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SOFTWARE UPDATE MANAGEMENT IN WIRELESS SENSOR

NETWORKS

Weijia Li, PhD

University of Pittsburgh, 2011

Wireless sensor networks (WSNs) have recently emerged as a promising platform for many

non-traditional applications, such as wildfire monitoring and battlefield surveillance. Due

to bug fixes, feature enhancements and demand changes, the code running on deployed

wireless sensors often needs to be updated, which is done through energy-consuming wireless

communication. Since the energy supply of battery-powered sensors is limited, the network

lifetime is reduced if more energy is consumed for software update, especially at the early

stage of a WSNs life when bug fixes and feature enhancements are frequent, or in WSNs

that support multiple applications, and frequently demand a subset of sensors to fetch and

run different applications.

In this dissertation, I propose an energy-efficient software update management framework

for WSNs. The diff-based software update process can be divided into three phases: new

binary generation, diff-patch generation, and patch distribution. I identify the energy-saving

opportunities in each phase and develop a set of novel schemes to achieve overall energy

efficiency.

In the phase of generating new binary after source code changes, I design an update-

conscious compilation approach to improve the code similarity between the new and old

binaries. In the phase of generating update patch, I adopt simple primitives in the literature

and develop a set of advanced primitives. I then study the energy-efficient patch distribution

in WSNs and develop a multicast-based code distribution protocol to effectively disseminate

the patch to individual sensors.
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In summary, this dissertation successfully addresses an important problem in WSNs.

Update-conscious compilation is the first work that compiles the code with the goal of im-

proving code similarity, and proves to be effective. The other components in the proposed

framework also advance the state of the art. The proposed software update management

framework benefits all WSN users, as software update is indispensable in WSNs. The tech-

niques developed in this framework can also be adapted to other platforms such as the smart

phone network.
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Childers and Dr. Daqing He for their suggestions and feedback on my dissertation.

Also, I want to thank my friends, particularly Dr. Jonathan Derryberry for giving me

advice and encouragement along the way as I navigated through the graduate program.

Additionally, I want to thank Jonathan for encouraging me to finish my dissertation and

providing me occasional refreshing distractions.

Last but not least, I would like to dedicate this thesis to my parents. Without their

support, I can hardly make it done. I would also like to thank my grandfather, whom I miss

dearly. I wish he could have been here to see me getting my doctor’s degree.

xiii



1.0 INTRODUCTION

Wireless sensor networks (WSNs) [12, 36, 37] have recently emerged as a promising platform

for many non-traditional applications, such as wildfire monitoring and battlefield surveil-

lance. A WSN usually consists of tens to hundreds of sensors that can sense physical phe-

nomena, such as temperature, humidity, pressure, and movement of objects. Sensing results

are optionally preprocessed, split into data packets, and then routed back to the sink nodes

that are more powerful and user-accessible, and have no or negligible energy constraints.
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Figure 1: A Mica2 sensor and its block diagram [19].

A sensor node typically contains sensing devices for data collection, communication

transceivers for sending and receiving data packets, and processing units for arithmetic and

logic computation. Powered by one or two batteries, most deployed sensors have only a lim-

ited energy supply, which makes energy saving one of the most important design criteria in
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WSNs. A common approach for saving energy is to choose a low-power processor [19, 64]. For

example, a Mica2 sensor (shown in Figure 1) uses an 8MHz ATmega128L micro-controller

to process the sensed data.

Since transmitting one bit one hop in a WSN consumes about the same energy to execute

1000 instructions [5], another approach for saving energy is to pre-process the collected data

and forward only the data summary to the sink node, which saves transmission energy due

to generating less traffic in the network. Pre-processing some types of data, e.g., multimedia

data, is often too energy-expensive for low-power processors. Therefore, a sensor may add

coprocessors to achieve energy efficiency. For example, the Imote2 [19] node developed

by Intel (shown in Figure 2) includes an extra digital signal processor (DSP) coprocessor

to process the audio and video data collected by its associated microphone and camera.

Nachman et al. showed that the DSP coprocessor in Imote2 implements a WMMX (wireless

multimedia instruction set extension) instruction set and can achieve up to 16× speedup

when implementing filter kernels [57].
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Figure 2: A Imote2 sensor and its block diagram [19].

The availability of multi-core sensors exposes more design opportunities. However, the

high manufacturing cost of these sensor nodes makes it economically less appealing to let

the whole network run just one application. Recently, researchers have envisioned the wide
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adoption of multi-application wireless sensor networks (MA-WSNs), which support executing

multiple applications in one network infrastructure [7, 74, 83].

Compared to single-application wireless sensor networks (SA-WSNs), MA-WSNs have

many advantages in efficiency and flexibility. For example, a MA-WSN can be deployed in

a national park to monitor both wildfires and animal movements. A greater proportion of

sensors can be set to monitor animal movement during seasonal migration, and more sensors

can be set to monitor wildfires during the summer when wildfires are more likely to occur.

By using the same network infrastructure for both applications, MA-WSNs can achieve two

goals. First, they amortize the investment needed to deploy multiple sensor networks in the

same area; and second, they can adapt to the changing environment and adjust the coverage

on demand.

In both SA-WSNs and MA-WSNs, the software may need to be updated for various

reasons. In this dissertation, I separate these reasons into two categories: software upgrade

and software switch. Software upgrade refers to the problem of updating one application with

a newer version for all nodes in a WSN. In contrast, software switch refers to the problem of

updating a subset of nodes with an existing application in a WSN.

Software upgrade. After deploying a WSN, the applications running on the sensor

nodes may need to be upgraded. Bug fixes and feature enhancements are common reasons

for software upgrade. Updates are particularly frequent when applications are still in the

development stage, as testing and debugging may take several rounds until the code is

stable. For example, a WSN may be deployed in an unfamiliar area so that the preliminary

data can help scientists better calibrate their sensing applications. As shown in Figure 3,

software upgrade involves binary code generation on the sink node, patch generation, patch

distribution, and sensor-side binary replacement. Because sensors are usually left unattended

after deployment, the patch deployment can only be done via wireless communication, an

expensive operation in WSNs. A recent study [5] showed that the energy consumed to

send one bit one hop in a WSN is about the same as the energy consumed to execute

1000 instructions. For large WSNs in which the sink node cannot reach all sensors via

broadcasting, the patch has to be transmitted hop-by-hop in the network, which consumes

a significant amount of the energy of each sensor node. As sensor nodes are running with
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a limited energy supply, it is essential to conserve the energy in a WSN during software

updates, especially when such updates are frequent.

Sink

App A V0

App A V1

Patch

A

A

A
A

A
A

A

A

A

A

A

A

A
A

Figure 3: Software upgrade in a WSN.

One possible solution for saving energy is to reduce the number of transmitted bytes

during software upgrade, which saves transmission energy. This can be attained through

three consecutive and cooperative steps — (1) Since the update patch represents the binary

difference of the new and old code images in my setting (Section 1.2 discusses the tradeoffs

of alternative code formats), it is important to minimize the binary level code difference;

(2) Given the new and old code images, a good patch generator can help generate a minimized

patch; (3) Given a generated patch, a good code distribution protocol can further minimize

the network traffic in the dissemination process.

Software switch. Altering the code images of sensors in a MA-WSN is more compli-

cated. To support running multiple applications in a MA-WSN, it is possible to preload

multiple code images to the sensor nodes before deployment, and switch among them upon

request from the sink node. However, due to the memory size constraint, not all code images

can be stored on each sensor. This indicates that some sensor nodes need to fetch the binary

of the wanted yet unavailable application from a source node. The source node can be either

the sink node, or the neighboring sensors that own the requested code image. Figure 4 shows

a software switch example in which only a subset of sensors running application B or C need

to switch to A. Software switch differs from software upgrade in that: (i) only a subset of

sensors need to be updated in software switch while all nodes need to be updated in software

upgrade; and (ii) both the sink node and many remote sensors can act as source nodes in
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software switch while only the sink node is the source node in software upgrade.

In MA-WSNs, many different applications may share the same or similar functionalities

and thus the identical code pieces, e.g., the code for sending and receiving messages. Based

on this observation, when switching one application to the other, a possible solution for

saving energy is to generate the same binary for the shared code, and transmit only the

difference between two applications rather than the entire binary of the other application.

Software switch, similar to software upgrade, also requires an effective patch generator and

code distribution protocol to achieve energy efficiency.

C

Shaded nodes need to switch to "A"

Sink

A

A
A

AA

B
B

B

C

C

A

B

B

B

B
C

C

Figure 4: Software switch in a MA-WSN.

To summarize, software updates (either software upgrades or software switches) can

occur frequently in WSNs. Relying heavily on costly wireless communication, such updates

could consume a significant amount of energy and greatly shorten the network lifetime. In

addition, when such updates are in progress, the WSN is usually in the down mode, i.e., it

cannot provide the designed service [61]. Therefore, how to design an efficient framework

that minimizes both the energy consumption and the downtime during the software update

is an important problem to study in WSN research.

1.1 OVERVIEW OF THIS RESEARCH

In this section, I present an overview of my proposed research. It consists of the following

steps in the software update procedure. First, the compiler generates the binary image(s).
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Second, the patch generator produces the patch. Third, the patch is distributed to the

WSN. After receiving the complete patch, each sensor regenerates the target binary, loads

it to memory, and starts running it.

Figure 5 illustrates my proposed software update management framework. The sink node

is a computer server that has no resource constraints, while the sensors have tight resource

limitations in energy, memory size, network bandwidth, and computation ability. To update

the code on sensors, the compiler first translates the source code S’ into an executable

binary E’. Instead of sending E’, a small patch P that contains only the difference between

E’ and the original binary E is distributed. When the code distribution is complete, each

sensor regenerates E’ by combining the received patch P and the preloaded binary E.

P

Code

Regeneration
Code Distribution

P

Compilation

Sink
E

P

E’

E’

U

S E

S’

Patch

Generation

Figure 5: An overview of the software update management framework.

This framework includes three major components.

Update-conscious compiler. Since the patch transmitted over the network is the dif-

ference between the old binary and the new binary, increasing the binary similarity between

the two versions can reduce the number of bytes that need to be transmitted, resulting in

saving both energy consumption and transmission time in software update.

In most cases, only a subset of source code level statements are updated in the new

version. They are referred to as changed statements while others are referred to as unchanged

statements. The binary level differences produced from changed statements are difficult

to avoid. However, unchanged statements may also produce binary differences, which are

considered unnecessary. This is because an update-unaware compiler randomly picks up a

choice if there are multiple alternatives that generate the same code performance (or other

criteria) during compilation.
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In this dissertation, I will propose update-conscious compiler (UCC) techniques that

read the old source and binary to know the compilation choices of the old version, and use

them as hints when generating the new binary. As shown in Figure 5, UCC takes E (the old

binary), U (the intermediate level differences between the old version and the new version),

and S (the new source code) as inputs to generate the new binary E’. By taking the old

binary into consideration, my update-conscious compilation improves the code similarity

between two code images. This dissertation develops the UCC register allocation and data

allocation schemes for different applications. In my future work, additional UCC schemes

will be developed in the framework.

When minimizing the binary level difference, UCC may not generate the code that runs as

efficiently as the code generated by a conventional compiler. Trading run-time performance

for binary similarity aims to save energy during software update and avoid wasting execution

energy at runtime. Clearly, a naive design that always maximizes the code similarity may

not reduce the total energy consumption. To solve this problem, UCC studies the trade-

off between binary code difference and run-time performance, and strives to minimize total

energy consumption.

Code distribution protocol. The code distribution protocol disseminates the patch

to the sensors that need the update. The code can come from either the sink node or other

sensors that own the requested binary image. This dissertation presents a code distribution

protocol that achieves energy efficiency under tight resource constraints and works for both

software upgrade and software switch.

The protocol must be robust. Since both the wireless links and the nodes may be lost

temporarily or permanently in WSNs, the protocol needs to tolerate both link and node

failures. The protocol must also be fast in order to minimize the down time of the network,

i.e., the duration of software update.

Patch generator. The new binary E’ needs to be compared with the old binary E

to generate the binary-level differences in a highly condensed script P. Multiple binary-level

differences may have the same cause; for example, after inserting one instruction in the code,

the destination addresses of several branch instructions may change the same constant. This

has been discovered in the literature [35, 61, 68]. Including only the root cause instead of
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individual changes can effectively reduce the patch size. However, if the update script design

is complicated, it requires much effort at the sensor side to decode and regenerate the new

binary. This dissertation presents several sets of script primitives, and evaluates the trade-off

between patch transmission and sensor-side decoding complexity.

1.1.1 Contributions

To summarize, my contributions to the field of software update management for WSNs are

as follows.

• I propose update-conscious compilation (UCC), the first work that takes a compilation

approach to improve code similarity for energy-efficient software update. UCC advances

the state of the art and uses overall energy efficiency as the metric to make compilation

decisions.

• I compose a framework that covers the three major phases of software update in WSNs:

binary generation, patch generation, and code distribution. I successfully identify re-

search problems in each phase and propose novel designs that enable the attainment of

overall energy efficiency.

• I evaluate the proposed techniques in an integrated framework. The test cases of my

in-house benchmark include real-world test cases, manually generated test cases, and

automatically generated test cases. The evaluation is much more thorough and complete

compared to similar works in the literature.

1.2 ASSUMPTIONS

To simplify the implementation of the software update framework in WSNs, the following

assumptions are made.

The binary is transmitted during software update. In this dissertation, I assume

that the code disseminated in the network is binary code. An alternative choice is to release

source code and perform sensor-side compilation with a pre-installed compiler. Technology
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advances support this approach with large memory installed on recently released sensors, e.g.,

Imote2 has 32MB SDRAM [19]. Other designs install a lightweight virtual machine on sensor

nodes, which enables the execution of Java bytecode-like high-level instructions [22, 39, 47].

Releasing applications in source code or bytecode can effectively reduce the update size.

However, for the following reasons, I will only consider software update in binary format and

leave the problem of updating software in other formats as a future research topic to explore.

• Modern compiler systems are becoming increasingly complicated. A full-fledged compiler

includes not only the compiler itself, but also a set of tools and libraries; e.g., a full

installation of GCC 2.95 needs more than 100MB disk space [27]. Enabling sensor-side

compilation requires having a number of libraries pre-installed on sensors. Since only

a small subset of functions in these libraries are actually linked into the binary, pre-

installing libraries on sensors is an inefficient way to use precious sensor storage.

• Running a lightweight GCC compiler tends to generate sub-optimal code that wastes ex-

ecution energy. Instead, the popular cross-compilation approach adopted by TinyOS [76]

and other systems uses a full-fledged compiler at the server side to generate fully opti-

mized code for sensor architectures. Running virtual machines also has the execution

overhead problem. The energy wasted by executing more instructions can add up to a

non-negligible amount in the long run, as I will discuss in the experiments.

• Releasing source code or high-level bytecode also creates privacy and security concerns.

For example, because Java bytecode is more vulnerable to reverse engineering [72], an

attacker can capture a sensor and spend much less effort to extract the intellectual

property from Java bytecode than from a binary image.

The mapping between the source code and the binary can be created. Many

compiler optimization techniques may add, delete, and re-order instructions to achieve better

run-time performance. Adopting update-conscious compilation before these techniques may

reduce code similarity and thus diminish the benefits gained from update-conscious compila-

tion. In this dissertation, I place update-conscious compilation as a separate pass after other

compiler optimizations, and leave the optimization pass ordering problem [40, 81] as a future

topic to study. We assume that the compiler can create mappings between the optimized
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intermediate representation (IR) and the source code-level statements, as discussed in [34].

The mapping helps to identify the changed and unchanged parts at the lower level, and allow

update-conscious compilation focusing only on the changed parts. A conservative strategy

is adopted in this dissertation, i.e., if a mapping cannot be created for a code segment, my

update-conscious compiler considers that code segment as a changed segment.

The characteristics of applications running in the network are known. Based

on the functionalities of these applications, and the expert knowledge from application de-

signers, I assume that the number of executions that one application is expected to perform

before retirement is known. This information assists in the estimation of execution energy

consumption in my framework. For a MA-WSN, I assume that how often one sensor needs

to fetch an application from other sensors in the network is also known. This information

helps determine the trade-off between consumption of execution energy and transmission

energy.

The types of sensors used in the WSN are known. Different sensors have different

hardware constraints, i.e., computation abilities and memory limitations. The computation

constraint often restricts a remote sensor from running too-complex programs, otherwise the

sensor may suffer from large execution energy consumption and slow response to environ-

mental signals. The memory size information helps us determine the number of applications

that could fit into one sensor’s memory, and also the amount of free memory that can be

used to optimize the packet routing.

Multiple software updates on one sensor do not interleave with each other.

Although multiple applications can co-exist on a sensor node, I assume only one application

may need to update at a time. The works in the literature [61] and my preliminary data show

that concurrently updating multiple applications is not beneficial due to signal collision and

memory space competition. In practice, multiple applications can be updated sequentially,

controlled by the sink node.
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1.3 ORGANIZATION OF THIS DISSERTATION

The remainder of this dissertation is organized as follows. Chapter 2 presents the background

on software update in WSNs and discusses the works that are related to the three components

of my proposed framework, including traditional register allocation, data allocation design,

WSN software update script primitive design, and WSN code dissemination protocol design.

Chapter 3 elaborates the proposed UCC design and develops UCC register allocation and

data allocation schemes for different types of applications. Chapter 4 presents the script

primitives that are used to summarize the binary level differences in update patch. In

Chapter 5, the patch distribution protocol is presented. Chapter 6 presents and analyzes the

experimental results. Chapter 7 addresses the directions for future research and concludes

the dissertation.
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2.0 BACKGROUND AND RELATED WORK

In this chapter, I will first introduce different software update designs in WSNs, and then

discuss the works that are related to the major components of my framework.

2.1 SOFTWARE UPDATE IN WSNS

The software update designs for WSNs can be categorized according to what to disseminate.

A naive approach is to transmit the complete new binary image to replace the old one on

sensors. For example, Deluge [32], the default code distribution scheme in TinyOS [76], takes

this approach. The schemes in this category focus mainly on how to split the new image

into packets and route these packets to the sensors under the WSN constraints.

Since the new binary and the old binary often share common code segments, transmitting

the complete image is not only unnecessary but also a waste of energy. A better approach is

the diff-based design, which compares the code of successive versions and generates an edit

script that summarizes the differences; only the script is transmitted to the remote sensors,

where the new code is re-generated by combining the old image and the edit script. Since less

data is transmitted over the network, and the edit script is usually simple and can be easily

interpreted by the sensors, the diff-based approach significantly improves energy efficiency

and has become popular in WSNs [22, 35, 39, 52, 61, 68]. The major focus in this category is

determining how to compare the two binary versions and generate a small edit script. If the

new binary is generated using a conventional compiler, a simple change in the source code

may result in many changes in the final binary. This has limited the diff-based approach to

update only small changes such as bug fixes [68].
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The third approach is to transmit the code as high-level instructions instead of binaries.

By installing a lightweight virtual machine [47], the application code can be represented using

virtual machine instructions. Similarly, a dynamic linker [22, 39] can enable the distribution

of pre-linked object modules rather than the raw binary. The tradeoff between distributing

code at the binary level and at high levels is between runtime overhead and privacy concerns,

as discussed in Section 1.2.

The need to update the code after releasing the software exists in many computing

environments, such as desktop computing. Distributing the code difference rather than

the complete code image is widely adopted in the industry. For example, the Microsoft

Systems Management Server (SMS) [54] from Microsoft, the Tivoli configuration manager

[33] from IBM, and the OpenView Change and Configuration Management tool [31] from

HP distribute only the difference from the server and patch the system automatically. The

challenges for designing diff-based software update schemes for WSNs come from the tight

resource constraints of WSNs.

2.2 COMPILER

A compiler is a translator that translates a source program written in one language – the

source language, to its equivalent target code in another language – the target language [1].

The work flow of a compiler is shown as Figure 6.

Figure 6: Compiler work flow.

The front-end analyzes the source code to build an internal representation of the program,

called the intermediate representation or IR. The IR then is transformed into functionally

equivalent but faster (or smaller) forms in the optimizer. At the last stage, code generation,

the optimized IR code is transformed into the target machine binary.
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This dissertation studies two key problems in code generation, register allocation and

data allocation.

2.2.1 Register allocation

Register allocation refers to the problem of deciding which value should be held by which

register at each program point. Since there are fewer registers than the values to be held,

the values that are not stored in registers reside in the lower-level memory hierarchy, i.e.,

caches and main memory. Accessing registers is much faster than accessing the values stored

in the lower memory hierarchy. Thus, the design goal of traditional register allocation is to

find a good allocation strategy to improve program performance. While finding the optimal

assignment is mathematically NP-complete, researchers have extensively studied the problem

in the past 20 years and have achieved great success in many aspects.

Traditional register allocation schemes. Graph coloring algorithms construct the

variable interference graph and solve the global register allocation as a graph coloring prob-

lem [11, 13, 16, 28]. To achieve fast compilation, linear-scan algorithms assign variables

to available registers through a simple scan of the program, saving the time and space to

construct the interference graph [65, 78]. It was reported that the code generated from

linear-scan register allocators is only slightly worse than that from graph coloring-based al-

locators. Register allocation can also be formulated as an integer linear programming (ILP)

problem [2, 26, 29] or multi-commodity network flow (MNF) problem [38]. While ILP and

MNF enable us to find the optimal or near-optimal allocation results, they are slow and are

rarely adopted in commercial compilers.

The register allocation schemes discussed above focus mainly on generating code of better

performance in terms of fewer register spills, i.e., memory loads and stores. However, to

minimize transmission energy in WSNs, we prefer a register allocator that can improve the

code similarity between two versions. Traditional register allocators do not fit the need, as

they do not consider code similarity during allocation.

Incremental register allocation. Bivens and Soffa proposed the incremental register

allocation (IRA) scheme based on graph coloring [9]. When the software is slightly modified,
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this scheme only re-allocates registers for the changed code, and preserves the assignment

for the unchanged code.

The goal of IRA is to save compilation time, which is different from my goal of improving

code similarity. IRA may generate register allocation results similar to the previous version,

yet it always follows the original register allocation for the unchanged code, which may

reduce code performance when the source code update is relatively large. As I will discuss

and evaluate in later chapters, consuming more execution energy is not always a good choice,

even if it can improve code similarity and reduce transmission energy during code update.

Code compression-oriented register allocation. Ros and Sutton proposed a post-

compilation register reassignment technique [71]. It creates the mappings of the registers that

are used in isomorphic instructions, and tries to replace one register with its mapping register.

By increasing the code similarity of different components within one program, the scheme

helps to improve the compression ratio of Hamming-distance-based code compression [70].

This design does not fit the need, either. The code similarity in my framework refers to

that between two code images. In particular, the old image already exists on sensor nodes,

and has no need to compress. Improving the code similarity between two images does not

mean that these two images need be combined and compressed to a minimized small size.

Prior art and my work. I have discussed the prior art and the reason why existing

schemes do not fit the need. To achieve energy-efficient software update in WSNs, this disser-

tation proposes update-conscious register allocation (UCC-RA). By improving the register

allocation similarity of two code images, UCC-RA considers both the transmission energy

and the execution energy, and strives to minimize the overall energy consumption. Since only

the difference needs to be transmitted, whether the code itself can be highly compressed or

not is not important. Since my goal is to save overall energy, generating code of slightly worse

performance is acceptable. But for frequently executed code such as loops, maximizing the

code similarity with degraded performance is not always a good choice.
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2.2.2 Data allocation

Data allocation refers to the problem of assigning variables in a program to memory loca-

tions. A traditional compiler usually assigns memory slots to the variables according to the

declaration order of these variables. Trishul et al. [14] proposed structure splitting and field

reordering to improve cache behavior by reordering the field variables to increase reference

locality. Zhang and Gupta [85] proposed compressing field variables of dynamically allocated

data structures to improve locality. Data allocation for low-end to middle-end DSP proces-

sors has a large impact on the code size and performance due to the unique addressing mode

and short instruction width of these processors [6, 51]. I will elaborate further as follows.

Addressing code generation in DSPs. Modern multi-core wireless sensors have

integrated DSP co-processors to support processing kernels of multimedia and security ap-

plications that handle audio, video, and communication signals [19]. DSP processors can

achieve low-cost, low-power, and low-latency digital signal processing by integrating spe-

cially optimized architectural components. For example, a dedicated address generation

unit (AGU) can perform parallel address computation in register-indirect addressing mode.

With register-indirect addressing, the memory address is stored in an address register (AR)

whose value can be automatically updated within a small range before or after memory

accesses. Such update-to-address registers incur no extra cost. As a comparison, base-

register-plus-offset addressing requires two instruction words on 16-bit DSP processors, e.g.,

AT&T DSP16xx [42].

Because the AGUs on DSP processors assist the address computation in parallel, by

carefully allocating variables in the memory, DSP compilers can generate efficient code with

compact size and improved performance. For the most frequently used auto-addressing

instructions such as post- and pre-address increment/decrement instructions, no explicit ad-

dressing instruction is needed when the address distance of two consecutive memory accesses

is smaller than 2; and an extra instruction is otherwise needed to update the address register.

The example shown in Figure 7 shows how the data allocation result affects the code

generation. Without using auto-addressing instructions, we need two instructions (instruc-

tion 20 and 30) to load variable A to R1 and then make the address register AR pointing

16



to variable B. However, using the post-increment addressing instruction, the two operations

can happen in parallel (instruction 20’). By allocating variable A and B next to each other,

auto-addressing saves one instruction.

..A-B...
10’:load AR, &A;

20’:load R1, *(AR+);

30’:load R2, *AR;

10:load AR, &A;

20:load R1, *AR;

30:load AR, &B;

40:load R2, *AR;

A
B

......

......
(a)

(c) (d)

(b)

Figure 7: An example of DSP code generation: (a) memory layout; (b) access sequence of

the variables; (c) generated instructions without auto addressing; (d) generated instructions

with auto addressing.

Offset assignment. From the example, we can see that auto-addressing mode helps

to increase the code performance and reduce the code size. Of course, the variables need

to be properly allocated in the memory in order to gain these benefits. This problem was

first formulated by Bartley [6] and Liao et al. [51] as the simple offset assignment (SOA)

problem (when there is only one AR), and the general offset assignment (GOA) problem

(when there are multiple ARs). A variety of heuristic algorithms have been proposed in the

literature [4, 15, 45, 46, 59, 66, 75, 86, 87].

The solution of SOA is equivalent to finding the maximum weight Hamiltonian path1

in the access graph [6, 51]. The access graph is a graph in which each vertex represents a

variable; each edge between two vertices represents that there is at least one consecutive

access of two corresponding variables; and the weight of each edge shows the count of such

consecutive accesses. Solving a GOA problem is simplified as solving N SOA problems,

where N is the number of address registers [51].

Offset assignment with variable coalescing. In DSP applications, many variables

have short live ranges. By allocating variables that do not interfere with each other in the

same memory location, it is possible to further reduce data memory size and improve code

performance. This observation led to variable coalescing heuristics for offset assignment,

1A Hamiltonian path in a graph is a path that visits every vertex exactly once.
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proposed by Ottoni et al. [59] and Zhuang et al. [86, 87] independently.

Prior art and my work. The design goal of existing offset assignment schemes is to

generate code with compact code size and improved performance. When the program is

slightly updated, the compiler might generate a different coalesced offset assignment com-

pared to the original version. Even though the memory layout difference is very simple,

e.g., when there is a simple switch of two variables’ memory addresses, all the instructions

that access these two variables, or the instructions that are adjacent to the memory access

instructions of these two variables, may need to apply a different addressing mode, which

produces many code differences from the original version.

Instead, I developed an update-conscious data allocation scheme for updates in WSNs

that uses the data allocation result from the old version as a hint, while generating the data

allocation for the new version. In this way, I can reduce the difference between two versions.

I consider both the code performance and the code difference in order to achieve overall

energy efficiency.

2.3 PATCH GENERATOR

To support diff-based software update, a patch that summarizes the differences between the

new and old code has to be generated.

Binary code patch. The simplest approach to generate a patch is to treat two code im-

ages as bit streams and summarize the bit-stream difference. Jeong and Culler [35] proposed

to divide the code image into blocks and perform an improved version of brute force search

to identify the shared code and the difference. Reijers et al. [68] proposed to use a tool that

is similar to the diff UNIX command, to find the binary code difference. When generating

the patch, they introduced address shifting, padding, and address patching primitives to

reduce the patch size.

High-level instruction. Patching code at high semantic levels tends to generate a

smaller update script. Levis et al. showed that code size is very small when using virtual

machine instructions [47]. Marrón et al. proposed a scheme to produce separate object
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files for TinyOS [76] components and let the sensor combine a subset of them together

in an executable binary [52]. Dunkels et al. further proposed a dynamic linker for this

system [22]. Koshy et al. proposed to generate relocatable modules and generate the binary

using a remote linker [39].

Compression. Compression algorithms, such as bzip2, compress, LZO, PPMd and zlib,

can be adopted for software update. Applying compression algorithms on the binary code

can reduce the size by 20%∼70% [24], which is usually less effective than patching [35, 68].

However, compression can be performed on top of patches to further reduce their sizes. The

disadvantage of compression is that a decompressor needs to be installed on the remote

sensor. Compression is orthogonal to patch generation and can be smoothly adopted in my

framework. I will not discuss and evaluate compression in this dissertation.

Prior art and my work. My work extends existing binary code patching designs [68].

In addition to the simple primitives that have been proposed, I designed and evaluated many

advanced and context-aware primitives to further reduce the patch size.

2.4 DISTRIBUTION PROTOCOL

After the patch generation phase, the patches are ready to be distributed over the network.

Many code distribution protocols [30, 32, 49, 80, 83] have been proposed.

SA-WSN code distribution protocol. In SA-WSNs, all the sensors run the same

application, so the distribution protocol design in SA-WSNs focuses on the efficient flooding

scheme which sends the patch packets to all the sensors in the network. The original scheme

in WSN, called SPIN [30], uses a three-way handshaking protocol, shown in Figure 8. Each

sensor broadcasts the software information (ADV messages) as advertisements. The sensors

that need to update their software send request (REQ) messages to the code owners, and

then the code owners respond with the data messages.

Trickle [49] improves SPIN by introducing a suppression mechanism to remove unnec-

essary advertisement messages, which reduces the energy used in the advertisement phase.

Deluge [32] extends Trickle to support efficient flooding of large data, especially code images.
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sender receiver

ADV

REQ

DATA

Figure 8: Basic code distribution protocol (SPIN).

It divides a big code image into pages, with each page consisting of multiple packets; packets

within a page can be received out of order.

These protocols only support the code update in SA-WSNs — all the sensors get the

application updated eventually. For MA-WSNs that have multiple applications, only a

subset of all sensors may be running the application to be updated. The distance between

the requester and the source can be multiple hops away from each other. The above protocols

are not suitable for MA-WSNs, as their messages (advertisement, request, data) are always

sent and received in one hop.

MA-WSN code distribution protocol. Melete [83] was proposed to solve the code

distribution problem in MA-WSNs. It uses a controlled broadcast strategy to flood sensors

within a range. If a source is found, the application can be fetched from a local source.

The weakness of this scheme is that it is a stateless protocol — a sensor does not store the

routing to the source but relies on the REQ message to discover the routing. This causes

single collision and message retransmission, which wastes transmission energy.

Prior art and my work. This dissertation proposes a multicast-based code distribution

protocol (MCP). MCP is a stateful protocol — it stores the routing information to the nearby

source nodes of each application. Instead of using broadcast, MCP sends out multicast

messages, which helps to reduce network traffic and the update finish time.
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3.0 UPDATE-CONSCIOUS COMPILER (UCC)

In this chapter, I will first present an overview of the update conscious compilation (UCC)

design and then develop UCC data allocation (UCC-DA) and UCC register allocation (UCC-

RA) schemes.

This dissertation studies the applications running on two types of architectures that

appear in WSNs (as discussed in Chapter 1). The first type of applications, referred to as

general-purpose applications, are those to be executed on the main sensor processor, e.g., the

ATmega128L processor in Mica2 or the XScale core in Imote2 [19]. The code needs to handle

interrupts and different types of events, and has a relatively complex control structure. The

developed schemes for this type are not architecture-dependent and thus can be adapted to

different sensor processors. The second type of applications, referred to as DSP applications,

are those to be executed on a DSP co-processor, e.g., the DSP core in Imote2 [19]. The code

is often the kernel of different filters and security algorithms. The developed schemes for

this type exploit the special addressing mode that exists on this type of processors.

3.1 AN OVERVIEW OF UCC

An overview of update-conscious compilation is illustrated in Figure 9. Conventional com-

pilation takes the following steps to generate binary code from the source code. First,

the compiler converts the source code S into an intermediate representation ir. Next, the

compiler optimizes the ir for several iterations, and produces the optimized intermediate

representation IR. Finally, the code generation stage uses IR to generate the binary code E

by applying data allocation, code placement, register allocation, etc.
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S ir IR E

S` ir` IR`

E`

optimization

optimization
∆

P

update

• S – source code

• ir – intermediate representation

• IR – ir after optimization

• E – binary executable for S

• symbols with ` are updated versions

• ∆ – the difference between IR and IR`

• P – the update script

Figure 9: Sink-side update-conscious compilation.

The proposed UCC schemes are performed at the code generation stage, i.e., from IR to

E. This helps preserve the performance improvements from the optimization passes. In this

dissertation, I will develop three update-conscious schemes for register allocation and data

allocation in the code generation stage. For clarity, I assume that the optimization passes

are independent from these two phases. Other optimization passes will be investigated in

future work.

When S is updated to S’ (Figure 9), ir and IR are also updated to ir’ and IR’ respec-

tively. Let ∆ represent the differences between the IR’ and its previous version IR. With ∆,

the compiler can analyze and decide how to generate the binary E’ such that its difference

from E, denoted as P, is small.

P

Execution

E

E’

Figure 10: Sensor-side code update and execution.
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The binary difference P will then be transmitted over the network to the sensors. When

the sensors receive the complete P, it will construct the target executable E’ by combining

P with the old version executable E. This is demonstrated in Figure 10.

Developing different UCC compilation schemes. A modern compiler usually con-

sists of a number of optimization and code generation passes such as partial redundancy

elimination (PRE) [55], instruction selection, data allocation, and register allocation. In this

dissertation, I pick data allocation and register allocation as two examples to study. When

data allocation changes, all the load and store instructions that access the corresponding

data need to change; when register allocation changes, all instructions that access the corre-

sponding variables need to change. In particular, I integrate the update-conscious strategy

as the last step of optimization. At this time, the compiler is ready to allocate each func-

tion’s activation record and place all variable uses into registers. This assumption helps to

analyze the properties of UCC in the dissertation. In practice, it may be combined with

other optimization passes in different order, as I will discuss next.

Many other optimization passes may also benefit from UCC. For example, instruction

selection determines the opcode of each binary instruction. When there are multiple choices,

matching to the old version is preferred as it helps to improve the code similarity. I leave

this as a future topic to be further explored and discussed in Chapter 7.

The best place for UCC in compilation. Figure 11 shows that other optimizations

may still be performed after UCC. Part of the benefits exposed by UCC may be removed

by later optimizations. For example, link-time optimization [56] may eliminate an unused

branch, cause code shift once again, and thus reduce code similarity. The problem of finding

the best place to integrate UCC for maximal code similarity falls in a more general problem

in the compiler community, i.e., how to order different optimization passes to maximize

the benefits. The problem has been intensively studied with both heuristic algorithms and

exhaustive searching/pruning techniques proposed in the literature [40, 79, 81, 84]. In this

dissertation, I assume UCC is the last optimization pass and leave the ordering problem as

a future topic to explore.

UCC requires support from other analyses. Figure 11 also shows that UCC needs

auxiliary information collected in early analysis passes and from other tools. For example,

23



Front end

Machine-

independent

optimization

UCC-DA 

+ 

UCC-RA

After register allocation 

optimizations, 

Binary code generation

source 

code

Auxiliary information:

+ mapping between source code and IR

+ pointer analysis results    

binary

Compilation decisions:
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(the current decisions are saved for compiling newer versions)

+ data allocation results

+ register allocation results    

Figure 11: Placing update conscious compilation (UCC) in the traditional compilation flow.

TinyOS applications often use pointers and thus need pointer analysis to disambiguate mem-

ory accesses. The problem was studied by Cooprider and Regehr in their cXprop tool [17].

They proposed to transform the .c code of TinyOS applications to CIL intermediate repre-

sentation and track dataflow in the pointer set abstract domain, which serves as the basis for

both must-alias and may-alias analyses. Their results showed good analysis precision [17]

for constant propagation and other optimizations. The schemes proposed in this dissertation

do not handle pointers directly and need to combine with a pointer analysis tool such as

cXprop to ensure correctness.

Version control after multiple code updates. Currently UCC only focuses on

improving the code similarity of consecutive code versions. After multiple code updates,

there might exist multiple versions. Having multiple code versions is not a problem during

compilation, since UCC is the last optimization pass in my framework. Other optimization

passes do not consider old code, and perform exactly the same as before. When performing

UCC, UCC only tries to minimize the difference from the preceding version.

At the network level, there may exist some sensors that do not have the required old

version. For example, the current code update is from version 2.0 to 2.1 while some sensors

only have version 1.0 (because they were either in the sleeping mode, or they were temporarily
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disconnected from the network). This is a common problem for the diff-based patching

strategy. The current solution is that sensors that do not have the required old code download

the complete code image from their neighbors. This strategy will have insignificant impact

on the overall energy efficiency: since code update is a high-priority task, every sensor needs

to check its code version when it wakes up or re-connects to the network, and only a small

number of sensors may skip an update completely.

3.2 UCC TECHNIQUES FOR GENERAL-PURPOSE APPLICATIONS

In this section, I will discuss the UCC schemes developed for general-purpose applications,

i.e., the code to be executed on the main sensor processor. The schemes include a UCC

register allocation scheme, a UCC data allocation scheme, and an integrated scheme that

combines both. The goal is to generate the new binary image as similar to the old binary

image as possible with minimal run-time performance loss.

3.2.1 UCC data allocation (UCC-DA) for general-purpose applications

The binary instructions may change due to changes in data allocation, e.g., relocating a vari-

able requires updating the load/store instructions that access it. Increasing data allocation

similarity tends to decrease such changes and improve the binary code similarity. However,

there are tradeoffs that need to be carefully evaluated to ensure correctness.

3.2.1.1 Data allocation problem for general-purpose applications

The data allocation strategy can affect the binary level similarity, as illustrated in the ex-

ample in Figure 12. In the original code (Figure 12(a)), three one-word variables a, b, and

c are allocated with offset 0, 2, and 4 respectively, to a base address. Assume the code is

updated by replacing variable a with a constant, and introducing a new variable d. The

existing compiler may generate the data allocation result as shown in Figure 12(b), in which

all variables are assigned with new offsets, resulting in three different instructions. However,
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; b offset=0

; c offset=2

; d offset=4

…

li r1, 100

ld r2, 0xa00

add r2, r2, r1

st r2, 0xa02

lsl r2

uint_16 a;

uint_16 b;

uint_16 c;

… 

a=100;

c = a + b;

…

; a offset=0

; b offset=2

; c offset=4

… 

li r1, 100

ld r2, 0xa02

add r2, r2, r1

st r2, 0xa04

uint_16 a;

uint_16 b;

uint_16 c;

uint_16 d;

…

a=100;

c = 100 + b;

d = b <<1;

(a) (b)

; d offset=0

; b offset=2

; c offset=4

…

li r1, 100

ld r2, 0xa02

add r2, r2, r1

st r2, 0xa04

lsl r2

uint_16 d;

uint_16 b;

uint_16 c;

…

a=100;

c = 100 + b;

d = b <<1;

(c)

Source: Assembly: Source: Assembly: Source: Assembly:

Figure 12: An update-conscious data allocation example. (a) Original source and assembly

code; (b) New code and the changed instructions; (c) Incrementally generated new code with

a smaller change.

an update-conscious algorithm should allocate the new variable d to a’s old location, as

shown in Figure 12(c), resulting in only one different instruction.

However, keeping the data allocation the same as the old version may raise another

problem. If there was no d in the new code and if the word taken by a was not claimed, we

would require one more word in the function’s activation record, and thus waste multiple

RAM memory slots at runtime as the function can be invoked multiple times. This will

increase the memory usage on remote sensors.

3.2.1.2 UCC data allocation for general-purpose applications

To address the problem of how to improve the data allocation similarity and keep the worst-

case call stack size lower than the available RAM size, I propose a threshold-based data

allocation mechanism [50]. The intuition is to reuse the space of the deleted variables, so

that when there are more deleted variables than the new variables, it increases the memory

usage only if the impact is acceptable.

• If there are more new variables than the deleted ones, the threshold-based data allocation
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algorithm will first use up the space of the deleted variables and then allocate more space.

• If there are more deleted variables, some memory words in the corresponding function’s

activation record will be left as “holes”. There are two options to save the space:

– relocate some old variables to fill in the “holes”;

– do not relocate.

The first option does not waste the runtime RAM space on the sensor node, but it needs

to change the program code because of the variable relocation. The second option incurs

fewer code changes but leaves “holes” in the call stack at runtime. A typical wireless

sensor has only limited data memory, for example, 4KB RAM for Mica2 or MicaZ sensors.

This data memory is used to store not only the call stack but also the data segment and

the BSS segment. To ensure that the stack does not overflow, the total wasted RAM

space should be less than a given threshold — SpaceT. Given a sensor application, I use

the TinyOS tool tos-ramsize to collect the size of each segment and set the threshold

SpaceT to be the free space left in RAM. A sample output of tos-ramsize is as follows.

$ tos-ramsize mica2 main.exe

BSS segment size is 1024, data segment size is 512

The upper bound on stack size is 2048

The upper bound on RAM usage is 3584

There are 512 unused bytes of RAM

It is straightforward that SpaceT should be set as

SpaceT = SIZERAM - SIZEData segment - SIZEBSS - SIZEStack footprint

The detailed algorithm is shown in Algorithm 1. For clarity, the proposed algorithm

elaborates on the procedures for variables of word type only. The principle can be similarly

applied to other data types such as array and composite structures.

First, it collects the following profiles for each procedure Pi(i≥ 0) in the program. In

particular, Usagei(a) is from the code itself. NumOfInstsi is from programmer’s expert

knowledge assisted by program analysis tools, as I will explain later.
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Algorithm 1 UCC-DA for general-purpose applications.

Input: Procedure list P[], the wasted space threshold SpaceT.
Output: The data allocation result.
1: for all Pi ∈ P[] do
2: TotalWastedSpaceSize ← 0;
3: NumOfDelVi ← the total number of deleted variables in Pi;
4: NumOfNewVi ← the total number of new variables in Pi;
5: NumOfInstsi ← the projected maximal simultaneous instances of Pi;
6: if NumOfDelVi ≤ NumOfNewVi then
7: Reuses all the space from deleted variables;
8: Allocate extra space to satisfy the remaining new variables;
9: else
10: Reuses all the space from deleted variables;
11: ExtraSpaceSizei ← NumOfDelVi - NumOfNewVi;
12: TotalWastedSpaceSize += ExtraSpaceSizei× NumOfInstsi;
13: end if
14: end for
15: while TotalWastedSpaceSize > SpaceT do
16: Max Factor ← 0;
17: for Pi ∈ P[] AND ExtraSpaceSizei > 0 do
18: Usagei(last) ← the usage of the last variable in Pi;
19: Factori ←

NumOfInstsi
Usage

i
(last)

;

20: if Factori > Max Factor then
21: Max Factor ← Factori;
22: To Move ← i;
23: end if
24: end for
25: Move the last variable in procedure To Move to fill up a memory “hole”;
26: TotalWastedSpaceSize − = 1× NumOfInstsi;
27: end while
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NumOfDelVi the total number of deleted variables in Pi;
NumOfNewVi the total number of new variables in Pi;

NumOfInstsi the projected maximal simultaneous instances of Pi;
Usagei(a) the usage of variable a in Pi.

Second, it gradually allocates new variables within each procedure Pi as shown in Algo-

rithm 1 line 6∼13. Instead of removing the deleted variables directly, it only marks them

as deleted variables so that their space can be reused by new variables. If NumOfNewVi is

larger than or equal to NumOfDelVi, it reuses all the space from the deleted variables and

allocates extra space to satisfy the remaining new variables. If NumOfNewVi is smaller than

NumOfDelVi, i.e., new variables cannot reuse all space of the deleted ones, then it computes

the number of words left to be filled using the following formula and moves to the next step.

ExtraSpaceSizei = NumOfDelVi − NumOfNewVi (3.1)

In this step, it adjusts the data allocation by incrementally relocating the variable that

is allocated in the last memory slot in each procedure’s activation record. It keeps moving

the last variable into a “hole” left by variable deletion, until the wasted memory space is

smaller than the threshold. That is,

∑

∀Pi

ExtraSpaceSizei × NumOfInstsi ≤ SpaceT. (3.2)

The algorithm evaluates two factors at each step when determining which procedure

should relocate its last variable to fill up one “hole”. One is the number of usages of its

last variable Usagei(last), and the other is the number of instances that the procedure can

have on stack NumOfInstsi.

Relocating a variable that is used more frequently causes more instruction updates,

resulting in a larger patch and more transmission energy consumption. Thus, my algorithm

tries to choose a rarely used variable to relocate in order to save transmission energy.

The other factor comes from the space constraint. A procedure that wastes one memory

word in its activation record can waste five RAM slots if there are five active instances in

the stack. As shown in Figure 13, for an event-driven environment such as TinyOS [76],

interrupts use stack memory on top of the current running task. When non-atomic interrupt

request (IRQ) is enabled, multiple instances of the same interrupt handler may stay in the
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Figure 13: The sensor memory model.

stack. Therefore, my algorithm estimates the actual space wasted at runtime from each

“hole”, and chooses the one that has the smallest number of instances.

Precisely tracking the stack usage is important to ensure safety, i.e., the worst-case stack

size is still less than the RAM size. Two tools, stack-estimator [53] and tos-ramsize [67],

have been developed in the literature to accomplish this goal. For example, when setting the

verbosity level to 2, tos-ramsize prints out the worst-case depth of each interrupt vector,

i.e, NumOfInstsi (for each interrupt handler Pi).

$ tos-ramsize -verbosity 2 mica2 main.exe

... vector 12 max depth = 40 (not atomic)

...

The result indicates the interrupt handler 12 is non-atomic and its worst-case calling depth is

40. Wasting one word in interrupt handler 12’s activation record will waste 40 RAM memory

slots at runtime. Currently tos-ramsize does not support the analysis of task functions. I

take the approach in stack-estimator to build the call graph, and traverse the call graph to

find the worst-case call count of each function, i.e., NumOfInstsi (for each task function Pi).

Similar to tos-ramsize and stack-estimator, recursion is not supported.
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Main()

FuncB()
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FuncB()

Interrupt 
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FuncB()

Figure 14: An example of data allocation for general-purpose applications.

When Usagei(a) (the usage of variable a in Pi) and NumOfInstsi (the maximal instances

of Pi) are ready, Figure 14 shows an example of how to identify the variable to relocate.

FuncB() is called by both Main() and Interrupt handler1(), so it has two instances on

the stack, while the other procedures only have one instance each. Wasting one word in

FuncB() causes two memory slots to be wasted in RAM at runtime, while wasting one word

in Interrupt handler1() causes only one wasted memory slot at runtime. Thus, in order

to save RAM usage, my algorithm moves the last variable of FuncB() instead of that of

Interrupt handler1().

With such considerations, the selected procedure Pk should satisfy the following equation:

NumOfInstsk

Usagek(last)
= MAX(

NumOfInstsi

Usagei(last)
) (∀i, ExtraSpaceSizei > 0). (3.3)

After deciding which procedure to pick, UCC-DA relocates the last variable in that procedure

to one deleted memory word. By doing so, it can shrink the maximal runtime memory usage

by NumOfInstsk (as it is the last variable in that procedure), and incur fewer code changes
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(as the variable with fewer uses is selected). UCC-DA then decrements ExtraSpaceSizek

and continues this step until Equation (3.2) is satisfied.

For the example in Figure 12, if SpaceT=0 and d are not introduced, UCC-DA will reuse

a’s space with c, which changes one instruction related to c. This still outperforms the

default scheme in Figure 12(b), as b is not relocated.

3.2.2 UCC register allocation (UCC-RA) for general-purpose applications

The register allocation result, in addition to the data allocation result, can also affect the

similarity between two binary images. In this section, I will discuss how to perform UCC

register allocation when generating the new binary.
(1) a = …

… 

(5) … = a + ... 

… 

(10) … = a 

...

(12) b = …

...

(15) … = b  

(a) variables a and b 

are assigned to use R1

(b) a and b’s live ranges 

overlap after the update

a: R1

b: R1

(1) a = …

… 

(5) b = a + ... 

… 

(10) … = a 

...

(12) b = …

...

(15) … = b  

a: R1

b: R2

(c) split b’s live range and 

assign a new register

(1) a = …

… 

(5) b = a + ... 

… 

(10) … = a 

…

[ mov R2, R1] 

(12) b = …

...

(15) … = b  

a: R1

b: R2

b: R1

Figure 15: An example of register allocation for general-purpose applications.

3.2.2.1 Register allocation problem for general-purpose applications

Figure 15 illustrates why different register allocation decisions can greatly impact the code

similarity, and therefore the update cost. In this example, two variables a and b initially

have disjoint live ranges and can be allocated to the same register R1 (Figure 15(a)). Assume

a small code change extends b’s live range into a’s. If there are enough free registers, a tra-

ditional register allocator will assign different registers to them, as depicted in Figure 15(b).

Variable b is assigned to a new register R2, resulting in a name change for all the uses in

subsequent statements in the statement range {5,15}. In contrast, an alternative update-

conscious decision may allocate b to R2 only for the range {5,11} where R1 is not free, and
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match the old allocation for the range {12, 15} with one extra mov instruction, as shown in

Figure 15(c). By comparing these two solutions, it is clear that solution (b) achieves faster

code, and solution (c) results in less update cost. The discrepancy in energy consumption

between data transmission and instruction execution makes solution (c) more appealing, as it

consumes less energy unless the code is very frequently executed, or the update is extremely

rare (as shown in Chapter 6).

3.2.2.2 UCC register allocation for general-purpose applications

The basic idea of UCC register allocation (UCC-RA) is that, when compiling a new version of

code, it takes the register allocation result of the old version into consideration, and performs

register allocation with preference given to the allocation decisions for the old binary.

To achieve this, IR instructions are first identified as “changed” or “non-changed”, and

then successive instructions of the same type are grouped into chunks. The register allocator

then allocates registers for each chunk. Decisions for “changed” chunks are made by UCC-

RA, while decisions for “unchanged” chunks are taken from the old code before the update.

For the variables whose live ranges span across the chunk boundary, the register allocation

consistency is checked at the end. Inter-register movement instructions may be added to

ensure semantic correctness.

While doing UCC-RA, each variable in the input chunk is tagged with the register name

that was assigned to it in the old binary. This tag is called preferred-register tag. The

preferred-register tag is a hint to improving code similarity in UCC-RA.

The register allocator then allocates registers for each changed chunk, and gradually

matches the register assignment, or allocation decisions from both changed and non-changed

chunks for semantic correctness. Decisions for changed chunks are made by our UCC-RA

while decisions for unchanged chunks are taken from the old code before the update. The

two decisions are made conjointly. If a variable’s live range spans across the chunk boundary,

from “changed” to “non-changed” or vice versa, then the assignment in the “changed” chunk

gives preference to the assignment in the “non-changed” chunk to maximize the similarity.

However, this preference may not always be adopted by the allocator. If the allocator decides
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to use a new register in the “changed” chunk, then a mov instruction between the two chunks

should be inserted to move data between the new and the old registers. Register preference

should also be given to the same variables on different control flow paths (they might be

of different chunk types). However, if the allocator chooses a different register, then a mov

instruction is also necessary.

Clearly, placing too many inter-register movement instructions requires not only trans-

mitting more update data to remote sensors but also executing more instructions at runtime.

Therefore, it is desirable to develop a precise cost-benefit model such that an inter-register

movement instruction is inserted only if it is estimated to be energy-efficient.

Motivated by the 0/1 integer linear programming research for register allocation [29],

the UCC-RA problem can be formulated as a non-linear integer programming problem. The

general idea of how to select the decision variables and formulate the constraints and the

objective function is addressed as follows.

The decision variables. I use a set of decision variables that represent the register

assignments at each program point. A decision variable is defined as Equation 3.4.

The value of the decision variables XRi
op.a.s can be 0 or 1. When register Ri is assigned to

variable a at statement s for operation op, the value is 1; and otherwise, it is 0.

XRi
op.a.s =







0 : Assertion is true.

1 : Assertion is false.
(3.4)

op Operation;

a Variable;

s Statement;

Ri Register (1≤i≤31);

The operations can be classified into three categories: def/use, load/store, and move

operations. Figure 16 shows a full list of decision variables for UCC-RA.

Def/Use decision variables. The def/use decision variables model the register assignment

of a variable at one statement. When a variable is assigned a value at a statement, the

statement is called a def point of the variable. I use decision variable XRi
def.a.s to determine
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Def/Use XRi
def.a.s if a is allocated to Ri at its definition point s;

XRi
cont.a.s if a is allocated to Ri after its def point s;

XRi
lastUse.a.s if a is allocated to Ri at its last use point s and a is dead after s;

XRi
use.a.s if a is allocated to Ri at s, but not in Ri after s; statement s is not the

last use;

XRi
useCont.a.s if a is allocated to Ri at s, and is also in Ri after s; statement s is not

the last use;

Load/Store XRi
st.a.s if a is spilled from Ri to memory after s;

XRi
ld.a.s if a is loaded from memory to Ri before its use point s;

Xmem
cont.a.s if the variable is kept in memory after the statement s;

Move XRi
mov.out.a.s if a is moved from Ri to another register at s;

XRi
mov.in.a.s if a is moved from another register to Ri at s;

Figure 16: The decision variables used in UCC-RA.
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whether to allocate variable a to register Ri at statement s, if a is defined at s. If the value

of this variable stays in this register afterward, i.e., it is not spilled to the memory or moved

to another register, I set the value of decision variable XRi
cont.a.s to 1.

When a variable is used at a statement, the statement is a use point of the variable. There

can be two cases depending on whether this is the last use point of this variable or not. This

information can be gathered through backward analysis. If it is the last use of this variable,

there is no need to decide where to store the value after this statement, so we only need

one decision variable to model the register assignment for the current statement. Decision

variable XRi
lastUse.a.s is used for this purpose. If the variable lives until later instruction, we use

XRi
use.a.s to model the register assignment for the current statement and XRi

useCont.a.s to model

the register assignment right after this statement. Based on the definition, one can see that

XRi
use.a.s and XRi

useCont.a.s are exclusive from each other.

Load/Store decision variables. Usually we do not have enough registers to hold the values

of all the live variables, so we need to store temporary unused values to cache or main memory

and load them back to registers before their next uses. Because accessing memory is slower

than accessing registers, memory spills increase the execution time.

I use the load/store decision variables to model memory spill decisions. If a variable a

is spilled from register Ri to memory after statement s, XRi
st.a.s is set to 1. If a variable a is

loaded from memory to register Ri before statement s, XRi
ld.a.s is set to 1. These two decision

variables model not only whether to load/store the value of a variable from/to memory but

also the register assignment after/before the load/store.

Decision variable Xmem
cont.a.s is then used to model whether the value of a variable exists in

memory or not. It is set to be 0 until the value of variable a is stored to memory.

Move decision variables. As shown in Figure 15, when performing update-conscious com-

pilation, mov instructions may be added to keep the register allocation similar to the old

version. These mov instructions are considered as run-time overhead also.

To model this overhead, I use the move decision variables. Intuitively, I can also use

one decision variable XRi←Rj
mov.a.s to represent whether to move the value of a from Rj to Ri at

statement s. The reason that I use two decision variables XRi
mov.in.a.s and XRi

mov.out.a.s instead,

is that the former design will introduce too many decision variables. Let us assume there
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are 31 registers. The one-variable definition would introduce 31 × 30 mov decision variables

for each variable at a program point. This will increase the problem size and slow down

the solver. Instead, we decouple the mov’s source register from the destination register such

that only 31× 2 decision variables are required. Then, I simply combine the corresponding

move-in and move-out variables to implement the register move.

An example. For the code chunk in Figure 15(a), I first introduce a set of decision vari-

ables that represent the register assignments that we need to make at each program point.

For example, if variable a is allocated in register R1 at statement (1), then we have XR1
def.a.1 = 1

and ∀Ri,Ri 6= R1, XRi
def.a.1 = 0. As another example, if we decided to insert an instruction

“mov R2 to R3” for b before statement (4), I set XR2
mov.out.b.4 = 1, XR3

mov.in.b.4 = 1, and all

other move decision variables X∗mov.∗.b.4 as 0. As discussed, such a mov instruction may be

inserted to release R2 for other variables, or to match the old assignment of b to R3 after

statement (4).

The constraints. With the defined decision variables, I convert the register allocation

problem into a problem of finding the 0/1 solution to these variables. To ensure that the

value assignment can be mapped back to a valid register assignment, these variables are

subject to a set of constraints.

Two symbols. In the following discussion, two symbols URi
a.s and VRi

a.last s are introduced

to simplify the equations. URi
a.s is defined to describe the register assignment of variable a at

instruction s. Based on whether the statement is a def or use point of the variable, the value

of URi
a.s can be formulated using the following equations:

URi
a.s =



















XRi
def.a.s : if a is defined at s

XRi
use.a.s + XRi

useCont.a.s : if a is used at s

XRi
lastUse.a.s : if a is used and dies at s

(3.5)

VRi
a.last s is defined to show the register assignment of variable a after the most recent

access point (last s). The reason we want to introduce this symbol is that the register

assignment at a former instruction affects the register assignment at the later instruction.

It is preferable to store the whole life range of a variable in one register, in order to avoid
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the extra load, store, or move instructions. Depending on whether instruction last s is a

def point or use point of variable a, V Ri
a.last s is calculated in different ways.

VRi
a.last s =







XRi
cont.a.last s : if a is defined at last s

XRi
useCont.a.last s : if a is used at last s

(3.6)

The defined constraints are presented as shown below.

One register occupation. Each variable should be allocated to one and only one register

at its def or use point (Equation 3.7). This includes three cases: (i) if a variable a is at its def

point s, one and only one XRi
def.a.s can be 1 (Equation 3.8); (ii) if a variable a is at a use point

and this is the last use for the variable, one and only one XRi
lastUse.a.s can be 1 (Equation 3.9);

(iii) if a variable a is at a use but not the last use point, the actual register assignment can

be represented by XRi
use.a.s + XRi

useCont.a.s (because they are exclusive) and should satisfy the

constraint in Equation 3.10.

∑

∀Ri

URi
a.s = 1 (3.7)

∑

∀Ri

XRi
def.a.s = 1 (3.8)

∑

∀Ri

XRi
lastUse.a.s = 1 (3.9)

∑

∀Ri

(XRi
use.a.s + XRi

useCont.a.s) = 1 (3.10)

Inter-register moves. To ensure valid inter-register movements, I define constraints on

move decision variables. Equation 3.11 indicates that for a variable a at each program point

s, a move instruction may and may not be inserted, and the move-in and move-out decision

variables must appear in pairs.

∑

∀Ri

XRi
mov.out.a.s ≤ 1

∑

∀Ri

XRi
mov.out.a.s =

∑

∀Ri

XRi
mov.in.a.s (3.11)

Memory spill related. At a statement s, variable a may be loaded from the memory

or may come from inter-register movement. Equation 3.12 indicates that after defining the
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variable, the value in the register may be spilled to the memory, or moved to another register,

or stay for later use.

XRi
st.a.s ≤ XRi

def.a.s + XRi
mov.in.a.s

XRi
mov.out.a.s ≤ XRi

def.a.s

XRi
cont.a.s ≤ XRi

def.a.s + XRi
mov.in.a.s (3.12)

Equation 3.13 indicates that for the code spill at a def point, only a store instruction

may be possibly generated.

Xmem
cont.a.s ≤

∑

∀Ri

XRi
st.a.s (3.13)

At a use point, a variable may be located in a register due to its use in the previous

instruction, or loaded from the memory, or moved from another register. Depending on

whether the use is the last use point, Equation 3.14 defines the following two constraints:

XRi
use.a.s + XRi

useCont.a.s ≤ XRi
cont.a.(s−1) + XRi

ld.a.s + XRi
mov.in.a.s

XRi
last.a.s ≤ XRi

cont.a.(s−1) + XRi
ld.a.s + XRi

mov.in.a.s (3.14)

Equation 3.15 defines the constraint that either a load spill or an inter-register movement

before the use point is needed.

∑

∀Ri

XRi
ld.a.s ≤ Xmem

cont.a.(s−1)

∑

∀Ri

XRi
mov.out.a.s ≤ XRi

cont.a.(s−1) (3.15)

No register assignment conflict. The following constraints are used to ensure that one

register is assigned to only one variable at a time.

Equation 3.16 defines the constraint that there is no register assignment conflict between

the current variable and the active variables that are processed before.

For each Ri,
∑

∀var

VRi
var.last s + URi

a.s ≤ 1 (3.16)
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For example, the following constraints are generated at statement (2) in Figure 15:

URi
b.2 = XRi

def.b.2

VRi
a.last use = XRi

cont.a.1

Equation 3.16⇒ XRi
def.b.2 + XRi

cont.a.1 ≤ 1 (3.17)

Also to avoid the register assignment conflict between the variables that are used in the

same instruction, the following constraint needs to be applied:

For each Ri,
∑

∀var

URi
var.s ≤ 1 (3.18)

For example, the following constraints are generated at statement (6) in Figure 15:

URi
a.6 = XRi

lastUse.a.6

URi
b.6 = XRi

use.b.6 + XRi
useCont.b.6

Equation 3.18⇒ XRi
lastUse.a.6 + XRi

use.b.6 + XRi
useCont.b.6 ≤ 1 (3.19)

Continuous register assignment. For Mica2 micro controllers, UCC-RA needs to enforce

another type of constraint. Each register in Mica2 has 8 bits, i.e., one byte. A 32-bit integer

variable takes four consecutive registers, i.e., byte a, a+1, a+2, and a+3 should be in register

Ri, Ri+1, Ri+2, and Ri+3 respectively:

XRi
use.(a).s = X

Ri+1

use.(a+1).s

XRi
use.(a+1).s = X

Ri+1

use.(a+2).s

XRi
use.(a+2).s = X

Ri+1

use.(a+3).s (3.20)

At the boundary of changed and unchanged code chunks, and at the merge point of

control flows, UCC-RA inserts inter-register move instructions to make sure that the values

are in proper registers before their next uses. In my future work, instead of performing

inter-register movements, I will introduce constraints similar to those in [29] for the merge

point of control flows.

The objective function. The goal of my integer programming is to minimize the

objective function on total energy consumption, as expressed in Equation 3.21 in Figure 17.
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The equation defines the total energy consumption of the changed IR chunk under different

register allocation decisions. The notations used in equation (3.21) are listed in Figure 18.

Other terms are explained as follows.

Etotal = chg(s)× Echanged IR + (1− chg(s))× Eunchanged IR + Espill + Eextra (3.21)

where

Echanged IR =
∑

∀s

(freq(s)× Eexe) +
∑

∀s

(Etrans) (3.22)

Eunchanged IR =
∑

∀s

(freq(s)× Eexe) +
∑

∀s

(1−
∏

∀a

X
prefer(a,s)
def/use.a.s)× Etrans (3.23)

Espill =
∑

∀s,a,Ri

(freq(s) × (XRi
st.a.s + XRi

ld.a.s)× Eexe) +

∑

∀s,a,Ri

((1− spill(a, Ri, s))× (XRi
ld.a.s + XRi

st.a.s)× Etrans) (3.24)

Eextra =
∑

∀s,a,Ri

(freq(s) × XRi
mov.in.a.s × Eexe) +

∑

∀a,s,Ri

(XRi
mov.in.a.s × Etrans) (3.25)

Figure 17: The objective function used in UCC-RA.

Espill specifies the energy consumption due to code spill. It includes two components:

the execution energy and the dissemination energy. The former depends on the code quality

which is the main goal of many traditional allocators. The latter is not negligible when a

new spill is generated or an old spill is removed. It is zero for all other cases, i.e., either

(1-spill(a,Ri,s))=0 or (XRi
ld.a.s + XRi

st.a.s) = 0 in the Equation 3.24. For example, if a is

spilled to R1 in both new and old binaries, then we have zero transmission cost.

for R1, 1-spill(a,R1,s)=0, XR1
ld.a.s +XR1

st.a.s=1

for Ri(Ri6=R1), 1-spill(a,Ri,s)=1,XRi
ld.a.s +XRi

st.a.s=0

Echanged IR specifies the energy consumption due to changed IR instructions. It includes

both the execution and the dissemination energy consumption as well. As we can see, no
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Etrans the energy consumed to disseminate one instruction in WSN;

Eexe the energy consumed to execute one instruction. We use the averaged

number here and differentiate the memory access (load,store) and ALU

instructions in the implementation;

prefer(a, s) the preferred-register for variable a at statement s;

freq(s) the execution frequency counter of statement s;

chg(s) if s is an unchanged IR instruction. chg(s)=1 if s has been changed;

=0 otherwise;

spill(a, Ri, s) if variable a was spilled to Ri/loaded back from Ri at statement s in

the old binary;

Figure 18: The notation used in the UCC-RA objective function.

matter which register allocator is used, a changed IR instruction always results in a binary

instruction that should be disseminated to remote sensors. Therefore, Echanged IR is a constant

in the model.

Eunchanged IR specifies the energy consumption due to unchanged IR instructions. Assume

there is an unchanged IR instruction “a=a+b”, and a and b’s preferred-registers are R1 and

R2 respectively. If the new allocation decision follows the old allocation scheme, then there

is no dissemination cost, i.e., the same binary instruction “add R1, R2” is generated. If a

is assigned to a different register, say R3 such that “add R3, R2” is generated, then this

new instruction needs to be disseminated to replace the old one on the sensor. As shown in

Equation 3.23, this component is non-linear – one Etrans is introduced for either one or two

changes of the two preferred registers.

Eextra is the extra energy consumption due to inserted inter-register movements. This

term is zero if a traditional compiler decision is used. My UCC-RA targets achieving overall

energy efficiency, i.e., Eextra is positive only when it can gain more reduction from other

components, e.g., Eunchanged IR.

In the above model, X∗
∗
are decision variables that need to be determined by the UCC-
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RA, while others (such as chg(s), freq(s)) are known for a given code chunk. Since

Equation 3.23 is non-linear, the above formulation of UCC-RA results in a mixed integer

non-linear programming problem (MINLP) [10]. While the speed of MINLP solvers has been

improved greatly in recent years [10], it is still much slower than solving a linear problem. My

experiments showed that MINLP can be orders of magnitude slower than a linear problem

of similar size, i.e., similar number of decision variables and constraints. Next I will discuss

how to convert the MINLP problem to an ILP problem through approximation.

Solve an ILP problem. In this section I model the update energy consumption linearly

such that the UCC-RA can be solved using an ILP solver.

For an unchanged IR instruction with two variables a and b (to comply with Mica2 AVR

ISA, each IR instruction in my model has at most two different operands), assume their

preferred-registers are R1 and R2 respectively. The energy consumption can be modeled as

∑

∀s

(1− XR1
use.a... + 1−XR2

use.b...)× Etrans × δ (3.26)

where δ = 3/4 is a coefficient that approximates the update cost. δ is decided as follows.

Assume each variable has equal opportunity of being assigned and not assigned to its pre-

ferred register. For the instruction with two variables a and b and preferred registers R1 and

R2 respectively, there are four possibilities altogether:

• a is in R1, b is in R2;

• a is in R1, b is not in R2;

• a is not in R1, b is in R2;

• a is not in R1, b is not in R2.

It is clear that the first case has no update cost, while each of other three cases needs to

update one instruction. Therefore, the averaged update cost is (3/4) × Costsingle, which

makes δ to be 3/4.

After converting the model into an ILP problem, I chose a widely used ILP solver —

LP solve [8] to find the optimal assignment to the decision variables such that the energy
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cost in the objective function is minimized. The decision variables are then mapped back to

register assignments such that the new binary and the update script can be generated.

The UCC-RA heuristic. UCC-RA is a greedy heuristic algorithm. By applying ILP

formulation only to the changed chunks, UCC-RA strives to achieve overall energy efficiency

for updating the whole program. In my framework, UCC-RA can always reach the global

optimum because: (i) the compilation decisions for the changed chunks are optimal or near-

optimal due to ILP formulation; (ii) the compilation decisions for the unchanged chunks are

optimal also — since there is no need to update the unchanged code, the transmission energy

is minimized; since UCC-RA is assumed to be the last optimization pass, the execution energy

consumption of the unchanged code is also optimal. Given that UCC achieves the optimal

solutions for both changed and unchanged chunks, the overall energy efficiency is optimal.

When UCC-RA is not the last optimization pass, the result may not be globally optimal.

For example, further optimizing the UCC-identified unchanged code may reduce its execution

energy consumption. If the code is frequently executed, a globally optimal strategy should

decide to optimize the code, and pay the one-time dissemination energy to save long-time

execution energy consumption. As we discussed in Section 3.1, finding the best place to

integrate update-conscious compilation falls in a more general problem, i.e., the optimization

ordering problem [40, 81]. I leave it as an open problem for future research.

3.2.3 The integration of UCC-DA and UCC-RA

The preceding section considers register allocation only. When evaluating energy consump-

tion, the changed and unchanged IR statements are treated differently. For the changed IR

statements, the code update cannot be avoided. Thus, using the UCC-RA scheme does not

help. For the unchanged IR statements, keeping the same register assignment improves the

code similarity and reduces the update script size.

However, UCC-DA and UCC-RA interfere with each other — if some variables are relo-

cated, their corresponding load and store instructions have to be updated, no matter if the

register allocation chooses the same allocation as the previous version or not. Therefore, in

the object function, the energy consumption components of these load and store instructions
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should be modeled as changed instructions.

Based on this observation, I propose two approaches to integrate UCC-DA and UCC-RA

schemes. The first approach is to represent UCC-DA as a set of new constraints in the

previously formulated ILP problem, and solve both UCC-DA and UCC-RA in one step. The

second approach is to solve UCC-DA and UCC-RA in two sequential steps.

3.2.3.1 Performing UCC-DA and UCC-RA in one step

In order to integrate UCC-DA and UCC-RA and solve in one step, I will first introduce

a new decision variable to model the data allocation decision, and then define the related

constraints and the revised objective function.

Decision variables. A new decision variable Xmove
a is defined to determine whether to

relocate variable a in memory. The variable is set to 0 if the variable a is kept in the same

location as in the old code, and is set to 1 otherwise.

Data allocation related constraints. Let ExtraSpaceSizei represent the wasted

memory space for one instance of procedure Pi. As described in the UCC-DA algorithm 1, the

total wasted space on the call stack cannot go beyond the threshold SpaceT. This constraint

is formulated as the following Equation 3.27.

∑

∀Pi

ExtraSpaceSizei × InstsNumi ≤ SpaceT (3.27)

The wasted memory space for one instance of procedure Pi is presented in the follow-

ing equation, which is equal to the number of deleted variables minus the number of new

variables, then minus the number of relocated variables.

ExtraSpaceSizei =















0 : if(NumOfDelVi ≤ NumOfNewVi)

NumOfDelVi − NumOfNewVi −
∑

∀a

Xmove
a : otherwise

(3.28)

The variables defined in a procedure should be relocated in back order, i.e., the last

variable of this procedure is always relocated before the-last-but-one. This constraint is

formulated as Equation 3.29.

∀a, b old addr(a) ≤ old addr(b)⇒ Xmove
a ≤ Xmove

b (3.29)
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Integrated objective function. The objective function of UCC-RA (Equation 3.21)

contains four parts. The energy consumption of the ALU instructions is formulated as

Echanged IR and Eunchanged IR. The energy consumption of the spill instructions is formulated

as Espill. The energy consumption of the inserted mov instructions is formulated as Eextra.

Because the data allocation result will only affect the transmission energy consumption of

the load/store instructions, only Espill needs to be adjusted.

In UCC-RA, whether a load/store instruction needs to be sent to remote sensors (i.e.,

needs transmission energy) depends on two factors: whether there was a spill in the old

binary (spill(a,Ri,s)), and how the variables are allocated in the registers(XRi
ld.a.s and

XRi
st.a.s). For the instructions that did not have the register spill in the old binary, the code

update is required, because this load/store instruction is a new instruction. Otherwise, it

depends on whether the register allocation results are the same as the old ones. In short, only

when XRi
ld.a.s (or X

Ri
st.a.s) and spill(a,Ri,s) are set to be “1”, can the transmission energy be

saved.

Espill =
∑

∀s,a,Ri

freq(s)× (XRi
st.a.s + XRi

ld.a.s)× Eexe +

∑

∀s,a,Ri

(1− spill(a, Ri, s)× (XRi
ld.a.s + XRi

st.a.s)× (1− Xmove
a ))× Etrans (3.30)

Figure 19: The objective function used in ILP-based UCC integration.

When UCC-DA is also considered, whether a load/store instruction needs to be sent also

depends on the location of the variable. If the variable gets relocated, i.e., Xmove
a =1, then

the instruction has to be updated. In other words, the instruction update is not necessary

only when the following three conditions are all satisfied:

• spill(a,Ri,s) is set to be “1”, which means this instruction was a spill instruction in

the old binary;

• XRi
ld.a.s or XRi

ld.a.s is set to “1”, which means the new register allocation result is the same

as the old binary; and
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• Xmove
a is set to “0”, which means the variable is not relocated in memory.

Thus, the energy consumption of the load/store instructions is re-modeled in Equation 3.30.

Due to the introduction of Xmove
a , the second term of Espill in Equation(3.30) is not linear.

That is, the problem becomes a MINLP [10] problem again. To save the time spent in solving

the problem, I convert it into an ILP with approximation — similar to section 3.2.2.2, Espill

in Equation 3.30 can be rewritten as Equation 3.31 (δ is set as 3/4).

Espill =
∑

∀s,a,Ri

freq(s)× (XRi
st.a.s + XRi

ld.a.s)× Eexe +

∑

∀s,a,Ri

(1− spill(a, Ri, s)× (XRi
ld.a.s + XRi

st.a.s + 1− Xmove
a )× δ)× Etrans (3.31)

Figure 20: The converted objective function used in the ILP based UCC integration.

3.2.3.2 Performing UCC-DA and UCC-RA in two steps

Integrating UCC-DA constraints as above requires introducing a decision variable (Xmove
a ) for

each variable, and N in total, where N is the number of variables used in the program. This

increases the complexity of the ILP problem, and also the time to solve it. In this section, I

design a two-step heuristic that performs the data allocation and the register allocation in two

sequential steps. It does UCC-DA first and identifies all relocated variables. This information

is passed to UCC-RA, in which all memory access statements that access relocated variables

are considered as changed. This scheme does not affect the complexity of the ILP problem

for UCC-RA.

datachg(s) if statement s is a memory access that accesses a relocated variable.

Figure 21: The notation used in the two-step integration.

The detailed algorithm is described below. I introduce datachg(s) (Figure 21) to de-

scribe whether an unchanged IR statement needs update because of data relocation. After
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finishing UCC-DA, the compiler marks all relocated variables and sets their values to the

datachg(s) for each memory access statement s.

Espill =
∑

∀s,a,Ri

freq(s)× (XRi
st.a.s + XRi

ld.a.s)× Eexe +

∑

∀s,a,Ri

(1− spill(a, Ri, s)× (XRi
ld.a.s + XRi

st.a.s)× (1− datachg(s)))× Etrans (3.32)

Figure 22: The objective function used in the two-step approach.

The objective function needs to be updated as shown in Equation 3.32. The only dif-

ference between Equation 3.32 and Equation 3.30 (the objective function of the one-step

approach) is that datachg(s) is a constant when doing UCC-RA while Xmove
a is a decision

variable.

The two-step approach is easy to implement, however the result may be sub-optimal.

For example, UCC-DA needs to relocate one of two variables a and b. Since variable a is

more frequently used than b, UCC-DA decides to relocate variable b, which is predicted to

generate fewer code updates. But if later UCC-RA decides to assign another register for

a, all variable a-related instructions must be updated. A global energy-efficient decision

should relocate variable a instead of b, which can be achieved in the one-step integrated ILP

formulation. While the ILP formulation produces a better solution, it takes longer to solve.

I will evaluate the tradeoff in the experiment section.

3.3 UCC TECHNIQUES FOR DSP APPLICATIONS

As discussed in Chapter 2, when a sensor application decides to offload part of its code

to the DSP co-processor, it should take advantage of the specific architectural features to

speed-up the processing. The auto-addressing mode supported by the address generation

unit (AGU) enables the parallel computation of address registers, which helps reduce the

code size and improve performance. Different offset assignment heuristics can be applied to
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achieve optimal data allocation and address register allocation. In this section, I will build

my algorithms on top of existing heuristics [51, 59, 86].

Due to the close connection of data allocation and code generation for DSP applications,

improving the data allocation similarity helps keep the addressing mode selections of many

instructions similar to those in the old version, and improves the binary similarity. Therefore,

an update-conscious data allocation scheme is desired for DSP application updates.

Usually, a DSP chip has multiple address registers, which creates an address register

allocation problem. Current works [51, 59, 86] let different address registers handle different

subsets of variables. For small to medium level code updates, while it is possible to re-

partition the variables that should be handled by each address register, my experimental

results showed that keeping the old variable partition for address registers is beneficial. For

large changes, it is better to re-allocate from scratch. More details will be elaborated in

Chapter 6.

3.3.1 Data allocation problem for DSP applications

A motivational example of the proposed UCC data allocation (UCC-DA) scheme is shown

in Figure 23. When a DSP application has a small update, the binary code after the change

will preferably be similar to the one before the update. However, update-oblivious schemes

generate the new memory layout and its corresponding binary code without considering the

similarity between different versions.

Figure 24 illustrates the data allocation result of the example shown in Figure 23 using

an update-oblivious algorithm (CSOA [59]). Figure 24(a) shows the new code after a simple

change in the above example, i.e., the third instruction is changed (in the box). Using the new

access graph and interference graphs, CSOA generates a very different variable coalescing

result (Figure 24(d)). The memory layout difference further translates to selecting different

addressing instructions at each memory access (Figure 25).

However, an update-conscious algorithm would read in the old access graph and its

interference graph, and generate a new memory layout that can help minimize the difference

between the new and old binaries and thus the update script. For the given example,

49



b = a + 6500;

c = b << 4;

f = a + c;

e = f << 4;

d = c - e;

b

a
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fe
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1
1

2

2 1
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a d
e f

b c
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(a) (b) (c) (d)

Figure 23: An example of data allocation for DSP applications. (a) The IR code; (b) The

access graph; (c) The interference graph; (d) The data allocation result.

it would generate the same memory layout as the old version (Figure 23(d)). Figure 25

compares the update-oblivious and update-conscious data allocation algorithms. Using the

update-oblivious scheme, four of seven instructions need to be updated due to the data

allocation change, and using the update-conscious scheme completely avoids the update to

these four instructions.

3.3.2 UCC data allocation (UCC-DA) for DSP applications

The design goal of UCC data allocation is to improve data allocation similarity between

the old and new versions, and minimize run-time performance loss. To reach this goal for

DSP applications, I design an incremental coalescing offset assignment scheme that includes

ICSOA for simple offset assignment (with one address register) and ICGOA for general offset

assignment (with multiple address registers).
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b = a + 6500;

c = b << 4;

e = f << 4;
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f = c + 32;

Figure 24: A motivational example of the need for UCC data allocation for DSP applications.

(a) The C code after a simple update over Figure 23; (b) The new interference graph; (c) The

new access graph; (d) The new data allocation using CSOA, showing significantly different

layout from the original assignment shown in Figure 23(d).

3.3.2.1 Coalescing single offset assignment (CSOA)

Since my ICSOA scheme is based on an existing update-oblivious scheme (CSOA) [87], I will

discuss CSOA in this section. Given a piece of code compile, CSOA takes its variable access

graph and interference graph as input. In an access graph, a vertex represents a variable,

an edge represents a sequential access between the two related variables, and the weight of

an edge represents the count of such sequential accesses. In an interference graph, a vertex

represents a variable, and an edge indicates if the live ranges of the two related variables

overlap.

CSOA [87] employs an iteration-based heuristic to find the maximum weight path cover

(MWPC) of the access graph while coalescing the variables that do not interfere with each

other. In each iteration, CSOA selects one vertex, and based on pre-defined cost-saving

functions, either allocates a new memory slot to it, or coalesces it with an allocated slot.

When CSOA terminates, the MWPC of all coalescing groups determines the data allocation

result. The variables coalesced in one group share the same memory slot.
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Access Original Update-Oblivious Update-Conscious
sequence code code update code update

0 a •++ • diff** •++
1 b • • •
2 b • • •
3 c •- - • diff • diff
4 → a* •++ diff diff
5 c •- - • diff •- -
6 f • • •
7 f • •++ diff** •
8 e •++ •- - diff** •++
9 c •- - •++ diff** •- -
10 e • • •
11 d • • •

*: This access only exists in the old version.
**: The instruction that needs to be updated, due to data allocation changes.
•++: An instruction with post-increment addressing.
•- -: An instruction with post-decrement addressing.
The old version memory layout is “slot 0: a, d, e, f; slot 1: b, c”
The memory layout generated by the update-oblivious scheme is:
“slot 0: a, b, c, f; slot 1: d, e”.
The memory layout generated by the update-conscious scheme is:
“slot 0: a, d, e, f; slot 1: b, c”.

Figure 25: The update script comparison between CSOA and the update-conscious scheme.
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3.3.2.2 Incremental coalescing single offset assignment (ICSOA)

To minimize the update script, I propose to perform update-conscious code update through

incremental coalescing SOA (ICSOA) (Figure 26). When a DSP application undergoes a

small update on the server side, ICSOA reads in the old access graph and its interference

graph, and strives to generate a new memory layout that minimizes the update script.

On the mobile system side, only the update script needs to be downloaded. With simple

interpretation, the mobile system regenerates the new binary and/or the new memory layout.

(a) Server side update conscious offset assignment

Old 

Binary

Update 

Script

New Binary

(b) Update the code on mobile device 

Access 

GraphOld 

Code Interference 

Graph

CSOA

Memory

Layout

Coalesced

Access

Graph

Binary

Access 

Graph `New 

Code Interference 

Graph `

Updated

Coalesced

Access

Graph CSOA
Memory

Layout `
Binary `

Update 

Script

update

Figure 26: An overview of the ICSOA-based code update scheme.

The pseudo code of ICSOA is shown in Algorithm 2. The basic idea is to incorporate

the code changes to the old access graph, and iteratively find the MWPC while coalescing

variables using the updated interferences.

Function update access graph(). It combines the coalescing access graph of the old

version (CAG1) and the access graph after update (AG2) into a new access graph (AGNEW ).

ICSOA builds AGNEW based on CAG1, by adding new variable nodes and removing unused

nodes, so that AGNEW not only represents the updated access sequence but also keeps all

the coalescing offset assignment result from the old version. Using AGNEW instead of AG2

as the offset assignment input helps to improve the offset assignment similarity with the

previous version, and reduces the patch transmission overhead. However, when the code

change is relatively large, the energy saved by improving code similarity may be offset by
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the performance loss (due to sub-optimal code generated from ICSOA). For this reason,

when combining the graphs, update access graph() evaluates the number of accesses of

each old variable in the new code, and extracts it from its coalescing group if the variable

has more new or updated accesses than the unchanged ones. The intuition is to extract the

variables from their old coalescing groups only if it can bring explicit benefits. A new node

is introduced for each extracted variable; empty coalescing groups are removed from AGNEW .

At the end, the function adjusts the weights of impacted access edges accordingly to finish

the update.

Algorithm 2 Incremental coalescing-based SOA (ICSOA)

Input: AS1,AS2: access sequences before and after update;
IG1,IG2: interference graphs before and after update;

Output: the offset assignment.
1: AG1 ← Build access graph using AS1;
2: AG2 ← Build access graph using AS2;
3: CAG1 ← CSOA(AG1,IG1);
4: AGNEW ← update access graph(CAG1,AG2);
5: resolve conflicts(AGNEW, IG2);
6: CAG2 ← CSOA(AGNEW, IG2);
7: Return offset assignment based on CAG2;

Function resolve conflicts(). Two variables that were coalesced in the old assign-

ment may interfere with each other after the code update. ICSOA identifies this as a conflict

and uses the function resolve conflicts() to resolve it.

The function first orders the variables in each coalescing group, by the factor

Numlocal itfs

Numlocal acs

where Numlocal itfs represents the number of interferences between this variable and the other

group members, and Numlocal acs represents the number of adjacent accesses between this

variable and the other group members. The function then extracts the interfering variable

that has the highest factor value from the group. After several iterations, all the internal

conflicts within one group will be resolved. By doing so, the variables that create more

interference but have fewer adjacent accesses with the others are extracted earlier from the

coalescing group.
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For each variable chosen to be extracted from the coalescing group, the function splits the

live range (i.e., conflict range) into two subranges, the original part and the newly extended

part. We use the old variable name to represent the original subrange, and introduce a patch

variable for the extended subrange. To ensure semantic correctness, we insert a’=a or a=a’

to move the value between the subranges. The insertion involves memory copy and tends to

incur large overhead. We will evaluate its impact in the experiments.

For the example in Figure 23, ICSOA combines the coalesced offset assignment (Fig-

ure 23(d)) and the new access graph (Figure 24(c)). Figure 27(a) shows the updated access

graph. As there is no conflict between the access graph and interference graph(Figure 24(b)),

ICSOA outputs the same coalesced assignment (Figure 27(c)). In this example, the script

generated from ICSOA is 71% smaller than that of recompilation using CSOA.

a d
e f

b c
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(a)

b

a

c

fe
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(b)

a d
e f

b c

4

(c)

Figure 27: An example of ICSOA scheme: (a) AGNEW, the updated access graph; (b) IG2, the

new interference graph; (c) The final offset assignment.

3.3.3 Incremental coalescing general offset assignment (ICGOA)

In practice, multiple address registers are available on DSP chips. In this section, I extend

the update-conscious ICSOA design to handle multiple address registers, that is, to design

an incremental coalescing GOA scheme for general offset assignment.

Compared to SOA, GOA has one more task, i.e., the address register allocation problem

— which variable should use which address register at each program point. Existing heuris-

tics [51, 86] have found that it is beneficial to let each address register handle a subset of
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variables. After code updates, there exist two options. One is to repartition the variables to

be handled by different address registers; the other is to keep the variable partition handled

for each address register. Repartitioning variables greatly affects the addressing mode of

all instructions that access these variables — my experimental data showed that it always

generates high-level updates. Therefore, ICGOA tries to keep the variable partition the same

as the old binary when the update is at a small or medium level, and repartition variables

when the update is at a high level.

Similar to ICSOA, ICGOA is developed based on CGOA [59, 86]. The detailed algorithm

is presented in Algorithm 3. It first divides the variables into several groups such that the

variables in the same group share the same address register; within each group, ICSOA

algorithm proposed above is applied to find the layout of each group; the complete memory

layout is the combination of the results of all groups.

Algorithm 3 Incremental coalescing-based GOA (ICGOA).

Input: AS1,AS2: access sequences before and after update;
IG1,IG2: interference graphs before and after update;
NAR: the number of address registers;

Output: the offset assignment.
{Run CGOA over the original code}

1: Partition1[NAR]← CGOA(AS1, IG1, NAR);
{Remove the deleted variables and partition the newly added variables}

2: Partition2[NAR]← ICGOA Partition(Partition1[], NAR, AS2, IG2);
{Run ICSOA in each variable partition group}

3: for i = 0 to NAR do
4: Offset[i]← ICSOA(Partition2[i], AS1,AS2, IG1, IG2);
5: end for
6: Return Offset;

The algorithm first produces the variable partition of the old version based on the old

access graph and interference graph, using a heuristic-based algorithm [59]. In this algo-

rithm, the variables are sorted by the decreasing order of the global interference number

(Numglobal itfs), which is the total number of interferences that each variable has with the

other variables. The variable that has the highest global interference should be partitioned

first, because it has the most constraints. Then CGOA determines the partition group that

the variable belongs to, according to the local interference numbers (Numlocal itfs). This num-

ber represents the number of interferences that this variable has with the other variables
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within a partition group. The variable is assigned to the group that has the smallest number

of local interferences with it. This partition result is saved in Partition1 in algorithm 3.

Based on the old partition result Partition1, the removed variables are first deleted from

each partition. Similar to CGOA, my algorithm first orders the new variables according to

their global interference numbers and then iteratively assigns each variable to the group that

has the fewest local interferences. The generated new partition Partition2 is similar to the

old one, as it only incorporates the variable changes to the old partition. After that, ICSOA

is applied within each partition group to generate the memory layout for the variables inside

each group. The global memory layout is then the results of all groups.
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4.0 SOFTWARE DIFFERENTIAL PATCHING

As shown in in Figure 28, after generating the new binary E’ using UCC, the framework

summarizes the code difference between E’ and the old binary E in a patch script P, and then

disseminates it to remote sensors. After receiving the patch, each sensor then reconstructs

the new binary image E’ by combining P with the old binary image E that already exists on

the sensor.

E

E’
P

E
E’

Patch

generation
P

Code

retrieval

E  – old version binary

E’ – new version binary

P  – the differential patching script

Server side Sensor side

Figure 28: Patch generation and binary reconstruction.

The design of the script primitives affects both the update data packet transmission effec-

tiveness and the runtime overhead on each sensor node. To facilitate the description of UCC

techniques, I divide the binary level changes into two categories – instruction-based changes

and data-based changes. Different script formats are used to describe different changes. I

adopted four simple instruction-based primitives from the prior work [68], and proposed

three advanced instruction-based primitives and three data-based primitives to describe the

higher-level code changes.

Each remote sensor has a patch interpreter that can interpret the primitives in the patch

and construct the new binary accordingly. As the number of primitive types increases, the

patch interpreter shares some similarity with a JIT (just-in-time) compiler: (i) both convert
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a small file to the executable binary that can run on the target processor; (ii) both need

additional files in the translation. A JIT compiler needs additional library files while a patch

interpreter needs the old binary. However, there are differences: (i) the old binary can be

removed after generating the new one, while the libraries used by a JIT compiler have to be

kept for future use. Keeping the libraries on sensors wastes precious storage resources, as

the libraries are only needed at the time of generating the new binary, and most functions

in the libraries are rarely used; (ii) a JIT compiler is also much more complicated and does

many jobs that a patch interpreter does not need to do. For example, a JIT compiler needs

to perform pointer analysis in order to disambiguate memory accesses [73]. The time and

space overhead requirements of a JIT compiler are much higher than a patch interpreter.

4.1 INSTRUCTION-BASED PATCHING

I use the instruction-based primitives to describe the code changes such as adding, remov-

ing, or updating instructions at the binary level. Figure 29 lists the format of these script

primitives. The simple primitives are adopted from the prior work [68], while the advanced

primitives are developed to solve more complicated code update cases. The difference be-

tween these two types is that advanced primitives are not used to describe simple bit-level

differences, but rather high-level structure changes.

4.1.1 Simple primitives

There are four simple primitives — insert, replace, copy, and remove. Both insert and

replace primitives have one-byte opcode and n bytes of data/instructions to be incorpo-

rated. The copy and remove primitives take one byte each and specify the size of the old

data/instruction block to be copied or removed.

Figure 30 shows an example of the simple primitives. The new version contains three

chunks of code, [100,110], [112,130], and [132,140]. While the first chunk and the third

chunk can be found in the old code, the second chunk is new. Therefore, the update script
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Primitive Format and Operation Size (bytes)

copy
0010 xxxx

1
number of bytes to be copied

insert 
0000 xxxx data data ...

1 + number 
number of bytes to be inserted

remove 
0011 xxxx

1
number of bytes to be removed

replace 
0001 xxxx data data ...

1 + number 
number of bytes to be replaced

clone
5 + 

2*number

shift 7

0100 0000

[A1, A2, S] 3 words: 

shift S bytes from A1 to A2

insert_access
0110 xxxx data data

1+number
number of bytes to be inserted

...

0101 0000 start_addr end_addr register mappings

[A1,A2,Ra1...Ra32,Rb1...Rb32] 

clone instructions [A1,A2]. Replace all Rai 

with Rbi.

2 words 1word * number of 

register mappings

Figure 29: The instruction-based patch script primitives

(100)   ldi r1, 0xa02

…….

(110)   

      (a) Old Version       (b) New Version

(100)   ldi r1, 0xa02

…….

(110)   

Assembly: Assembly: Update script:

(112)   mov r2, r1

……

(130)   subi r2, 0xa04

(132)   add r2, r2, r1

……

(140)  

(112)   add r2, r2, r1

……

(120)  

Insert 20            ; insert the following 10 

                          ; instructions (20 bytes)

mov r2,r1           ; mov r2, r1

……                   ;   ……

subi r2,0xa04     ; subi r2, 0xa04

copy 10               ; copy 5 instructions (10 bytes)

copy 10              ; copy 5 instructions (10 bytes)

Figure 30: An example of the simple primitives. New code [112,130] is inserted. [112,120]

in the original code is now moved to [130,140] in the new version.
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contains two copy primitives and one insert primitive. The insert primitive has a one-byte

opcode and 10 instructions (or 20 bytes). The total size of the update script is 23 bytes.

In order to interpret the simple primitives on remote sensors, the script interpreter main-

tains two instruction pointers; one points to the old binary image and the other points to the

last instruction that was just re-generated in the new binary image. Note that as the new

binary is being generated, the last instruction at this point is not the real last instruction

of the new binary. The insert primitive inserts the instructions in its data part into the

new binary image, and moves the pointer pointing to the new code to the end (of the par-

tially generated binary). The replace primitive does the same thing to the new binary but

also moves the pointer in the old binary for the same distance. The copy primitive copies

instructions from the old binary to the new one, and moves both pointers.

4.1.2 Advanced primitives

In my experiments, I observed that many changes are caused by the same high-level update.

Just using the simple primitives may not result in a compact update script. There are

demands to design fancy primitives that can present more than one change. Based on this

observation, I propose three advanced primitives in my design.

4.1.2.1 The shift primitive

Inserting or removing some code from the old binary affects both the absolute addresses of

the code below the affected segment, and the distance between the code above and below

the segment. As a result, many branch instructions may need to be updated. Instead of

summarizing these changes in multiple simple primitives, it is more energy-efficient to use a

new shift primitive [68] to inform the remote sensors that a segment has shifted. I adopted

this primitive in my experiments and found that it can significantly reduce the script size.

As Figure 29 shows, the shift primitive contains a one-byte opcode and another three

words to indicate that the code segment [A1,A2] is now moved to [A1+S,A2+S]. All the

branch/jump instructions whose destination addresses are within the range [A1,A2] should

have the destination addresses shifted by S.
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Figure 31: An example of the shift primitive. New code [112,130] is inserted. [112,120] in

the old code is now moved to [132,140] in the new version. Some control flow instructions

are affected due to this address change.

Figure 31 shows an example of the shift primitive. Due to the insertion of new code,

the chunk [112,120] in the old version is now moved to [132,140] in the new version. All the

branch instructions that jump to any instruction inside this chunk need to be updated. In

the example, the shift primitive specifies that all the branch instructions whose targets are

in the address range [112,120] should be shifted by 20.

When one block movement causes several changes in the code, using the shift primitive

helps to reduce the script size. The tradeoff is that a slightly more powerful interpreter has

to be installed at the sensor side — it needs to decode each instruction type to extract the

bits indicating the desired target address.

The shift primitive is implemented as follows. A shift information table is maintained

at the sensor side. When encountering a shift primitive, the interpreter adds into the table

one shift entry that includes the start address, end address, and shift offset. When copying

one instruction from the old binary, the interpreter checks if it is a branch/jump instruction.

For the branch instructions that use absolute addresses, the interpreter determines if the

original destination falls in the shift range, and if yes, it updates the address. For the branch
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instructions that use relative addresses, the interpreter needs to first compute the target

address by adding the relative offset to the address of the current instruction.

4.1.2.2 The clone primitive

When inlining the same function at different places in the code, the binary code segments

often look similar but use different sets of registers in different contexts. This is because

different free registers are available at different places. Unfortunately, when an inline

function gets changed, all these code segments need to be updated, which creates redundancy

that can be optimized.

Based on this observation, I introduce the clone primitive. When an inline function

is inserted or modified in the code update, the update script only includes one copy of the

binary generated by the inline function, and advises the sensors to replicate the master

copy with register usage replacement while constructing the binary for the other instances

of this inline function.

The example below shows how the clone primitive works. Assume that an inline

function is called at multiple locations, such as blocks [A1,A2] and [B1,B2]. The patch

generator uses block [A1,A2] as the base, and tries to map the register allocation be-

tween these two blocks. Assume the register mapping between them is shown below,

(Ra1, Ra2, ..., Ran)⇒ (R′b1, R
′

b2, ..., R
′

bn). Given such information, instead of using a sequence of

the simple primitives to describe the updated/new code of block [B1,B2], my scheme copies

instructions from block [A1,A2], and slightly changes the register assignments according to

the register mapping to rebuild block [B1,B2].

As shown in Figure 29, the clone primitive has one-byte opcode, another several bytes

to specify the starting and ending addresses of the code segment where the code would be

copied from, and the register mappings. The primitive length varies according to the register

mapping complexity. Assume there are N pairs of register mappings, the clone primitive

length is 5+2*N. An inline function may have multiple instances in the binary image. Since

the new binary is re-generated in increasing order, the instance that is stored with the lowest

addresses is chosen to be the master copy, while all other instances clone the code from the
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master copy.

Figure 32 shows an example using the clone primitive. Both the code [200,206] and

[100,106] are compiled from the same inline function. Instead of generating the update

script for [200,206] by using the insert primitive, the clone primitive is used. It specifies

that the second code block clones the block [100,106] while registers r1 and r2 need to be

updated to be r11 and r12 respectively.

Figure 32: An example of the clone primitive. New code [200,206] is inserted, which is

compiled from the same inline function as code [100,106].

The clone primitive can reduce the script size when the inline function is called more

than once, and the register mapping can be easily created. However, if the register mapping

is too complicated, the script size could be very big such that it is better to use the simple

primitives, such as insert and replace. In addition, using the clone primitive requires

the sensor-side interpreter to decode different instruction types to replace register names.

Each clone operation needs to fetch the master copy, decode the instructions, and replace

all mapped registers.

The clone primitive is similar to the echo instruction proposed for code compression. The

basic echo instruction proposed by Fraser [25] only supports compressing exactly the same

code sequence [25]. Lau et al. [43] proposed bitmask echo to compress a slightly different

code sequence. They used a bitmask that only supports skipping some instructions in a code

sequence. For the sequences that use different sets of registers (the above example), they
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proposed to insert mov instructions, which increases the runtime overhead. In contrast, the

clone primitive is used to generate the binary and does not hurt the runtime performance.
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4.1.2.3 The insert access primitive

For DSP applications, when inserting a new memory access between two existing accesses,

my patch generator needs two replace primitives and one insert primitive, as shown in

Figure 33(d). Since the update primitives only modify the addressing modes, a compact way

to express this update is to include the memory address difference in the script and let the

remote sensor generate the correct addressing modes for the related instructions. Thus, I

introduce an advanced primitive – insert access.

c
a
b

(a) Memory layout

b= a;

(102) ldar ar,&a  ;a

(104) load *(ar+) ;b

(106) store *(ar)  ;

b= a + c;

(100) ldar ar,&a   ;a

(102) load *(ar-)   ;c

(104) add *(ar+)   ;a

(106) store *(+ar) ;b

(b) Old version (c) New version

$    

copy 1;

update 1 [$];

insert   1 [$];   

update 1 [$];

(d) Update script w/ 

simple primitives

size = 10B

...   

copy 2;

insert_acc 1 [ADD,-1];

copy 1;

(e) Update script w/ 

“insert_access” 

size = 5B

0x00a0 

0x00a2

0x00a4

allocation:

Figure 33: An example of the insert access primitive: (a) The memory layout for both

versions; (b) The source and assembly before code update; (c) The source and assembly after

code update; (d) The update script using the simple primitives; (e) The update script using

the insert access primitives.

The insert access primitive is similar to the insert primitive, except that its data

field is specified as follows:

[operation, δdiff]
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where δdiff represents the address difference between the locations accessed by the current

instruction and the preceding instruction respectively. In the example (Figure 33(c)), the

new access is c (located in memory slot 0), and the preceding memory access is a (located

in memory slot 1), so δdiff is -1. Since it is the add operation that accesses c in the new

instruction, the update primitive is

insert access 1 [ADD,−1].

Rewriting the update script of the example using the insert access primitive, the script

size is reduced by 50% (Figure 33(e)).

The insert access primitive allows the sensors to correct the addressing modes before

and after the newly inserted memory access using the following method. Let us call the last

memory access instruction before the inserted instruction the predecessor and the first one

that is executed after the inserted instruction the successor. The offset between them can be

calculated. The insert access primitive encodes the offset between the inserted memory

access and the predecessor, thus the offset between each two instructions among these three

can be calculated. Based on that information, the addressing modes can be determined.

Predecessor

Successor store *(ar);

load *(ar+); Insert_access 

[ADD, -1];

Offset(p,s) = +1; Offset(p,new) = -1;

Offset(p,new) = -1; 

Offset(new,s) = +2;

store *(+ar);

load *(ar-);

store *(ar+);

Figure 34: An example of the interpretation procedure of the insert access primitive.

Figure 34 demonstrates the interpretation procedure of the example in Figure 33. Know-

ing the offset between the predecessor and the inserted instruction is -1, and the offset between
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the inserted instruction and the successor is +2, the addressing mode of the predecessor can

be determined to be pre-incremental (as discussed in Section 2.2.2), that of the inserted

instruction can be determined to be post-incremental, and that of the successor can be

determined to be pre-incremental.

4.1.3 Sensor-side primitive interpretation

At the sensor side, the received patch is first stored in the flash memory. When the script

download is complete, each sensor then runs a simple script interpreter to incrementally

reconstruct the new binary image. The reconstruction is based on the received patch and

the old binary image that resides in the program memory. The generated new binary image

will be first stored in the flash. When the primitive interpretation is complete, the sensor

loads the new binary image back to the program memory and restarts to execute the new

version. When distributing the patch, message authentication code (MAC) using authenti-

cation protocols such as µTELSA [62] may need to be added to ensure the data integrity of

patch packets. That is, only the patch distributed from the trusted sink node may be used

to re-generate the new binary and substitute the old binary.

The program memory supports random access such that the pointer pointing to the old

binary can be moved freely. However, one limitation of the flash memory is that it has to be

programmed at block levels, e.g., 256 bytes on Mica2 sensors [19]. In order to change one

byte, the sensor has to read the corresponding block into data memory, modify it, and then

write it back. Thus, the constructed new binary needs to be buffered in the data memory

until it reaches the size of a flash block, then the code block will be written back to the flash.

The size of the temporary code buffer should be a multiplier of the block size.

The interpretation algorithm is presented in Algorithm 4. The interpreter maintains two

instruction pointers: one points to the old binary image, and the other points to the last

instruction that was generated in the (partial) new binary image. Each script primitive is

scanned once, and is interpreted to construct the new binary.

For the insert and replace primitives, the interpreter copies the instructions from the

data part of each primitive to the new binary. For the copy primitives, the interpreter copies
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Algorithm 4 Primitive interpretation and code reconstruction.

Input: Pointer to the beginning of the patch script PS,
Pointer to the beginning of the old binary PO,
Pointer to the beginning of the new binary PN .

1: for (; PS 6= script .end(); PS= script.next primitive()) do
2: switch(primitive type(PS))
3: case insert:
4: write code buffer(PN , insert data(PS), insert bytes(PS))
5: break
6: case replace:
7: write code buffer(PN , replace data(PS), replace bytes(PS))
8: PO += replace bytes(PS)
9: break
10: case copy:
11: write code buffer(PN , PO, copy bytes(PS))
12: PO += copy bytes(PS)
13: break
14: case remove:
15: PO += remove bytes(PS)
16: break
17: case shift:
18: add [ A1(PS), A2(PS), S(PS)] to addr shift table
19: break
20: case clone:
21: if ([start addr(PS), end addr(PS)] is not in clone buffer)
22: load code [start addr(PS), end addr(PS)] ⇒ clone buffer;
23: endif
24: replace register(buffer,register pairs(PS) )
25: write code buffer(PN , buffer, clone bytes(PS))
26: break
27: case insert access:
28: update the addressing mode of PN -1 if necessary
29: generate the addressing mode addr mode for the inserted instruction
30: instruction i = form inst(opcode(PS),addr mode)
31: write code buffer(PN , i, length(i))
32: break
33: default:
34: error(“no such primitive”)
35: end switch
36: end for
37: copy new binary to program memory
38: restart the sensor
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the instructions from the old binary image instead. The two pointers are updated as well.

The pointer in the new binary always points to the end of the partially generated image.

The pointer in the old binary is shifted according to the number of bytes that have been

copied, removed, or updated.

For the clone primitives, the interpreter reads the master copy from the program memory

and modifies the register names to construct the cloned copy. To save the time and energy to

read the master copy multiple times, the interpreter buffers it in the data memory, provided

there is enough space. For the insert access primitives, the interpreter needs to decode the

predecessor and successor to correct their addressing mode. In the worst case, the predecessor

may have been written into the flash. The interpreter then needs to reload the block and

modify, which is very inefficient. Since insert access only inserts one or two instructions,

the interpreter avoids reloading by prefetching — when the code buffer is full and needs to

flush, the interpreter prefetches the next primitive to ensure that if the last instruction in

the code buffer is a predecessor, its addressing mode gets updated before flushing to the

flash memory.

When encountering a shift primitive, the interpreter adds one entry that records the

start address, end address, and shift offset into the shift table. The algorithm shown in Algo-

rithm 5 is then called whenever an instruction is constructed and written to the temporary

code buffer. A simple decode operation is done first to filter out the branch instructions. If

the target address of the branch instruction falls in any range that needs address shifting,

this instruction gets updated for the address shift. When the temporary buffer is full, the

generated code gets flushed into the flash memory.

The memory space required for the interpreter includes the temporary code buffer and

the shift table. As discussed before, the minimal size of the code buffer is the block size of

the program flash, which is 256 bytes for Mica2 sensor. Each entry of the shift table includes

the start address, end address, and the shift offset. As the program memory size is 4KB, the

start address and end address can be encoded using 3 bytes. The shift offset can encoded

using 1 byte. Thus, the storage required for each entry is 4 bytes.
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Algorithm 5 write code buffer /*write the constructed code into code buffer*/

Input: Destination address & PN ,
Source address PO,
Number of bytes to be copied nbytes.

1: memcpy(PN ,PO,nbytes);
2: for all instructions i to be copied do
3: if inst type(i) == branch/jump then
4: target = target addr(PN )
5: if there exists a shift entry e ∈ shift table, where target ∈ [e.A1, e.A2] then
6: target = target+ e.offset
7: change the target address of PN to target
8: end if
9: end if
10: end for
11: PN += nbytes
12: if PN == code buffer .end then
13: write to flash(code buffer)
14: PN = code buffer .begin
15: end if

4.2 DATA-BASED PATCHING

Sometimes, binary level changes at several places may be caused by one memory layout

change. While these changes still manifest as instruction differences, the root cause is data

allocation change. For example, if a relocated variable a is loaded or stored in several places,

a simple script may need multiple primitives, each of which indicates one instruction level

change. Instead, if the script interpreter at the sensor side can decode instructions and

identify all loads and stores of a, it is possible to send one “relocate a” primitive to minimize

the update script size.

Identifying relocated variables is particularly beneficial for DSP applications due to the

close connection of data allocation and instruction format (addressing mode). In this section,

I focus mainly on DSP applications and refer to the binary instructions that are inserted,

removed, or changed due to the offset assignment changes as addressing mode change (AMC)

instructions. The design goal of introducing data-based primitives is to reduce the transmis-

sion of AMC instructions, and let the remote sensor construct these instructions. Compared

to instruction-based primitives, one data-based primitive updates the code in several places.
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4.2.1 Data-based primitives

Figure 35 lists the data-related primitives that are used to specify the memory layout change.

I only consider the allocation of scalar variables. Each memory location contains one variable

or multiple coalesced variables [59, 86, 87]. Each sensor stores the old memory layout, and

after receiving the layout change primitives, it first reconstructs the new memory layout and

then updates the instructions. Both the old and new memory layouts are maintained as

tables. Each entry contains the variables that share the same memory slot, and all entries

are ordered by their addresses.

copy_slot
0111 xxxx

1
number of data slots to be copied

insert_slot
1000 xxxx variable variable

1+number
number of data slots to be inserted

...

shift_slot
1001 xxxx start_slot offset

3
number of consecutive unchanged slots

Primitive Format and Operation Size (bytes)

Figure 35: The primitives to patch the data allocation.

The copy slot primitive copies multiple memory slots from the old memory layout to

construct the new memory layout. This is similar to the copy primitive to update instruc-

tions. The insert var primitive adds a list of variables to the active memory slot of the new

memory layout table. The insertion can be caused by adding a new variable, or by moving

an existing variable from another location. The latter implicitly has the variable removed

from the old slot, which is omitted to keep the script compact. The shift slot primitive

represents the case that multiple slots may be grouped and shifted from the old memory

location to the new memory location. The shift slot primitive specifies the number of

slots to be shifted, the starting point of the shift, and the shift offset.

4.2.2 Sensor-side primitive interpretation

After receiving the update script, each sensor interprets the data-based primitives to generate

the new memory layout, and then interprets the instruction-based primitives to construct
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basic blocks by inserting, removing, or updating certain instructions of the old binary. The

interpreter fixes the addressing mode of each instruction in a basic block according to the

new memory layout, and then writes the completed block into the flash. There are two

pointers pointing to the memory slot in the new and old memory layout table respectively

to assist the interpretation of data-based primitives.

Figure 36 illustrates the update procedure. ICSOA coalesces multiple variables, both

a and e, in one memory location 0x00a2, and an update may relocate e to 0x00a0 while

keeping a in the same memory slot. This complicates the sensor-side update as some accesses

to 0x00a0 should be updated while others should not. Clearly, additional information is

required to fix the addressing modes at the sensor side.

0x1000: LOAD R, *(+AR);

0x1002: ADD R,1;

0x1004: STORE *(AR);

0x1006: CMP R, 100;

0x1008: BNE 0x9000;

AR= 0x00a0

AR= 0x00a2

0x00a2
0x00a2

Memory 

Address

Old Coalesced Variable List

0x0004
0x1000

Instruction 

Address

Old Binary:

Script:

…...

copy_slot 10;

insert_var 0x1000;

copy_slot 10;

…... 0x00a0
0x00a2

Memory 

Address

New Coalesced Variable List

0x0004
0x1000

Instruction 

Address

0x1000: LOAD R, *(+AR);

0x1002: ADD R,1;

0x1004: STORE *(AR);

0x1006: CMP R, 100;

0x1008: BNE 0x9000;

AR= 0x00a0

AR= 0x00a2

Old Binary:

0x1000: LOAD R, *(AR);

...

…

…

…

AR= 0x00a0

AR= 0x00a2

New Binary:

… instruction address 0x1000

… from the old coalesced variable list,

memory address 0x00a2

… from the new coalesced variable list,

get updated to new address 0x00a0

… AR=0x00a0                                            

… no need for pre-increment address

…
 ...

Figure 36: The code construction procedure of the data-based primitives. The left shows

the server side, and the right shows the sensor side update).

To solve this problem. I use an implicit pointer to track the current memory slot when

copying from the old layout to the new layout. “insert var 0x1000” inserts e into the

current slot, i.e. 0x00a0. Here variable e is represented using its instruction address 0x1000.

A record can be found in the coalesced variable list indicating this mapping, and will be

updated to reflect the re-allocation.
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To update its addressing mode in the new code, a query is sent to the coalesced variable

list, from which the interpreter knows that this instruction accesses 0x00a0 instead of 0x00a2.

Since AR contains 0x00a0 when entering the basic block, there is no need for pre-increment.

Similar decisions are made for other instructions in the basic block. The interpreter also

needs to ensure the exiting AR contains 0x00a2.

Therefore, the interpreter needs the following information to fix the addressing modes:

• A coalesced variable list to distinguish each of the coalesced variables; and

• The AR values when entering and exiting each basic block.

4.2.2.1 Auxiliary data structures

To correctly update the code with a memory layout change, e.g., when a is relocated, the

interpreter needs to locate all of a’s uses and ensure the AR contains the correct address

when accessing a. Conceptually, this can be done by a relocation table. Unfortunately, a

traditional relocation table identifies all the places that the binary code accesses the memory.

Since DSP code relies heavily on offset assignment and accesses the memory frequently,

adopting a traditional relocation table would generate a table linear to the size of the binary

code. Instead, I introduce the following two lightweight auxiliary data structures to enable

relocatable DSP code.

Coalesced variable list. The coalesced variable list is designed to differentiate the

coalesced variables in one memory location. If a memory location contains only one variable,

then the scheme does not allocate any entry in the list. If multiple variables are coalesced

and stored in the same memory location, the scheme allocates the entries as follows.

Memory Instruction
Address Address

0x00a2 0x0004
0x00a2 0x1000

Figure 37: Coalesced variable list.
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Since the coalesced variables have their accesses spread in the code, I group consecutive

definitions/uses that access the same variable and allocate one entry to each group. This

is done based on the code text without considering the control flow, or the variable live

ranges, etc. For example, if the live ranges of two coalesced variables overlap due to linear

layout of control structures such as branches, then we allocate one entry for each segment.

As shown in Figure 37, each entry contains two fields: the memory slot address, and the

starting instruction address of each code text segment.

For example, variables a and e share the same memory location 0x00a2. The live ranges

of a and e are [0x0000,0x0004] and [0x0010,0x1000] respectively. Figure 37 illustrates

the coalesced variable list. Given a memory access to 0x00a2, we can easily differentiate

whether it is accessing a or e.

The original coalesced variable list is preloaded on the sensors before deployment. The

updates to the coalesced variable list are transmitted with the code update script.

AR in/out value list. To generate the correct addressing mode at the sensor side, the

AR in and out values for each basic block are also needed. I choose to construct the list

rather than building the control flow graph on demand to reduce the memory and complexity

overheads. This table contains the starting and ending addresses, the address register’s

entering and exiting values, and the successive basic block(s) of each basic block, as shown

in Figure 38.

Index Starting Ending AR In AR Out Successive
Address Address Basic Blocks

10 0x1000 0x1008 0x00a0 0x00a2 20

Figure 38: The AR in/out value list.

The original list is preloaded on the sensors before deployment. The interpreter auto-

matically generates the new list while generating the new binary code.

The AR out value of a basic block may affect the addressing mode of its successive

basic blocks. The situation becomes more complicated if there are multiple predecessors

(or successors). Synchronization needs to be done among these predecessors (or successors),
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which may cascadingly affect other instructions in those basic blocks. To simplify the code

update on the sensor side, the server explicitly sends out the AMC instructions that follow

an inserted/updated/removed instruction when it is the last instruction of a basic block.

Complexity analysis. Algorithm 6 presents the detailed steps that are used to correct

the addressing modes due to data-based primitives. The extra interpretation overhead is to

look up the address register value for the first instruction of each basic block, keep track of

this value while constructing the instructions in the basic block, and generate the correct

addressing mode for each memory access instruction. However, addressing mode correction

is only necessary when the data layout is changed for the corresponding code segment. For

example, if the highlighted variable list change is the only memory layout change in the

example shown in Figure 36, the instructions before 0x1000 do not need to be decoded

because the memory layout change does not affect those instructions.

Each entry of the “coalesced variable list” is 4 bytes, and each entry of the “AR in/out

value list” is 9 bytes. For code and updates that are of small to medium sizes, the complete

two lists are placed in the data memory for fast access. If the code and/or the update is large,

the lists may be too large to fit in the memory. In this case, the lists are stored in the flash

while a subset resides in the memory. The patch is divided into several sub-patches while

each sub-patch only needs a subset of the complete lists that can fit in the memory. At the

beginning of each sub-patch, explicit primitives are needed to set up the in-memory subsets.

For this purpose I introduce a new primitive type — load LstT, EntryRange, where LstT

indicates one of the two lists; and EntryRange is a range indicating the list entries that

should be loaded from the flash and reside in the memory. For example, load 0, [10,20]

indicates the entries from 10 to 20 of the coalesced variable list should be loaded into the

memory. I did not include this primitive in the experiment section as the lists can always fit

in the memory for the test cases I studied.
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Algorithm 6 addr mode correction /*Correct the addressing mode of an instruction*/

Input: Instruction i which will be copied from the old binary to the new binary,
address of this instruction in the old binary addr1,
address of this instruction in the new binary addr2

Output: Instruction i’ which has the same opcode as i and with the addressing mode
corrected

1: if inst type(i) is memory access instruction then
2: {find out the value stored in address register (AR)}
3: if i is the first instruction of basic block B1 in old binary then
4: old ar value = query old AR tab(B1.AR in)
5: end if
6: if i is the first instruction of basic block B2 in new binary then
7: new ar value = query new AR tab(B2.AR in)
8: end if
9:

10: {find out the memory address that this instruction tries to access}
11: old mem addr = gen addr mode(old ar value, addr mode(i))
12: {find out the variable that this instruction tries to access}
13: var name = query old var tab(old mem addr, addr1)
14: {find out the new memory location of this variable}
15: new mem addr = query new var tab(var name, addr2)
16:

17: {generate the new addressing mode and construct the instruction}
18: addr mode = form addr mode(new mem addr,new ar value)
19: instruction i’ = form inst(opcode(i),addr mode)
20: return i’

21: end if
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5.0 DISTRIBUTION PROTOCOL

After minimizing the binary code difference using update-conscious compilation and sum-

marizing the difference in a patch script using simple and advanced primitives, the sink node

is ready to disseminate the patch to remote sensors.

In Chapter 1, I have discussed that there are two types of update requests — software

upgrade and software switch. Software upgrade refers to the problem of updating the code of

all sensors; software switch refers to the problem of updating the code of a subset of sensors in

a MA-WSN. For software upgrade, only the sink node is the source node before the update;

while for software switches, both the sink node and many sensors can be the source nodes.

Several code dissemination protocols have been proposed for software upgrade [32, 41, 49]

and for software switch [83].

In this chapter, I will first discuss the Deluge [32] and Melete [83] protocols. I will then

present my multicast-based code redistribution protocol (MCP) for achieving energy-efficient

code dissemination.

5.1 BROADCAST-BASED CODE DISTRIBUTION PROTOCOLS

5.1.1 Deluge: an effective code dissemination protocol for SA-WSNs

Deluge [32], the default code dissemination protocol in TinyOS, supports code dissemination

in a multi-hop SA-WSN (single application wireless sensor network). Deluge first updates

the nodes around the sink node, and then gradually updates the nodes that are one hop

away from the updated nodes. It divides the code to be distributed into several pages,

and each page consists of multiple packets. To adapt to the lossy wireless communication
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environment, packets within one page may be received out of order. Received packets are

first buffered in the data memory. When a page is downloaded, it is written to the flash

memory. To adapt to the limited RAM space on sensor nodes, pages are updated in strictly

increasing order. At any time, different nodes may be downloading different pages while

the nodes that are closer to the sink node are more likely to be updating a large number of

indexed pages.

As shown in Figure 39, Deluge uses a simple advertise-request-data handshaking

strategy to support fast code update. At the beginning, the states of all sensor nodes are set

to the Maintain state. Each sensor node periodically broadcasts the advertisement messages

(ADV), which contain the information of the application code that it has. When a sensor node

S receives an advertisement that indicates that the neighbor N has a newer version of the

application, or has the same version but newly downloaded pages, node S will send out a

request message (REQ) to N to request a new page, and change its own state from Maintain

to Request. The state will be changed back when it receives all the packets in the requested

page. Node N changes its state to Transmit when it receives the request message from S,

and starts sending all the packets of the requested page to node S. After sending the page,

N changes its state back to the Maintain state.

Receive an ADV 

with newer data 

Request TransmitMaintain

Receive all the packets 

of the requested page.

Send out all the packets 

of the requested page.

Receive a REQ 

Figure 39: Advertise-request-data handshaking protocol in Deluge.

To ensure the received code is sent from the trusted sink node and has not been modified

by malicious attackers, the packets may be encrypted and/or authenticated for security

protection [23, 41, 62].
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5.1.2 Melete: a controlled broadcasting protocol for MA-WSNs

Software switch differs from software upgrade in that: (i) only a subset of the sensors need to

switch to run a particular application, and some of them may have the code; (ii) in addition

to the sink node, other sensors that have the requested application can also be the source

nodes for code distribution. Figure 40 shows a software switch example. Three applications

are distributed across different nodes in a network. The code distribution problem arises

when there is a need to reprogram some nodes to run application A.

A

C

AC

A

C

C

B

C

C

C

B

B

C

A D B

C

C

B

B A

C

B

B

PC
shaded  nodes needs to run “A”

A/B/C/D/...Sink 

Node

C

C
C

Figure 40: An example of software switch in a multi-application WSN (MA-WSN).

There are two existing approaches. A naive solution is to directly apply Deluge and

disseminate application A from the sink to all sensors. After dissemination, the nodes that do

not need A discard the code from their storage. The solution is clearly not a good choice due

to unnecessary packet transmissions to the nodes that do not need it. The other solution is to

let requesting nodes initiate code dissemination and fetch A from nearby sensors. Melete [83]

is such a protocol — the nodes that need to run A broadcast their requests within a controlled

range and discover the source nodes that have A. Sources then send back the requested data

packets. However, as a stateless protocol, Melete does not record the source nodes and has

to discover them repeatedly. When transmitting applications with multiple pages, multiple

sources within the range may respond and thus cause congestion due to signal collision.
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5.2 MCP: A MULTICAST-BASED CODE REDISTRIBUTION PROTOCOL

5.2.1 An overview of the protocol

In this section, I propose a multicast-based code redistribution protocol, MCP, to solve the

“n to n” code distribution problem in software switch. MCP employs a gossip-based source

node discovery strategy. Each sensor summarizes the application information from overheard

advertisement messages, and stores this information in a local application information table

(AIT). Future dissemination requests are forwarded to nearby source nodes rather than

flooding the network. Different from the Deluge [32] and Melete [83] schemes discussed

above, the data messages are only multicast to the requesters, which avoids unnecessary

packet transmission in the network. Using AIT, the request messages can be directly sent

to the source nodes, avoiding request message flooding in the network.

An overview of this protocol is as follows.

• Sensors in MCP periodically broadcast ADV messages to advertise their knowledge about

running applications in the network, which is similar to Deluge. Each sensor summarizes

in an application information table (AIT) the ADV messages that it overhears from the

network.

• To reprogram a subset of sensors, the sink floods a dissemination command that guides

which sensors should switch to run application A. For example, a command “[B→A,

p=0.25]” from the sink node indicates that the sensors whose active application is B

should switch to A with a 25% probability. That is, 25% of the nodes that are currently

running application B will switch to A.

• After receiving the command from the sink, each sensor identifies its dissemination role

as one of the following.

(i) a source if the sensor has the binary of application A;

(ii) a requester if the sensor does not have the binary of A but needs to switch to run A;

or

(iii) a forwarder if the sensor is neither a source nor a requester.

• To fetch all pages of application A, each requester periodically sends out requests (i.e.,
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REQ messages) to its closest source. While the AIT table records up to three nearby

sources, only the closest one is tried. The REQ messages are sent to the source via

multicast without flooding all nodes within the range. If no response was received before

timeout, a requester tries to resend the REQ message. The requester tries each source

node several times before marking it as a temporary non-available source. More details

will be elaborated in the following section.

• A source node responds with the data (i.e., Data messages) that contain code fragments

while a forwarder forwards both request and data packets.

Similar to Melete and Deluge, MCP uses three types of messages: an ADV message that

advertises interesting applications; a REQ message that asks for packets of a particular page;

and a Data message that contains one data packet (i.e, a piece of code segment).

5.2.2 ADV message and application information table (AIT)

In MCP, each sensor periodically broadcasts ADV messages, and summarizes the information

of overheard ADV messages into a small application information table (AIT). The AIT table

serves not only as an application-dependent routing table, but also as a small database to

track the application versions in the network. An example is shown in Figure 41.

Each ADV message contains the information of one application: (i) an application ID and

version number; (ii) the number of pages of the application; (iii) the information of the two

closest source sensors — the source ID and number of hops to the source (S, H); and (iv)

the CRC checksum. If a sensor has multiple known applications, it advertises them in a

round-robin fashion to reduce the broadcasting overhead. Note that a sensor may not have

space to store the code images of all its known applications.

The AIT table summarizes the overheard ADV messages. In addition to the application

summary, AIT stores up to three closest source nodes for each known application, and the

uplink sensor ID for each source, i.e., from which the source information was received. I

keep three source nodes because keeping more is not necessary. As wireless communication

is expensive, a requester prefers to use its closest source and try others only when the closest

one is unavailable (e.g., busy). Using two backup sources provides enough tolerance such
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Application ID version # pages node ID hop # uplink ID

A1 1 8 n1 4 n8

n3 2 n6

n5 2 n8

A2 1 8 ... ... ...

... ... ...

... ... ...

n1 n2 n3

n4 n5 n6

n7 n8 n9

On Node N9: 

Network: Assume n1 has A1; n3, n5 n9 will change to A1

Application ID version # pages node ID hop # uplink ID

A1 1 8 n1 1 n1

- - -

- - -

On Node N4: 

Figure 41: An example of the application information table (AIT).
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that the requester does not need to wait to discover a new source if one or two known sources

become unavailable.

Each AIT entry occupies 12 bytes — the application ID has 4 bits; the version number

has 4 bits; the page count has 10 bits; each node ID takes 10 bits (to support a thousand-node

WSN); and the hop count has 6 bits (to identify source nodes within 64 hops). Assuming

there are 10 applications in a network, the AIT table is only 120 bytes. I place the table in

the data memory for fast access.

When an incoming ADV message contains new information, the corresponding entry in

the AIT is updated. Assume a sensor S1 receives an ADV message from S2, and the message

identifies two nearby sources (S3, H3) and (S4, H4) where H3 and H4 indicate the number

of hops from S2 to sources S3 and S4. If S1 already records the information of three sources

(S5, H5, U5), (S6, H6, U6), and (S7, H7, U7), then it updates the AIT table according

to the following rules.

• If one entry in the AIT table records the previous message from the same uplink S2 and

it refers to the same source, e.g., S5=S3 and U5=S2, then the information in the ADV

message represents the up-to-date source information and replaces the old entry.

• If one entry in the AIT records a longer path to an advertised source, e.g., S5=S3,

U56=S2, and H5>(H3+1), then the hop count and uplink node from the ADV message

replace those in the AIT.

• If the advertised source cannot be found in the AIT, and there is an invalid entry in the

table, then the new source is inserted into the table.

• If the ADV message advertises a closer source than one of those in the AIT table, then

the closer source replaces the farthest source in the AIT.

A sensor advertises the applications in the AIT in a round-robin fashion, and prioritizes

the applications whose entries have been recently updated: (i) the applications whose sources

were recently updated are advertised before those that were not; (ii) in one round, the

applications whose sources were recently updated are advertised three times while others are

advertised once. In addition to normal ADV advertisement, an application is advertised if

the sensor receives a broadcast request for that application, as I elaborate next. If there are
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several updated applications, MCP updates them sequentially as I discussed in Chapter 1.

Due to sequential update, once a sensor detects an application being updated, it halts the

advertisement of other applications and advertises only the one being updated.

5.2.3 Request multicasting

In MCP, a requester periodically sends out request messages until it receives all pages of

the target application. Given the target application, the requester searches the AIT for the

closest alive source and constructs a REQ message as follows.

REQ = [S, pgNum, bv, Rv]

where S indicates the selected source node, pgNum indicates the current working page; bv is

a bit vector indicating the requested packets in the page; and Rv is a routing vector used to

support GRADient broadcast routing [82]. If the AIT records more than one source node,

the requester always tries the closest source first and forms a gradient routing region as

shown in Figure 42.

MCP follows the GRADient broadcast routing design in [82]. The routing vector Rv

contains four fields: (i) field α is the amount of credit assigned for routing; (ii) field Cs is the

hop count to the selected source S — it is the value recorded in the AIT table; (iii) field Pc is

the number of hops when reaching a forwarder node; (iv) field Cr is the the hop count from

the forwarder node to S. When a packet reaches a forwarder node, the consumed credit is

calculated as (Pc+Cr-Cs). In our experiments, we choose α to be 2 and it works well. More

details can be found in [82].

A requester continues sending REQ messages when it cannot finish the page before time-

out. After three tries, it marks the source that it tried to reach as an unreachable source. If

the AIT does not record any nearby alive source, then the source sets to be null, indicating

the REQ message is flooding all nodes within k hops. k is initially set to 4; if k-hop flooding

cannot find a source, MCP doubles k and tries again. After receiving a broadcast request,

an idle forwarder within the range forwards the request; an idle source node within the range

always responds with requested packets. A node is defined as idle if it is not involved in

serving any requester (either as a forwarder or a source).
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Figure 42: Gradient-based request routing. (R:requester, S: source).

Since each requester sends out REQ messages independently, different requesters may

work on different pages. MCP allows node preemption. If a REQ message asking for page x

reaches a working node W that is currently working on page y, and x+1 < y, then the node W

quits the current state and switches to serve the request. If W is a forwarder, then it forwards

the request; if W is a requester or a source, then it must have the requested page and thus

will respond with the requested packets. The node enters the idle state after serving the

request. By allowing preemption, multiple requesters are working on the same or close-by

page numbers, which creates opportunities for caching, as we discuss next.

5.2.4 Caching

During code dissemination, some requesters or forwarders, while working on the current

page, may overhear packets from pages with larger indices. As code pages are requested

strictly in increasing order, a requester will ask for these pages, and a forwarder has a high

possibility to receive requests for these pages.

To improve energy efficiency, sensors in MCP buffer such packets in their data memory.

The space that can be dedicated to caching on a wireless sensor is usually very limited.

While it is possible to exploit external flash for caching, accessing external flash has many

drawbacks. I did not use flash for caching in this dissertation.

• Flash writing speed is slow. It takes about 78µs to finish writing one byte to the flash.

As a comparison, it takes about 32µs to transmit one byte on MICAz nodes [63]. Flash
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caching may miss receiving some packets and increases retransmissions;

• Flash writes consume significant energy. It requires 3µJ and 1.5µJ to write one byte to

the flash and transmit one byte respectively [63];

• Flash writes have to be done at the block level, e.g., 256 bytes on MICA2 nodes. To cache

the content of one received packet (23 bytes), the sensor has to read the corresponding

block, modify it in memory, and then write it back. Clearly this is very energy-inefficient.

• Flash memory usually can sustain about 10,000 writes during its lifetime. Too many

writes may shorten the network lifetime.

Caching on a requester is straightforward — the sensor caches the next several pages in

addition to the current working page. However, it is slightly more complicated on a forwarder

node as it gets requests from different requesters that work on different pages and may suffer

from thrashing if it takes turns to serve these requests. In MCP, a forwarder gives priority

to pages with smaller indices. The cached pages are periodically cleared.
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6.0 EXPERIMENTAL RESULTS

This chapter evaluates my proposed software update management framework. I will first

present the experiment methodology, and in particular, how to compose a set of update

benchmarks for evaluation in the dissertation. I will then present and analyze the exper-

imental results in two groups — (i) For the results collected from code dissemination in

SA-WSNs, since the same dissemination tool (Deluge) is used for different schemes, I fo-

cus the analysis on the generated script size, the code performance, and the overall energy

efficiency; and (ii) For the results collected from code dissemination in MA-WSNs, since

the challenge comes from the dissemination at the network level, I focus the comparison

on the network traffic and time consumption between the proposed multicast-based code

distribution protocol and other existing protocols.

6.1 CONSTRUCTION OF THE UPDATE BENCHMARK SUITE

Software update management is a new topic in the wireless embedded system community.

While some manually constructed in-house update samples were used in published works [22,

35, 68], no benchmark suite is publicly available. To thoroughly evaluate the effectiveness of

my proposed framework, I took the effort to construct a sensor software update benchmark

suite that covers the software update cases for both general-purpose applications and DSP

applications in WSNs.

My software update benchmark is constructed on a set of base programs, listed in Figure

43. These base programs come from three sources: (i) the sample sensing applications

included in TinyOS [76], an open-source OS designed for WSNs; (ii) AES encryption code
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included in CryptoLib, a security algorithm library; and (iii) the DSP applications included

in the DSPstone [21] benchmark suite.

Base Source Details
benchmark

Blink TinyOS It starts a 1Hz timer and toggles the red LED every time it
fires.

CntToLeds TinyOS It maintains a counter on a 4Hz timer and displays the lowest
three bits of the counter value. The red LED is the least
significant of the bits, while the yellow is the most significant.

CntToRfm TinyOS It maintains a counter on a 4Hz timer and sends out the value
of the counter in an IntMsg AM packet on each increment.

CntToLeds
AndRfm

TinyOS It maintains a counter on a 4Hz timer; it combines the tasks
performed by CntToRfm and CntToLeds.

AES Crypto
Lib

It encrypts a given 128-bit input buffer using the AES algo-
rithm. I select the encryption code in the experiment.

Deluge TinyOS The mulithop code dissemination protocol in TinyOS. I
tracked its continuous updates in different TinyOS versions
as a real-life case study.

Matrix DSPStone Matrix multiplication.

ADPCM DSPStoe A waveform codecs using adaptive differential pulse code
modulation.

Figure 43: Base programs for the construction of the software update benchmark.

6.1.1 Test case categorization

Categorization based on update levels. Each test case consists of two programs — an

old program A and a new program B. Based on the portion of the difference between A and

B, the test cases can be categorized as

(a) Low-level updates represent those that change only one or two basic blocks;

(b) Medium-level updates represent those that change multiple places within a large function

or across several functions, but still preserve the overall structure of the original code;

(c) High-level updates represent those that significantly change the code structure. This

often means changing from one application to a different application.
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Frequent updates such as code fixes and sensor reconfigurations are mainly low to medium-

level changes, while application functionality change falls in medium or high-level changes.
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Categorization based on how they are constructed. Based on how the test cases are

constructed, I categorize them in three categories and discuss them in more detail in the

next section.

(a) Real test cases. They are the ones directly extracted from the base benchmark programs.

(b) Manually constructed test cases. They are the ones that I constructed to test specific

properties of the framework.

(c) Automatically constructed test cases. They are the ones that are constructed automati-

cally for strength test.

6.1.2 real-bench: real test cases

In our base benchmark, some applications have multiple versions that naturally form a set of

real-world case studies. Within the 15 releases of TinyOS-1.x, the default code distribution

protocol Deluge undergoes a couple of updates. The updates range from one-line bug fixes, to

feature enhancements, to completely reconstructing the code. I collected a mix of these real

code update cases. In addition, some DSP applications implement the same functionality

using alternative algorithms that approximate another type of software update scenarios.

I did not include the large update where TinyOS-1.x changed the code distribution

protocol from MNP to Deluge. For such a large update, I did not find much benefit in using

the algorithms proposed in my framework. Luckily, the framework can identify whether

there is any performance gain beforehand and roll back to the traditional workflow if there

is no benefit to achieve, i.e., compile to get the new image using gcc, and distribute the

complete image.

General-purpose application update benchmark. Figure 44 illustrates the details

of the real test cases when Deluge [32] undergoes a series of updates from TinyOS version

1.52 to version 1.58.

DSP application update benchmark. For the DSP applications, I selected the matrix

multiplication function matrix.c and one function in the ADPCM implement speed control

as the real DSP update benchmarks. More information can be found in Figure 45.
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Case# Versions Update
Level

Update details

R-G-1 1.52⇒ 1.53 Low Add one statement to reset one variable.

R-G-2 1.53⇒ 1.54 Medium Add one variable, and related statements to update this
variable when necessary. One statement is updated to
use this variable instead.

R-G-3 1.54⇒ 1.55 Medium Modify the condition of two “if” statements.

R-G-4 1.55⇒ 1.56 Medium Move one function. Add one “if” statement to reset one
variable when it’s invalid, and all the other four related
variables.

R-G-5 1.56⇒ 1.57 Medium Move two “memcpy” statements to be next to their
nearby “if” statements.

R-G-6 1.57⇒ 1.58 Medium Modify the condition of two “if” statements. Add two
“for” loops. Remove two statements.

Figure 44: Real general-purpose application update benchmark.

Case# Function Update Description
& Versions Level

R-D-1 matrix1.c⇒matrix2.c Medium Move two iterations out of the loop.

R-D-2 speed control 1 ⇒2 Medium Seven temporary variables are introduced to hold
the value of the comparison results.

R-D-3 speed control 2 ⇒3 High Multiple global variables are combined into a
structure. The references to the variables are
changed due to this change.

Figure 45: Real DSP application update benchmark.
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6.1.3 man-bench: manually generated test cases

While real test cases show real-world update patterns in the system, only a small number of

them can be collected. This is not enough to thoroughly evaluate my proposed framework.

To expose the properties of my proposed algorithms, I manually constructed a mix of updates

ranging from small to large update levels. When I constructed these test cases, I tried to keep

the update meaningful. For example, an inserted variable is always used; and an inserted

if-statement does use some variables to make a decision and include some statements in its

branch paths.

Since an important component of my dissertation is update-conscious compilation, I

constructed test cases to cover possible updates related to program structures, including

variable insertion/deletion, instruction insertion/deletion/update inside and outside loops,

and the control flow insertion/deletion/update.

General-purpose application update benchmark. The TinyOS applications shown

in Figure 43 are selected as the base benchmarks to create the manually generated general-

purpose software update benchmark. Figure 46 summarizes the synthetic updates made to

these benchmarks. The updates vary from low-level to high-level changes.

DSP application update benchmark. For the DSP applications, I inserted/deleted

code to create/remove the variable interferences to the DSP base benchmarks, such as the

matrix multiplication function matrix.c and one function in the ADPCM standard imple-

mentation speed control as the real DSP update benchmarks. The detailed benchmarks are

listed in Figure 47.

6.1.4 auto-bench: automatically generated test cases

The test cases in the previous two groups have limitations. The number of real test cases is

small, while the manually generated test cases may be biased due to personal experiences.

In this section, I wrote a tool to automatically construct another mix of test cases.

General-purpose application update benchmark. For general-purpose application

study, the generated test cases are used to evaluate the compilation time of the update-

conscious compilation schemes. The compilation time here depends on the complexity of
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Case # Function Update
Level

Update details

M-G-1 CntToLeds Low Change the color of blink.

M-G-2 Blink Low Insert one local variable and one use in run next task.

M-G-3 AES Low Insert one local variable and use it within the loop in
aes encrypt.

M-G-4 AES Low Change one instruction in aes encrypt.

M-G-5 AES Low Insert a local variable in aes encrypt and use it twice
— within and outside the loop.

M-G-6 Blink Low Add a new parameter in TOSH run task.

M-G-7 CntToLeds Medium Insert three variables and their uses;

M-G-8 CntToRfm Medium Insert a global variable and use in three different func-
tions.

M-G-9 CntToRfm Medium Insert a local variable and use it several times in
TOSH run next task function.

M-G-10 Blink Medium Insert a global variable and use it in a new if/then
branch in TOSH run next task function.

M-G-11 Blink Medium Add an else branch for an if statement in
Timer HandleFire.

M-G-12 CntToRfms ⇒
CntToLedsRfm

high Change the application from CntToRfms to Cnt-
ToLedsRfm

M-G-13* CntToLeds⇒
CntToRfms

high Change the application from CntToLeds to Cnt-
ToRfms.

M-G-14 AES Medium Add two and remove one local variable in function
invShiftRows().

M-G-15 AES Medium Add one and remove two local variables in function
invShiftRows().

M-G-16 AES Medium Add one local variable in function invShiftRows()
and add a four-element array in function invMixSub-
Columns().

M-G-17 AES Medium Remove one local variable in function invShiftRows()
and remove a four-element array in function invMix-
SubColumns().

M-G-18 AES High Remove one and add two local variables in function
invShiftRows(). Remove two and add four local vari-
ables in function invMixSubColumns().

M-G-19 AES High Add one and remove two local variables in function
invShiftRows(). Add two and remove four local vari-
ables in function invMixSubColumns().

*: The experimental results of this case are shown in the text instead of the graphs to make
the graphs more proportionally precise.

Figure 46: Manually generated general-purpose application update benchmark.
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Test Function Update Description
Case Level

M-D-1 verify.c Low Update one basic block to create the interference
between two variables that are not coalesced in the
original version.

M-D-2 verify.c Medium Update one basic block to create the interference
between three variables that are coalesced in the
original version.

M-D-3 verify.c Medium Expand the live ranges of three variables to cross

basic blocks.

M-D-4 matrix1.c Medium Shrink the live range of the one variable and Expand
the live range of another variable within one basic
block. Over ten interferences are updated.

M-D-5 matrix1.c Medium Shrink the live ranges of the two variables and Expand
the live ranges of another two variables within one
basic block. Over ten interferences are updated.

Figure 47: Manually generated DSP application update benchmark.

the ILP problem created by the update-conscious compiler. Because the number of decision

variables, constraints, and the complexity of the objective goal all affect the problem com-

plexity, one source-level modification may create problems with quite different complexity

levels depending on the type of the modification and the place where it is made. Thus, in-

stead of modifying the source code, I created the benchmarks by modifying the intermediate

representations directly. Random intermediate representation statements are inserted to or

removed from the intermediate representation of the base benchmark. Given the number of

intermediate representation statements to be modified, I created multiple cases to show the

bound of how this affects the problem complexity.

DSP application update benchmark For DSP application study, the automatically

generated test cases are used to evaluate the compilation performance, including the patch

script size deduction and the run-time execution overhead. Because the direct factors are

the memory access sequence and the interference between each pair of variables, I created

the automatically generated benchmarks by directly modifying these two factors.
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6.1.4.1 Methodology used to generate the auto-bench

Although different tools are needed to automatically construct the test cases for general-

purpose applications and DSP applications respectively, the methodology is the same.

First, the tool always takes the intermediate representations (IRs) as input. For general-

purpose applications, the IRs of a base application are used directly. For DSP applications,

the access sequences and the variable interference are used. Since only these two affect

the algorithms in my dissertation, they are at the same level as IRs. Second, the update

percentage is defined as the number of changed IRs to the total count. Given a percentage

to update, the tool randomly determines that many updates, while each update randomly

chooses a place and randomly decides whether to insert, remove, or update the corresponding

IR. The tool generates 500 instances for each update percentage, and the averaged results

are reported in this chapter.

While auto-bench helps to perform the strength test, it has limitations. Currently, the

tool is preliminary — some generated test cases may be semantically inappropriate. For

example, a variable may be used but not initialized. The tool has been upgraded several

times, and many straightforward incorrect cases have been removed, e.g., the one that defines

a variable but never uses it. To summarize, this group of test cases are designed to identify

the trend by studying a large number of instances.

6.2 PATCH GENERATION AND DISSEMINATION IN SA-WSNS

I have implemented the proposed update-conscious register allocation and data allocation

schemes. In this section, I will present my experimental settings and discuss the results on

code quality, energy efficiency, and compilation time.

6.2.1 Updating general-purpose applications using UCC-RA

In order to compare the performance of the proposed update-conscious compilation register

allocation scheme (UCC-RA) with GCC-RA, I used the manually generated general-purpose
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benchmarks (M-G-1 ∼M-G-13) listed in Figure 46 to generate the binary images and further

the patch scripts. Then I used automatically generated general-purpose benchmarks to study

the problem complexity and compilation time.

6.2.1.1 Settings

I simulated a sensor network that consists of Mica2 mote nodes [19] running TinyOS [76].

The processor that Mica2 (MPR400CB model) uses is the AMTEL AVR micro controller —

ATmega128L [3].

To compile the code for Mica2, I chose ncc, the NesC compiler included in the TinyOS

release, and avr-gcc, the GNU C compiler (GCC) re-targeted for AMTEL AVR micro

controllers. I used the -O3 option to compile the code and ensure the code fit in the sensor

storage (i.e., I considered the -Os option as well). I used the default register allocator of

the gcc/avr-gcc. Using the new iterative graph allocator (with the option -fnew-ra) gave

similar results.

I selected Avrora, an instruction-level sensor network simulator, to collect the execution

cycles of the code before and after compiling the updated code with a UCC and GCC

(the accuracy of the simulator has been reported in prior work [77]). I then plugged in the

energy model and execution profiles to study the energy consumption tradeoffs with different

compilation approaches.

6.2.1.2 The generated script size

Figure 46 summarizes the synthetic updates that I made to the benchmarks. The updates

vary from low-level, through medium-level, to high-level changes, as described below:

• The low and medium-level changes cover a wide range including constant changes, vari-

able changes, parameter changes, instruction changes, and control flow changes. More

complex updates may require one or more such changes.

• Complex updates tend to create changes over many functions, though most of these test

cases impact only one function. To fairly evaluate the UCC-RA and decouple its impact

from data allocation and code layout, I only reported the changes in the functions that
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are directly affected (rather than, for instance, code shifting due to expansion/shrinkage

of neighbor functions). In addition, I observed minimal inter-procedural correlation.

For example, the same global variables are assigned to different registers in different

functions. Therefore, the overall impact of high-level updates is close to the summarized

changes of simple updates.

• I evaluated the code changes using Diffscript size, the size of the update scripts that are

used to change the old binaries to the new ones.

I first conducted experiments to compare the generated script size between UCC-RA

and GCC-RA. For GCC-RA, I manually find the best match between the new and old

binaries. This is the lower bound of existing diff-based code dissemination algorithms

[60, 68]. That is, I compared my results against the best possible implementation of existing

update-unconscious approaches [60, 68].
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Figure 48: Script size comparison between UCC-RA and GCC-RA.

Figure 48 shows the results, in Diffscript size, for update test cases M-G-1 ∼ M-G-12.

From the figure, UCC-RA greatly reduces the code difference as it effectively localizes the

code changes — the majority of the code can be kept the same. On the contrary, GCC-RA

may generate only local changes (test case M-G-1), but may also propagate local changes to
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a much larger range (test case M-G-4).

I then studied the two high-level changes. M-G-12 introduces several new functions

most of which are small inline functions. They disturb the register selection in a large

function and introduce a significant number of differences, which are seen when using GCC-

RA. Fortunately, those differences are minimized in UCC-RA. Test case M-G-13 represents

another type of high-level changes, and the application CntToLeds is quite different from

CntToRfms. The former has 828 instructions while the latter has 4351 instructions. It is an

expensive update since all new instructions and functions have to be disseminated across the

network. There is some code similarity due to the fact that applications in the same TinyOS

environment follow a generic structure. GCC-RA can reuse 422 instructions and needs to

update 3929 instructions. UCC-RA can reuse 63 more instructions, which represents an

increase of 15% from GCC-RA, and accounts for about 7.6% of the old code (CntToLeds).

Therefore, it is beneficial to apply update-conscious compilation for small to medium-

level changes. The benefits diminish when the update is large.
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Figure 49: Code quality comparison between UCC-RA and GCC-RA.
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6.2.1.3 The generated code quality

I compared the code quality resulting from different algorithms. The code quality is quan-

tified using Diffcycle, the changes in execution cycles between the old and new binary. This

metric also indicates the slowdown after applying update-conscious compilation.

Figure 49 shows the results for test case M-G-1 ∼ M-G-12. In most of these cases,

UCC-RA and GCC-RA have the same Diffcycle, i.e., they have the same code quality. This

is because both of them can find free registers to use, and no extra spill code needs to be

generated. Thus, register conflicts are small. In some cases, e.g., test case M-G-12, UCC-RA

inserts three mov instructions since by doing so, it can save 406 instruction updates.

The slowdown from applying UCC-RA is negligible in nearly all cases. For example, the

three cycles introduced by UCC-RA in test case M-G-12 account for less than 0.01% of 244K

cycles — the total number of cycles per single run for the application CntToRfm. In the next

section, I study its energy consumption over a long period after many invocations.

For test case M-G-13 (not shown in the figure), UCC-RA uses the preferred register tag

as a hint when selecting registers. It reaches the same allocation result and thus has the

same code quality as the one generated by GCC-RA.

6.2.1.4 The energy savings

The energy savings are calculated as follows. I first compute Diffenergy (defined below), the

energy consumption difference (per single run) before and after the code update. It incor-

porates the energy consumed in both data transmission and instruction execution. Second,

I compute the energy savings per update for GCC-RA and UCC-RA respectively.

Diffenergy = Diffscript size × Etrans +Diffcycle × Eexe × Cnt (6.1)

EnergySavings = DiffGCC−RA
energy −DiffUCC−RA

energy (6.2)

where Cnt is the total number of times that the code may be executed before it retires. A

code retires when either it is overwritten by a later update or the sensor node has consumed

all its battery energy and dies.
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Figure 50: The energy savings for general-purpose applications.

Figure 50 plots the energy savings of UCC-RA over GCC-RA as a function of Cnt, which

is projected from the execution profiles and the code update frequency. Code fragments that

reside in a loop, or retire after a long time, have larger Cnts than others. From the figure,

when UCC-RA and GCC-RA generate the same quality code (same Diffcycle, such as for

test case 1), the energy savings are independent of Cnt. The savings mainly come from the

reduced transmission energy. The larger the number of instructions I reduce from GCC-RA,

the less data I need to transmit, and the more savings I gain from UCC-RA.

When the code generated from UCC-RA runs slightly slower than that from GCC-RA

(e.g., test case M-G-12), extra energy will be consumed in instruction execution. This

can diminish the transmission energy savings when the code is executed very frequently.

Therefore, UCC-RA adaptively inserts mov instructions according to execution profiles and

update frequency. A large Cnt would disable the insertion such that UCC-RA and GCC-RA

have the same energy consumption in the worst case.

For example, the breakeven point for test case M-G-12 is 107 times. Given that a Mica2

sensor can last for about one year if it stays active for about 15 minutes per day, the code
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generated from UCC-RA saves energy unless the code is executed about 30 times per second

(=107÷365÷15÷60) for its whole lifetime. This is impossible because the target application

CntToLedsRfm of M-G-12 converts counters to light blinks, and human eyes cannot tell if a

light blinks 30 times a second (not to say the device cannot blink at this high frequency).

6.2.1.5 The problem complexity and compilation time

A concern of ILP is its slow compilation time. I measured the compilation time for each test

case and the result is shown in Figure 51. The larger the update is, the longer it takes to

re-compile it. For instance, M-G-12 is the largest update in the test set and it takes over

20 seconds to compile. Of course, when the update is larger, more decision variables and

constraints will be generated by UCC-RA, which makes the ILP problem harder to solve, so

the whole compilation takes longer to finish.
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Figure 51: The compilation time of UCC-RA.

To study the compilation time of general cases, I used auto-bench to evaluate the ILP

problem complexity as a function of the number of constraints and the number of decision

variables.
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Figure 52: The number of constraints as a function of the number of IR instructions.

Since the ILP problem is more complex to solve when the number of instructions (from

a changed code segment and needed to recompile) increases, Figure 52 plots the number of

constraints as a function of instruction number. We can see that the number of constraints

increases almost linearly with the number of IR instructions. I plot the number of iterations

that the LP solve [8] requires as a function of (the number of variables × the number of IR

instructions) in Figure 53.

An interesting observation in my experiments is that the preferred register tag helps

to improve the performance. Compared to an ILP-based register allocator which allocates

registers from scratch, the preferred register tag is a hint to the solver and can reduce the

number of iterations that the solver needs to try. As an extreme case, I also tested misleading

preferred register tags, e.g., variables are assigned to the preferred register tag randomly, and

found that the solver may need 2 or 3 times more iterations to solve.

To see how fast the problem can be solved, I conducted timing experiments on an Intel

Xeon 3.6GHz processor running Fedora Linux 2.4.21 kernel. The physical memory size is 2GB
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Figure 53: The number of iterations as a function of (the number of variables × the number

of IR instructions).

while in the experiments, the largest observed memory usage is less than 256 MB. Figure 54

shows that the average time required to solve one iteration increases about linearly with the

problem complexity. It usually takes the solver less than 3 minutes to allocate registers for a

chunk of 250 IR instructions. As a comparison, it takes GCC-RA far less than one second to

solve the same problem. While UCC-RA is much slower than GCC-RA, it is not a significant

problem for WSNs due to the following reasons: (i) sensor applications are small programs

limited by the memory size of the sensor node; (ii) UCC-RA is applied only to the identified

changed chunks instead of the complete functions or the whole application (in Chapter 3.2.2

I discussed the reason why only changed chunks are considered in my framework); (iii) it is

worthwhile to trade the compilation time at the server side (the sink node) for the energy

savings on sensor nodes. As discussed in Chapter 1, I assume the sink has no or negligible

resource constraints while sensor nodes have very tight resource constraints.

I also examined whether approximating the original non-linear integer programming

problem with a linear problem degraded the final results. I observed the same allocation

decisions for all the test cases with or without the approximation. The only difference is
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Figure 54: The time to solve one iteration as a function of (the number of variables × the

number of IR instructions).

that solving non-linear problems is orders of magnitude slower than a linear problem.

6.2.2 Updating general-purpose software using UCC-DA

In order to compare the performance of the proposed update-conscious compilation data

allocation scheme (UCC-DA) with GCC-DA, I used the manually generated general-purpose

benchmarks (M-G-14 ∼ M-G-19) listed in Figure 46 to generate the binary images and

further the patch scripts.

The tradeoff of UCC-DA is between the stack size and the generated script size. Keeping

variables in the same locations as those in the old version reduces the update script size.

However, the stack size grows faster, as some slots are wasted. In this section, I evaluated

the reduction of script size under a tight threshold SpaceT, i.e., the number of memory slots

that can be wasted at runtime.

In the experiments I set SpaceT to be 5. The reason that I chose a relatively small

threshold is that the test cases are relatively small, and choosing a larger constant would
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diminish the need for variable relocation and give too much freedom to UCC-DA. The

biased conclusion assuming no need for variable relocation may not be applicable to real

applications.

6.2.2.1 Settings

To get the baseline binary I used ncc, the NesC compiler included in TinyOS release, and

avr-gcc, the GNU C compiler (GCC) re-targeted for AMTEL AVR micro controllers. The

generated binary is compared with the older version to generate the update script. I com-

pared the generated script size between GCC-DA and UCC-DA.

Then, I used tos-ramsize [67], the tool included in the TinyOS release, to generate the

worst-case stack size of the binary generated using different data allocation schemes.

The update benchmarks are listed as M-G-14 ∼ M-G-19 (Figure 46). They are con-

structed from the Advanced Encryption Standard (AES) application [69]. It takes several

steps to encrypt or decrypt the given data, and in each step it does some relatively compli-

cated computation to get a temporary result, and feeds it to the next step. For example,

in the ShiftRow step, it cyclically shifts the bytes in each row by a certain offset. Local

variables are heavily involved here to store the temporary results.

6.2.2.2 The generated script size

I first used UCC-DA and GCC-DA to generate the new binary, and compared it with the

old one to generate the update script. Figure 55 shows the script size comparison.

Using UCC-DA, the script size can be reduced by 56% on average. New variables are

always allocated at the top of the stack no matter where they are declared, so that the

unchanged variables that are declared after these new variables do not have to be relocated.

For the deleted variables, the memory holes are left unfilled, if the total wasted memory

size is smaller than the threshold SpaceT. Otherwise, the variable are selected to fill up

the holes. Under the given threshold SpaceT, the UCC-DA algorithm keeps most of the

unchanged variables in their original memory location, so that it minimizes the update to

the memory access instructions that access those variables.
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Figure 55: Script size comparison between UCC-DA and GCC-DA.

6.2.2.3 The energy savings

Figure 56 shows the energy savings using UCC-DA. As we can see from the figure, the

results are independent of the execution frequency. This is because no extra instructions

were introduced in the binary. The energy savings come from sending a smaller update

script to the remote sensors.

6.2.2.4 The wasted memory space

The UCC-DA algorithm trades RAM usage for script size reduction. Keeping the unchanged

variables in place may cause memory holes if some variables are removed. Thus, it may waste

some memory space at runtime, which results in a larger worst-case stack size. Figure 57

compares the worst-case stack size of the binaries generated by different algorithms.

From the experiment results, using UCC-DA only increases the memory usage by 1.9%

on average, yet it reduces the script size by 56%. This is because the memory space may

be wasted only when the memory space taken by the removed variables is larger than the
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Figure 56: Energy savings using UCC-DA.
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Figure 57: Worst-case stack size comparison between UCC-DA and GCC-DA.
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memory space needed by the inserted variables. The common reason is that real-world code

updates are fixing existing bugs and adding new features to handle unexpected conditions,

which are likely to change and add new code rather than delete code.

6.2.2.5 Tradeoff between wasted space and binary differences

As shown in Figure 55, setting SpaceT to be 5B gives 56% script size reduction. I studied

the impact on script size when reducing SpaceT. Intuitively, reducing SpaceT requires more

variable relocations, and thus results in more code changes and larger script size.
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Figure 58: Tradeoff between the worst-case stack size and the instruction updates.

Figure 58 plots the relative script size under different threshold values. The results are

normalized to the one when SpaceT is 5. The figure shows that the saved update percentage

is higher with a larger SpaceT. In one case (M-G-15), I did not observe any savings if

SpaceT=0, that is, the script size is the same as the one from GCC-DA.

From the figure, we can also find out that SpaceT does not need to be large to tolerate

the instruction updates caused by data relocation. The worst-case stack size of the AES

application is 67 Bytes for the given test cases. SpaceT=5 is good enough to explore all
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opportunities. Assuming the trend applies, I expect SpaceT to be larger for a real-world

program, but it should still be within an acceptable range.

An interesting observation is that even setting the threshold SpaceT to be 0 can show

improvement over the GCC-DA scheme. For example, test cases M-G-14, M-G-16, and

M-G-18 achieve 100% update reduction when SpaceT is set to 0. This happens when the

memory space occupied by the deleted variables is smaller than the space occupied by the

inserted variables. Without the update-conscious scheme, the variables are ordered by the

declaration sequence on stack. This may cause address shift to those unchanged variables

that are declared after these new variables. However, using the update-conscious scheme,

the new variables are first used to fill up the memory holes, and the extra new variables are

always allocated on top of the unchanged ones. Thus, these unchanged variables will not be

relocated, so that fewer instruction updates will be caused.

6.2.3 Updating general-purpose applications using UCC-RA and UCC-DA

6.2.3.1 Performance evaluation using man-bench

The experimental results in Section 6.2.1 and Section 6.2.2 show that using update-conscious

register allocation and data allocation individually can reduce the update script sizes by 71%

and 56% representatively. However, the performance loss caused by the update-conscious

compilation schemes is very small, i.e., increasing the number of instructions in each execu-

tion by 4.7% and RAM usage by 1.8%.

Applying both the UCC-RA and UCC-DA schemes should combine the benefits and

reduce the script size even more. I implemented the integration algorithm proposed in

Chapter 3.2.3 and ran the integration algorithm on the man-bench M-G-14 ∼ M-G-19. The

maximum wasted space threshold is set to be 5 bytes. The generated script size comparison

is shown in Figure 59. From the figure, the integrated scheme produces the smallest scripts

compared to the individual UCC-RA and UCC-DA schemes.

For these test cases, using the integrated scheme does not introduce any extra run-

time overhead. The reason is that the tested applications are simple and have no register

pressure; the UCC-RA scheme can always find free registers to store the variables that are
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Figure 59: Script size comparison between the integrated scheme and the baseline scheme.

not tagged with a preferred register. There, UCC-RA does not introduce any extra move or

spill instructions.

6.2.3.2 Performance evaluation using real-bench

Next, I used the real general-purpose benchmarks (R-G-1 ∼ R-G-6) listed in Figure 44 to

study the performance tradeoffs and energy savings for real software update cases. I used

both GCC and the UCC designed for general-purpose applications to get new binaries after

each update, and then generate the update scripts using instruction-based primitives.

Figure 60 shows the comparison results that list the number of script instructions per

each primitive type, and the final script size (bytes) for these two compilation techniques.

UCC did not add new instructions in these test cases. Therefore, the code generated from

UCC has the same performance as that from GCC.

The average script size reduction for all the six test cases is 55% compared to GCC. This

is because UCC reduces the instructions that need to be updated, thus the number of update
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Case # GCC
Script
Size
(bytes)

#A #R #P #C #L UCC
Script
Size
(bytes)

#A #R #P #C #L

R-G-1 249 4 3 22 30 0 5 1 0 0 2 0

R-G-2 557 6 3 52 62 0 191 8 3 1 4 0

R-G-3 447 2 1 39 43 0 12 3 3 0 4 0

R-G-4 605 1 1 4 7 0 512 6 0 1 8 0

R-G-5 277 0 4 31 36 0 35 3 1 0 3 0

R-G-6 3981 12 6 143 162 0 1069 2 2 1 6 2

Figure 60: Script size comparison for real general-purpose updates (#A: add primitive; #R:

remove primitive; #P: replace primitive; #C: copy primitive; #L: clone primitive).

primitives in the script is reduced. In addition, I found that when more instructions need

to be updated, the code tends to be divided into smaller pieces, which results in more copy

primitives. For example, in case R-G-3, UCC reduces the number of replace primitives

from 39 to 0, and copy primitives from 43 to 4, which results in a 97% script size deduction.

Notice that the clone primitive is not frequently used in the script. This is because when

the number of the instructions that can be “cloned” from the original code is not big enough,

using the replace primitive is more efficient; for example, if there are N instructions that

can be “cloned” from the original code, and the number of mapped registers is M. To update

the code, I can choose either the clone primitive or replace primitive. The overhead of

using each primitive is shown in the following equations.

Costclone = 5 + 2 ∗M (6.3)

Costreplace = 1 + 2 ∗N (6.4)

Costclone < Costreplace ⇒ N −M > 2 (6.5)

As shown in Equation 6.5, only when N −M > 2 is satisfied, can I gain more benefit by

choosing the clone primitive.
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6.2.4 Updating DSP applications

In this section, I will evaluate the impact of the update-conscious compilation data allocation

scheme (UCC-DA) for DSP applications and the CSOA/CGOA schemes. I will use both

man-bench (M-D-1 ∼ M-D-5) and auto-bench to study the performance tradeoffs.

6.2.4.1 Settings

To evaluate the proposed update-conscious ICSOA/ICGOA algorithms, I chose the Lance

Compiler[44] to convert source code (C code) to intermediate representations (IRs) from

which the access sequence and interference graph are extracted. I selected the DSPstone[21]

benchmark suite that is widely used to measure the performance of DSP compilers. I adopted

CSOA-Offsetstone[58] as the baseline and implemented ICSOA on top of it.

6.2.4.2 Script size comparison using man-bench

Single offset assignment. Figure 61 compares the software update overhead for CSOA

and ICSOA. I used three script formats to do the comparison.

• Simple code update script that uses only the simple instruction-based primitives;

• Advanced code update script that uses all types of the instruction-based primitives;

• Context-aware update script that uses both instruction-based and data-based primitives.

Using the same script generator with ICSOA, the script size can be reduced by 32%. This

is because the update-conscious strategy follows the variable coalesces and offset assignment

of the old code. The generated code has better code similarity to the old version in terms

of both offset assignment and instruction addressing mode. In test case M-D-1, the code

update is very small such that the difference between the old and new offset assignments is

not big. I did not see much benefit using ICSOA over CSOA.

When comparing different script generators, I observed that the advanced script generator

produces a smaller script due to its usage of the insert access primitive. When there is no

variable access insertion but removal or update in the code update, the two script generators

produce the same script, i.e., test cases M-D-4 and M-D-5.
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Figure 61: Script size comparison between ICSOA and CSOA (#addr register=1).
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Figure 62: Script size comparison ICGOA and CGOA (#addr register=2).
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The context-aware script generator produces smaller scripts when the code update is

medium. Instead of sending individual instruction differences, it just sends out the data

allocation differences, from which each node generates the new binary by itself, i.e., test

cases M-D-4 and M-D-5. A significant script size reduction was observed by using this

scheme. Adopting context-aware script tends to incur large complexity, i.e., test cases M-D-

1 and M-D-3 where there is a small increase in script size due to the complexity required to

specify the offset assignment change.

General offset assignment. When there are multiple ARs, Figure 62 compares CGOA

and ICGOA schemes with the different script generators.

When there are more ARs, recompiling the program results in large changes in both the

variable partition and offset assignment. For test case M-D-3, CGOA with a context-aware

script has a larger size than with the simple script. This is due to the significant variable

partition change, which requires more primitives to specify the new offset layout.

In conclusion, ICSOA/ICGOA is preferred when there are medium changes, while re-

compilation is preferred when the change is small or large.

6.2.4.3 Code quality comparison using man-bench

Single offset assignment. As shown in Figure 63, ICSOA produces a number of instruc-

tions similar to CSOA. On average, the binary generated by ICSOA is 10% larger than

the binary generated by CSOA. For the worst test case, i.e., test case M-D-3, the binary

generated by ICSOA is 23% larger than CSOA. Because the ICSOA scheme does the data

allocation incrementally based on the coalesced access graph of the old version, the old vari-

able coalescing result is retained in the new version to improve code similarity. As a result,

the code generated by ICSOA is not as efficient.

To better understand the code quality difference between the two approaches, Figure 64

shows the breakdown of the execution overhead. I separated the new code at the intermediate

representation (IR) level into the changed and unchanged parts. I then created their mapping

to the binary level code segments.

When the offset assignment is changed, the same IR instruction may be translated to
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Figure 63: Code quality comparison between CSOA and ICSOA.

Test CSOA ICSOA
Case# T1 T2 T3 T4 T1 T2 T3 T4

M-D-1 0 7 1 0 0 7 2 0
M-D-2 1 7 9 0 0 8 12 3
M-D-3 1 7 7 0 0 10 12 6
M-D-4 4 24 0 0 0 24 2 1
M-D-5 4 22 0 0 0 24 2 1

Figure 64: Execution overhead breakdown.
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different binary instructions in the old and new code. The binary code differences could be

categorized as two types: (1) updating the addressing mode of the related binary instructions,

such as the first memory access in Figure 25; (2) adding addressing mode change instructions.

The first type does not change the number of instructions, as no extra instruction is added,

but for the second type one extra instruction is added per change. When studying the code

quality, I divided the overhead into four categories as follows. T1-T3 show how efficient the

offset assignment algorithm is, and T4 shows how the extra patch affects the final result.

• T1: AR loading instructions removed from the old code;

• T2: AR loading instructions inserted into the old code;

• T3: AR loading instructions inserted into the new code;

• T4: ALU instructions inserted into the new code.

Comparing columns T1 and T2 of both CSOA and ICSOA in Figure 64, we can see

that CSOA generates fewer binary instructions for the unchanged IR part. It removes more

AR loading instructions, and inserts fewer such instructions. For the new code part, CSOA

generates fewer AR loading instructions. When performing complete recompilation, CSOA

uses the new access sequences and variable interferences of the whole function, and thus can

generate a better offset assignment.

Column T4 shows the number of ALU instructions generated by compiling the new

assembly code. Since ICSOA needs to add patch variables to remove the interferences due

to overlapped live ranges, it adds several mov instructions in the code, which produces more

T4 type instructions.

General offset assignment. For the test case M-D-3 that has the largest code quality

difference, I increased the number of available ARs, and found that with more available ARs

the code quality difference is reduced, as shown in Figure 65. The extra instruction number

drops from 20% to 6% when the address register number is increased from 1 to 4. This is

because with more ARs, the variables are partitioned into smaller sets. The software update

tends to create less new interference and needs fewer patch variables. Fewer interferences

result in less overhead in ICSOA.

The update-conscious data allocation scheme trades the run-time code performance for
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Figure 65: Code quality comparison between ICGOA and CGOA.
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Figure 66: The energy savings for DSP applications.
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the transmission overhead during software update. Thus, the overall energy savings depend

on the number of times the target binary will execute before retiring. Figure 66 shows the

energy savings of ICSOA over CSOA as a function of Cnt, which is projected from the

execution profiles and the code update frequency.

From Figure 66, with the increase of the execution number of one application, the overall

energy savings that are achieved by using the update-conscious compilation scheme are re-

duced. This is because the energy saved in the one-time binary transmission is overwhelmed

by the extra run-time overhead. When a large Cnt is predicted, the update-conscious com-

pilation will fall back to the CSOA scheme in order to achieve overall energy efficiency.

6.2.4.4 Performance evaluation using auto-bench

I next used auto-bench to compare the script size and performance between CSOA and

ICSOA schemes. I inserted changes randomly into a file (verify.c) to study the robustness of

my proposed scheme. The inserted code involves the use of both existing and new variables.

The ratio of these two types is 1:1, and the sizes of the inserted/changed code range from

5% to 60% of the original code. Given an update percentage, I randomly generated 500 test

cases and reported the average.

The script size comparison is shown in Figure 67. For all three types of script generation

schemes, ICSOA reduces more of the update script size and thus the software update trans-

mission overhead. However, the results show that ICSOA achieved the maximum script size

reduction when the update percentage is between 10% and 40%. This is because ICSOA

benefits more when most of the update is caused by the data allocation changes rather than

new/updated instruction operations. When the update percentage is too big, i.e., larger

than 40%, most changes are new or updated instructions. When the update percentage is

too small, i.e., smaller than 20%, the data allocation table is less likely to change even with

recompilation. Thus, the benefits from ICSOA are limited.

The code quality is compared in Figure 68. Larger code update percentage, i.e. over

40%, has more live range extension of old variables, which produces more patch variables

and instructions. Thus, the code produced by the recompilation scheme has a larger number
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Figure 67: Script size comparison using auto-bench.

of T4 type instructions, and the code generated by the ICSOA scheme has a worse execution

performance.

From Figure 67 and Figure 68, we can see that when the code update percentage is

between 10% and 20%, using the update-conscious offset assignment scheme can save about

30% of the transmission overhead, assuming that the advanced script is used, with about

4% extra runtime overhead.

From the experimental results, we can also see that using instruction-based primitives

works better with incremental compilation (ICSOA), and using data-based primitives (i.e.,

context-aware primitives) works better with full recompilation (CSOA). This is because

context-aware primitives trade individual updates for setting up the auxiliary data struc-

tures and letting the sensors construct these updates. Recompiling the new code changes

the data allocation and thus has a relatively greater number of instruction changes, which

enables context-aware primitives, gaining more benefits. When the code is generated from

incremental compilation, the saving is not large enough to balance the overhead in setting
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Figure 68: Code quality comparison using auto-bench.

up the data structures. In this case, it is beneficial to simply use the instruction-based

primitives.

6.2.4.5 Performance evaluation using real-bench

In this section, I used the real DSP test cases (R-D-1 ∼ R-D-3) to study the script size

and performance tradeoff for overall energy efficiency. Test cases R-D-1 and R-D-2 are

medium-level updates, while R-D-3 is a high-level update. In the experiments, I compared

the update script size, generated binary performance, and long-term energy savings between

the baseline CSOA and the proposed ICSOA schemes. The update scripts are then generated

using different update primitives described previously.

Figure 69 compares the generated script size using different techniques. When comparing

CSOA-simple and ICSOA-simple, we can see that update-conscious data allocation (ICSOA)

produces the binary that is more similar to the old binary when the update level is relatively

low. When the code has significant changes, e.g., test case R-D-3 introduces 32% code
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Figure 69: Script size comparison between CSOA and ICSOA (#addr register=1).

changes, the old and new code segments are mixed, such that the benefit from keeping the

old data offset assignment diminishes.

Using advanced primitives helps to further reduce the script size. The advanced prim-

itives tend to take more effect when the code update level is higher. This is because they

work under certain circumstances, e.g., only when the update involves inline functions, the

clone primitive can help to reduce the script size, and higher-level updates provide more

opportunities for these primitives to take effect.

Using data-based primitives achieves more script size reductions than using instruction-

based primitives. Although the former increases the code regeneration overhead on the

sensors, it helps reduce the script size significantly, especially when the data allocation

update is significant. For example, compared to CSOA, ICSOA produces a data allocation

that is more similar to the old version. Due to the amortized setting overhead of data-based

primitives, CSOA benefits more than ICSOA when adopting these primitives.

Figure 70 shows the experimental results when there are two address registers. Without

considering the old binary, a full recompilation often causes more data allocation differences
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when the update is at a small or medium level.
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Figure 70: Script size comparison between CGOA and ICGOA (#addr register=2).

Figure 71 compares the generated code performance between CSOA and ICSOA. When

the code changes, inheriting the old data allocation result may not result in efficient code.

Thus, ICSOA generates more instructions compared to CSOA. For these real test cases, on

average, ICSOA increases the run-time overhead by 3.7%.

6.3 SOFTWARE UPDATE STRATEGY IN SA-WSN

From the thorough analyses of the experimental data in the preceding section, we can see that

an update-conscious compilation strategy is preferred for small to medium changes, while its

benefits diminish when the update becomes large. Due to the nature of software updates, it

is less likely to find one threshold value (e.g., the percentage of changed instructions) that can

unambiguously determine if UCC should be applied. For example, given two applications

that both have been updated by 30% of their code, the one that has the updates concentrated

in one function should apply UCC, while the one that has the updates scattered around
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Figure 71: Code quality comparison between CSOA and ICSOA (#addr register=1).

should not. Even for the updates in one function, the one that has the updates concentrated

within a small code range should apply UCC, while the one that has the updates scattered

around the function should not.

When UCC is applied as the last optimization pass, the result from UCC is always the

best (see the analyses in Section 3.1). However, when UCC is integrated in a different place

in the compilation, it is worth studying its interaction with other optimization passes.

6.4 PATCH DISSEMINATION WITHIN MA-WSNS

I then simulated the patch dissemination in an MA-WSN and compared the message overhead

and dissemination time using different code distribution protocols.
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6.4.1 Settings

I implemented MCP on the TinyOS [76] platform. For comparison, I also implemented

Melete [83] and studied various network settings using TOSSIM [48]. I simulated mesh

MA-WSNs of different sizes. I set the default spacing factor to 15 and modeled the lossy

communication channel using the tool provided by TinyOS. There are four applications each

of which is uniformly distributed across the network. In the default setting, 30% of the

sensors have application A and there is a request from the sink to reprogram 20% of the

other sensors to run A. MCP disseminates the code from in-network sources instead of from

the sink.

6.4.2 Message overhead
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Figure 72: Message overhead.

Figure 72 shows the breakdown of the number of messages with different dissemination

protocols. Without considering advertisement messages, Melete and Deluge have about the

same message overhead, which was also reported in [83]. There are a large number of ADV

messages in Deluge, and a negligible number in Melete. The reason for such difference
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is that Deluge depends heavily on incoming ADV messages, e.g., a sensor node only sends

out new requests if it receives ADV messages indicating its neighbors have more up-to-date

data. In Melete, requesters receive the command from the sink code and then know the

target application and its size. The requesters can proactively send out more requests after

timeouts or after receiving one complete page. The ADV messages contribute to 37-40% of

the total message overhead in Deluge.

My scheme takes an approach similar to Melete but requires some ADVmessages to update

the AIT before, during, and after the code switch. The ADV’s overhead is low compared to the

request and data transfer message overhead. On average, my scheme reduces the message

overhead from Melete by about 20%. The main reason for this reduction is that Melete

tends to have multiple responders within a small range and has a higher possibility of signal

collision. MCP alleviates the problem by choosing one nearby source, which reduces the

number of data packets in transmission.

6.4.3 Completion time
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Figure 73: Dissemination time.

Figure 73 compares the dissemination completion time of the different protocols. For the
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Deluge result, I recorded the time interval used by all requesters to complete the downloading

of new code. In practice, the Deluge protocol may still proceed to flood all sensors, since it is

not designed to update a subset of sensors. MCP requires less time to finish dissemination;

on average, it saves 45% and 25% over Deluge and Melete respectively.

6.4.4 Sensitivity to node distribution
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Figure 74: Dissemination with different numbers of sources and requesters.

Figure 74 illustrates message overhead with a different number of sources and requesters.

I omit the dissemination time figure which exhibits similar results. Along the X axis, (a,b)

denotes that out of all the sensor nodes, a% sources and b% requesters are randomly selected

in the field. I observed that the overhead tends to increase with more requesters and fewer

sources. The difference is not significant.

Figure 75 compares the message overhead when sources and requesters are distributed

with location concentration. EvenD denotes that all nodes are evenly distributed. CornerD

denotes that sources and requesters are distributed at the two diagonal corners of the rect-

angle field. SideD denotes that sources and requesters are distributed along two sides of the
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Figure 75: Dissemination with uneven source/requester node distribution.

field. From the figure, Melete has better performance than Deluge under even distribution.

However, it generates significant conflicts and performs worse than Deluge when the nodes

are unevenly deployed. MCP has consistently better results over Melete and Deluge. For

the corner and side settings, MCP and Deluge are similar, as almost all nodes are involved

in the dissemination.

6.4.5 Sensitivity to application sizes

Figure 76 shows message overhead with different application sizes. Due to the epidemic

dissemination, Deluge exhibits approximately linear message overhead when increasing the

application size from 8 to 16 pages. Both Melete and MCP greatly reduce the communication

overhead; however, they have slightly more than linear message overhead due to independent

page requesting from requesters. MCP has a nearly constant message overhead reduction

versus Melete, varying from 17.5% for 8 pages to 18.1% for 16 pages.
6.4.6 Sensitivity to cache sizes

Figure 77 summarizes the message overhead of Melete and MCP with different cache sizes,

i.e., the number of code pages that may be cached in memory. Here N=1 denotes that
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Figure 76: Dissemination with different number of pages.

N=0 N=1 N=2 N=3
       0

     500

    1000

    1500

    2000

    2500

Number of Cache Entries

M
es

sa
ge

 O
ve

rh
ea

d 
(K

B
yt

es
)

 

 

Melete
MCP

Figure 77: Dissemination with Different Cache Sizes.
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there is no caching. From the figure, MCP achieves significant reduction in communication

overhead when caching one or two future pages, and diminishing benefits with larger cache

sizes. The reason is that in MCP, a request message can preempt a working node (a source,

a requester, or a forwarder) if that node works on a page with a larger page number, and

the page index difference is larger than one. In this way, MCP prioritizes slow requesters

such that they can keep up the pace with the nearby dissemination and take advantage of

cached packets.
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7.0 FUTURE DIRECTIONS AND CONCLUSION

This chapter addresses future research directions and concludes the dissertation.

7.1 FUTURE WORK

Although the designed software update framework has achieved the design goal and gained

significant energy savings for the WSN platform, there are several directions that are worth

exploring in the future.

7.1.1 Apply to different platforms

One future research direction is to apply the techniques proposed in this research to other

computing platforms and evaluate the benefits to be gained compared to the traditional

solutions.

The software update management framework can be adapted to the smart phone network.

The popularity of smart phones has stimulated interest in developing and using applications.

By September 1, 2010, there were over 250,000 applications for the iPhone [18] platform.

According to Tech Crunchies [20], the average number of applications installed on an iPhone

is 65. Because of the rapidly growing demand, and the fast pace of development, these

applications tend to be updated very frequently. Multiple releases of one application could

be launched in a month. Efficiently updating these applications could be an issue, since

frequent software updates can deplete the energy stored in the battery and consume too

much bandwidth to satisfy the QoS of the other running applications.

131



Applying update-conscious compilation and differential patching techniques to these

smart phone platforms can reduce the number of bytes that need to be transmitted to

the phones. This will reduce not only the update time but also the data usage. With

the multicast-based code dissemination protocol installed, the smart phones will be able to

download new applications from the peer phones via Bluetooth, which will reduce data usage

and decrease the impact on other running applications that heavily use the network.

7.1.2 Other update-conscious compilation schemes

In this research, I focused on optimizing the register allocation and data allocation to im-

prove the similarity between different binary versions. Aside from this, other UCC research

opportunities exist, such as UCC instruction selection and UCC instruction scheduling.

Instruction selection transforms the mid-level intermediate representation (IR) into a

low-level IR that is very close to its final target language. The traditional “tile covering”

algorithms try to optimize the run-time overhead while selecting the proper “tiles” to cover

the IR tree parts with the least cost. Each tile represents one instruction type that is available

on the target machine architecture. The UCC instruction selection algorithm should take

the instruction selection results of the old version as input while generating the new version

and consider not only run-time overhead but also code similarity. This trade-off between

run-time overhead and transmission overhead can be studied.

The functional update primitive design favors continuous updates, because it allows the

use of one primitive to describe multiple updated instructions. Comparing two updates that

have the same number of new instructions, where one has all the updates concentrated at

one or two update points, and the other has all the updates scattered in the existing code,

the first will have a smaller update script. Thus, while doing instruction scheduling, if we

can advance or delay certain instructions to implode the updates, we will be able to reduce

the patch size. This may affect run-time performance by introducing more “stalls”, and this

trade-off needs to be studied in future research.
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7.2 CONCLUSION

Wireless sensor networks (WSNs) have been widely used. The software running on the

deployed sensors needs to be updated for various reasons. Since sensors are usually left

unattended after deployment, the update must be done by energy-expensive wireless com-

munication. Experimental results have shown that the energy spent transmitting one bit one

hop is equivalent to the energy consumed by executing 10 instructions. When updates are

frequent, consuming too much energy for software updates may greatly shorten the lifetime

of the network.

In this dissertation, I designed a software update management framework that addresses

the challenges using three integrated components.

The update-conscious compiler (UCC) improves binary code similarity by generating a

new binary that is similar to the old version. In this dissertation, I developed UCC register

allocation and UCC data allocation schemes. The update-conscious register allocation (UCC-

RA) scheme formulates the problem as an ILP problem. The objective is to minimize

the overall energy consumption including the run-time overhead in terms of the number

of “load”, “store” and “move” instructions, and the software update overhead in terms of

the binary difference from the old version. The update-conscious data allocation scheme

for general-purpose applications uses a threshold-based solution to minimize the variable

relocation under a certain memory usage constraint. The update-conscious data allocation

scheme for DSP applications integrates the binary similarity in the existing CSOA and CGOA

algorithms, which generates the new binary with similar data allocation, resulting in similar

addressing mode selections for the memory access instructions. UCC strives to achieve

overall energy efficiency during compilation by considering the number of invocations the

new binary will have, the memory space constraint of the target platform, and the memory

usage of the new binary.

The generated new binary is then compared with the old binary to generate an update

patch. In order to further reduce the patch size, several sets of patch primitives are designed.

The simple update primitives directly summarize the lower-level binary differences in the

patch. It is easy to interpret at the sensor side, but may result in a larger patch. The
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advanced instruction-based primitives summarize the root cause that affects more than

one instruction in one primitive. The data-based primitives are used to describe the data

allocation changes and the affected addressing mode changes. The latter two types help

reduce patch size, but require a more powerful interpreter at the sensor side.

A multicast-based stateful code distribution protocol (MCP) is then used to disseminate

the generated binary to the sensors. This protocol stores the routing information of nearby

source nodes on individual sensors. When there is a need to update the code, the requests

can be directed to the sources without flooding the network. The memory on the sensors is

wisely divided into cache packages received from different sources.

My framework integrates the three components to address the critical software update

problem in WSNs. The experimental results showed that when they work cooperatively

together, my software update management framework can greatly reduce the number of

bytes sent across the network, shorten the time required to disseminate the update, and

achieve overall energy efficiency.
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