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Chronic obstructive pulmonary disease (COPD) is characterized by an abnormal 

inflammatory response to inhalation of noxious agents, particularly cigarette smoke (CS), which 

leads to a progressive and poorly reversible decline in lung function. Autophagy, a highly 

conserved adaptive response to cellular stresses, which removes cytoplasmic components such as 

organelles and long-lived proteins via encapsulation and lysosome-dependant degradation, has 

also been implicated in cell death pathways. We previously observed autophagy protein 

induction and autophagosome accumulation in in vivo and in vitro models of experimental 

COPD, as well as in COPD patients. The regulation and function of autophagy in CS-induced 

COPD have not been fully elucidated.   

To delineate the role of autophagy in the response of lung epithelial cells to CS we 

developed a novel in vitro model of mainstream CS exposure in primary mouse tracheal 

epithelial cells (MTECs) differentiated at an air-liquid interface (ALI). MTEC cultures in 

response to CS in vitro recapitulated many features of CS exposure in vivo, including 

autophagosome accumulation, cilia shortening, misfolded protein aggregation, loss of tight 

junction integrity and cell death. In vitro we discovered that sublethal doses of CS enhanced 

selective autophagic flux, while CS-induced cytotoxicity was associated with decreased 

autophagic activity and autophagosome accumulation. We also discovered that autophagic flux is 

induced in vivo upon acute exposure, but is not significantly upregulated following chronic 6 

month exposure to CS. Both LC3B-/- and Beclin-1+/- mice and MTEC cultures were protected 

from CS induced injury, indicating that these autophagy proteins promote epithelial cell death. 

Moreover, we investigated the effects of CS on autophagic substrates. HDAC6 regulates 

autophagosome-lysosome fusion, autophagic degradation of ubiquitinated protein aggregates, 

and cilia resorption. Cytotoxicity and protein aggregate accumulation were observed basally in 

HDAC6-/Y derived MTEC cultures, while CS-exposed mice were more vulnerable to 
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emphysematous changes.  Evidence of autophagic degradation of cilia components was also 

observed following CS treatment. These data indicate that autophagy plays a complex role in 

COPD pathogenesis, in which CS-induced autophagy both removes deleterious protein 

aggregates and contributes to apoptosis.  
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1.0  INTRODUCTION 

Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality and morbidity 

worldwide (1). The primary etiological agent of COPD is cigarette smoke (CS), which promotes 

the pathogenesis of chronic bronchitis and emphysema (2). At the molecular level development 

of COPD is primarily attributed to imbalances in oxidant, inflammatory and protease pathways 

(3). Recently implicated in COPD, autophagy is a lysosome-dependent degradative process 

promoting both cytoprotection via degradation of damaged organelles and proteins as well as cell 

death (4-8). Since there are relatively few treatment options available to COPD patients, 

elucidating the roles of autophagy in this disease may yield valuable insights for future therapies. 

1.1 COPD 

COPD affects 10% of the global population over 40 years of age with billions of dollars spent 

each year on treatment in the US alone. Extrapolations predict that COPD will be the third 

leading cause of death worldwide by 2020 (1). In developing countries exposure to 

environmental pollution, particularly biomass fuels, is an increasingly prevalent cause of disease 

pathogenesis. Since only 10-20% of smokers develop COPD, this is a strong indication that 

genetic factors play a critical role in disease vulnerability. Rigorous genomic studies are 

underway to identify disease susceptibility loci (9-11).  
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1.1.1  COPD pathology 

COPD pathology is complex with significant patient-to-patient variation, as the disease manifests 

degrees of emphysema, small airway remodeling, and chronic bronchitis (12-14). Patients with 

COPD experience an accelerated decline in forced expiratory volume in one second (FEV1), as 

well as, increased resistance in the conducting airways and reduced lung compliance (2, 9). 

Chronic bronchitis is characterized by inflammation of the airways with mucus gland 

hypertrophy and hyperplasia. The resultant mucus hypersecretion further obstructs airways 

already narrowed by inflammation and fibrosis. Emphysema is defined as permanent 

enlargement of airspaces due to loss of alveolar cells, which leads to significant reductions in gas 

exchange area and contributes to loss of lung elastic recoil, thereby restricting airflow. Difficulty 

breathing, dyspnea, commonly associated with COPD reduces capacity for physical activity and 

promotes co-morbidities such as muscle weakness and osteoporosis. Recent studies have begun 

to focus on the systemic effects of COPD, including the contribution of increased inflammatory 

mediators in the serum to the disease process (15-18). Patients with COPD frequently have co-

morbid cardiovascular disease including arterial stiffness, endothelial cell dysfunction, and a 

propensity for the formation of atherosclerotic plaques (19, 20). COPD is also correlated with 

increased risk of diabetes, suggesting that metabolic pathways are also affected in this disease 

(21, 22).  

1.1.2 COPD molecular mechanisms of disease 

Considerable insights into the molecular mechanisms of COPD have been gained through 

studying the imbalances in oxidative metabolism, inflammation and protease activity. These 

molecular pathways are interdependent, frequently acting in concert to promote disease 

pathogenesis.  

CS contains thousands of free radicals in each puff and imposes a significant oxidative 

stress for epithelial cells; therefore, both intracellular and extracellular antioxidant metabolism is 

critical. The key transcription factor mediating the antioxidant stress response is nuclear factor 

E2-related factor 2 (Nrf-2). Expression of this protein, which binds to antioxidant response 

elements, is increased by CS, but decreased in the disease state. Nrf-2 deficient mice are 
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susceptible to CS induced airspace enlargement, suggesting that this transcription factor is a 

critical determinant of disease susceptibility (23-25).  

Particulate and vapor phase constituents of CS activate chronic inflammatory pathways 

beginning with activation of macrophages and recruitment of neutrophils through the release of 

chemotactic factors, such as interleukin-8 (IL-8) and leukotriene B4 (LTB4) (26-28). Activation 

of cytotoxic T lymphocytes (CD8+), which target epithelial cells for destruction, has also been 

implicated in this inflammatory cascade. (29). Neutrophils release neutrophil elastase (NE) and 

the oxidative environment promotes the activity of macrophage-derived matrix 

metalloproteinases (MMPs), which degrade connective tissue components, such as elastin, 

collagen and fibronectin (30-32). Extracellular matrix loss then induces detachment associated 

epithelial cell death, anoikis.  

Excessive protease activity contributes to the development of autoimmunity by producing 

an abundance of extracellular matrix self-antigens in an inflammatory setting (33).  Protease 

activities in the lung are usually balanced by antiproteases, such as α-1 antitrypsin (A1AT), 

secretory leukoprotease inhibitor (SLPI), and tissue inhibitors of matrix metalloproteases 

(TIMPs) (34-37). Mutations in the A1AT gene were the first genetic factors implicated in the 

development of emphysema. There is complex interdependence among these three processes and 

variability between patients, which has impeded the development of effective therapeutics. 

1.1.3 In vivo models of COPD 

COPD, particularly emphysematous changes, have been studied in rodents, dogs, guinea pigs, 

monkeys, and sheep (38, 39). With the advent of modern genetic manipulations, mice have 

become the model of choice; however, there are noteworthy differences between mouse and 

human pulmonary anatomy (40). Mice have less extensive airway branching and do not normally 

have respiratory bronchioles. The majority of cells in the human bronchial tree are ciliated and 

there is an abundance of goblet cells, both of which decline in approaching the terminal 

bronchioles, while Clara-like cells dominate in the mouse respiratory tract and goblet cells are 

extremely rare. Only 37% of the murine airway cells are ciliated, which occur in heterogeneous 

patches.  Bronchial glands, which are hypertrophied and hyperplastic in chronic bronchitis, are 

only present in the mouse trachea (41-43).  
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There are a number of methods used to produce emphysematous changes in mouse 

models. Intratracheal instillation into the lungs of lipopolysaccharide (LPS), elastase, and 

vascular endothelial growth factor (VEGF) inhibitors all induce varying degrees of apoptosis and 

inflammation (44-48). However, CS exposure to mice is most similar to human COPD and 

causes physiological alterations resulting in emphysema and airway remodeling. The 

disadvantage of this model is that disease development takes at least 3-6 mo to develop and is 

milder, nonprogressive, and certain features, such as goblet cell metaplasia, will regress after 

smoking cessation. Also, due to a lack of bronchial glands, mice are a poor model of mucus 

hypersecretion.  

There are strain dependent variations in the development of CS-induced emphysema in 

mice, potentially providing insights into the mechanistic basis of this disease (49). The mouse 

strain AKR/J is most susceptible CS injury, showing 30% increase in airspace enlargement by 

mean linear intercept (Lm). AKR/J mice exposed to CS for 6 mo demonstrate a significant 

decrease in tissue elastance and increased compliance along with the production of 

proinflammatory cytokines and infiltration of neutrophils, macrophages, and Th1 associated 

lymphocytes. The C57BL/6 strain is less susceptible to emphysema with a 13% increase in Lm 

following 6 mo of exposure; however, lung mechanics remained unchanged in this strain. 

Finally, NZWlac/J mice are resistant to CS induced emphysema (49). Valuable insights have 

been gained from the mouse CS model due to the ease of genetic manipulation. 

1.1.4 In vitro models of COPD 

CS contains more than 4,000 chemicals and fundamental molecular mechanisms of this complex 

mixture have been elucidated from the development of in vitro cultures treated with specific 

toxic components such as paraformaldehyde, nicotine, and even general oxidative stressors such 

as H2O2 (50-57). In an effort to more fully mimic CS exposure, cells have also been treated with 

CS condensate (CSC) and CS extract (CSE), which involve solubilizing solid components that 

deposit following combustion and collecting hydrophobic constituents by bubbling smoke 

through media, respectively (58-60). These treatment strategies have been applied to numerous 

cell types including cell lines of epithelial, endothelial, mesenchymal, and hematopoietic 

lineages (16, 61-70). Recent studies have sought greater physiological relevance by growing 
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cells on transwells and treating the cells at an ALI with mainstream CS (71-73). From these 

studies careful dose and kinetic assays have been performed, evaluating the stress responses 

instigated to maintain cellular homeostasis, as well as, the identification of key players involved 

in mediating CS-induced cell death.    

1.1.5 Effects of CS on the respiratory epithelium 

In vivo and in vitro studies indicate that there are complex interactions between adaptive and 

pathological responses, which depend on the dose, time and duration of CS exposure (74-76).  

CS induces structural changes, activation of stress responses and cell death. Acute responses 

include regulated loss of epithelial barrier integrity via disruption of intercellular contacts (72, 

77). Microarray analysis of epithelial cells exposed to CS report acute downregulation of 

transcription (73). There is also increased antioxidant pathway activation and RNA processing 

(73). A number of studies have demonstrated upregulation of the unfolded protein response 

(UPR) and endoplasmic reticulum associated degradation (ERAD) pathways with CS exposure 

(78, 79). Activation of prosurvival and proinflammatory transcription factor, nuclear factor κ-

light-chain-enhancer of activated B cells (NFκB), has also been implicated, promoting the 

transcription of IL-6, IL-8 and other proinflammatory cytokines (80-85).  

Ciliated cells represent a large proportion of the apical surface area of the respiratory 

epithelium and are vulnerable to CS-induced injury (86-89). Cilia are microtubule-based 

organelles formed by specialized centrioles, called basal bodies, which dock at the plasma 

membrane and nucleate the axoneme. While the ciliary membrane is continuous with the plasma 

membrane, cilia are discrete organelles due to transition fibers at the base of each cilium that 

regulate protein import and export (90, 91). Motile ciliary axonemes are comprised of 9 outer 

doublet microtubules and a central pair, a 9+2 structure. Cilia are dynamic organelles dependent 

on intraflagellar transport (IFT). Continuous kinesin dependent anterograde trafficking adds cilia 

components to the distal tip of the cilium, while dynein-dependent retrograde trafficking recycles 

materials to the cell body (92, 93). Recently, ubiquitination of cilia components in the axoneme 

has been implicated in cilia resorption; however, lack of ciliary proteasomal activity suggests 

that tagged proteins are degraded in the cytoplasm (94). 
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Early studies demonstrated that CS can increase and decrease ciliary beat frequency 

through protein kinase C (PKC) and purinergic signaling, as well as evidence for both increased 

and decreased proportions of ciliated cells lining the airways (75, 76, 87, 89, 95). These data 

provide examples of the epithelium dynamically adapting to CS-induced stress. CS cytotoxicity 

also causes desquamation of the epithelium, which has been shown to induce squamous cell 

metaplasia through the dedifferentiation of neighboring viable cells, which then proliferate to 

regenerate an intact epithelium. Chronic CS exposure inhibits differentiation of ciliated cells and 

promotes repopulation with goblet cells producing a hyersecretory phenotype (Figure 1) (96, 

97).  

Recent studies in human populations have noted a significant change not only in ciliated 

cell number, but also, cilia length in the respiratory epithelium of healthy smokers. Modeling of 

these effects suggested a significant defect in mucociliary clearance even in healthy smokers 

(88).  Since mucociliary clearance is the primary innate defense mechanism of the lung, CS-

induced cilia injury leaves lungs vulnerable to disease-promoting infections.  

Figure 1. The effects of CS on mucociliary clearance in the respiratory epithelium. A) Mucociliary 
clearance is the primary innate defense mechanism of the lung. Goblet cells secrete mucins, which trap 
particulates and pathogens in the mucus layer. Ciliated cells push the mucus out of the lungs by coordinated 
beating of the cilia. B) Exposure to CS induces inflammation, oxidative stress, and protease activity. In this 
environment, epithelial cell apoptosis is increased and the remaining cells undergo dedifferentiation and 
squamous cell metaplasia to protect the underlying interstitium. Upon recovery of the intact epithelium, 
goblet cell differentiation dominates and cilia shorten leading to a disruption of mucociliary clearance, 
ultimately promoting airway obstruction.  
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1.1.6 COPD management and treatment 

There are limited therapeutic options for the management of COPD. Smoking cessation is the 

first step in all treatment strategies, which reduces the rate of decline in remaining lung function, 

but fails to reverse established disease. Pulmonary rehabilitation through structured programs of 

education and physiotherapy has been shown to improve exercise capacity and quality of life in 

patients. Bronchodilators, such as anticholinergics and β2 andrenoreceptor agonists promote a 

less than 10% increase in FEV1, as well as, reducing dyspnea and increasing exercise tolerance. 

Treatment with corticosteroids is controversial and seems most effective in patients with 

coexistant asthma. Generally, corticosteroids in combination with broad spectrum antibiotics are 

effective during acute exacerbations, but fail to prevent disease progression and are avoided for 

routine disease management.  As lung function declines, long-term oxygen therapy is indicated 

(98-105).  Lung transplantation remains a viable therapeutic option for some patients with end 

stage COPD. 

1.2 AUTOPHAGY 

The process of autophagy is named from the Greek “to eat oneself” and is a lysosome-dependent 

mechanism for the removal of cytoplasmic constituents (106-108).  There are three distinct 

autophagic pathways, microautophagy, chaperone-mediated autophagy and macroautophagy. 

Small invaginations that pinch-off into the lysosomal membrane characterize microautophagy 

(109, 110).  Chaperone-mediated autophagy requires chaperone proteins Hsc70, Hsp40, Hip and 

Hop interacting with lysosome–associated membrane protein (LAMP) 2 to specifically transport 

unfolded proteins containing the KFERQ targeting motif into the lysosomal lumen (111-113). 

The primary focus of these studies is macroautophagy, herein referred to as autophagy, which is 

responsible for the bulk degradation of cytoplasmic constituents including organelles, proteins 

and protein aggregates (114).  

Autophagy initiation requires the formation of a phagophore, which elongates and 

matures into the double-membraned autophagosome. Once formed, autophagosomes fuse with 

various components of the endocytic pathway, such as endosomes, forming hemiphagsomes. 
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Ultimately these structures fuse with the lysosome, and the internal membrane and constituents 

are degraded by lysosomal hydrolases in the autophagolysosome (Figure 2). Freed amino acids 

along with other building blocks, are recycled to the cytoplasm via specialized permease 

channels (106). Autophagy plays both physiological and pathological roles in numerous 

processes including adaptation to starvation, protein and organelle clearance, development, 

aging, elimination of microorganisms, cell death, tumor suppression and antigen presentation 

(115-118). 

 

1.2.1 Molecular mechanisms of autophagy 

Generally designated as Atg, more than 30 proteins have been implicated in autophagy 

regulation. Mammalian target of rapamycin (mTOR), the master sensor of metabolic status, 

inhibits autophagy under conditions of nutrient abundance (119-129). Other mediators of 

autophagic regulation identified to date include reactive oxygen species (ROS), B cell lymphoma 

2 (Bcl-2), AMP-activated protein kinase (AMPK), Ca2+, Bcl-2 and nineteen kilodalton 

interacting protein 3 (BNIP3), damage-regulated autophagy modulator (DRAM), calpain, tumor 

necrosis factor-related apoptosis-inducing ligand (TRAIL), Fas-associated death domain 

(FADD), and inositol triphosphate (IP3) (130-141). While the sources of autophagic membranes 

are cell and context specific, the ER is believed to be the major contributor along with the 

mitochondrial, plasma and nuclear membranes (142-144).  

Figure 2. Autophagy is a lysosome-dependent process responsible for the bulk degradation of organelles 
and long-lived proteins. Autophagy involves the encapsulation of cytoplasmic constituents into a double-
membraned structure called an autophagosome, which forms de novo in the cytosol. Mature autophagosomes fuse 
with lysosomes leading to the degradation of the inner membrane and sequestered cytoplasmic components by 
lysosomal hydrolases. Degradation products, including essential biological building blocks, are then recycled to 
the cytoplasm. 
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Phagophore initiation begins with the ULK complex, composed of ULK1/2, Atg13, 

FIP200, and Atg101, which is negatively regulated by mTOR complex 1 (mTORC1)-mediated 

phosphorylation (126, 145, 146). Nucleation is further supported by a class III 

phosphoinositol(3)kinase (PI3K), Vps34, which is recruited in a complex with Beclin-1, VPS15, 

UVRAG, Ambra1, and Bif1, and regulates lipid components at the forming autophagic 

membrane (Figure 3). Beclin-1 contains a BH3 domain, through which interaction with Bcl-2 

inhibits autophagy. Rubicon, another Beclin-1 interacting protein negatively regulates 

autophagosome-lysosome fusion (147-155). Two ubiquitin-like conjugation pathways promote 

autophagosome membrane elongation. Atg12 is covalently conjugated to Atg5 via activation by 

Atg7, an E1-like enzyme, and Atg10, an E2-like enzyme. Atg16L interacts with the Atg5-Atg12 

complex and dimerizes on the outer membrane promoting proper elongation and curvature of the 

isolation membrane (156-160).  Microtubule-associated protein light-chain 3B (LC3B) is 

conjugated to phosphatidylethanolamine and associates with both the inner and outer membrane 
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in the second conjugation system (Figure 3). LC3B is first hydrolyzed by Atg4A-D at the 

carboxyterminus revealing a terminal glycine residue, and can also be recycled from the outer 

surface of the autophagosome by similar proteolytic activity of Atg4.  LC3 and related proteins 

GATE16 and GABARAP are then activated and conjugated via Atg7, E1-like enzymatic 

activity, and Atg3, E2-like enzyme (161-166). Since LC3B remains associated with the 

completed autophagosome until lysosome fusion and is a substrate of degradation, this protein is 

frequently used as a marker of autophagosome formation and activity (167). Fusion of 

autophagosomes with lysosomes depends on the microtubule and actin cytoskeleton, as well as 

LAMP2 and the GTPase Rab7 (168-171). Upon hydrolytic degradation, amino acids are recycled 

to the cytoplasm by the putative amino acid effluxer Atg22, while mechanisms of carbohydrate 

and lipid recycling are not fully elucidated (172-174).    

 

Figure 3. Molecular mechanisms of autophagy. Greater than 30 proteins have been implicated in autophagy. 
Beclin-1 is a key component of the class III PI3K complex, which is required for autophagosome nucleation. 
LC3 is covalently conjugated to phosphatidylethanolamine on the inner and outer membranes of 
autophagosomes by the proteolytic activity of Atg4, followed by the ubiquitin ligase-like activity of Atg7 and 
Atg3. Selective autophagy is mediated by a growing number of adaptor molecules, including p62 and HDAC6. 
A ubiquitin binding domain and LC3 interacting domain allow p62 to recruit ubiquitinated proteins to the 
forming autophagosome. HDAC6 has ubiquitin and dynein binding domains, which promote efficient 
autophagic clearance of misfolded proteins by centralizing ubiquitinated aggregates. Furthermore, HDAC6 
mediated deacetylation of α-tubulin and cortactin regulate intracellular trafficking and autophagosome-
lysosome fusion, respectively. 
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1.2.2 Selective autophagy 

While autophagy was originally described as a nonselective process, a number of proteins, 

including p62/SQSTM1, histone deacetylase (HDAC) 6, neighbor of BRCA1 (NBR1) and Bag3 

confer specificity to autophagic cargos.  The chaperone protein Bag3 is upregulated with aging 

and promotes degradation of improperly folded proteins by autophagy (175-180). NBR1 was 

identified in a complex with Atg8, the yeast homologue of LC3B, in a yeast two-hybrid screen. 

NBR1 contains a conserved LC3 interacting motif, LIR, and an ubiquitin-binding domain. Both 

NBR1 and p62 localize to protein aggregates marking them for autophagic degradation, in a 

process by which these proteins are also selectively consumed (181-183).  

The selective autophagy protein p62 plays a critical role in the degradation of 

ubiquitinated proteins by autophagy, via an ubiquitin binding and LIR motif (Figure 3) (181, 

184). Also as a target of autophagic degradation steady state levels of p62 have been used to 

measure autophagic activity (185). Recently p62 was shown to be an important mediator of 

antioxidant activity via sequestration of Kelch-like ECH-associated protein 1 (Keap1) and 

release of Nrf-2 for transcription of proteins involved in antioxidant metabolism. From these 

studies p62 was shown to be transcriptionally regulated in a positive feedback loop by a Nrf-2 

antioxidant response element (186-190). Regulation of Nrf-2 by p62 has added an additional 

layer of complexity to the study of autophagy. For example, inhibition of autophagy promotes 

robust ubiquitinated protein accumulation. However, further analysis of knockdown of both 

autophagy and p62 relieved the accumulation, and Nrf-2 was implicated in directly upregulating 

components of the ubiquitin pathway (191, 192). Similarly, Atg7 chimeric knockout mice are 

predisposed to hepatic tumors, which are likewise relieved by p62 or Nrf-2 double knockout 

suggesting that tumor formation and survival in this model requires loss of autophagy as well as 

upregulation of antioxidant capacity (193).    

HDAC6 is another complex protein implicated at various stages of autophagy (Figure3). 

This protein is a cytoplasmic deacetylase with two catalytic deacetylase domains, a strong 

ubiquitin binding domain, and a dynein interacting domain (194-199).  Targets of HDAC6 

deacetylase activity include Hsp90, α-tubulin, peroxiredoxin and cortactin (196, 200-203). 

HDAC6 promotes efficient clearance of misfolded proteins by both concentrating substrates near 

the microtubule organizing center for autophagic degradation via ubiquitin binding and dynein 
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interactions, as well as assisting in autophagosome-lysosome fusion via deacetylation of the F-

actin interacting protein cortactin (198, 204-207). Finally, acetylation of α-tubulin is associated 

with long-lived microtubules, such as is the case for the microtubules of the ciliary axoneme 

(208, 209).  Microtubule acetylation enhances motor protein association, increasing the rate of 

trafficking and, while controversial, is generally believed to promote microtubule stability. 

Therefore, deacetylation and destabilization of microtubules by HDAC6 has been implicated in 

mediating intracellular trafficking and promoting growth factor induced cilia resorption (210-

212). 

1.2.3 Methods for detecting and monitoring autophagy 

There are many complimentary methods for monitoring autophagosome formation (213, 214). 

Due to their distinct double membrane structure, autophagosomes are easily identified 

morphologically by transmission electron microscopy (TEM) (215-218). Quality of membrane 

architecture as well as care to distinguish between true autophagosomes and cytoplasmic 

constituents proximal to ER is essential in this analysis. Quantification of autophagosomes can 

be reported as both a number per area as well as a percentage of cytoplasmic area.  

Since TEM provides a relatively small sampling of cells, immunofluorescence labeling is 

frequently employed (214, 219, 220). Endogenous labeling of LC3B, which remains associated 

with the autophagosome membrane from nucleation to lysosome fusion is most frequently 

utilized for autophagosome assessment. In these studies diffuse cytoplasmic LC3B staining 

becomes more punctate upon autophagosome formation. Regulation of autophagy genes and 

proteins are additional markers of autophagic activity. Immunoblot analysis of LC3, which 

migrates at a lower apparent molecular weight upon conjugation to phosphatidylethanolamine in 

association with the autophagosome membrane, is frequently used as an indirect marker of 

autophagosome numbers (221, 222). Since p62 is a direct target of autophagic degradation, a 

reciprocal relationship between protein levels and autophagic activity has been used in some 

studies (179, 223, 224).  

Autophagic flux, the rate of protein turnover by autophagy, is an important readout for 

any study, since autophagosome accumulation could reflect either enhanced autophagosome 

formation or inhibited lysosomal degradation. A construct of LC3B tagged with both GFP and 
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mCherry was generated to assess the proportions autophagosomes and autophagolysosomes. 

While autophagosomes fluoresce yellow, the autophagolysosomes appear red because the acidic 

environment denatures and quenches the GFP activity (194, 213, 214, 220). Care must be taken 

with these studies as overexpression of the GFP tag may lead to protein aggregation and puncta 

formation independent of autophagy (225). Autophagic flux assays can also be conducted by 

comparing the accumulation of autophagic substrates in control and treated conditions following 

inhibition of degradation in the lysosome. Inhibitors such as Bafilomycin A1, E64D, and 

chloroquine (CQ) prevent acidification of the lysosome, which is required for hydrolase 

activation. Leupeptin and pepstatin are specific inhibitors of lysosomal cathepsin activity. Using 

this approach, autophagic activity can be assessed both in vivo and in vitro (214, 219, 221, 226, 

227).  

1.2.4 Protein turnover in the lung 

Cellular catabolism in the lung was studied in detail 30 years ago. From these studies two 

distinct classes of proteins were characterized, short-lived and long-lived. The short-lived 

proteins were rapidly transcribed, labeled with the radioisotope within 10 min and were degraded 

at a linear rate of 11% per h, while long-lived proteins required several hours of labeling and 

were then degraded at a rate of 1-3% per h (228). While starvation was shown to nearly double 

the rate of long-lived protein degradation, metabolite excess, such as glucose or insulin 

administration, was able to suppress protein turnover (229). At the time autophagy was not a 

focus of these early studies; however, the dynamic response to stress and energy status are 

hallmark features of autophagic regulation.  

1.2.5 Autophagy in COPD 

Over twenty years ago autophagosomes were observed by TEM analysis of the respiratory 

epithelium of beagle dogs exposed to CS (230). In microarray analysis, Atg5 and LC3B were 

significantly upregulated in primary human airway epithelial cells differentiated at ALI and 

exposed to CS (73). Furthermore, links between metabolism, particularly autophagy-activating 

malnutrition, and lung destruction are also evident in the literature. Malnutrition in humans alone 
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is able to promote emphysematous changes in the lung (231-233). Similarly, the only mouse 

strains susceptible to CS induced emphysema are strains that fail to demonstrate the usual age-

related weight gain observed over 6 mo of chronic treatment (49). These data provide strong 

evidence implicating autophagy and metabolism in lung injury. 

The first papers exploring the role of autophagy in COPD demonstrated transcriptional 

upregulation of autophagy proteins in COPD patients, as well as, autophagosome accumulation 

that positively correlated with COPD severity (6, 8). In vitro and in vivo models indicated that 

autophagosome accumulation was an acute response to CSE treatment and preceded cell death. 

Interestingly, knockdown of Beclin-1 and LC3B in vitro protected cells from CS-induced cell 

death (6, 8). While the role of macroautophagy in directly executing cell death is a greatly 

debated, there is ample evidence for crosstalk between apoptosis and autophagy (234).  

The importance of disrupted protein folding homeostasis in airway epithelial cell stress 

has only recently moved to the forefront as a potential mediator of COPD pathogenesis. Recent 

studies have begun to elucidate the effects of CS on ER stress and protein turnover (66, 78, 79, 

235-237). In particular CS contains ROS, which interfere with proper protein folding in the ER 

and elicits UPR and ERAD (78, 79). During the process of ERAD misfolded proteins are 

ubiquitinated and targeted for degradation by the ubiquitin proteasome system (UPS) and 

autophagy (238, 239). In particular, misfolded proteins that accumulate are sequestered into 

inclusion bodies and aggresomes in the cytoplasm for efficient autophagic clearance (240, 241). 

Recently, ubiquitin positive aggregates have been observed in Gold stage 4 smokers. These 

findings are reminiscent of the inclusion bodies comprised of misfolded proteins observed in 

neurodegenerative disorders (237). In the lung, accumulation of misfolded proteins has been 

associated with increased production of inflammatory mediators by epithelial cells. These 

findings have led to the speculation that mutant A1AT may promote emphysematous changes 

through the accumulation of misfolded protein aggregates (242). Based on these observations, 

autophagy is implicated as a key mechanism for the degradation of misfolded proteins (243). 

Molecular mechanisms implicated in the upstream regulation of autophagy have also 

been correlated with the development of emphysema, in these studies CS was shown to inhibit 

mTOR via CS induced Rtp801 expression (7). While Rtp801 promoted inflammation, knockout 

mice were protected from CS induced inflammation, apoptosis and emphysema. Finally 

inhibition of mTOR directly promoted CS-induced proinflammatory pathways. While these 
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studies were not focused on autophagy, the finding of increased emphysema with mTOR 

inhibition, which activates autophagy, provides evidence for the relevance of these pathways in 

COPD.  

The autophagic response appears to be cell type specific. In studies focused on the role of 

autophagy in smokers’ macrophages, which are known to have reduced antimicrobial and 

enhance production of inflammatory mediators, autophagosomes accumulated due to decreased 

autophagic flux.  This defect led to accumulation of damaged mitochondria and decreased ATP 

levels and a greater dependence on anaerobic respiration (244). These studies implicate 

autophagy in COPD; however, the relationship is complex and far from completely elucidated.  

1.3 APOPTOSIS 

Apoptosis is a regulated cell death pathway characterized by cell shrinkage, breakdown of the 

cytoskeleton, formation of apoptotic bodies, loss of mitochondrial membrane potential and DNA 

fragmentation (245-250). Apoptosis is primarily executed by a cascade of cystein proteases, 

which specifically cleave at C-terminal aspartate residues. In the caspase cascade stimuli activate 

initiator caspases 2, 8, 9, and 10, which then cleave effector caspases 3, 6, and 7 responsible for 

cellular disposal.  

Intrinsic apoptosis is initiated by mitochondrial outer membrane permeability (MOMP), 

which is regulated by the Bcl family of proteins. Antiapoptotic members Bcl-2, Bcl-xL and Mcl-

1, containing BH 1,2,3,4 domains, reside on the mitochondrial surface and balance the 

proapoptotic BH1, 2, 3 members, Bak and Bax. The BH3-only proteins Bid, Bim, Bad, and Noxa 

sense and respond to cell stress and damage by activating BH1,2,3 proteins and neutralizing 

BH1,2,3,4 proteins. Upon activation of the cell death program proapoptotic Bcl proteins are 

thought to oligomerize to promote MOMP and the release of cytochrome c. Cytochrome C 

promotes caspase 9 activation via formation of the apoptosome, a complex consisting of 

apoptotic protease activating factor 1 (Apaf-1), procaspase 9, and dATP.  Caspase 9 cleaves and 

activates the effector caspases 3 and 7, which are responsible for execution of apoptosis.  A 

second mitochondria-derived protein Smac/Diablo promotes efficient caspase activity by 
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inhibiting the proteasomal degradation of effector caspases by inhibitor of apoptosis proteins 

(IAPs).     

Extrinsic apoptosis is regulated by cell surface receptors, including the tumor necrosis 

factor receptor (TNF-R) superfamily of death receptors and Fas. Upon TNFα or Fas ligand 

(FASL) binding the death inducing signaling complex (DISC) is formed by the recruitment of 

FADD and Caspase 8. DISC dimerization activates caspase 8, which directly activates caspase 3. 

FLIP is an endogenous inhibitor of caspase 8. Extrinsic and intrinsic apoptotic pathways 

converge upon caspase-mediated cleavage of the BH3 only protein Bid to tBid, which promotes 

MOMP. Both intrinsic and extrinsic apoptotic pathways have been implicated in COPD (251).   

1.3.1 Apoptosis in COPD 

Recent studies have demonstrated that apoptosis of epithelial, endothelial, mesenchymal, and 

inflammatory cells plays an integral role in COPD (252). Mouse models have shown that 

apoptosis leading to emphysematous changes can be induced without inflammation. For 

example, intratracheal administration of VEGF inhibitors, caspase 3, and ceramide are able to 

induce emphysematous changes in the lung via the direct activation of apoptotic pathways (253-

256). Inflammation associated with COPD also promotes apoptosis. Increased cytotoxic CD8+ T 

cells release perforins, granzyme B and TNFα (257-259). Unmitigated protease activity 

promotes matrix degradation, basal membrane detachment and anoikis (260). NE also cleaves 

the phosphatidylserine receptor of alveolar macrophages reducing phagocytic activity and 

allowing damaging apoptotic cells to accumulate (261). MMP7 activity produces cleavage 

fragments that activate FAS (262). Finally, oxidative stress promotes apoptosis, and CS induced 

cell death in vivo and in vitro can been abrogated by the application of antioxidants (58, 263, 

264). An apoptotic phenotype persists after smoking cessation in COPD patients indicating that 

this process may be an important therapeutic target (251, 265). 
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1.4 CROSSTALK BETWEEN AUTOPHAGY AND APOPTOSIS 

The intersection of autophagy and apoptosis as these two processes promote regulated cell death 

is complex. Attempts to simplify these pathways into two distinct cell death processes, generally 

fail to fully describe the effects of a given stimulus. Instead a model is now arising in which 

autophagy and apoptosis are considered different facets of the same cell death continuum rather 

than two separate processes (234, 266). However, depending on the cell context and stimulus, the 

processes may be mutually exclusive. Pure autophagic cell death occurs when cells die with an 

intact cytoskeleton, an accumulation of autophagosomes without the activation or requirement of 

the caspase cascade; however, this is a relatively rare observation. Proteins implicated in both 

autophagy and apoptosis can be regulated by the same upstream molecules, such as p53 and the 

PI3K/Akt pathway, which induce and inhibit both processes, respectively. Recently calpain and 

caspase-dependent cleavage of autophagy proteins has been rigorously described (267). Some of 

these autophagy protein cleavage fragments, particularly Atg5 and Beclin-1, amplify the 

apoptotic stimulus by translocating from the cytosol to the mitochondria and promote MOMP 

(139, 268-270). In addition Beclin-1 contains a BH3 domain through which it interacts with Bcl-

2 and Bcl-xL. This interaction at the ER membrane sequesters Beclin-1 away from the Vps34 

kinase complex required for phagophore initiation (155, 271, 272). While overexpression of Bcl-

2 inhibits autophagy, the overexpresion of Beclin-1 does not cause apoptosis (272). More 

recently we have published a role for caveolin-1 (Cav-1) in binding LC3B and Fas, thereby 

acting as a negative regulator of both apoptosis and autophagy (273). The interactions between 

apoptosis and autophagy proteins have proven to be both complex and at times contradictory, 

making this an exciting area of ongoing research.  

 



 18 

2.0  RATIONALE & HYPOTHESIS 

Autophagy is an essential homeostatic process in which organelles and long-lived proteins are 

encapsulated in double-membraned autophagosomes and subjected to bulk degradation by fusion 

with lysosomes. Starvation and other stress pathways induce autophagic degradation in order to 

provide essential building blocks required for adaptation to stress. Certain stress stimuli are 

characterized by cell death with autophagosome accumulation and markers of injury are reduced 

by autophagy deficiency in these models. As a critical mediator of homeostasis and cell fate, 

autophagy has been implicated in the pathogenesis of numerous diseases from cancer to 

neurodegeneration (274-278). 

Recently, we determined that autophagy proteins are transcriptionally upregulated in 

COPD patients and that autophagosome formation is induced in in vivo and in vitro models of 

CS exposure. In these initial studies knockdown of autophagy proteins attenuated CS-induced 

cell death, while autophagy protein overexpression enhanced cell death (6, 8).  These findings 

imply that autophagy and autophagic proteins mediate the fundamental molecular response of 

lung epithelial cells to CS-induced stress; however, these studies focused on specific autophagy 

proteins and less on the process of autophagy. Three recent discoveries make the study of 

autophagy in mediating CS-injury challenging: 1) Autophagy proteins, particularly autophagy 

protein cleavage fragments generated by activated caspases and calpains, promote apoptosis 

independent of autophagic activity (139, 267, 270, 279). 2) Autophagy deficiency enhances 

oxidant capacity by increasing p62 sequestration of Keap1 and promoting Nrf-2 antioxidant 

transcriptional activity (188-190).  3) Misfolded protein aggregates, targets of autophagic 

degradation, have been implicated in the sequestration of autophagic proteins (280, 281).  These 

data suggest that autophagy and autophagy proteins may play a dual role in the response of 

epithelial cells to CS. Based on these observations we hypothesized that autophagy is a crucial 

mediator of cell fate in response to CS, promoting cellular homeostasis and adaption 
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during the initial cellular response, but instigating cell death during excessive or sustained 

CS exposure.  

 

 

This hypothesis is addressed in the following specific aims: 

 

1. To develop an in vitro model of the effects of CS on the airways 

 

2. To assess the effects of CS on autophagic activity in vitro and in vivo 

 

3. To examine the effects of CS on autophagic substrates  (i.e. misfolded and ciliary 

proteins) using HDAC6-/Y cells and mice 

 

4. Investigate the function of LC3B and Beclin-1 in autophagic and apoptotic pathways 

following CS exposure  
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3.0  MATERIALS AND METHODS 

3.1 REAGENTS 

Filtered research-reference cigarettes (3R4F) were obtained from The Tobacco Research 

Institute, University of Kentucky, Lexington, KY.  Ham’s F-12 with L-glutamine and DMEM/F-

12 without L-glutamine and HEPES (MT-10-080-CM and MT-15-090-CM) were purchased 

from Cellgro by Mediatech Manassas, VA. Deoxyribunuclease I from bovine pancrease 

(DNase1, DN25-100MG), retinoic acid (R2625-50MG), HEPEs 1M in H20 (83264-100ML), 200 

mM L-glutamine (G7513-100ml), Insulin from bovine pancreas (I6634-50MG), human apo-

transferrrin (T1147-100MG), SigmaFast Protease inhibitor cocktail tablets EDTA Free (S8830), 

leupeptin hemisulfate salt (L2884) and cholera toxin from Vibio cholerae (C8052-1MG) were 

obtained from Sigma-Aldrich, St. Louis, MO. Pronase from Streptomyces griseus (1016593100) 

was obtained from Roche, San Francisco, CA. Complete protease inhibitor cocktail tablets with 

EDTA (11 697 498 001) were purchased from Roche Diagnostics, Indianapolis, IN.  Collagen I, 

mouse epidermal growth factor (EGF; 354001), bovine pituitary extract (354123), Nu-Serum 

(355100), and Primaria Falcon 100 mm cell culture dishes (353803) were obtained from BD 

Biosciences, San Jose, CA. Bovine serum albumin (BSA; BP1605-100), amphotericin 

B/fungizone (1672346), 12 mm Transwell with 0.4 µm pore polycarbonate membrane (3401) 

and 12 mm Transwell with 0.4 µm pore polyester membrane (3460) were obtained from 

Corning Inc Costar, Lowell, MA. Cell culture antibiotics penicillin/streptomycin (10,000U) were 

purchased from Lonza, Walkersville, MD. Dulbecco’s Modified Eagle Medium with High 

Glucose (DMEM, 11965), phosphate buffered saline (1X; 10010), and gentamicin reagent 

(50mg/ml; 15750-060) were purchased from Invitrogen, Gibco, Auckland, NZ. TEM and SEM 

grade paraformaldehyde and gluteraldehyde were purchased from Electron Microscopy Sciences, 

Hatfield, PA. Histology grade formaldehyde, 37% solution was purchased from Mallinckrotd 
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Baker, Inc., Phillipsburg, NJ. Antibodies purchased from Santa Cruz Biotechnology, Santa Cruz, 

CA: acetyl α-tubulin (sc-23950), Beclin-1 (sc-11427), Bcl-2 (sc7382), Bax∆21 (sc-6236). 

Antibodies from Sigma-Aldrich: LC3B (L7543), p62 (P0067), β-actin (A2228). Antibodies 

purchased from Cell Signaling Technology, Beverly, MA: LC3B (27735S), cleaved caspase 3 

(9661S). Beclin-1 (612112) C-terminal specific antibody was purchased from BD Transduction 

LaboratoriesTM, Sparks, MD. Centrin-1 (ab11257) antibody was acquired from Abcam, 

Cambridge, MA. Horseradish peroxidase (HRP) -conjugated secondary antibodies for 

immunoblot analysis were purchased from Santa Cruz Biotechnology:  goat anti-rabbit IgG-HRP 

(sc-2004), goat anti-mouse IgG-HRP (sc-2005). Immunofluorescence reagents secondary 

antibodies Cy3-conjugated donkey anti-rabbit (711-165-152) or anti-mouse (715-165-150) 

were from Jackson ImmunoResearch Laboratories, Inc., West Grove, PA. Alexa Fluor 488 

(A12379) and 647 (A22287) conjugated to phalloidin and Alexa Fluor 488 secondary antibody 

anti-rabbit (A11034) and anti-mouse (A10667) and were purchased from Invitrogen, Molecular 

Probes, Eugene, OR. Remaining standard laboratory reagents were purchased from Sigma-

Aldrich. 

3.2 ANIMALS 

Beclin-1+/- mice were provided by Beth Levine (The University of Texas Southwestern Medical 

Center at Dallas, Dallas, TX). The HDAC6-/Y mice were provided by Bin Shan (Tulane 

University, New Orleans, LA). LC3B-/- were provided by Marlene Rabinovitch (Stanford 

University, Stanford, CA), and backcrossed into a pure C57BL/6 background in our laboratory. 

The GFP-LC3B mice were purchased from Riken BioResource Center (3-1-1 Koyadai, Tsukuba-

shi, Ibaraki 305-0074, Japan). WT C57BL/6 and Cav-1-/- were purchased from Jackson 

Laboratories (Bar Harbor, ME). All animal experimental protocols were approved by the 

Harvard Standing Committee for Animal Welfare or the University of Pittsburgh Institutional 

Animal Care and Use Committee. 
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3.3 IN VIVO CS EXPOSURE AND HARVEST PROTOCOL 

Age and sex matched mice starting at 6-12 wk of age were exposed to total body CS in a 71 cm 

X 61 cm X 61 cm stainless steel chamber using a smoke machine (Model TE-10 Teague 

Enterprises) 5 d/wk for 1wk, 2 mo, and 6mo or room air (RA). The CS treatment required 

approximately 2 h each day as the mice were exposed to the mainstream and sidestream smoke 

of 100 3R4F cigarettes with an average TPM of 150 mg/m3. The carboxyhemoglobin levels were 

typically less than 8% following exposure. Mice were also exposed to CS from 4 unfiltered 

cigarettes 5 d/wk using the nose-only method.  At the end of the exposure regiment mice were 

euthanized by CO2. The left lung was isolated with a suture, dissected and flash frozen in liquid 

nitrogen. The mouse was then tracheally cannulated and the right lungs were inflated with 2% 

formalin in PBS at 25 cm of H20 pressure, dissected from the mouse and fixed in 4% formalin at 

4°C for 2 d. The proximal trachea up to the larynx and a portion of proximal portion of the left 

lung were fixed for TEM analysis. 

3.4 LUNG MORPHOMETRY 

Lungs fixed for histology were further processed for morphological analysis of airspace 

enlargement by paraffin-embedding of midsaggital sections. Following a modified Gills staining 

10-12 random 20X fields were imaged and processed to remove large airways, blood vessels and 

other nonalveolar structures.  Images were acquired using brightfield microscopy on a Leica DM 

LB using a DFC480 3CCD Color Vision Module camera (Buffalo Grove, IL). The mean linear 

intercept was determined using a previously described algorithm, which has been automated in a 

modified ImageJ program available on the National Institute of Health website 

(http://rsb.info.nih.gov/ij/) (282-284).  

http://rsb.info.nih.gov/ij/
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3.5 CELL CULTURE AND CSE TREATMENT 

Beas-2B cells, a human lung epithelial cell line, were maintained in complete media DMEM 

supplemented with 10% fetal bovine serum (FBS) and gentamicin (50 µg/mL). Cigarette smoke 

extract (CSE) was prepared using a peristaltic pump (VWR International) to bubble mainstream 

smoke from four 3R4F cigarettes with filters removed through 40 mL DMEM. Each cigarette 

was smoked within 6 minutes until approximately 17 mm remained. The extract was adjusted to 

a pH of 7.5 filter sterilized, stored at -80°C, and used immediately upon thawing. The CSE 

generated in this fashion was considered 100% strength was diluted in complete DMEM for cell 

treatment. 

3.6 GENERATION AND CS EXPOSURE OF MTEC CULTURES 

Methods for MTEC isolation and culture generation were described previously (71, 285, 286). 

For each isolation, age and sex matched mice 6-12 wk were euthanized by CO2 necrosis. The 

tracheae were isolated and stored on ice in Ham’s F-12 containing antibiotics (1X 

penicillin/streptomycin and fungizone).  Careful dissection was used to remove all connective 

tissue and the tracheae were cut longitudinally to expose the luminal surface for overnight 

digestion at 4°C in 0.15% pronase in Ham’s F-12 with antibiotics. Six tracheas were digested in 

10 mL of solution in a 50 mL conical tube. The next day the tracheal digests were inverted 12 

times and allowed to incubate for an additional hour at 4°C. The enzymatic activity was stopped 

by adding 10 mL of Ham’s F-12 containing 20% FBS and antibiotics and gently inverted 12 

times. The tracheae were spooled onto a pasture pipette and transferred to a new 15 mL conical 

tube containing 10 mL of Ham’s F-12 with 20% FBS and antibiotics and inverted 12 times. This 

mechanical disruption of the tracheas was repeated two times more using fresh 15 mL conical 

tubes and media. Finally, the tracheae were discarded and the contents of the three 15 mL tubes 

were collected in the original 50 mL conical tube. The cells were pelleted at 350 xg for 10 min at 

4°C. The media was aspirated and the cells were incubated for 5 min on ice in 100-200 µL per 

trachea of DNase solution (0.5 mg/ml DNase, 10 mg/ml BSA, in Ham’s F-12 with antibiotics). 

The cells were then pelleted at 350 xg for 5 min at 4°C and then the media was aspirated. The 
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cells were seeded onto 100 mm Primaria plates in MTEC Basic Media (1 M Hepes, 200 mM 

Glutamine, 7.5% NaHCO3, 0.25 µg/ml Fungizone, 102 U/ml Penecillin Streptomycin in 

DMEM:Ham’s F-12) containing 10% FBS and incubated for 5-6 h in a humidified incubator at 

37°C, 5% CO2. Cells that did not attach to the plate were collected by centrifugation at 350 xg 

for 10 min at 4°C and the cells were resuspended in MTEC proliferation media (10 µg/µl insulin, 

5 µg/ml transferrin, 0.1 µg/ml cholera toxin, 25 ng/ml epidermal growth factor, 30 µg/ml bovine 

pituitary extract, 10X10-8 retinoic acid, and 5% FBS in MTEC basic media). In the 12 well 

transwell dish 1.5 mL of MTEC proliferation media was added to the basal compartment and 75-

100 X103 cells/well were seeded in 500 µL onto the transwells, which were previously coated 

with 400 µl of 100 µg/ml type 1 rat tail collagen, incubated overnight, excess solution was 

aspirated and allowed to dry before washing twice with PBS. Cells proliferated for 10 d in 

submerged culture conditions with media changes every other day and fresh media made every 

fifth day. Cultures with a resistance over 1000 Ω/cm2, as measured using an ohmvoltometer 

(EVOM, World Precision Instruments, Sarasota, FL), were put at an ALI by removing all 

apical media and replacing the basal media with 750 µl of MTEC differentiation media (2% Nu-

Serum and 10X10-8 M retinoic acid in MTEC basic media) in the basal compartment. The 

cultures then differentiated for 14 d at ALI with media changes every other day. CS treatment 

was conducted in a custom designed humidified chamber (EMI Services, Glenwillard, PA) at 

37°C by exposing the cells for 10 min to 50 or 100 mg/m3 of mainstream CS from 3R4F 

research-reference filtered cigarettes.     

3.7 PROTEIN EXTRACT PREPARATION, IMMUNOPRECIPITATION AND 
IMMUNOBLOT ANALYSIS 

All protein extractions were done on ice with ice-cold homogenization buffer. Protein extracts 

were made by lysing and scraping cells using cell RIPA buffer (400 mM HEPES, 5 M NaCl, 0.5 

M EDTA, 1 M Na3VO4, 1 M NaF, 100 mM glycerol 2-phosphate, 3% Chaps w/v) or for tissues, 

tissue RIPA buffer (300 mM NaCl, 50 mM Tris(pH 7.6), 1% NP-40, 10% glycerol, 1 mM 

EDTA, 1 mM NaF, 1 mM Na3VO4) made with a fresh complete protease inhibitor tablet (Roche 

Diagnostics, Indianapolis, IN). The samples were homogenized by sonication 5 times 10 min (60 
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Sonic Dismembrator, Fisher Scientific). Cells were spun once for 20 min at 14,000 xg while 

tissue protein extracts were prepared by centrifuging 5 times 10 min each time at 14,000 xg and 

transferring to a new eppendorf for each consecutive centrifugation. The supernatants were 

collected after the final centrifugation and the protein concentrations were determined by a 

Coomassie Plus (Bradford) protein assay (Pierce Biotechnology Inc., Rockford, IL) by 

measuring the absorbance at 595 nm and linear regression form a BSA standard curve. The 

protein samples were then normalized using homogenization buffer. For co-

immunoprecipitations cell extracts were incubated with 1 µg of antibody into 500 µg of total 

protein in 500 µl and incubated overnight on a rotor at 4°C. Then the extracts were incubated 

with 20 µL of protein A-sucrose beads (Santa Cruz Biotechnology) for an additional 2 hours, 

spun down at 500 xg, and washed by resuspending and centrifuging 5 times in RIPA buffer. All 

protein extracts were made in 1X NuPage loading buffer, 20 µl were added to the 

immunoprecipitation samples, and then boiled for 10 min.  Approximately 10-50 µg of the 

protein samples were subjected to electrophoresis using a 4-12% SDS-polyacrylamide gel 

(Invitrogen, Carlsbad, CA). The proteins were electro-transferred onto polyvinylidene diflouride 

membrane (PVDF; Invitrogen). After the membranes were blocked in 5% nonfat milk in 0.2% 

Tris-buffered saline with 0.1% Tween 20 (TTBS) for 1 h at room temperature, the blots were 

incubated overnight at 4°C in primary antibodies diluted in TTBS. Membranes were washed 

three times for 5-7 min with TTBS, and incubated at room temperature for 2 h in the 

corresponding HRP-conjugated secondary antibody. Membranes were washed three times for 5-

7 min again in TTBS and developed with ECL reagent (Amersham Biosciences, Piscataway, 

NJ). 

3.8 IN VIVO AUTOPHAGIC FLUX ASSAY 

A detailed protocol for in vivo autophagic flux has been described previously (227). Briefly, 

mice exposed to CS or RA were given an intraperitoneal injection of 40 mg/kg leupeptin in 

pharmaceutical grade saline at 1 h or 24 h following last the last CS treatment. Control mice 

received an equal volume of the vehicle. The leupeptin treated RA and CS mice were then 
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harvested 2 h later in parallel. Tissues were flash frozen and LC3B turnover was assessed in the 

lysosome-enriched (LE) fraction described section 3.9. 

3.9 TISSUE AND CELL HOMOGENIZATION TO OBTAIN A LYSOSOME-
ENRICHED FRACTION 

Subcellular fractionation for the LE fraction was previously described in detail (227). Briefly, 

tissues were flash frozen upon harvesting and stored at -80°C until processing, which was all 

done at 4°C or on ice. Cells were trypsinized and pelleted at 300 xg 8 min at 4°C. Lysates were 

made with homogenization buffer (10 mM Tris, pH 8.0, 5 mM EDTA, 250 mM sucrose, protease 

inhibitor tablet without EDTA). Cells were mechanically disrupted by dounce homogenization 

ten times with the loose and ten times with the tight pestle. The tissue was mechanically 

homogenized (7X95mm Saw Teeth Generator, Omni International The Homogenizer Company, 

Kennesaw, GA). The homogenate was then centrifuged at 700 xg for 10 min and transferred to a 

new tube. If debris was still present an additional 700 xg spin was implemented. The protein was 

then normalized to 1-2 mg/ml using the homogenization buffer. An aliquot was saved for the 

whole cell fraction. The sample was then centrifuged at 20,000 xg for 30 min. Supernatant was 

saved for the cytoplasmic fraction. The pellet was washed twice with homogenization buffer and 

resuspended in sample buffer. All cell fractions were prepared with 1X NuPage LDS sample 

buffer (NP007, Invitrogen, Carlsbad, CA) boiled for 10 min and subjected to subsequent 

immunoblot analysis. 

3.10 IN VITRO AUTOPHAGIC FLUX ASSAY 

Cells were exposed to CS or CSE and treated 10 min later with lysosome acidification inhibitors 

chloroquine (25 µM) or bafilomycin A1 (100 nm). Control cells were treated with the inhibitor 

without CS or CSE treatment. The samples were then harvested using cell RIPA buffer from 

control and treated cells at the same time 0, 1, 3, or 6 h later and analyzed by standard 

immunoblot analysis described in section 3.7. 
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3.11 CELL VIABILITY AND CYTOTOXICITY ASSAYS 

Cell viability was determined by the 3-(4-5-dimethylthiaxol-2-yl)-2,5-diphenyl tetraxolium 

bromide (MTT) assay.  Cytotoxicity was assessed by measuring lactate dehydrogenase (LDH) 

activity in the basal media of the MTEC cultures according to the manufacturer’s protocol 

(Cytotoxicity Detection KitPLUS, Roche Diagnostics, Indianapolis, IN).  This assay measures 

LDH released into the media upon plasma membrane permeability, the assay determines LDH 

content by a coupled enzymatic reaction in which the tetrazolium salt INT is reduced to 

formazan dye, which is measured at 500 nm. The assay was performed in duplicate in a 96-well 

format and the absorbance was measured using a Multiskan EX Microplate Photometer from 

Thermo Scientific (Waltham, MA). The Annexin V FITC Apoptosis Detection Kit was 

purchased from BioVision (Mountain View, CA). The assay was performed on both detached 

and attached cells, by collecting all detached cells and trypsinizing the attached cells, washing 

once with PBS, centrifuging at 200 xg and resuspending the cell pellet in the manufacturers 

assay buffer. The cells were then stained according to the manufacture’s protocol. The 

proportion of viable and apoptotic cells were assessed using a FACS Canto II (BD Bioscience) 

and FlowJo analytical software (Tree Star, Inc., Ashland, OR). 

3.12 INTRACELLULAR ATP ASSAY 

Intracellular ATP was assessed using the ATPlite luminescence assay system (Perkin Elmer, 

Waltham, MA). The assay measures light produced by the reaction of ATP with D-luciferin and 

luciferase. The amount of light produced is proportional to the ATP concentration. The assay 

was performed according to the manufacturer’s instructions with some scaling to accommodate 

the surface area of the transwells. Total protein was normalized and the ATP concentration in the 

cell lysis solution was quantified on luminometer (1420 Multilabel Counter, Victor3TM, Perkin 

Elmer, Waltham, MA) and determined by linear regression based on the standard provided in the 

kit.  
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3.13 SUCROSE-GRADIENT SUBCELLULAR FRACTIONATION 

Generation of sucrose gradient-derived fractions was described previously (249). Briefly, cells 

were lysed in ice-cold MBS buffer (25 mM Mes (pH 6.5), 150 mM NaCl, 1% Triton X-100, 1 

mM Na3VO4, with protease inhibitors). Lysates were adjusted to 4 mL of 40% sucrose by 

mixing with 80% sucrose and overlaid with 35% sucrose and 4 mL of 5% sucrose in MBS 

buffer. Twelve subfractions were obtained following ultracentrifugation at 39,000 rpm for 18 h 

(SW41 rotor, Beckman Instruments, Palo Alto, CA).  

3.14 DNA CONSTRUCTS 

Human WT LC3B cDNA (pCMV6-XL5-LC3B) was obtained from Origene (Rockville, MD), 

and mutagenesis was performed using the QuickChange II Site-directed Mutagenesis Kit 

(Stratagene-Agilent Technologies, La Jolla, CA). The Cav-1 WT (WT-Cav-1) expression clone 

and the Cav-1 CSD (residues 82-101)-deleted mutant (∆CSD) were gifts from C. Tiruppathi 

(University of Illinois at Chicago, Chicago, IL). The Fas wt and Fas C199S expression clones 

were kind gifts from M.E. Peter (University of Chicago, Chicago, IL). 

3.15 IMMUNOFLUORESENCE STAINING 

Cells were fixed with 4% paraformaldehyde in 1X PBS directly on transwells for 1 h at 4°C then 

washed with PBS and stored at 4°C. Staining was done following a standard protocol. The cells 

were permeabilized for 15 min in 0.01% Triton-X 100 then washed in PBS twice and 0.5% BSA 

in PBS twice. The cells were blocked for 45 min with 2% BSA in PBS. The cells were washed 

once in 0.5% BSA and then incubated for 1 h at room temperature in primary antibodies, LC3B 

(1:50) and acetylated α-tubulin (1:250). The samples were washed 5 times with 0.5% BSA and 

then incubated for 1 h at room temperature in secondary antibody, Alexa 488 anti-rabbit 

(1:1000), Cy3 anti-mouse (1:500) and or phalloidin conjugated to Alexa-647 or Alexa-488 

(1:1000). Misfolded protein aggregates were stained using a recently developed dye, ProteoStat 
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Aggresome Detetction kit for flow cytometry and microscopy, ENZO Life Sciences, 

Farmingdale, NY. The cells were washed 3 times with 0.5% BSA and then twice with PBS. 

Nuclei were then stained with Hoechst for 30 s and washed 3 times with PBS. The samples were 

then mounted onto slides using and imaged using epifluoresence (Leica DM LB microscope and 

DFC 480 3CCD Color Vision Module) or confocal (Zeiss LSM 510 with two-photon).   

3.16 TRANSMISSION ELECTRON MICROSCOPY 

Cells were fixed for 1 h and tissues were fixed overnight at 4°C using TEM grade fixative 

solution of 2% formaldehyde and 2.5 % glutaraldehyde in 0.1 M Sodium Cacodylate buffer, pH 

7.4. The samples were washed and stored in 0.1 M cacodylate buffer and kept at 4°C until 

processing. Sample embedding followed a standard protocol, in which all steps were done at 

room temperature unless otherwise indicated. The samples were post-fixed for 1 h in the dark in 

1% osmiumtetroxide / 1.5% potassiumferrocynide in H2O. The samples were washed 3 times in 

H20 or maleate buffer pH 5.15, then incubated in 1% uranyl acetate in H2O or maleate buffer for 

30 min. The samples were washed three times in H20 and dehydrated by a graded series of 

ethanol: 70% for 15 min, 90% for 15 min, then 100% twice for 15 min. The samples were then 

further dehydrated in propyleneoxide for 1 h. Infiltration was done with a 1:1 ratio of 

Epon:propyleneoxide for 2-3 h. The samples were then embedded in freshly mixed Epon and 

polymerized 24-48 h at 60°C. Ultrathin sections were then absorbed onto hydrophilic 

formvar/carbon coated grids and negatively stained with 1-2% aqueous uranyl acetate, dried and 

imaged using a Technai G2 Spirit BioTWIN transmission electron microscope. 

3.17 SCANNING ELECTRON MICROSCOPY 

MTEC cultures were washed with PBS twice with gentle agitation on a vortex to disrupt mucus 

coating then fixed for 1 h at 4°C in 4% paraformaldehyde in 1X PBS (pH 7.4). The samples were 

then washed thoroughly in three changes of PBS and stored at 4°C. The tissue was post fixed in 
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1% osmiumtetroxide for 1 h then washed three times with PBS. The samples were dehydrated in 

a graded series of ethanol by 15 min incubations with: 30%, 50%, 70%, 90%, and three times at 

100%. The samples were then critical point dried and mounted onto studs with the epithelial cell 

layer facing upwards and then sputter coated and stored in the desiccator. Specimens were 

imaged with a JEOL 9355 Field Emission Zeiss Gun scanning electron microscope with 

backscatter detector. 

3.18 STATISTICAL ANALYSIS 

Statistical analysis was conducted using GraphPad Prism software (GraphPad Software, La Jolla, 

CA). Data are presented as the means ± standard deviation (SD) or standard error of the mean 

(SE) from at least three independent experiments. Differences in measured variables between 

experiment and control groups were assessed using the Student’s t test and between multiple 

groups and conditions using one-way and two-way ANOVAs and Bonferroni post tests. 

Statistically significant differences * p<0.05, highly significant differences **p<0.01 and very 

highly significant differences ***p<0.005 are indicated.  
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4.0  RESULTS- DEVELOPMENT OF A PHYSIOLOGICAL MODEL OF CS-INDUCED 

CELL INJURY IN THE AIRWAY EPITHELIUM 

4.1 MTEC CULTURE GENERATION, CHARACTERIZATION, AND CS 
TREATMENT 

Since airway-derived immortalized cell lines lose the ability to differentiate into the various cell 

types lining the respiratory tract, C57BL/6 MTECs were isolated and grown at an ALI to 

produce highly differentiated pseudostratified cultures. This method was adapted from 

previously described protocols, in which cultures were created by digesting mouse tracheas with 

pronase, subjecting all detached cells to a brief negative selection step for fibroblasts, and then 

seeding the epithelial cell population onto transwells (71, 285, 287). In this study, cells 

proliferated under submerged conditions for 10 d and differentiated for an additional 14 d at an 

ALI (Figure 4A). Apical exposure to air is critical for differentiation and also induces fibroblast 

cell death, thereby ensuring culture homogeneity. Transepithelial electrical resistance (TER) was 

monitored every other day following seeding and used as a measure of culture confluence, 

purity, and differentiation. As the cells form an intact pseudostratified epithelium the TER 

peaked at approximately 3500 Ω/cm2 just following conversion to an ALI, then the resistance 

dropped and stabilizes to approximately 2500 Ω/cm2 as the cells differentiate and acquire ion 

channels (Figure 4B). MTECs that achieve a TER greater than 1000 Ω/cm2 are confluent 

enough to be put at an air-liquid interface, while resistance measurements below 1000 Ω/cm2 

after day 10 are generally indicative of fibroblast or microbial contamination (285, 287). 

Therefore, TER was measured prior to removal of the apical media and just before CS-exposure 

on day 24 to ensure the quality and consistency of the cultures in every experiment.  

Twenty-four days after seeding, ciliated, non-ciliated and basal cells were observed in the 

cultures by transmission electron microscopy (TEM) (Figure 4C). While the cells differentiated 
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into the correct representative cell populations, the morphology is more cuboidal than columnar. 

Ciliated cells comprised about 25% of the total cell population present in the MTEC cultures, 

which is consistent with previously published literature (285, 287). Goblet cells were also 

present in these cultures, but were rare, and with the other respiratory secretory cells were able to 

produce a discernable mucus layer; therefore the apical surface was also gently washed with 

fresh media during each media change, in particular, the apical surface was washed and the 

media changed at least 10 h prior to CS exposures.  

MTEC cultures with the culture plate cover left on were exposed to mainstream CS for 

10 min in a custom designed humidified chamber at 37ºC (Figure 4D). The average total 

particulate matter (TPM) achieved in the chamber during treatment was 50 mg/m3 or 100 mg/m3, 

Figure 4. MTECs that have proliferated on transwells and differentiated at an ALI are a physiologically 
relevant in vitro model of the respiratory epithelium. A) MTEC culture generation requires cell proliferation 
under submerged conditions for 10 d, followed by removal of apical media and differentiation at an ALI for 14 d. 
B) Cells were treated with mainstream CS in a custom designed humidified chamber at 37ºC. Cells were either 
treated once for 10 min with 50 or 100 mg/m3 of CS and harvested at 1, 4, 8, 24 h or treated up to 3 days with 50 
mg/m3 and harvested at day 1, 2 and 3. C) Following seeding on day 0, TER was measured to monitor the 
confluence, purity and differentiation state of the cultures. D) TEM analysis of ALI cultures confirmed the 
formation of a pseudostratified epithelium with ciliated, basal, and non-ciliated cells. (a-ciliary axoneme, bb-
ciliary basal bodies, m-mitochondria, n-nucleus, s-substrate, mv-microvili; Bar=500nm) 
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generated by pumping in the mainstream smoke from 1 or 2 research-grade University of 

Kentucky 3R4F reference cigarettes, respectively. Following treatment, the cells were returned to 

a standard cell culture incubator with constant 37ºC, 5% CO2 and humidity. Cells were exposed 

to CS with either a single dose of 50 or 100 mg/m3 for 10 min or multiple doses 10 min each of 

50 mg/m3 every day for 3 d. In the single-dose model, cells were treated with CS and assessed at 

1, 4, 8 and 24 h following exposure. In the multiday chronic model, the cells were treated with 

CS once a day with 50 mg/m3 TPM over the course of three days and cells were harvested at 24, 

48 and 72 h following the first treatment (Figure 4D). Since MTEC cultures are highly 

differentiated and can be treated at the ALI with whole mainstream smoke, these cells represent a 

suitable model for studying the effects of CS on the respiratory epithelium, particularly ciliated 

cells. Additionally, cultures can be generated from transgenic or gene deleted null mice to study 

the functional role of a specific protein or pathway in the response of the airway epithelium to 

CS.  

4.2 CS-INDUCED DISRUPTION OF INTERCELLULAR CONTACTS AND CILIA 

Following CS treatment, MTEC injury was first assessed by fluorescence microscopy (Figure 

5A). Cells were stained for nuclei using Hoechst, F-actin using phalloidin conjugated to Alexa 

Fluor 488 and for cilia using Cy3 conjugated secondary antibody for acetylated α-tubulin, a 

posttranslational modification of long lived microtubules. While acetylated α-tubulin is not 

specific for cilia, acetylated α-tubulin is a sufficient cilia marker when combined with the distinct 

tuft-like morphology and apical localization of this organelle. F-actin is an integral component of 

both tight and adherens junctions; therefore, this stain delineates the nature of intercellular 

contacts. In control cells the ring of F-actin at the apical-basal junction was essentially 

continuous from one cell to the next and fields of ciliated cells were present. Four hours after 

treatment with 100 mg/m3 of CS, dramatic remodeling of intercellular contacts was apparent, as 

the F-actin became discontinuous between neighboring cells and the intensity of staining 

increased. By 24 h, the F-actin stain indicated that the cells were rounder and larger. Previous 

studies using an epithelial cell line, Calu-3, grown on transwells and treated with CS at an ALI 

showed that CS alters tyrosine phosphorylation of tight junction proteins (72, 288). Similarly, 
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adherens junction disruption by CSE treatment has also been investigated in human-derived 

primary cultures (77). These findings are in marked contrast to the intercellular junction 

remodeling in MDCK II cells, which upon treatment with chemicals to shed cilia, have increased 

resistance (289). Furthermore, microarray analyses of CS-treated human ALI cultures have 

shown a decrease in junction protein expression (73). These studies demonstrate the importance 

of crosstalk between cilia and tight junctions, which are markers and mediators of epithelial cell 

polarization.  

Immunofluorescence observations were further confirmed by scanning electron 

microscopy (SEM; Figure 5B). SEM of cells treated with 50 mg/m3 demonstrated that cilia 

injury induced by CS occurred independent of apparent intercellular junctional remodeling. 

These results imply that general loss of apical-basal polarity does not account for all cilia 

disruption in this model. Intercellular contact disruption was most apparent by SEM in cells 

treated with 100 mg/m3, in which cells appeared disconnected from one another and the matrix. 

Some cilia loss was apparent in these cells, but more pronounced was the complete loss of 

microvili, actin-based structures, observed on the surface of other epithelial cell types. These 

data support a significant impact of CS on cytoskeletal structures. Consistent with the above 

observations, CS-induced disruption of monolayer integrity was apparent in TER measurements, 

in which there was an acute drop in TER that fully recovered in cultures treated with 50 mg/m3 

TPM (Figure 5C). Cultures treated with 100 mg/m3 had a rapid and sustained loss of resistance. 

Control cultures maintained a resistance of ~2500 Ω/cm2 over the entire experiment. TER 

demonstrated a threshold effect, in which the pseudostratified epithelium either recovered to 

control levels, or resistance was completely lost without intermediate resistance measurements 

by 24 h following CS exposure. These data confirmed the time and dose dependent changes in 

intercellular contacts, and the recovery of intercellular contacts further demonstrated that CS-

induces a highly regulated change in the nature of intercellular contacts.  

Quantification of total ciliated cells remaining 24 h after CS exposure was determined by 

counting the number of acetylated α-tubulin cilia stained cells as normalized to total cells 

determined by counting nuclei in each field (Figure 5D). Based on these data, CS caused a dose 

dependent decrease in the percentage of ciliated cells; however, this method was not sensitive to 

changes in cilia length and number per cell. These data over accentuate changes in ciliated cell 

numbers caused by cell sloughing and failed to detect more subtle CS-induced cilia changes. 
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These data provide insights into the major morphological changes and regulated responses of 

epithelial cells exposed to CS. 

 

 

 

Figure 5. Acute exposure of MTEC cultures to CS disrupts intercellular contacts and induces cilia 
shortening and loss. A) ALI cultures were treated with CS at 100 mg/m3 TPM, fixed at the indicated times 
and then stained for nuclei (blue, Hoescht), F-actin (green, Alexa-488 conjugated phalloidin) and cilia (red, 
acetylated α-tubulin). Epifluorecence images were acquired at different focal planes of the same field at 
100X. (black arrows-disrupted intercellular contacts, white arrows- ciliated cells, white arrow heads-
shortened/injured cilia) B) MTEC cultures 24 h after treatment with the indicated CS TPM (mg/m3) were 
analyzed by SEM. (black arrows-disrupted intercellular contacts, white arrow-ciliated cells, white arrow 
heads-shortened/injured cilia, s-substrate; Bar=10 μm) C) Epithelial integrity was monitored by measuring 
TER at the indicated times after CS exposure. D) Percentage of ciliated cells was determined by 
quantifying the number of ciliated cells for total number of nuclei in 5-10 fields. TER and ciliated cell 
measures were assessed in 6 independent experiments and results are presented as the mean ± SE and 
*p<0.05 by student’s unpaired t test. 
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4.3 CS-INDUCED CELL DEATH IN MTEC CULTURES 

Cytotoxicity was assessed in MTECs treated with CS by assaying lactate dehydrogenase (LDH) 

activity in the basal media (Figure 6A). LDH activity was not detected in control cultures and 

cultures treated with 50 mg/m3 TPM, while an average of 700 mU of LDH activity was detected 

in cultures treated with 100 mg/m3. To correlate the levels of LDH activity to the proportion of 

cells undergoing late and early apoptosis, cells were trypsinized from the transwell membranes 

and collected with all detached cells and subjected to flow cytometry for the apoptotic indices, 

Annexin V (AV) and propidium iodide (PI) (Figures 6B & C). AV positive PI negative cells 

were considered early apoptotic cells and AV positive PI positive are cells were considered late 

apoptotic cells. While apoptotic cells were generally rare in the control MTEC cultures, the harsh 

conditions required for epithelial cell disassociation caused a marked increase in the cell death 

response; however, the difference between control and 50 mg/m3 TPM treated cells was not 

significantly different supporting the findings of the LDH assay. In contrast, the majority of cells 

treated with 100 mg/m3 entered either early apoptosis (~50%) or late apoptosis (~40%) (Figure 

Figure 6. Cytotoxicity induced by acute CS-exposure in MTEC 
cultures. A) LDH activity was assayed in the basal media 
following CS treatment with 50 or 100 mg/m3 TPM. Data are 
presented as the mean ± SE of three independent experiments; 
p<0.05. B) Twenty-four hours after CS exposure apoptosis was 
assessed by AV/PI staining and flow cytometry. C) Percentage of 
viable cells normalized to the control determined by AV and PI 
staining and flow cytometry. Flow cytometry results are the mean 
± SE of three independent experiments and statistical significance 
was assessed by one-way ANOVA with Bonferroni post test; 
**p<0.01 & ***p<0.001. 
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6B). The percentage of viable cells, Annexin V and PI negative, was determined relative to 

controls. Viability was maintained in cells treated with 50 mg/m3, while less than 15% of the 

cells were viable 24 h following exposure to 100 mg/m3 TPM (Figure 6C). These data indicate 

that this model is ideal for studying the effects of both subtoxic and toxic doses of mainstream 

CS on highly differentiated MTEC cultures. 

4.4  A CHRONIC MODEL OF CS TREATMENT 

To recapitulate the effects of chronic exposure to CS in the MTEC cultures, cells were treated 

with 50 mg/m3 for 10 min once a day over the course of 3 d and cultures were harvested 24 h 

after each smoke treatment. The morphology of the cells was again assessed by confocal 

microscopy at each time point after staining for nuclei, F-actin, and acetylated α-tubulin (Figure 

7A). There was a time dependent disruption of cilia as cells treated for multiple days appear to 

have fewer and shorter cilia by this analysis; however, intracellular contact disruption was only 

observed following CS treatment for 3 d, when large intercellular gaps became apparent. This 

observation was corroborated by loss of TER in the cultures treated with 50 mg/m3 on the third 

day (Figure 7B). While quantification of the percentage of ciliated cells after smoking is not a 

sensitive measure of CS-induced cilia shortening and loss, there was a statistically significant 

decrease in ciliated cells following 3 d of CS treatment (Figure 7C). Cytotoxicity over the 

multiple days of CS exposure was determined by measuring the LDH activity in the basal media 

(Figure 7D). LDH activity was not detected in control cells or cells exposed to CS for one and 

two days; however, a significant increase in LDH activity was detected 24 h after the third 

smoke exposure. In both the single and chronic CS exposures ciliated cell loss was only 

significant with the induction of cell death. These data present strong evidence for the role of 

epithelial cell sloughing in CS-induced ciliated cell loss, and also suggest that ciliated cells are 

more susceptible to CS-induced injury. These data are consistent with the basal cell population, 

which is protected underneath the ciliated and nonciliated cells, playing a critical role in re-

epithelialization following desquamation (290, 291).  
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Figure 7. Cilia loss, intercellular contact disruption and cytotoxicity are observed following 
multipule doses of CS at 50 mg/m3 TPM. A) Confocal analysis of MTEC culture z-sections stained 
for nuclei (blue, Hoescht), F-actin (green, Alexa488-conjugated phalloidin) and cilia (red, acetylated 
α-tubulin). (arrows-cilia, arrow heads-shortened/injured cilia, double arrows- disrupted intercellular 
contacts. B) TER was measured prior to CS exposure and then 24 h following CS exposure. C) Loss 
of ciliated cells in the MTEC cultures was observed following three continuous days of CS 
treatment. D) Cytotoxicity was assessed by measuring LDH activity in the basal media 24 h after CS 
exposure. All data are presented as the mean ± SE with statistical significance determined by 
student’s unpaired t test; *p<0.05 & **p<0.01.  
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5.0  RESULTS- EFFECTS OF CS ON AUTOPHAGY 

5.1 CS-INDUCED ACCUMULATION OF AUTOPHAGOSOMES IN MTEC 
CULTURES 

To investigate the effects of CS on autophagy in the respiratory epithelium, TEM was used to 

visualize autophagic structures in ciliated cells of MTEC cultures 24 h following CS treatment 

(Figure 8A). There was an increase in autophagosomes in cultures treated with 50 and 100 

mg/m3 TPM. The cells treated with the sublethal CS dose contained both autophagosomes and 

autolysosomes, while the cells treated with the acutely lethal dose appear apoptotic with an 

accumulation of autophagosomes and other vacuoles. Additionally, cultures treated with 100 

mg/m3 were completely devoid of ciliary axonemes, while the nucleating basal bodies remained 

docked at the apical surface. In order to confirm CS-induced autophagosome accumulation, 

MTEC cultures were generated from GFP-LC3B mice and treated with CS (Figure 8B & C). 

While there was a significant ~30% increase in GFP-LC3B puncta/µm2, a dose dependent 

accumulation was not observed. These imaging studies confirm that CS induces autophagosome 

accumulation in MTEC cultures. Autophagy and cell death markers were assessed by 

immunoblot analysis for LC3B II, p62, and cleaved caspase 3 (Figure 8D). Cultures treated with 

50 mg/m3 TPM had similar steady state levels of LC3B II and p62 as the control. In contrast, the 

LC3B immunoblot showed a rapid accumulation of LC3B II in cultures treated with 100 mg/m3 

TPM, which preceded induction of cell death as assessed by production of cleaved caspase 3. 

Furthermore, high molecular weight p62 positive aggregates were produced in cultures treated 

with 100 mg/m3 TPM. These SDS-insoluble aggregates appear in autophagy deficient cells and 

are frequently used as a marker of decreased autophagic flux (179, 224). 
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Figure 8. CS causes autophagosome accumulation in MTEC cultures. A) Autophagosomes (blue arrows) and 
autolysosomes (red arrows) accumulate in MTEC cultures treated with CS at the indicated TPM (mg/m3). 
Axonemes are completely absent in some ciliated cells treated with CS at 100 mg/m3 TPM. (a-axoneme, bb-basal 
bodies, m-mitochondria, bar=500nm). B) Representative images of MTEC cultures generated from GFP-LC3B mice 
show an accumulation of GFP-LC3 puncta. (bar=10μm) C) GFP-LC3B puncta were quantified in 10 fields at 63X 
magnification from three independent experiments and tested for significance by one-way ANOVA using 
Bonferroni post test **p<0.01, ***p<0.005. D) Autophagy and cell death markers were assessed in MTEC cultures 
by immunoblot at the indicated time points after treatment with 50 mg/m3 or 100 mg/m3 CS TPM. Cytoplasmic (I) 
and autophagosome-associated (II) LC3B bands, with apparent molecular weights  (kDa) are indicated to the right of 
the blots.  
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5.2 INDUCTION OF AUTOPHAGIC FLUX BY CS EXPOSURE IN MTEC 
CULTURES 

Steady state measurements of autophagosome accumulation and autophagy markers are unable 

to distinguish between autophagy induction and inhibition of lysosome fusion/degradation. To 

assess CS-induced changes in autophagic flux following a single treatment with 50 or 100 mg/m3 

TPM, accumulation of LC3B II and p62 were measured by immunoblot following the addition of 

the lysosome acidification inhibitor bafilomycin A1 (Figure 9A). As described previously, 

LC3B II, which coats both the inner and outer autophagic membrane, is degraded in the inner 

compartment following autophagosome lysosome fusion. The protein p62 is a target of 

autophagic degradation. Via an LC3 interaction motif, an ubiquitin binding motif and other 

protein interacting motifs, p62 selectively recruits other proteins for autophagic degradation. 

This activity of p62 is generally considered a complementary mechanism to the proteosomal 

pathway for the removal of ubiquitinated proteins. While control cultures and cultures treated 

with 50 mg/m3 TPM had a similar rate of LC3B II accumulation, LC3B failed to accumulate in 

cells treated with 100 mg/m3 TPM. These data indicated that overall flux was not changed in 

subtoxic CS exposure compared to control cultures, while flux is reduced in cultures in which 

cell death is acutely induced. The decrease in LC3B protein following bafilomycin A1 treatment 

likely reflected overall repressed transcriptional activity at this lethal dose of CS. The high basal 

level of autophagy in the control cells may be an artifact of the cell culture system, reflecting the 

surplus of nutrients available to these cells. Since the MTEC cultures are highly confluent, 

differentiated, and not highly proliferative, excess nutrients in the absence of proliferation may 

cause the cells to have high anabolic and catabolic activity, of which autophagy may play a 

critical role. In contrast to the rate of LC3B II accumulation by bafilomycin A1, p62 

accumulation was augmented in the cells treated with 50 mg/m3 TPM compared to control. The 

monomeric and SDS-insoluble p62 positive bands were both enhanced by CS exposure. 

Consistent with LC3B flux analysis, treatment with 100 mg/m3 TPM inhibited selective 

autophagic flux, and induced acute cytotoxicity marked by an accumulation of autophagosomes, 

LC3B II, and SDS-insoluble p62 by immunoblot (Figure 8D & 9A).  

Since autophagy is dependent upon ATP and mitochondria are particularly vulnerable to 

the oxidative stress caused by CS, ATP levels were measured in the MTEC cells following CS 

exposure to determine if lack of intracellular ATP could account for the block in autophagic 
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activity (Figure 9B). While there was a time dependent drop in cellular ATP, the kinetics of this 

drop were much slower and not significant compared to the acute block in autophagic flux 

observed with 100 mg/m3 TPM. These data indicate that the block in autophagic activity caused 

by lethal CS treatment is not a consequence of inadequate energy availability.  

To confirm these findings autophagic flux was also assayed in the multiday model of CS 

treatment using chloroquine (CQ), which also prevents lysosome acidification (Figure 9C). 

Consistent with the single dose studies LC3B II turnover was not altered, while p62 turnover was 

enhanced by CS treatment. The SDS-insoluble p62 positive aggregates appear with CQ treatment 

in the CS treated cells, which suggests that these aggregates are produced as a result of CS 

exposure and are efficiently cleared by autophagy. However, p62 is a target of the oxidative 

stress transcription factor Nrf-2, and CS-induced p62 transcription may increase the p62 

available for turnover and thereby contribute to the apparent increase in autophagic flux 

determined by this marker (188, 189, 191, 193, 292). These in vitro studies suggest that 

Figure 9. Autophagic flux is regulated by CS in a dose 
and time dependent manner in MTEC cultures.  
A) Representative immunoblot analysis of cultures treated 
with bafilomycin A1 (100 nM) in the basal media for the 
indicted times following CS exposure. B) Intracelluar ATP 
was assayed at the indicated time points following exposure 
to a single dose of CS of either 50 or 100 mg/m3 TPM. 
There was not a statistically significant difference in ATP 
levels between treatment groups at any of the time points 
assayed. C) Representative immunoblot data of MTEC 
cultures exposed to 50 mg/m3 CS and on the indicated day 
of harvest were treated with CQ (25 uM) in the basal media 
approximately 10 min after the smoke treatment and 
harvested 3 h later. Cytoplasmic (I) and autophagosome-
associated (II) LC3B bands, with apparent molecular 
weights  (kDa) indicated to the right of the blots. 
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autophagic flux, particularly selective autophagic flux, is activated by CS in two different models 

of subtoxic, 50 mg/m3 TPM CS treatment. These data also indicate that lethal doses of 100 

mg/m3 TPM CS cause autophagosome accumulation associated with decreased autophagic flux, 

which is independent of a loss in cellular ATP and precedes detection of cell death markers.  

5.3 INDUCTION OF AUTOPHAGIC FLUX BY CS IN VIVO 

To validate the in vitro findings of the MTEC cultures treated with CS, mice were treated with 

CS for 1 wk or 2 mo and assessed for autophagic markers. Mice were exposed to CS 5 d/wk for 

approximately 2 h a day in a total body box in which the TPM was between 150 and 200 mg/m3. 

TEM analysis of the tracheal epithelium of mice treated for 1 wk with CS contained ciliated cells 

which recapitulated the phenotypes observed in both the 50 and 100 mg/m3 TPM treated MTEC 

cultures (Figure 10A). While the majority of cells contained autophagosomes and appeared 

viable as would approximate the sublethal treatment with 50 mg/m3, an occasional apoptotic cell 

was observed that resembled the cells in the MTEC cultures treated with 100 mg/m3. In these 

apoptotic cells intercellular contacts were disrupted, basal bodies docked at the apical membrane 

were devoid of axonemes, mitochondria were swollen, the cells were filled with vacuoles and 

there was evidence of nuclear condensation. Based on this imaging analysis, the MTEC cultures 

treated with CS appear to closely approximate the effects of CS on the respiratory epithelium in 

vivo. Mice treated with CS for 1 wk or 2 mo were injected with the lysosomal protease inhibitor 

leupeptin either immediately following (t=0h) or 24 h (t=24h) after the final CS treatment and 

tissues were harvested 2 h later, in order to assess the effects of CS on autophagic flux in vivo 

(Figure 10B). LC3B accumulation in the lysosome-enriched (LE) fraction was then compared 

between control and CS treated mice by densitometric analysis. The difference in LC3B levels 

for each mouse was calculated from an LC3B standard curve and the difference in flux between 

the room air (RA), 1 wk, and 2 mo CS treated mice was determined by subtracting the mean 

basal amount of LC3 in the PBS treated mice for each treatment group form the individual values 

of the leupeptin treated mice. The difference in LC3B was then graphed to show the change in 

LC3B II turnover in the LE fraction caused by CS. There was a time dependent increase in 

autophagic flux activated by CS exposure, as the 2 mo CS mice had the most autophagic flux. 
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The LC3B II levels in the PBS treated 2 mo CS mice was lower than the RA, suggesting that 

there are fewer autophagosomes accumulating in the lung tissue of these mice with this 

treatment. Finally, CS-induced autophagy was sustained as flux was significantly increased 

whether the activity was assayed immediately after exposure or 24 h later in the 2 mo CS treated 

mice. 

 

Figure 10. CS regulates autophagic activity in vivo. A) Representative TEM images show both 
morphologically healthy and dying cells, as well as autophagosome morphology in ciliated cells of the 
tracheae of mice exposed to RA or to CS for 1 wk (arrows-autophagosomes, a-axoneme, bb-basal bodies, 
m-mitochondria, n-nucleus. Bar=500nm). B) Mice exposed to CS for 1 wk or for 2 mo were injected with 
40 mg/kg of leupeptin immediately following the last CS exposure (t = 0h) or 24 h later (t = 24h). Whole 
lungs were harvested and frozen 2 h subsequent to the leupeptin injection. Autophagic flux was assessed by 
densiometric analysis using an LC3B standard curve, following the isolation of the LE fraction. Flux was 
calculated by subtracting the average amount of LC3B II in vehicle treated mice from the amount of LC3B 
II that accumulated with leupeptin treatment (n=3-4, *p<0.05 by students unpaired t test).  
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6.0  RESULTS- EFFECTS OF CS ON AUTOPHAGIC SUBSTRATES 

6.1 EVIDENCE FOR PROTEIN AGGREGATE STRESS IN PATIENTS WITH COPD 

Recent studies have suggested that misfolded protein stress promotes proinflammatory pathways 

contributing to COPD pathogenesis (237). In one of these studies expression of mutant A1AT 

was shown to enhance inflammatory cytokine production; suggesting that this mutation may 

promote emphysematous phenotype by an additional mechanism to altering the lung protease 

balance (237, 242, 243). More recently a survey of COPD patients’ lung tissue for markers of 

UPR and ERAD, demonstrated a marked accumulation of ubiquitinated aggregates in late 

disease (237). Since protein folding may be a key molecular mechanism underlying CS-induced 

changes in epithelial cells and autophagy is a critical mechanism for protein aggregate removal, 

we investigated this pathway in human tissues. Using ProteoStat™ protein aggregation dye to 

stain protein aggregates, also called inclusion bodies, we observed an increase in cells containing 

large numbers of red staining puncta, which positively correlated with COPD severity (Figure 

11A) (293). These findings are in agreement with the recently published paper in which ubiquitin 

positive aggregates were observed in late stage COPD. Furthermore, expression of HDAC6, 

which has been implicated in efficient autophagic degradation of protein aggregates, was also 

significantly upregulated in the lungs of smokers, but was not correlated to COPD severity 

(Figure 11B). These findings suggest that pathways implicated in protein aggregate removal 

may be upregulated in smokers as a fundamental physiological response to CS. These data 

support a role for protein aggregate stress in COPD pathogenesis and suggest that inefficient 

removal of protein aggregates may be a hallmark feature of late stage disease. 
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Figure 11. Misfolded protein aggregates accumulate in late stage COPD patients and HDAC6, a 
protein critical for aggregate removal, is acutely upregulated in smokers. A) Protein aggregates 
were stained in human lung tissue using ProteoStat™ protein aggregation assay from ENZO. Protein 
aggregates (arrows) appear in both the airway and parenchyma tissue of COPD patients. Nuclei (blue) 
were stained with Hoechst. Representative confocal images acquired at 63X. B) HDAC6 expression in 
human lung tissue was determined by densiometric analysis of immunoblots. Data are mean ± SE of 4-
5 samples and statistical analysis was performed by student’s unpaired t test compared to the never 
smoker control. 
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6.2 HDAC6 DEFICIENCY PROMOTES CS-INDUCED ACCUMULATION OF 
MISFOLDED PROTEIN AGGREGATES 

To determine if CS induces misfolded protein accumulation in epithelial cells, ProteoStat™ 

protein aggregation dye was used to assay for protein aggregates in MTEC cultures treated with 

50 and 100 mg/m3 CS TPM (Figure 12A). A dose dependent induction of inclusion bodies was 

observed in these cultures, suggesting that CS is a potent inducer of misfolded protein stress. 

Since HDAC6 promotes autophagic degradation of protein aggregates and is upregulated in 

response to CS in the lung, we investigated the importance of this protein using HDAC6-/Y 

derived MTEC cultures (198, 206, 207). Consistent with these previous findings, HDAC6-/Y 

cultures contained more inclusion bodies basally and following CS treatment compared to 

controls (Figure 12A). Despite these differences, MTEC cultures generated from these mice 

appeared to have similar disruption of culture integrity following CS-treatment. There were no 

statistically significant differences in resistance in the HDAC6-/Y or HDAC6+/Y at baseline or 

following CS exposure (Figure 12B). These data indicate that this protein does not play a critical 

role in the events leading to CS induced cell-cell contact disruption. Surprisingly, immunoblot 

analysis of the MTEC cultures revealed low baseline activation of apoptosis in the HDAC6-/Y 

cultures by cleaved caspase 3 immunoblot; however, cell death following lethal treatment with 

100 mg/m3 CS TPM was slightly abrogated in these cells (Figure 12C). The simplest 

interpretation of these data would be that HDAC6 plays an as yet unknown role in CS-induced 

cell death, possibly by potentiating CS-induced autophagic cell death pathways. Consistent with 

the wildtype cultures being more injured by 100 mg/m3 CS, p62 SDS-insoluble aggregates and 

Beclin-1 cleavage associated with cell death, were more abundant in the HDAC6+/Y cells. 

Finally, since HDAC6 plays a critical role in primary cilia regulation expression of the cilia 

marker centrin-1 was also investigated in these cultures (210). While this cilia marker was 

depleted in the HDAC6+/Y cultures treated with 100 mg/m3 CS TPM, the HDAC6-/Y cells 

appeared protected. These data indicate that HDAC6 plays a critical role in cellular homeostasis 

and the removal of misfolded proteins by autophagy. While the HDAC6-/Y cells appeared 

vulnerable to cell death basally, the abrogation of apoptosis following lethal CS treatment 

suggests a specific function in the execution of CS-induced cell death.  
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Figure 12. Increased baseline cell death and misfolded protein accumulation in HDAC6-/Y MTEC 
cultures. A-C) Analysis of MTEC cultures 24 h after exposure to the indicated concentrations of CS TPM 
(mg/m3) A) Protein aggregates (red) were stained in MTEC cultures using ProteoStat™ and nuclei (blue) 
were stained with Hoechst. Representative images were selected from fields acquired at 63X by confocal 
microscopy. B) TER was measured to assess culture integrity. C) Immunoblot analysis of autophagic, 
apoptotic and cilia markers. Molecular weights (kDa) are indicated to the right of the blots. 
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6.3 EMPHYSEMATOUS CHANGES AND APOPTOTIC MARKERS ARE 
ENHANCED IN AUTOPHAGY DEFICIENT HDAC6 MICE FOLLOWING 6 MONTHS 

OF CS EXPOSURE IN VIVO 

As observed in the MTEC cultures in vitro, the HDAC6-/Y mice were also predisposed to 

protein aggregate accumulation in vivo. Protein aggregates visualized with the ProteoStatTM 

protein aggregation dye were robustly induced by CS in HDAC6-/Y mice exposed to CS for 1 wk 

(Figure 13A). 

In order to more fully elucidate the role of HDAC6 in ameliorating CS induced stress in 

vivo, mice were exposed for 2 h/d to 150-200 mg/m3 CS 5 d/wk for 6 mo. The HDAC6-/Y mice 

displayed a comparable inability to gain weight as compared to the HDAC6+/Y mice, suggesting 

that the nicotine effects on metabolism are similar in these mouse strains (Figure 13B). In the 

HDAC6+/Y mice there was a 10% increase in mean chord length and in the HDAC6-/Y mice there 

was a 13% increase in mean chord length, a morphometric indices of emphysematous airspace 

enlargement (Figure 13C). While CS induced a statistically significant increase in airspace in 

both mouse strains, the airspace enlargement was not significantly different between the two 

strains treated with CS. Consistent with this observation there was a moderate enhancement of 

apoptotic markers in the HDAC6-/Y lung homogenates compared to CS exposed HDAC6+/Y 

(Figure 22D). Autophagic activity was assessed in the mice following 6 mo of CS exposure. 

Autophagic flux was significantly decreased in the HDAC6-/Y mice exposed to CS, while there 

was not a significant difference observed between the RA and CS wildtype mice (Figure 22E). 

These are the first data demonstrating that autophagy may play a cytoprotective function in 

epithelial cells exposed to CS, in which is efficient clearance of misfolded protein aggregates is a 

potential mechanism.  
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Figure 13. HDAC6-/Y mice are autophagy deficient and moderately more susceptible to CS induced 
injury. A) Airway cells containing numerous protein aggregate puncta (red; white arrows) in mice exposed 
to CS for 1 wk were visualized using ProteoStat™ and nuclei (blue) were stained with Hoechst. 
Representative images were acquired at 63X by confocal microscopy (bar = 10 μm). B-E) Mice were 
exposed to 150-200 mg/m3 CS for 2 h/d 5 d/wk for 6 months. All data are presented as the mean ± SE and 
statistical significance was determined by using a two-way ANOVA and Bonferroni post test. B) Mice 
were weighed following 6 mo of CS exposure. C) Emphysematous changes caused by CS exposure were 
assessed by morphometric assessment of chord lengths.  D) Apoptotic markers and HDAC6 protein 
expression was assessed in mouse lung homogenates. Molecular weights (kDa) are inidcated to the right of 
the blots. E) In vivo autophagic flux was assessed in the HDAC6+/Y and HDAC6-/Y mice following 6 mo of 
CS treatment. The mice were given an i.p. injection of 40 mg/kg leupeptin or vehicle within 3 h of the final 
smoke exposure and sacrificed in parallel 2 h later. Data are densiometric analyses using a GFP-LC3 
standard curve of LC3B accumulation in lysosome enriched protein fractions, determined by subtracting 
the average amount of LC3B present in the vehicle treated mice from the amount of LC3 accumulated in 
each of the leupeptin treated animals (n = 3-5 mice per group). 
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6.4 CILIA PROTEINS AS TARGETS OF CS-INDUCED AUTOPHAGIC 
DEGRADATION 

Since CS promotes misfolding of proteins, which are degraded by proteasomal or autophagic 

mechanisms, enhanced protein turnover would be most detrimental to dynamic structures 

requiring continual protein input, such as the motile cilia of the respiratory tract. In particular, 

cilia shortening is observed even in healthily smokers, suggesting either enhanced turnover over 

of cilia proteins or what may be more likely a lack of essential building blocks (88). In order to 

determine if cilia components are targets of autophagic degradation, cilia and autophagy markers 

were assessed following CS exposure in MTEC cultures. Immunofluoresence analysis suggested 

that 50 mg/m3 promoted LC3B localization to the cilia, while 100 mg/m3 was associated with 

accumulation of autophagosome puncta (Figure 14A). Since autophagic flux was most active 

following treatment with 50 mg/m3 CS TPM, these data indicate a CS-inducible association 

between this organelle and essential autophagy proteins in a context when autophagic flux is 

enhanced. In order to more fully determine if cilia components are actually encapsulated in 

autophagosomes to be degraded by autophagy following CS treatment, subcellular fractionation 

was performed to acquire a LE fraction (Figure 14B). The cilia marker centrin-1, which was 

decreased in MTEC cultures in which cilia were significantly diminished by CS treatment, was 

primarily localized to the cytoplasmic (Cyto) cell fraction in control cells. In the cells treated 

with 50 mg/m3 a faint centrin-1 positive band appeared in the LE fraction, in which selective 

autophagic flux was active. Centrin-1 was robustly relocalized to the LE fraction following 

treatment with 100 mg/m3 CS TPM, in which CS-induced flux inhibition would be expected to 

enhance the signal of autophagic targets. These data suggest that CS induces the autophagic 

degradation of cilia components following smoke exposure, and may promote the cilia loss and 

shortening that leave smokers’ lungs vulnerable to infections that promote COPD pathogenesis. 
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Figure 14. CS enhances the colocalization and 
subcellular fractionation of cilia and autophagy 
markers. A) Confocal analysis of MTEC culture z-
sections stained for nuclei (blue, Hoechst), 
autophagosomes (green, LC3B) and cilia (red, 
acetylated α-tubulin). (arrows-colocalization of 
LC3B and acetylated α-tubulin, arrow heads- cells 
filled with autophagosomes stained by LC3B. B) 
Immunoblot analysis of whole cell (WC), 
cytoplasmic (Cyto), and lysosome enriched fractions 
(LE) for cilia, autophagosome, and lysosome markers 
following  subcellular fractionation of MTEC 
cultures treated for 24 h with the indicated dose of 
CS (mg/m3 TPM). 
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7.0  RESULTS- THE FUNCTIONAL ROLE OF AUTOPHAGY PROTEINS IN THE 

RESPONSE OF EPITHELIAL CELLS TO CS: LC3B 

7.1 LC3B REGULATES CS-INDUCED AUTOPHAGY, APOPTOSIS, AND 
EMPHYSEMATOUS AIRSPACE ENLARGEMENT 

 

LC3B-/- mice were used to investigate the role of this autophagy protein in the response of 

epithelial cells to CS. MTEC cultures generated from LC3B-/- mice were exposed to 50 and 100 

mg/m3 CS TPM and assessed for autophagy and apoptotic markers (Figure 15A).  Consistent 

with previous findings LC3B promotes CS-induced cell death, as LC3B-/- MTEC cultures had 

less active cleaved caspase 3 and proapoptotic Bax cleavage fragment accumulation by 

immunoblot compared to MTEC cultures generated from wildtype mice (6). The enhanced 

accumulation of p62 SDS-insoluble protein aggregates in the LC3B-/- MTEC cultures is evidence 

that autophagic flux is defective in these mice. To further evaluate the role of LC3B in the 

cellular response to CS, emphysema development was evaluated in LC3B-/- mice, wildtype 

littermates (LC3B+/+), or C57BL/6 mice exposed to CS for 3 mo. Following this exposure, 

airspace enlargement, apoptosis, and autophagy markers were assessed in the lung. Consistent 

with previous observations, C57BL/6 wildtype mice displayed marked increases in lung airspace 

after 3 mo of CS exposure relative to RA controls as determined by comparative histological 

examination and mean linear intercept (Lm) measurements (Figure 15B) (294, 295). Similarly, 

LC3B+/+ wildtype littermate mice exposed to CS for 3 mo displayed marked increases in lung 

airspace after CS exposure relative to air-treated controls. In contrast, airspace was not increased 

in LC3B-/- mouse lungs by CS exposure relative to air-treated controls; however, the LC3B-/- 

mice exhibited significant basal airspace enlargement relative to wildtype littermate mice by Lm 

(Figure 15B). 
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 Airspace enlargement caused by CS exposure in LC3B-/- and wildtype mice was also 

assessed separately by measuring the equivalent diameter of alveolar airspaces using a 

previously published automated image processing algorithm (296). Consistent with the Lm 

measurements, the equivalent diameter of CS-exposed LC3B+/+ mice (31.5 ± 1.5 µm) was 

significantly greater than air-treated LC3B+/+ mice (27.9 ± 1.4 µm; p=0.001), whereas the 

equivalent diameter of CS-exposed LC3B-/- mice (30.7 ± 1.8 µm) was not different from the RA 

LC3B mice (29.0 ± 3.1 µm). The equivalent diameter of air-treated LC3B-/- mice was greater 

than that of the air-treated LC3B+/+ mice; however, the increase was not statistically significant.  

 To investigate lung cell death, apoptotic indices were measured, including cleaved 

caspase 9 and Bax/Bcl-2 ratio (Figure 15C). These markers were significantly increased in the 

lungs of the LC3B+/+ mice by CS exposure, but were not increased in the CS-exposed LC3B-/- 

mice. Furthermore, CS induced the accumulation of autophagic vacuoles (AVs) as determined by 

TEM, in the lungs of wildtype (LC3B+/+) mice (Figure 15D). In contrast, a reduced number of 

AVs were detected in the lung after CS exposure in the LC3B-/- mice. These data suggest that 

LC3B promotes CS-induced cell death both in vitro and in vivo.  
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Figure 15. LC3B regulates CS-induced autophagy and apoptosis in vitro and in vivo. A) MTEC 
cultures derived from wildtype C57BL/6 and LC3B-/- mice were assessed for autophagic and apoptotic 
markers 24 h after exposure to 50 or 100 mg/m3 CS TPM. B-E)  Wildtype C57BL/6, LC3B+/+ or LC3B-/- 
mice were exposed to chronic CS of RA for 3 mo (C57BL/6: n = 9 RA & n = 8 CS, LC3B+/+: n = 6 RA & n 
= 9 CS, LC3B-/- n = 9 RA & n = 9 CS). B) Quantification of MLIs (*P<0.01, by student’s unpaired t test) 
C) Densitometric analysis of immunoblots generated from lung protein samples for the apoptotic markers 
cleaved caspase 9 and the ratio of proapoptotic Bax to antiapoptotic Bcl-2. D) Representative TEM images 
of mouse lung sections. (Arrows: autophagic vacuoles; AVs) E) TEM images were scored for number of 
AVs. The data are represented as AVs per 100 μm2, n=20 representative images of each group; *p<0.05 by 
student’s unpaired t test. 
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7.2 LC3B INTERACTS WITH CAVEOLIN-1 AND FAS TO REGULATE CSE-
INDUCED AUTOPHAGY AND APOPTOTIC CELL DEATH 

To explore the mechanisms by which LC3B regulates CS-induced epithelial cell apoptosis, 

immunoprecipitation experiments were performed to identify apoptosis-related factors that 

interact with LC3B. In mammalian cells, the extrinsic apoptotic pathway responds to stimuli via 

activation of death receptor family proteins (297, 298). Stimulation with aqueous CS extract 

(CSE) induced the extrinsic apoptotic pathway in lung epithelial (Beas-2B) cells, involving 

death-inducing signaling complex (DISC) formation, caspase 8 activation, and Bax activation (8, 

60). We examined whether LC3B can interact with mediators of this pathway. LC3B interacted 

with Fas under basal conditions in Beas-2B cells whereas this interaction was rapidly disrupted 

after exposure to CSE (Figure 16A & B). Confocal imaging revealed that LC3B and Fas 

colocalized in the plasma membrane under basal conditions, whereas the merged complex of 

LC3B and Fas at the cell membrane was disrupted by CSE treatment (Figure 16B).  

Fas-mediated apoptosis involves the association of Fas with accessory molecules (i.e. 

procaspase 8, FADD). Recent studies show that Fas can localize to lipid rafts in the plasma 

membrane (60, 299). We therefore examined whether LC3B localizes to lipid rafts. Subcellular 

fractionation experiments demonstrated that LC3B and Fas also localized to low-density 

caveolin-1 (Cav-1) containing fractions under basal conditions in Beas-2B cells and lung 

fibroblasts (Figure 16C). Cav-1 serves as a structural component of caveolae, which are plasma 

membrane domains rich in cholesterol and glycosphingolipids. As Cav-1 interacts with several 

membrane-associated signaling proteins, the role of this protein in mediating the LC3B-Fas 

interaction at the plasma membrane was investigated (300). Cav-1, under basal conditions, 

interacted with both LC3B and Fas by co-immunoprecipitation assays (Figure 16D). 

Interestingly, both Cav-1-Fas and LC3B-Cav-1 complexes dissociated after CSE treatment. 

These data provide novel evidence for LC3B, Cav-1 and Fas interacting at lipid rafts in the 

plasma membrane, and the regulated disruption of this interaction by CS. 
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7.3 LC3B REGULATES FAS-MEDIATED APOPTOSIS IN CSE-TREATED BEAS-2B 
CELLS THROUGH INTERACTIONS WITH CAV-1 

In order to probe the effect of LC3B on Cav-1 interactions with Fas, Beas-2B cells were treated 

with LC3B siRNA. LC3B knockdown enhanced the basal interaction of Fas with Cav-1 (Figure 

17A). Furthermore, Beas-2B cells transfected with LC3B-siRNA exhibited reduced DISC 

formation and Bax activation in response to CSE relative to control siRNA treated cells (Figure 

17A).  

Figure 16. LC3B-Cav-1-Fas interactions regulate CSE-induced autophagy and apoptotic cell death. 
A) Representative immunofluorescence images of LC3B and Fas staining in Beas-2B cells. Colocalization 
is indicated by yellow staining in the merged images. B) Beas-2B cells were treated with 10% CSE for the 
indicated times and the interaction between LC3B and Fas was assessed by immunoprecipitation with 
LC3B and immunoblotting for Fas. β-actin served as the loading standard. C) Beas-2B  and wildtype 
fibroblasts were fractionated by sucrose gradient ultracentrifugation and the fractions were immunoblotted 
for Fas, LC3B and Cav-1. D) Beas-2B cells were expoed to 10% CSE for the indicated times and the 
lysates were subjected to immunoprecipitation with LC3B and Fas antibodies, and analyzed by immunoblot 
for Cav-1. β-actin served as the loading standard.  
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Proteins that bind Cav-1 typically contain a canonical Cav-1-binding motif (CBM), 

ФXФXXXXФ or ФXXXXФXXФ, where Ф is an aromatic amino acid and X is any 

nonaromatic amino acid. Proteins without such motifs are also capable of binding to Cav-1 

(301). The primary structure of LC3B contains a sequence, 108FLYMVYASQETF109 , which is a 

potential CBM. Amino acid substitution mutants of LC3B at position Y113 were created to 

examine whether this sequence mediates the LC3B-Cav-1 interaction. Interestingly, the Y113A 

mutation abolished the basal LC3B-Cav1 interaction (Figure 17B). Similar to observations made 

with LC3B-siRNA, transfection with the LC3B Y113A enhanced Cav-1-Fas interaction (Figure 

17B). Overexpression of wildtype LC3B in Beas-2B cells markedly augmented cell death in 

response to CSE treatment. By comparison, overexpression of LC3B Y113A also induced cell 

death, although to a lesser degree than the WT LC3B construct (Figure 17C). These experiments 

suggest that LC3B promotes CSE-induced cell death in part through a mechanism dependent on 

the Cav-1-binding motif.  

To further explore the mechanism by which Cav-1 facilitates Fas and LC3B interaction, 

we confirmed that LC3B binding to Cav-1 was dependent upon the Cav-1 scaffolding domain 

(CSD), which mediates interactions with the CBMs of other proteins. The interaction between 

LC3B and Cav-1 was assessed by co-immunoprecipitation following transfection of Beas-2B 

cells with either wildtype Cav-1 or Cav-1 cells bearing a mutated CSD (ΔCSD) (Figure 17D). 

Cells transfected with the Cav-1 ΔCSD showed decreased interaction between LC3B and Cav-1 

compared to cells transfected with WT Cav-1. Fas binding was not affected by the ΔCSD 

mutation. These data confirm the importance of the LC3B CBM and Cav-1 CSD domains for 

mediating the interaction between these two proteins. While Fas expression was slightly 

increased in Cav-1-/- lung fibroblasts, the LC3B Fas interaction was diminished, suggesting an 

intermediate role for Cav-1 in complex formation (Figure 17E).  

Since Fas-Cav-1 binding was not affected by expression of the ΔCSD mutation, 

additional sites of interaction were explored. Cav-1 has three sites of palmitoylation in proximity 

to the C-terminus. The Cav-1-Fas interaction was disrupted in Beas-2B cells treated with 2-

bromopalmitate, a general palmitoylation inhibitor (Figure 17F). Fas is also palmitoylated on 

cysteine 199, this modification was required for mediating the Fas-Cav-1 interaction, as 

transfection with mutant Fas C199S abolished the interaction (Figure 17G). Surprisingly, Fas 

siRNA diminished the Cav-1-LC3B interaction. Cav-1 appears to mediate the interaction 
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between Fas and LC3B; however, Fas promotes LC3B binding to Cav-1, while LC3B hinders 

Fas binding to Cav-1. These data suggest a complicated interdependence of all three factors in 

complex formation and suggest that loss of LC3B may enhance survival by increasing the Fas 

Cav-1 interaction (Figure 17H).  
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Figure 17. Mapping the LC3B-Cav-1-Fas interaction. A) Beas-2B cells were pretreated with control siRNA (C-
siRNA) or LC3B siRNA for 48 h and then treated with 10% CSE for the indicated times. The lysates were then 
subjected to the indicated immunopercipitation and immunoblot analysis. B) Beas-2B cells were transfected with 
wildtype LC3B or Y113A LC3B for 48 h and the interaction between LC2B-Cav-1-Fas was then assessed by 
immunopercipitation and immunoblot analysis. C) Beas-2B cells were transfected with vector, wildtype LC3B, or 
Y113A LC3B for 48 h and viability was then assessed by MTT assay after treating the cells with the indicated 
concentration of CSE for an additional 24 h.  Data represent mean ± SD; *p<0.05 vs corresponding vector control 
values; #P<0.05 vs corresponding values for wildtype-LC3B overexpression. D) Wildtype Cav-1 and ΔCSD Cav-1 
expression clones were transfected into Beas-2B cells for 36 h and then the cells were exposed to 10% CSE for 1 h. 
The LC3B-Cav-1-Fas interaction was then assessed by immunopercipitation and immunoblot. The data are 
representative of three independent experiments. E) Cell lysates from wildtype or Cav- -/- fibroblasts treated with 
10% CSE for the indicated times were subjected to immunopercipitation for LC3B and immunoblot of Fas. A 
nonspecific IgG band served as the standard. Cav-1 and Fas expression was assessed by immunoblot in the wildtype 
and Cav-1-/- fibroblasts. F) Beas-2B cells were treated with 100 μM 2-bromopalmitate (2-Br), a general 
palmitoylation inhibitor, or DMSO for one hour and subjected to coimmunoprecipitation assays for Cav-1-Fas 
interaction (left). Beas-2B  cells were transfected for 36 h with wildtype Fas and C199S  Fas. The cells were 
exposed to 10% CSE for 1 h and subjected to immunoprecipitation and immunoblot analysis for Fas-Cav-1 
interaction (Right). Representative immunoblot data from three independent experiments. G)  Beas-2B cells were 
pretreated with CTL siRNA or Fas siRNA for 48 h, followed by exposure to 10% CSE for the indicated times. The 
lysates were subjected to immunoprecipitation and immunoblot analysis. H) A schematic of the proposed LC3B-
Cav-1-Fas complex, in which the Fas interaction with Cav-1 is dependent upon Fas palmityolation at cystein 199, 
while LC3B interacts through the Cav-1 scaffold domain (CSD). 
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7.4 LC3B INTERACTING PROTEIN, CAV-1, SUPPRESSES CSE-INDUCED 
AUTOPHAGY AND APOPTOTIC CELL DEATH IN BEAS-2B CELLS  

The role of Cav-1 in pulmonary disease remains controversial, since Cav-1 has been shown to 

play protective and deleterious functions in various models of lung disease (302-306). 

Furthermore, the role of Cav-1 in COPD pathogenesis remains poorly understood. Cav-1 appears 

to regulate CS-induced autophagy and cell death. In order to more fully elucidate the role of 

Cav-1 in this these processes, Beas-2B cells were transfected with Cav-1 siRNA and treated with 

CSE to determine the effects on autophagic and apoptotic markers (Figure 18). Cav-1 siRNA 

enhanced the accumulation of AVs observed in Beas-2B cells basally and following CSE 

treatment (Figure 18A). Autophagosome accumulation was also apparent in Cav1-siRNA 

treated cells by LC3B II immunoblot (Figure 18B). Cav-1 siRNA also enhanced CSE induced 

markers of cell death including cleaved caspase 3 and PARP cleavage in Beas-2B cells (Figure 

18C). Consistent with induction of apoptotic markers, cell viability in response to increasing 

concentrations of CSE was significantly decreased in Cav-1 siRNA treated cells compared to 

controls (Figure 18D). These data suggest that Cav-1 is an important negative regulator of both 

autophagy and apoptosis. 

Figure 18. Cav-1 suppresses CSE-induced autophagy and apoptotic cell death in vitro. A-D) Cells were 
transfected with siRNA for 48 h and treated with the indicated concentrations of CSE for 24 h. A) AVs were 
quantified by TEM. The data are represented as AVs per 100 μm2 with n=20 representative images for each 
group. Data are presented as mean ± SD; *p < 0.05 by student’s unpaired t test. B) Immunoblot analysis of LC3B 
and Cav-1 following siRNA treatment. Β-actin was the loading standard. C) Apoptotic markers were assessed in 
Beas-2B cells treated with Cav-1 siRNA following CSE exposure. D) The effects of Cav-1 knockdown on cell 
viability was determined by MTT assay following treatment with the indicated concentrations of CSE.  
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7.5 LC3B INTERACTING PROTEIN, CAV-1, REGULATES CS-INDUCED 
AUTOPHAGY AND APOPTOSIS IN VIVO  

To further elucidate the role of Cav-1 in mediating cellular responses to CS, Cav-1-/- and 

wildtype mice were exposed to CS for 3 mo. Consistent with the in vitro findings, CS-exposed 

Cav1-/- mice exhibited significantly higher levels autophagic vacuole accumulation by TEM and 

LC3B II immunoblot (Figure 19 A & B). Cav-1-/- mice also exhibited significantly higher levels 

of apoptosis, as evidenced by activation of caspase 9 in the lungs following CS exposure (Figure 

19C). Although the Cav-1-/- mice had basal lung airspace enlargement, they were more 

susceptible to CS-induced lung injury and displayed a further enlargement of airspace (Figure 

19D). These data indicate that Cav-1 is a critical regulator of CS-induced autophagy and 

apoptosis in vivo. 

Figure 19. Cav-1 regulates CS-induced autophagy and apoptosis in vivo. A-D) Wildtype C57BL/6 or Cav-1-/- 

mice were exposed to CS for 3 mo (n = 5 for each group). A) AVs were quantified per area from 20 representative 
TEM images for each group. B) Densiometric analysis of immunoblots quantifying the LC3BII/LC3BI ratio in 
mouse lung tissue. C) Apoptotic marker, cleaved caspase 9, quantification by immunoblot densitometry from mouse 
lung tissue samples. D) MLI morphometric analysis of airspace enlargement in mouse lungs. Data represented as 
mean ± SD; *p < 0.05 by student’s unpaired t test. 
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8.0  RESULTS- THE FUNCTIONAL ROLE OF AUTOPHAGY PROTEINS IN THE 

RESPONSE OF EPITHELIAL CELLS TO CS: BECLIN-1 

8.1 BECLIN-1 PROMOTES CS-INDUCED DISRUPTION OF INTERCELLULAR 
INTERACTIONS AND CILIATED CELL LOSS 

To better understand the role of autophagy in the response of airway epithelial cells to CS, 

MTEC cultures were generated from Beclin-1+/- mice. Morphological changes were assessed by 

fluorescence microscopy using F-actin and acetylated α-tubulin as markers. While the cells 

appeared morphologically similar following treatment with 50 mg/m3, Beclin-1+/+ cells treated 

with 100 mg/m3 showed marked disruption of intercellular contacts and cilia compared to the 

Beclin-1+/- cells (Figure 20A). SEM confirmed the immunofluorescence observations, in which 

the untreated control cells appear grossly similar in the Beclin-1+/+ and Beclin-1+/-, suggesting 

that Beclin-1 does not play a critical role in epithelium and/or cilia formation and maintenance. 

There was clear protection of the epithelial cell layer in the Beclin-1+/- treated with 100 mg/m3 

(Figure 20B). In addition, there was a significantly higher percentage of ciliated cells that 

survive following 100 mg/m3 CS exposure in the Beclin-1+/- MTEC cultures (Figure 20C). Since 

autophagic flux was acutely inhibited following CS treatment with 100 mg/m3 in MTEC 

cultures, these data suggest that Beclin-1+/- cells may be protected from CS-induced injury by a 

mechanism independent of autophagic degradation.  
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Figure 20. MTECs derived from Beclin-1+/- mice are protected from CS-induced injury. A) Disruption 
of intercelluar contacts and cilia was monitored by epifluoresence imaging of cells stained for nuclei (blue; 
Hoescht 33258), cytoskeletal F-actin (green, phalloidin conjugated to Alexa-488), and cilia (red, acetylated 
α-tubulin). Images were acquired at 100X in the same field at different focal planes. B) Scanning electron 
microscopy was implemented to directly visualize the apical surface of the epithelial layer following 
treatment with 50 and 100 mg/m3 TPM (bar=10um). C) The percentage of ciliated cells in the Beclin-1+/+ 
and Beclin-1+/- was determined by quantifying ciliated cells to total nuclei in 5-10 random fields from 4 
independent experiments. Statistical significance was determined by two-way ANOVA *p<0.05 
 

Beclin-1+/+ Beclin-1+/- 
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8.2 BECLIN-1 PROMOTES CS-INDUCED AUTOPHAGOSOME ACCUMULATION 

TEM was implemented to assess the cellular morphology and autophagic response of Beclin-1+/- 

compared to Beclin-1+/+ MTEC cultures. Representative TEM images demonstrate that overall 

cellular morphology and cilia formation was similar in the cultures (Figure 21A). From these 

analyses double membrane autophagosomes containing lipid material reminiscent of lamellar 

bodies was observed in both types of cultures basally. In the Beclin-1+/+ cells 50 mg/m3 CS TPM 

treatment caused an accumulation of large aggregates composed primarily of these lamellar 

bodies. As previously demonstrated, 100 mg/m3 caused cell death associated with autophagic 

vacuole accumulation and loss of ciliary axonemes in the Beclin-1+/+ MTEC cultures (Figure 8A 

& Figure 21A). In contrast, the Beclin-1+/- MTEC cultures were resistant to cell death and were 

not characterized by an accumulation of numerous cytoplasmic vacuoles or cilia loss. 

Quantitative analysis of the TEM images indicated that autophagosomes were equally prevalent 

in the Beclin-1+/+ and Beclin-1+/- cultures in control conditions, suggesting that basal formation 

of autophagosomes is not significantly altered by heterozygous deletion of this critical autophagy 

protein (Figure 21B). However, CS-induced accumulation of autophagosomes is reduced in the 

Beclin-1+/- cultures following treatment with 50 mg/m3 CS TPM. These data confirm that Beclin-

1 is not critical for epithelial cell morphology or cilia formation. While basal autophagosome 

formation was similar in both Beclin-1+/+ and Beclin-1+/- cultures, there is repression of 

autophagosome accumulation in the Beclin-1+/- cells following CS exposure.  
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Figure 21. Beclin-1+/- MTEC ciliated cells are resistant to CS induced autophagosome 
accumulation. A) Representative TEM images of MTEC cultures 24 h after exposure to the indicated 
concentration of CS (red arrows-autophagosomes, black double arrows- large aggregation of lipid-based 
materials, a-axoneme, bb-basal bodies, m-mitochondria, n-nucleus, Bar = 500 nm).  B) Autophagosomes 
were quantified in cells exposed to RA or 50 mg/m3 CS TPM from 20 images acquired at 6500X. Data 
are presented as the mean number of autophagosomes per unit area ± SE. Statistical significance *p<0.05 
was determined by two-way ANOVA and Bonferroni post test. 
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8.3 BECLIN-1 PROMOTES CS-INDUCED CELL DEATH 

To further characterize and confirm the nature of Beclin-1+/- MTEC culture protection from CS-

induced injury, the resistance was measured 24 h after exposure to 50 and 100 mg/m3 CS TPM. 

Consistent with the imaging data the integrity of the epithelial layer was significantly protected 

in the Beclin-1+/- MTEC cultures (Figure 22A). CS-induced cytotoxicity was determined by 

measuring LDH in the basal media (Figure 22B). There was significantly less LDH activity, 

suggesting that the Beclin-1+/- MTEC are resistant to CS induced cell death. Immunoblot analysis 

of protein samples generated from the cultures treated with 50 and 100 mg/m3 CS TPM and 

harvested 24 h later was used to assess autophagic, apoptotic, oxidative and cilia markers 

(Figure 22C). Active, cleaved caspase 3 was not detected in any of the Beclin-1+/- cultures 

treated with CS, while 100 mg/m3 induced caspase 3 cleavage in the wildtype cells, thereby 

corroborating the findings of the LDH assay. The autophagic marker p62 demonstrated the usual 

SDS-insoluble high molecular weight aggregate in the wildtype culture treated with 100 mg/m3. 

Surprisingly these high molecular weight bands, which usually indicate inhibited autophagic 

flux, were not enhanced in the Beclin-1+/- cultures. Beclin-1 protein expression was moderately 

reduced in Beclin-1+/- cultures; however, the appearance of a Beclin-1 reactive band at ~35 kDa 

in highly apoptotic Beclin-1+/+ cultures is noteworthy. A C-terminal fragment of Beclin-1 at this 

molecular weight was previously implicated as serving a proapoptotic function at the 

mitochondrial membrane (138, 268-270, 307). Since Beclin-1 is a BH3-only domain containing 

protein that interacts with Bcl-2, reduced levels of Beclin-1 protein may alter and potentially 

enhance the antiapoptotic role of Bcl-2 in the CS exposed cells (308, 309). Consistent with this 

postulation, in cultures treated with 100 mg/m3 CS TPM Bcl-2 protein expression is decreased in 

Beclin-1+/+ cultures, while this protein is increased in the Beclin-1+/- cultures. Finally, autophagy 

regulates the antioxidant Nrf-2 pathway, and many studies have noted enhanced antioxidant 

capacity with autophagy deficiency (224, 310). In support of these prior findings, Nrf-2 appears 

to be slightly upregulated in the Beclin-1+/- MTEC cultures. Finally, consistent with 

quantification of ciliated cells, the basal body protein centrin-1 expression is decreased in the 

highly apoptotic Beclin-1+/+ cultures, while the protein steady-state protein expression is not 

altered in the Beclin-1+/- cultures. These analyses suggest that the Beclin-1+/- MTEC cultures are 

protected from CS-induced injury at many levels and may employ a number of molecular 
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mechanisms both dependent and independent of autophagic activity to exert this protective 

effect.  

 

 

Figure 22. MTECs derived from Beclin-1+/- mice are protected from CS-induced cell death. A) TER, a 
measure of culture integrity, was measured 24 h following CS treatment with 50 and 100 mg/m3 TPM. 
**p<0.001 by two-way ANOVA with Bonferroni post test  B) Cytotoxicity was measured by assaying 
LDH in the basal media 24 h after CS exposure. Quantities are in arbitrary units (AU). Statistical 
significance ***p<0.001 was determined by two-way ANOVA and Bonferroni post test. C) Representative 
immunoblot analysis of autophagic, apoptotic, oxidative stress, and cilia markers in MTEC cultures 24 h  
after CS treatment. Apparent molecular weights (kDa) are indicated to the right of the blots. 
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8.4 BECLIN-1+/- MICE EXPOSED TO CS FOR 6 MONTHS ARE AUTOPHAGY 
DEFICIENT AND RESISTANT TO EMPHYSEMATOUS CHANGES 

To further elucidate the role of Beclin-1 in the response of epithelial cells to CS, Beclin-1 +/+ and 
+/- mice were exposed to CS for 6 mo in vivo. Since mouse strains susceptible to emphysematous 

changes show a significant difference in weights between RA and CS mice, the mice in all four 

groups were weighed at the end of the 6 mo exposure (Figure 23A). While there was a 

statistically significant difference in weights between RA and CS mice, there was not a 

significant difference between the Beclin-1 wildtype and heterozygous mice. These data indicate 

that the neuroendocrine and metabolic effects of nicotine on the mice are not significantly altered 

in the Beclin-1+/- strain. Since the purpose of using Beclin-1+/- mice is to have a defect in 

autophagy, autophagic flux was assessed in these mice in vivo (Figure 23B). Similar to the prior 

MTEC findings, Beclin-1+/- flux was significantly reduced in the CS treated mice, while basal 

flux in the RA mice was similar to the wildtype controls (Figure 23B). At this time point there 

was no longer a significant difference in autophagic activity in the wildtype RA and 6 month CS 

exposed mice, in contrast to the prior flux analysis of the 1 wk and 2 mo CS exposed mice 

(Figure 10B). The flux of the smoked mice was not altered significantly between these 

experiments, but the RA mice have more autophagic activity in the 6 mo CS experiment. 

Previous in vitro studies have proposed a model in which cells show greater reliance on 

autophagic degradation over the UPS with senescence (175, 179).  

Consistent with the findings that Beclin-1+/- cultures were protected from CS-induced 

injury, Beclin-1+/- mice were resistant to CS-induced emphysematous changes (Figure 23C). 

While the wildtype littermates had a 13% increase in airspace caused by CS the airspace of the 

Beclin-1+/- CS exposed mice increased less than 1% compared to the RA controls. Finally, 

immunoblot analysis of apoptotic indices was used to assess cell death in lung protein 

homogenates. The expression pattern of Bcl-2 in tissue exactly recapitulated the in vitro findings, 

in which Bcl-2 expression decreases with smoke treatment in wildtype mice and increases in the 

heterozygous mice (Figure 23C). Finally, PARP cleavage fragments were more abundant in the 

Beclin-1+/+ compared to the Beclin-1+/- lungs following CS exposure. These data confirm that 

there is defective autophagy in Beclin-1+/- mice and that this protein plays a critical role in 

mediating CS-induced injury.   
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Figure 23. Assessment of injury in Beclin-1+/- mice exposed to CS for 6 months. A) Beclin-1+/+ and 
Beclin-1+/- mice were weighed following 6 mo of CS exposure along with RA controls. Data are presented 
as the mean ± SE and statistical significance was determined by two-way ANOVA with Bonferroni post 
tests (***p < 0.001) B) In vivo autophagic flux was assessed in the Beclin-1+/+ and Beclin-1+/- mice 
following 6 mo of CS treatment. The mice were given an i.p. injection of 40 mg/kg leupeptin or vehicle 
within 3 ho of the final smoke exposure and sacrificed in parallel 2 h later. Data are presented as 
densitometric analyses using a GFP-LC3 standard curve of LC3B accumulation in lysosome enriched 
protein fractions, determined by subtracting the average amount of LC3B present in the vehicle treated 
mice from the amount of LC3 accumulated in each of the leupeptin treated animals (n=3-5 mice per group). 
Data are presented as the mean ± SE and statistical significance was determined by using a two-way 
ANOVA and Bonferroni post test. C) Emphysematous changes were assessed by measuring airspace chord 
lengths. A chord length value for each mouse was determined by analyzing 5-10 randomly selected 20X 
fields. The data are presented as the mean ± SE and statistical significance was determined by two-way 
ANOVA with Bonferroni post test. D) Immunoblot analysis of apoptotic indices in mouse lung tissue. 
Representative data of n=3 mice for each treatment group. Apparent molecular weights (kDa) are indicated 
to the right of the blots. 
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9.0  DISCUSSSION 

The purpose of this study was to elucidate the functional significance of autophagy in lung 

epithelial cells exposed to CS, to gain insights into COPD pathogenesis. A physiologically 

relevant model of the airways, MTEC cultures grown at an ALI, was developed to assess the 

contribution of autophagy in the morphological alterations observed in the epithelium following 

CS exposure. Since little is known about autophagic activity in the lung, autophagic flux was 

first assessed following acute and chronic CS exposure in vitro using the MTEC cultures, as well 

as in vivo. In order to explore the importance of CS in determining the targets of autophagic 

degradation, HDAC6, which was previously implicated in clearance of misfolded aggregates and 

cilia regulation, was also investigated. As cilia undergo remodeling in response to CS exposure, 

the colocalization of cilia and autophagic markers was investigated to determine whether cilia 

components might be targets of autophagic degradation. Finally regulation and function of 

autophagy in CS-induced cell death was assessed, with particular focus on the autophagy 

proteins of LC3B and Beclin-1. By probing autophagic activity, autophagic substrates, and the 

functions of multiple autophagy proteins in mediating the cellular response to CS, a more 

comprehensive understanding of the autophagic process in the lung is emerging that may provide 

important insights into CS-induced cell death and COPD pathogenesis.  

9.1 MTEC CULTURES AS A PHYSIOLOGICAL MODEL OF CS EXPOSURE IN 
VITRO 

In this study a physiologically relevant in vitro model was developed of CS exposure, which 

recapitulated the intercellular junction remodeling, cilia injury/loss, autophagosome 

accumulation and cell death observed in vivo (Figures 4-7). Unlike cells grown using standard 
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submerged cultures, the MTEC cultures are highly differentiated and can be treated with 

mainstream whole smoke, mimicking the in vivo milieu. The purity of the epithelial cell 

population allows for a clearer interpretation of the significance of these cells in the response to 

CS, without contamination from cells of parenchymal, endothelial, or mesenchymal origin. Since 

immune cells are excluded from the cultures, this system allows for direct determination of 

epithelial cell involvement in the CS-induced inflammatory cascade. The cultures are also 

amenable for distinguishing between apical, and basolateral mediator release, imaging analysis 

and acquisition of protein samples. Furthermore, the use of mouse-derived cells allows for direct 

comparisons between transgenic and knockout strains.  While this model system is labor 

intensive, produces a low cell yield, and requires 4 wk to fully differentiate before 

experimentation, this model is more relevant than previous models using CSE and the only in 

vitro model in which the effects of CS can be determined on a specific cell type in the airways, 

as transformed lung-derived cell lines are not well differentiated. 

9.2 REGULATION OF AUTOPHAGIC FLUX BY CS 

As described previously, flux is generally assessed by comparing the turnover of a protein (i.e. 

p62 or LC3B) specifically targeted for autophagic degradation in control and treated cells. This 

assay requires four treatment groups, control and treated cells without an inhibitor of 

autophagolysosome degradation and control and treated cells with an inhibitor of 

autophagolysosome degradation. The difference between the basal and inhibitor treated cells 

indicates the autophagic flux for that particular treatment. The greater the difference between the 

basal and autophagic inhibitor treated cells, the more autophagic flux. 

9.2.1 Effects of CS on autophagic flux in vitro 

Previous studies have demonstrated that CS induces autophagosome accumulation, imlying that 

CS has a direct effect on the autophagic process. In this study, CS-induced autophagosome 

accumulation was assessed in MTEC cultures treated acutely with CS to confirm these prior 

findings (Figure 8). In order to more fully elucidate the regulation of autophagy in this model, 
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autophagic flux was also assessed in MTEC cultures following acute and chronic CS treatments 

(Figure 9).  

LC3B turnover was not significantly induced by CS treatment in any of the MTEC 

cultures, reflecting the high catabolic status of the control cells (Figure 9). This finding is 

consistent with previous observations that confluent, quiescent cells generally have higher rates 

of basal autophagic activity than proliferating cells in vitro. Selective autophagy mediated by p62 

was found to be increased by 50 mg/m3 CS TPM following both acute and chronic exposure 

regimens (Figure 9). CS-induced transcriptional upregulation of p62 may contribute to the 

observed increase in turnover, as this protein is regulated by an Nrf-2 antioxidant response 

element (188). These data indicate that low doses of CS induce selective autophagy in MTEC 

cultures. 

9.2.2 Effects of CS on autophagic flux in vivo 

In this study autophagic activity was assessed in mice exposed to CS. A time dependent 

induction of autophagic activity as measured by LC3B turnover in mice exposed to CS for 1 wk 

and 2 mo, which was sustained 24h following CS exposure, was observed (Figure 10). These 

data indicate that CS may have a prolonged effect in the lung that persists even after the initial 

insult is removed. In addition, the time dependent induction of autophagic activity from 1 wk to 

2 mo, suggests that there may be positive feedback loops enhancing the autophagic response 

with continued stimulus. In contrast to the findings of mice treated for 1 wk and 2 mo, 

autophagic flux was no longer significantly upregulated in wildtype mice exposed to 6 m of CS 

compare to RA controls (Figure 13E & 23B). These are the first in vivo flux assays to 

demonstrate the effects of CS on autophagy in the lung, and these data suggest an important 

dependence between autophagic activity and duration of CS exposure. 

9.3 HDAC6 MEDIATES CLEARANCE OF MISFOLDED PROTEINS IN THE LUNG 

Consistent with the finding that chronic smoke exposure may lead to an attenuation or 

dysregulation of autophagy, protein aggregate accumulation in the airways and parenchyma of 
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patient tissues appeared to correlate with COPD severity (Figure 11A). Furthermore, HDAC6, a 

protein implicated in the efficient clearance of misfolded protein aggregates and mediating 

autophagosome-lysosome fusion, is upregulated as a fundamental physiological response to CS 

in lung tissues from patients (Figure 11B). These human data corroborate the recent findings in 

which UPR activation and ubiquitin aggregate accumulation demonstrated a positive correlation 

with severity of emphysema (237). The deleterious effects of misfolded proteins have been 

described in numerous organ systems, such as the brain and liver, which are now being 

elucidated in the lung (237, 242, 311). The importance of protein folding stress in the lung has 

been demonstrated in a number of studies. For example, mutations leading to aggregation of SP-

C have been implicated in interstitial lung disease and misfolded proteins also accumulate in the 

lung in models of sepsis and acute lung injury (311-313). However, little is known about the 

contribution of CS-induced protein aggregates in the pathogenesis of COPD. Since degradation 

of these protein aggregates is primarily mediated by autophagy, significant insights may be 

gained by studying the contribution of CS, misfolded protein aggregates and autophagy in COPD 

pathogenesis.  

In this study CS was found to induce the accumulation of misfolded proteins aggregates 

in MTEC cultures in vitro and in vivo (Figure 12A & 13A). Consistent with the hypothesis that 

HDAC6 plays a role in CS-induced protein aggregate clearance, HDAC6-/Y cells and lungs 

appeared to have increased numbers of misfolded protein aggregates, which was further 

augmented by CS (Figure 12A & 13A). These data are consistent with prior findings, in which 

HDAC6 was previously implicated in the aggregation of mutant CFTR near the microtubule 

organizing center and protection of A549 cells from the toxic effects of expressing this misfolded 

protein (198). HDAC6 deacetylase activity has been previously show to be sufficient to confer 

protection from protein aggregation and UPS inhibition in drosophila, and to promote 

autophagosome-lysosome fusion through deacetylation of cortactin (194, 207). The findings of 

this study and those of prior studies suggest that HDAC6 may be an integral mediator of the 

autophagic clearance of misfolded proteins, particularly those produced by CS exposure.  

The accumulation of misfolded proteins in untreated MTEC cultures suggests that 

HDAC6 is critical for removing these aggregates even in the basal state. The high levels of basal 

apoptosis observed in the HDAC6-/Y cultures, supports the importance of this protein in cellular 

homeostasis (Figure 12C). Cell death assessed by cleaved caspase 3 was enhanced further by 
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treatment with 50 mg/m3 cells. Surprisingly, this stress did not potentiate CS-induced cell death, 

which was mitigated relative to the wildtype cells treated with 100 mg/m3 CS TPM (Figure 

12C). HDAC6 is a complex protein with many targets; therefore, these data suggest that this 

protein may have a dual role, promoting homeostasis in basal conditions and cell death under 

stress, or that loss of this protein induces compensatory mechanisms that mitigate CS-induced 

stress.  

9.4 CS-INDUCED AUTOPHAGY AND CILIATED CELL INJURY 

CS-induced challenges to protein folding and enhanced protein degradation may also contribute 

to cilia shortening and loss observed in smokers. Cilia are dynamic organelles with continuous 

protein input and turnover, which is mediated by ubiquitination of ciliary proteins in the cilium 

and degradation in the cytoplasm (94). The in vitro data from this study indicate that there are at 

least two mechanisms promoting cilia/ciliated cell loss by smoking: 1) desquamation with loss of 

intercellular contacts and 2) cilia shortening/scarcity with maintenance of intercellular integrity 

(Figure 5).  

 Cilia shortening was observed in MTEC cultures treated with 50 mg/m3 CS TPM. By 

SEM these cells had fewer or shorter cilia per cell and maintained intercellular contacts. At this 

dose of CS there was also an increase in the colocalization of LC3B and acetylated α-tubulin in 

the cilia implicating autophagy in cilia turnover during CS exposure (Figure 5B & 14A). 

In these studies desquamation, in which ciliated cells succumbed to cell death and shed 

out of the epithelium, may disrupt apical-basal polarity cues leading to significant morphological 

changes in the remaining viable epithelial cells (Figure 5). Previous studies demonstrated that 

proportions of shed ciliated cells directly correlated with ciliary dynein, suggesting that CS does 

not induce significant axoneme shedding (87). Since cell death is a major contributing factor for 

this mechanism of CS-induced ciliated cell loss, cell vulnerability to cell death plays a major role 

in the observed cilia phenotype. The basal body marker of cilia, centrin-1, was significantly 

decreased in cells treated with 100 mg/m3 CS TPM; however, this cilia marker was protected in 

HDAC6-/Y and Beclin-1+/- cells, which were resistant to CS-induced cell death (Figure 12C & 

22C).  
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At both doses, 50 and 100 mg/m3 CS TPM, centrin-1 was recovered in the LE fraction 

(Figure 14B). The signal was particularly strong in the cells treated with 100 mg/m3, in which 

ciliated cell death occurred with complete loss of ciliary axonemes, as well as, decreased 

autophagic flux, which would augment the signal of proteins targeted for autophagic turnover. 

These data suggest that autophagy and autophagy associated proteins may exert effects on the 

ciliated cells of the respiratory epithelium at two points, by mediating CS-induced cell death and 

direct degradation of cilia proteins.      

9.5 AUTOPHAGIC FLUX IN CS-INDUCED CELL DEATH 

To assess the role of autophagic activity in CS-induced cell death, MTEC cultures were treated 

with 100 mg/m3 rapidly, which rapidly induced apoptosis (Figure 6). Time dependent induction 

of autophagic and apoptotic markers were observed following this lethal CS treatment. There 

was an acute accumulation of LC3B II, which proceeded the generation of cleaved caspase 3 

(Figure 8D). Similarly, there was an accumulation of p62 SDS-insoluble high molecular weight 

aggregates, which is generally interpreted a marker of impaired autophagic activity (Figure 8D). 

By TEM, cells filled with autophagic vacuoles undergoing apoptosis were observed 24 h after 

CS exposure (Figure 8A). Upon assaying for flux in these cells we determined that autophagic 

activity is acutely inhibited by this treatment in an ATP-independent manner (Figure 9A & 9B). 

Based on the observation that LC3B and p62 levels are slightly decreased after 6 h of CQ, 

despite inhibition of flux, these data suggest that global transcriptional downregulation may be 

the primary mechanism by which flux is acutely inhibited in this model (Figure 9A).  

In the chronic MTEC model, in which cells were treated for up to 3 d with 50 mg/m3 CS 

TPM, cell death was also induced following the final 24 h exposure. In contrast to the acute 

model, selective autophagic flux was upregulated in these cells. (Figure 7 & Figure 9C). Since 

the flux assay was conducted in the first three hours after CS treatment and apoptosis was 

evident at 24 h, autophagic activity upon execution of cell death was not determined in this 

model. 

These data demonstrate the importance of CS dose on the autophagic response. While 

flux is inhibited in the acute model, possibly via stress induced global inhibition of protein 
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synthesis, chronic CS exposure may prime cells for cell death associated with increased 

autophagic activity.  

9.6 AUTOPHAGIC PROTEINS MEDIATE CROSSTALK TO APOPTOSIS 

9.6.1 LC3B promotes CS-induced extrinsic apoptosis 

The results of the in vitro CSE experiments suggest that LC3B plays a regulatory role in extrinsic 

apoptosis activation, through a dynamic interaction with Fas mediated by Cav-1. These results 

are consistent with our previous observations that siRNA knockdown of LC3B conferred 

protection, while LC3B overexpression promoted epithelial cell apoptosis induced by CSE (6). 

The interaction of LC3B and Fas was facilitated by Cav-1 and acutely disrupted by CSE 

treatment. The requirement for Cav-1 in LC3B/Fas interaction, as well as reciprocal complex 

formation between Cav-1 and LC3B or Fas, suggests the formation of a multiprotein complex 

composed of all three proteins. While Fas and LC3B bound to Cav-1 via different sites, the data 

support allosteric regulation, in which LC3B levels negatively correlate with Fas sequestration 

by Cav-1. 

Mutation of the Cav-1-binding site in LC3B (Y113A) resulted in loss of LC3B/Cav-1 

interaction in vitro. Transfection of LC3B Y113A resulted in reduced apoptosis in response to 

CS relative to wildtype LC3B. These results indicate that the interaction of LC3B with Cav-1 is 

required for the proapoptotic function of LC3B in this model. The reduced effectiveness of 

LC3B Y113A relative to wildtype LC3B at promoting apoptosis may be a result of the apparent 

increase in the Cav-1/Fas interaction, which consequently reduces the activation of the extrinsic 

apoptotic pathway (Figure 17B & 17C). The dissociation of LC3B and Fas from Cav-1 is 

stimulated by CSE, which permits further progression of the extrinsic apoptotic pathway. The 

elucidation of the molecular mechanism(s) for the dissociation of these regulatory complexes by 

pro-death stimuli requires further investigation.   

The studies also suggest that Cav-1 can exert a functional role in CS-induced emphysema 

development by downregulating autophagic and apoptotic pathways. This observation appears to 

be a general mechanism, since Cav-1 has been implicated in the sequestration and inactivation of 
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a diverse group of signaling molecules at caveolae, including Src, Ras, epidermal growth factor 

receptor (EGFR), and platelet derived growth factor (PDGF) (314). In the current study, we 

show that Cav-1-/- mice are more susceptible to CS-induced cell death and AV accumulation in 

lung tissue. In agreement with our current findings, a recent study has also demonstrated 

increased autophagy in several organs in the Cav-1-/- mice (315). In summary, we demonstrate 

that dynamic interaction of the autophagic protein LC3B with Cav-1 and Fas regulate CS-

induced lung epithelial cell apoptosis. 

9.6.2 Beclin-1 promotes CS-induced apoptosis   

Beclin-1 is an integral autophagic protein, which functions in the initial formation of the 

phagophore (Figure 3). While Beclin-1-/- mice are embryonic lethal, suggesting a critical role for 

this protein in development, Beclin-1+/- mice are viable and have an increased propensity for 

tumor formation (316, 317). While basal protein expression is not appreciably decreased in the 

Beclin-1+/- mice, the mice demonstrate phenotypic variations when a stressor is applied (318). 

Consistent with these findings we also observed modest changes in protein expression and 

demonstrate that basal autophagosome formation and flux appear intact in the Beclin-1+/- mice, 

while CS exposed cells and mice lack stress-induced autophagy compared to wildtype controls 

(Figure 22C, 21 & 23B). 

Previous reports have described autophagy independent functions for Beclin-1. Beclin-1 

was originally identified as a BH3 domain-containing protein that interacts with the antiapoptotic 

Bcl-2 protein family, and more recently a c-terminal fragment of Beclin-1 generated by active 

caspases has been shown to localize to mitochondria to potentiate MOMP and cell death (270, 

279, 309). While the interaction of Bcl-2 with Beclin-1 has been shown to inhibit autophagy, the 

interaction thus far has been primarily one directional since overexpression of Beclin-1 has not 

been implicated in promoting apoptosis through the sequestration of Bcl-2 (271, 309). Previously 

we have demonstrated that CSE causes a time dependent reduction in Bcl-2 levels (8). In this 

study this effect was found to be completely reversed in Beclin-1+/- MTEC cultures. While in the 

Beclin-1+/+ cultures Bcl-2 decreased, in the Beclin-1+/- cultures Bcl-2 increased after 100 mg/m3 

CS TPM treatment (Figure 22C). Furthermore these results were confirmed in vivo (Figure 

23D). In addition to the Beclin-1+/- MTEC cultures expressing higher levels of antiapoptotic Bcl-
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2 upon smoke exposure, Beclin-1+/+ MTEC cultures treated with 100 mg/m3 produced more of 

the proapoptotic C-terminal cleavage fragment than the Beclin-1+/- cultures (Figure 22C). Since 

Beclin-1 has been implicated as a scaffold protein mediating many protein-protein interactions, 

this autophagy protein is likely to play a complex role in cell fate decisions. These data provide 

strong evidence for Beclin-1 promoting cell death via autophagy independent mechanisms.  

9.7 REGULATION OF AIRSPACE ENLARGEMENT BY AUTOPHAGIC 
PATHWAYS IN VIVO  

The murine model of CS exposure remains the preeminent model of COPD because the initiating 

insult is most relevant to the human disease (38, 42, 43). While the development of emphysema 

requires at least 3 mo of chronic CS exposure, depending on the mouse strain, acute exposures 

are frequently utilized for mechanistic studies (7). Since smoking pathology is extremely 

complex with many redundant injurious pathways involved, identifying critical mediators that 

demonstrate significant modulation of the disease process in vivo is a challenge.  

To assess the contribution of autophagic pathways implicated by the in vitro models in 

the regulation of cellular responses to CS in vivo, a number of murine CS exposures were carried 

out in this study using the following mouse strains: LC3B-/-, Beclin-1+/-, Cav-1-/-, and HDAC6-/Y. 

CS-induced airspace enlargement was significantly attenuated in the LC3B-/- and Beclin-1+/- 

mice, suggesting that these proteins are critical mediators of alveolar cell destruction (Figure 

15B & 23C). In contrast, Cav-1-/- mice were more susceptible to CS-induced airspace 

enlargement suggesting that this protein serves a protective function in epithelial cells following 

CS-induced cellular stress (Figure19D). These in vivo data implicate autophagy proteins in 

promoting CS-induced cell death and Cav-1-/- as a negative regulator of CS-induced injury.  

While autophagic flux was decreased in both the Beclin-1+/- and HDAC6-/Y mice, the 

HDAC6-/Y mice demonstrated a modest increase in susceptibility to airspace enlargement and 

induction of apoptotic indices (Figure 13). Although the airspace enlargement in the HDAC6-/Y 

mice was not statistically significant, the lack of a significant effect was not surprising given that 

there are a number of redundant proteins implicated in both selective autophagic degradation of 

ubiquitinated proteins and autophagosome-lysosome fusion (194, 319, 320). While cell death 
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was attenuated in the acute in vitro model, these in vivo data implicate HDAC6 in executing 

primarily protective functions following chronic exposure to CS. These data are consistent with 

the findings in literature that accumulation of misfolded proteins in the cytosol is detrimental to 

epithelial cell function and survival (280, 321, 322).  

HDAC6-/Y and Beclin-1-/+ mice and the respective wildtype control mice treated with CS 

for 6 mo weighed significantly less than the RA control mice, suggesting that these mutant mice 

have a metabolic response to CS that is not significantly different from wildtype mice  (Figure 

13B & 23A). Mice become rapidly hypophagic in response to CS and previous studies have 

demonstrated that CS exposure for 7 wk will cause a significant decrease in organ fat mass, and 

serum glucose, leptin, and insulin concentrations (323). These studies clearly demonstrate a 

connection between CS and metabolism, which is mediated through the central nervous system 

(324). Although the systemic metabolic effects of CS is beyond the scope of this thesis, this 

finding is highly relevant to this research, as starvation and calorie restriction are potent inducers 

of autophagy. 

These in vivo data support the mechanistic in vitro findings, and provide strong evidence 

for the autophagy proteins, LC3B and Beclin-1, exerting pro-pathogenic functions with respect 

to CS-induced emphysema development, by promoting apoptotic cell death. However, a 

cytoprotective function for autophagy, potentially through the mitigation of misfolded protein 

stress, is also suggested by these studies.  

9.8 CONCLUSIONS 

These data implicate autophagy and autophagic proteins in mediating lung epithelial cell fate 

following CS exposure. We have demonstrated that CS acutely induces autophagic activity in 

vitro and in vivo, and induces autophagic protein expression and autophagosome accumulation in 

these models. The data also indicate that the autophagic response to CS can be profoundly 

different depending on the dose and duration of exposure.  

Misfolded protein accumulation appeared to be a feature of COPD severity and CS 

exposure in vivo and in vitro. HDAC6 appeared to function in misfolded protein removal and 

play a role in cellular homeostasis. These observations support the speculation that HDAC6 
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mediated misfolded protein degradation by autophagy is an important homeostatic process that 

may contribute to cytoprotection in the context of CS-induced protein folding stress. 

Imaging analysis suggested that CS induces cilia shortening/loss and ciliated cell loss by 

two mechanisms: 1) ciliated cell shedding associated with loss of intercellular contacts and 2) 

reduced cilia numbers and length with maintained intercellular junction integrity. The data 

suggest that by mediating CS-induced cell death and direct degradation of cilia proteins, 

autophagy and autophagic proteins may contribute to the disruption of mucociliary clearance, 

which has been implicated in infection vulnerability thereby exacerbating COPD pathogenesis 

 Both LC3B and Beclin-1 were implicated in CS-induced cell death. While autophagy 

may play an active role in cell death by reducing the cells to bare essentials, these particular 

autophagy proteins appear to promote cell death by additional mechanisms. LC3B disrupted an 

antiapoptotic interaction between Fas and Cav-1, thereby regulating CS-induced extrinsic 

apoptosis, while Beclin-1 expression modulated the expression of antiapoptotic Bcl-2 and 

produced a proapoptotic cleavage fragment known to potentiate cell death in response to CS. 

From these studies a complex model of autophagy in COPD pathogenesis is emerging, in 

which autophagy proteins are initially upregulated to promote cytoprotection via misfolded 

protein removal, possibly leading to cilia shortening and loss as collateral damage, and mitigate 

CS-induced injury. Ultimately CS exposure may prime cells for cell death via many mechanism, 

which may not dependent on an active autophagic process. These data suggest that even if there 

were a decline in autophagic activity with late stage disease, the upregulation of these proteins 

would make the cells more vulnerable to cell death. 

In conclusion, CS-induced autophagy is not entirely “good” or “bad” and is dependent on 

dose and duration of exposure; therefore, targeting specific autophagy proteins particularly those 

with direct crosstalk to apoptosis may yield the greatest therapeutic benefits.   
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10.0  FUTURE DIRECTIONS 

While these studies have provided significant insights into the impact of CS on autophagic 

regulation and the subsequent functions of autophagy in the modulation of epithelial cell 

morphology and cell fate, there are many mechanistic pathways warranting further investigation. 

Further insights into the function of autophagy in cytoprotection in the lung, could be 

elucidated utilizing the HDAC6-/Y mice. To this end, the effects of HDAC6 on the accumulation 

of misfolded proteins and autophagic flux could be probed following CS treatment in vitro. 

Additional markers of cellular toxicity caused by misfolded protein accumulation could be 

determined by assaying LDH and epithelial cytokines in basal media from HDAC6-/Y MTEC 

cultures. Chemical modulators, which diminish and enhance misfolded proteins are abundant, 

and could be used to determine the effects on cell viability in HDAC6-/Y MTEC cultures. In the 

long-term, mice with a protein conformational disease of the lung could be assessed for CS-

induced emphysema with autophagy modulating drug intervention.   

Many studies on CS-induced cilia changes are impeded by the use of in vivo models; 

therefore, the MTEC cultures are a unique opportunity to finally address an underlying 

mechanism. While desquamation was a significant contributing factor to CS-induced ciliated cell 

loss, further morphometric analysis of SEM images to quantitatively evaluate the effects of CS 

on cilia loss and shortening at the subtoxic dose of 50 mg/m3 would provide a better 

understanding of the more subtle effects of CS on cilia. Once a morphometric rubric is 

established, the functional role of HDAC6 and Beclin-1 on CS induced cilia loss could then be 

evaluated. Furthermore, there is a possibility that cilia proteins comprise a proportion of the 

misfolded protein aggregates; therefore, autophagic proteins may not be directly involved in the 

regulation of cilia loss and agents that promote protein folding may be better targets of 

intervention. Exogenous addition of chemical chaperones has been shown to promote protein 

folding in contexts of cell stress (325). 
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While hypophagia observed in mice is consistent with human smoker behavior, calorie 

restriction is a confounding factor for measuring the direct impact of CS on autophagic activity 

in these mice. Either removing or blocking the appetite suppressing nicotinic compounds from 

the CS would allow for a clearer assessment of CS-induced autophagy. This finding in particular 

suggests that a greater understanding of metabolism in smokers and smokers that develop COPD 

is necessary. 

These studies provide substantial evidence demonstrating that Beclin-1 and LC3B 

promote CS-induced cell death. Previously published literature and our own findings indicate 

that the molecular mechanisms by which these proteins promote apoptosis may not depend on 

autophagy. However, we have consistently found that cells exposed to CS die with an 

accumulation of autophagosomes, whether flux is increased or not, may not be as essential as the 

role of encapsulation and packaging of cytoplasmic material for phagocytosis. Recent work has 

demonstrated that phagocytosis of autophagosome filled 3T3 cells promotes inflammasome 

activation (326). Future work on the functional significance of epithelial cells succumbing to cell 

death filled with autophagic vacuoles may yield important insights into disease pathology. 

There is widespread skepticism at this time with regard to autophagic cell death, but the 

CS model is one in which knockdown and overexpression with multiple autophagy proteins 

consistently demonstrates a contribution of autophagy in mediating apoptotic cell death. While 

inhibition of both autophagy and apoptosis promote cell survival following CS treatment, the 

contribution of both pathways should be more decisively determined in order to elucidate the 

potential synergy between these pathways and identify molecular mechanisms that regulate the 

switch from cytoprotection to cell death. 

  Furthermore, our studies using LC3B-/- and Beclin-1+/- are not completely autophagy 

deficient. The requirement for autophagy in CS-induced cell death, would be greatly bolstered by 

using a model in which autophagy is inhibited completely. Recently lung specific inducible 

deletion of Atg7 was described; however, there was a gross disruption of airway morphology 

(310). A more viable method for inhibiting autophagy may require the acquisition of the Tat-

Atg5 (K130R) construct, which is a membrane-crossing dominant negative protein that 

suppresses the autophagic process (327). Use of this construct would be logistically feasible in 

the MTEC cultures, and assessing the effects of complete autophagy deficiency would make the 

contribution of autophagic flux in CS-induced cell death more convincing.  
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Autophagy deficiency has recently been linked to enhanced antioxidant protein 

expression, via p62-mediated sequestration of Keap1 and subsequent nuclear localization of Nrf-

2 (189, 190, 224). Recently the specific deletion of Atg7 in the airways was shown to similarly 

induced transcription of antioxidant proteins (310). Since oxidant-antioxidant imbalance is a 

major contributing factor to COPD, enhanced Nrf-2 transcriptional activity may be enough to 

provide the survival advantage observed in the autophagy deficient mice.  

The field of autophagy is exciting and perplexing. The contribution of this process in 

lung disease is only beginning to be elucidated and based on the modulation of autophagy by CS 

there is great potential for identification of therapeutic targets.  
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