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ELICITING PATIENT PREFERENCES

AND

PLACING EXPEDITED ORGANS

Zeynep Erkin, PhD

University of Pittsburgh, 2011

Liver transplantation plays a crucial role in saving lives when no other alternatives exist.

Each year approximately 5,500 liver transplants are performed in the US. However, annually

still 2,000 lives are lost due to lack of livers. Much effort has been spent on improving the

organ allocation system. In this dissertation, we focus on patient preference elicitation which

is an essential component of medical decision models and expedited organ placement which

is relatively unexplored component of the organ allocation system.

When livers become available, they are offered to patients according to an order (match

list) specified by a set of rules. Each patient can accept/reject the offer. Other researchers

have considered this accept/decline decision. Estimating patient preferences over health

states is an important component of these decision making models. Direct approaches, which

involve asking patients abstract questions, have significant drawbacks. We propose a new

approach that infers patient preferences based on observed decisions via inverse optimization

techniques. We illustrate our method on the timing of a living-donor liver transplant.

If it appears that the standard allocation procedure will not result in a match before the

organ becomes nonviable, the liver’s placement can be expedited, meaning that it is offered

to a transplant center instead of an individual patient. We study the subsequent decision

problem faced by a transplant center, namely which, if any, of its patients should receive the

organ independent of their positions on the match list. We develop a simulation model and

compare different policies for expedited liver placement. Our study indicates that a policy
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which gives higher priorities to patients whose likelihood of death is higher performs the best

based on several metrics.

We also formulate the transplant center’s decision problems as an average reward Markov

Decision Process (MDP). Due to the complexity of the model, traditional methods used to

solve MDP problems cannot be utilized for our model. Thus, we approximate the solution

via Least Square Policy Iteration (LSPI) method. Despite the extensive search on basis

functions, the LSPI method yields promising, yet not better outcomes than the policies

found to be the best via simulation.

Keywords: expedited organ placement, Markov Decision Process, Least Square Policy It-

eration, health care, inverse optimization, quality-adjusted life years.
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1.0 INTRODUCTION

The health care industry in the US has been growing rapidly and was one of the largest

industries in 2008 [64]. It accounted for 10.3% of all industry wage and salary jobs by itself

in 2008. The national health expenditures have reached to $2.5 trillion in 2009 accounting

for 17.6% of Gross Domestic Product (GDP) [37]. The average growth in national health

expenditures is expected to be 6.1% per year over the projection period (2009-2019) [37].

This growth is largely in response to the rapid growth of the elderly population. In 2004, the

elderly constituted 12% of the population and accounted for 34% of spending [37]. They are

expected to grow to be 19% of the population by 2030 [66]. Personal health care spending

for the elderly population was $14,797 per person in 2004, which is 5.6 times higher than

spending per child ($2,650) and 3.3 times higher than spending per working-age person

($4,511). While this shift in the population leads to higher expenditures, it draws attention

to the efficiency and effectiveness issues in health care.

The health care spending per capita in the US is roughly twice as much as it is in Canada,

France and the United Kingdom while the life expectancy in the US (i.e., 79) is slightly lower

than it is in those countries (i.e., 81, 81 and 80, respectively) and the infant mortality rate

(i.e., probability of dying by age 5 per 1000 live births) in the US (i.e., 8) is significantly

higher than it is in those countries (i.e., 6, 4 and 5, respectively) [68]. These facts bring in

criticism of every aspect of the US health care system.

Operations Research techniques have been widely utilized by researchers in the inves-

tigation of health care problems. Operating room scheduling [29, 62, 96, 100], ambulance

locating [15, 54, 55], personnel/staff scheduling [20, 34, 56], vaccine selection [69, 101], cancer

treatment optimization [47, 60, 71, 102] are examples of problems that have been extensively

studied.
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Organ transplantation is another health care operation that has attracted attention [1,

3, 28, 48, 58, 90]. The real issue related to organ transplantation is not the cost, but its

life saving role in health care. For instance, for patients with end stage liver failure there

is no alternative treatment than liver transplantation. More than 100,000 people currently

need organ transplants and every 10 minutes another name is added to the national organ

transplant waiting list [9]. However, supply cannot keep up with this demand. In Figure

1, the size of the waiting list for organ transplantation and the trends in organ donation,

organ transplantation and deaths while waiting for organ transplantation over the period

(1999-2008) can be seen [76]. Each day an average of 18 people die from the lack of available

organs for transplant.

In this dissertation, we focus on liver transplantation. Liver transplantation is the only

available treatment for end-stage liver disease (ESLD) patients. ESLD is an irreversible

condition that is the final stage of many liver diseases such as cirrhosis, hepatitis, cancer

in the liver, autoimmune disorders, etc. The liver is a unique organ which can regenerate

itself. That is, transplantation from a living donor is a possibility which constitutes a way

to increase the supply of livers.

Even though recent efforts (e.g., introduction of MELD/PELD system, which is utilized

for prioritizing patients according to how urgent their need is, in 2002 and living donor liver

transplantation) have modestly increased the supply of livers, the supply-demand imbalance

still constitutes a problem in the US as can be seen in Figure 2 [76]. In the US, ESLD is

the 12th leading cause of death [36]. Although many people are dying while waiting for a

liver transplant, 11.3% of all donated livers are discarded due to excessive CIT, which is

the amount of time that has elapsed since the organ is procured and a critical factor that

affects the organ quality [42]. These facts emphasize the critical need to efficiently manage

the scarce supply of livers.
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organ transplant.
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transplant.

In different stages of the liver allocation system, there are multiple decision makers.

Therefore, it is possible to evaluate the performance of the allocation system from different

perspectives. Each perspective includes different concerns. Thus, each perspective utilizes

different metrics for performance evaluation. For instance, post-transplant lifetime is one of

the metrics utilized to describe how well the system is working. From a societal perspective,

post-transplant lifetime might provide an acceptable metric. However, because for an indi-

vidual the health status in which the post-transplant life will be spent is an important factor,
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from an individual perspective solely post-transplant lifetime is not enough. Thus, from the

perspective of a patient the outcome of a transplant is measured by Quality Adjusted Life

Years (QALYs) gained as a result of the transplantation. QALYs consist of life years gained

and the quality of life attributed to those life years. The quality of life spent in a health

status is based on patient’s preferences. Therefore, when an individual’s perspective is being

studied, patient’s preference elicitation plays an important role.

Another decision maker in the liver allocation system is a transplant center. A transplant

center faces a decision problem that hasn’t been explored yet. In the organ allocation

system, when livers become available, first they are offered to patients according to an order

(match list) specified by a set of rules. Each patient (or physicians, acting on behalf of

the patients) can accept/reject the offer based on their preferences. If it appears that this

standard allocation procedure will not result in a successful match before the organ becomes

nonviable, the liver’s placement can be expedited, meaning that it is offered to a transplant

center instead of an individual patient. Then, the center decides which, if any, of its patients

should receive the organ independent of their positions on the match list. Expedited organ

placement is accepted as a method of preventing organ discard [95]. Moreover, given that

approximately 2,000 liver patients die per year while waiting for a transplant, expedited liver

placement provides an opportunity that cannot be disregarded to save lives.

The rest of this chapter is organized as follows. In Section 1.1, we review the organ

allocation system in the US. In Section 1.2, we describe the decision problems we study and

state our contributions. We present an overview of the dissertation in Section 1.3.

1.1 LIVER ALLOCATION SYSTEM

United Network for Organ Sharing (UNOS) is the national organization which is responsible

for organ allocation in the US. UNOS operates a private, non-profit entity called Organ

Procurement and Transplantation Network (OPTN). OPTN is the expert in organ procure-

ment and transplantation, and standardized the process of organ donation and allocation in

the US. OPTN includes fifty eight organ procurement organizations (OPOs) that facilitate

5



organ donation, retrieval and transportation. Each OPO serves a specific region. There are

11 regions in the country [65].

UNOS has measured the degree of medical urgency of liver patients using the Model for

End-Stage Liver Disease (MELD) score since 2002. Creatinine, bilirubin and prothrombin

time (INR) are the prognostic factors taken into consideration in the calculation of a patient’s

MELD score. Creatinine is a measure of how well the kidney is functioning. Impaired kidney

function is often a symptom of severe liver disease. Bilirubin is a measure of how effectively

the liver excretes bile. Prothrombin time shows the liver’s ability to make blood clotting

factors. The MELD score is calculated using the following formula

MELD Score = 0.957× Loge(creatinine mg/dL) + 0.378× Loge(bilirubin mg/dL)

+ 1.120× Loge(INR) + 0.643.

MELD scores range between 6 and 40. The higher the MELD score, the sicker the patient.

For pediatric patients, a different version of MELD, i.e., PELD (Pediatric End Stage Liver

Disease Model), is used to measure the severity of sickness [38].

There are patients who have fulminant liver failure with a life expectancy of less than

7 days if they do not receive a liver transplant. Instead of being assigned a MELD score,

these patients are classified as Status 1A patients if they are adults (age ≥ 18) and Status

1B patients if they are pediatric patients. Status 1 patients constitute less than 1% of the

liver patient population [38].

In 2007, UNOS launched DonorNet, a web-based system that facilitates a fast, convenient

way of communication between the coordinators at the organ procurement organizations, i.e.,

procurement coordinators, and the coordinators at the transplant centers, i.e., transplant

center coordinators. When a deceased donor becomes available, a transplant coordinator

from an organ procurement organization enters the relevant donor information to DonorNet.

Then, the system generates a ranked list of liver patients according to a set of matching

rules. This list is called a match run or match list. The matching rules depend on both

the donor and patient characteristics, i.e., degree of medical urgency, blood type, distance

between the patient and the donor, waiting time, etc. Starting from the top of the ranked

6



list, the organ is offered to patients (Figure 3). The priority of patients is as follows (Figure

4):

1. Local Status 1 patients

2. Regional Status 1 patients

3. Local patients with MELD score equal to or greater than 15

4. Regional patients with MELD score equal to or greater than 15

5. Local patients with MELD score less than 15

6. Regional patients with MELD score less than 15

7. National Status 1 patients

8. National patients with MELD score equal to or greater than 15

9. National patients with MELD score less than 15

Figure 3: The flow of organ allocation [40].

7
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Figure 4: Order of patients in a match run (Adjusted Figure 1.3 of [28]).

Organ offers may be refused for one of several reasons, e.g., poor organ quality. One

factor that affects organ quality is Cold Ischemia Time (CIT). CIT is the amount of time

that has elapsed since the procurement surgery. Livers are generally considered nonviable

after a maximum of 18 hours of CIT. As the CIT increases, the organ becomes less and

less desirable, because of the decrease in the likelihood of graft survival. However, CIT is

not necessarily the key factor for an organ to become an expedited organ. Based on the

other attributes of the organ procurement coordinators might initiate expedited placement

immediately after procurement.

As the standard placement procedure explained above continues, the organ ages and

becomes less desirable. When the procurement coordinator senses that standard procedure

cannot yield a match in a timely manner, she stops the prioritized matching procedure and

offers the organ to a transplant center as an “expedited organ.” Expedited liver placement

is an escape mechanism used to avoid not placing a liver [21]. Once an expedited offer is

made to a transplant center, it is no longer bound by the match list. That is, the transplant

center may assign the expedited liver to any of its patients.
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1.2 PROBLEM STATEMENT AND CONTRIBUTION

One of the purposes of this dissertation is to present an alternative to existing techniques

used in patient preference elicitation. We propose an indirect, but rigorous approach to

reveal patient preferences. Our new approach derives patient preferences from observed

decisions via inverse optimization techniques. We apply our new approach to the timing of

a living-donor liver transplantation.

The second purpose is to fulfill the need of guidelines on how transplant centers should

act in the case of an expedited offer. Each transplant center coordinator bases her decision

on her personal philosophy. With the launch of DonorNet, the need for expedited placement

is expected to dissipate. However, as the OPTN/UNOS Organ Procurement Organization

Committee Report to the Board of Directors [67] and Tuttle-Newhall et al. [95] point out,

guidelines for developing expedited placement processes are still very much needed. Our goal

in this dissertation is to provide such guidelines for transplant center coordinators.

When an expedited liver is offered to a transplant center, the center decides which, if

any, of its patients should receive the organ regardless of their position on the match list.

The fundamental trade-off in this decision problem is balancing medical urgency (e.g., pre-

transplant likelihood of death) and anticipated outcomes (e.g., post-transplant likelihood

of one-year graft survival) for the diverse, dynamic set of patients listed at the transplant

center, while utilizing as many organs as possible.

In this decision making problem, we look at several metrics. One metric is the average

transplant rate at the center. There are two facets of this metric. One is that as the

transplant rate is being maximized, the waiting time of the patients listed at the center is

expected to decrease. The other is that, transplant centers need to continue on their business

to serve their patients and transplants serve this goal. The other metrics we consider are

percentage of expedited livers unused, waiting time before transplant, expected life days

after transplant, etc.

Our study is different from the existing studies because it focuses on the transplant center

as the decision maker. Moreover, this study serves as a bridge between existing models of the

patient-level accept/decline decision process, which is studied in different ways by several
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authors [8, 26, 50, 84], and the societal-level liver allocation decision process, a common

theme in recent work on organ allocation [88–90]. Results established at this micro-level,

i.e., that of the transplant center, may provide insights applicable at the macro-level of the

entire national allocation system.

1.3 OVERVIEW OF THE DISSERTATION

The remainder of this dissertation is organized as follows. Chapter 2 presents a review

of the relevant literature on the research problems studied in this dissertation. Chapter

3 proposes a new approach that infers patient preferences based on observed decisions via

inverse optimization techniques [33]. The method is applied to the timing of a living-donor

liver transplant problem. Chapter 4 describes the expedited liver placement problem in detail

and presents our simulation modeling approach to the problem. We explain our numerical

study whose parametrization is based on clinical data. Chapter 5 develops an average reward

Markov Decision Process model for the expedited liver placement problem of a transplant

center. We examine two different objective functions. Chapter 6 concludes by summarizing

and discussing our findings, limitations and possible future extensions.
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2.0 LITERATURE REVIEW

In this chapter, we discuss the literature related to the problems and methodologies we use

in this study. First, we briefly overview the literature on value assessment. We refer the

reader to Section 3.2 for a detailed review. Second, we present a literature review on organ

transplantation decision making.

2.1 VALUE ASSESSMENT

Value assessment, i.e., utility theory, is concerned with revealing people’s preferences or

choices. Researchers from various areas, i.e., psychology, statistics, etc., have a lot of input

to the theory. However, its groundwork lies in economics. The basic motivation in economics

is to understand the reactions of the society to changes in the commodity prices by examining

the values of the individuals involved. Please refer to [35] for a detailed discussion on the

various theories included under the general name “utility theory” and the relevant literature.

The economic evaluation in health care decision making requires value assessment, as

well. Value assessment is utilized in the evaluation of the consequences of those decisions.

The values are employed in the calculation of Quality Adjusted Life Years (QALYs), which

combine life years and the quality of life attributed to those years. The quality of life spent

in a health status is dependent on the patient’s preferences. Thus, value assessment plays a

crucial role in health care decision making problems.

Please refer to Section 3.2 for a detailed discussion of the value assessment in health care

decision making.
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2.2 TRANSPLANTATION DECISION MAKING

In this section, we discuss the literature on transplantation decision making. Transplantation

decision making problems are modeled either from a societal perspective or an individual

patient’s perspective. Thus, we divide our review into two parts.

2.2.1 Organ Acceptance Literature

The accept/decline decision of a patient is an optimal stopping problem in which the patient

makes a decision on when to accept the transplant and stop the process so as to maximize

the total expected reward, i.e., quality adjusted life years. The patient base her decision on

her current health status, underlying disease, location, presence or absence of a potential

living donor, quality of organ offered, current UNOS organ allocation policy which implies

the probability of receiving organ offers, and so on.

Research on organ acceptance problems are motivated by cadaveric kidney transplanta-

tion. David and Yechiali [26] model the accept/decline decision of a kidney patient. Patient

health is assumed to be the time spent on dialysis, which translates into a health status that

does not deteriorate over time. Moreover, the organ arrival rate decreases over time. They

present under which conditions the optimal policy takes the control-limit form. Ahn and

Hornberger [1] specifies the kidney types which yield the maximum post transplant quality

adjusted life years. They define a minimum acceptable one year survival rate. Using this

rate they incorporate patient preferences on the outcomes into their model. Their decision

epoch is a month while patients make decisions more frequently in real life. They provide an

exact analytical solution. Hornberger and Ahn [48] base the patient’s kidney accept/decline

decision on the one-year survival rate. They use real life data to estimate the survival rates.

In their numerical work, they impose control-limit structure on the policies. Brand [14]

models the optimal timing of a living-donor kidney transplant. Under the deterministic

pre-transplant utilities, they show that the future rate of progression of the disease does not

affect patient’s accept/decline decision.
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Howard [50] studies the accept/decline decision of a liver patient. He provides statistical

evidence for the existence of optimal control-limit policy. The organ arrival process of his

model does not depend on patient health. Alagoz et al. [5] provide a more detailed model for

liver transplantation. They study the optimal timing in the living donor liver transplantation

problem. Alagoz et al. [7] consider cadaveric liver offers only. They incorporate the effect

of the waiting list into the patient’s accept/decline decision via patient health dependent

organ arrival probabilities. Alagoz et al. [8] combine the ideas in their previous two papers.

They model the decision problem faced by a patient who has a living-donor liver and receives

cadaveric liver offers. The stream of papers by Alagoz et al. [5, 7, 8] provides conditions

under which the policy takes the optimal control limit structure for each decision problem

they model.

2.2.2 Organ Allocation Literature

The societal perspective of the organ allocation policies of UNOS aims for equity and ef-

ficiency. The organ allocation policies are designed in such a way that individuals with

the same level of medical urgency have equal access to organs independent of their age,

race, gender, blood type or other physiological characteristics. They also target a maximum

achievable number of quality adjusted life year gains through the transplantation activities.

Righter [78] models the organ allocation system as a discrete time sequential stochastic

assignment problem. She shows the monotonicity of the optimal value function. New patient

arrival is not allowed in her model. She assumes the post transplant rewards are independent

of the organ quality. David and Yechiali [24], in their similar model, allow new patient

arrivals. However, neither patients are allowed to die nor their health status are allowed

to deteriorate over time. Moreover, patients and organs arrive at the system in pairs. The

authors enhance their model in David and Yechiali [25] and increase the number of patient

and organ types. In their enhanced model, they discard organs once they are rejected by a

patient. Moreover, they do not let new patient arrivals. David [23] enhance the model further

to a continuous time discounting case. They show structural properties of the optimal policy

under a set of conditions. Zenios [104] models the waiting list as a queueing system. They
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have multiple classes of patients and multiple classes of organs in their model. Patients renege

due to death. They provide closed form expressions for waiting time metrics and fraction of

patients who receive transplantation. Patients never decline offers. Zenios et al. [106] model

the kidney allocation system as a continuous time, continuous state space deterministic

fluid model. The control variable is the fraction of each class of organ to offer to each

class of patient. The objective is maximizing efficiency, i.e., the total quality-adjusted life

years, while minimizing two measures of inequity, i.e., access of various group of patients to

kidneys and waiting time. They show that their suggested closed-form heuristic allocation

policy performs better than the current UNOS allocation policy via simulation model of

Zenios et al. [105]. In their fluid model, patient health does not change over time.

Zenios et al. [105] build a simulation model of kidney allocation system. They compare

policies with different levels of emphasis on equity, i.e., average waiting time until transplant,

and efficiency, i.e., quality adjusted life expectancy. They suggest policies which perform

better than the current UNOS allocation policy in terms of their performance metrics. Their

model does not let patient health progression over time. Howard [49] enhances the model of

Zenios et al. [105]. In his model, patient health changes over time, but there are only three

different health statuses. Ratcliffe et al. [74] make a cost-effectiveness analysis of various liver

allocation policies via a simulation model. They find the policy that gives higher priority to

healthiest patients as the most cost-effective one. Yuan et al. [103] build a simulation model

of kidney allocation system. They compare a set of policies each of which give different

weights to medical urgency and equity, i.e., waiting time, while prioritizing patients. They

do not let patients die while waiting on the list. Shechter et al. [87] provides a more detailed

simulation model of liver allocation system. They include a natural history component which

models the patient health progression as a function of laboratory values [6]. They do not

provide a comparison of various allocation policies.

Su and Zenios attempt to combine the societal and patient perspective in their stream

of work [88–90]. In [88], they model the kidney allocation system as a queueing system with

reneging. They let patients refuse the organ offers based on the expected outcome from the

transplant. In [89], they have a a sequential stochastic assignment model of the system. New

patients cannot arrive at the system. A rejected organ is immediately discarded. In [90],
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they model the allocation system as a queueing system in which patients, depending on their

type, choose to join a queue of different set of organs. The authors do not let patient health

progression in any of their work.
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3.0 ELICITING PATIENTS REVEALED PREFERENCES: AN INVERSE

MARKOV DECISION PROCESS APPROACH

3.1 ACKNOWLEDGMENT

The following content is reprinted by the kind permission from the Institute for Operations

Research and the Management Sciences: Z. Erkin, M. D. Bailey, L. M. Maillart, A. J. Schae-

fer, M. S. Roberts, “Eliciting Patients Revealed Preferences: An inverse Markov Decision

Process Approach,” Decision Analysis, 7(4), 358-365. c© 2010, the Institute for Operations

Research and the Management Sciences, 7240 Parkway Drive, Suite 300, Hanover, Maryland

21076 USA.”

3.2 MOTIVATION

Quantitative models of patient-oriented decision making require values that map a variety of

health outcomes to R+. If the patient seeks to maximize life expectancy, then these values are

simply the expected survival time associated with each health outcome. However, patients

do not value every living outcome equally; “perfect health” is preferred to paralysis. The

most common approach to capturing these preferences is to assign a value to each health

state, known as “quality-adjusted survival” or “quality-adjusted life years (QALYs),” [43].

A year in “perfect health” is worth one QALY, whereas death is given the value of zero

QALYs.

It can be shown that the QALY measure does not necessarily correspond to a von

Neumann-Morgenstern utility function [93, 99]. However, Garber and Phelps [41] claim
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that QALYs well approximate utility functions. Culyer [22] argues that the QALY mea-

sure is closer to true patient preferences than von Neumann-Morgenstern utilities and is

more useful in practice. For further details on the relationship between QALYs and von

Neumann-Morgenstern utility functions, see Drummond et al. [32].

Researchers have devoted enormous effort to assess the values patients place on health

states [43]. The most theoretically appealing and widely applied method for these purposes

is the standard gamble [92, 97]. The standard gamble ascertains the probability p at which

the patient is indifferent between staying in her current health state (e.g., severe fatigue

and jaundice induced by hepatitis C) for the remainder of her life, and a lottery where she

moves into “perfect health” with probability p and death with probability 1 − p; the value

associated with each year spent in her current state is then set equal to p years of perfect

health. Another method is the time tradeoff [80, 94]. Under this method, the patient is

asked to determine the amount of time spent in perfect health that is equivalent to a pre-

specified amount of time in her current health state. The time tradeoff method values the

current health state as the ratio between the time spent in perfect health and that spent in

the current health state.

These techniques have attracted criticism because the methods often produce inconsistent

values when patients are reassessed and, not surprisingly, different techniques often produce

different values. A summary of the drawbacks and potential biases of direct preference

assessment techniques is found in Gold et al. [43], Arnold et al. [10], and recent behavioral

economics research (c.f. Camerer et al. 18 and references therein).

Faced with a similar assessment problem in the context of utility theory, Samuelson

[82, 83] proposed that utility functions be estimated through revealed preferences. Rather

than eliciting utility functions from consumers directly, Samuelson suggested that inferences

about utility functions may be made from consumer choices. For instance, when bundles A

and B of goods are affordable, a consumer who purchases bundle A indicates that her utility

of A is at least as much as her utility of B. As such, the consumer has revealed her preference

of bundle A over B. In this manner, some of the decision maker’s ordinal preferences may

be observed.
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We propose a similar approach to estimating patient preferences over health states based

on a patient’s observed behavior. We assume that a risk-neutral patient (or a physician

acting on behalf of the patient) makes decisions that maximize her expected QALYs under

health state valuations that are known only to herself. The assumption that a risk-neutral

patient maximizes expected QALYs is common in the health state valuations assessment

literature [43], and has been theoretically justified [13]. The goal is to find a set of health

state valuations such that the patient’s observed behavior is optimal. Of course, if there

exists a set of health state valuations under which the observed behavior is optimal, there

are infinitely many such sets (for example, the observed behavior will be optimal under

any positive scalar multiple of these valuations). To mitigate this complication, we use

non-quality adjusted expected survival as a base set of patient health state valuations. By

considering restricted perturbations of these base valuations as a function of observed patient

behavior, we arrive at a refined estimate of patient preferences. Such an approach can be

categorized in the mathematical framework of inverse optimization. We caution that revealed

preference approaches also appear to be subject to framing effects [98], which may limit the

efficacy of our approach.

There are pragmatic reasons for our approach. Attempts to directly determine patient

preferences are typically limited to no more than a few medical centers, and as few as several

dozen patients. Using our approach, patient preferences can be assessed from deidentified

data; the patient need not know that her preferences are being assessed. As such, our method

can be applied to national datasets to estimate aggregate patient preferences. However, we

caution that our method does not apply if limited or no data are available. In such a case,

traditional methods of assessing patient preferences are the only option.

We illustrate our proposed inverse optimization technique on the optimal timing of living-

donor liver transplantation. Applying the technique in this domain may support future

research on how individual patients would react to changes in the national liver allocation

system. Answering this question requires a model of the allocation system in which patients

make accept/reject decisions when organs are offered to them, and therefore requires the

specification of patients’ health preferences. Recent work [5, 7, 8, 84] has analyzed this

sequential decision making problem, however, because quality-adjusted data do not exist,
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the valuations were not quality adjusted. Using the proposed revealed preference approach,

we can more accurately parameterize the health state valuations of individual accept/reject

decision models that consider patient health, organ quality and waiting list rank.

The remainder of the paper is organized as follows. In Section 3.3, we formalize our

inverse optimization approach for a generic Markov decision process (MDP). We describe

a specific MDP application concerning living-donor liver transplantation and present a nu-

merical example in Section 3.4. We conclude in Section 3.5.

3.3 INVERSE MARKOV DECISION PROCESSES

An inverse optimization problem adjusts the parameters of a given optimization problem so

that a particular feasible solution becomes an optimal solution. More specifically, consider

an optimization problem P and a vector c. Given a feasible solution, x, and a nonnegative

weight vector, w, an inverse optimization approach seeks to perturb the vector c to another

vector d such that the solution x becomes an optimal solution to P with respect to the

vector d and the weighted Lp norm ‖w(d− c)‖p is minimized. Consistent with the existing

literature, a vector for which the solution x is optimal is called inverse-feasible.

Inverse optimization has been widely applied in various areas, such as portfolio opti-

mization [19], transportation networks [17, 31] and geophysical sciences (Tarantola 91 and

references therein). Ahuja and Orlin [2] studied inverse problems under the weighted L1 and

L∞ norms. Using duality, they established relationships between the optimization problem,

P, and the inverse problem when P was a shortest path, assignment, minimum cost flow or

minimum cut problem. A detailed survey of inverse combinatorial optimization problems is

in Heuberger [46].

In the context of an MDP, given a stationary deterministic policy π◦, the inverse opti-

mization objective is to perturb the reward vector c to a new reward vector d, such that the

policy π◦ is optimal and ‖d− c‖p is minimized. Consider a discounted, infinite-horizon MDP

with (finite) state space S. For every state s ∈ S, let the (finite) set of feasible actions be

As. Furthermore, for each state-action pair, let c(s, a) represent the corresponding immedi-
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ate expected reward, |c(s, a)| ≤ M < ∞. A transition from state s to state j when action

a ∈ As is chosen occurs with probability p(j|s, a). Given these assumptions and a discount

factor 0 ≤ λ < 1, it can be shown that there exists an optimal Markovian, deterministic,

stationary policy [12]. Note, however, that many medical decision making problems include

an absorbing state (reachable from all other states) that represents death, in which case dis-

counting is not necessary, i.e. λ = 1 is possible. Let vπ(s) be the total expected discounted

reward under such a policy π when the system begins in state s, and similarly let v be the

optimal value vector, which can be obtained by solving the optimality equations,

v(s) = max
a∈As

{
c(s, a) + λ

∑
j∈S

p(j|s, a)v(j)

}
for all s ∈ S. (3.1)

For finite state and action models, (3.1) can be recast as a linear program [30]. Let

γ ∈ R|S|
+ be such that γ(i) ≥ 0 and

∑
i

γ(i) > 0. If we require
∑
i

γ(i) = 1 we may interpret γ

as an initial probability distribution over S [73]. Then the linear program (LP) formulation

of (3.1) is given by

min
v

∑
j∈S

γ(j)v(j) (3.2a)

subject to

v(s) ≥ c(s, a) + λ
∑
j∈S

p(j|s, a)v(j), ∀ s ∈ S, a ∈ As (3.2b)

v(s) free, ∀s ∈ S. (3.2c)

Given a feasible stationary deterministic policy π◦ for the MDP defined by (3.1), we seek

to perturb the reward vector c to a new set of rewards d(s, a) such that the weighted L1

norm,
∑

(s,a)w(s, a)|d(s, a)− c(s, a)|, is minimized and π◦ is optimal for the MDP defined by

(3.1) when the vector c is replaced by the vector d. Specification of the weights, w ∈ R|S|×|A|
+ ,

is problem-specific and depends on the state definition (see, for example, Section 3.4.2). The

new reward vector d determined through this approach is said to be inverse feasible with

respect to π◦.
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By complementary slackness, π is the optimal solution for the MDP defined by (3.1) if

and only if it is feasible and

π(s) = a implies vπ(s) = c(s, a)− λ
∑
j∈S

p(j|s, a)vπ(j), ∀s ∈ S. (3.3)

In other words, if π is optimal for the MDP defined by (3.1), then the inequality constraints

corresponding to the state-action pairs specified by π are satisfied as equalities. Hence we

define the “inverse MDP” as

min
d

∑
s∈S

∑
a∈As

w(s, a)|d(s, a)− c(s, a)| (3.4a)

subject to

v(s) ≥ d(s, a) + λ
∑
j∈S

p(j|s, a)v(j), ∀s ∈ S, a 6= π◦(s), (3.4b)

v(s) = d(s, a) + λ
∑
j∈S

p(j|s, a)v(j), ∀s ∈ S, a = π◦(s), (3.4c)

d ∈ D, (3.4d)

v(s) free, ∀ s ∈ S, (3.4e)

d(s, a) ≥ 0, ∀ s ∈ S, ∀ a ∈ As, (3.4f)

where the set D in (3.4d) is a (possibly polyhedral) set that represents additional require-

ments on the form of the rewards, e.g., monotonicity. By minimizing the weighted norm

of the distance from a vector c, the inverse optimization problem finds the inverse-feasible

vector d that is “closest” to c among all inverse-feasible vectors. Therefore, care must be

given to the choice of both c and w.

Our approach makes the following assumptions:

Assumption 1: The patient is a risk-neutral decision maker who maximizes total expected

discounted reward.

Assumption 2: The discount rate, λ, is known for each patient.

Assumption 3: All decisions are based on patient physiology alone.

Assumption 4: The patient has complete knowledge of the transition probabilities govern-

ing disease progression.
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These assumptions ensure that the patients decision process is well modeled by the MDP

framework. If the patient’s MDP model is flawed because one of these assumptions is not

adequately met, then the changes made to the rewards through the inverse optimization

procedure may be due to these other deficiencies rather than simply the misspecification of

the rewards, and hence not reflect the true rewards.

We recognize that these assumptions may not always hold in practice. Relaxing As-

sumption 1 would require modeling the inverse of a risk-sensitive MDP [51, 57, 70], and

considering alternative optimality criteria. Relaxing Assumption 2 would introduce non-

linearities into the mathematical program given by (3.4) becoming a nonlinear program.

Furthermore, adding additional parameters to be inferred (such as a patient’s risk sensitiv-

ity or discount rate) would require additional terms in the objective function. Overcoming

Assumptions 3 and 4 appears to be more difficult, particularly if our proposed inverse MDP

approach is applied to deidentified patients.

3.4 NUMERICAL EXAMPLE: LIVING-DONOR LIVER

TRANSPLANTATION

We describe a living-donor liver transplantation application that we use to illustrate the

concepts described in Sections 3.2 and 3.3. The problem is to determine when, as a function

of health, a patient should consent to a living-donor transplant. Alagoz et al. [5] studied

this optimal stopping problem by formulating a discrete time, infinite horizon, discounted

MDP model. Assuming that the patient is not entertaining deceased-donor organ offers, the

state space S is comprised of a set of health states, 1, 2, ..., H, and the absorbing death state,

H + 1. Two actions, Wait (W ) and Transplant (T ), are available at each decision epoch,

and the objective is to maximize the total expected discounted life days of the patient. The

decision epochs are defined as days. Let p(s′|s) be the probability that the patient will be in

health state s′ at time t+ 1 given that she is in health state s at time t and the transplant

does not occur. Let c(s, T ) be the total expected discounted post-transplant life days of

the patient when the patient receives the transplant in health state s, and c(s,W ) be the
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expected immediate reward accrued in the current period when the patient chooses to wait

in health state s. An optimal solution to this problem is obtained by solving the following

optimality equations

v(s) = max

{
c(s, T ), c(s,W ) + λ

H+1∑
s′=1

p(s′|s)v(s′)

}
for s=1,..., H, (3.5)

and v(H + 1) = 0 where v(s) is the maximum total expected discounted reward a patient in

health state s can attain.

For this problem, the linear program given by (3.2a)-(3.2c) takes the following form

min
v

∑
j∈S

γ(j)v(j) (3.6a)

subject to

v(s) ≥ c(s,W ) + λ
∑
j∈S

p(j|s)v(j), ∀ s ∈ S, (3.6b)

v(s) ≥ c(s, T ), ∀ s ∈ S, (3.6c)

v(s) free, ∀s ∈ S. (3.6d)
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Thus, given a policy π◦, the inverse MDP formulation of the living-donor liver transplan-

tation problem is given by

min
d

∑
s∈S

∑
a∈As

w(s, a)|d(s, a)− c(s, a)| (3.7a)

subject to

v(s) = d(s,W ) + λ
∑
j∈S

p(j|s)v(j), ∀s ∈ S, π◦(s) = W, (3.7b)

v(s) ≥ d(s, T ), ∀s ∈ S, π◦(s) = W, (3.7c)

v(s) ≥ d(s,W ) + λ
∑
j∈S

p(j|s)v(j), ∀s ∈ S, π◦(s) = T, (3.7d)

v(s) = d(s, T ), ∀s ∈ S, π◦(s) = T, (3.7e)

d(s, a) ≥ d(s+ 1, a) ∀ s ∈ S, a ∈ {W,T}, (3.7f)

d(s,W ) ≤ 1 ∀ s ∈ S, (3.7g)

v(s) free, ∀ s ∈ S, (3.7h)

d(s, a) ≥ 0, ∀ s ∈ S, ∀ a ∈ {W,T}. (3.7i)

The set D in constraint (3.4d) is given by (3.7f) and (3.7g), which ensure that as the patient’s

health deteriorates both the post-transplant life expectancy as well as the reward associated

with waiting an additional day decrease, and that the expected reward gained while waiting

one day does not exceed one day.

3.4.1 Estimation of Parameters and Implemented Policies

We model patient health using Model for End-stage Liver Disease (MELD) scores. MELD

scores map three laboratory values to an integer between 6 (healthiest) and 40 (sickest). Due

to data scarcity, we aggregate consecutive MELD scores into groups of two. The transition

probabilities and post-transplant rewards are derived using two data sets, one provided by the

United Network for Organ Sharing and the other by the Thomas E. Starzl Transplantation

Institute at the University of Pittsburgh Medical Center. The former includes 28,717 adult

end stage liver disease patients and the latter 3,009 patients. Decision epochs correspond to

days, hence the non-quality-adjusted immediate expected rewards c(s,W ), which we refer to
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as the data-driven “wait” rewards, are set equal to 1 for all s. The health state transitions

are modeled by the empiric disease-specific method of Alagoz et al. [6]. The post-transplant

rewards c(s, T ), which we refer to as the data-driven “transplant” rewards, are calculated

using the Cox proportional hazard model of Roberts et al. [79]. We refer to the optimal

policy for the Alagoz et al. [5] model under these rewards as the “suggested” policy.

We assume that the policy used by the patient was a control-limit policy with threshold

equal to the MELD score of the patient at the time of transplantation. That is, we assume

that the patient’s MELD score prior to transplantation was below this threshold, and trans-

plantation was initiated the first time the MELD score met or exceeded the threshold. This

assumption is mild given that MELD scores rarely jump by more than one from day to day

and control-limit policies are almost always optimal in practice [5].

3.4.2 Numerical Results

Consider a 48-year old male patient with hepatitis C. According to the solution to (3.5),

the optimal control-limit is MELD score 26. Suppose the implemented control-limit of this

patient is MELD score 14. That is, the patient opts for transplantation earlier than the

MDP model (3.5) suggests.

Table 1 includes the data-driven rewards, the suggested policy obtained by solving (3.5),

the implemented policy, the weights used in the inverse MDP objective function and the

policy-driven rewards obtained by solving the inverse MDP. Table 2 includes the value of

waiting and transplanting in each state under the data-driven and policy-driven rewards, as

well as their difference.

In the example presented, we use an annual discount rate of 0.97. Furthermore, for each

state-action pair we set the corresponding weight, w(s, a), equal to the reciprocal of the

discounted expected number of times that that state-action pair would be realized under

the suggested policy, starting from the healthiest MELD score. If w(s, a) is viewed as a

“penalty” per unit change in c(s, a), (i.e., per unit of |d(s, a)− c(s, a)|) that is incurred every
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Table 1: Policies, rewards and weights for the early transplanter

MELD Suggested Implemented
Score c(s,W ) c(s, T ) Policy Policy w(s,W ) w(s, T ) d(s,W ) d(s, T )
6-7 1 2039 W W 0.003506 0.8022 2039
8-9 1 1994 W W 0.002137 0.4924 1994

10-11 1 1945 W W 0.002364 0.4924 1945
12-13 1 1896 W W 0.003152 0.3792 1896
14-15 1 1843 W T 0.004783 0.3792 1843
16-17 1 1795 W T 0.008497 0.3792 1795
18-19 1 1751 W T 0.018095 0.3792 1751
20-21 1 1701 W T 0.025127 0.3792 1701
22-23 1 1650 W T 0.045513 0.3792 1650
24-25 1 1597 W T 0.081978 0.3792 1597
26-27 1 1536 T T 2.033 0.3792 1536
28-29 1 1491 T T 11.36 0.3792 1491
30-31 1 1447 T T 117.11 0.3792 1447
32-33 1 1384 T T 0.3792 1384
34-35 1 1341 T T 0.3792 1341
36-37 1 1283 T T 0.3792 1283
38-39 1 1226 T T 0.3792 1226

40 1 1172 T T 0.3792 1172
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Table 2: Values of state-action pairs under the two sets of rewards for the early transplanter

MELD vW (s) vT (s) vW (s) vT (s) difference in
Score under reward c(s, a) under reward d(s, a) vW (s) vT (s)
6-7 2848.70 2039.04 2077.78 2039.04 770.92 0.00
8-9 2761.00 1994.12 1994.12 1994.12 766.88 0.00

10-11 2625.36 1944.81 1944.81 1944.81 680.55 0.00
12-13 2467.09 1896.11 1897.63 1896.11 569.46 0.00
14-15 2278.42 1842.93 1842.85 1842.93 435.57 0.00
16-17 2099.93 1795.43 1795.43 1795.43 304.50 0.00
18-19 1923.50 1751.13 1749.99 1751.13 173.51 0.00
20-21 1784.59 1701.48 1699.89 1701.48 84.70 0.00
22-23 1666.34 1649.87 1647.38 1649.87 18.96 0.00
24-25 1601.07 1597.13 1595.52 1597.13 5.55 0.00
26-27 1527.84 1536.28 1526.65 1536.28 1.18 0.00
28-29 1478.54 1490.84 1477.85 1490.84 0.68 0.00
30-31 1404.91 1446.97 1404.21 1446.97 0.70 0.00
32-33 1342.11 1384.36 1341.47 1384.36 0.64 0.00
34-35 1300.08 1340.93 1299.46 1340.93 0.62 0.00
36-37 1229.30 1283.04 1228.68 1283.04 0.62 0.00
38-39 1164.66 1225.74 1164.04 1225.74 0.62 0.00

40 1060.92 1171.74 1060.29 1171.74 0.62 0.00
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time that state-action pair is realized, then setting the weights in this manner equates the

total expected discounted penalty associated with each state-action pair and the magnitude

of the change in the corresponding c(s, a) value.

Consider, for example, the suggested policy reported in Table 1. The empty w(s, a)

entries correspond to state-action pairs that never occur under the suggested policy starting

from the healthiest MELD score. Clearly, these state-action pairs include the suboptimal

combinations, i.e., transplant (wait) actions for MELD scores below (at or above) 25. Ad-

ditionally, due to the highly diagonal nature of the MELD score transition matrix, when

starting from the healthiest MELD score it is impossible to reach MELD scores above 31

without first visiting a MELD score between 26 and 31. As a result, although it is optimal to

transplant in MELD scores above 31, these state-action pairs will never occur when imple-

menting this policy starting from the healthiest MELD score. For all of these “impossible”

state-action pairs, we set w(s, a) equal to an arbitrarily large value. The remaining weights

are such that

1

0.003506
·1+

1

0.002137
·1+

1

0.002364
·1+

1

0.003152
·1+

1

0.004783
·1+

1

0.008497
·1+

1

0.018095
·1+

1

0.025127
·1+

1

0.045513
·1+

1

0.081978
·1+

1

2.033
·1536+

1

11.36
·1491+

1

117.11
·1447 = 2848.70,

which, as expected, is the total expected discounted reward starting from the healthiest

MELD score under the suggested policy as reported in column 2 of Table 2.

As seen in Table 1, the revised transplant rewards, d(s, T ), are identical to the data-

driven rewards. However, the revised wait rewards, d(s,W ), exhibit a stepwise non-increasing

structure. This structure can be interpreted as a reflection of quality of life preferences across

MELD scores, and/or a preference to end the optimal stopping problem sooner rather than

later. That is, the patient places less value on days spent in sicker states and/or places

less value on days spent living with uncertainty as to when the transplant will occur. Also

noteworthy is the fact that the arbitrarily large weights need not be very large to produce the

same result; indeed, any value greater than approximately 0.15 for these weights produces

the same vector d.
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An instance for a “late transplanter,” i.e., a patient who opts for transplantation later

than the MDP model (3.5) suggested, can be structured similarly. Intuition suggests that

“late transplanters” value waiting (transplanting) more (less) than is reflected by the data-

driven rewards.

3.5 CONCLUSION AND FUTURE RESEARCH

Estimating patient preferences is an important component of medical decision making mod-

els, but traditional techniques suffer from various drawbacks, namely the fact that it is

difficult to obtain large samples, patients may find questionnaires hard to follow, and pa-

tients may provide logically inconsistent responses. We propose a new, indirect method for

inferring patient preferences based on their observed policies. We formulate this problem as

an inverse MDP, and use linear programming to solve it. We illustrate our techniques on the

problem of timing a living-donor liver transplant as a proof of concept. More realistic models

which include deceased-donor liver transplantation as an alternative to the living-donor liver

[7, 8] could also be considered with proper modifications to the inverse MDP model.

Future work could include this method’s application to different clinical decisions, and

the use of the inferred patient preferences in societal decision models. Such a model could,

for example, examine the effect of patients using the inferred patient preferences under

a different liver allocation system. We also leave for future work the relaxation of the

assumptions described in Section 3.3. While relaxing Assumptions 1 and 2 appears to be

possible through more difficult optimization models, Assumptions 3 and 4 may be necessary

for our approach, particularly with de-identified data.
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4.0 A SIMULATION MODELING APPROACH TO PLACING

EXPEDITED LIVERS

4.1 INTRODUCTION

As discussed in Chapter 1, expedited liver placement is an escape mechanism to avoid not

placing a liver [21]. When a deceased organ donor is identified, standard placement procedure

starts. The coordinator from the organ procurement organization contacts UNOS. Based on

the characteristics of the donor and the patients waiting for a transplant, a ranked list of

patients, i.e., a match list, is generated. The procurement coordinator attempts to place the

organ with a recipient by proceeding down the match list. Once contacted, patients (or on

behalf of them, their surgeons) have one hour to respond. The procurement coordinator can

extend limited number of simultaneous local offers at a time to speed the match process. The

responses of the patients who receive such an offer are considered according to the patients’

positions on the match list. Patients frequently decline organs. Although approximately

2,000 listed patients die each year due to the scarcity of organs (Figure 2) [76], 45% of

livers are declined by the first patient on their match list [50]. As the standard placement

procedure continues, the organ ages and becomes less desirable due to the decrease in the

quality. Therefore, to prevent the organ from being discarded at some point the procurement

coordinator may stop the standard prioritized matching procedure and offer the organ to a

transplant center as an “expedited organ.”

In the liver allocation system, each liver might become an expedited liver depending on

the attributes of the organ and attributes of the patients on the waiting list. Organs that
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became an expedited organ constituted between 10% and 25% of all organs in 2006 [72].

Today expedited placement still attracts attention [77]. To prevent organs from being dis-

carded, expedited placement is still suggested [67, 95].

When an expedited liver is offered to a transplant center, the center coordinator decides

which, if any, of its patients should receive the organ regardless of their position on the match

list. The transplant center coordinator aims to balance the trade-off between medical urgency

(e.g., pre-transplant likelihood of death) and anticipated outcomes (e.g., post-transplant

likelihood of one-year graft survival) for the diverse, dynamic set of patients listed at the

transplant center, while utilizing as many organs as possible. When an expedited liver is

allocated to an individual, she avoids the pre-transplant likelihood of death and earns an

expected post-transplant lifetime. In the meantime, however, she also loses the opportunity

of having a non-expedited liver transplant which would likely yield a better health outcome

compared to the expedited liver transplant.

In this chapter, we build a discrete-time discrete-event simulation model for the expedited

liver placement problem. We construct various expedited liver allocation policies based on

the different aspects of the system at the transplant center. We compare and contrast these

policies via our simulation model.

The chapter is structured as follows: Section 4.2 describes our simulation model (SIM1).

Because we build multiple simulation models throughout this dissertation, we name them as

SIMx in which x stands for the order in which it is presented. Section 4.3 reviews the datasets

utilized in the parameter estimation and explains the parameter estimation methods. Section

4.4 presents the validation of the simulation model. Section 4.5 describes our numerical study

and presents results. Section 4.6 concludes the section.

4.2 SIMULATION MODEL SIM1 DESCRIPTION

In our study, to define liver types we employ Alagoz [3]’s approach. We characterize each

organ by its donor’s age group, gender and ethnicity. Alagoz [3] uses the Cox proportional

hazard model of Roberts et al. [79] to order the liver types. The author defines 28 categories.
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Liver quality depends on the sex match between the donor and the recipient. Due to data

sparsity, we aggregate the liver qualities. We assume there are two expedited liver qualities.

In his study, Alagoz [3] considers only female patients. We extend his definition to include

male patients, in addition to female ones, in our study. However, we use the same ordering

of liver types. We do not incorporate CIT into our analysis. Because CIT is not found to be

a significant factor in the regression analysis of Roberts et al. [79].

Because blood type compatibility between the donor and the patient decreases the risk

of organ rejection and increases the post-transplant lifetime [39, 79], in addition to the

attributes used to define the liver types we also employ blood type to characterize an organ.

Patient-level accept/decline decision process is always a part of an allocation system.

The attributes of patients play a crucial role in this decision process. We group patient

attributes, e.g., age, gender, etc., into patient types. We employ MELD (Model for End

Stage Liver Disease) score, which measures patient’s probability of death using a mortality

risk score corresponding to the degree of medical urgency, to indicate patient’s health status.

We specify each patient listed at the transplant center by her MELD score and patient type.

While defining patient types, due to data sparsity, we aggregate patients with different

blood types under the same patient type. We estimate model parameter values accordingly.

However, the flexible structure of simulation modeling enables us to differentiate patients of

the same type. In the simulation model, first the organ is assigned to a patient type-MELD

score pair. Then, among the patients of that specific patient type-MELD score pair only

blood compatible patients are considered for final assignment. That is, patients of the same

type can have different blood types and they are treated differently in the simulation model

during organ assignment depending on the blood type of the organ.

MELD scores have a range between 6 (healthiest) and 40 (sickest). Due to data scarcity,

we aggregate consecutive MELD scores into groups of two. Our aggregated MELD scores

have a range between 1 and 18. We do not consider Status 1 patients in our study. Because

at any point of time there are fewer than a dozen of Status 1 patients nationwide.

Patient type is a function of disease group, age group, blood type, gender, whether the

patient has a positive cytomegalovirus (CMV), encephalopathy and a prior transplant or
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not. These attributes are the variables which are found to be significant in the regression

analysis of Roberts et al. [79]. We consider only adult patients (18≤age<80).

We assume that when offered an expedited organ, the patient accepts or declines the

organ based on the optimal control limit introduced by Alagoz et al. [7]. The authors model

the accept/decline decision of a patient as a discrete time, infinite horizon, discounted MDP

model. Given an expedited organ offer of type d ∈ {1, 2, . . . , D,D + 1} (D + 1 denoting no

offer), if a patient of type i ∈ {1, 2, . . . , τ} has a MELD score less than the optimal control

limit, µ∗i (d), then she rejects the offer. Otherwise, she accepts the offer. The optimal control

limit balances the expected post-transplant lifetime and the expected lifetime if the current

liver offer is rejected. The sufficient conditions that ensure the existence of a control limit

are listed as follows in the study of Alagoz et al. [7]:

• an increasing failure rate (IFR) health transition matrix,

• for any given liver type, as the patient gets worse the increase in the probability of

receiving an offer must be smaller than the reduction in the total expected discounted

post-transplant reward,

• as the patient gets worse, the reduction in the benefit of waiting is greater than the

reduction in the benefit of performing the transplant,

• the worse the patient, the more probable that the patient will become even worse.

Please refer to the paper by Alagoz et al. [7] for details. The rewards utilized in the generation

of the optimal control limits are the survival times calculated by the Cox proportional hazard

model of Roberts et al. [79].

Patients with the same gender, disease group and optimal control limits for both liver

qualities are grouped under the same patient type. Because patients with the same gender,

disease group and different blood types might have the same optimal control limits for the

liver types, a patient type includes patients with different blood types. In our model, we

assume that patient type never changes during the process, patients of the same type and

MELD score are indistinguishable and all patients are independent of each other.

The (random) events that take place at the transplant center on a daily basis are expe-

dited transplant (if any), non-expedited transplant(s), health transitions including deaths,
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arrival of new patients at the center. Due to the nature of these events, we construct

a discrete-time discrete-event simulation model (SIM1). The time unit of the simulation

model SIM1 is chosen to be days, because in our datasets utilized to estimate the model

parameters expedited liver offers arrive at the center every four days on average (refer to

Section 4.3.1). Because the events are modeled to take place on a daily basis, our model

SIM1 takes the form of a discrete-time simulation model. The flow of the events in the

simulation model SIM1 is presented in Figure 5.
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Figure 5: Simulation flow chart of daily events.

Each iteration, i.e., day, in the simulation starts with a probable expedited liver arrival.

If there is an expedited liver offer on the current day, then the type of the expedited liver

is specified and the transplant center coordinator attempts to match the liver with a pa-
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tient. Given the liver is of type d and blood type b ∈ {A, B, AB, O}, the transplant center

coordinator chooses a patient of type i among the blood compatible ones with a MELD

score j ≥ µ∗i (d) to assign the liver to according to the expedited liver allocation policy being

simulated. If the policy gives priority to a specific (i, j) pair patients over the other patients

to receive the liver offer, but none of the (i, j) patients accept the offer according to their

optimal control limits, then the organ is not assigned to those (i, j) patients and the next

(i, j) pair patients with the highest priority receive the offer. If there is no patient who

accepts the expedited liver, then the liver is rejected. Once the decision on the expedited

liver placement is done, the non-expedited liver transplants take place. Patients who receive

a non-expedited liver transplant leave the system. The remaining patients go under health

transitions. Due to these health transitions, some patients might die. Finally, new patients

join the waiting list at the center. Once joined, their patient type and initial MELD score

are specified. The patient type defines the patient’s gender and determines her blood type

based on a distribution.

Because the datasets used to estimate the parameter values cover a 4-year long time

horizon (see Section 4.3.1), we set each replication to a year. The warm-up period is set to

last five replications, i.e., years. Through the end of the warm-up period it is observed that

the patient population size at the center has reached steady state.

4.3 PARAMETER ESTIMATION

The parameters to be estimated are as the following.

• r((i, j), d), the expected post-transplant lifetime that a patient of type i and MELD

score j obtains when she receives an expedited liver transplant from an organ of type d,

i ∈ {1, 2, . . . , τ}, j ∈ {1, 2, . . . , 18}, d ∈ {1, 2, . . . , D,D + 1}

• Hi(j
′|j), the probability that a patient of type i and MELD score j has a health transition

to MELD score j′ on a day, i ∈ {1, 2, . . . , τ}, j ∈ {1, 2, . . . , 18}, j′ ∈ {1, 2, . . . , 18}

• D(d, b), the probability of receiving an expedited offer from an organ of organ type

d ∈ {1, 2, . . . , D,D + 1} and blood type b ∈ {A, B, AB, O} on a day
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• the probability that k patients join the waiting list at the center on a day, k ∈ {0, 1, 2, . . .}

• ρij, the likelihood that when a new patient joins the list, she is of type i ∈ {1, 2, . . . , τ}

and MELD score j ∈ {1, 2, . . . , 18}

• the probability that a new patient of type i ∈ {1, 2, 3 . . . , τ} is of blood type b ∈

{A,B,AB,O}

• ξi(j), the probability that a patient of type i and MELD score j receives a non-expedited

transplant on a day, i ∈ {1, 2, . . . , τ}, j ∈ {1, 2, . . . , 18}

4.3.1 Data Sources

The estimation of the parameter values is based on multiple datasets. We make use of

the Cox proportional hazard model of Roberts et al. [79] to estimate the expected post-

transplant lifetimes. The authors utilize a UNOS dataset including transplant information

of 17,044 liver patients who received a transplant between 1990 and 1996. The health

transition probabilities are based on the work of Alagoz et al. [4, 6] and Bryce et al. [16].

The authors develop a natural history model to estimate disease progression based on clinical

and biological factors. Then, they estimate the health transition probabilities via simulation.

They utilize a dataset coming from the Thomas E. Starzl Transplantation Institute at the

University of Pittsburgh Medical Center (UPMC). The dataset includes information on 3,009

liver patients who joined the list between 1991 and 2000.

The rest of the parameter values are estimated using three datasets coming from the

Thomas E. Starzl Transplantation Institute at the University of Pittsburgh Medical Center

(UPMC). The first dataset includes information on 1,050 adult liver patients, i.e., date to

join the list, age (≥ 18), gender, primary reason for the need for transplantation, blood

type, MELD score at listing, MELD score at transplant or death or the time datasets were

generated, date of death (if any), date of transplant (if any), whether the patient received

a prior transplant or not, whether the patient had CMVGR or not, whether the patient

had encephalopathy or not. The second dataset includes information on 5,858 livers offered

to patients at UPMC, i.e., the procurement date, the offer type (expedited/non-expedited),

donor’s age, donor’s gender, donor’s blood type, whether the organ was transplanted or not.
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3,049 livers, out of 5,858, were offered to UPMC as a back-up offer. Back up offer is for a

patient on the waiting list but is lower than the first patient. It is used to speed the match

process. If the patient(s) prior to the patient who has received a back-up offer rejects the

organ offer, then the patient who has received the back offer has the right to receive the

transplant. In such a case, the back-up offer is not called a back-up offer anymore. That is,

3,049 livers were actually never offered to UPMC. The third dataset includes information on

813 liver-patient matches, i.e., organ identification number, patient identification number,

date of transplant, offer type (expedited/non-expedited). The datasets cover the time period

(2006, 2010). They were generated by UPMC upon request.

4.3.2 Estimation Methods

We assume the liver quality 1 corresponds to the highest quality liver and the liver quality

2 corresponds to the lowest quality liver. In Table 3, the liver qualities corresponding to

different organ attributes and recipient genders are listed.

We group patients with the same gender, disease group and optimal control limits for

both liver qualities under the same patient type. The information on gender determines

the liver quality of the organ offered. The information on disease group specifies the health

progression of the patient. Because we do not have health transition probabilities for liver

patients whose primary reason for transplant is cancer, we exclude such patients from our

study. We assume there are three disease groups. The first disease group includes primary

biliary cirrhosis, primary sclerosing cholangitis, alcoholic liver disease, autoimmune disorders

and metabolic disorders. The second disease group contains hepatitis B and C viruses. The

third disease group includes acute diseases. The disease group classification is based on the

study of Roberts et al. [79]. The optimal control limits specify how a patient behaves once

offered an organ. We define 58 patient types. Due to data sparsity, we eliminate the patient

types which do not have any appearance in the UPMC patient dataset and assume there are

32 patient types. In Table 4, patient types’ attributes and frequency of observations in the

patient dataset and match dataset are provided.
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Table 3: Mapping of organ attributes to liver qualities

d age race gender liver quality-female recipient liver quality-male recipient

1 0-20 White Female 1 1
2 21-30 White Female 1 1
3 31-40 White Female 1 1
4 41-50 White Female 1 1
5 51-60 White Female 1 2
6 61-70 White Female 1 2
7 71-. . . White Female 2 2
8 0-20 not White Female 1 1
9 21-30 not White Female 1 2
10 31-40 not White Female 1 2
11 41-50 not White Female 2 2
12 51-60 not White Female 2 2
13 61-70 not White Female 2 2
14 71-. . . not White Female 2 2
15 0-20 White Male 1 1
16 21-30 White Male 1 1
17 31-40 White Male 1 1
18 41-50 White Male 1 1
19 51-60 White Male 2 1
20 61-70 White Male 2 1
21 71-. . . White Male 2 2
22 0-20 not White Male 1 1
23 21-30 not White Male 2 1
24 31-40 not White Male 2 1
25 41-50 not White Male 2 2
26 51-60 not White Male 2 2
27 61-70 not White Male 2 2
28 71-. . . not White Male 2 2
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Table 4: Patient type definitions and frequency of observations in datasets

Patient Frequency of Observations Control Limits Gender Disease
Type in the Patient Dataset in the Match Dataset 1 2 Group

1 143 68 4 4 F 1
2 122 68 4 4 M 1
3 115 66 4 5 F 1
4 234 130 4 5 M 1
5 8 4 5 5 F 1
6 3 2 5 5 M 1
7 6 1 5 6 F 1
8 13 5 5 7 F 1
9 16 8 5 7 M 1
10 8 5 5 8 M 1
11 1 1 6 7 F 1
12 1 0 6 8 F 1
13 15 7 6 8 M 1
14 1 1 7 8 F 1
15 4 2 7 8 M 1
16 10 3 9 11 M 2
17 3 1 10 11 F 2
18 14 10 10 11 M 2
19 52 30 11 11 F 2
20 118 89 11 11 M 2
21 6 1 11 12 F 2
22 19 10 11 12 M 2
23 1 0 12 12 F 2
24 5 1 12 12 M 2
25 3 0 12 13 F 2
26 15 8 12 13 M 2
27 12 5 7 7 F 3
28 3 3 7 7 M 3
29 13 7 7 9 F 3
30 4 1 7 9 M 3
31 3 2 9 9 F 3
32 5 1 9 9 M 3
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To estimate the probability of receiving an expedited offer from an organ of organ type

d ∈ {1, 2, . . . , D,D + 1} and blood type b ∈ {A, B, AB, O}, we assume that the time

between expedited organ offers follows a geometric distribution with parameter p. Thus, the

parameter p is calculated as the following.

p =
1

mean days between expedited offers
.

Then, the probability of an expedited offer from an organ of organ type d and blood type b

is obtained using the following formula:

D(d, b) = Pr(expedited organ arrives)·
Pr(offer is from organ of organ type d and blood type b|expedited organ arrives)

= p · Pr(offer is from organ of organ type d and blood type b|expedited organ arrives)

= p · total number of expedited offers from organ of organ type d and blood type b
total number of expedited offers

In the UPMC liver dataset, the average time between 381 expedited organs’ offer time is

3.86 days. That is, we calculate p as 0.26.

In the UPMC liver dataset, race information of donors is missing. Thus, we assume race is

independent of donor’s age, gender and blood type. According to 2009 OPTN/SRTR Annual

Report (Figure 6), white donors constitute approximately 80% of the patient population [76].

Thus, we assume the probability that a donor is white is 0.80.
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Figure 6: Distribution of race among the deceased donor liver transplants.

To estimate the probability that k patients join the list, k ∈ {1, 2, . . .}, we count the

number of arrivals on each day covered in the datasets. In the UPMC patient dataset, we

observe maximum 5 arrivals at the center on a day. The dataset covers 1558 days. Table 5

presents the number of days in which k new patients, k ∈ {0, 1, 2, 3, 4, 5}, join the list at the

center and the corresponding probabilities.

Relisting of a patient is possible when the graft transplanted fails after transplantation

and before death of the patient. We do not explicitly model relisting of patients. Instead,

we treat the patients who are relisted as new patients with a prior transplantation history.

Relisted patients are included in the patient arrival probabilities as new patients.
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Table 5: Patient arrival probabilities

k number of days probability

0 980 0.6290

1 384 0.2465

2 130 0.0834

3 49 0.0315

4 12 0.0077

5 3 0.0019

Next, consider the likelihood that when a new patient joins the list, she is of type i and

MELD score j, ρij. We use the following formula to calculate ρij.

ρij =
total number of patients who joined the list in (i, j) pair

total number of new patients
.

Figure 7 shows the distribution of patient blood type independent of the patient types.

In the simulation model SIM1, blood type is assumed to be dependent on the patient type.

For each patient type, we count the number of patients from each blood type and divide that

number to the total number of patients of the patient type under consideration to obtain

the distribution.
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Figure 7: Patient blood type distribution.

Next, consider the probability that a patient of type i and MELD score j receives a

non-expedited transplant, ξi(j). It is actually a conditional probability, i.e., given there is a

patient of type i and MELD score j, ξi(j) is the probability that she receives a non-expedited

transplant. It is obtained using the following formula:

ξi(j) =
number of non-expedited transplants received by patients of type i and MELD score j

total expected number of patient days of type i in MELD score j
. (4.1)

In the calculations of the denominator of ξi(j) (Equation 4.1), we assume that between

additions/arrivals to the waiting list and transplants/departures from the waiting list (e.g.,

death) there exists a day. Then, given the patient type i, time on the waiting list T , MELD

at listing M0 and final MELD score MT of the patient, the expected time spent in a MELD

score j for an individual patient is calculated as

E[T (j)] =
T−1∑
k=1

[(Hi)
k]M0,j · [(Hi)

T−k]j,MT

[(Hi)T ]M0,MT

,

where [(Hi)
k]i,j corresponds to (i, j)th entry of the k−step health transition matrix Hi. Once

we calculate the expected time spent in a MELD score j for each individual patient, then,
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depending on the patient type, summation of E[T (j)]’s of all patients yield the total expected

number of patient days in MELD score j.

We assume all patients are independent of each other. The independence assumption

plays a crucial role in the random event non-expedited transplants. The non-expedited

transplant probabilities calculated as described above are per patient day. Thus, on a day

each (i, j) patient receives a non-expedited transplant with probability ξi(j) independent of

all the other patients.

Unfortunately, there is a large set of (i, j) pairs whose corresponding ξi(j) values are zero.

There might be two reasons of having these missing values. One would be that (i, j) patients

did not receive transplant during the time period covered by the datasets. The other reason

would be that we do not observe these (i, j) patients in the datasets. Both cases cannot

provide sufficient proof on that these (i, j) patients never receive non-expedited transplant.

It is unrealistic for an (i, j) patient not to receive a non-expedited transplant while patients

from (i, j′), j′ 6= j, pairs do so. Moreover, the expected time spent on a pair is non-zero for

97% of all (i, j) pairs. These missing values cause a bias on the policy comparison. That is,

the performance of any expedited liver allocation policy favoring these (i, j) patients would

be biased. Thus, we need to impute the missing ξi(j) values.

Single imputation is a method to substitute a value for a missing value. For instance, each

missing value can be imputed by the mean of the available data points. Single imputation

method does not include the uncertainty on the predictions of the missing values. The

multiple imputation procedure of Rubin [81], however, generates a set of plausible values

for the missing values which represents the uncertainty on the right value to impute. In

the multiple imputation procedure, the missing values are imputed multiple times and these

values are combined for the inference.

Among the multiple imputation methods, we utilize the parametric regression method to

impute the missing ξi(j) values [81]. The regression method assumes that the missing values

are missing at random (MAR). That is, the probability that a data point is missing may

depend on the values of the available information about the missing data points, but not the

values of the missing data points. For example, the probability that a specific ξi(j) value is

missing may be related to the patient type i and MELD score j, but not to the missing value

44



of ξi(j). In addition to MAR, the parametric regression method also assumes multivariate

normality. However, the method is proved to be robust to departures from the multivariate

normality, as supported by the simulation studies found in [86] and the references therein.

In the parametric regression method, for each variable with missing values a regression

model is fitted. Based on the estimated coefficients of the regression line and the associated

covariance matrix, new estimates of the coefficients and the variance are drawn from the

posterior predictive distribution of the parameters. The missing values are filled using the

new estimates of the parameters of the regression line. The process is repeated k times,

value of which is defined by the modeler.

The values of all model parameters can be seen in Appendix A.

4.4 MODEL VALIDATION

Model validation aims for building the right model. Its goal is to represent and correctly

reproduce the behaviors of the real world system. There are various methods to validate

a simulation model. For instance, subject matter experts’ opinion on the model and its

outputs is of great value for validation. Another method which we utilize to validate our

simulation model SIM1 is historical validation. Historical validation uses historical data to

replicate the past via simulation.

Because there is no specific rule for the expedited liver allocation followed by the trans-

plant center coordinators, we run our simulation model SIM1 excluding the expedited liver

placement component (SIM2). That is, no expedited liver offers arrive at the center. We

compare the values of a set of performance measures generated via simulation and those cal-

culated using the UPMC datasets. We take 5,000 replications so that the standard deviations

of the performance measures are less than 10% of their corresponding mean. Table 6 includes

the means and standard deviations of performance measures generated via simulation and

their corresponding values calculated using UPMC datasets.

Simulation model SIM2 has, on average, more patients than the historical data. Even

though the average number of patients at UPMC is approximately 189 patients, there is
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Table 6: Historical validation of the simulation model SIM2

simulation historical

mean std. deviation data

average non-expedited transplant rate 0.399198 0.034213 0.319641

average number of patients 215.51 14.0265 189.0745

percentage of patients died 0.272431 0.031441 0.221429

percentage of patients received transplant 0.727569 0.031441 0.778571

an increasing trend on the size of the patient population at UPMC. The average number

of patients at UPMC was roughly 100 in 2006 while it has reached 250 by 2010. Because

the simulation has more patients than the historical data, there is an increased opportunity

for non-expedited transplants. Therefore, simulation model SIM2 has, on average, more

transplants than the historical data. However, the number of transplants cannot keep up

with the increase in the number of patients. Thus, we observe more deaths in the simulation

results compared to the historical data. In conclusion, because we can provide intuitive

explanations for the discrepancies in the performance measures, our simulation model SIM2

is a valid model of the system.

4.5 NUMERICAL STUDY

4.5.1 Expedited Liver Allocation Policies

Various expedited liver allocation policies that capture different aspects of the waiting list

and patient characteristics are constructed. We consider policies which emphasize on non-

expedited transplant probabilities, disease groups, waiting time, post-transplant survival,

probability of mortality, etc. Below is the list of those policies and their descriptions. In

Figure 8, we also present the summary of policy characteristics for ease of comparison.
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• Policy A - Randomized policy. There is no specific way of ordering the patients. When

there is an expedited liver offer, the patient to receive the organ is randomly chosen

among the blood compatible ones.

• Policy B - UNOS allocation policy. First, patients are ordered according to their MELD

score. The higher the MELD score is, the higher the priority of the patient is. Within

each MELD score, patients are ordered according to their blood type compatibility with

the donor. In Table 7, the ordering of the blood type matches is presented. Finally,

ties are broken according to the waiting time. UNOS defines waiting time as the time

accrued at or above the current MELD score. After the patients are ordered, the liver is

allocated to the top patient who accepts it according to the optimal control limit.

• Policy C - The higher the difference between the likelihood of death and the likelihood

of receiving a non-expedited transplant, the higher the priority of receiving an expedited

transplant. The lifetime of each patient is modeled as a Markov Chain. The chain

includes various transient health states and two absorbing states, i.e., death and trans-

plant. We exclude the possibility of expedited liver transplant and calculate the limiting

probabilities of the chain which is dependent on the current MELD score of each patient.

We calculate the absorbing probabilities for every starting MELD score. The higher the

probability that the system is absorbed in state death, the lower the probability that the

system is absorbed in state transplant. We order the patients according to the absorbing

probabilities of state death. The higher the absorbing probability of state death, the

higher the priority of receiving an expedited transplant.

• Policy D - The lower the probability of receiving a non-expedited transplant, the higher

the priority of receiving an expedited transplant. The lower the ξi(j) is, the higher the

priority of (i, j) patients is.

• Policy E - The higher the average number of (i, j) patients on any given day, the higher

the priority of receiving an expedited transplant. The average number of (i, j) patients on

a day is calculated via simulation (SIM2) in which expedited liver arrivals are excluded.

We order the (i, j) pairs in descending order of their corresponding average number of

patients on a day metric.
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• Policy F - The lower the non-expedited transplant rate of an (i, j) pair, the higher the

priority of receiving an expedited transplant. We simulate our model excluding the

expedited liver arrivals (SIM2). We record the number of expedited transplants taking

place on a day, i.e., non-expedited transplant rate, for each (i, j) pair. Then, we put the

(i, j) pairs in descending order of these rates.

• Policy G - The lower the probability of receiving a non-expedited transplant, the higher

the priority of receiving an expedited transplant. Contrary to Policy D, Policy G con-

siders the competition among the (i, j) pairs for one non-expedited liver. Given there

is a non-expedited liver offer, each (i, j) pair (not an (i, j) patient) has a probability

of receiving that organ. We obtain these probabilities via simulation in which we elim-

inate the expedited liver arrivals (SIM2). We order the (i, j) pairs according to these

probabilities whose sum over all (i, j) pairs is equal to one.

• Policy H - The higher the post-transplant expected lifetime, the higher the priority of

receiving an expedited transplant. This policy orders patients according to the outcome

of the transplant.

• Policy I - First, we order the patients according to their MELD score. The higher the

MELD score is, the higher the patient’s priority is. Within each MELD score, first blood

type compatibility of the match and then whether the patient has an acute liver failure

or not is considered. In this policy, we give higher priority to non-acute liver patients

compared to acute ones.

• Policy J - This policy reverses the priority given to acute and non-acute liver patients

under Policy I. We order the patients according to their MELD score. The higher the

MELD score is, the higher the patient’s priority is. Within each MELD score, first

blood type compatibility of the match is considered. Within each blood type, acute liver

patients have higher priority than non-acute liver patients.

• Policy K - First, we order the patients according to their MELD score. This policy

gives higher priority to low MELD scores. The lower the MELD score is, the higher

the patient’s priority is. Within each MELD score, first blood type compatibility of the

match and then whether the patient has an acute liver failure or not is considered. In

this policy, we give higher priority to non-acute liver patients compared to acute ones.
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• Policy L - This policy reverses the priority given to acute and non-acute liver patients

under Policy K. We put patients in an ascending order of MELD scores. Within each

MELD score, first blood type compatibility of the match is considered. Within each

blood type, acute liver patients have higher priority than non-acute liver patients.

• Policy M - We order the patients according to their MELD score. Except aggregated

MELD score 18, the priority assigned to MELD scores increases as the MELD score

increases. We assign the lowest priority to MELD score 18. Within each MELD score,

first blood type compatibility of the match and then whether the patient has an acute

liver failure or not is considered as it is the case in previous policies. In this policy, we

give higher priority to non-acute liver patients compared to acute ones.

• Policy N - This policy again reverses the priority given to acute and non-acute liver

patients under the previous policy, Policy M.

Characteristics \ Policy A *B C D E F G H I J K L M N

MELD Score: sickest first X X X

MELD Score: healthiest first X X

MELD Score: 17, 16, …, 1, 18 X X

Acute priority over non-acute liver patients X X X

Non-acute priority over acute liver patients X X X

Ordered blood type compatibility X X X X X X X X X X X X X X

Waiting time on the list X X X X X X X X X X X X X

Waiting time at or above the current MELD score X

Absorbing probability of death X

Absorbing probability of non-expedited transplant X

Daily probability of receiving a non-expedited transplant X

Daily average number of (i, j) patients X

Non-expedited transplant rate of (i, j) pairs X

Proportion of non-expedited transplants assigned to (i, j) pairs X

Post-transplant expected lifetime X

*Current UNOS liver allocation policy

Figure 8: Expedited Liver Allocation Policy Descriptions.
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Under each policy, ties among patients for liver allocation are possible. Except Policy B

in which we simulate the UNOS liver allocation policy, we use total waiting time on the list

as a tie breaker. Each policy considers only blood type compatible matches as described in

Table 7. For instance, if blood type of the donor is AB, then only blood type AB patients

are assumed to be candidates for the expedited liver transplant. If no match can be found,

then the organ is rejected.

Table 7: Ordering of the blood type matches

recipient

A B AB O

donor A 1 - 2 -

B - 1 2 -

AB - - 1 -

O 3 2 3 1

Policy A aims to show that random assignment of the expedited liver to any patient is

not the best strategy. A policy carefully constructed is expected to perform better than a

randomized policy. Policy B follows the steps of the UNOS non-expedited liver allocation

policy. UNOS policy considers solely the likelihood of mortality, MELD score, while ordering

the patients. Policy C seeks for the balance between the likelihood of transplantation and

that of death. It gives priority to patients who are more likely to die than to have transplant.

Policy D takes only the probability of receiving non-expedited transplants into account.

Policy E aims to capture the combined effect of the random events taking place in the

transplant center via average number of patients metric. Policy F has a similar motivation

to Policy E. In addition to the available number of (i, j) patients, policy F also considers the

probability of receiving a non-expedited transplant. Non-expedited transplant rate of each

(i, j) pair combines the average number of (i, j) patients metric and the probability that

an (i, j) patient receives a non-expedited transplant. Policy G considers the competition

among (i, j) pairs for a non-expedited liver. It aims to capture the effect of the waiting list.

Policy H calculates the benefit that would be obtained from allocating the expedited liver

50



to each patient. Then, it puts the patients in a descending order of this benefit. Policies

I-N mimic the UNOS policy. First they order the patients according to MELD score. Each

policy pair, i.e., I-J, K-L, M-N, takes a different perspective on the MELD score ordering.

Then, the policies take blood type and the primary reason for transplantation, namely

acute liver diseases and non-acute liver diseases, into account. Acute liver failure which

has various etiologies, i.e., viral hepatitis, severe sepsis, etc., is a rare condition in which

rapid deterioration of liver leads to symptoms such as alteration in the mental status of a

previously healthy individual [75]. In Figure 9 and Figure 10, the distribution of primary

diseases and the number of deaths observed for each primary disease over the time horizon

(1999, 2008) are presented [76]. Because acute liver patients are more prone to death, we

construct policies that consider those patients separately.
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Primary Diagnosis Year

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Total Patients 20,965 23,390 25,517 26,131 25,677 26,330 26,585 26,695 26,503 26,407

Deaths 2,018 2,019 2,325 2,161 2,094 2,164 2,141 1,991 1,822 1,782

Non-Cholestatic 

Cirrhosis

Patients 13,232 14,898 16,320 16,497 16,125 16,753 17,110 17,250 17,273 17,394

Deaths 1,307 1,355 1,552 1,356 1,327 1,419 1,439 1,296 1,221 1,188

% of Deaths 10% 9% 10% 8% 8% 8% 8% 8% 7% 7%

Cholestatic Liver 

Disease/Cirrhosis

Patients 2,206 2,371 2,469 2,539 2,475 2,452 2,406 2,395 2,315 2,212

Deaths 177 164 180 165 140 146 132 136 124 118

% of Deaths 8% 7% 7% 6% 6% 6% 5% 6% 5% 5%

Acute Hepatic 

Necrosis

Patients 1,262 1,407 1,485 1,532 1,435 1,431 1,388 1,289 1,249 1,122

Deaths 170 142 156 178 148 149 127 133 104 82

% of Deaths 13% 10% 11% 12% 10% 10% 9% 10% 8% 7%

Biliary Atresia Patients 539 562 612 629 603 598 591 550 552 538

Deaths 22 23 33 23 16 11 18 20 14 16

% of Deaths 4% 4% 5% 4% 3% 2% 3% 4% 3% 3%

Metabolic Diseases Patients 443 473 509 498 479 475 505 498 454 483

Deaths 33 34 28 40 38 44 36 38 29 33

% of Deaths 7% 7% 6% 8% 8% 9% 7% 8% 6% 7%

Malignant Neoplasms Patients 306 340 423 512 509 619 720 823 931 1,212

Deaths 27 26 43 45 31 29 28 28 33 52

% of Deaths 9% 8% 10% 9% 6% 5% 4% 3% 4% 4%

Other Patients 2,338 2,695 3,054 3,270 3,445 3,435 3,311 3,378 3,244 3,010

Deaths 215 233 282 301 334 319 305 290 256 249

% of Deaths 9% 9% 9% 9% 10% 9% 9% 9% 8% 8%

Not Collected Patients 58 54 50 46 40 39 38 34 34 33

Deaths 3 4 4 1 1 1 1 - 1 1

% of Deaths 5% 7% 8% 2% 3% 3% 3% - 3% 3%

Unknown Patients 581 590 595 608 566 528 516 478 451 403

Deaths 64 38 47 52 59 46 55 50 40 43

% of Deaths 11% 6% 8% 9% 10% 9% 11% 10% 9% 11%

Figure 9: Number of patients and deaths by primary disease.
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Primary Diagnosis Year

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

Non-Cholestatic 

Cirrhosis

69.90% 70.00% 69.80% 70.30% 71.10% 72.20% 71.90% 73.00% 72.80% 72.60%

Cholestatic Liver 

Disease/Cirrhosis

12.20% 11.60% 11.10% 11.30% 11.20% 10.70% 10.60% 10.50% 9.80% 9.60%

Acute Hepatic 

Necrosis

4.70% 5.10% 4.90% 4.80% 4.80% 4.30% 4.00% 3.80% 3.40% 2.90%

Biliary Atresia 2.20% 1.90% 1.90% 2.00% 1.70% 1.70% 1.70% 1.20% 1.20% 1.20%

Metabolic Diseases 2.00% 1.80% 1.90% 1.70% 1.40% 1.50% 1.70% 1.40% 1.40% 1.50%

Malignant Neoplasms 1.20% 1.30% 1.30% 1.10% 1.30% 1.40% 1.50% 1.70% 2.30% 3.00%

Other 7.60% 8.10% 8.90% 8.60% 8.50% 8.20% 8.60% 8.40% 9.00% 9.30%

Unknown 0.30% 0.20% 0.20% 0.10% 0.10% 0.10% 0.10% 0.00% 0.00% 0.00%

Figure 10: Distribution of primary disease.

We coded our simulation model SIM1 in Microsoft Visual Studio .NET 2008. We obtained

the numerical results on Intel Core2 Duo PC with processors running at 3.00 GHz and 2 GB

memory. The runtime for 5,000 replications is on average 801 CPU seconds. The shortest

run time is 573 CPU seconds and the longest is 1052 CPU seconds. Policies which perform

sorting more compared to other policies are the ones which last the longest.

4.5.2 Performance Metrics

We base our comparison of the policies on a set of performance metrics. Below is the list

and the calculation methods of those metrics.

• Average transplant rate

=
total number of expedited and non-expedited transplants

total number of days

• Percentage of patients died

=
total number of patients died

total number of patients who died or received a transplant

• Survival after departure

=
sum of the expected lifetimes of patients after transplant

total number of patients who died or received a transplant
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• Waiting time before transplant

=
sum of the waiting times until transplant of patients who received a transplant

total number of patients who received a transplant

• Waiting time before death

=
sum of the waiting times until death of patients who died while waiting on the list

total number of patients who died while waiting for a transplant

• Total survival

=
sum of the total expected lifetimes of patients

total number of patients who died or received a transplant

The metric average transplant rate reflects the business perspective of the transplant

center. Moreover, as the transplant rate is being maximized, the waiting time of the patients

listed at the center is expected to decrease. However, the outcome of these transplants is

also important. Therefore, we investigate the number of patients dying, waiting times and

survival. Survival after departure combines the outcomes, the number of patients dying

and the expected post-transplant lifetime. Please note that the survival after departure for

patients who die is zero. Therefore, the numerator of the survival after departure metric

contains only the expected post-transplant lifetime of patients who receive transplant.
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4.5.3 Comparison Methods

We utilize two methods to compare the performance of the policies listed in Section 4.5.1.

The first is Hsu’s multiple comparison with the best method [52, 53]. Given the performance

metric of the policy i is denoted by µi, Hsu’s method compares µi with maxj 6=i µj for all

i ∈ {1, 2, . . . , k} in a maximization problem and constructs k simultaneous 100(1 − α)%

confidence intervals for µi−maxj 6=i µj where α is the significance level. The method eliminates

the policies which are worse than the best. It sets negative upper bounds and positive lower

bounds to zero. A policy with a negative upper bound cannot be the best while a policy

with a positive bound is declared to be the best. If there are multiple policies with positive

lower bounds set to zero, then this set of policies includes the best policy with 100(1− α)%

confidence.

The second method is the work of Nelson et al. [63]. The authors combine the subset

selection with indifference zone selection. The subset selection is the first stage of ranking and

selection procedures [44] and aims to eliminate the noncompetitive policies. The indifference

zone selection’s goal is to select the best subset of policies such that the difference between

the performance of the policies in the best subset and that of the eliminated policies is not

less than some specified parameter δ > 0 [11]. Nelson et al. [63], in their method’s first stage,

take a sample of observations for each policy. Depending on the variance in the samples and

the practically significant difference δ, the authors eliminate the noncompetitive policies. For

the remaining policies, the second stage sample sizes are determined. Additional observations

are taken and the competitive policy with the highest performance measure is chosen as the

best policy.

Type I and type II error are the experimental errors that are linked to each other. If a

statistical test is conservative, that is, the probability of type I error is small, then it is likely

to lack the power, that is, it has high probability of type II error. Thus, there is a trade-off

between obtaining one incorrect rejection of the null hypothesis out of all the comparisons

and missing the true bests. Multiple comparison methods generally put an emphasis on the

control of type I error, instead of type II error [85]. However, type II error can be controlled
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by imposing prescribed confidence interval widths, which is used in the determination of the

sample sizes.

4.5.4 Validation of Statistical Assumptions

We simulate each policy listed in Section 4.5.1. We replicate each policy 5,000 times which

corresponds to 5,000 years. Before investigating the results, we evaluate the validity of the

statistical assumptions. Figures 11-19 present various plots used to validate these assump-

tions.

The methods utilized to make the policy comparison assume that the performance metric

Yij, i.e., ith observation of policy j, are mutually independent and have normal distribution

with variance σ2. They model Yij’s as

Yij = µ+ γi + εij,

where γ + τi is the mean of the performance metric of policy i and εij is the normally dis-

tributed error term with mean zero and variance σ2. Therefore, we have to examine the fit

of the model, and the independence, equal variance and normality assumptions. Plots in

Figures 11-16 provide proof of the validity of the first three assumptions for all the perfor-

mance metrics. Figures 17-19 present the normality plots.

In Figures 11-16, z denotes the standardized residuals and “ypred” denotes the fitted

values. In each figure, the plot at the top refers to the fit of the model. The one in the middle

refers to the independence assumption. The plot at the bottom refers to the equal variance

assumption. The random pattern in the plots is a proof of the validity of the assumptions.

The models for all the metrics except waiting time before transplant and waiting time before

death satisfy the assumptions. However, the plots for these two metrics do not contain a

random pattern to satisfy the equality of variance assumption. In addition to the plots, the

ratio of maximum sample variance to minimum sample variance, i.e., s2
max/s

2
min, provides a

way to check the equal variance assumption [27]. The ratio is expected to be less than 3.

The sample variance ratio is 2.49 and 4.16 for the waiting time before transplant and waiting

time before death metrics, respectively.
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Figure 11: Plots for assumption validation for average transplant rate metric.
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Figure 12: Plots for assumption validation for percentage of patients died metric.
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Figures 17-19 provide the Anderson Darling Normality Test statistics and the corre-

sponding p-values in addition to the normality plots. The Anderson Darling test is a valid

test on normality; however, it is affected by the ties in the data. When there is significant

amount of ties in the data, the Anderson Darling test rejects the data as non-normal regard-

less of how well the data fits the normal distribution. We have such a case in the plots of

the average transplant rate and percentage of patients died. Due to the visual proof of the

fit, we conclude that normality assumption is valid for these two metrics’ models. The low

Anderson Darling statistic values and high p-values of the survival after departure and total

survival metrics provide sufficient proof for the validity of the normality assumption. We

do not have sufficient proof for normality on the plots of waiting time before transplant and

waiting time before death metrics. However, small deviations from normality is stated as

not to badly affect the stated significance levels or confidence levels to be constructed [27].

When the equality of variance assumption fails to be satisfied, transformation of data is

utilized. The data is transformed according to a function and then, if the transformed data

satisfy the statistical assumptions, it is used for further analysis. We transform the data

for the waiting time before transplant and waiting time before death metrics. We transform

the data according to the function h(yij) = y
1−(q/2)
ij , where q is obtained via the following

regression equation

ln(s2
i ) = ln(k) + qln(ȳi·).

In the above equation, s2
i is the sample variance of the ith policy, k is a constant and ȳi· is

the mean of the performance metric for policy i. Figure 20 and Figure 21 present the plots

for the first three model assumptions for the two metrics after transformation. The sample

variance ratio for the waiting time before transplant metric becomes 1.09 and that for the

waiting time before death metric becomes 1.23. Figure 22 provides the normality plots of

the two metrics. Transformation improves our confidence on the normality assumption for

both metrics. However, the waiting time before death metric still cannot provide sufficient

proof for the validity of the normality assumption. Because small departures from normality

do not have significant effect on the performance of the statistical tests, we assume the

normality assumption is valid for the waiting time before death metric, as well.
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Figure 13: Plots for assumption validation for survival after departure metric.
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Figure 14: Plots for assumption validation for waiting time before transplant metric.
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Figure 15: Plots for assumption validation for waiting time before death metric.
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Figure 16: Plots for assumption validation for total survival metric.
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Figure 17: Probability plots for average transplant rate and percentage of patients died

metrics.
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Figure 18: Probability plots for survival after departure and total survival metrics.
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Figure 19: Probability plots for waiting time before transplant and waiting time before death

metrics.
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Figure 20: Plots for assumption validation for waiting time before transplant metric after

transformation. 67



Figure 21: Plots for assumption validation for waiting time before death metric after trans-

formation. 68



Figure 22: Probability plots for waiting time before transplant and waiting time before death

metrics, after transformation.
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4.5.5 Results

We compare the ten policies listed in Section 4.5.1 (Figure 8) using the methods of Hsu [52]

and Nelson et al. [63]. We let the significance level be α = 0.05. The results are presented

in Figure 23 and Figure 24. The figures include the following information.

• Estimate - sample mean response of the policy

• Exact Estimate - sample mean response of the policy before data transformation (if any)

• StdErr - standard error of the sample mean for the policy

• cllo - lower bound of the confidence interval for the difference between the population

mean of this policy and the best population mean

• clhi - upper bound of the confidence interval for the difference between the population

mean of this policy and the best population mean

• rval - the smallest α level at which the population mean of this policy can be rejected as

the best (generated for all groups but the one with the best sample mean)

• sval - the smallest α level at which the population mean of this policy can be selected as

the best (generated for the policy with the best sample mean)

The highlighted policies on Figure 23 and Figure 24 are included in the best policy

subsets chosen by Hsu’s method. The best policy subsets are generated using Hsu’s method.

The policies whose policy number has a star next to it are the best policies chosen by Nelson

et al. [63]’s method. The methods yield consistent results. That is, the best policy chosen

by Nelson et al. [63]’s method is always included in the best policy subset chosen by Hsu’s

method.
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Average Tx

policy Estimate StdErr cllo clhi rval sval

A 0.4704 0.000491 -0.02255 0 0 .

B 0.4894 0.000491 -0.00352 0 0.04714 .

*C 0.4912 0.000491 -0.00061 0.002893 . 0.28167

D 0.4642 0.000491 -0.02869 0 0 .

E 0.4653 0.000491 -0.0276 0 0 .

F 0.4656 0.000491 -0.02733 0 0 .

G 0.4811 0.000491 -0.01181 0 0 .

H 0.4684 0.000491 -0.02447 0 0 .

I 0.4899 0.000491 -0.00303 0.000473 0.20539 .

J 0.49 0.000491 -0.00289 0.000613 0.28167 .

K 0.462 0.000491 -0.03091 0 0 .

L 0.4621 0.000491 -0.03076 0 0 .

M 0.4873 0.000491 -0.00565 0 0 .

N 0.4886 0.000491 -0.00428 0 0.00154 .

% of Patients Died

policy Estimate StdErr cllo clhi rval sval

A 0.1414 0.000354 0 0.03935 0 .

B 0.1047 0.000354 0 0.002677 0.022392 .

*C 0.1033 0.000354 -0.00253 0 . 0.049581

D 0.1526 0.000354 0 0.050565 0 .

E 0.1515 0.000354 0 0.049519 0 .

F 0.1495 0.000354 0 0.047509 0 .

G 0.1224 0.000354 0 0.020338 0 .

H 0.1465 0.000354 0 0.044502 0 .

I 0.1045 0.000354 0 0.002527 0.049581 .

J 0.1053 0.000354 0 0.003235 0.000481 .

K 0.157 0.000354 0 0.055016 0 .

L 0.1566 0.000354 0 0.054598 0 .

M 0.1098 0.000354 0 0.007811 0 .

N 0.1104 0.000354 0 0.008377 0 .

Survival After Departure

policy Estimate StdErr cllo clhi rval sval

A 2852.18 1.7794 -155.726 0 1.00E-12 .

B 2881.48 1.7794 -126.428 0 1.00E-12 .

*C 3001.55 1.7794 0 32.573 . 1.00E-12

D 2859.66 1.7794 -148.248 0 1.00E-12 .

E 2784.4 1.7794 -223.505 0 1.00E-12 .

F 2764.36 1.7794 -243.545 0 1.00E-12 .

G 2927.35 1.7794 -80.555 0 1.00E-12 .

H 2975.33 1.7794 -32.573 0 1.00E-12 .

I 2879.5 1.7794 -128.405 0 1.00E-12 .

J 2877.05 1.7794 -130.856 0 1.00E-12 .

K 2812.27 1.7794 -195.639 0 1.00E-12 .

L 2811.97 1.7794 -195.933 0 1.00E-12 .

M 2877.57 1.7794 -130.336 0 1.00E-12 .

N 2877.68 1.7794 -130.222 0 1.00E-12 .

Figure 23: Comparison of expedited liver allocation policies to identify the best one under

various metrics.
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Total Survival

policy Estimate StdErr cllo clhi rval sval

A 3068.52 1.8435 -214.487 0 1.00E-12 .

B 3183.86 1.8435 -99.154 0 1.00E-12 .

*C 3276.43 1.8435 0 95.0237 . 1.00E-12

D 3049.55 1.8435 -233.457 0 1.00E-12 .

E 2986.26 1.8435 -296.75 0 1.00E-12 .

F 2974.75 1.8435 -308.259 0 1.00E-12 .

G 3187.99 1.8435 -95.024 0 1.00E-12 .

H 3180.26 1.8435 -102.749 0 1.00E-12 .

I 3180.79 1.8435 -102.217 0 1.00E-12 .

J 3179.31 1.8435 -103.698 0 1.00E-12 .

K 2993.45 1.8435 -289.557 0 1.00E-12 .

L 2993.56 1.8435 -289.446 0 1.00E-12 .

M 3174.07 1.8435 -108.942 0 1.00E-12 .

N 3175.13 1.8435 -107.88 0 1.00E-12 .

Waiting Time Before Transplant

policy Exact Estimate Estimate StdErr cllo clhi rval sval

A 218.21 2.182 0.000469 0 0.05707 0 .

B 304.54 2.2901 0.000469 0 0.16525 0 .

C 276.83 2.2586 0.000469 0 0.13372 0 .

D 191.39 2.1407 0.000469 0 0.01582 0 .

E 203.4 2.1598 0.000469 0 0.03487 0 .

F 211.99 2.1728 0.000469 0 0.04792 0 .

G 262.5 2.2413 0.000469 0 0.11641 0 .

H 206.52 2.1645 0.000469 0 0.03966 0 .

I 303.11 2.2886 0.000469 0 0.16369 0 .

J 303.83 2.2893 0.000469 0 0.16445 0 .

*K 182.79 2.1266 0.000469 -0.00218 0.00117 . 0.69368

L 183.08 2.1271 0.000469 -0.00117 0.00218 0.69368 .

M 298.86 2.2839 0.000469 0 0.15898 0 .

N 299.8 2.2849 0.000469 0 0.16003 0 .

Waiting Time Before Death

policy Exact Estimate Estimate StdErr cllo clhi rval sval

A 204.82 0.1117 0.000163 -0.00864 0 0 .

B 283.79 0.09823 0.000163 -0.02207 0 0 .

C 257.63 0.1022 0.000163 -0.01811 0 0 .

D 181.51 0.1173 0.000163 -0.003 0 0 .

E 193.05 0.1143 0.000163 -0.00595 0 0 .

F 201.32 0.1124 0.000163 -0.0079 0 0 .

G 247.34 0.1036 0.000163 -0.01673 0 0 .

H 195.51 0.1138 0.000163 -0.00646 0 0 .

I 284.94 0.09795 0.000163 -0.02235 0 0 .

J 288.22 0.09751 0.000163 -0.02279 0 0 .

*K 172.47 0.1197 0.000163 -0.00034 0.000818 . 0.57057

L 173.5 0.1195 0.000163 -0.00082 0.000344 0.57057 .

M 276.92 0.099 0.000163 -0.0213 0 0 .

N 278.49 0.09876 0.000163 -0.02154 0 0 .

Figure 24: Comparison of expedited liver allocation policies to identify the best one under

various metrics.
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Policy C is found to be the best policy under almost all metrics we consider. Policy C

results in the highest average transplant rate while yielding the best outcome for the patient

population. It saves as much as life possible, i.e., best policy in terms of minimizing the

percentage of patients died, while balancing the pre- and post-transplant expected lifetime.

In the policy comparison, for the survival metrics we let the practically significant dif-

ference δ be 30 days. Given δ = 30, Policy C dominates all other policies in terms of the

survival times. Policy C results in 4% and 3% increase in the survival after departure and

total survival metrics, respectively, compared to Policy B, i.e., the UNOS policy. Policy C

leads to 3,002 expected lifedays after departure and 3,276 total expected lifedays while Policy

B results in 2,882 expected lifedays after departure and 3,184 total expected lifedays. More-

over, policy C brings in a 1.3% decrease in the percentage of patients died while increasing

the average transplant rate by 0.4% compared to Policy B.

Two policies other than Policy C are also found to be competitive under the average

transplant rate metric. These are the versions of UNOS non-expedited liver allocation poli-

cies, Policy I and J. The difference between Policies I-J and the UNOS policy is that Policies

I and J group patients according to their primary reason for transplant, namely acute pa-

tients versus non-acute patients. Notably, independent of which group of patients have the

highest priority we obtain a better performance than that of UNOS policy, i.e., Policy B.

Policy J performs better than all the other policies under the waiting time before death

metric. Policy J gives higher priority to acute liver disease patients with the highest MELD

scores. Acute liver disease patients are the ones whose health progresses severely. Acute

liver disease patients with high MELD scores are the patients whose probability of death

is the highest. By favoring these patients, Policy J decreases the death rate among them.

Thus, we obtain longer waiting times before death.

The policy found to be the best under the consideration of waiting time before transplant

metric is different than the best policies under the consideration of the other metrics. This

is due to the fact that the population which is addressed under this metric is just a portion

of the overall liver patient population at the transplant center. The policy chosen to be the

best, i.e., Policy K, gives higher priority to the healthiest patients, i.e., lowest MELD scores.

The UNOS non-expedited liver allocation policy results in patients with lower MELD scores
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wait until their health status become worse enough to receive a non-expedited transplant.

Policy K removes these patients via expedited transplants from the system. Thus, it leads

to a decrease in the waiting time before transplant.

In the light of the above discussion, the ultimate goal of the transplant center coordinator,

i.e., the well-being of the patients and high transplant rate at the center, leads to the Policy

C to be chosen to implement. Policy C considers the balance between the probability of

receiving a non-expedited transplant and that of dying. While doing so, it prevents patients

from dying. Moreover, it assigns organs to patients from whom the best outcome would be

obtained.

Policy C gives higher priorities to non-acute liver patients with the highest MELD scores.

In Figure 25, the priorities given to (i, j) pairs are presented. To differentiate the patient

types, we also include the disease group of each patient type on Figure 25. Please refer to

Table 4 for patient type definitions and to Section 4.3.2 for disease group definitions. For

ease of search, the first 100 (i, j) pairs with the highest priority are highlighted with four

different shades of grey in Figure 25. The darker the highlight, the higher the priority. We

have only one highlighted (i, j) pair from patient type group including acute liver patients

(disease group 3), i.e., pair (27, 18). This is due to the their high likelihood of receiving

non-expedited transplants. Even though acute liver patients are more prone to death, they

also have high probability of receiving non-expedited transplants. In the simulation, we

observe that Policy C assigns expedited livers mostly to patients with the lowest MELD

scores (above the optimal control limits) and non-acute liver diseases. In Figure 26, the

fraction of expedited livers assigned to each (i, j) pair is presented. We calculate these

probabilities by taking the ratio of the number of expedited transplants that an (i, j) pair

receives to the total number of expedited transplants. For ease of search, the first 100 (i, j)

pairs with the highest values are highlighted. Four shades of grey are used. The darker the

highlight, the higher the value. The reason of having higher values on lower MELD scores is

that we generally do not observe many patients with high MELD scores. Even though the

policy gives higher priorities to patients with high MELD scores, because there is generally

no such patient to accept the offer, patients with lower MELD scores receive expedited liver

transplants. Although the order of the MELD scores getting higher priorities changes, the
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order of the disease groups stays the same. The sum of the probabilities of (i, j) pairs

including acute liver patients (disease group 3) is 0.0016 and the sum of the probabilities of

(i, j) pairs including non-acute liver patients with hepatitis (disease group 2) is 0.0476 while

the sum is equal to 0.951 for (i, j) pairs including the rest of the non-acute liver patients

(disease group 1).

Type\MELD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 disease group

1 169 166 150 147 149 138 122 113 101 80 63 49 41 47 45 14 7 26 1

2 246 231 209 173 154 135 121 114 108 86 78 67 43 21 18 15 8 25 1

3 212 204 197 195 162 153 136 123 116 97 83 70 54 53 51 52 40 32 1

4 225 230 227 213 206 181 158 140 137 118 89 61 42 30 19 13 11 5 1

5 279 293 283 271 270 257 249 220 178 160 152 126 98 71 88 117 73 91 1

6 350 364 335 331 319 323 311 278 284 229 156 104 58 31 23 4 3 1 1

7 372 389 360 343 348 336 302 264 223 185 141 100 65 37 33 16 20 17 1

8 402 423 392 378 370 345 287 239 219 217 194 145 107 60 28 10 12 2 1

9 411 429 408 410 387 369 358 338 299 267 179 110 75 44 24 29 50 27 1

10 441 466 445 427 436 416 394 346 301 263 236 207 203 111 151 103 69 85 1

11 453 478 459 440 448 442 403 354 291 256 182 119 96 56 79 131 62 90 1

12 451 487 468 458 464 430 412 320 273 210 159 134 109 64 59 68 34 6 1

13 479 542 498 493 484 465 415 321 251 234 167 144 95 74 87 76 82 36 1

14 471 533 500 491 497 457 409 332 298 241 180 142 120 105 128 208 81 46 1

15 496 550 501 492 470 438 385 326 266 238 228 196 106 92 77 55 39 9 2

16 490 509 510 541 506 477 456 418 390 368 308 265 216 193 254 143 94 48 2

17 504 520 523 548 517 499 417 396 349 339 328 337 242 187 146 112 132 72 2

18 521 516 515 514 483 454 388 355 310 288 281 245 215 252 202 133 125 93 2

19 507 476 352 334 312 276 253 235 226 214 201 139 115 124 155 157 102 22 2

20 357 367 365 361 351 333 307 286 295 261 218 176 164 84 57 38 35 66 2

21 524 529 526 552 532 519 475 428 450 391 314 255 184 170 199 189 258 172 2

22 522 528 462 488 480 512 467 434 375 363 382 243 177 168 174 163 175 232 2

23 472 489 531 551 544 536 482 481 455 452 399 381 274 282 306 248 221 148 2

24 505 474 503 556 546 534 485 461 406 384 272 250 205 200 233 297 316 277 2

25 525 511 538 557 527 535 473 447 431 469 380 342 260 300 393 285 268 222 2

26 508 547 540 539 486 432 359 327 322 374 240 198 171 165 190 289 192 191 3

27 566 559 554 530 495 424 377 449 341 362 309 315 275 292 237 400 183 99 3

28 574 570 564 549 513 460 437 421 329 325 304 395 317 366 433 518 211 130 3

29 575 571 568 560 553 537 463 435 356 330 318 305 303 290 262 247 224 161 3

30 572 563 562 545 502 425 371 407 294 340 444 405 419 439 376 280 324 129 3

31 576 569 567 558 543 443 401 404 296 347 398 414 426 386 244 269 188 127 3

32 573 565 561 555 494 446 413 422 373 379 344 397 420 383 313 259 353 186 3

Figure 25: Priorities assigned to (i, j) pairs by Policy C.

Because the allocation rules specified by Policy C depend on patient types and MELD

scores, the implementation of Policy C requires the assignment of patient types to patients

listed at the center. We suggest the transplant center coordinator assigns a patient type to

each patient on her list using the scheme we describe in Section 4.2 and 4.3.2 and bases her

decision on the priorities of the patient type-MELD score pairs specified by Policy C.
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Type\MELD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 0 0 0 0.045136 0.015840 0.014136 0.030547 0.052041 0.027883 0.020882 0.009128 0.006418 0.006516 0.001524 0.001851 0.003525 0.003352 0.003513 

2 0 0 0 0.026638 0.021407 0.026654 0.026099 0.033420 0.025493 0.017700 0.009084 0.009155 0.006276 0.001728 0.001929 0.001230 0.001512 0.001253 

3 0 0 0 0.022746 0.022157 0.015383 0.021733 0.015683 0.019451 0.015981 0.010260 0.006608 0.005821 0.001916 0.001105 0.001059 0.002285 0.003401 

4 0 0 0 0.020834 0.035202 0.029104 0.029129 0.034980 0.023517 0.025688 0.019765 0.012553 0.011901 0.005718 0.007789 0.007977 0.007448 0.013551 

5 0 0 0 0 0.000503 0.000523 0.000333 0.000153 0.000404 0.000313 0.000166 0.000294 0.001128 0.000286 0.000125 0.000035 0.000042 0.000012 

6 0 0 0 0 0.000118 0.000056 0.000022 0.000019 0.000013 0.000071 0.000188 0.000248 0.000142 0.000054 0.000082 0.000295 0.001243 0.000349 

7 0 0 0 0 0.000478 0.000332 0.000401 0.000102 0.000029 0.000025 0.000045 0.000057 0.000083 0.000032 0.000158 0.001085 0.000276 0.000092 

8 0 0 0 0 0.000050 0.000095 0.000508 0.000501 0.000350 0.000265 0.000335 0.000513 0.001591 0.000511 0.000580 0.002444 0.000876 0.001476 

9 0 0 0 0 0.000344 0.000189 0.000304 0.000091 0.000031 0.000029 0.000247 0.001503 0.002108 0.001271 0.001068 0.002838 0.001595 0.001572 

10 0 0 0 0 0.000116 0.000037 0.000014 0.000018 0.000033 0.000061 0.000019 0.000011 0.000008 0.000076 0.000051 0.000847 0.001228 0.000982 

11 0 0 0 0 0 0.000055 0.000374 0.000093 0.000018 0.000011 0.000009 0.000016 0.000007 0.000004 0.000001 0.000001 0 0 

12 0 0 0 0 0 0.000002 0 0 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0.000043 0.000015 0.000124 0.000068 0.000130 0.000216 0.000453 0.001003 0.001023 0.001083 0.001320 0.000405 0.001110 

14 0 0 0 0 0 0 0 0 0 0 0 0.000002 0.000224 0.000116 0.000012 0 0.000021 0.000009 

15 0 0 0 0 0 0 0 0.000003 0.000006 0.000013 0.000029 0.000035 0.000497 0.000756 0.001062 0.000477 0.000158 0.000052 

16 0 0 0 0 0 0 0 0 0.000003 0.000001 0.000005 0.000004 0.000001 0.000002 0.000001 0.000035 0.000616 0.000335 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 0.000318 0.000150 0.000086 0.000067 0.000015 0.000035 0.000084 0.000088 0.000933 

19 0 0 0 0 0 0 0 0 0 0 0.001513 0.002761 0.003415 0.000758 0.000193 0.000287 0.002014 0.002397 

20 0 0 0 0 0 0 0 0 0 0 0.001290 0.002343 0.001057 0.006236 0.004895 0.003550 0.003726 0.007304 

21 0 0 0 0 0 0 0 0 0 0 0.000041 0.000015 0.000033 0.000040 0.000033 0.000130 0.000032 0.000021 

22 0 0 0 0 0 0 0 0 0 0 0.000044 0.000040 0.000048 0.000020 0.000014 0.000006 0 0 

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

24 0 0 0 0 0 0 0 0 0 0 0 0.000047 0.000023 0.000009 0.000015 0.000032 0.000006 0.000001 

25 0 0 0 0 0 0 0 0 0 0 0 0.000001 0 0 0 0 0 0 

26 0 0 0 0 0 0 0 0 0 0 0 0.000082 0.000098 0.000074 0.000117 0.000010 0.000012 0.000006 

27 0 0 0 0 0 0 0.000023 0.000012 0.000021 0.000012 0.000023 0.000019 0.000044 0.000012 0.000007 0.000002 0.000010 0.000375 

28 0 0 0 0 0 0 0.000002 0.000001 0.000001 0.000007 0.000011 0.000001 0.000011 0.000002 0 0 0.000004 0.000191 

29 0 0 0 0 0 0 0.000024 0.000078 0.000027 0.000073 0.000081 0.000038 0.000069 0.000055 0.000033 0.000011 0.000017 0.000145 

30 0 0 0 0 0 0 0.000010 0.000006 0.000031 0.000013 0.000001 0.000003 0 0.000001 0 0 0 0 

31 0 0 0 0 0 0 0 0 0.000002 0.000001 0 0.000005 0.000002 0 0.000001 0.000001 0 0 

32 0 0 0 0 0 0 0 0 0.000001 0 0.000001 0.000004 0.000006 0.000001 0.000011 0.000001 0 0.000003 

Figure 26: The fraction of expedited livers assigned to each (i, j) pair.

In addition to seeking for the best expedited liver allocation policy, we also look for

the allocation policies which should be avoided. We repeat our policy comparison, but this

time we take the inverse of our objectives. That is, if we have been maximizing a metric

beforehand, we make a policy comparison in which we minimize the metric. We present

the results in Figure 27 and Figure 28. The results of the comparison under the average

transplant rate and percentage of patients died metrics indicate that priority on receiving

expedited livers shouldn’t be given to the healthiest patients. Given that UNOS gives higher

priority to the sickest patients in the non-expedited liver allocation, following the opposite

strategy to UNOS’s non-expedited liver allocation policy in the expedited liver allocation

not only decreases the average transplant rate at the center, but also increases the death

rate.
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Average Tx

policy Estimate StdErr cllo clhi rval sval

A 0.4704 0.000491 0 0.010112 0 .

B 0.4894 0.000491 0 0.029137 0 .

C 0.4912 0.000491 0 0.030906 0 .

D 0.4642 0.000491 0 0.003969 0.00748 .

E 0.4653 0.000491 0 0.005061 0.00001 .

F 0.4656 0.000491 0 0.005327 0 .

G 0.4811 0.000491 0 0.020845 0 .

H 0.4684 0.000491 0 0.008185 0 .

I 0.4899 0.000491 0 0.029627 0 .

J 0.49 0.000491 0 0.029766 0 .

*K 0.462 0.000491 -0.0019 0.001609 . 0.88584

L 0.4621 0.000491 -0.00161 0.001896 0.88584 .

M 0.4873 0.000491 0 0.027014 0 .

N 0.4886 0.000491 0 0.028376 0 .

% of Patients Died

policy Estimate StdErr cllo clhi rval sval

A 0.1414 0.000354 -0.01693 0 0 .

B 0.1047 0.000354 -0.0536 0 0 .

C 0.1033 0.000354 -0.05502 0 0 .

D 0.1526 0.000354 -0.00571 0 0 .

E 0.1515 0.000354 -0.00676 0 0 .

F 0.1495 0.000354 -0.00877 0 0 .

G 0.1224 0.000354 -0.03594 0 0 .

H 0.1465 0.000354 -0.01178 0 0 .

I 0.1045 0.000354 -0.05375 0 0 .

J 0.1053 0.000354 -0.05304 0 0 .

*K 0.157 0.000354 -0.00085 0.00168 . 0.66258

L 0.1566 0.000354 -0.00168 0.000845 0.66258 .

M 0.1098 0.000354 -0.04847 0 0 .

N 0.1104 0.000354 -0.0479 0 0 .

Survival After Departure

policy Estimate StdErr cllo clhi rval sval

A 2852.18 1.7794 0 94.173 1.00E-12 .

B 2881.48 1.7794 0 123.471 1.00E-12 .

C 3001.55 1.7794 0 243.545 1.00E-12 .

D 2859.66 1.7794 0 101.651 1.00E-12 .

E 2784.4 1.7794 0 26.394 1.00E-12 .

*F 2764.36 1.7794 -26.3939 0 . 1.00E-12

G 2927.35 1.7794 0 169.344 1.00E-12 .

H 2975.33 1.7794 0 217.326 1.00E-12 .

I 2879.5 1.7794 0 121.494 1.00E-12 .

J 2877.05 1.7794 0 119.043 1.00E-12 .

K 2812.27 1.7794 0 54.26 1.00E-12 .

L 2811.97 1.7794 0 53.966 1.00E-12 .

M 2877.57 1.7794 0 119.563 1.00E-12 .

N 2877.68 1.7794 0 119.677 1.00E-12 .

Figure 27: Comparison of expedited liver allocation policies to identify the worst one under

various metrics.
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Total Survival

policy Estimate StdErr cllo clhi rval sval

A 3068.52 1.8435 0 100.354 1.00E-12 .

B 3183.86 1.8435 0 215.687 1.00E-12 .

C 3276.43 1.8435 0 308.259 1.00E-12 .

D 3049.55 1.8435 0 81.384 1.00E-12 .

E 2986.26 1.8435 0 18.092 6.33E-05 .

F *2974.75 1.8435 -18.0915 0 . 6.33E-05

G 3187.99 1.8435 0 219.817 1.00E-12 .

H 3180.26 1.8435 0 212.092 1.00E-12 .

I 3180.79 1.8435 0 212.624 1.00E-12 .

J 3179.31 1.8435 0 211.143 1.00E-12 .

K 2993.45 1.8435 0 25.284 1.00E-12 .

L 2993.56 1.8435 0 25.395 1.00E-12 .

M 3174.07 1.8435 0 205.899 1.00E-12 .

N 3175.13 1.8435 0 206.961 1.00E-12 .

Waiting Time Before Transplant

policy Exact Estimate Estimate StdErr cllo clhi rval sval

A 218.21 2.182 0.000469 -0.10986 0 0.00E+00 .

*B 304.54 2.2901 0.000469 -0.00087 0.002481 . 0.47782

C 276.83 2.2586 0.000469 -0.03321 0 0.00E+00 .

D 191.39 2.1407 0.000469 -0.15111 0 0.00E+00 .

E 203.4 2.1598 0.000469 -0.13206 0 0 .

F 211.99 2.1728 0.000469 -0.11901 0 0 .

G 262.5 2.2413 0.000469 -0.05052 0 0.00E+00 .

H 206.52 2.1645 0.000469 -0.12727 0 0.00E+00 .

I 303.11 2.2886 0.000469 -0.00324 0.000112 7.45E-02 .

J 303.83 2.2893 0.000469 -0.00248 0.000867 4.78E-01 .

K 182.79 2.1266 0.000469 -0.16525 0 0.00E+00 .

L 183.08 2.1271 0.000469 -0.16475 0 0.00E+00 .

M 298.86 2.2839 0.000469 -0.00795 0 0.00E+00 .

N 299.8 2.2849 0.000469 -0.0069 0 0.00E+00 .

Waiting Time Before Death

policy Exact Estimate Estimate StdErr cllo clhi rval sval

A 204.82 0.1117 0.000163 0 0.014728 0 .

B 283.79 0.09823 0.000163 0 0.001298 0.0095 .

C 257.63 0.1022 0.000163 0 0.005257 0 .

D 181.51 0.1173 0.000163 0 0.020366 0 .

E 193.05 0.1143 0.000163 0 0.017413 0 .

F 201.32 0.1124 0.000163 0 0.015465 0 .

G 247.34 0.1036 0.000163 0 0.006633 0 .

H 195.51 0.1138 0.000163 0 0.016904 0 .

I 284.94 0.09795 0.000163 -0.00014 0.001021 0.18231 .

*J 288.22 0.09751 0.000163 -0.00102 0.000141 . 0.18231

K 172.47 0.1197 0.000163 0 0.022786 0 .

L 173.5 0.1195 0.000163 0 0.022549 0 .

M 276.92 0.099 0.000163 0 0.002069 0 .

N 278.49 0.09876 0.000163 0 0.001831 0 .

Figure 28: Comparison of expedited liver allocation policies to identify the worst one under

various metrics.
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4.6 CONCLUSION

Expedited liver allocation is an important, yet relatively unexplored problem of the liver

allocation system. The expedited liver placement problem faced by a transplant center

has never been studied. Our study is motivated by the need of guidelines on this allocation

decision. In this chapter, we build a simulation model SIM1 for a transplant center’s decision

problem on the expedited liver placement. We compared various expedited liver allocation

policies.

Our study indicates that an allocation policy which gives higher priority to patients with

higher likelihood of death compared to the likelihood of receiving a non-expedited transplant

performs better than all the other policies we examine in terms of both the health outcomes,

percentage of patients died and average transplant rate metrics. Such a policy increases the

average survival times, i.e., 4% increase compared to UNOS’s non-expedited liver allocation

policy applied to expedited liver allocation. This increase translates to almost 200 days.

Possible future work is duplicating the study using UNOS datasets instead of transplant

center-based datasets. The analysis of the datasets obtained from UPMC and the statistics

published on UNOS website indicates some discrepancies. This might due to the quality of

data collected at various levels of the system. Moreover, due to the lack of data we have

a restricted patient type and liver quality definition. An extensive UNOS dataset might

help on extending the level of detail we capture in both patient types and liver qualities.

In addition, more expedited liver allocation policies can be constructed and tested via our

simulation model SIM1.
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5.0 A LARGE SCALE DYNAMIC PROGRAMMING APPROACH TO

PLACING EXPEDITED LIVERS

5.1 INTRODUCTION

In Chapter 4, to provide guidance to transplant centers we compare various intuitive expe-

dited liver allocation policies via simulation. Simulation is a powerful tool to model systems

with complex structures. It provides flexibility and ability to model the dynamic behaviors of

the systems more accurately than analytical models. However, as it is the case in Chapter 4,

how well the policy space is spanned is uncertain. Therefore, how well the policies evaluated

would perform compared to the optimal policy is unknown.

In this chapter, we introduce an alternative model of the expedited liver allocation prob-

lem faced by a transplant center. We develop a large scale dynamic programming approach,

namely an average reward Markov Decision Process model. We keep most of the modeling

framework developed in Chapter 4 intact. Due to the complexity of the problem, we assume

the significance of blood type match between donor and recipient away. To compensate

the assumption, we adjust the organ arrival rates. We utilize an approximate dynamic pro-

gramming approach to solve the expedited liver allocation problem faced by the transplant

center.

The chapter is structured as follows: Section 5.2 describes our average reward Markov

Decision Process model formulation of expedited liver placement problem faced by the trans-

plant center. We present two different objectives. Section 5.3 explains the model parameter

estimation methods. Section 5.4 reviews the Least Square Policy Iteration algorithm. Section

5.5 presents our numerical study. Section 5.6 concludes the section.
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5.2 MARKOV DECISION PROCESS MODEL FORMULATION

We extend the notation used in Chapter 4. We still specify each patient by her MELD score

and patient type. We utilize the same patient type definition as in Chapter 4. That is,

even though we assume the blood type match between donor and patient away, we continue

on assigning blood types to patients because it is one of the factors included in patient

type definition. However, in this chapter blood type does not play any role. We represent

the entire transplant center waiting list by a matrix whose entries indicate the number of

patients of each type and MELD score. To decrease the size of the state space, we eliminate

(type, MELD) pairs in which the patients would reject even the best possible expedited

organ offer. The (type, MELD) pairs to be eliminated are specified by the optimal control

limit policies (Section 4.2). Let µ∗i be the optimal control limit for patients of type i, given

the best possible expedited organ offer, i.e.,

µ∗i = min
d
µ∗i (d),

where µ∗i (d) is the optimal control limit of patients of type i for an expedited organ offer of

type d. In our model, we only consider the patients who have a MELD score at or above µ∗i .

That is, we remove the (type, MELD) pairs that would always reject any expedited organ

offer.

When we eliminate (type, MELD) pairs that would never accept an expedited organ, a

“partial matrix” of potentially eligible patients is left. The patients in our “partial matrix”

are just potentially eligible to receive an expedited liver transplant because, depending on

the type of the current donor, the eligible patients who are willing to accept that specific offer

constitutes just a subset of the patients included in the “partial matrix.” Let the “partial

matrix” be N . Let the entry in the ith row and jth column of N be nij, which is the number

of patients of type i ∈ {1, 2, . . . , τ} and MELD score j ∈ {µ∗i , µ∗i + 1, . . . , H} listed in the

waiting list of the transplant center. Then, the state S of the process is (N, d), where d

stands for the donor type defined by its age group, gender and ethnicity. To ensure a finite
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state space, we assume in steady state there is an upper bound on the number of potentially

eligible patients that can be listed at the transplant center at any time, i.e.,

τ∑
i=1

H∑
j=µ∗

i

nij ≤ m <∞.

For ease of notation, in the rest of the document, we use i, j within the summation and

product notations to indicate all (type, MELD) pairs which are included in the “partial

matrix” N , i.e. ∑
i,j

. . . =
τ∑

i=1

H∑
j=µ∗

i

. . .

∏
i,j

. . . =
τ∏

i=1

H∏
j=µ∗

i

. . . .

First, we study the expedited placement problem faced by the transplant center with

the objective of maximizing the long-run transplant rate at the transplant center. There

are two facets of this objective. One is that as the transplant rate is being maximized,

the waiting time of the patients listed at the center is expected to decrease. The other is

that a transplant center is a business. It needs to continue on its business to survive and

transplants serve this goal. Second, we study the same decision problem with the objective

of maximizing the average survival gain per patient. For an individual we define the survival

gain as the lifetime gained over death on any given day. Therefore, the survival gain is a

day for a patient who doesn’t leave the system due to transplant. It is the post-transplant

expected lifetime for a patient who receive a transplant. For a patient who dies, survival

gain is equal to zero. There may be alternative multi-criteria objective functions, such as

maximizing the transplant rate and the expected lifetime at the same time, which might

require different modeling approaches.

The objective of maximizing transplant rate only considers the number of transplants

performed. It does not take the outcome of the transplants into account. However, liver

allocation decisions based on the optimal control limits incorporate the consideration of

the outcomes into the objective. Thus, including the optimal control limits in the decision

process the objective of maximizing transplant rate does not only consider the performance

of the transplant center, but also the well-being of the individual patients.
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In state (N, d), the center can decline the expedited offer, action “0,” or allocate it to

a patient of type i and MELD score j. If no expedited offer is made, then the only option

is “0”; otherwise, any patient whose MELD score is at or above the optimal control limit,

µ∗i (d), is a candidate to receive the expedited organ, i.e.,

A(N,d) =

0, if d = D + 1;

{0} ∪ {(i, j) : j ≥ µ∗i (d) and nij > 0}, otherwise.

For a given donor type, the set of possible actions, namely A(N,d), is a subset of the (type,

MELD) pairs in N and constitutes the eligible patient set.

Decision epochs are defined as days. To specify the transition probabilities, we assume

the same order of events as in Chapter 4 within each day: expedited transplant (if any),

non-expedited transplant(s), health transitions including deaths, arrival of new potentially

eligible patients. In order to define the one-step transition probabilities, we specify the

transition probabilities given how many potentially eligible patients experience each of these

four events. Let n̄ij be the number of patients of type i and MELD score j listed at the

transplant center after the (potential) expedited transplant, ñij be the number of patients

of type i and MELD score j after the non-expedited transplants occur, n̂ij be the number

of patients of type i and MELD score j after the health transitions including death occur

and n′ij be the the number of patients of type i and MELD score j after the arrivals occur.

Let I{a=(i,j)} be an indicator function which takes a value of one if the expression in the

parenthesis holds and zero otherwise, i.e.,

I{a=(i,j)} =

1, if a = (i, j);

0, otherwise.

Let Xij be the random number of potentially eligible patients of type i and MELD score

j who receive a non-expedited transplant, X be the “partial matrix” whose entries are Xij,

and X be the set of all feasible realizations of X , i.e.,

X = {X : xij ≤ n̄ij,∀ i ∈ {1, 2, . . . , τ} and j ∈ {µ∗i , µ∗i + 1, . . . , H}},

where X, i.e., X = [xij]i=1,...,τ ;j=µ∗
i ,...,H , is a realization of X and n̄ij = nij − I{a=(i,j)}.
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Let ξ̂i(j) be the probability that a patient of type i and MELD score j receives a non-

expedited transplant. Given the initial state (N, d) and action a ∈ A(N,d) the probability of

observing a specific realization X of X , X ∈ X , is

Pr(X = X|(N, d), a) =
∏
i,j

[(n̄ij

xij

)
ξ̂i(j)

xij(1− ξ̂i(j))n̄ij−xij

]
.

Let Y i
j,j′ be the random number of potentially eligible patients of type i and MELD score

j who transition to MELD score j′, Yi
j be the (H + 1)-dimensional vector whose j′th entry

is Y i
j,j′ , j′ ∈ {1, 2, . . . , H,H + 1} (H + 1 denoting death), Y be the array whose (i, j, j′)th

entry is Y i
j,j′ , and Y be the set of all feasible realizations of Y , i.e.,

Y = {Y :
H+1∑
j′=1

yi
j,j′ = ñij , ∀ i ∈ {1, 2, . . . , τ} and j ∈ {µ∗i , µ∗i + 1, . . . , H}},

where Y, i.e., Y = [yi
j]i=1,...,τ ;j=µ∗

i ,...,H , is a realization of Y and ñij = n̄ij − xij.

We have defined Hi(j
′|j) as the daily probability of a health transition from MELD score

j to MELD score j′ for a patient of type i. Given the initial state (N, d), action a and the

realization X of X , the probability of observing a specific realization Y of Y , Y ∈ Y , is

Pr(Y = Y|X, (N, d), a) =
∏
i,j

[( ñij!

(yi
j,1)!(y

i
j,2)! . . . (y

i
j,H+1)!

)H+1∏
k=1

Hi(k|j)yi
j,k

]
.

Lastly, let Ψ be the random total number of new potentially eligible patients and ρ̂ij be

the likelihood that a new potentially eligible patient is of type i and MELD score j. Let Zij

be the random number of new potentially eligible patients of type i and MELD score j, Z

be the “partial matrix” whose entries are Zij and Z be the set of all feasible realizations of

Z , i.e.,

Z =
{
Z :
∑
i,j

zij ≤ m−
∑
i,j

n̂ij

}
,

where Z, i.e., Z = [zij]i=1,...,τ ;j=µ∗
i ,...,H is a realization of Z and n̂ij = ñij −

H+1∑
j′=1,j′ 6=j

yi
j,j′ +

H∑
k=µ∗

i ,k 6=j

yi
k,j. Because we are only modeling patients with MELD scores above the optimal

control limits, the new potentially eligible patients might be patients who are newly listed

at the transplant center with a MELD score at or above the optimal control limit for the
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best expedited liver or patients who have already listed, but are having a health transition

into a MELD score at or above the optimal control limit for the best expedited liver.

Given the total number of new potentially eligible patients, the probability that new

potentially eligible patients are characterized by a realization Z of Z , Z ∈ Z, is

Pr(Z = Z|Ψ = ψ) =
ψ!

z11!z12! . . . zτH !

∏
i,j

ρ̂
zij

ij .

Given the initial state (N, d), action a and realizations of X and Y of X and Y , respectively,

the probability of observing a specific realization Z of Z is

Pr(Z = Z|Y,X, (N, d), a) = Pr(Ψ = ψ) · Pr(Z = Z|Ψ = ψ).

After all the events occur, the number of potentially eligible patients of type i and MELD

score j becomes

n′ij = n̂ij + zij.

Let N ′ whose entries are n′ijs be the new “partial matrix” obtained after the observation of

X,Y and Z. Given N , there is a unique “partial matrix” N ′ characterized by X,Y and Z. We

do not explicitly define one-step transition probabilities, because given an initial N , there

are multiple observations of the action taken and realizations of X ,Y and Z that lead to

N ′. Instead, we define the probability of observing X,Y and Z, given an initial state (N, d)

and action a as

Pr(X = X,Y = Y,Z = Z|(N, d), a) = Pr(Z = Z|Y,X, (N, d), a)

· Pr(Y = Y|X, (N, d), a)

· Pr(X = X|(N, d), a).

Although the definition of “partial matrix”N provides computational advantages, it adds

some challenges, as well. Due to this definition, the patients’ movements between MELD

scores outside of the state space are not modeled explicitly. For instance, we cannot capture

the likely event that a potentially eligible patient transitions to a MELD score below µ∗i and

then back to a MELD score above µ∗i . Therefore, the resulting policies will not be a function

of the number of patients in MELD scores below µ∗i . We address this issue in Section 5.3.
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Let rk((N, d), a) be the expected reward associated with taking action a in state (N, d)

for the decision problem with the objective k. Our objective of maximizing transplant rate

(k = 1) gives a reward of one for each transplant, i.e.,

r1((N, d), a) = (1− I{a=0}) +
∑
i,j

[n̄ij · ξ̂i(j)].

The first term in the definition of r1((N, d), a) corresponds to the reward obtained from the

decision made and the second term corresponds to the expected reward obtained from the

non-expedited transplants. The objective of maximizing average survival gain per patient

(k = 2) yields a reward that depends on the survival times generated by the Cox model of

Roberts et al. [79] for patients who receive a transplant, a reward equal to zero for patients

who die and a reward equal to one for patients who stay on the waiting list, i.e.,

r2((N, d), a) =

Lexp(a, d) +
∑
i,j

[n̄ij · ξ̂i(j) · Lnon exp(i, j)] +
∑
i,j

ñij · [1−Hi(∆|j)]∑
i,j

nij

,

where Lexp(a, d) is the expected post-transplant life days of an a = (i, j) patient who receives

an expedited transplant of an organ type d, Lnon exp(i, j) is the expected post-transplant

life days of an (i, j) patient who receives a non-expedited transplant, ∆ stands for death

and Hi(∆|j) = 1 −
18∑

j′=1

Hi(j
′|j). Because we do not explicitly model the non-expedited

liver arrivals, we cannot specify the organ types that result in non-expedited transplants.

Therefore, in the calculation of the post-transplant expected life days which are caused by

the non-expedited liver transplants we aggregate all liver qualities into one and generate the

survival times accordingly.

Given D(d′) is the probability of receiving an expedited liver from a donor of type d′,

the value function for the objective k with t days remaining can be written as

V k
t ((N, d)) = max

a∈A(N,d)

{
rk((N, d), a) + E[V k

t−1((Ṅ , ḋ))]
}
, (5.1)
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where the expectation is given by

E[V k
t−1((Ṅ , ḋ))] =

D+1∑
d′=1

∑
X∈X

∑
Y∈Y

∑
Z∈Z

Pr(X = X,Y = Y,Z = Z|(N, d), a)

· D(d′) · V k
t−1((N

′, d′)),

and the terminal reward is zero.

Given that the above MDP model has finite state space, bounded and stationary rewards,

stationary transition probabilities and a single irreducible class under all stationary policies,

as t→∞ we obtain

W k((N, d)) = max
a∈A(N,d)

{
rk((N, d), a) + E[W k((Ṅ , ḋ))]− γk

}
, (5.2)

where γk is the maximum attainable transplant rate or average survival gain per patient for

k = 1, 2, respectively, and W k((N, d)) is the bias associated with starting in state (N, d).

5.3 PARAMETER ESTIMATION

To estimate the model parameter values, we utilize the same datasets as in Chapter 4 and

employ similar calculation methods. Contrary to the parameters in Chapter 4, the ones in

this chapter are defined for only (i, j) pairs included in the “partial matrix” N .

First, consider the expedited liver arrival probabilities. To estimate the probability of

an expedited offer from a donor of type d ∈ {1, 2, . . . , D,D+1}, we follow the same steps as

in Chapter 4. We assume that the time between expedited organ offers follows a geometric

distribution with parameter p. We obtain D(d) using the following formula:

D(d) = p · total number of expedited offers from donor type d
total number of expedited offers

, ∀ d.

In Chapter 4, the blood compatibility of the donor and the patient is a factor in the

allocation decision of expedited livers. Therefore, in the simulation model SIM1 of Chapter

4, we observe cases in which a liver cannot be matched to any patients due to the lack of

blood compatibility. However, in this chapter we assume the effect of blood compatibility
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away. Therefore, independent of the blood type match any patient might accept any liver as

long as the optimal control limits permit. To prevent the number of transplants from being

artificially increased, we adjust the liver arrival probabilities. For each policy studied in

Chapter 4, we examine the percentage of cases in which no match is found for an expedited

liver due to blood type incompatibility in the simulation model SIM1. On average, 12% of the

time a match cannot be found for a liver. Thus, we decrease the organ arrival probabilities

by 12%.

Second, consider the probability that a patient of type i and MELD score j receives a

non-expedited transplant, ξ̂i(j). The estimated values of ξ̂i(j) are the same as of ξi(j) for

patients of type i ∈ {1, 2, . . . , τ} and MELD score j ∈ {µ∗i , µ∗i + 1, . . . , H}.

Third, consider the likelihood that when a new potentially eligible patient joins the list,

she is of type i and MELD score j, ρ̂ij. Due to the construction of the “partial matrix”

N , we partition the estimation method into two parts. First, consider the patients who are

“new” to the transplant center. Using patients’ MELD score at listing, gender, race, etc., we

can determine which (type, MELD) pair a patient belonged to when she joined the waiting

list. Then, on a given day the expected number of arrivals of newly listed patients to the

pair (i, j) is

ϕij =
total number of patients who joined the list in (i, j) pair

total number of days covered within the dataset
,

and the expected number of arrivals of newly listed patients to MELD scores at or above µ∗i

is

ϕ =
∑
i,j

ϕij =
total number of patients who joined the list in any (i, j) pair

total number of days covered within the dataset
.

Now, consider the existing patients having health transitions from the MELD scores be-

low µ∗i . A patient of type i and MELD score k is assumed to have transitions to MELD score

j with probability Hi(j|k). Then, Hi(j|k) multiplied by the expected number of patients of

type i and MELD score k gives us the expected number of arrivals from (i, k) pair to (i, j)

pair. Let βi
k be the expected number of patients of type i and MELD score k and ζj

ik be the

expected number of arrivals from (i, k) pair to (i, j) pair. Then,

ζj
ik = Hi(j|k) · βi

k,
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where

βi
k =

total average number of days patients of type i spent in MELD score k

total number of days covered within the dataset
.

Then, for type i, the expected number of arrivals from MELD scores below µ∗i to MELD

score j is
µ∗

i−1∑
k=1

ζj
ik,

and the total expected number of arrivals from MELD scores below µ∗i to MELD scores at

or above µ∗i is
H∑

j=µ∗
i

µ∗
i−1∑

k=1

ζj
ik.

Then, ρ̂ij is obtained using the following formula:

ρ̂ij =

ϕij +
µ∗

i−1∑
k=1

ζj
ik

ϕ+
τ∑

i=1

H∑
j=µ∗

i

µ∗
i−1∑

k=1

ζj
ik

.

Lastly, consider the rate at which new eligible patients join the list. We need to consider

both the new patients to the system and the patients who have been listed with MELD

scores below µ∗i and having a health transition to MELD scores at or above µ∗i . We utilize

a simulation model (SIM3) to estimate the arrival probabilities. We construct a similar

simulation model (SIM3) to the one in Chapter 4 (SIM1). However, we model the expedited

transplants as we model the non-expedited transplants. That is, we do not simulate an

expedited liver allocation policy. Instead, we calculate the probability that a patient of type

i and MELD score j receives an expedited transplant for all i ∈ {1, 2, . . . , τ} and MELD score

j ∈ {1, 2, . . . , H}. Contrary to the probability that a patient of type i and MELD score j

receives a non-expedited transplant, ξi(j), we do not impute the missing probability values.

In the simulation model SIM3, we consider the effect of the events, i.e., patient arrivals,

transplants, and health transitions, to all (i, j) pairs, i ∈ {1, 2, . . . , τ}, j ∈ {1, 2, . . . , H}.

The parameters whose estimation methods explained in Section 4.3.2 are utilized in the

simulation model SIM3. We let the number of replications be 5,000. We count the number

of arrivals to MELD scores at or above µ∗i ’s on each iteration, sum the number of iterations
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on which a specific number of arrivals is observed and divide these sums by the number of

iterations in a replication, i.e., 365.

The values of all model parameters can be seen in Appendix B.

5.4 SOLUTION TECHNIQUE

The number of states is calculated using a balls and bins approach. The cells, i.e., (type,

MELD) pairs of N , are thought of as bins and the patients in the cells are thought of as

balls. The number of ways of distributing k identical balls over n bins, if one or more bins

may remain empty, is given by
(

k+n−1
k

)
[45]. Then, because at the center we might have

k, k ∈ [0,m], patients on any day, the number of states is given by

|S| = (D + 1) ·
m∑

k=0

(k +
τ∑

i=1

(H − µ∗i + 1)− 1

k

)
.

Not surprisingly, the number of states explodes for realistically sized problems. Thus, our

numerical experiment in which we obtain optimality is restricted to very small instances.

Under both objectives, i.e., maximizing transplant rate at the transplant center and

average survival gain per patient, it is never optimal to decline an expedited offer of type

d if there is a patient with a MELD score at or above µ∗i (d), i = 1, . . . , τ . This behavior is

also confirmed in our numerical experimentation on small instances for which we obtain the

optimal solution. It intuitively makes sense that as long as there is a benefit to obtain for

any patient, it cannot be optimal to reject an offer under these two metrics.

Our model suffers from the “curse of dimensionality.” A one unit increase in the model

parameters’ sizes, e.g., m → m + 1, leads to an exponential increase in difficulty in solving

the problem. For realistically sized problems, we have enormous state spaces. It is even

impossible to store them. For instance, for the instance with model parameters D = 2,

m = 50, H = 18, τ = 4, µ∗1 = 8, µ∗2 = 9, µ∗3 = 9, µ∗4 = 10, the size of the state space is equal

to 1.8 × 1026. Furthermore, the transition probabilities quickly become intractable. Thus,

we cannot utilize traditional methods, i.e., policy iteration, to solve our model. Instead, we

explore different approximate dynamic programming approaches.
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Given the two problems that exhibit the curse, i.e., the size of the state space and

the difficulty in the generation of transition probabilities, we have selected Least-Squares

Policy Iteration (LSPI) [59] as the most suitable approach. LSPI is an approximate dynamic

programming approach for control problems which combines value-function approximation

with linear architectures and approximate policy iteration as a solution technique. To be

able to incorporate the policy improvement step into the algorithm, LSPI approximates the

state-action values, i.e., Q(s, a), instead of the value function. Q values are the estimates of

the expressions that are maximized in the right hand side of Bellman’s equation. To represent

the Q values, LSPI uses a linear combination of nonlinear basis functions or features, given

by the vector φ(s, a), i.e.,

Q̂(s, a, ω) =
κ∑

k=1

φk(s, a)ωk, s ∈ S, a ∈ As

where the ωk’s are the parameters to be estimated. Because it only requires that the Q values

are generated as needed, it overcomes the dimensionality issue related to the state space. By

just storing the values of the ωk’s, any Q value can be obtained for any state-action pair at

any time. LSPI evaluates the values of the linear architecture via simulation. In this manner,

it eliminates the need of calculation of one-step transition probabilities. The optimal action

at state s is obtained by maximizing the Q value over all actions a ∈ As.

The steps of LSPI algorithm follow

1. Decide on the κ basis functions, i.e., what they represent.

2. Let the initial policy π = π0.

3. Calculate the parameters ω̃.

• Let st = (Nt, dt). Draw a sample D = {(st, at, r(st, at), s
′
t)|t = 1, 2, . . . , T}. Once st

and at are known, r(st, at) and s′t can be generated via simulation. The observations,

(st, at, r(st, at), s
′
t), in sample D are not specific to a policy π. (st, at) are chosen

uniformly from the state-action space. All states should be observed in sample D.

• Let Ã(0) and b̃(0) be zero.

• If Ã is not full rank, instead of zero, initialize Ã(0) and b̃(0) to νI, where ν is a positive

small number.
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• For t = 1 to T ,

Ã← Ã+ φ(st, at)
(
φ(st, at)− λφ(s′t, π(s′t))

)′
b̃← b̃+ φ(st, at)r

where λ, 0 < λ ≤ 1, is the discount factor.

4. Calculate ω̃ using b̃ = Ãω̃.

5. Let π′(s) = arg max
a∈As

Q̂(s, a) = arg max
a∈As

κ∑
k=1

φk(s, a)ω̃k, for all s ∈ S.

6. If π ≈ π′, stop. Otherwise, go to step 3.

The goal of LSPI is to mimic the behavior of the value function to be approximated.

Numerical estimation of the right value of the value function is not intended. By mimicking

the upward and downward trends in the value function, LSPI aims at choosing the optimal

action at each state.

LSPI has two issues which are common to most algorithms of approximate dynamic pro-

gramming. One is the exploration-exploitation trade-off problem. Should it take suboptimal

actions to explore new rewards? Or should it focus on gained knowledge to improve the

current reward? Because LSPI utilizes sample data generated from any reasonable sampling

distribution, with appropriate approaches, like that of Li et al. [61], it is possible to overcome

this issue. The second problem is feature selection. Feature selection is suggested to be done

using insight [59]. Especially linear architectures are claimed to give insight to how they

fail to provide good fit. The selection of basis functions that can fit the Q values properly

becomes easier with linear architectures because, for instance, it is easier to understand how

an architecture fails via plots if a linear architecture is employed. A key point in the selection

of the basis functions is the functional behavior. The performance of LSPI is highly depen-

dent on the basis functions, i.e., φk(s, a), k ∈ {1, 2, . . . , κ}, chosen. Depending on the choice

made the algorithm might even oscillate between policies or ω values and never converge.
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5.5 NUMERICAL STUDY

5.5.1 Maximizing Transplant Rate

To be able to understand the behavior of the value function, we first study very small prob-

lems. To find the appropriate basis functions, we investigate the effect of various properties

of state and action pairs. We utilized the estimated values of the model parameters in the

basis function definitions. For instance, we consider the number of patients in each (i, j) pair,

the number of patients in each MELD score j, the number of patients in each patient type

i, their likelihood of death on a day, their likelihood of receiving a non-expedited transplant

on a day, their long run probability of receiving a transplant, the existence of an expedited

liver on any given day, the total number of patients who are willing to accept an expedited

liver offer on any given day, the outcome of a match of an expedited liver and a patient,

the benefit of allocating an expedited liver to a patient instead of the other patients as the

components of the basis functions. We utilize different functional forms. We experiment on

the linear combinations of linear and non-linear basis functions. We study polynomial terms

with various degrees and many functional forms, i.e., exponential function, probability den-

sity function of gamma distribution, probability density function of log-normal distribution,

etc. After observing the performance of the basis functions on small instances, we repeat

the experiments on real size instances.

The basis function found to yield the best outcomes in terms of the performance metrics,

i.e., average transplant rate, survival after departure, has the following form:

φ(s, a) =


1

exp

((
−
∑
i,j

(nij − I{a!=0}) · ξ̂i(j) · 1
1− (1− ξ̂i(j)) · (1−Hi(∆|j))

)
/2

)
B(a, d)

 ,

where B(a, d) is defined as the following.

B(a, d) =



max
(i′,j′) 6=(i,j)

{Lexp((i, j), d)− Lexp((i
′, j′), d)}, if (Lexp((i, j), d)− Lexp((i

′, j′), d))

is non-negative for all comparisons;

min
(i′,j′) 6=(i,j)

{Lexp((i, j), d)− Lexp((i
′, j′), d)}, otherwise.
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The first component of the basis function is a constant term. The second component incor-

porates the expected number of non-expedited liver transplants that the patients listed at

the center would receive. Excluding the expedited transplant option, the probability that a

patient receives a non-expedited transplant is given by

ξ̂i(j) ·
1

1− (1− ξ̂i(j)) · (1−Hi(∆|j))
=

ξ̂i(j) + (1− ξ̂i(j)) · (1−Hi(∆|j)) · ξ̂i(j) + (1− ξ̂i(j))2 · (1−Hi(∆|j))2 · ξ̂i(j) + . . .

The third component is the benefit of allocating the expedited liver to an (i, j) patient

instead of an (i′, j′) patient, i 6= i′, j 6= j′. If the outcome of another match of the liver and

a patient is higher, the benefit function B(a, d) represents the loss in terms of life days.

The sample size utilized in step 3 of the LSPI algorithm is chosen to be 30,000 to increase

the probability of visiting all feasible state-action pairs. Given the above basis functions, the

LSPI algorithm repeats steps 3 through 6 five times and converges to the following values.

ω =


1442691.551

184.9864309

0.000205571

 .

Due to the size of the state space, generation of an expedited liver allocation policy

based on the results of the LSPI algorithm is only possible via simulation. The values of ω

obtained via LSPI algorithm are fed into a simulation model of the system (SIM4) which

is similar to the one in Chapter 4 (SIM1). In this simulation model SIM4, not the whole

transplant center, but only patients that fall into the “partial matrix” N are simulated.

Moreover, blood type match between the donor and the patient is not important. The

expedited liver allocation decisions are based on the Q values calculated using the ω values,

i.e., π′(s) = arg max
a∈As

Q̂(s, a) = arg max
a∈As

κ∑
k=1

φk(s, a)ω̃k. While choosing the optimal action

generated via the Q values, we might observe ties between multiple state-action pairs. In the

simulation SIM4, we observe such a tie 10% of the time. In the case of a tie, we prioritize

patients with the highest MELD scores and acute liver disease (disease group 3). In Table

8, various performance metrics obtained via the simulation model SIM4 are presented.
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Table 8: Performance metrics obtained via LSPI - I

mean std. deviation

average transplant rate 0.36936 0.02857

average non-expedited transplant rate 0.14212 0.02501

average expedited transplant rate 0.22724 0.02169

percentage of livers unused 0.00047 0.00357

percentage of patients died 0.18889 0.03131

expected life days after departure 2973.4 144.5

waiting time before death (in days) 37.172 11.324

waiting time before transplant (in days) 37.546 9.624

total expected lifedays 3010.8 143.5

To be able to comment on how well we approximate the optimal solution we utilize the

policies constructed in Chapter 4 (Figure 8). We feed those policies into the simulation

model mentioned above (SIM4), instead of the ω values. In Figure 29 and Figure 30, the

performance metrics obtained by simulating those policies and the ω values are presented.

We perform policy comparison analysis for the metrics in Figure 29. We utilized Hsu’s

method. The highlighted policies are the ones in the best policy subset. In Figure 30, we

put the means in order for ease of comparison.
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Average Transplant Rate % of Patients Died

policy Estimate StdErr cllo clhi rval sval policy Estimate StdErr cllo clhi rval sval

A 0.3682 0.000396 -0.0121 0 0 . A 0.1749 0.000431 0 0.072771 1.00E-12 .

B 0.3664 0.000396 -0.01384 0 0 . B 0.1117 0.000431 0 0.009649 1.00E-12 .

C 0.3702 0.000396 -0.01007 0 0 . C 0.1036 0.000431 -0.00955 0 . 1.00E-12

D 0.3769 0.000396 -0.00336 0 0.003366 . D 0.1879 0.000431 0 0.085777 1.00E-12 .

E 0.3788 0.000396 -0.00014 0.002713 . 0.088681 E 0.1907 0.000431 0 0.088628 1.00E-12 .

F 0.3682 0.000396 -0.01207 0 0 . F 0.1515 0.000431 0 0.049433 1.00E-12 .

G 0.3682 0.000396 -0.01207 0 0 . G 0.1515 0.000431 0 0.049433 1.00E-12 .

H 0.3775 0.000396 -0.00271 0.000138 0.088681 . H 0.1753 0.000431 0 0.07323 1.00E-12 .

I 0.3667 0.000396 -0.01355 0 0 . I 0.1116 0.000431 0 0.009551 1.00E-12 .

J 0.3667 0.000396 -0.01354 0 0 . J 0.1119 0.000431 0 0.009854 1.00E-12 .

K 0.3769 0.000396 -0.00334 0 0.003679 . K 0.1968 0.000431 0 0.094746 1.00E-12 .

L 0.3768 0.000396 -0.00346 0 0.001739 . L 0.1971 0.000431 0 0.095046 1.00E-12 .

M 0.3653 0.000396 -0.01493 0 0 . M 0.1209 0.000431 0 0.018768 1.00E-12 .

N 0.3648 0.000396 -0.0154 0 0 . N 0.1202 0.000431 0 0.018146 1.00E-12 .

LSPI 0.3694 0.000396 -0.01089 0 0 . LSPI 0.1889 0.000431 0 0.086803 1.00E-12 .

Average Non-expedited Transplant Rate Survival After Departure

policy Estimate StdErr cllo clhi rval sval policy Estimate StdErr cllo clhi rval sval

A 0.1411 0.000352 -0.01195 0 0 . A 2946.77 2.1876 -254.617 0 1.00E-12 .

B 0.1389 0.000352 -0.01414 0 0 . B 2820.05 2.1876 -381.332 0 1.00E-12 .

C 0.1427 0.000352 -0.01035 0 0 . C 3164.71 2.1876 -36.676 0 1.00E-12 .

D 0.1501 0.000352 -0.00295 0 0.0043 . D 3017.08 2.1876 -184.307 0 1.00E-12 .

E 0.1518 0.000352 0 0.002786 . 0.012251 E 2929.09 2.1876 -272.294 0 1.00E-12 .

F 0.1408 0.000352 -0.01233 0 0 . F 2939.96 2.1876 -261.43 0 1.00E-12 .

G 0.1408 0.000352 -0.01233 0 0 . G 2939.96 2.1876 -261.43 0 1.00E-12 .

H 0.1503 0.000352 -0.00279 0 0.012251 . H 3193.51 2.1876 0 36.6765 . 1.00E-12

I 0.1388 0.000352 -0.01427 0 0 . I 2819.16 2.1876 -382.227 0 1.00E-12 .

J 0.1396 0.000352 -0.01353 0 0 . J 2818.99 2.1876 -382.398 0 1.00E-12 .

K 0.1499 0.000352 -0.0032 0 0.000671 . K 2929.06 2.1876 -272.33 0 1.00E-12 .

L 0.1497 0.000352 -0.00337 0 0.000157 . L 2928.57 2.1876 -272.812 0 1.00E-12 .

M 0.1381 0.000352 -0.01501 0 0 . M 2812.39 2.1876 -388.994 0 1.00E-12 .

N 0.137 0.000352 -0.01606 0 0 . N 2818.58 2.1876 -382.807 0 1.00E-12 .

LSPI 0.1421 0.000352 -0.01097 0 0 . LSPI 2973.37 2.1876 -228.016 0 1.00E-12 .

Average Expedited Transplant Rate Total Survival

policy Estimate StdErr cllo clhi rval sval policy Estimate StdErr cllo clhi rval sval

A 0.227 0.000289 -0.0019 0.000181 0.13335 . A 3000.38 2.1853 -264.532 0 1.00E-12 .

B 0.2275 0.000289 -0.00145 0.000632 0.59736 . B 2941.34 2.1853 -323.563 0 1.00E-12 .

C 0.2274 0.000289 -0.00147 0.000606 0.56675 . C 3257.04 2.1853 0 30.4849 . 1.00E-12

D 0.2268 0.000289 -0.00216 0 0.02953 . D 3050.39 2.1853 -214.522 0 1.00E-12 .

E 0.001038 0.000289 -0.22788 0 0 . E 2968.56 2.1853 -296.344 0 1.00E-12 .

F 0.2274 0.000289 -0.00149 0.000587 0.54371 . F 3029.29 2.1853 -235.618 0 1.00E-12 .

G 0.2274 0.000289 -0.00149 0.000587 0.54371 . G 3029.29 2.1853 -235.618 0 1.00E-12 .

H 0.001034 0.000289 -0.22788 0 0 . H 3234.42 2.1853 -30.485 0 1.00E-12 .

I 0.2279 0.000289 -0.00099 0.001093 . 0.90932 I 2940.5 2.1853 -324.408 0 1.00E-12 .

J 0.2272 0.000289 -0.00176 0.000321 0.24385 . J 2940.46 2.1853 -324.445 0 1.00E-12 .

K 0.227 0.000289 -0.0019 0.00018 0.133 . K 2962.21 2.1853 -302.703 0 1.00E-12 .

L 0.2271 0.000289 -0.00184 0.000237 0.17247 . L 2961.85 2.1853 -303.054 0 1.00E-12 .

M 0.2272 0.000289 -0.00168 0.000403 0.32798 . M 2931 2.1853 -333.906 0 1.00E-12 .

N 0.2278 0.000289 -0.00109 0.000987 0.90932 . N 2937.18 2.1853 -327.724 0 1.00E-12 .

LSPI 0.2272 0.000289 -0.00168 0.000401 0.3256 . LSPI 3010.84 2.1853 -254.068 0 1.00E-12 .

Figure 29: Performance metrics obtained for various allocation policies A-I.
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percentage of livers unused waiting time before death waiting time before transplant

policy mean std dev. policy mean std dev. policy mean std dev.

B 0 0.00E+00 J 117.8 35.35 K 33.03 9.396

C 0 0 I 116.77 34.37 L 33.169 9.547

F 0 0 B 116 34.77 D 33.243 9.826

G 0 0 M 113.14 32.03 LSPI 37.546 9.624

I 0 0 N 112.16 31.98 E 39.402 9.828

J 0 0.000000 F 88.187 22.421 H 40.729 11.13

M 0 0 G 88.187 22.421 A 54.035 10.929

N 0 0 C 87.102 27.881 F 89.525 12.081

A 0.000043 0.001026 A 51.5 14.317 G 89.525 12.081

LSPI 0.000469 0.003571 H 41.789 13.575 C 92.94 14.72

E 0.00061 0.004280 E 39.77 11.661 M 119.34 14.72

H 0.000888 0.005369 LSPI 37.172 11.324 N 119.46 14.68

L 0.001669 0.007284 L 33.739 11.065 I 121.88 14.7

K 0.001696 0.007083 K 33.678 10.768 B 121.92 14.49

D 0.002167 0.008316 D 33.595 11.352 J 121.93 14.52

Figure 30: Performance metrics obtained for various allocation policies A-II.

The results of the Hsu’s method and the visual comparison made for the metrics in Figure

30 indicate that there is still room for improvement for the LSPI method. Under none of the

metrics, LSPI method’s policy is picked as the best policy. However, further investigation

of Figure 29 reveals that the non-expedited transplants are the actual factor which affect

the order of the policies. Moreover, we perform a t-test to compare the performance of

Policy E, which is one of the best policies according to Hsu’s method, and the performance

of LSPI method under the average transplant rate metric. The test results in a p-value

less than 0.0001 indicating that there is no sufficient evidence to reject the equality of the

performances.

The values in Figure 29 show that we cannot easily differentiate the expedited liver

allocation policies based on the objective of maximizing average transplant rate at the center.
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Therefore, we construct another average reward MDP model with the objective of maximiz-

ing average survival gain per patient.

5.5.2 Maximizing Average Survival Gain per Patient

We perform a similar search for basis functions for the expedited liver placement problem

with the objective of maximizing average survival gain per patient as we do in the previous

section. Our extensive basis function search yields the following form as the best basis

function in terms of the performance metrics obtained.

φ(s, a) =


1

−
∑
i,j

(nij − I{a!=0}) ·Hi(∆|j)

B(a, d)

 .

The first and third components of the basis function are the same as in the previous section.

However, the second component captures purely the expected number of deaths. We would

like to prevent the patients from dying, because a patient who dies affects all the performance

metric negatively. Thus, the second component has a negative sign.

The sample size utilized in step 3 of the LSPI algorithm is again chosen to be 30,000

to increase the probability of visiting all feasible state-action pairs. Given the above basis

function, the LSPI algorithm repeats steps 3 through 6 three times and converges to the

following values:

ω =


176233982.9

−4632.20056

0.031210671

 .

The negative effect we impose via the expected number of deaths is converted to be a positive

one by the negative coefficient ω2.

The simulation model of the system (SIM4) is fed by the values of ω obtained via LSPI

algorithm. Contrary to the case in the previous section, we do not observe any ties between

state-action pairs while choosing the optimal actions. In Table 9, the performance metrics

obtained via the simulation model SIM4 are presented. Even though the objective is to

maximize the average survival gain per patient, not only this metric but also the average
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transplant rate has been improved compared to the results obtained for the average reward

model of Section 5.5.1. This might be due to the fact that policies’ average transplant

rates are very close to each other. The basis functions explored cannot detect these small

differences. However, the average survival gain per patient has different values from policy

to policy. Thus, the basis functions explored yield more satisfactory results.

Table 9: Performance metrics obtained via LSPI - II

mean std. deviation

average transplant rate 0.37598 0.02906

average non-expedited transplant rate 0.14909 0.02542

average expedited transplant rate 0.2269 0.02154

percentage of livers unused 0.00178 0.0073

percentage of patients died 0.18872 0.03140

expected life days after departure 3016.6 139.2

waiting time before death 33.878 11.196

waiting time before transplant 32.751 9.319

total expected lifedays 3049.6 138.3

In Figure 31 and Figure 32, we present the comparison of the results of the LSPI method

with that of the policies constructed in Chapter 4 (Figure 8). Unfortunately, the policy

generated via LSPI method still do not perform better than the other policies under all

metrics except the waiting time before transplant metric. The policy generated via LSPI

method yields the smallest waiting time before transplant. Moreover, when the average

transplant rate metric is investigated, we observe that even though statistically the policy

generated via LSPI method is not chosen to be the best policy, it’s performance is very close

the best, i.e., 0.376 vs. 0.379. In addition, the policy generated via LSPI method performs

better than all policies, except Policies A, C and D, under the total survival metric.
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Average Transplant Rate % of Patients Died

policy Estimate StdErr cllo clhi rval sval policy Estimate StdErr cllo clhi rval sval

A 0.3682 0.000396 -0.0121 0 0 . A 0.1749 0.000431 0 0.072771 1.00E-12 .

B 0.3664 0.000396 -0.01384 0 0 . B 0.1117 0.000431 0 0.00965 1.00E-12 .

C 0.3702 0.000396 -0.01007 0 0 . C 0.1036 0.000431 -0.00955 0 . 1.00E-12

D 0.3769 0.000396 -0.00336 0 0.003416 . D 0.1879 0.000431 0 0.085778 1.00E-12 .

E 0.3788 0.000396 -0.00014 0.002715 . 0.089222 E 0.1907 0.000431 0 0.088628 1.00E-12 .

F 0.3682 0.000396 -0.01207 0 0 . F 0.1515 0.000431 0 0.049433 1.00E-12 .

G 0.3682 0.000396 -0.01207 0 0 . G 0.1515 0.000431 0 0.049433 1.00E-12 .

H 0.3775 0.000396 -0.00272 0.00014 0.089222 . H 0.1753 0.000431 0 0.073231 1.00E-12 .

I 0.3667 0.000396 -0.01356 0 0 . I 0.1116 0.000431 0 0.009552 1.00E-12 .

J 0.3667 0.000396 -0.01354 0 0 . J 0.1119 0.000431 0 0.009854 1.00E-12 .

K 0.3769 0.000396 -0.00334 0 0.003733 . K 0.1968 0.000431 0 0.094746 1.00E-12 .

L 0.3768 0.000396 -0.00346 0 0.001768 . L 0.1971 0.000431 0 0.095046 1.00E-12 .

M 0.3653 0.000396 -0.01493 0 0 . M 0.1209 0.000431 0 0.018768 1.00E-12 .

N 0.3648 0.000396 -0.0154 0 0 . N 0.1202 0.000431 0 0.018146 1.00E-12 .

LSPI 0.376 0.000396 -0.00427 0 0.000003 . LSPI 0.1887 0.000431 0 0.086628 1.00E-12 .

Average Non-expedited Transplant Rate Survival After Departure

policy Estimate StdErr cllo clhi rval sval policy Estimate StdErr cllo clhi rval sval

A 0.1411 0.000352 -0.01196 0 0 . A 2946.77 2.183 -254.6 0 1.00E-12 .

B 0.1389 0.000352 -0.01414 0 0 . B 2820.05 2.183 -381.315 0 1.00E-12 .

C 0.1427 0.000352 -0.01035 0 0 . C 3164.71 2.183 -36.66 0 1.00E-12 .

D 0.1501 0.000352 -0.00295 0 0.004355 . D 3017.08 2.183 -184.29 0 1.00E-12 .

E 0.1518 0.000352 0 0.002787 . 0.012378 E 2929.09 2.183 -272.277 0 1.00E-12 .

F 0.1408 0.000352 -0.01233 0 0 . F 2939.96 2.183 -261.413 0 1.00E-12 .

G 0.1408 0.000352 -0.01233 0 0 . G 2939.96 2.183 -261.413 0 1.00E-12 .

H 0.1503 0.000352 -0.00279 0 0.012378 . H 3193.51 2.183 0 36.6597 . 1.00E-12

I 0.1388 0.000352 -0.01427 0 0 . I 2819.16 2.183 -382.21 0 1.00E-12 .

J 0.1396 0.000352 -0.01353 0 0 . J 2818.99 2.183 -382.381 0 1.00E-12 .

K 0.1499 0.000352 -0.0032 0 0.000683 . K 2929.06 2.183 -272.313 0 1.00E-12 .

L 0.1497 0.000352 -0.00337 0 0.00016 . L 2928.57 2.183 -272.795 0 1.00E-12 .

M 0.1381 0.000352 -0.01501 0 0 . M 2812.39 2.183 -388.977 0 1.00E-12 .

N 0.137 0.000352 -0.01607 0 0 . N 2818.58 2.183 -382.791 0 1.00E-12 .

LSPI 0.1491 0.000352 -0.004 0 0 . LSPI 3016.63 2.183 -184.737 0 1.00E-12 .

Average Expedited Transplant Rate Total Survival

policy Estimate StdErr cllo clhi rval sval policy Estimate StdErr cllo clhi rval sval

A 0.227 0.000289 -0.0019 0.00018 0.13306 . A 3000.38 2.1808 -264.516 0 1.00E-12 .

B 0.2275 0.000289 -0.00145 0.000631 0.59711 . B 2941.34 2.1808 -323.547 0 1.00E-12 .

C 0.2274 0.000289 -0.00147 0.000606 0.56648 . C 3257.04 2.1808 0 30.4687 . 1.00E-12

D 0.2268 0.000289 -0.00216 0 0.02941 . D 3050.39 2.1808 -214.506 0 1.00E-12 .

E 0.001038 0.000289 -0.22788 0 0 . E 2968.56 2.1808 -296.328 0 1.00E-12 .

F 0.2274 0.000289 -0.00149 0.000586 0.54343 . F 3029.29 2.1808 -235.601 0 1.00E-12 .

G 0.2274 0.000289 -0.00149 0.000586 0.54343 . G 3029.29 2.1808 -235.601 0 1.00E-12 .

H 0.001034 0.000289 -0.22788 0 0 . H 3234.42 2.1808 -30.469 0 1.00E-12 .

I 0.2279 0.000289 -0.00099 0.001093 . 0.90931 I 2940.5 2.1808 -324.392 0 1.00E-12 .

J 0.2272 0.000289 -0.00176 0.00032 0.2435 . J 2940.46 2.1808 -324.428 0 1.00E-12 .

K 0.227 0.000289 -0.0019 0.00018 0.13271 . K 2962.21 2.1808 -302.687 0 1.00E-12 .

L 0.2271 0.000289 -0.00184 0.000236 0.17215 . L 2961.85 2.1808 -303.038 0 1.00E-12 .

M 0.2272 0.000289 -0.00168 0.000403 0.32762 . M 2931 2.1808 -333.89 0 1.00E-12 .

N 0.2278 0.000289 -0.00109 0.000986 0.90931 . N 2937.18 2.1808 -327.708 0 1.00E-12 .

LSPI 0.2269 0.000289 -0.00202 5.88E-05 0.07052 . LSPI 3049.59 2.1808 -215.298 0 1.00E-12 .

Figure 31: Performance metrics obtained for various allocation policies B-II.
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percentage of livers unused waiting time before death waiting time before transplant

policy mean std dev. policy mean std dev. policy mean std dev.

B 0 0.00E+00 J 117.8 35.35 LSPI 32.751 9.319

C 0 0 I 116.77 34.37 K 33.03 9.396

F 0 0 B 116 34.77 L 33.169 9.547

G 0 0 M 113.14 32.03 D 33.243 9.826

I 0 0 N 112.16 31.98 E 39.402 9.828

J 0 0.000000 F 88.187 22.421 H 40.729 11.13

M 0 0 G 88.187 22.421 A 54.035 10.929

N 0 0 C 87.102 27.881 F 89.525 12.081

A 4.28E-05 0.001026 A 51.5 14.317 G 89.525 12.081

E 0.00061 0.004280 H 41.789 13.575 C 92.94 14.72

H 0.000888 0.005369 E 39.77 11.661 M 119.34 14.72

L 0.001669 0.007284 LSPI 33.878 11.196 N 119.46 14.68

K 0.001696 0.007083 L 33.739 11.065 I 121.88 14.7

LSPI 0.001776 0.007282 K 33.678 10.768 B 121.92 14.49

D 0.002167 0.008316 D 33.595 11.352 J 121.93 14.52

Figure 32: Performance metrics obtained for various allocation policies B-I.

5.5.3 Structure and Performance of the Policies

In this section, first we examine the structure of the policies generated via LSPI method

under the objectives, maximizing transplant rate and maximizing average survival gain per

patient. Second, we compare the performances of these policies with those of the policies

constructed in Chapter 4.

We feed the policies generated via LSPI into the simulation model (SIM1) of Chapter

4 which simulates the whole matrix instead of the “partial matrix” N . In Figure 33 and

Figure 34, we present the fraction of expedited livers assigned to each (i, j) pair for the

objectives, maximizing transplant rate and maximizing average survival gain per patient,

respectively. These fractions include information on both the expedited liver allocation policy

being simulated and the patient distribution among the (i, j) pairs, because the allocation
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of the expedited organ is also dependent on which (i, j) pairs are populated and which

(i, j) pairs are empty. In each figure, we highlight one hundred (i, j) pairs with the highest

fractions. The darker the highlight, the larger the fraction.

Type\MELD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 0 0 0 0.090046 0.046806 0.018139 0.032351 0.040202 0.021969 0.010064 0.004439 0.002840 0.002561 0.000521 0.000324 0.000550 0.000400 0.000419 

2 0 0 0 0.071247 0.047942 0.018372 0.023162 0.028992 0.025493 0.009116 0.005078 0.006799 0.002971 0.000755 0.000494 0.000244 0.000236 0.000156 

3 0 0 0 0.063590 0.041268 0.015516 0.007231 0.005010 0.004099 0.002185 0.001361 0.000820 0.000707 0.000246 0.000176 0.000151 0.000225 0.000259 

4 0 0 0 0.117644 0.088873 0.034402 0.019526 0.013145 0.008914 0.004716 0.002072 0.001090 0.001156 0.000582 0.000739 0.000834 0.000786 0.001135 

5 0 0 0 0 0.002124 0.002109 0.001481 0.000423 0.000147 0.000080 0.000058 0.000049 0.000151 0.000010 0.000011 0.000012 0 0 

6 0 0 0 0 0.000571 0.000178 0.000097 0.000085 0.000068 0.000292 0.000069 0.000020 0.000025 0.000013 0.000017 0.000051 0.000101 0.000047 

7 0 0 0 0 0.000907 0.000456 0.000757 0.000133 0.000075 0.000020 0.000004 0.000007 0.000019 0.000005 0.000056 0.000116 0.000063 0.000023 

8 0 0 0 0 0.000213 0.000334 0.001664 0.001154 0.000926 0.000672 0.000320 0.000141 0.000178 0.000054 0.000102 0.000201 0.000096 0.000122 

9 0 0 0 0 0.001902 0.001087 0.001098 0.000243 0.000097 0.000125 0.000278 0.000240 0.000261 0.000160 0.000131 0.000291 0.000193 0.000163 

10 0 0 0 0 0.000848 0.000177 0.000082 0.000072 0.000067 0.000216 0.000049 0.000017 0.000017 0.000008 0.000034 0.000120 0.000128 0.000116 

11 0 0 0 0 0 0.000100 0.000698 0.000172 0.000029 0.000015 0.000005 0.000005 0.000003 0.000008 0.000002 0 0 0 

12 0 0 0 0 0 0.000020 0.000002 0.000002 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0.000257 0.000065 0.000431 0.000207 0.000450 0.000154 0.000183 0.000147 0.000069 0.000105 0.000127 0.000058 0.000086 

14 0 0 0 0 0 0 0 0 0.000003 0 0 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 0.000003 0.000010 0.000027 0.000038 0.000104 0.000045 0.000060 0.000085 0.000074 0.000043 0.000007 0.000008 

16 0 0 0 0 0 0 0 0 0.000093 0.000034 0.000098 0.000009 0.000005 0.000012 0 0.000010 0.000020 0.000014 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 0.000815 0.000371 0.000173 0.000180 0.000052 0.000013 0.000015 0.000015 0.000100 

19 0 0 0 0 0 0 0 0 0 0 0.002081 0.000975 0.000597 0.000241 0.000200 0.000240 0.000291 0.000280 

20 0 0 0 0 0 0 0 0 0 0 0.002861 0.001627 0.000774 0.000623 0.000491 0.000459 0.000480 0.000767 

21 0 0 0 0 0 0 0 0 0 0 0.000087 0.000059 0.000008 0.000030 0.000038 0.000109 0.000042 0.000030 

22 0 0 0 0 0 0 0 0 0 0 0.000145 0.000082 0.000042 0.000011 0.000008 0.000003 0 0 

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

24 0 0 0 0 0 0 0 0 0 0 0 0.000076 0.000015 0.000013 0 0.000053 0.000010 0 

25 0 0 0 0 0 0 0 0 0 0 0 0.000003 0 0 0 0 0 0 

26 0 0 0 0 0 0 0 0 0 0 0 0.000081 0.000066 0.000051 0.000128 0.000037 0.000012 0.000017 

27 0 0 0 0 0 0 0.000083 0.000059 0.000062 0.000032 0.000061 0.000069 0.000084 0.000067 0.000016 0.000010 0.000008 0.000029 

28 0 0 0 0 0 0 0.000015 0.000020 0.000020 0.000036 0.000104 0.000030 0.000086 0.000043 0.000007 0 0.000010 0.000045 

29 0 0 0 0 0 0 0.000181 0.000377 0.000134 0.000194 0.000288 0.000102 0.000184 0.000213 0.000095 0.000015 0.000016 0.000084 

30 0 0 0 0 0 0 0.000037 0.000031 0.000125 0.000040 0.000008 0 0 0 0 0 0 0 

31 0 0 0 0 0 0 0 0 0.000038 0.000007 0.000010 0.000061 0.000005 0 0.000003 0 0 0 

32 0 0 0 0 0 0 0 0 0.000008 0.000005 0.000002 0.000003 0.000030 0.000011 0.000038 0.000007 0.000002 0.000003 

Figure 33: Fraction of expedited livers assigned to each (i, j) pair under the objective of

maximizing transplant rate.
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Type\MELD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 0 0 0 0.102684 0.038865 0.019150 0.030248 0.040844 0.017329 0.009001 0.003355 0.001404 0.000673 0.000126 0.000209 0.000317 0.000285 0.000276 

2 0 0 0 0.073472 0.045823 0.023497 0.021861 0.029921 0.020355 0.009033 0.004353 0.003553 0.001336 0.000178 0.000220 0.000189 0.000167 0.000141 

3 0 0 0 0.059459 0.053007 0.014646 0.008117 0.004865 0.004119 0.002067 0.001401 0.000838 0.000609 0.000199 0.000135 0.000156 0.000231 0.000199 

4 0 0 0 0.137476 0.078541 0.027711 0.019471 0.014150 0.008921 0.004823 0.002101 0.001135 0.001023 0.000478 0.000732 0.000799 0.000728 0.000936 

5 0 0 0 0 0.002073 0.002315 0.001569 0.000463 0.000167 0.000075 0.000038 0.000027 0.000097 0.000033 0.000011 0.000013 0.000005 0.000002 

6 0 0 0 0 0.000708 0.000196 0.000108 0.000084 0.000084 0.000291 0.000060 0.000028 0.000007 0.000019 0.000018 0.000044 0.000124 0.000042 

7 0 0 0 0 0.000848 0.000476 0.000779 0.000180 0.000053 0.000024 0.000014 0.000008 0.000005 0.000000 0.000034 0.000128 0.000060 0.000032 

8 0 0 0 0 0.000204 0.000357 0.001634 0.001422 0.001154 0.000721 0.000407 0.000191 0.000210 0.000064 0.000081 0.000219 0.000128 0.000123 

9 0 0 0 0 0.002151 0.001084 0.001062 0.000229 0.000073 0.000116 0.000298 0.000289 0.000267 0.000148 0.000126 0.000292 0.000197 0.000155 

10 0 0 0 0 0.000858 0.000195 0.000081 0.000081 0.000107 0.000193 0.000056 0.000030 0.000020 0.000003 0.000023 0.000111 0.000112 0.000087 

11 0 0 0 0 0 0.000114 0.000772 0.000127 0.000040 0.000012 0.000010 0.000000 0.000000 0.000003 0 0 0 0 

12 0 0 0 0 0 0.000032 0.000010 0.000003 0 0 0 0 0 0 0 0 0 0 

13 0 0 0 0 0 0.000293 0.000114 0.000412 0.000209 0.000472 0.000174 0.000158 0.000094 0.000077 0.000132 0.000123 0.000081 0.000075 

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

15 0 0 0 0 0 0 0.000003 0.000027 0.000030 0.000049 0.000115 0.000043 0.000048 0.000066 0.000091 0.000057 0.000023 0.000007 

16 0 0 0 0 0 0 0 0 0.000101 0.000065 0.000075 0.000028 0.000002 0 0 0.000013 0.000044 0.000009 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 0.000958 0.000345 0.000191 0.000167 0.000046 0.000023 0.000012 0.000031 0.000147 

19 0 0 0 0 0 0 0 0 0 0 0.002380 0.001190 0.000695 0.000249 0.000185 0.000202 0.000294 0.000277 

20 0 0 0 0 0 0 0 0 0 0 0.003575 0.001890 0.000766 0.000642 0.000569 0.000435 0.000494 0.000845 

21 0 0 0 0 0 0 0 0 0 0 0.000098 0.000065 0.000023 0.000030 0.000046 0.000166 0.000022 0.000020 

22 0 0 0 0 0 0 0 0 0 0 0.000123 0.000092 0.000044 0.000011 0.000007 0 0.000003 0 

23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

24 0 0 0 0 0 0 0 0 0 0 0 0.000072 0.000020 0.000010 0.000012 0.000042 0.000015 0.000006 

25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

26 0 0 0 0 0 0 0 0 0 0 0 0.000103 0.000062 0.000037 0.000117 0.000022 0.000007 0 

27 0 0 0 0 0 0 0.000108 0.000110 0.000059 0.000051 0.000057 0.000087 0.000108 0.000072 0.000012 0.000005 0.000015 0.000032 

28 0 0 0 0 0 0 0.000013 0.000023 0.000010 0.000039 0.000050 0.000029 0.000103 0.000030 0.000003 0.000000 0.000002 0.000033 

29 0 0 0 0 0 0 0.000083 0.000379 0.000124 0.000171 0.000250 0.000088 0.000133 0.000167 0.000056 0.000031 0.000029 0.000076 

30 0 0 0 0 0 0 0.000055 0.000026 0.000112 0.000037 0.000010 0.000002 0 0 0 0 0 0 

31 0 0 0 0 0 0 0 0 0.000026 0.000008 0.000007 0.000021 0.000018 0 0.000005 0 0 0 

32 0 0 0 0 0 0 0 0 0 0.000003 0.000000 0.000005 0.000023 0.000012 0.000033 0.000005 0.000003 0.000003 

Figure 34: Fraction of expedited livers assigned to each (i, j) pair under the objective of

maximizing average survival gain per patient.

In Figure 35 and Figure 36, we also present the priority of each (i, j) pair for receiving the

organ of a white female donor who is younger than 20 years old and of blood type O if there

is one patient listed at the center from each (i, j) pair. We assume all patients are female and

of the blood type O. We highlight the first one hundred (i, j) pair with the highest priorities.

The darker the highlight, the higher the priority. As the figures indicate we mostly favor

disease group 1 patients, i.e., patient types 1-15, over disease group 2 patients, i.e., patient

types 16-26. When we compare Figure 33-34 and Figure 35-36, we observe that while disease

group 3 patients, i.e., patient types 27-32, have high priorities for receiving expedited livers,

103



the fraction of the expedited livers assigned to them is low. The reason of that is at any

time we do not observe many disease group 3 patients listed at the center.

Type\MELD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 0 0 0 2 4 6 8 10 13 14 17 19 21 25 29 31 37 39 

2 0 0 0 1 3 5 7 9 11 12 15 16 18 20 23 26 32 34 

3 0 0 0 24 28 33 38 43 47 53 60 68 76 89 93 94 95 96 

4 0 0 0 22 27 30 36 42 46 51 58 64 70 81 86 97 98 99 

5 0 0 0 0 49 54 61 67 79 90 100 101 102 103 104 105 106 107 

6 0 0 0 0 52 57 65 74 83 108 109 110 111 112 113 114 115 116 

7 0 0 0 0 63 72 82 92 117 118 119 120 121 122 123 124 125 126 

8 0 0 0 0 127 128 129 130 131 132 133 134 135 136 137 138 139 140 

9 0 0 0 0 69 80 91 141 142 143 144 145 146 147 148 149 150 151 

10 0 0 0 0 152 153 154 155 156 157 158 159 160 161 162 163 164 165 

11 0 0 0 0 0 166 167 168 169 170 171 172 173 174 175 176 177 274 

12 0 0 0 0 0 178 179 180 181 182 183 184 185 186 187 188 278 284 

13 0 0 0 0 0 189 190 191 192 193 194 195 196 197 198 199 200 279 

14 0 0 0 0 0 0 201 202 203 204 205 206 207 208 209 280 295 299 

15 0 0 0 0 0 0 210 211 212 213 214 215 216 217 275 288 301 307 

16 0 0 0 0 0 0 0 0 218 219 220 221 222 223 224 225 282 287 

17 0 0 0 0 0 0 0 0 0 226 227 228 229 230 231 232 283 289 

18 0 0 0 0 0 0 0 0 0 233 234 235 236 277 285 291 297 302 

19 0 0 0 0 0 0 0 0 0 0 237 238 276 281 286 292 300 305 

20 0 0 0 0 0 0 0 0 0 0 293 298 303 308 309 311 314 318 

21 0 0 0 0 0 0 0 0 0 0 290 294 296 304 306 310 312 315 

22 0 0 0 0 0 0 0 0 0 0 317 320 322 324 326 330 336 339 

23 0 0 0 0 0 0 0 0 0 0 0 313 316 319 321 323 327 331 

24 0 0 0 0 0 0 0 0 0 0 0 333 335 341 343 347 352 353 

25 0 0 0 0 0 0 0 0 0 0 0 325 329 334 338 342 345 349 

26 0 0 0 0 0 0 0 0 0 0 0 348 350 355 357 358 360 362 

27 0 0 0 0 0 0 328 332 337 340 344 346 351 354 356 359 361 363 

28 0 0 0 0 0 0 41 45 50 56 62 71 75 87 239 240 241 242 

29 0 0 0 0 0 0 35 40 44 48 55 59 66 73 77 88 243 244 

30 0 0 0 0 0 0 78 85 245 246 247 248 249 250 251 252 253 254 

31 0 0 0 0 0 0 0 0 84 255 256 257 258 259 260 261 262 263 

32 0 0 0 0 0 0 0 0 264 265 266 267 268 269 270 271 272 273 

Figure 35: Priority of each (i, j) pair under the objective of maximizing transplant rate.
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Type\MELD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 0 0 0 2 4 6 8 10 14 24 32 66 159 285 232 258 283 338 

2 0 0 0 1 3 5 7 9 11 22 27 61 155 282 228 257 279 337 

3 0 0 0 13 16 18 20 30 40 80 92 124 180 299 241 261 286 339 

4 0 0 0 12 15 17 19 28 39 78 91 119 176 298 240 262 287 340 

5 0 0 0 0 25 29 33 45 77 93 104 128 188 300 242 263 288 341 

6 0 0 0 0 26 31 35 62 79 94 105 129 187 301 243 264 289 342 

7 0 0 0 0 34 38 43 68 81 95 106 130 189 302 244 265 290 343 

8 0 0 0 0 47 48 54 69 82 96 107 131 190 303 245 266 291 344 

9 0 0 0 0 37 42 46 70 83 97 108 132 191 304 246 267 292 345 

10 0 0 0 0 49 50 55 71 84 98 109 133 192 305 247 268 293 346 

11 0 0 0 0 0 51 56 72 85 99 110 134 193 306 248 269 294 347 

12 0 0 0 0 0 52 57 73 86 100 111 135 194 307 249 270 311 349 

13 0 0 0 0 0 53 58 74 87 101 112 136 195 308 250 271 295 348 

14 0 0 0 0 0 0 59 75 88 102 113 137 196 309 251 296 312 350 

15 0 0 0 0 0 0 60 76 89 103 114 138 197 310 274 297 313 351 

16 0 0 0 0 0 0 0 0 67 63 115 120 177 200 198 205 259 324 

17 0 0 0 0 0 0 0 0 0 64 116 121 178 201 199 206 260 325 

18 0 0 0 0 0 0 0 0 0 65 117 122 179 214 209 236 272 327 

19 0 0 0 0 0 0 0 0 0 0 118 123 204 217 210 237 273 328 

20 0 0 0 0 0 0 0 0 0 0 151 163 208 224 216 239 276 330 

21 0 0 0 0 0 0 0 0 0 0 150 158 207 222 212 238 275 329 

22 0 0 0 0 0 0 0 0 0 0 164 166 213 231 223 253 278 332 

23 0 0 0 0 0 0 0 0 0 0 0 165 211 229 220 252 277 331 

24 0 0 0 0 0 0 0 0 0 0 0 170 219 234 226 255 281 334 

25 0 0 0 0 0 0 0 0 0 0 0 168 218 233 225 254 280 333 

26 0 0 0 0 0 0 0 0 0 0 0 171 221 235 230 256 284 335 

27 0 0 0 0 0 0 154 147 202 186 215 181 203 227 336 326 357 363 

28 0 0 0 0 0 0 41 23 148 127 169 139 152 182 320 315 352 358 

29 0 0 0 0 0 0 36 21 146 125 167 126 149 175 319 314 353 359 

30 0 0 0 0 0 0 90 44 156 143 172 140 160 183 321 316 354 360 

31 0 0 0 0 0 0 0 0 153 144 173 141 161 184 322 317 355 361 

32 0 0 0 0 0 0 0 0 157 145 174 142 162 185 323 318 356 362 

Figure 36: Priority of each (i, j) pair under the objective of maximizing average survival

gain per patient.

We investigate how the policies generated via LSPI method perform if we consider all

the patients listed at the center, not only the ones included in “partial matrix” N . This

examination will enable us to compare the results of Chapter 4 with that of this and previous

sections. However, one detail that has to be kept in mind is that while SIM1 differentiates

among the blood type matches between donor and patients, the construction of the LSPI

policy has no such consideration. The consideration of blood type matches affects the patient

population attributes, i.e., who is the right person to leave the system. Thus, the patient

populations in the simulation model and the analytical model do not match completely.
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We feed the policies generated via LSPI method into the simulation model (SIM1) of

Chapter 4. We call the resulting policy of Section 5.5.1 LSPI I and that of Section 5.5.2

LSPI II. Please refer to Figure 8 for the descriptions of policies of Chapter 4. In Figure

37, the values obtained for various performance metrics are presented. We observe that

LSPI methods cannot compete with the policies constructed in Chapter 4. This might be

attributed to the high rate of unused organs and the discrepancy in the patient population

attributes in the simulation model and the analytical model.

Average Transplant Rate Survival After Departure

policy Estimate StdErr cllo clhi rval sval policy Estimate StdErr cllo clhi rval sval

A 0.4704 0.000492 -0.02258 0 0 . A 2852.18 1.7727 -155.804 0 1.00E-12 .

B 0.4894 0.000492 -0.00356 1.69E-05 0.05308 . B 2881.48 1.7727 -126.506 0 1.00E-12 .

C 0.4912 0.000492 -0.00065 0.002926 . 0.30295 C 3001.55 1.7727 0 32.6508 . 1.00E-12

D 0.4642 0.000492 -0.02872 0 0 . D 2859.66 1.7727 -148.326 0 1.00E-12 .

E 0.4653 0.000492 -0.02763 0 0 . E 2784.4 1.7727 -223.583 0 1.00E-12 .

F 0.4656 0.000492 -0.02737 0 0 . F 2764.36 1.7727 -243.623 0 1.00E-12 .

G 0.4811 0.000492 -0.01185 0 0 . G 2927.35 1.7727 -80.633 0 1.00E-12 .

H 0.4684 0.000492 -0.02451 0 0 . H 2975.33 1.7727 -32.651 0 1.00E-12 .

I 0.4899 0.000492 -0.00307 0.000507 0.22317 . I 2879.5 1.7727 -128.483 0 1.00E-12 .

J 0.49 0.000492 -0.00293 0.000646 0.30295 . J 2877.05 1.7727 -130.933 0 1.00E-12 .

K 0.462 0.000492 -0.03094 0 0 . K 2812.27 1.7727 -195.717 0 1.00E-12 .

L 0.4621 0.000492 -0.0308 0 0 . L 2811.97 1.7727 -196.011 0 1.00E-12 .

M 0.4873 0.000492 -0.00568 0 0 . M 2877.57 1.7727 -130.414 0 1.00E-12 .

N 0.4886 0.000492 -0.00432 0 0.00182 . N 2877.68 1.7727 -130.3 0 1.00E-12 .

LSPI_I 0.4691 0.000492 -0.02384 0 0 . LSPI_I 2969.83 1.7727 -38.148 0 1.00E-12 .

LSPI_II 0.4665 0.000492 -0.02643 0 0 . LSPI_II 2944.26 1.7727 -63.725 0 1.00E-12 .

% of Patients Died Total Survival

policy Estimate StdErr cllo clhi rval sval policy Estimate StdErr cllo clhi rval sval

A 0.1414 0.000355 0 0.039374 0 . A 3068.52 1.8372 -214.569 0 1.00E-12 .

B 0.1047 0.000355 0 0.002702 0.025566 . B 3183.86 1.8372 -99.237 0 1.00E-12 .

C 0.1033 0.000355 -0.00255 0.000022 . 0.055793 C 3276.43 1.8372 0 95.1064 . 1.00E-12

D 0.1526 0.000355 0 0.050589 0 . D 3049.55 1.8372 -233.54 0 1.00E-12 .

E 0.1515 0.000355 0 0.049543 0 . E 2986.26 1.8372 -296.832 0 1.00E-12 .

F 0.1495 0.000355 0 0.047533 0 . F 2974.75 1.8372 -308.341 0 1.00E-12 .

G 0.1224 0.000355 0 0.020362 0 . G 3187.99 1.8372 -95.106 0 1.00E-12 .

H 0.1465 0.000355 0 0.044526 0 . H 3180.26 1.8372 -102.832 0 1.00E-12 .

I 0.1045 0.000355 -2.2E-05 0.002551 0.055793 . I 3180.79 1.8372 -102.3 0 1.00E-12 .

J 0.1053 0.000355 0 0.003259 0.000576 . J 3179.31 1.8372 -103.781 0 1.00E-12 .

K 0.157 0.000355 0 0.05504 0 . K 2993.45 1.8372 -289.64 0 1.00E-12 .

L 0.1566 0.000355 0 0.054622 0 . L 2993.56 1.8372 -289.529 0 1.00E-12 .

M 0.1098 0.000355 0 0.007835 0 . M 3174.07 1.8372 -109.025 0 1.00E-12 .

N 0.1104 0.000355 0 0.008401 0 . N 3175.13 1.8372 -107.963 0 1.00E-12 .

LSPI_I 0.1468 0.000355 0 0.044804 0 . LSPI_I 3175.46 1.8372 -107.635 0 1.00E-12 .

LSPI_II 0.15 0.000355 0 0.048023 0 . LSPI_II 3146.33 1.8372 -136.759 0 1.00E-12 .

Figure 37: Comparison of the performances of the policies of Chapter 4 and the LSPI

methods.
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5.6 CONCLUSION

In this chapter, we present another solution approach to the expedited liver placement prob-

lem of a transplant center. We build two average reward Markov Decision Process (MDP)

models. The only difference between the models is their objective function. The size of

the state space and the intractable transition probabilities make the use of the traditional

solution methods, i.e., policy iteration, impossible. Thus, we utilize an approximate dynamic

programming approach, Least Squares Policy Iteration (LSPI).

Our extensive search on basis functions yields better results for the average reward MDP

model with the objective of maximizing average survival gain per patient compared to the

one with the objective of maximizing average transplant rate. This might be due to the

fact that small differences in the objective function of maximizing average transplant rate

are more difficult to detect compared to the larger differences in the objective function of

maximizing average survival gain per patient.

Unfortunately, the statistical comparison of the performance of the policies generated

via LSPI method with the policies constructed in Chapter 4 shows that the basis functions

explored are insufficient to approximate the optimal policy. However, in terms of practical

significance the results of the policy generated via LSPI method, specifically of the model

with the objective of maximizing average survival gain per patient, is competitive with the

other policies.

Independent of how practically or significantly well the policy generated via LSPI method

performs based on the performance metrics, it always defines the optimal actions indirectly,

i.e., via the Q values. Therefore, the policies of Chapter 4 are always more transparent

compared to the policies of the LSPI method.

A possible direction for future research is the extension of the basis function set explored.

Because the performance of the policies generated via LSPI method is highly dependent on

the basis functions chosen, it is difficult to claim that the method is insufficient to approxi-

mate the optimal solution.
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6.0 CONCLUSIONS AND FUTURE RESEARCH

6.1 CONCLUSIONS

In this dissertation, we examine fundamental and essential questions embedded in the liver

allocation system. Namely, we study the decision problems faced by the two decision makers

of the system, a patient and a transplant center.

In Chapter 3, we address a fundamental component of patient based accept/decline deci-

sion making models. Such models utilizes Quality Adjusted Life Years (QALYs) to evaluate

the outcomes of decisions. Patient preferences constitutes a critical ingredient of QALYs.

There exists direct approaches, which involve asking patients various abstract questions, to

elicit patient preferences. However, they have significant drawbacks. We propose a new ap-

proach that infers patient preferences based on observed decisions via inverse optimization

techniques. We illustrate our methods on the timing of a living-donor liver transplant.

In Chapter 4 and Chapter 5, we study the decision problem faced by a transplant center.

The livers which are appeared not to be matched to a patient in a timely manner by the

standard allocation procedure are offered to transplant centers. Then, the center makes a

decision on the acceptance and allocation of the liver to its patients. Namely, the center

decides which, if any, of its patients should receive the organ independent of their position

on the match list. Such livers are called expedited livers. No one has considered optimizing

the transplant centers decision on the expedited liver placement. We present two approaches

to this decision problem.

We build a simulation model for the expedited placement problem faced by a transplant

center in Chapter 4. We construct various allocation policies for the expedited liver place-

ment. We parameterize our model using clinical data. We compare the allocation policies
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via simulation. Our numerical study reveals that a policy which gives higher priorities to

patients whose likelihood of death is higher than likelihood of receiving a non-expedited

transplant performs the best based on several metrics, i.e., average transplant rate, total

survival times.

We also develop a dynamic programming approach to the transplant center’s decision

problem. In Chapter 5, we construct two average reward Markov Decision Process models.

The models differ in their objective function. One maximizes the average transplant rate and

the other maximizes the average survival gain per patient. Due to the curse of dimensionality

embedded in our models, we resort to approximate dynamic approaches to solve the decision

problem. We utilize Least Square Policy Iteration (LSPI) method. The policies generated via

the LSPI method statistically do not perform better than the allocation policies constructed

in Chapter 4. However, they are practically competent compared to the allocation policies

of Chapter 4.

6.2 FUTURE RESEARCH

The possible extensions to this dissertation are as follows.

In Chapter 3, we employ multiple assumptions in the construction of the model. As-

sumptions 1 and 2 can be relaxed through more complex optimization models. In addition,

our model can be applied to different clinical decisions. Lastly, the inferred patient prefer-

ences can be utilized in societal decision models. Such a model , for example, could examine

the effect of a different liver allocation system utilizing the inferred patient preferences.

The expedited organ placement problem is not unique to livers. For instance, such

placement is frequently encountered in the allocation of lungs. Our decision models for

expedited liver placement can be applied to different expedited organ placement problems.

More allocation policies for the expedited liver placement can be constructed to increase the

coverage of the feasible policy region. Moreover, our studies can be repeated using UNOS

data. Such a study would increase the confidence in the datasets we use. Moreover, if

different transplant centers are studied, the change in the outcome which depends on the
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dynamics at the transplant center can be examined. A comprehensive dataset might also

enable us to increase the level of detail we capture in liver and patient type definitions.

We might also include blood type compatibility issue in our average reward MDP models.

Lastly, the search on the basis functions fed into the LSPI method can be extended.
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APPENDIX A

CHAPTER 4 - SIMULATION MODEL SIM1 PARAMETER VALUES

d b D(d,b) d b D(d,b) d b D(d,b)

age gender race blood type age gender race blood type age gender race blood type

<20 female white O 0.0038 31-40 female non-white B 0.0003 51-60 male white A 0.0065

<20 female non-white O 0.0010 31-40 female white AB 0.0005 51-60 male non-white A 0.0016

<20 female white A 0.0049 31-40 female non-white AB 0.0001 51-60 male white B 0.0038

<20 female non-white A 0.0012 31-40 male white O 0.0054 51-60 male non-white B 0.0010

<20 female white B 0 31-40 male non-white O 0.0014 51-60 male white AB 0.0022

<20 female non-white B 0 31-40 male white A 0.0054 51-60 male non-white AB 0.0005

<20 female white AB 0.0005 31-40 male non-white A 0.0014 61-70 female white O 0.0065

<20 female non-white AB 0.0001 31-40 male white B 0.0027 61-70 female non-white O 0.0016

<20 male white O 0.0044 31-40 male non-white B 0.0007 61-70 female white A 0.0065

<20 male non-white O 0.0011 31-40 male white AB 0.0011 61-70 female non-white A 0.0016

<20 male white A 0.0054 31-40 male non-white AB 0.0003 61-70 female white B 0.0011

<20 male non-white A 0.0014 41-50 female white O 0.0082 61-70 female non-white B 0.0003

<20 male white B 0.0011 41-50 female non-white O 0.0020 61-70 female white AB 0

<20 male non-white B 0.0003 41-50 female white A 0.0054 61-70 female non-white AB 0

<20 male white AB 0.0011 41-50 female non-white A 0.0014 61-70 male white O 0.0044

<20 male non-white AB 0.0003 41-50 female white B 0.0044 61-70 male non-white O 0.0011

21-30 female white O 0.0016 41-50 female non-white B 0.0011 61-70 male white A 0.0071

21-30 female non-white O 0.0004 41-50 female white AB 0.0011 61-70 male non-white A 0.0018

21-30 female white A 0 41-50 female non-white AB 0.0003 61-70 male white B 0.0033

21-30 female non-white A 0 41-50 male white O 0.0098 61-70 male non-white B 0.0008

21-30 female white B 0.0011 41-50 male non-white O 0.0024 61-70 male white AB 0.0005

21-30 female non-white B 0.0003 41-50 male white A 0.0174 61-70 male non-white AB 0.0001

21-30 female white AB 0 41-50 male non-white A 0.0044 >71 female white O 0.0044

21-30 female non-white AB 0 41-50 male white B 0.0038 >71 female non-white O 0.0011

21-30 male white O 0.0027 41-50 male non-white B 0.0010 >71 female white A 0.0044

21-30 male non-white O 0.0007 41-50 male white AB 0.0049 >71 female non-white A 0.0011

21-30 male white A 0.0022 41-50 male non-white AB 0.0012 >71 female white B 0.0022

21-30 male non-white A 0.0005 51-60 female white O 0.0065 >71 female non-white B 0.0005

21-30 male white B 0.0016 51-60 female non-white O 0.0016 >71 female white AB 0.0005

21-30 male non-white B 0.0004 51-60 female white A 0.0071 >71 female non-white AB 0.0001

21-30 male white AB 0.0016 51-60 female non-white A 0.0018 >71 male white O 0.0082

21-30 male non-white AB 0.0004 51-60 female white B 0.0027 >71 male non-white O 0.0020

31-40 female white O 0.0016 51-60 female non-white B 0.0007 >71 male white A 0.0060

31-40 female non-white O 0.0004 51-60 female white AB 0.0027 >71 male non-white A 0.0015

31-40 female white A 0.0022 51-60 female non-white AB 0.0007 >71 male white B 0.0016

31-40 female non-white A 0.0005 51-60 male white O 0.0114 >71 male non-white B 0.0004

31-40 female white B 0.0011 51-60 male non-white O 0.0029 >71 male white AB 0.0005

>71 male non-white AB 0.0001

Figure 38: Expedited liver arrival probabilities, D(d, b).
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type\MELD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 0.009346 0.007009 0.015187 0.017523 0.01285 0.003505 0.011682 0.024533 0.011682 0.007009 0.002336 0.002336 0.003505 0 0.001168 0.002336 0.002336 0.003505

2 0.009346 0.01285 0.016355 0.005841 0.016355 0.007009 0.007009 0.016355 0.014019 0.005841 0.002336 0.007009 0.002336 0 0.001168 0 0.001168 0.001168

3 0.004673 0.011682 0.018692 0.01986 0.011682 0.010514 0.007009 0.003505 0.011682 0.002336 0.004673 0.002336 0.002336 0.001168 0 0 0.002336 0.003505

4 0.010514 0.018692 0.026869 0.029206 0.045561 0.017523 0.016355 0.015187 0.021028 0.008178 0.003505 0.001168 0.003505 0.003505 0.005841 0.003505 0.004673 0.01285

5 0 0 0.001168 0.001168 0 0.002336 0.002336 0 0 0 0 0 0.001168 0 0 0 0 0

6 0 0.001168 0 0 0 0 0 0 0 0.001168 0 0 0 0 0 0 0.001168 0

7 0 0 0.001168 0.001168 0 0 0.001168 0 0 0 0 0 0 0 0 0.001168 0 0

8 0 0 0 0 0 0 0.002336 0.001168 0.002336 0.001168 0.001168 0 0.001168 0 0 0.002336 0 0.001168

9 0 0 0.001168 0.001168 0.002336 0.001168 0.001168 0 0 0 0.001168 0.001168 0.001168 0.001168 0 0.002336 0.001168 0.001168

10 0 0 0.001168 0.001168 0.001168 0 0 0 0 0.001168 0 0 0 0 0 0.001168 0.001168 0.001168

11 0 0 0 0 0 0 0.001168 0 0 0 0 0 0 0 0 0 0 0

12 0 0 0.001168 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0.002336 0.001168 0 0.001168 0 0.002336 0 0.001168 0 0.001168 0.001168 0.001168 0 0.001168

14 0 0 0 0 0 0 0 0 0 0 0 0 0.001168 0 0 0 0 0

15 0 0 0 0 0 0 0 0 0 0 0.001168 0 0 0.001168 0.001168 0 0 0

16 0 0 0 0.002336 0 0.001168 0 0 0.001168 0 0.001168 0 0 0 0 0 0.001168 0

17 0 0.002336 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

18 0.001168 0 0.001168 0.002336 0 0 0.002336 0.002336 0.002336 0.001168 0 0 0.001168 0 0 0 0 0.001168

19 0.001168 0.005841 0.010514 0.004673 0.008178 0.004673 0.003505 0.004673 0.002336 0 0.001168 0 0.002336 0 0 0.001168 0.002336 0.001168

20 0.008178 0.010514 0.011682 0.017523 0.018692 0.010514 0.005841 0.005841 0.008178 0.001168 0.004673 0.004673 0.002336 0.004673 0.001168 0.001168 0.001168 0.008178

21 0 0 0 0.001168 0.001168 0.001168 0 0 0 0.002336 0 0 0 0 0 0.001168 0 0

22 0 0.001168 0.005841 0.003505 0.002336 0.001168 0.001168 0.001168 0.002336 0.001168 0.001168 0 0 0 0 0 0 0

23 0 0 0 0 0 0 0 0 0.001168 0 0 0 0 0 0 0 0 0

24 0 0 0.001168 0 0 0.001168 0.001168 0 0.001168 0 0.001168 0 0 0 0 0.001168 0 0

25 0 0 0 0 0 0.003505 0 0 0 0 0 0 0 0 0 0 0 0

26 0 0 0 0.004673 0.002336 0.001168 0 0 0.001168 0.001168 0.001168 0 0 0 0.001168 0 0 0

27 0 0 0 0 0.002336 0 0 0.001168 0.001168 0 0.001168 0.001168 0.002336 0.001168 0 0 0 0.001168

28 0 0 0 0 0 0 0 0 0 0 0.001168 0 0.001168 0 0 0 0 0.001168

29 0 0 0 0 0 0 0 0.002336 0 0.001168 0.003505 0 0.001168 0.002336 0.001168 0 0 0.002336

30 0 0 0 0 0.001168 0 0 0 0.001168 0 0 0 0 0 0 0 0 0

31 0 0 0 0 0.001168 0 0 0.001168 0 0 0 0.001168 0 0 0 0 0 0

32 0 0 0 0 0.002336 0 0 0 0 0 0 0 0.001168 0 0.001168 0 0 0

Figure 39: The likelihood that when a patient joins the list, she is of type i and MELD score

j, ρij.
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type\MELD 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 0.000289 0.000326 0.00014 0.000301 0.001259 0.001019 0.000912 0.0042 0.00799 0.006479 0.008011 0.00511 0.01266 0.06017 0.062299 0.021958 0.017661 0.08643

2 0.000931 0.000448 0.000799 0.000741 0.001159 0.00033 0.00076 0.003239 0.00957 0.004269 0.00931 0.02278 0.0215 0.03485 0.021422 0.0308 0.021319 0.085171

3 0.000449 0.000141 0.000261 0.001279 0.00077 0.001371 0.00048 0.00399 0.007921 0.00828 0.009629 0.01642 0.01371 0.05443 0.039569 0.054691 0.04585 0.08458

4 0.00023 0.00011 0.00081 0.00066 0.00143 0.00184 0.00163 0.0022 0.011 0.01613 0.01152 0.01245 0.0144 0.05465 0.02683 0.02821 0.03744 0.05474

5 0.000308 0.000382 0.001156 0.000842 0.002362 0.00189 0.006352 0.006654 0.00793 0.013408 0.024892 0.028966 0.03906 0.030676 0.038148 0.13873 0.033946 0.154724

6 0.000894 0.000914 0.000896 0.00203 0.00131 0.004218 0.006422 0.008572 0.05547 0.03269 0.028776 0.030074 0.014976 0.041892 0.058706 0.00732 0.03476 0.012206

7 0.000758 0.001636 0.001248 0.00156 0.004298 0.006518 0.007724 0.016768 0.011496 0.022524 0.024408 0.024724 0.025792 0.034342 0.047474 0.017218 0.045598 0.065438

8 0.001016 0.00239 0.001904 0.003576 0.00501 0.010186 0.009462 0.00331 0.00576 0.025768 0.03763 0.035296 0.056148 0.071178 0.029732 0.02161 0.049752 0.032322

9 0.001516 0.001662 0.001826 0.006766 0.00503 0.00207 0.00732 0.028192 0.035954 0.060236 0.035542 0.01906 0.029418 0.04555 0.011266 0.02821 0.07722 0.07675

10 0.002066 0.002882 0.004168 0.005144 0.010404 0.011876 0.01571 0.027028 0.030086 0.033072 0.02955 0.025046 0.12346 0.02586 0.16127 0.09215 0.03132 0.14686

11 0.003218 0.002338 0.007388 0.005002 0.011926 0.02151 0.0156 0.03273 0.030894 0.047116 0.03035 0.015994 0.043612 0.00339 0.013924 0.1785 0.008638 0.158004

12 0.002488 0.00283 0.006818 0.010044 0.022806 0.01273 0.038684 0.018416 0.036474 0.0147 0.016918 0.028172 0.055588 0.044512 0.027668 0.086042 0.044348 0.051376

13 0.005444 0.017118 0.010646 0.021864 0.02734 0.039504 0.039904 0.024962 0.00695 0.037112 0.01333 0.046774 0.027672 0.04041 0.0752 0.05134 0.11109 0.072958

14 0.004314 0.010832 0.01159 0.020328 0.037974 0.032084 0.026586 0.016764 0.048946 0.024798 0.022044 0.01605 0.043846 0.052942 0.043104 0.28304 0.040798 0.084082

15 0.00822 0.024582 0.013838 0.023992 0.024358 0.021326 0.015846 0.024416 0.016274 0.01708 0.04625 0.08041 0.018608 0.09631 0.062834 0.050892 0.0562 0.053792

16 0.008446 0.016842 0.014272 0.02653 0.021484 0.00946 0.035548 0.032952 0.029372 0.024692 0.060648 0.06236 0.061782 0.022086 0.237432 0.08642 0.059958 0.05469

17 0.012782 0.024638 0.02462 0.02715 0.028324 0.049158 0.010688 0.025982 0.008216 0.009568 0.051838 0.177294 0.105684 0.08272 0.056086 0.022538 0.132066 0.07135

18 0.02535 0.021134 0.021164 0.009764 0.017282 0.022092 0.00893 0.015158 0.00721 0.00464 0.066278 0.02888 0.040636 0.216588 0.096362 0.042828 0.095862 0.09916

19 0.024608 0.026642 0.00033 0.00092 0.00275 0.00164 0.00259 0.00137 0.00672 0.00437 0.037182 0.00921 0.01509 0.02693 0.081868 0.147748 0.0872 0.03116

20 0.00099 0.00135 0.0014 0.00056 0.00241 0.00237 0.00407 0.00285 0.02521 0.01316 0.01529 0.02439 0.117894 0.01649 0.01417 0.01635 0.01553 0.09298

21 0.028054 0.033888 0.02648 0.036788 0.040974 0.04131 0.059948 0.01333 0.108178 0.042652 0.06584 0.05845 0.036808 0.03957 0.084238 0.03242 0.296422 0.177812

22 0.024644 0.044064 0.00254 0.00323 0.00337 0.051654 0.050852 0.048622 0.01272 0.00601 0.221054 0.024022 0.04205 0.051222 0.076536 0.066362 0.10185 0.28047

23 0.005636 0.007998 0.038038 0.016642 0.060132 0.05793 0.034904 0.09713 0.054954 0.084304 0.109454 0.192266 0.087284 0.162554 0.247256 0.1571 0.159038 0.152378

24 0.018976 0.005208 0.012436 0.062158 0.06565 0.062082 0.059582 0.090024 0.02938 0.062508 0.01732 0.052242 0.044264 0.031314 0.071652 0.264226 0.326672 0.36825

25 0.032298 0.01458 0.045596 0.049974 0.025926 0.08595 0.040062 0.034242 0.026424 0.178348 0.090964 0.118668 0.045082 0.160196 0.46361 0.196384 0.230824 0.241896

26 0.012792 0.072204 0.050932 0.036166 0.024434 0.019052 0.00153 0.00179 0.00241 0.102816 0.00657 0.01093 0.045268 0.03351 0.02805 0.380262 0.07354 0.21192

27 0.047802 0.022024 0.030228 0.027006 0.04209 0.04367 0.01553 0.211292 0.12089 0.18661 0.13506 0.150244 0.069488 0.253786 0.22369 0.776014 0.337362 0.27208

28 0.012314 0.100176 0.075732 0.046514 0.030252 0.044976 0.132164 0.057966 0.109594 0.082088 0.08054 0.407598 0.031948 0.263984 0.82073 0.97096 0.361108 0.34375

29 0.050718 0.019942 0.037582 0.02072 0.079782 0.60426 0.21961 0.02297 0.18582 0.068068 0.181158 0.077496 0.15826 0.21357 0.37029 0.29669 0.405738 0.4217

30 0.033942 0.030726 0.091554 0.04672 0.063942 0.086338 0.020458 0.09312 0.037324 0.03479 0.61927 0.157626 0.408198 0.607912 0.656622 0.296258 0.666034 0.30567

31 0.072212 0.023466 0.075212 0.07686 0.25078 0.044312 0.064582 0.04178 0.033424 0.091842 0.36726 0.33056 0.516526 0.481878 0.26104 0.416778 0.337362 0.342284

32 0.032906 0.024498 0.014828 0.208882 0.01057 0.041284 0.073954 0.040512 0.188894 0.189642 0.124118 0.222348 0.496212 0.391404 0.472216 0.21192 0.720076 0.432508

Figure 40: The daily probability that a patient of type i and MELD score j receives a

non-expedited transplant, ξi(j).
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APPENDIX B

CHAPTER 5 - AVERAGE REWARD MARKOV DECISION PROCESS

MODEL PARAMETER VALUES

d D(d) D(d) - adjusted

age gender race

<20 female white 0.0081 0.0092

<20 female non-white 0.0020 0.0023

<20 male white 0.0105 0.0119

<20 male non-white 0.0026 0.0030

21-30 female white 0.0024 0.0027

21-30 female non-white 0.0006 0.0007

21-30 male white 0.0071 0.0081

21-30 male non-white 0.0018 0.0020

31-40 female white 0.0048 0.0054

31-40 female non-white 0.0012 0.0014

31-40 male white 0.0128 0.0146

31-40 male non-white 0.0033 0.0037

41-50 female white 0.0167 0.0190

41-50 female non-white 0.0041 0.0047

41-50 male white 0.0315 0.0358

41-50 male non-white 0.0079 0.0090

51-60 female white 0.0167 0.0190

51-60 female non-white 0.0041 0.0047

51-60 male white 0.0210 0.0239

51-60 male non-white 0.0053 0.0060

61-70 female white 0.0124 0.0141

61-70 female non-white 0.0031 0.0035

61-70 male white 0.0134 0.0152

61-70 male non-white 0.0033 0.0038

>71 female white 0.0100 0.0114

>71 female non-white 0.0025 0.0028

>71 male white 0.0143 0.0163

>71 male non-white 0.0036 0.0041

Figure 41: Expedited liver arrival probabilities, D(d).
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Type\MELD 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 0.05616 0.01701 0.00479 0.01291 0.02710 0.01291 0.00774 0.00258 0.00258 0.00387 0.00000 0.00129 0.00258 0.00258 0.00387

2 0.03867 0.02041 0.00855 0.00774 0.01807 0.01549 0.00645 0.00258 0.00774 0.00258 0.00000 0.00129 0.00000 0.00129 0.00129

3 0.06097 0.01576 0.01259 0.00774 0.00387 0.01291 0.00258 0.00516 0.00258 0.00258 0.00129 0.00000 0.00000 0.00258 0.00387

4 0.08325 0.05402 0.02064 0.01807 0.01678 0.02323 0.00903 0.00387 0.00129 0.00387 0.00387 0.00645 0.00387 0.00516 0.01420

5 - 0.00304 0.00280 0.00264 0.00000 0.00000 0.00000 0.00000 0.00000 0.00129 0.00000 0.00000 0.00000 0.00000 0.00000

6 - 0.00001 0.00000 0.00000 0.00000 0.00000 0.00129 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00129 0.00000

7 - 0.00277 0.00023 0.00134 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00129 0.00000 0.00000

8 - 0.00181 0.00012 0.00262 0.00129 0.00258 0.00129 0.00129 0.00000 0.00129 0.00000 0.00000 0.00258 0.00000 0.00129

9 - 0.00958 0.00180 0.00142 0.00000 0.00000 0.00000 0.00129 0.00129 0.00129 0.00129 0.00000 0.00258 0.00129 0.00129

10 - 0.00578 0.00032 0.00009 0.00000 0.00000 0.00129 0.00000 0.00000 0.00000 0.00000 0.00000 0.00129 0.00129 0.00129

11 - - 0.00000 0.00129 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

12 - - 0.00043 0.00006 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

13 - - 0.00635 0.00048 0.00140 0.00006 0.00258 0.00000 0.00129 0.00000 0.00129 0.00129 0.00129 0.00000 0.00129

14 - - - 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00129 0.00000 0.00000 0.00000 0.00000 0.00000

15 - - - 0.00183 0.00016 0.00004 0.00001 0.00129 0.00001 0.00000 0.00129 0.00129 0.00000 0.00000 0.00000

16 - - - - - 0.00357 0.00026 0.00140 0.00008 0.00000 0.00000 0.00000 0.00000 0.00129 0.00000

17 - - - - - - 0.00161 0.00026 0.00009 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

18 - - - - - - 0.01355 0.00161 0.00036 0.00129 0.00000 0.00000 0.00000 0.00000 0.00129

19 - - - - - - - 0.02261 0.00306 0.00299 0.00000 0.00000 0.00129 0.00258 0.00129

20 - - - - - - - 0.03128 0.00907 0.00306 0.00516 0.00129 0.00129 0.00129 0.00903

21 - - - - - - - 0.00209 0.00032 0.00004 0.00000 0.00000 0.00129 0.00000 0.00000

22 - - - - - - - 0.00912 0.00111 0.00015 0.00000 0.00000 0.00000 0.00000 0.00000

23 - - - - - - - - 0.00142 0.00017 0.00002 0.00000 0.00000 0.00000 0.00000

24 - - - - - - - - 0.00504 0.00057 0.00007 0.00000 0.00129 0.00000 0.00000

25 - - - - - - - - 0.00117 0.00012 0.00001 0.00000 0.00000 0.00000 0.00000

26 - - - - - - - - 0.01445 0.00164 0.00018 0.00129 0.00000 0.00000 0.00000

27 - - - 0.00559 0.00219 0.00129 0.00000 0.00129 0.00129 0.00258 0.00129 0.00000 0.00000 0.00000 0.00129

28 - - - 0.00000 0.00000 0.00000 0.00000 0.00129 0.00000 0.00129 0.00000 0.00000 0.00000 0.00000 0.00129

29 - - - 0.00043 0.00265 0.00000 0.00129 0.00387 0.00000 0.00129 0.00258 0.00129 0.00000 0.00000 0.00258

30 - - - 0.00525 0.00083 0.00129 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

31 - - - - - 0.00013 0.00000 0.00000 0.00129 0.00003 0.00000 0.00000 0.00000 0.00000 0.00000

32 - - - - - 0.00106 0.00000 0.00000 0.00000 0.00143 0.00000 0.00129 0.00000 0.00000 0.00000

Figure 42: The likelihood that when a patient joins the list, she is of type i and MELD score

j, ρ̂ij.
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k prob.

0 0.619978

1 0.276911

2 0.079831

3 0.019068

4 0.003607

5 0.000549

6 0.000053

7 0.000003

8 0.000001

Figure 43: The probability that k patients join the list on a day.
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