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NEUTRINOS IN COSMOLOGY AND PARTICLE PHYSICS

Jun Wu, PhD

University of Pittsburgh, 2011

This thesis discusses two independent research topics. We first study keV sterile neutrinos

as a Warm Dark Matter (WDM) candidate, focusing on their production at temperatures

of the electroweak scale and the linear structure growth of WDM particles with arbitrary

distribution functions and masses of keV scale. At temperatures of the electroweak scale, the

medium effect modifies the mixing angle between sterile and active neutrinos, introducing

two narrow Mikheev-Smirnov-Wolfenstein (MSW) resonances that break adiabaticity and

enhance the non-thermal production of sterile neutrinos at small momenta. One of the two

MSW resonances is in the absence of a lepton asymmetry and occurs only at temperatures

around the electroweak scale. By solving the linearized collision-less Boltzmann equation,

we obtain a semi-analytical expression of the matter power spectrum for WDM particles

with arbitrary distributions agreeing within a few percent error with results from Boltzmann

codes. This matter power spectrum depends on the horizon size at matter-radiation equality

and the free streaming wave vector kfs, function of mass and distribution of WDM particles.

We discover WDM acoustic oscillations at small scales about k ≥ 2kfs and an Integrated

Sachs-Wolfe (ISW) effect in the Radiation Dominant (RD) era which enhances the matter

power spectrum for k ≤ kfs. A quasi-degeneracy between the mass and distribution function

of WDM on the matter power spectrum is identified, suggesting an inherent ambiguity of

Lyman-α analysis to constrain WDM parameters. Secondly, based on the observation that

neutrinos produced from decay via the charge current interaction are entangled with the

corresponding charged leptons, we re-investigate the theory of neutrino oscillations with

the focus of the dynamics of the entangled state. We study the dynamics of entanglement

iv



and dis-entanglement explicitly in time, which leads to non-conventional expressions for

neutrino oscillation amplitudes and probabilities suggesting possible corrections for short

baseline neutrino oscillation experiments. By applying this method to the GSI anomaly, we

unambiguously show that the GSI anomaly is not a consequence of neutrino oscillations.
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1.0 OVERVIEW

1.1 INSTRUCTION FOR READERS

This thesis contains two independent parts. The first part is about our study on sterile neu-

trinos as a Warm Dark Matter (WDM) candidate, and the second part focuses on several

subtle aspects of the theory on neutrino oscillation phenomena. Each part of the thesis has

three chapters: Chaps. 2 to 4 belong to the first part, and Chaps. 5 to 7 form the second part

of the thesis. These two parts are organized similarly. The first chapter of each part is de-

voted to an in-depth introduction while the following two chapters contain technical details,

each of which is based on a published article. The introduction chapter provides background

knowledge on the topic under consideration. To supplement our theoretical work, we pay

special attention to the observational/experimental aspects associated with our topic. Each

introduction chapter ends with a section containing a detailed summary on the goals, strat-

egy and main results of our research in the corresponding part of the thesis. Finally, we

conclude the thesis in Chap. 8 by reviewing the mains results of our work presented here.

Readers who want to quickly get the main ideas of this thesis are suggested to read

Secs. 1.2 and 1.3, which briefly introduce the content of the thesis, provide the background

information, motivation and main results of our research. Interested readers can then proceed

to Chaps. 2 and 5 for an extended introduction of each part of the thesis and summary

without too many technical details. The technical details are contained in Chaps. 3 to 4 and

Chaps. 6 to 7 for the first and the second parts respectively.
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1.2 NEUTRINOS: A WINDOW TO PHYSICS BEYOND THE STANDARD

MODEL

There are two “standard” models that frame our current understanding of the physical world.

The standard model of particle physics (SM) unifies the strong, weak and electro-magnetic

interactions of all known elementary particles, it is very successful and has been confirmed by

numerous experimental observations. Another standard model, the concordance ΛCDM cos-

mological model, explains the cosmic expansion and acceleration, and successfully describes

the physics of our universe, including its thermal history, the Big Bang Nucleosynthesis

(BBN) and large scale structure formation [194, 112, 281]. According to the ΛCDM model

and based on a series of cosmological observations [294, 295, 250, 251, 195, 269, 245, 91, 125,

248, 234, 264], we now know that Dark Matter (DM) is one dominant component of our

universe today, occupying 22.7% of the total energy budget [176]. It plays an essential role

in determining the cosmic structures we observe today [112, 281]. Since DM is only inferred

gravitationally, it can not be explained by any known fundamental particle [112, 281, 124].

Therefore, DM provides a bridge between the two standard models, serving as one of the

most direct evidences of the physics beyond the SM.

Sterile neutrinos are a plausible DM candidate well-motivated by the see-saw solution

of the neutrino mass problem of the SM [219, 224, 124]. Sterile neutrinos with masses of

keV scale feature free streaming lengths of Mpc scales that lie in between those of Cold

Dark Matter (CDM) and Hot Dark Matter (HDM), they are usually regarded as a Warm

Dark Matter (WDM) candidate. In a pioneering paper in 1994 [113], Dodelson and Widrow

first proposed the possibility of sterile neutrinos being a WDM candidate, and studied their

production through mixing with active neutrinos in the early universe.

Recently, keV sterile neutrinos have attracted attention because there is accumulat-

ing evidence suggesting some potential problems in the standard ΛCDM model at galac-

tic scales [191, 226, 179, 138, 110, 197, 126, 84, 293]. These small scale problems arise

from the comparison between numerical simulations and observations of our local group.
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They are characterized by the so-called “missing satellite problem” and the “cusp over core”

problem. The former refers to the problem that observations on our local group discover

almost one order of magnitude fewer dwarf satellite galaxies than the number predicted

from numerical simulations based on the ΛCDM scenario [191, 226, 179, 138, 109, 110, 197],

while the latter corresponds to the conflict between the predicted cusp type density profiles

and the observed shallower core type density profiles toward the center of dwarf galaxies

[190, 95, 140, 141, 139, 288, 142, 135, 136, 137, 216, 44, 232, 100]. Together with other small

scale problems [266, 267, 253], these discrepancies between simulations and observations sug-

gest that CDM scenario predicts more than enough small structures. Although the small

scale problems may be solved by including the baryonic interactions into the N-body numeri-

cal simulations, it turns out very challenging to do so not only because the physics associated

with galaxy formation is still very unclear but also because it is computationally formidable

to include all relevant baryonic processes into the numerical simulations [196, 244]. WDM

particles tend to smooth out density perturbations smaller than their free streaming length.

Hence, keV sterile neutrinos with free streaming length of Mpc scale provide natural solution

to these small scale problems [227, 54, 40, 193, 192, 81]. Moreover, extensions of the SM

predict many DM candidates other than the CDM particles [124], and the matter power

spectrum at co-moving perturbation scales smaller than 1 Mpc is very sensitive to the ex-

istence of WDM [215, 153, 246, 254, 271, 72, 81, 279]. These small scale problems suggest

that alternatives to the standard CDM paradigm should be considered.

By decaying into active neutrinos in the SM, sterile neutrinos emit X-ray photons that

can be detected by X-ray satellites [75, 78, 69, 81, 5, 279, 80, 289, 74, 209]. Also, the

Lyman-α forest in the spectra of far away quasars can be used to constrain sterile neutrino

masses and mixing angles [215, 265, 153, 273, 272, 246, 254, 275, 271, 72, 75, 76, 78, 69, 279].

By combining these data, it was found that keV sterile neutrinos with small mixing angles

θ ≤ 10−4 are proper WDM candidates [81]. Moreover, keV sterile neutrinos also provide an

explanation for the observed pulsar kicks via the anisotropic neutrino emission of newly born

neutron stars [198, 50]. Intriguingly, the LSND neutrino oscillation experiment observed an

anomaly which suggests that there exists at least one sterile neutrino with mass of eV order
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[35, 36, 37, 39, 38]. The LSND result was recently confirmed by observations at MiniBooNE

[11] in anti-neutrino mode. Thus, these observations do not rule out the possibilities to have

sterile neutrinos with higher masses.

Although the existence of DM implies new physics beyond the SM, the first evidence of

the incompleteness of the SM actually came from the phenomenon of neutrino oscillations

dating back to the mid-20th century. The idea of neutrino oscillations was first proposed

by Pontecorvo in 1957 in analogy with the K0-K̄0 oscillations [241]. Soon, it was used to

successfully explain the deficit of the solar neutrino flux, referring to the famous solar neu-

trino problem [242, 155]. Now, neutrino oscillations are widely supported by solar neutrino

experiments [90, 6, 20, 12, 263], atmospherical neutrino experiments [169, 185, 34, 19, 22]

and terrestrial neutrino oscillation experiments [37, 11, 18, 25, 57, 26]. Active neutrinos

in the SM are massless, however, they are required to be massive by the phenomenon of

neutrino oscillations. This conflict is called the neutrino mass problem of the SM [148]. It is

one of the major tasks of extensions beyond the SM to solve this problem. Sterile neutrinos

are ubiquitous in these extensions because they can generate masses of the active neutrinos

through the see-saw mechanism [219, 224].

The phenomena of neutrino oscillations provide useful and important opportunities to

study many fundamental properties of neutrinos, including their mass differences, mixing

angles, mass hierarchy, CP violating phases, etc [148]. Furthermore, these phenomena have

profound applications in particle physics, astrophysics and cosmology. As mentioned previ-

ously, the resonant flavor mixing between electron and muon neutrinos in the sun explains

the solar neutrino problem [242, 155, 283, 218]. During BBN, neutrino oscillations may lead

to distortion of the electron neutrino distribution, hence change neutron to proton ratio,

affecting the abundance of light elements in the universe [114].

The simplest theoretical description of neutrino oscillations is analogous to the two-state

quantum mechanical Rabi oscillations with all particles described by plane waves [241, 214],

capturing the essential ingredients of neutrino oscillation phenomena, that is the coher-
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ent mixing of neutrino mass eigenstates. Though simple and intuitive, this model is not

self-consistent because the exact energy-momentum conservation during neutrino produc-

tion and detection forbids two massive neutrinos to interfere coherently. To solve this

controversy, the wave packet nature of the neutrino states in an oscillation experiment

was pointed out by Nussinov [231] and Kayser [180]. Based on the wave packet idea, a

more complete and realistic picture of neutrino oscillations was developed within the frame-

work of quantum field theory automatically including neutrino production and detection

[149, 152, 143, 159, 160, 48, 15]. Neutrino oscillation formulas obtained under these consid-

erations provide the guidelines for current data analyses on neutrino oscillation experiments

[148]. Recently, it was recognized that neutrinos produced via decay through the charge

current weak interaction are actually entangled with the corresponding charge leptons. It

was further argued that it is necessary to dis-entangle the entangled state in order to main-

tain the coherent interference of neutrino mass eigenstates and enable their oscillations [92].

These new observations have stimulated debates on the validity of current theory on neutrino

oscillations and its relation with the entanglement issue [92, 17, 184].

1.3 SUMMARY OF MAIN RESULTS

We divide the thesis into two parts. The first part focuses on keV sterile neutrinos as a

WDM candidate, motivated by the potential small scale problems in the ΛCDM model. The

second part of the thesis is devoted to studying the theory of neutrino oscillations, with

the focus of the dynamics of entanglement and dis-entanglement aspects that was missed in

most previous studies. For readers’ convenience, in this section, we summarize the content

in each part of the thesis. Interested readers can refer to Chaps. 2 and 5 for an extended

introduction to the first and second part of the thesis respectively.
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1.3.1 Part I (Chapters 2 to 4): keV Sterile Neutrinos as a WDM Candidate

WDM particles have non-vanishing velocity dispersion thereby modifying the dynamics of

gravitation collapse and structure formation. Their free streaming motion prevents den-

sity perturbations from growing at scales smaller than their free streaming length, lead-

ing to suppression on the matter power spectrum at small scales. This is the key reason

for the WDM scenario to solve the small scale problems in the ΛCDM model. Since the

free streaming length of WDM particles depends on their masses and distribution func-

tions after decoupling, this dependence will modify the final matter power spectrum. Un-

like the standard CDM particles, keV sterile neutrinos usually feature non-thermal distri-

bution functions after decoupling, which strongly depend on the production mechanisms

[113, 94, 259, 258, 256, 257, 200, 33, 49, 199, 237, 236]. Therefore, to investigate sterile

neutrinos as a WDM candidate, we have to first understand their production in the early

universe, which determines the distribution function of sterile neutrinos after decoupling,

and then study how these distribution functions influence the matter power spectrum of the

universe. These two important aspects are discussed individually in Chaps. 3 and 4.

In an extension of the SM invoked in Refs. [237, 236, 198, 258, 256, 257, 61, 32, 29,

31, 30, 81], sterile neutrinos can be produced via decay from a Higgs-like scalar beyond the

SM [237, 236, 198]. Recent studies in Refs. [61, 65] have revealed that such a production

mechanism yields a non-thermal (BD) distribution function that favors small momenta, re-

markably different from the Dodelson-Widrow (DW) production mechanism, where sterile

neutrinos are produced around 100 MeV via mixing with the active neutrinos in the SM [113].

Furthermore, the dependence of the matter power spectrum at small scales (∼ 102 kpc) on

distribution function was analyzed in an analytical approach, where the power spectrum of

BD sterile neutrinos is suppressed for scales smaller than 500 kpc when compared to that of

the CDM case, and is substantial enhanced at small scales when compared to that of DW

sterile neutrinos. This discovery on one hand justifies the expectation on WDM to smooth

the small scale problems; on the other hand, it also helps to relax the tension between X-ray

data and Lyman-α analysis.
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Complimentary to the work in [61], we further realize that at such a high temperature

of electroweak scale, SM vector bosons are thermalized with a large abundance, their decay

also generates sterile neutrinos. Chap. 3 is devoted to study this new decay channel, un-

derstand its influence on the production rate and the mixing angle of sterile neutrinos. By

combining this new decay channel with the decay via the Higgs-like scalar discussed above

[61, 198, 199], we aim to systematically study sterile neutrinos produced at the electroweak

scale.

By making use of the non-equilibrium finite temperature field theory developed in [63,

278, 59, 66, 67, 170], we obtain an effective Dirac equation for the sterile and active neutri-

nos doublet, whose self-energy corrections contain the medium effect from the thermalized

vector bosons and the Higgs-like scalar. From the real and imaginary parts of these self-

energy corrections, we extract information on the index of refraction in the medium and the

production rate of sterile neutrinos respectively. We find that the production rate of sterile

neutrinos via the decay of vector bosons is competitive with the production via scalar decay.

By analyzing the mixing between the sterile and active neutrinos in the medium, we discover

a new type of Mikheev-Smirnov-Wolfenstein (MSW) resonance in the absence of a lepton

asymmetry besides the ordinary MSW resonance driven by the small lepton asymmetry.

These MSW resonances correspond to the maximal mixing and enhance the production of

sterile neutrinos. This new MSW resonance occurs in the low momentum region of k/T ≤ 1

for temperature T above the electroweak scale and gradually disappears when the tem-

perature drops below the electroweak scale. Moreover, at the resonance, the two massive

neutrino states are degenerate, leading to a breakdown of the adiabaticity. Therefore, with

the expanding universe rapidly crossing over these narrow resonances, we expect a highly

non-thermal distribution function of sterile neutrinos after decoupling, which features an

enhancement at small momenta because of the resonances.

After understanding the production of sterile neutrinos in the early universe, in Chap. 4,

we investigate the influence of the distribution function on the structure growth and matter
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power spectrum by carrying out a semi-analytical study on the linear structure growth of

WDM candidates in a radiation-matter cosmology for arbitrary distribution function and

mass in the keV scale.

Our work in Chap. 4 is a continuation of the previous study [65, 61], where the au-

thors only consider density perturbations since matter-radiation equality. Instead, we evolve

density perturbations including the Radiation Dominant (RD) phase, yielding a more self-

consistent and complete analytical investigation on structure growth within the WDM sce-

nario. To obtain the matter power spectrum for arbitrary WDM particles, the time evolution

of initial density perturbations is divided into three stages: I) relativistic WDM particles in

the RD era II) non-relativistic WDM particles in the RD era, and III) non-relativistic WDM

particles in the Matter Dominant (MD) era. We solve the linearized collision-less Boltzmann

equation governing the time evolution of density perturbations in each stage, and smoothly

connect these solutions together in time, thus obtaining the density perturbations, transfer

function and power spectrum today.

We find that the transfer function in the WDM scenario is related to two important

length scales keq and kfs. keq ' 0.01(Mpc)−1 is the wave vector of perturbation modes that

enter the Hubble radius at the matter-radiation equality. kfs, called the free streaming wave

vector, does not appear in the CDM paradigm. Its inverse describes the average distance

traveled by free WDM particles from the matter-radiation equality to today, and plays a role

analogous to the Jean’s length in structure formation processes. kfs also corresponds to the

size of the co-moving horizon when WDM particles become non-relativistic. Heavier WDM

particles with a colder distribution function features a bigger kfs than lighter WDM particles

with a warmer distribution (For CDM particles, kfs → ∞.), correspondingly, at small scales,

the transfer function of colder species is closer to that of the CDM particles than the warmer

species. Therefore, the transfer function of BD sterile neutrinos is less suppressed than that

of the DW sterile neutrinos of the same mass. Our semi-analytical expression agrees nicely

with the transfer function obtained from the Boltzmann codes in the fitting region (λ ≥ 1

Mpc) available in the literature [165, 1, 274], reaching an error within a few percent.
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Furthermore, we realize that the transfer function observed today contains information

of the entire evolution history of the density perturbations of WDM particles. In stage

I), an Integrated Sachs-Wolfe (ISW) effect, as a consequence of the time derivative of the

gravitational potential produced by acoustic oscillations of the radiation fluid, enhances the

transfer function for wave vectors smaller than kfs. Moreover, at small scales roughly about

k ≥ 2kfs, the transfer function oscillates due to the WDM acoustic oscillations and free

streaming effect, which might suggest interesting observational signals on density pertur-

bations with mass scales 108M¯ and 109M¯ for BD and DW sterile neutrinos respectively.

We find a quasi-degeneracy between the mass and the distribution function of sterile neutri-

nos on the transfer function of WDM particles. This quasi-degeneracy implies an inherent

ambiguity in the Lyman-α analysis to constrain masses of sterile neutrinos.

1.3.2 Part II (Chapters 5 to 7): Theory on Neutrino Oscillations

From Chap. 5 onwards, we switch to a different research topic to consider the theory of

neutrino oscillations. After a brief introduction to the standard treatment on neutrino oscil-

lations both in quantum mechanics and quantum field theory, we point out the entanglement

issue recently discussed in the literature, which states that neutrinos produced from decay

via charge current interactions are entangled with the corresponding charge lepton [92]. This

entanglement may lead to some impact on the standard formulas of neutrino oscillations. In

Chap. 6, we study dynamics of this entangled state directly as a function of time in a sim-

plified theoretical model that describes the main features of neutrino oscillation experiments.

When this entangled state evolves, the charged lepton is usually detected by the near

detector or stopped at a “beam dump” near the source, resulting in an disentangled neutrino

state that travels to the far detector. By assuming the dis-entangling time to be tS and that

the dis-entangled neutrino state is measured at tD in the far detector, the difference be-

tween tD and tS roughly corresponds to the baseline of the neutrino oscillation experiment.

For long baseline neutrino oscillation experiments, this difference can be macroscopically
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large [13, 9, 10]. Therefore the dynamics of the entangled state involves two times : the

dis-entangling time tS and the time tD to measure the disentangled neutrino state at the far

detector. To study this dynamics, conventional S-matrix calculation certainly cannot fulfill

this requirement because it treats the production, propagation and detection processes of an

neutrino oscillation experiment together as a single Feynman diagram, and only considers in

and out states by taking the production and detection times asymptotically to infinities. In

order to study the influence of entanglement and dis-entanglement on neutrino oscillations,

we have to carry out the two-time measurement explicitly, by first evolving the entangled

state to the dis-entangling moment tS, and then evolving the dis-entangled neutrino state to

the far detector.

To emphasize the importance of this two-time measurement idea and avoid unnecessary

technical complications, we describe all particles by plane waves in this study, neglecting the

wave packet treatment and focusing solely on the issues of entanglement, dis-entanglement

and the two-time measurement. After understanding this dynamics, we will employ the wave

packet idea in the future, thus investigate the issue of entanglement and dis-entanglement

within a more consistent and complete theoretical picture of neutrino oscillations.

By carrying out this two-time measurement calculation, we obtain non-conventional ex-

pressions for the appearance and dis-appearance amplitudes and probabilities that depend

on both time scales tS and tD. Under the long time limit and provided that tS ¿ tD,

the transition rate of long baseline neutrino oscillation experiments, defined as the time

derivative of the transition probability, factorizes in terms of the usual quantum mechanical

probability. When tS ∼ tD ∼ Losc, where Losc is the oscillation length scale, the oscillation

amplitudes, the appearance and disappearance probabilities deviate significantly from the

standard results, suggesting important corrections for short baseline oscillation experiments

such as MiniBooNE [11] and LSND [35, 36, 37, 39, 38]. In these cases, the dynamics of

dis-entanglement may introduce extra modulation with energy. Given the anomaly observed

in the LSND and MiniBooNE neutrino oscillation experiments, it could be interesting to

re-investigate these experiments by taking the dependence on the disentangling time into
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account.

In Chap. 7, we consider the GSI anomaly, which refers to the unexpected time depen-

dent modulation in the population of parent ions from the Electron Capture (EC) decays of

140Pr58+ and 142Pm62+. Based on the method developed in Chap. 6, we obtain directly the

time evolution of the population of parent and daughter particles, taking into account that

the quantum state arising from the decay of the parent particle is an entangled state of the

neutrino and the daughter particle. In this way, we bypass the controversy of summing am-

plitudes or probabilities and exhibits directly the time evolution of the parent and daughter

populations [175, 174, 173, 122, 145, 146, 86, 188, 235].

We show that both the decay rate of the parent particle and the production rate of the

daughter particle do not feature oscillations arising from the interference of neutrino mass

eigenstates, as a direct consequence of the orthogonality of the neutrino mass eigenstates.

Therefore, our result, supplemented with an alternative explanation in terms of the imagi-

nary part of the self-energy diagram of the parent particle, un-ambiguously shows that the

GSI anomaly is not a consequence of neutrino oscillations [175, 174, 173, 122].

1.3.3 Chapter 8: Conclusion

Finally, Chap. 8 summarizes the main results of our work on sterile neutrinos in Chapters

3-4 and on the theory of neutrino oscillations in Chapters 6-7.

1.4 PUBLICATION LIST

The content of this thesis is based on four published articles. For readers’ convenience, we

give references to these articles in the following.
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2.0 PART I: INTRODUCTION

2.1 CONCORDANCE ΛCDM COSMOLOGICAL MODEL

In the concordance ΛCDM standard cosmological model, the Universe today is composed

approximately by 72.8% of a Dark Energy (DE) component, about 22.7% of dark matter

(DM) and about 4.6% of ordinary matter (baryons) [176]. Such a composition is based on

a series of revolutionary observations. The concept of DM was first proposed by Zwicky in

1933 by comparing the theoretical estimation and the observation of the rotational curves of

the Coma cluster of galaxies [294, 295]. Unfortunately, people did not pay much attention

to this idea until almost 30 years later. Since 1970, Rubin & Ford and other collaborators

carried out a detailed study of the rotation velocity curves and mass distributions of indi-

vidual galaxies, which suggests significant mass located beyond the optical image [250, 251].

In addition to this observational evidence of DM, various modern cosmological observa-

tions strongly support the existence of DM, including data from the Cosmic Microwave

Background (CMB) [195], strong and weak lensing [269, 245], Bullet cluster [91], Big Bang

Nucleosynthesis (BBN) [125], type Ia supernovae [248, 234], galaxy surveys [264], etc. The

discovery of DE results from the revolutionary observations on far away type Ia supernovae

in late 1990s [248, 234], which tried to trace the expansion history of the Universe through

these standard candles. Subsequent observations have confirmed the early conclusion that

the expansion of the Universe is accelerating [249, 177, 284, 187]. To explain the acceleration

of the expansion rate, DE is required to work against the gravitational attraction of ordi-

nary matter. Similar to DM, the existence of DE has to reconcile with other cosmological

observations, e.g., CMB [176], BBN [125], gravitational lensing [269, 245], etc. All together

along with inflation provide us with our current understanding of the Universe today.
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Undeniably, physicists have gained tremendous useful information on DM and DE from

these observations and analysis. However, all these observations are based on the gravita-

tional property of DM and DE, providing little information on their nature from the particle

physics point of view. Although DM particles are essential to the formation of cosmic struc-

tures observed today [112, 281], they exhibit very weak SM interactions, and pose great

challenges to both direct and indirect detection of them [124]. DE is even more mysterious,

obeying an equation of state with negative pressure [112, 281]. In order to understand what

DM and DE are, we have to push our understanding to new physics beyond the SM. In

fact, the incompleteness of SM was realized by physicists back to the mid-20th century, after

the discovery of neutrino oscillations. The phenomenon of neutrino oscillation successfully

explains the solar neutrino problem [283, 218, 166, 167, 168], and was confirmed by obser-

vation on atmospherical neutrinos [148, 169, 185, 34, 19] and terrestrial neutrino oscillation

experiments [148, 18, 25, 26]. To enable the oscillation phenomena, neutrinos have to be

massive and mix, directly contradicting the SM because in the SM, neutrinos are massless.

Convincing experimental data on the existence of DM and neutrino oscillations are direct

evidence of physics beyond the SM. In addition to that, the completeness and naturalness

of the SM are also challenged by the gauge hierarchy problem, the SM flavor problem, the

strong CP problem, etc. To have an overview of these problems, one can refer to Sec. II.B

of [124] and references therein. Motivated by all the above problems, various theories have

been proposed to address new physics beyond the SM. They usually predict new fundamen-

tal particles, providing many possible DM candidates. In Table I of [124], the author lists

the most popular DM candidates motivated by different problems of the SM, and compares

their basic properties and possible detection methods. We reproduce this table and show it

here (also called Table. 1).

The puzzle of DM in cosmology, associated with the physics at the largest observational

scales, and the problem of particle physics beyond the SM, of physics at the smallest ob-

servational scales, are tied together by the properties of DM. Progress on understanding

one problem may shed light on the other. The interplay between cosmology and particle
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WIMPs SuperWIMPs Light G̃ Hidden DM sterile ν Axions

Motivation GHP GHP GHP
NPFP

GHP
NPFP

ν mass Strong CP

Naturally
Correct Ω

Yes Yes No Possible No No

Production
Mechanism

Freeze Out Decay Thermal Various Various Various

Mass Range GeV-TeV GeV-TeV eV-keV Gev-TeV keV µeV-meV

Temperature Cold Cold/Warm Cold/Warm Cold/Warm Warm Cold

Collisional
√

Early
Universe

√√ √

Direct
Detection

√√ √ √√

Indirect
Detection

√√ √ √ √√

Particle
Colliders

√√ √√ √√ √

Table 1: Summary of dark matter particle candidates, their properties, and their potential methods
of detection. The particle physics motivations are discussed in Sec. II.B; GHP and NPFP are
abbreviations for the gauge hierarchy problem and new physics flavor problem, respectively. In the
last five rows,

√√
denotes detection signals that are generic for this class of dark matter candidate

and
√

denotes signals that are possible, but not generic. “Early Universe” includes phenomena
such as BBN and the CMB; “Direct Detection” implies signatures from dark matter scattering off
normal matter in the laboratory; “Indirect Detection” implies signatures of late time dark matter
annihilation or decay; and “Particle Colliders” implies signatures of dark matter or its progenitors
produced at colliders, such as the Large Hadron Collider (LHC). See the text for details.
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physics in theoretical, experimental and observational aspects suggests an opportunity to

reveal the next layer of fundamental physics in the near future. This thesis only focuses

on DM and its roles in structure formation. From Table 1, we see that being motivated

by different problems of the SM, different DM candidates behave dramatically different in

their mass ranges, production mechanisms, temperature and detection methods. Among all

DM candidates, WIMPs represent the most popular and best studied DM particles. They

have all the properties expected in the ΛCDM cosmological model. They are cold and colli-

sionless, with negligible velocity dispersion that favors a hierarchical “bottom-up” structure

formation. This CDM scenario works extremely successful on large scales, an example is

shown in Figure 1, which compares the theoretical prediction on the power spectrum of

cosmological density fluctuations based on the concordance ΛCDM model with different ob-

servational data. The theory and the observation agree nicely with each other on large scales.

Despite the great success of the concordance ΛCDM model, it features some “potential”

problems at small scales, also indicated in Figure 1. At small scales, say k & 1Mpc−1, data

from Lyman alpha Forest systematically deviates from the theoretical prediction, revealing

a suppression on the power spectra. Moreover, other discrepancies from comparison between

observations and N-body simulations on these small scales further challenge the validity of

cold DM scenario. In the following section, we will review these small scale problems and

motivate our work.

2.2 SMALL SCALE PROBLEMS OF ΛCDM MODEL

The small scale problems mainly come from the comparison between numerical N-body sim-

ulations based on the concordance ΛCDM cosmological model and observations on dwarf

galaxy satellites of the Milky Way. Dwarf galaxies are unique objects in our universe to

study properties of DM because these sub-galactic structures are DM dominant. However,

it is really challenging to study these objects. From the simulation point of view, although

the complicated baryonic physics is minimal for these objects, their influence on the astro-
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Figure 1: Comparison of theoretical predicted current density fluctuation power spectrum P (k)
with various observational data. The cyan solid line corresponds to the theoretical prediction based
on the concordance ΛCDM cosmological model. Other observational data share the same cosmic
matter budget parameters.
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physical properties of dwarf galaxies is unclear and could be important. Not only we lack a

certain understanding of the physics of galaxy formation, but also it is currently computa-

tionally formidable to include all baryonic processes. Until recently, high resolution N-body

simulations start to include feedback procedures to model various baryonic physics [244].

From the observational point of view, because these objects are DM dominant, they emit

very weak optical signals, making their detection really hard [244]. By comparing simula-

tions with observations, several potentia problems of the CDM structure formation scenario

are discovered, including the so-called “missing satellite problem” and the central cusps vs.

cores problem, which are discussed in the following. Recently, more small scale problems are

discussed in the literature, e.g., problem of the emptiness of the voids, which is another over-

abundance problem in the ΛCDM model similar to the missing satellite problem, stating that

high resolution simulations of the ΛCDM model predicts too many voids than observations

of our Local Volume [266]. Moreover, Millennium-II and other hydrodynamical simulations

of the formation of dwarf galaxies in the ΛCDM model over-predict the luminosity of the

dwarf galaxies residing in halos with masses of order 1010M¯ [253].

2.2.1 Missing Satellite Problem

The “missing satellite problem” originally refers to the discrepancy between the predicted

abundance of sub-halos based on numerical simulations within the CDM scenario and the

number of observed low luminosity dwarf galaxies [191, 226, 179, 138, 109, 110, 197] around

our Milky Way. However, such a direct comparison on the numbers of DM sub-halos and

dwarf galaxies may not be completely accurate due to our current limitations on both simu-

lations and observations, as discussed above. Therefore, the common strategy is to compare

physical observables that mainly rely on DM properties, which can be estimated from both

dissipationless N-body simulations and observations. Two quantities used in the literature

are the circular velocity [226, 262, 196] and the mass of a sub-halo within a fixed physical ra-

dius, say m0.6 for example, namely, mass within 0.6kpc of the sub-halo [196]. By comparing

the cumulative number of sub-halos with that of dwarf galaxies as functions of circular ve-

locity and m0.6, the missing satellite problem is alleviated but does not disappear [244, 196],
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N-body simulations still predicts about an order of magnitude more satellite galaxies than

those observed around the Milky Way. According to Kravtsov [196], the missing satellite

problem can be stated as the discrepancy in the slopes of the circular velocity and m0.6 mass

functions inferred for observed satellites of the Milky Way and the slopes of these functions

predicted for DM sub-halos in the MW-sized host halos formed in the concordance ΛCDM

cosmology. Meanwhile, detailed analysis on all the Milky Way dwarf galaxies also reveals all

dwarf galaxies share a roughly same dynamical mass of about 107M¯ within radius about

0.3kpc despite that their luminosities range along several orders of magnitude [85, 244, 196].

2.2.2 Cusp Problems in Galaxy Centers

In addition to the missing satellite problem, N-body simulations also yield a density pro-

file that increases monotonically towards the center [226, 126, 225, 120, 84, 292, 293, 111]

as ρ(r) ∼ r−γ. In particular, γ = 1 corresponds to the Navarro-Frenk-White (NFW) pro-

file [228, 229]. Steeper profiles with γ ∼ 1.2 have been found recently in high resolution

N-body simulations [111, 108]. These density profiles conflict with recent observational evi-

dences that favor shallow cored profiles instead of cusps in dwarf spheroidal galaxies (dShps)

[190, 95, 140, 141, 139, 288, 142, 135, 136, 137, 216, 44, 232, 100]. This core vs. cusp contro-

versy is intensively studied in the literature. A sound understanding on the density profiles

of dwarf galaxies is of great importance to DM indirect detection experiments. Future high

resolution N-body simulations that include baryonic processes may solve the problem. Sev-

eral mechanisms have been proposed to smooth such a discrepancy ([244] and references

therein). However, this controversy between theoretical predictions and observations poses

a challenge to the standard CDM scenario.

Warm dark matter particles (WDM) were invoked[227, 54, 40, 193, 192] as possible

solutions to the small scale problems listed above. WDM particles feature a non-vanishing

velocity dispersion with a range in between CDM and hot dark matter HDM, leading to a free

streaming scale that cutoffs power at small scales thereby smoothing out small scale structure.

If the free streaming scale of the WDM particles is smaller than the scale of galaxy clusters,
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the large scale structure properties are indistinguishable from those of CDM, but may affect

structure at small scales [58], thereby providing an explanation of the smoother inner profiles

and the fewer satellites because particles escape away from the collapsing region. A small

scale cutoff in the DM power spectrum may also explain the apparent smallness of galaxies

at z ∼ 3 found in Ref. [178]. Although these small scale problems, e.g., missing satellite

problem and cusp vs. core problem, may be ultimately resolved by baryonic mechanisms

such as complex “gastrophysics”, there is an intrinsic interest in studying alternatives to

the standard CDM paradigm from a theoretical point of view. Table. 1 has shown a wide

possibility for potential DM particles, among which there are several WDM candidates. A

systematical study on properties of WDM would complete our understanding on properties of

DM and may have great implication in future direct and indirect DM detection experiments

and observations. Among the listed WDM candidates in Table. 1, we will focus on sterile

neutrinos as our subject of study. Sterile neutrinos are well motivated particles beyond the

SM. Besides being suitable WDM candidates, they may also provide possible solutions to

several astrophysical problems[200, 33, 49, 199] and have profound implications in particle

physics [81, 124].

2.3 STERILE NEUTRINOS AND OBSERVATIONAL CONSTRAINTS

Sterile neutrinos, namely SU(2) singlets, with masses in the ∼ keV range are the WDM

candidate that we are interested in [113, 94, 259, 3, 4, 133, 2, 258, 256, 257, 200, 33, 49, 199,

237, 236, 64, 81]. The idea of sterile neutrinos was proposed by Pontecorvo to explain the

neutrino oscillations [243]. They generate masses of active neutrinos in the SM through the

see-saw mechanism [219, 223]. Due to their coupling and mixing with active neutrinos, sterile

neutrinos could be generated in the early universe. Hence, their masses and mixing angles

with active neutrinos are some of the most important properties of sterile neutrinos as DM

particles. In principle, one can generate several generations of sterile neutrino, analogous

to that of active neutrinos in the SM. Current theoretical models often consider only one

generation for simplicity. To be proper DM particles, the masses and mixing angles of
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sterile neutrinos have to be consistent with various cosmological observational constrains. In

the following, we introduce these astrophysical observations and their constraints on sterile

neutrino masses and mixing angles.

2.3.1 Upper Bound from X-ray Constraints

Because of their coupling with active neutrinos, sterile neutrinos would decay and generate

X-ray signals through the process νh → νlγ [117], where νh and νl represent the heavy and

light massive neutrinos which are mainly sterile and active respectively, and γ corresponds

to the photon. The expected flux for such DM decay is given by [81]

F =
M fov

DMΓ

4πD2
L

Eγ

MS

' 6.38

(
M fov

DM

1010M¯

)(
Mpc

DL

)2

× sin2(2θ)

(
MS

keV

)2
keV

cm2 · sec . (2.3.1)

M fov
DM is the mass of DM within a telescope’s field of view (FoV), Γ is the decay rate, DL

is the luminosity distance of the observed object, MS is the sterile neutrinos mass and θ

is the mixing angle between sterile and active neutrinos. Constraints on the observational

flux can be translated into a constraining relation between the sterile neutrino MS and the

mixing angle θ through Eq. (2.3.1). Several X-ray observations try to search these X-ray

signals using XMN−Newton [75, 78, 69], Chandra [5, 279, 80], INTEGRAL [289, 74] and

Suzaku [209]. A recent analysis suggests a possible emission line of a 5 keV sterile neutrinos

[208], however, further examination challenges this statement [70]. In summary, the fact

that lack of X-ray photon emission lines sets an upper limit for the flux of sterile neutrino

decay, which excludes a significant region of the sterile neutrino parameter space.

2.3.2 Lower Bond from Phase Space Density of Dwarf Galaxies

As the most DM dominated astrophysical objects in the universe, dwarf galaxies play an

important role in studying DM properties. In particular, the phase space density of dwarf

spheroidal galaxies (dSphs) sets the most robust lower bound on DM masses. According to

Tremaine and Gunn [268, 64], the coarse grained phase space density either remains constant

or diminishes under collisionless gravitational dynamical evolution. Therefore, the observed

coarse grained phase space density of dSphs must be equal to or smaller than the primordial
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phase space density. Detailed discussion on several DM candidates based on the generalized

Tremaine-Gunn bound can be found in [64, 79, 154]. Since the phase space density depends

on the distribution function of DM particles, sterile neutrino produced from different mech-

anisms yield different mass bounds. Unlike WIMPs and many other DM candidates, the

production rate of sterile neutrinos is usually much smaller than the Hubble parameter [81],

sterile neutrinos never become equilibrated with other particles in the early universe, lead-

ing to an non-thermal distribution function. In general, sterile neutrinos can be produced

non-resonantly (NRP), namely through the Dodelson-Widrow (DW) mechanism [113], or

resonantly (RP) through the lepton driven MSW resonance named after Mikheev, Smirnov

and Wolfenstein [283, 218, 46]. Other production mechanism e.g., from scalar decay, is also

possible in models beyond the SM [198, 237, 236]. The DW production mechanism gives a

fairly tight lower mass bound MS > 1.7 keV [79]. Combined with current X-ray observa-

tional constraints, it leaves a very limited allowed parameter space of sterile neutrinos for

DW sterile neutrinos being the sole DM particles. The lower mass bound of RP mecha-

nisms is much looser, sterile neutrinos with MS > 1 keV can satisfy the requirement though

further study is required [81]. Recent analysis [64, 61] reveals that combining the results

for the distribution function of sterile neutrinos produced via scalar decay with dShps data

yields a narrow window for the mass of sterile neutrinos: 0.56 keV ≤ MS ≤ 1.33 keV, whose

robustness has been confirmed in Ref. [106].

2.3.3 Constraints From Lyman-α Forest

The Lyman-α analysis is potentially a powerful tool to study density perturbations at small

scales, sensitive to perturbation scales k ∼ (0.1−5)hMpc−1 and redshifts 2−4 [81]. Lyman-α

absorbtion lines in the spectra of far away quasars are produced by neutral hydrogen residing

in the intergalactic medium along the line of sight. Neutral hydrogen is excited by Lyman-

α photons from these distant quasars, leaving an absorption line in the quasar spectrum.

As the universe expands with time, absorption lines produced at different redshifts form a

trough in the spectrum, called the Lyman-α forest. The Lyman-α forest has complicated

dependence on cosmological parameters. By fitting with other cosmological observations,
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e.g., CMB and LSS data, one can extract information on total density fluctuations of DM

particles at these small scales.

On top of the technical challenges of the Lyman-α analysis itself, there are further com-

plications. For scales and redshifts probed by Lyman-α method, cosmological density per-

turbations start to become non-linear. Therefore, one has to carry out full hydrodynamical

simulations to take into consideration these non-linear effects of both DM density perturba-

tions and the dynamics of neutral hydrogen [72, 81]. Unfortunately, current hydrodynamical

simulations cannot reach our desired accuracy, and various simple approximations have to be

employed in these simulations [265, 153, 215, 273, 272, 246], yielding relatively big system-

atical errors in the Lyman-α analysis. Even so, Lyman-α forest is deemed able to constrain

DM mass with a relative error of about 30% [72]. Future Lyman-α analysis may provide

more accurate mass bounds for DM particles with the rapid improvement on hydrodynami-

cal simulations and analyses on systematical errors. Finally, it is worth noting that being a

probe of small scale density fluctuations, the Lyman-α method is also sensitive to different

production mechanism of DM particles. The tension between the X-ray [75, 76, 78, 69, 279]

and the Lyman-α forest data [254, 275, 271, 72] seems to exclude the possibility of NRP

sterile neutrinos produced through DW mechanism being the dominant WDM component

[233]. Recent Lyman-α analysis on RP sterile neutrinos substantially decreases the lower

mass bound of sterile neutrinos, alleviates the tension with X-ray constraints, making sterile

neutrinos still valid WDM candidates [73].

Combining all the constraints mentioned above, the allowed region of the parameter

space of sterile neutrinos is shown in Figure 2 (Figure 4 of [81]). In addition to constraints

from cosmological observations, sterile neutrinos also have interesting applications in astro-

physics, e.g., to explain the pulsar kick [198, 50]. Constraints on sterile neutrino mass and

mixing angle can also come from these phenomena. Interested readers can refer to [198] for

details.

From all these discussion above, there is a clear motivation to study sterile neutrinos
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Figure 2: Figure from [81]. The allowed region of parameters for DM sterile neutrinos produced via
mixing with the active neutrinos (unshaded region). The two thick black lines bounding this region
represent production curves for NRP (upper line, L6 = 0) and for RP (lower line, Lmax6 = 700)
with the maximal lepton asymmetry, attainable in the theoretical model νMSM [257, 201]. L6

corresponds to 106 times the lepton asymmetry. The thin colored curves between these lines
represent production curves for (from top to bottom) L6 = 8, 12, 16, 25, and 70. The red shaded
region in the upper right corner represents X-ray constraints [78, 77, 209, 74] (rescaled by a factor
of two to account for possible systematic uncertainties in the determination of DM content [80, 71]).
The black dashed-dotted line approximately shows the RP models with the largest cold component.
The black filled circles along this line are compatible with the Lyman-α bounds [73], and the
points with M1 ≤ 4 keV are also compatible with X-ray bounds. The region below 1 keV is
ruled out according to the phase-space density arguments [64, 79]. Abbreviation: BBN, big bang
nucleosynthesis.
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as a WDM candidate. In this part of study, we are going to investigate the properties of

sterile neutrinos being WDM particles. In particular, we consider sterile neutrino parameters

within the allowed region of its parameter space, as discussed here.

2.4 SUMMARY OF OUR WORK

In this section, we summarize our work on sterile neutrinos as a WDM candidate, which

is divided into two major pieces. We begin this program by studying the sterile neutrino

production at the electroweak scale and then develop a semi-analytical and simple derivation

of matter power spectrum for arbitrary distribution functions.

2.4.1 Sterile Neutrinos Produced at the Electroweak Scale

As we have mentioned previously, sterile neutrinos are non-thermal DM particles, featuring

non-trivial distribution functions depending on the production mechanism [113, 94, 259, 258,

256, 257, 200, 33, 49, 199, 237, 236]. Our first project, reported in Chapter 3, is to study

the production of sterile neutrinos at the electroweak scale within a generalized version of

the so called νMSM model [237, 236, 258, 256, 257, 32, 29, 31, 30, 81]. In addition to

the conventional DW production mechanism which peaks around ∼ 130 MeV [113], in this

model, sterile neutrinos may be produced by the decay of a Higgs-like scalar beyond the SM

with a mass of the order of the electroweak scale [200, 33, 49, 199, 237, 236, 198], as well

as of SM gauge bosons W and Z. We focus on the sterile neutrino production via decays

at a temperature of the electroweak scale because at this temperature region, vector bosons

and the Higgs-like scalar are thermalized at a large abundance [237, 236, 61], which may

significantly contribute to the production of sterile neutrinos.

Recent study in Ref. [61] revealed that the non-resonant production mechanism of ster-

ile neutrinos by scalar decay leads to a non-thermal distribution function that favors small
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momenta, remarkably different from sterile neutrinos produced by the DW mechanism [113],

whose distribution function is that of a thermal relic decoupling relativistically multiplied

by an overall factor of order 10−2. Because it favors small momenta, the new sterile neutrino

distribution function found in [61] could relax the tension between X-ray data and Lyman-α

analysis, and also have important consequences for structure formation [61].

The Goals:

Our first project is a complement and generalization of the work presented in [61]. At

the temperature of order of the electroweak scale, the charged and neutral vector bosons are

present in the medium with large abundance, comparable to that of the Higgs-like scalar

[237, 236, 198, 258, 256, 257, 61]. By their mixing with active neutrinos via a Yukawa cou-

pling to the standard model Higgs [258, 256, 257], sterile neutrinos are produced by the decay

of vector bosons, which could be an important contribution to sterile neutrino production at

the temperature of the electroweak scale because of the large abundance of vector bosons.

Challenges and Strategy:

At such a high temperature, SM vector bosons and the Higgs-like scalar of electroweak

scale are both in thermal equilibrium, leading to significant medium effects [283, 218, 189,

222, 132, 230, 171, 114, 115]; However, the production rate of sterile neutrinos never catches

that of the Hubble expansion [81], demanding an out of equilibrium calculation. To meet

these challenges, the main theoretical tool is the non-equilibrium formula of finite tem-

perature quantum field theory, from which we derives an effective Dirac equation in the

medium for the sterile and active neutrinos doublet following the method described in

[63, 278, 59, 66, 67, 170]. Then, from the self-energy correction of the effective Dirac equa-

tion, we extract information on the index of refraction and the production rate of sterile

neutrinos. The mixing angle between sterile and active neutrinos is also modified by the

medium effect [283, 218, 189, 222, 132, 230, 171, 114, 115], making the maximal mixing,

namely MSW resonance, possible. Resonantly produced sterile neutrinos usually features a

much colder distribution function than that of non-resonantly produced sterile neutrinos, as

shown in Figure 2 of [81], which may influence the structure formation [61, 65], therefore, we
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hope to thoroughly understand the mixing between sterile and active neutrinos by obtaining

the in-medium correction to the mixing angles.

Main Results:

Our main results are as follows:

• Sterile neutrinos are produced from decays of both SM vector bosons and of the beyond

SM scalar. By comparing these two decay channels, we found that they contribute to the

production rate and distribution function in similar forms, and sterile neutrino produc-

tion rate via the decay of vector bosons in the medium is competitive with the production

via scalar decay. The argument can be understood from simple dimensional analysis. For

keV sterile neutrinos and the Higgs-like scalar of electroweak scale, the Yukawa coupling

between the scalar and sterile neutrinos is about Y ∼ 10−8, corresponding to a produc-

tion rate ∝ Y 2. Whereas the contribution from vector boson decays is proportional to

αw sin2(θ), with αw and θ being the constant of weak interaction and the mixing angle

between sterile and active neutrinos respectively. For θ ∼ 10−5 [198, 209], the production

rate of sterile-like neutrinos via vector boson decay can be of the same order of or larger

than that from the decay of the Higgs-like scalar.

• By analyzing the mixing between active and sterile neutrinos, in addition to the usual

lepton-driven MSW resonance occurring at k/T ¿ |ξ| with |ξ| being the lepton asym-

metry parameter consistent with the data from Wilkinson Microwave Anisotropy Probe

(WMAP) and Big Bang Nucleosynthesis (BBN) [261], we find another MSW resonance

even in the absence of a lepton asymmetry. For 1 ≤ MW/T ≤ 3, this resonance is

in the low momentum region 0.2 ≤ k/T ≤ 1 and well within the regime of validity of

the perturbative expansion. These resonances are very narrow for θ ∼ 10−5. At the

resonances the propagating frequencies become exactly degenerate in striking contrast

with the quantum mechanics of neutrino mixing wherein there is level repulsion at the

resonance. This exact degeneracy at the resonance entails the breakdown of adiabaticity.

It is a distinct consequence of the absorptive part of the self-energy and leads to a strong
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damping regime.

• We argue that cosmological expansion leads to a rapid crossing of the narrow resonances

resulting in both resonant and non-resonant sterile neutrino production. The distribution

function after freeze-out is highly non-thermal with an enhancement at small momentum

k < T . This low momentum enhancement of the non-thermal distribution function is

expected [65, 61] to have important consequences: a shortening of the free-streaming

length (smaller velocity dispersion) and an increase of the transfer function and power

spectrum at small scales. We find a consistent range of parameters for which there is

a resonance for nearly right-handed neutrinos at T ∼ MW . The general field theory

framework allows a systematic study of the properties for both helicity states, including

the helicity dependence of mixing angles and production rates.

2.4.2 Small Scale Aspects of WDM: Power Spectra and Acoustic Oscillations

After obtaining the production rate of sterile neutrinos in the early universe, in principle,

one can solve the kinetic Boltzmann equation describing the production and decoupling of

sterile neutrinos, and obtain the distribution function of sterile neutrinos after decoupling.

In practice, it is much more complicated. Due to the mixing and non-adiabatic resonance

during sterile neutrino production procedure, analytically solving the Boltzmann equation is

technically challenging, we postpone the study to the future. Instead, we carry out a general

semi-analytical study on structure formation of WDM, focusing on the dependence of power

spectra on arbitrary DM distribution functions.

Analytical study on CDM structure formation at small scales has long been carried out

[172, 112, 281], which helps to understand the physics and compliments the straightforward

numerical calculations, e.g., CMBFAST [255]. Because most CDM particles are expected to

be thermal relic that freeze out in the early universe and extremely non-relativistic, their

power spectra of density fluctuations are insensitive to the distribution functions at the de-

coupling [172, 68], contrast to the case of WDM. In the recent analyses in [65, 61], the authors
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have shown the dependence of small scale (∼ 102 kpc) density fluctuation power spectra on

various distribution functions in an analytical approach, where non-thermal distribution of

sterile neutrinos resulting from scalar decay indeed exhibit a suppression on power spectrum

around 500 kpc compared with CDM case, and a substantial enhancement compared to DW

produced sterile neutrinos. On one hand, such a discovery justifies the expected potential of

WDM to smooth the small scale problems discussed previously; on the other hand, it also

helps to relax the tension between X-ray data and Lyman-α analysis.

Our second project is a continuation of the previous study [65, 61], where the authors

only consider density perturbations since matter-radiation equality. For the current study,

we evolve density perturbations since primordial fluctuations right after inflation. Although

density growth is generally believed to happen mainly in Matter Dominant (MD) era, keV

sterile neutrinos have some special features such that their time evolution in Radiation

Dominant (RD) era may suggest non-trivial contributions to the density perturbation power

spectrum today, which will be discussed in detail in the following. Moreover, from a pure

theoretical point of view, such a continuing study (following the work of [61, 65]) is neces-

sary and sensible in order to obtain a self-consistent and complete analytical investigation

on structure growth within the WDM scenario.

The Goals:

Our goals are actually twofold: i) to provide a semi-analytic understanding of the main

physical processes that determine the transfer function of WDM candidates at small scales

that entered the horizon well before matter-radiation equality for arbitrary distribution func-

tions, ii) to provide a relatively simple formulation of the power spectrum that allows a

straightforward numerical implementation, valid for arbitrary distribution functions. In or-

der to achieve these goals we invoke several approximations: a) we neglect the contribution

from baryons, b) we also neglect anisotropic stresses resulting from the free streaming of

ultrarelativistic standard model active neutrinos. These approximations entail that the re-

sults of the transfer functions is trustworthy up to 10 − 15% accuracy. However, the main

purpose of this work is not to obtain the WDM transfer function to a few percent accuracy,
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but to provide a semi-analytic tool, to study the main features of the transfer function at

small scales for a particular WDM candidate given its distribution function determined by

the microscopic process of production and decoupling. If the transfer function features im-

portant small scale properties that could potentially lead to substantial changes in structure

formation, this would warrant more accurate study with the CMB codes and eventual inclu-

sion into N-body simulations.

In this thesis we study the transfer function for WDM density and gravitational pertur-

bations by solving the linearized collisionless Boltzmann equation in a radiation and matter

dominated cosmology including the perturbations from the radiation fluid for arbitrary dis-

tribution function of the WDM particle, we expect the results (within the acknowledged

possible errors) are valid for z > 2. In the following, we summarize the challenges we are

facing and our strategy to achieve our goals.

Challenges and Strategy:

WDM particles with a mass in the keV range typically decouple from the primordial

plasma when they are relativistic. For example, sterile neutrinos produced non-resonantly via

the DW [113] mechanism or by the decay of scalar or vector bosons (BD) [198, 236, 61, 285]

decouple at the QCD or Electroweak scale respectively. Therefore these species decouple

when they are still relativistic in the RD era and become non-relativistic when T ' m '
keV when the size of the comoving horizon is about Mpc.

Based on the above estimation, we anticipate that there are three stages of evolution for

density perturbations: I) when the particle is still relativistic, this is a RD stage, II) when

the particle is non-relativistic but still during the RD era, III) when matter perturbations

dominate the gravitational potential, where the particle is already non-relativistic. During

stages I) and II), the gravitational potential is completely determined by the radiation fluid,

and serves as an external driving source for the linearized collision-less Boltzmann equation

of WDM density perturbations. Otherwise, in stage III) when matter perturbations domi-

nate, the gravitational potential is obtained from the well-known Poisson equation. As for
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the initial conditions for the Boltzmann equation, we consider adiabatic initial conditions

determined by the primordial perturbations seeded during inflation. Our main strategy is

to smoothly connect piece-wise solutions of the linearized collision-less Boltzmann equation

at different evolution stages listed above, using the solution in a previous stage as the initial

condition for the next stage. Because the linearized collision-less Boltzmann equation is a

first order differential equation in time, only the function at the end of a previous stage is

needed as input of the next stage.

Main Results:

By carrying out the calculation following the strategy discussed above, we conclude our

main results as:

• There are two relevant scales that determine the transfer function: i) keq ' 0.01(Mpc)−1

which is the wave vector of modes that enter the Hubble radius at matter-radiation

equality, and ii) the dimensionless parameter κ which contains the free streaming wave

vector

kfs =

√
3keq

2〈V 2
eq〉1/2

, (2.4.1)

where 〈V 2
eq〉1/2 is the mean square root velocity dispersion of the WDM particle at matter-

radiation equality. For a keV WDM candidate produced non-resonantly and decoupling

at the electroweak or QCD scale, kfs ≥ 103keq. The free streaming length scale 1/kfs is

proportional to the distance traveled by a non-relativistic particle with average velocity

〈V 2
eq〉1/2 from matter-radiation equality until today, and it also determines the size of

the comoving horizon ηNR when the WDM particles transit from relativistic to non-

relativistic:

ηNR =

√
3√

2kfs
. (2.4.2)

This means that perturbations with k > kfs enter the horizon when the WDM particle is

still relativistic and undergo suppression by relativistic free streaming between the time

of horizon entry until ηNR.
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• During stage I), the suppression of density fluctuations by free streaming is independent

of the distribution function and the free streaming scale grows with the comoving horizon.

However we find that perturbation modes that enter the horizon when the particle is rel-

ativistic with wavelengths up to the sound horizon are amplified via an early Integrated

Sachs-Wolfe effect (ISW) as a consequence of the time derivative of the gravitational

potential produced by acoustic oscillations of the radiation fluid. In stage II), the free

streaming scale depends logarithmically on the comoving horizon, which suppresses the

WDM density perturbations. In stage III), we turn the Boltzmann-Poisson equation into

a self-consistent differential integral equation that admits a systematic Fredholm series

solution. Its leading term is the Born approximation and lends itself to a simple and

straightforward numerical analysis for arbitrary distribution functions. This approxima-

tion is equivalent to a fluid description but with an inhomogeneity and initial conditions

completely determined by the past history during stages I) and II). The resulting fluid

equation is a WDM generalization of the Meszaros equation [217, 161]. The solutions

describe WDM acoustic oscillations, the suppression by free streaming is manifest in the

inhomogeneity and initial conditions.

In stage III) when WDM perturbations dominate the gravitational potential, density

perturbations obey a self-consistent Boltzmann-Poisson integral equation which we ana-

lyze in a systematic expansion valid for small scales.

• Under the Born approximation, we obtain a semi-analytic expression for the transfer

function and compare it to the CDM case. We analyze its numerical evaluation for arbi-

trary distribution functions, masses and decoupling temperatures. The transfer functions

vary for different distributions with the same mass. We also provide an expression for

the power spectra that interpolates between large and small scales and then compare

with the results from the Boltzmann codes [165, 1, 274], which yields an excellent agree-

ment. The ISW amplification of density perturbation enhances the transfer function

for wavelengths larger than the free streaming length and is more pronounced for the

colder species. WDM acoustic oscillations are manifest in transfer functions roughly for
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k ≥ 2kfs. We analyze the main physical aspects of these oscillations and suggest that

their amplification by non-linear gravitational collapse might lead to clumpiness on mass

scales 108M¯ and 109M¯ for BD and DW sterile neutrinos respectively.

• Moreover, we confirm the quasi-degeneracy between sterile neutrino masses, distributions

and decoupling temperatures: not only the value of the mass but also the detailed form of

the distribution function along with the decoupling temperature determine the transfer

function. Two particles of the same mass but very different distribution functions and

decoupling temperatures, may feature very different power spectra. Conversely, two

WDM particles of different masses and different distribution functions may feature similar

power spectra on a wide range of scales. This result suggests that current constraints on

the mass of the WDM particle from N-body simulations and the Lyman-α forest data

need further understanding.
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3.0 PART I: STERILE NEUTRINOS PRODUCED AT THE

ELECTROWEAK SCALE

This chapter provides the technical details of sterile neutrino production at the electroweak

scale as summarized in Sec. 2.4.1, and is based on results published in [285]. It is organized

as follows: Sec. 3.1 is devoted to an introduction to the theoretical model. In Sec. 3.2, we

obtain the effective Dirac equation in the medium for active and sterile neutrinos doublet,

by employing non-equilibrium finite temperature field theory. In Sec. 3.3, we obtain the

real part of self-energy corrections of sterile neutrinos, focusing on the mixing properties

between active and sterile neutrinos. We also identify and discuss possible resonances. Cor-

respondingly, Sec. 3.4 concentrates on the imaginary part of the self-energy corrections of

sterile neutrinos, from which we obtain their production rate. Then, we apply our results to

the expanding universe, sketching the dynamics of sterile neutrino production in the early

universe in Sec. 3.5. Finally, we summarize and conclude this work in Sec. 3.6.

3.1 THE MODEL

The extension of the standard model presented in Refs. [237, 236, 198] generalizes the pro-

posal of both the νMSM [258, 256, 257, 32, 29, 31, 30] and the model presented in [105, 103].

These models include three SU(2) singlet (sterile) neutrinos which couple to the active neu-

trinos via a see-saw mass matrix, in which the lightest sterile neutrino is a WDM candidate

with mass of keV range. The generalized model in [237, 236, 198] gives a mass to this sterile

neutrino via a Yukawa coupling to a Higgs-like scalar field which could be the neutral Higgs

component, or another scalar whose expectation value is of the same order as that of the
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SM Higgs boson, therefore this type of extension features only one scale.

We study a simplified version of these models by considering only one sterile and one

active neutrino. In the usual see-saw mechanism, an off-diagonal Dirac mass matrix for the

active species is considered along with a diagonal Majorana mass for the sterile neutrino

[32, 29, 31, 30, 258, 256, 257, 189, 222, 132]. Instead of considering a Majorana sterile neu-

trino, we allow for Dirac mass terms for all species. This generalization allows us to study

simultaneously the possibility of a lepton asymmetry in the active neutrino sector along with

the possibility of a right-handed component leading to potentially relevant degrees of free-

dom within the same simple model. We hope to extract generic and robust features of the

production rates and mixing angles of sterile neutrinos in the medium for various production

mechanisms. Generalizing to three neutrino species can be done relatively straightforwardly

but for the complications associated with larger mixing matrices, and the case of a Majorana

neutrino is regained straightforwardly by projection.

Our model with one active (νa) and one sterile (νs) Dirac neutrinos is described by the

Lagrangian density

L = LSM + νs i6∂ νs − Y1 νsH̃
†l − Y2 νsΦνs + L[Φ] + h.c. , (3.1.1)

where LSM is the Lagrangian density of the SM and

l =


 νa

f


 , H̃ =


 H0

H−


 . (3.1.2)

f is the charged lepton associated with νa and H0, H− are the components of the standard

model Higgs doublet, and Φ is a real scalar singlet field whose expectation value gives a

Dirac mass to the sterile neutrino. The Lagrangian density L[Φ] describes the kinetic and

potential terms of Φ. In the unitary gauge we write

H0 = 〈H0〉+ σ, (3.1.3)

Φ = 〈Φ〉+ ϕ, (3.1.4)
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and consistently with the single scale assumption in the νMSM: 〈Φ〉 ∼ 〈H0〉 are of the same

order of magnitude, namely the electroweak scale and that their masses are also of the same

scale. In fact our analysis is quite general, and this assumption will only be invoked for a

quantitative assessment. The Lagrangian density (3.1.1) becomes

L = LSM + νs i 6∂νs − να Mαβ νβ − Y1 νsσνa − Y2 νsϕνs + L[〈Φ〉+ ϕ] + h.c, (3.1.5)

where {α, β} = {a, s} and

M =


 0 m

m Ms


 (3.1.6)

with

m = Y1 〈H0〉, (3.1.7)

Ms = Y2 〈Φ〉. (3.1.8)

Introducing the “flavor” doublet (νa, νs), the diagonalization of the mass termM is achieved

by a unitary transformation to the mass basis (ν1, ν2), namely


 νa

νs


 = U(θ)


 ν1

ν2


 , U(θ) =


 cos θ sin θ

− sin θ cos θ


 ; (3.1.9)

where

cos(2θ) =
Ms

[M2
s + 4m2]

1
2

, sin(2θ) =
2m

[M2
s + 4m2]

1
2

. (3.1.10)

In the mass basis

Mm = U−1(θ)MU(θ) =


 M1 0

0 M2


 (3.1.11)

with

M1 =
1

2

[
Ms −

[
M2

s + 4m2
] 1

2

]
,

M2 =
1

2

[
Ms +

[
M2

s + 4m2
] 1

2

]
. (3.1.12)
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We focus on a see-saw with Ms ∼ keV À m, therefore

M1 ' −m2

Ms

, M2 ' Ms;

sin(2θ) ' 2m

Ms

∼
∣∣∣∣
M1

M2

∣∣∣∣
1
2

¿ 1. (3.1.13)

Taking 〈H0〉 ∼ 〈Φ〉, the small mixing angle entails that Y1 ¿ Y2 which results in self-energy

corrections from the σ exchange are sub-leading as compared to those from the ϕ exchange.

More specifically, and for a keV sterile neutrino, it follows that

Y2 ∼ 10−8 À Y1; sin(2θ) ∼ Y1/Y2 . (3.1.14)

Alternatively, we may consider a pre-determined see-saw mass matrix and set coupling con-

stants Y1 = Y2 = 0, corresponding to a simpler extension of the SM that posits a mass

matrix that originates beyond the SM.

Our goal is to obtain the dynamical aspects of sterile neutrinos in the medium, mixing

angles, dispersion relations and damping rates, which determine the production rates. These

are obtained directly from the solution of the equations of motion including the self-energy

corrections in the medium. The one-loop self-energies require the massive neutrino propa-

gators in the medium. For θ ¿ 1, the mass eigenstates ν1 ∼ νa and ν2 ∼ νs; the active

neutrino reaches equilibrium at T ≥ 1MeV via the weak interactions, whereas the sterile

neutrinos are not expected to equilibrate. Therefore we assume that the mass eigenstate ν1 is

active-like, and features a Fermi-Dirac distribution function, whereas for ν2 the propagators

are the vacuum ones. Furthermore, it is possible to have a large lepton asymmetry storing

in the neutrino sector, contrary to that of the charged leptons, which is forced to equal the

negligible baryon asymmetry. Hence, the Fermi-Dirac distribution functions in the ν1 prop-

agator can include a chemical potential, which may drive MSW resonances in the medium.

If there are MSW resonances, the roles of the medium eigenstates may be reversed. We will

discuss these possibilities in details later. In our study we explicitly separate the fermionic

and bosonic contributions to the self-energies to assess the consistency of the assumption

that the eigenstate “1” is active-like.
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3.2 EQUATION OF MOTION

The effective Dirac equation in the medium is derived with the methods of non-equilibrium

quantum field theory described in [170, 67, 66, 59, 278, 63]. We follow the approach presented

in Refs. [170, 67, 66, 59] and introduce an external Grassmann-valued source that couples

linearly to the neutrino field via the Lagrangian density

LS = να ηα + ηα να , (3.2.1)

whence the total lagrangian density is given by L + LS. The external source induces an

expectation value for the neutrino field which obeys the effective equation of motion with

self-energy corrections from the medium [278, 63]. The equation of motion is derived by

shifting the neutrino field ν±
α = ψα +Ψ±

α with ψα = 〈ν±
α 〉 and 〈Ψ±

α 〉 = 0, and obtained order

by order in the perturbation theory [278, 63, 59, 170, 67, 66]. Since the self-energy corrections

to the equations of motion contain the neutrino propagators, it turns out convenient to work

in the mass basis, namely, α = (1, 2). Implementing this program up to one loop order, we

find the following equation of motion for the doublet ψT ≡ (
ψ1 , ψ2

)
:

− η(~x, t) =
(
i 6 ∂I−MmΣ

tad
smL

)
ψ(~x, t)

+

∫
d3x′dt′

[
Σret

sm(~x− ~x′, t− t′)L+ Σret
bsm(~x− ~x′, t− t′)

]
ψ(~x′, t′), (3.2.2)

where I is the identity matrix, Mm = diag(M1,M2) is the mass matrix in the mass basis,

L = (1 − γ5)/2 is the left-handed chiral projection operator, Σtad
sm is the (local) tadpole

contribution from the SM neutral current interaction as shown in Figure (3). Σret
sm(~x−~x′, t−t′)

and Σret
bsm(~x − ~x′, t − t′) are respectively the real-time retarded self-energies from both the

SM higgs and the beyond SM scalar interactions. To simplify the notation, we will refer to

beyond SM contribution by BSM thereafter. Explicit expressions of these corrections will be

given in the following. Introducing the space-time Fourier transform in a spatial volume V

ψ(~x, t) =
1√
V

∑

~k

∫
dk0e

−ik0ti~k·~x ψ̃(k0, ~k), (3.2.3)
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and similarly for the self-energy kernels and the source term, the equation of motion in the

mass basis becomes
[
(
γ0k0 − ~γ · ~k)I−Mm +Σtad

sm L+Σsm(k0, ~k)L+Σbsm(k0, ~k )

]
ψ̃(k0, ~k) = −η̃(k0, ~k) . (3.2.4)

Σsm(k0, ~k) and Σbsm(k0, ~k) are the corresponding Fourier transform of the retarded self-energy

corrections of Σret
sm(~x− ~x′, t− t′) and Σret

bsm(~x− ~x′, t− t′), respectively. Except for the tadpole

term, they feature a dispersive representation

Σ(k0, k) =
1

π

∫ ∞

−∞
dω

ImΣ(ω,~k )

ω − k0 − i 0+
. (3.2.5)

3.2.1 One-Loop Self-Energy

We focus on the temperature regionMZ, W, σ, ϕ & T , in which using the unperturbed thermal

propagators for the scalar and vector bosons is valid [240, 238, 239, 83, 82, 128]. In subsec-

tion (3.4.4), we show that perturbation theory is valid for k & αw T and MZ, W, σ, ϕ & T ;

furthermore, for k ¿ MW our results reproduce those found in the literature in the case of

T ¿ MW [230, 171] and the perturbative expansion is reliable for MW & 2T .

The SM charged and neutral current contributions to the self-energy in the mass basis

are depicted in Figure 3. The Latin indices {i, j, k} = {1, 2} refer to the mass basis fields,

and the label f in the intermediate fermion propagator of the charged current diagram in

Figure 3 refers to the charged lepton associated with the active neutrino. The contributions

from scalar exchange in the mass basis are depicted in Figure 4.

SM neutral currents: The tadpole contribution in the mass basis is given by

Σtad
sm = Σt U−1(θ)


 1 0

0 0


U(θ) , (3.2.6)

where1

Σt = −γ0 g2

4M2
W

∫
d3q

(2π)3
(
nν − nν

)
= −γ0 g2T 3

24M2
W

ξ
[
1 +

ξ2

π2

]
, ξ =

µ

T
. (3.2.7)

1This expression corrects a typographic error in Refs. [170, 67, 66].
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i jk

W±

fi j

ij

Figure 3: (sm) contributions to the self-energy Σsm. The indices {i, j, k} = {1, 2} correspond to
mass eigenstates, the index f for the intermediate fermion line in the charged current self-energy
refers to the charged lepton associated with the active neutrino.

σ ; ϕ

i jk

Figure 4: (bsm) contributions to the self-energy Σbsm. The indices {i, j, k} = {1, 2} corresponding
to mass eigenstates. The dashed line is a scalar propagator either for σ or ϕ
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i j1
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i j2

Σ
(2)
ncΣ

(1)
nc

Figure 5: Neutral current contribution to the one-loop retarded self-energy Σsm. The indices
{i, j} = {1, 2} and the indices 1 and 2 denote the corresponding mass eigenstate in the intermediate
state.

In this expression nν , nν are the Fermi-Dirac distribution functions for neutrinos and antineu-

trinos respectively. We have neglected the contribution from the asymmetry of the charged

lepton and quark sectors since they are proportional to the negligible baryon asymmetry, but

we allow for a lepton asymmetry stored in the neutrino sector. A recent analysis [261] from

the latest WMAP and BBN data suggests that |ξ| . 10−2. The neutral current diagrams

that contribute to the one-loop self energy feature two different terms corresponding to the

intermediate neutrino line being either ν1 or ν2. As argued above, for small mixing angles

ν1 ∼ νa and weak interactions equilibrate these mass eigenstates with the medium, therefore

their finite temperature propagator features the Fermi-Dirac distribution function. However,

ν2 ∼ νs will not equilibrate with the medium since their coupling to the environmental de-

grees of freedom is suppressed by at least two powers of the small mixing angle, therefore

ν2 features a vacuum propagator. The one loop diagrams are shown in Figure 5, where the

superscripts (1) and (2) are used to specify the intermediate neutrino propagator ν1 and ν2

respectively. In the mass basis we find for the neutral current contributions as

Σnc(k0, ~k) =
[
cos2 θΣ(1)

nc (k0,
~k) + sin2 θΣ(2)

nc (k0,
~k)
]
U−1(θ)


 1 0

0 0


U(θ) . (3.2.8)

SM charged currents: the charged current one-loop self energy is shown in Figure 3,

we find for its contribution in the mass basis

Σcc(k0, ~k) = Σcc,sm(k0, ~k)U
−1(θ)


 1 0

0 0


U(θ) , (3.2.9)
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Figure 6: Scalar exchange contributions to the one-loop self-energy Σbsm. The indices {i, j} =
{1, 2} and the indices 1 and 2 denote the corresponding mass eigenstate in the intermediate state.

where Σcc,sm(k0, ~k) is the usual standard model one-loop self-energy in thermal equilibrium.

BSM scalar exchange: The scalar exchange contributions to the self-energy are shown

in Figure 6. For sin2 θ ¿ 1, we find

Σbsm(k0, ~k) =
[
cos2 θΣ(1)

σ (k0, ~k) + sin2 θΣ(1)
ϕ (k0, ~k) + cos2 θΣ(2)

ϕ (k0, ~k)
]
U−1(θ)


 0 0

0 1


U(θ)

+ cos2 θΣ(2)
σ (k0, ~k)U

−1(θ)


 1 0

0 0


U(θ) . (3.2.10)

Summary of self-energies in the flavor basis: The structure of the self-energies to

the leading order in sin2 θ shown in (3.2.6-3.2.10) indicates that they are diagonal in the

flavor basis, where the total self-energy is given by

Σ(k0, ~k) =


 Σaa(k0, ~k) 0

0 Σss(k0, ~k)


 , (3.2.11)

where

Σaa(k0, ~k) =
[
Σt + cos2 θΣ(1)

nc (k0,
~k) + sin2 θΣ(2)

nc (k0,
~k) + Σcc,sm(k0, ~k)

]
L+ cos2 θΣ(2)

σ (k0, ~k),

(3.2.12)

Σss(k0, k) = cos2 θΣ(1)
σ (k0, ~k) + sin2 θΣ(1)

ϕ (k0, ~k) + cos2 θΣ(2)
ϕ (k0, ~k) . (3.2.13)
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Since in the SM contributions we have explicitly factored out the left-handed projector L,

the remaining contribution to Σnc and Σcc are those of a vector-like theory. The BSM

contributions feature both chiralities for a Dirac mass term for the sterile neutrino, a left-

handed Majorana mass term can be obtained by neglecting the right-handed contribution.

We consider the regime T À {M1,M2,mf} and {k0, k} À {M1,M2,mf}, where mf stands

for the charged lepton mass, therefore we can safely neglect the mass terms and consider

the propagators of massless fermionic fields. In this regime, the general form of the SM

contributed self-energies with vector boson exchange, either charged or neutral currents is

written in dispersive form as in Eq. (3.2.5) with [170, 67, 66, 59]

ImΣsm(ω,~k) = πg2sm

∫
d3q

(2π)3

∫
dp0 dq0δ(ω − p0 − q0)

[
1− nF (p0) +NB(q0)

]

γµρF (p0, ~p)ρB(q0, ~q)γ
ν Pµν(q0, ~q), (3.2.14)

where F stands for the fermionic species in the intermediate state. For ν1 and charged lepton

nF is the Fermi-Dirac distribution function, whereas for ν2 it is nF = 0 since the “sterile”

neutrino does not thermalize with the medium. For the BSM contributions, the general form

for scalar exchange is

ImΣbsm(ω,~k) = πY 2

∫
d3q

(2π)3

∫
dp0 dq0δ(ω−p0−q0)

[
1−nF (p0)+NB(q0)

]
ρF (p0, ~p)ρB(q0, ~q) .

(3.2.15)

where

gsm =

{ g√
2

Charge Current

g

2 cos(θw)
Neutral Current

(3.2.16)

and Y = {Y1, Y2} for σ and ϕ exchange respectively. The spectral densities are respectively

(for massless fermions):

ρF (p0, ~p) =
1

2

(
γ0 − ~γ · ~p

p

)
δ(p0 − p) +

1

2

(
γ0 + ~γ · ~p

p

)
δ(p0 + p) , (3.2.17)

ρB(q0, ~q) =
1

2Wq

[
δ(q0 −Wq)− δ(q0 +Wq)

]
, Wq =

√
q2 +M2. (3.2.18)

The projection operator

Pµν(q0, ~q) = −
[
gµν − qµqν

M2
Z,W

]
, qµ = (q0, ~q) (3.2.19)
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and

nF (p0) =
1

e(p0−µ)/T + 1
, nF (p0) = 1− nν(−p0);

NB(q0) =
1

eq0/T − 1
. (3.2.20)

We have allowed a chemical potential only for ν1 ∼ νa to include the possibility of a lepton

asymmetry in the active neutrino sector.

In the expressions above, the masses for the scalars or vector bosons are M{σ, ϕ} and

M{Z, W} as appropriate for each contribution. All the self-energies share the general form

Σ(k0, ~k) ≡ γ0 A(k0, k)− ~γ · k̂ B(k0, k) , (3.2.21)

the detailed expressions for the imaginary parts of the SM and BSM contributions are given

in the Appendices. In particular, for the neutral current tadpole B(k0, k) = 0 and A(k0, k)

can be recognized from Eq. (3.2.7). Combining (3.2.11) with this form we write the self-

energy matrix in the flavor basis as

Σtad
sm L+ Σsm(k0, ~k)L+ Σbsm(k0, ~k ) =

[
γ0 AL(k0, k)− ~γ · k̂ BL(k0, k)

]
L

+

[
γ0 AR(k0, k)− ~γ · k̂ BR(k0, k)

]
R .(3.2.22)

In the flavor basis the matrices A and B are of the form

A(k0, k) =


 Aaa(k0, k) 0

0 Ass(k0, k)


 , B(k0, k) =


 Baa(k0, k) 0

0 Bss(k0, k)


 ,

(3.2.23)

where the matrix elements are obtained from the expressions (3.2.12) and (3.2.13). The

equations of motion for the left (L) and right (R) handed components are obtained by mul-

tiplying the equation of motion (3.2.4) on the left by the projectors R and L respectively.
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It proves convenient at this stage to separate the Dirac spinors into the left ψL and right

ψR handed components and to expand them into helicity eigenstates [170, 67, 66], namely

ψL =
∑

h=±1

vh ⊗ ϕh, ϕh =


 ϕh

a

ϕh
s


 , (3.2.24)

and

ψR =
∑

h=±1

vh ⊗ ζh, ζh =


 ζha

ζhs


 , (3.2.25)

where the left ϕ and right ζ handed doublets are written in the flavor basis, and vh are

eigenstates of the helicity operator

ĥ(k̂) = γ0(~γ · k̂) γ5 = ~σ · k̂

 1 0

0 1


 (3.2.26)

namely,

~σ · k̂ vh = h vh, (3.2.27)

with h = ±1. To leading order in weak and Yukawa couplings, and neglecting a commutator

[M,Σ] because it is higher order in these couplings, we find in the flavor basis for both the

left and right-handed component doublets

[
(k2

0 − k2)I+
(
k0 − hk

)(
AL + hBL

)
+
(
k0 + hk

)(
AR − hBR

)−M2
]

 ϕh

ζh


 =


 IhL

IhR


 ,

(3.2.28)

where M is the mass matrix in the flavor basis and the inhomogeneities in these equations

are obtained by projection and using the corresponding equations, we need not specify them

as they are no longer used in our study. In absence of interactions, for the left-handed

component, a positive energy solution corresponds to h = −1 and a negative energy solution

to h = +1 with the opposite assignment for the right-handed component. In the flavor basis

M2 = M
2
I+

δM2

2


 − cos(2θ) sin(2θ)

sin(2θ) cos(2θ)


 . (3.2.29)

where

M
2 ≡ 1

2

(
M2

1 +M2
2

)
; δM2 ≡ M2

2 −M2
1 , (3.2.30)
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and M{1, 2} are given by Eq. (3.1.12). It proves convenient to define the combinations

Sh(k0, k) = (k0 + hk)
[(
AR − hBR

)
aa

+
(
AR − hBR

)
ss

]

+ (k0 − hk)
[(
AL + hBL

)
aa

+
(
AL + hBL

)
ss

]
, (3.2.31)

and

∆h(k0, k) =
(k0 + hk)

δM2

[(
AR − hBR

)
aa

− (
AR − hBR

)
ss

]

+
(k0 − hk)

δM2

[(
AL + hBL

)
aa

− (
AL + hBL

)
ss

]
, (3.2.32)

where we have suppressed the arguments. The equation of motion (3.2.28) can now be

written as

G−1
h (k0, k)


 ϕh

ζh


 =


 IhL

IhR


 , (3.2.33)

where the inverse propagator is given by

G−1
h (k0, k) =

(
k2
0 − k2 +

1

2
Sh(k0, k)−M

2
)
I−1

2
δM2ρh(k0, k)


 −Ch(k0, k) Dh(k0, k)

Dh(k0, k) Ch(k0, k)


 ,

(3.2.34)

where

ρh(k0, k) =

[(
cos(2θ) + ∆h(k0, k)

)2

+ sin2(2θ)

] 1
2

(3.2.35)

and

Ch(k0, k) =

(
cos(2θ) + ∆h(k0, k)

)

ρh(k0, k)
, (3.2.36)

Dh(k0, k) =
sin(2θ)

ρh(k0, k)
. (3.2.37)

We note that if ∆h(k0, k) were real, then Ch(k0, k) = cos(2θhm(k0, k)) and Dh(k0, k) =

sin(2θhm(k0, k)) with θhm(k0, k) the mixing angle in the medium for the different helicity pro-

jections and as a function of frequency and momentum.
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3.2.2 Propagator: complex poles and propagating modes in the medium

From (3.2.34) we read off the propagator projected onto helicity eigenstates

Gh(k0, k) =
I+ Th(k0, k)

2
(
αh(k0, k)− βh(k0, k)

) +
I− Th(k0, k)

2
(
αh(k0, k) + βh(k0, k)

) , (3.2.38)

where

Th(k0, k) =


 −Ch(k0, k) Dh(k0, k)

Dh(k0, k) Ch(k0, k)


 , (3.2.39)

αh(k0, k) = k2
0 − k2 +

1

2
Sh(k0, k)−M

2
, (3.2.40)

βh(k0, k) =
1

2
δM2ρh(k0, k) . (3.2.41)

If ∆h(k0, k) given by Eq. (3.2.32) was real, the propagator (3.2.38) would be diagonalized by

the unitary transformation

Uh(θ
h
m(k0, k)) =


 cos(θhm(k0, k)) sin(θhm(k0, k))

− sin(θhm(k0, k)) cos(θhm(k0, k))


 , (3.2.42)

leading to

U−1(θm)G(k0, k)U(θm) =




1

α(k0, k) + β(k0, k)
0

0
1

α(k0, k)− β(k0, k)


 , (3.2.43)

where we have suppressed the helicity argument for simplicity. However, because ∆h(k0, k)

features an imaginary part determined by the absorptive part of the self-energies, there is

no unitary transformation that diagonalizes the propagator. However, since the imaginary

part is perturbatively small, the expression (3.2.43) clearly indicates that the pole for α = β

corresponds to the mass eigenstate 2, namely a sterile-like neutrino state, and the pole for

α = −β corresponds to the mass eigenstate 1, namely an active-like state.

We note that in absence of interactions, namely Sh = 0, ∆h = 0, it follows that

α + β = k2
0 − k2 −M2

1 , (3.2.44)

α− β = k2
0 − k2 −M2

2 . (3.2.45)
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The propagating eigenstates in the medium are determined by the complex poles of the

propagator (3.2.38), which again correspond to αh(k0, k) = ±βh(k0, k). Before we analyze

the complex poles, it proves convenient to separate the real and imaginary parts of α and

β. For this purpose and to simplify notation, we suppress the label h and the arguments

{k0, k} in these quantities, and we write

S = SR + iSI , ∆ = ∆R + i∆I , (3.2.46)

where the subscripts {R, I} stand for real and imaginary parts respectively. Furthermore,

we define the mixing angles in the medium solely in terms of the real parts of the self-energy

(index of refraction), namely

cos(2θm) =
cos(2θ) + ∆R

ρ0
, sin(2θm) =

sin(2θ)

ρ0
, (3.2.47)

where

ρ0 =

[(
cos(2θ) + ∆R

)2

+ sin2(2θ)

] 1
2

. (3.2.48)

An MSW resonance occurs whenever cos(2θm) = 0 [283, 218, 189, 222, 132], namely when

∆R = − cos(2θ) . (3.2.49)

We emphasize that both the mixing angle in the medium θm and ρ0 depend on the helicity,

k0 and k. In terms of these quantities, we find

β =
δM2

2
ρ0 r

[
cos(φ) + i sin(φ)

] ≡ βR + iβI , (3.2.50)

where

r =

[
(
1− γ̃2

)2
+
(
2γ̃ cos(2θm)

)2
] 1

4

, γ̃ =
∆I

ρ0
, (3.2.51)

and

φ = sign
(
γ̃ cos(2θm)

)
{
1

2
arctg

∣∣∣∣∣
2γ̃ cos(2θm)

1− γ̃2

∣∣∣∣∣Θ(1− γ̃2) +

(
π

2
− 1

2
arctg

∣∣∣∣∣
2γ̃ cos(2θm)

1− γ̃2

∣∣∣∣∣

)
Θ(γ̃2 − 1)

}
.

(3.2.52)
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This form is similar to that obtained in a model of oscillations and damping with mixed

neutrinos studied in Ref. [60], and suggests two distinct situations: a weak damping case for

|γ̃| < 1 and a strong damping case for |γ̃| > 1. These cases will be analyzed below.

Zeroes of α+β: We are concerned with the ultrarelativistic limit k À M2
2 À M2

1 . Just

as in the usual case [189, 222, 132], it is convenient to introduce the average or reference

frequency

ω(k) =

√
k2 +M

2
. (3.2.53)

The poles are near ω(k), therefore write

k0 = ω(k) +
(
k0 − ω(k)

)
, (3.2.54)

keeping only the linear term in
(
k0 − ω(k)

)
, we find

α + β ∼ 2ω(k)
[
k0 − Ω1(k) + iΓ1(k)

]
(3.2.55)

with

Ω1(k) = ω(k)− 1

4ω(k)

[
SR + δM2ρ0r cos(φ)

]
k0=ω(k)

, (3.2.56)

Γ1(k) =
1

4ω(k)

[
SI + δM2ρ0r sin(φ)

]
k0=ω(k)

. (3.2.57)

Zeroes of α− β: Proceeding in the same manner, we find

α− β ∼ 2ω(k)
[
k0 − Ω2(k) + iΓ2(k)

]
(3.2.58)

with

Ω2(k) = ω(k)− 1

4ω(k)

[
SR − δM2ρ0r cos(φ)

]
k0=ω(k)

, (3.2.59)

Γ2(k) =
1

4ω(k)

[
SI − δM2ρ0r sin(φ)

]
k0=ω(k)

. (3.2.60)

From (3.2.55) and (3.2.58), it is clear that the propagator in the medium features two Breit-

Wigner complex poles corresponding to the two propagating modes in the medium. In the

expressions above we have only focused on the positive energy modes. The expressions for the

negative energy modes may be obtained from the following relations which are consequences
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of the imaginary parts of the self-energies and the dispersive representation valid both for

scalar and vector boson exchange (3.2.5),

ImA(−k0, k;µ) = ImA(k0, k;−µ), ReA(−k0, k;µ) = −ReA(k0, k;−µ) , (3.2.61)

ImB(−k0, k;µ) = −ImB(k0, k;−µ), ReB(−k0, k;µ) = ReB(k0, k;−µ) . (3.2.62)

These properties can be read-off the explicit expressions for the imaginary parts of the

self-energies given in the appendix equations (A.1.1-A.1.3) for the standard model contribu-

tions and equations (A.2.1-A.2.3) for the scalar exchange contributions. The matrices A are

extracted from the coefficient of γ0 and B from the coefficients of ~γ · k̂ in the self-energies

respectively. The relations for the real parts follow from the dispersive representation (3.2.5).

In what follows we use the ultrarelativistic approximation

ω(k) ' k +
M

2

2k
. (3.2.63)

In the limit of interest k/T . 1 with M1 ¿ M2 ∼ Ms ∼ O(keV), the region k < T ∼
O(100 GeV) corresponds to a wide window in which the ultrarelativistic approximation is

reliable. We note that the difference in the real part of the pole position in the ultrarelativistic

limit becomes

Ω2(k)− Ω1(k) ' δM2

2k
ρ0r cos(φ) . (3.2.64)

From the expression (3.2.52) for |γ̃| > 1, it follows that when an MSW resonance occurs,

namely for θm = π/4 resulting in cos(φ) = 0 and the real part of the poles become degener-

ate. This is in striking contrast with the quantum mechanical description of mixed neutrinos

where no level crossing, or complete degeneracy, can occur. Indeed the degeneracy is a con-

sequence of the fact that the self-energy is complex and only occurs when damping is strong

in the sense that |γ̃| > 1. The degeneracy near an MSW resonance for strong damping will

necessarily result in a breakdown of adiabaticity during cosmological evolution. We analyze

below the conditions required for this phenomenon to occur.

Furthermore, as discussed in Refs. [237, 61], decoupling and freeze-out of sterile neutrinos

of neutrinos produced via scalar decay occurs near the electroweak scale, and it will be seen
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consistently that vector boson decay yields a production rate with a similar structure as for

scalar decay therefore a similar range of temperatures in which sterile neutrino production

by this mechanism is effective.

Perturbation theory is reliable when the change in the dispersion relations, namely po-

sitions of the poles in the propagators, is small. In the relativistic limit, the bare poles

correspond to k0 = k for positive energy particles, therefore perturbation theory is valid for

k À {(Ω{1, 2} − k), Γ{1,2}}, namely k À Σ(k, k) where Σ is any of the self-energies. In the

next section we obtain explicitly the self energies and in section (3.4.4) we assess the regime

of validity of the perturbative expansion.

3.2.3 Helicity dependence: right-handed sterile neutrinos and standard model

interactions

We have purposely kept the general form of the self-energies and propagators in terms of the

helicity projections h = ±1. In the non-interacting massless case, positive energy left-handed

particles correspond to h = −1 and negative energy left-handed correspond to h = 1, with

the opposite assignment for right-handed particles. For the massive but ultrarelativistic case

the mass term yields corrections to the handedness-helicity assignment of O(M2/k2).

h = −1: Neglecting sub-leading terms of O(M
2
/k2) that multiply BSM right-handed

contributions in the ultrarelativistic limit, we obtain

S(k) = 2k
[(
AL −BL

)
aa

+
(
AL −BL

)
ss

]
, (3.2.65)

∆(k) =
2k

δM2

[(
AL −BL

)
aa

− (
AL −BL

)
ss

]
. (3.2.66)

h = 1: In this case the corrections of O(M
2
/k2) multiply SM left-handed contributions,

which may be of the same order of the BSM right-handed contributions. We find,

S(k) = 2k
[(
AR −BR

)
aa

+
(
AR −BR

)
ss
+

M
2

4k2

(
AL +BL

)
aa

]
, (3.2.67)

∆(k) =
2k

δM2

[(
AR −BR

)
aa

− (
AR −BR

)
ss
+

M
2

4k2

(
AL +BL

)
aa

]
. (3.2.68)
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The terms proportional to M
2
/4k2 only receive contribution from the SM self-energies,

whereas the right-handed components only originate in the contributions beyond the stan-

dard model which are suppressed by much smaller Yukawa couplings. However the last

contribution in (3.2.68) from SM interactions may be of the same order as the BSM contri-

butions for a relevant range of k. To see this, note that {AR,BR} ∼ Y 2
2 ∼ 10−16, whereas

{AL,BL} ∼ g2 ∼ 0.4 therefore with M ∼ keV and k . 100GeV, it is clear that both BSM

and SM contributions are of the same order. The point of maintaining the helicity depen-

dence throughout is that for the case of sterile neutrinos, namely the propagating modes

“2” in the medium, the exchange of standard model vector bosons yields a contribution to

the positive helicity and positive energy components, namely the right-handed component,

which could be of the same order of the BSM contributions for small k which is a region of

interest for sterile neutrino production.

3.3 REAL PARTS: MIXING ANGLES AND MSW RESONANCES

The dispersion relations, namely the real parts of the poles, and the mixing angles in the

medium are determined by the real parts of the self-energy, or the “index of refraction”.

Whereas the neutral current tadpole contribution (3.2.7) is real, the real part of the other

contributions is obtained from the dispersive form (3.2.5), which is

ReΣ(k0, k) =
1

π

∫ ∞

−∞
dω P

(
ImΣ(ω,~k )

ω − k0

)
. (3.3.1)

In general, the real part must be obtained numerically and is a function of three parameters

k0, k and µ, which makes its exploration a daunting numerical task. However, progress can

be made by focusing on the “on-shell” contribution, namely setting k0 ' k, and neglecting

the dependence on µ, which is warranted in the whole region of {k, T} of interest but

for { k
T
, |µ|

T
} ¿ M/T , in which case we provide below an accurate approximate form. In

obtaining the real parts we consider only the finite temperature contribution, because the

zero temperature part is absorbed in the renormalization of the parameters in the Lagrangian.
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BSM contributed scalars: For the real part of the scalar self-energy we find for k0 =

k, µ = 0:

ReΣbsm =
Y 2T

16π2

{
γ0

[
Af

(
k

T
,
M

T

)
+ Ab

(
k

T
,
M

T

)]
− ~γ · k̂

[
Bf

(
k

T
,
M

T

)
+Bb

(
k

T
,
M

T

)]}
,

(3.3.2)

where Af, Bf and Ab, Bb are the fermionic and bosonic contributions respectively and

Y = Y{1, 2} for σ and ϕ exchange. Figure 7 shows Af, Bf and Ab, Bb for M/T = {1, 2, 3}
as a function of k/T .
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Figure 7: The functions Af
(
k
T ,

M
T

)
, Ab

(
k
T ,

M
T

)
, Bf

(
k
T ,

M
T

)
and Bb

(
k
T ,

M
T

)
with respect to k/T

for M/T = {1, 2, 3} in the expression of ReΣbsm.

For Σ
(2)
{σ, ϕ}, the intermediate fermion line corresponds to a sterile-like neutrino, therefore

for these contributions we must set Af = 0, Bf = 0, under the assumption that the sterile

neutrino population can be neglected and the propagator for the internal line is the vacuum
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one. For the mixing angle, the relevant contribution is (A−B). Figure 8 displays (Af−Bf)

and (Ab−Bb) for M/T = {1, 2, 3} as functions of k/T .
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Figure 8: The functions
(
Af( kT ,

M
T )−Bf( kT ,

M
T )

)
,
(
Ab( kT ,

M
T )−Bb( kT ,

M
T )

)
as functions of k

T for
M
T = {1, 2, 3} for the case of scalars beyond the SM.

We note that the fermionic and bosonic contributions {Af, Ab} are qualitatively very

similar and the same property holds for {Bf, Bb}. Therefore neglecting the fermionic

contributions both for Σ(1) does not affect the results and the conclusions in a substan-

tial manner. This observation confirms that the general results presented below are robust

even when the neutrinos “1” are not thermalized and their propagators are the vacuum ones.

Although an analytic form for the full range of {k0, k, µ} is not available, we obtain an

analytic expression for the relevant case {k0
T
, k
T
, µ
T
} ¿ M

T
∼ 1. We find to leading order in

the small ratios k0
T
, k

T
and ξ = µ

T
,

ReΣ(1)
σ (k0, k) =

Y 2
1 T

2

M2
σ

{
γ0

[
− T ξ

12

(
1 +

ξ2

π2

)
+

7π2

120

k0 T
2

M2
σ

[1 + F [Mσ/T ]]

]

− ~γ · k̂
[
− 7π2

360

k T 2

M2
σ

[1 + J [Mσ/T ]]

]}
, (3.3.3)

ReΣ(1)
ϕ (k0, k) =

Y 2
2 T

2

M2
ϕ

{
γ0

[
− T ξ

12

(
1 +

ξ2

π2

)
+

7π2

120

k0 T
2

M2
ϕ

[
1 + F [Mϕ/T ]

]]

− ~γ · k̂
[
− 7π2

360

k T 2

M2
ϕ

[
1 + J [Mϕ/T ]

]]}
, (3.3.4)
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ReΣ(2)
σ (k0, k) =

Y 2
1 T

2

M2
σ

{
γ0

[
7π2

120

k0 T
2

M2
σ

F [Mσ/T ]

]
− ~γ · k̂

[
− 7π2

360

k T 2

M2
σ

J [Mσ/T ]

]}
, (3.3.5)

ReΣ(2)
ϕ (k0, k) =

Y 2
2 T

2

M2
ϕ

{
γ0

[
7π2

120

k0 T
2

M2
ϕ

F [Mϕ/T ]

]
− ~γ · k̂

[
− 7π2

360

k T 2

M2
ϕ

J [Mϕ/T ]

]}
, (3.3.6)

where

J(m) =
120

7π4

∫ ∞

0

dq
q2

Wq

NB(Wq)
[
W 2

q +
m2

2

]
, (3.3.7)

F (m) =
120

7π4

∫ ∞

0

dq
q2

Wq

NB(Wq)
[
W 2

q − m2

2

]
. (3.3.8)

These functions are displayed in Figure 11, they are O(1) in the region of interest

M{σ, ϕ} ∼ T . A comprehensive numerical study of {Af, Ab, Bf, Bb} confirms the va-

lidity of the above approximations for k0 = k, µ = 0 for k/T ¿ 1.

SM vector bosons: Similarly, for the real part of the SM contributed self-energy, we

find for k0 = k and µ = 0

ReΣsm(k, k) =
g2smT

16π2

{
γ0

[
Af

(
k

T
,
M

T

)
+Ab

(
k

T
,
M

T

)]
−~γ·k̂

[
Bf

(
k

T
,
M

T

)
+Bb

(
k

T
,
M

T

)]}
,

(3.3.9)

where we use the same definition, namely {Af, Bf} and {Ab, Bb} are the fermionic and

bosonic contributions respectively. Figure 9 shows {Af, Bf} and {Ab, Bb} and Figure (10)

shows
(
Af( k

T
, M
T
)−Bf( k

T
, M
T
)
)
and

(
Ab( k

T
, M
T
)−Bf( k

T
, M
T
)
)
for M

T
= {1, 2, 3} as functions

of k/T .

Just as in the BSM case analyzed above, we note that the fermionic and bosonic con-

tributions {Af, Ab} are qualitatively similar and the same holds for {Bf, Bb}. Again

this observation confirms that our results are robust, independently of whether any of the

neutrino modes is thermalized.
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M
T ), Ab( kT ,
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T ) as functions of k/T for M

T = {1, 2, 3}
for the SM contributions with µ = 0.
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Figure 10:
(
Af( kT ,

M
T )−Bf( kT ,

M
T )

)
,
(
Ab( kT ,

M
T )−Bb( kT ,

M
T )

)
as functions of k/T for M

T =
{1, 2, 3} for the SM contributions with µ = 0.

We also obtain the analytic forms for ReΣsm(k0, k) for
(
k0
T
, k

T
, µ
T

) ¿ M{W, Z}/T ∼ 1. To

leading order in these small ratios we find

ReΣ(1)
nc (k0, k) =

g2T 2

4M2
W

{
γ0

[
− T ξ

4

(
1 +

ξ2

π2

)
+

7π2

60

k0 T
2

M2
Z

[
1 +G[MZ/T ]

]]

− ~γ · k̂
[
− 7π2

180

k T 2

M2
Z

[
1 +G[MZ/T ]

]]}
, (3.3.10)

ReΣ(2)
nc (k0, k) =

g2T 2

4M2
W

{
γ0

[
7π2

60

k0 T
2

M2
Z

G[MZ/T ]

]
− ~γ · k̂

[
− 7π2

180

k T 2

M2
Z

G[MZ/T ]

]}
, (3.3.11)

ReΣcc,sm(k0, k) =
g2T 2

2M2
W

{
γ0

[
7π2

60

k0 T
2

M2
W

[
1+G[MW/T ]

]]
−~γ·k̂

[
−7π2

180

k T 2

M2
W

[
1+G[MW/T ]

]]}
.

(3.3.12)

In the charged current contribution we have neglected the asymmetry of the charged

lepton because it is of the order of the baryon asymmetry. In the above expressions

G[m] =
120

7π4

∫ ∞

0

dq
q2

Wq

NB(Wq)
[
W 2

q − m2

4

]
, NB(Wq) =

1

eWq − 1
, Wq =

√
q2 +m2.

(3.3.13)
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Figure 11: The functions F (m), J(m) and G(m) vs m = M/T .

This function is depicted in Figure 11, it is O(1) in the region of interest T ∼ M{Z,W}. The

validity of these approximations for k0 = k, µ = 0 is confirmed by the numerical analysis of

Af, Ab, Bf and Bb for k/T ¿ 1. It is remarkable that the leading order in {k0
T
, k

T
} but

for M{W, Z} ∼ T reproduce the results of references [230, 171], which were obtained in the

low energy limit {T, µ} ¿ M{W, Z}. The numerical analysis carried out for k0 = k, µ = 0

confirms that for M/T À 1 the range of validity of the lowest order approximation in k/T

increases and merges with the results given above in Eqs. (3.3.3-3.3.12) up to k/T ∼ 1.

3.3.1 Mixing angles and MSW resonances:

As shown in detail in the previous sections, the mixing angle in the medium θm determined

by the relations (3.2.47) depends on {k0, k} and the helicity h. On the mass shell of the

propagating modes in the medium we can replace k0 ' k in the expressions for the real part

of the matrices ReA, ReB for ∆R, namely the real part of Eqs. (3.2.66) and (3.2.68) for

h = ∓1 respectively.

3.3.1.1 Case with vanishing lepton asymmetry For µ = 0, k0 = k and general

{k, M}, the fermionic and bosonic contributions to the real parts of the BSM contributed

self-energies are given by Eq. (3.3.2), where the fermionic (Af, Bf) and bosonic (Ab, Bb)
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contributions are depicted in Figs. 7-8. The real parts of the SM contributed self-energies are

given by Eq. (3.3.9) and the fermionic and bosonic contributions are depicted in Figs. 9-10.

These figures distinctly show that the contributions {Af, Ab} and {Bf, Bb} for BSM and

SM contributed self-energies are qualitatively the same, with only a quantitative difference

in the amplitudes. A remarkable result is that these functions change sign. In particular,

the combinations (Af − Bf) and (Ab − Bb) which enter in ∆R change sign at a value of

k/T that depends on the ratio M/T . For M/T ∼ 1 these differences vanish at k/T ' 0.2.

A numerical exploration reveals that the sign change persists until M/T ' 3 but occurs at

monotonically larger values of k/T . This behavior is shown in the figures above. We find

that for M/T & 3 the change in sign occurs for k >> T or does not occur at all. On the

mass shell k0 ∼ k and for µ = 0 this study reveals that ∆R is negative in a wide region

of momentum for M/T . 1. This fact entails that there are MSW resonances near the

momentum regions where the coefficient functions change sign, even in absence of a lepton

asymmetry. To understand this important point more clearly, let us study the case h = ∓1

separately.

h = −1: In this case, ∆ is given by Eq. (3.2.66); furthermore, from Eq. (3.2.13), it

follows that (AL − BL)ss is determined by the BSM contributions which are suppressed by

small Yukawa couplings Y . 10−8 as compared to the SM contributions. Therefore the

BSM contribution can be neglected and ∆R is determined by the SM contributions given by

Eq. (3.3.9). By approximating cos θ ∼ 1, sin θ ∼ 0 in Eq. (3.2.12) and letting δM2 ' M2
s ,

we find for µ = 0, h = −1:

∆R(k) ' g2

16π2

(
T

Ms

)2(
k

T

){
fW

(
k

T
,
MW

T

)
+

1

2 cos(θw)
fZ

(
k

T
,
MW

T

)}
,(3.3.14)

where

fW = Af
( k

T
,
MW

T

)
+ Ab

( k

T
,
MW

T

)
−Bf

( k

T
,
MW

T

)
−Bb

( k

T
,
MW

T

)

fZ = Af
( k

T
,
MZ

T

)
+ Ab

( k

T
,
MZ

T

)
−Bf

( k

T
,
MZ

T

)
−Bb

( k

T
,
MZ

T

)
. (3.3.15)

Taking as representative T ∼ 100GeV and Ms ∼ keV, it follows that

g2

16π2

(
T

Ms

)2

' 2.7× 1013 . (3.3.16)

60



Figure 10 shows that for M{W, Z}/T . 3 there is a region of k/T in which the bracket

in (3.3.15) is negative and there is a value (k/T )c that increases with M/T at which the

bracket vanishes, for example, from the Figure 10, we find (k/T )c ∼ {0.2, 0.45, 1} for

M/T ∼ {1, 2, 3} respectively. For k/T < (k/T )c the bracket is positive (for µ = 0) whereas

for k/T > (k/T )c it is negative, therefore there is a value of k/T at which the resonance

condition (3.2.49) is fulfilled. Since the coefficient of the bracket is ≈ 1013 (See Eq. (3.3.16).)

and the terms inside the bracket are of O(1) for k/T . 1, plus cos θ ∼ 1, it follows that

the MSW resonance occurs for a value of k/T such that the bracket ∼ 10−13 namely for

k/T ∼ (k/T )c. The large coefficient (3.3.16) results in a very narrow MSW resonance as can

be seen as follows, expanding ∆R near (k/T )c as

∆R(k) ' −κ

(( k

T

)
−

( k

T

)
c

)
+ · · · , κ > 0 , (3.3.17)

where κ & 1013 for M{W, Z}/T . 3 shown in Figure 10, and by approximating cos(2θ) ∼ 1

we find

sin2(2θm) ' ε2[((
k
T

)
−

(
k
T

)
c
− 1

κ

)2

+ ε2
] , (3.3.18)

where ε = sin(2θ)/κ. If taking sin(2θ) ∼ 10−5 [209], it follows that ε . 10−18 which makes

the resonance very narrow. During cosmological expansion the ratio M
T
(t) increases with the

scale factor, while the ratio k/T (with k the physical momentum) is fixed. Therefore, for a

fixed value of k/T < 1 as M/T increases the resonance is crossed very sharply.

h = 1: To assess the possibility of MSW resonances for h = 1 we need the real part of

(3.2.68). From (3.2.12) and (3.3.2), it follows that {(AR−BR)aa ∝ Y 2
1 , (AR−BR)ss} ∝ Y 2

2 ,

since Y2 À Y1 we can neglect the first term which corresponds to σ-exchange. Similarly, in

the term (AR − BR)ss we also neglect the contribution from σ-exchange and approximate

cos θ ∼ 1, sin θ ∼ 0 in (3.2.13), hence only Σ
(2)
ϕ contributes to Σss. Furthermore, by

approximating δM2 ∼ M
2 ∼ M2

s , we finally find for h = 1, µ = 0:

∆R(k) ' −
(

Y2T√
8πMs

)2(
k

T

)[
Ab

( k

T
,
Mϕ

T

)
−Bb

( k

T
,
Mϕ

T

)]

+
g2

128π2

(
T

k

){
gW

(
k

T
,
MW

T

)
+

1

2 cos(θw)
gZ

(
k

T
,
MW

T

)}
, (3.3.19)
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where

gW = Af
( k

T
,
MW

T

)
+ Ab

( k

T
,
MW

T

)
+Bf

( k

T
,
MW

T

)
+Bb

( k

T
,
MW

T

)
,

gZ = Af
( k

T
,
MZ

T

)
+ Ab

( k

T
,
MZ

T

)
+Bf

( k

T
,
MZ

T

)
+Bb

( k

T
,
MZ

T

)
. (3.3.20)

Ab and Bb in the first line of Eq. (3.3.19) are displayed in Figure 7. We note that with

T ∼ 100GeV,Ms ∼ keV, the value of the Y2 (See Eq. (3.1.14).) is such that Y2T
Ms

∼ O(1),

therefore, the right panel of Figure 8 suggests that the BSM contribution may yield an MSW

resonance in the region {k/T . 0.15, Mϕ ∼ T}, where the BSM contribution Ab − Bb is

positive and large. Since g2

128π2 ∼ 3.4×10−4 and {Af +Bf, Ab+Bb} ∼ O(1) for k/T . 1, it

follows that the SM contribution to ∆R is sub-leading for k/T . 1 and the BSM contribution

may lead to an MSW resonance in this region depending on the parameters of the extension

beyond the SM.

3.3.1.2 Case With non-vanishing lepton asymmetry (µ 6= 0, k
T
¿ M

T
∼ 1)

All above discussions are valid only for µ = 0; for µ 6= 0, a full numerical evaluation of the

real parts of the kernel is not available. However, the bounds on the lepton asymmetry from

Ref. [261] suggest that |µ/T | . 0.02 ¿ 1, and we can obtain a reliable understanding of

the influence of the lepton asymmetry in the neutrino sector by focusing on the region of

k/T ¿ 1, where we can use the results (3.3.3) to (3.3.6) for BSM contributions, and (3.2.7)

along with (3.3.10) to (3.3.12) for SM contributions. Moreover, we can further simplify

the calculation by approximating cos θ ∼ 1, sin θ ∼ 0 in (3.2.12) and (3.2.13), and letting

δM2 ∼ M2
s .

For h = −1, again we neglect the BSM contributions to ∆R(k) in (3.2.66), and for

{µ/T, k/T} ¿ 1, we obtain,

∆R(k) ' g2T 3k

M2
WM2

s

{
− 5 ξ

24
+

7π2

90

( k

T

)
h(

MZ

T
)

}
, (3.3.21)
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where

h(
MZ

T
) =

[( T

MZ

)2
(
1 +G

(MZ

T

))
+ 2

( T

MW

)2
(
1 +G

(MW

T

))]
, (3.3.22)

and the function G follows the expression in Eq. (3.3.13). We note that for T ∼ MW and

Ms ∼ keV the prefactor
g2T 3k

M2
WM2

s

∼ 1016
( k

T

)
, (3.3.23)

the resonance condition (3.2.49) can be fulfilled for ξ > 0 when the bracket in (3.3.21)

approximately vanishes, that is

( k

T

)
∼ 25 ξ

56π2
⇒ k ∼ 0.05 µ , (3.3.24)

where we have used G(MW,Z/T ) ∼ 1 at T ∼ MW , a result that can be gleaned from Figure

11. For ξ > 0 this MSW resonance occurs for antineutrinos, namely k0 = −k, following from

the relations (3.2.61) and (3.2.62).

Similarly, for h = 1 and { µ
T
, k

T
} ¿ 1, we obtain

∆R(k) ' −
(
Y2T

Ms

)2 ( T

Mϕ

)4( k

T

)27π2

180

[
J(

Mϕ

T
) + 3F (

Mϕ

T
)

]

+

(
gT

MW

)2 (T
k

){
− 5ξ

192
+

7π2

1440

( k

T

)
h(

T

MZ

)

}
. (3.3.25)

Obviously, there is a competition between SM and BSM contributions in Eq. (3.3.25). When

T ∼ M{W, Z, ϕ}, {J(1), F (1), G(1)} ∼ 1 and (Y2T )/Ms ∼ 1, the BSM contribution to ∆R(k)

is

∆
(bsm)
R ∼ −7π2

45

( k

T

)2

= −1.54
( k

T

)2

, (3.3.26)

and the SM contribution to ∆R(k) is

∆
(sm)
R ∼ 0.1

(T
k

)[
− 5ξ

192
+
( k

T

)7π2

240

]
∼ 0.029− 3× 10−3

(T
k

)
ξ. (3.3.27)

The resonance happens for ∆R(k) ∼ −1, namely

3× 10−3
(T
k

)
ξ ∼ 1.029. (3.3.28)
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Obviously, one is always able to find a value of k/T to satisfy Eq. (3.3.28) for any given

positive lepton asymmetry ξ. For |ξ| ∼ 10−2 consistent with the WMAP and BBN data

[261], we obtain

k

T
∼ 3× 10−3 ξ ∼ 3× 10−5 . (3.3.29)

Note that the asymmetry term from SM contribution dominates over the BSM contribution,

which is different from µ = 0 case where BSM contribution would dominate as shown in

(3.3.19). This analysis leads us to conclude that for a lepton asymmetry hidden in the

neutrino sector compatible with the bounds from Ref. [261], it is possible to have two MSW

resonances.

3.4 IMAGINARY PARTS: WIDTHS FROM VECTOR AND SCALAR

BOSON DECAY

The quasiparticle widths Γ{1, 2}(k) are given by Eqs. (3.2.57) and (3.2.60). Analyzing the

explicit expressions for the imaginary parts of the SM and BSM contributions given in the

appendix, Eqs. (A.1.1)-(A.1.3), and (A.2.1)-(A.2.3) respectively, the “on-shell” contributions

are obtained from those whose δ function constraints can be satisfied for ω ∼ k. It is straight-

forward to find that only the terms with δ(ω + p − W~p+~k) have non-vanishing support for

ω ' k. These terms are given in the last lines of (A.1.2) and (A.1.3) for the SM contributions

and the last lines of (A.2.2) and (A.2.3) for the BSM contributions.

These contributions to the quasiparticle widths in the medium arise from the decay of

the intermediate boson, either the vector bosons in the SM contributions or the scalars in the

BSM contributions. This is depicted in Figure 12, the Cutkosky cut through the intermediate

boson (vector or scalar) yields the imaginary part. The process that contributes on shell

ω ' k is the decay of the boson into the fermions (neutrinos and/or charged leptons) depicted

in this figure. The fact that the decay of a heavy intermediate state leads to a width was

recognized in Ref. [62].

64



W
~p+~k ~p

~k

W±, Z0

σ, ϕ

σ ; ϕ ~p

~k

Figure 12: The Cutkosky cut for the imaginary part of the SM and BSM contributions, and the
contribution on the mass shell ω ' k.

The analysis of different cases is simplified by introducing

Γaa(k0, k) = Im

[
(k0 + hk)

2k

(
AR − hBR

)
aa

+
(k0 − hk)

2k

(
AL + hBL

)
aa

]
, (3.4.1)

Γss(k0, k) = Im

[
(k0 + hk)

2k

(
AR − hBR

)
ss
+

(k0 − hk)

2k

(
AL + hBL

)
ss

]
, (3.4.2)

in terms of which (See Eq. (3.2.32).),

SI = 2k

[
Γaa(k0, k) + Γss(k0, k)

]
,

∆I(k0, k) =
2k

δM2

[
Γaa(k0, k)− Γss(k0, k)

]
. (3.4.3)

We need these quantities evaluated on the “mass shell”, namely for positive energy k0 =

ω(k) ∼ k +M
2
/2k. We find:

h = −1:

Γaa(k) ' Im
(
AL −BL

)
aa
, Γss(k) ' Im

(
AL −BL

)
ss
. (3.4.4)

h = 1:

Γaa(k) ' Im

[
(
AR −BR

)
aa

+
M

2

4k2

(
AL +BL

)
aa

]
, Γss(k) ' Im

(
AR −BR

)
ss
. (3.4.5)
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In the above expressions, we have used Y{1, 2} ¿ g and M
2
/4k2 ¿ 1 and neglected terms

accordingly, we have suppressed the arguments on A and B. However, these matrix elements

depend on k. The term with AL + BL in (3.4.5) is noteworthy: the leading contribution to

this term is from SM interactions, even setting the Yukawa couplings in the BSM sector to

zero, a nearly right-handed sterile neutrino is produced via the decay of the vector bosons.

The expression for the imaginary parts (3.2.57) and (3.2.60) simplify in two relevant limits

[60]:

a) weak damping |γ̃| ¿ 1: in this limit we find

r sin(φ) ' γ̃ cos 2θm (3.4.6)

leading to the following results for the poles with positive energy

Γ1(k) = Γaa(k) cos
2 θm + sin2 θmΓss(k) , (3.4.7)

Γ2(k) = Γaa(k) sin
2 θm + cos2 θmΓss(k) . (3.4.8)

Furthermore, the difference in the dispersion relations becomes

∆Ωwd ≡ Ω2(k)− Ω1(k) ' δM2

2k
ρ0 , (3.4.9)

which is the usual result for neutrino mixing.

b) strong damping |γ̃| À 1: in this limit we find

r sin(φ) ' γ̃ sign(cos(2θm))

[
1− sin2(2θm)

2γ̃2

]
(3.4.10)

leading to the following results

Γ1(k) =
1

2

[
Γaa(k)+Γss(k)

]
+
1

2

[
Γaa(k)−Γss(k)

](
sign(cos(2θm))− sin2(2θm)

2γ̃2

)
, (3.4.11)

Γ2(k) =
1

2

[
Γaa(k)+Γss(k)

]− 1

2

[
Γaa(k)−Γss(k)

](
sign(cos(2θm))− sin2(2θm)

2γ̃2

)
. (3.4.12)
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In this case the frequency difference between the propagating states becomes

∆Ωsd ≡ Ω2(k)− Ω1(k) ' δM2

2k
ρ0| cos(2θm)| = δM2

2k
| cos(2θ) + ∆R(k)| . (3.4.13)

This is a remarkable result, the frequency difference vanishes at a MSW resonance in striking

contrast with the usual quantum mechanics description of neutrino mixing and oscillations

wherein there is a “level repulsion” at an MSW resonance that prevents level crossing. In

all the expressions above Γaa(k) and Γss(k) are given by (3.4.4) and (3.4.5) in the respective

cases h = ∓1, and the mixing angle θm is obtained from Eq. (3.2.47) evaluating ∆R at k0 = k.

The widths for negative energy and h = ∓1 are obtained from the expressions above by

the replacement µ → −µ, this is a consequence of the relations (3.2.61), (3.2.62) and the fact

that the chemical potential is CP-odd, therefore the particle and antiparticle widths only

differ because of the chemical potential.

We emphasize that the results (3.4.7), (3.4.8) and (3.4.11), (3.4.12) are general, and hold

to all orders in perturbation theory as they follow from the general form of the self-energies.

In particular these relations are valid beyond the one-loop order studied here and hold for

any processes that contributes to the absorptive parts of the self-energy at one-loop or higher

order.

3.4.1 Widths from scalar and vector boson decay:

As discussed above, the imaginary parts of the self-energy are given in the appendix, both

for SM and BSM contributions. Inspection of the different delta functions shows that the

only contribution “on-shell”, namely ω ' k, arises from the terms with δ(ω + p−W~p+~k) in

the expressions for the imaginary parts (A.2.2) and (A.2.3). This delta function corresponds

to a Cutkosky cut that describes the process of a scalar (in BSM contributions) or a vector

boson (in SM contributions) decay into a neutrino and another lepton, displayed in Figure

12.
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BSM Scalars: For scalars, the (R) and (L) components are the same. We find for σ

and ϕ exchange that

Im(AR −BR) = Im(AL −BL) =
Y 2 T

32π

M2

k2
ln

[
1 + C1 e

−x∗−ξ

1− e−x∗−y

]
, (3.4.14)

where

x∗ =
M2

4kT
, ξ =

µ

T
, y =

k

T
, (3.4.15)

and

C1 =

{
1 for Σ

(1)
{σ, ϕ} ,

0 for Σ
(2)
{σ, ϕ} .

(3.4.16)

In the relevant region k < M{σ, ϕ} ∼ T , we can safely neglect the contribution from the

leptonic chemical potential in (3.4.14) and set ξ = 0 since the bounds from Ref. [261]

suggest that |ξ| . 0.02. The result (3.4.14) agrees with that found in Ref. [61] for the decay

of the scalar boson into sterile neutrinos (2) (C1 = 0) for vanishing chemical potential. For

k/T ¿ M/T ∼ 1 we can approximate

Im(AR −BR) = Im(AL −BL) =
Y 2 T

32π

M2

k2
e−x∗

(
C1 + e−y

)
. (3.4.17)

SM Vector bosons: For SM vector boson exchange which only contains (L) component,

the imaginary parts “on-shell” are obtained from the terms with δ(ω + p − W~p+~k) in the

imaginary parts of (A.1.2) and (A.1.3). By setting ω ' k, we find

Im(AL −BL) =
g2smT

16π

M2

k2
ln

[
1 + C2 e

−x∗−ξ

1− e−x∗−y

]
, (3.4.18)

where gsm is given by Eq. (3.2.16), M = M{Z, W} for neutral and charged current contribu-

tions respectively, and

C2 =

{
1 for Σ

(1)
nc ,Σcc ,

0 for Σ
(2)
nc .

(3.4.19)

For positive energy and positive helicity, namely right-handed, we also need (See Eq. (3.4.5).

):

Im(AL+BL) =
g2smT

8π

{
ln

[
1 + C2 e

−x∗

1− e−x∗−y

]
+

2T

k

[
Li2

(
e−x∗−y

)−C2 Li2
(− e−x∗)

]}
, (3.4.20)
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where Li2 is the dilogarithm or Spence’s function and we have set µ = 0. This expression is

greatly simplified in the limit k/T ¿ M/T ∼ 1, with the result

Im(AL +BL) ' g2smT
2

4πk
e−x∗

(
C2 + e−y

)
. (3.4.21)

In the above results for vector bosons, M = M{W, Z} respectively. We can now gather all the

results needed for Γaa(k), Γss(k) in (3.4.4) and (3.4.5), obtaining the quasiparticle widths

Γ{1, 2}(k) from them. Approximating cos θ ∼ 1, sin θ ∼ 0, we find,

Im
(
AR −BR

)
aa

=
Y 2
1 T

32π

(M2
σ

k2

)
ln

[
1

1− e−x∗
σ e−y

]
, (3.4.22)

Im
(
AR −BR

)
ss

= Im
(
AL −BL

)
ss

=
Y 2
1 T

32π

(M2
σ

k2

)
ln

[
1 + e−x∗

σ

1− e−x∗
σ e−y

]
+

Y 2
2 T

32π

(M2
ϕ

k2

)
ln

[
1

1− e−x∗
ϕ e−y

]
,

(3.4.23)

Im
(
AL −BL

)
aa

=
g2T

32π

{
1

2 cos2(θw)

(M2
Z

k2

)
ln

[
1 + e−x∗

Z

1− e−x∗
Z e−y

]
+
(M2

W

k2

)
ln

[
1 + e−x∗

W

1− e−x∗
W e−y

]}

+
Y 2
1 T

32π

(M2
σ

k2

)
ln

[
1

1− e−x∗
σ e−y

]
, (3.4.24)

Im
(
AL +BL

)
aa

=
g2T

16π

{
1

2 cos2(θw)

[
ln
( 1 + e−x∗

Z

1− e−x∗
Z e−y

)
+

2T

k

[
Li2

(
e−x∗

Z e−y
)− Li2

(− e−x∗
Z
)]
]

+ ln
( 1 + e−x∗

W

1− e−x∗
W e−y

)
+

2T

k

[
Li2

(
e−x∗

W e−y
)− Li2

(− e−x∗
W
)]
}

+
Y 2
1 T

16π

(2T
k

)
Li2

(
e−x∗

σ e−y
)
. (3.4.25)

In the expressions above, we have defined

x∗
α =

M2
α

4kT
, (3.4.26)

with α = {σ, ϕ, Z, W}. For small values of the arguments Li2(z) ∼ z, which may be used

appropriately whenever x∗
α > 1, a situation describing the relevant range {Mα ∼ T, k < T}.

Eqs. (3.4.22-3.4.25), combined with (3.4.4) and (3.4.5), yield the complete expressions for

the quasiparticle widths Γ{1, 2} in all cases, and as per the discussion below, the production

rates.
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3.4.2 Imaginary parts: from the width to the production rates.

The connection between the quasiparticle widths corresponding to the imaginary part of the

self-energy “on-shell” and the production rate is established via the Boltzmann equation for

the production of a given species, in this case that of a “sterile” neutrino. Consider the

scalar vertex Y1νs σνa as an example, the analysis is similar for the other, including vertices

from SM contributions. According to the Boltzmann equation, the production rate of sterile

neutrinos is of the form (gain)− (loss) (See for example the appendix in Ref. [61]).). The

gain term corresponds to the decay process σ → νa + νs and is given by [61]

dns(k)

dt

∣∣∣∣∣
gain

=

∫
d3p

(2π)3

∣∣∣Mfi

∣∣∣
2

δ
(
W~p+~k − p− k

)
NB

(
W~p+~k

)
(1− nF (p))(1− ns(k)) , (3.4.27)

where NB, nF are the bosonic and fermionic distribution functions respectively. The loss

term describes the inverse process, namely, the recombination νa + νs → ϕ with

dns(k)

dt

∣∣∣∣∣
loss

=

∫
d3p

(2π)3

∣∣∣Mfi

∣∣∣
2

δ
(
W~p+~k − p− k

)[
1 +NB

(
W~p+~k

)]
nF (p)ns(k) . (3.4.28)

Therefore, when putting together, the Boltzmann equation is of the form

dns(k)

dt
=

∫
d3p

(2π)3

∣∣∣Mfi

∣∣∣
2

δ
(
W~p+~k − p− k

)
{
NB

(
W~p+~k

)
(1− nF (p))(1− ns(k))−

[
1 +NB

(
W~p+~k

)]
nF (p)ns(k)

}
.

(3.4.29)

If the distribution function of the particle in question is slightly perturbed off equilibrium,

the relaxation rate of the distribution function towards equilibrium is obtained by writing

ns(k) = neq
s (k) + δns(k) and linearizing the Boltzmann equation in δns(k) [278, 63]. The

linearized Boltzmann equation reads

dδns(k)

dt
= −Γrel δns(k) , (3.4.30)

where

Γrel =

∫
d3p

(2π)3

∣∣∣Mfi

∣∣∣
2

δ
(
W~p+~k − p− k

)[
nF (p) +NB

(
W~p+~k

)]
. (3.4.31)
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As discussed in Refs. [278, 63], the relaxation rate Γrel is twice the quasiparticle width

since the distribution function is bilinear in the fields. The relation between Γrel and the

on-shell width becomes evident comparing the expression (3.4.31) with the “on-shell” imag-

inary parts, namely the last lines in Eqs. (A.1.2), (A.1.3), (A.2.2) and (A.2.3) with ω ' k.

The production rate of the sterile species is obtained by neglecting the inverse process and

neglecting the sterile population buildup in the Boltzmann equation (3.4.29), namely,

dns(k)

dt

∣∣∣∣∣
prod

=

∫
d3p

(2π)3

∣∣∣Mfi

∣∣∣
2

δ
(
W~p+~k − p− k

)
NB

(
W~p+~k

)
(1− nF (p)) . (3.4.32)

Therefore by obtaining the bosonic and fermionic contributions to the quasiparticle widths

as in the previous section, we can obtain the production rate. Although the term with the

product NBnF is not included in the width, such a term is smaller than the term with NB

only, because under the limit µ/T ¿ 1, p2nF (p) features a maximum at p/T ∼ 2.3 where

nF (p) ∼ 0.09. Therefore, for the important region in the integral p & T , the production

and relaxation rates only differ by a few percent, and the results for the relaxation rates

yield a reliable approximation to the production rate. An important bonus of obtaining

the production rate from the quasiparticle decay width is the correct dependence on the

mixing angle in the medium, which would be missed by a naive perturbative calculation.

Therefore, we conclude that the quasiparticle width yields an very good approximation to

the production rate, in particular it describes correctly the dependence on the mixing an-

gles in the medium, both on its magnitude and k-dependence. In particular, the result

(3.4.23) confirms the result of Ref. [61] for Y1 = 0. For the scalar contribution, the right

and left-handed components yield the same result, multiplying (3.4.23) by a factor 2 in

the total rate, and as discussed above the production rate is twice the width, which restores

the factor 4 between (3.4.23) and the result in Ref. [61] which corresponds to the case Y1 = 0.

Finally, we conclude that the results of Eqs. (3.4.4), (3.4.5), (3.4.7), (3.4.8), (3.4.11)

and (3.4.12) along with the explicit forms (3.4.22-3.4.25) provide a complete and reliable

assessment of the production rates ready to be input in the kinetic equations with the

cosmological expansion [61].
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3.4.3 Weak or strong damping?

We now have all the ingredients to assess under which circumstances the weak (|γ̃| ¿ 1) or

strong (|γ̃| À 1) damping conditions are fulfilled. In terms of the widths and the real parts,

it follows that

γ̃ ' 2k

M2
s

[
Γaa(k)− Γss(k)

]

[(
cos(2θ) + ∆R(k)

)2

+ sin2(2θ)

] 1
2

. (3.4.33)

For h = −1, (Γaa − Γss) and ∆R are dominated by the SM contributions, therefore from

Eqs. (3.3.15) and (3.4.24), we find

∆R(k) ∼ g2

16π2

kT

M2
s

A(k) , (3.4.34)

∆I(k) ∼ g2

32π

kT

M2
s

(
MZ

k

)2

B(k) , (3.4.35)

where A(k),B(k) can be read off (3.3.15) and (3.4.24). In the region of parameters where

∆R(k) À cos(2θ) ∼ 1, it follows that γ̃ ' ∆I(k)/∆R(k), furthermore, for k < T ∼ M{Z,W}

the function B(k) ∼ e−x∗
Z ¿ 1, leading to ∆I/∆R ¿ 1 corresponding to the weak damping

case in which the widths, or the production rates, are given by (3.4.7) and (3.4.8). On the

other hand, when far away from the MSW resonances but in the region where cos(2θ) ∼
1 À ∆R(k), it also follows that ∆I/∆R ¿ 1, corresponding again to the weak damping

regime. Therefore the parameter region far away from MSW resonances, either above or

below, corresponds to the weak damping regime.

When close to the MSW resonances cos(2θ) + ∆R ∼ 0 and γ̃ ∼ ∆I/| sin(2θ)|, in the

region of relevance for our analysis T ∼ M{Z, W} with Ms ∼ keV, it follows that

∆I(k)

| sin(2θ)| ∼
4× 1013

| sin(2θ)|
( k

T

) (
MZ

k

)2

B(k) . (3.4.36)

Since the resonance occurs at k/T < 1 forM{Z, W} ∼ T , we conclude that the strong damping

condition γ̃ À 1 is fulfilled near MSW resonances. Because the MSW resonance(s) are very

narrow for T ' M{Z, W} as discussed above (See the discussion leading to Eq. (3.3.18).), we

conclude that in most of the regime of temperatures and momenta, the weak damping results
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(3.4.7) and (3.4.8) are valid; and only in a very narrow region near the MSW resonances,

the strong damping results (3.4.11) and (3.4.12) are needed. An identical analysis confirms

a similar conclusion for the case h = 1, namely, the weak damping condition holds in most

of the relevant range of {M/T, k/T} but for a narrow region near the MSW resonances in

which the strong damping condition holds.

An alternative interpretation of the weak and strong damping regime is obtained using

Eq. (3.4.9) to write

γ̃ ' Γaa − Γss

∆Ωwd

. (3.4.37)

Since ∆Ωsd ≤ ∆Ωwd the denominator gives an upper bound to the oscillation frequency

between the active and sterile neutrinos. The weak damping regime |γ̃| ¿ 1 describes the

case in which there are many oscillations before the overlap amplitude is suppressed, whereas

the strong damping regime describes the case in which damping occurs before oscillations

take place. For a similar discussion see the references in [66, 67, 170].

3.4.4 Regime of validity of perturbation theory.

In the relativistic approximation, the validity of the perturbative expansion requires that

k À {Σbsm, Σsm}. Since the weak interaction coupling constant gsm is much larger than

Y{1, 2}, we focus on the SM contributions only. From the expression (3.3.9) and the results

displayed in Figure 9, we see that for MW/T & 1, ReΣsm ∝ αwT since the coefficient

functions {A, B} . 12. Therefore, perturbation theory is valid for k À T/30, hence

for MW/T & 1 the resonances in absence of lepton asymmetry at 0.2 . k/T . 1 for

1 . MW/T . 3 are comfortably within the regime of validity of the perturbative expansion.

The lepton-asymmetry induced resonance for k/T ¿ MW/T is the usual resonance and for

T ¿ MW the expressions (3.3.10) to (3.3.12) reduce to the results available in the literature

[230, 171]. In the regime k ¿ T < MW , the on-shell self-energies are linear in k. We see

that, for g2 ∼ 0.4, the terms proportional to k are ¿ 1 for MW & 2T , hence perturbation

theory is reliable within the regime of interest in this article. The imaginary parts are always

perturbatively small because of the exponential suppression factors e−M2/kT .
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3.5 NEUTRINO PRODUCTION IN AN EXPANDING UNIVERSE

In this study, we aim to study the production of sterile neutrinos in cosmology near the elec-

troweak scale when the universe is radiation dominated. To include the effects of cosmological

expansion in the production rates and mixing angles, one must first replace the momentum

k → kp(t) = k/a(t) and temperature T → T (t) = Ti
ai
a(t)

, where k is the comoving momen-

tum, a(t) the scale factor and {Ti, ai} correspond to the initial temperature and scale factor

at which the kinetic equations are initialized. Whereas the ratio kp(t)/T (t) = k/(Ti ai) is

constant, and M/T (t) = Ma(t)/(Ti ai) grows during the expansion. Consider setting initial

conditions at Ti . MW , so that M/Ti ∼ 1, the analysis in Sec. 3.3 shows that there exists

at least one very narrow MSW resonance even for nearly right-handed sterile neutrinos (two

if a lepton asymmetry in the neutrino sector is included) at a value
(

kp(t)

T (t)

)
c
< 1.

For kp(t)

T (t)
<

(kp(t)

T (t)

)
c
, the analysis shows that ∆R À 1 and

θm ∼ θ

∆R

¿ θ , (3.5.1)

correspondingly, we find

Γ1 ∼ Γaa ,

Γ2 ∼ Γss +
( θ

∆R

)2

Γaa . (3.5.2)

In this case, the mode “1” is active-like and it is produced with a weak interaction rate,

whereas the mode “2” is sterile like and is produced with the rate similar to that in Ref. [61]

plus small corrections from SM interaction suppressed by the mixing angle in the medium

∼ θ/∆R. On the other hand, if kp(t)

T (t)
>

(kp(t)

T (t)

)
c
, we found that ∆R ¿ −1 leading to

θm ∼ π/2, namely, the mode “1” becomes sterile-like and the mode “2” is active like,

with the production rates

Γ1 ∼
( θ

2∆R

)2

Γaa + Γss ,

Γ2 ∼ Γaa . (3.5.3)
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As the cosmological expansion proceeds, eventually M/T (t) À 1 and the resonances disap-

pear, for example, in absence of a lepton asymmetry, the MSW resonances for kp(t)/T (t) < 1

disappear around M/T (t) & 3. ∆R remains large but positive, the mixing angle in the

medium is given by (3.5.1), and the production rates are given by (3.5.2) for all values of

kp(t)/T (t), namely the mode “1” remains the active-like and the mode “2” the sterile-like.

In Sec. 3.4.1, we note that

{Γss, Γaa} ∝
(M2

k2

)
ln
[ 1

1− e−x∗e−y

]
, (3.5.4)

this is precisely the form of the production rate that leads to a freeze-out distribution func-

tion enhanced at small momentum, a feature that leads to a larger free streaming length and

transfer function at small scales [61].

During the time when M/T (t) ∼ 1, the MSW resonance leads to a non-thermal popu-

lation of neutrinos: for kp(t)

T (t)
<

(kp(t)

T (t)

)
c
, there is a bigger production rate, leading to large

populations, of mode “1”, and a smaller production rate, leading to small populations, of “2”

(sterile like); whereas for kp(t)

T (t)
>

(kp(t)

T (t)

)
c
, there is a “population inversion” in the sense that

mode “1” is slightly populated whereas mode “2” will be substantially populated, however,

without the small momentum enhancement. Consider a fixed value of kp(t)/T (t) < 1 during

the cosmological expansion, the ratio M/T (t) ∝ a(t) increases, sweeping through the MSW

resonance. When it happens, the mixing angle in the medium vanishes very rapidly because

of the narrow resonance and the mode “2” becomes sterile-like. As the expansion continues,

the MSW resonances in absence of a lepton asymmetry disappear altogether, and the mix-

ing angles and production rates are given by (3.5.1) and (3.5.2) respectively for all values of

kp(t)/T (t). The population of the active-like neutrino, namely mode “1”, continues to build

up via weak interaction processes, including those that become dominant at T ¿ MW and

eventually thermalizes, whereas the population of the sterile-like neutrino will be frozen-out

as the production rate Γ2 shuts-off since Γss vanishes rapidly for M/T (t) ¿ 1 (See Ref. [61].)
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and θm → 0 as M/T (t) À 1 even when Γaa remains large down to the decoupling tempera-

ture of weak interactions ∼ 1 MeV.

This analysis indicates that sterile neutrino production via the decay of scalar or vector

bosons will be effective only around the region ofMW/T (t) ∼ 1, and the distribution function

at freeze-out will be strongly non-thermal with very small population but an enhancement

at small momentum as found in Ref. [61]. However, the weak interaction contribution will

freeze out much later, depending on the temperature dependence of the mixing angle in the

medium and will eventually merge with the non-resonant (DW) production mechanism [113]

at T ∼ 130MeV. Even though, the non-thermal distribution built up during the time when

scalar and vector boson decays dominate the production will remain.

Finally, it is important to understand the self-consistency of the analysis. In obtaining

the self-energies we had assumed that the eigenstate “1” is active-like with a thermal dis-

tribution function. We have learned, however, that there are resonances and whether the

eigenstates “1” and “2” are active-like or sterile-like depending on k, namely on which side of

the MSW resonance the wave vector lies. This finding calls into question the thermal nature

of the neutrino propagator in the intermediate state. (Of course there is no such ambiguity in

the charged lepton propagator that enters in the charged current self-energy.) Notwithstand-

ing this issue, we have found that the fermionic and bosonic contributions to the real parts

of the self-energies are qualitatively the same with a rather small quantitative difference,

both for SM and BSM contributions. Therefore, replacing the thermal fermion propagator

for a vacuum one leads to a minor quantitative modification of our arguments. Because

of the enormous pre-factors, the conclusions about the sharpness of the resonance and the

resonance positions do not change and the general analysis remains the same. Therefore, we

conclude that the results obtained above are robust, not depending on whether the inter-

mediate fermion line features a thermal or vacuum propagator or non-thermal propagator

interpolating between these two cases.
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3.6 CONCLUSION

A comprehensive program to assess the viability of any potential DM candidate begins with

the microphysics of the production and freeze-out process of the particle physics candidate.

This initial step determines the distribution function at freeze-out which in turn determines,

along with the mass, its abundance, free streaming length, phase space density at decoupling

and the transfer function and power spectrum in the linear regime. Our objective is to carry

out this program for sterile neutrinos with mass in the keV range which seems to be the

range favored not only as a DM candidate [49, 81] but also provide potential solutions to a

host of astrophysical problems [200, 33, 49, 199].

In this chapter, we focus on the first step, to study the production of sterile neutrinos in

a temperature regime near the electroweak scale in an extension beyond the standard model,

in which the see-saw mass matrix emerges from expectation values of Higgs-like scalars with

masses of the order of the electroweak scale. This simple and compelling extension of the SM

features only one scale yet yields rich phenomenology [200, 33, 49, 199, 258, 256, 257, 237].

The main observation in this study is that in this temperature range, sterile neutrinos are

produced by the decay not only of the Higgs-like scalar as explored in Refs. [237, 61] but also

of the charged and neutral vector bosons of the SM. We consider active and sterile species

to be Dirac fermions to allow a lepton asymmetry hidden in the active neutrino sector con-

sistent with recent bounds from WMAP and BBN [261].

The assessment of the contribution from the SM vertices to sterile neutrino production

requires an analysis of the mixing angles in the medium and production rates. We extract

these information from the full equation of motion of the active and sterile neutrinos, which

contains the self-energies corrections in the medium. The real part of the self-energy de-

termines the dispersion relations and mixing angles in the medium, and the imaginary part

determines the production rates. We analyze and compare the contributions from “beyond

the standard model” and standard model interactions to the mixing angles, dispersion rela-

tions and production rates, thereby facilitating the analysis of different situations.
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By including a small lepton asymmetry in the neutrino sector with a value compati-

ble with the bounds from WMAP and BBN [261], we found the usual MSW resonances at

k < µ ¿ T , where µ is the chemical potential for the active species that determines the

lepton asymmetry. Moreover, even in the absence of a lepton asymmetry, we identify another

kind of MSW resonances in the temperature regime T & MW for k/T . 1. Both resonances

are very narrow. For the vanishing lepton asymmetry case, the resonance occurs at a value

(k/T )c that depends on the ratio MW/T with 0.15 . (k/T )c . 1 for 1 . (MW/T ) . 3.

The position of the resonance (k/T )c increases with MW/T , the resonance eventually dis-

appear for MW À T recovering the result valid in the Fermi limit of the weak interactions

[230, 171]. Near these resonances, the contribution of the imaginary part of the self-energies

leads to a strong damping regime, and the difference in the propagating frequencies vanishes

exactly at the position of the resonance, with a concomitant breakdown of the adiabaticity.

Furthermore, we have found that it is quite possible that the region of parameters of the

extension beyond the SM allows for MSW resonances for positive energy, positive helicity,

namely nearly right-handed states both with and without lepton asymmetry. We also find

that the decay of the {Z0, W±} vector bosons leads to the production of nearly right-handed

sterile-like neutrinos. Because the resonances are very narrow, we obtain simple expressions

for the production rates of active and sterile neutrinos in Sec. ??, which are valid in a wide

range of temperatures and clearly displays the contribution from SM and BSM interactions.

Finally, we apply our results and observations to an expanding universe. We have ar-

gued that in the early universe the cosmological expansion leads to a highly non-thermal

distribution function for sterile neutrinos with an enhancement at the low momentum re-

gion k < T both as a consequence of the narrow MSW resonances and the vanishing of the

mixing angle and production rates below the electroweak scale. The form of the production

rates via scalar and vector boson decay are similar to that found in Ref. [61], thus we ex-

pect that due to small momentum enhancement, sterile neutrinos would feature a smaller

free streaming length and larger power spectrum at small scales as compared to the DW

mechanism [113, 61]. These observations may yield interesting applications in cosmological
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density fluctuations, which is the main topic of the following chapter.
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4.0 PART I: LINEAR STRUCTURE GROWTH IN THE WDM SCENARIO

In this chapter, we consider the dynamics of linear structure formation in the WDM sce-

nario. In particular, we focus on small scale aspects, where WDM particles behave very

different from CDM particles and may yield interesting applications in cosmology, e.g., to

solve the small scale problems [244, 196] in the standard ΛCDM scenario. This study was

published in [68], based on which, this chapter is re-organized as follows. In Sec. 4.1, the

basic expansion history of the universe is introduced, defining useful parameters convenient

for later discussions. Then, in Sec. 4.2, we focus on density perturbations of the universe,

and discuss the general aspects of the history of structure formation, valid for both CDM

and WDM. Sec. 4.3 compares the CDM and the WDM scenarios in a qualitative way, where

we also present our strategy of analytically studying the WDM case. Secs. 4.4 and 4.5 are

devoted to detailed studies of the CDM and WDM cases respectively. Although density

fluctuations have been thoroughly studied for the CDM case in the literature, we provide an

alternative point of view in Sec. 4.4, which helps to understand the connection between the

CDM and the WDM scenarios. It provides a benchmark for later discussions on the WDM

case. In Sec. 4.6, from the study in Sec. 4.5, we obtain the transfer function and the power

spectrum for arbitrary WDM mass and distribution function. Then we consider two spe-

cific cases and discuss several interesting features of the WDM transfer function and power

spectrum. Furthermore, we compare our semi-analytical results with those from Boltzmann

codes [165, 1, 274] in some known cases, and comment on the possible application in current

analysis of cosmological data. Finally, we conclude this chapter and summarize our results

in Sec. 4.7.
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4.1 COSMOLOGY PRELIMINARIES: FRIEDMAN EQUATION

In this chapter, we adopt the geometric units G = c = ~ = 1 and only consider a radiation

and matter dominated cosmology. Primordial density fluctuations grow since the RD era

and become significant in the MD era, forming all the structures we observe today. Only very

recently, our universe has become dominated by dark energy (ΛD) [260, 87]. In a matter-

radiation cosmology, the Friedman equation that governs the Hubble expansion is given by

H2 =
ȧ2

a2
= H2

0

(
Ωr

a4
+

Ωm

a3

)
=

H2
0Ωm

a4
(a+ aeq), (4.1.1)

where the dot stands for derivative with respect to conformal time η instead of cosmological

time t, the scale factor is normalized to a0 = 1 today, and

aeq =
Ωr

Ωm

' 1

3229
. (4.1.2)

By introducing

ã =
a

aeq
, (4.1.3)

it follows that in conformal time η,

dã

dη
= H0

(
Ωm

aeq

)1/2√
1 + ã. (4.1.4)

Solving the above equation, we find the conformal time

η = 2

(
aeq

H2
0 Ωm

)1/2 [√
1 + ã− 1

]
= 288.46

[√
1 + ã− 1

]
Mpc, (4.1.5)

where we have used Ωmh
2 = 0.134 [202, 195]. At matter-radiation equality, we define

keq = Heqaeq =

(
H2

0Ωm

aeq

)1/2 √
2 ' 9.8× 10−3(Mpc)−1, (4.1.6)

which is the co-moving wave vector of perturbation mode that enters the Hubble radius

at matter-radiation equality. Correspondingly, from Eq. (4.1.5), the co-moving horizon at

matter-radiation equality is

ηeq =
2
√
2

Heqaeq
(
√
2− 1) ' 120 Mpc. (4.1.7)
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Combining the above information and solving (4.1.5), we find

ã =
η

η∗

(
η

4η∗
+ 1

)
, (4.1.8)

where

η∗ =

√
2

keq
=

ηeq

2(
√
2− 1)

. (4.1.9)

In the RD era where η/η∗ ¿ 1, it yields

η ' ãη∗ ' 144.23 ã Mpc; (4.1.10)

On the other hand, in the MD era where η/η∗ À 1, it yields

ã ' η2

4η2∗
. (4.1.11)

4.2 DENSITY PERTURBATION OF DMS: GENERAL ASPECTS

Structure formation is an important topic in cosmology because it explains the formation of

all galaxies and clusters that we observe today in our universe. Observations on large scales

and the near isotropy of the CMB suggest that our universe is isotropic and homogeneous,

consistent with the Friedman-Robertson-Walker (FRW) metric [112, 281]. However, the

local universe is highly anisotropic and inhomogeneous. It is generally believed that all

these inhomogeneous structures began with tiny quantum fluctuations during inflation, these

fluctuations grow under gravitational collapse during the evolution history of the universe and

become what we observe today. Following this logic, to study density fluctuations, we have

to perturb the homogenous universe and track the time evolution of these perturbations. A

complete and self-consistent study of density and gravitational perturbations should be done

within the framework of GR, which describes the gravitational interaction that are essential

for structure formation of the universe. Equations governing these cosmic fluctuations in

the framework of GR were first derived by Ma and Bertschinger [212]. Since perturbations

of all components in the universe are coupled together through gravitational interactions, it

is difficult to analytically solve the coupled system. For our purposes, we focus on density
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perturbations of the DM component because they are directly related to structure formation

of the universe. Most DM candidates decouple from the thermal plasma in the early universe,

after freeze-out the time evolution of DM distribution functions is governed by the collision-

less Boltzmann equation. Density and gravitational perturbations are studied by linearizing

the perturbed collision-less Boltzmann equation.

4.2.1 Collision-less Boltzmann Equation

The collision-less Boltzmann equation [112, 281, 212] is:

d

dη
f(~x, ~p, η) = 0. (4.2.1)

η is the conformal time (also the co-moving horizon in the geometric unit). This equation is

valid for any DM particle after decoupling from the Local Thermal Equilibrium (LTE). By

expanding Eq. (4.2.1) out, we find

d

dη
f(~x, ~p, η) =

(
∂

∂η
+ ~v · ~∇~x +

d~p

dη
· ~∇~p

)
f(~x, ~p, η) = 0, (4.2.2)

where ~∇~x and ~∇~p correspond to the gradient with respect to the coordinate ~x and the

momentum ~p respectively. The co-moving velocity ~v is defined as

~v :=
d~x

dη
, (4.2.3)

and d~p/dη is determined by the geodesic equation of the DM particle. If we choose to work

in the conformal Newtonian (longitudinal) gauge, which is convenient to extract the physical

insight, perturbations of the metric are given by,

g00 = −a2(η) [1 + 2ψ(~x, η)] , (4.2.4)

gij = a2(η) [1− 2φ(~x, η)] . (4.2.5)

By neglecting the stress anisotropy, not important for DM density perturbations, ψ(~x, η) =

φ(~x, η). Hence, spacetime perturbations are characterized by the single quantity φ, corre-

sponding to gravitational potential in the Newtonian limit.
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4.2.1.1 Unperturbed Collision-less Boltzmann Equation To study density pertur-

bations of DM, we write

f(~x, ~p, η) = f0(~x, ~p, η) + f1(~x, ~p, η) + f2(~x, ~p, η) + ..., (4.2.6)

where f0 is the unperturbed distribution function, f1 is the first order perturbation of the

distribution function, and f2 is the second order perturbation, etc. We only consider the

linear perturbation f1 in this chapter. The isotropy and homogeneity of the unperturbed

universe described by the FRWmetric suggest that f0 is isotropic and homogeneous, therefore

a function of p = |~p| and η only, yielding f0 = f0(p, η). It turns out convenient to work with

the time independent co-moving momentum ~pc, which satisfies

dpc
dη

= 0. (4.2.7)

Correspondingly, from Eq. (4.2.2), the collision-less Boltzmann equation yields

∂

∂η
f0(pc, η) = 0, (4.2.8)

Hence, f0 only depends on the magnitude of the co-moving momentum pc, namely, f0 =

f0(pc), reflecting the fact that f0 is static with respect to conformal time η.

As discussed in Refs. [64, 61, 65], in general, f0 is a function of y = pc/T0,d and x = m/Td,

where m is the mass of DM particles, Td the decoupling temperature and T0,d the decoupling

temperature today. From conservation of the total entropy, it is easy to find

T0,d = TCMB

(
2

gd

)1/3

, (4.2.9)

where TCMB is the temperature of the CMB photons today and gd is the number of ultra-

relativistic degrees of freedom at decoupling. The specific expression of f0 depends on the

properties of DM particles and the physics of decoupling. We are interested in keV sterile

neutrinos as a WDM candidate. According to Chap. 3, sterile neutrinos can be produced in
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various mechanisms, among which Dodelson-Widrow (DW) mechanism [113, 81] and Higgs-

like scalar decay (BD) [198, 237, 236, 65, 61, 285] mechanism are of particular interest 1.

Both production mechanisms lead to non-thermal distribution functions of f0. For the DW

mechanism,

f0(y) =
β

ey + 1
, (4.2.10)

where β ' 10−2 [113, 61]. As for the sterile neutrinos produced through decay of a Higgs-like

scalar beyond the SM,

f0(y) = λ
g5/2(y)√

y
, (4.2.11)

where

g5/2(y) =
∞∑
n=1

e−ny

n5/2
, (4.2.12)

and λ ' 10−2 for keV sterile neutrinos [61]. As a comparison, we also consider the most

popular CDM candidate, WIMPs, with masses of 100GeV and decoupling temperature Td '
10MeV, which freeze-out with a Maxwell-Boltzmann (MB) distribution, hence

f0(y) = N e−
y2

2x . (4.2.13)

Here N is just a normalization constant, and recall that x = m/Td. For later convenience,

we define

y2 =

∫∞
0

dyy4f0(y)∫∞
0

dyy2f0(y)
:=

1

N

∫ ∞

0

dyy4f0(y), (4.2.14)

where

N =

∫ ∞

0

dyy2f0(y). (4.2.15)

Direct calculation shows that for the three unperturbed distributions discussed above, we

have

y2 =





15
ζ(5)
ζ(3)

= 12.939 DW

35ζ(7)
4ζ(5)

= 8.509 BD

3x = 3m
Td

MB

(4.2.16)

1In Chap. 3, we also discuss sterile neutrinos produced by decay of SM vector bosons. Due to the
complications associated with MSW resonances, we could not obtain an explicit distribution function for
such production mechanism; however, we have argued that it is expected to produce a similar distribution
function to that of BD. (See the conclusion section in Sec. 3.6.)
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4.2.1.2 Linearly Perturbed Collision-less Boltzmann Equation The first order

perturbation of the collision-less Boltzmann equation yields the time evolution of the first

order perturbed distribution function f1. Defining

F1(~x, ~pc, η) =
1

N
f1(~x, ~pc, η), (4.2.17)

where N is defined in Eq. (4.2.15), then, F1(~x, ~pc, η) obeys the following equation:

∂

∂η
F1(~x, ~pc, η) + ~v · ~∇~x F1(~x, pc, n̂, η) +

df̃0
dpc

(
dpc
dη

)
= 0, (4.2.18)

where

f̃0 =
f0
N

(4.2.19)

and ~pc = pcn̂ with n̂ being a unit vector. To obtain Eq. (4.2.18), we have made use of the

fact of f̃0 = f̃0(pc). Note that f̃0 instead of F1 appears in the last term of Eq. (4.2.18). The

reason is simple, because dpc
dη

= 0 for the unperturbed distribution function. In the linearly

perturbed collision-less Boltzmann equation, it becomes perturbatively non-vanishing under

the gravitational interactions. Recall the geodesic equation in the conformal Newtonian

gauge:
dpc
dη

= pcφ̇− ε(pc, η)n̂ · ~∇φ, (4.2.20)

where ε(pc, η) is the co-moving energy defined as

ε(pc, η) =
√

p2c +m2a2. (4.2.21)

m is the mass of the DM particles, and ~v = d~x/dη = ~pc/ε. Inserting Eq. (4.2.20) into

(4.2.18) and Fourier expanding the linearly perturbed collision-less Boltzmann equation in

the k-space, we find for F1 that

∂

∂η
F1(~x, pc, n̂, η) + i

pc
ε
(n̂ · ~k) F1(~k, pc, n̂, η) +

df̃0
dpc

[
pcφ̇− i(n̂ · ~k)εφ

]
= 0. (4.2.22)

By solving Eq. (4.2.22), we obtain the time evolution of F1, and calculate physical quantities

such as the perturbed number density and the perturbed energy density defined as

δ =

∫
dyy2F1(y, η), (4.2.23)

δρ

ρ0
=

∫
dyy2F1(y, η)ε(y, η)∫
dyy2f̃0(y)ε(y, η)

. (4.2.24)
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To simplify the notation, we replace pc by q. Correspondingly the linearly perturbed collision-

less Boltzmann equation becomes

∂

∂η
F1(~k, q, n̂, η) + i

q

ε
(n̂ · ~k) F1(~k, q, n̂, η) +

df̃0
dq

[
qφ̇− i(n̂ · ~k)εφ

]
= 0. (4.2.25)

4.2.2 Formal Solution Of The Linearly Perturbed Collision-less Boltzmann Equa-

tion

As pointed out previously, we need to solve Eq. (4.2.25) to find the time evolution of F1.

Formally, we can get the solution very easily. We combine the first two terms in Eq. (4.2.25)

as a total derivative by multiplying Eq. (4.2.25) by e
i~k·∫ η

η0
~v(η′)dη′

, where ~v is given in (4.2.3)

and ~l is defined as

~l =

∫ η

η0

~v(η′)dη′. (4.2.26)

~l corresponds to the free steaming distance of DM particles with momentum ~q, namely the

distance traveled by these DM particles freely from time η0 to η. Let µ = n̂ · k̂. In terms of

l and µ, we obtain the formal solution

F1(k, q, µ, η)

= e−ikµ(l−l0)F1(k, q, µ, η0)− q
df̃0
dq

∫ η

η0

dη′ e−ikµ(l−l′)
(
φ̇(k, µ, η′)− ikµ

ε

q
φ(k, µ, η′)

)
,

(4.2.27)

where l, l′, l0 correspond to Eq. (4.2.26) with upper limits η, η′ and η0 respectively. Eq. (4.2.27)

gives the formal solution of the perturbed distribution function. To actually get an expres-

sion of F1, we need to know the gravitational potential φ and carry out the integral explicitly.

From the linearly perturbed Einstein equation, time evolution of φ in the conformal Newto-

nian gauge is governed by [112, 281]

φ(~k, η) + 3
H
k

(
φ̇(~k, η)

k
+

H
k
φ(~k, η)

)
= −3

4

k2
eq

k2ã2

[
ã

(
δρ

ρ

)

m

+

(
δρ

ρ

)

r

]
, (4.2.28)

where H is defined as:

H =
˙̃a

ã
. (4.2.29)
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Again, the dot stands for derivative with respect to the conformal time η, and ã is the scale

factor divided by aeq (See Eq. (4.1.3)). When the universe is RD, ã ¿ 1, (δρ/ρ)r dominates

the density perturbation while when the universe is MD, ã À 1, (δρ/ρ)m becomes dominant.

2

Recall that δρ{r,m} are related to F1 as indicated in Eqs. (4.2.23) and (4.2.24), making

(4.2.27) a self-consistent equation. According to GR, the gravitational potential φ and F1

form a coupled system and need to be solved together. When the universe is in the RD

era, contribution from (δρ/ρ)m is totally negligible. In such a case, φ is analytically solvable

[112, 281], it is determined by acoustic oscillations of the photon fluid and given by

φ(k, η) = −3φi

z√
3
cos( z√

3
)− sin( z√

3
)

(
z√
3

)3 , (4.2.30)

where φi is the initial value and z = kη with k being the co-moving wave vector. The 1/
√
3

represents the sound speed in the photon fluid. z is a useful quantity because 2π/k = λ

corresponds to the size of the perturbation modes. When z < 2π, λ > η, these modes

are outside of the co-moving horizon; for z > 2π, the corresponding modes are within the

horizon. The behavior of φ in the RD era is illustrated in Figure 13, from which we see that,

for any given k, the perturbed gravitational potential drops dramatically (cubic power law,

see z−3 in Eq. (13)) after the corresponding perturbation mode enters the horizon.

Similarly, when the universe enters in the MD era, Eq. (4.2.28) can also be simplified

because now matter density perturbations dominate, and radiation density perturbations

can be safely neglected [112, 281]. Moreover, all the perturbation scales responsible for the

structures observed today have been well into the co-moving horizon before matter-radiation

equality, therefore, the corresponding equation for φ reduces to the familiar Newtonian Pois-

son equation, namely

φ(~k, η) = −3

4

k2
eq

k2ã

(
δρ

ρ

)

m

. (4.2.31)

2In the CDM case, (δρ/ρ)m dominates over (δρ/ρ)r in the RD era soon after perturbation modes enter
the horizon. This phenomenon is called radiation cross-over, which will be discussed in the following.
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Figure 13: Perturbed gravitational potential φ in the RD era.

4.2.3 Initial Condition

From the physical point of view, initial conditions are determined by inflation. At such

early time, all the perturbation modes that we are interested in are outside of the horizon,

therefore, we only need to consider super-horizon modes, corresponding to taking k → 0.

According to Eq. (4.2.27), F1 becomes

F1(k, q, µ, η) = F1(k, q, µ, η0)− q
df̃0
dq

∫ η

η0

dη′φ̇

= F1(k, q, µ, η0)− q
df̃0
dq

(
φ(k, η)− φi(k)

)
, (4.2.32)

where φi(k) is the initial value of the gravitational potential generated during inflation. For

the radiation components,it is useful to write F1 as

F1(k, q, µ, η) = −Θr(k, µ, η)q
df̃0
dq

, (4.2.33)

where the subscript r represents the radiation component. Combining Eqs. (4.2.32) and

(4.2.33), we have, for the super-horizon modes of radiation components,

Θr(k, µ, η)− φ(k, η) = Θri(k)− φi(k) = const.; (4.2.34)
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For matter density perturbations, it is helpful to calculate the number density perturbation

δ, where

δ =

∫
d~qF1(k, q, µ, η) = 3φ(k, η) + δi − 3φi(k), (4.2.35)

thus, for the super-horizon modes of matter components,

δ − 3φ(k, η) = δi − 3φi = const.. (4.2.36)

Now, let us consider the gravitational potential in Eq. (4.2.28). Because i) k → 0 and ii) the

early universe is completely RD, Eq. (4.2.28) reduces to

Hφ̇(~k, η) +H2φ(~k, η) = −H2

2

(
δρ

ρ

)

r

. (4.2.37)

In the RD era,

H =
1

η
, (4.2.38)

and

δr :=

(
δρ

ρ

)

r

= 4Θr0. (4.2.39)

Here Θr0 is the monopole of Θr, which is defined as

Θr0(k, η) :=

∫ 1

−1

dµ Θr(k, µ, η)P0(µ). (4.2.40)

P0(µ) is the 0th-order Legendre polynomial. Similarly, the lth-order multipole is just

Θrl(k, η) =

∫ 1

−1

dµ Θr(k, µ, η)Pl(µ), (4.2.41)

where Pl is the lth-order Legendre polynomial. Since all physically interesting perturbation

modes are outside of the horizon at such early time (equivalent to setting k → 0), a hypothet-

ical observer would see a homogeneous and isotropic universe. All higher order multipoles

Θrl are negligible compared with Θr0, thus

Θr0 ' Θr. (4.2.42)

Plugging Eqs. (4.2.38), (4.2.39) and (4.2.42) into (4.2.37), we obtain

ηφ̇(~k, η) + φ(~k, η) = −2Θr0. (4.2.43)
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Recall that Θr − Φ = const.. Differentiating Eq. (4.2.43), we get

φ̈+
4

η
φ̇ = 0. (4.2.44)

There are two independent solutions for φ: φ ∝ const. and φ ∝ η−3. The second solution

decays fast, quickly becomes sub-leading, yielding a physically irrelevant solution. Therefore,

φ is a constant at the beginning. This constant, called φi, is determined by the details of

inflation. By making use of Eq. (4.2.43) again, we find

φi = −2Θr0 ⇒ Θr0 = −1

2
φi. (4.2.45)

Correspondingly, according to Eq. (4.2.34), for super-horizon perturbation modes,

φ−Θr =
3

2
φi. (4.2.46)

Now, let us focus on the matter component, which satisfies δ − 3φ = const.. Plus the

condition Θr − φ = const., we have

δ − 3Θr = const. (4.2.47)

If the constant in 4.2.47 equals zero, it is called the adiabatic initial condition; if the constant

is non-vanishing, it is called the isocurvature initial condition. In this paper, we adopt the

adiabatic initial condition which is consistent with the CMB data [195, 202], therefore,

δi = 3Θr0 = −3

2
φi; δ − 3φ = −9

2
φi (4.2.48)
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4.2.4 Transfer Function and Super-horizon Mode

After choosing the initial condition, we can derive the time evolution of density perturbations.

In this section, we first study the super-horizon modes, which are used to scale the transfer

function, one of the most important physical observables in cosmology. From the previous

section, we known that for super-horizon perturbation modes,

Θr0 − φ = −3

2
φi, δ − 3φ = −9

2
φi. (4.2.49)

As long as we know the time evolution of φ, we also know that of Θr0 and δ. To study φ, we

again consider the Einstein equation (4.2.28). With Eq. (4.2.49) and the condition k → 0

for super-horizon modes, we rewrite (4.2.28) as

ã ˙̃aφ̇(~k, η) + ˙̃a2φ(~k, η) = −3

4
k2
eq

[
(4 + 3ã)φ− (6 +

9

2
ã)φi

]
. (4.2.50)

Changing variable d
dη

→ d
dã
, we obtain

φ̃′ +
5ã+ 6

2ã(1 + ã)
φ̃ =

3(4 + 3ã)

4ã(1 + ã)
, (4.2.51)

where φ̃ = φ/φi and φ̃′ = dφ̃/dã. Introduce a function

f(ã) =
ã3√
1 + ã

, (4.2.52)

then
1

f(ã)

d

dã

[
f(a)φ̃

]
=

3(4 + 3ã)

4ã(1 + ã)
. (4.2.53)

With the initial condition φ̃ = 1 at ã = 0, we can solve for φ, which gives

φ =
φi

10ã3

(
9ã3 + 2ã2 − 8ã− 16 + 16

√
1 + ã

)
. (4.2.54)

In Figure 14, we plot the behavior of φ̃ as a function of ã.

During most of the evolution, φ remains nearly constant. It varies smoothly around

matter-radiation equality, before which it maintains the initial value φi. While at late time,

as ã → ∞,

φ ' 9

10
φi. (4.2.55)

92



−3 −2 −1 0 1 2 3
0.6

0.7

0.8

0.9

1

1.1

lg ã
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Figure 14: Time evolution of gravitational potential φ for super-horizon modes. The dashed line
corresponds to the Matter-Radiation equality.

With the relation (4.2.49) in mind, we conclude that for super-horizon modes, both radiation

and matter density perturbations remain nearly constant. The transfer function T (k), which

plays a significant role in structure formation in the linear region, is defined as

T (k) :=
φ(k, a → ∞)

φsuper-horizon(k, a → ∞)
=

10

9φi

φ(k, a → ∞). (4.2.56)

In the following, we obtain the transfer functions for various DM particles.

4.3 CDM AND WDM: DIFFERENT EVOLUTION HISTORIES

We are ready to discuss the physically relevant scales of density perturbation, which are

responsible for the structures observed today. The time evolution of these perturbations

depends on the properties of DM particles, and lead to very different transfer functions.

According to their free-streaming properties, different DM particles are classified into three

categories, CDM, WDM and HDM. CDM features small velocity dispersion and has the
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shortest free-streaming distance, it is usually described by a heavy particle. 100 GeVWIMPs,

e.g., neutralinos predicted in super-symmetric theories beyond the SM, are the most popular

CDM candidate. They decouple from LTE around the temperature T = 10 MeV. On the

other hand, HDM has the longest free streaming distance that leads to top-down structure

formation. Standard model neutrinos are well-known HDM candidates. However, current

cosmological observations have excluded the possibility of HDM being the major DM com-

ponent [194, 112]. Therefore, we consider CDM and WDM only.

WDM has free streaming distance in between CDM and HDM. Since current cosmo-

logical observations on large scales agree excellently with theoretical predictions based on

the CDM scenario, the free-streaming distance of WDM must not conflict with these ob-

servations. To meet these requirements, keV sterile neutrinos with free steaming length

of about Mpc scale are a proper WDM candidate as discussed in Sec. 2.3. They yield

the same results for large scale perturbations but are expected to give different results for

small scale perturbations, thus potentially solving the small scale problems in cosmology

[244, 191, 226, 179, 138, 81, 93, 282]. As mentioned previously, sterile neutrinos can be

produced through different mechanisms in the early universe. In this chapter, we consider

two mechanisms, yielding the distribution functions f0 given by Eqs. (4.2.10) and (4.2.11).

The time evolution of CDM has been thoroughly studied both analytically and compu-

tationally at small scales. We consider CDM here as a comparison with WDM as well as

using it as a benchmark for the calculation of the WDM case. The time evolution of CDM is

determined by two scales: the co-moving horizon, which separates the super-horizon and the

sub-horizon perturbation modes, and matter-radiation equality, separating the RD universe

from the MD universe. These two scales are illustrated in panel (a) of Figure 15. These

two scales divide the entire region into four sub-regions. Each sub-region is well understood

analytically. An exact connection of these sub-regions requires numerical fitting, but a very

good approximation (with less than 10% error) can be achieved analytically [113]. As for

keV sterile neutrinos, we follow the same strategy. However, they involve one more scale

than WIMPs since they decouple at the temperature of electroweak scale, much higher than
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the mass of sterile neutrinos. At that time, sterile neutrinos are produced fully relativistic,

behaving as a radiation component. As the universe evolves, the temperature goes down,

gradually becoming lower than the mass of sterile neutrinos. When this happens, sterile

neutrinos transform from relativistic state to non-relativistic state and their clustering prop-

erties change dramatically. For keV sterile neutrinos, the transition temperature is roughly

the same as the mass scale, and the universe is still in deep RD era. Therefore, different

from the WIMPs case, there are three scales involved in time evolution of sterile neutrinos:

i) aNR, the value of the scale factor when sterile neutrinos transform from relativistic to

non-relativistic states; ii) aeq, separating RD and MD universe; iii) finally, η, the co-moving

horizon, separating sup-horizon and sub-horizon perturbation modes. The last two scales are

the same as WIMPs while the first one is unique for sterile neutrinos, as indicated in panel

(b) of Figure 15. We can estimate the value of aNR by noting that according to Eq. (4.2.21),

sterile neutrinos are relativistic if q À ma and are non-relativistic if q ¿ ma. The transition

is defined to satisfy maNR =
√

〈q2〉 such that

ãNR =

√
〈q2〉

maeq
:=

√
〈V 2

eq〉, (4.3.1)

where the bracket 〈· · · 〉 refers to the statistical average. Correspondingly, 〈q2〉 is the average
squared co-moving momentum of the WDM particles, and 〈V 2

eq〉 is the average squared veloc-

ity at matter-radiation equality. Since y = q/T0,d with T0,d being the decoupling temperature

today, we find,

ãNR =
√

〈V 2
eq〉 =

T0,d

maeq

√
y2 ' 7.59× 10−4

√
y2

(
keV

m

)(
2

gd

)1/3

. (4.3.2)

The values of y2 for the distributions under our consideration are given in Eq. (4.2.16),

from which we find

√
y2 ∼ O(1) for both DW and BD sterile neutrinos. Correspondingly,

ãNR ¿ 1 for keV sterile neutrinos, meaning that indeed the universe is still deep in the RD

era. Therefore, according to Eq. (4.1.10), ãNR ' ηNR/η∗, yielding

ηNR ' η∗
√

〈V 2
eq〉. (4.3.3)

ηNR ' 0.2 (Mpc)−1 if taking m ∼ keV and

√
y2 ∼ O(1), which corresponds to the co-

moving horizon at the transition time. For perturbation modes larger than ηNR, they enter
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the co-moving horizon when sterile neutrinos become non-relativistic, thus follow the similar

evolution history as WIMPs. However, for perturbation modes smaller than ηNR, they enter

the co-moving horizon when sterile neutrinos are still relativistic, thus experience a different

evolution history. In this chapter, we focus on these small scales and study their time

evolution and compare with that of WMIPs.

λ

Figure 15: Summary of time evolution of various perturbations modes of WIMPs and sterile
neutrinos. Panel (a) is for WIMPs and panel (b) is for sterile neutrinos. Each λ-value corresponds to
one perturbation mode. The scale factor also labels the time arrow. For each case, we demonstrate
the important scales involved in the time evolution, as discussed in detail in the context. The
shaded regions of panel (a) show the analytically solvable regions, which has been thoroughly
studied in [112]. The shaded area in panel (b) emphasizes the perturbation modes experienced
different evolution history from that of WIMPs.

4.3.1 Our Strategy

Our strategy of solving the problem is as follows: as pointed out previously, small scale

perturbations of sterile neutrinos experience three evolution stages. When they first enter

the horizon, namely stage one, sterile neutrinos are fully relativistic. Later, during stage

two, when the temperature of the universe drops below the mass of sterile neutrinos (∼
keV), they become non-relativistic while the universe is still in the RD era. Finally, in stage

three, the universe becomes MD and sterile neutrinos are non-relativistic. We make use

of the formal solution (4.2.27) to solve for each stage individually, and then connect them
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together because the collision-less Boltzmann equation is a first order differential equation

in time, the solution at the end of the previous stage is the initial condition for the next

stage. In practice, sterile neutrinos transform smoothly from relativistic to non-relativistic

status. However, we neglect the details of the transition in the calculation and connect the

relativistic and non-relativistic solutions directly together. Despite the error introduced in

such an approximation, the main physical conclusions are not affected, as demonstrated by

a numerical analysis.

4.3.2 Free Streaming Distance of CDMs and WDMs

For later convenience, let us compare the free streaming distance of CDM and WDM in

this section. In particular, we only consider the three distributions discussed in Sec. 4.2.1.1,

namely the distribution functions of WIMPs, DW and BD sterile neutrinos. In addition to

the scales that separate the three stages of the time evolution of DM density perturbations,

free streaming length is another important quantity that determines the growth of structures.

It describes the motion of the DM particles that works against the gravitational attraction.

According to Eq. (4.2.26),

l − li =

∫ η

ηi

v(η′)dη′ =
∫ η

ηi

dη′
q

ε
. (4.3.4)

For relativistic particles, ε ' q,

l − li = η − ηi. (4.3.5)

The free streaming distance is of the same order as the co-moving horizon size, therefore, all

perturbation modes within the horizon are suppressed and no structure can grow. While in

the non-relativistic limit, ε ' ma, thus

l − li ' q

m

∫ η

ηi

dη′

a(η′)
. (4.3.6)

Recall that, in a universe with only radiation and matter components,

ã =
η

η∗

(
1 +

η

4η∗

)
. (4.3.7)
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With the above relation, we obtain

k(l − li) =
αy

2
ln

∣∣∣∣∣
z +

√
z2 + α2ȳ2/4

zi +
√

zi2 + α2ȳ2/4

∣∣∣∣∣

'





αy

2
ln

∣∣∣∣
η

ηi

∣∣∣∣ the RD era (ã ¿ 1)

αy 2η∗

(
1

ηi
− 1

η

)
the MD eta (ã À 1)

(4.3.8)

where z = kη and y = q/T0,d as before. The new variable α is defined as

α := 2
√
2k

T0,d

m aeqkeq
' 0.22 k

(
2

gd

)1/3(
keV

m

)
Mpc, (4.3.9)

Here T0,d is the decoupling temperature today and gd is the relativistic degrees of freedom

at decoupling of the DM component. The free streaming distance in the MD era is much

smaller than that in the RD era, which means structure growth mainly happens during the

MD era. It is worthwhile to point out that l depends on f0 only in the non-relativistic

limit, as shown explicitly in (4.3.5) and (4.3.8). Since all physical observables correspond to

statistical average over y, the average value of the free streaming distance is proportional to√
y2 for any given distribution f0. For the distributions of our interest, y is strongly peaked

around

√
y2 as given by Eq. (4.2.16). Therefore, from (4.3.8), the quantity α

√
y2 scales the

free streaming distances of non-relativistic DM particles, becoming a convenient quantity to

compare for different distribution functions. For later convenience, let us define

κ := α

√
y2 = 0.22 k

√
y2

(
2

gd

)1/3(
keV

m

)
. (4.3.10)

Thus, from (4.2.16), we obtain

κ = α

√
y2 =





0.7914 k Mpc

(
2

gd

)1/3(
keV

m

)
DW ,

0.6417 k Mpc

(
2

gd

)1/3(
keV

m

)
BD,

0.3811× 10−6 k Mpc

(
2

gd

)1/3(
100GeV

m

)1/2(
10MeV

Td

)1/2

WIMPs.

(4.3.11)

From (4.3.11), the free steaming distance of sterile neutrinos is of about the order of 1Mpc

(cluster scale), but that of WIMPs is much smaller, only a few tenths of a pc. Hence, the free
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streaming effect of WIMPs is totally negligible because its free streaming distance is much

smaller than the scale of any cosmological structure of interest, leading to the approximation

lWIMPs ' 0 throughout the entire history of structure growth. Under such an approxima-

tion, density perturbations of WIMPs are greatly simplified. In the following discussion we

will show that the power spectrum and the transfer function of WIMPs are independent

of f0. From the numerical point of view, the most popular codes to calculate the power

spectrum in the linear region, e.g., CMBFAST [255, 291, 290] and CAMB [203], are dealing

with CDM. Therefore, no information of f0 is included in these codes. To obtain an accurate

power spectrum (transfer function) for sterile neutrinos (or other WDM candidates), one

needs to modify these programs and include the information of the unperturbed distribution

function. This is a computationally intensive task.

To get a deeper physical insight, in analogy with the Jean’s wave vector in the fluid

perturbations, we introduce kfs(t) such that

kfs(t) =

√
4πGρm(t)

a(t)
√

〈V 2(t)〉 , (4.3.12)

where

ρm(t) =
ρm0

a(t)3
, (4.3.13)

〈V 2(t)〉 =
〈V 2

0 〉
a2(t)

. (4.3.14)

ρm0 and 〈V 2
0 〉 are the values of ρm and 〈V 2〉 today. Direct evaluation gives

〈V 2
0 〉 = y2

(
Td,0

m

)2

. (4.3.15)

Because density perturbations grow significantly since matter-radiation equality, kfs(teq),

defined as the free streaming wave vector, is of special interest, which gives

kfs = kfs(teq) =
2π

λfs

=

√
3

2

keq√〈V 2(teq)〉
. (4.3.16)
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Correspondingly, λfs is called the free streaming length. Recall the expression of ηNR in

Eq. (4.3.3), we find

ηNR =
4π√
6
λfs =

√
3√
2

1

kfs
. (4.3.17)

Therefore, the free streaming length and ηNR are of the same order. For any mass and dis-

tribution function of DM particles, we can calculate the free streaming wave vector directly.

For 1 keV DW and BD sterile neutrinos, we get

k
(DW )
fs ' 7.7 (Mpc)−1, (4.3.18)

k
(BD)
fs ' 14.12 (Mpc)−1. (4.3.19)

Since ηNR describes the transition of sterile neutrinos from relativistic stage to non-relativistic

stage, perturbation scales smaller (larger) than ηNR enter the horizon when the WDM parti-

cles are relativistic (non-relativistic); on the other hand, as an analogy to the Jean’s length,

kfs = 2π/λfs separates the perturbation scales that undergo substantial growth from those

suppressed by free streaming effect. Since ηNR and λfs are of the same order, it means

that density perturbations of WDM mainly grow when the particles become non-relativistic.

Based on the above observation, the dimension-less quantity κ turns out useful, correspond-

ing to
κ

2
= α

√
y2 = kηNR =

√
3√
2

k

kfs
. (4.3.20)

It implies that κ & 2 corresponds to perturbation modes entering the horizon when the

particles are relativistic while κ . 2 corresponds to the modes entering the horizon non-

relativistically.

Finally, we would like to point out that it is the heavy mass of WIMP particles that leads

to a rather small velocity dispersion and dramatically reduces their free streaming distance.

l = 0 actually corresponds to the limit m → ∞, namely α ' 0. In the following, we will

first discuss the time evolution of WIMPs and then that of sterile neutrinos. As we take

the limit α → 0, our results for sterile neutrinos are expected to recover those of WIMPs.

In this sense, CDM serves as a special case for the general studies on the time evolution of

WDM and as a benchmark for our WDM calculation.

100



4.4 CDM CASE: TIME EVOLUTION AND THE TRANSFER FUNCTION

For WIMPs, they are non-relativistic since the end of inflation, where the seeds of structure

formation are generated. Therefore, we only need to consider the non-relativistic limit of

the formal solution (4.2.27), corresponding to ε ' ma. The formal solution becomes

F1(k, q, µ, η) = e−ikµ(l−li)F1(k, µ, ηi)− q
df̃0
dq

∫ η

ηi

dη′ e−ikµ(l−l′)
[
φ̇(k, µ, η′)− ikµ

m

q
φ(k, µ, η′)

]
.

(4.4.1)

The subscript i labels the initial condition. It turns out convenient to work directly with the

perturbed number density δ instead of F1 because δ is equivalent to the perturbed energy

density in the non-relativistic limit. By introducing a new variable

ds := dη/a(η) (4.4.2)

and recalling that l = 0 for WIMPs, we obtain

δ(k, µ, s) =

∫
d~q F1(k, q, µ, s)

= δi − 3φi + 3φ(k, s)− k2

∫ s

si

ds′a(s′)2(s− s′)φ(k, s′). (4.4.3)

As k → 0, Eq. (4.4.3) becomes δ(k, µ, s)− 3φ(k, s) = δi − 3φi, recovering our previous result

of super-horizon modes. Using the initial condition δi = −3φi/2, we have

δ(k, s) = −9

2
φi + 3φ(k, s)− k2

∫ s

si

ds′a(s′)2(s− s′)φ(k, s′). (4.4.4)

The gravitational potential φ behaves differently in the RD and MD era (See Eqs. (4.2.30)

and (4.2.31).), thus we need to consider these two cases separately. To do that, let us first

consider the new variable s. According to its definition in (4.4.2), straightforward calculation

shows

s =
η∗
aeq

ln

∣∣∣∣
√
1 + ã− 1√
1 + ã+ 1

∣∣∣∣ =
2η∗
aeq

u, (4.4.5)

where ã is given by (4.1.3), and u is defined as

u :=
1

2
ln

∣∣∣∣
√
1 + ã− 1√
1 + ã+ 1

∣∣∣∣ . (4.4.6)

It is a useful variable for our later discussion.
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4.4.1 Density Perturbations of WIMPs in the RD Era

When the universe is RD, φ is given by Eq. (4.2.30). Plugging it into (4.4.4) and carrying

out the integration, we obtain

δ(k, η) = 9φi

{
−1

2
+

sinx− x cosx

x3
− ln

(
x

xi

)
sinxi

xi

+
sinxi

xi

− sinx

x
+ Ci(x)− Ci(xi)

}
,

(4.4.7)

where

x :=
z√
3
=

kη√
3

(4.4.8)

and Ci is the cosine integral function [8] defined as

Ci(x) =
∫

dx
cos(x)

x
. (4.4.9)

The initial value xi = 0, leading to

C1(xi)|xi→0 ' γE + ln(xi) +O(x2
i ), (4.4.10)

sinxi

xi

∣∣∣∣
xi→0

' 1. (4.4.11)

γE = 0.577216 is the Euler Gamma constant. Consequently,

δ(k, x) = 6δi

{
γE − 1

2
+ ln x+

x cosx− sin(x)

x3
+

sin(x)

x
− Ci(x)

}
. (4.4.12)

Again, we have made use of the initial condition δi = −3φi/2. Obviously, when x = 0,

δ(k, 0) = δi. In Figure 16, we have shown the behavior of δ in terms of x. Obviously, density

perturbations start to grow since they enter the horizon (kη ' 1). They grow rapidly at the

beginning and slow down after x ' 5. In particular, at very large x,

δ(k, x) ' 6δi

(
γE − 1

2
+ ln x

)
. (4.4.13)

The density perturbations experience a logarithmic growth, as is well-known from a simple

Newtonian study. Based on the discussion above, we conclude that DM density perturbations

can grow in a RD universe even though the gravitational potential φ itself decays cubically

(See Eq. (4.2.30)). On the other hand, in the RD era, photons are undergoing acoustic

oscillations, the magnitude of whose perturbations does not grow at all [112]. To verify this

statement, let us consider the radiation component.
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Figure 16: Time evolution of density perturbations of WIMPs in the RD era with respect to its
initial value. x = kη/

√
3. When x ' 1/

√
3, the perturbation mode enters the horizon and start to

grow. At late times, the density perturbations grow logarithmically, as shown in Eq. (4.4.13)

4.4.1.1 Density Perturbations of Photons in The RD Era The density pertur-

bation of photons is very easy to obtain because i) the gravitational potential φ is already

known in the RD era; ii) in this period, φ is mainly determined by the radiation compo-

nent, contribution from the DM is negligible. Therefore, according to Eq. (4.2.28) and by

neglecting the matter perturbation, we get

(
δρ

ρ

)

r

= −4

3

k2ã2

k2
eq

[
φ(~k, η) + 3

H
k

(
φ̇(~k, η)

k
+

H
k
φ(~k, η)

)]
. (4.4.14)

With the expression of the gravitational potential in (4.2.30), we find

(
δρ

ρ

)

r

= 6φi

(
cosx+

2 cos x

x2
− 2 sin x

x3

)

' 6φi cosx for x À 1. (4.4.15)

Indeed, photons oscillate acoustically as we expect.
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4.4.1.2 Radiation Cross-over Perturbations of the radiation component oscillate in

the RD era with a constant magnitude; and DM density perturbations grow logarithmically

simultaneously. Eventually perturbations of DM will exceed that of the radiation compo-

nent, and become the dominant contribution to the gravitational potential even though the

universe is still in the RD era. This process is called the radiation cross-over. According to

our previous result, for perturbation modes deep inside the horizon,

δr :=

(
δρ

ρ

)

r

' 6φi cosx,

δ ' 9φi lnx.

As shown in Eq. (4.2.28), when ãδ ≥ δr, the DM density perturbations become dominant

for the gravitational potential. The cross-over corresponds to the critical value that

ãδ = δr ⇒ 3

2
ã lnx = cos x. (4.4.16)

Since the left hand side of (4.4.16) is monotonically increasing with respect to ã and cos x ≤ 1,

the cross-over occurs approximately when

ãc lnxc =
2

3
. (4.4.17)

In Figure 17, we show the value of xc for several perturbation modes. It is clear to see that

for the small scale perturbations of our interest, the radiation cross-over happens around

xc

x∗
' O(10−1) ⇒ ηc

η∗
' O(10−1). (4.4.18)

The result is consistent with our previous assumption that the cross-over happens deep in the

RD era. As long as the cross-over happens, DM density perturbations become the dominant

contribution to the gravitational potential φ even though the universe is still RD. From the

perturbation point of view, for simplicity, we call the universe since the radiation cross-over

to be MD. However, its precise meaning is just what is stated here.
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Figure 17: Radiation cross-over for difference perturbation modes. x∗ = kη∗/
√
3 = 83.32 k.

xc/x∗ ¿ 1 means that the cross-over happens deep in the RD era, which is true for the small scale
perturbation modes we are interested in, namely k ≥ 0.2Mpc−1. Moreover, for perturbations larger
than 30 Kpc, x ≥ 0.1x∗ ' 8, the expressions of δr and δ under large x limit are well justified.

4.4.2 Density Perturbations of WIMPs in the MD Era

After radiation cross-over, density perturbations enter the MD era, where φ is described by

Eq. (4.2.31) instead of (4.2.30). Making use of the formal solution in (4.4.4), we divide the

time integral into two parts,

δ(k, s) = −9

2
φi −

9k2
eq

4ãk2
δ(k, s)

−k2

∫ sc

si

ds′a(s′)2(s− s′)φ(k, s′) +
3

4
k2
eqa

2
eq

∫ s

sc

ds′ã(s′)(s− s′)δ(k, s′).

(4.4.19)

In the first and second time integrals, the gradational potential φ is given by Eqs. (4.2.30)

and (4.2.31) in the RD and MD eras respectively. Note that for the small scale perturbation

modes under our consideration,
k2eq
k2ã

¿ 1, thus the second term in Eq. (4.4.19) can be safely

neglected. Differentiate Eq. (4.4.19) with respect to s twice, the first integral vanishes
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because it is only first order in s, thus, we obtain

d2δ

ds2
− 3

4
k2
eqa

2
eqã(s)δ(k, s) = 0. (4.4.20)

4.4.2.1 2nd-order Legendre Equation According to the expression of s in (4.4.5), s

is a function of
√
ã+ 1 only, thus we introduce ζ =

√
ã+ 1 and write

s =
η∗
aeq

ln

(
ζ − 1

ζ + 1

)
. (4.4.21)

Correspondingly,

u =
1

2
ln

(
ζ − 1

ζ + 1

)
. (4.4.22)

In terms of ζ, Eq. (4.4.20) becomes

(ζ2 − 1)
d2

dζ2
δ + 2ζ

d

dζ
δ(k, ζ)− 6δ(k, ζ) = 0, (4.4.23)

corresponding to a 2nd-order Legendre equation. Therefore, density perturbations of WIMPs

in the MD era are governed by a 2nd-order Legendre equation, whose two independent

solutions are the Legendre polynomials P2(ζ) and Q2(ζ):

P2(ζ) =
1

2
(3ζ2 − 1), (4.4.24)

Q2(ζ) =
1

2
P2(ζ) ln

(
ζ + 1

ζ − 1

)
− 3

2
ζ. (4.4.25)

The general solution of δ is a superposition of P2 and Q2, namely

δ(k, ζ) = AP2(ζ) + BQ2(ζ)

=
A

2
(3ζ2 − 1) +

B

4
(3ζ2 − 1) ln

(
ζ + 1

ζ − 1

)
− 3B

2
ζ. (4.4.26)

The coefficients A and B are determined by smoothly connecting density perturbations in

the MD era with those in the RD era. Thus,

δMD(k, ηc) = δRD(k, ηc), (4.4.27)

d

dηc
δMD(k, η) =

d

dηc
δRD(k, η), (4.4.28)
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where δMD is the density perturbation in the MD era, given by (4.4.26); δRD is the density

perturbation in the RD era as shown in (4.4.12); ηc is the time for the radiation cross-over.

From previous discussion, we show that it is reasonable to assume the large x limit for the

radiation cross-over, thus,

δRD(k, ηc) ' −9φi

(
lnxc + γE − 1

2

)
= −9φi

[
ln ãc + ln

(
x∗eγE−1/2

) ]
, (4.4.29)

where x∗ = kη∗/
√
3. Here we have made use of the relation between ã and η in Eq. (4.1.3).

For dδ/dηc, we obtain
dδ

dηc
= −9φp

(
dãc
dηc

)
1

ηc
. (4.4.30)

On the other hand, at the radiation cross-over

ηc
η∗

∼ O(10−1) ⇒ ãc ∼ O(10−1). (4.4.31)

As ãc is a small quantity, we can Taylor expand Eq. (4.4.26) in terms of ãc to obtain the

expressions of δMD and dδMD/dηc, which yields

δMD(k, ηc) = −B

2
ln ãc + A+ (ln 2− 3

2
)B, (4.4.32)

d

dηc
δ(k, ηc) = −B

2

(
dãc
dηc

)
1

ηc
. (4.4.33)

Plugging δMD, δRD and their derivatives into the initial conditions (4.4.27) and (4.4.28), we

find

A = −9φi ln
(
4x∗eγE−7/2

)
, (4.4.34)

B = 18φi. (4.4.35)

Finally, the density perturbations of WIMPs in the MD era is given by

δ(k, η) = −9φi

2

{
(3ã+ 2)

[
ln

(√
ã+ 1− 1√
ã+ 1− 1

)
+ ln(4x∗) + γE − 7

2

]
+ 6

√
ã+ 1

}
. (4.4.36)

In Figure 18, we demonstrate the transition of δ from the RD region to the MD region.
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Figure 18: Transition of δ from the RD region to the MD region for various perturbation modes.
The transition gets better for small scale modes k < 0.5Mpc−1.

4.4.2.2 Transfer Function of WIMPs For structure formation in cosmology, one of

the most interesting quantities is the transfer function T (k) because it is directly related to

observations. In Eq. (4.2.56), we have defined the transfer function T (k) as

T (k) =
10

9φi

φ(k, a → ∞). (4.4.37)

Since the universe is MD as a → ∞, φ is related to δ through the Poisson equation (4.2.31)

at small scales when k ¿ keq. Correspondingly, the transfer function becomes

T (k) = − 1

φi

5k2
eq

6k2

δ

ã

∣∣∣∣
ã→∞

. (4.4.38)

As ã → ∞, the density perturbation of WIMPs δ given in Eq. (4.4.36) is asymptotically

equal to

δ(k, η) = −9φi

2
ã

(
ln 4x∗ + γE − 7

2

)
. (4.4.39)
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Therefore, direct calculation shows that the transfer function of WIMPs is given by

TWIMPs(k) =
45k2

eq

4k2

[
ln

(
4kη∗√

3

)
+ γE − 7

2

]
. (4.4.40)

Eq. (4.4.40) agrees with the results of [280] and [172]. Moreover, comparison between the

analytical result (Eq. (4.4.40)) and the numerical fitting has been discussed by Weinberg

in [280], which shows very good agreement within a few percent error. Also, we want to

emphasize that, as pointed out previously, the transfer function of WIMPs is independent of

the distribution function f0, very different from the WDM case discussed in the next section.

4.4.2.3 An Alternative Method: To Compare with the WDM Case In addition

to the method introduced in the previous section, we consider an alternative way of solving

density perturbations of WIMPs in the MD era by making use of the variable u. The main

reason to do so is that it is easier to compare the CDM and WDM cases in this way. First

of all, let us rewrite Eq. (4.4.23) in terms of u, which gives

d2

du2
δ(k, u)− 6ã(u)δ(k, u) = 0. (4.4.41)

It is straightforward to show that

ζ = − cothu. (4.4.42)

Moreover, define ∆(k, u) such that

δ(k, u) = ∆(k, u) + I[k, u], (4.4.43)

where I[k, u] is the density perturbation induced by radiation components given by Eq. (4.4.4):

I[k, u] = −9

2
φi + 3φr(k, u)− 8k2

k2
eq

∫ uc

ui

du′ã(u′)2(u− u′)φr(k, u
′). (4.4.44)

φr is the gravitational potential in the RD era in Eq. (4.2.30). Also, we have applied the

relation between s and u in Eq. (4.4.5). Before the radiation cross-over, δ(k, u) = I[k, u].

Recall that

u =
1

2
ln

(√
ã+ 1− 1√
ã+ 1 + 1

)
, (4.4.45)
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it is always negative. Eq. (4.4.41) is valid for ã ∈ (ã∗,∞), correspondingly, the value of u

lies in (uc, 0), where uc is just

uc =
1

2
ln

(√
ac + 1− 1√
ac + 1 + 1

)
. (4.4.46)

In terms of ∆(k, u), Eq. (4.4.41) becomes,

d2

du2
∆(k, u)− 6ã(u)∆(k, u) = 6ã(u)I[k, u], (4.4.47)

With the initial conditions

∆(k, uc) =
d

du
∆(k, u)

∣∣∣∣
u=uc

= 0. (4.4.48)

We make use of the Green’s function technique to solve Eq. (4.4.47), which gives

∆(k, u) = 6

∫ u

uc

du′G(u− u′)ã(u′)I[k, u′]. (4.4.49)

G(u− u′) is the Green’s function of Eq. (4.4.47) defined as

G(u− u′) =
P2(u)Q2(u

′)− P2(u
′)Q2(u)

W [P2(u), Q2(u)]
. (4.4.50)

Because ∆ and δ obey the same homogeneous equation, P2 and Q2 are just the 2nd-order

Legendre polynomials obtained previously in Eqs. (4.4.24) and (4.4.25). W [P2(u), Q2(u)] is

the Wronskian of the two solutions, which equals one. Since the transfer function corresponds

to the limit ã → ∞, equivalent to u → 0. Asymptotically, we find,

P2(u) ' 3

2

1

u2
' 3

2
ã, (4.4.51)

Q2(u) ' 2

15
u3 ' 2

15
ã−3/2. (4.4.52)

P2 is the linear growing mode and Q2 is the decaying mode. At late time, the growing mode

becomes dominant, thus, the Green’s function becomes

G(u− u′)|u→0 ' P2(u)Q2(u
′) ' 3

2
ã Q2(u

′). (4.4.53)
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Plugging (4.4.53) into Eq. (4.4.49) 3, we obtain

∆(k, u → 0) ' 9ã

∫ 0

uc

du′Q2(u
′)ã(u′)I[k, u′]. (4.4.54)

Correspondingly,

δ(k, u → 0) = I[k, 0] + 9ã

∫ 0

uc

du′Q2(u
′)ã(u′)I[k, u′]. (4.4.55)

Based on our previous discussion in the RD era, density perturbations induced by the radia-

tion component mostly increases logarithmically, I[k, 0] can be safely neglected. Finally, we

have

δ(k, u → 0) ' 9ã

∫ 0

uc

du′Q2(u
′)ã(u′)I[k, u′]. (4.4.56)

The transfer function thus becomes

T (k) = − 1

φi

15k2
eq

2k2

∫ 0

uc

du′Q2(u
′)ã(u′)I[k, u′]. (4.4.57)

It is straightforward to show that this result is consistent with Eq. (4.4.40). In the following,

we will compare this result with the WDM result.

4.5 WDM CASE: TIME EVOLUTION OF STERILE NEUTRINO DENSITY

PERTURBATIONS

In this section, we discuss the time evolution of density perturbations of sterile neutrinos

with the focus of small scale aspects. For perturbation modes smaller than 0.2 Mpc, sterile

neutrinos are still fully relativistic when these perturbations enter the horizon, then they

become non-relativistic in the RD era and finally enter the MD dominant era. We study

each stage individually and finally obtain the transfer function.

3To justify our result, we have made use of another fact that I(k, u) decays fast as u → 0. Only u′ around
uc actually contribute mostly to the integral. Thus for the decaying mode Q2(0)

∫ 0

uc
du′P2(u

′)ã(u′)I[k, u′],
although P2 increases as u → 0, I[k, u′] actually decays faster, thus leaving the integral still negligible
compared to the growth mode.
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4.5.1 Stage I: Relativistic Sterile Neutrinos in the RD Era

When sterile neutrinos are relativistic, ε =
√

q2 +m2a2 ' q and the free streaming distance

l − li = η − ηi according to Eq. (4.3.5). By setting ηi = 0, the formal solution (4.2.27)

becomes

F1(k, q, µ, η) = e−ikµηF1i(k, q, µ)− q
df̃0
dq

∫ η

0

dη′ e−ikµ(η−η′)
(
φ̇(k, µ, η′)− ikµφ(k, µ, η′)

)
.

(4.5.1)

Relativistic sterile neutrinos behave like a radiation component, thus we expand F1 as

F1(k, q, µ, η) = −Θs(k, µ, η)q
df0
dq

, (4.5.2)

where the subscript s represents sterile neutrinos. According to (4.5.1), for Θs, we have

Θs(k, µ, η) = e−ikµηΘsi(k, µ) +

∫ η

0

dη′ e−ikµ(η−η′)
[
φ̇(k, µ, η′)− ikµφ(k, µ, η′)

]
. (4.5.3)

Integrating by parts, we obtain

Θs(k, µ, η) = −φ(k, µ, η) + e−ikµη [Θsi(k, µ) + φi] + 2

∫ η

0

dη′ e−ikµ(η−η′) dφ

dη′
. (4.5.4)

Expanding the angle dependence on µ into Legendre polynomials,

Θs(k, µ, η) =
∞∑

l=0

(−i)l(2l + 1)Pl(µ)Θsl(k, η), (4.5.5)

e−ikµ(η−η′) =
∞∑

l=0

(−i)l(2l + 1)Pl(µ)jl(k(η − η′)), (4.5.6)

where jl is the l-th order spherical Bessel function. Applying these expressions to (4.5.4)

and making use of the relation Θsi = −φi/2, we find

Θsl(z) = −φ(z)δl,0 +
φi

2
jl(z) + 2

∫ z

0

dz′
(
dφ

dz′

)
jl(z − z′), (4.5.7)

where z = kη and z′ = kη′ as before. The gravitational potential φ in the RD era is

given by Eq. (4.2.30). Therefore, Eq. (4.5.7) shows the dynamics of density perturbations
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of relativistic sterile neutrinos in the RD universe. In particular, for sup-horizon modes,

z = kη ∼ 0, and φ = const., yielding

Θsl(z) = −φi

2
δl,0, (4.5.8)

recovering our previous result. Also it is interesting to compute the perturbed number

density of sterile neutrinos, where

δ =

∫
d~qF1(q, µ, η) = 3Θs0. (4.5.9)

Let us focus on Θs0. According to (4.5.7),

Θs0 = −φ(z) +
φi

2
j0(z) + 2

∫ z

0

dz′
(
dφ

dz′

)
j0(z − z′), (4.5.10)

whose behavior is illustrated in Figure 19. The last term of (4.5.10) describes an ISW con-
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Figure 19: Time evolution of Θ0 of relativistic sterile neutrinos in the RD universe. Panel (a) shows
the early time evolution, where perturbation modes just enter the horizon. The initial growth of the
perturbation is due to the ISW effect, reaching maximum around the sound horizon. Eventually
these perturbations damp out because of the strong free-streaming suppression of relativistic sterile
neutrinos. Panel (b) shows the late time evolution, which is compared with the asymptotic behavior
of Eq. (4.5.12).

tribution akin to that in the temperature fluctuations of photons [112, 281]. Due to such an

ISW effect, the density perturbations of sterile neutrinos experience an initial kick right after

entering the horizon, leading to a growth of density perturbations up to the sound horizon, as

shown in the figure. Mathematically, we see that derivative of the gravitational potential φ is
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negative when the perturbation modes enter the horizon, and its modulus increases, reaching

a maximum approximately at the sound horizon kη√
3
' π as shown in Figure 20; meanwhile

the free streaming function j0(z − z′) is approximately constant for z ' z′, therefore the

integrand receives the largest contribution near the upper limit. Combining together, the

total integral peaks near the sound horizon. However, at late time, free streaming effect

becomes dominant. Eventually, these perturbations damp out due to the strong suppression

from free streaming. As z À 1,

jl(z)|zÀ1 ' 1

z
sin

(
z − lπ

2

)
+O(

1

z3
). (4.5.11)

Making use of the asymptotic behavior in (4.5.11) as well as noting that φ decays fast at

large z, we obtain for Θsl,

Θsl(z)|zÀ1 ' 3φi

sin
(
z − lπ

2

)

z

[
5

2
−

√
3 ln

(√
3 + 1√
3− 1

)]
+O(

1

z2
). (4.5.12)

At late time, density perturbations of sterile neutrinos oscillate with the period z = 2nπ and

their magnitude is proportional to z−1. Such an oscillatory behavior makes sterile neutrinos,

as DM particles, distinct from relativistic photons which experience acoustic oscillation with

a different period z/
√
3 = 2nπ, similar to the gravitational potential φ (4.2.30).
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Figure 20: Derivative of the gravitational potential φ in the RD era with respect to z, which leads
to the ISW kick when perturbation modes of relativistic DM particles enter the horizon in the RD
universe.
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Eq. (4.5.12) is valid for z À 1 until sterile neutrinos become non-relativistic. As men-

tioned previously, sterile neutrinos become non-relativistic roughly when the temperature of

the universe drops below their masses, namely T ≤ m, from which we estimate the transition

scale ηNR to be

ηNR ' η∗

(
T0

maeq

)
= 0.112

(
keV

m

)
Mpc. (4.5.13)

For perturbation modes smaller than 0.2 Mpc, zNR = kηNR > 1, thus, Eq. (4.5.12) describes

the perturbations of sterile neutrinos reasonably well when they become non-relativistic.

4.5.2 Stage II and III: Non-relativistic Sterile Neutrinos

After ηNR, sterile neutrinos are non-relativistic; meanwhile, the universe is still deep into the

RD era. As we emphasized in our strategy, we are going to neglect details of the transition

from relativistic to non-relativistic states of sterile neutrinos. Therefore, the sterile neutrinos

are assumed to be fully non-relativistic since ηNR. Again, let us start from the formal solution

(4.2.27). At non-relativistic limit, ε ' ma, the formal solution becomes

F1(k, q, µ, η) = e−ikµ(l−lNR)F1(k, µ, ηNR)

−q
df̃0
dq

∫ η

ηNR

dη′ e−ikµ(l−l′)
[
φ̇(k, µ, η′)− ikµ

m

q
φ(k, µ, η′)

]
.

(4.5.14)

ηNR and lNR respectively label the time and free streaming distance when sterile neutrinos

become non-relativistic. By integrating over F1 and introducing ds = dη/a as defined in

(4.4.2), we obtain the perturbed number density

δ(k, µ, s) = 3φ(k, s) +

∫
d~qe−i kqµ

m
(s−sNR)F1(k, µ, sNR) +

∫
d~q q

df̃0
dq

e−i kqµ
m

(s−sNR)φ(sNR)

+

∫ s

sNR

ds′φ(k, s′)
[
d

ds′
Π2(k, s− s′)− a2k2(s− s′)Π1(k, s− s′)

]
, (4.5.15)

where

Π1(k, s− s′) :=

∫
d~qf̃0e

−i kqµ
m

(s−s′), (4.5.16)

Π2(k, s− s′) :=

∫
d~qq

df̃0
dq

e−i kqµ
m

(s−s′) = −
[
3 + (s− s′)

∂

∂s

]
Π1(k, s− s′). (4.5.17)
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Unlike WIMPs, the free streaming distance of sterile neutrinos cannot be neglected and plays

an important role in the time evolution of density perturbations. It turns out convenient to

write F1(k, µ, sNR) = −q df̃0
dq
Θs(k, µ, ηNR) and

Θs(k, µ, sNR) =
∞∑

l=0

(−i)l(2l + 1)Pl(µ)Θsl(k, sNR), (4.5.18)

where Θsl is given by (4.5.7). Furthermore, by expanding all terms in (4.5.15) with the

Legendre polynomials and integrating over the angular dependence µ making use of the

orthogonality condition of Pl(µ), we get

δ(k, s) = 3φ(k, s)− k2

∫ s

sNR

ds′φ(k, s′)a2(s′)(s− s′)
∫

d~qq2f̃0j0

(
kq

m
(s− s′)

)

+
3φi

2

∫
d~qq

df̃0
dq

j0

(
zNR +

kq

m
(s− sNR)

)

+2

∫
d~qq

df̃0
dq

∫ zNR

0

dzφzj1

(
zNR − z +

kq

m
(s− sNR)

)
. (4.5.19)

As pointed out previously in the CDM case, u is a convenient variable for WDM density

perturbations. Reorganizing Eq. (4.5.19) in terms of u and separating the time evolution

between the RD and the MD eras, we obtain

δ(k, u)− 3φm(k, u)− 6

α

∫ u

uc

du′ã(u′)δ(k, u′)Π(α, u− u′) = I(k, u) (4.5.20)

where

I(k, u) = 3φr(k, u)− 8k2

αk2
eq

∫ uc

uNR

ã2(u′)φr(k, u
′)Π (α, u− u′) du′

+

∫
dyy3

df̃0(y)

dy

{
3φi(k)

2
j0

[
αy(u− uNR) +

κ

2

]

+2

∫ κ
2

0

dz′φr(z
′)j1

[
αy(u− uNR) +

κ

2
− z′

]}
,

Π(α, u− u′) =

∫
dyyf̃0 sin (αy(u− u′)) . (4.5.21)

To obtain Eq. (4.5.20), we have used the facts that y = q/T0,d, κ = α
√

y2, and kq(s−s′)/m =

αy(u − u′) where α is defined in (4.3.9). I(k, u), called the inhomogeneous term, describes

density perturbations up to the radiation cross-over, after which density perturbations evolve
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in the MD era4. Also, we specify the gravitational potential in the RD era (φr) and in the

MD era (φm). From the Poisson equation (4.2.31), for u > uc in the MD era,

φm(k, u) = −3

4

k2
eq

k2ã
δ(k, u), (4.5.22)

For perturbation modes smaller than 0.2 Mpc,
k2eq
k2

¿ 1, leading to φm(k, u) ¿ δ(k, u). We

thus neglect it from Eq. (4.5.20). Finally, we obtain

δ(k, u)− 6

α

∫ u

uc

du′ã(u′)δ(k, u′)Π(α, u− u′) = I(k, u). (4.5.23)

4.5.2.1 Inhomogeneous Equation for Sterile Neutrino Density Perturbations

Similar to the CDM case, to solve Eq. (4.5.23), we first transform the integral equation into

a differential one by differentiating Eq. (4.5.23) twice with respect to u, it yields

d2

du2
δ − 6ã(u)δ + κ2δ =

d2

du2
I(k, u) + κ2I(k, u)− 6α

∫ u

uc

du′ã(u′)δ(k, u′)Π̃(α, u− u′),

(4.5.24)

where Π̃ is the kernel equal to

Π̃(α, u− u′) =
1

N

∫
dy yf0(y)(y2 − y2) sin [αy(u− u′)] . (4.5.25)

Again, introduce the quantity ∆(k, u) = δ(k, u) − I(k, u), correspondingly, Eq. (4.5.24)

becomes

d2

du2
∆(k, u)− 6ã(u)∆(k, u) + κ2∆(k, u) = 6ãI(k, u) + I(k, u), (4.5.26)

where

I(k, u) := −6α

∫ u

uc

du′ã(u′)δ(k, u′)Π̃(α, u− u′). (4.5.27)

It becomes clear now why I(k, u) is called the inhomogeneous term. In particular, note that

the CDM case corresponds to taking α → 0 (See Eqs. (4.3.8) and (4.3.9).), which leads to

κ → 0 as well. Under these limits, Eq. (4.5.26) indeed reduces to the CDM equation in

4We have assumed that uc ≥ uNR, which is justified from the following simple arguments: when sterile
neutrinos are relativistic, small density perturbations are highly suppressed as shown in Eq. (4.5.12), these
perturbations grow only for non-relativistic sterile neutrinos, namely after ηNR. Only when perturbation
modes start to grow, radiation cross-over is possible to happen. Therefore, ηc > ηNR, leading to uc > uNR.
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Eq. (4.4.41). Therefore, the CDM case actually corresponds to a special limit of WDM case

as α → 0.

To solve Eq. (4.5.26), again we apply the Green’s function technique. We first solve

the homogeneous equation, making use of the two independent homogeneous solutions to

construct the Green’s function, then write down the full solution of Eq. (4.5.26) with the

initial conditions:

∆(k, uc) =
d

du
∆(k, u)

∣∣∣∣
u=uc

= 0. (4.5.28)

4.5.2.2 Asymptotic Behavior Before solving the homogeneous equation, it is helpful

to consider the asymptotic behavior first. Recall that u < 0 and goes to zero as ã → ∞
given by (4.4.6). Thus, as u → 0 (ã → ∞)

ã(u) ' 1

u2

∣∣∣∣
limu→0

. (4.5.29)

Consequently, the homogeneous equation becomes

d2

du2
∆(k, u)− 6

u2
∆(k, u) = 0, (4.5.30)

which has two independent solutions gg = u−2 and gd = u3, corresponding to the growing

and decaying modes respectively. At late time, the growing mode becomes dominant because

it exhibits a linear growth proportional to the scale factor ã. This is similar to the CDM case

in the MD era. Then, let us examine the effect of the inhomogeneous terms. In Eq. (4.5.26),

there are two inhomogeneous contributions: i) the inhomogeneous term I(k, u) and ii) the

kernel I(δ, u). Both I(k, u) and I(k, u) are finite as u → 0 due to the exponential decay of

the distribution function, making them sub-leading to 6ãδ. Therefore, the asymptotic linear

growth of gd accurately describes the behaviors of WDM particles at late times.
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4.5.2.3 Homogeneous Equation: 2nd-order Associated Legendre Equation We

are ready to discuss the homogeneous equation

d2

du2
∆(k, u)− 6ã(u)∆(k, u) + κ2∆(k, u) = 0. (4.5.31)

In terms of u, the Wronskian of Eq. (4.5.31) is a constant, which can be obtained from the

asymptotic behavior. However, to solve the homogeneous equation (4.5.31), it turns out

more convenient to work with ζ =
√
ã+ 1 instead of u. In terms of ζ, the homogeneous

equation (4.5.31) becomes

d

dζ

[
(1− ζ2)

d∆

dζ

]
+

(
6 +

κ2

1− ζ2

)
∆ = 0. (4.5.32)

Remarkably, Eq. (4.5.32) corresponds to a 2nd-order associated Legendre equation of ζ. As

α → 0, it reduces to the CDM case, an ordinary 2nd-order Legendre Equation (4.4.23), as

expected. Introduce m = iκ, then the two independent solutions of the 2nd-order Legendre

equation, Pm
2 (ζ) and Qm

2 (ζ), are respectively equal to:

Pm
2 (k, ζ) =

1

Γ(1−m)

(
1 + ζ

1− ζ

)m/2

F (−2, 3; 1−m;
1− ζ

2
), (4.5.33)

Qm
2 (k, ζ) =

√
π

23
Γ(m+ 3)

Γ(2 + 3/2)

(1− ζ2)m/2

ζm+3
F (

m+ 4

2
,
m+ 3

2
; 3.5;

1

ζ2
). (4.5.34)

Here F represents the hyper-geometric function [8]. Since m is purely imaginary, both P±m
2

and Q±m
2 are solutions of Eq. (4.5.32) and they are complex in general. For the physical

reason, only real parts are needed. Furthermore, to recover results for the CDM case under

the limit α → 0, Pm
2 (k, ζ) and Qm

2 (k, ζ) are reorganized to give two new homogeneous

solutions of Eq. (4.5.32). First of all, define

gg(k, ζ) := Re
[
Γ(1−m)(−1)−m/2Pm

2 (k, ζ)
]
. (4.5.35)

Expanding (4.5.35), we obtain,

gg(k, ζ) = cos (κu(ζ))

[
3(2− κ2)

(κ2 + 1)(κ2 + 4)
(ζ − 1)2 +

3

κ2 + 1
(ζ − 1) + 1

]

+sin (κu(ζ))

[
9κ

(κ2 + 1)(κ2 + 4)
(ζ − 1)2 +

3κ

κ2 + 1
(ζ − 1)

]
. (4.5.36)
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As u → 0, ζ goes to infinity and,

gg(k, ζ) ' 3(2− κ2)

(κ2 + 1)(κ2 + 4)
ζ2 ' 3(2− κ2)

(κ2 + 1)(κ2 + 4)
ã. (4.5.37)

Indeed, as indicated by the name, gg(k, ζ) corresponds to the growing mode of density

perturbations. To simplify the notation, introduce an angle θ such that

cos θ =
2− κ2

√
(κ2 + 1)(κ2 + 4)

, sin θ =
3κ√

(κ2 + 1)(κ2 + 4)
. (4.5.38)

Consequently,

gg(ζ) = sin θ cos (κu− θ)
1

κ

(
ζ2 − κ2 + 1

3

)
− sin θ sin (κu− θ) ζ. (4.5.39)

Similarly, the other independent solution, defined as the decaying mode, is given by

gd(ζ) := Re

[
eκπ

Γ(3−m)

Γ(3)

sinh(κπ)

κπ
Qm

2 (ζ)

]
. (4.5.40)

By expanding gd, we obtain

gd(ζ) =
sin(κu)

2κ

(
κ2 + 1− 3ζ2

)− 3ζ

2
cos(κu). (4.5.41)

Asymptotically, as u → 0,

gd(ζ) ' (κ2 + 4)(κ2 + 1)

30
ζ−3 ' (κ2 + 4)(κ2 + 1)

30
ã−

3
2 . (4.5.42)

As expected, gd is indeed decaying at late time. Write gg and gd in terms of u by using the

relation ζ = − coth(u), thus

gg(k, u) = sin θ cos (κu− θ)
1

κ

(
coth(u)2 − κ2 + 1

3

)
+ sin θ sin (κu− θ) coth(u).

(4.5.43)

gd(k, u) =
sin(κu)

2κ

[
κ2 + 1− 3 coth(u)2

]
+

3

2
cos(κu) coth(u). (4.5.44)

In particular, as u → 0, ζ ' −1/u, the asymptotic behavior of (4.5.43) and (4.5.44) becomes

gg(k, u) ' 3(2− κ2)

(κ2 + 1)(κ2 + 4)

1

u2
' 3(2− κ2)

(κ2 + 1)(κ2 + 4)
ã, (4.5.45)

gd(k, u) ' −(κ2 + 4)(κ2 + 1)

30
u3 ' −(κ2 + 4)(κ2 + 1)

30
ã−3/2. (4.5.46)

As a result, it is straightforward to calculate the Wronskian, which is

W [gg, gd] =
dgg(u)

du
gd(u)− dgd(u)

du
gg(u) = 1− κ2

2
. (4.5.47)

Note that in the CDM limit, κ → 0, the Wronskian equals one, recovering the WIMPs’

result. The two homogeneous solutions are shown in Figure 21.
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Figure 21: Homogeneous solutions gg(k, u) and gd(k, u) of the homogeneous equation (4.5.31) vs.
u for various perturbation modes. The left panel corresponds to the growing mode and the right
panel the decaying mode.

4.5.2.4 Green’s Function And the Full Solution With the homogeneous solutions,

it is straightforward to write down the Green’s function for Eq. (4.5.24), which is

G(k, u− u′) =
2

2− κ2
[gg(k, u)gd(k, u

′)− gd(k, u)gg(k, u
′)] . (4.5.48)

Thus, the complete solution for the inhomogeneous equation (4.5.24) is obtained from the

Green’s function:

∆(k, u) =

∫ u

uc

du′G(k, u− u′)
[
6ã(u′)I(k, u′) + I(k, u′)

]
, (4.5.49)

which is subject to the initial condition (4.5.28). Correspondingly, the density perturbation

δ(k, u) becomes

δ(k, u) = I(k, u) +

∫ u

uc

du′G(k, u− u′)
[
6ã(u′)I(k, u′) + I(k, u′)

]
. (4.5.50)

We obtain the solution for the WDM density perturbations except for one caveat. Recall

the definition of the kernel in Eq. (4.5.27), I(k, u) itself is an integral function of δ(k, u).

Therefore, the exact expression of δ(k, u) requires to solve the highly non-trivial integral

121



equation (4.5.50). Fortunately, I(k, u) is a small quantity, enabling Eq. (4.5.50) to be solved

iteratively. By inserting the expression of I(k, u) in Eq. (4.5.50),

δ(k, u) = δ(0)(k, u)− 6α

∫ u

uc

du′G(k, u− u′)
∫ u′

uc

du′′ã(u′′)Π̃(α, u′ − u′′)δ(k, u′′),

(4.5.51)

where

δ(0)(k, u) = I(k, u) +

∫ u

uc

du′G(k, u− u′) 6ã(u′)I(k, u′) (4.5.52)

is the leading term without the kernel I(k, u). Eq. (4.5.51) is similar to the iterative solution

in the quantum scattering theory, δ(0) corresponds to the Born approximation, under which

δB(k, u) = δ(0)(k, u) = I(k, u) +

∫ u

uc

du′G(k, u− u′) 6ã(u′)I(k, u′). (4.5.53)

Here the subscript “B” emphasizes the Born approximation.

To justify the Born approximation, let us focus on the kernel I(k, u) in (4.5.27). As long

as I(k, u) is small and sub-leading compared to the other inhomogeneous term 6ãI(k, u), it

is safe to expect δB a pretty good approximation of δ(k, u). Recall

Π̃(α, u− u′) =
1

N

∫
dyf0(y)y

(
y2 − y2

)
sin

[
αy(u− u′)

]
, (4.5.54)

which depends on the distribution function. For the MB distribution (the WIMPs case),

direct evaluation gives

Π̃(α, u− u′) = e−
κ2

6
(u−u′)2

(
m

Td

)2

α3(u− u′)3. (4.5.55)

Obviously, under the CDM limit α → 0, Π̃ vanishes, yielding I(k, u) = 0 as expected. As

for the WDM case, let us consider DW sterile neutrinos first, namely f0 =
β

ey+1
, which gives

Π̃(α, u− u′) =
4Q

3ζ(3)

∞∑
n=1

(−1)n+1 n

τ 2

[
y2 − 12(n2 −Q2)

τ 4

]
, (4.5.56)
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where Q := α(u − u′) and τ :=
√

n2 +Q2. Finally, for BD sterile neutrinos, f0 = λ
g5/2(y)√

y
,

leading to

Π̃(α, u−u′) =

√
2Q

3ζ(5)

∞∑
n=1

1

(nτ)
5
2

√
1 +

n

τ

2n+ τ

n+ τ

{
y2 − 15

4

[
4n+ τ

2n+ τ

(n2 −Q2)

τ 4
+

2n2

(2n+ τ)τ 3

]}
.

(4.5.57)

Combining Eqs. (4.5.54), (4.5.56) and (4.5.57), we find that for larger Q À 1, Π̃ decreases

with increasing value of Q. On the other hand, when Q → 0, Taylor expansion shows that

Π̃(α, u− u′) is proportional to Q3, which is also indicated directly by Eq. (4.5.54).

After analyzing the asymptotic behavior of Π̃, let us compare I(k, u) with I(k, u) to

justify the Born approximation. At early time when u ∼ uc, I(k, u) ' I(k, uc) and δ(k, uc) '
δB(k, uc). On the other hand, Π̃ approaches zero as Q3 ∝ (u − u′)3 for both DW and BD

sterile neutrinos. Correspondingly, I(k, u) in (4.5.27) is proportional to (u− uc)
4 and much

smaller than 6ãI(k, u). At late time as u → 0, I(k, u → 0) is finite and 6ãI(k, u → 0) ∝ ã.

Meanwhile ã ' u−2 and δ ∝ ã. Applying these asymptotic behaviors to Eq. (4.5.27), we

find that u′ ∼ 0 contributes most to I(k, u), leading to I(k, u) ∝ ln(ã) also much smaller

than 6ãI(k, u). Therefore, in the entire region of u, it is reasonable to assume I(k, u) is

sub-leading and can be treated as a perturbation. The Born approximation result δB thus

indeed is a good approximation of density perturbations of non-relativistic sterile neutrinos.

4.5.2.5 The Born Approximation Of Density Perturbations Under the Born ap-

proximation,

δ(k, u) ' δ(k, u)B = I(k, u) + 6

∫ u

uc

du′G(k, u− u′) ã(u′)I(k, u′), (4.5.58)

where I(k, u) is given by Eq. (4.5.21). At this stage, we can numerically evaluate the above

equation to obtain the density perturbations of sterile neutrinos. However, to illustrate the

physics behind, we identify three contributions to the inhomogeneity I(k, u) and discuss

them separately. According to (4.5.21), I(k, u) is reorganized as

I(k, u) = I1(k, u) + I2(k, u) + IISW (k, u), (4.5.59)
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where

I1(k, u) = − 8k2

αk2
eq

∫ uc

uNR

du′ ã2(u′)φr(k, u
′)Π (α, u− u′) , (4.5.60)

I2(k, u) =
3φi(k)

2

∫
dy y3

df̃0(y)

dy
j0

[
αy(u− uNR) +

κ

2

]
, (4.5.61)

IISW (k, u) = 2

∫
dy y3

df̃0(y)

dy

∫ κ
2

0

dz′φr(z
′)j1

[
αy(u− uNR) +

κ

2
− z′

]
. (4.5.62)

We have neglected the term 3φr in the expression of I(k, u) because it decays quadratically

(∝ 1/(kη)2) and is absolutely negligible in the MD era. As indicated by the name, IISW is

attributed to the ISW effect in the relativistic stage of sterile neutrinos. As α, κ → 0, we

reach the CDM limit

I1(k, u) ' −8k2

k2
eq

∫
dy y2f̃0

∫ uc

uNR

du′ ã2(u′)φr(k, u
′)(u− u′), (4.5.63)

I2(k, u) ' −9

2
φi, (4.5.64)

IISW (k, u) ' 0. (4.5.65)

To compare with Eq. (4.4.44), once again, we confirm that α → 0 corresponds to the CDM

case. Moreover, it is worth emphasizing that the ISW term vanishes for the CDM limit as

we expected, indicating that indeed it is a unique feature of WDM when sterile neutrinos are

relativistic. In Figure 22, we compare the contributions of the three inhomogeneous terms to

the transfer function up to a scaling factor 4
(κ2+1)(κ2+4)

(See Eq. (4.6.6).) for sterile neutrinos

and WIMPs. Figure 22 clearly indicates a suppression of the transfer function for sterile

neutrinos at small scales compared with that of the WIMPs.

4.6 WDM CASE: TRANSFER FUNCTION AND POWER SPECTRUM

With the semi-analytical scheme discussed previously to compute density perturbations of

sterile neutrinos, we are ready to investigate various physical quantities, e.g., the transfer

function and the power spectrum, and discuss their application to current understanding on

structure formation of our universe.
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Figure 22: Contribution of the three inhomogeneous terms I1(k, u), I2(k, u) and I3(k, u) to the
transfer function defined in Sec. 4.6, up to an overall scaling factor. In this figure, we compare
the results of the 1keV DW sterile neutrino (black solid line) and WIMPs for the CDM case (red
dashed line). Panel (a) corresponds to the contribution from I1(k, u), panel (b) to I2(k, u) and
panel (c) to IISW (k, u).

4.6.1 Transfer Function of Sterile Neutrinos

Similar to the CDM case, at late time, the growing mode dominates over the decaying mode

in the Green’s function G(k, u− u′), yielding

G(k, u− u′) ' 2

2− κ2
gg(k, u)gd(k, u

′). (4.6.1)

Furthermore, taking the asymptotic behavior of the growing mode as u → 0, we obtain

G(k, u− u′) ' 6ã

(κ2 + 1)(κ2 + 4)
gd(k, u

′). (4.6.2)

Plugging Eq. (4.6.2) into the Born approximation result (4.5.58). At late time, we find,

δ(k, 0) ' I(k, 0) +
36 ã

(κ2 + 1)(κ2 + 4)

∫ 0

uc

du′gd(k, u′) ã(u′)I(k, u′). (4.6.3)
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The second term, proportional to the scale factor ã, goes to infinity, while the first term

stays constant; therefore, we can neglect the first term in the late time limit. Finally, the

density perturbation δ at late time becomes

δ(k) ' 36 ã

(κ2 + 1)(κ2 + 4)

∫ 0

uc

du′gd(k, u′) ã(u′)I(k, u′). (4.6.4)

Correspondingly, according to its definition in (4.4.38), the transfer function of sterile neu-

trinos is

TB(SNs)(k) = −30k2
eq

φik2

1

(κ2 + 1)(κ2 + 4)

∫ 0

uc

du′gd(k, u′) ã(u′)I(k, u′). (4.6.5)

Here the subscript “B” and “SNs” are used to emphasize the Born approximation and sterile

neutrinos separately. It turns out convenient to compare the transfer functions of WIMPs

and sterile neutrinos by defining their ratio,

TB(SNs)(k) :=
TB(SNs)(k)

TWIMPs(k)
=

TB(SNs)(k)

TB(SNs)(k;α → 0)

=
4

(κ2 + 1)(κ2 + 4)

[ ∫ 0

uc
du′gd(k, u′) ã(u′)I(k, u′)

∫ 0

uc
du′Q2(u′) ã(u′)I(k, u′;α → 0)

]
. (4.6.6)

Here we have made use of the fact that the CDM case corresponds to a special limit (α → 0)

of the WDM result. In Figure 23, we demonstrate the ratio for 1keV DW sterile neutrinos.

In particular, panels (b) and (c) show the behaviors of the transfer function T
B(DW)

for

small and large wave vectors k respectively. For very large scale perturbations as k → 0,

the transfer function of DW sterile neutrinos is similar to that of WIMPs. However, for

small scale perturbation modes, the transfer function of sterile neutrinos is suppressed with

respect to that of the WIMPs. More interestingly, at even smaller perturbation scale, say

k ≥ 10 (Mpc)−1, the transfer function demonstrates some peculiar oscillation feature, which

has never been found before. To investigate the dependence of T
B(DW)

on the masses and

distributions of sterile neutrinos, also to investigate how general this new oscillation feature

is, we need to compare the transfer function of sterile neutrinos for different masses and

production mechanisms. These results will be discussed below.
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Figure 23: T
B(DW)

(k) for DW sterile neutrinos with m = 1keV. Panel (a) shows the logarithmic

of TB(DW) for a wide range of k ∈ (0, 30). As k → 0, the WDM and CDM transfer functions
coincide with each other for super-horizon modes, consistent with the physical expectation. Panel
(b) shows the values of T

B(DW)
(k) for relatively small k from 0 to 10, corresponding to perturbation

scales larger than 100Kpc. The WDM transfer function drops quickly with respect to the CDM
transfer function as k increases. Panel (c) shows the ratio of the transfer functions for even smaller
perturbation modes. The WDM transfer function starts to oscillate with a period about 1Mpc,
a new unique feature of WDM density perturbations, which may hint interesting observational
signatures.

4.6.1.1 Numerical Evaluation In principle, for any given sterile neutrino mass and

distribution function, one can numerically evaluate all integrals involved in Eq. (4.6.6) and

obtain the transfer function. We try to simplify these integrals as much as possible for an

efficient numerical implementation.
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First of all, note that the upper limit in I1(k, u) is uc, corresponding to the radiation

cross-over, namely the transition from when the gravitational potential is dominated by the

radiation fluid to when it is dominated by DM perturbations. In the CDM analysis, we have

found that this scale is a few tenth of the scale of matter-radiation equality for perturbation

modes we are interested in (See Eq. (4.4.18)). Furthermore, density perturbations in the

CDM case depend only logarithmically on the scale factor around radiation cross-over, mak-

ing the exact value of uc insensitive to small errors. In the WDM scenario, we expect the

stronger free-streaming effect to further suppress the growth of matter density perturbations

in the RD era, and delay the time of radiation cross-over. With the information obtained

from the CDM case, it is sensible to approximate uc ' ueq, namely,

uc ' ueq =
1

2
ln

[√
2− 1√
2 + 1

]
' −0.881. (4.6.7)

We will confirm this approximation in the following numerical evaluation.

By replacing uc by ueq = −0.881, I1(k, u) becomes

I1(k, u) = − 8k2

αk2
eq

∫ ueq

uNR

du′ã2(k, u′)φr(k, u
′)
∫

dyyf̃0(y) sin
[
αy(u− u′)

]
. (4.6.8)

By manipulating this equation to optimize its behavior under the numerical evaluation, we

finally obtain

Ĩ1(k, u) = −I1(k, u)

3φi

'
(
− 6

α

)∫
dyyf̃0(y)

{
αy

2

∫ xeq

xNR

dx′
(
sinx′

x′2 − 1

x′

)
cos

[
αy

(
u+

1

2
ln(1 +

4x∗
x′ )

)]

+

(
1 +

xeq

4x∗

)
sin(xeq)

xeq

sin

[
αy

(
u+

1

2
ln(1 +

4x∗
xeq

)

)]

−sin(xNR)

xNR

sin

[
αy

(
u+

1

2
ln(1 +

4x∗
xNR

)

)]

+sin

[
αy

(
u+

1

2
ln(

4x∗
xNR

)

)]
− sin

[
αy

(
u+

1

2
ln(

4x∗
xeq

)

)]}
,

(4.6.9)
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where x is related to u by

x = 4x∗
e2u

1− e2u
. (4.6.10)

In practice, we will use Eq. (4.6.9) for numerical calculations. Details to derive I1(k, u) from

Eq. (4.6.8) to Eq. (4.6.9) can be found in App. B. The integrals associated with I2(k, u) and

I3(k, u) can be numerically calculated directly.

4.6.1.2 Transfer Function of Sterile Neutrinos With Different Masses And Dis-

tributions With the simplification mentioned in the previous section, we carry out all the

numerical integrations in Eq. (4.6.6) and compare the transfer functions of sterile neutrinos

for different masses and production mechanisms. In Figure 24, we plot the transfer func-

tion in Eq. (4.6.6) for both DW and BD sterile neutrinos with masses of 1 keV and 2 keV

respectively in both linear and log scales. Since the BD distribution is colder than the DW

distribution, the transfer function of BD sterile neutrinos is less suppressed than that of

DW sterile neutrinos with the same mass. On the other hand, under the same production

mechanism, sterile neutrinos with heavier masses are colder than those with lighter masses,

again leading to less suppression on their transfer functions. Moreover, it is interesting to

note from Figure 24 that despite the different masses as well as different distributions, the

transfer function of 2 keV DW sterile neutrinos is very close to that of 1 keV BD sterile

neutrinos for perturbation modes k ≤ 10 Mpc−1. This observation may suggest profound

applications on current cosmological data analysis, which will be discussed in detail in the

following. Finally, from Figure 24, the oscillatory feature at small scales of the transfer

functions of DW sterile neutrinos is obvious, but for the BD case, the oscillations seem not

clear in the figure. However, by extending the transfer function to even smaller scales, one

can identify these oscillations more easily. In the following discussions, we will investigate

the oscillation feature of the transfer function explicitly.

4.6.1.3 ISW Enhancement As discussed previously in Eqs. (4.5.60) to (4.5.62) and

their CDM limits Eqs. (4.5.63) to (4.5.65), the contribution IISW , corresponding to the so

called ISW effect [112], comes from the evolution of density perturbations during stage I,

and vanishes in the CDM limit. Therefore it is a distinct contribution to the WDM transfer
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Figure 24: Transfer functions of DW and BD sterile neutrinos with m = 1keV and m = 2keV
respectively in linear (left panel) and log (right panel) scales. The thin (thick) solid lines correspond
to DW (BD) sterile neutrinos and the black lines are for the case of m = 1keV while the red lines
for m = 2keV.

function and arises from the time derivative of the gravitational potential in the RD era

which is driven by the acoustic oscillations of the radiation fluid. Although this ISW effect,

yielding perturbation growth in the early stage, cannot be the dominant contribution to the

final transfer function as directly shown in Figure 22, it is still interesting to investigate its

origin and dependence on different physical parameters. Figure 19 has shown the influence

of the ISW effect on density perturbations of WDM particles, where we learn that it features

a peak when the perturbation mode is approximately of the same size as the sound horizon

at ηNR. Following the similar argument, the presence of a peak can also be gleaned from

the expression of IISW directly, which locates around the first maximum of the spherical

Bessel function j1. Let us call this value p∗. Hence, according to the expression of IISW in

Eq. (4.5.62), the peak value of the ISW effect corresponds to

αy(u− uNR) +
κ

2
− z′ ' p∗. (4.6.11)

Note that κ = α

√
y2 and z′ ∈ (0, κ/2) and α ∝ k/m as defined in (4.3.9). The ISW peak

value corresponds to a wave vector k that is proportional to m/

√
y2. Therefore the hotter
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species, with smaller mass m and larger

√
y2, must feature a peak at a smaller value of k

while the colder species feature the peak at a larger value k. This expectation is borne out

by Figure 25, which displays the ISW contribution to the Born ratio TB(SNs)(k) in (4.6.6).

The ISW enhancement extends to larger values of k for the colder species. For small k, the

contributions I2 and IISW feature opposite signs as shown in Figure 22, therefore, the ISW

enhancement competes with and is partially canceled by I2, yielding an overall suppression

of the transfer function with respect to CDM. Nevertheless, the ISW enhancement could

prolong the region in k where the transfer function is closer to that of CDM.
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Figure 25: ISW contribution to the Born approximated transfer function TB(SNs)(k) in Eq. (4.6.6).
For simplicity, We only plot the ISW contribution to the integral in the numerator of (4.6.6) for
sterile neutrinos with different masses and distribution functions. Solid(dashed) lines correspond
to DW(BD) sterile neutrinos. Black ones refer to sterile neutrinos with masses m = 1 keV and red
ones are for m = 2 keV.

4.6.1.4 “Acoustic Oscillations” of WDM In addition to the unique ISW effect, there

is another special feature of the WDM transfer function: as pointed out previously, at small

scale perturbation modes, namely large wave vector k, we find that the transfer function of

sterile neutrinos oscillates. This is analogous to the acoustic oscillations found in the power
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spectrum of CDM, we therefore call this oscillation behavior as “acoustic oscillations” of

WDM. For different sterile neutrinos with different masses and production mechanisms, it

turns out a common behavior. In general, the oscillation feature is more obvious for WDM

particles with warmer production mechanisms and smaller masses, as shown in Figure 24.

When extending the transfer function of BD sterile neutrinos in Figure 24 to even smaller

scales, we can identify the oscillations clearly as shown in Figure 26. Given the generality

of the WDM acoustic oscillations, we try to identify sources of these oscillation features in

this section.
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Figure 26: The oscillation feature on the transfer function in Eq. (4.6.6) for m = 1keV sterile
neutrinos with BD distribution in the left panel and DW distribution in the right panel. Note that
oscillations start from different values of ks.

In Figure 22, we have compared the three inhomogeneous contributions to the WDM

transfer function, where we found I1(k, u) is the dominant term. Furthermore, it features

the similar oscillation behavior to TB(SNs)(k) at small scales. Hence, we recognize this should

be the origin for the acoustic oscillations, and focus on this term in the following discussion.

According to the expression of I1(k, u) in Eq. (4.5.60) and TB(SNs)(k) defined in (4.6.6),
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I1(k, u) contributes to the transfer function by integrated with the decaying mode gd(k, u
′)

times the scale factor given by Eq. (4.5.58). gd(k, u) is in general an oscillatory function

vanishing at u = 0, and there is a particular fundamental mode corresponding to κ ' 6.3

that features only one other node at matter-radiation equality as shown in Figure 21. For

perturbation modes with κ < 6.3, gd(k, u) does not oscillate; while for perturbation modes

with κ > 6.3, gd(k, u) oscillates with respect to u. On the other hand, the explicit form

of I1 given in Eq. (4.6.8) reveals at least two contributions that lead to oscillations: the

gravitational potential φr features an acoustic oscillation and sin[αy(u − u′)] corresponds

to the free streaming effect. Unfortunately, the oscillation feature from the free streaming

term is washed away after integrating over the distribution function f̃0(y). By comparing

the remaining two contributions from gd and φr, we note that φr decreases in power law with

respect to increasing wave vector k, thus, the oscillation behavior resulting from φr manifests

for larger scale perturbation modes(corresponding to smaller ks). However, for WDM cases,

we observe the “acoustic oscillations” at small scales. Therefore, we conclude that the

“acoustic oscillations” of WDM transfer functions mainly result from the free streaming

effect embedded in the decaying mode gd, in contrast to the oscillation feature of transfer

function discovered in [207]. Since gd starts to oscillate from κ ' 6.3, we estimate the

“acoustic oscillations” manifest for κ ≥ 6.3, leading to

k ≥ 6.3

√
2

2
√
3
kfs ∼ 2.6kfs. (4.6.12)

This approximated estimation seems supported by numerical evaluations: for 1 keV DW

sterile neutrinos, kfs ' 7.7 Mpc−1 where the oscillations in transfer function start from

k ∼ 11 Mpc−1; for 1 keV BD sterile neutrinos with kfs ' 14.12 Mpc−1, oscillations start

from k ∼ 30 Mpc−1. These behaviors are shown in Figure 26. At the CDM limit, kfs → ∞,

thus the oscillations disappear.

These oscillation features suggest interesting observation signals; however, at the scale

where WDM acoustic oscillations emerge, the transfer function is strongly suppressed by

free-streaming. And as a result of this suppression in the power spectrum, the relevance

of these WDM acoustic oscillations for structure formation is not clear. Moreover, at such
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small scales, density perturbations become highly non-linear. Whether the non-linear effect

would wash out or amplify the oscillation features of density perturbation power spectrum

needs further investigation. If these oscillations indeed appear as observational signals, we

expect to observe clumpiness in the mass distribution with mass scales MDW ∼ 3× 109M¯

and MBD ∼ 1.8× 108M¯ for DW and BD sterile neutrino respectively.

4.6.2 Power Spectrum Of Sterile Neutrinos

The power spectrum normalized to CDM is given by

PB(SNs)(k) =
[
TB(SNs)(k)

]2
. (4.6.13)

Correspondingly, the power spectrum of sterile neutrinos is

PB(SNs) = PCDM(k)
[
TB(SNs)(k)

]2
. (4.6.14)

To estimate PCDM(k), we note that the transfer function for WDM particles is indistinguish-

able from that of the CDM for small k, and our CDM transfer function (4.4.40) is consistent

with that of Weinberg in [280] for small scale perturbations, which agrees nicely with the

BBKS numerically fitted transfer function [43]. Therefore, we use the numerical fit pro-

vided by Bardeen et al. [43] for the CDM transfer function (without baryons) to extrapolate

PCDM(k) to large scales:

PCDM(k) = Akns

[
TBBKS(k)

]2
, (4.6.15)

where A is the overall amplitude and is determined by the power spectrum of scalar fluctua-

tions during inflation [112] and ns ' 0.96 is the index of scalar perturbations during inflation

[202, 195]. Without baryons and with three relativistic (standard model) neutrinos [43]:

TBBKS(k) ' ln(1 + 2.34K)

2.34K

[
1 + 3.89K + (16.1K)2 + (5.46K)3 + (6.71K)4

]−1/4
, (4.6.16)

where

K =
k

Ωmh2
Mpc−1. (4.6.17)
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Plugging Eqs. (4.6.16) and (4.6.15) into (4.6.14), and making use of the expression of

TB(SNs)(k) in Eq. (4.6.6), we obtain the power spectrum of sterile neutrinos as

PB(SNs)(k) = Akns

[
4TBBKS

(κ2 + 1)(κ2 + 4)

∫ 0

uc
du′gd(k, u′) ã(u′)I(k, u′)

∫ 0

uc
du′Q2(u′) ã(u′)I(k, u′;α → 0)

]2

. (4.6.18)

This compact expression provides an interpolation between large and small scales that de-

scribes accurately the CDM limit for long-wavelengths and captures the free streaming sup-

pression at small scales encoded in the Born approximation. Its numerical implementation

is fairly straightforward for arbitrary distribution functions, masses and decoupling temper-

atures.

4.6.3 Comparison to Numerical Results From Boltzmann Codes

The WDM power spectrum for non-thermal sterile neutrinos produced via the DW mech-

anism has been studied in Refs. [94, 259, 165, 3, 4, 133, 1, 274]. The most recent studies

using the Boltzmann codes CMBFAST [255, 291, 290] and/or CAMB [203] have been re-

ported in [165, 1, 274]. The results in [274] coincide with those in [165] and are summarized

by the fit given by Eqs. (6) and (7) in [274]. In both studies, the distribution function

for sterile neutrinos is the DW type as shown in (4.2.10). Nevertheless, the fitting function

provided in Ref. [274] fits the results of the Boltzmann code in the range k < 5h Mpc−1 [274].

Compared with [274] and [165], in Ref. [2], the kinetic equation for the production of DW

sterile neutrinos was solved numerically and the solution was input in the numerical Boltz-

mann codes. In this study, the explicit form of the distribution function is not provided but

instead a fitting formula for the transfer function normalized to CDM is given, corresponding

to Eqs. (11) and (12) in [2]. Whereas the fitting function in Ref. [274] is of the same form as

that in [2], they differ in the powers of momenta: at large ks, the fitting formula in Ref. [2]

falls off with a power ' k−6.93 whereas the fit given by Ref. [274] falls off with a power

' k−10. Consequently, these two fits yield a large difference at small scales even though

they agree with each other substantially at large scales (See Figure 4 in Ref. [2]). Since the

distribution function in [2] has been obtained directly from the numerical integration of the
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kinetic equation, it is not clear whether the main differences in the transfer function are

a result of this effect, that the distribution function obtained from numerically solving the

kinetic equation is different from the form (4.2.10) as used in [274] and [165].

For our purpose, it turns out convenient to directly compare our results with those in

[274] because both studies use the same distribution function (4.2.10) and neglects baryons.

However, in [274], it includes dark energy ΩΛ = 0.7 while our study does not. We compare

our results for the transfer function T(k) (normalized to CDM) given by Eq. (4.6.6) with

those obtained from the fitting functions in Ref. [274] and [2]. According to the discussion

in [274], we are aware that its fitting function may not be correct for k > 5h Mpc−1. Also, a

direct comparison of our results with those in Ref. [2] may not be fair because our assumed

distribution function in (4.2.10) could be different from the effective distribution function in

[2], and the difference cannot be quantified in the absence of a functional form. Furthermore,

we use the “standard” value gd = 10.75 for these comparisons, whereas in Ref. [2], the actual

value of gd may differ because this species of sterile neutrinos is produced very near the QCD

phase transition where the effective number of relativistic degrees of freedom varies rapidly.

Recognizing all these caveats, we compare the normalized transfer functions calculated from

the three methods in Figure 27.

We find a remarkable agreement, to less than 5% with the fit given by the non-thermal

case in Eqs. (6) and (7) in Ref. [274] in a wide range where their fit is valid. In Figure 27, the

comparison is in a range similar to [2] to highlight agreements and discrepancies. In all cases

reported in the literature, the range studied or displayed are for wave vectors k far smaller

than the range in which the acoustic oscillations become manifest. The approximate estimate

for the threshold suggests that for m = 0.5, 1.0, 1, 7 keV, oscillations should be manifest for

k ≥ 7.5, 15.0, 25.6 h (Mpc)−1 respectively. Figure 28 displays the transfer function in (4.6.6)

in a linear-linear scale for k ≥ 2kfs and m = 1.0, 1.7 keV. These figures are the continuation

of the solid lines displayed in Figure 27 up to the smaller scales. This comparison, despite

all the caveats mentioned above, suggests that the semi-analytic formulation along with the

Born approximation summarized by (4.6.6) captures the essential physical processes and
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Figure 27: Comparison of the normalized transfer function for DWwith the results from Boltzmann
codes. The solid line is the semi-analytical result from Eq. (4.6.6), the (blue) dashed line is the
result from the interpolation of non-thermal case in Ref. [274], the (red) dotted line is the result
from the interpolating fit in Ref. [165]. For all cases h = 0.72, ΩDMh2 = 0.133 and gd = 10.75.

provide a reliable tool to study the transfer function and the power spectrum for arbitrary

distribution functions.

4.6.4 Impact On N-body Simulation And Lyman-α Constraints

N-body simulations of galaxy formation and high resolution Layman-α spectra analysis are

the two most powerful techniques currently available to constrain the mass of WDM particles

[81]. The most recent large scale N-body simulations [267, 213] incorporate WDM by con-

sidering a power spectrum that is cutoff at small scales, however, initial velocity dispersion is

not yet included in the simulations. Extracting constraints from the Lyman-α forest involves

also large scale numerical simulations, and the most recent constraints [271, 73, 72] on the

mass of WDM particles rely on specific distribution functions, usually using either a thermal

or DW distribution functions. The DW distribution function is proportional to a thermal

distribution function with the proportionality constant to determine the abundance but irrel-

evant for the free streaming length or indeed the transfer function. Only in [73], the authors
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Figure 28: TB(DW )(k) from the semi-analytical approximation (4.6.6) displaying the acoustic

oscillations at small scales k ≥ 2kfs ' 10.8, 18.5 (Mpc)−1 for m = 1.0, 1.7 keV respectively. Note
that the horizontal scale is in (Mpc)−1 and that vertical scales differ by a factor 5 between the two
figures.

consider a more realistic case allowing Resonantly Produced (RP) sterile neutrinos. Current

Lyman-α constraints combined with X-ray seem to exclude the DW production mechanism

as the sole producing method for sterile neutrinos [81]. The sensitivity of N-body simulations

and Lyman-α analysis on WDM distribution functions has been realized and discussed in

the literature [73, 72, 81]. The mass and the distribution function of WDM particles form a

quasi-degenerate parameter space to influence the simulated or observed power spectrum of

density fluctuations because both of them can affect the coldness of the WDM particles. Our

study confirms this quasi-degeneracy feature in that more massive sterile neutrinos with a

DW distribution function feature a similar power spectrum as less massive sterile neutrinos

with a colder BD distribution function in a wide range of scales. To make this more explicit,

Figure 29 displays the normalized power spectrum defined in (4.6.13).

From this figure it is clear that PB(DW )(k) with m = 2 keV is almost indistinguishable

from PB(BD)(k) with m = 1 keV for k ≤ 10 (Mpc)−1, well within the sensitive region of

Lyman-α forest analysis. Therefore, we emphasize that the mass is not the only relevant

indicator for the power spectrum of the WDM particle, but also other two important aspects

must enter in the assessment: the decoupling temperature (higher for the colder particles)
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Figure 29: Normalized power spectrum (4.6.13) for DW and BD sterile neutrinos with m = 1, 2
keV.

and the details of the distribution function at small momenta: enhanced small momentum

behavior leads to a colder species and a less suppressed power spectrum, for a given mass.

Because of this quasi-degeneracy, current constraints on the mass of the WDM particle,

either from WDM simulations, or from Lyman-α forest analysis based on thermal or DW

distribution functions do not directly apply to non-thermal WDM particles. In Ref. [73], the

authors consider a more realistic distribution function of sterile neutrinos, on which the mass

constraints do not contradict with current cosmological observations. To further highlight

this point, we plot in Figure 30 the full power spectrum defined in (4.6.18) for the different

species under our consideration. Again, the cases of BD sterile neutrinos with m = 1 keV

and DW sterile neutrinos with m = 2 keV are nearly indistinguishable for k ≤ 10 (Mpc)−1.

4.7 SUMMARY AND CONCLUSION

In this chapter, we provide a semi-analytical study of small scale aspects of the power spec-

trum of WDM candidates in a radiation-matter cosmology for arbitrary mass and distribution
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(a) = CDM(b) = BD; gd=100, m=2 keV(c) =BD; gd=100, m=1 keV(d) =DW; gd=30, m=2 keV(e) =DW; gd=30, m=1 keV

Figure 30: The matter power spectrum

function of the decoupled WDM particle. There are three stages in the evolution of density

perturbations of WDM candidates that decouple while they are relativistic: stages I) and

II) describe the evolution during the RD era when the particles change from relativistic and

non-relativistic form, while the gravitational potential is dominated by the radiation fluid.

During stage III, the particle is non-relativistic and matter density perturbations dominate

the gravitational potential. We consider adiabatic initial conditions determined when all the

cosmologically relevant modes are outside the horizon, consistent with inflation and CMB

data from WMAP [195, 202]. The linearized collisionless Boltzmann equation is solved for

the three stages, with the solution of the previous stage acting as the initial condition for

the next stage. By connecting these piece-wise solutions, we obtain the transfer function

and power spectrum of WDM particles. We find the transfer function is characterized by

two widely separated scales: keq ∼ 0.01 (Mpc)−1 the wave vector of perturbation modes that

enter the horizon at matter-radiation equality, and the free streaming wave vector kfs in κ.
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According to our definition,

kfs =

√
3keq

2〈V 2
eq〉1/2

=

√
2√
3
ηNR, (4.7.1)

where 〈V 2
eq〉1/2 is the mean square root velocity dispersion of the WDM particle at matter-

radiation equality. Meanwhile, kfs is also of the same scale as ηNR, namely the size of the

comoving horizon when the WDM particle becomes non-relativistic.

During stages I) and II), the acoustic oscillations in the radiation fluid dominate the

gravitational potential, leading to an ISW effect that amplifies WDM density perturbations

on scales larger than the sound horizon at ηNR. This amplification translates in a prolonged

plateau in the transfer function for k < kfs, which is more pronounced for colder species

since these feature a smaller kfs.

In stage III) when the particle is non-relativistic and WDM perturbations dominate the

gravitational potential, the evolution is described by the Boltzmann-Poisson equation which

yields an integral equation for density perturbations and is equivalent to integro-differential

equation with an inhomogeneity and initial conditions determined by the past history during

stages I) and II). This equation is amenable to a systematic Fredholm expansion valid at

small scales, whose leading order is the Born approximation that establishes a direct relation

with a fluid description of WDM perturbations. The resulting fluid equation is the general-

ization of Meszaros equation for CDM but with an inhomogeneity and initial conditions that

incorporate suppression by free streaming during the first two stages. The Born approxima-

tion lends itself to a simple numerical implementation for arbitrary distribution functions

and mass of the decoupled WDM particle. The transfer functions and power spectra re-

sulting from the fluid equation feature WDM acoustic oscillations at small scales roughly

of k ≥ 2kfs, as a consequence of free-streaming effect with non-vanishing velocity dispersions.

With the expression of transfer function under the Born approximation, we study two

non-resonant sterile neutrino distributions with various masses about keV range in detail,

from which we investigate the mass and distribution dependence of the transfer function. In
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addition, we also discuss the influence of these parameters on ISW enhancement and WDM

acoustic oscillations. Although the power spectrum is strongly suppressed by free stream-

ing at the scales at which WDM acoustic oscillations emerge, we conjecture that non-linear

gravitational collapse might amplify these oscillations into peaks and troughs in the matter

distribution at small scales, leading to clumpiness on mass scales of 109M¯ for DW and of

108M¯ for BD sterile neutrinos. Perhaps coincidentally this latter scale is of the order of the

mass contained within a half-light radius in the (DM) halos of spiral, low surface brightness

and dwarf spheroidal galaxies [276, 277].

To compare our semi-analytical transfer function and power spectrum with the results

from Boltzmann codes [165, 1, 274], we obtain an approximate form of power spectrum that

interpolates between large and small scales for arbitrary distribution functions based on [43].

In spite of several caveats in the comparison, we find an excellent agreement within 5% error

between these results in the region of scales where the fit is valid.

Finally, our study reveals a quasi-degeneracy between the mass, properties of the dis-

tribution function and decoupling temperature of the WDM candidate: particles with the

same mass but that decoupled at different temperature with very different distribution func-

tions may yield similar power spectrum in a wide range of scales. For example, the power

spectrum of DW sterile neutrinos with m ∼ 2 keV is similar to that of BD sterile neutrinos

with m ∼ 1 keV for k ≤ 10 (Mpc)−1. This result suggests caveats on the constraints on the

mass of sterile neutrinos from current WDM N-body simulations and Lyman- forest data

that typically input the distribution functions of thermal or DW species.
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Part II:

THEORY OF NEUTRINO OSCILLATIONS
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5.0 PART II: INTRODUCTION

In the second part of the thesis, we consider a different research topic, focusing on some

subtle aspects of the theory of neutrino oscillation phenomena.

Since their discovery in 1930, neutrinos have attracted a lot of attention [189, 132, 148].

In particular, their masses, mixing and oscillations are some of the most fascinating as-

pects of neutrino physics because they directly lead to physics beyond the standard model

[189, 222, 132], and offer an excellent example of macroscopic quantum coherence, for exam-

ple, in long baseline oscillation experiments this coherence is maintained over hundreds of

kilometers [25, 27, 13, 14, 9, 10]. Phenomenologically, they provide an explanation of the solar

neutrino problem [283, 218, 148, 166, 167] and other interesting applications in astrophysics

and cosmology [189, 222, 132, 148, 41, 156, 182, 183, 220, 221, 101, 102, 104, 168, 114, 115].

In 1957, by proposing the concept of sterile neutrinos, Pontecorvo first studied the oscil-

lation between active and sterile neutrinos by analogy with K0− K̄0 oscillations [241]. Soon

after, with the discovery of muon neutrinos in Brookhaven National Laboratory in 1962 [96],

physicists found more than one flavor active neutrinos in nature, and realized that neutrino

oscillations between different flavors are possible as long as neutrinos are massive and lepton

number is not conserved. The mixing and oscillation between different flavor neutrinos were

first studied by Maki, Nakagawa and Sakata in 1962 [214]. Moreover, Pontecorvo and Gribov

[242, 155] predicted the solar neutrino problem and discussed its relation with the electron-

muon neutrino oscillations in the sun in the late 1960s. Nowadays, it is widely accepted

that there are at least three generations of flavor neutrinos νe, νµ and ντ , correspondingly

there are three neutrino mass eigenstates ν1, ν2 and ν3. Each flavor neutrino state is a linear
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superposition of all mass eigenstates. Neutrino oscillations provide unique opportunities to

determine fundamental properties of these neutrinos, e.g., their mixing angles and their mass

differences. The oscillation probability Pνα→νβ derived from quantum mechanics is given by

Pνα→νβ = δαβ − 4
∑
i>j

<[U∗
αiUβiUαjU

∗
βj] sin

2

[
1.27

(
∆m2

ij

eV2

)(
L

km

)(
GeV

E

)]

+2
∑
i>j

=[U∗
αiUβiUαjU

∗
βj] sin

[
2.54

(
∆m2

ij

eV2

)(
L

km

)(
GeV

E

)]
, (5.0.1)

where Pνα→νβ corresponds to the appearance and disappearance transition probabilities for

β 6= α and β = α respectively, ∆m2
ij = m2

i −m2
j is the square mass difference between the

i-th and j-th massive neutrinos, and U is the mixing matrix depending on the mixing angles

between different massive neutrinos. Eq. (5.0.1) is equivalent to (5.1.10) whose derivation is

briefly reviewed in the next section. In the standard 3ν oscillation paradigm, observations

on neutrino oscillations can testify and measure neutrino parameters ∆m2
21, ∆m2

32, sin
2 θ12,

sin2 θ23 and sin2 θ13, where θij ({i, j} = {1, 2, 3}) is the mixing angle between the i-th and j-

th neutrino mass eigenstates. Furthermore, the square mass difference ∆m2
31 can be derived

from the relation

∆m2
12 +∆m2

23 +∆m2
31 = 0. (5.0.2)

Despite early theoretical discussions on neutrino oscillations, experimental observations

on neutrino oscillations were developed relatively late, partially because of the technical

difficulties due to the small masses and extremely weak interactions of neutrinos. However,

there is a noteworthy exception of pioneering solar neutrino experiment in the Homestake

Mine led by Davis [97, 99, 98, 90], which started in 1970. The Homestake experiment

detected solar neutrinos through the inverse β-decay Cl-Ar reaction, which observed a deficit

in solar neutrino flux compared with the theoretical prediction from the standard solar

model [42]. This deficit was confirmed by later solar neutrino experiments from SAGE

[6], GALLEX/GNO [164, 20], SNO [12], Kamiokande, Super-Kamiokande (SK) [263]. This

deficit is referred to as the so called solar neutrino problem, which is explained by MSW

resonances between the first and the second neutrino mass eigenstates in the solar medium.

Solar neutrino experiments are sensitive to the mass gap between ν1 and ν2. A global fit
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of the data based on solar neutrino experiments plus the long baseline reactor experiment

KamLAND [26, 134] gives the mass difference and mixing angle between ν1 and ν2 as [127]

∆m2
12 = (7.58+0.6

−0.59)× 10−5 eV2, sin2 θ12 = 0.312+0.052
−0.047. (5.0.3)

In addition to solar neutrino experiments, atmospheric neutrinos provide another excel-

lent opportunity to study neutrino oscillations. Atmospheric neutrinos are created through

interactions of cosmic rays, whose energy spectra range from 0.1 GeV to 1020 GeV, with the

nuclei in the atmosphere of the Earth. These cosmic rays interact with the atmosphere and

generate a lot of pion particles that decay mainly into muons and muon neutrinos. Again,

these muons decay into electrons and electron neutrinos, leading to an expected ratio of

about 2 : 1 for muon and electron neutrinos. Neutrinos produced through these processes

are called atmospheric neutrinos [148]. Atmospheric neutrinos with energy from 100 MeV to

104 GeV can be captured by underground detectors through scattering on nuclei. The first

indication of atmospheric neutrino oscillations came from the measurement at Kamiokande

in 1988 [169], which detected only 60% of the expected sub-GeV and multi-GeV µ-neutrino

events predicted by Monte Carlo calculation, while the measurement of e-neutrinos is con-

sistent with the Monte Carlo result. Hence, the observation suggested an ratio of 1 : 1

instead of 2 : 1 for muon and electron neutrinos. The anomaly observed by the Kamiokande

was confirmed by other atmospheric neutrino experiments, e.g., Irvine-Michigan-Brookhaven

(IMB) experiment [89, 45, 185], SK [131, 130, 34], Soudan-2 [252, 19] and MACRO [21, 22].

Besides the deficit in total µ-neutrino events, SK and Soudan-2 [131, 130, 34, 252, 19] also

measured an asymmetry between up-coming and down-going µ-neutrino events as well as

their zenith angle dependence. These observations suggested that part of the up-coming

µ-neutrino flux disappears, leading to a natural explanation of µ-neutrino oscillations be-

cause the up-coming and down-going µ-neutrinos travel to the detector from quite different

distances. Atmospheric neutrino oscillations are sensitive to the mass gap between the sec-

ond and the third massive neutrinos. Combined data of atmospheric neutrino experiments

with those from Long Baseline (LBL) neutrino oscillation experiments and reactor neutrino
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oscillation experiments [127, 23, 24, 25, 56, 55, 57, 18], it was found that νµ → ντ oscillations

with ∆m2
23 ' (2.35+0.32

−0.29) × 10−3 (eV)2 and sin2 θ23 = 0.42+0.22
−0.08 gave the best fit [127]. The

positive sign of ∆m2
23 corresponds to the normal mass hierarchy of neutrinos.

Based on the study of solar and atmospheric neutrino experiments, phenomena of neu-

trino oscillations have been confirmed and widely accepted as a common behavior of neu-

trinos, from which one can extract important information on the fundamental properties of

neutrinos. Moreover, there is another class of neutrino oscillation experiments, called terres-

trial neutrino oscillation experiments, that help to improve our accessibility to the parameter

space of neutrinos. Depending on their neutrino sources, they are classified into reactor and

accelerator experiments. According to Eq. (5.0.1), neutrino oscillation experiments can de-

tect either the appearance or the disappearance probability based on their detection channels,

corresponding to appearance or disappearance neutrino oscillation experiments. Again, from

Eq. (5.0.1), it is clear that neutrino oscillation experiments designed with different baselines

(ranging from a few tens of meters to hundreds of kilometers) and energy scales (a few MeV

to GeV) are sensitive to different square mass gaps of neutrinos, based on which, neutrino

oscillation experiments are divided into Short Baseline (SBL) experiments which are sen-

sitive to neutrino square mass gaps above 0.1 eV2 and Long Baseline (LBL) experiments

sensitive to neutrino square mass gaps below 0.1 eV2. Most SBL experiments, which started

in the 80’s, did not find any neutrino oscillation signal, and they usually provide an exclu-

sion curve on the parameter space of neutrinos. There is one exception, LSND experiment

found a signal in the ν̄µ → ν̄e channel [35, 36, 37] and a even weaker signal in the νµ → νe

channel [39, 38]. Recent experimental data from MiniBooNE running in antineutrino mode

seems to support the LSND result [11]. The LBL accelerator experiments, for example, K2K

experiment [18], confirm the observation on atmospheric neutrino experiments. Moreover,

KamLAND [26] can push the constraint on neutrino mass difference down to 10−5 eV, and

set the most stringent constraint on the mass difference ∆m2
21 when combined with the solar

neutrino data. Measuring θ13 is the current focus of many terrestrial neutrino oscillation

experiments. A most up-to-date global data analysis of neutrino oscillation experiments

strongly favors a non-zero θ13 [127], which is consistent with the recent data from the T2K
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experiment [7, 107]. Daya Bay [162] and Double CHOOZ [28] are about to take data in

the near future, which will push the sensitivity in sin2(2θ13) better than 0.01. Furthermore,

current and future experimental efforts keep revealing details of neutrino mixing and oscil-

lations between the three generations and beyond, e.g., determining the mass hierarchy of

the three neutrinos, and finding the CP violation phase of the neutrino mixing matrix, etc

[148].

5.1 THEORY OF NEUTRINO OSCILLATION IN PLANE WAVE LIMIT

Given the importance of neutrino oscillations, it is reasonable to request a rock-solid theory

on it. The simplest theoretical approach is analogous to Rabi-oscillations in a two-state

system (see for example, [129, 121, 51, 52, 53, 189, 222, 132, 41] and references therein) and

treats neutrinos as plane waves. The physical origin of neutrino oscillations is that “flavor”

and massive neutrino eigenstates are different. Neutrinos interact only through weak inter-

actions, in particular, in charge current interactions, each neutrino interacts with a charged

lepton by exchanging a W -boson. There are three charged lepton flavors in nature, namely

e, µ and τ . Corresponding to each charged lepton flavor, there is a neutrino with the same

flavor. Therefore, we have e-, µ- and τ -neutrinos, which are called “flavor” neutrinos. On

the other hand, massive neutrinos correspond to the eigenstates that diagonalize the mass

matrix of neutrinos, which is determined by the specific model. Each massive neutrino has

a fixed mass. For any given momentum, the massive neutrino has a fix energy and can

propagate freely. Mass eigenstates are in general different from the “flavor” states, more

precisely, each “flavor” state is a linear superposition of all massive eigenstates, or vice

versa. Consequently, the simplest picture of neutrino oscillation can be summarized as fol-

lows: when a “flavor” neutrino is created initially, it is a linear superposition of all massive

neutrino states. As time evolves, each massive neutrino component evolves independently

according to e−iEt, making the corresponding coefficient of its contribution to the flavor state

a function of time. Therefore, if one tries to measure the initial flavor state at some later

time, one will find that the original flavor can change and oscillate into other neutrino flavors.

148



The same idea can also be described mathematically. Let us assume an α-flavor neutrino

is created initially:

|να(~k)〉 =
∑
i

Uαi|νi(~k)〉, (5.1.1)

where Uαi is the coefficient of the i-th massive neutrino |νi〉 when decomposing |να〉 into the

mass space. Both |να〉 and |νi〉 are normalized to one, thus, it is straightforward to prove

the unitarity of the matrix Uαi, namely

∑
i

U∗
αiUβi = δα,β. (5.1.2)

As time evolves, each massive eigenstate evolves independently according to e−iĤt, thus

|να(~k, t)〉 = e−iĤt|να(~k)〉 =
∑
i

Uαi e
−iĤt|νi(~k)〉 =

∑
i

e−iωit Uαi|νi(~k)〉, (5.1.3)

where ωi =

√
|~k|2 +m2

i and mi is the mass of the i-th massive neutrino. Consequently, at a

later time, if one goes to measure this neutrino state, one will find that

Pα→β(~k, t) =
∣∣∣〈νβ(~k)|να(~k, t)〉

∣∣∣
2

=
∑
i,j

UαiU
∗
βiU

∗
αjUβj e

−i
∆m2

ijt

2k . (5.1.4)

When β 6= α, Pα→β(~k, t) is the probability to observe a β-flavor neutrino state with momen-

tum ~k at time t. Since in general Pα→β(~k, t) 6= 0, it means an initial α-flavor neutrino can

change its flavor into a β neutrino in the time evolution. Therefore, Pα→β(~k, t) is called the

transition probability, or appearance probability. To obtain the above expression, we have

assumed that all neutrinos are ultra-relativistic, an excellent approximation for most cases

of neutrino oscillations due to the small masses of neutrinos (Current bounds of neutrino

masses are below one eV.). Under ultra-relativistic limit,

ωi(~k) ' k +
m2

i

2k
. (5.1.5)

Here, k is the magnitude of the momentum ~k, referring to the energy scale E associated

with the oscillation. Correspondingly, ∆m2
ij is the mass difference between the i-th and j-th

massive neutrinos, namely

∆m2
ij = m2

i −m2
j . (5.1.6)
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Moreover, in the ultra-relativistic limit, the velocity of each massive neutrinos is close to

that of photos, therefore,

L ' t, (5.1.7)

where L and t are the distance and time traveled by the neutrino state (We take the speed

of light c = 1.). In terms of E and L, we find

Pα→β(E,L) =
∑
i,j

UαiU
∗
βiU

∗
αjUβj e

−i
∆m2

ijL

2E . (5.1.8)

It turns out convenient to define another length scale

Losc
ij =

4πE

∆m2
ij

, (5.1.9)

which is called the oscillation length. It defines the characteristic length scale of oscillation

for the given neutrino energy scale and mass difference between any two massive neutrino

states. Finally, by reorganizing the transition probability, we obtain

Pα→β(E,L) =
∑
i,j

UαiU
∗
βiU

∗
αjUβj e

−2πi L
Losc
ij

=
∑
i

|Uαi|2|Uβi|2 + 2
∑
i>j

UαiU
∗
βiU

∗
αjUβj cos

(
2π

L

Losc
ij

)
. (5.1.10)

In addition to the coefficients of mixing matrix determined by the intrinsic properties of

neutrinos, the oscillation pattern of the transition probability Pα→β depends on the ratio of

L and Losc
ij . In neutrino oscillations experiment, L is also called the baseline.

On the other hand, when β = α, Pα→α(~k, t) becomes the disappearance probability,

describing the probability to measure the original α-flavor neutrino state. Straightforward

calculation shows that

Pα→α(E,L) = 1−
∑

β 6=α

Pα→β(E,L) < 1. (5.1.11)

Together, the appearance and disappearance probabilities give a conserved total probability.

In real neutrino oscillation experiments, one can measure either appearance or disappearance

probability and extract information on mass differences and mixing angles between different
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massive neutrinos. In spite of the simple derivation, it grabs the most essential ingredients

of the neutrino oscillation phenomenon, that is, the mixing of neutrino mass eigenstates and

their coherent quantum interference (See Eq. (5.1.4).) make a flavor neutrino state change

its flavor during the time evolution.

Though simple and intuitive, such a theory is not self-consistent because the require-

ment of energy-momentum conservation forbids two neutrinos with definite energy and mo-

menta to interfere and oscillate. To solve this controversy, the wave packet nature of these

neutrino states was pointed out and studied by Nussinov [231] and Kasyer [180]. In prac-

tice, each neutrino state is not created as a plane wave, instead, is a wave packet with

some energy-momentum uncertainties determined by the production mechanism. It is these

energy-momentum uncertainties that enable different massive neutrinos to interfere coher-

ently, and generate the oscillation between different flavor states. The wave packet idea is an

serious improvement to the theory of neutrino oscillations; yet, it is still not complete and

satisfactory. Giunti, Kim and Lee found that it is impossible to construct a Fock space in

general for the weak-interacting flavor neutrino states [151]; the wave forms and size of the

wave packets of neutrinos depend on both the production and detection mechanism, which

are missing in the calculation. To solve these problems, detailed wave packet models of

neutrino oscillations including its production and detection processes are developed in both

the framework of quantum mechanics [247, 150, 147, 144] and the framework of Quantum

Field Theory (QFT) [149, 143, 159, 160, 158, 156, 119, 116]. For reviews of these work, one

can refer to [48, 181, 16, 15].

5.2 NEUTRINO OSCILLATION UNDER WAVE PACKET TREATMENT

As mentioned above, neutrino oscillation under wave packet treatment can be done both

within the framework of quantum mechanics and QFT; however QFT is a more natural

framework to include the production and detection processes, and determine the wave packet
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Figure 31: An schematic representation of neutrino oscillation experiments in QFT framework.

form of the neutrino states. Therefore, in this section, we will summarize the theory of neu-

trino oscillation under wave packet treatment in QFT description by following the work of

[149, 152, 159, 160, 157].

In QFT, the three stages of an neutrino oscillation experiment, namely the production,

propagation and detection, are combined together to be described by a single “Feynman”

diagram as shown in Figure 31, where neutrinos act as intermediate states. Each exter-

nal particle except neutrino in the production and detection processes is described by a

localized wave packet, thus this method is also called the external wave packet model [48].

Standard field theoretical S-matrix calculation is applied to this “Feynman” diagram, where

the transition amplitude is defined as

A = 〈PF , DF |T̂
(
e−i

∫
d4xĤI(x)

)
|PI , DI〉, (5.2.1)

where PI , PF and DI , DF correspond to the initial and final states of the production and

detection processes respectively, and ĤI is the interaction Hamiltonian in the interaction

picture. PI(F ) and DI(F ) are all described by wave packets, whose expressions depend on the

specific production and detection mechanisms. For example, in many cases, neutrinos are

produced and detected through charge current weak interactions [143]. The calculation is
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straightforward but tedious, which we choose not to present it here. Instead, we summarize

the main results of these calculations and their physical interpretations. In order to simplify

the discussion, some parameters or notations may not be explained in detail, interested

reader can refer to [149, 152, 159, 160, 157, 47, 16, 15] for their explicit expressions and

calculation details. Following the convention used in Ref. [15], the general expression of the

transition amplitude, resulting from the Feynman diagram in Figure 31, can be written as

Aα→β =
∑
j

U∗
βjUαj

∫
d4p

(2π)4
ΦjP (p

0, ~p) ΦjD(p
0, ~p)

2p0e
−ip0T+i~p·~L

p2 −m2
j + iε

, (5.2.2)

where ΦjP and ΦjD are called the overlap functions, respectively corresponding to the in-

teractions associated with the j-th massive neutrino of energy-momentum (p0, ~p) at the

production and detection areas. The last factor in Eq. (5.2.2) is the propagator of the j-th

massive neutrino with T and ~L representing the time and distance traveled by this neutrino

from production to detection. It is noteworthy pointing out that the oscillation feature

of Aα→β results from the coherent interference of the phase e−ip0T+i~p·~L of different massive

neutrinos. By expanding all wave packets into plane wave basis, ΦjP and ΦjD become (See

Eq. (25) in [15])

ΦjP (p
0, ~p) =

∫
d4x1e

ip·x1

∫
[d~q]

∫
[d~k]fPI

(~q, ~PP0)f
∗
PF

(~k, ~KP0)e
−i(q−k)·x1MjP (q, k),

ΦjD(p
0, ~p) =

∫
d4x2e

ip·x2

∫
[d~q]

∫
[d~k]fDI

(~q, ~PD0)f
∗
DF

(~k, ~KD0)e
−i(q−k)·x2MjD(q, k).

(5.2.3)

Here {p, q, k} and {x1, x2} are momentum and coordinate 4-vectors, and the dot, as in p ·x1,

means product of 4-vectors. [d~q] and [d~k] are covariant differential displacements over three

momenta ~q and ~k, whose explicit expressions are not important for our purpose and can be

found in [15]. MjP and MjD are the matrix element of the interactions at production and

detection areas. Most importantly, fPI
(~p, ~PP0), fPF

(~p, ~KP0), fDI
(~p, ~PD0) and fDF

(~p, ~KD0)

are the momentum distribution functions of the initial and final particle wave packets en-

tering the interactions, with momentum centers ~PP0, ~KP0, ~PD0 and ~KD0 respectively. They

are usually chosen to be Gaussian distributions because in this case, all the integrations in

153



(5.2.3) and (5.2.2) are analytically doable, resulting in analytical expressions for the transi-

tion amplitudes and probabilities.

By taking Gaussian wave forms and carrying out all the integrations in (5.2.3) and (5.2.2),

according to [149, 152, 143, 47], up to a normalization constant, the transition amplitude

has the following structure,

Aα→β(~L, T ) ∝
∑
j

U∗
βjUαj Mj(~q, ωj) e

−Sj(~q,ωj) e
−iωjT+iqL− (L−vjT )2

4Σj , (5.2.4)

where q and ωj =
√

q2 +m2
j are respectively the momentum and energy of the j-th neutrino,

and vj = q/ωj is the corresponding group velocity of the j-th neutrino wave packet. Mj(~q, ωj)

contains the details of the interactions irrelevant to oscillation phenomena at the production

and detection areas, e.g., the spin and helicity information, etc. Sj(~q, ωj) results from the

Gaussian integration, describing the approximate energy-momentum conservation under the

wave packet treatment. Due to the wave packet feature of all the interacting particles, the

energy-momentum conservation cannot be exact, instead, the conservation requirement is

relaxed by the wave packet uncertainties at both production and detection areas. If the neu-

trino momentum ~q is such that it deviates from the exact energy-momentum conservation

by an amount well within the total uncertainty of the production and detection processes,

Sj(~q, ωj) ∼ 0, e−Sj(~q,ωj) is of order one; on the other hand, if ~q deviates from the exact conser-

vation by an amount significantly beyond the allowed total uncertainty, e−Sj(~q,ωj) À 1, thus

the transition amplitude is exponentially suppressed due to the breakdown of the approxi-

mate energy-momentum conservation. Finally, Σj is interpreted as an effective uncertainty

associated with both the production and the detection processes, whose explicit expression

is given by Eq. (15) in [152]. Strictly speaking, both Mj(~q, ωj) and Sj(~q, ωj) are functions

of neutrino mass mj, but since neutrinos are so light that they are always ultra-relativistic

in neutrino oscillation experiments under most considerations, the dependence of Mj and

Sj on mj is very weak [149, 152, 143, 159, 47, 16, 15]. By neglecting their neutrino mass

dependence, we obtain

Aα→β(~L, T ) ∝ M(~q)e−S(~q)
∑
j

U∗
βjUαj e

−iωjT+iqL− (L−vjT )2

4Σj . (5.2.5)
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The transition probability Pα→β(T, ~L) is simply the square of Eq. (5.2.5). Under the ultra-

relativistic limit of the neutrinos and by integrating it over the time T 1, straightforward

calculation yields [152, 143]

Pα→β(~L) =
∑
i

|Uαi|2|Uβi|2 + 2Re
∑
i>j

UαiU
∗
βiU

∗
αjUβje

−2πi L
Losc
ij

−
(

L

Lcoh
ij

)2

−2π2ρ2
(

σx,eff
Losc
ij

)2

, (5.2.6)

where ρ is a dimensionless number of order one and σx,eff is the effective width in the

coordinate space (namely total spatial uncertainty) depending on both the production and

the detection processes. Their explicit expressions are given in Eqs. (16) and (17) in [47].

The transition probability (5.2.6) under the wave packet treatment is similar to the plane

wave result in Eq. (5.1.10), both of them contain the oscillation phase determined by the

ratio of L/Losc
ij . However, in addition to the oscillation phase, the wave packet treatment

introduces two more exponential terms. First of all, it introduces a coherence length scale,

called Lcoh
ij , which is defined as

Lcoh
ij =

4
√
2E2

∆m2
ij

σx,eff . (5.2.7)

The coherence length Lcoh
ij describes the distance within which the wave packets of i-th and j-

th massive neutrinos remain coherent with each other. Due to their mass difference, i-th and

j-th massive neutrino wave packets have different group velocities. With respect to the time

evolution, the two wave packets gradually become separated although they were originally

created at the same place. Eventually, they have no overlap and lose the coherence between

each other, leading to the disappearance of neutrino flavor oscillations when L À Lcoh
ij .

Secondly, according to Eq. (5.2.6), the transition probability becomes significant only when

σx,eff ¿ Losc
ij , meaning that in order to manifest the neutrino oscillation phenomenon, the

total effective width of the wave packets at production and detection areas, namely the to-

tal uncertainty in the coordinate space, must be much smaller than the oscillation length.

Otherwise, the neutrino wave packets do not have enough sensitivity to discriminate small

neutrino mass differences, again leading to the disappearance of neutrino flavor oscillations.

1The reason to integrate over T is that the propagation time is usually not measured in neutrino oscillation
experiments [159, 152, 15].
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In summary, the appearance of Lcoh
ij and σx,eff tells us that the neutrino oscillation pattern

may disappear as a result of the de-coherence of different massive neutrino wave packets, or

it disappears because the effective spatial spread of the interacting wave packets is too wide

to distinguish the small neutrino mass differences. These arguments are consistent with the

physical intuitions. Compared with the plane wave calculation, apparently, the wave packet

treatment exhibits a more realistic and complete picture for neutrino oscillations.

Despite the great improvement of the wave packet treatment in QFT, the conventional

S-matrix calculation is a “black-box” calculation, for given initial (in) states to produce neu-

trinos and final (out) states resulting from detection of neutrinos, physics associated with

neutrinos is solely governed by the interaction Lagrangian. However, neutrino oscillations

turn out more complicated than such a “black-box” treatment. For example, discussion on

coherence aspects of neutrinos [143, 159, 160, 158, 92, 118, 116, 119, 211, 210, 163] has recog-

nized that the neutrino state produced by the decay of a parent particle via charged current

interactions is in fact entangled with that of the charged lepton. Whether this entanglement

will influence the neutrino oscillation formula or not remains to be discussed in the literature

[92, 211, 210, 163]. In the following section, we are going to discuss several subtle aspects of

the neutrino oscillation phenomenon, and try to motivate our research.

5.3 SUBTLE ISSUES OF THE THEORY OF NEUTRINO OSCILLATIONS

As mentioned above, the previous quantum field theory treatment of neutrino mixing and

oscillations is S-matrix theoretic in nature, making use of in-out wave-packets spatially lo-

calized at the source, or the “near” detector, and the far detector. However, the S-matrix

calculation takes the interaction time to infinity, even with some case of setting the ini-

tial and final wave packets at infinite source and detector times [88, 119, 116, 118, 186].

On the other hand, a neutrino oscillation experiment usually keeps a finite baseline, with

wave packets defined at some initial time at the source and final time at the far detector.
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This apparent incongruity is often justified with the statement that time is not measured

in appearance or disappearance experiments. While this is true, it is a practical, but not

a fundamental reason for taking the infinite time limit. In principle, one can still measure

the time in an neutrino oscillation experiment. For example, one can consider a gedanken

experiment in which clocks at the source (near detector) and far detector are synchronized

via global positioning satellites and register the detection of the charged leptons at the source

and far detector at the time tS and tD, respectively. Obviously, the time difference regis-

tered by these clocks tD − tS ' L, with L being the baseline. This time measurement bares

uncertainties of the order of the size of the source and detector for the interaction vertices

from which the charged leptons emerge are localized within these regions, although current

resolution of the interaction vertices is much more accurate than this scale.

Furthermore, taking the infinite time limit as in the S-matrix calculation enforces total

energy conservation via an overall delta function in the transition amplitude. The transition

probability treats the square of this delta function as overall energy conservation multiplied

by the total time of the interaction, from which an interaction rate is extracted by dividing

by this time (in the long time limit). However, oscillations arising from quantum mechanical

interference have nothing to do with a transition rate and in principle do not feature a secu-

lar evolution in time. By recognizing this problem of the conventional theoretical approach,

we hope to develop a real time calculation of neutrino oscillations, namely keeping the finite

time limit in neutrino oscillation calculations.

On the other hand, the issue of entanglement in neutrino oscillations was pointed out by

Cohen et al. [92]. They argued that neutrinos produced from decay via the charge current

interaction are actually entangled with the charge leptons, being the other decay products.

When this entangled state evolves, there are two possibilities. If we measure the charged

lepton before neutrinos are detected, it disentangles the quantum state at a time determined

either by the detection process of the charged lepton at the source or by stopping at a “beam

dump” near the source. This disentangled neutrino state then evolves further in time and

is detected at the “far detector” via another charged lepton. Therefore the production,
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disentanglement and detection involve two times : the time at which the charged lepton is

observed at the source (if observed at all) or stopped at a beam dump near the source, which

is when the neutrino/charged lepton state is disentangled, and the time when the neutrino is

observed via a charged lepton in the far detector. We note that for long-baseline experiments

these two time scales are widely separated [13, 9, 10]. On the other hand, if the charged

lepton is not observed before neutrino detection, neutrinos are thus described by a reduced

density matrix, obtained by tracing out the charged lepton. In this case, we can track the

behavior of the off-diagonal elements, i.e., the coherence which contain information on the

interference between the different neutrino mass eigenstates.

We are particularly interested in the first case. As pointed above, it involves two mea-

surement times. S-matrix calculation certainly cannot fulfill this requirement because it

considers in and out states only and takes the production and detection times asymptoti-

cally to infinity. In order to study the influence of entanglement and disentanglement on

neutrino oscillations, we have to study the detailed dynamics of the entangled state explic-

itly to the disentangling moment, then evolve the dis-entangled neutrino state to the far

detector. This is consistent with our previous argument that neutrino oscillations should

be considered under the finite time limit. To emphasize the importance of this two-time

measurement idea, we divide the study into two steps. In the first step, we neglect the wave

packet nature of all particles, describing them by plane waves. In this way, we avoid all the

technical complications associated with wave packet treatment, and focus solely on the is-

sues of entanglement, dis-entanglement and the two-time measurement. Then, in the second

step, we apply the wave packet idea to our study, thus investigate the issue of entanglement

and dis-entanglement within a more consistent and complete theoretical picture of neutrino

oscillations. In this thesis, however, we only report our study of the first step, which has been

published in research journals. The second part of study is still under developing, therefore,

we choose not to present it here. Even so, we still comment on the general expectations on

the wave packet treatment following our ideas.
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5.4 SUMMARY OF OUR WORK

Based on the above discussion, we hope to provide a clear motivation for our study in this

part. Then, in the following, let us summarize our work.

5.4.1 Dynamics of Disentanglement And Coherence In Neutrino Oscillations

As advertised in the introduction, in this study, we focus on the entanglement and dis-

entanglement issue of neutrino oscillations within the plane wave limit and QFT framework.

This study has been reported in [286], where we worked under the finite time limit and

explicitly study the time evolution from production to detection processes. By carrying

out the two-time measurement study, we found that oscillation amplitudes and probabilities

depend on both time scales, namely, the two times when the neutrino-lepton state is dis-

entangled (tS) and when the dis-entangled neutrino is measured (tD). We obtain a non-

standard transition probability, whose time derivative, namely transition rate, reduces to

the standard results in the long time limit for long baseline neutrino oscillation experiments.

(See Eq. (2.49) in [286] to obtain the standard oscillation probability.) However, when

tS ∼ tD ∼ Losc, where Losc is the oscillation length scale, the oscillation amplitudes and

probabilities deviates significantly from the standard results. Although this condition cannot

be true for long-baseline oscillation experiments, it could be the case for short-baseline

oscillation experiments. Hence, this could give rise to a re-interpretation of their results by

taking the dependence on the disentangling time into account.

5.4.2 Application of the Plane Wave Result to the GSI Anomaly

As an application of our plane wave calculations, we consider the GSI anomaly, investigating

the interpretation of GSI anomaly as a result of neutrino oscillations. Following the method

developed in the previous study, we obtain the time evolution of the population of parent

and daughter particles directly in real time, considering explicitly the quantum entanglement

between the daughter particle and neutrino mass eigenstates in the two-body decay. We

confirm that the decay rate of the parent particle and the growth rate of the daughter
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particle do not feature a time modulation from interference of neutrino mass eigenstates.

The lack of interference is a consequence of the orthogonality of the mass eigenstates. This

result also follows from the density matrix obtained by tracing out the unobserved neutrino

states. We confirm this result by providing a complementary explanation based on Cutkosky

rules applied to the Feynman diagram of the self-energy of the parent particle.
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6.0 PART II: DYNAMICS OF DISENTANGLEMENT AND COHERENCE

IN NEUTRINO OSCILLATIONS

This chapter is based on our published article [286], where we re-investigate the theory of

neutrino oscillations by focusing on the dynamics of disentanglement, density matrix and co-

herence of this phenomenon. To simplify the calculation and emphasize on our main points,

we consider the neutrino oscillation in the plane wave limit in this study. This chapter is

organized as follows: in Sec. 6.1, we introduce a simple theoretical model containing all nec-

essary ingredients for the phenomenon of neutrino oscillations, but neglecting all irrelevant

and technically complicated aspects. Then, based on this simple model, we consider the

interaction at the source (near detector) and far detector in Secs. 6.2 and 6.3 respectively.

In particular, in Sec. 6.2, we study the case when the entangled state of neutrino and lep-

ton is dis-entangled by the measurement of the lepton, and compare to the case when the

lepton is not measured. In Sec. 6.3, we obtain the transition amplitude and probability of

neutrino oscillations, investigating the influence of the dis-entanglement on these experimen-

tal observables. Sec. 6.4 discusses the possible application of our results to short baseline

neutrino oscillation experiments and comments on the modifications under the wave packet

treatment. Finally, we briefly conclude our work in Sec. 6.5.

6.1 A MODEL OF “NEUTRINO” OSCILLATIONS

The goal of this work is to study the dynamics of mixing and oscillation of neutrinos in

quantum field theory with a finite time interval. In order to exhibit the main results in a

clear and simpler manner, we introduce a bosonic model that describes mixing, oscillations
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and charged current weak interactions reliably without the complications associated with

fermionic and gauge fields. We can do so because the technical complications associated

with spinors and gauge fields are irrelevant to the physics of mixing and oscillations, as

is obviously manifest in meson mixing. Our model is defined by the following Lagrangian

density

L = L0[W, lα] + L0[να] + Lint[W, lα, να], (6.1.1)

with α = e or µ and

L0[ν] =
1

2

[
∂µΨ

T∂µΨ−ΨTMΨ
]
, (6.1.2)

where Ψ is a flavor doublet representing the neutrinos

Ψ =


 νe

νµ


 , (6.1.3)

and M is the mass matrix

M =


 mee meµ

meµ mµµ


 . (6.1.4)

The interaction Lagrangian is similar to the charged current interaction of the standard

model, namely

Lint(~x, t) = gW (~x, t)
[
le(~x, t) νe(~x, t) + lµ(~x, t) νµ(~x, t)

]
, (6.1.5)

where g is the coupling constant. W (x) represents the vector boson, or alternatively the

pion field, and lα with α = {e, µ} the two charged leptons. The mass matrix is diagonalized

by a unitary transformation

U−1(θ)MU(θ) =


 m1 0

0 m2


 , (6.1.6)

where

U(θ) =


 cos θ sin θ

− sin θ cos θ


 . (6.1.7)

In terms of the doublet of mass eigenstates, the flavor doublet can be expressed as

 νe

νµ


 = U(θ)


 ν1

ν2


 . (6.1.8)
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This bosonic model clearly describes charged current weak interactions reliably as it includes

all the relevant aspects of mixing and oscillations.

We consider “neutrino” oscillation experiments following the interaction processes illus-

trated in Figure 32, that is

W → lα + να Ã





W + lβ , β 6= α appearance;

W + lα disappearance.
(6.1.9)

W

lα lβ

W

ν

Figure 32: Typical experiment in which the charged leptons are measured at a near and far detector
and the neutrino is an intermediate state.

Throughout this work, we will use plane wave states for simplicity of exposition, though

we discuss some of the modifications that the use of wave packets would require later in

this chapter. In order to study aspects of coherence we consider a simplified interaction

Lagrangian density

LI = gW e νe = gW e(cos θ ν1 + sin θ ν2), (6.1.10)

focusing only on one lepton, which we refer to as the “electron”. The full coupling as in Eq.

(7.2.5) can be treated similarly without modifying the main conclusions. Although W may

be interpreted as a charged vector boson, the analysis is obviously the same if it describes a

pion field.
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6.2 INTERACTION NEAR THE SOURCE

We can study aspects of coherence by focusing on the Fock state obtained upon evolution

of the decaying initial state. We consider a plane-wave Fock initial state
∣∣W (~k)

〉
at ti = 0.

The time evolution operator is

e−iH(t−ti) = e−iH0t U(t, ti) e
iH0ti , (6.2.1)

where

U(t, ti) = T e
i
∫ t
ti

d3x dtLint(~x,t) (6.2.2)

is the time evolution operator in the interaction picture and H0 is the non-interacting Hamil-

tonian. By time t, the initial state has evolved into
∣∣W (~k)

〉
e−iEW

~k
t+

∣∣Ψe(t)
〉
. To lowest order

in the interaction, we find the second term to be

∣∣Ψe(t)
〉
= ig e−iH0t

∫ t

0

dt′
∫

d3x
[
W (~x, t′) e(~x, t′)(cos θ ν1(~x, t′) + sin θ ν2(~x, t

′))
] ∣∣W (~k)

〉
,

(6.2.3)

where all the fields are in the interaction picture. Though the field operator W can either

annihilate the initial state or create another W particle, the state with two W particles

features faster oscillations that will average out. In what follows, we consider only the Fock

state resulting from the annihilation of the initial particle, leading to the state

∣∣Ψe(t)
〉 ' g

2
√

2V EW
~k

e−iEW
~k

t
∑

~q

{
sin θ√
Ω2,~p Ee

~q

∣∣∣ν2,~p〉
∣∣∣e~q〉

[
ei(E

W
~k

−Ee
~q−Ω2,~p)t − 1

(EW
~k

− Ee
~q − Ω2,~p)

]

+
cos θ√
Ω1,~p Ee

~q

∣∣∣ν1,~p〉
∣∣∣e~q〉

[
ei(E

W
~k

−Ee
~q−Ω1,~p)t − 1

(EW
~k

− Ee
~q − Ω1,~p)

]}
, (6.2.4)

where ~p = ~k − ~q and Ω1, Ω2 refer to the energies of the first and second massive neutrinos.

The electron and the neutrinos are entangled1. The neutrino state that is entangled with

the muon is obtained from (7.3.7) by replacing cos θ → − sin θ ; sin θ → cos θ.

1The result for the wavefunction in Ref. [?] may be understood using a (non-perturbative) Wigner-
Weisskopf approximation for the decaying parent particle, replacing EW → EW − iΓW . Taking t À 1/ΓW in
the integral replaces the brackets in (7.3.7) by 1/(EW −Ee−Ωj − iΓW ) whose absolute value is proportional
to δ(EW − Ee − Ωj)/ΓW .
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In what follows, we consider ultrarelativistic neutrinos and write

Ω1 = Ω−∆, Ω2 = Ω+∆, (6.2.5)

where

Ω =

[
p2 +

m2
1 +m2

2

2

] 1
2

, ∆ =
δm2

4Ω
, δm2 = m2

2 −m2
1, (6.2.6)

taking ∆ ¿ Ω as is the case for ultrarelativistic nearly degenerate neutrinos.

6.2.1 Unobserved daughter particles: time evolution of the density matrix

If the electrons (or daughter particle in Ref. [92]) are not observed, they can be traced out

of the density matrix
∣∣Ψe(t)

〉〈
Ψe(t)

∣∣. This gives the reduced density matrix

ρr(t) = Tre
∣∣Ψe(t)

〉〈
Ψe(t)

∣∣

=
g2

8V EW
~k

∑

~q

{
sin2 θ

Ω2,~p Ee
~q

∣∣∣ν2,~p〉〈ν2,~p
∣∣∣
[
sin

((
EW

~k
− Ee

~q − Ω2,~p

)
t
2

)
(
EW

~k
− Ee

~q − Ω2,~p

)
/2

]2

+
cos2 θ

Ω1,~p Ee
~q

∣∣∣ν1,~p〉〈ν1,~p
∣∣∣
[
sin

((
EW

~k
− Ee

~q − Ω1,~p

)
t
2

)
(
EW

~k
− Ee

~q − Ω1,~p

)
/2

]2

+
sin 2θ

2Ee
~q

√
Ω2,~p Ω1,~p

[
sin

((
EW

~k
− Ee

~q − Ω2,~p

)
t
2

)
(
EW

~k
− Ee

~q − Ω2,~p

)
/2

][
sin

((
EW

~k
− Ee

~q − Ω1,~p

)
t
2

)
(
EW

~k
− Ee

~q − Ω1,~p

)
/2

]

×
[
e−i δm

2

4Ω
t
∣∣∣ν2,~p〉〈ν1,~p

∣∣∣+ ei
δm2

4Ω
t
∣∣∣ν1,~p〉〈ν2,~p

∣∣∣
]}

, ~p = ~k − ~q . (6.2.7)

This expression contains remarkable information. The function sin2(xt)/x2 is the usual

“diffraction” function of Fermi’s Golden rule. In the formal long time limit, sin2(xt)/x2 →
π t δ(x), the first two terms of the density matrix, which are the diagonal entries in the mass

basis, describe the production process of the mass eigenstates. As will be seen below, in

the long time limit, the time derivative of these two terms yields the production rate for

the mass eigenstates. In the formal t → ∞ limit, these are the diagonal terms obtained in

Ref. [92], where in that reference, the product of delta functions is again understood as the

total time elapsed times an energy conserving delta function.
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The off-diagonal terms in the last line of (6.2.7) describe the “coherences” and display

the oscillatory phases from the interference of the mass eigenstates. The time dependent

factors of the off-diagonal density matrix elements determine the coherence between the mass

eigenstates and will be a ubiquitous contribution in the real time description of oscillations

that follows below. The functions

f±(x, t; ∆) =
2 sin

[(
x±∆

)
t
2

]
(
x±∆

) (6.2.8)

with x = (EW
~k

− Ee
~q − Ω~p) are strongly peaked at x ± ∆ = 0 with height t and width

∼ 2π/t. In the infinite time limit, f±(x, t,∆) → 2π δ(x ± ∆) and therefore their product

would vanish in this limit, leading to the vanishing of the coherence. This is the result

obtained in Ref. [92]. However, at finite time t, they feature a non-vanishing overlap when

2∆ . 2π/t. We recognize this as the condition for oscillations. We note that t ∼ π/∆ yields

a macroscopically large time scale. The functions f±(x, t,∆) and their products are depicted

in Figs. 33 and 34 for the values ∆ = 0.1, t = {40, 100}, respectively.

x-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

f(x,t,∆
)

-100
1020
3040
50 2 ∆

f_(x,40,0.1)f+(x,40,0.1)

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6-40-200
2040
6080

100120 2∆
f_(x,100,0.1)f+(x,100,0.1)

X

f(x,t,∆)

Figure 33: The functions f±(x, t,∆) vs. x for t = {40, 100}, ∆ = 0.1

It is straightforward to find

f−(x, t,∆)f+(x, t,∆) =
sin(∆ t)

∆

[
sin[(x−∆)t]

(x−∆)
+

sin[(x+∆)t]

(x+∆)

]

+2
cos(∆ t)

∆

[
sin2[(x−∆) t

2
]

(x−∆)
− sin2[(x+∆) t

2
]

(x+∆)

]
. (6.2.9)
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Figure 34: The products f−(x, t,∆)f+(x, t,∆) vs. x for t = {40, 100},∆ = 0.1

In the long time limit, the terms in the first bracket yield a sum of delta functions at x = ±∆.

Upon integrating the product of f−f+ with functions of compact support, the contribution

from the second line in (6.2.9) is negligible in the long time limit. Therefore, the long time

limit of f+f− can be replaced by

f−(x, t,∆)f+(x, t,∆) = π
sin(∆ t)

∆

[
δ(x−∆) + δ(x+∆)

]
. (6.2.10)

During a time interval t ¿ 2π/∆, the product f−(x, t,∆)f+(x, t,∆) ∼ π t[δ(x−∆)+δ(x+∆)]

grows linearly in time until it begins to oscillate with frequency 2π/∆ for t > 2π/∆. There-

fore, we conclude that upon integration with a smooth density of states, the off-diagonal

terms in the density matrix grow linearly in time for t ¿ tosc = 2π/∆, but feature a bound

oscillatory behavior of frequency ∆ for t & 2π/∆.

The diagonal terms, i.e., the first two terms in the reduced density matrix (6.2.7), are

proportional to 4 sin2(x t
2
)/x2 → 2π tδ(x). This shows that the coherences or off diagonal

terms are linear in time and of the same order as the diagonal elements for t . tosc = 2π/∆,

but are of O(1/∆t) and oscillate compared to the diagonal terms for t À tosc. This behavior
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is displayed in Figure 35, where as an example we consider a smooth density of states and

the integral

I(t,∆) =

∫ ∞

−∞
e−x2

f+(x, t,∆)f−(x, t,∆)dx. (6.2.11)

t0 10 20 30 40 50 60
I(t,∆)

-1000
100200300400

∆=0
∆=0.1

∆=0.3

Figure 35: The integral I(t,∆) =
∫∞
−∞ e−x2

f+(x, t,∆)f−(x, t,∆)dx vs. t for ∆ = {0, 0.1, 0.3}

The case ∆ = 0 describes either of the diagonal terms and is linearly secular in time. This

figure clearly shows the slow oscillations for t & 1/∆. Therefore, the approximation (6.2.10)

is reliable in the long time limit and upon integration with functions of compact support.

We see that for large t, but t∆ ¿ 1, f+(x, t,∆)f−(x, t,∆) → πt
[
δ(x −∆) + δ(x +∆)

]
and

for ∆ → 0, the product yields 2πtδ(x).

The reduced density matrix (6.2.7) allows us to obtain the time evolution of the neutrino

populations and coherence, namely

ni(~p, t) = Tr ρr(t)a
†
i (~p)ai(~p),

Cij(~p, t) = Tr ρr(t)a
†
i (~p)aj(~p) , i 6= j (6.2.12)
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where the annihilation and creation operators are in the Schrodinger picture. In the long

time limit and using the results above, we find

n1(~p, t) = t Γ1(~p) cos
2 θ, n2(~p, t) = t Γ2(~p) sin

2 θ, (6.2.13)

where

Γ1,2 =
2π g2

8EW
~k

∫
d3 ~Q

(2π)3Ee
~Q
Ω1,2

δ
(
EW

~k
− Ee

~Q
− Ω1,2

)
(6.2.14)

are the partial widths for the decay of the W into the charged lepton and the neutrino mass

eigenstates. For the off-diagonal matrix elements or coherence we find,

C12(~p, t) = C†
21(~p, t) =

2π g2 sin 2θ

32EW
~k

sin[t∆]

∆
ei∆t

∫
d3 ~Q

(2π)3Ee
~Q

√
Ω1 Ω2

[
δ
(
EW

~k
− Ee

~Q
− Ω1

)
+ δ

(
EW

~k
− Ee

~Q
− Ω2

)]
.

(6.2.15)

dni(~p, t)/dt yields the production rate of the neutrino mass eigenstates from the decay of the

W and the coherences Cij are non-vanishing at any finite time. In Ref. [92], the coherences

vanish as a consequence of the product of delta functions on the different mass shells of

the mass eigenstates. The coherences vanish in the formal infinite time limit because of the

oscillatory behavior averages out on time scales t À 1/∆ and they are of O(
sin(t∆)/t∆

)

with respect to the diagonal terms. However, we emphasize that experimentally, the time

scales involved (or length scales) are of order 1/∆ as these are the scales on which oscillatory

phenomena are revealed. Taking Ω1 ∼ Ω2 ∼ Ω in the denominators in (6.2.14) and (6.2.15),

it follows that

C12(~p, t) ' sin 2θ

2

sin[t∆]

∆
ei∆t 1

2

[
Γ1 + Γ2

]
. (6.2.16)

Therefore, the coherences are of the same order of the population terms on time scales

t ≤ 1/∆, but average out for t À 1/∆, showing that coherence persists over the oscillation

time scale.
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6.2.2 Disentangling the neutrino: a two-time measurement

As we have discussed above, a long baseline experiment is actually a two-time measurement

process, as the charged lepton produced at the interaction vertex at the source is detected

at the source or stopped and absorbed in a nearby “beam dump”. This “measurement”

of the charged lepton disentangles the neutrinos from the charged lepton in the quantum

state (7.3.7) [92]. The detection of the charged lepton at the source (or its stopping at a

nearby “beam dump”) projects the quantum state (7.3.7) at the observation time tS onto

the single particle charged lepton state e
−iEe

~Q
tS

∣∣∣e ~Q〉 disentangling the neutrino states into

the “collapsed” state

∣∣Ve( ~Q, tS)〉 ≡ 〈e ~Q

∣∣Ψ(tS)〉 eiE
e
~Q
tS

= i
g e−iES

tS
2

2
√

2V EW
~k
Ee

~Q

{
sin θ√
Ω2, ~P

∣∣ν2, ~P 〉e−iΩ
2, ~P

tS
2


sin

[(
ES − Ω2, ~P

)
tS
2

]

(ES − Ω2, ~P )/2




+
cos θ√
Ω1, ~P

∣∣ν1, ~P 〉e−iΩ
1, ~P

tS
2


sin

[(
ES − Ω1, ~P

)
tS
2

]

(ES − Ω1, ~P )/2



}
, (6.2.17)

where ES = EW
~k

−Ee
~Q
and ~P = ~k− ~Q. We note that up to a phase, the coefficient functions

that multiply
∣∣ν1〉 and

∣∣ν2〉 are

sin
[
(ES − Ω1)

tS
2

]

(ES − Ω1)/2
,

sin
[
(ES − Ω2)

tS
2

]

(ES − Ω2)/2
, (6.2.18)

respectively. In the limit tS → ∞, they become 2πδ(ES − Ω1) and 2πδ(ES − Ω2), respec-

tively. Therefore, in this limit, for a fixed ES, one of the quantum states will be projected

out. However, as we insist on keeping a finite time interval, we will keep tS finite.

The state
∣∣Ve( ~Q, tS)〉 then evolves forward in time with the full Hamiltonian

∣∣Ve( ~Q, t)〉 = e−iH0tU(t, tS)e
iH0tS

∣∣Ve( ~Q, tS)〉. (6.2.19)
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The “free” evolution is obtained by setting to lowest order U(t, tS) = 1, leading to

∣∣Ve( ~Q, t)〉 = i
g e−iES

tS
2

2
√

2V EW
~k
Ee

~Q

{
sin θ√
Ω2, ~P

∣∣ν2, ~P 〉
[
sin

[(
ES − Ω2, ~P

)
tS
2

]

(ES − Ω2, ~P )/2

]
e−iΩ

2, ~P

tS
2 e−iΩ

2, ~P
(t−tS)

+
cos θ√
Ω1, ~P

∣∣ν1, ~P 〉
[
sin

[(
ES − Ω1, ~P

)
tS
2

]

(ES − Ω1, ~P )/2

]
e−iΩ

1, ~P

tS
2 e−iΩ

1, ~P
(t−tS)

}
. (6.2.20)

The phase factors e−iΩjtS/2 multiplying each mass eigenstate are the consequence of the

phase build-up during the time evolution from the production vertex until the detection of

the charged lepton and the collapse of the wave function. The expression (6.2.20) features

the factors
sin

[(
ES − Ωj

)
tS
2

]

(ES − Ωj)/2
, (6.2.21)

which as tS → ∞ becomes 2π δ(ES − Ωj). These factors, which are a direct consequence of

the neutrino state being produced by the decay of the “parent” particle (here the W ) into

an entangled quantum state, distinguish Eq. (6.2.20) from the familiar quantum mechanical

description. These factors emerge from the (approximate) energy conservation at the decay

vertex. Again, in the tS → ∞ limit, if the energy of the parent particle and the charged lepton

are both certain, only one of the mass eigenstates will be produced but not both. However,

writing Ω1,2 as in Eq. (6.2.5), it follows that for tS ¿ 4Ω/δm2, the width of the “diffraction”

functions is much larger than the frequency difference ∆ and there is a substantial overlap

between these “approximate” delta functions (see Figure 33.). Only for tS ≥ tosc = 2π/∆

are the two peaks at ES − Ω = ±∆ actually resolved, whereas for tS ¿ tosc, the two peaks

are unresolved, “blurred” into one broad peak at Ω. Thus for tS ¿ 2π/∆, we can use the

approximation

sin
[
(ES − Ω1)

tS
2

]

(ES − Ω1)/2
'

sin
[
(ES − Ω2)

tS
2

]

(ES − Ω2)/2
'

sin
[
(ES − Ω) tS

2

]

(ES − Ω)/2
. (6.2.22)

To illustrate the validity of the above approximation, let us consider the case in which the

typical size of the source or beam dump is a few meters across. In a typical experiment, the

charged lepton emerging from the interaction vertex travels this distance within a time scale

tS ≈ 10−8 s, leading to an energy uncertainty above δE ∼ ~/tS ∼ 10−7 eV. Taking as an
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example δm2 ∼ 10−4 eV2 and Ω ∼ ES ∼ 100MeV, it follows that δm2/Ω ∼ 10−12 eV ¿ δE.

Therefore, the detection or absorption of the charged lepton near the source, on a time scale

much smaller than 1/∆ cannot resolve the energy difference between the mass eigenstates

and the approximation (6.2.22) is justified.

Another approximation we can use in (6.2.17) is Ω1 ' Ω2 ' Ω, for Ω À ∆. Absorbing

the phase factors e−iΩjtS/2 into the definition of the states |νj〉, the time evolved disentangled

state is then approximately given by

∣∣Ve( ~Q, t)〉 ' ig√
8V EW

~k
Ee

~Q
Ω


sin

[(
ES − Ω

)
tS
2

]

(ES − Ω)/2




{
sin θ

∣∣ν2, ~P 〉 e−iΩ
2, ~P

(t−tS) + cos θ
∣∣ν1, ~P 〉 e−iΩ

1, ~P
(t−tS)

}
, (6.2.23)

for tS ¿ 2π/∆. The state inside the brackets is identified as the usual quantum me-

chanical state that is time evolved from the “electron” neutrino state, which is prepared

initially at tS. From this analysis, we see that there are two conditions required for the

disentangled neutrino state to be identified with the familiar quantum mechanical state:

δm2/Ω
2 ¿ 1 and tS ¿ tosc ∼ 2πΩ/δm2. The former is always satisfied for neutrinos with

δm2 ∼ 10−3 − 10−4 eV2, Ω > a few MeV, while the latter is fulfilled if the charged lepton

produced at the source is either observed or stopped at a beam-dump near the production

region in long-baseline experiments.

The latter condition implies that the neutrino state is disentangled before oscillations

can occur. In a long-baseline experiment, this is achieved if the charged lepton, which

is entangled with the neutrino at the production vertex, is measured or stopped near the

production region. Therefore, we conclude that an important condition for the familiar

quantum mechanical description of oscillations to be reliable is that the quantum state must

be disentangled on time scales much shorter than the oscillation time. It is clear from this

discussion that the precise value of tS is irrelevant as long as tS ¿ tosc. Experimentally, tS is

of the order of the time of flight of the charged lepton in the production region at the source

namely a few 10−8 s.
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6.2.3 Transition amplitudes and event rates

The number of charged lepton events with momentum ~Q produced at the source, at time tS

is given by

ne( ~Q, tS) = 〈Ψe(tS)|a†e( ~Q)ae( ~Q)|Ψe(tS)〉 = 〈Ve( ~Q, tS)
∣∣Ve( ~Q, tS)〉. (6.2.24)

For tS ¿ tosc = 2π/∆ and Ω À ∆, using the approximations leading to (6.2.23), we obtain

the charged lepton differential detection rate at the source

(2π)3
dNS

e

d4x d3 ~Q
=

dne( ~Q, tS)

dtS

=
2g2

8V EW
~k
Ee

~Q
Ω

sin
[(
ES − Ω

)
tS

]

(ES − Ω)

' 2πg2

8V EW
~k
Ee

~Q
Ω

δ(ES − Ω), (6.2.25)

where at the last step we have replaced the diffraction function by the delta function. This

can be justified as follows. For tS ∼ 10−8 s, the width of this function (the resolution)

in energy is ∼ 10−7 eV. Since the typical energy in a long-baseline experiment is & 40 −
100MeV, the error incurred in replacing the diffraction function by a delta function is smaller

than one part in 1015.

6.3 INTERACTION AT THE FAR DETECTOR

We can also obtain the transition amplitude for the disentangled state to produce a final

charged lepton and another W particle at the far detector at time tD, where tD− tS ∼ L and

L is the baseline. This is obtained from the time evolution of the disentangled state with

the full Hamiltonian from the time of disentanglement tS until the time tD, at which the

detection measurement is carried out by overlapping the time evolved state with the final

state.
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6.3.1 Transition amplitude and probabilities

The transition amplitude is given by

Aα→β = 〈W (~kD), lβ(~pD)
∣∣ e−iH(tD−tS)

∣∣Ve( ~Q, tS)〉
= e−iEDtD 〈W (~kD), lβ(~pD)

∣∣U(tD, tS) e
iH0tS

∣∣Ve( ~Q, tS)〉. (6.3.1)

The disappearance and appearance amplitudes are then given by

Ae→e = −g2Π(2π)3δ(~kS − ~pS − ~kD − ~pD)×
{
cos2 θ

2Ω1, ~P

e−iΩ
1, ~P

tD
2

[
sin
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ES − Ω1, ~P

)
tS
2

]

(ES − Ω1, ~P )/2

][
sin
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)(
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)
/2
]
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]

+
sin2 θ
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2, ~P
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2

[
sin
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)
tS
2

]

(ES − Ω2, ~P )/2

][
sin

[(
ED − Ω2, ~P

)(
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)
/2
]

(ED − Ω2, ~P )/2

]}

(6.3.2)

and

Ae→µ = −g2Π(2π)3δ(~kS − ~pS − ~kD − ~pD)
sin 2θ

2
×

{
e−iΩ

1, ~P

tD
2

2Ω1, ~P

[
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[(
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)
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2

]

(ES − Ω1, ~P )/2

][
sin
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)(
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)
/2
]

(ED − Ω1, ~P )/2

]

− e−iΩ
2, ~P

tD
2

2Ω2, ~P

[
sin

[(
ES − Ω2, ~P

)
tS
2

]

(ES − Ω2, ~P )/2

][
sin

[(
ED − Ω2, ~P

)(
tD − tS

)
/2
]

(ED − Ω2, ~P )/2

]}
,

(6.3.3)

with ~P = ~kS − ~pS, and Π is given by

Π =

[
1

16 V 4 EW
~kS

EW
~kD

El
~pS

El
~pD

] 1
2

, (6.3.4)
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the labels D,S refer to (far) detector and source respectively. Implementing the same ap-

proximations leading to the factorized state (6.2.23), namely Ω À ∆ and tS∆ ¿ 1, we find

the disappearance and appearance probabilities

Pe→e(tD) =
( g2Π

2Ω~P

)2

(2π)3 V δ(~kS − ~pS − ~kD − ~pD) 2π tS δ(ES − Ω~P )

{
cos4 θ f 2

+(x, t,∆) + sin4 θ f 2
−(x, t,∆) +

sin2(2θ)

2
cos(t∆)f+(x, t,∆)f−(x, t,∆)

}
,

Pe→µ(tD) =
( g2Π

2Ω~P

)2

(2π)3 V δ(~kS − ~pS − ~kD − ~pD) 2π tS δ(ES − Ω~P )
sin2 2θ

4{
f 2
+(x, t,∆) + f 2

−(x, t,∆)− 2 cos(t∆)f+(x, t,∆)f−(x, t,∆)

}
, (6.3.5)

where t = tD − tS and x = ED − Ω~P . Here,

ES = EW
~kS

− Ee
~pS
, ED = EW

~kD
+ El

~pD
, (6.3.6)

and f± are given by Eq. (6.2.8).

In the long time limit, using f±(x, t,∆) → 2π t δ(x±∆), their product is given by (6.2.10),

and we find

Pe→e(tD) =
( g2Π

2Ω~P

)2

(2π)5 V δ(~kS − ~pS − ~kD − ~pD) tS δ(ES − Ω~P )

{
cos4 θ t δ(x+∆) + sin4 θ t δ(x−∆)

+
sin2(2θ)

2

sin(2 t∆)

2∆

1

2

[
δ(x+∆) + δ(x−∆)

]}
,

Pe→µ(tD) =
( g2Π

2Ω~P

)2

(2π)5 V δ(~kS − ~pS − ~kD − ~pD) tS δ(ES − Ω~P )
sin2 2θ

4{
t δ(x+∆) + t δ(x−∆)− 2

sin(2 t∆)

2∆

1

2

[
δ(x+∆) + δ(x−∆)

]}
.

(6.3.7)
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where ~P = ~kD + ~pD. These transition probabilities feature the two time scales tS and

t = tD − tS associated with the measurements at the near and far detector. They also

feature energy conserving delta functions associated with the different mass eigenstates.

There is a further simplification when Ω À ∆. In this regime, when the probabilities (6.3.7)

are integrated over a smooth density of states, the delta functions corresponding to the

mass eigenstates yield the density of states at values ED = Ω ∓∆. In typical experiments,

where Ω ∼ 100MeV and δm2 ∼ 10−3 eV2, the density of final states must vary dramatically

near Ω to resolve the small interval ∆, with ∆/Ω . 10−19. Therefore, understanding the

probabilities as being integrated with a smooth final density of states insensitive to the mass

difference, we can approximate δ(x±∆) ' δ(x). In this case, we can approximate the above

expressions by

Pe→e(tD) =
( g2Π

2Ω~P

)2

(2π)5 V δ(~kS − ~pS − ~kD − ~pD) tS δ(ES − Ω~P ) δ(ED − Ω~P )

{
t
[
cos4 θ + sin4 θ

]
+ 2 cos2 θ sin2 θ

sin(2 t∆)

2∆

}
, (6.3.8)

Pe→µ(tD) =
( g2Π

2Ω~P

)2

(2π)5 V δ(~kS − ~pS − ~kD − ~pD) tS δ(ES − Ω~P ) δ(ED − Ω~P )
sin2 2θ

2{
t− sin(2 t∆)

2∆

}
. (6.3.9)

The product δ(ES −Ω~P ) δ(ED −Ω~P ) is an approximate energy conservation at both produc-

tion and detection vertices, where we have neglected ∆, which is twice the energy difference

between the mass eigenstates.

6.3.2 Factorization of the event rates

Further insight can be gained by obtaining the phase space distribution of the number of

charged leptons l = {e, µ} at the far detector

(2π)3
dNFD

l

d3x d3~pD
= nl(~pD, tD) = 〈Ve( ~Q, tD, tS)

∣∣a†l (~pD)al(~pD)
∣∣Ve( ~Q, tD, tS)〉. (6.3.10)
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Here,
∣∣Ve( ~Q, tD, tS)〉 = e−iH0tDU(tD, tS)e

iH0tS
∣∣Ve( ~Q, tS)〉 (6.3.11)

is the neutrino state disentangled at tS near the source and has been time-evolved until it is

detected at the far detector at time tD. Not surprisingly, since we only keep terms that are

up to order g2, the time evolved state contains a single lepton Fock state. We find that

(2π)3
dNFD

e

d3x d3~pD
= Pe→e(tD), (2π)3

dNFD
µ

d3x d3~pD
= Pe→µ(tD), (6.3.12)

with the probabilities Pe→e(tD) and Pe→µ(tD) are given by (6.3.8) and (6.3.9).

Taking the time derivative with respect to tD, we obtain the differential charged lepton

event rates at the far detector

(2π)3
dNFD

e

d3x dt d3~pD
=

( g2Π

2Ω~P

)2

(2π)5 V δ(~kS − ~pS − ~kD − ~pD) tS δ(ES − Ω~P ) δ(ED − Ω~P )

{
cos4 θ + sin4 θ + 2 cos2 θ sin2 θ cos(2t∆)

}
, (6.3.13)

(2π)3
dNFD

µ

d3x dt d3~pD
=

( g2Π

2Ω~P

)2

(2π)5 V δ(~kS − ~pS − ~kD − ~pD) tS δ(ES − Ω~P ) δ(ED − Ω~P )
sin2 2θ

2{
1− cos(2t∆)

}
. (6.3.14)

Remarkably, these rates can be simply written as

(2π)3
dNFD

β

d3x dt d3~pD
= (2π)3

dNS
α

d3x d3~ps
Pα→β(t) dΓνβ→W lβ , (6.3.15)

where we have used the expression (6.2.25) for the differential charged lepton event rate at

the source and integrated in tS,

dΓνβ→W lβ =
(2π)4 g2 V

8V 3EW
~kD

Elβ
~pD
Ω~P

δ(~kS − ~pS − ~kD − ~pD) δ(ED − Ω~P ) (6.3.16)

is the charged lepton production rate from the reaction νβ → W lβ for a flavor neutrino

of energy Ω and Pα→β(t) are the disappearance (α = β) or appearance (α 6= β) transition

probabilities obtained from the usual quantum mechanical calculations of Rabi-oscillations.
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One remarkable aspect of the final result (6.3.16) is the factorization of the different

processes contributing to the far detector event rate, namely the number of events at the

source multiplies the quantum mechanical transition probability which in turn multiplies the

production rate at the vertex in the far detector. This factorization is a distinct consequence

of the two time analysis, of the disentanglement of the neutrino near the production region

along with the approximations invoked in the resolution of the energy conserving delta func-

tions. We emphasize that the factorization in terms of the quantum mechanical transition

probabilities Pα→β(t) only applies to the detection rate defined by taking the time derivative.

The total number of events per phase space volume also factorizes but not in terms of the

quantum mechanical transition probabilities but in terms of their integral in time.

6.4 DISCUSSIONS

6.4.1 Possible corrections for short baseline experiments

This analysis also suggests that potentially important corrections may arise in short baseline

experiments for much lower energy. In this case, it may occur that the time scale of disen-

tanglement is of the same order as the oscillation scale Ω/δm2 so that tSδm
2/Ω ∼ 1 and the

sine functions cannot be factored out of the quantum state as in (6.2.23). In this case, the

resulting disentangled state is

∣∣Ve( ~Q, t)〉 ∝
{
sin θ

∣∣ν2, ~P 〉 e−iΩ
2, ~P

(t−tS) f−(x, tS,∆) + cos θ
∣∣ν1, ~P 〉 e−iΩ

1, ~P
(t−tS) f+(x, tS,∆)

}
,

(6.4.1)

which is not of the familiar quantum mechanical form of a coherent superposition of the mass

eigenstates with the usual cos θ, sin θ amplitudes but with the “diffraction functions” multi-

plying these factors. If the width of these functions is of order 2π/tS . 2∆, interference term

in the probability will feature the product (6.2.10) which would lead to an extra interference

terms of the form sin(tS∆)/tS∆ multiplying the sin(2t∆)/2∆ in (6.3.8) and (6.3.9). Such

factor yields an extra modulation with energy which may yield phenomenologically interest-

ing modifications in the interpretation and analysis of data. Although the typical time scale
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tS for disentanglement near the source region is approximately the same for short and long

baseline experiments, this discussion applies to the possibility in which tS is not too small

compared to the oscillation time scale as could be the case in short-baseline experiments. For

example at LSND the source region is a few meters across and the baseline is ∼ 30m, and

at KARMEN where the baseline is ∼ 17.5m. The baseline and beam energy are designed so

that at least an oscillation takes place along the baseline. However in these short-baseline

experiments, the distance over which the neutrino state is disentangled from the charged

lepton, a few meters, is not to much smaller than the baseline, consequently tS may not be

much smaller than an oscillation time.The potential phenomenological importance of these

effects merit their further study.

6.4.2 Wave packet description

As mentioned earlier in the paper, we restricted ourselves to plane-wave states, the main

reason being to discuss the essential concepts within the simplest setting. Although we

postpone a thorough discussion of the more technical aspects including the wave packet de-

scription to further study, we can provide physical arguments that allow the extrapolation

of the main results obtained above to the wave packet case.

Consider that the initial particle, the charged leptons measured at the near and far detec-

tors and the final particle are all described by wave packets with a macroscopic localization

length scale σ of the order of the typical scale of the detectors (a few meters) localized at the

source and detectors respectively. These are sharply localized in momentum. The transition

amplitudes between wave packets are now obtained from (6.3.1-6.3.3) by convolution with

the wave functions of the initial state, the charged lepton measured near the source and

those of the final state at the far detector.

The disentangled neutrino state (6.2.17) is now described as a propagating wave packet

with a typical spatial localization length also of O(σ), namely of macroscopic scale. These

mildly localized wave packets lead to both momentum and energy uncertainty of the same
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order ∆E ∼ ∆p ∼ ~/σ ∼ ~/tS ∼ 10−7 eV. These uncertainties in energy and momentum

are much larger than typical values for the neutrino energy differences δm2/Ω ∼ 10−12 eV.

As this wave packet propagates, the mass eigenstates will slowly separate because they fea-

ture different group velocities, and coherence will be maintained as long as the separation

between the wave packets is much smaller than their localization lengths (neglecting dis-

persion). For a baseline L and typical energies Ω ∼ 100MeV, the separation at the far

detector is ∝ (∆/Ω) L ∼ 10−20L. Therefore, coherence is always maintained for macroscopic

localization lengths in terrestrial experiments. The detection amplitudes (6.3.2) and (6.3.3)

and probabilities (6.3.8) and (6.3.9) vanish until the time when the front of the packet over-

laps with the far detector, namely for tD − tS ≈ L, with an uncertainty of O(σ), which for

long-baseline experiments is always σ ¿ L. The total number of events at the far detector

is found by integrating the rate (6.3.16) from t = L, which is when the front of the wave

packet overlaps with the detector until t = L + σ when the wave packet has completely

passed through the detector. For L À σ and neglecting the separation of wave packets the

total number of events at the far detector is obtained by replacing (6.3.15) by

dNFD
β

d3x d3~pD
=

dNS
α

d3x d3~ps
[Pα→β(L)σ] dΓνβ→W lβ . (6.4.2)

The delta functions will also be integrated with the wave packet profiles and volume fac-

tors are replaced by σ3. Furthermore, at distances from the source À σ, the disentan-

gled neutrino wave packet propagates as a spherical wave. Therefore, for far-detectors in

the “radiation zone,” the probability will be suppressed by a geometric flux factor 1/L2

[159, 160, 158, 119, 116, 118]. Obviously, there are uncertainties of O(σ) in this argument,

but these are irrelevant for long-baselines L À σ. The σ multiplying the total number

of events in (6.4.2) is expected: it is the “total interaction time” during which the wave

packet interacts with the detector. Obviously, these factors modify the overall normaliza-

tion. However, the distortion of the energy spectrum in disappearance and the appearance

probabilities for long-baseline experiments are determined by Pα→β(L,E) (for short baseline

there are potential corrections as discussed above). While we deem these arguments describ-

ing the wave-packet scenario to be physically sound, we will provide a thorough technical
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discussion of this case based on the results obtained above in the plane wave approxima-

tion in future work. The analysis presented above for the dynamics of disentanglement and

propagation provides the fundamental basis to include the wave packet description, which is

obtained from simple convolution of these results with wave packet wave functions.

6.5 CONCLUSION

In appearance and disappearance experiments, neutrinos produced by a charged current

vertex at the source are entangled with the charged lepton. We study the dynamics of this

quantum state directly as a function of time.

If the charged lepton (or daughter particle) produced at the source is not measured,

tracing out this degree of freedom yields a density matrix for the neutrino. In the mass

basis, the time evolution of the diagonal density matrix elements describe the production of

mass eigenstates from the decay, whereas the off-diagonal density matrix elements exhibit

the oscillations resulting from the interference of mass eigenstates and are a measure of co-

herence. We find that coherence remains up to a time of the order of the oscillation time

scale during which diagonal and off diagonal matrix elements are of the same order.

The measurement of the charged lepton near the source (or its stopping at a nearby

“beam dump”) disentangles the neutrino state, and it is the further time evolution of this

disentangled state with the total Hamiltonian that leads to the production of charged lep-

tons at the far detector. Thus, the process of production and detection in long-baseline

experiments involves two different time scales: the measurement of the charged lepton near

the source determines the first time scale at which the neutrino state is disentangled, while

the measurement of the charged lepton at the far detector is the second time scale, which is

much longer than the first one in long-baseline experiments.

In this time dependent description, we establish that the usual quantum mechanical state
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emerges if the disentanglement of the charged lepton produced with the neutrino occurs on

time scales much shorter than the oscillation scale ∼ E/δm2. Under these circumstances,

the event rate at the far detector factorizes in terms of the usual quantum mechanical prob-

ability if the final density of states is insensitive to the difference in the energies of the mass

eigenstates in the ultrarelativistic limit δm2/E.

Although in this article we focused on the study of the dynamics for the case of plane

waves to exhibit the main results within the simplest setting, we provide physically moti-

vated arguments to extrapolate the results to the case of wave packets, analyzing the effect

of localization of the initial and final state wave functions at the near and far detector on

the detection process. Combining the results obtained for plane waves with a wave packet

description yields the total number of events detected in terms of the usual transition prob-

ability as a function of baseline. A deeper and more detailed analysis of wave packets and

localization aspects will be provided in forthcoming work.

The analysis presented here also suggests that there could arise potentially interesting

corrections in the case of short baseline experiments such as MiniBooNE and/or LSND

with baselines of ∼ 500,∼ 30 meters and typical energies ∼ 1GeV;∼ 30MeV, respectively,

wherein the disentanglement of the neutrino could occur on time scales of the same order as

the oscillation scale. In this case, the disentangled state will differ from the usual quantum

mechanical coherent superposition and this difference introduces extra modulation with en-

ergy and could be important in the final detection rate. Such possibility could be relevant in

the interpretation and analysis of data, in particular masses and mixing angles and certainly

merits further detailed study.
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7.0 PART II: IS THE GSI ANOMALY DUE TO NEUTRINO

OSCILLATIONS?

In this chapter, we apply the method developed in Chap. 6 to the “GSI anomaly”, from

which we examine whether neutrino mixing and oscillations could be responsible for time

dependent modulations in the two-body decay rate. This study is reported in [287]. We first

introduce the background of the GSI anomaly in Sec. 7.1, and then propose a model for it

in Sec. 7.2, which captures the relevant physical ingredients while neglecting all unnecessary

technical complications. In Sec. 7.3, we obtain the time evolved state emerging from the

two-body decay of the parent particle. This is a quantum mechanically entangled state [92]

between the daughter particle and the neutrino, whose time evolution determines completely

the number densities of parent and daughter particles, unambiguously yielding the time

dependence of their population. The result of this study confirms that interference between

neutrino mass eigenstates is not responsible for any modulation in the parent or daughter

population, therefore neutrino mixing is not the reason behind the GSI anomaly. Sec. 7.4

summarizes our conclusions and comments on more recent experimental results.

7.1 INTRODUCTION TO THE GSI ANOMALY

Recent experiments at the Experimental Storage Ring (ESR) at GSI in Darmstadt have

revealed an unexpected time dependent modulation in the population of parent ions 140Pr58+

and 142Pm62+ from the Electron Capture (EC) decays 140Pr58+ → 140Ce58++νe and
142Pm62+ →

142Nd62+ + νe [205, 206], a phenomenon that has been dubbed the “GSI anomaly.” In this

experiment, changes of the ions’ revolution frequencies are detected by the technique of time

183



resolved Schottky mass spectrometry. For a small number of stored ions, every decay can

be resolved. Thus, a time distribution of EC decays of the parent ions can be measured.

On top of the experimental decay curve, the GSI experiment observed an unexpected time

modulation with a period of about T ' 7s. Such a behavior is summarized in Figs. 36 and

37 [205, 206].

Figure 36: Figure 3 from [206]. Number of EC decays of H-like 140Pr ions per second as a function
of the time after the injection into the ring. The solid and dashed lines represent the fits according
to Eq. 1 (without modulation) and Eq. 2 (with modulation) in [206], respectively. The inset
shows the Fast Fourier Transform of these data. A clear frequency signal is observed at 0.14 Hz
(laboratory frame).

A theoretical explanation of this time dependent modulation of the decay rate of the

parent ion suggests that it is a consequence of the interference between the neutrino mass

eigenstates in the final state of the two-body decay [205, 206, 175, 174, 173, 122, 204]. The

authors in Refs. [175, 174, 173, 122] argue that the total amplitude of an EC decay is a coher-

ent sum of contributions from difference neutrino mass eigenstates. The decay probability

is obtained by squaring the total amplitude, thus the interference between neutrino mass

eigenstates gives rise to the observed modulation feature as a consequence of their mixing
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Figure 37: Figure 5 from [206]. A roomed-in plot of the number of EC decays of H-like 142Pm ions
per 0.64 second as a function of the time after the injection into the ring. The solid and dashed
lines represent the fits according to Eq. 1 (without modulation) and Eq. 2 (with modulation) in
[206], respectively. The inset shows the Fast Fourier Transform of these data. A clear frequency
signal is observed at 0.14 Hz (laboratory frame).

and oscillations. If indeed periodic modulations of EC decay rates are a consequence of

neutrino mixing, these experiments bring an interesting alternative to long-baseline neutrino

experiments for the determination of neutrino mass differences.

However, this interpretation has been re-examined and criticized in Refs. [145, 146, 86,

188, 235] on the basis that it is not the amplitudes that must be summed coherently but the

probabilities, corresponding to an incoherent addition of the contributions from the different

mass eigenstates. This approach does not lead to any modulation as the probabilities for

the decay channels into the different mass eigenstates do not interfere. The theoretical and

experimental importance of understanding whether neutrino mixing and oscillations could

lead to time dependent modulations in two body decays when neutrinos are a component of

the final state warrants an alternative exploration of these questions.
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Rather than focusing on any one of these approaches, either summing amplitudes or

probabilities, in this study, we analyze the two-body decay process in a different way, by

obtaining the time evolution of the population of the parent and daughter particles and

considering explicitly the entanglement between the daughter particle and neutrino mass

eigenstates. We apply the method developed in Ref. [286] to analyze the GSI anomaly. In

this approach, we obtain the kinetic equations for the populations of the parent and daughter

particles directly in real time without the necessity to invoke a coherent sum over amplitudes

or a sum over probabilities, thereby bypassing the theoretical controversy.

If the time modulation is a consequence of neutrino mixing and oscillations, then this

phenomenon is robust and does not depend on the details of the parent and daughter nuclei.

Therefore a simple model of charged current interactions which incorporates neutrino mixing

but is stripped off the peripheral complications of nuclear matrix elements should describe

the essential physical phenomena.

7.2 A MODEL FOR THE GSI ANOMALY

The EC decays of heavy hydrogen-like particles are governed by charge current weak interac-

tions, as shown in Figure 38(a). If the observed GSI anomaly is a direct consequence of inter-

ference between different neutrino mass eigenstates as proposed in Refs. [175, 174, 173, 122],

the technical complications associated with the details of the interaction vertices, e.g., spin

dependence of fermionic and gauge fields, are irrelevant. In order to simplify our calculation,

we introduce a bosonic model that captures the main features of these EC decays without

any unnecessary complication. The two body decay now can be represented by the process

shown in Figure 38(b). Our model is specified by the following Lagrangian density

L = L0[M,D] + L0[ν] + Lint[M,D, νe], (7.2.1)
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Figure 38: (a) exact interaction of EC decays of a parent particle, (b) approximated inter-

action of EC decays in our model.

with

L0[ν] =
1

2

[
∂µΨ

T∂µΨ−ΨTMΨ
]
, (7.2.2)

where Ψ is a flavor doublet representing the neutrinos

Ψ =


 νe

νµ


 , (7.2.3)

and M is the mass matrix

M =


 mee meµ

meµ mµµ


 . (7.2.4)

Here, M and D represent the parent and daughter particles, respectively. Their free la-

grangian density is specified by L0[M,D]. Also, we consider the simple case of only two

neutrino flavors. The interaction Lagrangian is analogous to the charged current interaction

of the standard model, namely

Lint(~x, t) = gM(~x, t)D(~x, t) νe(~x, t), (7.2.5)

where g is the coupling constant proportional to the Fermi constant GF . We note that only

electron neutrinos enter the interaction because we are considering EC decays.
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The mass matrix is diagonalized by a unitary transformation

U−1(θ)MU(θ) =


 m1 0

0 m2


 , U(θ) =


 cos θ sin θ

− sin θ cos θ


 . (7.2.6)

In terms of the doublet of mass eigenstates, the flavor doublet can be expressed as


 νe

νµ


 = U(θ)


 ν1

ν2


 . (7.2.7)

In particular νe = cos θ ν1 + sin θ ν2.

7.3 NUMBER DENSITIES OF THE PARENT AND THE DAUGHTER

PARTICLES

Let us consider an initial parent particle state
∣∣M(~k)〉 at time t = 0. For the GSI experiment,

the parent ions are produced with a center velocity of 71% of the speed of light, and with a

velocity spread ∆v/v ' 5× 10−7 [205, 206]. The evolution of the number density of parent

(M) and daughter (D) particles is obtained from

NM(t) = 〈M(~k)
∣∣ eiHt a†M(~k)aM(~k) e−iHt

∣∣M(~k)〉,
nD(t) =

∑

~Q

nD( ~Q, t) =
∑

~Q

〈M(~k)
∣∣ eiHt a†D( ~Q)aD( ~Q) e−iHt

∣∣M(~k)〉, (7.3.1)

where nD( ~Q, t) is the number density of daughter particles with momentum ~Q. Here, the

annihilation and creation operators are in the Schroedinger picture. We note that e−iHt =

e−iH0tU(t, 0) and that the number operators commute with the free field Hamiltonian. U(t, 0)

is the time evolution operator in the interaction picture, namely,

U(t, 0) = T
[
ei

∫ t
0 dt′d3xLint(~x,t

′)
]
, (7.3.2)

where T is the time-ordering operator.
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Expanding U(t, 0) perturbatively, we obtain U(t, 0)
∣∣M〉 =

∣∣M〉+
∣∣ΨD(t)〉(1)+

∣∣ΨD(t)〉(2)+
· · · , where

∣∣ΨD(t)〉(1) = ig

∫ t

0

dt1

∫
d3x1

[
M(~x1, t1)D(~x1, t1)νe(~x1, t1)

)]∣∣M(~k)〉, (7.3.3)

and

∣∣ΨD(t)〉(2) = −g2
∫ t

0

dt1

∫
d3x1

∫ t1

0

dt2

∫
d3x2

[
M(~x1, t1)D(~x1, t1)νe(~x1, t1)

)]

[
M(~x2, t2)D(~x2, t2)νe(~x2, t2)

)]∣∣M(~k)〉,
(7.3.4)

with νe = cos θ ν1 + sin θ ν2. Since
∣∣ΨD(t)〉(1) creates one daughter particle and the initial

state has none, it is clear that to lowest order, the number of daughter particles is

nD( ~Q, t) = (1)〈ΨD(t)
∣∣a†D( ~Q)aD( ~Q)

∣∣ΨD(t)〉(1) . (7.3.5)

The calculation of the parent population is slightly more involved. The first order state has

contributions from Fock states with zero or two parent particles M , however the state with

two parent particles does not conserve energy and its phase varies very rapidly in time and

averages out in short time scales of order of the inverse mass of the parent particle. Therefore

to obtain a non-vanishing contribution to the parent population we must consider the second

order state (7.3.4).

To second order, there are several contributions, but the only one that is relevant is the

process in which the first vertex at ( ~x2, t2) annihilates the initial M creating the intermediate

state with one (D, νe) entangled pair, while the second interaction vertex at (~x1, t1) annihi-

lates this (D, νe) pair in the intermediate state and creates the M , which has non-vanishing

overlap with
∣∣M〉. This process is depicted in Figure 39 and is recognized as the self-energy

of the parent particle.

Thus to lowest order in g,

NM(t) = 1 + 2Re
[
〈M

∣∣ΨD(t)〉(2)
]
. (7.3.6)

189



W

νj

e

W

Figure 39: Self-energy of the parent particle M , the neutrino line corresponds to a propagator of
a mass eigenstate.

7.3.1 Number Density of Daughter Particles

As pointed out previously, for the number density of daughter particles, we only need to

consider the interaction Lagrangian up to the first order, namely, Eq. (7.3.3). Expanding

the field νe in terms of the fields that create or annihilate the mass eigenstates ν1 and ν2,

and carrying out a standard quantum field theory calculation, we obtain

∣∣ΨD(t)
〉(1) ' g√

8V EM
~k
ED

~q

∑

~q

{
sin θ√
Ω2,~p

e(E
M
~k

−ED
~q −Ω2,~p)

t
2 |ν2,~p, D~q〉

[
sin

(
(EM

~k
− ED

~q − Ω2,~p)
t
2

)

(EM
~k

− ED
~q − Ω2,~p)/2

]

+
cos θ√
Ω1,~p

ei(E
M
~k

−ED
~q −Ω1,~p)

t
2 |ν1,~p, D~q〉

[
sin

(
(EM

~k
− ED

~q − Ω1,~p)
t
2

)

(EM
~k

− ED
~q − Ω1,~p)/2

]}
,

(7.3.7)

in which the daughter particle and the neutrinos are entangled [286]. Momentum conserva-

tion, a consequence of translational invariance manifest in the Lagrangian density (7.2.1),

enforces ~p+~q = ~0, where ~p and ~q label the momenta of the neutrinos and the daughter parti-

cle. Also, EM
~k

and ED
~q are the energies of the parent and daughter particles with momentum
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~k and ~q, respectively. Ω1,~p and Ω2,~p are the energies of the neutrino mass eigenstates with

momentum ~p. In other words,

EM
~k

=
√

k2 +m2
M , ED

~q =
√

q2 +m2
D, Ω1,~p =

√
p2 +m2

1, Ω2,~p =
√

p2 +m2
2. (7.3.8)

In order to manifestly study the time evolution of the populations and possible time

dependent phenomena resulting from the mixing of mass eigenstates, we keep the finite

time-dependence explicitly. As is familiar from Fermi’s Golden rule, taking t to infinity

results in replacing

sin
(
(EM

~k
− ED

~q − Ωi,~p)
t
2

)

(EM
~k

− ED
~q − Ωi,~p)/2

∣∣∣∣∣
t→∞

' πδ(EM
~k

− ED
~q − Ωi,~p), (7.3.9)

which leads to the standard S-matrix result with the energy conservation at each vertex.

Here i = 1, 2 stand for the neutrino mass eigenstates.

It is straightforward to calculate (7.3.5) with the state (7.3.7). We find

nD( ~Q, t) =
g2

8V EM
~k
ED

~Q

[
cos2 θ

Ω1

sin2
[
(EM

~k
− ED

~Q
− Ω1)

t
2

]

(EM
~k

− ED
~Q
− Ω1)2/4

+
sin2 θ

Ω2

sin2
[
(EM

~k
− ED

~Q
− Ω2)

t
2

]

(EM
~k

− ED
~Q
− Ω2)2/4

]
,

(7.3.10)

where Ω1,2 =
√

|~k − ~Q|2 +m2
1,2, corresponding to the specific momentum ~Q of the daughter

particle. The result (7.3.10) is a consequence of the orthogonality of the Fock states asso-

ciated with the mass eigenstates. The production rate of the daughter particle is given by

dnD( ~Q, t)

dt
=

g2

8V EM
~k
ED

~Q

[
cos2 θ

Ω1

2 sin
[
(EM

~k
− ED

~Q
− Ω1)t

]

(EM
~k

− ED
~Q
− Ω1)

+
sin2 θ

Ω2

2 sin
[
(EM

~k
− ED

~Q
− Ω2)t

]

(EM
~k

− ED
~Q
− Ω2)

]
.

(7.3.11)

The time scale of the GSI experiment is about 10 − 100 seconds, corresponding to an

energy uncertainty ∆E ∼ ~/t ' 10−16 − 10−17eV . Therefore, we can safely take the long

time limit (7.3.9), leading to the a constant production rate of daughter particles, and the

total number of daughter particles produced as a function of time is given by

nD(t) =
∑

~Q

nD( ~Q, t) =
[
Γ1 cos2 θ + Γ2 sin2 θ

]
t, (7.3.12)
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where

Γ1,2 =
2π g2

8EM
~k

∫
d3 ~Q

(2π)3ED
~Q
Ω1,2

δ
(
EM

~k
− ED

~Q
− Ω1,2

)
. (7.3.13)

Γ1,2 are the partial widths, while cos
2 θ and sin2 θ are the probabilities (or branching ratios)

associated with each neutrino mass eigenstate.

From the rate (7.3.11), we see that there is no interference between the mass eigenstates.

This is a consequence of the orthogonality of the Fock states associated with mass eigenstates.

The parent particle decays through two channels, either |ν1〉 or |ν2〉 with probabilities cos2 θ

and sin2 θ respectively, without interference between them. Obviously when the masses of

the neutrino vanish the result reduces to the “standard model” decay rate, since Γ1 = Γ2.

This argument becomes clearer upon considering the process of disentanglement of the state

(7.3.3). The entangled state is disentangled by the measurement resulting in the “collapsed”

state [286]

|VD( ~Q, t)〉 =
g√

8V EM
~k
ED

~Q

{
sin θ√
Ω2

e
(EM

~k
−ED

~Q
−Ω2)

t
2 |ν2, ~P 〉

[
sin

(
(EM

~k
− ED

~Q
− Ω2)

t
2

)

(EM
~k

− ED
~Q
− Ω2)/2

]

+
cos θ√
Ω1

e
i(EM

~k
−ED

~Q
−Ω1)

t
2 |ν1, ~P 〉

[
sin

(
(EM

~k
− ED

~Q
− Ω1)

t
2

)

(EM
~k

− ED
~Q
− Ω1)/2

]}
,

(7.3.14)

where ~P = ~k − ~Q. It is straightforward to confirm that

nD(t) =
∑

~Q

〈VD( ~Q, t)
∣∣VD( ~Q, t)〉 . (7.3.15)

Because |ν1, ~P 〉 and |ν2, ~P 〉 are orthogonal with each other, there is no interference between

these two mass eigenstates.
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We can further confirm our previous result of the number density of daughter particles

from the density matrix. The entangled state
∣∣ΨD(t)〉(1) is produced from the decay of a

parent particle, correspondingly the density matrix describing this entangled state is

ρ̂(t) =
∣∣ΨD(t)

〉(1)(1)〈
ΨD(t)

∣∣

=
g2

8V EM
~k

∑

~q

1

ED
~q

{
sin2 θ

Ω2,~p

∣∣∣D~q, ν2,~p〉〈D~q, ν2,~p

∣∣∣
[
sin

((
EM

~k
− ED

~q − Ω2,~p

)
t
2

)
(
EM

~k
− ED

~q − Ω2,~p

)
/2

]2

+
cos2 θ

Ω1,~p

∣∣∣D~q, ν1,~p〉〈D~q, ν1,~p

∣∣∣
[
sin

((
EM

~k
− ED

~q − Ω1,~p

)
t
2

)
(
EM

~k
− ED

~q − Ω1,~p

)
/2

]2

+
sin 2θ

2
√

Ω2,~p Ω1,~p

[
sin

((
EM

~k
− ED

~q − Ω2,~p

)
t
2

)
(
EM

~k
− ED

~q − Ω2,~p

)
/2

][
sin

((
EM

~k
− ED

~q − Ω1,~p

)
t
2

)
(
EM

~k
− ED

~q − Ω1,~p

)
/2

]

×
[
e−i δm

2

4Ω
t
∣∣∣D~q, ν2,~p〉〈D~q, ν1,~p

∣∣∣+ ei
δm2

4Ω
t
∣∣∣D~q, ν1,~p〉〈D~q, ν2,~p

∣∣∣
]}

,

(7.3.16)

where δm2 = m2
2 − m2

1, and Ω̄ =
√

p2 + (m2
2 +m2

1)/2 is the average energy. The density

matrix contains both diagonal terms, which describe the time evolution of the populations,

and off-diagonal terms, which display the interference between the two neutrino massive

eigenstates [286]. In the GSI experiment, these neutrinos are not measured, therefore, to

calculate the number density of daughter particles, we trace out the neutrino states, namely

nD(t) = Tr


ρ̂(t)

∑

~Q

a†D( ~Q)aD( ~Q)


 . (7.3.17)

Only diagonal terms contribute to the trace. Therefore, the number density of daughter

particles has nothing to do with the interference between neutrino mass eigenstates, which

is manifest in the off diagonal density matrix elements (coherence). This is consistent with

the arguments in [188] stating that the GSI experiment must be described by an incoherent

sum over different neutrino states. Once again, the answer is Eq. (7.3.11) in the long time

limit.
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7.3.2 Number Density of Parent Particles

Now, let us consider the number density of the parent particles, which follows the same line

of argument. It proves more convenient to calculate dNM(~k, t)/dt, for which we find1

dNM(~k, t)

dt
= − g2

4EM
~k

∫
d3 ~Q

(2π)3ED
~Q

{
cos2 θ

Ω1

sin
[(
EM

~k
− ED

~Q
− Ω1

)
t
]

(
EM

~k
− ED

~Q
− Ω1

) +
sin2 θ

Ω2

sin
[(
EM

~k
− ED

~Q
− Ω2

)
t
]

(
EM

~k
− ED

~Q
− Ω2

)
}
.

(7.3.18)

In the long time limit this becomes

dNM(~k, t)

dt
= −

[
Γ1 cos2 θ + Γ2 sin2 θ

]
. (7.3.19)

Clearly, dNM(~k, t)/dt = −dnD(t)/dt as the decay of the parent population results in the

growth of the daughter population with the same rate. This is a consequence of unitarity

and we can see this by substituting (7.3.15) and (7.3.6) into the unitarity condition

1 = 〈M(~k)
∣∣U †(t, 0)U(t, 0)

∣∣M(~k)〉 = 1 + (1)〈ΨD(t)
∣∣ΨD(t)〉(1) + 2Re

[
〈M

∣∣ΨD(t)〉(2)〉
]
+O(g3)

(7.3.20)

Although we have used plane waves to describe our parent and daughter particles, our

main result, the lack of interference of mass eigenstates in the final state, is a direct conse-

quence of the orthogonality of the mass eigenstates, and this generalizes straightforwardly to

the case of wave packets. In particular, according to Refs. [174, 175, 173], the wave-packet

aspect of the parent and daughter nuclei is emphasized as an important ingredient to allow

the neutrino mixing. It is straightforward to show that a wave-packet is a superposition of

plane wave components, namely,

|Ψ( ~X0, ~P0; ~x, t = 0)〉 =
∫

d3p f(~x, ~X0; ~p, ~P0) e
i~p·~x|~p〉 (7.3.21)

at an initial time t = 0. Here, ~X0, ~P0 are the center position and momentum of wave packet,

respectively, while ~x, ~p and Ep are the position, momentum and energy, respectively. The

1Effectively, we are obtaining the Boltzmann equation for the parent particle, neglecting the build-up of
the population.
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function f(~x, ~X0; ~p, ~P0) specifies the wave function of the particle. In our calculation, we

obtain the time evolution of each plane wave component |~p〉, from which it follows that,

nΨ(t) =

∫
d3p

∣∣∣f(~x, ~X0; ~p, ~P0)
∣∣∣
2

nΨ(~p, t), (7.3.22)

where nΨ(~p, t) is the parent or daughter population for plane waves obtained above. The

distribution function f just weights each plane wave component. As demonstrated by our

calculation in section 7.3, the populations nΨ(~p, t) do not feature oscillations because of the

orthogonality of the mass eigenstates. Therefore, interference between different neutrino

mass eigenstates does not appear either in wave packet treatment, as shown in (7.3.22).

Again, this is a consequence of the orthogonality of neutrino mass eigenstates. Obviously,

this conclusion is independent of whether the parent or daughter particles are described by

plane waves or wave packets.

A complementary pathway to the same conclusion is provided by the interpretation of

(7.3.19) in terms of the Feynman diagram depicted in Figure 39. This also manifestly leads

to the conclusion of lack of interference between mass eigenstates because the decay rate of

the parent particle is the imaginary part of the self-energy. Since the correct propagating

degrees of freedom are the neutrino mass eigenstates, the total self energy is the sum of self-

energies with the neutrino mass eigenstates in the intermediate state. As a result, the usual

Cutkosky rules indicate that the total decay width is the sum of the partial decay widths

into the mass eigenstates without interference. The real time calculations of the decay and

production rates presented above confirm this result directly from the evolution of the parent

and daughter populations.

Therefore, we confirm the analysis of Refs. [146, 145, 188, 86, 235] that there is no

interference of mass eigenstates and we conclude that the GSI anomaly cannot be explained

in terms of the interference of mass eigenstates in the decay.
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7.4 CONCLUSION AND DISCUSSIONS

In this chapter, we re-examine the GSI anomaly within a framework that is different from

and complementary to previous work of various groups [174, 175, 173, 122, 204, 146, 145, 188,

86, 235]. The controversy in the literature on the theoretical analysis of the GSI anomaly

mainly focuses on whether probabilities must be summed incoherently [146, 145, 188, 86, 235]

or amplitudes must be summed coherently [174, 175, 173, 122, 204]. We offer a completely

different alternative to study this phenomenon: we obtain directly the time evolution of

the population of parent and daughter particles taking into account that the quantum state

arising from the decay of the parent particle is an entangled state of the neutrino mass eigen-

states and the daughter particle. Our method bypasses the issue of summing amplitudes or

probabilities and exhibits directly the time evolution of the parent and daughter populations.

Recognizing that if the time modulation of the parent and daughter populations is a result

of interference phenomena between neutrino mass eigenstates, hence a fairly robust conse-

quence is independent of the complexities of the parent and daughter nuclei, we introduce a

simple bosonic model that captures reliably the relevant charged current interaction process

for EC and manifestly includes neutrino mixing. This allows us to extract the relevant as-

pects without the peripheral complications associated with spinors, nuclear wave-functions,

etc. We generalize our previous work [286] to analyze the GSI anomaly by studying the

evolution of the distribution functions of the parent and daughter particles directly in time.

Our starting point is the time evolution of the daughter-neutrino entangled state produced

by the decay of the parent particle. This treatment also allows us to study the dynamics of

the daughter particle from the density matrix upon tracing the unobserved neutrino degrees

of freedom. We show that both the decay rate of the parent particle and the production

rate of the daughter particle do not feature oscillations arising from the interference of mass

eigenstates in the final state. This is a direct consequence of the orthogonality of the mass

eigenstates.

Furthermore, we provide an alternative field theoretical explanation in terms of the
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imaginary part of the self-energy diagram of the parent particle. The propagator of the

intermediate neutrino states is that of mass eigenstates, therefore Cutkosky rules immediately

lead to the conclusion that the decay rate is an incoherent sum of probabilities of decay

into each different mass eigenstate (channels), complementing and confirming our previous

analysis. Simple arguments based on superposition clearly show that a wave packet treatment

of parent and daughter particles yields the same result, namely no time modulation since

there is no interference between mass eigenstates in the final state, again a direct consequence

of orthogonality of mass eigenstates. Our work confirms the result of Refs. [146, 145, 188,

86, 235] that if the GSI anomaly is a real effect, it cannot be explained from the interference

of neutrino mass eigenstates.

More recently, independent experimental efforts have addressed the GSI anomaly: in

Ref. [123] the EC decay of 180Re is studied and no modulation of the decay rate is observed.

However, this experiment is different from the one at GSI not only because of the very short-

lived initial state, but also more importantly because the daughter particle moves in a lattice

and is restricted to transfer crystal momentum to phonons. Another EC-decay experiment

with 142Pm and an earlier EC-decay experiment with 142Eu re-analyzed by Vetter et.al. [270]

did not observe the modulation in the rates reported by the GSI experiment.

In summary, we conclude that our work supports the conclusion against an explanation

of the GSI anomaly as a consequence of neutrino mixing in agreement with previous work

[146, 145, 188, 86, 235]. These theoretical results, combined with emerging independent

experimental evidence seem to suggest that even if the GSI time modulation anomaly is a

real phenomenon, its cause is probably associated with the details of the GSI experiment

or perhaps internal nuclear degrees of freedom of the parent particle in such an experiment,

but not a consequence of neutrino mixing.
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8.0 CONCLUSION OF THE THESIS

Finally, in this last chapter, we briefly summarize all the work we have done in this thesis

and highlight our main results.

8.1 STERILE NEUTRINO PRODUCED AT THE ELECTROWEAK SCALE

To study the properties of keV sterile neutrinos as a WDM candidate, we first study their

production in the early universe at a temperature regime near the electroweak scale. By

introducing a Lagrangian beyond the SM, sterile neutrinos can be produced by the decays

of the Higgs-like scalar beyond the SM and of the charged and neutral vector bosons of the

SM. By applying the non-equilibrium finite temperature field theory, we obtain an effective

Dirac-equation for both active and sterile neutrinos, which contains the self-energies correc-

tions in the medium. The real part of the self-energy determines the dispersion relations

and mixing angles between active and sterile neutrinos in the medium, and the imaginary

part determines the production rates. We analyze and compare the contributions from both

decay channels to the mixing angles, dispersion relations and production rates, thereby fa-

cilitating the analysis of different situations.

Most interestingly, we discovery two narrow MSW resonances. One of them is the usual

MSW resonance driven by a small lepton asymmetry in the neutrino sector; however, the

other one is a new type of MSW resonance in the absence of a lepton asymmetry, and it

happens in the temperature regime T & MW for k/T . 1. We find that the difference in the
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propagating frequencies vanishes exactly at the position of the resonance, with a concomi-

tant breakdown of the adiabaticity. We obtain simple expressions for the production rates

of active and sterile neutrinos that are valid in a wide range of temperatures and clearly

displays the contribution from SM and BSM interactions.

Finally, we apply our results and observations to an expanding universe. Because of the

MSW resonances, we expect a highly non-thermal distribution function for sterile neutrinos

with an enhancement at the low momentum region k < T both. Therefore, sterile neutrinos

should feature a smaller free streaming length and larger power spectrum at small scales as

compared to the DW mechanism [113, 61].

8.2 LINEAR STRUCTURE GROWTH IN THE WDM SCENARIO

Then, we follow the previous chapter by a semi-analytical study on the linear structure

growth of WDM candidates in a radiation-matter cosmology for arbitrary distribution func-

tion and mass around keV scale. We divide the time evolution of density perturbations

of WDM particles into three stages and solve the corresponding collision-less Boltzmann

equation individually. Stages I) and II) describe the time evolution of density fluctuations

during the RD era when the particles are relativistic and non-relativistic respectively, and

stage III refers to the time evolution of the density fluctuations of non-relativistic WDM

particles in the MD era. We connect these piece-wise solutions smoothly and obtain the

transfer function and the power spectrum of WDM particles under the Born approximation.

Unlike the CDM situation where the transfer function only depends on keq (the wave vector

at matter-radiation equality), we find the transfer function of WDM is also characterized by

the free-streaming wave vector kfs, which is inversely proportional to the distance traveled

by the WDM particles from matter-radiation equality to today. Moreover, we find that 1/kfs

also of the same order as the size of the comoving horizon when the WDM particles become

non-relativistic.
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In stages I), the acoustic oscillations in the gravitational potential leads to an ISW effect

that amplifies WDM density perturbations, on scales larger than 1/kfs. This amplification

translates in a prolonged plateau in the transfer function for perturbation scales larger than

1/kfs. Moreover, we discover an WDM acoustic oscillation from the transfer function of

WDM particles at small scales roughly about k ≥ 2kfs, which might suggest interesting

observational signals. Also, we compare our semi-analytical transfer function and power

spectrum with the results from Boltzmann codes [165, 1, 274], and reach an excellent agree-

ment within 5% error. Finally, we discuss the quasi-degeneracy between mass, distribution

function and decoupling temperature of WDM particles and comment on the caveats of the

constraints on the mass of sterile neutrinos from current Lyman-α forest data.

8.3 DYNAMICS OF DISENTANGLEMENT AND COHERENCE IN

NEUTRINO OSCILLATION

Since this chapter, we switch to a new research topic, where we discuss some subtle aspects

of the theory of neutrino oscillations.

By observing that in neutrino oscillation experiments, neutrinos produced by a charged

current vertex are entangled with the charged lepton, we propose a field theoretical model

to study the dynamics of this entangled state directly as a function of time. We aim to

investigate the influence of this dynamics on the neutrino oscillation formulas. To simplify

our calculation, we assume that all the particles are described by plane waves in this study.

We evolve the entangled state until the charged lepton is measured at tS, yielding a disentan-

gled neutrino state. This disentangled neutrino state is evolved further and eventually gets

measured at the far detector at tD. By carrying out this two-time measurement calculation,

we obtain the transition amplitude and probability for neutrino oscillation phenomena.

We find that the transition amplitude depends on both time scales tS and tD, and it is

in general different from the standard formulas of neutrino oscillations. However, under the
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long time limit, the transition rate of long baseline neutrino oscillations, defined as the time

derivative of the transition probability, factorizes in terms of the usual quantum mechanical

probability.

Moreover, our result suggests that there could arise interesting corrections in the case of

short baseline experiments such as MiniBooNE and/or LSND, wherein tS and tD are both

of the same order as the oscillation scale. In this case, the dynamics of dis-entanglement

may introduce extra modulation with energy. Such possibility could be relevant in the

interpretation and analysis of data.

8.4 IS THE GSI ANOMALY DUE TO NEUTRINO OSCILLATIONS?

Finally, as an application of our plane wave calculations, we consider the GSI anomaly, inves-

tigating the interpretation of GSI anomaly as a result of neutrino oscillations. Following the

method developed in the previous study, we obtain the time evolution of the population of

parent and daughter particles directly in real time, considering explicitly the quantum entan-

glement between the daughter particle and neutrino mass eigenstates in the two-body decay.

We confirm that the decay rate of the parent particle and the growth rate of the daughter

particle do not feature a time modulation from interference of neutrino mass eigenstates.

The lack of interference is a consequence of the orthogonality of the mass eigenstates. This

result also follows from the density matrix obtained by tracing out the unobserved neutrino

states. We confirm this result by providing a complementary explanation based on Cutkosky

rules applied to the Feynman diagram of the self-energy of the parent particle.
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APPENDIX A

APPENDIX FOR STERILE NEUTRINO PRODUCTION

A.1 STANDARD MODEL (SM) VECTOR BOSON EXCHANGE

The SM self-energy contributions with the exchange of a vector boson are given by the

spectral representation (3.2.5) with the imaginary part given by Eq. (3.2.14) of the form

ImΣsm(ω,~k) =
πg2sm
4

∫
d3p

(2π)3 pW~p+~k

[
γ0Π0

sm(ω, ~p,
~k)− ~γ · k̂Π1

sm(ω, ~p,
~k)
]
. (A.1.1)

Neglecting the mass of the neutrinos and charged leptons we find

Π0
sm(ω, ~p, ~k)

=
[
1− nF (p) +NB(W~p+~k)

][
p
(
1 +

2W 2
~p+~k

M2

)
+

2W~p+~k

M2

(
p2 + ~k · ~p)

]
δ
(
ω − p−W~p+~k

)

+
[
1− nF (p) +NB(W~p+~k)

][
p
(
1 +

2W 2
~p+~k

M2

)
+

2W~p+~k

M2

(
p2 + ~k · ~p

)]
δ
(
ω + p+W~p+~k

)

+
[
nF (p) +NB(W~p+~k)

][
p
(
1 +

2W 2
~p+~k

M2

)
− 2W~p+~k

M2

(
p2 + ~k · ~p

)]
δ
(
ω − p+W~p+~k

)

+
[
nF (p) +NB(W~p+~k)

][
p
(
1 +

2W 2
~p+~k

M2

)
− 2W~p+~k

M2

(
p2 + ~k · ~p

)]
δ
(
ω + p−W~p+~k

)

(A.1.2)
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and

Π1
sm(ω, ~p,

~k)

=
[
1− nF (p) +NB(W~p+~k)

][
− k̂ · ~p+

2
(
k + k̂ · ~p

)

M2

(
pW~p+~k + p2 + ~k · ~p

)]
δ
(
ω − p−W~p+~k

)

−
[
1− nF (p) +NB(W~p+~k)

][
− k̂ · ~p+

2
(
k + k̂ · ~p

)

M2

(
pW~p+~k + p2 + ~k · ~p
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δ
(
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)

+
[
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2
(
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−
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][
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2
(
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)

M2

(
− pW~p+~k + p2 + ~k · ~p
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δ
(
ω + p−W~p+~k

)
.

(A.1.3)

A.2 BEYOND STANDARD MODEL (BSM) SCALAR EXCHANGE

For scalar boson exchange, we find

ImΣbsm(ω,~k) =
πY 2

4

∫
d3p

(2π)3 W~p+~k

[
γ0Π0

bsm(ω, ~p,
~k)− ~γ · k̂

(
k̂ · p̂

)
Π1

bsm(ω, ~p,
~k)
]
, (A.2.1)

where

Π0
bsm(ω, ~p,

~k) =
[
1− nF (p) +NB(W~p+~k)

]
δ
(
ω − p−W~p+~k

)

+
[
1− nF (p) +NB(W~p+~k)

]
δ
(
ω + p+W~p+~k

)

+
[
nF (p) +NB(W~p+~k)

]
δ
(
ω − p+W~p+~k

)

+
[
nF (p) +NB(W~p+~k)

]
δ
(
ω + p−W~p+~k

)
, (A.2.2)

Π1
bsm(ω, ~p,

~k) =
[
1− nF (p) +NB(W~p+~k)

]
δ
(
ω − p−W~p+~k

)

−
[
1− nF (p) +NB(W~p+~k)

]
δ
(
ω + p+W~p+~k

)

+
[
nF (p) +NB(W~p+~k)

]
δ
(
ω − p+W~p+~k

)

−
[
nF (p) +NB(W~p+~k)

]
δ
(
ω + p−W~p+~k

)
. (A.2.3)
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APPENDIX B

NUMERICAL MANIPULATION OF I1(K,U)

According to the definition of the inhomogeneous source term I1(k, u) in Eq. (4.6.8), we have

I1(k, u) = − 8k2

αk2
eq

∫ ueq

uNR

du′ã2(k, u′)φr(k, u
′)
∫

dyyf̃0(y) sin
[
αy(u− u′)

]
. (B.0.1)

Recall the gravitational potential φr in the RD era, which gives

φr(k, u) = −3φi
x cosx− sinx

x3
= −3φi

x

d

dx

(
sinx

x

)
, (B.0.2)

where x = kη/
√
3 as defined before. By rewriting I1 in terms of x, we can integrate by parts

and optimize the integrand of I1(k, u) for numerical computation. Making use of Eqs.(4.1.8)

and (4.4.6), we find

u =
1

2
ln

(
x

2x∗

2 + x
2x∗

)
, (B.0.3)

du =
dx

2x(1 + x
4x∗

)
, (B.0.4)

where x∗ = kη∗/
√
3. In terms of x, the integral I1(k, u) becomes

I1(k, u) = (−3φi)

(
− 6

α

)∫
dyyf̃0(y)

∫ xeq

xNR

dx′
[

d

dx′

(
sinx′

x′

)](
1 +

x′

4x∗

)
sin

[
αyh(x′)

]
,

(B.0.5)
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where h(x′) = u+ 1
2
ln(1 + 4x∗

x′ ). Integrating by parts over x′, we find

I1(k, u) = (−3φi)

(
− 6

α

)∫
dyyf̃0(y)

{ (
1 +

x′

4x∗

)
sinx′

x′ sin
[
αyh(x′)

]∣∣∣∣
xeq

xNR

− 1

4x∗

∫ xeq

xNR

dx′ sinx
′

x′ sin
[
αyh(x′)

]
+

αy

2

∫ xeq

xNR

dx′ sinx
′

x′2 cos
[
αyh(x′)

]
}
.

(B.0.6)

Plugging in the value of xNR and xeq, and note that

x∗ =
kη∗√
3
=

√
2

3

k

keq
À 1 (B.0.7)

for perturbation modes we are interested in. Correspondingly, xNR

x∗
= ηNR

η∗
¿ 1 and xeq =

2(
√
2− 1)x∗ = 0.8294 x∗. We thus neglect terms proportional to 1

x∗
and xNR

x∗
, getting

I1(k, u) ' (−3φi)

(
− 6

α

)∫
dyyf̃0(y)

{(
1 +

xeq

4x∗

)
sin(xeq)

xeq

sin

[
αy

(
u+ ln(1 +

4x∗
xeq

)

)]

− sin(xNR)

xNR

sin

[
αy

(
u+

1

2
ln(1 +

4x∗
xNR

)

)]

+
αy

2

∫ xeq

xNR

dx′ sinx
′

x′2 cos

[
αy

(
u+

1

2
ln(1 +

4x∗
x′ )

)]}

(B.0.8)

Based on the above approximations, I1(k, u) becomes a one-dimensional integral except for

the last term, which will be our focus. Define

I1a =

∫ xeq

xNR

dx′ sinx
′

x′2 cos

[
αy

(
u+

1

2
ln(1 +

4x∗
x′ )

)]
. (B.0.9)

Since sinx′
x′2 decays rapidly as x′ increases, contributions to I1a are mainly from small x′.

On the other hand, however, sinx′
x′2 diverges as x′ → 0, which could be the case for large
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scale perturbations that correspond to a very small xNR. To avoid the potential problem in

numerical evaluation, we divide I1a into two pieces

I1a =

∫ xeq

xNR

dx′
(
sinx′

x′2 − 1

x′

)
cos

[
αy

(
u+

1

2
ln(1 +

4x∗
x′ )

)]

+

∫ xeq

xNR

dx′ 1

x′ cos
[
αy

(
u+

1

2
ln(1 +

4x∗
x′ )

)]
. (B.0.10)

The singularity has been removed from the first piece, and for the second one, it follows again

that small x′ contributes most to the integral. At small x′, x∗
x′ À 1, thus ln(1+ 4x∗

x′ ) ' ln(4x∗
x′ )

for small x′. Consequently, the second piece of integration is analytically doable, which gives

I1a =

∫ xeq

xNR

dx′
(
sinx′

x′2 − 1

x′

)
cos

[
αy

(
u+

1

2
ln(1 +

4x∗
x′ )

)]

+
2

αy

{
sin

[
αy

(
u+

1

2
ln(

4x∗
xNR

)

)]
− sin

[
αy

(
u+

1

2
ln(

4x∗
xeq

)

)]}
. (B.0.11)

Plugging the expression of I1a in (B.0.11) back to Eq. (B.0.8), we finally obtain

Ĩ1(k, u) = −I1(k, u)

3φi

'
(
− 6

α

)∫
dyyf̃0(y)

{
αy

2

∫ xeq

xNR

dx′
(
sinx′

x′2 − 1

x′

)
cos

[
αy

(
u+

1

2
ln(1 +

4x∗
x′ )

)]

+

(
1 +

xeq

4x∗

)
sin(xeq)

xeq

sin

[
αy

(
u+

1

2
ln(1 +

4x∗
xeq

)

)]

− sin(xNR)

xNR

sin

[
αy

(
u+

1

2
ln(1 +

4x∗
xNR

)

)]

+ sin

[
αy

(
u+

1

2
ln(

4x∗
xNR

)

)]
− sin

[
αy

(
u+

1

2
ln(

4x∗
xeq

)

)]}

(B.0.12)
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