistically significant by Student’s paired t-test (Figure 3.2A). 

To determine whether this trend is physiologically relevant, we tested whether 

knockdown of OCRL1 alters the percentage of cells producing actin comets. 

Fibroblasts from Lowe patients have previously been demonstrated to have 

dramatically increased numbers of comets, presumably due to enhanced 

PIP2-dependent activation of N-WASP-Arp2/3-mediated polymerization of these 

branched actin structures (223). To quantitate actin comet occurrence, control vs. 

OCRL1 knockdown MDCK cells stably expressing GFP-actin were observed by 
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spinning disc confocal microscopy. Individual fields were imaged over a three min 

period and the number of cells with actin comets quantitated. Knockdown of OCRL1 

resulted in a dramatic increase in the percentage of cells with detectable actin comets 

over this period, confirming that OCRL1 normally regulates a pool of PIP2 involved in 

cytoskeletal dynamics in these cells (Figure 3.2B). Moreover, this pool is apparently 

not accessible to the INPP5B expressed in MDCKs. This is consistent with recent 

results demonstrating that expression of INPP5B does not rescue the enhanced 

membrane ruffling observed in OCRL1 deficient fibroblasts (220). 
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Figure 3.2 PIP2 levels and actin comet frequency are elevated upon OCRL1 

knockdown in MDCK cells. A: MDCK cells were treated with either control or 

OCRL1 siRNA and plated directly onto filters for three days. Phospholipids were 

labeled with 32P-orthophosphate and analyzed by TLC to determine relative 

phospholipids levels as described in Materials and Methods. PIP2 values in cells 

nucleofected with OCRL1 siRNA were normalized to control in three independent 

experiments and the mean +/- SEM is plotted. The difference in PIP2 levels between 

the two experimental conditions is not statistically significant by Student’s t-test. B: 

MDCK cells stably expressing GFP-actin were electroporated with control or OCRL1 
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siRNA and plated onto filters for two days before being transferred to Bioptech 0.17 

mm ∆T dishes for an additional day prior to imaging. Images were taken every two 

seconds. MetaMorph software was used to overlay multiple frames and filter out low 

level fluorescence to reveal the path of the actin comets in the cell (right panel; 

arrows). The lower panel shows the path of a single comet. In each image the arrow 

represents the starting position of the actin comet in the series. The percentage of 

cells treated with control vs. OCRL1 siRNA that had detectable actin comets during a 

three min imaging window is noted underneath; n represents the number of cells 

examined for each condition. Scale bar: 10 µm. Figure 3.2 was generated by C.J.G.. 

 

3.2.2 Effects of OCRL1 knockdown on biosynthetic delivery kinetics  

We showed previously that elevation of cellular PIP2 upon overexpression of PI5KIβ 

in polarized MDCK cells stimulates a post-Golgi step in biosynthetic delivery of the 

apical marker influenza hemagglutinin (HA) via a mechanism dependent on actin 

comets (118). In contrast, heterologous expression of OCRL1 or dominant negative 

inhibitors of Arp2/3 activation inhibited HA delivery. Moreover, HA could be detected 

at the tips of actin comet-like structures in fixed cells. Because both PI5KI β 

overexpression and OCRL1 knockdown cause an increase in actin comets, we 

hypothesized that HA delivery kinetics might be stimulated upon depletion of OCRL1 

by siRNA. However, we found no effect of OCRL1 knockdown on HA delivery kinetics 

in either MDCK or HK-2 cells (Figures 3.3A and 3.3B). In contrast, knockdown of 

N-WASP resulted in significant inhibition of HA delivery in MDCK cells, whereas 
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overexpression of PI5KIβ stimulated HA delivery kinetics as expected (Figure 3.3A). 

PI5KIβ overexpression has a greater effect on the cellular PIP2 level compared with 

OCRL1 knockdown [210% of control for PI5KIβ (unpublished result of C.J.G.)], and it 

is possible that a threshold increase in PIP2 is required to stimulate HA delivery.  
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Figure 3.3 Knockdown of OCRL1 does not enhance apical biosynthetic delivery 

kinetics in MDCK, HK-2 cells. A: MDCK cells were electroporated in buffer 

containing either control siRNA or an siRNA oligonucleotide directed against N-WASP 

or OCRL1. The efficiency of N-WASP knockdown was between 15 and 40% based on 

Western blotting of cell lysates (not shown). The cells were seeded onto Transwell 

filters for three days and then infected with AV expressing the apical protein HA and 

either control AV or AV-PI5KIβ. The following day, cells were starved, radiolabeled for 

15 min, and chased for two h at 19ºC. Cell surface delivery kinetics of HA were 

measured after warming to 37ºC using a cell surface trypsinization assay. Similar 

results were obtained in three independent experiments; results from a single 
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representative experiment are plotted. B: HK-2 cells treated with either control or 

OCRL1 siRNA were infected with AV-HA two days after nucleofection. The following 

day, cells were radiolabeled for 15 min and plasma membrane delivery kinetics of HA 

quantitated. Similar results were obtained in four independent experiments; results 

from a single representative experiment are plotted. Figure 3.3 was generated by 

C.J.G.. 

 

3.2.3 Effect of OCRL1 knockdown on low molecular weight protein uptake and 

megalin internalization kinetics  

We next examined whether knockdown of OCRL1 disrupts megalin-dependent 

uptake of low molecular weight proteins. Patients with Dent disease caused by 

defective CLC-5 activity have virtually identical urinary proteomes to OCRL1 patients, 

and dramatically decreased uptake of megalin ligands has been observed in proximal 

tubule cultures from CLC-5 knockout mice (213). Moreover, megalin expression is 

reduced in proximal tubules from CLC-5 knockout mice (213) as well as in the renal 

tubular epithelium of some Dent disease patients (19). However, whether loss of 

CLC-5 function affects the kinetics or fidelity of megalin trafficking is unknown. 

MDCK cells do not express endogenous megalin (13), although they do express 

LRP, a basolaterally recycling member of the LDL receptor family closely related to 

megalin. Additionally, these cells express both ARH and Dab-2, adaptor proteins 

thought to play a role in endocytosis of megalin in the proximal tubule. HK-2 cells 

express ARH, but not Dab-2 (Figure 3.4A). The ARH doublet observed in MDCK cells 
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has been previously observed in some other cell types (224). We infected polarized 

MDCK cells with recombinant adenovirus expressing a GFP- and V5-tagged 

truncated megalin receptor (AV-mini-megalin). Fluorescence imaging in 

non-permeabilized cells to selectively label the surface-exposed V5 tag in addition to 

the total pool of GFP-tagged mini-megalin confirmed that this protein was efficiently 

trafficked to the apical membrane (Figure 3.4B). We next examined the domain 

selective binding of 125I-lactoferrin (125I-Lf), a ligand that binds to mini-megalin, in 

control vs. mini-megalin expressing MDCK cells. MDCK cells grown on Transwell 

filters were incubated with apically or basolaterally added ligand on ice, then quickly 

washed several times with ice-cold medium. The filters were removed from their 

supports and cell surface radioactivity quantitated using a gamma counter. Apical 

binding to cells infected with AV-mini-megalin was significantly higher than to control 

cells, confirming that apical 125I-Lf binding is quantitatively mediated by mini-megalin 

(Figure 3.4C). 

 



 81

 

Figure 3.4 OCRL1 knockdown does not affect megalin-mediated uptake and 

degradation of lactoferrin in MDCK and HK-2 cells. A: Comparable levels of 

MDCK and HK-2 cell lysates were blotted with antibodies against ARH and Dab-2. 

The migration of molecular mass standards is indicated on the right. B: Filter-grown 

MDCK cells were infected with replication-defective recombinant AV encoding V5- 

and GFP-tagged mini-megalin. Cells were incubated on ice with anti-V5 antibody and 

secondary antibody to label the surface population of mini-megalin (red), then fixed 

and processed for confocal microscopy. The total cellular population of mini-megalin 
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was visualized using the GFP label (green). Scale bar: 10 µm. C: Filter grown MDCK 

cells infected with control AV or AV encoding mini-megalin were incubated with 

apically-added 125I-Lf on ice, then washed, solubilized, and cell-associated 

radioactivity quantitated using a gamma counter MDCK (D,E) or HK-2 (F,G) cells 

treated with control or OCRL1 siRNA were incubated with 125I-Lf as described in 

Materials and Methods. MDCK cells were infected with AV-mini-megalin one day 

before the experiment. The kinetics of Lf recycling (D,F) and degradation (E,G) were 

quantitated. Similar results were obtained in three independent experiments for each 

cell type. Figure 3.4A was generated by C.J.G.. 

 

We then monitored the postendocytic fate of 125I-Lf internalized apically from 

control and OCRL1 knockdown MDCK cells infected with AV-mini-megalin. As shown 

in Figure 3.4 (D and E), we observed no difference in the kinetics of recycling or 

degradation of this ligand in cells lacking OCRL1 compared with control cells. 

Moreover, OCRL1 knockdown had no effect on the kinetics of 125I-Lf recycling or 

degradation mediated by endogenous megalin in HK-2 cells (Figure 3.4F,G).  

Because the effect of OCRL1 on megalin-mediated handling of 125I-Lf could be too 

subtle to detect in a single round of endocytosis, we also examined cumulative 

degradation of ligand over a prolonged incubation period (Table 3.1). HK-2 cells 

nucleofected with control or OCRL1 siRNA were incubated overnight with 125I-Lf and 

release of TCA soluble counts quantitated. No effect of OCRL1 knockdown on the 

amount of 125I-Lf degraded was observed using this integrated approach. Together, 



 83

our studies suggest that uptake and degradation of megalin ligands is unaffected by 

loss of OCRL1 function in human and canine kidney cells. 

 

Table 3.1 OCRL1 knockdown in HK-2 cells does not affect lactoferrin 
degradation. 
 

 Control siRNA 
(cpm) 

OCRL1 siRNA 
(cpm) OCRL1 KD/Control

Exp.1 44137+/-4035 35952+/-9995 0.81 

Exp.2 31216+/-8761 40648+/-5172 1.30 

Exp.3 5246+/-2261 4747+/-1704 0.91 

Exp.4 3085+/-116 4577+/-1259 1.48 

Average -- -- 1.13+/-0.32 

HK-2 cells treated with control or OCRL1 siRNA were incubated overnight with 125I-Lf 

and TCA soluble counts were recovered to quantitate cumulative 125I-Lf degradation. 

Results from four independent experiments are shown. Experiments one and two 

were performed using a different batch of 125I-Lf compared with three and four. 

 

A recent study found a small pool of OCRL1 associated with the adaptor APPL1 in 

clathrin coated pits (170). Because APPL1 also associates through megalin via the 

adaptor GIPC it was suggested that OCRL1 may play a role in endocytosis of a 

megalin-containing complex. We therefore directly examined the effect of OCRL1 

knockdown on the initial rate of megalin internalization using a biotinylation/stripping 

approach. HK-2 cells treated with control or OCRL1 siRNA and infected with 

AV-mini-megalin were biotinylated using sulfo-NHS-SS-biotin on ice and then warmed 
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to 37oC for 0 or 6 min. At each time point, samples were rapidly chilled, and remaining 

surface biotin was stripped with the membrane impermeant reducing agent MESNa. 

Duplicate biotinylated samples were not warmed and left unstripped to measure the 

total amount of biotinylated megalin at the start of the time course. Cells were 

solubilized and biotinylated megalin was recovered and analyzed by western blotting. 

As a control, we also examined the effect of PI5KIβ overexpression on megalin 

endocytosis kinetics. We have previously demonstrated that overexpression of this 

enzyme stimulates endocytosis of other apical proteins, presumably by increasing 

surface levels of PIP2 (119). As shown in Figure 3.5A, knockdown of OCRL1 had no 

effect on megalin internalization. In contrast, megalin endocytosis was enhanced 

upon overexpression of PI5KIβ. Moreover, OCRL1 knockdown had no effect on the 

internalization kinetics of 125I-IgA internalization mediated by a different surface 

receptor (the polymeric immunoglobulin receptor, pIgR) expressed using AV in either 

HK-2 (Figure 3.5B) or MDCK cells (unpublished results of C.M.S.). Like megalin, pIgR 

endocytosis is clathrin-mediated, but pIgR does not contain ARH/Dab-2 binding 

motifs. Together, these data suggest that OCRL1 is not directly involved in 

internalization or postendocytic trafficking of megalin and its ligands, or of other 

membrane receptors. 
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Figure 3.5 OCRL1 knockdown does not affect endocytosis of megalin in HK-2 

cells. A: The effect of PI5KIβ overexpression (left panel) or OCRL1 knockdown (right 

panel) on endocytosis of mini-megalin was quantitated using the biotinylation-based 

assay described in Materials and Methods. HK-2 cells treated with control or OCRL1 

siRNA or infected with control or PI5KIβ expressing AVs as indicated were 

biotinylated on ice, then warmed to 37oC for zero or six min. Samples were stripped to 

remove surface biotin and endocytosis was quantitated by Western blotting after 

recovery of residual biotinylated mini-megalin. One set of zero min samples was left 
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unstripped so that results could be normalized to total mini-megalin at the surface 

before warming up. The mean endocytosis (+/-S.E.) from three experiments 

comparing PI5KIβ overexpression to control AV and four experiments comparing 

OCRL1 and control siRNA are plotted. B: Endocytosis of 125I-IgA by pIgR-expressing 

HK-2 cells nucleofected with either control or OCRL1 siRNA was performed as 

described in Materials and Methods. The mean +/- range of duplicate samples is 

shown. Similar results were obtained in two experiments. Figure 3.5B was generated 

by C.M.S.. 

 

 

3.2.4 Lysosomal hydrolase delivery in OCRL1 knockdown cells 

Previous studies demonstrated that OCRL1 knockdown in HeLa cells resulted in 

partial redistribution of the cation-independent mannose 6-phosphate receptor from 

the TGN to endosomal structures. Moreover, OCRL1 patients are reported to have 

increased levels of lysosomal hydrolases in their serum (222). To determine whether 

depletion of OCRL1 affects delivery of lysosomal hydrolases in renal epithelial cells, 

we quantitated cathepsin D secretion in HK-2 cells treated with control or OCRL1 

siRNA. Cells were radiolabeled for 2 h and returned to culture in serum free medium. 

Media was collected after a 4 h chase and released cathepsin D, recovered after 

immunoprecipitation and SDS-PAGE, was quantitated using a phosphorimager. As 

shown in Figure 3.6, knockdown of OCRL1 in HK-2 cells consistently resulted in a 

roughly 20% increase in cathepsin D secretion. This increase is comparable to that 
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observed upon incubation of HK-2 cells with ammonium chloride, which inhibits 

lysosomal delivery of newly synthesized soluble hydrolases (Figure 3.6).  
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Figure 3.6 Delivery of newly synthesized lysosomal hydrolases is impaired in 

HK-2 cells lacking OCRL1. HK-2 cells treated with control or OCRL1 siRNA were 

radiolabeled for two h and chased for four h. NH4Cl (10 mM) was included in the 

indicated samples. Radioactive cathepsin D secreted into the media during the chase 

was quantitated after immunoprecipitation and SDS-PAGE and normalized relative to 

control. The results from three experiments are plotted. *, P=0.029 by Mann-Whitney 

Rank Sum test. Samples of cathepsin D immunoprecipitated from the medium in a 

representative experiment are shown above the graph. Figure 3.6 was generated by 

C.J.G.. 
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3.3 DISCUSSION 

We have optimized conditions to efficiently knock down OCRL1 in both human (HK-2) 

and canine (MDCK) renal epithelial cells and measured the consequences on cellular 

PIP2, actin comet frequency, and biosynthetic and postendocytic delivery. Depletion 

of OCRL1 did not have a significant effect on cellular PIP2 levels but increased actin 

comet formation. However, we did not detect any effects of OCRL1 knockdown on the 

kinetics of apical biosynthetic delivery of HA or on megalin endocytosis, two trafficking 

steps that are stimulated when cellular PIP2 is increased by overexpression of PI5KIβ. 

In contrast, we observed a significant increase in the secretion of the lysosomal 

enzyme cathepsin D in cells lacking OCRL1, consistent with previous observations 

that plasma lysosomal enzymes are elevated in Lowe syndrome patients and with a 

role for OCRL1 in TGN-endosome trafficking (168,222). Together, our data suggest 

that a defect in this step in membrane traffic represents the primary manifestation of 

cells lacking OCRL1. Below we discuss the implications of our findings with respect to 

the pathogenesis of Lowe syndrome. 

3.3.1 Phenotype of OCRL1-depleted cells  

Knockdown of OCRL1 using nucleofection was efficient (80-95%) as monitored using 

both Western blotting and PCR. We were able to amplify endogenous message 

encoding INPP5B in MDCK but not in HK-2 cells. Knockdown of OCRL1 did not 

significantly increase cellular PIP2 levels measured in MDCK cells but had a dramatic 

effect on the number of cells with detectable actin comets. Fibroblasts from Lowe 

syndrome patients have previously been demonstrated to have significantly elevated 
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numbers of actin comets (223); thus acute depletion of OCRL1 (even in cells 

expressing INPP5B) appears to appropriately mimic key features observed in 

fibroblast models for the disease. The absence of a dramatic effect on PIP2 levels 

upon OCRL1 knockdown is consistent with the localization of OCRL1 to intracellular 

compartments and suggests that this enzyme normally does not have access to the 

majority of cellular PIP2, which is localized to the plasma membrane.  

3.3.2 OCRL1 knockdown and biosynthetic delivery  

We previously found that increased cellular PIP2 mediated by overexpression of 

PI5KIβ resulted in increased actin comet frequency and also enhanced biosynthetic 

delivery kinetics of the apical protein influenza HA (118). However, in the studies 

reported here we found no effect on apical protein delivery in cells lacking OCRL1, 

although we did observe an increase in actin comets. PI5KIβ overexpression results 

in a considerably larger and statistically significant increase in cellular PIP2 levels 

compared with OCRL1 knockdown, so it is possible that a threshold increase in PIP2 

is required to stimulate delivery kinetics detectably. Alternatively, the effects of PIP2- 

stimulated HA delivery might not be linked directly to actin comet formation, although 

the selective modulation of HA delivery we observed upon PI5KIβ expression, 

inhibition of Arp2/3 activation (118), and N-WASP knockdown (Figure 3.3) would 

argue against this idea. Finally, actin comets stimulated by OCRL1 knockdown may 

emanate from sites distinct from those evoked upon PI5KIβ overexpression and may 

not propel apically-destined carriers.  

Although we were unable to assess the effect of OCRL1 knockdown on megalin 
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biosynthetic traffic, we believe it unlikely that this pathway is affected by OCRL1 

depletion. Like HA, a fraction of megalin has been reported to reside in glycolipid 

enriched microdomains, or lipid rafts (225), though it is not known whether the two 

take a similar biosynthetic route to the apical membrane. The stimulation in apical 

delivery we might predict in OCRL1-depleted cells (but did not observe for HA) would 

be expected to increase surface megalin levels and is intuitively inconsistent with a 

trafficking defect that would result in proteinuria. Importantly, we did not find any 

significant difference in the steady state level of mini-megalin at the cell surface of 

control vs. OCRL1-depleted cells as assessed by western blotting (data not shown). 

3.3.3 OCRL1 knockdown does not disrupt megalin trafficking  

OCRL1 knockdown did not affect megalin endocytosis as measured by either a 

biotinylated assay to detect receptor internalization or by following the fate of the 

radioiodinated ligand 125I-Lf. The latter assay was performed using two model 

systems: polarized MDCK cells expressing a mini-megalin receptor and human 

proximal tubule cells that express endogenous megalin. Moreover, we found no 

effects of OCRL1 knockdown on ligand degradation when we monitored multiple 

rounds of uptake over a 14-18 h period. In contrast, we found that overexpression of 

PI5KIβ stimulated the rate of megalin endocytosis. Together, these results suggest 

the strong possibility that OCRL1 does not directly regulate megalin traffic or function 

along the endocytic pathway. Recent studies have demonstrated that OCRL1 binds 

directly to clathrin heavy chain and have observed a small fraction of cellular OCRL1 

in association with clathrin coated vesicles (162,168,170,206). Our studies suggest 
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that the pool of protein associated with the cell surface and very early endocytic 

vesicles may not have a direct role in modulating endocytosis.  

On the one hand, our observations are consistent with the prediction that increased 

cellular PIP2 would not alter megalin traffic in a manner that would be expected to 

compromise low molecular weight protein uptake. On the other hand, the lack of 

effect of OCRL1 depletion on megalin traffic is somewhat surprising given that effects 

on endocytosis of fluid phase markers and megalin ligands have been reported in two 

CLC-5 knockout mouse models of Dent disease (17,213,218). A significant fraction of 

patients diagnosed with Dent disease have recently been shown to have mutations in 

OCRL1 rather than in CLC-5 (178), suggesting that the two proteins provide critical 

functions along the same pathway. There is a decrease in both the overall level and 

the apical concentration of megalin and cubulin in the proximal tubule of mouse 

CLC-5 knockouts that leads to a profound decrease in the endocytosis of 

megalin/cubulin ligands (213,218,219). This effect is not universal, as no defect in 

apical endocytosis or megalin function is observed in the thyroid of CLC-5 knockout 

mice (226,227). It is not yet clear how loss of CLC-5 leads to the observed decrease 

in megalin expression and the consequent low molecular weight proteinuria 

characteristic of Dent disease patients (214,215). Changes in megalin localization 

have not been observed in renal biopsies from human patients (228), although both 

Dent disease and Lowe syndrome patients shed significantly decreased levels of 

megalin into the urine (18). CLC-5 is largely localized to endocytic compartments and 

endosome acidification in proximal tubule cells cultured from CLC-5 deficient mice is 
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reported to be defective (229). A small fraction of CLC-5 also localizes to the cell 

surface and it has also been suggested that CLC-5 plays an important role in 

endocytosis at the plasma membrane (216). Importantly, while there is a clear 

inhibition in the accumulation of ligands and fluid phase markers in proximal tubule 

cells from CLC-5 knockout vs. control mice (17,219), it is not known whether the rate 

of endocytosis is affected. By analogy with our studies in OCRL1-depleted cells we 

predict that no change would be observed in endocytosis kinetics in renal epithelial 

cells. Unfortunately, we could not address this directly, as we were unable, using 

multiple approaches, to knock down CLC-5 in any of our renal epithelial cell lines. 

3.3.4 OCRL1 knockdown enhances lysosomal enzyme secretion  

Knockdown of OCRL1 perturbed lysosomal delivery of newly synthesized cathepsin 

D. This result is consistent with studies by Choudhury et al. demonstrating a partial 

shift in the steady state distribution of the cation-independent mannose 6-phosphate 

receptor from the TGN to endosomes in cells transfected with OCRL1 siRNA (168), 

as well as with the previous observation that Lowe syndrome patients have elevated 

serum levels of lysosomal hydrolases (222). This finding is also consistent with the 

primarily TGN/endosomal distribution of OCRL1.  

How OCRL1 function regulates the sorting of lysosomal hydrolases is still unknown. 

OCRL1 interacts with numerous components of the machinery known to be involved 

in this process, including clathrin and several members of the rab GTPase family, 

however, there is no evidence that interaction with OCRL1 modulates the function of 

these proteins (168,230). A more tractable possibility that has been suggested is that 
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modulation of Golgi or endosomal PIP2 levels by OCRL1 is important for the 

recruitment of adaptor proteins required for TGN to endosomal delivery (172). 

Alternatively, OCRL1 modulation of actin dynamics may be required for the sorting or 

delivery of lysosomally-destined cargos. 

3.3.5 Summary 

How does loss of OCRL1 activity lead to the renal manifestations observed in Lowe 

syndrome patients? Our results would suggest that OCRL1 does not directly 

modulate the trafficking or function of megalin. Although lysosomal hydrolases bind to 

and can be internalized by megalin (231), it is unlikely that the slight increase in 

enzyme secretion we observed would significantly impede megalin binding to other 

ligands. Together our results suggest that OCRL1 deficiency does not directly cause 

a defect in megalin trafficking or in the uptake or degradation of megalin ligands. 

Rather, we hypothesize that proteinuria is a downstream consequence that results 

from reduced levels of megalin in the renal proximal tubule of Lowe syndrome 

patients. We did not observe any difference in the binding or uptake of megalin 

ligands to HK-2 cells in which OCRL1 was acutely depleted compared with control 

cells, and speculate that the loss of megalin results from chronic alterations in cell 

signaling in renal cells lacking OCRL1. To this end, it is noteworthy that both OCRL1 

and CLC-5 have been suggested to associate with macromolecular complexes that 

include megalin at the cell surface and that could be involved in cell signaling 

(170,216,232). Additionally, megalin has been reported to undergo intramembrane 

proteolysis that generates a tail-containing fragment able to enter the nucleus (8). 
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Similarly, APPL1 can translocate from endosomes to the nucleus in response to 

extracellular stimuli such as oxidative stress (233). Indeed, a more global response to 

loss of OCRL1 function is necessary to explain the other clinical abnormalities 

associated with Lowe syndrome. Future exploration of these possibilities will clearly 

be necessary to elucidate the pathway by which loss of OCRL1 function leads to 

renal disease in patients with Lowe syndrome. ** 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

** Chapter three has been adapted from the published manuscript (174). 
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4.0 THE ROLE OF OCRL1 IN RENAL EPITHELIAL PRIMARY CILIA 

 

4.1 INTRODUCTION 

The three characteristic symptoms of Lowe syndrome are cataracts, mental 

retardation and renal proximal tubule dysfunction. Lowe patients are usually born with 

cataracts and develop mental and renal problems early in life (153). Typical renal 

symptoms include abnormal loss of low-molecular-weight proteins, bicarbonate, 

phosphate, excessive water and other nutrients (153). More than 120 mutations in 

OCRL, the disease gene, have been described in Lowe patients all over the world 

(234). Among these mutations, some completely abolish production of the OCRL1 

protein while others compromise or eliminate the phosphatase activity or prevent 

OCRL1 from interacting with other cellular proteins (170,176,235). It has been 

suggested that these different classes of OCRL mutations explain why patients with 

Lowe syndrome have variable symptom severity.  

OCRL1 is primarily localized to the trans-Golgi network, although it is also found on 

endosomal compartments and the plasma membrane (162,167-171). It exists as two 

splice isoforms termed a and b that differ by a single exon encoding 8 amino acids. 

The longer isoform a is the only isoform present in the brain while both isoforms are 

found in all other tissues (206). The OCRL1 protein used in the present study is 

isoform b, which is an 893-amino-acid protein consisting of a middle 5-phosphatase 
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domain and a C-terminal RhoGAP-like domain. The interacting proteins of OCRL1 

include clathrin, alpha-adaptin, APPL1, Rac, Cdc42 and various Rab GTPases 

(162,166,170,206,230,235-238). The added 8 amino acids in isoform a are adjacent 

to one of the putative clathrin boxes [which are consensus five-residue 

clathrin-binding motifs (239)] and have recently been shown to potentiate clathrin 

binding over isoform b (206). Thus the two isoforms of OCRL1 may represent two 

functional pools of this enzyme that participate differentially in clathrin-mediated 

trafficking events such as endocytosis (206). 

Recently a minor group of patients carrying OCRL mutations were shown to only 

develop renal tubular defects and have largely unaffected eyes and intelligence 

(175-178). Many of these patients were originally diagnosed with Dent disease, 

another X-linked recessive disorder manifested only by renal tubular dysfunction, and 

therefore referred to as the Dent 2 patients (175-178). Dent disease is caused by 

mutations in the gene CLCN5, which encodes a voltage-gated chloride/proton 

antiporter ClC-5. ClC-5 is involved in acidification of endosomes (179-181). Loss of 

ClC-5 function leads to abnormal pH inside endosomes which, in turn, affects 

receptor-mediated nutrient uptake by disrupting recycling of receptors, including the 

multiligand receptor megalin (17,18). This mechanism has been suggested as the 

pathological reason underlying the renal tubular dysfunction present in Dent patients 

(17,18). It is not known whether a similar mechanism is associated with Lowe 

syndrome or Dent 2 disease (although my data from chapter three argue against this 

possibility, as discussed below). Dent 2 patients do not carry mutations in the CLCN5 
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gene, however renal phenotypes of these patients more closely resemble those found 

in Dent patients than those in Lowe patients (for example, Dent 2 patients typically do 

not develop the characteristic Lowe phenotype systematic acidosis) (176). 

Interestingly, Dent 2 mutations of OCRL cluster into a distinct pattern readily 

distinguishable from the classical Lowe syndrome mutations (176). While all Dent 2 

nonsense and frameshift mutations (which result in loss or disruption of large portions 

of the gene) are within the first 7 exons of the OCRL gene, all missense Dent 2 

mutations occur in the 5-phosphatase domain spanning exons 9-15 (176). An 

alternative splice variant of OCRL1 that initiates after exon 7 (likely from a Met in exon 

8) has been suggested to exist and partially compensate for loss of OCRL1 in Dent 2 

patients with nonsense or frameshift OCRL mutations (176). This proposed OCRL1 

variant, if verified by future studies, should partially account for the milder Dent 2 

phenotypes compared with those found in Lowe patients (176). Interestingly, most 

known Lowe mutations are present after the OCRL exon 7, and presumably able to 

eliminate the compensatory effect of the hypothetical splice variant (176). How the 

phosphatase domain enriched missense mutations result in Dent 2 symptoms 

remains unclear (176).  

Extensive studies have been focused on elucidating the pathogenesis of Lowe 

syndrome with little success so far. There is no mouse model for this disease 

because OCRL knockout mice are completely healthy due to the redundant activity of 

another PI 5-phosphatase INPP5B (173). This redundancy is absent in humans 

because of considerably lower INPP5B expression (173,174). Considering the 
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similarities in renal manifestations between Lowe syndrome and Dent disease (e.g., 

both Lowe and Dent patients develop low molecular weight proteinuria), our lab and 

other researchers have investigated the function and traffic of megalin using OCRL1 

deficient cells or Lowe patient urine samples (18,174). Megalin is the major receptor 

responsible for low-molecular-weight protein reabsorption at the renal proximal 

tubules. Urinary lost of megalin ligands and decrease in megalin shedding have been 

reported for both Lowe and Dent patients (18,160,240). As mentioned above, megalin 

malfunction in Dent patients and CLC5 knockout mice has been suggested (17,18). 

However, our lab has shown that acute loss of OCRL1 mediated by RNAi in cultured 

dog and human renal epithelial cells does not affect megalin trafficking and ligand 

uptake (174). Whether chronic signaling defects due to OCRL1 loss-of-function could 

lead to megalin abnormality remains unclear. 

The C-terminus of OCRL1 5-phosphatase domain contains an ASH domain, which 

is a recently identified conserved module present in a large family of proteins (182). 

Many ASH-containing proteins are associated with cilia, flagella and the centrosome, 

indicating the involvement of ASH domain in ciliary regulations and the roles of ASH 

family proteins in cilia function (182). Interestingly, many ciliopathies are 

characterized by symptoms in the eyes, the brain and the kidneys, the same organs 

affected by Lowe syndrome (21,33,34). In addition, OCRL1 has been reported to bind 

Rab8, a recycling endosome localized small GTPase required for BBsome functions 

(35,236). The BBsome has been shown to preferentially bind and be recruited to 

liposomal membranes by PI(3,4)P2 (31). Notably, OCRL1 can hydrolyze PIP3 to 
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generate PI(3,4)P2 in vitro (never tested in vivo) (188,241). Moreover, PIP3 was 

recently found to be enriched in recycling endosomes in renal epithelial cells 

(188,241). These pieces of evidence suggest a possible role of OCRL1 in ciliary 

functions and a hypothetical involvement of OCRL1 in PI(3,4)P2 mediated recruitment 

as well as in Rab8 dependent activities of the BBsome on recycling endosomes. 

Recently, another PI 5-phosphatase, INPP5E, has been implicated in multiple 

ciliopathies (29,30). Loss of INPP5E function (in knockout animals) causes embryonic 

or neonatal death in mice (29). The developing kidneys in the mutant mouse embryos 

contain multiple cysts in which epithelial cells have been found with primary cilia with 

abnormally dilated ends (29). The relationship between OCRL1 and ciliary pathways 

has never been addressed. In the studies described here, I used MDCK cells as the 

model system to investigate the effect of acute OCRL1 loss-of-function on primary 

cilia morphology. My results indicate that OCRL1 is involved in regulation of kidney 

epithelial primary cilia length. Studies of other lab members suggest that OCRL1 also 

regulates lumen formation when MDCK cells are cultured as 3D cysts. Together, our 

results suggest a novel hypothesis for the renal pathogenesis of Lowe syndrome and 

for the first time describe a relationship between OCRL1 loss-of-function and 

ciliopathies. 

 

4.2 RESULTS 

4.2.1 Acute depletion of OCRL1 results in elongated primary cilia in MDCK cells 

As mentioned above, MDCK cells elaborate single non-motile primary cilia that 
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protrude from their apical domains. In the present study, cultured type II MDCK cells 

are used as a model to study kidney tubular epithelial functions. Similar to the ones 

found on renal epithelial cells in vivo, primary cilia of MDCK cells are able to respond 

to fluid change and produce Ca2+ mediated signals (41). After knocking down OCRL1 

in polarized MDCK cells grown (for 4-5 days) on permeable filter supports, I imaged 

the cellular cilia and discovered that these cells had longer primary cilia compared to 

control cells treated with the firefly luciferase siRNA. Figure 4.1A shows 

representative XY fields of MDCK cell monolayers where primary cilia are visualized 

using an anti-acetylated tubulin antibody. Interestingly, in both control and OCRL1 

knockdown cell images, the primary cilia observed are not of uniform length. Most 

cilia appear short and look like ‘little dots’ while a few longer ones can occasionally be 

seen. In every experiment, lengths of >100 cilia were randomly quantitated for each 

siRNA treatment using Volocity software and the data were plotted as length versus 

percentile. From >10 independent experiments, the cilia in OCRL1 knockdown cells 

were consistently longer than in control cells. Figure 4.1B shows the graph from one 

representative experiment. The difference in cilia length between control siRNA and 

OCRL1 siRNA treated MDCK cells is statistically significant (P<0.001 by 

Mann-Whitney rank sum test). 
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Figure 4.1 SiRNA-mediated OCRL1 knockdown results in elongated primary 

cilia on polarized MDCK cells. A: representative XY images of MDCK monolayers 

four days after treated with control or OCRL1 siRNA and subjected to 

immunofluorescence. Red: acetylated tubulin. B is a distribution graph from a single 

representative experiment comparing length distributions of primary cilia on MDCK 

cells treated with different siRNAs. Lengths of >100 cilia in random fields were 

measured for each treatment. * P<0.001 by Mann-Whitney rank sum test. Similar 

results were seen in >10 independent experiments. The inset of the graph shows the 

Western blotting result of the same experiment to determine OCRL1 knockdown 

efficiency (74.8%). C: control siRNA; O: OCRL1 siRNA. 
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4.2.2 OCRL1-depleted MDCK cells have morphologically normal primary cilia 

To examine the morphology of cilia in OCRL1 knockdown versus control cells, I 

performed scanning electronic microscopy on 5-day filter-grown MDCK cells treated 

with either OCRL1 or control siRNA in the imaging core of the Pittsburgh Center for 

Kidney Research (PCKR) with the help of Dr. Gerard Apodaca and Mr. Wily Giovanni 

Ruiz. Figure 4.2 shows representative SEM images of primary cilia on cells under 

different treatments. OCRL1 knockdown in polarized MDCK cells did not appear to 

cause morphological abnormalities in primary cilia. Notably, those MDCK primary cilia 

discernable by SEM are almost always the longer ones (mostly ≥ 5 µm) and are 

present only on a minor group of cells. The shorter ones (with lengths < 5 µm), which 

represent the majority of MDCK cilia population (as manifested by the 

immunofluorescence studies), are largely not identifiable possibly due to camouflage 

from the dense apical microvilli (visible in Figure 4.2). Interestingly, MDCK cells 

treated with OCRL1 siRNA appeared to have more visible cilia compared to cells 

treated with the control siRNA when imaged by SEM. This is consistent with our 

quantitation (Figure 4.1) suggesting that OCRL1 knockdown results in overall longer 

primary cilia in MDCK cells. 
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Figure 4.2 MDCK cells with OCRL1 knockdown have morphologically normal 

primary cilia. SEM images of primary cilia on cells five days after treated with control 

(A and B) or OCRL1 (C and D) siRNA are shown. Scale bar: one µm 
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4.2.3 Exogenous wildtype OCRL1 is able to restore normal cilia length in MDCK 

cells depleted of the endogenous OCRL1 

To test whether the cilia length alteration observed was a specific effect of OCRL1 

loss-of-function, I designed an N-terminal-GFP tagged siRNA resistant OCRL1 

construct (GFP-R-OCRL1) using the pEGFP-C1 vector (Kanr/Neor). If the cilia 

phenotype was indeed a result of losing endogenous OCRL1, expressing the 

siRNA-resistant protein should be able to reverse it. When transiently expressed in 

BSC-1 cells (which are large flat epithelial cells well suited to fluorescence studies) by 

transfection, GFP-R-OCRL1 correctly localized to the Golgi ribbon (as marked by 

Giantin) as well as to cytoplasmic puncta partially overlapping with EEA1 (the early 

endosomal marker) (Figure 4.3A). I then generated MDCK cell lines stably expressing 

GFP-R-OCRL1 as well as other constructs discussed below. Figure 4.3B,C show 

data from a representative experiment (from three independent experiments) using 

MDCK and MDCK GFP-R-OCRL1 stable cells. As in my previous experiments 

(Figure 4.1), OCRL1 siRNA treatment elongated the primary cilia on MDCK cells 

(P<0.001). When GFP-R-OCRL1 was stably expressed in MDCK cells treated with 

OCRL1 siRNA, normal cilia length in GFP-positive cells was restored. The 

cilia-shortening effect of GFP-R-OCRL1 in MDCK cells treated with OCRL1 siRNA is 

statistically significant (P<0.001). The expression of GFP-R-OCRL1 is not affected by 

OCRL1 siRNA (Figure 4.3B). Similar results were obtained using mixed stable MDCK 

lines (in which there is a large variation in construct expression level among the 

different expressing cells) and clonal stable cell lines (in which the single-cell 
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expression levels are relatively homogeneous and moderate). The effect of 

GFP-R-OCRL1 expression on primary cilia length of MDCK cells treated with the 

control siRNA (without OCRL1 knockdown) varied between experiments (data not 

shown). Future studies are needed to address whether OCRL1 overexpression 

affects primary cilia length.  
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Figure 4.3 Exogenously expressed siRNA-resistant wildtype OCRL1 is able to 

restore normal cilia length in MDCK cells treated with OCRL1 siRNA. A: confocal 

XY images showing localization of GFP-R-OCRL1 in BSC-1 cells determined by 

immunofluorescence. (a) GFP; (b) EEA-1; (c); Giantin; (d) merge. Scale bar: 10µm. B: 

Western blotting to determine knockdown efficiencies of endogenous OCRL1 (54.9% 

and 52.4% for the parental MDCK (right two lanes) and the MDCK stable line 

respectively) in the experiment shown in C. Note that siRNA only reduces expression 

of the endogenous OCRL1, not the GFP tagged exogenous OCRL1. C: Results of 

one representative experiment showing primary cilia length distributions of MDCK 

cells treated differently as labeled and processed for immunofluorescence. * P<0.001 

by Mann-Whitney rank sum test. Similar results were seen in three independent 

experiments. 
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4.2.4 Two exogenously expressed OCRL1 point mutants are able to restore 

normal cilia length in MDCK cells depleted of the endogenous OCRL1 

To understand which domain(s) of OCRL1 is responsible for the cilia lengthening 

effect, I introduced point mutations into GFP-R-OCRL1 and determined the abilities of 

different mutants to rescue the cilia elongation caused by OCRL1 siRNA. The 

mutated amino acids are depicted in Figure 1.3. Figure 4.4 shows the result of one 

mutant, GFP-R-OCRL1 G304E, from a representative experiment of > three total 

experiments. G304E is a Dent II mutation found in the catalytic domain of OCRL1 and 

has been predicted to disrupt the phosphatase activity of OCRL1 (176). As shown in 

Figure 4.4A, the localization pattern of GFP-R-OCRL1 G304E in BSC-1 cells is 

similar to that of the wildtype protein. Curiously, expression of GFP-R-OCRL1 G304E 

still restored normal cilia length in MDCK cells treated with OCRL1 siRNA in three 

independent experiments. Results of one representative experiment are shown in 

Figure 4.4B,C; the cilia shortening effect of GFP-R-OCRL1 G304E is statistically 

significant (P<0.001). Therefore, the 5-phosphatase activity may not be required for 

the cilia related functions of OCRL1. 
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Figure 4.4 Exogenously expressed siRNA-resistant OCRL1 G304E mutant is 

able to restore normal cilia length in MDCK cells treated with OCRL1 siRNA. A: 

confocal XY images showing localization of GFP-R-OCRL1 G304E in BSC-1 cells 

determined by immunofluorescence. (a) GFP; (b) EEA-1; (c); Giantin; (d) merge. 

Scale bar: 10µm. B: Western blotting to determine knockdown efficiencies of 

endogenous OCRL1 (54.9% and 49.4% for the parental MDCK (right two lanes) and 

the MDCK stable line respectively) in the experiment shown in C. Note that siRNA 

only reduces expression of the endogenous OCRL1, not the GFP tagged exogenous 

OCRL1 G304E. C: Results of one representative experiment showing primary cilia 

length distributions of MDCK cells treated differently as labeled and processed for 

immunofluorescence. * P<0.001 by Mann-Whitney rank sum test. Similar results were 

seen in three independent experiments. 
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  The C-terminal ASH domain of OCRL1 lies between amino acids 570 and 676 

(182). Many ASH domain proteins are associated with cilia, making this domain a 

good candidate for a cilia regulating moiety. Deletion of E585 (within the ASH domain) 

is a Lowe syndrome mutation that has been shown to eliminate the interaction 

between OCRL1 and the endosomal adaptor protein APPL1 [(170,235), Figure 1.3]. 

This point mutation also reduces binding capacity of OCRL1 to the early endosomal 

marker Rab5 small GTPase (which interacts with APPL1) (170,235,242). I made the 

DNA construct encoding GFP-R-OCRL1 ∆E585 and expressed the mutant in BSC-1 

cells. As shown in Figure 4.5A, unlike the wildtype protein, GFP-R-OCRL1 ∆E585 is 

largely cytosolic with dramatically reduced Golgi and endosomal association. This 

cellular localization pattern is consistent with what has been reported before 

(170,235). I generated a MDCK stable cell line expressing the mutant GFP-R-OCRL1 

∆E585 and repeated the rescue experiment described above using this stable line 

and a control parental MDCK cell line. Data from three independent experiments 

indicate that GFP-R-OCRL1 ∆E585 expression reverses the primary cilia elongation 

on OCRL1 siRNA treated MDCK cells. Results from one representative experiment 

are shown in Figure 4.5B,C (the cilia shortening effect of GFP-R-OCRL1 ∆E585 in 

OCRL1 siRNA treated MDCK cells is statistically significant; P<0.001). The relatively 

low level of detectable ∆E585 mutant in Western blots, compared with other GFP-R 

OCRL1 proteins, reflects the fact that relatively few cells in the stable cell line 

expressed the heterologous protein. 
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Figure 4.5 Exogenously expressed siRNA-resistant OCRL1 ∆E585 mutant is 

able to restore normal cilia length in MDCK cells treated with OCRL1 siRNA. A: 

*
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confocal XY images showing localization of GFP-R-OCRL1 ∆E585 in BSC-1 cells 

determined by immunofluorescence. (a) GFP; (b) EEA-1; (c); Giantin; (d) merge. 

Scale bar: 10µm. B: Western blotting to determine knockdown efficiencies of 

endogenous OCRL1 (48.8% and 57.6% for the parental MDCK (left two lanes) and 

the MDCK stable line respectively) in the experiment shown in C. Note that siRNA 

only reduces expression of the endogenous OCRL1, not the GFP tagged exogenous 

OCRL1 ∆E585. C: Results of one representative experiment showing primary cilia 

length distributions of MDCK cells treated differently as labeled and processed for 

immunofluorescence. * P<0.001 by Mann-Whitney rank sum test. Similar results were 

seen in three independent experiments. 
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4.2.5 OCRL1 depletion does not have any effect on primary cilia length of 

human skin fibroblasts 

As a cell type control, I knocked down OCRL1 in human skin fibroblasts by Amaxa 

electroporation. From one experiment in which the knockdown was >90% (Figure 

4.6A), no difference in cilia length was observed between control and OCRL1 

knockdown cells (Figure 4.6B). This result indicates that the cilia effect I have 

observed is cell-type specific, which is consistent with the fact that the Lowe 

syndrome only affects selected organs and that skin function is not affected by this 

disease. 
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Figure 4.6 SiRNA-mediated OCRL1 knockdown does not affect lengths of 

primary cilia on human skin fibroblasts. A: Western blotting to determine OCRL1 

knockdown efficiency. Human skin fibroblasts were treated with control or OCRL1 

siRNA by nucleofection, let recovered for one day, serum starved for three days, and 

subjected to Western blotting or immunofluorescence staining for acetylated tubulin. 

B is a distribution graph from a single representative experiment comparing length 

distributions of cells treated with different siRNAs. Lengths of >100 cilia in random 

fields were measured for each treatment.  
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4.3 DISCUSSION 

Lowe syndrome is an early-onset multi-organ disorder severely affecting lives of the 

patients and their family. Since its identification in 1952 (146), people have been 

trying to find ways to prevent and/or cure this genetic disease, however with limited 

success. Based on the very dramatic renal symptoms indicating tubular dysfunction 

and disrupted reabsorption, most studies have so far been focusing on 

receptor-mediated endocytosis and recycling events in the renal proximal tubule 

epithelium. However while a pathogenic mechanism involving megalin malfunction 

has been supported by various evidence from studies on another renal tubular 

disorder Dent disease (17,18), similar mechanisms remain hypothetical for Lowe 

syndrome and was argued against by my recent studies using renal epithelial cells 

with acute OCRL1 depletion [(174); also see chapter three]. Here I have reported a 

novel function of OCRL1, the Lowe disease protein, in modulating renal epithelial 

primary cilia length. Given the fact that ciliopathies preferentially affect the kidneys as 

well as other Lowe syndrome involved organs (21,33,34) and that mutations in 

another PI phosphatase (INPP5E) have been linked to cilia abnormalities (29,30), my 

study potentially presents a new possibility for future research on Lowe syndrome 

and other PI/PIP related diseases. 

4.3.1 Relationship between Lowe syndrome and known ciliopathies affecting 

renal cilia length 

In the present study, I have shown that acute RNAi mediated OCRL1 knockdown 

caused an increase in the overall primary cilia length of cultured polarized MDCK 
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cells. The (filter-grown) cells imaged were all at the quiescent state, as manifested by 

nucleus staining (data not shown). Therefore the different cilia length distributions 

observed were not simply due to distinct cell cycle states. MDCK cilia elongation was 

a specific effect of OCRL1 knockdown because expression of an siRNA-resistant 

OCRL1 was able to rescue the phenotype. As mentioned above, the primary cilia on 

MDCK monolayers resemble intrinsic renal tubular cilia in many aspects, including 

sensing apical flow changes and initiating Ca2+ based signaling cascades (41). 

Therefore, the cilia related effects I have observed in MDCK cells might resemble the 

situation in vivo and could be indicative of the renal cellular defects associated with 

OCRL1 mutations in Lowe patients.  

Changes in renal cilia length have been documented for various genetic disorders 

(ciliopathies) including polycystic kidney diseases (PKD), Bardet-Biedl syndrome 

(BBS), Meckel syndrome (MKS) and others (28,243-251). Mutated genes in these 

diseases almost always encode cilia resident proteins or regulators of cilia assembly. 

Variation in cilia length can happen simultaneously in multiple renal tubular segments 

along the nephron and can also be found in other organs like the pancreas and the 

liver (247,248,250). Aberrant decrease in cilia length is the dominant phenotype 

found in ciliopathies affecting the kidneys. Literature indicates that shortening or 

absence of renal primary cilia has often been attributed to loss of critical factors 

participating in cilia assembly, maintenance and/or signaling. These factors include 

IFT proteins [for example Tg737/IFT88, (252)], fibrocystin [the large transmembrane 

ciliary protein suggested to cooperate with polycystin-2 in the Ca2+ signaling; 
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(253,254)] and kinesins [for example the KIF3A subunit of kinesin-II, the anterograde 

IFT motor; (244)]. Most of the cilia-eliminating defects result in abnormal cyst 

formation via mechanisms still under debate (21,244,252-254). Renal cilia 

lengthening is less frequently observed, compared to cilia shortening, and has been 

associated with diseases caused by mutations of genes including MKS3, NPHP3, 

NEK8 and BBS4 (28,243,245,246,249). These genes encode protein products with 

various functions critical for processes ranging from ciliogenesis to cilia related 

regulation of embryonic development (28,243,245,246,249). How mutations of these 

genes result in the increase of cilia length remain unknown.  

Renal manifestations of the reported cilia elongating diseases (similar to those of 

the cilia shortening disorders) most often include cystic dysplasia to variable extents 

(28,243,245,246,249). This is not in line with the cyst-free renal phenotypes of Lowe 

syndrome. However, at least in the case of NPHP3 [whose protein product 

nephrocystin-3 interacts with the ciliary protein inversin and participates in the crucial 

regulation of both canonical and non-canonical (planar cell polarity or PCP) Wnt 

signaling cascades during development], selected hypomorphic alleles result in 

alleviated later-onset (adolescent) nephronophthisis phenotypes including renal 

tubular atrophy, sclerosis, interstitial fibrosis and renal epithelial basement membrane 

anomalies with very limited cyst formation (245,246,255). These milder renal 

phenotypes appear similar to those found in Lowe patients, although comprehensive 

pathological assessments are needed to compare symptoms of these two disorders 

in details. If comparable renal manifestations can be verified between Lowe 
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syndrome and adolescent nephronophthisis, it should suggest that OCRL1 and 

nephrocystin-3 might participate in the same pathway during developmental 

regulation.  

Genetically heterogeneous PKD disorders (including various forms of 

nephronophthisis) have long been considered as a group and often studied 

separately from other renal dysfunctions. It will be interesting if a common 

pathogenetic mechanism can be identified for both a PKD, like the NPHP3 defects, 

and a non-cystic renal disease, like Lowe syndrome. One piece of evidence 

supporting a role of OCRL1 in embryonic development came from the observation 

that 20- and 24-week human fetuses with Lowe syndrome developed ocular lens 

problems/cataracts (153,155). In accordance with this hypothesis, our lab is 

collaborating with Dr. Neil Hukriede at the PCKR Model Organisms Core (Core D) to 

examine the effect of OCRL1 loss-of-function on embryonic development of zebrafish 

Danio rerio. This work is being performed by Di Mo in the lab. Preliminary data 

indicate that OCRL1 expresses early in zebrafish embryos and that knockdown of 

OCRL1 using a translation-blocking morpholino results in aberrant early development 

manifested by body axis curvature, hydrocephaly, cardiac edema, smaller eyes, 

damaged renal clearance and possibly decreased cilia number, consistent with 

defects in ciliary functions. The zebrafish model has been used successfully in the 

study of PKDs to identify novel genes related to cystic kidneys (256). Further 

research on the OCRL1 deficient zebrafish will allow us to evaluate whether it is a 

viable animal model to study Lowe syndrome. 
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4.3.2 Lessons from studies on kidney injury and healing 

Studies from the Deane lab in Australia have suggested a linkage between renal 

tubular primary cilia length and renal injuries (257-259). In one study, after introducing 

an ischemia-reperfusion or a ureteral obstruction injury into the mouse kidneys, they 

observed an initial decrease of cilia length in multiple tubular segments on the first 

couple of days post-injury and a subsequent increase of cilia length which clearly 

surpassed that of the control kidney by day 4-7 post-injury (258). The cilia lengthening 

phenotype on day 7 post-injury was characterized by an overall shift of the cilia length 

distribution, resembling what I have seen with the MDCK cells treated with OCRL1 

siRNA and returned to culture for 4-5 days. The similar manifestations and time frame 

suggest the possibility that a common cellular pathway was perturbed by either 

certain types of renal injuries or OCRL1 loss-of-function. The identity of that pathway 

is currently unknown and the authors found that day-to-day expression of ciliary 

proteins PC1, PC2, inversin and IFT52 did not correspond to the change in renal 

tubular primary cilia length (258). In a separate paper from the same group, the 

authors showed that the increased cilia length on renal tubules one week after injury 

retrieved during the later repair process and appeared completely normal six weeks 

post-injury (257). Due to the limits of cell culture (cells normally become too confluent 

and undergo apoptosis before siRNAs lose their effects), I was not able to perform 

similar experiments to look at possible ciliary recovery upon disappearance of OCRL1 

knockdown. The correspondence between renal tubular cilia length and the kidney 

injury/repair status indicates that adjustment of cilia length may represent a cellular 
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response to renal damage. In the case of Lowe syndrome, chronic loss of OCRL1 

possibly imposes a continued stress on the renal tubules and forces the cells to 

respond by changing cilia length and maybe functioning mode as well. Understanding 

the cellular mechanism underlying this effect will greatly enhance our knowledge on 

Lowe syndrome and benefit the therapeutic effort to treat this severe disease. 

4.3.3 Elongated primary cilia on OCRL1 depleted MDCK cells are 

morphologically normal 

Under SEM, the structural features of primary cilia on MDCK monolayers treated with 

OCRL1 siRNA appeared normal compared to control cells. This observation is not 

surprising because, as reported with the BBS4-/- mouse model in which renal tubular 

primary cilia elongates with normal basal body and axonemal structures (249), 

changes in cilia length are not necessarily accompanied by structural variations. It 

seems that ciliary length and shape/structure are differentially regulated by separate 

groups of cellular proteins. In the case of INPP5E defects, it is currently unknown 

what mechanism underlies the dilated cilia tips. It could be due to abnormally 

accumulated and/or structured axonemal materials, pathologically bulged cilia 

membrane, or even both. Further research is needed to elucidate these mysteries 

and better explain the coordinated cellular controls over cilia length and shape.  

Interestingly, when renal tubular epithelial primary cultures from control and the 

BBS4-/- mice were monitored for cilia growth, those cilia on BBS4-/- cells grew more 

slowly than the wildtype control but ended up longer after a prolonged growth time 

period (249). This result indicates that certain genetic defects can compromise, but 
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not abolish, cilia assembly while shifting the growth/turnover equilibrium at the same 

time. The shifted control of cilia length can potentially be a spontaneous cellular 

compensating response to reduced ciliary growth rate, although solid evidence is 

needed to test this possibility. Youssef Rbaibi in the lab is currently measuring the 

primary cilia re-growth rates on control and OCRL1 depleted MDCK cells upon 

chemically-induced acute deciliation. It will be very interesting if OCRL1 knockdown 

results in any change in the rate of de novo ciliogenesis on polarized MDCK cells. 

4.3.4 Ciliary Ca2+ signaling 

By growing cells in the 3D Matrigel culture, Youssef Rbaibi in my lab has shown that 

OCRL1 knockdown also elongates primary cilia on MDCK cells grown as cysts, a 

condition more closely resembles the renal tubules in vivo, Interestingly, he has also 

discovered that OCRL1 loss-of-function affects cyst morphology and lumen formation, 

resulting in significantly higher-than-control percentages of cysts with multiple lumens 

or a filled lumen. Since blunted Ca2+ signaling has been linked to changes in the renal 

tubule morphology in PKDs (20,254,260), our lab is collaborating with Dr. Lisa Satlin 

and Dr. Rajeev Rohatji at Mount Sinai School of Medicine to measure the Ca2+ 

mediated signaling intensity in control and OCRL1 depleted MDCK cells responding 

to flow changes. If impaired Ca2+ signaling is associated with loss of OCRL1, it may 

explain the cilia lengthening phenotype in OCRL1 knockdown MDCK cells grown flat 

and as cysts as well as the observed defects in cyst morphology. 
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4.3.5 Three possible ciliary roles of OCRL1 

What is the possible mechanism of MDCK cilia elongation upon OCRL1 RNAi? 

OCRL1 does not localize to primary cilia or basal bodies, indicating that it is probably 

not directly involved in cellular processes happening within cilia. The MKS 

phenotypes (observed in the wpk/MKS3 rat model, MKS human patients as well as 

MKS1/3 protein knockdown cells) including multi-ciliated renal tubular cells and 

over-duplicated centrosomes were never observed in my experiments, suggesting 

that OCRL1 is most likely not involved in cell cycle control or centrosome-mediated 

initiation of cilia nucleation. As a cytosolic protein, OCRL1 is recruited to cellular 

membranes by binding to adaptor proteins like APPL1 and Rab5 (170,235). Its 

correct localization is crucial to its cellular functions because ∆E585, a point mutation 

outside of the catalytic domain and disrupting the endosomal localization of OCRL1, 

results in Lowe syndrome (170,235). All known cellular roles of OCRL1 are based on 

its phosphatase activity and involved in membrane traffic at the TGN and plasma 

membrane. It preferentially hydrolyzes the D-5 phosphate on PIP2, although a long 

wondered question is why the bulk of cellular OCRL1 does not colocalize with the 

major PIP2 population at the cell surface. Considering the novel ciliary function of 

OCRL1 suggested by data from our lab, it is likely that OCRL1 is responsible for 

regulating PIP2 and other lipid species at various cellular locations where proteins 

involved in ciliary pathways are recruited to by interacting with those lipids. According 

to our current knowledge, three ciliary events are good candidates for the proposed 

OCRL1 involvement.  
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First, primary cilia are important regulators of a variety of signaling events during 

development, including canonical and non-canonical (PCP) Wnt signaling cascades. 

Many ciliary proteins, including inversin, nephrocystin-3, KIF3A and BBS proteins, 

can act as “molecular switches” that maintain a balance between the two types of Wnt 

signaling by potentiating the PCP pathway (261). This effect often involves controlling 

the membrane versus cytosolic localization of PCP proteins like disheveled (Dvl) 

(261). Changes in subcellular localization of PCP proteins can potentially be achieved 

by enzyme (for example OCRL1) -mediated manipulation of membrane lipid 

composition which subsequently alters the affinity between cellular membranes and 

lipid binding PCP or adaptor proteins. Alternatively, OCRL1 may regulate localization 

of other ciliary proteins like the BBS proteins, which in turn manipulates the PCP 

pathway. Lowe patients do not develop most of the typical PCP phenotypes. However 

the above mentioned possibly similar renal manifestations of Lowe syndrome and 

adolescent nephronophthisis (a subset of NPHP3 defects) may suggest a role of 

OCRL1 in embryonic development. A lot more research is needed to verify these 

possibilities and subsequently how can defects in developmental regulation result in 

cilia elongation.  

The second ciliary process possibly involving OCRL1 is BBsome-mediated 

ciliogenesis. Besides PIP2, OCRL1 is able to hydrolyze PIP3 and generate PI(3,4)P2, 

a lipid shown to recruit the BBsome to membrane compartments (31,32,241,262). 

PI(3.4)P2 as well as recycling endosome localized Rab8, Rab11 (and possibly other 

proteins) collaborate to facilitate BBsome-mediated vesicular trafficking of ciliary 
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membrane proteins to the base of cilia (31,35). OCRL1 localizes to endosomes and 

interacts with Rab8, making it a possible contributor to PI(3,4)P2 generation on 

recycling endosomes (235,236). As one of the primary machineries in ciliogenesis 

and maintenance, the BBsome is most likely involved in the control of cilia length. The 

potential role of OCRL1 in BBsome recruitment, if verified, may also contribute to the 

PCP pathway as discussed above. Current efforts in the lab are directed at 

determining the localization of different BBS proteins in polarized MDCK cells treated 

with control or OCRL1 siRNA. This experiment is critical for evaluating the role of 

OCRL1 in BBsome functions. My prediction is that OCRL1 knockdown will disrupt the 

normal cilliary localization of BBsome subunits. If this prediction is verified by 

immunofluorescence using antibodies against BBS proteins, my next hypothesis will 

be that the interaction between OCRL1 and Rab8 plays a role in BBsome functions. 

To test that hypothesis, critical residues for the OCRL1-Rab8 interaction will need to 

be identified (preferably in both proteins) and selectively mutated. Whether loss of the 

OCRL1-Rab8 interaction by mutagenesis affects BBsome functions will need to be 

determined. OCRL1 mediated PI(3,4)P2 production (from PIP3) could also contribute 

to BBsome recruitment/functions, however this possibility has been argued against by 

the evidence that exogenous OCRL1 with the catalytic domain mutation G304E was 

still able to restore normal cilia length in cells depleted of the endogenous enzyme.  

  The third candidate renal ciliary event possibly regulated by OCRL1 is the 

mechanosensing signaling cascade. As mentioned previously, we are collaborating to 

measure and compare flow-induced Ca2+ responses in control and OCRL1 
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knockdown MDCK cells to determine whether OCRL1 depletion causes impaired 

Ca2+ signaling. If it does, further experiments will be needed to examine if selected 

signaling proteins are mislocalized or aberrantly down-regulated and if 

OCRL1-mediated lipid metabolism contributes to normal positioning/functioning of 

these proteins.  

  The above three possibilities are not mutually exclusive. On the contrary, the 

complicated nature of cellular (as well as ciliary) events usually gives rise to partial 

overlapping among different pathways. It is highly possible that OCRL1 and/or some 

of its downstream effectors are involved in multiple ciliary regulations which 

cooperate for a tight and delicate control over cilia length, structure and functions. 

This hypothesis will be tested by future studies by our lab as well as other 

researchers worldwide. 

4.3.6 Exogenously expressed OCRL1 with G304E or ∆E585 point mutation 

retains the ability to restore normal cilia length in MDCK cells depleted of the 

endogenous OCRL1 

It was somewhat surprising that both disease-causing mutants tested, OCRL1 G304E 

and OCRL1 ∆E585, retained the ability to normalize cilia length in OCRL1 siRNA 

treated MDCK cells when expressed as siRNA-resistant proteins. As mentioned 

above, since G304E is a mutation within the 5-phosphatase domain (176), the 

catalytic activity of OCRL1 may not be required for control of cilia length. This does 

not rule out possibilities that OCRL1 phosphatase activity is required for other ciliary 

processes and/or non-ciliary pathways regulated separately. Alternatively, 
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considering the milder phenotypes of Dent 2 disease compared to those associated 

with Lowe syndrome, the Dent 2 G304E mutation may not completely abolish the 

catalytic activity. Therefore, it is probable that the residual phosphatase activity is 

adequate for the maintenance of cilia length but not enough for selected other cellular 

functions (whose impairment eventually results in Dent 2 disease). The phosphatase 

activities of different OCRL1 mutants will be measured by other people in my lab.  

In the case of the ∆E585 mutation, which disrupts normal cellular localization of 

OCRL1, other cellular processes (ciliary or nonciliary) should be affected and 

responsible for human Lowe syndrome development while the cilia length control 

machinery remains intact.  

4.3.7 Identification of the cilia length control motif(s) within OCRL1 

To determine which segment(s) of OCRL1 is responsible for the regulation of cilia 

length, I have generated domain truncations within this enzyme by mutagenesis. 

Youssef Rbaibi in the lab will determine, when expressed in polarized MDCK cells 

treated with OCRL1 siRNA, which construct(s) (GFP-tagged and siRNA-resistant) 

fails to rescue the lengthened primary cilia to identify the domain required for the cilia 

length regulation. My prediction of the identified portion is the ASH domain, which is 

conserved among various ciliary proteins (182). If that is the case, detailed 

mutagenesis experiments will then be needed to dissect out the sequence motif 

within OCRL1 that controls renal epithelial primary cilia length. 
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4.3.8 Summary 

To summarize, my recent data have correlated the Lowe syndrome protein OCRL1 to 

the control of primary cilia length in polarized MDCK cells. A relationship between 

OCRL1 and cilia has never been studied before, but it is indirectly supported by 

several pieces of evidence as discussed above. Symptoms of Lowe syndrome show 

similarities to a variety of cilia defects. Structural and functional analyses of OCRL1 

also suggest a role of this enzyme in multiple ciliary pathways. A lot more research is 

needed to further explore the unanswered questions derived from this new discovery, 

to examine whether Lowe syndrome is, at least partially, a ciliopathy and to identify 

novel therapeutic targets needed to prevent and/or cure this severe genetic disease. 
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5.0 CONCLUSION 

 

PI and PIPs play critical roles in many fundamental cellular processes. Their 

synthesis and turnover are spatially and temporally controlled by a large group of PI 

kinases and phosphatases. My thesis focuses on the metabolic regulations of PIP2, a 

versatile PIP participating in various cellular functions ranging from signaling and 

membrane traffic. In polarized epithelial cells, PIP2 is enriched at the apical plasma 

membrane, although smaller dynamic populations of this lipid are also present in 

other membrane compartments. PIP2 is primarily produced via phosphorylation of 

PI4P by type I PI5Ks. The three PI5KI isoforms (α, β, and γ) exhibit non-overlapping 

plasma membrane distributions and non-redundant cellular functions in polarized 

renal epithelia. PIP2 hydrolysis is mediated by several phosphatases and 

phospholipases, one of which is OCRL1, the disease protein of Lowe syndrome. By 

studying the apical targeting mechanism of PI5KIβ in polarized epithelial cells, and by 

examining the pathogenesis of Lowe syndrome using cultured renal epithelial cells 

depleted of OCRL1, I have made some interesting discoveries. These discoveries 

should contribute to our knowledge on PI/PIP related regulations and human 

diseases. 
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5.1 POLARIZED TARGETING OF PI5KIβ 

In chapter two, I have shown that the three isoforms of type I PI5K exhibit 

non-overlapping plasma membrane distributions in polarized renal epithelial cells. 

While the α and γ661 isoforms are enriched on the lateral cell surface, albeit to 

distinct extents, PI5KIβ strikingly localizes to the apical plasma membrane. My 

experiments suggest that the apical localization of PI5KIβ is nonsaturable over a 

broad range of expression, suggesting that lipid components are likely involved in 

targeting of this kinase. My data also indicate that PIP2 is not required for apical 

targeting of PI5KIβ, and neither is the lipid kinase activity of the enzyme. One 

possible lipid contributor of PI5KIβ targeting is PA, which interacts with the kinase in 

vitro (263). Future experiments are needed to verify this possibility by determining the 

distribution of PA in polarized epithelial cells, and by examining whether loss of PA 

disrupts apical targeting of PI5KIβ. 

  Because chronic expression disrupts polarized localization of PI5KIβ, the AV-based 

system has been used to transiently express PI5KIβ constructs in cultured epithelial 

monolayers. We are now in the process of generating AVs encoding truncation 

mutants of PI5KIβ. These mutants are critical for identification of the apical targeting 

signal(s) as well as specific interacting partners of PI5KIβ. I predict that the relatively 

more flexible N- and C- terminal tails are involved in the polarized localization of 

PI5KIβ. Meanwhile, we are also generating AVs encoding domain chimeras of the β 

and γ661 isoforms. More chimeras will be made once the apical targeting sequence 

of PI5KIβ is narrowed down to a transplantable region. These chimeric proteins will 
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be used in functional studies to understand differential regulations of PIP2-related 

events, including endocytosis, on apical versus basolateral plasma membrane 

domains. These experiments should provide important information on how PI5KIβ is 

involved in specific apical cellular events and how PIP2 synthesis is compartmentally 

regulated in polarized epithelia. 

 

5.2 LOWE SYNDROME PATHOGENESIS 

5.2.1 Megalin function in the kidney 

In chapter three, I evaluated the long suspected role of megalin in Lowe syndrome 

development. Renal epithelial cells were used as the model and megalin trafficking 

events were studied in control cells or cells with acute RNAi mediated OCRL1 

depletion. Surprisingly, upon OCRL1 knockdown, I was not able to detect any defect 

in megalin endocytosis, recycling or uptake of a megalin ligand, although the total 

cellular PIP2 level was slightly elevated. Delivery of newly synthesized lysosomal 

hydrolases was impaired by loss of OCRL1, consistent with patient studies and with 

the observation by other groups that OCRL1 knockdown affected cellular distribution 

of cation-independent mannose 6-phosphate receptor (168), therefore supporting the 

viability of our cell-based model system.  

  Lowe patients develop characteristic renal tubular dysfunction manifested by 

phenotypes including aberrant urinary loss of many megalin ligands. My observation 

that acute loss of OCRL1 did not interfere with megalin function in renal epithelial 

cells does not rule out the possibility that chronic signaling defects could disrupt 
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megalin pathways in the long run to produce Lowe symptoms. One candidate 

mechanism to mediate chronic signaling, the primary ciliary pathway, has been 

addressed in chapter four of my thesis. 

5.2.2 Renal epithelial cilia functions 

By immunofluorescence, I found that siRNA-mediated OCRL1 knockdown caused 

increased variability in the length of primary cilia on polarized renal epithelial cells. 

This phenotype was characterized by significantly higher median cilia length value in 

cells treated with OCRL1 siRNA compared to that in cells treated with control siRNA. I 

confirmed that the observed effect could be rescued by expression of exogenous 

wildtype (siRNA-resistant) OCRL1 and was therefore specifically related to loss of 

this enzyme. Elongated cilia on MDCK monolayers did not exhibit morphological 

abnormalities when imaged by SEM, indicating that different ciliary properties (length, 

structure, and etc.) are controlled separately. I also found that OCRL1 regulation of 

cilia length appeared tissue specific because OCRL1 knockdown in human skin 

fibroblasts had no effect on the primary cilia length (consistent with the fact that skin is 

typically not affected by Lowe syndrome). A linkage between OCRL1 and ciliary 

functions has never been proposed before. By studying the literature, I have found 

phenotypic similarities between Lowe syndrome and known ciliopathies, including 

those affecting renal cilia length (21,33,34,245,246,255). Renal cilia elongation has 

also been associated with selected types of renal injury, although detailed 

mechanisms remain unclear.  

Sequence analysis of OCRL1 has revealed an ASH domain (~100 amino acid long) 
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sandwiched between the PI 5-phosphatase homology domain and the Rho-GAP like 

domain (182). The ASH domain is found in more than a dozen human proteins and 

several other proteins specific for non-human species (182). Most 

ASH-domain-containing proteins localize and function in cellular cilia/flagella or 

centrosomes, indicating that this conserved domain might be involved in cilia-related 

processes (182). Interestingly, defects in two ASH-domain-containing proteins, ASPM 

and Hydin, have been associated with brain disorders potentially caused by cilia 

dysfunction (182,264-269). Mutations in ASPM (a centrosomal protein) or Hydin (a 

ciliary protein) have been suggested to compromise functions of ependymal cilia in 

the brain, therefore disrupting cilia-directed cerebrospinal fluid flow and causing brain 

disease (primary microcephaly for defective ASPM, and hydrocephalus for defective 

Hydin) (182,264-270).The fact that ASH-domain-containing proteins are involved in 

cilia-related disorders supports the proposed role of this domain in ciliary functions. 

ASH domain has been suggested to mediate microtubule binding (182,271). This 

possibility will be tested in our lab by immunofluorescence studies to determine if 

OCRL1 colocalizes with centrosome/basal body markers.  

Notably, like in the case of OCRL, disease-causing mutations of ASPM scatter 

within full-length of the gene (176,267). This indicates that different domains of 

OCRL1 or ASPM collaborate tightly to form a functional protein. It is therefore 

possible that, for example, the OCRL1 ASH domain mediates localization of the 

protein to recycling endosomes, or other cellular compartments, where additional 

domains of OCRL1 regulate ciliary and non-ciliary pathways. Likewise, the 
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suggestion (by my experiment using siRNA-resistant OCRL1 bearing the G304E 

mutation) that catalytic activity of OCRL1 does not contribute to cilia length control 

does not rule out the possibility that the phosphatase domain is designated for other 

cellular responsibilities of the OCRL1 protein. In the case of Lowe syndrome, it is 

likely that activities of different OCRL1 domains lead to converging cellular responses, 

and that disruption of any upstream step by mutating a certain domain of OCRL1 

eventually leads to .a same combination of phenotypes in Lowe patients. To 

determine specific functions of OCRL1 domains, I have recently generated truncation 

mutants of OCRL1 to examine whether loss of each domain affects ciliary and 

membrane trafficking events (known to involve OCRL1). Future experiments are 

needed to elucidate the role of individual domains in OCRL1-regulated pathways. 

Based on our current understanding, I propose that OCRL1 is most possibly 

involved in one or more of the three ciliary processes including the developmental 

regulation, Ca2+ signaling, and BBsome-mediated ciliogenesis. Our lab is currently 

addressing all three possibilities by experiments in different model systems and in 

collaboration with other researchers. My experiments indicate that neither of the two 

disease-causing point mutations tested, G304E and △E585, interferes with the role 

of OCRL1 in control of cilia length. The truncation mutants of OCRL1 (discussed 

above) will be used in future experiments to identify critical sequence motifs involved 

in renal primary cilia length regulation. 
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5.2.3 Connecting megalin trafficking and primary cilia functions 

Dr. De Camilli’s group has shown that, when combined, the ASH and Rho-Gap like 

domains collaborate to bind endocytic adaptors at distinct internalization stages and 

facilitate endosomal maturation (183). Their data also indicate that binding to 

endosomal adaptors contributes to regulation of the interaction between OCRL1 and 

clathrin (183). Considering the previously discussed ciliary role of ASH domain, it is 

possible that the OCRL1 ASH domain exhibits dual functions to regulate ciliary 

pathways and, additionally, endocytic processes (in the context of the Rho-GAP like 

domain) at the same time. If that is the case, endocytosis and primary cilia functions 

might not be as separated as they seem to be. Rather, Lowe syndrome possibly 

results from defects in both pathways, consistent with our previous prediction that 

proteinuria could be due to aberrant-(ciliary)-signaling-mediated chronic megalin 

(endocytic) dysfunction. It is likely that OCRL1 mutations disrupt a delicate network 

that consists of selected endocytic as well as ciliary proteins. This network is likely 

coordinated by ASH and other OCRL1 domains in collaboration, and may involves 

additional (possibly ASH-domain-containing) proteins that similarly participate in both 

ciliary and endocytic processes. According to my data, defective megalin endocytosis 

or recycling is most likely not a direct consequence of OCRL1 loss-of-function. 

However, in the long run, disrupted ciliary functions and endocytic regulations (in the 

network described above) could contribute to profound damage in the post-endocytic 

machineries, which in turn might compromise megalin mediated ligand uptake and 

cause proteinuria.  
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To summarize, combining results from chapters three and four, it seems that the 

pathogenesis of Lowe syndrome is much more complicated than previously expected. 

The renal tubular dysfunction found in Lowe patients should most likely be attributed 

to multiple pathways that connect a variety of signaling cascades to membrane traffic 

at various cellular compartments. Processes involving renal primary cilia and 

endocytic regulations possibly play roles during development of renal defects in Lowe 

patients. Future studies are needed to elucidate details about this complexity. 
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6.0 MATERIALS AND METHODS 

 

6.1 CELL CULTURE 

MDCK cells (type II) were cultured in MEM (Sigma) supplemented with 10% FBS 

(Atlanta Biologicals), 100 units/mL penicillin and 100 µg/mL streptomycin. Four 

hundred µg/mL geneticin (G418) was included in the culture media of stable lines. 

Mouse cortical collecting duct (mCCD) cells were grown in 50% HAM-F12 medium 

(Gibco), 50% DMEM without phenol red low glucose medium (Gibco), 5 µg/mL insulin, 

0.02 µg/mL dexamethasone, 0.01 µg/mL selenium, 5 µg/mL transferrin, 2mM 

L-glutamine, 10-9 M triiodothyronine, 20mM Hepes, 2.2 % D-Glucose, 2% 

Decomplemented FBS, 100 unit s/mL penicillin and 100 µg/mL streptomycin. Both 

cell types were passaged at confluence. To obtain a polarized monolayer, cells were 

plated on 12-transwell permeable supports (12mm diameter polycarbonate, Costar) 

at a super-confluent density of 0.5 - 0.8 million per well and cultured for 4-5 days in 

growth media at 37 °C in the presence of 5% CO2.  

Human kidney proximal tubule HK-2 cells were obtained from ATCC and grown in 

DMEM-F12 medium (Sigma) supplemented with 5 µg/mL insulin, 0.02 µg/mL 

dexamethasone, 0.01 µg/mL selenium, 0.05 µg/mL transferrin, 2mM L-glutamine, 

10% FBS, 100 units/mL penicillin and 100 µg/mL streptomycin. HK-2 cells were 

passaged when 80-90% confluent. Human skin fibroblasts were cultured in DMEM 
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(Sigma) with 10% FBS and passaged at confluence. BSC-1 (African green monkey 

kidney epithelial) cells were cultured in DMEM (sigma) with 10% FBS and passaged 

at confluence. 

 

6.2 SIRNA KNOCKDOWN 

All siRNA constructs were purchased from Dharmacon. A target sequence 

(GGTTCCCTGCCATTTTTCA) that efficiently knocks down OCRL1 was kindly 

provided by Alex Ungewickell (Washington University). There is an intentional 

single-nucleotide mismatch at the 3’ end of the sense sequence that enhances the 

efficiency of target mRNA degradation (272). This siRNA efficiently knocks down 

OCRL1 in HK-2, human skin fibroblast, and MDCK cells. SiRNA targeting canine 

N-WASP (GGCGAGACCCCCCAAATGC) was based on a published siRNA targeting 

rat N-WASP (273). SiRNA directed against firefly luciferase was used as a control.  

In chapter three, siRNAs were introduced into MDCK and HK-2 cells using 

nucleofection as follows: Cells cultured in growth media in 10 cm dishes were 

maintained so that a 50-60% density was achieved on the day of siRNA treatment. 

Cells were trypsinized from the dishes, counted using a hemocytometer, pelleted by 

centrifugation, and resuspended in Ingenio electroporation solution (Mirus; 4 million 

cells/100 µL solution). Suspended cells were mixed with control or OCRL1-specific 

siRNA (10 µg of siRNA per 4 million cells), transferred into Ingenio cuvettes (0.2 cm 

gap, Mirus; 100 µL cell suspension/cuvette) and electroporated in an Amaxa 

nucleofector II (Lonza) using the program T20. After nucleofection, cells were 
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immediately plated and cultured in growth media for three days before use. 

Knockdown of OCRL1 was confirmed for all experiments by western blotting or by 

RT-PCR (described below). Knockdown efficiency was typically >95% in MDCK cells 

and ~80% in HK-2 cells. 

  SiRNA transfection of human skin fibroblasts (chapter four) was performed by 

nucleofection using the protocol described above with minor modifications. The 

modifications are: 0.5 million cells together with 2 µg siRNA (OCRL1 mismatch siRNA 

or control firefly luciferase siRNA) and 100µL Ingenio solution were used for each 

cuvette/reaction and every reaction was split into 2 wells on 12-well culture dishes 

with coverslips in them. Amaxa program U-023 or T-016 (these 2 programs produce 

equally well knockdowns) was used. Fibroblasts were starved for three days, starting 

from the following day of electroporation, in growth medium with 0.5% FBS to 

facilitate cilia formation. Cells were then fixed for immunofluorescence on day 4 after 

the nucleofection. Control and OCRL1 knockdown cells from a duplicate pair of wells 

were collected in each experiment for Western blotting to determine the knockdown 

efficiency. 

  SiRNA transfection of MDCK cells in chapter four was performed using 

lipofectamine 2000 (Invitrogen) as reported before (274). On the day of transfection, 

semi-confluent MDCK cells grown on plastic were trypsinized and resuspended in the 

growth medium at the concentration of 2.4 million cells per mL. Meanwhile, siRNA 

oligos and lipofectamine 2000 were incubated separately in OPTI-MEMI (Gibco) for 5 

min at room temperature before they were combined and incubated for 30-45 min. 2.7 
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µg siRNA, 10 µL lipofectamine 2000 and 500 µL OPTI-MEMI were used for every 4 

12-transwells. After the incubation, 125 µL transfection mixture and 333 µL cells 

(approximately 0.8 million cells) were added to the top chamber of a 12-transwell and 

gently mixed by pipetting up and down for a few times. 1mL growth medium was then 

added to the bottom chamber of the transwell. The medium was replaced the next 

day and cells were cultured for 4-5 days before fixed for subsequent experiments 

(immunofluorescence and scanning electron microscopy). Cells from a duplicate pair 

of control and OCRL1 knockdown samples were collected in every experiment for 

Western blotting to determine the knockdown efficiency. 

 

6.3 DNA CONSTRUCTS AND ADENOVIRUSES 

The full-length mouse PI5KIβ gene was cloned into the pEGFP-N1 (Clontech) 

plasmid vector and tagged with the HA epitope at the N-terminus of the gene (the 

GFP tag is at the C-terminus). The megalin minireceptor consisting of the ligand 

binding domain 4, transmembrane domain and cytoplasmic tail of megalin [M4 in (13)] 

was kindly provided by Dr. Marilyn Farquhar (UCSD) and modified by adding an 

extracellular V5 epitope tag and cytoplasmic GFP. The construct was subcloned into 

the pAdtet adenoviral expression vector. Wobble mutations were generated in the 

siRNA target sequence of OCRL1 (the original RNAi target region described above 

was therefore changed into AGTACCGTGTCACTTCTCG), using the Qiagen 

QuikChange® II XL Site-Directed Mutagenesis Kit, to render siRNA-resistance. The 

same mutagenesis kit was used to introduce G304E and △E585 point mutations. 
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SiRNA-resistant OCRL1 constructs, including wildtype OCRL1, OCRL1G304E, and 

OCRL1△E585, were subcloned into the pEGFP-C1 vector using the XhoI and XmaI 

restriction enzyme sites. 

The pAdtet adenoviral expression vector and protocols to generate 

replication-deficient adenoviruses (AV) using pAdtet-based constructs were 

described previously (118,275). AVs used in my dissertation research include those 

encoding HA (tag) – PI5KIβ (mouse), HA (tag) – PI5KIα (mouse), HA (tag) – 

PI5KIγ661 (human), HA (tag) – PI5KIβ D203A (mouse), HA (tag) – PI5KIβ D227A 

(mouse), HA (tag) – PI5KIβ K138A (mouse), HA (tag) – PI5KIβ D203A,D227A 

(mouse), GFP-PHPLCδ (the PH domain of PLC isoform δ tagged with GFP), OCRL1, 

influenza hemagglutinin (HA), or rabbit polymeric immunoglobulin receptor (pIgR).  

  

6.4 ADENOVIRAL INFECTION 

Adenoviral infection of filter-grown MDCK cells and HK-2 cells was as described 

previously for cells growing on transwells or plastic dishes, respectively (276,277). 

MDCK cells used in my dissertation studies stably maintain the tetracycline 

transactivator required for expression of most of our lab’s AV-encoded proteins. 

Adenovirus expressing this transactivator was included during infection of HK-2 cells. 

Adenoviral infection of mCCD cells grown on transwell filters or coverslips were 

done according to protocols similar to those described for infecting MDCK cells on 

filters or plastic dishes, respectively (276,277) with a few changes. The changes are: 

1) mCCD cells were infected 2 days prior to any experiment and 1ng/mL doxycycline 
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was added to the growth medium on the day of infection to prevent exogenous 

protein expression. Cells (mostly tight junctions) recovered overnight and doxycycline 

was removed 1 day before experiments to allow cellular expression of AV-encoded 

proteins. Transepithelial resistance (TER) of mCCD cells was measured on the day of 

each experiment to ensure that the cells were properly polarized. 2) AV-tetracycline 

transactivator was included during infection of mCCD cells. 3) During infection of 

filter-grown mCCD cells, which formed tighter monolayers compared to type II MDCK 

cells, viruses (in Ca2+- free phosphate buffered saline (PBS) containing 1mM Mg2+) 

were added to both the apical (150µL) and the basolateral (50µL drops) chambers of 

12-well transwells. 

The virally expressed exogenous proteins were detected either by 

immunofluorescence or by Western blotting. 

 

6.5 WESTERN BLOTTING ANTIBODIES 

The Western blotting to detect OCRL1 knockdown was performed using primary 

antibodies including an affinity-purified monoclonal antibody directed against OCRL1 

(1:1000; a generous gift of Drs. Robert Nussbaum and Sharon Suchy) and a mouse 

monoclonal anti β-actin antibody (1:5000; Sigma; used as the loading control).  

The Western blotting to detect virally expressed proteins was performed using 

primary antibodies including a mouse monoclonal anti HA tag antibody (1:1000; 

Covance), a mouse monoclonal anti GFP antibody (1:2000; Invitrogen) and the 

β-actin antibody described above. 
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Mouse anti-ARH and rabbit anti-Dab2 antibodies for Western blotting were 

generously provided by Dr. Linton Traub. 

Secondary antibodies used included a horseradish peroxidase (HRP) conjugated 

sheep anti mouse IgG antibody (1:5000; Amersham, GE) and an HRP conjugated 

donkey anti rabbit IgG antibody (1:5000; Amersham, GE).  

 

6.6 RT-PCR 

The Ambion RNAqueous phenol-free total RNA isolation kit was used to extract RNA 

from mCCD, HK-2 and HeLa cell lysates, and RNA concentration was determined 

after DNase treatment using absorbance at 260 nm. Reactions containing 1 µg of 

RNA, 2 µl of Oligo(dT) primer (50 µM stock) and nuclease-free water in a total volume 

of 12 µl were mixed gently, spun briefly, heated for 3 min at 72°C, and set immediately 

on ice. Two µl of 10x RT buffer, 4 µl dNTP mix, 1 µl of RNAse inhibitor, and 1 µl 

Moloney Murine Leukemia Virus reverse transcriptase (or water, for control samples) 

were added. The solution was then mixed gently and incubated at 42 °C for 1 h, 

followed by incubation at 92 °C for 10 min to inactivate the RT enzyme. A 3 µl aliquot 

of this reaction was mixed with 2.5 µl each sense and antisense primers (1 mg/ml), 5 

µl of 10x PCR buffer, 0.5 µl of enzyme mix (GeneAmp High Fidelity PCR System, 

Applied Biosystems) 5 µl of DMSO, and 26.5 µl of PCR-grade water. The solution 

was pipetted into a 0.6 mL thin walled tube and placed into a Bio-Rad thermocycler. 

After a 1 min incubation at 95°C, the reaction was cycled 35 times at 95°C for 30 sec, 

52°C for 30 sec, and 72°C for 30 sec. Reactions were then incubated for a final 5 min 
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at 72°C and held at 4°C. Five µl of this reaction was loaded on a 2% agarose gel and 

product sizes measured against a Track-It ladder (Invitrogen). The agarose gel was 

stained with ethidium bromide and imaged under Ultraviolet (UV) light. The primers 

used are listed in Table 6.1. Actin primers were included as positive controls in all 

experiments to confirm efficient RNA recovery. 
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Table 6.1 RT-PCR primer sequences. 

Primer Sense Sequence Antisense Sequence 
Product 

Size 

Actin accttcaactccatcatgaag ctgctggaaggtggacag 231 

PI5K1α cactgtctccccttcctctg aggaacaatgtccagccagt 246 

PI5K1β gtatcctccatcagccagga tggaaggtaaccctttgctg 247 

PI5K1γ aaggaggagggtgcaggagt gggagggagagaacaaggtt 276 

Human 

INPP5B 
cagatgtgagccaccacgc gcgtggtggttcatgcctg 329 

Canine 

INPP5B 
ggaagccctgccagagcctgt acgctgacggtcacttggagt 274 

Human 

OCRL1 
cactgacctgggatctttg ccagctgaatccgaaatcc 321 
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6.7 GENERATION OF STABLE CELL LINES 

MDCK cells were transfected with plasmids encoding HA-PI5KIβ-GFP or GFP tagged 

OCRL1 constructs using the lipofectamine 2000 reagent (Invitrogen) according to the 

manufecturer’s guide. After the transfection, cells were grown in normal media 

overnight, split the next day, plated sparsely on 15cm-diameter culture dishes and 

subsequently selected by including G418 in the growth medium. Mixed MDCK stable 

lines were obtained by keeping and expanding transfected cells under constant 

selection. To generate clonal stable lines, single colonies of G418 resistant cells were 

recovered, expanded and screened by immunofluorescence. Clones with relatively 

high percentages of GFP-construct expressors (20-70% depending on the construct) 

were saved. 

One MDCK clone expressing HA-PI5KIβ-GFP at a relatively high level (30%-40% 

of the cells were expressing the GFP-signal when originally screened ~2 weeks 

post-transfection) was sorted by flow cytometry (fluorescence-activated cell sorting, 

FACS) with the help of Mr. Timothy Sturgeon at the University of Pittsburgh Center for 

Vaccine Research (CVR) and split into a higher-expressor population and a lower 

expressor population based on single cell GFP signal levels. 

Among the saved MDCK clones stably expressing GFP-OCRL1 constructs, those 

exhibiting mostly low to moderate single-cell expression levels (therefore relatively 

low variation in the single cell GFP intensity) were used in the immunofluorescence 

studies. 
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6.8 DNA TRANSFECTION 

The transfection of BSC-1 cells with plasmids encoding different GFP-tagged 

siRNA-resistant OCRL1 constructs was performed using the Lipofectamine 2000 

reagent (Invitrogen) in Opti-MEM reduced serum medium (GIBCO) according to the 

manufacturer’ guides. Cells were plated on 12-well culture dishes with a glass 

coverslip in every well and were cultured in antibiotics-free growth medium. Cells 

were transfected at 80-90% confluence and were fixed for immunofluorescence after 

24 h. 

 

6.9 IMMUNOFLUORESCENCE ON CULTURED CELLS AND ANTIBODIES USED 

Filter or coverslip-grown cells were fixed with 4% paraformaldehyde (with 100 mM 

sodium cacodylate, 3 mM CaCl2, 3 mM MgCl2 and 3 mM KCl; pH 7.4) for 15 min (5 

min at 37℃ followed by 10 min at room temperature), quenched in PBS with 20 mM 

glycine and 75 mM NH4Cl for 5 min at ambient temperature, permeablized using 

0.1% TritonX-100 in the quench solution for 10 min while gently shaken, blocked in 

PBS with 1% gelatin (from cold water fish skin, Sigma) and 0.1% saponin for 10 min 

at 37℃, and probed with proper primary and secondary antibodies diluted in PBS with 

0.5% gelatin and 0.025% saponin (1 h at ambient temperature for primary and 

secondary antibody incubations). After thorough washes, squares of transwell filters 

(cut out from the transwells) or coverslips were mounted on glass slides using 

Prolong Gold antifade reagent with DAPI (Invitrogen). Mounted slides were dried 

overnight at room temperature and imaged on a confocal fluorescence microscope. 
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Confocal XZ and XY images were analyzed and quantitated using the MetaMorph 

software (Molecular Devices). 

In chapter two, primary antibodies used included a monoclonal mouse anti HA tag 

antibody (1:500; Covance), a polyclonal goat anti PI5KIβ antibody (L-17; 1:50; Santa 

Cruz), and a monoclonal rat anti ZO-1 antibody (in the form of hybridoma medium 

used at a dilution of 1:10). Secondary antibodies used were donkey anti goat as well 

as goat anti mouse or rat antibodies conjugated to appropriate fluorophores (1:500; 

Invitrogen).  

In chapter three, primary antibodies used included the OCRL1 antibody described 

in section 6.5 (1:100; to detect the endogenous protein), a polyclonal rabbit anti-furin 

antibody (1:200; Thermo Affinity Bioreagents), and a mouse monoclonal anti-V5 

antibody (1:200; Invitrogen). Secondary antibodies used included Alexa488 or 

647-conjugated goat anti mouse or rabbit antibodies (1:500; Invitrogen). Surface 

megalin minireceptor was detected by incubation of cells on ice with primary (anti-V5) 

and secondary antibodies prior to fixation. 

In chapter four, primary antibodies used included a mouse monoclonal 

anti-acetylated tubulin antibody (1:400; Sigma), a rabbit anti-Giantin antibody (1:200; 

a gift of Dr. Adam Lindstedt, Carnegie Mellon University), and a mouse monoclonal 

anti-EEA1 antibody (1:1000; BD Transduction). Goat anti-mouse/rabbit secondary 

antibodies tagged with appropriate fluorophores (1:500; Invitrogen) were utilized to 

produce visible fluorescent signals under a fluorescence microscope. 
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6.10 CILIA LENGTH QUANTITATION 

Primary cilia (and centrosomes in the cytosol) were specifically highlighted and 

identified by using the anti-acetylated tubulin antibody in MDCK and human fibroblast 

cells. XY images of cilia on cells were taken on a Leica DM6000B upright 

fluorescence microscope. The length of cilia in random fields was quantitated using 

Volocity software, sorted ascendingly (by value) and plotted against percentile.  

 

6.11 IMMUNOFLUORESCENCE ON TISSUE SAMPLES AND ANTIBODIES USED 

Rat kidney cortical tissue pieces were fixed in 4% paraformaldehyde in PBS for 3 h at 

room temperature, washed for 3X5 min with PBS, quenched in 0.2 M NH4Cl in PBS 

for 14 min at room temperature, washed again for 3X5 min with PBS, and soaked in 

30% sucrose in PBS (with 0.02% sodium azide to prevent bacterial contamination) 

until all pieces had sunk to bottom of the container. The cryoprotected tissue pieces 

were then frozen in optimal cutting temperature (OCT) compound at approximately 

-25℃ and sliced into 4 µm sections in a cryostat.  

Tissue slices placed on glass slides were incubated in PBS at room temperature for 

30 min. Samples were kept wet for all subsequent steps to prevent damage. After the 

PBS incubation, kidney slices were permeabilized with 1% SDS in PBS for 4 min, 

washed for 3X5 min with PBS, and blocked in PBS with 1% BSA and 0.02% sodium 

azide for 15 min at room temperature. Subsequently, tissue slices were incubated in a 

polyclonal goat anti-PI5KIβ antibody (L-17; 1:50; Santa Cruz) (or no primary antibody 

as the negative control) diluted in Dako antibody diluent (background reducing; Dako 
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North America) for 1 h 15 min at room temperature in a humid chamber, washed 2X5 

min with high salt PBS (HSPBS; 18 g NaCl per liter added to 1XPBS to break weak 

electrostatic interactions of antibodies with nonspecific charges) followed by 1X5 min 

with PBS, and incubated in an Alexa Fluor 488 donkey anti-goat IgG (H+L) (1:500; 

Invitrogen) secondary antibody diluted in Dako antibody diluent for 1 h at room 

temperature in a humid chamber. After antibody incubations, samples were washed 

2X5 min with HSPBS and 1X5 min with PBS before mounted with coverslips. Slides 

were dried overnight and imaged using a confocal microscope. 

 

6.12 QUANTITATION OF ACTIN COMETS 

GFP-actin expressing MDCK cells treated with OCRL1 or control siRNA were plated 

onto filters for two days before being transferred to Bioptech 0.17 mm ∆T dishes for 

an additional day prior to imaging using an Olympus IX-81 (Melville, NY) equipped 

with an UltraView spinning disc confocal head (PerkinElmer Life Sciences) and an 

argon-ion, argon-krypton, and helium-cadmium laser combiner. Three minute movies 

were taken of random fields with either an Olympus 60X PlanApo (NA 1.40) or a 100X 

UPlanApo (NA 1.35) oil immersion objective. Movies were reviewed multiple times to 

determine the percentage of cells with actin comets.  
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6.13 QUANTITATION OF PIP2 

MDCK cells treated with either control or OCRL1 siRNA were plated onto filters for 

three days. Phospholipids were labeled with 32P-orthophosphate, extracted, and 

analyzed by TLC to determine relative phospholipids levels as described in (278).  

 

6.14 APICAL BIOSYNTHETIC DELIVERY KINETICS OF HA 

MDCK cells (treated with control siRNA or siRNA directed against OCRL1 or N-WASP 

as noted) were seeded onto Transwell filters for three days. Cells were then infected 

with AV-HA, and where indicated, with control AV or AV-PI5KI β . The following day, 　

cells were starved in methionine-free medium, pulsed with [35S]-methionine (Easy Tag 

Express protein labeling mix; Perkin-Elmer), and chased for 2 h. Apical delivery was 

measured using a cell surface trypsinization assay as described in (275).  

 

6.15 125I-LACTOFERRIN BINDING TO MDCK CELLS 

Human lactoferrin (Sigma) was iodinated to a specific activity of 1500-2000 cpm/ng 

using the ICl method. Filter-grown MDCK cells were incubated for 1 h on ice with 

HEPES buffered-MEM containing 125I-lactoferrin (approximately 1,200,000 cpm/well). 

For competition experiments, >100-fold surplus cold lactoferrin or BSA (negative 

control, Sigma) was included. After the incubation, cells were washed thoroughly with 

ice cold medium, solubilized, and cell-associated radioactivity quantitated using a 

γ-counter (Packard). 
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6.16 125I-LACTOFERRIN DEGRADATION AND RECYCLING IN MDCK OR HK-2 

CELLS 

Filter-grown MDCK cells (infected with AV-mini-megalin) or HK-2 cells on plastic were 

incubated on ice for 1 h with medium containing 125I-lactoferrin (approximately 

1,200,000 cpm/well; added apically to MDCK cells). Cells were washed thoroughly 

with ice cold medium and then warmed up to 37°C to allow ligand-uptake for various 

time periods. At each time point, the medium was collected. The cells were harvested 

after the final time point and solubilized. Tricholoroacetic acid (TCA) was added to the 

medium at a final concentration of 10% and the samples were incubated for 20 min 

on ice. After centrifugation, TCA soluble and insoluble 125I was quantitated using a 

γ-counter, and degraded/recycled lactoferrin determined (TCA-soluble/insoluble 125I 

cpm divided by the total 125I cpm recovered in the cells and medium). 

 

 

 

6.17 ACCUMULATED 125I-LACTOFERRIN DEGRADATION IN HK-2 CELLS 

Non-polarized HK-2 cells treated with control or OCRL1 siRNA were incubated in 

GIBCO Opti-MEM I reduced-serum medium (Invitrogen) containing 125I-lactoferrin 

(approximately 200,000 cpm/well) in a 37°C incubator overnight (14-18 h). Blank 

wells containing 125I-lactoferrin in medium (no cells) were incubated under the same 

conditions to determine non-specific 125I-Lf degradation (background). After the 

incubation, the medium was collected and TCA precipitated as described above. 
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Cells were solubilized and subjected to the Dc protein assay (Bio-Rad). The amount 

of 125I-lactoferrin degraded in each sample was calculated as TCA soluble counts 

above background normalized to total protein levels. 

 

6.18 ENDOCYTOSIS OF MINI-MEGALIN 

Endocytosis of mini-megalin was assessed using a biotinylation-based assay 

performed using the protocol previously described for MUC1 (279). Briefly, HK-2 cells 

infected with AV-mini-megalin (and either co-infected with AV-PI5KIβ or control AV, or 

treated with OCRL1 or control siRNA) were biotinylated on ice using 

sulfo-NHS-SS-biotin (Pierce). Cells were then rapidly warmed to 37oC for 0 or 6 min 

(one of the experiments comparing control and PI5KIβ AVs was warmed for only 5 

min.) Biotin on the cell surface was stripped with 2-mercaptoethane sulfonate 

(MESNa) before cells were solubilized in a HEPES buffered detergent solution 

(60mM octyl-β-D-glucopyranoside, 50mM NaCl, 10mM HEPES, 0.1% SDS,  pH 7.4). 

Duplicate 0’ samples were left unstripped to quantitate total biotinylated mini-megalin 

at the cell surface. Biotinylated proteins were recovered after immunoprecipitation 

with avidin-conjugated beads and analyzed by western blotting (to detect the V5 tag 

on mini-megalin) after SDS-PAGE. The percentage of mini-megalin endocytosis at 

each time point was calculated as the % of total biotinylated signal remaining at 6 min 

minus the % remaining at 0’ (background). 
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6.19 ENDOCYTOSIS OF 125 I-IGA 

Iodination of IgA was performed essentially as described in (280). HK-2 cells 

nucleofected with control or OCRL1 siRNA were plated in 12-well dishes and infected 

with AV-pIgR after 2 days. The following day, cells were incubated with 125I-IgA for 1 h 

on ice, then washed extensively with ice cold medium to remove unbound radioligand. 

The cells were then incubated in pre-warmed medium in a 37°C waterbath for 0, 2.5, 

or 5 min, then rapidly chilled. To remove 125I-IgA from the cell surface, cells were 

incubated for 30 min on ice with 100 µg/ml 

L-1-tosylamide-2-phenylethylchloromethyl-ketone-treated trypsin (Sigma), then 

stripped with 150 mM glycine buffer, pH 2.3 for 15 min on ice. Finally cells were 

solubilized in 50 mM Tris-HCl, 2% Nonidet P-40, 0.4% deoxycholate, 62.5 mM EDTA, 

pH 7.4 and cell-associated radioactivity determined using a gamma counter. 

Internalized 125I-IgA was quantitated relative to total 125I-IgA (recovered in the cells, 

trypsin and glycine strips, and the medium).  

 

6.20 QUANTITATION OF CATHEPSIN D SECRETION 

HK-2 cells were cultured for three days after nucleofection with either control or 

OCRL1 siRNA. Cells were then pulse labeled with [35S]-methionine and chased for 4 

h. NH4Cl (10 mM) was included in some samples as a positive control. Following the 

chase both the cells and the media were harvested and immunoprecipitated using an 

anti-cathepsin D antibody (Upstate). Radioactive cathepsin D secreted into the 

medium during the chase was quantitated following separation by SDS-PAGE.  
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6.21 SCANNING ELECTRON MICROSCOPY 

SiRNA transfection was performed on MDCK cells as described above. Five days 

after the transfection, control or OCRL1 siRNA treated polarized cells grown on 

transwell filters were fixed in (0.5% glutaraldehyde + 2% paraformaldehyde + 0.5 mM 

MgCl2 + 1 mM CaCl2 in 200 mM sodium cacodylate buffer, pH 7.4) for 30 min to 1 h at 

room temperature and washed with 100 mM sodium cacodylate buffer, pH 7.4, for 5 

min. Subsequently, cells were fixed again with 1.5% OsO4 in 100 mM sodium 

cacodylate buffer, pH 7.4, for 1 h at 4℃ on an ice tray while gently shaken in a fume 

hood, rinsed repeatedly with deionized water, and washed 1X5 min in deionized 

water while gently shaken. Following fixation, cells were dehydrated by soaked 

through an alcohol gradient (made with deionized water), consisting of 40%, 50%, 

75%, 80%, 90% and 95% ethanol solutions, on ice for 5 min with each alcohol 

solution. Cells were then put through an extreme dehydration process by incubated in 

100% ethanol for 2X10 min at room temperature. Dehydrated samples were critical 

point dried on a Samdri®-PVT-3D machine (Tousimis) and sputter coated using gold 

palladium in a Cressington Sputter Coater before imaged in a JEOL JSM-T300 

scanning electron microscope (SEM). 
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