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SCHEDULING MULTIPLE OPERATING ROOMS UNDER UNCERTAINTY

Sakine Batun, PhD

University of Pittsburgh, 2011

Operating room (OR) scheduling is an important operational problem for most hospitals.

Uncertainty in the surgery delivery process, the existence of multiple resources and competing

performance criteria are among the important aspects of OR scheduling problems in practice.

Considering these aspects, this dissertation focuses on developing and efficiently solving

novel stochastic programming models for multi-OR scheduling problems under uncertainty

in surgery durations.

We first consider a stochastic multi-OR scheduling problem with multiple surgeons where

the daily scheduling decisions are made before the resolution of uncertainty. We formulate

the problem as a two-stage stochastic mixed-integer program that minimizes the sum of the

fixed cost of opening ORs and the expected overtime and surgeon idling cost. Decisions in our

model include the number of ORs to open, the allocation of surgeries to ORs, the sequence

of surgeries in each OR, and the start times for surgeons. Realistic-sized instances of our

model are difficult or impossible to solve with standard stochastic programming techniques.

Therefore, we exploit several structural properties of our model and describe a novel set

of widely applicable valid inequalities to achieve computational advantages. We use our

results to quantify the value of capturing uncertainty and the benefit of pooling ORs, and

to demonstrate the impact of parallel surgery processing on surgery schedules.

We then consider a stochastic multi-OR scheduling problem where the initial schedule

is revised at a prespecified rescheduling point during the surgical day. We formulate the

problem as a three-stage stochastic mixed-integer program that minimizes the sum of the

fixed cost of opening ORs and the expected overtime cost. The number of ORs to open
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and the allocation of surgeries to ORs are the first-, and the revisions on the allocation of

surgeries to ORs are the second-stage decisions in our model. For our computational study,

we consider a special case, which is a two-stage stochastic mixed-integer program, where

rescheduling decisions are made under perfect information. We use stage-wise and scenario-

wise decomposition methods to solve our model. By using our results, we estimate the value

of rescheduling, and illustrate the impact of different surgery sequencing rules on this value.

Keywords: operating room scheduling, operating room rescheduling, operating room pool-

ing, parallel surgery processing, multiple operating rooms, two-stage stochastic mixed-

integer programming, multi-stage stochastic mixed-integer programming.

v



TABLE OF CONTENTS

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background Information on Operating Room Scheduling . . . . . . . . . . . 2

1.2 Contributions of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.0 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Operating Room Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Stochastic Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Two-Stage Stochastic Programs . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Multi-Stage Stochastic Programs . . . . . . . . . . . . . . . . . . . . . 15

2.2.3 Value of Perfect Information and the Stochastic Solution . . . . . . . 18

3.0 OPERATING ROOM POOLING AND PARALLEL SURGERY PRO-

CESSING UNDER UNCERTAINTY . . . . . . . . . . . . . . . . . . . . . 20

3.1 Motivation and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Problem Definition and Mathematical Formulation . . . . . . . . . . . . . . 22

3.3 Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Anti-Symmetry Constraints . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.2 Feasibility of the Second-Stage Problem . . . . . . . . . . . . . . . . . 27

3.3.3 Structure of Scenario Subproblems . . . . . . . . . . . . . . . . . . . . 28

3.3.4 Extended Master Problem Formulation . . . . . . . . . . . . . . . . . 30

3.4 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Generation of Problem Instances . . . . . . . . . . . . . . . . . . . . . 33

vi



3.4.2 Computational Performance of the Proposed Algorithms . . . . . . . . 35

3.4.3 Value of the Stochastic Solution . . . . . . . . . . . . . . . . . . . . . 43

3.4.4 Value of OR Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.5 Impact of Parallel Surgery Processing . . . . . . . . . . . . . . . . . . 48

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.0 OPERATING ROOM RESCHEDULING UNDER UNCERTAINTY . 51

4.1 Motivation and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Problem Definition and Mathematical Formulation . . . . . . . . . . . . . . 53

4.3 Rescheduling Under Perfect Information . . . . . . . . . . . . . . . . . . . . 60

4.4 Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4.1 The Integer L-Shaped Algorithm for 2S-ORRP . . . . . . . . . . . . . 65

4.4.2 A Progressive Hedging-Based Heuristic for 2S-ORRP . . . . . . . . . 66

4.5 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.5.1 Generation of Problem Instances . . . . . . . . . . . . . . . . . . . . . 71

4.5.2 Computational Performance of the Proposed Algorithms . . . . . . . . 72

4.5.3 Value of Rescheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.4 Impact of the Overtime Cost Level . . . . . . . . . . . . . . . . . . . . 78

4.5.5 Impact of the Surgery Sequence . . . . . . . . . . . . . . . . . . . . . 78

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.0 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS . . . . . 82

5.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Future Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

vii



LIST OF TABLES

3.1 Size-based classification of problem instances for 322 surgical days. . . . . . . 36

3.2 Computational performance of the L-shaped and L-shaped based branch-and-

cut algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Computational performance of the proposed algorithms for 20 instances. . . . 41

3.4 Solution times (in CPU seconds) of mean value and stochastic problems. . . . 42

3.5 Percentage gap values for the unsolved instances. . . . . . . . . . . . . . . . . 42

3.6 Percentage value of the stochastic solution for each problem set. . . . . . . . 43

3.7 Optimal solution statistics for the stochastic and mean value problems for each

problem set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.8 Percentage improvement brought by OR pooling. . . . . . . . . . . . . . . . . 46

3.9 Optimal solution statistics for Setting 1 and Setting 2 for each problem set. . 47

4.1 Important characteristics of the problems considered in this study. . . . . . . 64

4.2 Size-based classification of 2S-ORRP instances for 322 surgical days. . . . . . 72

4.3 Solution times (in CPU seconds) and the percentage optimality gap values for

the integer L-shaped algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Solution times (in CPU seconds) and the objective values of the best solutions

returned by the PH-based heuristic under different parameter settings for a

problem instance whose optimal objective function value is 16993.34. . . . . . 74

4.5 Solution times (in CPU seconds) and the percentage gap values for the PH-

based heuristic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Percentage value of modeling uncertainty and rescheduling decisions. . . . . . 77

viii



4.7 Percentage value of modeling uncertainty and rescheduling decisions at differ-

ent overtime cost levels for the problem instances in Set 2. . . . . . . . . . . . 79

4.8 Percentage value of rescheduling decisions under different sequencing rules for

the problem instances in Set 2. . . . . . . . . . . . . . . . . . . . . . . . . . . 80

ix



LIST OF FIGURES

1.1 A feasible surgery schedule illustrating three surgeons sharing two ORs. . . . 4

1.2 An illustration of overtime and surgeon idle time under different scenarios. . . 6

1.3 Parallel surgery processing of two surgeries across two ORs. . . . . . . . . . . 6

2.1 A tree of six scenarios over three periods. . . . . . . . . . . . . . . . . . . . . 16

3.1 Flow chart for our solution method that uses the L-shaped algorithm. . . . . 37

3.2 Flow chart for our solution method that uses the L-shaped based branch-and-

cut algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Optimal number of ORs to open at different levels of OR turnover time and

parallelizable portion of surgeries. . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Scenario tree for the OR rescheduling problem where the initial schedule is

revised at TR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Important time points during a surgical day. . . . . . . . . . . . . . . . . . . 56

4.3 Rescheduling under perfect information. . . . . . . . . . . . . . . . . . . . . . 61

x



1.0 INTRODUCTION

Health care expenditures in the United States exceeded $2.4 trillion in 2009, accounting for

around 17% of the Gross Domestic Product [14]. Hospital expenditures represent approxi-

mately a third of this total amount [14], and surgery generates more than 40% of a hospital’s

total expenses and revenues [28, 44]. A recent joint study by the National Academy of En-

gineering and the Institute of Medicine [61] highlights the importance of health care and

engineering partnership, and indicates scheduling in health care delivery systems as one of

the areas with significant research opportunities.

Besides being an important operational problem, designing surgery schedules is also a

challenging problem due to several factors including its combinatorial nature, uncertainty

involved in the surgery delivery process, and the existence of many different and expensive

resources and multiple performance criteria.

Recognizing the significance of efficient allocation of surgery resources, many in the op-

erations research and medical fields have studied operating room (OR) scheduling problems.

The majority of articles have focused on either single-OR models or deterministic multi-OR

models. However, both the stochastic nature of the surgery delivery process and the exis-

tence of multiple ORs in the surgical environment need to be considered in order to develop

approaches for the practical planning and scheduling problems in health care delivery sys-

tems. In this dissertation, we develop novel stochastic programming models for the optimal

design of surgery schedules across multiple ORs of a surgical ward under uncertainty, and

we show how our models can be used for long-term planning. Since the OR is typically

the bottleneck in the overall process, we make it the central focus of our study. We con-

sider identical and therefore interchangeable ORs (which is common in practice in a surgical
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ward). However, our models can easily be extended for surgical environments with noniden-

tical ORs by introducing some eligibility constraints and modifying or completely removing

the symmetry-breaking constraints accordingly.

1.1 BACKGROUND INFORMATION ON OPERATING ROOM

SCHEDULING

The overall surgery delivery process, which is also known as peri-operative services, is com-

prised of a variety of activities that are performed through pre-operative, intra-operative and

post-operative stages. The pre-operative stage begins with the surgery decision and continues

until the patient’s arrival to the OR. It typically includes all preparations prior to the surgery

such as physical examinations, medical tests, and administrative work. The intra-operative

stage includes all activities performed in the OR and ends with the patient’s transfer to

the recovery area. The last phase, which is the post-operative stage, includes recovery and

follow-up periods.

Surgeries may be performed on an inpatient or outpatient basis. In an inpatient setting,

the patient is admitted to the hospital either on or prior to the day of the surgery, and

stays in the hospital until the completion of the recovery period. If the surgery occurs on

an outpatient basis, admission, surgery and discharge take place on the same day. Surgeries

may be either elective or non-elective (urgent or emergent). Elective surgeries are planned

in advance, whereas non-elective surgeries typically arise unexpectedly during the day and

they need to be added to the existing schedule. This dissertation is mainly focused on the

scheduling problems in the intra-operative stage of the delivery of inpatient elective surgeries.

Whether a surgery is elective or non-elective, or operated in an inpatient or outpatient

setting, many features of the OR environment are the same. The entire area that includes

the ORs, intake and recovery areas, and a storage area for the equipment/material is called

the surgical suite or the OR suite. A surgery delivery system is composed of many different

resources including a surgical suite, equipment/material resources, and human resources such

as surgeons, nurses, and anesthesiologists.
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The daily fixed cost of opening an OR is significant due to the cost of OR staff, and

staffing of supporting upstream (intake) and downstream (recovery) areas. Typically, ORs

have planned session lengths of 8-9 hours per day. Using an OR beyond this period results

in direct overtime costs and indirect costs resulting from staff dissatisfaction. In addition to

these costs, there are also less tangible costs such as the costs of surgeon idle time, OR idle

time, and patient waiting time.

The surgery listing of a surgeon defines the set of surgeries to be performed by him/her

on a particular day. Surgeons typically define the order of the surgeries in their listing. The

ordering is based on several factors such as the health status of the patients, difficulty and

length of the surgery, and other patient or surgery related attributes. At many institutions,

surgeons are allocated a block of time in an OR during which they may complete their

surgeries.

Between two consecutive surgeries in an OR, there are cleaning and setup activities. The

time spent on these activities is called OR turnover time. In addition to OR turnover time,

surgeons also need time between surgeries, which we refer to as surgeon turnover time. These

two types of turnover times include different resources (ORs and surgeons). Therefore, they

may be completed in parallel.

Figure 1.1 illustrates important aspects of OR scheduling with a simple deterministic

example. There are eleven surgeries to be performed by three surgeons, and the size of the

surgery blocks denote the lengths of the surgeries. For example, Surgeon 1 has five surgeries,

of which the third is the longest. There are two identical ORs, and the size of an OR block

represents the daily session length (e.g. 8 hours). A feasible schedule is illustrated where

surgeries of Surgeon 2 are scheduled in OR 1, and surgeries of Surgeon 1 and Surgeon 3 are

allocated across both ORs. Surgeries in OR 1 are completed after the daily session ends, so

there is a certain amount of overtime associated with it. As can be observed, the surgeon

idle times between consecutive surgeries in this example are realized mainly because the OR

turnover time is significantly greater than the surgeon turnover time (which is true in most

surgical environments).

An important consideration in the design of surgery schedules is that surgery durations

are highly uncertain [22, 27, 78, 79]. When surgeries are scheduled based on expected values

3



Figure 1.1: A feasible surgery schedule illustrating three surgeons sharing two ORs.
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of surgery durations (as is often done in practice), high expected overtime and surgeon idle

time may occur [17], which is illustrated in Figure 1.2. In this particular example, there are

five surgeries to be completed by two surgeons and they are scheduled in two ORs based on

their expected durations. In the first scenario, actual durations of the last surgeries in ORs

are longer than their expected durations, and this results in unexpected overtime in both

ORs. In the second scenario, the actual durations of the first and second surgeries in OR 2

are shorter than their anticipated durations, and as a result, we observe that the idle time

of the corresponding surgeon increases.

A surgery consists of a sequence of several activities including pre-incision, incision and

post-incision. Although surgeons are key members of the surgical team, they need not be

present in the OR for all parts of these activities. For example, the pre-incision phase

includes positioning the patient on the OR bed and initiating anesthesia, and post-incision

phase includes closing the incision. Since these activities may also be performed by other

members of the team, they do not necessarily require the presence of the surgeon in the OR.

This is particularly true for academic medical centers, where surgical fellows may perform

these tasks while a staff surgeon operates in another nearby OR. For example, a pulmonary

lobectomy consists of an initial incision and separation of the rib cage followed by the actual

lung lobe removal. In an academic medical center, much of this initial work can be done

by an experienced surgical fellow, with the attending staff surgeon then reviewing the work

and performing the critical phase of the surgery. As a result of this flexibility, surgeries

can be parallel processed if multiple ORs are available. In such a setting, the surgeon is

considered idle if he/she is in the surgical ward but not performing the critical portion of a

surgery. Figure 1.3 illustrates this situation, which we refer to as parallel surgery processing.

The second surgery starts before the first surgery is completed, and hence the last phases of

the first surgery and the first phases of the second surgery are processed in parallel. After

performing the incision phase of the first surgery in OR 1, the surgeon uses his/her turnover

time and then goes to OR 2 to perform the critical portion of the second surgery. If the

surgeon is still occupied with the incision phase of surgery 1 when the pre-incision phase

of surgery 2 is completed, then the incision phase of surgery 2 is delayed until the surgeon

becomes available.
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Figure 1.2: An illustration of overtime and surgeon idle time under different scenarios.

Figure 1.3: Parallel surgery processing of two surgeries across two ORs.
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1.2 CONTRIBUTIONS OF THE DISSERTATION

We first consider a multi-OR scheduling problem with multiple surgeons where the surgery

durations are uncertain. We formulate a two-stage stochastic mixed-integer program (SMIP)

for the problem. The main decisions are the number of ORs to open, the assignment of surg-

eries to ORs, the sequence of surgeries within each OR, and the times at which surgeons

start their first surgery of the day. Our model explicitly considers different resource usage

schemes such as parallel surgery processing and operating room pooling. Standard stochas-

tic programming approaches, such as the L-shaped algorithm, fail for practical instances.

Therefore we exploit a number of structural properties of our model. We add symmetry

elimination constraints to the first stage. We present valid inequalities that ensure feasibil-

ity of the second-stage subproblems. We show that subproblems can be solved using a fast

procedure that exploits their special structure. We also propose a new and widely applicable

set of valid inequalities based on Jensen’s inequality [48]. We perform a series of computa-

tional experiments to test our proposed methods, to illustrate the impact of parallel surgery

processing, and to quantify the potential benefit of pooling ORs as a shared resource among

surgeons.

We then explore a stochastic multi-OR scheduling problem where surgery-to-OR allo-

cation decisions are allowed to be revised during the day. We formulate the problem as a

three-stage SMIP, where the initial scheduling decisions and the rescheduling decisions are

made in the first and second stages, respectively. We consider a special case of our model,

which is a two-stage SMIP, where the surgeries are rescheduled under perfect information in

the second stage. We solve this problem with stage-wise and scenario-wise decomposition

methods. We estimate the potential benefit of rescheduling and the portion of this benefit

which is attributable to the adaptive/anticipative decisions. We also investigate the impact

of using different surgery sequencing rules within ORs on the value of rescheduling.
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1.3 ORGANIZATION OF THE DISSERTATION

The remainder of this dissertation is organized as follows. In Chapter 2, we review the rel-

evant literature on OR scheduling and stochastic programming, which are the application

area and the methodological domain considered in this study. In Chapters 3 and 4, we de-

scribe our models, solution methodologies, and present our results and insights for stochastic

multi-OR scheduling and rescheduling problems, respectively. We discuss conclusions and

highlight future research directions in Chapter 5.

1.4 ACKNOWLEDGMENT

Much of the content in Chapters 1, 2, and 3 originally appeared in Batun et al. [4], and is

reproduced with kind permission from The Institute for Operations Research and the Man-

agement Sciences: S. Batun, B. T. Denton, T. R. Huschka, and A. J. Schaefer, “Operating

Room Pooling and Parallel Surgery Processing Under Uncertainty,” INFORMS Journal on

Computing, 23 (2), pp. 220-237, 2011.

8



2.0 LITERATURE REVIEW

2.1 OPERATING ROOM SCHEDULING

Deterministic and stochastic optimization models [6, 17, 19, 20, 30, 32, 33, 47, 54, 64, 65,

81, 85, 89], queueing models [42, 84, 90, 93, 95], simulation models [18, 24, 31, 39, 46, 59]

and heuristic approaches [7, 19, 24, 39, 54] have all been widely used to investigate OR

scheduling. In our review, we focus on those studies which are directly related to multi-

OR scheduling or which consider stochastic programming models for OR scheduling. More

extensive reviews are found in [11, 12, 29, 38, 40, 41, 60].

Velásquez and Melo [85] study a deterministic multi-OR scheduling problem where each

surgery has a preferred starting time and the objective is to meet these preferences as much as

possible. They formulate the problem as a set packing problem by discretizing the planning

horizon and considering all possible combinations of resources for each discrete unit of time.

Exploiting the special structure of this problem, the authors use column generation and

constraint branching. Their computational results show that practical instances can be

solved within a reasonable amount of time.

Jebali et al. [47] propose a two-step hierarchical approach to solve a deterministic multi-

OR scheduling problem with eligibility constraints related to surgical equipment. In the first

step, surgeries are assigned to ORs through the use of an integer programming (IP) model

that minimizes the total cost of overtime hours, undertime hours (i.e., the OR idle time)

and patient waiting time between initial hospitalization and surgery. In the second step,

the surgery sequence within each OR is determined by solving an IP model that further

minimizes the total overtime in ORs. Fei et al. [33] consider a similar hierarchical approach

to solve a deterministic multi-OR scheduling problem over a weekly planning horizon where
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the objective is to minimize the OR idle time and overtime costs. They first solve a set-

partitioning problem by using a column-generation-based heuristic to assign a date for each

surgery, then solve the daily scheduling problem by using a hybrid genetic algorithm. Liu

et al. [54] propose a heuristic algorithm to solve large instances of the problem defined in [33].

Testi et al. [81] propose a three-phase method to generate weekly schedules for a multi-

OR surgical suite. In the first phase, the available OR time is distributed among surgical

wards based on their demands by solving an IP model that is similar to a bin packing

problem. In the next phase, a weekly cyclic timetable is determined by using an IP model

that maximizes the surgeon preferences subject to several constraints. In the final phase,

patients for the next available day are selected based on a priority score, and surgeries within

each OR are sequenced using simple sequencing rules such as longest waiting time, longest

processing time and shortest processing time. The performance of these rules is analyzed by

using a discrete event simulation model. Constructing a cyclic schedule of surgeries is also

studied by several other researchers including Adan et al. [1], Beliën and Demeulemeester

[7], van Oostrum et al. [82].

Weiss [89] considers the problem of minimizing resource idle time and procedure waiting

time in a single-OR environment where the surgery durations are uncertain and the decisions

are the sequence of surgeries and their start times. He solves small problem instances that

include two or three surgeries, and his numerical results reveal that the solution highly

depends on the cost coefficients. Wang [87] considers a single server (equivalently OR)

appointment system where the processing times are assumed to be exponentially distributed.

Exploiting the special structure of the problem, he is able to solve larger instances than Weiss,

and shows that constant interarrival times cannot guarantee optimality.

Denton and Gupta [17] study the single server appointment scheduling problem where

the service durations are stochastic and the sequence of customers is fixed. The objective is

to determine appointment times for the customers in order to minimize the total expected

cost of customer waiting time, server idle time and tardiness with respect to the session

length. They formulate this problem as a two-stage stochastic linear program, derive upper

bounds that are independent of the distribution of job duration, and solve the problem by

using these bounds in a modified L-shaped algorithm that is based on successively parti-
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tioning the space of the random job durations. Begen and Queyranne [6] consider the single

server appointment scheduling problem under the assumption that service durations are in-

dependent and discrete. They show that the objective function, which is the expected total

underage and overage costs, is L-convex under reasonable conditions on cost coefficients.

Based on this property, they also provide a polynomial time algorithm for the problem.

Denton et al. [19] extend the single server appointment scheduling problem [17] to in-

vestigate the impact of surgery sequencing and start time decisions. They consider several

different surgery sequences obtained with simple heuristic rules. Their computational results

show that the performance of OR schedules are effected both by scheduled start times and

sequencing decisions.

Erdogan and Denton [30] consider the dynamic appointment scheduling problem where

service durations and the number of customers to be scheduled on a particular day are un-

certain. They formulate the problem as a multi-stage stochastic linear program where stages

are defined by customer appointment requests, and the objective is to minimize the expected

cost of overtime and customer waiting time. At each stage, the requested appointment is

scheduled by determining the length of the time slot to be allocated. They analyze the

structural properties of the model and utilize decomposition-based algorithms to solve the

problem instances generated based on real data.

Denton et al. [20] study the deterministic and stochastic versions of the surgery allocation

problem in a multi-OR environment where the main aim is to minimize the total fixed cost

of opening ORs and expected overtime cost. They focus only on the allocation decisions

and do not consider the sequencing decisions within the ORs. For the stochastic version of

the problem, they present both a two-stage SMIP with binary variables in the first stage

and a robust formulation. To solve the problem, they develop valid inequalities that reduce

symmetry, and use lower and upper bounds on the optimal number of ORs to open each

day. Moreover, they propose a simple and fast heuristic that performs reasonably well across

many instances.

Despite the vast amount of literature on OR scheduling, there is still a lack of studies

on stochastic multi-OR scheduling problems. However, stochasticity in the surgery delivery
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process and the existence of multiple ORs in surgical suites are important aspects that need

to be captured while formulating and solving the practical problems seen in surgery delivery

systems.

2.2 STOCHASTIC PROGRAMMING

Stochastic programming is a branch of mathematical programming that provides a frame-

work for modeling and solving optimization problems with random parameters. The evolu-

tion of information over time, which plays a critical role in decision making under uncertainty,

is explicitly considered through decision stages in stochastic programs. In this section, we

briefly introduce the types of stochastic programs and the related solution methods that

are most relevant to this dissertation. For more comprehensive information on stochastic

programming, we refer to Birge and Louveaux [10] and Kall and Wallace [49].

2.2.1 Two-Stage Stochastic Programs

A two-stage stochastic program [5, 16], which is the most widely studied type of stochastic

program, is composed of first and second stages that take place before and after the resolution

of uncertainty, respectively. The first-stage decisions (x ∈ X) are made a priori, before

the availability of complete information on the random parameters. Given the first-stage

decisions, the second-stage decisions (y(ω) ∈ Y), also called recourse decisions, are made

after the random scenario (indexed by ω ∈ Ω) is realized and the vector of random parameters

(ξ(ω) ∈ Ξ) become known. A two-stage stochastic program, which minimizes the first-stage

cost plus the expected second-stage cost, can be formulated in the deterministic equivalent

form as follows:

min z = cTx+Q(x) (2.1a)

s.t.

Ax = b, (2.1b)

x ∈ X (2.1c)
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where

Q(x) = Eξ [Q(x, ξ(ω))] (2.2)

is the expected recourse function, and for every scenario ω,

Q(x, ξ(ω)) = min{q(ω)y(ω)|W (ω)y(ω) = h(ω)− T (ω)x, y(ω) ∈ Y} (2.3)

defines the recourse function.

In the above formulation, cT ∈ Rn1 , A ∈ Rn1×m1 , b ∈ Rm1 , T (ω) ∈ Rn1×m2 , W (ω) ∈

Rn2×m2 and h(ω) ∈ Rm2 are real-valued matrices and vectors. The matrices T (ω) ∈ Rn1×m2

and W (ω) ∈ Rn2×m2 define the second-stage constraints under scenario ω; they are called

the technology and recourse matrices, respectively. A stochastic program is said to have

fixed recourse, if the recourse matrix is not scenario-dependent (i.e., W (ω) = W ∀ω).

The (relatively) complete recourse property of a two-stage stochastic program implies the

feasibility of the second-stage problem for any given (feasible) first-stage solution.

If sets X and Y impose only nonnegativity restrictions on x and y(ω), then (2.1)-(2.3)

is a two-stage stochastic linear program (SLP). Otherwise, if a subset of the first- and/or

second-stage variables are integers, then the resulting formulation is a two-stage stochastic

mixed-integer program (SMIP).

Letting πω be the realization probability of scenario ω, (2.1)-(2.3) can be reformulated

in the extensive form as follows:

min z = cTx+
∑
ω∈Ω

πωq(ω)y(ω) (2.4a)

s.t.

Ax = b, (2.4b)

T (ω)x+W (ω)y(ω) = h(ω) ∀ω, (2.4c)

x ∈ X, (2.4d)

y(ω) ∈ Y ∀ω. (2.4e)

Any solution approach for linear programs (LPs) or integer programs (IPs) can be used

to solve the extensive form of a stochastic program when there are few possible scenario

realizations. However, the size of a stochastic program grows, and hence its solvability with
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standard solution methods decreases, with the increasing number of scenarios. Therefore,

when there exist a large number of scenarios (which is common in many practical problems),

solution methods must exploit the structural properties of stochastic programs.

Given a first-stage solution, the scenario-dependent second-stage problems can be solved

independently. Owing to this so-called block separability property of the recourse, decompo-

sition methods are very efficient for solving stochastic programs [45, 67, 83]. One of the most

commonly used stage-wise decomposition methods for two-stage SLPs is the L-shaped algo-

rithm [83], which is an extension of Benders decomposition [8] for stochastic programs. The

L-shaped algorithm is an outer linearization approach in which a master problem (composed

of the first-stage variables and constraints) is solved iteratively until the optimal solution is

found. At each iteration, given the first-stage solution obtained by solving the master prob-

lem, second-stage scenario subproblems are solved and the optimal values of dual variables

are used to generate optimality and feasibility cuts. These cuts are added to the master

problem to approximate the expected recourse function (using optimality cuts) and guar-

antee the feasibility of the second-stage subproblems (using feasibility cuts) throughout the

iterations. The optimality cuts include a surrogate variable, θ, that represents the approxi-

mate expected recourse function, defining a progressively better lower bound on the expected

recourse function at each iteration.

Although the L-shaped algorithm was originally proposed to solve two-stage SLPs, it can

also be employed to solve a two-stage SMIP if the integrality restrictions are only on the first-

stage variables. Two-stage SMIPs with integrality restrictions on the second-stage variables

can be solved using the integer L-shaped algorithm [52] if the problem has relatively complete

recourse and the first-stage is pure binary. The integer L-shaped algorithm solves the master

problem within a branch-and-cut framework where optimality cuts are added as necessary

at each integer feasible node. The optimality cut at a considered node is generated using

the corresponding value of the expected second-stage cost, and a pre-calculated lower bound

on the expected recourse function. Therefore, unlike in the standard L-shaped algorithm,

the construction of the optimality cuts in the integer L-shaped algorithm does not require

the linearity of the second-stage subproblems. Due to the practical importance of two-stage

14



stochastic programs with integer variables, there are several other methods developed to

overcome the computational challenge of solving these problems [2, 13, 43, 51, 70, 71, 72, 73].

2.2.2 Multi-Stage Stochastic Programs

Many problems in practice involves sequential decision making over time. Multi-stage

stochastic programs can be used to formulate such problems where uncertainty is resolved

in multiple stages. The decisions at any stage are made by considering the information re-

vealed up until that stage, and the uncertainty inherent in the successive stages. Evolution

of information in a multi-stage stochastic program can be shown on a tree structure where

each scenario in every stage is represented by a node. The scenario tree of a three-stage

stochastic program with three second-stage scenarios, and six third-stages scenarios is given

in Figure 2.1.

A multi-stage stochastic program can be formulated as follows:

min z = cT1 (ω1)x1(ω1) +Q1(x1(ω1)) (2.5a)

s.t.

W1(ω1)x1(ω1) = h1(ω1), (2.5b)

x1(ω1) ∈ X1 (2.5c)

where

Qt(xt(ωt)) = Eξt+1|ξt [Qt(xt(ωt), ξt+1(ωt+1))] (2.6)

and

Qt(xt(ωt), ξt+1(ωt+1)) = min{cTt+1(ωt+1)xt+1(ωt+1) +Qt+1(xt+1(ωt+1))|

Wt+1(ωt+1)xt+1(ωt+1) = ht+1(ωt+1)− Tt+1(ωt+1)xt(ωt),

xt+1(ωt+1) ∈ Xt+1} (2.7a)

for t = 1, 2, ..., T − 1 where t is the stage index and T is the number of stages.

In the above formulation, cTt (ωt), Tt(ωt),Wt(ωt), and ht(ωt) are real-valued matrices and

vectors of conformable size. It is assumed that ω1, and hence cT1 (ω1), T1(ω1),W1(ω1), are
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Figure 2.1: A tree of six scenarios over three periods.
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known whereas the parameters in the future stages are random variables. (2.5)-(2.7) is a

multi-stage SLP if all variables are continuous, a multi-stage SMIP otherwise.

The nested L-shaped algorithm [9, 55], a generalization of the L-shaped algorithm to mul-

tiple stages, is one of the commonly used solution methods for multi-stage SLPs. Throughout

the iterations of the nested L-shaped algorithm, a subproblem is considered for each scenario

in every stage. The primal solution of a subproblem is passed to the descendant nodes, and

the dual solutions of the subproblems at the descendant nodes are passed back to the ances-

tor node to be used in the cut generation. Cuts are added to approximate the expected cost

over the remaining stages (Qt(xt(ωt))) and to ensure feasibility of the solution (xt(ωt)) in

the descendant scenarios. The algorithm iterates between the stages and carries information

from one scenario node to another until the optimal solution is found. When a subproblem

in stage t is solved, the algorithm can either move back to stage t − 1 and solve the sub-

problem at the ancestor node after adding the cuts, or move on to stage t+ 1 and solve the

subproblems at the descendant nodes. There are different strategies used to determine the

order in which subproblems are solved in the nested L-shaped algorithm. One of the widely

used strategies is the fast-forward-fast-back approach [91], according to which the algorithm

explores all subproblems in a stage (starting from the first stage) and moves on to the next

stage by passing the primal solution until it detects an infeasible subproblem or reaches the

last stage, and then moves backwards by adding cuts to the ancestor nodes until it reaches

the first stage. This cycle repeats until no new cuts are generated, which indicates that the

optimal solution is found.

The progressive hedging algorithm (PHA) [66] is another widely used solution method

for multi-stage SLPs. It provides an iterative framework where an augmented Lagrangian

relaxation is applied to the explicitly modeled nonanticipativity constraints. This framework

facilitates the decomposition of a multi-stage SLP into scenario subproblems (which are de-

terministic LPs) that can be solved independently. An aggregated policy is obtained at each

iteration by using the scenario subproblem solutions. A penalty term associated with the

deviation from the aggregated policy is included in the objective function of the scenario sub-

problems to progressively enforce the nonanticipativity constraints. The algorithm iterates

until the optimal solution is found.
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Although the convergence of the PHA to the optimal solution is guaranteed only for

problems with continuous variables, progressive hedging-based (PH-based) heuristic methods

are observed to be very efficient in obtaining good solutions to SMIPs [15, 88]. As can be

seen in more recent work, scenario-wise decomposition approach is also used to develop

branch-and-price methods for multi-stage SMIPs [56, 63].

2.2.3 Value of Perfect Information and the Stochastic Solution

For one particular scenario ω, the deterministic version of the two-stage stochastic program

described by (2.1)-(2.3) can be written as:

min z(x, ξ(ω)) = cTx+ q(ω)y(ω) (2.8a)

s.t.

Ax = b, (2.8b)

T (ω)x+W (ω)y(ω) = h(ω), (2.8c)

x ∈ X, (2.8d)

y(ω) ∈ Y. (2.8e)

If perfect information were available (i.e., if the random scenario was realized before the

decision maker sets x), the optimal solution could be found by solving (2.8) for the already

known scenario. The expected value of the solution under perfect information, known as the

wait-and-see solution, is:

zWS = Eξ [min z(x, ξ(ω))] . (2.9)

The expected value or mean value problem is the deterministic version of the stochas-

tic program where the random parameters (ξ(ω)) are replaced with their expected values

(E[ξ(ω)]). The optimal solution of the expected value problem is called the expected value

solution (xEV ). The expected value of using xEV is:

zEEV = Eξ [min z(xEV , ξ(ω))] . (2.10)
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Letting zSP denote the objective function value of the optimal solution of (2.1)-(2.3), we

have the following relation between zWS, zEEV and zSP [57]:

zWS ≤ zSP ≤ zEEV . (2.11)

There are two important measures used to estimate the value of modeling uncertainty

and incorporating it into mathematical programs.

• The expected value of perfect information (EVPI) is the expected benefit that could

be gained by using perfect information (instead of using the solution of a stochastic

program), and hence is the maximum amount a decision maker would be willing to pay

in return for perfect information. It is formally defined as:

EV PI = zSP − zWS. (2.12)

• The value of the stochastic solution (VSS) is the expected benefit of formulating and

solving the problem as a stochastic program rather than using the solution of the corre-

sponding expected value model. It is formally defined as:

V SS = zEV V − zSP . (2.13)
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3.0 OPERATING ROOM POOLING AND PARALLEL SURGERY

PROCESSING UNDER UNCERTAINTY

3.1 MOTIVATION AND CONTRIBUTIONS

The majority of studies in the OR scheduling literature have focused on either single-

OR models or deterministic multi-OR models. Only a few articles consider stochastic-

programming-based approaches to capture the stochastic behavior of surgery durations

[17, 19, 20].

In this chapter, we explore a stochastic multi-OR scheduling problem with multiple

surgeons and identical ORs. By considering surgeons (as well as ORs) and introducing

additional decisions to be made, we extend the stochastic surgery scheduling problem studied

by Denton et al. [20]. We formulate and solve the problem as a two-stage SMIP to minimize

total expected operating cost given that scheduling decisions are made before the resolution

of uncertainty in surgery durations. To increase the problem solvability, particularly for the

large-sized instances, we exploit a number of structural properties of our model, and propose

a novel set of valid inequalities. Our extensive computational study based on data provided

by a large health care provider reveals both the computational strength of our proposed

methods and some important managerial insights.

Beyond operational decisions, our model can also be used to quantify the potential benefit

of sharing ORs among surgeons. In practice, hospitals typically use block-booking policies in

which surgical groups are given blocks of time in one or more ORs [23, 24]. The surgical

groups in turn allocate these blocks of OR time to individual surgeons, and the further

planning is made independently for each surgeon. Splitting resources in this way is motivated

by the desire to simplify the planning process; however, it may lead to inefficiencies [25, 33,
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54]. Our model can be used to determine the optimal schedule for surgeons assuming that

available ORs are pooled together as a common shared resource. Thus, we can use our model

to assess the benefits of pooling ORs compared to the commonly used block-booking policy.

Earlier studies that consider stochastic-programming based approaches for the OR schedul-

ing problem view surgery as a single activity; however, in practice a surgery is comprised

of several activities (pre-incision, incision, and post-incision phases). Depending on surgery-

to-OR assignment decisions, some of these activities can be carried out simultaneously (in

parallel) due to the availability of multiple ORs, and assistance of other surgeons in addition

to the attending staff surgeon (e.g. surgery fellows). Parallelizing surgeries may improve the

efficiency of resource usage significantly [59, 69, 76, 77]. To our knowledge, parallel surgery

processing has not yet been incorporated into any optimization models. Our model explic-

itly considers the parallelizable nature of surgery, which is an important aspect that must

be taken into account to accurately estimate the benefits of OR pooling.

Our work presented in this chapter differs from the existing literature in a number of

ways, and its main contributions can be summarized as follows:

• We model the stochastic multi-OR scheduling problem, integrating allocation and se-

quencing decisions.

• We consider surgeons, as well as ORs, as resources.

• We provide a more realistic model of the surgery process by explicitly considering the

pre-incision, incision, and post-incision phases.

• As our problem is unsolvable with standard techniques, we exploit several structural

properties of our model. We also present a novel and widely applicable set of valid

inequalities that are essential to solving large instances.

• We quantify the benefit of OR pooling, and illustrate the impact of parallel surgery

processing on the performance of surgery schedules.

The remainder of this chapter is organized as follows. In Sections 3.2 and 3.3, we provide

the formulation of our model, discuss its structural properties, and present our solution
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methods. In Section 3.4, we present results from our numerical study of our algorithms, and

managerial insights based on empirical data. Finally, we summarize general insights of our

analysis in Section 3.5.

3.2 PROBLEM DEFINITION AND MATHEMATICAL FORMULATION

Our model considers daily decisions that include the number of ORs to open, surgery-to-

OR assignment decisions, the sequence of surgeries within each OR, and the start time

for each surgeon on the day of surgery. We formulate our model as a two-stage stochastic

program with recourse [16]. In the first stage, the model determines the number of ORs

to be opened, the assignment of surgeries to ORs, the sequence of surgeries within each

OR, and start time for each surgeon. These decisions are made prior to the day of surgery

(e.g. usually 24-48 hours in advance). Next, on the day of surgery, the actual surgery

durations become known. Uncertainty in surgery durations is represented by a finite set

of scenarios in the second stage. Each scenario is composed of collective random outcomes

for the pre-incision, incision and post-incision durations of surgeries. Second-stage decisions

include actual surgery completion times, surgeon idle times, and overtime in each OR. The

objective of our model is to minimize total costs including first-stage costs of opening ORs

and expected second-stage costs of overtime and surgeon idle time. We use the following

notation in our formulation:

Indices

i, j: surgery indices.

k: surgeon index.

q, r: OR indices.

ω: scenario index.

ik: index of the first surgery of surgeon k.
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Configuration or Environment Related Parameters

L: session length for each OR.

cf : daily fixed cost of opening an OR.

co: per minute overtime cost of an OR.

cS: per minute idle time (waiting time) cost of a surgeon.

sS: surgeon turnover time between two consecutive surgeries.

sR: OR turnover time between two consecutive surgeries.

Problem Instance Related Parameters

n: total number of surgeries to be scheduled.

nR: total number of available ORs.

nS: total number of surgeons.

bijk: binary parameter denoting whether surgery i immediately precedes surgery j

in surgeon k’s surgery listing.

prei(ω): pre-incision duration of surgery i under scenario ω.

pi(ω): incision duration of surgery i under scenario ω.

posti(ω): post-incision duration of surgery i under scenario ω.

In our notation, ω ∈ Ω represents the random outcome of the realized scenario. Given n

surgeries, we obtain a random vector ξ(ω) = {pre1(ω), ..., pren(ω), p1(ω), ..., pn(ω), post1(ω), ...,

postn(ω)}. We denote the finite support of ξ(ω) by Ξ where Ξ ∈ R3n
+ .

First-Stage Decision Variables

xr: binary decision variable denoting whether OR r is opened or not.

yir: binary decision variable denoting whether surgery i is allocated to OR r or not.

zijr: binary decision variable denoting whether surgery i precedes surgery j in OR r or not

(defined for (i, j, r) : i 6= j). Note that, zijr does not denote immediate precedence,

but denotes general precedence relation between i and j. zijr is fixed to zero if j

precedes i in one of the surgeons’ surgery listing.

tk: start time for surgeon k.
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Second-Stage Decision Variables

Cir(ω): completion time for surgery i in OR r under scenario ω.

Iij(ω): surgeon idle (waiting) time between surgeries i and j under scenario ω (defined for

(i, j) :
∑nS

k=1 bijk = 1, i.e., i immediately precedes j in one of the surgeons’ surgery

listing).

Ik(ω): idle time of surgeon k before his/her first surgery under scenario ω.

Or(ω): overtime in OR r, with respect to session length L under scenario ω.

Note that, while defining the parameters and decision variables, we use only one (or

two, depending on the number of subscripts) of the indices to denote the sets. However,

our definitions apply to other indices denoting the same set. For example, C∗r applies to

subscripts i, j and ik.

Using the above notation we formulate the model as follows:

min

nR∑
r=1

cfxr +Q(x, y, z, t) (3.1a)

s.t.

yir ≤ xr ∀i, r, (3.1b)

nR∑
r=1

yir = 1 ∀i, (3.1c)

zijr + zjir ≤ yir ∀i, j > i, r, (3.1d)

zijr + zjir ≤ yjr ∀i, j > i, r, (3.1e)

zijr + zjir ≥ yir + yjr − 1 ∀i, j > i, r, (3.1f)

tk ≤ L ∀k, (3.1g)

xr, yir, zijr ∈ {0, 1} ∀i, j 6= i, r, (3.1h)

tk ≥ 0 ∀k, (3.1i)

where

Q(x, y, z, t) = Eξ [Q(x, y, z, t, ξ(ω))] (3.2)

is the expected recourse function and
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Q(x, y, z, t, ξ(ω)) = min

nR∑
r=1

coOr(ω) +
∑

(i,j):
∑nS

k=1 bijk=1

cSIij(ω) +

nS∑
k=1

cSIk(ω) (3.3a)

s.t.

Cir(ω) ≤Myir ∀i, r, (3.3b)

Cjr(ω) ≥ Cir(ω) + sR + prej(ω) + pj(ω) + postj(ω)−M(1− zijr) ∀i, j 6= i, r, (3.3c)

nR∑
r=1

Cikr(ω) = tk + Ik(ω) + preik(ω) + pik(ω) + postik(ω) ∀k, (3.3d)

nR∑
r=1

Cir(ω) ≥ tk + prei(ω) + pi(ω) + posti(ω) ∀(i, k) :
n∑
j=1

bjik = 1, (3.3e)

nR∑
r=1

Cjr(ω) =

nR∑
r=1

Cir(ω)− posti(ω) + sS + pj(ω) + postj(ω) + Iij(ω)

∀(i, j) :

nS∑
k=1

bijk = 1, (3.3f)

Or(ω) ≥ Cir(ω)− L ∀i, r, (3.3g)

Cir(ω), Ik(ω), Iij(ω), Or(ω) ≥ 0 ∀i, j, r, k. (3.3h)

The objective function (3.1a) is the sum of the first-stage cost and the expected second-

stage cost over all scenarios. The first-stage cost is the fixed cost of opening ORs, and the

second-stage costs are the sum of expected overtime costs and surgeon idle time costs. Note

that the OR scheduling problem we consider here is a multi-criteria problem, and each piece

of the total operating cost defined by (3.1a) corresponds to a different performance measure.

Constraints (3.1b) and (3.1c) ensure that a surgery can be assigned to an OR only if it is

opened and each surgery is assigned to exactly one OR, respectively. A precedence relation

exists between two surgeries if and only if they are both assigned to the same OR and this

is enforced by constraints (3.1d)-(3.1f). Constraint (3.1g) ensures that the starting time of

each surgeon is no more than the session length. This constraint reflects an operationally

meaningful assumption; if all of the surgeries of a surgeon are anticipated to be performed

beyond the session length by using overtime, then it is more reasonable to schedule that

particular surgeon’s surgeries in another OR or on another day. As we have the upper
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bound L on the surgeon start times in the first stage, the surgery completion times in the

second stage are also bounded. Constraints (3.1h) and (3.1i) define binary and nonnegativity

restrictions for the first-stage decision variables.

The second-stage problem for a given x, y, z, t and ξ(ω) is formulated explicitly by (3.3).

The completion time of a surgery in an OR is 0 unless it is assigned to that OR, which is en-

forced by constraint (3.3b). Constraint (3.3c) defines the completion time of surgeries in ORs

considering their precedence relation, processing times and OR turnover time. TheM param-

eter used in constraints (3.3b) and (3.3c) is an upper bound on the surgery completion times.

Constraints (3.3d) and (3.3e) ensure that surgeries of a surgeon cannot be started before

his/her arrival to the surgical suite. Constraint (3.3d) determines the idle time of the consid-

ered surgeon before his/her first surgery. Since the pre-incision of the first surgery needs to be

started after the arrival of the surgeon, that portion is not included in the surgeon idle time as

opposed to the pre-incision parts of the subsequent surgeries where the surgeon is considered

to be idle unless he/she is performing the critical part of a surgery. Constraint (3.3f) provides

the relation between surgery completion times, surgeon idle times and the sequence of surg-

eries in surgeons’ surgery listing. Constraint (3.3g) defines the overtime used in each OR.

Constraints (3.3h) define nonnegativity restrictions for the second-stage decision variables.

Notice that we assume the durations of all surgeries are realized at the beginning of the

day of surgeries, and this is consistent with the limited recourse for schedule changes during

the day (i.e., rescheduling of surgeries is not allowed).

It can be easily shown that the formulated stochastic multi-OR scheduling problem is

NP-hard by reducing the bin packing problem, which is known to be NP-hard, to a special

case of our problem.

3.3 SOLUTION METHODS

The mathematical model we present is a two-stage SMIP with binary and continuous first-

stage decision variables, and continuous second-stage variables. We solve this SMIP by using

the L-shaped algorithm [83], which is briefly described in Section 2.2.1.
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3.3.1 Anti-Symmetry Constraints

Given a solution, an equivalent solution can be obtained by swapping the set of surgeries

assigned to any pair of ORs since we consider surgical environments with identical ORs.

Thus, our problem has complete symmetry with respect to ORs. While solving highly

symmetric IP models, standard solution algorithms may need to explore many alternative

symmetric solutions, which consumes too much computational time. Therefore, eliminating

symmetric solutions while formulating and solving a problem may be beneficial [58, 62, 74].

We add the following symmetry-breaking constraints, which are applied by Denton et al.

[20] in the context of OR scheduling, to the problem:

xr ≥ xr+1 ∀r < nR, (3.4a)

i∑
r=1

yir = 1 ∀i ≤ min{n, nR}, (3.4b)

min{i,nR}∑
q=r

yiq ≤
i−1∑

j=r−1

yj,r−1 ∀(i, r) : i ≥ r > 1. (3.4c)

Constraint (3.4a) breaks the symmetry with respect to ORs by introducing an arbitrary

ordering. Similarly, constraints (3.4b) and (3.4c) introduce a lexicographic order in terms

of the indices of surgeries allocated to each OR. For example, if the first i− 1 surgeries are

assigned to the first r− 1 ORs, then ith surgery should be assigned to one of the first r ORs.

Denton et al. [20] observe that these constraints have a significant impact on the solution

time for a stochastic version of the bin packing problem.

3.3.2 Feasibility of the Second-Stage Problem

The extensive form of our two-stage recourse problem ensures feasible schedules, i.e., sched-

ules that do not include cyclic surgery sequences or any other kind of infeasibilities. However,

a decomposition method like the L-shaped algorithm that solves the master and recourse

problems separately may result in feasible first-stage solutions that are second-stage infea-

sible. This is due to the fact that the completion time related constraints (i.e., constraints

(3.3b)-(3.3f)) are in the second stage. The standard L-shaped algorithm [83] generates
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feasibility cuts to induce feasibility of first-stage solutions with respect to second-stage con-

straints. However, instead of generating feasibility cuts at each iteration of the L-shaped

algorithm (which may be very time consuming), we add the induced constraints introduced

in Proposition 1 to the master problem a priori to induce relatively complete recourse.

Proposition 1. A first-stage solution (x, y, z, t) is feasible for first- and second-stage prob-

lems if it satisfies (3.1b)-(3.1i), (3.4), and

uj ≥ ui + d− nd(1−
nR∑
r=1

zijr) ∀i, j 6= i, (3.5a)

uj ≥ ui + d ∀(i, j) :

nS∑
k=1

bijk = 1, (3.5b)

where ui’s are nonnegative auxiliary first-stage decision variables and d is a positive finite

scalar.

By enforcing the difference of completion times of the surgeries that are scheduled within

the same OR to be at least d, constraint set (3.5a) prevents infeasible schedules with respect

to the sequence within an OR. In a similar way, constraint set (3.5b) ensures the feasi-

bility of the constructed sequence with respect to surgeons across the ORs. As a result,

constraints (3.5) ensure that z yields acyclic surgery sequences. Therefore, any first-stage

feasible solution that also satisfies (3.5) is feasible for the second-stage problem under each

scenario. Note that, any positive finite scalar can be selected as d, and we choose d = 1 in

our computational study.

3.3.3 Structure of Scenario Subproblems

Letting k denote the index of the surgeon who performs surgery i, the second-stage recourse

problem can be solved in closed form as follows:

• If yir = 0, then Cir(ω) = 0.

• If yir = 1, then (i, r) pair falls into one of the following four categories and the corre-

sponding Cir(ω) takes a value accordingly:
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1. If i is the first surgery in OR r and i = ik, then

Cir(ω) = tk + prei(ω) + pi(ω) + posti(ω). (3.6)

2. If i is the first surgery in OR r but i 6= ik, then

Cir(ω) = max

 tk + prei(ω) + pi(ω) + posti(ω)∑n
j=1[bjik[

∑nR

r=1 Cjr(ω)− postj(ω)]] + sS + pi(ω) + posti(ω).

(3.7)

3. If i is not the first surgery in OR r but i = ik, then

Cir(ω) = max

 maxj{zjirCjr(ω)}+ sR + prei(ω) + pi(ω) + posti(ω)

tk + prei(ω) + pi(ω) + posti(ω).
(3.8)

4. If i is not the first surgery in OR r and i 6= ik, then

Cir(ω) = max


tk + prei(ω) + pi(ω) + posti(ω)

maxj{zjirCjr(ω)}+ sR + prei(ω) + pi(ω) + posti(ω)∑n
j=1[bjik[

∑nR

r=1 Cjr(ω)− postj(ω)]] + sS + pi(ω) + posti(ω).

(3.9)

Given the values of the Cir(ω) variables, the remaining decision variable values can be

expressed as:

Iij(ω) =

nR∑
r=1

Cjr(ω)−
nR∑
r=1

Cir(ω) + posti(ω)− sS − pj(ω)− postj(ω)

∀(i, j) :

nS∑
k=1

bijk = 1, (3.10)

Ik(ω) =

nR∑
r=1

Cikr(ω)− tk − preik(ω)− pik(ω)− postik(ω) ∀k, (3.11)

Or(ω) = max{0,max
i
{Cir(ω)} − L} ∀r. (3.12)

Using the above equations we obtain the optimal solution to the primal subproblem. We

use the optimal primal solution as the initial solution and solve the subproblem to get the

dual solution so as to generate the optimality cuts.
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3.3.4 Extended Master Problem Formulation

The following is an equivalent formulation of our problem:

min

nR∑
r=1

cfxr + θ (3.13)

s.t.

θ ≥ Q(x, y, z, t), (3.14)

(3.1b)-(3.1i),(3.4),(3.5).

The standard L-shaped algorithm starts by solving the initial restricted master problem

(RMP), which is:

min

nR∑
r=1

cfxr + θ (3.13)

s.t.

(3.1b)-(3.1i),(3.4),(3.5).

A stopping criterion is used to determine if the RMP results in the minimum expected

second-stage cost. If it does not, duality is employed to generate a corresponding optimality

cut, which includes the first-stage variables and the linking variable θ. Iterations continue

until the optimal solution is reached.

Our initial computational experiments revealed that the L-shaped algorithm with the

enhancements described in Sections 3.3.1-3.3.3 fails to solve even small problem instances

within a reasonable amount of time. The main reason is that the θ variable carries only

limited information between first and second stages [50, 67, 75]. Because of this, the solutions

generated by solving the RMP usually have high expected second-stage cost, and hence the

lower and upper bounds converge to the optimal solution very slowly. In order to deal

with this issue, we propose a novel way to strengthen the formulation by including a lower

bounding inequality for θ in the first stage, based on the following proposition.
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Proposition 2. Let (x̂, ŷ, ẑ, t̂) and Q(x̂, ŷ, ẑ, t̂, ξ̄(ω)) be a feasible first-stage solution of our

problem and the corresponding second-stage cost under the mean value scenario, respectively.

Then,

θ ≥ Q(x̂, ŷ, ẑ, t̂, ξ̄(ω)). (3.15)

Proof. For any given feasible first-stage solution, the second-stage subproblems are feasible

and bounded. Then, we have

Q(x̂, ŷ, ẑ, t̂) ≥ Q(x̂, ŷ, ẑ, t̂, ξ̄(ω)), (3.16)

by Jensen’s inequality [48]. Moreover, we have

θ ≥ Q(x̂, ŷ, ẑ, t̂) (3.17)

since θ ≥ Q(x, y, z, t) is a part of our formulation (equation (3.14)). (3.15) directly follows

from (3.16) and (3.17).

We observe that these cuts are broadly applicable to two-stage stochastic programs with

recourse. We use valid inequalities based on Proposition 2 in order to speed up the con-

vergence of the L-shaped algorithm. The following are additional parameters and auxiliary

decision variables we use, and the lower bounding inequality we propose.

Additional Parameters

prei: expected pre-incision duration of surgery i

pi: expected incision duration of surgery i

posti: expected post-incision duration of surgery i

Auxiliary Decision Variables

Cir: completion time for surgery i in OR r under the mean value scenario

Iij: surgeon idle time between surgeries i and j under the mean value scenario (defined

for (i, j) :
∑nS

k=1 bijk = 1)

Ik: idle time of surgeon k before his/her first surgery under the mean value scenario

Or: overtime in OR r, with respect to session length L under the mean value scenario
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Proposition 3. Let variables Cir, Iij, Ik, Or be defined by the following inequalities:

Cir ≤Myir ∀i, r, (3.18a)

Cjr ≥ Cir + sR + prej + pj + postj −M(1− zijr) ∀i, j 6= i, r, (3.18b)

nR∑
r=1

Cikr = tk + Ik + preik + pik + postik ∀k, (3.18c)

nR∑
r=1

Cir ≥ tk + prei + pi + posti ∀(i, k) :
n∑
j=1

bjik = 1, (3.18d)

nR∑
r=1

Cjr =

nR∑
r=1

Cir − posti + sS + pj + postj + Iij ∀(i, j) :

nS∑
k=1

bijk = 1, (3.18e)

Or ≥ Cir − L ∀i, r, (3.18f)

Cir, Ik, Iij, Or ≥ 0 ∀i, j, r, k. (3.18g)

Then,

θ ≥
nR∑
r=1

coOr +
∑

(i,j):
∑nS

k=1 bijk=1

cSIij +

nS∑
k=1

cSIk (3.19)

is a valid inequality.

Proof. This result directly follows from the validity of Proposition 2 for every feasible first-

stage solution, and the definition of mean value scenario, additional parameters and auxiliary

variables.

Then, the initial RMP used in the L-shaped algorithm becomes the following extended

RMP (ERMP):

min

nR∑
r=1

cfxr + θ (3.13)

s.t.

(3.1b)-(3.1i),(3.4),(3.18),(3.19).

Note that constraints (3.18) ensure the second-stage feasibility of the first-stage solutions

by eliminating the schedules that include cyclic surgery sequences, so we do not need to

include the induced constraints (3.5) in the ERMP.
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Valid inequalities in stochastic programming is explored by earlier work, including [36,

37, 53, 68]. Sanchez and Wood [68] use Jensen’s based inequalities within the simulation-

based approach they propose for solving two-stage SMIPs. However, their method assumes

binary first stage and may require full enumeration of every feasible first-stage solution.

3.4 COMPUTATIONAL RESULTS

In this section, we first give some information on the data set we use to generate realistic

problem instances for computational experiments. Next, we compare the performance of the

algorithms we propose and discuss the value of capturing uncertainty. Finally, we estimate

the value of OR pooling and illustrate the impact of parallel surgery processing.

3.4.1 Generation of Problem Instances

We use data from the Mayo Clinic Division of General Thoracic Surgery at St. Marys

Hospital in Rochester, MN. The department consists of six surgeons and their surgical res-

idents along with support staff (including nurses), and performs more than 2000 thoracic

procedures per year. The surgeons provide comprehensive diagnosis and surgical care to

adult patients with diseases of the lungs, trachea, esophagus, diaphragm, chest wall and

mediastinum. Thoracic surgery often consists of several separate sub-procedures. Surgeons

within the thoracic area perform surgeries every other day, usually with at least two staff

surgeons working each day. Since Mayo Clinic is an academic teaching institution, each

staff surgeon may have multiple fellows assisting in the procedures with the attending staff

surgeon performing the critical part of each surgery.

Our parameter estimations are based on the historical data provided by the thoracic

surgery department of Mayo Clinic and our discussions with an anesthesiologist who is

working as an administrative director in the thoracic surgery department. The daily fixed

cost of opening an OR, cf , is estimated to be $4437. The session length, L, is 9 hours/day

for an OR. The overtime cost, co, is estimated to be $12.37/minute, which is 50% higher
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than the regular OR time cost. As we could not directly estimate the cost of the surgeon idle

time exactly, based on our discussion with the administrative director, we use two different

levels of idle time cost to evaluate its effect. In the first case, we assume that scheduling

50 minutes of surgeon idle time is equivalent to opening another OR and incurring its fixed

cost. For this case, surgeon idle time is $88.74/minute. In the second case, we assume that

250 minutes of idle time is equivalent to opening an OR, and use $17.748/minute as the

surgeon idling cost. We refer to these as high and low idle time costs, respectively.

The setup activities between two consecutive surgeries were reported to be completed

within 30 minutes, which corresponds to OR turnover time in our formulation. As it is

reported to be very short, we assume that surgeon turnover time is 0 in our computational

study. Our problem instances are based on 322 actual surgical days realized in the Division

of General Thoracic Surgery at St. Marys Hospital. For each day, the following information

is retrieved from the realized schedule and used as input:

• The number of surgeries, surgeons and available ORs,

• The number and type of sub-procedures in each surgery,

• The ordered surgery listing of each surgeon.

For each surgical day, i.e., problem instance, we generated 500 different scenarios by

sampling pre-incision, incision and post-incision durations for each surgery based on the

number and type of the sub-procedures included.

We estimated the probability distributions of the surgery durations from historical data.

Thoracic surgeries involve several distinct sub-procedures performed in sequence. Unfortu-

nately, times for each sub-procedure are not collected; only the start and stop times for the

pre-incision, incision and post-incision were available. However, we are able to identify which

sub-procedures were performed during each surgery. We observe that the surgeries contain

at most 5 combinations of the 21 most common sub-procedures. The duration of a sub-

procedure is highly dependent on the complexity of the surgery, which is closely related to

the number of sub-procedures included. For example, if one surgery contains sub-procedures

1, 5, and 6, and another surgery contains 1, 10, and 12, the time to carry out sub-procedure 1

should be similar as they both include three sub-procedures. In order to determine this rela-
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tionship, we used a multiple regression model implementing a boot-strap method to estimate

the probability distribution of the individual sub-procedure durations.

The incision duration includes the critical portion of surgery, which is completed by the

attending surgeon, as well as the non-critical portion of surgery. We used a discrete event

simulation model [46] to estimate the implied duration of the critical portion of surgery. The

resources in our simulation model include ORs and surgeons, and the entities in the model

are the patients. Similar to our stochastic programming model, the focus of the simulation

model is also on the pre-incision, incision, and post-incision aspects of the surgery.

We compared the results for various assumptions about the percentage of incision du-

ration that comprises the critical portion of surgery. For our comparison, we considered

the amount of overtime used to complete the surgeries. If the overtime levels were close

to the actual observations, we assumed that the estimates were reasonable. Based on this

analysis, approximately 25% of the incision duration is estimated to be critical. Therefore,

we decreased the incision duration to 25% of its initial value to estimate the duration of

the critical portion of the surgery. We reallocated remaining time to the pre-incision and

post-incision durations evenly.

The problem size for each surgical day, i.e., problem instance, depends on the number of

surgeries, surgeons and available ORs. We classify the problem instances into 7 sets based on

the number of binary variables, which we denote as nBin. We present the number of problem

instances, average and maximum number of surgeries (n), surgeons (nS), available ORs

(nR) and binary variables (nBin) for each set in Table 3.1. More than 90% of the problem

instances are included in the first four sets. The remaining 10% are considered as large

instances. The largest instance, which is an instance in Set 7, includes 612 binary variables,

and it corresponds to a surgical day that involves 11 surgeries, 3 surgeons and 6 ORs.

3.4.2 Computational Performance of the Proposed Algorithms

We analyze the performance of the standard L-shaped algorithm (Figure 3.1) with differ-

ent master problem formulations: RMP and ERMP. The main drawback of the standard

L-shaped algorithm is that it solves the master problem, which is a mixed-integer program
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Table 3.1: Size-based classification of problem instances for 322 surgical days.

Set Number of Average Maximum

No Instances n nS nR nBin n nS nR nBin

1 177 3.95 1.76 2.64 41.16 7 3 4 99

2 67 6.79 2.49 3.93 149.09 9 3 5 200

3 46 8.04 2.43 4.39 234.74 9 3 6 280

4 17 9.29 2.59 4.88 338.88 11 4 6 390

5 6 10.17 2.83 5.17 436.83 11 3 6 485

6 7 11.00 2.57 5.71 550.57 12 3 7 600

7 2 11.00 3.00 6.00 609.00 11 3 6 612

(MIP), to optimality at each iteration. This requires significant computational effort that

may not be productive at early iterations when few optimality cuts have been added to the

master problem. In the second approach, we implement the L-shaped algorithm within a

branch-and-cut framework (Figure 3.2), adding optimality cuts at each integer feasible node.

This approach solves the master problem only once, by adding the optimality cuts during

branch and bound. We test our branch-and-cut approach with both of the master problem

formulations, RMP and ERMP.

We coded our algorithms in Microsoft Visual Studio .NET 2003 using CPLEX 11 callable

library. We conducted our experiments on Intel Core2 Duo PC with processors running at

3.17 GHz and 2 GB memory under Windows XP. To compare the computational perfor-

mances of the proposed methods, we randomly choose 100 instances, i.e., surgical days, from

the first three sets. We report the average and maximum solution times (in CPU seconds)

and the number of iterations in Table 3.2. Set 2 and Set 3 include problem instances that

could not be solved in 3 hours by the algorithms with RMP formulation (these instances

were solved within a reasonable amount of time using the ERMP formulation). For these

unsolved instances, we consider the solution time as 3 hours, i.e., the computational time

limit, when calculating the average solution time.
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Solve the master problem 

to optimality.

Let (x’, y’, z’, t’) be the 

optimal solution.

Given (x’, y’, z’, t’), solve the 

second-stage problem under 

each scenario and generate the 

corresponding optimality cut. 

Is the optimality cut 

violated?
NO

Stop. 

(x’, y’, z’, t’) is the 

optimal solution.

Add the optimality cut to 

the master problem.
YES

Generate the two-stage SMIP 

defined by (3.1)-(3.3).

Add symmetry-breaking 

constraints (3.4).

Initialize the master problem 

as (3.13), (3.1b)-(3.1i), (3.4).

If RMP is to be used, add induced constraints (3.5) to the 

master problem to ensure second-stage feasibility.

Else if ERMP is to be used, add the valid inequalities 

(3.18)-(3.19) to the master problem.

Figure 3.1: Flow chart for our solution method that uses the L-shaped algorithm.
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Solve the master problem until an 

integer feasible solution (x’, y’, z’, t’) 
is found. 

Let (x”, y”, z”, t”) denote the best 

solution obtained so far. Initialize 

(x”, y”, z”, t”) as (x’, y’, z’, t’).

Is the optimality cut 

violated?

NO

YES

Update (x”, y”, z”, t”) as (x’, y’, z’, t’) if (x’, y’, z’, t’) results in a 

better objective function value.

Fathom the current node.

Add the optimality cut to 

the master problem.

Resume solving the master problem until 

another integer feasible solution  is found 

or until no unexplored node remains.

Is another 

integer-feasible solution,

i.e., (x’, y’, z’, t’),
found?

Stop. 

(x”, y”, z”, t”) is the 

optimal solution.

NO

YES

Given (x’, y’, z’, t’), solve the 

second-stage problem under each 

scenario and generate the 

corresponding optimality cut. 

Generate the two-stage SMIP 

defined by (3.1)-(3.3).

Add symmetry-breaking 

constraints (3.4).

Initialize the master problem 

as (3.13), (3.1b)-(3.1i), (3.4).

If RMP is to be used, add induced constraints (3.5) to 

the master problem to ensure second-stage feasibility.

Else if ERMP is to be used, add the valid inequalities 

(3.18)-(3.19) to the master problem.

Figure 3.2: Flow chart for our solution method that uses the L-shaped based branch-and-cut

algorithm.
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As can be observed from Table 3.2, the standard L-shaped algorithm with ERMP per-

forms best. Regardless of the solution algorithm used, ERMP significantly outperforms RMP.

Therefore, we conclude that adding valid inequalities (3.18)-(3.19) to the master problem

improves the formulation considerably. Another conclusion from Table 3.2 is that the idle

time cost level does not have an impact on the relative performance of the algorithms.

In Table 3.3, we report the solution times and number of iterations for 20 of the randomly

selected 100 instances under the high idle time cost setting. When we look at the solution

times of these problem instances, we observe that there are a couple of instances (2c and 3b)

for which the L-shaped based branch-and-cut algorithm with ERMP outperforms all other al-

gorithms, though on the average the standard L-shaped algorithm with ERMP performs best.

We conclude that the standard L-shaped algorithm with the ERMP formulation is su-

perior, and hence we employ it to solve the remaining instances of our problem. However,

for larger instances that cannot be solved optimally within the 3-hour time limit, we also

generate a solution by using the L-shaped based branch-and-cut algorithm with the ERMP

formulation by imposing the same time limit. We use the best solution, i.e., the solution

with the lower objective function value, generated by these two methods.

We solve the mean value problem and the stochastic problem for each surgical day under

low and high surgeon idling cost levels, and report the average and maximum solution times

in Table 3.4. For some of the larger instances in Sets 5, 6 and 7, although we are able to solve

the mean value problems within 3 hours, we are not able to solve the stochastic problems.

The number of unsolved instances and the percentage optimality gap between the upper

bound, i.e., the value of the best solution obtained within 3 hours, and the lower bound,

i.e., the maximum of the bounds obtained by the standard L-shaped algorithm with ERMP

and the L-shaped based branch-and-cut algorithm with ERMP, are reported in Table 3.5.

Of particular interest is the average percentage gap, which is below 3% and 5% for low and

idle time costs, respectively.
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Table 3.3: Computational performance of the proposed algorithms for 20 instances.

In
st

an
ce

N
o. L-Shaped Algorithm

L-Shaped Based

Branch-and-Cut Algorithm

RMP ERMP RMP ERMP

Solution Time Number of Solution Time Number of Solution Time Solution Time

(CPU Seconds) Iterations (CPU Seconds) Iterations (CPU Seconds) (CPU Seconds)

1a 2.16 27 0.17 2 2.97 0.61

1b 7.83 82 1.70 15 20.08 94.31

1c 43.83 275 4.17 21 61.17 11.00

1d 11.47 71 0.39 2 13.83 2.75

1e 15.41 110 8.56 53 41.89 15.74

1f 1.41 32 0.75 17 3.17 1.31

1g 0.83 20 0.39 9 2.92 1.55

1h 0.23 11 0.31 13 0.69 1.11

1i 33.75 227 11.59 77 53.19 22.03

1j 0.97 35 0.47 13 1.50 1.36

2a 44.55 167 3.63 13 90.02 13.97

2b 167.90 441 21.50 57 178.49 41.41

2c >10800.00 3373 90.34 32 2112.92 45.00

2d 322.34 349 13.17 14 550.86 68.44

2e 506.20 754 13.16 21 350.47 41.08

3a 3652.47 1577 32.72 19 9843.77 185.44

3b >10800.00 2978 839.92 80 >10800.00 716.06

3c 2491.17 1040 246.03 133 2018.11 328.69

3d 1930.78 1037 35.22 22 5440.00 322.14

3e >10800.00 3428 97.98 13 >10800.00 235.16
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Table 3.4: Solution times (in CPU seconds) of mean value and stochastic problems.

S
et

N
o. Low Idle Time Cost High Idle Time Cost

Mean Value Problem Stochastic Problem Mean Value Problem Stochastic Problem

Average Maximum Average Maximum Average Maximum Average Maximum

1 0.02 0.11 1.11 15.03 0.01 0.11 1.35 16.53

2 0.23 1.63 26.30 200.10 0.13 0.72 33.94 311.89

3 1.50 12.99 238.30 2517.33 0.59 3.80 212.23 1981.09

4 11.31 66.58 1023.36 5097.61 2.84 14.86 1540.80 8034.84

5 46.02 128.42 2160.37 2969.52 11.80 35.50 6078.25 >10800.00

6 196.13 687.18 5241.69 >10800.00 34.55 141.02 4866.16 >10800.00

7 126.78 151.83 9447.07 >10800.00 6.27 8.13 9992.85 >10800.00

Table 3.5: Percentage gap values for the unsolved instances.

S
et

N
o.

Low Idle Time Cost High Idle Time Cost

Number of Percentage Gap Between Number of Percentage Gap Between

Unsolved Lower and Upper Bounds Unsolved Lower and Upper Bounds

Instances Average Maximum Instances Average Maximum

5 - - - 2 1.36% 2.17%

6 1 2.41% 2.41% 2 3.75% 5.88%

7 1 1.85% 1.85% 1 4.03% 4.03%
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Table 3.6: Percentage value of the stochastic solution for each problem set.

Set Low Idle Time Cost High Idle Time Cost

No. Average Maximum Average Maximum

1 0.95% 9.34% 4.20% 28.41%

2 0.52% 3.15% 4.10% 13.69%

3 0.87% 3.54% 4.24% 12.30%

4 0.53% 1.71% 3.43% 13.30%

5 0.93% 3.35% 4.01% 7.52%

6 0.54% 2.40% 2.46% 5.35%

7 0.54% 0.87% 7.19% 8.00%

3.4.3 Value of the Stochastic Solution

In order to assess the value of capturing uncertainty in surgery durations, we estimate the

value of the stochastic solution (VSS), the difference between the optimal objective function

value of the stochastic problem and the expected objective function value of the optimal solu-

tion of the mean value problem [10]. As for the instances whose stochastic problem formula-

tions cannot be solved within the allowed time limit, we consider the value of the best solution

obtained in our comparisons. We report the average and maximum improvement brought by

solving the stochastic problem in Table 3.6. The average improvement when the idle time cost

is high (low) is more than 4% (less than 1%) for most (all) of the data sets. Maximum VSS

values in Table 3.6 imply that there are problem instances where the improvement is more

than 9% and 28% when the idle time is low and high, respectively. We conclude that captur-

ing the uncertainty is particularly important when the cost of idle time is high. Observing

higher VSS values for high idle time costs is intuitive since having higher values of second-

stage cost coefficients implies that the impact of a realized scenario would be more significant.

The total expected operating cost, which is the objective function in our formulation, is

composed of three components, each of which is related to a different performance criterion.

By solving the stochastic problem, rather than the mean value problem, we are able to gen-
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erate schedules with lower total expected operating costs. Since we are considering a multi-

criteria problem, a decrease in the objective function value does not necessarily imply that the

schedule gets better in terms of all performance measures considered. Instead, it means that

we are able to obtain a non-dominated solution with lower objective function value. To see

the impact of capturing uncertainty on the performance measures of our concern, we summa-

rize the average number of open ORs, overtime per OR and idle time per surgeon of the sched-

ules generated by solving the mean value and stochastic problems in Table 3.7. For high idle

time costs, the solutions to stochastic problems have lower values of expected idle time over

all of the sets, and higher values of overtime and number of open ORs for a majority of the

sets. Therefore, for high idle time costs, we conclude that the total cost reduction achieved

by solving the stochastic problem is mostly attributable to the decrease in the average idle

time values. For low idle time costs, we are able to observe the multi-criteria structure of the

problem more explicitly. The improvements in the number of open ORs and overtime values

play a significant role in the total cost reduction for Sets 1-4, whereas the decrease in idle

time still remains to be the only factor that lowers the objective function value for Sets 5-7.

3.4.4 Value of OR Pooling

OR pooling, which is allowed in our model, occurs when the surgeries of different surgeons

are allowed to be scheduled in the same OR. In this section, we quantify the benefit of OR

pooling by comparing two implementation settings:

• Setting 1: Our original model, in which ORs are pooled as a shared resource.

• Setting 2: A restricted setting where OR pooling is not allowed.

In Setting 2, we consider a modified version of our model which prevents the sharing of

ORs among surgeons by using the following first-stage constraints:

yir + yjr ≤ 1 ∀r, (i, j > i) :

nS∑
k=1

(βijk + βjik) = 0, (3.20)
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Table 3.7: Optimal solution statistics for the stochastic and mean value problems for each

problem set.

S
et

N
o.

Low Idle Time Cost High Idle Time Cost

Stochastic Mean Value Stochastic Mean Value

Problem Problem Problem Problem

1 2.07 2.06 2.34 2.34

Average
2 3.15 3.09 3.76 3.72

Number of
3 3.80 3.80 4.04 4.04

Open
4 4.18 4.24 4.59 4.47

ORs
5 4.50 4.50 4.83 4.83

6 5.14 5.14 5.29 5.29

7 5.00 5.00 6.00 5.00

1 23.00 24.92 20.34 18.54

Average
2 49.39 54.08 42.89 40.21

Overtime
3 60.48 64.38 65.39 56.92

per OR
4 53.85 54.67 53.47 53.03

(in minutes)
5 107.72 105.49 138.25 128.04

6 74.74 71.35 89.81 81.89

7 79.62 78.95 49.92 89.21

1 85.31 89.33 57.29 60.31

Average
2 59.07 63.25 27.75 33.53

Idle Time
3 40.61 40.27 21.53 28.05

per Surgeon
4 47.66 42.35 22.61 28.80

(in minutes)
5 61.23 66.55 26.45 33.32

6 44.31 52.03 27.51 33.25

7 27.44 30.89 3.97 22.83
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Table 3.8: Percentage improvement brought by OR pooling.

Set Low Idle Time Cost High Idle Time Cost

No. Average Maximum Average Maximum

1 22.22% 53.03% 34.19% 82.21%

2 29.56% 49.71% 51.90% 76.31%

3 29.12% 46.53% 58.65% 77.63%

4 28.52% 46.96% 55.92% 74.78%

5 27.85% 35.61% 55.93% 64.64%

6 21.78% 34.41% 50.04% 68.22%

7 22.59% 27.27% 54.85% 55.47%

where βijk, which can be directly obtained from bijk’s, is a binary parameter denoting whether

surgery i precedes surgery j in surgeon k’s listing. βijk = 1 if there exists a sequence of surg-

eries of surgeon k that begins with surgery i and ends with surgery j, and every surgery

in the sequence immediately precedes the next one according to surgeon k’s listing. Then,

constraint (3.20) ensures that surgeries i and j cannot be scheduled in the same OR if they

are not operated by the same surgeon. This implies that the corresponding surgeons cannot

share the same OR. Note that, when OR pooling is not allowed, the OR scheduling problem

has a feasible solution only if nR ≥ nS. This is satisfied by all of our instances.

By comparing the optimal objective function values obtained by solving the problem

under these two settings, we evaluate the percentage reduction in the expected total cost

due to OR pooling. We summarize the percentage improvements brought by OR pooling

in Table 3.8. In Table 3.9, we compare the average number of open ORs, overtime and idle

time values of the schedules generated by Setting 1 and Setting 2.

We observe from Table 3.8 that the average benefit gained from OR pooling is more than

21% and 34% for low and high idle time costs, respectively. The results provided in Table

3.9 reveal that the substantial cost reduction achieved by OR pooling is mainly attributable
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Table 3.9: Optimal solution statistics for Setting 1 and Setting 2 for each problem set.

Set Low Idle Time Cost High Idle Time Cost

No. Setting 1 Setting 2 Setting 1 Setting 2

1 2.07 2.45 2.34 2.63

Average
2 3.15 3.70 3.76 3.93

Number of
3 3.80 4.20 4.04 4.39

Open
4 4.18 4.76 4.59 4.88

ORs
5 4.50 5.00 4.83 5.17

6 5.14 5.29 5.29 5.71

7 5.00 6.00 6.00 6.00

1 23.00 22.01 20.34 20.83

Average
2 49.39 56.26 42.89 55.79

Overtime
3 60.48 53.88 65.39 55.10

per OR
4 53.85 53.05 53.47 54.43

(in minutes)
5 107.72 109.37 138.25 110.76

6 74.74 77.84 89.81 91.98

7 79.62 26.13 49.92 26.13

1 85.31 137.28 57.29 114.67

Average
2 59.07 172.63 27.75 154.03

Idle Time
3 40.61 208.47 21.53 193.85

per Surgeon
4 47.66 199.43 22.61 191.97

(in minutes)
5 61.23 239.11 26.45 225.39

6 44.31 210.99 27.51 176.04

7 27.44 153.42 3.97 153.42
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to the decrease in the average number of open ORs. The decrease in the required number

of ORs might result in significant savings since the initial investment needed to build/open

a new OR is estimated between $700,000 and $9,000,000 [34, 35, 92, 94].

3.4.5 Impact of Parallel Surgery Processing

The impact of parallel surgery processing is closely related with the duration of the par-

allelizable portion of the surgery (i.e., pre-incision and post-incision durations) as well as

the length of the OR turnover time. As the parallelizable portion and OR turnover time

increase, the potential benefits of parallel surgery processing becomes higher, hence opening

more ORs becomes favorable. In order to demonstrate this, we consider a surgical day that

includes 6 surgeries, 1 surgeon and 6 available ORs. We consider different levels of OR

turnover time, in a range changing from 0 to 2 times of the original turnover time (which

is 30 minutes). As for the parallelizable portion of the surgery, we consider a range from 0

to 1 times of the original duration. The original parallelizable portion of the surgeries are,

on average, more than 80% of the total surgery duration in the considered example. We

generate optimal schedules for the selected levels of OR turnover time and the parallelizable

portion of surgeries for both low and high idle time costs. Figure 3.3 illustrates the number

of open ORs in the optimal schedule. As the parallelizable portion or the OR turnover time

increases, the optimal number of open ORs also increases. Moreover, for a given pair of

OR turnover time level and parallelizable portion level, the optimal number of open ORs is

higher when the surgeon idling cost is higher. This shows that the impact of parallel surgery

processing becomes more significant as the surgeon idle time cost increases.

3.5 CONCLUSIONS

We consider the problem of scheduling surgeries with uncertain durations in a multi-OR en-

vironment. The decisions in our model are the number of ORs to open, the allocation of surg-

eries to ORs, the sequence of surgeries within each OR, and the times at which surgeons start
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their first surgery of the day. Our model minimizes the sum of the fixed cost of opening ORs,

the overtime cost and the surgeon idling cost. We formulate the problem as a two-stage SMIP,

where OR opening, surgery allocation and sequencing, and start time decisions are made in

the first stage (prior to the day of surgeries), and the OR overtime and surgeon idle time val-

ues are realized in the second stage, after the actual surgery durations become known. We ex-

plicitly consider the different phases of the surgeries (pre-incision, incision and post-incision),

which allows us to evaluate the impact of parallelization of a particular surgeon’s surgeries.

We analyze the properties of our model, and present a set of induced feasibility constraints

and a set of new valid inequalities based on Jensen’s inequality so as to increase its solvabil-

ity. Our results show that adding the proposed valid inequalities decrease the solution times

of the standard L-shaped and L-shaped based branch-and-cut algorithms significantly. Our

results also indicate that the L-shaped algorithm tends to perform better than the L-shaped

based branch-and-cut algorithm. We solve both the stochastic and mean value problems, and

estimate the value of capturing uncertainty in surgery durations by comparing the obtained

solution value of the schedules. Our results reveal that the value of capturing uncertainty is

particularly significant for high idle time costs (around 4% on average and as high as 28%).

We draw some important managerial insights from our numerical results. Examples,

based on data collected from Mayo Clinic in Rochester, MN, illustrate that the potential

benefits of parallel surgery processing increases, hence opening more ORs becomes favorable,

as the OR turnover time and/or parallelizable portion of surgeries increase. We solve our

problem under different resource usage schemes and we observe from our computational re-

sults that OR pooling leads to total cost reductions between 21.78% and 58.65% on average.

Thus, OR pooling can lead to substantial cost reduction in some cases.

Our comparison of different resource usage schemes is based on the total expected op-

erating cost. As a result, our analysis is dependent on the specific cost coefficients that

weight the multiple criteria in the objective function. We leave an explicit treatment of

this multi-criteria optimization problem for future work. However, we note that our model,

methodological results, and general insights are relevant to most providers of surgical care.
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4.0 OPERATING ROOM RESCHEDULING UNDER UNCERTAINTY

4.1 MOTIVATION AND CONTRIBUTIONS

A surgical suite is a dynamic environment, and making day of surgery adjustments on OR

schedules is inevitable. Revising OR schedules during the surgical day in order to mitigate

the impact of unexpected events is very common in practice [3, 26, 86]. Therefore, a realistic

model of the surgery delivery process should include both anticipative (proactive) and adap-

tive (reactive) decisions in a stochastic framework. The anticipative decisions can be used

to design the baseline schedule for the surgical day, whereas the adaptive decisions can be

used to determine the rescheduling actions to be taken based on revealed information (i.e.,

resolved uncertainty).

Despite the importance of the adaptive decisions on the day of surgery, there are only

few studies that consider rescheduling activities. Dexter [21] proposes a statistical method to

predict whether moving the last surgery of the day to another OR would reduce the overtime

labor costs. Wachtel and Dexter [86] present several interventions including rescheduling to

reduce tardiness in surgical suites. Stuart et al. [80] study a single-OR rescheduling prob-

lem where the objective is minimizing the cancelation of elective surgeries, maximizing the

throughput of emergent surgeries, and minimizing deviation from the original schedule. They

treat these objectives by combining them into a single objective function, and they propose

an approach where a deterministic model is solved at the completion of each surgery and the

schedule is revised accordingly. The focus of these earlier studies is only on the adaptive de-

cisions. However, the existence of the adaptive decisions may influence how the anticipative

decisions are made. Therefore, integrating both types of decisions is essential to developing

more accurate models of the process.
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In this chapter, we explore OR scheduling problem under uncertainty where surgeries are

allowed to be rescheduled at a prespecified time point during the day. Permitting reschedul-

ing greatly complicates the problem. Therefore, our approaches do not consider surgeon

related constraints and performance measures. Instead, we choose to focus only on ORs

since OR-related decisions are the most important decisions from a financial perspective.

Thus, the problem investigated in this chapter is an extension of the stochastic surgery al-

location problem considered by Denton et al. [20] to the case where the allocation decisions

are allowed to be revised during the day.

We formulate the problem as a three-stage SMIP, where rescheduling activities are mod-

eled as the recourse decisions in the second-stage. A special case of our model, where the

rescheduling decisions are made under perfect information, is a two-stage SMIP. We solve this

two-stage SMIP by using the integer L-shaped algorithm and a PH-based heuristic method,

and draw important conclusions from our numerical results.

The main contributions of our work presented in this chapter can be summarized as

follows:

• We model the stochastic multi-OR rescheduling problem, integrating anticipative and

adaptive decisions.

• We estimate the potential benefit of rescheduling, and the value of anticipative and adap-

tive decisions under different problem settings including outpatient and inpatient surgical

environments.

• We explore the impact of using different surgery sequencing rules on the value of reschedul-

ing.

The remainder of this chapter is organized as follows. In Sections 4.2 and 4.3, we de-

scribe our models. In Section 4.4, we present our solution methods. Finally, we discuss our

computational results and summarize our findings in Sections 4.5 and 4.6, respectively.
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4.2 PROBLEM DEFINITION AND MATHEMATICAL FORMULATION

Surgery allocation decisions can be revised upon the completion of each surgery in prac-

tice. We consider the simplest case where rescheduling decisions are made only once during

the day. Considering this setting, our model is composed of three stages (Figure 4.1). As

in the models introduced in [20] and Chapter 3 of this dissertation, the first stage takes

place before the surgical day starts, i.e., before the resolution of uncertainty in surgery du-

rations. The number of ORs to open and surgery-to-OR assignments are determined in the

first stage, which is the same set of first-stage decisions as in the stochastic OR allocation

model presented in [20]. The second stage takes place at a rescheduling point, where some

of the surgeries are completed or partially completed depending on the resolved uncertainty

in surgery durations. Based on this additional information revealed in the second stage,

rescheduling decisions are made: allocation of the remaining surgeries to ORs is revised.

Uncertainty in the durations of the remaining surgeries is resolved, and OR overtime levels

become known in the third stage. The overall objective is to minimize the total fixed cost

of opening ORs and the expected overtime cost.

Although the actual rescheduling point can be at any time, we refer to the period be-

fore/after the rescheduling point as morning/afternoon. Reallocation of the remaining surg-

eries to the open ORs is the only set of rescheduling decisions, which are recourse decisions

made in the second-stage. Therefore, we use reallocation, rescheduling, and recourse inter-

changeably when referring to the second-stage decisions or the time point at which these

decisions are made.

The state of the system, i.e., which surgeries are completed or partially completed, at

the rescheduling point for a realized scenario depends on the sequencing decisions as well as

the allocation decisions. We assume that surgeries in each OR are performed in an order

based on a predetermined sequence.
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2 2( )ξ ωRandom vector             that 
includes the surgery durations 
for the morning period 
becomes known. 

3 3( )ξ ωRandom vector             that 
includes the surgery durations 
for the afternoon period 
becomes known. 

Scheduling decisions 
are made before the 
day starts: Number of 
ORs to open and 
allocation of 
surgeries to ORs are 
determined. 

Schedule is revised at 
rescheduling point TR: 
allocation of 
remaining surgeries 
to ORs is revised. 

Performance 
measures are 
observed. 

The next surgery in the schedule is 
immediately operated as long as the current 
time is earlier than the latest surgery start time 
allowed before the rescheduling point. As a 
result, a set of surgeries are completed or 
partially completed by the time of 
rescheduling. 

Remaining 
surgeries are 
completed. 

0 

1 

1 

2 

2 
 

2Ω 3Ω

2 2ω ∈Ω
Second-stage 
scenario 

3 3ω ∈Ω
Third-stage 
scenario 

Figure 4.1: Scenario tree for the OR rescheduling problem where the initial schedule is

revised at TR.
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We use the following notation in our formulation:

Indices

i, j: Surgery indices.

q, r: OR indices.

ω2, ω3: Scenario indices for second- and third-stage scenarios, respectively.

Configuration or Environment Related Parameters

L: Session length for each OR.

cf : Daily fixed cost of opening an OR.

co: Per minute overtime cost of an OR.

TR: Length of the portion of the surgical day before the rescheduling point. We assume

that the surgical day starts at time 0, and TR denotes the time of rescheduling.

TL: Latest start time allowed for the surgeries operated in the morning such that TL ≤ TR.

Before TL, the next surgery in the sequence immediately starts after the completion

of the previous one in each OR. After TL, on the other hand, none of the remaining

surgeries start until the schedule is revised. TL is very close to the rescheduling point

TR, and reallocating the immediately succeeding surgeries might be more beneficial

instead of operating them in their current ORs. We assume that the probability of

having a surgery starting exactly at TL is negligibly small.

TE: Earliest start time allowed for the surgeries operated in the afternoon such that

TE ≥ TR. Rescheduling decisions are not made instantaneously. Even though we

consider the state of the system at TR to reschedule the surgeries, constructing a

revised schedule would take some time which we denote by TE − TR. Therefore, the

earliest time that the revised schedule can be implemented is TE (Figure 4.2).
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Figure 4.2: Important time points during a surgical day.

Problem Instance Related Parameters

n: Total number of surgeries to be scheduled.

nR: Total number of available ORs.

bij: A binary parameter which denotes that surgery i should be operated before

surgery j if they are allocated to the same OR. The value of this parameter is

calculated according to a predetermined sequencing rule.

pMi (ω2): Duration of surgery i under second-stage scenario ω2 if it starts in the morning.

pAi (ω3): Duration of surgery i under third-stage scenario ω3 if it starts in the afternoon.

We define ω2 ∈ Ω2 and ω3 ∈ Ω3 to be the indices of second- and third-stage scenarios,

respectively. Because the third stage is the last stage in our formulation, ω3 is also the index

of the complete scenario for the surgical day. Given n surgeries, we obtain random vec-

tors ξ2(ω2) = {pM1 (ω2), ..., pMn (ω2)} and ξ3(ω3) = {pA1 (ω3), ..., pAn (ω3)}. We denote the finite

support of these vectors by Ξ2 ∈ Rn
+ and Ξ3 ∈ Rn

+, respectively.
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Each third-stage scenario emanates from an ancestor second-stage scenario. Letting

ω2(ω3) denote the ancestor scenario of ω3, the duration of surgery i under scenario ω3 is:

• pMi (ω2(ω3)) if it starts before TL,

• pAi (ω3) if it starts after TE.

As implied by the definition, we assume that duration of a surgery becomes known (in

other words, uncertainty is resolved) as soon as it starts. Considering the different phases of

surgery would increase the accuracy of an OR scheduling model only when surgeons are also

taken into account among the scheduled resources. Therefore, instead of considering pre-

incision, incision, post-incision phases separately as in Chapter 3, we only consider the total

surgery duration (pMi and pAi ). Moreover, rather than explicitly modeling the OR turnover

time, we adjust the surgery durations to account for the setup and cleaning activities.

First-Stage Decision Variables

xr: Binary decision variable denoting whether OR r is opened or not.

yir: Binary decision variable denoting whether surgery i is allocated to OR r in

the initial schedule.

Second-Stage Decision Variables

Cir(ω2): Completion time for surgery i in OR r under second-stage scenario ω2 accord-

ing to the initial schedule.

yMir (ω2): Binary decision variable denoting whether surgery i is allocated to OR r in

the initial schedule, and its start time is before TL under second-stage scenario

ω2.

yAir(ω2): Binary decision variable denoting whether surgery i is allocated to OR r in

the revised schedule under second-stage scenario (ω2).

Third-Stage Decision Variables

Or(ω3): Overtime in OR r, with respect to session length L under scenario ω3.

Let x, y, C(ω2), yA(ω2), yM(ω2), O(ω3) denote the vector or matrix form of the decision

variables defined above.
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Using the above notation we formulate the model as follows:

min

nR∑
r=1

cfxr +Q1(x, y) (4.1a)

s.t.

yir ≤ xr ∀i, r, (4.1b)

nR∑
r=1

yir = 1 ∀i, (4.1c)

xr ≥ xr+1 ∀r < nR, (4.1d)

i∑
r=1

yir = 1 ∀i ≤ min{n, nR}, (4.1e)

min{i,nR}∑
q=r

yiq ≤
i−1∑

j=r−1

yj,r−1 ∀(i, r) : i ≥ r > 1, (4.1f)

xr, yir ∈ {0, 1} ∀i, r, (4.1g)

where

Q1(x, y) = Eξ2 [Q1(x, y, ξ2(ω2))] (4.2)

and

Q1(x, y, ξ2(ω2)) = minQ2(yM(ω2), yA(ω2)) (4.3a)

s.t.

Cir(ω2) ≤Myir ∀i, r, (4.3b)

Cir(ω2) ≥
n∑
j=1

bjip
M
j (ω2)yjr + pMi (ω2)yir −M(1− yir) ∀i, r, (4.3c)

Cir(ω2) ≤
n∑
j=1

bjip
M
j (ω2)yjr + pMi (ω2)yir ∀i, r, (4.3d)

TL −

[
nR∑
r=1

Cir(ω2)− pMi (ω2)

]
≤ TL

nR∑
r=1

yMir (ω2) ∀i, (4.3e)[
nR∑
r=1

Cir(ω2)− pMi (ω2)

]
− TL ≤M

[
1−

nR∑
r=1

yMir (ω2)

]
∀i, (4.3f)

yMir (ω2) ≤ yir ∀i, r, (4.3g)
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nR∑
r=1

yMir (ω2) +

nR∑
r=1

yAir(ω2) = 1 ∀i, (4.3h)

yAir(ω2) ≤ xr ∀i, r, (4.3i)

yMir (ω2), yAir(ω2) ∈ {0, 1} ∀i, r, (4.3j)

Cir(ω2) ≥ 0 ∀i, r, (4.3k)

where

Q2(yM(ω2), yA(ω2)) = Eξ3|ξ2
[
Q2(yM(ω2), yA(ω2), ξ3(ω3))

]
(4.4)

and

Q2(yM(ω2), yA(ω2), ξ3(ω3)) = min

nR∑
r=1

coOr(ω3) (4.5a)

s.t.

Or(ω3) ≥
n∑
i=1

pMi (ω2)yMir (ω2) +
n∑
i=1

pAi (ω3)yAir(ω2)− L ∀r, (4.5b)

Or(ω3) ≥ TE +
n∑
i=1

pAi (ω3)yAir(ω2)− L ∀r, (4.5c)

Or(ω3) ≥ 0 ∀r. (4.5d)

The objective function (4.1a) is the sum of the first-stage cost and the expected cost of

second and third stages over all scenarios. The fixed cost of opening ORs is incurred in the

first stage, and OR overtime costs are incurred in the third stage.

Constraints (4.1b) and (4.1c) ensure that a surgery can be assigned to an OR only if

it is opened and each surgery is assigned to exactly one OR, respectively. Since we con-

sider the case where the ORs are identical and therefore interchangeable, our problem has

complete symmetry with respect to ORs. Constraints (4.1d)-(4.1e) are symmetry-breaking

constraints introduced by Denton et al. [20]. Constraints (4.1g) define binary restrictions for

the first-stage decision variables.

The second-stage problem for a given x, y and ξ2(ω2) is formulated explicitly by (4.3).

The completion time of a surgery in an OR is 0 unless it is assigned to that OR, which is

enforced by constraint (4.3b). If surgery i is assigned to OR r (i.e., yir = 1), then Cir(ω2)
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should be equal to the total duration of surgery i and the preceding surgeries in OR r. This

is ensured by constraints (4.3c) and (4.3d). Constraints (4.3e), (4.3f) and (4.3g) ensure that

yMir (ω2) = 1 if and only if yir = 1 and the start time of surgery i under second-stage scenario

is before TL according to the initial schedule. The M parameter used in constraint sets

(4.3b), (4.3c), and (4.3f) is an upper bound on the surgery completion times (and hence

an upper bound on the surgery start times as well). If a surgery does not start before TL

under second-stage scenario ω2 (i.e.,
∑nR

r=1 y
M
ir (ω2) = 0), then the allocation of this surgery

to the open ORs is among the rescheduling decisions and this is imposed by constraint set

(4.3h). Constraints (4.3i) guarantee that allocation of a surgery to an OR is among the vi-

able rescheduling decisions only if the considered OR is open. Constraints (4.3j) and (4.3k)

define the binary and nonnegativity restrictions for the second-stage decision variables.

For a given set of rescheduling decision variables yM(ω2) and yA(ω2), the third-stage

model (4.5) calculates the minimum overtime under scenario ω3. We refer to the model

(4.1)-(4.5) as the three-stage OR rescheduling problem (3S-ORRP).

4.3 RESCHEDULING UNDER PERFECT INFORMATION

Due to the complexities involved in accurately capturing the uncertainty and solving the

problem in a three-stage setting, we consider a special case of 3S-ORRP, where each second-

stage scenario has one descendant scenario (i.e., third-stage scenario) and pAi (ω3) = pMi (ω2(ω3))

∀ω3. This leads to a two-stage setting where we assume that the surgery durations become

known once the day starts and the rescheduling decisions are made under perfect informa-

tion. In this setting, the allocation decisions are made before the day starts, and revised at

the rescheduling point for the remaining surgeries (Figure 4.3). Due to the assumption that

the uncertainty in surgery durations is completely resolved before the rescheduling point,

this special case represents a relaxation of the real problem and gives a lower bound on the

minimum total expected cost that can be attained by making rescheduling decisions before

the complete resolution of uncertainty. Therefore, the difference between the expected costs
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of the solutions of the two-stage scheduling models with and without rescheduling activities

provides an estimate of the upper bound on the value of rescheduling.

Figure 4.3: Rescheduling under perfect information.

The two-stage rescheduling model we describe in this section includes only one set of sce-

narios for the random parameters instead of the two different sets of scenarios (i.e., morning

and afternoon durations) introduced in 3S-ORRP. Combining the second and third stages of

3S-ORRP and letting pi(ω) denote the random duration of surgery i where ω is the scenario

index, we have the following two-stage SMIP as a special case of 3S-ORRP. We refer to this

model as the two-stage OR rescheduling problem (2S-ORRP). The formulation is as follows:

min

nR∑
r=1

cfxr +Q(x, y) (4.6a)

s.t.

yir ≤ xr ∀i, r, (4.6b)

nR∑
r=1

yir = 1 ∀i, (4.6c)

xr ≥ xr+1 ∀r < nR, (4.6d)

i∑
r=1

yir = 1 ∀i ≤ min{n, nR}, (4.6e)
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min{i,nR}∑
q=r

yiq ≤
i−1∑

j=r−1

yj,r−1 ∀(i, r) : i ≥ r > 1, (4.6f)

xr, yir ∈ {0, 1} ∀i, r, (4.6g)

where

Q(x, y) = Eξ [Q(x, y, ξ(ω))] (4.7)

and

Q(x, y, ξ(ω)) = min

nR∑
r=1

coOr(ω) (4.8a)

s.t.

Cir(ω) ≤Myir ∀i, r, (4.8b)

Cir(ω) ≥
n∑
j=1

bjipj(ω)yjr + pi(ω)yir −M(1− yir) ∀i, r, (4.8c)

Cir(ω) ≤
n∑
j=1

bjipj(ω)yjr + pi(ω)yir ∀i, r, (4.8d)

TL −

[
nR∑
r=1

Cir(ω)− pi(ω)

]
≤ TL

nR∑
r=1

yMir (ω) ∀i, (4.8e)[
nR∑
r=1

Cir(ω)− pi(ω)

]
− TL ≤M

[
1−

nR∑
r=1

yMir (ω)

]
∀i, (4.8f)

yMir (ω) ≤ yir ∀i, r, (4.8g)

nR∑
r=1

yMir (ω) +

nR∑
r=1

yAir(ω) = 1 ∀i, (4.8h)

yAir(ω) ≤ xr ∀i, r, (4.8i)

Or(ω) ≥
n∑
i=1

pi(ω)yMir (ω) +
n∑
i=1

pi(ω)yAir(ω)− L ∀r, (4.8j)

Or(ω) ≥ TE +
n∑
i=1

pi(ω)yAir(ω)− L ∀r, (4.8k)

yMir (ω), yAir(ω) ∈ {0, 1} ∀i, r, (4.8l)

Cir(ω), Or(ω) ≥ 0 ∀i, r. (4.8m)
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The stochastic OR allocation problem studied by Denton et al. [20] is a special case of

2S-ORRP where rescheduling is not permitted (i.e., yMir (ω) + yAir(ω) = yir ∀i, r, ω). As we

refer to this stochastic OR allocation problem at various places in the remainder of this

dissertation, we now present the corresponding formulation using our notation.

min

nR∑
r=1

cfxr +QD(x, y) (4.9a)

s.t.

yir ≤ xr ∀i, r, (4.9b)

nR∑
r=1

yir = 1 ∀i, (4.9c)

xr ≥ xr+1 ∀r < nR, (4.9d)

i∑
r=1

yir = 1 ∀i ≤ min{n, nR}, (4.9e)

min{i,nR}∑
q=r

yiq ≤
i−1∑

j=r−1

yj,r−1 ∀(i, r) : i ≥ r > 1, (4.9f)

xr, yir ∈ {0, 1} ∀i, r, (4.9g)

where

QD(x, y) = Eξ
[
QD(x, y, ξ(ω))

]
(4.10)

and

QD(x, y, ξ(ω)) = min

nR∑
r=1

coOr(ω) (4.11a)

s.t.

Or(ω) ≥
n∑
i=1

pi(ω)yir(ω)− L ∀r, (4.11b)

Or(ω) ≥ 0 ∀i, r. (4.11c)

We refer to the model (4.9)-(4.11) as the two-stage OR scheduling problem (2S-ORSP).
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Table 4.1: Important characteristics of the problems considered in this study.

Number of
Resources

Scheduling Rescheduling

Stages Decisions Decisions

2S-ORSP 2 ORs
Number of ORs to open

-
Surgery-to-OR allocation

2S-ORSP′ 2

Number of ORs to open

-
ORs Surgery-to-OR allocation

Surgeons Surgery sequencing

Start times for surgeons

3S-ORRP 3 ORs
Number of ORs to open

Surgery-to-OR reallocation
Surgery-to-OR allocation

2S-ORRP 2 ORs
Number of ORs to open

Surgery-to-OR reallocation
Surgery-to-OR allocation

If there were no uncertainty in surgery durations, scheduling decisions could be made

under perfect information, and the rescheduling activities would be unnecessary. There-

fore, solving the deterministic versions of 2S-ORSP and 2S-ORRP (i.e., under a particular

scenario) results in obtaining the same optimal objective function value, and the optimal

first-stage solution of 2S-ORSP is also an optimal first-stage solution of 2S-ORRP under a

deterministic setting.

Let 2S-ORSP′ denote the problem investigated in Chapter 3, which is an extension of

2S-ORSP to the case where surgeons are also treated as resources, and surgery sequencing

decisions and start times for surgeons are also among the decisions to be made. Table 4.1

summarizes the problem setting, resources, and decisions considered in 2S-ORSP, 2S-ORSP′,

3S-ORRP, and 2S-ORRP.

2S-ORRP is a special case of 3S-ORRP where rescheduling decisions are made under per-

fect information. 2S-ORSP is a special case of 2S-ORRP where rescheduling is not permitted,

and also a special case of 2S-ORSP′ where surgeons are not among the considered resources.
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4.4 SOLUTION METHODS

We use the integer L-shaped algorithm [52] and a PH-based heuristic [15, 66] to solve 2S-

ORRP, which is a two-stage SMIP with pure binary first-stage and mixed-integer second-

stage, and relatively complete recourse. We describe these solution methods in Sections 4.4.1

and 4.4.2.

4.4.1 The Integer L-Shaped Algorithm for 2S-ORRP

The integer L-shaped algorithm is a stage-wise decomposition method where a master prob-

lem is solved within a branch-and-cut framework, and optimality cuts are added at every in-

teger feasible node. For 2S-ORRP, the algorithm starts by solving the following initial RMP:

min

nR∑
r=1

cfxr + θ (4.12)

s.t.

(4.6b)-(4.6g).

Letting xN and yN be the first-stage solution represented by the integer-feasible node N

of the branch-and-cut tree, the optimality cut generated at this node is defined as:

θ ≥(Q(xN , yN)− LQ)

∑
r∈SN

X

xr −
∑
r/∈SN

X

xr

+

 ∑
(i,r)∈SN

Y

yir −
∑

(i,r)/∈SN
Y

yir


− (Q(xN , yN)− LQ)(|SNX |+ |SNY | − 1) + LQ, (4.13)

where Q(xN , yN) is the corresponding expected second-stage value, SNX = {r|xNr = 1}, SNY =

{(i, r)|yNir = 1}, and LQ is a finite value satisfying LQ ≤ minx,y{Q(x, y)|(4.6b)-(4.6g)}. In our

particular implementation, we use LQ as the continuous relaxation of minx,y{Q(x, y)|(4.6b)−

(4.6g)}.

Since there are a finite number of first-stage feasible solutions, and the set of cuts (4.13)

generated for all first-stage feasible solutions describe a valid set of optimality cuts [52], the

integer L-shaped algorithm finds the optimal solution in a finite number of steps [52].
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Any continuous L-shaped optimality cut [83] provides a lower bound on Q(x, y) [52].

Therefore, besides (4.13), we also generate the standard L-shaped cuts (by using the dual

solution of the linear relaxation of the second-stage problem) in our implementation.

Note that the recourse function is not convex in ξ due to the existence of integer vari-

ables in the second stage and the scenario-dependent recourse matrix. Therefore, the Jensen’s

based valid inequalities introduced in Chapter 3 are not applicable to 2S-ORRP.

For a given first-stage feasible solution, Cir(ω) variables for any scenario ω are completely

described by (4.8b)-(4.8d), and hence can be computed without solving the second-stage sub-

problem. Considering the computed Cir(ω) values and the integrality requirements, yMir (ω)

variables for any scenario ω are completely described by (4.8e)-(4.8g), and therefore, they

also can be obtained without solving the second-stage subproblem. When calculating the ex-

pected second-stage cost at integer-feasible node N , we first calculate the values of these vari-

ables and then solve the second-stage subproblems given these values. As a result, the second-

stage problem becomes easier to solve, which enhances the integer L-shaped algorithm.

4.4.2 A Progressive Hedging-Based Heuristic for 2S-ORRP

The PHA [66] is an iterative method, where scenario subproblems are solved independently

at each iteration, and nonanticipativity constraints are enforced progressively throughout the

iterations. In order to solve large instances of 2S-ORRP, we employ a PH-based heuristic [15].

Considering the previously defined notation, and letting πω be the realization probabil-

ity of scenario ω, and xr(ω) and yir(ω) be the first-stage variables under scenario ω, the

extensive form of 2S-ORRP can be formulated as:

min
∑
ω∈Ω

πω

[
nR∑
r=1

cfxr(ω) +

nR∑
r=1

coOr(ω)

]
(4.14a)

s.t.

yir(ω) ≤ xr(ω) ∀i, r, ω, (4.14b)

nR∑
r=1

yir(ω) = 1 ∀i, ω, (4.14c)

xr(ω) ≥ xr+1(ω) ∀r < nR, ω, (4.14d)
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i∑
r=1

yir(ω) = 1 ∀i ≤ min{n, nR}, ω, (4.14e)

min{i,nR}∑
q=r

yiq(ω) ≤
i−1∑

j=r−1

yj,r−1(ω) ∀(i, r), ω : i ≥ r > 1, (4.14f)

Cir(ω) ≤Myir(ω) ∀i, r, ω, (4.14g)

Cir(ω) ≥
n∑
j=1

bjipj(ω)yjr(ω) + pi(ω)yir(ω)−M(1− yir(ω)) ∀i, r, ω, (4.14h)

Cir(ω) ≤
n∑
j=1

bjipj(ω)yjr(ω) + pi(ω)yir(ω) ∀i, r, ω, (4.14i)

TL −

[
nR∑
r=1

Cir(ω)− pi(ω)

]
≤ TL

nR∑
r=1

yMir (ω) ∀i, ω, (4.14j)[
nR∑
r=1

Cir(ω)− pi(ω)

]
− TL ≤M

[
1−

nR∑
r=1

yMir (ω)

]
∀i, ω, (4.14k)

yMir (ω) ≤ yir(ω) ∀i, r, ω, (4.14l)

nR∑
r=1

yMir (ω) +

nR∑
r=1

yAir(ω) = 1 ∀i, ω, (4.14m)

yAir(ω) ≤ xr(ω) ∀i, r, ω, (4.14n)

Or(ω) ≥
n∑
i=1

pi(ω)yMir (ω) +
n∑
i=1

pi(ω)yAir(ω)− L ∀r, ω, (4.14o)

Or(ω) ≥ TE +
n∑
i=1

pi(ω)yAir(ω)− L ∀r, ω, (4.14p)

xr(ω) = xr ∀r, ω, (4.14q)

yir(ω) = yir ∀i, r, ω, (4.14r)

xr, yir, xr(ω), yir(ω), yMir (ω), yAir(ω) ∈ {0, 1} ∀i, r, ω, (4.14s)

Cir(ω), Or(ω) ≥ 0 ∀i, r, ω. (4.14t)

In the above formulation, (4.14q)-(4.14r) are the nonanticipativity constraints, and they

ensure that the same first-stage decisions are made under each scenario. If these constraints

are relaxed by using an augmented Lagrangian strategy (as proposed by Rockafellar and

Wets [66]), the objective function of the problem becomes:
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min
∑
ω∈Ω

πω

[
nR∑
r=1

cfxr(ω) +

nR∑
r=1

coOr(ω) +

nR∑
r=1

λXrω(xr(ω)− xr) +
n∑
i=1

nR∑
r=1

λYirω(yir(ω)− yir)

+
1

2

nR∑
r=1

ρ(xr(ω)− xr)2 +
1

2

n∑
i=1

nR∑
r=1

ρ(yir(ω)− yir)2

]
, (4.15)

where λXrω and λYirω are Lagrangian multipliers for the relaxed constraints (4.14q)-(4.14r),

and ρ is a positive penalty coefficient.

Since xr is a binary variable, x2
r = xr. Such a substitution is also valid for yir, xr(ω) and

yir(ω). Therefore, expanding and rearranging the quadratic terms in (4.15), the objective

function of the relaxed problem can be rewritten as:

min
∑
ω∈Ω

πω

[
nR∑
r=1

(cf + λXrω − ρxr +
ρ

2
)xr(ω) +

n∑
i=1

nR∑
r=1

(λYirω − ρyir +
ρ

2
)yir(ω)

+

nR∑
r=1

coOr(ω)−
nR∑
r=1

(λXrω −
ρ

2
)xr −

n∑
i=1

nR∑
r=1

(λYirω −
ρ

2
)yir

]
. (4.16)

For a given first-stage solution (x̂, ŷ), the objective function (4.16), and hence the relaxed

problem becomes scenario-separable. Given (x̂, ŷ), the scenario subproblem under scenario

ω is:

min

nR∑
r=1

(cf + λXrω − ρx̂r +
ρ

2
)xr(ω) +

n∑
i=1

nR∑
r=1

(λYirω − ρŷir +
ρ

2
)yir(ω)

+

nR∑
r=1

coOr(ω)−
nR∑
r=1

(λXrω −
ρ

2
)x̂r −

n∑
i=1

nR∑
r=1

(λYirω −
ρ

2
)ŷir (4.17a)

s.t.

yir(ω) ≤ xr(ω) ∀i, r, (4.17b)

nR∑
r=1

yir(ω) = 1 ∀i, (4.17c)

xr(ω) ≥ xr+1(ω) ∀r < nR, (4.17d)

i∑
r=1

yir(ω) = 1 ∀i ≤ min{n, nR}, (4.17e)

min{i,nR}∑
q=r

yiq(ω) ≤
i−1∑

j=r−1

yj,r−1(ω) ∀(i, r) : i ≥ r > 1, (4.17f)

Cir(ω) ≤Myir(ω) ∀i, r, (4.17g)
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Cir(ω) ≥
n∑
j=1

bjipj(ω)yjr(ω) + pi(ω)yir(ω)−M(1− yir(ω)) ∀i, r, (4.17h)

Cir(ω) ≤
n∑
j=1

bjipj(ω)yjr(ω) + pi(ω)yir(ω) ∀i, r, (4.17i)

TL −

[
nR∑
r=1

Cir(ω)− pi(ω)

]
≤ TL

nR∑
r=1

yMir (ω) ∀i, (4.17j)[
nR∑
r=1

Cir(ω)− pi(ω)

]
− TL ≤M

[
1−

nR∑
r=1

yMir (ω)

]
∀i, (4.17k)

yMir (ω) ≤ yir(ω) ∀i, r, (4.17l)

nR∑
r=1

yMir (ω) +

nR∑
r=1

yAir(ω) = 1 ∀i, (4.17m)

yAir(ω) ≤ xr(ω) ∀i, r, (4.17n)

Or(ω) ≥
n∑
i=1

pi(ω)yMir (ω) +
n∑
i=1

pi(ω)yAir(ω)− L ∀r, (4.17o)

Or(ω) ≥ TE +
n∑
i=1

pi(ω)yAir(ω)− L ∀r, (4.17p)

xr(ω), yir(ω), yMir (ω), yAir(ω) ∈ {0, 1} ∀i, r, (4.17q)

Cir(ω), Or(ω) ≥ 0 ∀i, r. (4.17r)

At each iteration of the PHA [66], scenario subproblems are solved, and an aggregate

solution (x̂, ŷ) is generated by using the optimal solutions of scenario subproblems. The

aggregate solution (x̂, ŷ) is then used to construct the scenario subproblems at the succeed-

ing iteration. Based on the deviation of scenario subproblem solutions from the aggregate

solution, the Lagrangian multipliers and the penalty parameter are updated at each iteration

to enforce nonanticipativity in a progressive manner. A stepwise description of the PHA for

2S-ORRP is presented below.

• Step 1.

– 1a. Solve the scenario subproblem (4.17) for each ω by changing the objective func-

tion (4.17a) as:

min

nR∑
r=1

cfxr(ω) +

nR∑
r=1

coOr(ω). (4.18)
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– 1b. Let (x∗(ω), y∗(ω)) be the optimal solution under scenario ω, and initialize the

aggregate solution (x̂, ŷ) as:

x̂r =
∑
ω∈Ω

πωx
∗
r(ω) ∀r, (4.19)

ŷir =
∑
ω∈Ω

πωy
∗
ir(ω) ∀i, r. (4.20)

– 1c. If (x∗(ω), y∗(ω)) = (x̂, ŷ) for all ω (i.e., the nonanticipativity constraints are

satisfied), (x̂, ŷ) is an optimal solution of 2S-ORRP. Otherwise, go to Step 2 after

initializing the multipliers and the penalty parameter as:

λXrω = 0 ∀r, ω, (4.21)

λYirω = 0 ∀i, r, ω, (4.22)

ρ = ρ0, (4.23)

where ρ0 is a constant value such that ρ0 > 0.

• Step 2.

– 2a. Considering the aggregate solution (x̂, ŷ), and the current values of λXrω, λ
Y
irω,

and ρ, solve the scenario subproblem (4.17) for each ω.

– 2b. Let (x∗(ω), y∗(ω)) be the optimal solution under scenario ω, and update the

aggregate solution (x̂, ŷ) by using (4.19) and (4.20).

– 2c. If (x∗(ω), y∗(ω)) = (x̂, ŷ) for all ω, (x̂, ŷ) is the best solution obtained by the

PHA. Otherwise, go to Step 2a after updating the multipliers and the penalty pa-

rameter as:

λXrω = λXrω + ρ(x∗r(ω)− x̂r) ∀r, ω, (4.24)

λYirω = λYirω + ρ(y∗ir(ω)− ŷir) ∀i, r, ω, (4.25)

ρ = αρ, (4.26)

where α is a constant value such that α ≥ 1.
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Convergence of the PHA to the optimal solution is not guaranteed for the problems with

integer variables. Therefore, we use the algorithm as a heuristic method to solve 2S-ORRP

(i.e., to get an upper bound on the optimal objective function value of 2S-ORRP).

Note that the aggregate solution (x̂, ŷ) is not necessarily feasible at every iteration. Ob-

taining an upper bound on the optimal objective function value by constructing a feasible

solution from (x̂, ŷ) at each iteration enhances the algorithm [15]. We use the following

rounding procedure to obtain a feasible solution from (x̂, ŷ):

• Let (x̂F , ŷF ) denote the feasible solution to be constructed from (x̂, ŷ). Initialize every

component of (x̂F , ŷF ) to 0.

• For every surgery i: Let r′ be min
r
{arg max

r
(ŷir)}. Update ŷFir′ as ŷFir′ = 1.

• For every OR r: If
n∑
i=1

ŷFir > 0, then update x̂Fr as x̂Fr = 1.

At each iteration, we update the best available solution if (x̂F , ŷF ) provides a lower

objective function value.

4.5 COMPUTATIONAL RESULTS

4.5.1 Generation of Problem Instances

The problem instances for our computational study in this chapter are generated based on

the data set and parameter estimation described in Section 3.4.1. As the focus of 2S-ORRP

is ORs, we do not use surgeon-related parameters (such as the surgeon idle time cost, surgeon

turnover time or the surgery sequence based on surgeons’ surgery listings). Moreover, 2S-

ORRP does not explicitly include the OR turnover time. Instead, when generating the

random scenarios, we increase the total duration (the sum of pre-incision, incision, and post-

incision durations) of each surgery by 30 minutes to account for the OR turnover time. As in

Chapter 3, we consider L=9 hours/day, and a cost structure where the overtime cost is 50%

higher than the regular OR time cost (i.e., 6 hours of overtime is equivalent in cost to opening

a new OR). In Section 4.5.4, we investigate the impact of different overtime cost levels.
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Table 4.2: Size-based classification of 2S-ORRP instances for 322 surgical days.

Set Number of Average Maximum

No Instances n nR n1
Bin n2

Bin n nR n1
Bin n2

Bin

1 116 3.23 2.26 9.68 7422.41 6 3 15 12000

2 119 6.01 3.60 25.19 21596.64 9 4 32 28000

3 87 8.64 4.70 45.46 40758.62 12 7 77 70000

We consider a setting where TR=4 hours. Since the surgery durations become known

once the day starts (i.e., 2S-ORRP is a two-stage problem), there is no incentive in using a

smaller TL value or a greater TE value than TR. Therefore, we set TL = TR and TE = TR.

We assume that surgeries within each OR are performed in the order of decreasing ex-

pected processing time (i.e., longest expected processing time (LEPT) first), and we set the

values of bij parameters accordingly. In Section 4.5.5, we explore the impact of using other

sequencing rules including shortest expected processing time (SEPT) first, smallest variance

(SVar) first, largest variance (LVar) first, smallest coefficient of variation (SCoV) first, and

largest coefficient of variation (LCoV) first.

The number of binary variables in an instance of 2S-ORRP, and hence the problem size,

depends on the number of surgeries, available ORs, and the total number of scenarios (which

is 500 in our implementation). We classify our 322 problem instances, each of which corre-

sponds to a surgical day, into 3 sets based on their size. Table 4.2 summarizes the number

of instances, average and maximum number of surgeries (n), available ORs (nR), and first-

and second-stage binary variables (n1
Bin and n2

Bin) for each set.

4.5.2 Computational Performance of the Proposed Algorithms

We coded our algorithms in Microsoft Visual Studio 2010 using CPLEX 12 callable library,

and we executed our experiments on Intel Core2 Duo PC with processors running at 3.17 GHz

and 2 GB memory under Windows 7. We impose a 3-hour time limit on both algorithms.
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Table 4.3: Solution times (in CPU seconds) and the percentage optimality gap values for

the integer L-shaped algorithm.

S
et

N
o.

Solution Time

Percentage Optimality Gap Percentage Optimality Gap

Number of for the Unsolved Instances for the Unsolved Instances

Unsolved (Based on the Lower Bound of the (Based on the Best

Instances Integer L-Shaped Algorithm) Available Lower Bound)

Average Maximum Average Maximum Average Maximum

1 10.32 87.42 - - - - -

2 1114.11 >10800.00 1 0.80% 0.80% 0.37% 0.37%

3 8631.26 >10800.00 58 30.71% 210.61% 0.83% 14.41%

We report the performance measures associated with the integer L-shaped algorithm

including the average and maximum solution times, number of unsolved instances, and the

percentage optimality gap for the unsolved instances in Table 4.3. For the unsolved in-

stances, we consider the solution time as 3 hours when calculating the average solution time.

Although the algorithm performs well for the small and moderate-sized instances, it cannot

solve most of the large instances (i.e., instances in Set 3) within the allowed time limit. The

average percentage gap for the unsolved 58 instances in Set 3 is 30.71%, and the maximum

gap is 210.61%. Besides the percentage optimality gap values based on the lower bound

returned by the integer L-shaped algorithm, we also report the gap values based on the best

available lower bound, which is the maximum of the integer L-shaped lower bound and the

expected value of the wait-and-see solution. The percentage optimality gap with respect to

the best available lower bound for the unsolved instances is 0.83% on average and as much

as 14.41%, which indicates that the performance of the integer L-shaped algorithm in terms

of solution quality is remarkably well on average, but not for every instance.

Because the percentage optimality gap achieved by the integer L-shaped algorithm is not

acceptably low for every instance, we employ the PH-based heuristic described in Section

4.4.2 to obtain solutions for the instances in Set 3. Our initial experiments indicate that

using a smaller penalty coefficient earlier in the algorithm, and increasing it throughout the

73



Table 4.4: Solution times (in CPU seconds) and the objective values of the best solutions

returned by the PH-based heuristic under different parameter settings for a problem instance

whose optimal objective function value is 16993.34.

ρ0 α Solution Time Objective Value

5000 1 32.34 17495.73

2500 1 >10800.00 16993.34

1000 1 >10800.00 16993.46

2 1 >10800.00 16993.46

2 5 1306.95 16995.78

2 10 164.03 16995.78

iterations facilitates obtaining a good solution in a reasonable amount of time (see Table 4.4).

Considering this, we set the parameters in the PH-based heuristic as ρ0 = 2 and α = 10. We

report the solution time- and solution quality-related measures for the algorithm in Table

4.5. To assess the quality of the solution, we use the average gap between the objective

values of the best solutions (i.e., upper bounds) obtained by the PH-based heuristic and

the integer L-shaped algorithm. For 3 of the instances (out of 87 in Set 3), the PH-based

heuristic terminated because of the computational time limit. The maximum solution time

is reported accordingly. The minimum percentage gap is -9.31%, which indicates that there

are problem instances for which the upper bound provided by the PH-based heuristic is

significantly better than that of the integer L-shaped algorithm. The average gap is positive

(0.09%), yet very small, which makes the PH-based heuristic an appealing method for the

large instances when its superiority in terms of the solution time is also taken into account.

To have a better understanding of the PH-based heuristic solution quality, we also re-

port the percentage gap values by classifying the instances in Set 3 to Sets 3a and 3b. Our

classification is based on whether or not an instance can be solved optimally by the integer

L-shaped algorithm within the allowed time limit. Set 3a includes the 29 instances for which

the optimal solution is available, and Set 3b includes the remaining 58 instances for which
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Table 4.5: Solution times (in CPU seconds) and the percentage gap values for the PH-based

heuristic.

S
et

N
o.

Solution Time

Percentage Gap between the Upper Bounds

of the Integer L-Shaped Algorithm

and the PH-Based Heuristic

Average Maximum Minimum Average Maximum

3 1245.64 >10800.00 -9.31% 0.09% 1.43%

3a - 0.00% 0.14% 1.43%

3b - -9.31% 0.07% 1.38%

only an upper bound is available. The average gap across the instances in Set 3a, 0.14%, re-

veals that the PH-based heuristic solution performs slightly worse than the optimal solution

on average. The average gap for Set 3b, 0.07%, indicates that the upper bounds obtained

by the two algorithms are very close to each other.

4.5.3 Value of Rescheduling

Let zEEV and zWS be the expected value of the mean value problem solution and the wait-

and-see solution for 2S-ORSP. Moreover, let zORSP and zORRP be the optimal objective

function value of 2S-ORSP and 2S-ORRP, respectively. The following relation exists be-

tween these values:

zEEV ≥ zORSP ≥ zORRP ≥ zWS. (4.27)

Capturing the uncertainty in surgery durations reduces the minimum total expected cost

from zEEV to zORSP , and the difference between these two values corresponds to the VSS for

2S-ORSP. The expected cost could be reduced further, from zORSP to zORRP , by reschedul-

ing. We refer to the difference between zORSP to zORRP as the value of rescheduling. If

perfect information about surgery durations were available when the initial scheduling deci-

sions are made, then the expected cost would be zWS. Therefore, zWS is a lower bound on
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both zORSP and zORRP , and the difference between zORSP and zWS (i.e., EVPI for 2S-ORSP)

is an upper bound on the value of rescheduling. A high EVPI for 2S-ORSP indicates that

rescheduling, which is introduced in 2S-ORRP, might achieve significant cost reductions.

It is possible to decompose the value of rescheduling into two components: the value of

adaptive decisions and the value of anticipative decisions. Let (xORSP , yORSP ) be the optimal

solution of 2S-ORSP, and z′ORRP be the optimal objective function value of 2S-ORRP given

that the first-stage solution is (xORSP , yORSP ). Then, we have:

zORSP ≥ z′ORRP ≥ zORRP . (4.28)

The expected cost can be reduced from zORSP to z′ORRP by making adaptive decisions. A

further reduction from z′ORRP to zORRP can be achieved through the integration of adaptive

and anticipative decisions (i.e., by using 2S-ORRP). Therefore, we refer to zORSP − z′ORRP
and z′ORRP −zORRP as the value of adaptive decisions and the value of anticipative decisions,

respectively.

We summarize the percentage VSS and EVPI for 2S-ORSP, the percentage value of

rescheduling, and the percentage value of adaptive and anticipative decisions for our prob-

lem instances in Table 4.6. For the instances whose 2S-ORRP formulations cannot be solved

within the allowed time limit, we consider the best available upper bound (which is the min-

imum of the upper bounds returned by the integer L-shaped algorithm and the PH-based

heuristic, and z′ORRP ) as zORRP in our comparisons to obtain the lower bounds on the value

of rescheduling and the value of anticipative decisions. To estimate the upper bounds on

these values, we use the best available lower bound (which is the maximum of zWS and the

lower bound returned by the integer L-shaped algorithm) as zORRP in our comparisons.

Both VSS (ranging between 0.03%-0.37%) and EVPI (ranging between 0.57%-1.61%)

are considerably small for our problem instances (particularly for the smaller instances) on

average. As expected based on the EVPI results, we also observe that the value of reschedul-

ing (ranging between 0.20%-1.27%) is not high on average. However, the average value of

rescheduling compared to the average VSS is significant. The value of adaptive decisions is

notably higher than that of anticipative decisions, which indicates that a large portion of
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the value of rescheduling is attributable to taking reactive actions rather than designing the

initial schedule by taking the availability of the rescheduling opportunity into account.

4.5.4 Impact of the Overtime Cost Level

The overtime cost, co, highly depends on the surgical environment, and it is typically higher

for an outpatient setting. In order to explore the impact of co on the value of rescheduling,

we solve the problem instances in Set 2 under the following additional cost structures [20]:

• Using 2 hours of overtime is equivalent to opening a new OR.

• Using 0.5 hours of overtime is equivalent to opening a new OR.

We refer to our original parameter setting, and these two additional settings as the

low, medium, and high overtime cost levels, respectively. We report the uncertainty- and

rescheduling-related performance measures at these overtime cost levels in Table 4.7. The

value of rescheduling becomes higher as the overtime cost increases. For the high overtime

cost level, it is 4.15% on average and as much as 19.86%. Based on the results summarized

in Table 4.7, we conclude that rescheduling is particularly important in outpatient surgical

environments.

4.5.5 Impact of the Surgery Sequence

Our computational results presented in the earlier sections are based on the experiments

that employ the LEPT first rule to sequence the surgeries within each OR. In order to inves-

tigate the impact of the surgery sequence on the value of rescheduling, we solve the problem

instances in Set 2 under the SEPT, SVar, LVar, SCoV, and LCoV first sequencing rules. For

these different settings, we report the performance measures associated with the rescheduling

decisions in Table 4.8. As can be observed from Table 4.8, the value of rescheduling highly

depends on the surgery sequence. The highest (lowest) average value is attained under the

LEPT (SEPT) first sequencing rule, which is an intuitive result as performing longer thus

fewer surgeries earlier in the day leaves more surgeries to be rescheduled at the time of
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Table 4.8: Percentage value of rescheduling decisions under different sequencing rules for

the problem instances in Set 2.

Value of
Value of Value of

Sequencing
Rescheduling

Adaptive Anticipative

Rule Decisions Decisions

Average Maximum Average Maximum Average Maximum

SEPT 0.35% 2.49% 0.20% 1.69% 0.16% 1.51%

LEPT 0.64% 2.97% 0.53% 2.97% 0.11% 1.65%

SVar 0.43% 2.52% 0.24% 2.30% 0.19% 1.52%

LVar 0.57% 2.97% 0.43% 2.97% 0.14% 2.06%

SCoV 0.53% 2.75% 0.33% 2.30% 0.20% 2.48%

LCoV 0.54% 2.97% 0.37% 2.97% 0.17% 2.06%

rescheduling. LVar first rule achieves a higher value of rescheduling than SVar first does,

whereas using SCoV first and LCoV first yields very similar results.

4.6 CONCLUSIONS

We consider the stochastic multi-OR surgery scheduling problem where the allocation of

surgeries to ORs is revised at a predetermined rescheduling point during the surgical day.

We formulate the problem as a three-stage SMIP that treats the initial scheduling and the

day of surgery rescheduling decisions as the first- and second-stage decisions, respectively.

The objective of the model is to minimize the sum of the fixed cost of opening ORs in-

curred in the first-stage and the expected cost of overtime incurred in the third-stage. Due

to the difficulty in accurately modeling the resolution of uncertainty in surgery durations

in a three-stage setting and efficiently solving the resulting three-stage model, we consider

a special case where the rescheduling decisions in the second-stage are made under perfect

information and hence the problem can be formulated as a two-stage SMIP.
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We employ the integer L-shaped algorithm, which is a stage-wise decomposition method,

to solve small and moderate-sized instances of our problem. Although the algorithm per-

forms well for those instances, it fails to solve most of the large instances within a reasonable

amount of time. Therefore, we use a PH-based heuristic, which is a scenario-wise decompo-

sition method, to find a near optimal solution for the large instances. Our results indicate

that the performance of the PH-based heuristic in terms of solution quality (i.e., the opti-

mality gap) is slightly worse than that of the integer L-shaped algorithm. However, it is

significantly superior when the comparison criterion is solution time.

By using our model, we estimate the value of rescheduling, and the value of adaptive

and anticipative decisions. Our numerical results indicate that rescheduling can bring no-

table cost reductions when VSS is high, which typically is the case under high overtime cost

levels (i.e., in outpatient surgical environments). Although the value of rescheduling for the

moderate-sized instances is 0.64% on average with a maximum of 2.97% when the overtime

cost level is low, its average and maximum value is 4.15% and 19.86% under the high over-

time cost level. Our results reveal that a significant portion of the value of rescheduling is

attributable to the adaptive decisions rather than the anticipative decisions. We also observe

that the value of rescheduling depends on the surgery sequence within ORs, and the LEPT

sequence (among several sequencing rules considered) yields the best results.
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5.0 CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

This dissertation focuses on developing realistic models of the surgery scheduling process

common to many health care providers and efficiently solving those models. The majority of

earlier studies consider either deterministic multi-OR or stochastic single-OR environments.

However, both uncertainty and the existence of multiple ORs in surgical suites are impor-

tant aspects of OR scheduling problems in practice. Recognizing this fact, we develop novel

stochastic programming models for multi-OR scheduling problems where surgery durations

are uncertain, increase the solvability of our models by exploiting their structural properties,

and draw valuable managerial insights from our extensive computational study.

5.1 SUMMARY AND CONCLUSIONS

In Chapter 3, we formulated the multi-OR scheduling problem as a two-stage SMIP where

the scheduling decisions (the number of ORs to open, surgery allocation and sequencing, and

start times for surgeons) are made in the first stage, before the resolution of uncertainty. We

treated both ORs and surgeons as resources, and explicitly considered the OR and surgeon

turnover times, and pre-incision, incision, and post-incision phases of surgeries. The objec-

tive of our model is to minimize the total expected operating cost, which is the sum of the

fixed cost opening ORs, the expected overtime cost and the expected surgeon idling cost. By

using our model, we estimated the value of capturing uncertainty (i.e., VSS) and the value of

using ORs as a common shared resource (as opposed to assigning them to surgeons), and we

illustrated the impact of parallel surgery processing. We used the L-shaped algorithm and a

L-shaped based branch-and-cut algorithm to solve the problem. To be able to solve practical
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instances, we significantly improved these methods by introducing a set of new and widely

applicable valid inequalities based on Jensen’s inequality. Our numerical results showed that

capturing uncertainty is valuable particularly when the per unit time cost of surgeon idling

is high. Our results also revealed that significant cost reductions can be achieved by OR

pooling, and the benefits of parallel surgery processing increases with the OR turnover time

and the parallelizable portion of surgeries.

In Chapter 4, we studied the multi-OR scheduling problem with day of surgery reschedul-

ing decisions made to better respond the resolved uncertainty in surgery durations. We

formulated the problem as a three-stage SMIP that minimizes the total expected operating

cost, and then considered a special case, which is a two-stage SMIP, where the uncertainty

is completely resolved before the rescheduling decisions are made. Our rescheduling model

considers only ORs as resources, and hence does not include any surgeon-related decisions,

constraints, or performance measures. The initial scheduling decisions (i.e., the first-stage

decisions) include the number of ORs to open and the allocation of surgeries to ORs, and the

rescheduling decisions (i.e., the second-stage decisions) are the reallocation of surgeries to

ORs. We used the integer L-shaped algorithm to solve small and moderate-sized instances

of our problem, and a PH-based heuristic to find a good upper bound for the large instances.

We concluded from our numerical results that the value of rescheduling during the surgical

day is high when the value of capturing uncertainty is significant, which is typically observed

when per unit time cost of overtime is high. Moreover, we observed from our results that

a large portion of this value is due to adaptive decisions, which indicates that rescheduling

would reduce the operating costs significantly even if the initial scheduling decisions are

made without taking the availability of such recourse decisions into account. Our results

also revealed that the benefit brought by rescheduling is higher when surgeries with longer

expected durations are performed earlier in the day.
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5.2 FUTURE RESEARCH DIRECTIONS

The models and the solution approaches discussed in this dissertation can be extended in

several ways to investigate important research questions some of which are presented below.

• Value of rescheduling in a multi-stage setting: By using our two-stage stochastic

multi-OR rescheduling model (2S-ORRP), we estimated the value of rescheduling under

perfect information, which is an upper bound on the value of rescheduling as the uncer-

tainty in surgery durations resolves in multiple stages in practice. As a result, evaluating

the total expected cost of the 2S-ORRP solution in a multi-stage setting is of great prac-

tical value. One possible way of doing this is to solve the two stage SMIP comprised of

the second and third stages of 3S-ORRP for the first-stage solution given by 2S-ORRP.

Instead of evaluating the 2S-ORRP solution in a three-stage setting, solving 3S-ORRP

would naturally give a better estimate for the value of rescheduling. Therefore, designing

efficient solution methods for 3S-ORRP is an important research direction. Considering

a multi-stage setting raises another important question that could be addressed: the

determination of the rescheduling point. Rescheduling decisions should be made early

enough that there would be a reasonable number of remaining surgeries to be resched-

uled, and late enough that a considerable portion of uncertainty is resolved before the

recourse decisions are made.

• Impact of rescheduling on the stability of the system: While additional over-

time costs could be avoided by rescheduling surgeries during the day, excessive levels of

rescheduling may be undesirable as it would cause significant deviations from the initial

schedule. The trade-off between the operating costs and the stability of the system can

be analyzed by considering a penalty cost associated with the rescheduled surgeries.

• Rescheduling model in the presence of other resources and decisions: An ex-

tended rescheduling model can be developed by introducing rescheduling decisions in

the multi-OR scheduling problem described in Chapter 3. This corresponds to including

sequencing decisions, and surgeon-related constraints, variables, and performance mea-

sures in the multi-OR rescheduling problem described in Chapter 4. The contribution of
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such an extension would be twofold. First, it considers the surgeons’ preferences on the

sequence of their own surgeries. Second, the best sequence within each OR is determined

by the model, which might increase the potential benefit of rescheduling as our compu-

tational results in Section 4.5.5 indicate that the surgery sequencing rule has a notable

impact on the value of rescheduling.

• Other types of uncertainties: The models presented in this study consider only the

uncertainty in surgery durations. Depending on the characteristics of the considered

surgical ward and the health care institution, other types of uncertainties such as the

arrival of add-on surgeries or patient no-shows can also be included in the models.

• Investigating the underlying multi-criteria optimization problems: We esti-

mate the value of different resource usage schemes such as parallel surgery processing

and OR pooling, and the value of rescheduling based on the total expected operating

cost. Therefore, our analysis depends on the specific cost coefficients that weight the

multiple criteria in the objective functions of our models. We leave an extensive explicit

treatment of these multi-criteria optimization problems for future research.

• Developing new valid inequalities based on the stage-wise structure of the

stochastic programs: The Jensen’s based valid inequalities introduced in Chapter 3

are applicable to two-stage stochastic programs where the expected recourse is a convex

function of the random parameters. Developing similar valid inequalities for general two-

stage stochastic programs would increase the efficiency of standard solution techniques

for a broader class of problems (including the 2S-ORRP, whose recourse function is not

convex in ξ).
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