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Falls are a major cause of injury in older adults, leading to decreased quality of life and high 

economic cost. While the cause of falls is multi-dimensional, they have been linked to several 

characteristics seen in older adults. Specifically, this research focused on relating the use of 

medications and cerebrovascular changes with normal aging to changes in balance and gait, thus 

possibly increasing fall risk. The medications of interest were those with anticholinergic 

properties whose drug mechanism was to block the neurotransmitter acetylcholine. Medication 

use was measured using blood serum anticholinergic activity levels (SAA) of active receptor 

inhibitors. The cerebrovascular changes included those associated with white matter 

hyperintensities (WMH) in five regions of interest in the deep cerebral white matter detected by 

magnetic resonance imaging. The exact mechanism of action to negatively impact balance and 

gait is not well-known.   

Balance was assessed using measures of sway or center of pressure (COP) while gait was 

assessed using spatiotemporal variability parameters. Forty-eight participants, aged 65 to 80, 

were recruited. Balance and gait protocols were performed under single and dual-task digit recall 

conditions. Overall, performing tasks while standing or walking caused increased sway and 

temporal variability, respectively. When standing with eyes closed and not performing a task, 

participants’ sway increased with increasing WMH. However, no relationship was found with 

SAA. During gait, a positive relationship was found between WMH and cadence, stance time, 
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and step time variability, but only within two WMH regions. No relationships with SAA were 

identified. The lack of more correlations between the variables of interest could be attributed to 

the lack of variability in WMH and SAA along with the overall excellent health of the 

participants. These results indicate the potential for negative effects on balance and gait with 

healthy neural aging and anticholinergic drug use. Further investigations must be conducted to 

better understand the mechanism of action causing the negative impact on balance and gait. Once 

understood, better care can be taken to monitor medication use and provide therapeutic training 

to people at a higher risk for falls as related to medication burden and increased WMH with age.  
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1.0  INTRODUCTION 

With a steadily increasing population of older adults in the United States, falls in the elderly have 

become a well-known health problem. It has been estimated that one in three community-

dwelling adults over the age of 65 experiences a fall at least once a year (Hausdorff et al., 2001). 

This risk increases to one in two adults when looking at those over the age of 80 (Inouye et al., 

2009). Falls are associated with several adverse conditions and are often serious. In community-

dwelling fallers over the age of 65, decreased mobility and loss of independence are associated 

with approximately 20-30% of these falls (Sterling et al., 2001), leading to decreased quality of 

life. In 2007, falls were the leading cause of death from unintentional injuries in adults over the 

age of 65 (NCIPC, 2007). With such a high incidence of falls, the economic burden is also 

significant. In 2000, the direct medical cost estimate in the United States for all falls in those 

over 65 years was $19.2 billion (American Geriatrics Society, British Geriatrics Society, 

American Academy of Orthopaedic Surgeons Panel on Falls Prevention, 2001), and this estimate 

is expected to rise to $54.9 billion by 2020 (Englander et al., 1996). The United States Census 

Bureau has predicted that the population of people aged 65 and over will double by 2030 and 

those aged 80 and older will increase five times by 2050 (USCB, 2004). These statistics 

demonstrate that the issues associated with such a high fall incidence in this growing population 

will continue to be a major health, social, and economic problem in the United States without 

intervention or prevention.  
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The cause of falls in the aging population is multi-dimensional and can be attributed to 

many different factors. Factors shown to increase fall risk have been classified as intrinsic or 

extrinsic (Naqvi et al., 2009). Extrinsic factors are typically modifiable environmental factors 

such as poor lighting, lack of safety equipment, and loose carpeting. Intrinsic factors include but 

are not limited to age, muscle weakness, balance or gait deficiency, fear of falling, cognitive 

impairment and brain dysfunction, and the use of high-risk medications (Clyburn and 

Heydemann, 2011). Older adults will typically experience one or more of these risk factors, and 

previous work has demonstrated a cumulative effect when the number of risk factors increases. 

Community-dwelling adults over the age of 65 increase their fall risk from 27% to 78% when the 

number of applicable risk factors increases to four or more (Tinetti et al., 1988). While some 

intrinsic factors such as age or gender cannot be modified, interventions specific to other 

intrinsic factors, such as modifying medication use and strength training may be of importance 

for minimizing fall risk in the aging population. By understanding the mechanisms and 

consequences of factors such as medication burden, muscle weakness, and cognitive decline on 

performance and fall risk, training programs and more effective patient management may be 

developed to help minimize and prevent falls in older adults. 

1.1 BALANCE, GAIT AND THEIR RELATIONSHIP TO FALLS  

Risk factors for falls in older adults investigated in the present work include those related to 

postural stability during standing balance and gait characteristics during over ground walking.  
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1.1.1 Postural Control and Balance 

Maintaining balance requires integration by the central nervous system (CNS) of three different 

systems: visual, proprioceptive, and vestibular. It has been shown that together, these systems 

work in a feedback loop to maintain balance and produce counteractive motions to the constant 

displacement of gravity acting on a person during upright stance (Johannson, 1991; Horak & 

Macpherson, 1996; Peterka, 2002). Vision detects head orientation with respect to the 

surrounding environment, proprioception detects lower limb orientation with respect to the 

ground or support surface, and the vestibular system detects orientation changes of the head due 

to the force of gravity (Peterka, 2002). While there is a certain level of redundancy across the 

systems, perturbing one or two of the systems requires combined efforts and adaptation of the 

remaining systems so that a person will remain upright. This method, better known as sensory re-

weighting, allows the body to dynamically react to the ever-changing demands of the 

environment (Peterka, 2002; Mahboobin et al., 2005; Maurer et al., 2006). An example of the 

loss of one system would be asking someone to stand with his or her eyes closed. By removing 

the visual input to the CNS, the vestibular system and proprioception must re-weight their 

responsibilities and take over the loss of visual input while still keeping the body upright 

(Peterka, 2002). The interactions of these three systems then, are ultimately determined by their 

health and integration, the information available to them, and the environmental cues from the 

surroundings (Redfern et al., 2001).       

Decrements in balance in older adults have been classified as an intrinsic risk for falls. 

Previous research has demonstrated a significant difference between older adults classified as 

fallers and non-fallers in clinical assessments such as an increased score on the Timed Up and 

Go Test (Podsiadlo et al., 1991; Gunter et al., 2000) and a decreased score on the Berg Balance 
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Scale (Berg et al., 1992; Shumway-Cook, 1997) in fallers compared to non-fallers. These clinical 

assessments are widely utilized, easily administered, and often used as a guideline for 

intervention and assessing intervention effectiveness. While it is beneficial to understand the 

differences between these groups and identify those at a higher risk for a first or recurrent fall, 

these assessments are subjective, self-paced and controlled in a predictable environment (Desai 

et al., 2010). Quantitative analyses of postural control using validated laboratory protocols such 

as dynamic posturography have also shown a decline in balance performance with age (Peterka 

& Black, 1990; Ledin et al., 1990; Wolfson et al., 1992). The increased instability in older adults 

with the changes observed in these analyses can be linked back to an increased fall risk in this 

population.  

As mentioned previously, the three systems must be working properly to maintain an 

upright posture and avoid losing balance. It is the malfunction of one of these systems that would 

lead to the decline in performance during a balance task (Speers et al., 2002). While the exact 

mechanism of decline is not particularly known, each system can be analyzed independently for 

change. Changes with age to the vestibular system can include a decrease in the number of hair 

cells in the individual organs within the system or a decrease in conducting fibers located in the 

vestibular nerve (Rosenhall, 1973; Bergstrom, 1973). With regards to vision, it has been shown 

that older adults experience a decrease in visual acuity and sensitivity during low frequency 

motion (Sekuler & Hutman, 1980). Studies have even shown that older adults rely more on 

visual information to maintain balance during quiet stance (Sheldon, 1963; Alexander, 1994). 

Finally, peripheral neuropathy, leading to decreased proprioception, is also common in older 

adults. One in five older adults suffers from peripheral neuropathy, thus decreasing the sensory 

feedback from proprioception, increasing the risk of poor balance performance and increasing 
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the risk of falls (Richardson, 1996). Degradation in one or more of these systems in addition to 

decreased neural processing and increased muscle weakness with age will all have a negative 

impact on postural control and standing balance in older adults, increasing the likelihood of falls. 

1.1.2 Spatiotemporal Gait Characteristics during Normal Walking 

In addition to postural control during stance, spatiotemporal gait characteristics are also 

important in understanding fall risk in older adults. Previous research has shown several links 

between falls and these variables of interest (Beauchet et al., 2005; Dubost, et al. 2006). Gait 

speed has been shown to contribute to falls in older adults when decreased during normal 

walking (Luukinen et al., 1995; Cesari et al., 2005; Montero-Odasso et al., 2005). This decrease 

in speed, however, may actually be an indicator for other functionally limiting co-morbidities 

(Studenski, 2009). Gait variability has also been shown to predict falls and decreased physical 

function in older adults (Hausdorff, 2007; Brach et al., 2008). Gait variability is a measure of 

intra-individual fluctuation in a particular variable of gait from one step to the next. It is said to 

represent alterations to the intrinsic control mechanisms of gait from a decline in several factors 

including changes in the CNS (Maki, 1997; Brach et al., 2005). Gait variability has been shown 

to increase with age. Increased variability, such as in double support or stance time, has been 

directly associated with mobility disability and fall risk in older adults (Hausdorff et al., 1997; 

Maki, 1997; Hausdorff et al., 2001; Brach et al., 2007). Increased gait variability is a direct 

reflection of an inconsistent pattern of walking due to a reduction in postural control (Hollman et 

al., 2007). 
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1.2 RELATIONSHIP BETWEEN ANTICHOLINERGIC BURDEN AND FALL RISK  

One intrinsic factors shown to impact the risk of falls in adults over the age of 65 is medication 

use (Naqvi et al., 2009). Specific classes of medications commonly prescribed to the aging 

population have been previously demonstrated as an increased risk for falls including 

psychotropics such as benzodiazepines and antidepressants (Monane & Avorn, 1996; Cumming, 

1998; Landi et al., 2005; Howland, 2009), cardiovascular drugs such as nitrates (Cumming, 

1998), and non-steroidal anti-inflammatory drugs (Cumming, 1998). Another key drug group 

that is commonly prescribed to older adults and available over-the-counter is a class of drugs 

known as anticholinergics or antimuscarinics. Drugs exhibiting anticholinergic properties act by 

inhibiting the neurotransmitter acetylcholine from binding to the muscarinic receptors in the 

brain. The target receptors are primarily located on motor end plates of skeletal muscle and 

autonomic effector cells innervated by the parasympathetic nerves. The targets’ cell bodies are at 

their highest densities within the CNS, hippocampus, cortex, and thalamus (Brunton et al., 2011). 

Research has shown that there are more than 600 anticholinergic drugs available (Tune, 2001) 

with 11% of these drugs commonly prescribed to the older adult population (Tollefson et al., 

1991). Examples of these commonly prescribed drugs include diphenhydramine, codeine, 

diazepam, prednisolone, and clindamycin (Tune et al., 1992). 

Anticholinergics target several different organ systems including the CNS, eyes, 

cardiovascular and respiratory systems, and gastrointestinal and genitourinary tracts. There are 

many beneficial clinical applications of these drugs including motion sickness control, tremor 

reduction in Parkinson’s patients, bronchodilation during allergic reaction and asthma attacks, 

cardiac rhythm regulation, and treatment of urinary incontinence. However, successful treatment 

of these systems is typically accompanied by adverse drug reactions (ADRs) including lethargy, 
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hallucinations, amnesia, dry eyes, fibrillation, and significant urine retention (Katzung et al., 

2009). In addition to the ADRs mentioned, research has also demonstrated that the use of 

muscarinic blocking drugs has been associated with a decline in cognitive function including 

working memory, episodic memory, attention, and processing speed (Sunderland et al., 1988; 

Flicker et al., 1992; Molchan et al., 1992; Mulsant et al., 2003; Landi, 2007). ADRs related to 

anticholinergic drug use are often enhanced in older adults as they are typically taking multiple 

medications at once. In a study on nursing home patients, 21-32% of residents were taking two 

or more drugs with anticholinergic properties (Blazer et al., 1983), putting them at an increased 

risk for multiple ADRs and decreased quality of life.  

With an increase in the number of medications taken by older adults and the high number 

of drugs exhibiting anticholinergic properties available by prescription and over-the-counter, it 

should be of concern that community-dwelling older adults are exposed to anticholinergic ADRs 

that may impact daily living and potentially place them in a life-threatening situation. In fact, 

anticholinergic medications have been linked to falls in older adults (Landi et al., 2005; 

Aizenberg et al., 2002; Wilson, 2011). However, these studies were derived from hospital or 

residential care facility inpatient fall histories, not from community-dwelling older adults whose 

medication burden may be just as significant if not worse because of access to medications. With 

regard to the population of interest, motor impairments while taking anticholinergics have been 

reported. Cao and colleagues (2008) found that in older women, anticholinergic burden was 

associated with decreased gait speed and decline in ability to balance in side-by-side, semi-

tandem, and tandem stance for 10 seconds. Nebes and colleagues (2007) also found decreased 

gait speed with increased anticholinergic medication levels. Landi and others (2007) showed a 

significant decrease in average score on the Short Physical Performance Battery (SPPB) in 
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anticholinergic drug users over the age of 80. Finally, Hilmer (2007) demonstrated that increased 

anticholinergic drug burden in community-dwelling adults aged 70 to 79 is associated with 

decreased physical function as measured by the Health ABC performance score. 

While insight into the relationship between anticholinergic medications and fall risk is 

important, previous research demonstrating this relationship is limited to qualitative and 

subjective measures of balance and gait. Additionally, the mechanism of action of 

anticholinergic medications to inflict decline in both balance and gait is unknown. To better 

understand the mechanism of action, more quantitative measures of balance and gait, outside of 

simple gait speed, are needed to identify the potential impact of anticholinergic medications on 

balance and gait. Dr. Robert Nebes, the primary investigator of this research project, has shown 

in completed pilot work that increased levels of anticholinergic medications were significantly 

associated with increased sway in the medial-lateral direction without a concurrent task and 

increased stride time variability in the presence of a concurrent task. This pilot work was 

completed with the use of only eight participants. The significance of these results in such a 

small sample size is direct motivation to pursue this research on a larger sample of participants to 

better understand the impact of anticholinergic medications on balance and gait.  

1.3 RELATIONSHIP BETWEEN WHITE MATTER HYPERINTENSITIES AND 

FALL RISK 

Other points of interest in the aging population and fall risk are age-related changes in the brain. 

Just as anticholinergic drugs act on the brain to produce decrements in motor control and 

physical performance, changes within the brain have also been linked to decreased motor 
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function in older adults. One group of changes that have been identified as markers of 

cerebrovascular disease are better known as white matter hyperintensities (WMH) which are 

found in the deep cerebral white matter. These areas are represented as high signal intensities on 

magnetic resonance imaging (MRI) and are common in both normal and cognitively impaired 

older adults (Appel et al., 2009; Ota et al., 2010). The deep vessels located in the white matter 

experience hyperprofusion and disruption of the blood-brain barrier, leading to chronic plasma 

leakage and lesion formation within these areas (Pantoni & Garcia, 1997; O’Sullivan, 2002; 

Topakian, 2010). The physiological consequences of developing WMH have been associated 

with demyelination, loss of axons, gliosis, and dilation of the periventricular space (Ota et al., 

2010). Interestingly, 11-21% of healthy adults aged 64 have visible WMH on MRI, and 94% of 

healthy adults show similar results by the age of 82 (Debette & Marcus, 2010). In addition to 

age, several health conditions serve as risk factors for developing WMH including prior 

myocardial infarction or stroke, hypertension, elevated cholesterol, and heart disease (Bretler, 

1994).   

Since WMH are associated with neural changes in both healthy older adults and those 

with co-morbidities, it is of interest to understand how these changes may affect cognitive and 

physical function. As with anticholinergic drugs, WMH have been associated with declines in 

cognitive function (Bretler, 1994; Debette & Marcus, 2010). Of greater interest is their impact on 

balance and gait. Several studies have been conducted into understanding the changes in physical 

function in older adults with WMH, correlating this to fall risk. As with increased anticholinergic 

drug use, decreases in performance during the SPPB have been shown with increased WMH 

levels (Benson et al. 2002; Wolfson et al. 2005).  Murray and colleagues (2010) found a decrease 

in visual gait performance and gait speed with an increased level of WMH, suggesting that 
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WMH result in overall motor slowing. Another study looking at auditory cued step-initiation and 

WMH found greater processing time to initiate a response with higher levels of WMH, 

indicating a risk for decreased mobility and increased fall potential (Sparto et al., 2008). Finally, 

Rosano and others (2006) showed decreased gait speed and increased stride and double support 

time to be associated with increased WMH, indicating deteriorations in gait with the presence of 

cerebrovascular changes and aging. Other than speculation as in with anticholinergic 

medications, the exact mechanism of WMH for eliciting an impact on balance and gait remains 

unknown. Additionally, other than the work of Sparto and colleagues (2008), and Novak and 

colleagues (2009), current research has looked only into overall brain WMH. It is of interest to 

identify if specific regions of the brain associated with motor, executive, and cognitive function 

are more related to decrements in balance and gait than overall WMH.  

1.4 INTERACTION EFFECTS OF ANTICHOLINERGIC DRUGS AND WHITE 

MATTER HYPERINTENSITIES 

With evidence pointing to several detrimental effects when taking anticholinergic drugs or in the 

presence of WMH with age, it should also be of interest to investigate any potential relationship 

between the combination of these independent factors. Previous research has demonstrated a link 

between individuals taking anticholinergic drugs and the presence of WMH with a decline in 

cognition (Nebes et al., 2005). According to Bocti and colleagues (2005), one possible 

mechanism of cognitive decline is the interference of WMH with cholinergic pathways located 

in the white matter. The location of these pathways leaves them susceptible to vascular lesions 

associated with WMH (Seldon, 1998). Both animal and human models have shown an increased 
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sensitivity to anticholinergic drugs such as scopolamine when accompanied by the interference 

of cholinergic pathways in the aging brain (Flicker et al., 1992; Ray et al., 1992). Another 

mechanism of action when combining the effects of WMH with anticholinergic drugs could be 

the increased permeability of the blood-brain barrier. Starr and colleagues (2003) showed a 

positive relationship between permeability and WMH. An increase in WMH in healthy adults 

resulted in an increased permeability. As a result, anticholinergic medications may be able to 

better penetrate the neural tissue and cause greater effects when taken by older adults with high 

levels of WMH. With evidence in cognitive decline from combined effects, it may be suggested 

that the increased fall risk associated with WMH or anticholinergic drugs alone may actually be 

amplified when occurring simultaneously in otherwise healthy older adults.   

1.5 DUAL-TASK EFFECTS ON BALANCE AND GAIT 

Of added interest in the participant population recruited for this proposed work is the impact of 

altered attention on balance and gait. As stated previously, both anticholinergic drugs and WMH 

have been associated with cognitive decline including slowing of processing and changes in 

attention (Sunderland et al., 1988; Flicker et al., 1992; Molchan et al., 1992; Mulsant et al., 2003; 

Landi, 2007; Appel et al., 2009; Ota et al., 2010). While this may also be attributed to healthy 

aging where it is common to see a decrease in executive function (Herman et al., 2010), it is of 

interest to see if there is a correlation between high levels of anticholinergic drugs and WMH 

with attention and performance during a dual-task paradigm. A dual-task paradigm is used to 

investigate the cognitive demands of postural control while performing a separate nonpostural 

task such as repeating numbers or reading. The thought is that the control of posture and 
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maintaining upright stance must compete with the secondary exercise for the available central 

resources (Prado et al., 2007). Previous research has shown that with age, control of balance and 

gait becomes difficult as there is a decline in the sensorimotor information available. This then 

requires more attention to safely maintain an upright posture (Li et al., 2001; Bloem et al., 2003). 

Falls in older adults have been associated with activities requiring divided attention between two 

tasks such as walking while talking (The Prevention of Falls in Later Life, 1987; Bergland et al., 

1998).  

Several studies have revealed an increase in postural sway while performing a cognitive 

challenge task under quiet stance (Maylor & Wing, 1996; Shumway-Cook & Woollacott, 2000; 

Teasdale & Simoneau, 2001). Others have identified decreased gait speed and increased gait 

variability when walking while performing a cognitive task (Hausdorff et al., 2003; Sheridan et 

al., 2003; Beauchet et al., 2005). Interestingly, Bloem and colleagues (2001) found that older 

adults experiencing a cognitive task while asked to maintain balance use what they have called a 

‘posture first’ strategy. With this, older adults prioritize maintaining balance over successful 

completion of the secondary task, potentially trying to avoid falling. With these results, it can be 

concluded that there must be some aspect of attention and cognition responsible for execution of 

both balance and gait.  

1.6 SUMMARY 

With previous work documenting declines in motor performance, physical function and 

increased fall risk with anticholinergic drug use and WMH, a thorough analysis must be 

conducted to better understand the impact of these drugs and neural changes on balance and gait 
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in community-dwelling older adults. Specifically, looking at postural sway and temporal gait 

characteristics, the effects of these intrinsic factors on balance and gait can be quantitatively 

obtained, revealing potential underlying mechanisms of how anticholinergic medications and 

WMH are related to fall risk in older adults. These assessments will be conducted under both 

control and cognitive tasks. By understanding the characteristics of each participant’s balance 

and gait prior to and during a cognitive task, there may be a better understanding of functional 

performance under cognitive loads but also the correlation of this performance to anticholinergic 

drugs and WMH. Finally, since WMH have been shown with normal aging, it is also of interest 

to understand the relationship between older adults currently taking anticholinergic drugs and 

their levels of WMH as detected by MRI. Understanding these two risk factors for falls in the 

older population may allow clinicians to better medicate, educate, and intervene with their 

patient populations to reduce the risk and number of falls. 

1.7 SPECIFIC AIMS 

The long term goal of this project is to better understand the possible mechanisms by which 

decrements in balance and gait are associated with anticholinergic medications, white matter 

hyperintensities, and their combined effects. With knowledge of how change is inflicted, specific 

training protocols and medication monitoring can be better conducted to improve physical 

function and minimize the potential risk for falls in older adults. Understanding these factors and 

their relationships to balance and gait may provide additional insight into the mechanisms of 

action. Previous work is limited to qualitative analyses, simple measures, and the lack of 

combining these factors of interest. With this, the overall purpose of this research study was to 
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understand the relationships between anticholinergic burden, WMH, and their combined effects 

on balance outcome measures, gait speed, and temporal gait variability.   

The first focus of this research project is to understand the impact of anticholinergic 

medications on balance and gait. Specifically, anticholinergic medications have been shown to 

impact cognitive function. Thus, it is likely that anticholinergic medications will have a larger 

impact on balance and gait when performed during a cognitive challenge task. This relationship 

will be investigated using serum anticholinergic activity (SAA) of blood to quantify medication 

burden.  

 

Specific Aim 1: To determine whether the level of exposure to anticholinergic 

medications as measured by SAA affects standing balance and gait, thus increasing fall risk.  

Hypothesis 1: Individuals with higher levels of SAA will experience impaired balance 

(increased sway and sway velocity) and gait (decreased gait speed and increased temporal 

variability) compared to individuals with lower levels of SAA. 

Hypothesis 2: The impaired relationship of SAA level to balance and gait will be 

amplified when the balance and gait tasks are performed during a cognitive challenge task.   

 

The second focus of this research project is to understand the impact of cerebrovascular 

disease on balance and gait. Specifically, cerebrovascular disease has been shown to affect 

processing speed and attention in older adults. This relationship will be investigated using 

quantified levels of cerebrovascular disease as defined by WMH on MRI. 
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Specific Aim 2: To determine whether the level of cerebrovascular disease (WMH) 

affects standing balance and gait, thus increasing fall risk. 

Hypothesis 1: A decline in balance (increased sway and sway velocity) and gait 

(decreased gait speed and increased spatial variability) will be seen in individuals with higher 

levels of WMH. 

Hypothesis 2: The relationship of WMH to negative effects on balance and gait will be 

enlarged when the balance and gait tasks are performed during a cognitive challenge task.   

 

Finally, the third focus of this research project is to understand if the combination of 

anticholinergic burden and cerebrovascular disease in older adults will have an even greater 

impact on balance and gait. If SAA was linked to decrements in cognition and WMH has been 

linked to slower processing speed and decreased attention, it should be consistent that combining 

both detrimental variables should result in even more detrimental effects on balance and gait. 

This relationship will be assessed using WMH levels located in the neural tracts containing 

cholinergic fibers.  

 

Specific Aim 3: To determine whether the level of combined effects of anticholinergic 

medications and WMH affect standing balance and gait, thus increasing fall risk. 

Hypothesis 1: Individuals with higher levels of WMH in the cholinergic tracts will 

experience impaired balance (increased sway and sway velocity) and gait (decreased gait speed 

and increased temporal variability) compared to individuals with lower levels. The level of 

impairment will be greater than that seen in individuals with decrements only due to WMH or 

only due to SAA.  
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Hypothesis 2: The impaired relationship of WMH in the cholinergic tracts to balance and 

gait will be amplified when the balance and gait tasks are performed during a cognitive challenge 

task. 
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2.0  RESEARCH METHODS 

2.1 ASSESSMENT OF SERUM ANTICHOLINERGIC ACTIVITY 

To quantify the anticholinergic burden in the participants recruited for this study, 10 cc of blood 

from each participant were collected by a clinical phlebotomist at the Western Psychiatric 

Institute and Clinic, Pittsburgh, Pennsylvania and analyzed to determine the individual serum 

anticholinergic activity (SAA). Quantification of SAA was done using a radioreceptor assay 

developed by Tune and Coyle (1981). Quinuclidinyl benzilate (3H-QNB) binds specifically and 

with a high affinity to muscarinic cholinergic receptors. Anticholinergic drugs compete with 3H-

QNB at the receptor site as they are muscarinic inhibitors. With this, the ability of 3H-QNB to 

bind to muscarinic receptors is reduced in proportion to the concentration of anticholinergic 

drugs in the blood serum collected. Using homogenized rat forebrain bound with 3H-QNB, a 200 

µL control serum without anticholinergic properties and added atropine was assayed to 

determine a standard curve for the amount of 3H-QNB displaced for the specific neural tissue 

sample and amount of atropine used. Participant’s SAA was expressed as the amount of atropine 

in a 1 mL sample of serum without anticholinergic properties that would be needed to inhibit the 

same amount of 3H-QNB from binding to the muscarinic receptors of the rat forebrain as the 

participant’s sample. The SAA level was expressed as pmole mL-1 of atropine equivalent serum. 

Using this method of reporting SAA, the serum levels of all anticholinergic drugs taken by 
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participants and unbound to proteins, including drug compounds, supplements, and their 

metabolites, could be quantified (Mulsant et al., 2003). 

2.2 ASSESSMENT OF WHITE MATTER HYPERINTENSITIES 

2.2.1 Magnetic Resonance Imaging 

Each participant underwent magnetic resonance imaging (MRI) at the UPMC MR Research 

Center to quantify WMH. The scan was acquired using a Siemens 3 Tesla TIM TRIO scanner 

with eight channel coil (Siemens Medical Solutions USA, Inc., Malvern, PA). Axial series 

images along the transverse plane were acquired for each participant and included T1-weighted, 

fast spin-echo T2-weighted, fast fluid-attenuated inversion recovery (FLAIR), diffusion-tensor 

imaging, and magnetization-prepared rapid acquisition gradient-echo (MPRAGE).     

2.2.2 Processing Magnetic Resonance Imaging Data 

Analysis of all imaging data was conducted at the Geriatric Psychiatry Neuroimaging Lab under 

the supervision of Dr. Howard Aizenstein, M.D., Ph.D. Processing was performed using an 

automated method for segmenting and localizing WMH developed by Wu and colleagues 

(2006b). First, an intensity histogram of the FLAIR image was created to determine white 

matter, grey matter and cerebrospinal fluid. From this, WMH seeds were automatically 

generated. Using a fuzzy connected algorithm and individual parameters for each seed, WMH 

clusters containing the individual seeds were generated based on the fuzzy-connectedness or 
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affinity between voxels within the fuzzy object for the particular seed of interest. Upon 

generation of the individual WMH clusters from the identified seeds, the scattered WMH clusters 

were combined into final WMH segmentation volumes. Next, to localize the previously 

segmented WMH into regions of interest, an Automated Labeling Pathway (ALP) was 

employed. ALP was previously developed and has been used to automatically label specific 

anatomic regions of interest on structural MRI (Wu et al., 2006a). A high resolution reference 

image, the MNI colin27 image (MNI colin27), was registered to each participant’s T1-weighted 

images using ALP. The T1-weighted images were preprocessed in order to match both the 

orientation and composition of the reference image. The Johns Hopkins University White Matter 

Atlas, which had been defined on the reference image, was then warped into each participant’s 

registered image, creating anatomical definitions of individual regions within the brain image 

(Wakana et al., 2004). The T-1 image with landmarks was then masked onto the segmented 

FLAIR image so that areas defined as WMH were also given an anatomical point of reference.  

2.2.3 Regions of Interest 

A total of 20 individual tracts, as localized using the Johns Hopkins University White Matter 

Atlas, were defined for each image along with the sum of these tracts (WMH ALL) and total 

white matter volume. The total white matter volume was significantly correlated with WMH 

ALL with a Pearson correlation coefficient of 0.93 and p-value <0.0001. With such a high 

correlation, only WMH ALL was selected for the analysis. Individual tracts were also identified 

as either containing (CHOL) or not containing cholinergic fibers (NON-CHOL). Since 

anticholinergic burden and its interaction with WMH in the participants of this work are of 

importance, these measures may allow quantification of this interaction. In addition to overall 
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WMH and cholinergic tracts, the analysis also utilized eight of the specific tracts, combined into 

three variables of interest. The sum of the left and right anterior thalamic radiation and the left 

and right corticospinal tract was defined as AACC. The left and right superior longitudinal 

fasciculus were summed and defined as SS. The frontal and occipital regions of the corpus 

callosum were also summed and defined as CC. The tracts the their combinations selected for 

analysis were based on previous research linking the importance of the tract to either or a 

combination of motor function, cognition and processing, and executive function (Sheline et al., 

2008; Sparto et al., 2008; Duering et al., 2011). Quantification of WMH was done using a 

normalized voxel count in which the number of voxels containing WMH in the region of interest 

was divided by the total brain volume, yielding a percentage of total brain volume. 

2.3 COGNITIVE TASK 

2.3.1 Determining Cognitive Task Difficulty 

Half of all balance and gait trials were conducted under a cognitive dual-task condition. The 

chosen task, digit recall, was challenging, adjustable to individual cognitive capacity, and 

provided by an auditory stimulus. This task has been previously used in older adults and was 

shown to make a major demand on participants’ working memory (Nebes et al., 2001).  Each 

participant was first assessed at the Western Psychiatric Institute and Clinic, Pittsburgh, 

Pennsylvania by one of the study’s co-investigators to determine participant-specific digit spans. 

Starting with two digits, a list of numbers was presented at a rate of one digit per second, and the 

participant was asked to recall them in the reverse order. For example, if the participant was 



 21 

given 1, 4, they would repeat back “4, 1”. The participant received two lists of numbers of the 

same length. The number of digits was increased by one if the participant could correctly repeat 

one of the two lists in the previous series. This was continued until the participant could not 

correctly repeat back either of the lists within a series or the participant was successful with a 

string of eight digits. The participant’s digit span for the testing duration was set at the longest 

number of digits that could be correctly recalled for at least one of the two lists given. This span 

was between two and eight digits. 

2.3.2 Cognitive Challenge Task during Data Collection 

During both standing balance and gait trials, participants experienced one of three cognitive 

conditions. The first, no task (NT), was a control task in which participants did not receive an 

auditory stimulus. The second, forward (F), was a cognitive challenge task in which participants 

were asked to repeat the list of words presented to them in the same order in which they were 

received. For example, if the participant was given 1,5,7,8 followed by the word repeat, the 

participant would respond “1,5,7,8”. The third task, backwards (B), was a cognitive challenge 

task in which participants were asked to repeat the list of words presented to them in the opposite 

order in which they were received. For example, if the participant was given 2,5,6,9 followed by 

the word backward, the participant would respond “9,6,5,2”. The number of digits presented to 

each participant was based on the previous screening as described above and remained constant 

for all trials. Using Logitech ClearChat PC Wireless headphones (A-00007, Logitech, Fremont, 

CA), the auditory stimulus was provided into the headset and participant responses were 

recorded using the attached microphone. All balance and gait trials were conducted in groups of 

three. With this, the order of cognitive conditions remained constant for each participant. The 
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first trial of each group was always NT. The second and third were randomized such that it was 

either F then B or B then F. The order of the second and third trials remained consistent for the 

entire testing session. 

2.3.3 Cognitive Task Performance Scoring 

Performance on the cognitive task was scored at the conclusion of the balance and gait 

assessments at the Western Psychiatric Institute and Clinic. Scoring was based on a system 

allowing partial credit for correctly recalling certain portions of the list. Digits recalled were 

counted as correct if: the first or last digit of a string was correctly recalled, any correct digits 

adjacent to a correctly recalled first or last digit was recalled, and any correct sequence of three 

or more digits anywhere in the response was recalled (Drachman & Zaks, 1967). For example, if 

the list given was 1,2,3,5,7,9 and the participant was to repeat it backwards, the participant 

would receive a score of six out of six for this list if 9,7,5,3,2,1 was repeated. If 9,7,3,5,2,1 was 

repeated, the participant would receive a point for the 9, 7, 2 and 1, giving a score of four out of 

six. Finally, if 9,8,7,5,3,1 or 9,7,7,5,3,1 was repeated, the participant would receive a score of 

three out of six. For each scenario, the 9, 7, 5, 3 and 1 are correct. The group of 7 5 3 forms a 

correct sequence of three digits. However rather than scoring four out of six, one point is 

deducted from each score because an intrusion, or a digit that is not part of the series, is inserted 

into the first scenario, and a number is repeated in the second scenario. The number of correct 

digits is averaged over the number of digits presented in 60 seconds. This number is then divided 

by the participant’s specific digit span and documented as a percent correct for that task. For 

example, a participant averaged 3.2 digits correct over 60 seconds with a digit span of 5. For that 

trial, the participant’s cognitive task accuracy would be 64%. The accuracy score was then 
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normalized to a seated accuracy score by subtracting the accuracy of performance during the 

specific trial of interest from the accuracy of a seated baseline trial conducted prior to testing. 

2.4 EQUIPMENT 

2.4.1 Testing Area 

All data to perform the postural and gait analyses were collected in the Human Movement and 

Balance Laboratory located at the University of Pittsburgh, Pittsburgh, Pennsylvania (Figure 1). 

The laboratory was equipped with two embedded Bertec force plates (4060A, Bertec, Inc., 

Columbus, OH) and a Vicon 612 motion capture system. Eight IR M2-cameras (Vicon, 

Centennial, CO) captured motion data at 120 Hz while analog signals from the forceplates were 

recorded at 240 Hz from a 12-bit National Instruments A/D converter.   
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Figure 1: Schematic depicting laboratory layout. Eight Vicon motion capture cameras 

shown around room with embedded forceplates indicated by rectangles labeled P1 and P2. 

 

2.4.2 Motion Capture Set-up 

Using the Vicon 612 motion capture system and Vicon Workstation, three dimensional 

trajectories were collected and reconstructed for all standing balance and gait trials. For standing 

trials, participants were instrumented with a custom marker set including 14 reflective markers. 

During gait trials, an additional 12 reflective markers were added to the feet, generating 26 

trajectories (Figure 2 and Figure 3). All segments were considered rigid bodies for analysis 

purposes.  
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Figure 2: Motion capture marker placement on the anterior (left) and posterior (right) 

pelvis and upper body. The sternum marker, used for gait speed, is indicated by the red circle. 
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Figure 3: Anterior (left), lateral (middle), and medial (right) views of motion capture 

marker placement on polyvinyl soled shoes for testing. A total of nine markers were used on 

each foot including one on the lateral malleolus (not shown). 

 

2.4.3 Footswitches 

Participants’ shoes were instrumented with custom on-off membrane footswitches for all gait 

trials. These switches were used to temporally identify heel contact and toe off events during 

gait. On the sole of the shoe, the toe switch was placed on the anteriomedial edge, and the heel 

switch was placed on the posteriolateral edge (Figure 4). Switches were rated for five ounce 

activation. Analog voltages were collected and digitized using a BluSentry Bluetooth Adapter 

(RN-800S-CB, Roving Networks, Los Gatos, CA) mounted in an electronics enclosure worn on 

the waistband. The digitized signals were then transmitted wirelessly to a paired Bluetooth 

receiver (TBW 104UB Version 2.1R, TRENDNET, Torrance, CA) at 120 Hz.   
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Figure 4: Polyvinyl soled shoe instrumented with two simple on-off membrane switches 

for temporal heel contact and toe off events. 

2.5 PARTICIPANTS 

A total of 48 older adults (27 females, 21 males) were recruited to participate in this study (Table 

1). Written informed consent was obtained prior to participation and approved by the University 

of Pittsburgh Institutional Review Board. Participants were screened for neurological, visual, 

orthopedic, cardiovascular, medication use, and any other physical abnormalities that would 

prevent them from standing with their feet together or affect their balance or gait. All participants 

were asked to wear comfortable clothing with a shirt that could be tucked in. Additionally, 

participants were outfitted with the same polyvinyl, flat soled shoe to maintain consistency in 

equipment used to obtain footswitch data.  
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Table 1: All participant characteristics including mean, (SD), [range] 

 
Age [years] Height [m] Weight [kg] 

75.6 
(4.05) 

[70.3-83.5] 

1.68 
(0.09) 

[1.52-1.87] 

75.9 
(14.7) 

[47.4-119.6] 

2.6 STANDING BALANCE ASSESSMENT 

2.6.1 Standing Balance Protocol 

Each participant underwent 12 trials in the standing balance protocol. For the first six trials, 

participants were instructed to stand on the right embedded forceplate with their eyes open (EO), 

feet side-by-side and completely touching, and remain still for 60 seconds. As described 

previously, the first trial was NT while the second and third were randomized to F then B or B 

then F. This same order of trials was repeated for trials four through six. For the second half of 

the 12 trials, participants were instructed to stand on the right embedded forceplate with their 

eyes closed (EC) feet side-by-side and completely touching, and remain still for 60 seconds. The 

cognitive conditions were repeated in the same order as done in the previous trials with EO.  

2.6.2 Standing Balance Analysis 

While all 48 participants completed the standing balance protocol, a subset of 40 participants 

was selected for analysis (Table 2) due to availability of SAA and WMH data. Of these 40, all 

were included in the analysis with SAA, 36 were included in the analysis with WMH ALL and 
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the individual WMH tracts (Table 3), and 21 were included in the analysis with CHOL and 

NON-CHOL (Table 4). 

   

Table 2: Standing balance participant characteristics for overall analysis and analysis of SAA 

(n=40) including mean, (SD), [range] 

 
Age [years] Height [m] Weight [kg] 

75.6 
(4.06) 

[70.3-83.5] 

1.69 
(0.09) 

[1.53-1.87] 

75.9 
(14.9) 

[47.4-119.6] 
 
 

 
Table 3: Standing balance participant characteristics for analysis of WMH ALL and individual 

WMH Tracts (n=36) including mean, (SD), [range] 

 
Age [years] Height [m] Weight [kg] 

75.2 
(3.95) 

[70.6-83.4] 

1.69 
(0.08) 

[1.53-1.87] 

76.2 
(12.5) 

[55.6-107.5] 
 
 
 

Table 4: Standing balance participant characteristics for analysis of CHOL and NON-CHOL 

tracts (n=21) including mean, (SD), [range] 

Age [years] Height [m] Weight [kg] 
74.6 

(3.42) 
[70.6-83.3] 

1.69 
(0.08) 

[1.53-1.87] 

75.4 
(12.8) 

[55.6-102] 
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The raw digital output collected by the forceplate was imported into MATLAB (R2010a, 

MathWorks, Natick, MA) for all analyses. Center of pressure in the medial-lateral (ML) 

direction (COPML) and center of pressure in the anterior-posterior (AP) direction (COPAP) were 

first calculated over the entire trial from the raw data using the following formulas: 

 

 

 

In these formulas, i is the individual frame number, H is the height difference from the 

floor surface to the forceplate, FX is the force in the x-direction, FY is the force in the y-

direction, FZ is the force in the z-direction, and MY is the moment generated about the y-axis. 

Center of pressure in each direction was zero meaned by subtracting the average center of 

pressure for the entire trial from the center of pressure at each point in time. The zero meaned 

data was filtered using an eighth order Butterworth filter with cut-off frequency of 1.5 Hz and 

downsampled to 120 Hz.  

The standard deviations of both COPML and COPAP (ML RMS and AP RMS, 

respectively) were calculated using the following formulas (Maurer & Peterka, 2005): 

 

 

 

The mean sway velocity of both COPML and COPAP (ML VEL and AP VEL, 

respectively) were calculated using the following formulas (Maurer & Peterka, 2005): 
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Finally, the distance covered by the center of pressure in both directions or the total 

change in resultant center of pressure (PL) was calculated and time normalized using the 

following formula (Kim et al., 2009): 

 

 

 
Only the second trial within each condition was used for analysis in order to eliminate 

any practice effects seen in the first trial. The statistical analysis consisted of two parts. First, we 

determined the effect of eye and task conditions on standing balance by fitting a mixed linear 

model. The analysis was done using subject as a random effect and fixed effects of eye 

condition, task condition, and the interaction of the two. The dependent variables included AP 

RMS, ML RMS, PL, AP VEL, and ML VEL and were each considered individually. Statistical 

significance was set at 0.05. Graphically, the relationship of the balance outcome measures and 

predictor variables SAA, WMH ALL, AACC, CC, and SS appeared non-linear. The second 

analysis was performed to explore this non-linear relationship between the outcome balance 

measures and the predictor variables. We computed the Spearman rank correlation coefficient (ρ) 

within each task and eye condition between each standing balance variable and the predictor 
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variables. The dependent variables were AP RMS, ML RMS, PL, AP VEL, and ML VEL. The 

independent variables were SAA, WMH ALL, AACC, CC, SS, CHOL, and NON-CHOL. 

Statistical significance was again set at 0.05. This correlation analysis was repeated with the 

addition of average gait speed from the NT gait trial from each subject as a controlling variable 

to obtain partial correlation coefficients. With this addition, the analysis was done to look at the 

relationship of the balance outcome measures to the predictor variables while controlling for gait 

speed. This can be interpreted as controlling for overall health status. Statistical significance 

remained at 0.05. All statistical analyses were conducted using SAS® version 9.2 (SAS Institute 

Inc., Cary, NC).    

2.7 GAIT ASSESSMENT 

2.7.1 Gait Protocol 

Each participant underwent six gait trials. Participants were asked to walk at a self-selected pace 

around an outlined oval-shaped track for 60 seconds with their eyes open (Figure 5). Participants 

averaged 5 complete laps around the track. With regards to cognitive tasks, the first trial was NT 

while the second and third were randomized to F then B or B then F. This same order of trials 

was repeated for trials four through six. Footswitch and Vicon motion capture data were 

collected during the entire trial; however, the data captured only over the straightaways were 

processed. It was assumed that after elimination of the curves from the data that the participant 

was considered to be continuously walking and that data from the individual passes could be 

merged into one larger trial for analysis.  
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Figure 5: Circular track set-up and distance traveled for each straightaway. Only data collected 

on the straightaways (indicated by green check marks) were processed. 

 

2.7.2 Gait Analysis 

While all 48 participants completed the gait protocol, a subset of 41 participants was selected for 

analysis (Table 5) due to the availability of SAA and WMH data. Of these 41, 40 were included 

in the analysis with SAA (Table 6), 34 were included in the analysis with WMH ALL and the 

individual WMH tracts (Table 7), and 20 were included in the analysis with CHOL and NON-

CHOL (Table 8). 
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Table 5: Gait participant characteristics for overall analysis (n=41) including mean, (SD), 

[range] 

 
Age [years] Height [m] Weight [kg] 

75.5 
(3.89) 

[70.6-83.5] 

1.68 
(0.091) 

[1.52-1.87] 

76.9 
(14.8) 

[47.4-119.6] 
 

 
 

Table 6: Gait participant characteristics for analysis of SAA (n=40) including mean, (SD), 

[range] 

 
Age [years] Height [m] Weight [kg] 

75.6 
(3.89) 

[70.3-83.5] 

1.68 
(0.09) 

[1.52-1.87] 

76.2 
(15.1) 

[47.4-119.6] 
 
 
 

Table 7: Gait participant characteristics for analysis of WMH ALL and individual WMH tracts 

(n=34) including mean, (SD), [range] 

 
Age [years] Height [m] Weight [kg] 

75.2 
(3.7) 

[70.6-83.4] 

1.67 
(0.09) 

[1.52-1.87] 

76.7 
(12.2) 

[55.6-107.5] 
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Table 8: Gait participant characteristics for analysis of CHOL and NON-CHOL tracts (n=20) 

including mean, (SD), [range] 

 
Age [years] Height [m] Weight [kg] 

75.4 
(3.52) 

[70.6-83.3] 

1.67 
(0.09) 

[1.52-1.87] 

75.5 
(12.7) 

[55.6-102] 
 

 

Using the Vicon motion capture video output, frame ranges were identified as to when 

the participant was walking across the straightaways of the track so that marker and footswitch 

data were analyzed only over those particular frames. One straightaway frame range was referred 

to as one pass. For each pass, the sternum marker was identified and labeled from the 

reconstructed trajectories from the Vicon motion capture data. The trajectory of the sternum in 

the Y direction (STRNY) was then exported to calculate gait speed in MATLAB. The raw digital 

footswitch signal collected by the Bluetooth receiver was imported into MATLAB. Using a 

custom MATLAB code, heel contact and toe off were temporally identified over the designated 

frame ranges for each pass. Heel contact was identified as the temporal location of the rising 

edge of the right and left heel switch voltages. Toe off was identified as the temporal location of 

the falling edge of the right and left toe switch voltages (Figure 6).  
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Figure 6: Typical output for one pass showing both left and right heel and toe switches. Heel 

contact is identified as the rising edge of the voltage from the heel switch. Toe off is identified as 

the falling edge of the voltage from the toe switch. 

 

Using MATLAB, gait speed (GS), or the velocity in the direction of travel, was 

calculated. For each pass, continuous gait speed was calculated over the entire duration using the 

following formula: 

 

 

 

Using an interclass correlation (ICC) on a sub-set of average gait speeds from 10 

participants with 12 passes, it was statistically demonstrated that after the first six passes, gait 
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speed stabilized and the ICC was 0.90. With this, the average gait speed (Average GS) for each 

participant for each trial type was defined as the average gait speed over the first six passes per 

trial.  

The standard deviation of several temporal gait parameters was calculated across all 

passes for each trial using the heel contact and toe off values determined from the footswitch 

data. These variables included stance time variability in milliseconds (STV), double support time 

variability in milliseconds (DSV), step time variability in milliseconds (SEV), and cadence 

variability in steps per minute (CV). Stance time was defined as the time from heel contact to toe 

off of the same foot or the time spent with each foot completely on the ground. Double support 

time was defined as the time from toe off of one foot to the next heel contact of the other foot or 

the time spent when both feet are on the ground. Step time was defined as the time from heel 

contact of one foot to the next heel contact of the other foot or the time between stepping with 

one foot and stepping with the next. Cadence was defined as the number of steps taken per 

minute. The variables were calculated for both the left and right feet and averaged across both 

sides under the assumption that gait was symmetrical.  

As in the statistical analysis for standing balance, only the second trial within each 

condition was used to eliminate any practice effects seen in the first trial. The statistical analysis 

consisted of three parts. First, we determined the effect of task conditions on temporal variability 

by fitting a linear mixed model. The analysis was done using subject as a random effect and task 

condition as a fixed effect. The dependent variables included Average GS, STV, DSV, SEV, and 

CAD and were each considered individually. Statistical significance was set at 0.05. Graphically, 

the relationship of the temporal variability measures and predictor variables SAA, WMH ALL, 

AACC, CC, and SS appeared linear. The second analysis was used to explore this linear 
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relationship between the temporal variability measures and the predictor variables. We computed 

the Pearson correlation coefficient (r) within each task between each temporal variability 

measure and the predictor variables. The dependent variables were Average GS, STV, DSV, 

SEV and CAD. The independent variables were SAA, WMH ALL, AACC, CC, SS, CHOL, and 

NON-CHOL. Statistical significance was again set at 0.05. This correlation analysis was run a 

second time but with the addition of average gait speed from each gait trial from each subject as 

a partial correlation variable. With this addition, the analysis was done to look at the relationship 

of the temporal variability measures to the predictor variables while controlling for gait speed. 

This can be interpreted as controlling for overall health status. Statistical significance remained 

set at 0.05. Since we were controlling for gait speed, this analysis was not conducted on average 

GS.  

The final analysis was conducted to determine the proportion of variability in the 

temporal variability measures explained by the predictor variables in addition to that explained 

by average GS within each task. First, temporal variability measures were regressed on average 

GS and each predictor variable individually and then simultaneously in different regression 

models. Each model’s R2 was then examined to quantify the average GS contributions alone (A), 

each predictor variable’s contribution alone (B), and the simultaneous contribution of average 

GS and each predictor variable (C). By calculating the difference between model A and C (C-A), 

the added value of each predictor variable to explaining the variability in temporal variability 

above and beyond that by average GS was determined. To determine the statistical significance 

of the R2 difference, a nested models F-test was performed. Statistical significance was held at 

0.05. All statistical analyses were conducted using SAS® version 9.2 (SAS Institute Inc., Cary, 

NC). 
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3.0  RESULTS 

3.1 STANDING BALANCE 

3.1.1 Characteristics of Independent Predictor Variables 

Within the overall standing balance analysis, three different analysis groups were defined to 

include SAA, CHOL and NON-CHOL, and WMH. Table 9 provides the summary statistics of 

each independent variable of interest to better understand the dataset used for analysis. All 

variables pertaining to WM are shown as percentages of total brain volume.  

 

Table 9: Summary statistics for independent variables used in standing balance analysis 

 
Independent Variable [units] Mean SD Range 

SAA [pmole mL atropine equivalent-1] 0.54 0.61 0-2.05 
CHOL [% Total Brain Volume] 0.000656 0.000615 0-0.00177 

NON-CHOL [% Total Brain Volume] 0.00999 0.0109 0.000251-0.0320 
WMH ALL [% Total Brain Volume] 0.104 0.0974 0.00219-0.542 

AACC [% Total Brain Volume] 0.0582 0.0466 0-0.215 
CC [% Total Brain Volume] 0.0362 0.0332 0-0.135 
SS [% Total Brain Volume] 0.00342 0.000861 0-0.0595 
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3.1.2 Effect of Vision and Dual-Task on Standing Balance 

The effect of standing with both EO and EC was investigated for all subjects within each 

analysis group through the use of a mixed linear regression model. As expected, eye condition 

was significant across all subjects with p<0.0001 for all COP variables of interest. In addition to 

eye condition, the effect of performing a dual-task while standing was also investigated, and 

surprisingly, task effects were only revealed in five of the fifteen dependent variables analyzed. 

The interaction effect of eye and task condition did not reveal any significance. The p-values for 

all effects and results of the post-hoc analysis for the task effect are presented in Table 10 with 

statistical significance indicated by an asterisk.   
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Table 10: Statistical analysis of all dependent COP variables to determine task and eye condition 

effects. p-values are provided (α=0.05). Significance is denoted by an asterisk (*). 

 
COP 

Variable 
Analysis Group Eye Condition Task Task 

Post-hoc 
Interaction 

AP RMS SAA <0.0001 * 0.011 * NT/F 0.54 
ML RMS SAA <0.0001 * 0.15  0.82 

PL SAA <0.0001 * 0.049 * NT/B 0.57 
AP VEL SAA <0.0001 * 0.025 NT/B 0.55 
ML VEL SAA <0.0001 * 0.23  0.67 

 
AP RMS CHOL/NON-CHOL <0.0001 * 0.025 * NT/F 0.37 
ML RMS CHOL/NON-CHOL <0.0001 * 0.058  0.92 

PL CHOL/NON-CHOL <0.0001 * 0.54  0.33 
AP VEL CHOL/ NON-CHOL <0.0001 * 0.12  0.55 
ML VEL CHOL/ NON-CHOL <0.0001 * 0.81  0.31 

 
AP RMS WMH <0.0001 * 0.064  0.45 
ML RMS WMH <0.0001 * 0.36  0.74 

PL WMH <0.0001 *  0.083  0.34 
AP VEL WMH <0.0001 * 0.043 * NT/B 0.51 
ML VEL WMH <0.0001 * 0.26  0.29 

 

 
These effects are further demonstrated graphically in Figures 7, 8, and 9. Across all 

analyses, the dependent variables of interest increase significantly when participants stand with 

EC compared to EO.  
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Figure 7: Averaged COP variables across each task for EO and EC for SAA cohort. EO 

is represented by the three bars on the left while EC is represented by the three bars on the right. 

Eye condition was significant for all variables of interest. Standard error bars are shown. 
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Figure 8: Averaged COP variables across each task for EO and EC for CHOL and NON-CHOL 

cohort. EO is represented by the three bars on the left while EC is represented by the three bars 

on the right. Eye condition was significant for all variables of interest. Standard error bars are 

shown. 
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Figure 9: Averaged COP variables across each task for EO and EC for WMH ALL and 

individual tract cohort. EO is represented by the three bars on the left while EC is represented by 

the three bars on the right. Eye condition was significant for all variables of interest. Standard 

error bars are shown. 
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3.1.3 Standing Balance and SAA 

Using the Spearman correlation coefficient, the non-linear relationship between the outcome 

balance measures and SAA was examined. This was done across all three tasks and both eye 

conditions. There were no significant relationships between these variables. The Spearman 

coefficients and corresponding p-values are presented in the appendix, Table 17. The same 

relationship between the COP variables of interest and SAA was reanalyzed to better understand 

if the differences in balance outcome measures were due to overall health. This was done by 

adjusting for gait speed within the statistical model. The average GS during the first NT gait trial 

was used.  Again, there were no significant relationships between these variables. The adjusted 

Spearman rank correlation coefficients and their corresponding p-values are presented in the 

appendix, Table 17. 

3.1.4 Standing Balance and WMH 

The Spearman rank correlation coefficient was again utilized to describe the relationship 

between the outcome balance variables of interest and WMH ALL, AACC, CC, and SS. 

Significant relationships were seen when participants did not perform a dual-task and had their 

eyes closed. With EC, significant relationships existed between standing balance and WMH 

ALL, AACC and CC. There were no significant relationships during any of the tasks with EO or 

F or B dual-task conditions with EC. The Spearman correlation coefficients for the NT condition 

under EC for select predictor variables and balance outcome measures are shown in Table 11. 

All Spearman correlation coefficients are presented in the appendix, Table 17. A positive 
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correlation coefficient indicates an increase in the balance sway measure with an increase in the 

predictor variable. All significant findings demonstrated this relationship. 

 
 

Table 11: Unadjusted Spearman rank correlation coefficients and their corresponding p-values 

describing the relationship between the COP variables of interest and WMH ALL, AACC, and 

CC (α=0.05) for EC conditions without a dual-task. Significance is denoted by an asterisk (*). 

 
COP 

Variable 
Predictor 
Variable 

Eye  
Condition 

Task  
Condition 

Spearman  
Coefficient 

p-value 

AP RMS AACC EC NT 0.23 0.18 
ML RMS AACC EC NT 0.34 0.045 * 
ML VEL AACC EC NT 0.17 0.31 

      
AP RMS CC EC NT 0.19 0.27 
ML RMS CC EC NT 0.45 0.0057 * 
ML VEL CC EC NT 0.38 0.022 * 

 

 
The same relationship between the COP variables of interest and WMH ALL, AACC, 

CC, and SS was reanalyzed to investigate if the differences in balance outcome measures were 

attributed to overall health by adjusting for gait speed within the statistical model. There were 

significant relationships seen in both eye conditions when not performing a task. Additionally, 

significant relationships were also seen when participants stood with their eyes closed with F 

task. The Spearman correlation coefficients for the NT condition under both EO and EC and for 

the F condition under EC for select predictor variables and outcome measures are shown in 

Table 12. All adjusted Spearman correlation coefficients are presented in the appendix, Table 17. 

Again, all significant findings demonstrated a positive relationship. 
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Table 12: Adjusted Spearman rank correlation coefficients and their corresponding p-values 

describing the relationship between the COP variables of interest and WMH ALL, AACC, SS, 

and CC (α=0.05) for EC and EO conditions without a dual-task and EC with a F task. 

Significance is denoted by an asterisk (*). 

 
COP 

Variable 
Predictor 
Variable 

Eye  
Condition 

Task  
Condition 

Spearman  
Coefficient 

p-value 

AP RMS WMH ALL EC NT 0.36 0.0337 * 
ML RMS WMH ALL EC NT 0.45 0.0063 * 
ML VEL WMH ALL EC NT 0.29 0.085 

      
AP RMS AACC EC NT 0.24 0.18 
ML RMS AACC EC NT 0.39 0.022 * 
ML VEL AACC EC NT 0.23 0.20 

      
AP RMS CC EC NT 0.22 0.21 
ML RMS CC EC NT 0.51 0.0023 * 
ML VEL CC EC NT 0.44 0.012 * 

      
AP RMS SS EC NT 0.46 0.0061 * 
ML RMS SS EC NT 0.23 0.19 
ML VEL SS EC NT 0.269 0.12 

      
AP RMS WMH ALL EC F 0.37 0.031 * 
ML RMS WMH ALL EC F 0.16 0.35 
ML VEL WMH ALL EC F 0.16 0.35 

      
AP RMS CC EC F 0.39 0.023 * 
ML RMS CC EC F 0.27 0.12 
ML VEL CC EC F 0.28 0.10 

      
AP RMS SS EC F 0.29 0.086 
ML RMS SS EC F 0.35 0.041 * 
ML VEL SS EC F 0.21 0.23 

      
AP RMS CC EO NT 0.38 0.026 * 
ML RMS CC EO NT 0.22 0.21 
ML VEL CC EO NT 0.35 0.041 * 
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Figures 10-13 further demonstrate the significant relationships between two of the 

balance measures and the corresponding predictor variables.  

 
 

 

 
Figure 10: ML RMS [mm] vs. WMH ALL [% Total Brain Volume] under the NT, EC 

condition. The relationship between these two variables is significant with a Spearman rank 

correlation coefficient of 0.45 and p=0.0063. With a positive correlation, as the overall WMH for 

all tracts increases, ML RMS also increases.  
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Figure 11: ML RMS [mm] vs. AACC [% Total Brain Volume] under the NT, EC condition. The 

relationship between these two variables is significant with a Spearman rank correlation 

coefficient of 0.39 and p=0.022. With a positive correlation, as AACC increases, ML RMS also 

increases. 
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Figure 12: ML RMS [mm] vs. CC [% Total Brain Volume] under the NT, EC condition. The 

relationship between these two variables is significant with a Spearman rank correlation 

coefficient of 0.51 and p=0.0023. With a positive correlation, as CC increases, ML RMS also 

increases. 
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Figure 13: ML VEL [mm s-1] vs. CC [% Total Brain Volume] under the NT, EC condition. The 

relationship between these two variables is significant with a Spearman rank correlation 

coefficient of 0.44 and p=0.012. With a positive correlation, as CC increases, ML VEL also 

increases. 
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3.1.5 Standing Balance, CHOL, and NON-CHOL 

Finally, the Spearman rank correlation coefficient was used to determine the non-linear 

relationship between the outcome balance measures and CHOL and NON-CHOL across all three 

tasks and both eye conditions. There were no significant relationships between these variables. 

The Spearman coefficients and corresponding p-values are presented in the appendix, Table 17. 

The same relationships were reanalyzed to better understand if the difference in balance outcome 

measures was due to overall health by adjusting for gait speed within the statistical model. 

Again, there were no significant relationships between these variables. The adjusted Spearman 

correlation coefficients and their corresponding p-values are presented in the appendix, Table 17. 

3.2 GAIT 

3.2.1 Characteristics of Independent Predictor Variables 

As with the standing balance analysis, three different groups were defined to include SAA, 

CHOL and NON-CHOL, and WMH. Table 13 provides the summary statistics of each 

independent variable of interest to better understand the dataset used for analysis. All variables 

pertaining to WM are shown as percentages of total brain volume.  
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Table 13: Summary statistics for independent variables used in gait analysis. 

 
Independent Variable [units] Mean SD Range 

SAA [pmole mL atropine equivalent-1] 0.50 0.62 0-2.05 
CHOL [% Total Brain Volume] 0.000734 0.000678 0-0.00214 

NON-CHOL [% Total Brain Volume] 0.0108 0.0109 0.00145-0.0319 
WMH ALL [% Total Brain Volume] 0.112 0.104 0.00555-0.452 

AACC [% Total Brain Volume] 0.0673 0.0478 0.00502-0.215 
CC [% Total Brain Volume] 0.0395 0.0343 0-0.135 
SS [% Total Brain Volume] 0.00391 0.00812 0-0.0364 

 

3.2.2 Effects of Dual-Task on Gait 

The effect of walking while performing a dual-task was investigated for all subjects within each 

analysis group through the use of a mixed linear regression model. A significant task effect was 

seen in all but two variables of interest. The p-values for task effects and results of the post-hoc 

analysis are presented in Table 14 with statistical significance indicated by an asterisk.    
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Table 14: Statistical analysis of all dependent gait variables of interest to determine task 

condition effects during gait (α=0.05). p-values are provided. Post-hoc results indicate which 

tasks were significantly different. Significance denoted by asterisk (*). 

 
Gait Variable Analysis Group Task Task Post-hoc 

CV SAA 0.0044 * NT/F, NT/B 
DSV SAA 0.041 * NT/B 
STV SAA 0.0002 * NT/B 
SEV SAA 0.011 * NT/F, NT/B 

Average GS SAA <0.0001 * NT/F, NT/B, F/B 
 

CV CHOL/NON-CHOL 0.120  
DSV CHOL/NON-CHOL 0.60  
STV CHOL/NON-CHOL 0.0013 * NT/B, F/B 
SEV CHOL/NON-CHOL 0.011 * NT/F, NT/B 

Average GS CHOL/NON-CHOL <0.0001 * NT/F, NT/B, F/B 
 

CV WMH 0.0063 * NT/F, NT/B 
DSV WMH 0.048 * NT/B 
STV WMH 0.0007 * NT/F, NT/B 
SEV WMH 0.015 * NT/F, NT/B 

Average GS WMH <0.0001 * NT/F, NT/B, F/B 
 

 
These effects are further demonstrated graphically in Figures 14-18. For average GS, 

there is a significant decrease in GS between walking without a task and walking with a task. 

Additionally, there is a significant decrease in GS when walking between B and F. This was 

consistent across all analyses. For the SAA analysis, stance time and double support variability 

increased significantly between the NT and B conditions. Step time and cadence variability also 

increased significantly between the NT and B conditions but also increased significantly between 

the NT and F conditions. Across all variables, there was no significant difference between the F 

and B conditions. For the CHOL and NON-CHOL analysis, double support and cadence 

variability did not show any differences between tasks. Stance time variability showed a 
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significant increase in variability between NT and B and also between F and B. Step time 

variability showed increased variability between NT and F and NT and B. Finally, for the WMH 

analysis, stance time, step time, and cadence variability all showed a significant increase in 

variability between NT and F and NT and B. Double support time variability only showed a 

significant increase in variability between NT and B. Across all variables, there was no 

significant difference between the F and B conditions.  
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Figure 14: Average gait speed [m s-1] across tasks for SAA analysis (top left), CHOL and NON-

CHOL (top right), and WMH (bottom middle). Asterisk (*) indicates statistical significance 

between tasks. Standard error bars are shown. 
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Figure 15: Average stance time variability [ms] across tasks for SAA analysis (top left), CHOL 

and NON-CHOL (top right), and WMH (bottom middle). Asterisk (*) indicates statistical 

significance between tasks. Standard error bars are shown. 
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Figure 16: Average double support time variability [ms] across tasks for SAA analysis (top left), 

CHOL and NON-CHOL (top right), and WMH (bottom middle). Asterisk (*) indicates statistical 

significance between tasks. Standard error bars are shown. 
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Figure 17: Average step time variability [ms] across tasks for SAA analysis (top left), CHOL 

and NON-CHOL (top right), and WMH (bottom middle). Asterisk (*) indicates statistical 

significance between tasks. Standard error bars are shown. 
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Figure 18: Average cadence variability [steps min-1] across tasks for SAA analysis (top left), 

CHOL and NON-CHOL (top right), and WMH (bottom middle). Asterisk (*) indicates statistical 

significance between tasks. Standard error bars are shown. 
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3.2.3 Relationship between Gait Variability and the Predictor Variables 

The relationship between the measures of gait variability and the predictor variables of interest 

was determined using the linear Pearson correlation coefficient. First, this analysis was done on 

average GS and the temporal variability parameters calculated across all task types. Average GS 

was not correlated with any of the predictor variables of interest across all tasks. However, it was 

determined that there was a positive, significant relationship between cadence variability and 

NON-CHOL without a dual-task, stance time variability and NON-CHOL without a dual-task, 

and step time variability and NON-CHOL without a dual-task or under the B condition. The 

relationship between the measures of gait variability and the predictor variables was again 

conducted but by adjusting for gait speed within the linear model. By adjusting for gait speed, it 

could be inferred if the differences in gait variability were due to health status. The average GS 

corresponding to the task of interest was used for each analysis. After adjusting for gait speed, 

there was again a positive significant relationship between cadence variability and NON-CHOL 

without a dual-task, stance time variability and NON-CHOL without a dual-task, and step time 

variability and NON-CHOL under the B condition. Additionally, stance time variability was also 

significantly related to SS under the F condition and step time variability was no longer related to 

NON-CHOL without a dual-task condition. As in standing balance, a positive correlation 

indicated an increase in gait variability with an increase in the predictor variables. The Pearson 

correlation coefficients and their associated p-values for both the unadjusted and adjusted 

analyses are presented in Table 15 for the significant conditions. All adjusted and unadjusted 

Pearson correlation coefficients are presented in the appendix, Table 18. 
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Table 15: Unadjusted and adjusted Pearson correlation coefficients and their corresponding p-

values describing the relationship between the gait variability variables of interest and NON-

CHOL and SS (α=0.05) for all tasks. Significance is denoted by an asterisk (*). 

 

Task Variability 
Measure 

Predictor 
Variable 

Unadjusted 
Pearson 

Coefficient 

Unadjusted 
Pearson 
p-value 

Adjusted 
Pearson 

Coefficient 

Adjusted 
Pearson 
p-value 

NT CV NON-CHOL 0.56 0.01 * 0.56 0.012 * 
NT CV SS 0.095 0.61 0.096 0.61 
F CV NON-CHOL -0.024 0.91 -0.027 0.91 
F CV SS 0.037 0.84 0.039 0.83 
B CV NON-CHOL 0.16 0.49 0.19 0.45 
B CV SS 0.042 0.82 0.046 0.81 

 
NT STV NON-CHOL 0.58 0.0075 * 0.57 0.010 * 
NT STV SS 0.053 0.77 0.077 0.68 
F STV NON-CHOL 0.046 0.85 -0.046 0.85 
F STV SS 0.32 0.070 0.37 0.038 * 
B STV NON-CHOL 0.35 0.13 0.26 0.29 
B STV SS 0.023 0.89 0.051 0.79 

 
NT SEV NON-CHOL 0.49 0.027 * 0.45 0.051 
NT SEV SS 0.12 0.49 0.15 0.43 
F SEV NON-CHOL 0.10 0.67 0.010 0.97 
F SEV SS 0.21 0.25 0.250 0.18 
B SEV NON-CHOL 0.59 0.0088 * 0.54 0.021 * 
B SEV SS 0.18 0.34 0.23 0.21 
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Figures 19-22 further graphically demonstrate the significant relationships between three 

of the gait variability measures and the NON-CHOL during NT and B.  

 
 

 

 
Figure 19: CV [steps min-1] vs. NON-CHOL [% Total Brain Volume] during NT. The 

relationship between these two variables is significant with a Pearson correlation coefficient of 

0.56 and p=0.01. With a positive correlation, as NON-CHOL increases, CV also increases. 
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Figure 20: STV [ms] vs. NON-CHOL [% Total Brain Volume] during NT. The relationship 

between these two variables is significant with a Pearson correlation coefficient of 0.57 and 

p=0.0075. With a positive correlation, as NON-CHOL increases, STV also increases. 
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Figure 21: SEV [ms] vs. NON-CHOL [% Total Brain Volume] during NT. The relationship 

between these two variables is significant with a Pearson correlation coefficient of 0.49 and 

p=0.027. With a positive correlation, as NON-CHOL increases, SEV also increases. 
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Figure 22: SEV [ms] vs. NON-CHOL [% Total Brain Volume] during B. The 

relationship between these two variables is significant with a Pearson correlation coefficient of 

0.59 and p=0.0088. With a positive correlation, as NON-CHOL increases, SEV also increases. 

3.2.4 Explanation of Gait Variability by Predictor Variables and Gait Speed 

As mentioned previously, regression analyses were used to determine the contributions of both 

the predictor variables and gait speed to the explanation of gait variability. By using the R2 

difference between the first model with average GS only and the third model with the predictor 

variable of interest and average GS, the added value of the predictor variable could be quantified. 

With regards to cadence, regression analyses revealed that when experiencing the NT condition, 

NON-CHOL explained over 32% of the variability above and beyond that explained by average 

GS. With regards to double support, regression analyses demonstrated that under the NT 

condition, NON-CHOL, SAA, WMH ALL, and CC all significantly contributed to the 
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explanation of the variability in double support time above and beyond that explained by average 

GS with NON-CHOL explaining the most at 9%. All predictor variables showed a significant 

contribution to stance time variability under NT with NON-CHOL most notably accounting for 

21% of the variability above that explained by gait speed. All but CHOL and NON-CHOL were 

also significant for stance time variability under the F condition and all but CHOL were 

significant for stance time variability under the B condition. Finally, when looking at step time 

variability, all predictor variables except for CHOL showed a significant contribution when not 

experiencing a dual-task or under the B condition. When not given a task, NON-CHOL 

explained 16% of the step time variability above beyond that explained by gait speed while when 

given a B task, NON-CHOL explained 24%. Under the F condition, all predictor variables other 

than CHOL and NON-CHOL showed significant contributions. Interestingly, across all tasks and 

gait variability measures, NON-CHOL seemed to account for the most variability in gait 

variability measures above and beyond that explained by gait speed.  The significant variables of 

interest are presented in Table 16 while all values for the complete regression analysis are 

presented in the appendix, Table 19.  
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Table 16: R2 values obtained by regressing each gait variability measure on average GS alone 

(A), each predictor variable alone (B), and on average GS and each predictor variable combined 

(C). The added value of each predictor variable is quantified using the R2 difference between 

models C and A. Statistical significance of the combined effects was set at α=0.05 and is denoted 

by an asterisk (*). 

 

Task Variability 
Measure 

Predictor 
Variable 

GS 
Only 
(A) 

Predictor  
Only (B) 

GS & 
Predictor 

(C) 

Δ R2  
(C-A) 

p-value 
of Δ R2 

NT CV NON-CHOL 0.0037 0.32 0.32 0.32 0.038 * 
 

NT DSV NON-CHOL 0.22 0.16 0.31 0.09 0.042 * 
NT DSV SAA 0.22 0.0036 0.25 0.03 0.0054 * 
NT DSV WMH ALL 0.15 0.028 0.20 0.05 0.0337 * 
NT DSV CC 0.15 0.033 0.21 0.06 0.026 * 

 
NT STV CHOL 0.35 0.0055 0.35 0 0.024 * 
NT STV NON-CHOL 0.35 0.33 0.56 0.21 0.0009 * 

NT STV SAA 0.41 0.0091 0.42 0.01 <0.0001 
* 

NT STV WMH ALL 0.38 0.019 0.42 0.04 0.0002 * 
NT STV AACC 0.38 0.001 0.40 0.02 0.0004 * 
NT STV CC 0.38 0.0088 0.41 0.03 0.0003 * 
NT STV SS 0.35 0.0028 0.36 0.01 0.0016 * 
F STV SAA 0.26 0.077 0.30 0.04 0.0015 * 
F STV WMH ALL 0.20 0.0021 0.21 0.01 0.028 * 
F STV AACC 0.20 0.0001 0.21 0.01 0.028 * 
F STV CC 0.20 0.0027 0.21 0.01 0.025 * 
F STV SS 0.21 0.11 0.32 0.11 0.0037 * 
B STV NON-CHOL 0.26 0.12 0.31 0.05 0.045  * 
B STV SAA 0.32 0.0002 0.33 0.01 0.0007 * 
B STV WMH ALL 0.32 0.016 0.36 0.04 0.001 * 
B STV AACC 0.32 0 0.34 0.02 0.0018 * 
B STV CC 0.32 0.033 0.38 0.06 0.0005 * 
B STV SS 0.33 0.0005 0.33 0 0.0027 * 

 
NT SEV NON-CHOL 0.21 0.24 0.37 0.16 0.019 * 
NT SEV SAA 0.25 0.006 0.25 0 0.0053 * 
NT SEV WMH ALL 0.23 0.0075 0.24 0.01 0.013 * 
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Table 16 (continued) 

 
NT SEV AACC 0.23 0.001 0.23 0 0.018 * 
NT SEV CC 0.23 0.0052 0.25 0.02 0.013 * 
NT SEV SS 0.21 0.015 0.23 0.02 0.023 * 
F SEV SAA 0.20 0.030 0.21 0.01 0.014 * 
F SEV WMH ALL 0.18 0.0022 0.18 0 0.047 * 
F SEV AACC 0.18 0.0027 0.19 0 0.046 * 
F SEV CC 0.18 0.0041 0.18 0 0.047 * 
F SEV SS 0.21 0.046 0.26 0.05 0.015 * 
B SEV NON-CHOL 0.19 0.34 0.43 0.24 0.012 * 
B SEV SAA 0.21 0.012 0.24 0.03 0.0077 * 
B SEV WMH ALL 0.25 0.0097 0.28 0.03 0.0075 * 
B SEV AACC 0.25 0 0.27 0.02 0.0099 * 
B SEV CC 0.25 0.0049 0.27 0.02 0.0088 * 
B SEV SS 0.29 0.032 0.33 0.04 0.0036 * 

 

 
To further explain these results, two plots were generated for a select sub-set of the 

significant relationships between gait speed and the predictor variable on gait variability, and 

they can be found in figures 23-27. For all figures, the plot on the left represents the predictor 

variable plotted against average GS, demonstrating average GS’s contribution to the variability. 

The plot on the right represents the residuals of the dependent gait variability measure plotted 

against the predictor variable of interest, demonstrating the contribution of the predictor variable 

to explaining the variability in the gait measure above and beyond that explained by average GS.  
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Figure 23: On left, CV [steps min-1] vs. Average GS [m s-1] under NT condition. ΔR2=0.0037. 

On right, the average GS adjusted residuals of CV [steps min-1] are plotted against NON-CHOL 

[% Total Brain Volume] under NT condition. ΔR2=0.32. Thus, 32% of the variability in cadence 

variability is explained by NON-CHOL under NT above and beyond that explained by average 

GS. 
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Figure 24: On left, STV [ms] vs. Average GS [m s-1] under NT condition with R2=0.35. On 

right, the average GS adjusted residuals of STV [ms] are plotted against NON-CHOL [% Total 

Brain Volume] under NT condition. ΔR2=0.21. Thus, 21% of the variability in stance time 

variability is explained by NON-CHOL under NT above and beyond that explained by average 

GS. 
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Figure 25: On left, STV [ms] vs. Average GS [m s-1] under F condition with R2=0.21. On right, 

the average GS adjusted residuals of STV [ms] are plotted against SS [% Total Brain Volume] 

under F condition. ΔR2=0.11. Thus, 11% of the variability in stance time variability is explained 

by SS under F above and beyond that explained by average GS. 
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Figure 26: On left, SEV [ms] vs. Average GS [m s-1] under NT condition with R2=0.21. On 

right, the average GS adjusted residuals of SEV [ms] are plotted against NON-CHOL [% Total 

Brain Volume] under NT condition. ΔR2=0.16. Thus, 16% of the variability in step time 

variability is explained by NON-CHOL under NT above and beyond that explained by average 

GS. 
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Figure 27: On left, SEV [ms] vs. Average GS [m s-1] under B condition with R2=0.19. On right, 

the average GS adjusted residuals of SEV [ms] are plotted against NON-CHOL [% Total Brain 

Volume] under B condition. ΔR2=0.24. Thus, 24% of the variability in step time variability is 

explained by NON-CHOL under B above and beyond that explained by average GS. 
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4.0  DISCUSSION 

4.1 STANDING BALANCE 

4.1.1 Overall Balance Performance 

The first analysis conducted on the balance outcome measures involved understanding the effects 

of two different eye conditions and three different task conditions on standing balance. As 

consistent with previous research, there was an increase in sway in the ML and AP directions, 

increased speed in both directions, and increased overall distance travelled when standing with 

eyes closed compared to eyes open (Nagano et al., 2006; Prado et al., 2007; Hansson et al., 2010; 

Strang et al., 2011). However, task effects were only seen in five out of the fifteen variables 

analyzed. In general, participants swayed more and in the AP direction when not performing a 

dual-task compared to performing a F task. They also swayed faster in the AP direction when not 

performing a task compared to a B task. It was originally hypothesized that balance performance 

would decrease (i.e. increased sway, velocity, and distance) when performing a cognitive 

challenge task due to the added attention demands required to perform both tasks. These results 

do not support this hypothesis. Previous research demonstrates conflicting results. When 

performing a visual dual-task, the amount and velocity of sway decreased in older adults 

according to Prado and colleagues (2007). According to Shumway-Cook and Woollacott (2000), 
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during a cognitively challenging auditory task, there were no significant changes in balance 

outcome measures in healthy older adults compared to standing balance without a task. 

However, Maylor and Wing (1996) and Teasdale and Simoneau (2001) found sway to increase 

in healthy older adults when performing a cognitive challenge task during quiet stance. The 

results of this research project and the discrepancy in previous work may reference back to the 

statement by Bloem and colleagues (2001) that older adults prioritize maintaining balance over 

successful completion of the secondary task, possibly to avoid falling. If this were true, the 

participants used in this analysis would have decreased accuracy in recalling the digits to better 

maintain balance while participants in the studies that saw increased sway and decline in balance 

would have maintained accuracy performance with the cognitive task while sacrificing balance. 

Further work must be conducted to identify if participants used for this study did in fact 

sacrifice accuracy of performance to better maintain balance. If accuracy is not found to be one 

potential cause, it may also be hypothesized that balance was quantitatively worse when not 

performing a task due to the long duration of the trial and the participant simply asked to stand as 

still as possible. Participants may have fatigued throughout the duration of each 60 second trial. 

Even though they were provided seated rest breaks as often as requested, some participants 

reported boredom over time with “just having to stand there”, which may have hindered their 

performance. Participants may also have not been focusing on balance when not performing a 

task but rather simply maintaining an upright posture, which could still result in significant sway 

outcomes. Furthermore, the limited statistical significance between tasks and the absence of any 

interaction effects of task and vision condition may further be explained by overall participant 

health. The screening process utilized to determine eligibility maintained strict requirements so 

as to not recruit participants of poor mental or physical health status. By including fit, active 
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older adults and excluding those with known conditions, the results may better reflect 

conclusions seen in younger adults. 

4.1.2 Standing Balance and SAA 

Part of the goal of Specific Aim 1 was to identify the relationship between SAA and balance 

outcome measures during single-task quiet stance and while performing a concurrent cognitive 

task under two different eye conditions. While the exact mechanism of action of SAA on causing 

a decline in balance is unknown, as previously mentioned, SAA has been linked to a decrease in 

cognitive function, attention, and processing speed. Pilot work has also demonstrated increased 

sway with increased SAA levels. Based on this prior knowledge, it was hypothesized that 

balance performance would decrease with increased levels of SAA and that this relationship 

would be enhanced when analyzed under a dual-task condition. This relationship was determined 

using the Spearman correlation coefficient. According to our results, no significant relationships 

were found between balance outcome measures and SAA, regardless of task or eye condition. 

Interestingly, out of the 30 correlations between SAA and the five balance outcome measures for 

all conditions, 26 of these correlations were negative, indicating a trend towards improved 

balance with increased SAA. In fact, the strongest negative correlation was -0.25 (ML RMS with 

EO and B) while the strongest positive correlation was only 0.097 (AP RMS with EC and NT). 

Even when accounting for overall health status by adjusting for gait speed, no significant 

relationships were found between SAA and balance outcome measures. Again, out of the 30 

correlations between SAA and the five balance outcome measures for all conditions, 26 of these 

were negative. Correlations in both directions had negligible changes with the strongest negative 

correlation decreasing to -0.24 and the strongest positive correlation increasing to 0.11. Since 
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there was no change in the results when adjusting for gait speed, it can be concluded that overall 

health condition does not affect the relationship between SAA and the outcome measures of 

standing balance regardless of task or eye condition. These results are inconsistent with the 

initial hypothesis and the previous pilot work.   

The absence of significant findings within the participants recruited for this analysis may 

be due to their overall health, cognitive status and lack of anticholinergic medication use. The 

participants included in this analysis had SAA levels averaging 0.54 pmole mL atropine 

equivalent-1 and ranging from 0-2.05 pmole mL atropine equivalent-1. This is much lower 

compared to previous literature using the same technique for quantifying SAA level. Participants 

recruited for work done by Mulsant and colleagues with age range of 71-95 years had average 

SAA levels of 1.50 pmole mL atropine equivalent-1 and ranged from 0.5-5.70 pmole mL atropine 

equivalent-1 (Mulsant et al., 2003). Participants used in work by Nebes and colleagues had an 

average age of 72.1 years and average SAA level of 1.72 pmole mL atropine equivalent-1 (Nebes 

et al., 2011). The pilot work completed prior to this study and showing a significant relationship 

to balance carried a very high average SAA level of 1.76 pmole mL atropine equivalent-1 and 

range of 1.2-2.6 pmole mL atropine equivalent-1. Even though the high end of our range is 

almost equal to that of the pilot work, only 11 of the 44 participants had SAA levels larger than 1 

pmole mL atropine equivalent-1 while 21 participants had undetectable SAA levels.  

Without a large variance of SAA levels and very few participants at moderate to higher 

levels, the participants in this work may not have experienced any negative effects or only 

experienced slight effects associated with the use of anticholinergic medications such as a 

decline in cognitive function or attention. Since dual-tasking while standing requires additional 

cognitive demands and attention (Pellecchia, 2005), it would have been expected that with 
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increased cognitive load from performing both tasks, participants at higher SAA levels would 

have seen a decline in balance due to the negative cognitive impact associated with SAA. 

Because this was not seen and the SAA levels are so low with a small variance in the participants 

used in this research, we can conclude that SAA level is not able to explain the significant 

changes seen in the participants’ balance between eye and task conditions. Again, this may be 

due to the fact that the participants recruited for this work were screened for overall health and 

free from cognitive deficits. 

4.1.3 Standing Balance and WMH 

Part of the goal of Specific Aim 2 was to investigate the relationship between WMH and balance 

during single-task quiet stance and stance performed under a dual-task for both eyes open and 

eyes closed. As with SAA, the mechanism of action is not clearly understood. Previous research 

by Sparto and colleagues (2008) is the only known work to associate WMH to quantitative 

balance measures through step initiation tasks, finding increased WMH levels to be associated 

with impaired balance. It was hypothesized that balance would decline with increased levels of 

overall WMH and increased levels of WMH in the individual tracts of interest, and that this 

relationship would be amplified when performing a task with eyes close. As with SAA, the 

relationship between balance and the WMH predictor variables was found using the Spearman 

correlation coefficient. Our results indicate that ML RMS significantly increased when standing 

with EC under NT when WMH ALL, AACC, and CC also increased. ML VEL also increased 

with increased CC during the NT, EC condition. No significant relationships were seen with EO 

or during a dual-task. The lack of EO correlations could be due to the overall decrease in balance 

performance in the participants when standing with EC compared to EO as previously described. 
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It was interesting that significant relationships were not seen with PL during these same 

correlations; however this could be due to the fact that RMS was only significant in one direction 

and PL is dependent on both the AP and ML directions. When adjusting for overall health using 

average gait speed, the only additional significant relationship was seen during EC with NT in 

AP RMS. It is very important to note that out of 120 correlations between balance outcome 

measures and WMH across all tasks and eye conditions, only five of these correlations (4.2%) 

were significant when unadjusted for gait speed and six out of 120 correlations (5%) were 

significant when adjusted for gait speed. With this, the significance in these results may actually 

be due only to chance rather than actual relationships with WMH.    

The absence of more significant findings from this analysis may again be attributed to 

overall participant health as was true with the SAA analysis. According to Debette and Marcus 

(2010), 11-21% of healthy adults have detectable WMH found on MRI at the age of 64. The 

average percent of total brain volume that contained WMH was 0.104% and ranged from 

0.00219-0.542%. The largest contribution to the total WMH from the combination of tracts used 

was from AACC which had an average of 0.0582% and range from 0-0.215%. The smallest 

contribution to the total WMH was from SS which had an average of only 0.00342% and range 

from 0-0.0595%. In fact, 14 of the 40 participants had undetectable WMH in the SS region. 

Unfortunately, these values are extremely difficult to compare to previous literature given the 

custom algorithm used to semi-automatically quantify WMH as a percentage of total brain 

volume. Most authors grade MRI based on a qualitative scale or determine WMH as a 

volumetric measurement rather than a percentage of total brain volume using a voxel count. Two 

references were found in which WMH was quantified as a percentage of total brain volume. 

First, the work of Sparto and colleagues (2008) was the only source that used the same method of 
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analyzing the participant MRI scans. The only region of interest used was AACC which had a 

range of 0.1-3.1% total brain volume in the tracts making up this region. This is much higher 

than the range found in this study with our high end range being 14 times less than their high end 

range. Second, Burton and colleagues (2006) found an overall WMH average in healthy older 

adults to be 0.4% total brain volume with a range of 0.2-1.2% total brain volume. Both the 

average value and high end range were twice that of our participant population generating higher 

WMH levels and a larger variance.  

Without a larger variance of WMH values and such low percentages of total brain 

volume, it can be inferred that balance in these participants is not impacted by WMH. With such 

a high health status for older adults and low levels of WMH, the participants in this project may 

have very limited or even no effects previously associated with WMH. For example, 

demyelination, loss of axons, gliosis, and dilation of the periventricular space have all been 

associated with WMH (Ota et al., 2010). Physiological consequences associated with these 

changes may then include neuronal slowing and delay of signal processing. Ultimately, this may 

lead to motor slowing (Murray et al., 2010). If higher levels of WMH were to be seen in this 

population and positive correlations existed, chances are quite likely that these participants 

would have experienced some form of motor slowing, thus preventing them from maintaining 

consistent upright stance. Balance maintenance is a dynamic process requiring continuous 

feedback and execution in response to changes in position within space. Damage to the areas 

such as the cortex, thalamus and basal ganglia as a result of WMH have been shown to interfere 

with motor output to the lower extremities during balance tasks (Hennerici et al. 1994; Tell et al. 

1998; Guttmann et al. 2000; Wolfson 2001). Since the regions of interest selected for this 

analysis are associated with those areas along with being linked to some aspect of motor control 
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including modulation, attention, and executive function (Sheline et al., 2008; Sparto et al., 2008; 

Duering et al., 2011), we should see the expected decline in balance if the average and variance 

of WMH as a percent of total brain volume was much larger for the participant population 

recruited, especially when standing with a dual-task. 

4.1.4 Standing Balance and the Combined Effects of SAA and WMH 

The first portion of Specific Aim 3 looked to determine if there was a relationship between 

standing balance under different task and eye conditions with the combined effects of SAA and 

WMH. This was accomplished using the volume of WMH located in the CHOL and NON-

CHOL tracts as determined by MRI. Again, CHOL are the tracts containing cholinergic fibers 

while NON-CHOL are the tracts not containing cholinergic fibers. It was hypothesized that 

participants taking anticholinergic medications who also showed the presence of WMH within 

the cholinergic tracts would have decreased balance performance, and this decrease would be 

exaggerated when standing while performing a task with eyes closed. Using the Spearman 

correlation, our results indicate that there were no significant relationships between the balance 

outcome measures and CHOL or NON-CHOL across all tasks and both eye conditions. These 

results held constant when adjusting for gait speed to control for overall health status.  

Previous research has indicated through the use of human and animal models that with 

the presence of WMH in cholinergic pathways, the susceptibility to anticholinergic effects 

becomes amplified (Flicker et al., 1992; Ray et al., 1992). This means that if a participant was to 

have WMH present within the white matter tracts containing cholinergic fibers, the effects of 

anticholinergic medications on balance and gait should be amplified. However, the results 

obtained here are not consistent with our hypothesis but are not surprising. To see results within 
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CHOL and NON-CHOL we would have expected to see more significant relationships between 

balance outcome measures and WMH since WMH is the main contribution to these tracts. 

Additionally, to obtain the correlations with CHOL, the results from correlations with SAA 

would also have to be significant. We were interested in identifying if the anticholinergic burden 

would be amplified due to WMH in this region, but without anticholinergic burden found in 

these participants, the CHOL tract properties would more reflect that of NON-CHOL since it is 

simply WMH, which did not show any significant results. It is again important to note that eight 

of the 21 participants used in this analysis had undetectable WMH in CHOL while the average 

was extremely small at 0.000656% of total brain volume. This value could almost be considered 

0%. We can conclude from this that the participants used in this analysis did not experience 

balance impairments due to the combined effects of WMH and SAA. These conclusions can be 

further strengthened by the characteristics of the population used for this work in which overall 

health status was maintained and little magnitude and variance existed in both WMH and SAA. 

4.2 GAIT 

4.2.1 Overall Gait Performance 

The first analysis executed on the spatiotemporal gait characteristics was done to understand the 

gait of the participants used in this research project and also to determine the effect of dual-

tasking on gait. When comparing average GS and the average temporal variability parameters 

within each task condition to previous literature, our results fall well within range of those values 

previously published involving gait variability in healthy, older, non-fallers (Menz et al., 2003; 
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Brach et al., 2010; Calisaya et al., 2011; Hollman et al., 2011). Using a mixed linear regression, 

the dual-task effect of spatiotemporal gait characteristics was determined. Average GS was 

significantly different between single and dual-task conditions along with a difference between 

the F and B condition. STV and DSV were significantly different between NT and B. SEV and 

DSV were significantly different between NT and B and NT and F except for DSV in the 

CHOL/NON-CHOL analysis. All parameters of interest showed a trend or significant findings 

toward decreased gait speed and increased variability when walking with a dual-task compared 

to single-task. These results are consistent with previous work demonstrating decreased gait 

speed and increased variability when walking while performing a cognitive challenge task 

(Hausdorff et al., 2003; Sheridan et al., 2003; Beauchet et al., 2005; Hollman et al., 2007). In 

fact, according to Hollman and colleagues (2007), gait variability is impacted by dual-task 

conditions even without the presence of cognitive impairment, which is indeed a characteristic of 

our participant population. 

The decrease in average GS while performing a task may be attributed to compensation 

during gait (Hollman et al., 2007). Through the use of this mechanism, participants may be able 

to maximize stability in walking by simply slowing down. By decreasing speed and creating a 

more stable environment, participants may be working to better cope with the cognitive 

challenges of the dual-task. However, a decrease in gait speed has been considered a contribution 

to falls (Luukinen et al., 1995; Cesari et al., 2005; Montero-Odasso et al., 2005). The increase in 

gait variability may be due to the interference of the task on gait due to competition of both the 

task and maintenance of consistent walking for available attention. Attention is independently 

required to perform a cognitive task and to walk under normal conditions. With a limited 

attention capacity, burdening the available resources by requiring more attention to perform 
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concurrent tasks could explain the changes seen here. Falls in older adults have been associated 

with activities requiring divided attention between two tasks such as walking while talking (The 

prevention of falls in later life, 1987; Bergland et al., 1998).  

It must be noted that instructions given to participants did not favor performance on 

either the cognitive challenge task or gait. Participants were simply instructed to walk at a 

normal pace while performing the task. While it was not directly implied that accuracy was being 

measured, it is unknown if participants favored one task over the other. Further investigations 

must be conducted to understand if participants sacrificed their gait for accurate performance on 

the task or if their gait is truly this variable when performing a task regardless of accuracy. 

Because attention is limited and two sources were competing for what was available to these 

participants, degradation in one or both may be seen (Abernethy, 1988; Pashler, 1994; Beauchet 

& Berrut, 2006). 

4.2.2 Spatiotemporal Gait Characteristics and SAA 

The second part of Specific Aim 1 was to investigate the relationship between SAA and 

spatiotemporal gait parameters during single and dual-task conditions. As mentioned previously, 

the mechanism of action of SAA to impact characteristics of gait is not well understood. 

Previous research has shown a link between increases in SAA with decreased mobility. 

However, these analyses were conducted using objective assessments such as the SPPB and the 

Health ABC performance score. While both assessments provide insight into overall health and 

mobility, the sensitivity of objective assessments may not be as adequate as the quantitative 

assessments of gait measures used here to distinguish more subtle differences in normal walking 

among older adults. For example, the SPPB looks to analyze gait performance by scoring 
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participants on walking speed over a four meter walk. While decreased gait speed during normal 

walking has been shown to increase fall risk (Luukinen et al., 1995; Cesari et al., 2005; Montero-

Odasso et al., 2005), there are a magnitude of other spatiotemporal parameters describing gait 

that have also been related to fall risk. Based on this limited prior work, it was hypothesized that 

increased levels of SAA would be related to decreased gait speed and increased temporal 

variability, especially when walking with a concurrent cognitive task.  

Two different analyses were conducted to better understand what impacts SAA may have 

on spatiotemporal characteristics of gait. First, the Pearson correlation coefficient was calculated 

between all five gait measures within all three tasks and SAA. It was determined that no 

significant relationships existed between SAA and spatiotemporal parameters of gait, regardless 

of task condition. These results remained consistent even when adjusting for average gait speed 

during the task of interest. The second analysis was conducted using the R2 difference between 

each predictor variable regressed on gait speed alone and then with both gait speed and the 

temporal variability parameter of interest. According to Kang and Dingwell (2007), gait 

variability varies with walking speed. In older adults, this poses an issue in identifying the 

underlying cause of changes, more specifically increases, in gait variability due to their typical 

decreases in walking speeds. Through the statistical model used, the data could be further 

explored to understand if the reason for changes in variability was actually due to changes in 

walking speed or some other confounding effects such as SAA level. Seven of the fifteen 

regressions involving SAA across all tasks and temporal gait parameters provided a significant 

result indicating that SAA significantly contributed to the variability in the selected parameters 

above and beyond that explained by average GS. The largest contribution of SAA was its 

contribution of 4% to the variability in stance time variability during a B task above and beyond 
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that of average GS. There were no significant findings with variability in cadence variability. 

However, the average across all significant findings was very small with only 1.9% contribution 

to variability.  

The lack of correlation between SAA and spatiotemporal gait characteristics and the 

minimal contribution of SAA to the variability in temporal variability above and beyond that of 

gait speed suggest that the variability in temporal variability parameters is not under the direct 

influence of SAA, and that there must be some other underlying cause for any changes in 

variability. Gait speed was not directly correlated with SAA. These results do not support 

previous work concluding that increased SAA is associated with a decrease in gait speed (Nebes 

et al., 2007; Cao et al., 2008). However, gait speed could be one of the major contributors 

causing the changes in gait variability measures. The average R2 value for only gait speed in the 

model with each of the temporal variability parameters was 0.17 with a maximum of 0.414. The 

largest R2 values were seen with stance time variability. This can be interpreted as the largest 

known contribution accounting for the variability in temporal variability for these participants 

may actually be gait speed, not SAA. Additionally, pilot work conducted prior to the beginning 

of this research project found increased stride time variability with increased SAA during dual-

task walking. While stride time variability was not calculated for this project, it could be 

concluded that SAA has previously demonstrated some impact on gait variability.  

While the underlying cause for changes in variability are unclear from this analysis, the 

lack of significance may again be related to overall participant health. For this analysis, the 

average SAA was slightly less at 0.50 pmole mL atropine equivalent-1 with range of 0-2.05 

pmole mL atropine equivalent-1. Previous work has quantified SAA in the same manner as done 

here, and these results are presented in Section 4.1.2. Comparatively, our participants again have 
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a very low average SAA level and very small variance. If SAA levels were to be higher in this 

population with a larger variance, we would have expected to see some relationships between 

variability and SAA and a larger contribution of SAA to the variability above and beyond that 

explained by average GS. This theory stems from one of the main actions of anticholinergic 

medications in its impact on cognition and attention. As previously mentioned, walking while 

performing a concurrent task involves continuous competition for available resources. 

Specifically, the attention demands of both tasks competing for the limited attention capacity 

could lead to degradation in one or both tasks (Abernethy, 1988; Pashler, 1994; Beauchet & 

Berrut, 2006). If anticholinergics are indeed capable of modifying or limiting the capacity of 

attention, the demands of both tasks will be competing for an even more limited amount of 

attention. As a result, there should be even more significant changes in gait variability (i.e. 

increased variability) and poorer performance on the cognitive challenge task.  

4.2.3 Spatiotemporal Gait Characteristics and WMH 

The second half of Specific Aim 2 was to investigate the relationship between WMH and 

spatiotemporal gait during single-task walking and walking under a dual-task. While the exact 

mechanism of action is unclear, previous work has been done to quantify gait characteristics and 

related them to WMH. Results of this work showed decreased gait speed, increased stride time, 

and increased double support time with increased WMH (Rosano et al., 2006; Murray et al., 

2010). With this, it was hypothesized that with increasing WMH, we would also expect to see 

decreased gait speed but also increased temporal variability. This was tested using two different 

analyses. We first used the Pearson correlation coefficient to identify any relationships between 

gait and WMH across all tasks. Our results showed that none of the spatiotemporal gait 
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characteristics were correlated with WMH. We then repeated this analysis by adjusting for gait 

speed and this time found one significant correlation between STV and SS during the F task. 

However, since this was the only correlation present out of 48 (0.02%), it may actually be due to 

chance or noise within the model that this significant relationship was shown. These results do 

not agree with previous literature. 

The second analysis was performed to understand the contributions of average GS and 

the predictor variables to the variability in temporal variability. Several significant contributions 

of WMH and WMH in the regions of interest were identified except for in cadence variability. 

But, just as in the SAA analysis, the contribution of WMH to the variability of temporal 

variability above and beyond that of average GS was quite small. The average contribution was 

only 2.56% with a range from 0-11%. Moreover, average GS had an average contribution to 

temporal variability of 25.3% with a range of 15-33%. It is difficult to conclude that WMH truly 

contributed a significant amount to temporal variability when the percentage was so small.  

 These results demonstrate that temporal variability is not under the direct control of 

overall WMH or the WMH within the regions of interest selected. While the contributions of 

WMH to the overall variability in temporal variability were significant for a sub-set of variables, 

the actual values of these contributions were very small. From these results, several conclusions 

can be made. First, with respect to this analysis, it appears that gait speed is the largest factor 

affecting variability. This conclusion is in support of work by Kang and Dingwell (2007). By 

modulating gait speed throughout the duration of the 60 second walking trial and between trials, 

it makes sense that participants would become more variable in the number of steps taken, the 

time each foot is on the ground, and the timing between steps. Second, the participants in this 

analysis did demonstrate temporal variability not fully explained by gait speed. Some other 
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underlying factor must be causing these changes. While it is unclear based on the metrics 

obtained in this population, it can be proposed that other aspects inherent with aging including 

the adoption of cautious gait and the fear of falling (Hausdorff et al., 2001; Menz et al., 2003) 

may be the cause of the changes in temporal variability seen here. Third, as mentioned 

throughout this work, the overall health status of the participant population used may have 

limited the results obtained. Work by others measuring WMH in the same manner as conducted 

here was presented in section 4.1.2. For this analysis, the average overall WMH was very small 

at 0.112% total brain volume with an additionally small range of 0.00555-0.452% total brain 

volume. Without a larger magnitude and variance of WMH within the population recruited, it 

may be that the participants did not actually experience the adverse effects associated with WMH 

such as demyelination, loss of axons, gliosis, and dilation of the periventricular space have all 

been associated with WMH (Ota et al., 2010). Without these physiological barriers impacting the 

neural health of our participants, it can be further supported that WMH did not cause the changes 

seen here in temporal variability. 

4.2.4 Spatiotemporal Gait Characteristics and the Combined Effects of SAA and WMH 

The second half of Specific Aim 3 looked to determine if there was a relationship between 

spatiotemporal characteristics under different task conditions with the combined effects of SAA 

and WMH. As was done with the balance outcome measures, this was accomplished using the 

volume of WMH located in the CHOL and NON-CHOL tracts as determined by MRI. Again, 

CHOL are the tracts containing cholinergic fibers while NON-CHOL are the tracts not 

containing cholinergic fibers. It was hypothesized that participants taking anticholinergic 

medications who also showed the presence of WMH within the cholinergic tracts would have 
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increased temporal variability, and this increase would be exaggerated with performing a dual-

task. Using the Pearson correlation, our results indicate that there were four significant 

correlations between temporal variability and WMH when not adjusted for gait speed and only 

three significant correlations when adjusted for gait speed. These significant findings occurred 

during NT conditions in STV, SEV, and CV. However, these findings do not support the 

hypothesis that spatiotemporal gait parameters are affected by the combined interaction of SAA 

and WMH since the findings were not the in the tracts containing cholinergic fibers. When 

looking at the contribution of CHOL to the variability in temporal variability above and beyond 

that explained by gait speed, there were no significant contributions of CHOL to the variability 

of temporal variability above and beyond that attributed to gait speed. While there were some 

significant findings with NON-CHOL, these findings can be considered comparable to those of 

WMH as the non-cholinergic tracts are simply measures of WMH without the presence of 

cholinergic fibers.   

Under these findings, it can be concluded that there were no significant relationships 

between the combined interaction effects of WMH and SAA on temporal variability. This 

conclusion does not come as a surprise. To have seen results in this analysis, we would have 

expected to also see significant relationships of SAA and WMH with temporal variability or at 

least major contributions of SAA and WMH to temporal variability. These relationships were not 

found given the participant sample studied in this analysis. Without significant WMH, the effects 

of anticholinergic medications are not enhanced as would be in the presence of greater WMH. It 

is important to note that for this analysis, six of the 20 participants did not even have detectable 

WMH in the cholinergic tracts. Without the presence of WMH in the tract of interest, the 

correlation analysis is extremely limited. Again, as previously stated, the participants selected for 
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this study were extremely healthy with limited presence of WMH and very low levels of SAA. 

Without a large variance of the predictor variables of interest, it is not surprising that the results 

were very limited.  
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5.0  LIMITATIONS 

5.1 PARTICIPANT CHARACTERISTICS 

The statistical significance of this study may have been compromised due to the lack of large 

variance of predictor variables such as SAA and overall WMH. The screening process for 

participant recruitment was designed to ensure that participants would not be at risk during 

participation in the research protocol, did not have any known conditions that would prevent 

them from standing or walking normally, and did not have any neural changes such as known 

depression or cognitive deficit to interfere with the success of the dual-task. While it is important 

to eliminate these participants from testing if it would be a risk to their safety or if they could not 

perform the tasks, it may be of importance to consider a wider range participants based on 

certain criteria such as medication use. By recruiting participants with a higher chance of 

exhibiting the characteristics of interest such as known anticholinergic use, the results from 

future work with this protocol may show significant findings. 

5.2 TESTING AREA 

While participants were capable of walking for a continuous 60 seconds during each walking 

trial, participants were required to walk on a small, tight circular track to maintain this 
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continuous path. The Vicon motion capture system is limited in the volume of space at which it 

is capable of capturing motion, resulting in tight turns at the end of each straightaway for 

participants to navigate in order to maximize time walked on the straight portion of the track. 

While data was not processed when captured over the turns, participants may have altered their 

gait approximately two steps prior to and after the turns in order to safely navigate them. This 

may have then impacted temporal variability within the straightaways if the participants were not 

able to recover from the alterations made within the turn. It would be ideal if this study could be 

conducted using an instrumented treadmill or shorter protocol duration in a larger room that 

would allow for continuous, straight walking.  
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6.0  CONCLUSION 

The purpose of this research project was to determine whether balance or gait are negatively 

affected by the use of anticholinergic medications, white matter hyperintensities in the brain, and 

the combined effects of both in older adults during single and dual-task conditions. Results from 

this study indicate that there is not a direct relationship between the use of anticholinergic 

medications and the aging of the brain indicated by WMH to balance or gait, regardless of task 

condition. Additionally, the combined effects of WMH and anticholinergic medications were 

also not found to be significantly related to balance or gait, regardless of task. While some 

significant relationships were found, the magnitude of relationships investigated to the actual 

number of findings is so much larger that the significant findings are not enough to provide 

conclusive results. However, findings from this study did confirm several previous works by 

other authors that balance and gait suffer when performed under a dual-task, independent of 

anticholinergic burden and WMH. There was a decline is overall balance performance, decrease 

in gait speed, and increase in temporal variability, putting all of the participants of this study at 

an increased risk for falls when either attempting to maintain balance or walking normally while 

performing a secondary cognitive task. From this, it can be concluded that while WMH and SAA 

are not the direct causes of changes in balance or walking performance in the participants used 

for this analysis, other factors relative to aging including changes in muscular strength, gait 
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speed and fear of falling may be linked to the changes that were seen in the balance and gait 

measures.  

 While the anticipated relationships were not found and limitations of this study exist, this 

work still provides implications for future studies to investigate possible relationships between 

anticholinergic medications and WMH. By recruiting participants based on medication use or 

known MRI findings, a larger variance of predictor variables may allow for relationships 

between the variables of interest to be determined. By better understanding these relationships 

and being able to link changes in balance and gait to specific neural regions of interest and 

quantified medication burden, we may be one step closer to understanding the mechanism of 

action on physical function by the predictor variables. Once this is understood, better care can be 

taken to monitor medication use and provide therapeutic training to people at a higher risk for 

falls as related to medication burden and changes in WMH with age. 
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APPENDIX A 

BALANCE RESULTS 

Table 17: Unadjusted and Adjusted Spearman correlation coefficients and their corresponding p-

values describing the relationship between the COP variables of interest and CHOL, NON-

CHOL, SAA, WMH ALL, AACC, SS, and CC (α=0.05) for EC and EO conditions and all tasks. 

Significance is denoted by an asterisk (*). 

 

Eye Task COP Predictor 
Variable 

Unadjusted 
Spearman 
Coefficient 

Unadjusted 
Spearman 

p-value 

Adjusted 
Spearman 
Coefficient 

Adjusted 
Spearman 

p-value 

EO NT AP 
RMS CHOL 0.053 0.82 0.032 0.89 

EO NT AP 
RMS 

NON-
CHOL 0.36 0.11 0.31 0.19 

EO NT AP 
RMS SAA -0.20 0.18 -0.21 0.18 

EO NT AP 
RMS 

WMH 
ALL 0.28 0.096 0.32 0.063 

EO NT AP 
RMS AACC 0.10 0.56 0.14 0.43 

EO NT AP 
RMS CC 0.33 0.052 0.38 0.026 * 

EO NT AP 
RMS SS 0.0045 0.98 0.017 0.92 

EO NT ML 
RMS CHOL -0.11 0.64 -0.16 0.49 
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Table 17 (continued) 

 

EO NT ML 
RMS 

NON-
CHOL -0.023 0.92 -0.16 0.49 

EO NT ML 
RMS SAA -0.15 0.34 -0.14 0.37 

EO NT ML 
RMS 

WMH 
ALL 0.051 0.77 0.11 0.54 

EO NT ML 
RMS AACC -0.074 0.67 -0.014 0.94 

EO NT ML 
RMS CC 0.14 0.41 0.22 0.21 

EO NT ML 
RMS SS -0.023 0.89 0.0012 0.99 

EO NT PL CHOL 0.12 0.59 0.10 0.67 

EO NT PL NON-
CHOL -0.025 0.92 -0.13 0.57 

EO NT PL SAA -0.12 0.43 -0.11 0.49 

EO NT PL WMH 
ALL -0.063 0.71 0.015 0.93 

EO NT PL AACC -0.17 0.32 -0.087 0.62 
EO NT PL CC 0.081 0.64 0.19 0.26 
EO NT PL SS -0.17 0.33 -0.14 0.42 

EO NT AP 
VEL CHOL 0.13 0.57 0.11 0.63 

EO NT AP 
VEL 

NON-
CHOL 0.029 0.99 -0.063 0.79 

EO NT AP 
VEL SAA -0.16 0.31 -0.15 0.35 

EO NT AP 
VEL 

WMH 
ALL -0.21 0.23 -0.14 0.41 

EO NT AP 
VEL AACC -0.23 0.18 -0.15 0.38 

EO NT AP 
VEL CC -0.066 0.70 0.027 0.88 

EO NT AP 
VEL SS -0.16 0.35 -0.13 0.44 

EO NT ML 
VEL CHOL 0.14 0.53 0.13 0.58 

EO NT ML 
VEL 

NON-
CHOL -0.10 0.66 -0.17 0.46 

EO NT ML 
VEL SAA -0.11 0.47 -0.098 0.53 
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Table 17 (continued) 

 

EO NT ML 
VEL 

WMH 
ALL 0.12 0.49 0.19 0.27 

EO NT ML 
VEL AACC -0.056 0.75 0.019 0.91 

EO NT ML 
VEL CC 0.25 0.15 0.35 0.041 * 

EO NT ML 
VEL SS -0.11 0.52 -0.087 0.62 

   

EO F AP 
RMS CHOL 0.22 0.34 0.21 0.37 

EO F AP 
RMS 

NON-
CHOL 0.16 0.50 0.14 0.57 

EO F AP 
RMS SAA -0.10 0.51 -0.099 0.52 

EO F AP 
RMS 

WMH 
ALL 0.12 0.47 0.13 0.46 

EO F AP 
RMS AACC 0.12 0.49 0.12 0.48 

EO F AP 
RMS CC 0.18 0.31 0.18 0.29 

EO F AP 
RMS SS -0.13 0.44 -0.13 0.45 

EO F ML 
RMS CHOL -0.029 0.90 -0.051 0.83 

EO F ML 
RMS 

NON-
CHOL 0.32 0.16 0.27 0.25 

EO F ML 
RMS SAA -0.016 0.92 -0.0073 0.96 

EO F ML 
RMS 

WMH 
ALL 0.11 0.54 0.13 0.45 

EO F ML 
RMS AACC 0.079 0.64 0.11 0.52 

EO F ML 
RMS CC 0.14 0.40 0.18 0.30 

EO F ML 
RMS SS -0.028 0.87 -0.018 0.92 

EO F PL CHOL 0.14 0.55 0.14 0.55 

EO F PL NON-
CHOL 0.065 0.78 0.082 0.73 

EO F PL SAA 0.069 0.66 0.082 0.60 
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Table 17 (continued) 

 

EO F PL WMH 
ALL 0.038 0.83 0.067 0.70 

EO F PL AACC -0.021 0.91 0.013 0.94 
EO F PL CC 0.168 0.33 0.21 0.22 
EO F PL SS -0.16 0.34 -0.15 0.38 

EO F AP 
VEL CHOL 0.24 0.29 0.25 0.30 

EO F AP 
VEL 

NON-
CHOL 0.079 0.73 0.10 0.67 

EO F AP 
VEL SAA 0.068 0.66 0.083 0.60 

EO F AP 
VEL 

WMH 
ALL -0.027 0.88 0.0064 0.97 

EO F AP 
VEL AACC -0.062 0.72 -0.024 0.89 

EO F AP 
VEL CC 0.079 0.65 0.13 0.47 

EO F AP 
VEL SS -0.23 0.18 -0.22 0.21 

EO F ML 
VEL CHOL 0.013 0.96 0.017 0.94 

EO F ML 
VEL 

NON-
CHOL -0.0078 0.97 0.0054 0.98 

EO F ML 
VEL SAA 0.043 0.78 0.05 0.75 

EO F ML 
VEL 

WMH 
ALL 0.17 0.33 0.18 0.30 

EO F ML 
VEL AACC 0.086 0.62 0.098 0.57 

EO F ML 
VEL CC 0.28 0.093 0.31 0.074 

EO F ML 
VEL SS -0.0022 0.99 0.0011 0.99 

 

EO B AP 
RMS CHOL 0.0040 0.99 -0.015 0.95 

EO B AP 
RMS 

NON-
CHOL 0.15 0.53 0.091 0.70 

EO B AP 
RMS SAA -0.14 0.39 -0.13 0.42 

EO B AP 
RMS 

WMH 
ALL -0.027 0.88 0.028 0.88 
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Table 17 (continued) 

 

EO B AP 
RMS AACC -0.10 0.56 -0.042 0.81 

EO B AP 
RMS CC 0.047 0.79 0.13 0.47 

EO B AP 
RMS SS -0.082 0.64 -0.059 0.74 

EO B ML 
RMS CHOL 0.16 0.49 0.14 0.56 

EO B ML 
RMS 

NON-
CHOL 0.22 0.34 0.13 0.58 

EO B ML 
RMS SAA -0.25 0.10 -0.24 0.12 

EO B ML 
RMS 

WMH 
ALL 0.030 0.86 0.10 0.57 

EO B ML 
RMS AACC -0.0066 0.97 0.076 0.67 

EO B ML 
RMS CC 0.13 0.45 0.24 0.17 

EO B ML 
RMS SS -0.23 0.19 -0.21 0.24 

EO B PL CHOL 0.094 0.68 0.085 0.72 

EO B PL NON-
CHOL -0.10 0.66 -0.14 0.55 

EO B PL SAA -0.076 0.63 -0.060 0.71 

EO B PL WMH 
ALL -0.16 0.37 -0.096 0.59 

EO B PL AACC -0.22 0.20 -0.16 0.38 
EO B PL CC -0.030 0.86 0.063 0.73 
EO B PL SS -0.24 0.16 -0.22 0.21 

EO B AP 
VEL CHOL 0.12 0.60 0.11 0.63 

EO B AP 
VEL 

NON-
CHOL -0.0078 0.97 -0.037 0.88 

EO B AP 
VEL SAA -0.041 0.80 -0.016 0.92 

EO B AP 
VEL 

WMH 
ALL -0.18 0.29 -0.12 0.49 

EO B AP 
VEL AACC -0.22 0.21 -0.15 0.41 

EO B AP 
VEL CC -0.058 0.74 0.037 0.83 
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Table 17 (continued) 

 

EO B AP 
VEL SS -0.30 0.085 -0.28 0.11 

EO B ML 
VEL CHOL 0.15 0.52 0.15 0.53 

EO B ML 
VEL 

NON-
CHOL -0.19 0.42 -0.19 0.41 

EO B ML 
VEL SAA -0.069 0.66 -0.063 0.69 

EO B ML 
VEL 

WMH 
ALL 0.017 0.92 0.048 0.79 

EO B ML 
VEL AACC -0.083 0.64 -0.051 0.77 

EO B ML 
VEL CC 0.14 0.42 0.19 0.28 

EO B ML 
VEL SS -0.17 0.34 -0.15 0.38 

   

EC NT AP 
RMS CHOL -0.28 0.21 -0.33 0.16 

EC NT AP 
RMS 

NON-
CHOL 0.41 0.068 0.35 0.13 

EC NT AP 
RMS SAA 0.097 0.53 0.11 0.49 

EC NT AP 
RMS 

WMH 
ALL 0.31 0.068 0.36 0.034 * 

EC NT AP 
RMS AACC 0.23 0.18 0.24 0.18 

EC NT AP 
RMS CC 0.19 0.27 0.22 0.21 

EC NT AP 
RMS SS 0.43 0.011 * 0.46 0.0061 * 

EC NT ML 
RMS CHOL 0.10 0.66 0.096 0.69 

EC NT ML 
RMS 

NON-
CHOL 0.25 0.27 0.23 0.32 

EC NT ML 
RMS SAA -0.095 0.54 -0.092 0.56 

EC NT ML 
RMS 

WMH 
ALL 0.42 0.011 * 0.45 0.0063 * 

EC NT ML 
RMS AACC 0.34 0.045 * 0.39 0.022 * 

EC NT ML 
RMS CC 0.45 0.0057 * 0.51 0.0023 * 
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Table 17 (continued) 

 

EC NT ML 
RMS SS 0.21 0.24 0.23 0.20 

EC NT PL CHOL 0.065 0.78 0.059 0.80 

EC NT PL NON-
CHOL 0.031 0.89 0.0089 0.97 

EC NT PL SAA -0.088 0.57 -0.078 0.62 

EC NT PL WMH 
ALL 0.11 0.52 0.14 0.41 

EC NT PL AACC 0.027 0.87 0.12 0.51 
EC NT PL CC 0.21 0.23 0.28 0.10 
EC NT PL SS 0.070 0.69 0.11 0.55 

EC NT AP 
VEL CHOL 0.14 0.53 0.13 0.57 

EC NT AP 
VEL 

NON-
CHOL 0.058 0.80 0.019 0.94 

EC NT AP 
VEL SAA -0.12 0.45 -0.11 0.49 

EC NT AP 
VEL 

WMH 
ALL -0.037 0.83 -0.0037 0.98 

EC NT AP 
VEL AACC -0.10 0.55 -0.011 0.95 

EC NT AP 
VEL CC 0.059 0.73 0.14 0.43 

EC NT AP 
VEL SS -0.11 0.53 -0.074 0.68 

EC NT ML 
VEL CHOL 0.093 0.69 0.10 0.68 

EC NT ML 
VEL 

NON-
CHOL -0.012 0.96 0.0092 0.97 

EC NT ML 
VEL SAA -0.0073 0.96 -0.00065 0.99 

EC NT ML 
VEL 

WMH 
ALL 0.29 0.086 0.30 0.085 

EC NT ML 
VEL AACC 0.17 0.31 0.23 0.20 

EC NT ML 
VEL CC 0.38 0.022 * 0.43 0.012 * 

EC NT ML 
VEL SS 0.26 0.14 0.27 0.12 

   

EC F AP 
RMS CHOL 0.13 0.59 0.10 0.67 
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Table 17 (continued) 

 

EC F AP 
RMS 

NON-
CHOL 0.29 0.19 0.20 0.40 

EC F AP 
RMS SAA -0.053 0.73 -0.035 0.82 

EC F AP 
RMS 

WMH 
ALL 0.27 0.11 0.37 0.031 * 

EC F AP 
RMS AACC 0.16 0.34 0.24 0.16 

EC F AP 
RMS CC 0.30 0.080 0.39 0.023 * 

EC F AP 
RMS SS 0.23 0.19 0.30 0.086 

EC F ML 
RMS CHOL 0.0040 0.99 -0.031 0.90 

EC F ML 
RMS 

NON-
CHOL 0.021 0.93 -0.098 0.68 

EC F ML 
RMS SAA -0.18 0.25 -0.17 0.29 

EC F ML 
RMS 

WMH 
ALL 0.13 0.46 0.16 0.35 

EC F ML 
RMS AACC 0.11 0.51 0.24 0.17 

EC F ML 
RMS CC 0.18 0.30 0.27 0.12 

EC F ML 
RMS SS 0.30 0.082 0.35 0.041 * 

EC F PL CHOL 0.14 0.55 0.12 0.60 

EC F PL NON-
CHOL 0.0026 0.99 -0.055 0.82 

EC F PL SAA -0.16 0.31 -0.15 0.34 

EC F PL WMH 
ALL 0.11 0.54 0.13 0.47 

EC F PL AACC 0.050 0.77 0.15 0.40 
EC F PL CC 0.22 0.20 0.30 0.008 
EC F PL SS 0.16 0.37 0.19 0.29 

EC F AP 
VEL CHOL 0.089 0.70 0.074 0.76 

EC F AP 
VEL 

NON-
CHOL 0.053 0.82 -0.020 0.99 

EC F AP 
VEL SAA -0.099 0.52 -0.089 0.57 
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Table 17 (continued) 

 

EC F AP 
VEL 

WMH 
ALL 0.11 0.51 0.14 0.42 

EC F AP 
VEL AACC 0.047 0.79 0.15 0.49 

EC F AP 
VEL CC 0.23 0.17 0.31 0.071 

EC F AP 
VEL SS 0.11 0.52 0.15 0.41 

EC F ML 
VEL CHOL 0.067 0.87 0.054 0.82 

EC F ML 
VEL 

NON-
CHOL -0.039 0.867 -0.089 0.71 

EC F ML 
VEL SAA -0.17 0.28 -0.16 0.30 

EC F ML 
VEL 

WMH 
ALL 0.16 0.36 0.16 0.35 

EC F ML 
VEL AACC 0.11 0.53 0.17 0.34 

EC F ML 
VEL CC 0.24 0.16 0.28 0.10 

EC F ML 
VEL SS 0.20 0.26 0.21 0.23 

   

EC B AP 
RMS CHOL 0.080 0.73 0.066 0.78 

EC B AP 
RMS 

NON-
CHOL 0.082 0.72 0.033 0.89 

EC B AP 
RMS SAA -0.19 0.90 -0.0085 0.96 

EC B AP 
RMS 

WMH 
ALL -0.046 0.79 0.016 0.93 

EC B AP 
RMS AACC -0.075 0.67 0.083 0.64 

EC B AP 
RMS CC 0.020 0.91 0.16 0.38 

EC B AP 
RMS SS -0.056 0.75 0.011 0.95 

EC B ML 
RMS CHOL 0.24 0.30 0.24 0.31 

EC B ML 
RMS 

NON-
CHOL 0.034 0.88 0.024 0.92 

EC B ML 
RMS SAA -0.15 0.32 -0.15 0.33 
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Table 17 (continued) 

 

EC B ML 
RMS 

WMH 
ALL 0.11 0.51 0.13 0.45 

EC B ML 
RMS AACC 0.0041 0.98 0.10 0.56 

EC B ML 
RMS CC 0.22 0.20 0.31 0.076 

EC B ML 
RMS SS 0.043 0.81 0.075 0.67 

EC B PL CHOL 0.082 0.72 0.074 0.76 

EC B PL NON-
CHOL 0.0052 0.98 -0.027 0.91 

EC B PL SAA -0.15 0.34 -0.14 0.38 

EC B PL WMH 
ALL -0.070 0.69 -0.037 0.83 

EC B PL AACC -0.13 0.45 -0.035 0.84 
EC B PL CC 0.069 0.69 0.15 0.39 
EC B PL SS -0.078 0.65 -0.038 0.83 

EC B AP 
VEL CHOL 0.11 0.62 0.10 0.66 

EC B AP 
VEL 

NON-
CHOL 0.027 0.91 -0.016 0.95 

EC B AP 
VEL SAA -0.10 0.50 -0.091 0.56 

EC B AP 
VEL 

WMH 
ALL -0.14 0.41 -0.10 0.56 

EC B AP 
VEL AACC -0.19 0.26 -0.094 0.60 

EC B AP 
VEL CC 0.0093 0.96 0.095 0.59 

EC B AP 
VEL SS -0.12 0.50 -0.076 0.67 

EC B ML 
VEL CHOL 0.13 0.58 0.12 0.60 

EC B ML 
VEL 

NON-
CHOL 0.043 0.85 0.026 0.91 

EC B ML 
VEL SAA -0.17 0.28 -0.16 0.31 

EC B ML 
VEL 

WMH 
ALL 0.044 0.8 0.069 0.69 

EC B ML 
VEL AACC -0.038 0.83 0.025 0.89 
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Table 17 (continued) 

 

EC B ML 
VEL CC 0.15 0.39 0.20 0.25 

EC B ML 
VEL SS -0.013 0.94 0.017 0.93 
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APPENDIX B 

GAIT RESULTS 

Table 18: Unadjusted and adjusted Pearson correlation coefficients and their corresponding p-

values describing the relationship between Average GS, the gait variability variables of interest 

and CHOL, NON-CHOL, SAA, WMH ALL, AACC, SS, and CC (α=0.05) for all tasks. 

Significance is denoted by an asterisk (*). 

 

Task Variability 
Measure 

Predictor 
Variable 

Unadjusted 
Pearson 

Coefficient 

Unadjusted 
Pearson 
p-value 

Adjusted 
Pearson 

Coefficient 

Adjusted 
Pearson 
p-value 

NT Average GS CHOL -0.022 0.93 -- -- 

NT Average GS NON-
CHOL -0.22 0.36 -- -- 

NT Average GS SAA 0.22 0.17 -- -- 

NT Average GS WMH 
ALL 0.10 0.58 -- -- 

NT Average GS AACC 0.16 0.37 -- -- 
NT Average GS CC 0.11 0.53 -- -- 
NT Average GS SS 0.016 0.93 -- -- 
F Average GS CHOL 0.028 0.91 -- -- 

F Average GS NON-
CHOL -0.19 0.41 -- -- 

F Average GS SAA 0.20 0.22 -- -- 

F Average GS WMH 
ALL 0.10 0.57 -- -- 

F Average GS AACC 0.16 0.39 -- -- 
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Table 18 (continued) 

 
F Average GS CC 0.11 0.54 -- -- 
F Average GS SS 0.019 0.91 -- -- 
B Average GS CHOL -0.078 0.74 -- -- 

B Average GS NON-
CHOL -0.27 0.26 -- -- 

B Average GS SAA 0.082 0.61 -- -- 

B Average GS WMH 
ALL 0.095 0.61 -- -- 

B Average GS AACC 0.16 0.37 -- -- 
B Average GS CC 0.078 0.67 -- -- 
B Average GS SS 0.032 0.86 -- -- 

NT CV CHOL 0.15 0.53 0.15 0.54 

NT CV NON-
CHOL 0.56 0.01 * 0.56 0.012 * 

NT CV SAA 0.071 0.66 0.093 0.58 

NT CV WMH 
ALL 0.19 0.27 0.20 0.26 

NT CV AACC 0.062 0.74 0.076 0.69 
NT CV CC 0.22 0.23 0.23 0.21 
NT CV SS 0.095 0.61 0.096 0.61 
F CV CHOL 0.16 0.50 0.16 0.51 

F CV NON-
CHOL -0.024 0.92 -0.027 0.91 

F CV SAA -0.12 0.47 -0.12 0.49 

F CV WMH 
ALL 0.010 0.96 0.016 0.93 

F CV AACC -0.0048 0.98 0.0083 0.96 
F CV CC 0.14 0.44 0.15 0.41 
F CV SS 0.037 0.84 0.039 0.83 
B CV CHOL 0.19 0.43 0.19 0.43 

B CV NON-
CHOL 0.16 0.49 0.19 0.45 

B CV SAA 0.029 0.86 0.028 0.87 

B CV WMH 
ALL 0.093 0.60 0.10 0.57 

B CV AACC 0.0088 0.96 0.031 0.87 
B CV CC 0.19 0.30 0.20 0.28 
B CV SS 0.042 0.82 0.046 0.81 

NT DSV CHOL -0.0039 0.99 -0.016 0.95 
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Table 18 (continued) 

 

NT DSV NON-
CHOL 0.94 0.084 0.34 0.15 

NT DSV SAA 0.060 0.71 0.19 0.25 

NT DSV WMH 
ALL 0.17 0.34 0.23 0.20 

NT DSV AACC 0.077 0.68 0.15 0.42 
NT DSV CC 0.22 0.22 0.29 0.12 
NT DSV SS -0.021 0.91 -0.016 0.93 
F DSV CHOL 0.090 0.71 0.10 0.68 

F DSV NON-
CHOL -0.055 0.82 -0.11 0.65 

F DSV SAA -0.098 0.55 -0.041 0.81 

F DSV WMH 
ALL 0.033 0.85 0.066 0.72 

F DSV AACC 0.0062 0.97 0.052 0.78 
F DSV CC 0.16 0.38 0.20 0.28 
F DSV SS 0.070 0.70 0.079 0.67 
B DSV CHOL 0.16 0.51 0.15 0.54 

B DSV NON-
CHOL 0.11 0.64 0.074 0.76 

B DSV SAA -0.021 0.90 0.00021 0.99 

B DSV WMH 
ALL 0.15 0.41 0.18 0.33 

B DSV AACC 0.036 0.85 0.082 0.66 
B DSV CC 0.25 0.17 0.28 0.13 
B DSV SS 0.063 0.73 0.073 0.70 

NT STV CHOL 0.074 0.76 0.076 0.76 

NT STV NON-
CHOL 0.58 0.0075 * 0.57 0.010 * 

NT STV SAA -0.095 0.56 0.063 0.70 

NT STV WMH 
ALL 0.14 0.44 0.26 0.15 

NT STV AACC 0.081 0.66 0.23 0.22 
NT STV CC 0.14 0.44 0.26 0.15 
NT STV SS 0.053 0.77 0.077 0.68 
F STV CHOL 0.17 0.47 0.21 0.40 

F STV NON-
CHOL 0.046 0.85 -0.046 0.85 

F STV SAA -0.28 0.084 -0.21 0.20 
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Table 18 (continued) 

 

F STV WMH 
ALL 0.046 0.80 0.11 0.54 

F STV AACC 0.056 0.76 0.15 0.43 
F STV CC 0.091 0.62 0.16 0.39 
F STV SS 0.32 0.070 0.37 0.038 * 
B STV CHOL 0.19 0.42 0.18 0.47 

B STV NON-
CHOL 0.35 0.13 0.26 0.29 

B STV SAA 0.013 0.94 0.073 0.66 

B STV WMH 
ALL 0.13 0.48 0.23 0.20 

B STV AACC 0.022 0.91 0.14 0.44 
B STV CC 0.21 0.25 0.31 0.090 
B STV SS 0.023 0.90 0.051 0.79 

NT SEV CHOL 0.030 0.90 0.022 0.93 

NT SEV NON-
CHOL 0.49 0.027 * 0.45 0.051 

NT SEV SAA -0.078 0.63 0.038 0.82 

NT SEV WMH 
ALL 0.087 0.63 0.16 0.38 

NT SEV AACC -0.0093 0.96 0.075 0.69 
NT SEV CC 0.098 0.59 0.17 0.36 
NT SEV SS 0.12 0.50 0.15 0.43 
F SEV CHOL 0.15 0.53 0.19 0.44 

F SEV NON-
CHOL 0.10 0.67 0.010 0.97 

F SEV SAA -0.17 0.29 -0.10 0.56 

F SEV WMH 
ALL -0.047 0.80 0.0057 0.98 

F SEV AACC -0.0043 0.98 0.077 0.69 
F SEV CC -0.027 0.89 0.029 0.88 
F SEV SS 0.21 0.25 0.25 0.18 
B SEV CHOL 0.31 0.19 0.31 0.21 

B SEV NON-
CHOL 0.58 0.0088 * 0.54 0.021 * 

B SEV SAA 0.11 0.51 0.17 0.31 

B SEV WMH 
ALL 0.099 0.59 0.18 0.33 

B SEV AACC 0.023 0.90 0.14 0.47 
B SEV CC 0.088 0.64 0.15 0.42 
B SEV SS 0.18 0.34 0.23 0.21 
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Table 19: R2 values obtained by regressing each gait variability measure on average GS alone 

(A), each predictor variable only (B), and on average GS and each predictor variable combined 

(C). The added value of each predictor variable is quantified using the R2 difference between 

models C and A. Statistical significance of the combined effects was set at α=0.05 and is denoted 

by an asterisk. 

 

Task Variability 
Measure 

Predictor 
Variable 

GS 
Only 
(A) 

Predictor 
Only (B) 

GS & 
Predictor 

(C) 

Δ R2 
(C-A) 

p-value 
of Δ R2 

NT CV CHOL 0.0037 0.022 0.026 0.022 0.80 

NT CV NON-
CHOL 0.0037 0.32 0.32 0.32 0.038 * 

NT CV SAA 0.0072 0.0051 0.016 0.0088 0.75 

NT CV WMH 
ALL 0.0074 0.037 0.049 0.042 0.46 

NT CV AACC 0.0074 0.008 0.019 0.012 0.74 
NT CV CC 0.0074 0.054 0.069 0.062 0.33 
NT CV SS 0.0057 0.0089 0.015 0.0093 0.81 
F CV CHOL 0.0002 0.026 0.026 0.026 0.80 

F CV NON-
CHOL 0.0002 0.0006 0.0009 0.0007 0.99 

F CV SAA 0.0005 0.014 0.014 0.014 0.77 

F CV WMH 
ALL 0.002 0.0001 0.0022 0.0002 0.97 

F CV AACC 0.002 0.0001 0.002 0 0.97 
F CV CC 0.002 0.018 0.022 0.02 0.71 
F CV SS 0.0068 0.0014 0.0082 0.0014 0.88 
B CV CHOL 0.0036 0.035 0.040 0.036 0.71 

B CV NON-
CHOL 0.0036 0.026 0.038 0.034 0.72 

B CV SAA 0.0003 0.0008 0.0011 0.0008 0.98 

B CV WMH 
ALL 0.0063 0.0087 0.017 0.011 0.77 

B CV AACC 0.0063 0.0008 0.0083 0.002 0.88 
B CV CC 0.0063 0.039 0.05 0.044 0.45 
B CV SS 0.0173 0.0017 0.019 0.0017 0.75 

NT DSV CHOL 0.22 0 0.22 0 0.12 

NT DSV NON-
CHOL 0.22 0.156 0.31 0.09 0.042 * 
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Table 19 (continued) 

 
NT DSV SAA 0.22 0.0036 0.25 0.03 0.0054 * 

NT DSV WMH 
ALL 0.15 0.028 0.20 0.05 0.034 * 

NT DSV AACC 0.15 0.0016 0.17 0.02 0.061 
NT DSV CC 0.15 0.033 0.21 0.06 0.026 * 
NT DSV SS 0.14 0.0004 0.14 0 0.11 
F DSV CHOL 0.067 0.0081 0.077 0.01 0.51 

F DSV NON-
CHOL 0.067 0.003 0.079 0.012 0.50 

F DSV SAA 0.092 0.0096 0.093 0.001 0.16 

F DSV WMH 
ALL 0.063 0.0011 0.067 0.004 0.34 

F DSV AACC 0.063 0.0001 0.064 0.001 0.36 
F DSV CC 0.063 0.020 0.095 0.032 0.21 
F DSV SS 0.076 0.0049 0.082 0.0060 0.29 
B DSV CHOL 0.024 0.025 0.045 0.021 0.68 

B DSV NON-
CHOL 0.024 0.013 0.029 0.005 0.78 

B DSV SAA 0.068 0.0005 0.068 0 0.27 

B DSV WMH 
ALL 0.050 0.022 0.079 0.0290 0.28 

B DSV AACC 0.050 0.0026 0.059 0.0090 0.39 
B DSV CC 0.050 0.064 0.13 0.080 0.12 
B DSV SS 0.065 0.0039 0.071 0.0060 0.35 

NT STV CHOL 0.35 0.0055 0.36 0.010 0.024 * 

NT STV NON-
CHOL 0.35 0.33 0.56 0.21 0.0009 * 

NT STV SAA 0.41 0.0091 0.42 0.010 <0.0001 
* 

NT STV WMH 
ALL 0.38 0.019 0.42 0.040 0.0002 * 

NT STV AACC 0.38 0.001 0.40 0.020 0.0004 * 
NT STV CC 0.38 0.0088 0.41 0.030 0.0003 * 
NT STV SS 0.35 0.0028 0.36 0.010 0.0016 * 
F STV CHOL 0.20 0.029 0.23 0.030 0.10 

F STV NON-
CHOL 0.20 0.0022 0.202 0.0020 0.15 

F STV SAA 0.26 0.077 0.30 0.040 0.0015 * 

F STV WMH 
ALL 0.20 0.0021 0.21 0.010 0.028 * 

F STV AACC 0.20 0.0001 0.21 0.010 0.028 * 
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Table 19 (continued) 

 
F STV CC 0.20 0.0027 0.21 0.010 0.025 * 
F STV SS 0.21 0.11 0.32 0.11 0.0037 * 
B STV CHOL 0.26 0.037 0.28 0.020 0.061 

B STV NON-
CHOL 0.26 0.12 0.31 0.050 0.045  * 

B STV SAA 0.32 0.0002 0.33 0.010 0.0007 * 

B STV WMH 
ALL 0.32 0.016 0.36 0.040 0.001 * 

B STV AACC 0.32 0 0.34 0.020 0.0018 * 
B STV CC 0.32 0.033 0.38 0.060 0.0005 * 
B STV SS 0.33 0.0005 0.33 0 0.0027 * 

NT SEV CHOL 0.21 0.0009 0.21 0 0.14 

NT SEV NON-
CHOL 0.21 0.24 0.37 0.16 0.020 * 

NT SEV SAA 0.25 0.006 0.25 0 0.0053 * 

NT SEV WMH 
ALL 0.23 0.0075 0.24 0.010 0.013 * 

NT SEV AACC 0.23 0.001 0.23 0 0.018 * 
NT SEV CC 0.23 0.0052 0.25 0.020 0.013 * 
NT SEV SS 0.21 0.015 0.23 0.020 0.023 * 
F SEV CHOL 0.25 0.024 0.27 0.020 0.077 

F SEV NON-
CHOL 0.25 0.011 0.25 0 0.11 

F SEV SAA 0.20 0.0303 0.21 0.010 0.0142 * 

F SEV WMH 
ALL 0.18 0.0022 0.18 0 0.047 * 

F SEV AACC 0.18 0.0027 0.19 0.010 0.046 * 
F SEV CC 0.18 0.0041 0.18 0 0.047 * 
F SEV SS 0.21 0.046 0.26 0.050 0.015 * 
B SEV CHOL 0.19 0.098 0.27 0.080 0.080 

B SEV NON-
CHOL 0.19 0.34 0.43 0.24 0.012 * 

B SEV SAA 0.21 0.012 0.24 0.03 0.0077 * 

B SEV WMH 
ALL 0.25 0.0097 0.28 0.03 0.0075 * 

B SEV AACC 0.25 0 0.27 0.02 0.0099 * 
B SEV CC 0.25 0.0049 0.27 0.02 0.0088 * 
B SEV SS 0.29 0.032 0.33 0.04 0.0036 * 
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