
DYNAMIC THERMAL MANAGEMENT FOR

MICROPROCESSORS THROUGH TASK

SCHEDULING

by

Xiuyi Zhou

B.S. in Computer Science, Nanjing University, China, 2002

M.S. in Computer Science, Nanjing University, China, 2005

Submitted to the Graduate Faculty of

Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

PhD in Electrical Engineering

University of Pittsburgh

2011

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Xiuyi Zhou

It was presented on

September 28, 2010

and approved by

Jun Yang, Ph.D., Associate Professor, Electrical and Computer Engineering Department

Alex Jones, Ph.D., Associate Professor, Electrical and Computer Engineering Department

Steven Levitan, Ph.D., Professor, Electrical and Computer Engineering Department

Guangyong Li, Ph.D., Assistant Professor, Electrical and Computer Engineering

Department

Rami Melhem, Ph.D., Professor, Computer Science Department

Dissertation Director: Jun Yang, Ph.D., Associate Professor, Electrical and Computer

Engineering Department

ii

Copyright c© by Xiuyi Zhou

2011

iii

DYNAMIC THERMAL MANAGEMENT FOR MICROPROCESSORS

THROUGH TASK SCHEDULING

Xiuyi Zhou, Ph.D.

University of Pittsburgh, 2011

With continuous IC(Integrated Circuit) technology size scaling, more and more transistors

are integrated in a tiny area of the processor. Microprocessors experience unprecedented high

power and high temperatures on chip, which can easily violate the thermal constraint. High

temperature on the chip, if not controlled, can damage or even burn the chip. There are also

emerging technologies which can exacerbate the thermal condition on modern processors.

For example, 3D stacking is an IC technology that stacks several die layers together, in

order to shorten the communication path between the dies to improve the chip performance.

This technology unfortunately increases the power density per unit volumn, and the heat

from each layer needs to dissipate vertically through the same heat sink. Another example

is chip multi-processor. A chip multi-processor(CMP) integrates two or more independent

actual processors (called “cores”), onto a single integrated circuit die. As IC technology

nodes continually scale down to 45nm and below, there is significant within-die process

variation(PV) in the current and near-future CMPs. Process variation makes the cores in

the chip differ in their maximum operable frequency, and the amount of leakage power they

consume. This can result in the immense spatial variation of the temperatures of the cores

on the same chip, which means the temperatures of some cores can be much higher than

other cores.

iv

One of the most commonly used methods to constrain a CPU from overheating is hard-

ware dynamic thermal management(HW DTM), due to the high cost and inefficiency of

current mechanical cooling techniques. Dynamic voltage/frequency scaling(DVFS) is such a

broad-spectrum dynamic thermal management technique that can be applied to all types of

processors, so we adopt DVFS as the HW DTM method in this thesis to simplify problem

discussion. DVFS lowers the CPU power consumption by reducing CPU frequency or voltage

when temperature overshoots, which constrains the temperature at the price of performance

loss, in terms of reduced CPU throughput, or longer execution time of the programs. This

thesis mainly addresses this problem, with the goal of eliminating unnecessary hardware-level

DVFS and improving chip performance.

The methodology of the experiments in this thesis are based on the accurate estimation

of power and temperature on the processor. The CPU power usage of different benchmarks

are estimated by reading the performance counters on a real P4 chip, and measuring the

activities of different CPU functional units. The jobs are then categorized into power-

intensive(hot) ones and power non-intensive(cool) ones. Many combinations of the jobs with

mixed power(thermal) characteristics are used to evaluate the effectiveness of the algorithms

we propose. When the experiments are conducted on a single-core processor, a compact

dynamic thermal model embedded in Linux kernel is used to calculate the CPU temperature.

When the experiments are conducted on the CMP with 3D stacked dies, or the CMP affected

by significant process variation, a thermal simulation tool well recognized in academia is used.

The contribution of the thesis is that it proposes new software-level task scheduling al-

gorithms to avoid unnecessary hardware-level DVFS. New task scheduling algorithms are

proposed not only for the single-core processor, but aslo for the CMP with 3D stacked dies,

and the CMP under process variation. Compared with the state-of-the-art algorithms pro-

posed by other researchers, the new algorithms we propose all show significant performance

improvement.

To improve the performance of the single-core processors, which is harmed by the ther-

mal overshoots and the HW DTMs, we propose a heuristic algorithm named ThreshHot,

v

which judiciously schedules hot jobs before cool jobs, to make the future temperature lower.

Furthermore, it always makes the temperature stay as close to the threshold as possible while

not overshooting.

In the CMPs with 3D stacked dies, three heuristics are proposed and combined as one

algorithm. First, the vertically stacked cores are treated as a core stack. The power of

jobs is balanced among the core stacks instead of the individual cores. Second, the hot jobs

are moved close to the heat sink to expedite heat dissipation. Third, when the thermal

emergencies happen, the most power-intensive job in a core stack is penalized in order to

lower the temperature quickly.

When CMPs are under significant process variation, each core on the CMP has distinct

maximum frequency and leakage power. Maximizing the overall CPU throughput on all

the cores is in conflict with satisfying on-chip thermal constraints imposed on each core.

A maximum bipartite matching algorithm is used to solve this dilemma, to exploit the

maximum performance of the chip.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . xvi

1.0 INTRODUCTION . 1

1.1 THERMAL ISSUES IN CURRENT AND FUTURE PROCESSORS 1

1.1.1 Thermal problem in a single-core processor 1

1.1.2 Thermal issues in 3D stacked CMP 2

1.1.3 Thermal issues in the CMP impacted by process variation 2

1.1.4 Performance losses caused by HW DTM 3

1.1.5 DVFS details . 4

1.2 MOTIVATION AND PROBLEM STATEMENT 5

1.3 THESIS OVERVIEW . 5

1.3.1 ThreshHot - approaching threshold as close as possible 5

1.3.2 Power balancing tailored to 3D thermal conditions 6

1.3.3 MBM - maximum bipartite matching on CMP-PV 7

1.4 CONTRIBUTIONS . 8

1.5 ROADMAP . 8

2.0 OBTAINING POWER AND TEMPERATURE 9

2.1 Temperature Obtaining and Computation 9

2.1.1 Thermal sensor readings are insufficient. 9

2.1.2 Temperature model. 10

2.1.3 Temperature calculation speedup. 11

vii

2.2 Computing the powers . 12

2.2.1 Power estimation . 12

2.2.2 Power prediction . 13

2.3 Workflow summary . 13

2.4 The accuracy of temperature calculation . 15

3.0 RELATED WORK . 16

3.1 Prior work in a single core processor . 16

3.2 Prior work in CMP built with stacked dies 18

3.3 Prior work in CMP with process variation 19

4.0 PROPOSED TASK SCHEDULING SOLUTIONS 21

4.1 THRESHHOT . 21

4.1.1 Thermal scheduling algorithms . 21

4.1.1.1 The principle . 22

4.1.1.2 In practice . 25

4.1.2 Linux kernel implementation . 26

4.1.2.1 The skeleton of the Linux scheduler 26

4.1.2.2 Our modification . 26

4.1.3 Anatomy and comparison of different scheduling algorithms 28

4.1.3.1 Random scheduler . 31

4.1.3.2 Priority scheduler . 31

4.1.3.3 Mintemp+ scheduler . 32

4.1.3.4 Threshot scheduler . 32

4.1.4 Experimental evaluation . 33

4.1.4.1 Benchmark classification . 34

4.1.4.2 Thermal scheduling results . 35

4.1.4.3 DTM reductions . 37

4.1.4.4 Performance improvements . 41

4.1.4.5 Overhead . 43

viii

4.1.4.6 Impact of varied intervals on ThreshHot 43

4.1.4.7 Impact of power misprediction 44

4.1.4.8 Scalability . 46

4.2 BALANCING BY STACK IN 3D CMP . 49

4.2.1 Motivation and rationale . 50

4.2.1.1 A representative floorplan . 50

4.2.1.2 Vertically adjacent layers have strong thermal correlations . . 51

4.2.1.3 The die layers further from the heat sink are usually hotter . . 53

4.2.2 Scheduling algorithms . 54

4.2.2.1 The baseline . 55

4.2.2.2 Random (Baseline+) . 56

4.2.2.3 Round-Robin . 56

4.2.2.4 Temperature balancing by core 57

4.2.2.5 Temperature balancing by stack 57

4.2.3 Experimental methodology . 63

4.2.3.1 Floorplan setup . 63

4.2.3.2 Simulation tool and power trace collection 64

4.2.3.3 Benchmark classification . 64

4.2.3.4 DVFS implementation and context switching overhead 65

4.2.4 Results and analysis . 67

4.2.4.1 Homogeneous floorplan . 67

4.2.4.2 Heterogeneous floorplan . 72

4.3 MAXIMUM BIPARTITE MATCHING IN CMP WITH PROCESS VARIA-

TION . 74

4.3.1 Motivation . 75

4.3.2 MBM algorithm . 78

4.3.3 Preparation of input to MBM . 80

4.3.3.1 Predicting future temperatures 81

ix

4.3.3.2 Frequency prediction . 84

4.3.3.3 An evaluation of temperature and frequency estimation error . 87

4.3.3.4 IPS prediction . 88

4.3.3.5 Algorithms used in comparisons 90

4.3.4 Experimental setup . 90

4.3.4.1 Floorplan . 90

4.3.4.2 PV modeling . 91

4.3.4.3 Simulation tools and benchmarks 94

4.3.4.4 Overhead . 95

4.3.5 Results . 97

4.3.5.1 DVFS and throughput . 97

4.3.5.2 Detailed throughput for different workloads 98

4.3.5.3 Thermal environment . 101

4.3.5.4 Varied interval length . 101

4.3.5.5 Overhead . 102

4.3.5.6 Energy consumption per instruction 104

5.0 CONCLUDING REMARKS . 105

5.1 SUMMARY OF RESULTS . 106

5.2 FUTURE WORK . 108

5.2.1 Implementation of our algorithms onto real chips 108

5.2.2 Self adaptive scheduling algorithms 108

5.2.3 Online computation of thermal coefficients 109

5.2.4 More accurate prediction of power consumption of jobs 109

5.2.5 New optimization objectives . 110

BIBLIOGRAPHY . 111

x

LIST OF TABLES

1 Classifications of program thermal intensity. 35

2 Workload combinations consisting of relatively hot (H), warm (W) and cool

(C) jobs. 36

3 The combination of benchmarks in simulation 66

4 IPC characteristics of benchmarks in SPEC06 95

5 The combination of benchmarks when the number of jobs is 8. 96

xi

LIST OF FIGURES

1 Average error rates for last power value predictor. 14

2 Thermal-aware task scheduling methodologies. 14

3 The impact of scheduling a hot and cool program in different orders. 24

4 Variation in latencies for VNCplay in our thermal-aware scheduler. 28

5 A close-up of the execution traces for four different algorithms. Each graph

compares the default Linux scheduler (dashed line) with one algorithm (solid

line). In all graphs, the top portion shows the temperature variation with

time. The middle portion shows the job switching sequence and the bottom

portion shows whether a frequency scaling, a reduction from 3GHz to 1.5GHz

(downward arrow), occurred. 30

6 Thermal profiles of the IntReg for all 22 SPEC2K (left) and media, net, and

packetbench (right). 35

7 Number of thermal emergency triggers, normalized to the baseline scheduler

(Linux default). 37

8 Percentage of execution time under DTM in the baseline scheduler. 38

9 The percentage of the execution time reduction from the baseline. 39

10 Drastic performance changes to individual jobs by MinTempPlus scheduler

(mild thermal environment). 42

xii

11 Details of the time overhead(represented in percentage in y-axis) incurred by

the temperature computation and task switching(upper area marks the over-

head of temperature prediction), normalized to the execution time in Baseline

in the medium thermal environment. 44

12 The relative performance improvement by ThreshHot over Baseline, under

different scheduling intervals. 45

13 The distribution of last value prediction results. 46

14 The offline performance comparison of last value power predictor and oracle

power predictor . 47

15 The overhead from context switch and temperature computation(x-axis shows

the number of processes) . 49

16 3D chip multiprocessor floorplan options. 50

17 A face-to-back 3D die stacking structure as an example, and the corresponding

thermal model. 51

18 Thermal correlation between adjacent dies. 53

19 Demonstration of the top die being hotter than the bottom die. 55

20 The temperature balancing-by-stack algorithm. 60

21 Temperatures of the benchmark in SPEC2000 65

22 A zoom-in of temperature variation over time under different scheduling algo-

rithms. 69

23 Peak temperatures of different scheduling algorithms. 69

24 Thermal emergency time reductions in homogeneous floorplans. 70

25 Performance improvements for homogeneous floorplans. 71

26 The individual and combined effects of three heuristics. The results are relative

to that of the Random scheduler. 72

27 Thermal emergency time reductions in heterogeneous floorplans. 74

28 Performance improvements for heterogeneous floorplan. 75

xiii

29 (a)The variation of the frequencies of the cores on sample die 1, 3 and 7 among

the 20 sample dies. (b) The variation of the leakage power of the cores on

sample die 1, 3 and 7 at the temperature of 100C. 76

30 The relative throughput attained(left) and the relative DVFS triggered(right)

by running varied number of jobs when the interval is 8ms and the thermal

environment is hot. 78

31 K4,4 complete bipartite graph, symbolizing the possibilities of mapping jobs

onto cores . 79

32 The matrices generated for throughput prediction. 81

33 The error rate of power prediction by using last-value prediction method. . . 83

34 The impact of DVFS on the temperature and the linear interpolation of the

temperature . 85

35 The relationship among current temperature, predicted future temperature,

and future frequency((a)die 3, core 7, 2.48GHz;(b)die 3, core 13, 3.06GHz.) . 86

36 The relative error rate of future frequency prediction under varied scheduling

intervals when the number of jobs is 8 and the thermal environment is hot. . 88

37 The absolute and relative error of IPC prediction by using last-value prediction

method. 89

38 The comparison between the future throughput achieved by using oracle IPC

knowledge and the future throughput achieved by using last-value IPC in

MBM. 89

39 The simulated floorplan of CMP-PV. 92

40 A 16-core CMP with process variation. The colormap under the floorplan

shows the within-die variation of the threshold voltage. 92

41 Histograms of the ratio between (a) the average leakage power of the cores and

the power of the least leaky core (b) and between the average frequency of the

cores and the frequency of the slowest core in the die. 94

xiv

42 The relative throughput achieved by running varied number of jobs when the

interval is 8ms and the thermal environment is hot. 99

43 The relative DVFS triggered by running varied number of jobs when the in-

terval is 8ms and the thermal environment is hot. 99

44 The relative throughput achieved by different workloads when the number of

jobs is 8, the interval is 8ms, and the thermal environment is hot. 100

45 The number of DVFS triggered by different workloads when the number of

jobs is 8, the interval is 8ms, and the thermal environment is hot. 100

46 The relative throughput under different thermal environments when the inter-

val is 8ms and the number of jobs is 8. 101

47 The relative throughput achieved by varying scheduling interval length when

the number of jobs is 8 and the thermal environment is hot. 102

48 The relative throughput penalized due to all sorts of overhead under different

scheduling intervals when the number of jobs is 8 and the thermal environment

is hot. 103

49 The relative energy per instruction(EPI) by running varied number of jobs

when the interval is 8ms and the thermal environment is hot. 104

xv

ACKNOWLEDGEMENTS

I would like to show my gratitude to my academic advisor Jun Yang for her continuing

support and professional guidance in so many years, and for giving me the opportunity

to learn how to do research. I also thank Professor Youtao Zhang in the Department of

Computer Science, for the engaging brainstorming sessions that he and Dr. Yang presided.

I am professionally indebted to both of them.

I thank Lin Li for being a reliable and skillful colleague to work with. I also feel lucky

and happy to work with Yi Xu, Bo Zhao, Ping Zhou, Lei Jiang, Yu Du, Weijia Li, and many

others. You have made for a wonderful company throughout my years in Pittsburgh.

Finally, I am heartily thankful to all the professors whose classes I have attended and

enjoyed(Steven Levitan, J. T. Cain, Rami Melhem), the dissertation committee members for

having contributed to the validation of my work, Alex Jones, Guangyong Li, and the staff

in the department and at the Graduate School for making it all possible.

xvi

1.0 INTRODUCTION

1.1 THERMAL ISSUES IN CURRENT AND FUTURE PROCESSORS

As technology for microprocessors enters the nanometer era, power density has become one

of the major constraints to achievable processor performance. High temperatures jeopardize

the reliability of the chip and significantly impact its performance. The immense spatial and

temporal variation of chip temperature also creates great challenges to cooling and packaging

technology which, for the sake of cost-effectiveness [87], are designed for typical, not worst-

case, thermal condition. This entails dynamic thermal managements (DTM) to regulate chip

temperature at runtime.

1.1.1 Thermal problem in a single-core processor

With high computational power and high power density, some modern single-core processors,

such as Intel Pentium 4 and AMD K6, require heat spreader, heat sink and even cooling

fans for faster heat dissipation to the ambient air. Moreover, Pentium 4 processor has two

on-chip thermal sensors to monitor the temperatures directly. If the temperature is over

some predefined threshold, internal hardware mechanisms are triggered to slow the CPU

or even completely power off the CPU [87]. These indicate that the thermal problem has

existed for a long time in single-core processors.

1

1.1.2 Thermal issues in 3D stacked CMP

For the promising 3D integration technology, the situation of thermal issues is even more

serious. 3D integration technology is a technology that reduces wiring both within and across

disparate dies, as wiring has become a major latency, area and power overhead in modern

microprocessors. Studies have shown that wires can consume more than 30% of the power

within a 2D CMP(chip multiprocessor) [7]. 3D technology provides vertical stacking of two

or more dies with a dense, high-speed interface, reducing the wire length by a factor of the

square root of the number of layers used [39]. This significant reduction leads to improved

performance and lower power dissipation for the interconnection network. 3D integration

technology becomes a promising candidate in constructing future CMP.

One key challenge in 3D die stacking is the heat generation from the internal active layers,

because the power density per unit volume increases drastically in 3D. This exacerbates

existing hotspots and can create new hotspots within the chip, especially when active logic

circuits are vertically aligned. For example, the peak temperature can increase by 17∼20◦C

in a two-layer 3D implementation for an Alpha-like processor, compared to a 2D design [36,

57]. Other studies on logic-logic stacking 3D floorplans [1, 7, 58] also show similar thermal

constraint.

1.1.3 Thermal issues in the CMP impacted by process variation

There is a long-existing problem of process variation(PV) in integrated circuit production.

In definition, process variation is the divergence of certain transistor parameters from their

nominal values. With the technology size scaling down to 45 nm and below, process variation

poses greater challenges for design of future high-performance micro-processors [8], including

CMP. Specifically, it makes the cores in a CMP differ significantly in two key parameters:

the leakage power each core consumes and the maximum frequency each core can support.

These two parameters directly lead to uneven power and thermal distribution across the

whole CMP. Without careful planning, an excessive amount of heat can be generated in one

2

specific area of the CMP, which typically is related to the cores with the highest frequency

and leakage, while some other area related to the cores with lower frequency and leakage

may remain relatively cool.

1.1.4 Performance losses caused by HW DTM

One of the most commonly used methods to constrain a CPU from overheating is hardware

dynamic thermal management(HW DTM), due to the high cost and inefficiency of current

mechanical cooling techniques. One example of HW DTM techniques is clock gating. While

the CPU is overheated, hardware actions such as clock gating are triggered. Portions of

the circuit are disabled so that their flip-flops do not change states. There is no dynamic

energy consumption and only leakage current exists. Though global clock gating is a well

known power saving technique, it is also used as an effective dynamic thermal management

technique. By using this, the temperature of the CPU can be lowered. Other useful HW

DTM techniques include but are not limited to dynamic frequency scaling(DFS), dynamic

voltage scaling(DVS), issue queue toggling and dynamic voltage/frequency scaling(DVFS).

This dissertation mainly alleviates the impact of DVFS on a processor, because DVFS is

widely used in high-performance processors for energy saving and temperature constraining.

Intel’s SpeedStep [85] and AMD’s PowerNow! [86] are some industrial implementations using

these techniques. Note that we use on-demand clock modulation(ODCM) in the experiment

of thermal management on single-core processor, due to the limitation of the Pentium 4

processor. On-demand clock modulation is a unique technique in Intel processor series,

which is generally global clock gating(AKA stop-clock). The impact of using ODCM is very

similar to DFS.

Currently on real machines with real work loads, HW DTM does not happen frequently,

because the current on-chip hardware thermal sensors can not respond quickly. For example,

the readings of the sensors on Pentium 4 can only change every second, unable to react to

the very fast thermal fluctuation of the die temperature happening in milliseconds. However,

the software thermal sensor proposed by Wu et al. [74] can respond very quickly. If such

3

thermal sensors are used in the processors in future, HW DTM can react to CPU temperature

changes fast enough to prevent any thermal overruns. Therefore, in future HW DTMs could

be very frequent.

The common side effect brought by HW DTM such as DVFS is the performance loss.

When a thermal emergency happens, DVFS is triggered to make the CPU execute fewer

cycles in one time unit. Thus, CPU runs at lower speed and the job on the CPU requires

longer time to finish. The way to avoid such side effect is basically to avoid the triggering

of DVFS. One heavily researched direction is to smartly schedule tasks onto the CPU to

prevent the thermal emergencies from happening.

1.1.5 DVFS details

Dynamic voltage scaling [84] is a power management technique, where the voltage used in

a component is increased or decreased, depending upon circumstances. Dynamic frequency

scaling [83](also known as CPU throttling) is a technique where a processor is run at a

less-than-maximum frequency in order to conserve power.

The switching power dissipated by a chip using static CMOS gates is CV 2f , where C is

the capacitance being switched per clock cycle, V is voltage, and f is the switching frequency,

so this part of the power consumption decreases quadratically with voltage and linearly with

frequency. There is also a static leakage current, which has become more and more important

as feature sizes become smaller (below 90 nanometres) and threshold voltage becomes lower.

Dynamic voltage scaling is generally done in conjunction with dynamic frequency scaling,

at least in CPUs. The speed at which a digital circuit can switch states - that is, to go from

“low” to “high” (VDD) or vice versa - is proportional to the voltage differential in that

circuit. Reducing the voltage means that circuits switch slower, reducing the maximum

frequency at which that circuit can run. This, in turn, reduces the rate at which program

instructions that can be issued. It may increase run time for program segments that are

sufficiently CPU-bound.

4

1.2 MOTIVATION AND PROBLEM STATEMENT

The motivation of our work starts from the fact that the future temperature of the processor

depends on the current temperature of the processor and the power required for the job

running on it. Removing a power-intensive job from the hot processor and replacing it with

a low-power job can avoid a potential thermal emergency from happening. On the other

hand, when the processor is cool, running a power-intensive job will be thermally safe. This

indicates that scheduling tasks in a smart way can avoid DVFS penalties and save perfor-

mance loss brought on by thermal issues. We explore such opportunities in three different

scenarios: a single-core processor; CMP using 3D stacking technology(CMP-3D); and CMP

with process variation to maximize throughput(CMP-PV). In each scenario, the common

questions are: how are the jobs scheduled to avoid unnecessary thermal emergencies? To

what extent can DVFS penalties be lowered and performance loss be saved? In the following

section, more details are introduced with regard to the different scenarios.

1.3 THESIS OVERVIEW

As introduced above, we explore such opportunities in three different scenarios: a single-

core processor; CMP using 3D stacking technology(CMP-3D); and variation-aware CMP.

According different thermal conditions in each scenario, we design specific algorithms or

heuristics for task-scheduling policies.

1.3.1 ThreshHot - approaching threshold as close as possible

For single-core CPU, the idea of most of the existing work [14,17,56,27,42,44] is to leverage

the distinction between hot and cool jobs, and swap them at appropriate times to control the

CPU temperature. We have observed that it is not necessarily best to schedule alternately

between hot and cool jobs because cool jobs are precious cooling resources and they should

5

be used judiciously. Moreover, a job treated as cool in the past may not be necessarily

regarded as cool when it is swapped in. This is because future temperature depends on

the power of the job and the current temperature as well. The scheduler must determine

correctly the temperature slopes for each candidate job to make an informed selection.

We develop a heuristic scheduling algorithm to alleviate the thermal pressure of a proces-

sor. Our algorithm achieves this by observing that when the temperature is always below the

thermal threshold, executing a hot job before a cool job results in a lower final temperature

than execution in a reversed order. Our algorithm outperforms other scheduling algorithms

such as one that changes the priority ranks of the hot and the cool jobs [42]. To know which

job will be hot or cool for the hotspot, we develop a highly efficient on-line temperature

estimator, leveraging the performance counter based power estimation [37, 38, 42], compact

thermal modeling [61], and a fast temperature solver [26]. We implemented all these for a

Pentium 4 processor.

1.3.2 Power balancing tailored to 3D thermal conditions

To alleviate the exacerbated thermal situation in 3D stacked dies, we propose a heuristic OS-

level technique that performs thermal-aware task scheduling on a 3D CMP. Unlike previous

thermal-aware OS task schedulers for single core or 2D CMP, our scheduler for 3D chips

must take into account the thermal conduction in the vertical direction. Early studies have

shown that vertically adjacent dies have strong thermal correlations [2, 75]. For example, a

core in one layer could become hot because of a high power task running in the same vertical

column but at a different layer. Based on these observations, our proposed scheduler always

considers the aggregated power of cores that are vertically aligned. Secondly, we observed

the core far away from the heat sink is always hotter than the neighboring one closer to the

sink, whatever jobs are assigned to these cores. So we suggest more power-intensive jobs are

always put closer to the heat sink. Finally, when a core is overheated, we choose to engage

DTM on a vertically aligned core that generates the most power. Such an approach can

greatly reduce the total power in one column and quickly cool down the overheated core.

6

1.3.3 MBM - maximum bipartite matching on CMP-PV

As IC technology nodes continually scale down to 45nm and below, there is significant

within-die process variation in the current and near-future CMPs. Process variation(PV)

is the divergence of fabrication process parameters from their nominal values. It makes

the cores in the chip differ in their maximum operable frequency, and the amount of leakage

power they consume. The techniques for tolerating CMP-PV do exist. For example in Intel’s

Montecito [20], each core has its own clock and Vdd, and is called as a voltage and frequency

island(VFI). Each VFI contains a clock divider to create its own local clock signal from

the output of the shared PLL(phase locked loop). As in AMD’s quad-core Opteron [67],

asynchronous queues provide interfacing between different clock domains, with the buffers

between the cores and their routers implemented as dual-clock FIFOs. To take advantage

of the frequency variation of the cores caused by process variation in CMPs, R. Teodorescu

et al. [68] proposed an algorithm named VarF&AppIPC to map higher-IPC(Instructions Per

Cycle) cores to faster cores in order to obtain higher overall throughput. The reason behind

this approach is that low-IPC applications are often memory-bound and usually benefit less

from high-frequency cores than high-IPC applications do.

Our motivation is to demontrate that VarF&AppIPC might not be able to achieve as

high throughput as it intends to do, considering the contraint that the CMP must run under

a certain thermal limit. In fact, mapping the high-IPC job onto a fast core may exacerbate

the thermal condition in that particular core. If DVFS is triggered frequently, the local

throughput will be hurt.

The major contribution of this part is that we propose here a task migration algorithm

that still tries to maximize throughput but takes both thermal and PV issues into account.

The algorithm not only considers the frequency and leakage power information on each core,

but also considers the power characteristics of running jobs (tasks). With that information,

the algorithm predicts the throughput of each core-job binding, and uses the Maximum Bi-

partite Matching algorithm (abbreviated as MBM in this thesis) to get the optimal mapping.

7

1.4 CONTRIBUTIONS

In summary, the contributions of this thesis are as follows:

• In a single-core, a heuristic algorithm named ThreshHot judiciously schedules hot jobs

before cool jobs, to make the future temperature lower. Furthermore, it always makes

the temperature as close to the threshold as possible while not overshooting.

• In 3D stacked processors, three heuristics are proposed. First, vertically stacked cores

are treated as a core stack. The power of jobs is balanced among the core stacks instead

of individual cores. Second, hot jobs are moved close to the heat sink to expedite heat

dissipation. Third, when thermal emergencies happen, the most power-intensive job in

a core stack is penalized in order to lower the temperature quickly.

• In the CMPs affected by significant process variation issues, maximizing the throughput

is in conflict with on-chip thermal constraints. A maximum bipartite matching algorithm

is used to solve this dilemma, and the implementation details are discussed.

All the algorithms proposed try to avoid thermal emergencies and the subsequent hard-

ware DVFS. As a result, the chip performance is maintained.

1.5 ROADMAP

The rest of the thesis is organized as follows. Chapter 2 presents an introduction of power

obtaining and temperature prediction. Chapter 3 introduces prior work in three scenarios

we investigate. The proposed scheduling policies are explained in Chapter 4. Chapter 5

concludes and describes the future work.

8

2.0 OBTAINING POWER AND TEMPERATURE

All of our thermal-aware scheduling algorithms in this dissertation need information about

the peak temperature of the processor. Also, the power consumed for the executed jobs needs

to be obtained. In this chapter, we explain how these values can be obtained or estimated

at runtime.

2.1 TEMPERATURE OBTAINING AND COMPUTATION

2.1.1 Thermal sensor readings are insufficient.

It seems that the OS could leverage existing on-chip thermal sensors for temperature read-

ings. Unfortunately, this is insufficient because, in addition to the current temperature, our

algorithm also needs to predict the temperature in the next time interval. Further, for a

job not currently in execution it is difficult to determine, from its temperature history, what

its temperature might be in the future. For example, suppose a job was swapped out last

time at 65◦C, and currently the sensor reading is 60◦C. The temperature for this job in

the next time interval may be either higher or lower than 60◦C. This is because the future

temperature depends on several factors: the current temperature, the power consumption of

this job in the next time interval, and the length of the next interval.

9

2.1.2 Temperature model.

Consider the simplified thermal model for a processor treated as a single node. The duality

between heat transfer and electrical phenomena [41] has provided a convenient basis for

modeling the chip temperature using a dynamic compact thermal model [61]:

1
R

T + C
dT

dt
= P, (2.1)

where T is the temperature relative to the ambient air. R and C are effective vertical thermal

“resistor and capacitor” for the entire chip. Note that when dT
dt

= 0, the chip reaches its

steady temperature RP which depends on the average power of a job. The time to reach

the steady temperature is determined by the RC constant (R × C) of the thermal circuit.

However, when the chip is switching among different jobs prior to the steady temperature,

it is always in a transient stage (i.e. dT
dt
6= 0).

Formally, Tnext = F (P, Tcurrent, ∆t) where P is the average power in the next interval,

∆t is the interval length, and function F is characterized by:

GT + C
dT

dt
= P , (2.2)

which is the matrix form of Equation (2.1) with G being the matrix of the thermal con-

ductances. Both T and P are now vectors. Therefore, to obtain the temperatures in the

next time interval for a candidate job interval, the scheduler must solve Equation (2.2) from

Tcurrent (which can be read from sensors), P of the job (which can be projected from its past

power consumption), and ∆t (which is a fixed value). The sensor readings alone cannot lead

to a quantitative comparison with the thermal management threshold.

10

2.1.3 Temperature calculation speedup.

Equation(2.2) may seem like a lot of computation for the scheduler to solve at runtime.

Fortunately, previous work has shown that the complexity of Equation (2.2) can be greatly

reduced if the time interval ∆t is kept constant [26]. This is the case in our scheduler. Here

we discuss the concept briefly.

The linear system in equation (2.2) has a complete solution as:

T (t) = eC−1GtT (0) +
∫ t

0
eC−1G(t−τ)C−1P (τ)dτ (2.3)

For a fixed length scheduling interval ∆t, we take the average power during the interval so

that P (t) can be factored out. (2.3) is now:

T (∆t) = AT (0) + BP (2.4)

where A = eC−1G∆t, and B =
∫ ∆t

0
eC−1G(t−τ)C−1dτ . Both A and B are constant matrices

with a constant ∆t. Since the linear system (2.4) is time-invariant, it holds for every interval

∆t. Therefore:

T (n∆t) = AT ((n− 1)∆t) + BP (n− 1), or simply
T (n) = AT (n− 1) + BP (n− 1)

(2.5)

As we can see, once A and B are pre-calculated and stored, the temperature at any step n

can be found through a linear combination of the temperature and power at step n−1. When

used online, T (n− 1) is the current temperature, P (n− 1) is the power dissipated by a job

in the next scheduling interval, and T (n) is the temperature at the end of the next interval.

Computing the T (n) now is very inexpensive. For example, a P4 thermal model has 82 nodes

in total and computing the 82×1 temperature vector at runtime takes only ∼16.45µs. For

CMP-3D or CMP-PV, where the core numbers are much larger, the computation overhead of

temperatures can be distributed to all the cores, assuming the lateral heat dissipation among

cores can be ignored [80]. Next, we will discuss how to obtain the power values P (n − 1)

online.

11

2.2 COMPUTING THE POWERS

2.2.1 Power estimation

Recent research has proposed to incorporate on-chip power sensors for power and thermal

control [49]. With on-chip power sensors, the OS can obtain the runtime power consumption

of critical components easily and quickly. Though such technology is not readily available,

some other alternatives have been proposed before and were demonstrated to be very fast

and effective. We adopt the method that uses the performance counters to monitor runtime

power consumption [5, 37, 38]. Counters provided by high-performance processors such as

the Pentium and UltraSPARC can be queried at runtime to derive the activities of each

functional unit (FU). When combined with FUs’ per access power, their dynamic power

and the total chip power can be obtained. However, earlier work either did not consider

the leakage power or used a constant as a proxy, since leakage is dependent on temperature

which was difficult to obtain at runtime. When the processor runs at a high temperature,

its leakage can contribute significantly to the total power [34]. Since we also calculate the

temperature online, we consider the leakage as an integral part in our power estimation. In

the scenarios of single-core processor and CMP-3D we adopted a model developed in [29,45]

using PTM(Predictive Technology Model) 0.13µ technology parameters [90], matching the

processor technology size(Pentium 4 Northwood) in our experiment. We determined the

necessary device constants through SPICE simulation. In the scenario of CMP-PV, the core-

wise leakage variation is exposed by the effective leakage parameter, peff [32]. PTM 32nm

technology node is used in SPICE simulation to find peff in each individual core. In practice,

such core-wise leakage variation parameters can be provided by the chip manufacturers

during post-manufacturing.

12

2.2.2 Power prediction

The last issue we need to resolve is the prediction of power consumption of a job in the

next scheduling interval, as required by Equation (2.5). Here, we face a tradeoff between

complexity and accuracy, for a high quality predictor would typically require large memory

to store the history information and significant computation time for processing this infor-

mation. Table-based schemes are likely not appropriate for our framework, for the kernel

has a strict limit on the memory space for storing the control information of each job. For

example, a good hash table based power predictor that we considered exceeded the kernel

space limit, and a small fully associative table predictor could slow down the program by

∼6%. Therefore, we settled for the simple but cost-effective and fast last-value-based predic-

tor which always uses the last power values to predict those in the next interval. Its error

rates for our experimented benchmarks, including 22 SPEC2K, 4 mediabench, 10 netbench,

and 4 packetbench, are shown in Figure 1. As we can see, on most programs it has less than

10% error rate. High misprediction rates are seen in bzip, jpegenc, jpegdec, crc, and md5.

Our experiments with those programs (in Section 4.1.4) did not show significant disadvan-

tages in most cases, indicating that (at least in those cases) mispredictions did not lead to

much mis-scheduling. For example, if a job will have the ith highest temperature among all

candidates, and even if the power is mispredicted, its predicted temperature will still remain

in the ith position, then power misprediction does not change the scheduling decision. This is

observed clearly in crc and md5, which tend to alternate between two different power levels.

Hence, the last-value predictor always missed the right value, but the error does not lead to

big temperature changes, and therefore, did not impact the scheduling decision.

2.3 WORKFLOW SUMMARY

To summarize, at the end of each scheduling interval, the OS probes the performance counters

from the processor. Those counters record the activities of the current job during the past

13

0%
10%
20%
30%
40%
50%

am
m

p
ap

pl
u

ap
si

cr
af

ty
eq

ua
ke

fa
ce

re
c

fm
a3

d
ga

p
gc

c
lu

ca
s

m
es

a
m

gr
id

pa
rs

er
si

xt
ra

ck
sw

im
tw

ol
f

vo
rte

x
w

up
w

is
e

gz
ip

bz
ip ar
t

m
cf

jp
eg

en
c

jp
eg

de
c

m
pe

g2
en

c
m

pe
g2

de
c

cr
c dh dr
r

ip
ch

ai
ns

m
d5 na

t
ro

ut
e

sn
or

t tl ur
l

flo
w

cl
as

s
ip

se
c

ip
v4

_l
ct

rie
ip

v4
_r

ad
ix

SPEC CPU2K mediabench netbench packetbench

A
ve

ra
ge

 e
rr

or

Figure 1: Average error rates for last power value predictor.

interval. They are then converted into the power consumption to the granularity of functional

units. Power prediction is performed at this time. The past power values are then fed into

a full-chip thermal model for computing the current temperature at the current scheduling

interval. For all candidate jobs, their future temperatures are also calculated at this time

using their predicted power values. All those future temperatures are sent to the scheduler

for next job selection. The flow is depicted in Figure 2(a).

Thermal-aware
Scheduler

Temperature
Calculation

Power Estimation &
Prediction

Performance Counter
Readings

(a) Without thermal and power sensors

Thermal-aware
Scheduler

Power Prediction &
Temperature calculation

Hardware Thermal
Sensor Readings

Hardware Power
Sensor Readings

(b) With thermal and power sensors

Figure 2: Thermal-aware task scheduling methodologies.

14

Alternatively, if the processor has available thermal and power sensors, the OS can

directly read information from the sensors to compute the future temperatures, as illustrated

in Figure 2(b). However, this would entail many sensors as the future temperature calculation

needs fine-grained power and temperature information. If the sensors are very few, probing

the counters is still necessary but the sensor readings can be used for online self-calibration

to lessen the error due to thermal and power model abstraction.

2.4 THE ACCURACY OF TEMPERATURE CALCULATION

W. Wu et al. in [74] developed such a software thermal sensor (STS) in a Linux system with

a Pentium 4 Northwood core, using the same methodology as shown in Figure 2(a). Their

power and thermal models were calibrated and validated against on-chip sensor readings,

thermal images of the Northwood heat spreader, and the thermometer measurements on

the package. The thermal profiles they obtained through a continuous execution of some

SPEC2K benchmarks for hours show that the computed temperatures on the heat spreader

using STS are very close to the thermometer readings on the heat spreader. The reason

for the discrepancy between the on-die sensor readings and the computed temperatures of

24 function units is that the sampling interval of the on-die sensor on P4 Northwood is

fixed at one second, while the STS can compute temperatures every eight milliseconds. Intel

admits the sensors are slow. Therefore, the on-die sensor can miss lots of thermal details.

However, W. Wu et al. in [74] show two achievements of STS at least. One is that there is a

similarity between the thermal changes from on-die sensor readings and the computed ones.

The other is that the errors due to modeling and abstraction do not propagate. Finally, to

make sure the temperatures of the function units are accurate, they also calibrated them

with the results obtained from the micro-architecture level thermal simulation tool - HotSpot

developed by Skadron et al. [62].

15

3.0 RELATED WORK

Other researchers have done some work in the three thermal scenarios we deal with. However,

for each case, our work has improved upon their work or has significant differences from

theirs. Here we list the prior work and compare those projects with ours.

3.1 PRIOR WORK IN A SINGLE CORE PROCESSOR

First we introduce the related work on single-core processors. Some recent work has devel-

oped temperature control techniques for real-time workloads [3,4,69,71]. The main approach

is to dynamically adjust the CPU speed to minimize the peak temperature of the CPU, sub-

ject to the constraint that all jobs finish by their deadlines. Similar approaches can be used

to minimize the energy consumption for real-time systems as well [55, 77]. In contrast, our

objective is to maximize the performance by scheduling the workloads to keep the temper-

ature below a given threshold. Note that the threshold can be the manufacturer-defined

temperature threshold1 for the physical chip, or an OS-defined threshold for a system to

stay within a thermal envelope. Hence, we always attempt to run workloads with full speed

as long as the temperature stays below the given threshold.

Thermal management through workload scheduling has been studied in various scenar-

ios. In CMPs, the “Heat-and-Run” technique performs thread assignment and migration

1This threshold is a safe operating temperature beyond which the chip might be damaged due to over-
heating, and DTMs must take place.

16

to balance the chip temperature at runtime [56]. In another work [17], a suite of DTM

techniques, job migration policies, and control granularity are jointly investigated to achieve

the maximum chip throughput. Also recently, a simple periodic thread swapping between

two cores to balance the chip temperature was studied on a dual-core processor [14]. All

these approaches exploit a simple interleaving between hot and cool jobs when it comes to

scheduling. Our objective is to find the best thread for a core when it becomes hot, and this

thread may not be the coolest available thread. For example, when there is both a medium

hot and a cool thread, our scheduler will pick a medium hot thread as long as it will not

trigger DTM. In this thesis, we demonstrate this philosophy using a scheduling heuristic on

a single-core processor, and leave its extensions to CMPs as future work.

In the single-core domain, the “HybDTM” [42] controls temperature by limiting the

execution of the hot job once it enters an alarm region. This is achieved by lowering the

priority of the hot job so that the OS allocates it with fewer time slices to reduce the

processor temperature. The same principle can be seen in [6] where the energy dissipation

rate is evened among hot and cool jobs by assigning different CPU time to them. Our

technique does not modify the time allocated to hot and cool jobs, as this would affect the

fairness policy of the system. Instead, we attempt to rearrange their execution order within

each OS epoch to lower the overall temperature. This allows us to control the temperature

while preserving priorities among different jobs.

Thermal control through workload management has also been studied at the system level.

In [52], a temperature-aware workload placement heuristic was studied for data centers to

minimize the cost of cooling. The “Mercury and Freon” [30] framework uses software to es-

timate temperatures for a server cluster and manages its component temperatures through

a thermal-aware load balancer. The “ThermoStat” [13] tool employs a detailed 3D com-

putational fluid dynamics model for a rack-mounted server system. This tool can guide

the design of better dynamic thermal management techniques for server racks. Our work

targets at CPU temperature control, which can be complementary to system level thermal

management schemes.

17

3.2 PRIOR WORK IN CMP BUILT WITH STACKED DIES

There have been many works recently investigating the performance potential and the chal-

lenges in 3D CMP designs. Mysore et al. [54] proposed to stack on top of a normal processor

a profiling die that can identify memory leakage, perform diagnosis etc. to save the area

and power on the main die. Black et al. [7] studied the performance advantages and thermal

challenges for stacking a large DRAM and SRAM cache on a processor, as well as imple-

menting a processor in two layers. Xie et al. [75] reported that the peak temperature in a

3D chip of 2 layers and one die per layer can be as high as 125◦C. More importantly, there

is only a difference of a couple of degrees, in the worst case, between the hotspots in the top

die and the bottom die. This indicates a strong thermal correlation among adjacent layers in

a 3D processor. To ensure better heat dissipation in a 3D chip, Puttaswamy et al. proposed

a “Thermal Herding” design [58] at the micro-architecture level which lowers the power of

the chip by splitting individual function unit blocks across multiple layers, and places the

most frequently switched part, or activity, closest to the heat sink. Alternatively, adding

thermal vias can also alleviate the thermal conditions within a 3D chip. Goplen et al. [24]

studied that proper placement of thermal vias in 3D IC design can obtain a maximum of

47.1% reduction in temperature. In the multicore domain, Loh et al. [48] introduced differ-

ent approaches for implementing single-core and multicore 3D processors. Particularly, they

pointed out that stacking separate cores (in multicore design) can significantly reuse the

existing 2D designs, and the interface between the cores needs no more than a few thousand

connections.

Compared to the previous work, this thesis focuses mainly on software approaches to

thermal management in 3D CMP. There have been proposals on OS-assisted thermal man-

agement for single core chips. The HybDTM [42] technique controls temperature by limiting

the execution of a hot job once it enters an alarm zone. This is achieved by lowering the pri-

ority of the hot job so that the OS allocates fewer timeslices to it and gives cool jobs relatively

more timeslices to execute. An ideal simulation study was performed in [44] to show the

18

benefits of interleaving hot and cool job executions. However, neither performance study nor

task switching overhead was considered. In the 2D multicore domain, the “Heat-and-Run”

scheduler [56] assumes that there is always an idle and cool core present in a CMP such that

an overheated core can migrate its thread to the cool core. However, in our technique, all

cores are assumed to be busy and have temperatures above an idle core’s temperature. Choi

et al. [14] compared and implemented three different task schedulers, heat-balancing, de-

ferred execution, and threading with cool-loops, to leverage temporal and spatial heat slacks

among application threads. The proposed mechanisms are implemented in the PowerPC5.

Chong et al. [66] proposed a 3D MPSoC thermal optimization algorithm that conducts task

assignment, scheduling, and voltage scaling for a set of real-time workloads. The goal was

to slow down the workloads as long as the deadlines are met. This is quite different from

our approach which focuses on best performance and low thermal profile.

3.3 PRIOR WORK IN CMP WITH PROCESS VARIATION

Borkar et al. [8] point out that process variation could be one major challenge in near-future

chip production and examples of PV modeling can be seen in [10, 59]. In these papers, the

PV effects, both random and systematic, within-die and die-to-die variations are modeled.

The impact of PV on the performance and leakage power of logic and SRAM structures is

evaluated. Our thermal-aware task scheduling algorithm is based on their work and especially

relies on the modeling tool provided by Sarangi et al. [59].

Brooks et al. [11] define and investigate the major components of any hardware dynamic

thermal management scheme. Skadron et al. [62] provide a compact thermal model and a fast

simulation tool for evaluating the impact of dynamic thermal management. For software-level

thermal management by task migration, there are exemplar ideas proposed in [22,14,44,42].

More recently, there have been papers that take power/thermal management along with

PV into consideration. Kursun et al. [43] use thermal imaging technique to sense the process

19

variation of the CMP. Their methodology is to treat the CMP with PV as a “black-box”,

while our work models PV from the ground up. Moreover, they only consider leakage vari-

ation and don’t model the possible frequency differences of the cores. Wang et al. [70]

accommodate process variation information by using a coefficient matrix, and apply optimal

control theory to keep the power and temperature within constraints. The difference between

their work and ours is that they haven’t considered the potential opportunities brought by

task migration. Teodorescu et al. [68] and Herbert et al. [32] model the frequency and leak-

age discrepancies on CMP from ground up. Teodorescu et al. [68] attempt to maximize

the throughput by heuristically mapping the CPU-intensive jobs onto the faster cores and

mapping memory-intensive jobs onto the slower cores. Such a fixed mapping may generate

sub-optimal results when the faster cores trigger DVFS during thermal emergencies. By

setting local and total power constraints, they expand their VarF&AppIPC algorithm and

use linear programming to maximize the performance. Their linear programming algorithm

will change back to VarF&AppIPC when the CMP is under thermal constraints, because the

sum of the temperatures of the cores is not necessarily below a limit. Each core only needs

to satisfy its own thermal constraint. Herbert et al. [32] design a DVFS scheme that adapts

to each core’s own frequency and leakage settings. Their goal is to minimize the energy per

instruction and maintain the throughput of the CMP. The difference of the idea in [68, 32]

from ours is that they both bind high-IPC jobs onto faster cores to take advantage of the

high frequency. We demonstrate this is not an optimal solution with the thermal constraints

considered, and propose a new algorithm.

20

4.0 PROPOSED TASK SCHEDULING SOLUTIONS

Here we discuss about our detailed task scheduling policies on three different thermal sce-

narios. In each section, we first introduce our idea; then we present specific algorithms

or heuristics, which implement the idea. Finally, the results are shown at the end of each

section.

4.1 THRESHHOT

When a modern single-core processor heats up due to high power, a dynamic thermal man-

agement technique curbs the overshooting of die temperature. However, the CPU suffers

from performance loss. In the following, we design a heuristic task scheduling method to

prevent the temperature from trespassing into this thermal threshold. In this way, the trig-

gering of DTM can be reduced and performance loss can be avoided.

4.1.1 Thermal scheduling algorithms

When the processor underlying the OS is overheated and forced to slow down, nearly all vital

measures will be degraded: throughput and utilization will be reduced, response time will

increase, jobs are more likely to miss deadlines, etc. Thus, independent of the characteristics

and focus of a given system, processor overheating will negatively affect its performance.

21

When incorporating new features, such as thermal awareness, into a scheduler, it is desir-

able to make them as transparent to the user as possible; in particular, to keep the existing

scheduler structure and properties. For this reason, we focus our work on a batch system for

which the main objectives are the minimum turnaround time, maximum throughput, and

CPU utilization. For batch jobs, the OS periodically interrupts the job execution to maintain

its statistics and determines if a different job should be swapped in and, if so, which one.

We amend the decision of which job should be selected next with thermal-awareness while

keeping all other features intact. Therefore, in every scheduling interval, the OS needs to

select the best job anticipating that such a selection would lead to the overall least amount

of thermal violations.

4.1.1.1 The principle To keep the temperature below the threshold, a näıve, greedy

algorithm tries to control the temperature by keeping the current chip temperature as low

as possible, by executing at each step the coolest available job. As a result, the jobs are

scheduled in the order of increasing temperature, from coolest to hottest. As it turns out,

however, the greedy schedule actually increases the chances of exceeding the temperature

threshold in the long run. To see this, consider a simple case where at some schedule interval

t only two jobs x and y are available, with power consumption Px and Py respectively, where

Px < Py (so x is cooler than y). We will show that if we execute these jobs in order xy (x

before y, that is the greedy schedule) then the temperature at the end of t+1 is higher than

for the order yx (y before x).

Consider the simplified thermal model for a processor treated as a single node. The

duality between heat transfer and electrical phenomena [41] has provided a convenient basis

for modeling the chip temperature using a dynamic compact thermal model [61]:

1
R

T + C
dT

dt
= P, (4.1)

where T is the temperature relative to the ambient air. R and C are the effective vertical

thermal resistor and capacitor of the entire chip. Note that when dT
dt

= 0, the chip reaches

22

its steady temperature RP which depends on the average power of a job. The time to reach

the steady temperature is determined by the RC constant (R × C) of the thermal circuit.

However, when the chip is switching among different jobs prior to the steady temperature, it

is always in a transient stage (i.e. dT
dt
6= 0). Discretizing the time scale into small time steps

∆t and denoting by Ti the temperature at time i∆t, Equation (4.1) can be approximated by

1
R

Ti + C
Ti − Ti−1

∆t
= P (4.2)

Rearranging the terms, we have Ti = αTi−1 + βP , where α = RC
∆t+RC

and β = R∆t
∆t+RC

are

constants dependent on ∆t and, clearly, α < 1. If each scheduling interval is divided into n

steps of length ∆t the temperature at the end of this interval can be expressed as:

Tn = αnT0 + (αn−1 + αn−2 + · · ·+ 1)βP (4.3)

For schedule xy, the temperature after completing y (2n steps) will be

T xy
2n = α2nT0 + (αn−1 + αn−2 + · · ·+ 1)β(αnPx + Py) (4.4)

For schedule yx, this final temperature will be

T yx
2n = α2nT0 + (αn−1 + αn−2 + · · ·+ 1)β(αnPy + Px) (4.5)

It is now easy to see that Px < Py implies T yx
2n < T xy

2n . That is, scheduling the hotter job

first results in a lower final temperature. Figure 3 gives an intuitive illustration of the impact

on temperature with different scheduling order. The graph shows temperature variation for

the IntReg unit with two different power inputs, representing two different jobs. They are

scheduled in two different orders as just described. The graph was obtained using a full-chip

thermal model (rather than a single node as a whole) solved by the fourth order Runge-Kutta

method. As we can see, running the hotter job first results in lower final temperature. If

the chip’s thermal threshold is in between the difference of the two ending temperatures, the

greedy schedule would cause a thermal violation.

Suppose now you are given (offline) a collection X of job intervals, each with known power

consumption, and that they can be executed in some order without exceeding the threshold.

23

5 10 15 20

55

56

57

58

59

Time(ms)

T
em

pe
ra

tu
re

(C
)

Hot−Cool

Cool−Hot

Figure 3: The impact of scheduling a hot and cool program in different orders.

Suppose further that in this order there are two consecutive job intervals x, y with x before

y, such that Px < Py and that executing x first will not exceed the threshold. Then, by the

argument above, we can exchange x, y and the temperature in the new schedule will still

stay below the threshold. The reason is that in this new schedule, after completing yx the

temperature will be lower than in the original schedule after completing xy, so we cannot

cause an increase of the temperature later in the schedule. By repeating this argument, we

obtain a schedule of X that follows the consequent policy P : at each step choose the hottest

job that will not increase the temperature above the threshold.

We also need to address the case when no job interval satisfies policy P , i.e. all the jobs

would increase the temperature above the threshold. In this case, it is most beneficial to pick

the hottest job interval for execution. This is because the hardware thermal management

(e.g. DVFS) will be triggered to cool the chip regardless of which job we choose, and selecting

the hottest job interval at this time reduces the likelihood of a future thermal violation.

For example, suppose there are three job intervals available, say J1, J2 and J3 with

descending temperatures. If picking J1 would increase the temperature above the threshold

while picking J2 would not, then policy P will first pick J2 to run. If all of them would

exceed the threshold, P will pick J1.

24

We remark here that the OS fairness policy imposes some restrictions on how long a job

interval can be postponed (this will be discussed in more depth in Section 4.1.2). Thus, in

addition to the rules described above, the choice of the next job to run must be consistent

with these fairness restrictions.

4.1.1.2 In practice Early discussion has assumed a simple case where the CPU is con-

sidered as a single node and the heat is only dissipated through a vertical thermal resistor

and capacitor. In reality, there is a great temperature variation on-die and only the temper-

ature at the hottest spot should be maintained below the threshold. This scenario is more

complex than for a single node, as the heat can also be dissipated laterally. Therefore, the

thermal model in Equation (4.1) will be expanded into a matrix form in which every node

is described as:

T − T1

RL1
+

T − T2

RL2
+

T − T3

RL3
+

T − T4

RL4
+

T

R
+ C

dT

dt
= P (4.6)

where the first four extra terms describe the heat transfer from the central node (with

temperature T) to its lateral neighbor nodes (with temperature T1-T4). The number of

neighbors per node depends on the processor floorplan and how the system is discretized.

We have shown four nodes as an example with Ti being the temperature for the ith neighbor

node, and RLi being its lateral resistance from the central node.

The temperature T of the hottest spot on-chip, described by Equation (4.6), is higher

than the Ti’s. Also, heat is removed mostly from the vertical path and less from the surface

[17, 56, 61]. In more quantitative terms, our experience with a full-chip model shows that

the RLi’s are typically 10∼20 times the R for a hot unit such as the IntReg. The resulting

lateral RC time constants are on the order of 100 milliseconds and vertical RC time constant

is less than 10 milliseconds. Since the left hand side of Equation (4.6) is dominated by the

last two terms, we can still treat a hotspot as a single node as before.

25

4.1.2 Linux kernel implementation

To evaluate our thermal-aware scheduling policy, we implemented all the modules in Fig-

ure 2(a) into a Linux kernel version 2.4.18 with O(1) scheduler patch. The major challenge

was how to insert the new scheduling policy into the existing scheduler while retaining its

features. We will first introduce briefly the mechanism of the Linux scheduling [9] and then

describe our modification.

4.1.2.1 The skeleton of the Linux scheduler The Linux OS distinguishes three

classes of jobs: interactive jobs, batch jobs and real-time jobs. The real-time jobs are given

the highest priorities while the other two are initialized with the same default priorities.

Based on different priorities, the kernel assigns each job a “time quantum”. High-priority

jobs are given a larger time quantum than low-priority jobs. At runtime, all jobs are put

into their corresponding “priority queues”, and then selected for execution in a descending

priority order. Each job occupies the CPU for its allocated time quantum, unless a certain

event triggers a swapping, e.g., an I/O request. When a job uses up its time quantum, it

is moved into an “expire queue” and the scheduler selects the next job to run. When all

the jobs finish using their assigned quanta, an “epoch” is completed. All jobs in the expire

queue are now assigned new time quanta determined from their priorities, and a new epoch

starts.

4.1.2.2 Our modification The execution of a time quantum is periodically interrupted

by the kernel’s interrupt handler, typically once every 1-10ms. This is the time when a

context switch may happen. We choose to insert our scheduling in this interrupt handler to

force a context switch on every thermal scheduling interval.

First, we need to decide on the length of scheduling intervals. Since our objective is to

keep the peak temperature below the threshold, our scheduling interval should not be much

longer than the RC constant of the hottest unit. Previous work assumed 10ms as the RC

constant of the hottest unit on a CMP processor [17, 56]. From our own experience, we

26

found that the vertical RC constant for the hottest unit is around 7ms while the lateral RC

constant is on the order of 100ms. Due to certain implementation requirements(e.g., the

counter rotation effect [64]), we chose the thermal scheduling interval to be 8ms. Thus, if

the default interrupt frequency is once every 2ms(or 1ms), we might force a context switch

on every 4(or 8) interrupts.

In the original scheduler, jobs can occupy the processor for its entire time quantum.

For batch jobs, the default time quantum is 100ms [9]. With an 8ms swapping frequency,

we could have increased the number of context switches by 12.5 times. We measured the

absolute time for each context switch to be ∼35.35µs on average. Hence, the context-switch

overhead on an 8ms interval is 0.044%. Most importantly, as we will show in our final

experiments, the thermal-aware scheduler does not necessarily switch to a different job every

8ms. This reduces total context switches and still results in an overall performance gain.

In the original scheduler, the new epoch does not begin until all the jobs have finished

their assigned quantum. When we enforce the thermal scheduling every 8ms, every quantum

is effectively further divided into smaller slices and these slices are executed following our

scheduling policy. Therefore, a slice may be delayed due to its potential high temperature,

but will not be postponed beyond an epoch. All slices will eventually be executed since they

all belong to certain quantum. This is guaranteed by the original scheduler.

Recall that we intend to apply our thermal-aware policy only to the batch jobs; but

we still need to consider the possible impact on real-time and interactive jobs. Batch and

interactive jobs are given a different range of priorities(100-140) than the real-time jobs(0-

99). The candidate jobs that are eligible for thermal scheduling fall within the batch job’s

priority range. This ensures that our scheduler does not touch any real-time jobs and they

are scheduled in the same way as before. Although interactive jobs share the same priority

range with batch jobs, Linux implements the TASK INTERACTIVE macro based on the

past behavior of the job to decide whether a job should be considered as interactive or

batch. Our scheduler implementation can use the macro to bypass those jobs considered as

“interactive” by the operating system. We experimented with a GUI application VNCplay

27

developed by Zeldovich et al. [78]. This program records user’s interactive activities such

that it can be replayed multiple times. We recorded some user activities by playing a

TIC-TAC-TOE game and editing a file using vim editor. Figure 4 plots the cumulative

distribution function of the interactive latencies for our recorded user events. Baseline means

the Linux baseline scheduler. ThreshHot is our thermal-aware scheduler. And we further

tested ThreshHot with and without some batch jobs running in the background. Figure 4

shows for any percentage of user events shown in y axis, the response always happpens

in seconds. For example, 70% of the user events get response in 2 seconds, in all three

scenarios. This proves our thermal-aware scheduler does not show any noticeable impact on

the interactive jobs.

0 1000 2000 3000 4000 5000 6000 7000
0

10

20

30

40

50

60

70

80

90

100

Response Time(msec)

P
er

ce
nt

ag
e

of
 R

es
po

ns
e

T
im

e

Baseline+unloaded

ThreshHot+unloaded

ThreshHot+loaded

Figure 4: Variation in latencies for VNCplay in our thermal-aware scheduler.

4.1.3 Anatomy and comparison of different scheduling algorithms

With proper implementation in the Linux kernel, we are now ready to examine the effective-

ness of our proposed scheduling algorithm, compared against several alternatives. To show

the distinctions among different algorithms, we created three programs that are hot (com-

putation intensive), warm (medium computation and memory accesses), and cool (memory

intensive), respectively, and tested the scheduling algorithms below on the mix of three jobs:

28

1. Random — This algorithm randomly selects a job to execute in every scheduling interval

(8ms). We test this scheduler to measure whether the performance improvements can

be attributed simply to frequent context switches. This helps to show how much more

effective a guided job selection can be in controlling the temperature.

2. Priority — This algorithm lowers the priority of the hot jobs and raises the priority of

the cool jobs for every new epoch [42]. A job is considered “hot” if its overall temperature

in an epoch exceed a pre-defined soft threshold which is lower than, but close to, the

hardware threshold. The priority is adjusted proportional to the proximity of the job’s

temperature to the hardware threshold. Since the time quanta are calculated based on

priorities, this scheduler, in effect, allocates less CPU time to hot jobs and more to cool

jobs within an epoch.

3. MinTemp+ — This algorithm selects the coolest job if its temperature is over the

threshold, and selects the hottest job if the current temperature is below the threshold

[44]. We improved the original design of MinTemp in that we select the “hot” or “cool”

slices based on the jobs’ transient temperatures, as opposed to their steady temperatures

(the global temperature trends of programs). Using steady temperatures could produce

significant errors as 1) there are often great temperature variations within jobs (Figure 6

shows this property), and 2) even thermally stable jobs will be mostly in their transient

state when they are constantly swapped in and out. Our improvement can clearly discern

temporarily cool slices in a hot job and temporarily hot slices in a cool job, hence, helps

the scheduler follow the policy correctly.

4. ThreshHot — This is our proposed algorithm. It selects the hottest program that does

not increase the temperature above the threshold. If such job does not exist, it selects

the hottest job to run.

Figure 5 shows the execution details of three different jobs under the default Linux scheduler

(our baseline scheduler) and the above four schedulers. For clarity, two epochs are shown

and all graphs have the same baseline scheduling results so that the differences among the

four thermal-aware algorithms are evident. When executing the mix of the three jobs, the

29

0 80 160 240 320 400 480 560 640
1.5GHz

3.0GHz

Cool

Warm

Hot

70

75

80

85

Temp

Time(ms)

CPU
Freq

Task
Sched

0 80 160 240 320 400 480 560 640
1.5GHz

3.0GHz

Cool

Warm

Hot

70

75

80

85

Temp

Task
Sched

CPU
Freq

Time(ms)

(a) base vs. Random (b) base vs. Priority

0 80 160 240 320 400 480 560 640
1.5GHz

3.0GHz

Cool

Warm

Hot

70

75

80

85

Task
Sched

CPU
Freq

Time(ms)

Temp

0 80 160 240 320 400 480 560 640
1.5GHz

3.0GHz

Cool

Warm

Hot

70

75

80

85

Temp

Task
Sched

CPU
Freq

Time(ms)

(c) base vs. MinTemp+ (d) base vs. ThreshHot

Figure 5: A close-up of the execution traces for four different algorithms. Each graph
compares the default Linux scheduler (dashed line) with one algorithm (solid line). In
all graphs, the top portion shows the temperature variation with time. The middle portion
shows the job switching sequence and the bottom portion shows whether a frequency scaling,
a reduction from 3GHz to 1.5GHz (downward arrow), occurred.

30

baseline thermal-oblivious scheduler picks the job in an ad-hoc manner: in this case cool, hot

and warm. The resulting temperature increases above the threshold three times per epoch.

This can been seen from the three downward arrows (drops from 3GHz to 1.5GHz) in the

bottom part of the graphs. The three thermal violations happened after the hot job ran

for a while. We now compare and contrast how the other four schedulers impact the peak

temperatures.

4.1.3.1 Random scheduler As we can see from Figure 5(a), the Random scheduler

switches to a different job, randomly picked from the job pool, on every scheduling interval.

The advantage is that it may select a hot job to run while the chip is cool, and vice versa.

This can be seen from the beginning of the first epoch — the base scheduler runs the cool

job continuously, while the Random scheduler swaps among all three different jobs, giving

the hot job some opportunities to run at a low temperature. Such randomness can remove

some frequency scaling events when the hot slices are scattered, e.g. in the first epoch, but

cannot prevent the scalings judiciously if the hot slices happen to run back-to-back, as with

the beginning of the second epoch.

4.1.3.2 Priority scheduler This scheduler regulates temperature through adjusting job

priorities to allocate less CPU time to hot jobs and more to cool jobs. The granularity of

this scheduler is more coarse than that in those discussed earlier since priorities can only be

changed between epochs. As a result, the temperature does not respond immediately to the

change of priorities. More importantly, since hot jobs are executed less per epoch compared

to cool jobs, the cool jobs make more progress and may eventually finish earlier than the

hot jobs. As we can see from Figure 5(b), the schedule of jobs has similar shape as the

baseline except that the hot job slices are much shorter (and each epoch is shorter as well).

This essentially puts off the execution of hot jobs, which may trigger significant frequency

scalings when the cool jobs are exhausted. As we will show later, this is the main reason for

this scheduler to fall behind the base scheduler.

31

The original scheduler also employed two additional thresholds for increasing frequency

scaling strengths, as shown in the figure. The hardware control takes two steps to gradually

increase the frequency scaling factor (via programming a hardware register) before the tem-

perature reaches the absolute emergency point. This is why the peaks in the temperature

curve are smoother than the baseline, and also why the downward arrows at the bottom do

not reach 1.5GHz. While this can help to prevent thermal emergencies, it does not prevent

frequency scalings. In fact, the frequency scaling may happen more often, though at a lower

strength, because the temperature may reach the lower thresholds but not the highest one,

as shown in the first frequency dip in the figure.

4.1.3.3 Mintemp+ scheduler This scheduler tends to oscillate between the hottest and

the coolest job, as shown in Figure 5(c). As we can see, at the beginning of an epoch when

temperature is low, the hot job is selected for execution. It runs for some time until a thermal

violation occurs. At this point, frequency scaling is engaged and the cool job is swapped in.

The temperature reduces quickly below the threshold until the end of the window, at which

point the hot job is immediately swapped in again. We notice that the cool job is swapped

in during frequency scaling, thus, being unfairly penalized for thermal violations caused by

the hot job. We will show in Section 4.1.4 that the hot job can be sped up while the cool

job can be severely punished. On the other hand, when cool jobs are swapped in during a

frequency scaling, the processor cools down more quickly than in the base scheduler. This

can help to reduce the average temperature when it is close to the threshold, as we can see

from the figure. As we will show later, this algorithm can reduce the number of frequency

scalings by a moderate amount.

4.1.3.4 Threshot scheduler In contrast to MinTemp+, our ThreshHot algorithm first

estimates the temperatures for all jobs in the next time window and then selects the hottest

job that will not exceed the threshold (according to the estimates). Hence, at the beginning

of an epoch in Figure 5(d), the hot job is selected to run until the temperature is too close

32

to the threshold. At this point, the scheduler decides to discontinue the hot job and swap in

the warm job because it predicts that the warm job will not create a thermal violation in the

next interval. The warm job now will run for several intervals until the temperature is low

enough for running another hot job slice. As we can see from the figure, at the beginning

of each epoch, the scheduler toggles between the hot and the warm job, allocating longer

duration for the latter (as opposed to switching between the hot and cool job in MinTemp+).

Later in the epoch, warm job’s quantum is used up, so the scheduler toggles between the

hot and the cool job with longer duration allocated to the latter as well. Such a scheme

effectively keeps the temperature right below the threshold achieving the least amount of

frequency scaling. For the two epochs shown in the figures, the ThreshHot scheduling shows

that it is possible to greatly reduce or even avoid frequency scaling if the jobs are arranged

in a good order.

In summary, all schedulers try to keep the temperature below the threshold. The Random

scheduler takes an opportunistic approach to disperse hot slices in each epoch. As we will

show in our experimental results, there is still much room for improvement if the job selection

is well-guided. Priority and MinTemp+ take a more indirect approach by lowering the average

power locally using the cool job’s intervals. However, both cannot avoid the high average

power when the cool job’s intervals are exhausted. ThreshHot takes a more direct approach

by picking the job order to regulate the temperature just below the threshold, at the minimum

“expense” of cool jobs. These cool jobs are thus “saved” for the future, as precious cooling

resources. In contrast, Priority or MinTemp, once the cool jobs are exhausted, will fall back

to a baseline thermal-oblivious scheduler.

4.1.4 Experimental evaluation

Unlike in some previous work, in our thermal-aware scheduling the temperature control is

not only a goal in itself, but also a tool for improving performance. Such improvements are

possible, because fewer thermal violations reduce the number of frequency scalings (or other

DTMs). We performed quantitative measurements on the performance with and without

33

thermal-aware scheduling, on a Linux machine using a Pentium 4 Northwood core as our

test processor. The core comes with performance counters that are accessible from the kernel.

The thermal model was adapted from the HotSpot3.0 toolset [33,34,61] with the Pentium 4

floorplan. The DTM used by Pentium 4 is clock throttling which is equivalent to frequency

scaling, but with less overhead. We remark that our scheduler will work for any other forms

of DTM such as DVS (dynamic voltage scaling).

4.1.4.1 Benchmark classification After model calibration, we ran 22 SPEC CPU2K

benchmarks, mediabench, packetbench, and netbench, to first collect their temperature pro-

files and classify them into different thermal intensity groups.

For all the programs we ran, the IntReg is always among the hottest units. Since Pentium

4 has only one on-chip sensor to control the DTM, this sensor should be placed at a spot

that is most likely to be the hottest. This spot is determined through extensive testing. To

accommodate other hotspots, the threshold is lowered with enough headroom to account

for the discrepancy between the temperature at the sensor and the real peak temperature

at runtime. Overall, it is reasonable to assume that IntReg correctly represents the peak

temperature at runtime.

Figure 6 shows the IntReg temperature profiles for all benchmarks executed back-to-

back till completion. Here the starting temperature is ∼55◦C, while that of the ambient

air is ∼45◦C, higher than the room temperature. As we can see, different programs present

noticeably different thermal behavior: some run at a stable temperature, some have large

variations, while others have sharp and spiky raises in temperature.

From the obtained thermal profiles, we can broadly classify the programs into three

groups, hot, warm, and cool, according to their relative positions to each other. For example,

gcc and gap produce the peak temperatures in Figure 6, and hence, are considered hot in the

SPEC benchmarks. Similar principle is applied to the non-SPEC benchmarks as well. Note

that if we combine the two groups of benchmarks, their relative temperature positions will

change and the classification will be different. Our experiments separate these two groups

34

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
50

60

70

80

90

Time(x10e6ms)

T
em

pe
ra

tu
re

(C
)

jpegenc

jpegdec

mpeg2enc

mpeg2dec

crc md5

drr

dh

ipchains
route

snort
url

tl

flowclass

ipsec

ipv4−lctrie

ipv4−radix

nat

Figure 6: Thermal profiles of the IntReg for all 22 SPEC2K (left) and media, net, and

packetbench (right).

of benchmarks due to their input sizes — SPECs have much larger inputs than the others,

and they run significantly longer. The complete classification of these programs is shown in

Table 1.

Table 1: Classifications of program thermal intensity.

SPEC 2K

Hot crafty gap gcc mesa sixtrack gzip bzip vortex

Warm applu apsi facerec mgrid parser wupwise twolf

Cool ammp equake fma3d lucas swim art mcf

Media, Packet bench, Netbench

Hot jpeg mpeg crc dh md5 ipsec ipv4 lctrie ipv4 radix

Warm snort flowclass url ipchains

Cool drr route tl nat

4.1.4.2 Thermal scheduling results We evaluate ThreshHot on different combinations

of workloads, and compare the results with four other aforementioned scheduling algorithms.

To avoid test space explosion, we limit the number of jobs executed simultaneously to 3.

35

Every job can be hot, warm or cool, producing 10 combinations to test. The combinations

where none of the jobs is hot are of little interest, since these will not involve thermal

violations. Excluding those we are left with 6 combinations shown in Table 2.

Table 2: Workload combinations consisting of relatively hot (H), warm (W) and cool (C)

jobs.

SPEC2K media, packet and netbench

HHH gzip sixtrack vortex jpegdec ipv4 lctrie md5

HHW mgrid gzip bzip jpegenc jpegdec flowclass

HHC gzip bzip art mpeg2enc mpeg2dec tl

HWW gap apsi twolf ipv4 lctrie url ipchains

HWC gcc apsi art ipv4 radix ipchains nat

HCC mesa ammp mcf dh drr route

We also want to consider the environmental conditions, in particular, the ambient tem-

perature. The ambient temperature varies in response to activities in memory, disks or other

components. This changes the temperature gradient, thus affecting the efficiency of the heat

removal. As a result, when the ambient temperature rises, cool programs can become warm,

and warm programs can become hot to the CPU. Similarly, if the ambient temperature

falls far below normal, even the hot programs, at their steady state, may not cause thermal

violations.

To test the sensitivity of different schedulers to different environmental conditions, we

varied the frequency scaling threshold from 75◦C to 73◦C and 71◦C (from Figure 6, most

programs’ steady temperatures range between ∼60◦C and ∼80◦C). With a steady test-

environment temperature (26◦C in our case), lowering the threshold to, say, 71◦C results

in relatively more DTMs than for higher thresholds, quite similar to retaining the threshold

while running the same workload with a higher ambient temperature. Therefore such tests

emulate, indirectly, the effect of varying the ambient condition, from low, through medium,

to high, respectively. These tests have been implemented through programming the OS clock

36

modulation register to throttle the clock [87] upon reaching a pre-defined thermal threshold.

Setting the threshold to even lower or higher values will not produce useful results, for it

corresponds either to the case of all jobs being cool or all jobs being hot (which is the HHH

case already tested in our study.)

(a) Mild thermal environment (b) Harsh thermal environment

(c) Medium thermal environment (d) Mix of mediabench, packetbench, and
netbench in medium environment

0%
20%
40%
60%
80%

100%
120%

HCC HWCHWWHHC HHW HHH avg

Base Priority MinTemp+ Random ThresHot

Figure 7: Number of thermal emergency triggers, normalized to the baseline

scheduler (Linux default).

4.1.4.3 DTM reductions Figure 7 shows the amount of DTMs for different workloads

when executed under different schedulers. Each graph represents one thermal environment,

as depicted by the labels. The results are normalized to the baseline DTM amount. Hence,

the lower the bars, the better the results. We do not show the results for the Greedy scheduler

since it is almost always worse than the baseline scheduler.

37

(a) Mild thermal environment (b) Harsh thermal environment

(c) Medium thermal environment (d) Mix of mediabench, packetbench,

and netbench in medium environment

8.9%10.8%
4.5%

14.6%

28.3%
32.3%

16.6%

0%

10%

20%

30%

40%

50%

HCC HWCHWW HHC HHW HHH avg

Figure 8: Percentage of execution time under DTM in the baseline scheduler.

38

(a) Mild thermal environment (b) Harsh thermal environment

(c) Medium thermal environment (d) Mix of mediabench, packetbench,

and netbench in medium environment

-6%
-4%
-2%
0%
2%
4%
6%
8%

HCC HWCHWWHHC HHW HHH avg

Priority Mintemp+ Random ThresHot

Figure 9: The percentage of the execution time reduction from the baseline.

39

As we can see, in all workloads and in all thermal environments, the ThreshHot scheduler

consistently removes more DTMs than other schedulers, often by a great amount. The re-

duction ranges are 8.4-81.9% (41.6% on average), 10.5-73.6% (34.5% on average), 2.5-48.5%

(21.2% on average), and 4.1-70.5% (19.6%) for mild, medium, and harsh thermal environ-

ment, and non-SPEC benchmarks in medium environment respectively. The effectiveness of

the ThreshHot over other schedulers is also evident. As an example, for workload ‘HCC’ in

the medium thermal environment (Figure 7(c)), the MinTempPlus scheduler reduced DTMs

in the baseline schedule by 7.5%, the Random scheduler reduced 34.7%, while the ThreshHot

scheduler reduced big as much as 73.6%.

The Random scheduler performs slightly better than the MinTempPlus scheduler. The

former reduces more DTMs in mild and medium environments. However in harsh conditions,

the Random scheduler can generate more DTMs than the base case, as shown in the ‘HHW’

workload in Figure 7(b) and (d). This is, by itself, an interesting phenomenon, and can be

explained as follows. What Random does, is, in essence, to replace the batch by one long job

whose temperature (or heat contribution rate) is the “average” of those of the jobs in the

batch. For mild and medium environments, this average value is below the threshold, and, as

a result, the Random’s schedule stays below the threshold for most of the time, reducing the

number of thermal violations. But if this average is above the threshold, like in the ‘HHW’

workload, the thermal violations will occur throughout the whole interval. In contrast, in

the base schedule, they occur on the hot jobs, but not on the warm job. Therefore in this

case Random will actually create more threshold violations than the base scheduler.

The Priority scheduler always increases the number of DTMs. For example, it increased

the DTMs by 65% for the ‘HCC’ workload in the mild thermal environment (this cannot be

seen from Figure 7(a) due to its scale). This is because the scheduler gives higher priorities

(more CPU time) to the cool jobs than the hot jobs, so the former always finish sooner than

the latter. As a result, the hot jobs, when cool jobs are exhausted, will trigger more DTMs

than the baseline because the baseline always makes about the same progress for both jobs.

40

4.1.4.4 Performance improvements The performance improvements of different sched-

ulers are not necessarily proportional to the amount of DTM reductions. This is because

the time due to DTM is only a portion of the total execution time. Figure 8 plots the

percentages of execution time attributed to DTMs. Figure 9 shows the overall performance

improvements. The three subgraphs represent different thermal environments, similar to

Figure 7. As expected, the ThreshHot scheduler consistently and significantly outperforms

other schedulers. The Priority scheduler brings negative impact on performance unless there

is constant supply of cool jobs, which was assumed in the original work [42]. From these

graphs, we make the following observations:

• Workloads containing cool jobs incur fewer DTMs than those containing warm and hot

jobs. Harsh thermal environment naturally causes more DTMs in all workloads.

• When considering Figures 7 and 8 jointly, we observe that the percentage DTM reduction

rate depends on their contribution to the total execution time: the more execution

time spent on DTMs, the less effective a thermal-aware scheduler is in removing them.

(More precisely: it may remove more DTMs overall, but a smaller percentage.) For

example, when the DTMs occur only 5.4% of time in ‘HCC’ (Figure 8(a)), the ThreshHot

scheduler can easily remove 81.9% of them (Figure 7(a)). When the DTMs occur 44.4%

of time in ‘HHW’ (Figure 8(c)), the ThreshHot scheduler can only remove 2.5% of them

(Figure 7(c)). Therefore, the amount of DTMs existing in a workload indicates directly

how difficult it is to perform a thermal-aware scheduling. This is, of course, not surprising,

for if the average temperature of the workload increases, so does the minimum number

of DTMs in the optimal schedule – independently of what scheduler we use.

• Figure 9 shows the overall performance improvement, reflecting both the reduction of

DTMs from Figure 7 and the original number of DTMs produced by the base scheduler,

as seen in Figure 8. We see that a harsh/mild environment does not necessarily result in

less/more performance improvements from a thermal-aware scheduler. Similarly, work-

loads having more cool jobs do not always result in the most performance improvements.

The highest performance improvements from the ThreshHot scheduler are seen in ‘HHC’

41

(6.56% in mild, 7.18% in medium, and 6.45% in harsh environment) and ‘HCC’ (6.31%

in medium, 7.57% in harsh environment, and 6.25% in non-SPEC programs). The av-

erage improvements are 3.8%, 4.7%, 4.1%, and 3.25% for mild, medium, harsh thermal

environment, and non-SPEC programs respectively.

We also observed that the MinTempPlus scheduler, though far less effective than the

ThreshHot scheduler, does a more consistent job in improving the total performance of

a workload than the Random scheduler. The Random scheduler occasionally reduces the

performance when it fails to remove DTMs, e.g., for ‘HHW’ in a harsh environment. However,

when the conditions are mild or medium, the Random scheduler outperforms MinTempPlus,

not only because it reduces more DTMs and has better performances, but also because

it does not require any online power/temperature calculations, and thus is much easier to

incorporate in an existing system. However, it tends to worsen the system performance when

the thermal condition is severe.

-40%
-20%

0%
20%
40%

m
es

a
am

m
p

m
cf

ov
er

al
l

gc
c

ap
si ar
t

ov
er

al
l

ga
p

ap
si

tw
ol

f
ov

er
al

l

gz
ip

bz
ip ar
t

ov
er

al
l

gz
ip

si

xt
ra

ck
vo

rte
x

ov
er

al
l

m
gr

id
gz

ip
bz

ip
ov

er
al

l
HCC HWC HWW HHC HHW HHH

Figure 10: Drastic performance changes to individual jobs by MinTempPlus scheduler (mild

thermal environment).

One important downside of the MinTempPlus scheduler is that it penalizes the cool slices

for the thermal violations caused by hot slices. As we analyzed before, this is because the hot

programs always run at full speed until the temperature increases above the threshold. Then

the frequency is scaled and the coolest program is swapped in at the reduced frequency. As

we can see from Figure 10, although the overall performance is improved in all workloads,

each individual job experiences drastic performance changes, from ∼-30% to ∼+30%. In

42

contrast, the performance gains from using the ThreshHot and the Random scheduler come

mainly from the improvements in hot jobs, which is a more reasonable way of resolving the

thermal emergencies.

4.1.4.5 Overhead The overhead of our ThreshHot scheduler (and MinTempPlus and

Priority) mainly comes from the temperature calculation in the scheduler and the context

switches (including cache warm-up). We measured that the time required to calculate the

temperatures is ∼16.45µs. This has been estimated by running the program with and

without the temperature module working in the kernel for a sufficiently long time. This

overhead includes probing the hardware performance counters, calculating power and calcu-

lating the temperatures using the method described in Section 2.1. As we also mentioned

in Section 4.1.2.2, the average context switch time in our test system is ∼35.35µs. This has

been determined by forcing periodic context switches among different programs, for different

period lengths, and comparing the differences in execution time. The performance results

presented earlier are based on real machine measurements and thus include all the over-

head incurred at runtime. Figure 11 shows the details of the overhead by running SPEC2K

benchmark workloads in the medium themal environemnt. The overhead is normalized to

the total execution time of Baseline. On the average, MinTempPlus and ThreshHot incur the

overhead of 1.18% and 1.22% respectively, in which 0.77% and 0.70% are from temperature

computation. 0.62% out of 0.66% of the overhead incurred by Priority is also from temper-

ature computation. Although Random incurs 0.5% task switch overhead on the average, it

does not have the overhead of temperature computation.

4.1.4.6 Impact of varied intervals on ThreshHot Although our 8ms scheduling in-

terval is very close to the minimum interval recommended by Linux, other operating systems

may have a different requirement for the interval length. Our ThreshHot scheduler works

well when the scheduling interval is 8ms. When the interval increases, some hot jobs can

easily raise the temperature above the threshold. The warm jobs start to have similar ther-

43

Figure 11: Details of the time overhead(represented in percentage in y-axis) incurred by

the temperature computation and task switching(upper area marks the overhead of tem-

perature prediction), normalized to the execution time in Baseline in the medium thermal

environment.

mal behavior as the hot jobs do in 8ms, because the warm jobs can make the temperature

much closer to the threshold in an interval longer than 8ms. So the cool jobs are now used

to cool the temperatures raised by the warm jobs, leaving hot jobs unattended. We did

experiments by using the intervals of 16ms and 32ms. As Figure 12 shows, The benefits

obtained by ThreshHot decrease significantly when the interval becomes longer. On the av-

erage, ThreshHot achieves 3.21% performance improvement over Baseline when the interval

is 16ms, and achieves only 2.06% improvement when the interval is 32ms.

4.1.4.7 Impact of power misprediction Our proposed ThreshHot scheduler relies on

the projected temperatures to make a selection for the next scheduling interval. As we

discussed earlier in Section 2.2.2, the temperature in the next interval will depend on a

job’s power consumption in the next interval which is predicted from the current interval.

Figure 13 has shown the percentages of errors in predicted power values using the last

44

Figure 12: The relative performance improvement by ThreshHot over Baseline, under dif-

ferent scheduling intervals.

value prediction. In this section, we quantify the impact of such errors on performance

improvement, to justify the usage of the last value power predictor in ThreshHot scheduler.

Our goal is to compare the last value power predictor with an oracle power predictor

and see their contributions on performance improvement under the ThreshHot scheduler.

To achieve this, we collected the power traces from the baseline scheduler and perform

the ThreshHot scheduling twice offline, one scheduling with the last value power predictor

and another time with the oracle predictor. In our scheduler, the power predictor works

with the scheduler in the following way. First, the predicted powers are used to calculate

the temperature rises in the next step. Second, the temperatures are sorted from high to

low. Third, the temperatures are searched from high to low to find the first one below the

threshold. As we can see, if the last value predictor and oracle predictor come up with the

same temperature order and select the same job to run, then the two predictors are equally

good. Also, even when the temperature orders are different, if the two predictors happen to

select the same job to run, they are still equally good. For example, the last value predictor

may generate a job temperature order from high to low as: 2, 1, 3, and the threshold is

45

between 2 and 1, so job 1 should be selected. The oracle predictor, on the other hand,

generates an order as 1, 2, 3, and 1 is below the threshold. Therefore, even when the last

value predictor made a mistake, as long as the right job is selected, the scheduling decision

is still correct.

Figure 13: The distribution of last value prediction results.

Figure 13 shows the percentage distribution of four possibilities of the last value power

prediction results, from bottom up: correct temperature order and correct job selection

(‘+Ord+Sel’), incorrect temperature order but correct job selection (‘-Ord+Sel’), correct

temperature order but incorrect job selection (‘+Ord-Sel’), incorrect temperature order and

incorrect job selection (‘-Ord-Sel’). On average, the last value predictor can result in 85.72%

of ‘+Ord+Sel’, and 4.44% of ‘-Ord+Sel’, totaling 90.16% of correct scheduling decision. This

is fairly significant considering the simplicity of the predictor. Figure 14 further shows the

performance speedups for the last value predictor and the oracle power predictor. As we

can see, on average, the last value predictor achieves only 0.6% less speedup than the oracle

power. Therefore, we conclude that designing complex power prediction schemes may not

pay off since the additional performance improvement will be marginal.

4.1.4.8 Scalability One of the concerns of the scheduling overhead is whether the al-

gorithm can be scaled up to support more jobs. With a large number of jobs, more time

46

Figure 14: The offline performance comparison of last value power predictor and oracle

power predictor

is required to calculate the next step temperatures and make a scheduling decision. Note

that the context switch overhead remains the same because there is still only one switch no

matter how many candidates there are. Therefore, we only need to limit the time spent in

calculating temperatures for all jobs. This can be achieved using the following optimization.

First, sort the next-step powers for all jobs from high to low. The time complexity of the

sorting is O(N log N). However, this takes a short time when N is small. The next-step tem-

perature results corresponding to those powers will be monotonically decreasing. To avoid

calculating temperatures for all powers, we can do a binary search to find the highest power

that generates a temperature below the threshold. This can reduce the number of tempera-

ture calculations from N to O(log N), where N is the number of jobs. Such an optimization

provides a scalable solution to our algorithm.

To verify the scalability of our algorithm, we measured the scheduling overhead when

the number of jobs increases. The scheduling overhead includes time for both temperature

calculations and context switches. When we increase the number of jobs, the performance

penalty due to DVFS varies due to the changing relative thermal intensity in the job mix.

47

Therefore, we suppress the engagement of all DVFS to remove the noise in the scheduling

overhead. We measured the overhead for both Random and ThreshHot, and compared them

with the baseline. The results are shown in Figure 15.

The overhead is calculated as the percentage of extra execution time required by Random

and ThreshHot, compared to the baseline. The Random scheduler incurs mainly the context

switch overhead, as it does not need to project the temperature variation of the jobs, and

randomly picks one to execute in the next time window. Hence, its overhead is relatively

constant irrespective of the number of jobs. The results show that the average overhead

is 0.93%, with a maximum of 1.64% for scheduling 4 jobs and a minimum of 0.25% for 7

jobs. These results confirm that frequent context switches incur insignificant overhead to the

overall performance. The ThreshHot scheduler shows additional overhead in temperature

calculations for all job mixes. As we have explained above, the temperature calculations are

necessary for only log N jobs. We conservatively assumed there can be up to 10 active jobs

for scheduling on a single core. In reality, this number is likely to be much smaller. Thus,

the temperature calculation is performed between 1 and 4 jobs. The actual time depends

on specific temperature values of different jobs. That is, more jobs does not necessarily

incur more temperature calculation time. As we can see from the results, there is no clear

trend in increasing overhead from 2 to 10 jobs. On average, we see a 2.07% performance

overhead including both temperature calculation and context switch. The highest overhead

of 2.52% is seen in scheduling 10 jobs, and the lowest of 1.51% is seen for scheduling 5

jobs. Our early results in Section 4.1.4.2 were for scheduling 3 jobs. As we can see here

that the scheduling overhead for 3 jobs is around the average. Therefore, we conclude that

our proposed ThreshHot is a scalable solution. For future CMPs, the number of jobs will

increase proportionally with the number of cores. Suppose there are 64 cores and 300+ jobs,

each core will then be assigned around 5 jobs in its local job queue. The question here is how

to assign jobs to each core in order to make cores balanced in their thermal behaviors. One

possible solution is to sort the jobs according to their power history and then try to make

sure each core has a balanced number of hot and cool jobs. This sorting and the following

48

job migration could be done every several seconds, to keep the overhead as small as possible.

This could be left as our future work. However after the job assignment is done, each core

will still only incur 1% overhead compared with Random because the local job queue has

only 5 jobs. If using our ThreshHot algorithm each core can gain 5% average performance

improvement, it’s still worthwhile to employ our scheduling mechanism.

Figure 15: The overhead from context switch and temperature computation(x-axis shows

the number of processes)

4.2 BALANCING BY STACK IN 3D CMP

CMP with dies stacked is a promising technology to reduce wiring overhead in the layout.

However, the stacking of logic layers can generate more heat and the heat may exceed the chip

cooling capacity. In the following, we first explore the thermal characteristics of 3D CMP.

The thermal characteristics then motivate us to add three heuristics to the task scheduling

policy.

49

4.2.1 Motivation and rationale

In this section, we analyze the thermal characteristics of 3D CMP as achitectures, by looking

at a sample of proposed floorplans. Then, we focus on exploring the thermal characteristics

of that particular floorplan.

4.2.1.1 A representative floorplan There have been a number of 3D CMP floorplans,

as shown in Figure 16 (a)-(c), proposed in literature [1, 7, 48]. In these figures, cores are

stacked on each other, with extended cache or memory in between. We observed that for

a 3D stacked chip to be scalable in layer count, it is inevitable to encounter more than one

active cores in one vertical core column, no matter how the active cores and cache banks are

placed in the floorplan. Further, if we look at the distance of each core stack to the heatsink

(on either the top or bottom of the chip), we can classify these floorplans into two categories.

Figure 16: 3D chip multiprocessor floorplan options.

Figure 16(a) and (b) represent the first category in which the distance of some core

stacks, e.g., core stack 1 in (a), to the heatsink is different from others such as core stack 2.

These floorplans are thermally heterogeneous, meaning that the heat dissipation property of

different core stacks is different. For example, if the heatsink is on the bottom of the stacked

50

chip (as illustrated in Figure 17), core stack 2 is further away from the heat sink than core

stack 1. Thus, heat dissipation for cores in stack 2 will be more difficult than those in stack

1. In contrast, Figure 16(c) has a rather homogeneous thermal property because all cores are

equally distant from the heat sink. Our preliminary work [79] focused only on homogeneous

floorplans while this thesis considers both.

Despite these distinctions among different floorplans, they still share some important

property. The heat from any core can quickly propagate vertically to other cores above and

below. For all these floorplans, the cache layers almost serve as a heat conductance medium

between the core layers. Considering this commonality among various 3D floorplans, we

choose to use the floorplan in Figure 16(d) as a representative to first introduce the general

rationale behind our scheduling algorithms. Then, we will discuss details of our algorithms

for homogeneous and heterogeneous floorplans respectively. In Figure 16(d), there are two

layers, and each layer contains four cores. The cache banks are subsumed within each core.

Figure 17: A face-to-back 3D die stacking structure as an example, and the corresponding

thermal model.

4.2.1.2 Vertically adjacent layers have strong thermal correlations Similar to a

regular 2D processor where heat dissipates mostly in the vertical direction [35], 3D chips

also have better heat conductivity in vertical than horizontal direction. This implies that

vertically adjacent cores have larger thermal impact among each other than horizontally

51

adjacent cores. We will use a simple heat transfer model to capture this phenomenon.

Figure 17 shows a basic two-layer 3D chip structure (adapted from [7]). We use a face-to-

back bonding technology for better scalability in layer count. The top layer is thinned for

better electrical characteristics and improved physical construction of the through silicon

vias for power delivery and I/O. A thin die also has better heat conductivity than a thick die

such as the bottom die. As we can see, the distance between the two active silicon dies are

very small (< 100µm). This directly determines the high heat conductivity between the two

adjacent dies. The heat transfer model for this 3D chip is shown on the right of the figure.

Here one die is modeled using one node. Its temperature and power are denoted as T and P

respectively. R21 represents the thermal resistance between the two nodes. R1 amb represents

the thermal resistance between the bottom node and the ambient air. We omit the thermal

capacitance here to model only the steady state temperature (In our experiments later, both

thermal resistance and capacitance are modeled.). Let T1 and T2 be the temperature (relative

to the ambient air) in the bottom and top node respectively. Then,

T1 = R1 amb(P1 + P2) (4.7)

T2 = R1 amb(P1 + P2) + R21P2 (4.8)

Hence, the temperature difference between the two nodes is R21P2. From the parameter used

in literature [7, 16, 35, 62], R21 is 0.0108 − 0.0159K/W . P2 represents the power generated

by the entire die. This value is in the range of 40− 70W for a typical single-core processor.

Therefore, the temperature difference between the top and bottom die is merely a 0.43 −

1.11K.

Such a strong thermal correlation between the two adjacent dies can also be demonstrated

from our simulation. Figure 18 shows a typical thermal profile of running eight threads

concurrently on eight cores as floorplaned in Figure 16(d) (the experimental setup will be

introduced in Section 4.2.3). Here eight threads are eight different benchmarks chosen from

the benchmark suite we use. We refer to vertically aligned core pairs as a core stack. We

52

Figure 18: Thermal correlation between adjacent dies.

can see from Figure 18 that there are four distinct clusters of temperature curves. Each

cluster has drastically different variations from others. However, each cluster has two lines

that are very close to each other. Their variations are almost always synchronized. The

four clusters correspond to the four core stacks in the floorplan. And the two lines in each

cluster correspond to the temperature variation of the two cores per stack. This experiment

shows clearly the strong correlation between adjacent dies, as the temperatures for different

core stacks hardly have any dependencies among them, but within each core stack, the

temperatures of the two cores are strongly correlated. Such correlation can still be observed

for a 4-layer floorplan in our experiments, as the intermediate thin cache layers serve as good

heat conductors among their vertical core neighbors.

4.2.1.3 The die layers further from the heat sink are usually hotter Not only

are the cores in a stack strongly correlated in their temperatures, but also the ones on the

top are usually hotter than those near the bottom. This has also been noted in the literature

for steady state temperatures [2,48]. For clarity, we refer to the cores further from the heat

sink as “top” cores, as illustrated in Figure 17. The intuition is that the bottom cores are

closer to the heat sink, therefore, their heat can be removed more quickly. Here we give a

53

more analytical analysis taking into account the thermal capacitance as well. Suppose in

the thermal model depicted in Figure 17, the thermal capacitance between the top die and

ambient air is C2. Then,

T2 − T1

R21

= P2 − C2
dT2

dt
, (4.9)

As mentioned earlier, P2, which represents the power of a modern processor, has a typical

value range of 40− 70W . C2 represents how quickly temperature changes from the top die.

For a thin die within 100µm in a 2-layer 3D chip, the thermal capacitance is reported as

23.6−37.4mW ·s/K [7,62]. dT2/dt is the temperature change rate within a short time. From

our experimental experience, and many other results in the literature, temperature varies

slowly with time. For example, we observed a less than 6◦C increase in temperature in a

8ms window using Hotspot 3.0.2 for 3D chips. Hence, the right hand side of equation 4.9 is

usually positive with a range of 12− 52.3W . Therefore, T2 is usually higher than T1.

We also performed simulations to test the above observation. We intentionally put the

coolest job (lowest average temperature in a 2D chip) in our benchmark suite on the top die,

and the hottest job on the bottom die in a 2-core stacked 3D chip setting. The temperatures

of the two cores are shown in Figure 19. We can see that the top core almost always has

higher temperatures than the bottom layer. Such an observation serves as a guideline to the

development of our heuristic scheduling algorithm.

4.2.2 Scheduling algorithms

The strong correlations among the cores in one stack leads to a scheduling method that

considers the entire stack as a whole. The fact that top cores are hotter than the bottom

cores suggests that threads within a core stack should be placed with care. Furthermore, we

take advantage of this observation and introduce a new voltage/frequency scaling mechanism

that results in the fastest temperature drop within the shortest amount of time, once the

peak temperature within a stack reaches the thermal threshold. In this section, we present

a sequence of thread scheduling algorithms.

54

Figure 19: Demonstration of the top die being hotter than the bottom die.

Since we have two categories of floorplans, we will select a representative homogeneous

floorplan as shown in Figure 16(c), and a representative heterogeneous floorplan as shown in

Figure 16(a). Both the homogeneous and heterogeneous floorplan will be applied with five al-

gorithms: Baseline, Random, Round-robin, Balancing-by-core, and our proposed Balancing-

by-stack algorithm.

4.2.2.1 The baseline We use the Linux 2.6 scheduler [9] as our baseline algorithm. In

this scheduler, each core has a task queue that keeps track of all running tasks on that core.

Each queue contains two priority lists: an active and an expired list. At runtime, the core

selects to execute the tasks in the active list, according to some policy. Once a task uses up

its time quota, it is moved to the expired list. If all tasks are in the expired list, an epoch has

finished, and the scheduler iterates the process by swapping the two lists. Each task in the

active list has 10 − 200ms of CPU cycle quota, depending on its own priority. By default,

the core switches to a different task every 100ms. Thus, in our 8-core 3D chip, upon the

scheduling interval of every 100ms, the scheduler selects a task from each core’s active list

according to its original policy, and then assigns it to a different randomly selected core.

55

This algorithm is simple, and has low context switch overhead compared to other al-

gorithms introduced later. However, it may run the risk of putting two hot tasks into the

same core stack, which may lead to an extremely high temperature that results in a long and

harsh voltage/frequency scaling penalty for both tasks. Moreover, once a poor scheduling

has been made, it stays in that condition for a long period of time (100ms until the next

scheduling time), exacerbating the already serious thermal condition within the chip.

4.2.2.2 Random (Baseline+) A quick fix of the baseline scheduler is to increase the

scheduling frequency. In the normal Linux OS, any context switch interval between 10 −

200ms may be used [9]. A minimum of 10ms is recommended to avoid unnecessary context

switch overhead. We used 8ms as our scheduling interval mainly due to an experimental

restriction on collecting the power traces. Also, 8ms is close to the thermal constant of the

core under test. However, the algorithm can be directly applied to any scheduling interval

recommended in Linux such as 10ms if those restrictions do not apply. Further, we take

into account the extra context switch overhead using an 8ms scheduling interval during our

experiments. We performed a real machine measurement on the time required to perform a

single context switch. For an 8ms interval, it is ∼ 0.44%, a mild penalty that can be easily

offset by the performance gain from a better scheduling method.

With the improved baseline scheduling algorithm (termed Random to reflect the schedul-

ing decision), the chip can exit a poor thermal condition due to an unwise scheduling more

quickly, resulting in less harmful impact.

4.2.2.3 Round-Robin The Random scheduler may result in uneven distribution of

power and temperature as tasks are assigned randomly to any core. A Round-Robin sched-

uler (RR) can overcome this by rotating tasks among cores in a fixed order periodically.

Therefore, after N iterations where N is the number of cores, each task has executed on

every core for one scheduling interval, e.g., 8ms. This can help balance the power and

temperature distribution in the long run.

56

4.2.2.4 Temperature balancing by core An alternative way to balance the heat

among the cores is to explicitly arrange the tasks according to their power consumption

and the core temperatures. Essentially, a high power task should be assigned to a low tem-

perature core. At each scheduling point, the scheduler sorts the power consumption of all

tasks and the current temperature of each core. It then assigns the task with the highest

power to the coolest core, the 2nd highest power to the 2nd coolest core, and so forth.

Such a mechanism should perform a better job in balancing the temperature distribution

among cores than RR. However, recall that there is a strong thermal correlation between

two adjacent layers, and the cores in one stack have only a small difference in temperatures.

This implies that if a core stack contains the hottest core, it probably also contains the 2nd

hottest core. When the temperature Balancing-by-core algorithm is applied, the tasks with

the lowest and 2nd lowest power are scheduled to this hot core stack. Similarly, the tasks

with the highest and 2nd highest power will be scheduled to the coolest core stack. After

that, the hottest/coolest core stack will have the largest temperature drop/rise, which may

lead to temperature oscillations and task thrashing between those two stacks, potentially

leading to more thermal emergencies. In that case, a RR, or a Random algorithm may be a

better solution.

Another issue with this mechanism is how the power consumption of each task is ob-

tained. Recently, there has been proposals on obtaining the runtime power consumption of

an application through probing the performance counters in a processor [37]. We also adopt

this approach and assume that each core is equipped with such counters that can be used

for power estimation. Note that our power estimation need not be very accurate, as we only

need the sorted order of the power, not the absolute values.

4.2.2.5 Temperature balancing by stack The core-based temperature balancing al-

gorithm can create thrashing of tasks between the hottest core stack and the coolest core

stack, as we analyzed earlier. This is because the algorithm, while trying to balance the

temperatures among all cores, treats each core independently. However, as adjacent dies

57

have strong temperature correlations, cores in the same stack should indeed be considered

together. Intuitively, we can assume that each stack is a “super” core that has cores with

similar temperatures. Hence, scheduling of the tasks within three dimensions can be reduced

to scheduling of “super” tasks within two dimensions. Here a super task is defined as a set

of tasks that are assigned to a super core, i.e., a core stack.

We treat homogeneous and heterogeneous floorplans differently in this algorithm as their

super cores have different thermal properties. We first elaborate on the algorithm for the

homogeneous floorplan.

Super tasks. Let L be the number of layers in a 3D chip, and N be the number of cores per

layer. As a super core contains L cores, a super task should also contain L tasks and there

are N super tasks. The scheduling of N super tasks among N super cores is now simply a

2D problem, where a balanced temperature distribution is desired. Hence, we first balance

the power among super tasks, i.e., let each super task have about the same power, and then

balance the temperatures among super cores by scheduling a relatively high power super

task onto a relatively cool super core.

To balance the power among super tasks, we first sort the powers of all N × L tasks.

Let B1−N be N initially empty bins. We will fill powers into these bins such that each bin

will contain L tasks, and the total powers of each bin are about the same. In descending

order of powers, we put each power value into a bin that has the smallest current total power

among all bins. This policy attempts to reduce the gap between the smallest and the largest

total power in each step, in order to generate a relatively balanced total power across N

bins. Finally, all powers within a bin form a super task. We remark that our policy is only

a heuristic as an optimum solution may require an exhaustive search. We aim for a simple,

effective, yet low-complexity heuristic because the scheduler makes the decision at runtime.

Here we point out this problem is a NP-complete problem, but our solution belongs to one

of the good heuristics used to solve the partition problem.

58

Task distribution among and within super cores. The goal of producing super tasks is to

generate relatively balanced power distribution across super cores. Once the super tasks are

formed, we sum up the temperatures of all L cores in a super core, and sort them. Similar

to the previous procedure, we assign the hottest super core with the super task of the lowest

power, and so on. Figure 20 shows an example of scheduling 8 tasks onto a 2-layer, 4-core-

per-layer, 3D chip. Step (a)-(c) depict the procedure except for how tasks within a super

task are allocated onto different cores within a stack.

As discussed earlier, the top cores are usually hotter than the bottom cores in a core

stack. Hence, we should allocate tasks of higher powers onto the bottom cores for better

heat removal, and tasks of lower powers onto the top cores. For example, if the temperatures

of the cores from bottom up are strictly increasing, then the tasks allocated to them should

have strictly decreasing powers from bottom up. Figure 20’s last step illustrates this policy

in a two-layer floorplan.

Scheduling procedure. To summarize, on every scheduling interval (8ms in our case), the

scheduler performs the following steps:

1. Sort the powers of all tasks. Form super tasks. Sort the power sums of the super tasks

from low to high.

2. For each super core, sum up the temperatures for all cores. Sort the temperature sums

for all super cores from high to low.

3. Create a sequential one-one mapping between the sorted super tasks and sorted super

cores.

4. In each super core, allocate the tasks in their increasing power order onto the cores with

decreasing temperature order.

Our algorithm involves mostly sorting of the powers and temperatures. Therefore, its time

complexity is O(NL log (NL)).

59

Figure 20: The temperature balancing-by-stack algorithm.

60

The major difference in heterogeneous floorplans is that different super cores have differ-

ent heat dissipation capability due to their varying distances to the heatsink. For this reason,

even if two super cores are of the same present temperature, the same super task assigned

to them will result in different future temperatures. For example, in our experiment for

the floorplan shown in Figure 16 (a), we assigned eight identical tasks onto eight cores and

still observed 4-7K thermal difference on the top four cores. Therefore, unlike the algorithm

for homogeneous floorplans where the total power among super tasks should be well bal-

anced, the task bundling in the heterogeneous floorplan should intentionally create a power

imbalance to generate a balanced temperature distribution among super cores. However,

it is difficult to estimate how much power difference we should create among super tasks

because the future temperature depends on not only power but also the present temperature

and duration of the power. Therefore, for a given set of power values, our algorithm forms

the super tasks with minimum, moderate and maximum total power difference (denoted as

Min-diff, Mod-diff and Max-diff respectively), and dynamically make the selection of super

tasks.

Let P1 · · ·Pn be n powers in ascending order. Super tasks with Min-diff, Mod-diff and

Max-diff are formed as follows, assuming each super task contains L tasks:

• Max diff: {P1, P2 · · ·PL}, {PL+1, · · ·P2L}, · · ·

• Mod diff: {P1, PL+1, P2L+1 · · · }, {P2, PL+2, · · · }, · · ·

• Min diff: The principle is to balance the total powers of super tasks. This is identical to

the algorithm for homogeneous floorplans (Section 4.2.2.5).

Intuitively, when the temperature difference among super cores is large, a super task

with Max-diff is desired. However, if the power difference among tasks is also large, using

the Max-diff may be an overkill. A Mod-diff combination may be sufficient. Therefore, our

decision relies on both the temperature gradient (denoted as ∆T) among the super cores

and the power range (denoted as ∆P) of the tasks. Let

θ =
∆T

∆P
. (4.10)

61

When θ is small, the temperature gradient (∆T) is relatively small compared with the power

range (∆P) of the tasks. Super tasks of Min-diff are more appropriate in this situation

because we need only to perform mild temperature adjustment. On the other hand, when θ

is large, a more aggressive task bundling to create power differences is necessary, hence the

selection will favor Max-diff.

During our experiments, we use two heuristic θ values: θ1 = 0.5 and θ2 = 1 as the

thresholds for choosing different algorithms. The choice of these two values is based on

our experimental settings, and may vary with thermal properties of the floorplan. If θ falls

in the range of [0, θ1), Min diff will be chosen. If θ is in the range of [θ1, θ2], Mod diff is

selected. If θ is greater than θ2, Max diff will be selected. Furthermore, if ∆T is really very

small(in our case it needs to be less than 0.8◦C), this indicates the current task combination

and assignment is working well. In this situation, the tasks stick to the cores for the next

scheduling interval.

A critical component in concert with our proposed scheduling algorithm is how to han-

dle thermal emergencies once a core temperature increases above the hardware threshold.

Conventionally, such a core will be put into a low power state through DVFS. In a 3D chip,

since the top cores are usually hotter, thermal emergencies usually occur in the top layers.

Moreover, our scheduler puts cooler tasks on the top layers, which means that those tasks

are more likely to undergo DVFS, leading to their degraded performance.

The problems of such conventional thermal management are twofold. First, the cooler

tasks could be penalized more often than the hotter tasks, which brings a fairness issue

among different tasks. Intuitively, hotter tasks should be restrained by the system due to

their potential harmful impact on the chip. Second, applying DVFS to the cooler tasks

on the top layers does not yield the same efficiency as in a 2D chip. This is because it

takes a longer time to cool down the top cores due to their high power neighbors at the

bottom. In fact, it is because of those hot bottom tasks that the top cores are overly heated.

Therefore, a more rational thermal management should employ the scalings to the source of

the overheating — the bottom cores that are running high power tasks.

62

More formally, when core A of a super core S is overheated, the thermal management will

select core B with the highest power in S to engage DVFS. B may or may not be identical

to A. Such a thermal management strategy solves the two problems above effectively. First,

cool tasks are not penalized more often than hot tasks because if a cool task becomes a

temperature victim, the hot task that caused the problem is penalized. Second, all cores in

S, including A and B, are quickly cooled because the total power of S is reduced with the

maximum strength. For example in Figure 20, if the super core containing the 20W-40W

super task tripped a thermal emergency on the 20W core, and suppose the DFVS reduces

the power of a core by half, then our scheme will reduce the total power of this super core

to 20 + 40/2 = 40W , while the conventional thermal management will only reduce it to

20/2 + 40 = 50W . As we can see, if DVFS is applied to a relatively low power task, the

result is inferior because a task is being penalized, but the total power in the chip is not

reduced as much. This is often the case for the temperature Balancing-by-core scheduler as

it tends to allocate cool tasks on the top layer (since it is usually hotter).

As a result, our mechanism brings down the temperature of the hotspot at the highest

speed, resulting in minimum penalty to the overall performance of this super core. We will

show later that our proposed temperature Balancing-by-stack scheduling algorithm with

improved thermal management results in many fewer thermal emergencies and the much

better performance among all previous schemes.

4.2.3 Experimental methodology

4.2.3.1 Floorplan setup Our detailed experiments are conducted on floorplans as de-

picted in Figure 16(a) and (c). Each floorplan has four layers and a total of eight cores.

We simulated 8 P4 Northwood cores at 3.0GHz clock frequency. Each core has a size of

1.144 × 1.144 cm2. The remaining space is left for extended cache or memory. The total

die size is 2.289× 2.289cm2. Other physical parameters such as layer thickness and thermal

conductivity of Cu and Si are adopted from [7]. For example, the top three layers are thinned

to 20µm while the bulk Si layer closest to the heat sink is of several hundreds of µm.

63

4.2.3.2 Simulation tool and power trace collection We used Hotspot [35] version

3.0.2 as our simulation tool. We chose the grid model to experiment with our 3D floorplan.

We substituted the 4th-order Runge-Kutta method with TILTS [26] to generate accurate

temperatures at high speed.

Hotspot takes power traces as inputs, and temperature variation within a die is a slower

process compared to other metrics such as IPC. Hence, we need to collect extended power

traces to model realistic temperature variations such as warming up and cooling down due to

task scheduling. As mentioned earlier, we adopt the recently proposed performance counter

based method [37,73] to collect runtime hardware activities of a program on a real machine.

We obtained the power model (calibrated) from [37, 73] to produce long power traces for

programs from a Linux machine with a Pentium 4 core. The traces contain powers for each

functional unit, and all traces are a complete execution of the programs in SPEC2K.

For scheduling algorithms that require power information (Balancing-by-core and Balancing-

by-stack), we use the power in the last 8ms interval to predict the power in the next interval.

That is, the scheduling decisions are based on local power information. The scheduler does

not need to know whether a program is globally hot or cool. Also, we use the last power

predictor in the scheduler due to its simplicity. We experimented with more complex power

predictors and found that their overhead, both in time and space, is not appropriate for

on-line scheduling [76]. Most of the benchmarks exhibit ∼ 5% power mis-prediction rate.

Our experiments show that an error within 5% makes last power prediction accurate enough

for the scheduler.

4.2.3.3 Benchmark classification We first ran the power traces of each benchmark to

obtain its temperature profile as shown in Figure 21. The power traces ran in the HotSpot

thermal simulator. Because the RC constant of the simulator is a little different from Pentium

4 processor, this thermal profile is a little different from Figure 6 in the previous section.

We next classified these benchmarks as hot(power-intensive), cool(power non-intensive), and

mild(between hot and cool). After that, we created 9 workload combinations, as listed

64

in Table 3, each with one or more hot tasks. The workload mixes without hot tasks are

less thermally critical and thus, are not considered here. In Table 3, when the number of

benchmarks in one combination is less than 8, copies of the benchmarks were created to

ensure that every core in the floorplan has one task to run. This resembles the situation of

running parallel threads of the same program in multicore processors.

Figure 21: Temperatures of the benchmark in SPEC2000

4.2.3.4 DVFS implementation and context switching overhead We modified Hotspot

to incorporate the hardware DVFS. Every 80µs, 1/100 of a scheduling interval, Hotspot

checks if the temperature has trespassed the threshold. If so, the voltage is lowered from

1.3V to 1.1V and the frequency is reduced by 4/5. We charge 30 µs of overhead on every

voltage/frequency transition. During a DVFS scaling, if the temperature persists above the

threshold after one 80µs, the scaling continues and no additional DVFS switch overhead is

charged. We do not choose multi-level DVFS scheme to avoid unnecessary switch overhead

in every level transition.

The other overhead in our proposed scheduler is the increased number of context switches.

We measured this time in a Linux machine by enforcing a large number of context switches

between two tasks, and calculating the average switch time from the increased execution time

of these two tasks. Such measurement also includes the cache warm-up time required by the

65

Table 3: The combination of benchmarks in simulation

HC crafty mcf

HC sixtrack swim

HHCC bzip twolf art ammp

HMMC wupwise equake applu ammp

HM gzip mgrid

HM parser equake

HHMM crafty gzip mgrid apsi

HHMMMCCC gap twolf equake mgrid vortex ammp art swim

HHHHCCCC bzip gzip sixtrack wupwise ammp art mcf swim

66

tasks. This quantity in our test machine is ∼ 35µs. Later we will see that our proposed

scheduler can still outperform Linux baseline scheduler even with much higher context switch

frequency.

We set the thermal threshold to trigger DVFS as 105◦C. This threshold introduces

6%∼25% (12.4% on average) thermal emergencies in the task mix, which account for 4%∼16%

(8.4% on average) performance degradation under Linux baseline algorithm. Note that the

thermal intensity of applications is a feature relative to the emergency threshold. For exam-

ple, if the average temperature is close/far to/from the threshold, then this application is

considered hot/cool. Hence, testing a high threshold would make most programs “cool”, and

scheduling cool threads is not necessary. Testing on an overly low threshold would make most

programs “hot”, which is unrealistic and scheduling would not help anyway. Therefore, we

chose 105◦C to present practical scenarios and to give reasonable room for scheduling threads

of different thermal intensity.

4.2.4 Results and analysis

The metrics we use to evaluate different scheduling algorithms are peak temperature of all

cores, the reduction in time that a task stays above the thermal threshold (termed “thermal

emergency reduction” in later discussion), and performance improvement in terms of total

execution time reduction of all tasks. The peak temperature indicates how well a sched-

uler can alleviate the worst cases of the thermal condition on-chip. The thermal emergency

reduction indicates the capability of a scheduler to control the temperature below the hard-

ware threshold. The performance improvement is the result of both the thermal emergency

reduction and the efficiency of lowering the temperature during an emergency. Next, we

present the results for homogeneous and heterogeneous floorplans separately.

4.2.4.1 Homogeneous floorplan In the following we will introduce the experiment re-

sults on the thermally homogeneous floorplan. Five schedulers, Baseline, Random, Roundrobin,

Balancing-by-core, and Balancing-by-stack, are tested in the experiments.

67

First, let us see a qualitative comparison among different schedulers on the homogeneous

floorplan. Figure 22 shows a close-up of temperature traces for 8 cores running the HMMC

workload under different scheduling algorithms. Here, we did not enforce DVFS at the

threshold because otherwise, many high temperature curves would be capped at the thresh-

old. As we can see, the baseline algorithm can result in a large temperature gradient across

different core stacks. A ∼ 34◦C difference between the hottest and the coolest core stack is

observed in this figure. For Random and RR scheduler, the temperature gradient within the

3D chip gradually reduces because their scheduling interval is 8ms, much smaller than that in

the baseline. The temperature gradient is between 4-19◦C in these schedulers. Finally, both

the Balancing-by-core and our proposed Balancing-by-stack schedulers create the smallest

temperature gradient among all cores. The temperature curves of all cores almost overlap

entirely. The width of the temperature band is 2-6◦C only, indicating an excellent balance

of temperature among the cores. However, the Balancing-by-core scheduler generates more

fluctuation. Note that an ideal temperature balancer would create a 0◦C difference among

all cores. Hence, our proposed Balancing-by-stack algorithm is only a couple of degrees from

the ideal case.

Balancing the temperatures across the chip can help to reduce the peak temperatures

among all cores. Figure 23 shows the peak temperature generated from each scheduling

algorithm assuming there are no DVFS employed (otherwise, the peak temperature is just the

thermal threshold). We can see from the figures that the baseline algorithm can generate the

highest peak temperature of 118.31◦C. The Random, RR, Balancing-by-core and Balancing-

by-stack can reduce the peak temperature better and better. Our proposed Balancing-by-

stack scheduling generates the second lowest peak temperature of 113.71◦C, 4.6◦C lower

than the baseline and a mere 0.03◦C higher than that of Balancing-by-core.

A direct benefit from scheduling the tasks is the reduced thermal emergency time, i.e.

the time a core temperature stays above the hardware thermal threshold. Note that this

metric does not necessarily correlate with the peak temperatures reported in Figure 23,

which are collected under no DVFS. For example, a relatively low peak temperature may

68

Figure 22: A zoom-in of temperature variation over time under different scheduling algo-

rithms.

Figure 23: Peak temperatures of different scheduling algorithms.

69

still trip DVFS if temperature oscillates around the threshold often. Figure 24 shows thermal

emergency time reductions from different algorithms, normalized to the baseline case. As we

can see, the Random, RR and Balancing-by-core can reduce the emergency time by 30.9%,

37.41% and 36.4% on average respectively. Our Balancing-by-stack algorithm removes the

most emergency time in 8 cases of 9 benchmarks. An average of 46.23% reduction is observed,

with a range of 6.06%-96.04%. Also, the Balancing-by-core algorithm turns out to introduce

as much emergency time as RR algorithms even with lower peak temperature. This is

because (1) it tends to create temperature oscillations among core stacks as discussed in

Section 4.2.2.4; and (2) it tends to allocate cooler tasks on the top layer where DVFS is

usually engaged for a long time. The consequence is that the overall power in the entire

chip is not reduced as much as in other schedulers, where high power tasks can be scaled

during emergencies. Therefore, a Balancing-by-core scheduler may not be a good scheduling

candidate in practice.

Figure 24: Thermal emergency time reductions in homogeneous floorplans.

Corresponding to the thermal emergencies removed, our proposed Balancing-by-stack

algorithm achieves the best performance improvement among all algorithms discussed. This

is shown in Figure 25. The performance is the total execution time of all 8 tasks in a workload.

The results are normalized to the baseline performance. On average, the Balancing-by-stack

achieves a 5.11% improvement, while the Random, RR, and Balancing-by-core algorithm

achieve 1.45%, 1.72% and 1.65% improvement respectively. This is primarily due to the

70

number of thermal emergencies our algorithm removed, as well as the high efficiency in

handling them with the new thermal management mechanism proposed by us.

We also notice that for some occasions, the performance may not improve even if the

thermal emergency time is reduced. This could happen when the temperature floats around

the thermal threshold, but does not increase overly high. In such a scenario, there could be

many DVFS triggered, which introduce a high transition penalty and overkills the gains from

scheduling. For example in the HMMC workload, the Balancing-by-core removed 18.01% of

thermal emergency time in the Balancing-by-stack, but its performance is 0.54% worse than

the Balancing-by-stack. Our Balancing-by-stack removes more thermal emergency time than

other schedulers in 8 cases of 9 benchmark combinations, and therefore, achieves the most

performance improvement.

Figure 25: Performance improvements for homogeneous floorplans.

Since Balancing-by-stack utilizes three heuristics, we want to investigate the individual

contribution of each heuristic. We call the heuristic to always trigger DVFS on the most

power-intensive job in the same stack as powsca, and call the heuristic to move the hotter

jobs closer to the heat sink as hotseq. Finally we call the heuristic to balance the power

among core stacks as balance. We conducted the experiment and the results are shown in

Figure 26. All the results are relative to the performance improvement of the Random

scheduler. The first bar in each group shows the performance improvement compared to

the Random scheduler when only using powsca. On the average, this heuristic achieves

71

1.71% improvement. The third bar shows that using balance gets only 0.39% improvement

on the average. In particular, using balance is worse than the Random scheduler under the

workloads such as HHMM, HM gzip and HM parser. The reason is that balance tends to

make the thermal traces smooth and avoid thermal peaks, seen in Figure 22. When the

thermal traces are all very close to the threshold, averaging power among the core stacks

makes each core stack trigger lots of DVFS. On the contrary, Random can heat up some

cores and leave some other cores cool, as shown in Figure 22. Thus at least some cores do not

trigger DVFS. hotseq itself can not improve performance, because it always assigns the hot

jobs onto the cores close to the heat sink. When DVFS is triggered, it’s the cool jobs away

from the sink getting penalized. So the total amount of power in one stack does not decrease

significantly. However, hotseq can aid powsca and balance to improve the performance by

3.15% and 1.63% respectively.

Figure 26: The individual and combined effects of three heuristics. The results are relative

to that of the Random scheduler.

4.2.4.2 Heterogeneous floorplan In addition to the five algorithms applied to the ho-

mogeneous floorplan, two additional algorithms are also tested for heterogeneous floorplans.

The first is the revised Balancing-by-stack algorithm with dynamic super task forming mech-

72

anisms. The algorithm is designed to tackle the thermal heterogeneity of the floorplan as

discussed in Section 4.2.2.5. The second is a pseudo-optimal algorithm that tests the quality

of each algorithm discussed. We term this algorithm a “1-step-optimal” since it tries all

task bundling mechanisms and chooses the one that triggers the fewest DTMs in one next

step. Notice that this is not a true optimal algorithm which would go beyond one-step to

enumerate all possible schedules and pick the optimum one (and so is termed “1-step” only).

Although it is not realistic to adopt “1-step-optimal” algorithm online due to its complexity,

it does indicate the potential for improvement of the discussed algorithms.

Figure 27 shows the thermal emergency time reduction for different algorithms nor-

malized to the baseline case. As we can see, Random and RR perform relatively poorly

compared with other algorithms because of the heterogeneity in the floorplan. They achieve

12.41% and 12.35% of thermal emergency time reduction respectively. Our proposed dy-

namic Balancing-by-stack algorithm achieves a total of 46.37% reduction, only 1.92% away

from the 1-step-optimal on average, and is better than the remaining algorithms. For exam-

ple, it removes 9.22% more emergency time than the original Balancing-by-stack algorithm.

This indicates that dynamically tuning of the task bundling is very helpful to a thermally

heterogeneous floorplan. The Balancing-by-core algorithm is slightly better than dynamic

Balancing-by-stack in three cases: HHHHCCCC, HHMMMCCC and HM gzip. This is be-

cause when ∆T and ∆P do not change, our dynamic Balancing-by-stack algorithm will

select the same one from the fixed power bundling schemes, while a slight re-ordering of core

temperature will cause Balancing-by-core to form a different and better power bundle more

flexibly. Also, Balancing-by-core slightly surpasses 1-step-optimal in HHMMMCCC and

HM gzip workloads. This is because the 1-step-optimal does not generate a global optimal

schedule.

Compared with the thermal emergencies removed, our dynamic Balancing-by-stack al-

gorithm achieves the best performance improvements on average among all the algorithms

except 1-step-optimal.

73

Figure 27: Thermal emergency time reductions in heterogeneous floorplans.

Figure 28 shows that Random and RR achieve 0.39% and 0.31% improvement respec-

tively, which is notably lower than 1.45% and 1.72% improvement shown in Figure 25,

indicating that Random and RR are not as helpful in heterogeneous floorplans as in homo-

geneous ones. Balancing-by-stack achieves 2.46% improvement more than Balancing-by-core,

though Figure 27 shows it removes 6.74% less thermal emergency time than Balancing-by-

core. The reason behind this is that Balancing-by-core tends to generate a lot of overhead

in DTM mode switches though the total time above the emergency threshold is low which

was reported in Figure 27. Finally, the dynamic Balancing-by-stack algorithm achieves the

best performance improvement of 4.78% with negligible gap from the 1-step-optimal.

4.3 MAXIMUM BIPARTITE MATCHING IN CMP WITH PROCESS

VARIATION

As IC technology nodes continually scale down to 45nm and below, there is significant within-

die process variation in the current and near-future CMPs. Process variation(PV) makes the

cores in the chip differ in their maximum operable frequency, and the amount of leakage power

they consume. To take advantage of the frequency variation of the cores caused by process

74

Figure 28: Performance improvements for heterogeneous floorplan.

variation in CMPs, Teodorescu et al. [68] proposed an algorithm named VarF&AppIPC

to map higher-IPC(instructions per cycle) cores to faster cores in order to obtain higher

overall throughput. The reason behind this approach is that low-IPC applications are often

memory-bound and usually benefit less from high-frequency cores than high-IPC applications

do.

We will demontrate that VarF&AppIPC might not be able to achieve as high throughput

as it intends to do under thermal constraints. We propose here a task migration algorithm

that tries to maximize throughput by taking both thermal and PV issues into account. The

algorithm not only considers the frequency and leakage power information on each core, but

also considers the power characteristics of running jobs (tasks). With that information, the

algorithm predicts the throughput of each core-job binding, and uses the Maximum Bipartite

Matching algorithm to get the optimal mapping.

4.3.1 Motivation

The within-die process variation has a significant impact on the CMP fabricated with 45nm

technology nodes and below. We inverstigated the process variation using PV modeling

method described in [59]. The details of the modeling will be introduced in the experiment

75

setup part in Section 4.3.4.2. Figure 29 shows the discrepancies of the maximum possible

frequencies and the leakage power among the cores on our sample 16-core die 1, 3 and 7,

which are picked from a total of 600 dies we modeled. The result in the figure demonstrates

that running the CMP at the frequency of the slowest core can waste the computational

power of the CMP up to 10%, because the higher-frequencies of the faster cores are wasted.

Teodorescu et al. [68] advocate letting the cores run at their maximum frequencies.

Furthermore, they always map the higher-IPC jobs onto faster cores, because low-IPC jobs

are often memory-bound and benefit less from high-frequency. This algorithm is known as

VarF&AppIPC in [68]. VarF means the frequencies of the cores are varied, and AppIPC

means the IPC of the jobs are considered in their scheduling algorithm. Later we refer to

this algorithm simply as AppIPC, because all the algorithms in this work will run on cores

that have varied frequencies.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

die1 die3 die7

Fr
eq

ue
nc

y(
G

H
z)

core 1
core 2
core 3
core 4
core 5
core 6
core 7
core 8
core 9
core 10
core 11
core 12
core 13
core 14
core 15
core 16

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

die1 die3 die7

R
el

at
iv

e
le

ak
ag

e
po

w
er

core 1
core 2
core 3
core 4
core 5
core 6
core 7
core 8
core 9
core 10
core 11
core 12
core 13
core 14
core 15
core 16

 (a) (b)

Figure 29: (a)The variation of the frequencies of the cores on sample die 1, 3 and 7 among

the 20 sample dies. (b) The variation of the leakage power of the cores on sample die 1, 3

and 7 at the temperature of 100C.

Although AppIPC can produce higher throughput when the die is under no thermal

limit, it’s actually not effective when there are thermal constraints to be met under thermal

management. The binding of a high-IPC job to a fast core means more instructions per

76

second(IPS), which typically translates to higher dynamic power. Furthurmore, faster cores

typicaly contain a large portion of gates with low Vth, so the leakage power in the faster cores

is often higher. The combined effect of high dynamic and leakage power is that faster cores

are more likely to run into thermal emergencies and trigger hardware DVFS. As a result,

the throughput on the faster cores will not be as high as it is supposed to be. Therefore, the

effectiveness of AppIPC is reduced.

To verify this, we make a preliminary study in a 16-core CMP with process variation by

running 4 to 16 jobs(tasks). Each bar in Figure 30 actually represents the average results

from 8 different workloads running on 20 sample dies. Fixed means that the scheduling binds

each job on one core from the beginning to the end of the job execution, which mimics the

Linux baseline algorithm. NoDVFS represents the ideal scenario where there are no thermal

constraints so that no DVFS is triggered. In the left of Figure 30, the first two bars in

each group shows that AppIPC noDVFS achieves higher throughput over Fixed noDVFS by

0% to 6.7% when the number of jobs n decreases from 16 to 4. The reason why there is

barely no performance improvement when n = 16 is that AppIPC needs to track the IPC of

jobs dynamically, and migrates jobs if necessary. Therefore, the overhead of task migration

offsets the gain of AppIPC. The right two bars in each group show that under thermal

constraints and DVFS, AppIPC DVFS achieves -0.8% to 4.7% throughput improvement

over Fixed DVFS. The reduction of AppIPC effectiveness can be explained by the amount of

DVFS triggered. The right of Figure 30 shows AppIPC triggers more DVFS than Fixed no

matter how many jobs there are. For example, when n = 8, 12.7% more DVFS is triggered

by AppIPC. Therefore, when there are thermal constraints, although AppIPC can still map

higher-IPC jobs to faster cores, it suffers from more of a throughput penalty from DVFS

compared to Fixed. This reduces the effectiveness of AppIPC. To avoid a penalty from DVFS,

the best way [22] is to move the high-IPC job to a cool core, which can potentially be slow.

In this case, the high-IPC job can not enjoy the relatively high frequency on the faster cores.

Therefore there is not a clear view of choosing which core: a slow one, or a fast one that

triggers DVFS, and we are motivated to find a good metric to make an effective judgement.

77

80.0%

85.0%

90.0%

95.0%

100.0%

105.0%

110.0%

115.0%

120.0%

16 jobs 12 jobs 8 jobs 4 jobsR
el

at
iv

e
th

ro
ug

hp
ut

(in
st

r.
pe

r s
ec

on
d)

fixed_noDVFS
AppIPC_noDVFS
fixed_DVFS
AppIPC_DVFS

80.0%

85.0%

90.0%

95.0%

100.0%

105.0%

110.0%

115.0%

120.0%

16 jobs 12 jobs 8 jobs 4 jobs

R
el

at
iv

e
nu

m
be

r o
f D

V
FS

 tr
ig

ge
re

d

fixed
AppIPC

Figure 30: The relative throughput attained(left) and the relative DVFS triggered(right) by

running varied number of jobs when the interval is 8ms and the thermal environment is hot.

4.3.2 MBM algorithm

For any mapping of jobs onto cores, there is always a corresponding overall throughput. We

believe the the overall throughput on the cores is the ultimate objective of a good mapping.

To achieve the optimal overall throughput, simply considering IPC of jobs and frequencies

of cores seperately as did in AppIPC is not enough.

Imagine there is only one job to be assigned to a n-core CMP in the next scheduling

interval, if we can predict the IPS(throughput) of the job when running on the cores, it is

not difficult for us to decide which core is better for maximizing the throughput. Under the

thermal constraint, the candidate core may not be the fastest core because the fastest core

might approach the thermal limit and can trigger a lot of DVFS. It may not be the core as

fast as possible but not triggering any DVFS, because the benefit from a much faster core

may outweigh the loss brought by a little DVFS on that core. The success of picking the

most suitable core relies on the accurate prediction of IPS, which will be introduced in detail

in Section 4.3.3. Now, considering a more general case when there are n cores and n jobs,

the problem becomes complex: How to choose the best mapping from n! possibilities of 1-1

mapping?

78

This problem is described in Figure 31 as a weighted complete bipartite graph, in which

the jobs and the cores are vertices on the top and at the bottom in the graph. The binding of

one job and one core corresponds to one edge with the corresponding IPS as the weight. This

problem can be solved by the classical maximum bipartite matching algorithm [72](referred

as MBM in this thesis). The time complexity of running this algorithm is O(V 2 log(V)+V E),

where V and E is the number of cores and edges respectively. In practice, the computation

time is not a big overhead for the current and near-future CMP. When the core number

n = 16, the computation time to get the optimal result is 16µs using a 2.8GHz Intel Xeon

CPU; when n = 64, the time is 58µs. If the scheduling interval length is 100ms, which

is very typical in a current Linux OS [9], the overhead is just 0.058%. Compared with

this algorithm, an exhaustive search for the optimal solution will take about 2.6 days when

n = 16.

Figure 31: K4,4 complete bipartite graph, symbolizing the possibilities of mapping jobs onto

cores

If the number of jobs m is smaller than the core number n, we can treat this as if there

are m real jobs with nonzero power and (n − m) jobs with zero IPC and zero dynamic

power. The algorithm can be used without any major modification. If the number of jobs

m is bigger than n, the state-of-art OS scheduler will always select n jobs out of m ones and

79

assign them onto the CMP, in one scheduling interval. The principle behind this is to keep

all the cores busy, but not to make tasks compete for resources on one core. Therefore, we

can still think there are currently n jobs on n cores, and solve the problem in a similar way.

4.3.3 Preparation of input to MBM

The key of the success of the MBM algorithm lies in the prediction of IPS. If the future

IPC of a job and the future frequency F of the related core do not change in the interval,

the IPS is computed as IPC ∗ F . However, F may change due to the fine-granularity HW

DVFS happening inside the interval, and IPC may change due to the program behavior of

the job itself. If IPC and F change, the whole scheduling interval is discretized into n tiny

steps, with the job’s IPC (IPCk) and core frequency Fk unchanged in each time step ∆t.

The average throughput is then (
∑n

k=1 IPCkFk)/n. We can see that the prediction of IPS

requires the necessary information such as the job’s IPC characteristic, the core’s voltage

and frequency levels, and how much DVFS the core will undergo in the next scheduling

interval. To understand the IPC characteristic of a job, modern CMPs usually provide

hardware performance counters to measure it. The multiple voltage and frequency levels

supported by each core should be provided by hardware manufacturers in the device drivers.

cpufreq [82] is such a driver program in current versions of Linux to provide this information

for underlying CPUs. Finally, how much DVFS a core will undergo is tightly linked with

the current temperature and the future thermal change.

The matrices in Figure 32 illustrate the workflow of preparing the input of future IPS for

the MBM algorithm. We will first predict the future temperature change without the impact

of DVFS when one job is assigned onto one core. Each entry in the Temperature Prediction

Matrix on the left of Figure 32 represents the possible future temperature of one core. Based

on the knowledge of the current temperatures and the predicted future temperatures, we use

a trained table to estimate the average frequency of each core in the next scheduling interval,

as shown in the middle of Figure 32. Using the historical IPC information of the job and the

predicted core frequency, we can estimate the throuhgput of every possible binding of core

80

and job. The matrix shown on the right of Figure 32 is the input to the maximum bipartite

matching algorithm, which enables the algorithm to run and output the optimal job-core

bindings.

Figure 32: The matrices generated for throughput prediction.

4.3.3.1 Predicting future temperatures The first step to do IPS prediction is to

predict the thermal changes in the next interval. The lateral heat conduction between cores in

a typical die is very weak compared to the vertical heat conduction to the heat sink [80]. For

example, for a typical 32nm technology node CMP having each core with 500µm in thickness

and 6mm ∗ 6mm in size of area(the area size close to one core in the recent Clarkdale [81],

the lateral thermal conductance of the core is only 1/12 of the vertical thermal conductance.

Hanumaiah et al. also give a detailed analysis of the relationship between on-die lateral and

vertical conductance in [28], and they draw the similar conclusion as ours. Therefore, in

order to simplify the computation, the impact of lateral heat conduction is not considered

when predicting the temperature. We also conducted experiments on our simulated 16-core

CMP by setting the parameters of the cores to be the same and running identical jobs from

the same start. We observed that the peak temperatures on the cores were very close at all

the time. If the lateral heat conduction was a significant factor, the cores in the middle of

the die would be much hotter than the cores on the edge. Even if the core temperature is

affected by surrounding cores, as a result of the die and package configurations different from

81

ours, as the phenomenon observed in [19, 21], there are ways to consider the impact from

several surrounding cores, such as the Neural Network predictor shown in [21]. To illustrate

the effectiveness of the MBM algorithm, we assume in this work that the future temperature

of one core is only strongly correlated with the power inside that core.

By using the lumped model to treat each core as one thermal node, we borrow the classical

thermal equation 4.11 from [61, 26] to describe the estimation of future temperature when

job j is assigned onto core i.

T ′
i,j = ATi + BP leak

i + BP dyna
i,j (4.11)

In this equation, Ti represents the current temperature, and T ′
i,j is the temperature of the

core i after a scheduling interval. A and B are precomputed thermal constants whose actual

values depend on the physical behavior of the chip [26,12], and other parameters such as the

heat sink conductance and the scheduling interval length. P leak
i is the average leakage power

of core i during the scheduling interval. P dyna
i,j corresponds to the dynamic power on core i

due to the activities of job j. Here is a simple introduction about how these parameters can

be attained in a real system.

• Ti: The current temperature Ti can be read from the hardware thermal sensor on each

core, as in [70], or be calculated by using software thermal sensor proposed by W. Wu et

al. in [74].

• A and B: The parameters A and B for a real chip can be computed using system iden-

tification methods such as the methods presented in [70, 73]. Basically these methods

utilize the values of temperatures and power to deduce the values of A and B.

• P leak
i : P leak

i is determined by the temperature and the PV characteristic of core i. The

PV characteristic of the core is a parameter that needs to be given by chip manufacturers.

E. Kursun et al. in [43] provide a black-box method where they use the thermal imaging

technique to estimate the PV characteristics of a CMP. Because the variation of temper-

ature in 8ms is relatively small, at most several degrees, the leakage power of one core

during such a short scheduling interval can be regarded as a constant. However, when

82

the interval length increases, the temperature change could be significant. Assuming a

constant leakage power is no longer accurate. So in this case, we need to split the whole

interval into many smaller intervals, each of which is 8ms long. And Equation 4.11 needs

to be used over and over. Fortunately, the overhead of computation is distributed into

all the smaller intervals, and it equals to the overhead in 8ms.

• P dyna
i,j : Inside each program phase of job j, the dynamic power of job j is relatively

stable. This is recently shown by the thermal predictability of a majority of SPEC06

benchmarks in [50]. Because our scheduling interval is much smaller than a program

phase, we can use the power in the last interval to predict the power in the next interval,

without losing much accuracy. We conducted an offline study of predicting future power

of SPEC06 benchmarks [91]. The result shown in Figure 33 shows that the average error

rate by using the last-value prediction method is around 7%. For a temperature rise

of 5◦C, the power prediction error can cause a temperature estimation error of 0.18◦C

in our die and package configuration, suppose the leakage power is as significant as the

dynamic power.

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

bzip2

gcc

m
cf

gobm
k

hm
m

er

sjeng

om
netpp

astar

bw
aves

gam
ess

m
ilc

zeusm
p

grom
acs

cactusAD
M

leslie3D

nam
d

dealII

povray

G
em

sFD
TD

h264ref

perlbench

tonto

lbm

w
rf

sphinx3

average

SPEC06 benchmarks

P
ow

er
 p

re
di

ct
io

n
er

ro
r r

at
e power error rate 8ms

power error rate 64ms

Figure 33: The error rate of power prediction by using last-value prediction method.

By using equation 4.11, we can fill out the diagonal entries in the Temperature Prediction

Matrix in Figure 32. The next step is to fill out the remaining entries. The core frequencies

83

on core k and j are different, so the dynamic power varies when the same job j is assigned

onto these two cores. But we can safely assume that the dynamic power of the circuits has

a linear relationship with the frequency, suppose the frequency only varies within a small

range. This assumption holds correctly especially for the high-IPC jobs, and these jobs have

a larger impact on the throughput than the low-IPC jobs that are often memory-bound.

Based on this assumption, when job j moves from core k in the last interval to core i in

the next interval, the future dynamic power can be estimated as P dyna
i,j = P dyna

k,j ∗ Fi/Fk.

Therefore, equation 4.11 changes to:

T ′
i,j = ATi + BP leak

i + BP dyna
k,j ∗ Fi/Fk (4.12)

With this equation, we can fill the remaining entries in the Temperature Prediction Matrix.

Our way of temperature prediction is a distributed method. At the beginning of one

scheduling interval, each core i first computes the intermediate ATi, BP leak
i and BP dyna

i,j′ ,

where j′ is the job on core i in the previous interval. The computation involves 3n mul-

tiplications. Next, the cores send the intermediate results to the core where the OS task

scheduler resides. Finally, the task scheduler scales and adds these intermediate results to

fill the matrices, taking n2 − n multiplications and divisions, and 2n2 additions.

For more accurate thermal modeling in our experiments, the core is divided into funtional

unit blocks. For example, a P4 Northwood core is composed of 24 functional unit blocks.

A, B, P, T in the equation 4.11 and 4.12 will become matrices and vectors. We measured

that the total time for matrix-vector multiplications on the local core is 25µs by using a real

system with a P4 Northwood core. The scaling and addition of the temperature vectors for

all the entries by the scheduler takes about 2.3µs.

4.3.3.2 Frequency prediction The second step for IPS prediction is to predict the

future frequencies. Figure 34 depicts how to estimate the frequency. The solid line in the

left half of Figure 34 illustrates that the thermal rise suppressed by DVFS in a real scenario.

Without DVFS the temperature can rise from initially being below the threshold to some

84

point above the threshold at the end of the scheduling interval, as indicated by the dotted

line. Although the dotted line is an exponential curve, we can approximate it with a linear

line with little loss in accuracy, because our scheduling interval is short and on the order

of milliseconds to tens of milliseconds. The intersection of the linear line and the thermal

threshold θ determines the starting point of the thermal fluctuation. In the right half of

Figure 34, we use α to denote the portion before the fluctuation starts; 1 − α denotes the

period when the temperature rises and falls with DVFS off and on. There is a technique

described in [34] enabling very fast DVFS switching (on the order of tens of nanoseconds).

The technique enables the fine-granularity DVFS, and the duration of DVFS can be very

small compared with the task scheduling interval length. If the ratio of time in DVFS during

the fluctuation stage is denoted as β, the predicted effective F ′ in the next interval can be

computed using equation 4.13. However, since β is a value linked with the dynamic power,

the leakage power and the intensity of DVFS at the specific moment, it can not be obtained

easily.

F ′ = αFfull + (1− α)(βFscaled + (1− β)Ffull) (4.13)

Figure 34: The impact of DVFS on the temperature and the linear interpolation of the

temperature

Here we introduce a table-checking method. The method covers all the possibilities when

the current temperature and the predicted future temperature are at the different sides of the

85

thermal threshold. Suppose there is no DVFS in one interval (t1, t
′
1), the current temperature

T1 can change to the future temperature T ′
1 at the end of the scheduling interval. If there is

DVFS, we mark the number of DVFS triggered as k1. Suppose in another scheduling interval

(t2, t
′
2), T2 at the beginning of the interval changes to T ′

2 at the end, and the times of DVFS

triggered during (t2, t
′
2) are k2. If there are T1 = T2 and T ′

1 = T ′
2, we can assert that k1 = k2.

The reason is that the process of T1(T2) changing to T ′
1(T

′
2) reflects the underlying dynamic

power and leakage power. If the start and end temperatures are decided, the dynamic and

leakage power in this interval can be deduced according to Equation 4.12. The temperature

change during this interval is decided and so is the number of DVFS triggered. Therefore, we

can conclude that the current temperature and the predicted future temperature determine

the actual frequency during this interval. And this is the theory behind our table-checking

method.

Figure 35: The relationship among current temperature, predicted future temperature, and

future frequency((a)die 3, core 7, 2.48GHz;(b)die 3, core 13, 3.06GHz.)

In practice, we logged down the triple data of the current temperature, the predicted

future temperature, and the actual future frequency on each core. We then used a 13 by

32 table to remember this relationship among them. The row index of the table marks the

small range the current temperature of the core falls into. The column index of the table

86

marks the small range the predicted future temperature of the core falls into, as the x and y

axis in Figure 35 show. The values of temperatures shown in Figure 35 are all relative to the

thermal threshold of the core. The value in each table entry corresponds to the actual future

frequency on the particular core, shown in Figure 35 as a small colored rectangle. The space

overhead of such a table is less than 0.5KB if the values in the table can be compressed.

We can then use the trained table on each core to guide the frequency prediction. It takes

several seconds to fill the matrices shown in Figure 35(a) and Figure 35(b) with usable values.

However, our scheduling algorithm can run for a much longer time to compensate for this

training overhead. By using the trained table on each core, we can directly fill the matrix

in the middle of Figure 32.

4.3.3.3 An evaluation of temperature and frequency estimation error The ac-

curacy of the predicted frequency depends on the accuracy of the predicted temperature and

the accuracy of table-checking method. To understand the combined effect of these factors,

we conducted experiments to compare the predicted frequency to the actual frequency in

the next scheduling interval. Figure 36 shows the error rate of frequency estimation under

different scheduling intervals. When the scheduling interval is 8ms, the average error rate

is 1.7%. For a core with an actual frequency of 3GHz in the next interval, the estimated

frequency is around 2.95GHz to 3.05GHz. When the interval is 64ms, the average error rate

reaches 4.26%. The estimated frequency is approximately 2.88GHz to 3.12GHz. The reason

for the increase of the prediction error lies in the the power prediction error. The power pre-

diction error in the 64ms interval is comparable to the error in the 8ms interval, as shown

in Figure 33. However, because the thermal coefficient matrix B in Equation 4.11 under the

64ms interval is different from the B under the 8ms interval, the power error in the 64ms

interval can generate a larger temperature prediction error. Though such inaccuracy can

affect the effectiveness of MBM, we show later in the experimental results that MBM still

wins over other algorithms by quite a large margin.

87

0.0%
1.0%
2.0%
3.0%
4.0%
5.0%
6.0%
7.0%
8.0%
9.0%

10.0%

ALL
_F

LO
AT

ALL
_H

IG
H

ALL
_IN

TEGER

ALL
_L

OW

HIG
H_M

ID
DLE

HIG
H_M

ID
DLE

_L
OW_1

HIG
H_M

ID
DLE

_L
OW_2

MID
DLE

_L
OW

AVG

E
rr

or
 ra

te
 o

f f
re

qu
en

cy
 p

re
di

ct
io

n

8ms
16ms
32ms
64ms

Figure 36: The relative error rate of future frequency prediction under varied scheduling

intervals when the number of jobs is 8 and the thermal environment is hot.

4.3.3.4 IPS prediction For the last step, we also use the last-value based IPC pre-

diction method. We conducted the experiment to evaluate this method. The result in

Figure 37 shows that the average error rate of IPC predition using 8ms scheduling in-

terval is 10.7%. The average error rate when the interval is 64ms is 12.3%. Such error

rates may generate a large negative impact on throughput in the real situation. Suppose

the job-core mapping achieved by using the last-value IPC prediction method is MAP =

{(i, j)| job j maps to core i}, and the other mapping achieved by using oracle knowledge

of the future IPC of the jobs is MAP ′. The throughput using MAP ′ is always larger than

that using MAP . However, Figure 38 shows that the difference of the throughput between

MAP and MAP ′ is less than 0.08% with the interval length varying. We realize that the

IPC misprediction may not change the relative sequence of jobs’ IPC. The high-IPC job still

has a large chance to be assigned to a fast core, and vice versa. So by the using last-value

based method, we computed the predicted throughput(IPS), and can fill the matrix on the

right of Figure 32.

88

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

bzip2

gcc

m
cf

gobm
k

hm
m

er

sjeng

om
netpp

astar

bw
aves

gam
ess

m
ilc

zeusm
p

grom
acs

cactusAD
M

leslie3D

nam
d

dealII

povray

G
em

sFD
TD

perlbench

h264ref

tonto

lbm

w
rf

sphinx3

average

SPEC06 benchmarks

A
bs

ol
ut

e
IP

C

0.0%
5.0%
10.0%
15.0%
20.0%
25.0%
30.0%
35.0%
40.0%
45.0%
50.0%

R
el

at
iv

e
IP

C
 p

re
di

ct
io

n
er

ro
r

ra
te

mean IPC
absolute IPC error 8ms
absolute IPC error 64ms
relative IPC error 8ms
relative IPC error 64ms

Figure 37: The absolute and relative error of IPC prediction by using last-value prediction

method.

Figure 38: The comparison between the future throughput achieved by using oracle IPC

knowledge and the future throughput achieved by using last-value IPC in MBM.

89

4.3.3.5 Algorithms used in comparisons To demonstrate the effectiveness of our

MBM algorithm, the algorithms we compare it with are:

• Fixed. This simulates the Linux scheduler and dispatches jobs onto cores randomly in

the beginning. The jobs then stay on the cores until the end of execution. It does not

consider the benefits that can be brought by higher-frequency cores. Nor does it migrate

jobs from the hot cores to the cool cores even if these cores frequently trigger DVFS.

• NoDVFS. The Fixed algorithm with no thermal constraints and no DVFS is used as a

reference in some of our experiments.

• AppIPC. By always mapping higher-IPC jobs to faster cores, this achieves the highest

throughput when there are no thermal constraints. However, it incurs more DVFS with

thermal constraints. And it has task migration overhead.

• Random. This algorithm randomly migrates jobs after each scheduling interval. It has

the ability to avoid thermal emergencies to some extent, but it doesn’t enjoy the benefits

brought by fast cores.

• ThreshHot. ThreshHot is a single-core algorithm in Section 4.1 that tries to keep hot

cores as hot as possible, as long as not too hot to trigger DVFS, and leaves cool cores

as a haven for extremely power-intensive jobs. We revised it to adapt to the case of a

CMP. It is very effective in avoiding DVFS, but can not take advantage of fast cores.

4.3.4 Experimental setup

4.3.4.1 Floorplan The hardware requirement for our experiments is a CMP aware of

process variation. Chip manufacturers currently unfortunately do not disclose process vari-

ation parameters for CMPs. So we decided to conduct our experiments by simulation. We

modeled 16 cores similar to the P4 Northwood on one die to form the CMP. Because the

technology node in P4 Northwood is in 130nm and our simulated CMP uses the 32nm tech-

nology node, we first need to shrink the size of each core, the original size of which is 130mm2.

There are data showing that Intel’s recent 32nm-technology Clarkdale processor [81] has an

area of 81mm2, which accommodates 380 million transistors(4.7 Million transistors/mm2).

90

We decided to use an area of 11.7mm2 for each core in order to accommodate 55 million

transistors found in the P4 Northwood [89], by using the similar transistor/area ratio.

In the floorplan shown in Figure 39, each Pi represents a core similar to P4 North-

wood(without the L2 cache). Each Mi represents the area reserved for shared L2 cache

and other shared resources such as memory controllers, routers and power control units.

Our floorplan has enough accuracy for thermal simulations, because 22 function units in

P4 Northwood, such as execution units and register files, are modeled in our experiments.

Current off-the-shelf CMPs can report the temperatures of the individual cores, by putting

one thermal sensor on each core. So we still use the temperature of Integer Register Files,

one of the hottest function units on the die, as the representative temperature for each core.

In this way, we simulate the current placement method of on-die thermal sensors.

Considering that the TDP(Thermal Design Power) of the Clarkdale duo-core processor

is 73W, the power traces we collected are scaled to adapt to the much smaller core size.

We made the same assumption as in [68,32] that the shared L2 cache run at a unified fre-

quency, while each core runs at its distinct frequency. We call this variation-aware CMP [68]

or CMP-PV. The techniques for implementing the CMP-PV do exist. For example in Intel’s

Montecito [20], each core has its own clock and Vdd, and is called as a voltage and frequency

island(VFI). Each VFI contains a clock divider to create its own local clock signal from

the output of the shared PLL. As in AMD’s quad-core Opteron [67], asynchronous queues

provide interfacing between different clock domains, with the buffers between the cores and

their routers implemented as dual-clock FIFOs.

4.3.4.2 PV modeling In our experiments, we use VARIUS [59], a statistical tool for

modeling variations in micro-architecture. VARIUS models two key process parameters, the

transistor threshold voltage Vth, and the effective gate length Leff .

We divide our 1.15cm ∗ 1.15cm 16-core CMP die into 300 ∗ 300 grids for the sake of

accuracy. To generate the distribution of Vth and Leff , we need to set the mean value µ,

the standard deviation σ and the spatial correlation range φ of Vth and Leff in VARIUS.

91

Figure 39: The simulated floorplan of CMP-PV.

Figure 40: A 16-core CMP with process variation. The colormap under the floorplan shows

the within-die variation of the threshold voltage.

92

The technology size of the transistors in our experiments is 32nm. Consulting [68, 59],

we use σ
µ

= 12% as the intra-die Vth variation parameter, σ
µ

= 6% as the intra-die Leff

variation parameter, and φ = 0.5 for spatial correlation range, taking the size of our CMP

into consideration. Since Vth and Leff have a very strong correlation [59], we can use Vth to

replace Leff in all of the calculations that evaluate the variation of frequency and leakage

power. Figure 40 shows the resulting 16-core CMP die. Each grid corresponds to one colored

dot in the background and has a distinct Vth and Leff value.

After modeling the distribution of Vth(and Leff), its impact on leakage power can be

examined. The variation of Vth directly affects the leakage current, Ileak, of the transistors.

We assume the temperature is uniform inside one functional unit(FU) in one core, and then

Ileak at each grid can be aggregated to get the the leakage power of the function unit. The

sum of the leakage of all the units then corresponds to the leakage power of one core. It is

reasonable to assume such thermal uniformity for two reasons. The typical FU of logic is

small, so there is little thermal variation in it. For a large FU such as a cache memory, the

power density and the corresponding temperature is not high, so the temperature is not the

major factor affecting the leakage power variation in cache. Figure 41(a) shows the leakage

power discrepancy caused by process variation in 600 sample dies at T = 100◦C. The cores

in the 16-core CMP on average consume 40% more leakage power than the least leaky core

in the same die.

Another impact of Vth and Leff variation is on the maximum frequency of each individual

core. Vth and Leff determine gate delay, which affects the critical path delay in the core.

Assuming every grid might contain a critical path, and each critical path consists of ncp

gates, the critical path delay Tcp can be calculated. The longest critical path delay in one

whole core is then max(Tcp), and the core frequency is estimated to be the inverse of the

longest path delay 1/max(Tcp) [10]. Figure 41 (b) shows the frequency discrepancy caused

by process variation in 600 sample dies. The cores on average are 10% faster than the slowest

core in the die.

93

The modeling results that we get are consistent to the modeling results shown in [32,68].

We select 20 sample dies to run our experiments. In our simulation, the cores in our 16-core

CMP can run at distinct maximum frequencies, and the other parts on the die run at a

unified frequency.

Figure 41: Histograms of the ratio between (a) the average leakage power of the cores and

the power of the least leaky core (b) and between the average frequency of the cores and the

frequency of the slowest core in the die.

4.3.4.3 Simulation tools and benchmarks To enable the power trace driven simula-

tion, we use HotSpot [61, 62] as the thermal simulation tool. The 4th-order Runge-Kutta

method in HotSpot is replaced by TILTS [26] to generate accurate temperatures at faster

simulation speeds. The advantage we have is that we can collect power and IPC traces from

a real system using the Linux 2.6 kernel and a P4 CPU. This methodology of power collection

is justified in [73]. Next, the benchmarks from SPEC06 are classified as HIGH, MEDIUM,

LOW according to their IPC characteristics, as shown in Table 4. The variation among the

IPC of the jobs can let us have a deep understanding of the effectiveness of the algorithms,

because some of these algorithms utilize IPC information to maximize the throughput. How-

ever, even if the jobs are the same on the CMP, they may run at different program phases.

So task scheduling will still provide opportunities for performance improvement. Each trace

94

is reduced to several seconds long from a complete run of the benchmark, which is still long

enough to exhibit representative power and IPC characteristics. Traces are selected and

combined into multi-programmed workloads to be used as input to HotSpot. Table 5 shows

how we select representative benchmark combinations. The main idea is to mingle the jobs

with different IPC characteristics.

We modified HotSpot to implement the task execution, migration and OS scheduling

schemes. For each workload, Hotspot runs for a duration equal to 5 seconds of wall time,

and the results such as throughput are collected. Because the results could be different for

the dies with different PV variation, we selected 20 dies randomly and show the average

results in Section 4.3.5.

We set the thermal threshold as 76C, 71C, 66C and 61C respectively, to simulate the

thermal environments marked as mild, hot, severe, and extremely hot. A too high threshold

does not make the cores trigger DVFS. A too low threshold makes the cores trigger DVFS

all the time. Apparently, the algorithms in comparison will make little difference under such

too high or too low thresholds.

Table 4: IPC characteristics of benchmarks in SPEC06

h264ref 0.85 namd 0.81 dealII 0.65 hmmer 0.57 bwaves 0.56

tonto 0.50 omnetpp 0.49 povray 0.49 cactusADM 0.49 sphinx3 0.48

gcc 0.48 gamess 0.46 milc 0.46 bzip2 0.45 gromacs 0.44

leslie3d 0.44 wrf 0.43 gobmk 0.40 sjeng 0.40 GemsFDTD 0.40

astar 0.39 zeusmp 0.35 lbm 0.27 mcf 0.18 perlbench 0.14

4.3.4.4 Overhead Several factors of overhead need to be considered inside or between

scheduling intervals. The smallest scheduling interval in our experiments is 8ms. It is chosen

since it is close to the thermal constant of the chip, and also close to the lower bound of

95

Table 5: The combination of benchmarks when the number of jobs is 8.

HIGH MIDDLE LOW 1 h264ref namd omnetpp povray gamess leslie3d astar zeusmp
HIGH MIDDLE LOW 2 bwaves omnetpp milc games leslie3d gobmk zeusmp mcf

HIGH MIDDLE h264ref namd bwaves tonto cactusADM sphinx3 games bzip2
MIDDLE LOW milc games leslie3d wrf GemsFDTD astar mcf perlbench

ALL HIGH h264ref namd dealII hmmer h264ref namd dealII hmmer
ALL LOW zeusmp lbm mcf perlbench zeusmp lbm mcf perlbench

ALL FLOAT bwaves games milc zeusmp gromacs cactusADM leslie3d namd
ALL INTEGER bzip2 gcc mcf gobmk hmmer sjeng omnetpp astar

Linux recommended scheduling interval length. Furthermore, we can get accurate power

traces from the real P4 chip in such a small interval.

HotSpot is modified to simulate the hardware DVFS mechanism. Our simulated DVFS

mechanism is reactive, and the usage is to curb thermal trespassing. When the on-core

thermal sensor senses the trespassing of core temperature, it triggers DVFS, and the DVFS

lasts for 800 µs before switching off. During the triggering, the frequency and voltage of

cores are both lowered to the 60% of the maximum scale. We tried other DVFS levels(70%

or 80%) and found they do not affect the relative effectiveness of all the algorithms in

comparison. Each DVFS switching charges an almost negligible penalty of 100ns, simulating

the efficient on-chip regulator implementation [40]. We admit there are other dymamic

thermal management techniques, such as Decode Throttling and I-cache Toggling in [11].

But they will also affect the core performance when triggered. The only difference is that

they are at the micro-architecture level.

After one scheduling interval, each core conducts their local matrix-vector computation,

as described in Section 4.3.2. The centralized scheduler then collects all the necessary infor-

mation and runs the scheduling algorithm. For distributed temperature computation, the

time penalty of 28µs is charged for every 8ms. The scheduler running the MBM algorithm

needs 16µs to get an optimal scheduling solution.

96

If the job needs migration, the migration penalty for each task migration is set to 100µs,

which refers to [17]. We assume the L2 cache is shared, so 100µs is long enough for a job

to conduct a context switch and move the content in L1 cache. For example, moving 96kB

data in IBM’s POWER5 L1 cache takes only 42µs in a modern 3GHz network on chip when

the conjestion rate is not high. And we measured the average context switch time in P4

Northwood processor as 35µs.

During the period when any of the aforementioned overhead happens, no useful instruc-

tions in the workloads can be executed. Therefore for each job on the core, if the migration

happens after an 8ms interval, the total overhead will be 144µs/8ms = 1.8%; if no migration

happens, the overhead will only be 44µs/8ms = 0.55%.

4.3.5 Results

We conducted experiments to compare the performance of all the aforementioned algorithms,

by varying parameters such as the number of jobs on CMP, thermal threshold, and interval

length. In this section, we introduce the results. We will also give measurement on the

algorithms’ overhead and their energy consumption.

4.3.5.1 DVFS and throughput Figure 42 and Figure 43 show the relative throughput

achieved and DVFS triggered by running varied number of jobs when the interval is 8ms and

the thermal environment is hot. Compared with the reference throughput without thermal

constraints(NoDVFS+Fixed in Figure 30), Fixed reaches 88.6%, 87.0%,85.9% and 82.3%

of the reference throughput. AppIPC is worse than Fixed when the CMP is fully loaded,

because it triggers more DVFS. However, it shows higher throughput than Fixed when the

number of jobs decreases. The reason is that the jobs in AppIPC concentrate on faster cores,

so they run faster when DVFS is not triggered.

Surprisingly, Random achieves higher throughput than Fixed and AppIPC. This can

be explained by the smaller number of DVFS it triggers, shown in Figure 43. Random

achieves 13% to 95% reduction of DVFS in AppIPC. However, because high-IPC jobs may

97

not be assigned to the faster cores in Random, the higher frequencies in faster cores may

not be utilized. That is why Random only results in 0.4% to 3.8% throughput improvement

compared with AppIPC.

In Figure 43, ThreshHot reduces DVFS triggerings by 11.6%, 14.1%, 9.1% and 2.1%

respectively from Random when n decreases. Moreover, ThreshHot always tries to keep

hot cores hot, and leave cool cores cool. Because hotter cores are typically faster cores, it

implicitly utilizes a faster core more frequently than slower cores. So its throughput is 1%

higher than Random when n = 16, and 4.1% higher when n = 4. The weakness of ThreshHot

is that it may not bind high-IPC jobs to faster cores, even when it utilizes faster cores often.

Our MBM algorithm tries to maximize the overall throughput in the CMP. It tends to

avoid the unwanted mappings that trigger DVFS, or assign high-IPC jobs to slow cores.

Though it triggers the smallest amount of DVFS compared with other algorithms, the

amount of DVFS is very close to those in ThreshHot in Figure 43. So we believe that

mapping jobs to cores when the benefit outweighs the loss, makes it get higher throughput

than ThresHot. When the number of jobs n = 16, 12, 8, and 4 respectively, it gets 0.1%,

0.7%, 1.2% and 1.6% higher throughput than ThreshHot.

Another interesting phenomenon we observe from Figure 42 and Figure 43 is that the

smaller the number of jobs is, the better MBM(and Random and ThreshHot) works. When

the number of jobs n becomes smaller, selecting n cores from a total of m cores can generate

larger variation in the average core frequency. So the selection decision has a larger impact

on the throughput. This phenomenon is also observed in [68].

4.3.5.2 Detailed throughput for different workloads Figure 44 and Figure 45 dis-

play the relative throughput achieved and absolute number of DTM triggered by different

workloads when the number of jobs is 8, the interval is 8ms, and the thermal environment is

hot. For almost all the workloads, the sequence of algorthm effectiveness is MBM > Thresh-

Hot > Random > AppIPC > Fixed. There are some details that cannot be ignored. For

example, Random sometimes generates lower throughput than AppIPC, e.g., in ALL LOW

98

72.0%

76.0%

80.0%

84.0%

88.0%

92.0%

96.0%

100.0%

104.0%

16 jobs 12 jobs 8 jobs 4 jobsR
el

at
iv

e
th

ro
ug

hp
ut

(in
st

r.
pe

r s
ec

on
d)

noDVFS
fixed
AppIPC
random
threshot
mbm

Figure 42: The relative throughput achieved by running varied number of jobs when the

interval is 8ms and the thermal environment is hot.

0.0%
10.0%
20.0%
30.0%
40.0%
50.0%
60.0%
70.0%
80.0%
90.0%

100.0%
110.0%
120.0%

16 jobs 12 jobs 8 jobs 4 jobs

R
el

at
iv

e
nu

m
be

r o
f D

V
FS

 tr
ig

ge
re

d

fixed
AppIPC
random
threshot
mbm

Figure 43: The relative DVFS triggered by running varied number of jobs when the interval

is 8ms and the thermal environment is hot.

99

and HIGH MIDDLE LOW 2. This shows the unstableness of Random. MBM achieves the

higher throughput by 10.3% and 7.6% respectively than Fixed and AppIPC in the workload

ALL-HIGH. MBM also achieves 11.2% and 8.0% higher throughput than Fixed and AppIPC

in HIGH MIDDLE LOW 1. When the jobs are all low-IPC ones in ALL-LOW, MBM is only

3.8% and 1.2% better than Fixed and AppIPC. This can be explained by the small amount

of DVFS triggered in Fixed and AppIPC in Figure 45.

Figure 44: The relative throughput achieved by different workloads when the number of jobs

is 8, the interval is 8ms, and the thermal environment is hot.

0
10000
20000
30000
40000
50000
60000
70000

ALL
_F

LO
AT

ALL
_H

IG
H

ALL
_IN

TEGER

ALL
_L

OW

HIG
H_M

ID
DLE

HIG
H_M

ID
DLE

_L
OW_1

HIG
H_M

ID
DLE

_L
OW_2

MID
DLE

_L
OWN

um
be

r o
f D

TM
 tr

ig
ge

re
d

fixed
AppIPC
random
threshot
mbm

Figure 45: The number of DVFS triggered by different workloads when the number of jobs

is 8, the interval is 8ms, and the thermal environment is hot.

100

4.3.5.3 Thermal environment MBM can be effective under a wide range of thermal

environments. Figure 46 shows the throughput of the CMP under different thermal thresh-

olds when the number of jobs is 8. The severeness of the environment can be seen from the

extent of the throughput decrease. In Figure 46, the throughput in AppIPC corresponds

to 96.5%, 88.5%, 73.9% and 61.8% of NoDVFS(Fixed with no thermal constraints) under

different thermal conditions. ThreshHot beats all the other algorithms in all the environ-

ments. More specifically, it achieves 5.5% and 5.4% higher throughput than AppIPC, when

the thermal environment is hot and severe respectively. When the environment is mild, there

is not much DVFS triggered even in AppIPC. In contrast to this, when the environment is

extremely severe, it is difficult to find a cool core which doesn’t trigger DVFS. So in both

cases, the effectiveness of MBM relative to AppIPC decreases. It improves only by 1.9% and

1.3% respectively under these two environments. However, Random becomes worse than Ap-

pIPC under these environments, because Random now triggers the similar amount of DVFS

as AppIPC does.

50.0%
55.0%
60.0%
65.0%
70.0%
75.0%
80.0%
85.0%
90.0%
95.0%

100.0%
105.0%

mild hot severe extremely
severeR

el
at

iv
e

th
ro

ug
hp

ut
(in

st
r.

pe
r s

ec
on

d)

noDVFS
fixed
AppIPC
random
threshot
mbm

Figure 46: The relative throughput under different thermal environments when the interval

is 8ms and the number of jobs is 8.

4.3.5.4 Varied interval length Modern operating systems always use a scheduling in-

teval length that has virtually no side effect on program performance. And the scheduling

inteval length could be varied in different systems. Figure 47 shows the relative throughput

101

achieved by varying scheduling interval length when the number of jobs is 8 and the thermal

environment is hot. We can see that Fixed and AppIPC are insensitive to the change of

interval length. The insensitivity of AppIPC reflects that the IPC of a majority of SPEC06

benchmarks are stable during at least 64ms. Otherwise the results using 8ms scheduling

intervals will be quite different. ThreshHot suffers from the biggest amount of throughput

degradation, 3.8% when the interval increases from 8ms to 64ms. The reason is that a

high-IPC job can easily raise the temperature close to the threshold in 64ms. To avoid any

thermal trespasses, ThreshHot chooses to put this high-IPC job onto a slow but cool core.

So it still suffers from big throughput loss due to the low frequency of the core. MBM suffers

a mild performance loss of 1.9% when the scheduling interval changes from 8ms to 64ms.

We believe the degradation in a large scheduling inteval is due to the increased error rate of

future frequency prediction, which is discussed in detail in Section 4.3.3.3. The fact that the

scheduler can not respond to the phase changes inside a large interval can also be the reason

for such performance loss. However, such mild loss can not deny the effectiveness MBM over

a wide range of interval lengths.

80.0%
82.0%
84.0%
86.0%
88.0%
90.0%
92.0%
94.0%
96.0%
98.0%

100.0%
102.0%

8ms 16ms 32ms 64msR
el

at
iv

e
th

ro
ug

hp
ut

(in
st

r.
pe

r s
ec

on
d)

noDVFS
fixed
AppIPC
random
threshot
mbm

Figure 47: The relative throughput achieved by varying scheduling interval length when the

number of jobs is 8 and the thermal environment is hot.

4.3.5.5 Overhead Since our algorithm involves throughput prediction, task migration

and scheduling algorithms in relatively small scheduling intervals, we want to evaluate the

102

overhead incurred. The result is shown in Figure 48. In Fixed, there is no task migration

and algorithm computation. We found the overhead from DVFS is negligible. The fact

that ThreshHot and MBM incur nearly the same amount of overhead when the interval

length is 8ms, can only indicate that the major overhead is not from our MBM scheduling

algorithm. The task migration overhead is an important factor, because Random incurs the

biggest overhead when the interval length is 8ms. Besides task migration, Random does

not have other overhead. Random, ThreshHot and MBM show much bigger overhead than

AppIPC. It is due to the fact that AppIPC does not switch jobs when the IPC of the jobs

are stable in a certain phase. The overhead increases when the task migration happens more

frequently in the smaller scheduling intervals. Finally, another important source of overhead

is temperature prediction in ThreshHot and MBM. Because the leakage power can only be

assumed to be a constant in a very short period of time, the prediction of leakage power

requires many rounds of temperature computation to retain the accuracy when the interval

length is long. Therefore, when the interval length is 64ms, a majority of the overhead in

ThreshHot and MBM is due to temperature prediction. The highest overhead happens when

the interval is 8ms. The overall overhead is 1.34% for MBM and 1.57% for Random.

0.00%
0.40%
0.80%
1.20%
1.60%
2.00%
2.40%
2.80%
3.20%
3.60%
4.00%

8ms 16ms 32ms 64msTh
ro

ug
hp

ut
 p

en
al

iz
ed

 d
ue

 to
 o

ve
rh

ea
d

fixed
AppIPC
random
threshot
mbm

Figure 48: The relative throughput penalized due to all sorts of overhead under different

scheduling intervals when the number of jobs is 8 and the thermal environment is hot.

103

4.3.5.6 Energy consumption per instruction One metric to measure the goodness

of modern task schedulers is the power and energy consumption. From the results shown

in Figure 49, we found AppIPC consumes the smallest energy per instruction(EPI) among

all the algorithms. Although MBM generates the highest throughput, it results in higher

EPI. The EPI in MBM is 2.7%, 6.9%, 7.3% and 0.8% higher than AppIPC respectively, when

n = 16, 12, 8, 4. The explanation is that the CMP can benefit from the cubic power reduction

when DVFS is triggered. The more DVFS triggered, the smaller power the CMP consumes.

In the case of MBM, the throughput improvement over AppIPC can not compensate for the

energy consumed.

84.0%

88.0%

92.0%

96.0%

100.0%

104.0%

108.0%

16 jobs 12 jobs 8 jobs 4 jobs

R
el

at
iv

e
en

er
gy

 p
er

 in
st

ru
ct

io
n

fixed
AppIPC
random
threshot
mbm

Figure 49: The relative energy per instruction(EPI) by running varied number of jobs when

the interval is 8ms and the thermal environment is hot.

104

5.0 CONCLUDING REMARKS

As IC technology size further scales down, processors endure higher on-chip power density,

and temperatures on chip can easily surpass the thermal threshold. High temperatures on

the chip, if not controlled, can damage the chip or even burn the chip out. 3D die stacking,

as a promising new IC technology to improve CMP performance, can exacerbate the thermal

condition, because the power density per unit volumn is dramatically increased. Meanwhile,

there is significant within-die process variation in the current and near-future CMPs. Spatial

variation of core frequency and leakage power can cause imbalanced thermal distribution on

chip, which forms another thermal problem.

Due to the high cost and inefficiency of the current mechanical cooling techniques, one

method to constrain a CPU from overheating is hardware dynamic thermal management(HW

DTM). One widely used technique belonging to this category is dynamic voltage/frequency

scaling(DVFS). However, HW DTMs constrain the temperature at a cost of large perfor-

mance loss, in terms of longer program execution time, or lower CPU throughput. This thesis

addresses such a problem, which is how to eliminate unnecessary hardware-level DTMs and

improve chip performance, with the constraint that the processor needs to run under the

thermal threshold.

We attacked this problem by proposing software-level task scheduling algorithms, in three

different hardware scenarios: a single-core processor; 3D die-stacking processor; and CMPs

with significant process variations. In each scenario, the proposed algorithm achieved two

goals at the same time: improving the performance by avoiding HW DTMs and meeting

thermal constraints.

105

The contribution of this thesis is that we improved scheduling algorithms to save per-

formance loss, for a large set of current and near-future processors, which suffer from the

invisible thermal wall. Specifically, the scheduling algorithm proposed for single-core proces-

sors was implemented in a real system and proven to work. Although we used on-demand

clock modulation in the single-core processor, and used DVFS in the CMPs as the HW DTM

methods, our algorithms will work for any other forms of DTM. In the following, we will

summarize the results in our experiments, and discuss about future work.

5.1 SUMMARY OF RESULTS

To improve the performance of single-core processors, we proposed a heuristic algorithm

named ThreshHot, which judiciously schedules hot jobs before cool jobs, to make the future

temperature lower. Furthermore, it always keeps the temperature as close to the threshold

as possible, when the temperature is below the threshold. We conducted experiments on a

real P4 CPU with Linux operating system. In all the workloads(combination of the repre-

sentative jobs in SPEC and non-SPEC benchmarks) and in all the thermal environment, the

ThreshHot scheduler consistently removed more DTMs than other existing schedulers, often

by a great amount. The DTM reduction ranges are 8.4-81.9% (41.6% on average), 10.5-73.6%

(34.5% on average), 2.5-48.5%(21.2% on average), and 4.1-70.5% (19.6%) for mild, medium,

and harsh thermal environment, and non-SPEC benchmarks in medium environment respec-

tively. By removing unnecessary HW DTMs, the highest performance improvements from

the ThreshHot scheduler are seen in the workload “HHC”(6.56% in mild, 7.18% in medium,

and 6.45% in harsh environment) and “HCC” (6.31% in medium, 7.57% in harsh environ-

ment, and 6.25% in non-SPEC programs). The average reductions of execution time are

3.8%, 4.7%, 4.1%, and 3.25% for mild, medium, harsh thermal environment, and non-SPEC

programs respectively, compared to baseline scheduling algorithm in Linux. Considering the

slowing-downs of program execution caused by HW DTMs in mild, medium, harsh thermal

106

environment are only 15.4%, 28.9%, 21.8%, and 16.6% for mild, medium, harsh thermal

environment, and non-SPEC programs respectively, the performance improvement achieved

by the ThreshHot scheduler is significant.

In 3D die-stacking processors, three heuristics were proposed and combined as one al-

gorithm. First, vertically stacked cores are treated as a core stack. The power of jobs

is balanced among the core stacks instead of individual cores. Second, hot jobs are moved

close to the heat sink to expedite heat dissipation. Third, when thermal emergencies happen,

the most power-intensive job in a core stack is penalized in order to lower the temperature

quickly. We called this scheduling algorithm as Balancing-by-stack algorithm, and compared

it with Linux Baseline, Random, Round-Robin, and Balancing-by-core algorithm(which was

also proposed in the thesis for comparison purpose). The experiment results showed that

the Random, RR and Balancing-by-core can reduce the thermal emergency time penalized

by HW DTMs by 30.9%, 37.41% and 36.4% on average respectively. Our Balancing-by-stack

algorithm removes the most emergency time in 8 cases of 9 benchmark workloads. An av-

erage of 46.23% emergency time reduction was observed, with a variation from 6.06% to

96.04%, with respect to the workloads tested. Less thermal emergency time corresponds

to fewer HW DTMs triggered, and shorter total execution time of the jobs. On average,

the Balancing-by-stack algorithm achieves a 5.11% reduction of the total execution time

compared to the Linux baseline, while the Random, RR, and Balancing-by-core algorithm

reduce the execution time by merely 1.45%, 1.72% and 1.65% respectively.

In the CMPs affected by significant process variation issues, maximizing the overall

throughput on all the cores is in conflict with satisfying on-chip thermal constraints imposed

on each core. A maximum bipartite matching(MBM) algorithm was proposed to solve this

dilemma, to exploit the maximum performance from the chip. We compared MBM algorithm

with Linux baseline algorithm, AppIPC [68], Random, and ThreshHot. When the thermal

environment is hot and the number of jobs n = 16, 12, 8, and 4, the MBM algoritm re-

moves 21%, 54%, 77%, and 91% of HW DTMs(DVFS) from the Linux Baseline respectively,

outperforming the other algorithms in comparison. In terms of CPU throughput, compared

107

with Linux Baseline, the MBM algorithm shows 1%, 4%, 8%, and 14% of throughput im-

provement respectively; compared with ThreshHot, it can still show 0.1%, 0.7%, 1.2%, and

1.6% of throughput improvement respectively. In the experiments, we also simulated various

thermal environment and try varied scheduling intervals. The experiment results proved that

the MBM algorithm unanimously won over the other algorithms in comparison in terms of

CPU throughput.

5.2 FUTURE WORK

This thesis enables a lot of future research in task scheduling and thermal management, and

we will look into a few directions that are related to or enabled by this thesis.

5.2.1 Implementation of our algorithms onto real chips

We proposed new software task scheduling algorithms in the CMPs with stacked dies and

the CMPs with significant process variation. The results presented in this thesis were based

on simulation. It will be very interesting to implement these algorithms in the real chips

with stacked dies, or the ones with different maximum frequency and leakage power on each

core. Because in real chips there are usually constraints other than the thermal constraints,

there may be more challenges or better opportunity for performance improvement.

5.2.2 Self adaptive scheduling algorithms

In this thesis, we have done a limited study of many factors that can affect the performance of

the algorithms. The thermal constant of the die is such a factor, and there are other factors

such as the migration overhead of the jobs, and the HW DTM overhead. Although we

showed that the algorithms we proposed are robust enough to outperform other algorithms

when these factors vary, we still need to find the sweet point of the algorithm settings.

108

It would be very nice to let the algorithm settings, such as the scheduling interval,

adapt to the environment, using the environment factors as input. For example, when the

thermal enviroment is too hot or too cool, task scheduling will only incur more context

switch overhead. The algorithms can choose not to be activated when they receive such a

signal about thermal environment in the input. Furthermore, the OS task scheduler can

collect task migration overhead information. The information of HW DTM overhead can be

written into ROM and be collected by OS. All this information will be sent to the proposed

algorithms, which can tune the scheduling inteval on-the-fly, in order to achieve the highest

performance improvement.

5.2.3 Online computation of thermal coefficients

The key of computing temperature lies in obtaining accurate thermal coefficients A and

B, as introduced in Section 2.1.3. Currently, when the algorithms are running on the real

chips, the values of the coefficients need to be measured and calibrated using the thermal

sensor readings from Pentium 4 processor. And we assumed the thermal coefficients are the

same for the same type of processors in this thesis. However, the thermal coefficients can be

varied even for the same type of processors, because the heat spreader, the heat sink and the

cooling fan are different in each machine box. One possible research direction could be online

computation of thermal coefficients. For each individual CPU, we can use the CPU activities

as the proxy of power consumption. The temperatures can be still read from the thermal

sensors on chip. We may deduce the thermal coefficients for any CPU using Equation 2.4

in Section 2.1.3, which is more accurate than applying the same thermal coefficients for a

family of processors.

5.2.4 More accurate prediction of power consumption of jobs

We used Last-power-value predictor in this thesis to predict the power consumption of the

jobs in the next scheduling interval. Our study showed that the accuracy of the predictor for

109

a majority of the benchmarks is good. However, the predictor incurs big prediction error for

a small number of specific benchmarks. Program profiling, compiler techniques or machine

learning algorithms may give us hints to design a better power preditor, which can ultimately

enhance the effectiveness of the scheduling algithms proposed.

5.2.5 New optimization objectives

All the algorithms proposed in this thesis aimed at improving CPU performance, including

the goals such as shortening the total execution time, or increasing CPU throughput. In

the machines such as desktops or workstations, our algorithms can help to improve the

productivity of the daily work of people. However, these days smart phones make the

daily life of the users much more convenient, and the energy consumption characteristics of

the smart phones are always a big concern. There is an urgent need of tailoring our task

scheduling algorithms on smart phones, with reducing energy consumption as the primary

optimization goal. The existence of thermal constraints on the smart phones, if there is any,

will just make the problem even more interesting and challenging.

110

BIBLIOGRAPHY

[1] M. Awasthi, R. Balasubramonian, “Exploring the design space for 3D clustered archi-
tectures”, 3rd IBM Watson Conference on Interaction between Architecture, Circuits, and
Compilers (P=ac2), Yorktown Heights, October 2006.

[2] K. Banerjee, S. Souri, P. Kapur, and K. Saraswat, “3-D ICs: a novel chip design for im-
proving deep-submicrometer interconnect performance and systems-on-chip integration,”
Proceedings of the IEEE, vol. 89, pp. 602–633, May 2001.

[3] N. Bansal, T. Kimbrel, K. Pruhs, “Dynamic speed scaling to manage energy and tem-
perature,” the 45th Annual IEEE Symposium on Foundations of Computer Science, pp.
520-529, 2004.

[4] N. Bansal, K. Pruhs, “Speed scaling to manage temperature,” Symposium on Theoretical
Aspects of Computer Science, pp. 460-471, 2005.

[5] F. Bellosa, “The benefits of event-driven energy accounting in power-sensitive systems,”
the 9th ACM SIGOPS European Workshop, 2000.

[6] F. Bellosa, A. Weissel, M. Waitz, S. Kellner, “Event-driven energy accounting for dynamic
thermal management,” Workshop on Compilers and Operating Systems for Low Power,
2003.

[7] Bryan Black, et al., “Die stacking (3D) microarchitecture,” MICRO 2006: 469-479.

[8] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De, “Parameter
variations and impact on circuits and microarchitecture,” in Design Automation Confer-
ence, June 2003.

[9] D. Bovet, M. Cesati, “Understanding the Linux kernel, 3rd Edition,” O’Reilly Publisher,
November, 2005.

[10] K. Bowman, S. Duvall, and J. Meindl, “Impact of die-to-die and within-die parameter
fluctuations on the maximum clock frequency distribution for gigascale integration,” IEEE
J. Solid State Circuits, vol. 37, no. 2, pp. 183-190, Feb. 2002.

111

[11] D. Brooks, M. Martonosi, “Dynamic thermal management for high-performance micro-
processors,” the 7th International Symposium on High-Performance Computer Architec-
ture, pp. 171-180, 2001.

[12] D. Brooks, R. P. Dick, R. Joseph, and L. Shang, “Power, thermal, and reliability mod-
eling in nanometer-scale microprocessors,” IEEE Micro, 27(3), 2007.

[13] J. Choi, Y. Kim, A. Sivasubramaniam, J. Srebric, Q. Wang, J. Lee, “Modeling and man-
aging thermal profiles of rack-mounted servers with thermostat,” IEEE 13th International
Symposium on High-Performance Computer Architecture, 2007.

[14] J. Choi, “Thermal-aware task scheduling at the system software level,” ISLPED’07,
August 27-29, 2007, Portland, Page 213-218.

[15] Ayse Kivilcim Coskun, Richard Strong, Dean M. Tullsen, Tajana Simunic Rosing, “Eval-
uating the impact of job scheduling and power management on processor lifetime for chip
multiprocessors,” SIGMETRICS/Performance 2009: 169-180.

[16] Y. Deng, W. P. Maly, “2.5-dimensional VLSI system integration,” IEEE Trans. VLSI
Syst., 13(6):668-677, 2005.

[17] James Donald, Margaret Martonosi, “Techniques for multicore thermal management:
classification and new exploration,” ISCA 2006: 78-88.

[18] J. Dorsey, S. Searles, M. Ciraula, E. Fang, S. Johnson, N. Bujanos, R. Kumar, D.Wu, M.
Braganza, and S. Meyers, “An integrated quad-core Opteron processor,” ISSCC 07:IEEE
International Solid-State Circuits Conference Digest of Technical Papers, 2007.

[19] Thomas Ebi, Mohammad Abdullah Al Faruque, Jorg Henkel, “TAPE: Thermal-aware
agent-based power econom multi/many-core architectures,” ICCAD 2009: 302-309.

[20] T. Fischer, J. Desai, B. Doyle, S. Naffziger, and B. Patella, “A 90-nm variable frequency
clock system for a powermanaged Itanium architecture processor,” IEEE Journal of Solid-
State Circuits, 41(1), Jan 2006.

[21] Yang Ge, Parth Malani, Qinru Qiu, “Distributed task migration for thermal manage-
ment in many-core systems,” DAC 2010: 579-584.

[22] M. Gomaa, M. D. Powell, and T. N. Vijaykumar, “Heat-and-Run: Leveraging SMT and
CMP to manage power density through the operating system,” ASPLOS, 2004.

[23] B. Goplen, S. S. Sapatnekar “Thermal via placement in 3D ICs,” ISPD 2005, pp.167-
174.

112

[24] B. Goplen, S. S. Sapatnekar, “Placement of thermal vias in 3-D ICs using various thermal
objectives,” IEEE Trans. on CAD of Integrated Circuits and Systems 25(4), pp. 692-709,
2006.

[25] S. H. Gunther, F. Binns, D. M. Carmean, J. C. Hall, “Managing the impact of increasing
microprocessor power consumption,” Intel Technology Journal, First Quarter, 2001.

[26] Yongkui Han, Israel Koren, C. Mani Krishna “TILTS: a fast architectural-level transient
thermal simulation method,” J. Low Power Electronics 3(1): 13-21, 2007.

[27] H. Hanson, S. Keckler, S. Ghiasi, K. Rajamani, F. Rawson, J. Rubio, “Thermal response
to DVFS: Analysis with an Intel Pentium M,” International Symposium on Low Power
Electronics and Design, pp. 219-224, 2007.

[28] Vinay Hanumaiah, Sarma B. K. Vrudhula, Karam S. Chatha, “Maximizing performance
of thermally constrained multi-core processors by dynamic voltage and frequency control,”
ICCAD 2009: 310-313.

[29] L. He, W. Liao, M. R. Stan, ”System level leakage reduction considering the interde-
pendence of temperature and leakage,” Design Automation Conference, pp. 12-17, 2004.

[30] T. Heath, A. P. Centeno, P. George, L. Ramos, Y. Jaluria, R. Bianchini, “Mercury
and freon: temperature emulation and management for server systems,” International
Conference on Architectural Support for Programming Language and Operating Systems,
pp. 106-116, 2006.

[31] S. Heo, K. Barr, K. Asanovic, “Reducing power density through activity migration,”
International Symposium on Low Power Electronics and Design, pp. 217-222, 2003.

[32] Sebastian Herbert, Diana Marculescu, “Variation-aware dynamic voltage/frequency
scaling”, HPCA 2009: 301-312.

[33] W. Huang, M. R. Stan, K. Skadron, K. Sankaranarayanan, S. Ghosh, S. Velusamy,
“Compact thermal modeling for temperature-aware design,” the 41st Annual Conference
on Design Automation, pp. 878-883, 2004.

[34] W. Huang, E. Humenay, K. Skadron, M. R. Stan, “The need for a full-chip and package
thermal model for thermally optimized IC designs,” the 2005 International Symposium on
Low Power Electronics and Design, pp. 245-250, 2005.

[35] W. Huang, M. R. Stan, K. Skadron, K. Sankaranarayanan, and S. Ghosh, “HotSpot:
a compact thermal modeling method for CMOS VLSI systems,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 14(5):501-513, May 2006.

113

[36] W. Hung, G. M. Link, Y. Xie, V. Narayanan, and M. J. Irwin, “Interconnect and
thermal-aware floorplanning for 3D microprocessors,” the 7th ISQED, pp. 98-104, 2006.

[37] C. Isci, M. Martonosi, “Runtime power monitoring in high-end processors: methodology
and empirical data,” the 36th Annual International Symposium on Microarchitecture, pp.
93-104, 2003.

[38] R. Joseph, M. Martonosi, “Run-time power estimation in high-performance micropro-
cessors,” International Symposium on Low Power Electronics and Design, ISLPED, pp.
135-140, 2001.

[39] J. Joyner, P. Zarkesh-Ha, and J. Meindl, “A stochastic global net-length distribution for
a three-dimensional system on chip (3D-SoC),” the 14th IEEE International ASIC/SOC
Conference, 2001.

[40] W. Kim, M. S. Gupta, G.-Y. Wei, D. Brooks, “System level analysis of fast, per-core
DVFS using on-chip switching regulators,” HPCA, 2008: 123-134.

[41] A. Krum, “Thermal management,” In F. Kreith, editor The CRC handbook of thermal
engineering, pp. 2.1-2.92. CRC Press, Boca Raton, FL 2000.

[42] A. Kumar, L. Shang, L.-S. Peh, N. Jha, “HybDTM: A coordinated hardware-software
approach for dynamic thermal management,” DAC, pp. 548-553, 2006.

[43] Eren Kursun, Chen-Yong Cher, “Variation-aware thermal characterization and manage-
ment of multi-core architectures,” ICCD 2008: 280-285.

[44] E. Kursun, C. Y. Cher, A. Buyuktosunoglu, P. Bose, “Investigating the effects of task
scheduling on thermal behavior”, the 3rd Workshop on Temperature-Aware Computer Sys-
tems, Held in conjunction with ISCA-33, 2006.

[45] Y. Li, B. Lee, D. Brooks, Z. Hu, K. Skadron, “CMP design space exploration subject
to physical constraints” the 12th IEEE International Symposium on High Performance
Computer Architecture (HPCA), Feb, 2006

[46] Y. Li, D. Brooks, Z. Hu, K. Skadron, “Performance, energy, and thermal considerations
for SMT and CMP architectures,” the 11th International Symposium on High-Performance
Computer Architecture, pp. 71-82, 2005.

[47] Gabriel H. Loh, “3D-stacked memory architectures for multi-core processors”, ISCA
2008 453-464.

[48] G. H. Loh, Y. Xie, B. Black, “Processor design in 3D die-stacking technologies,” IEEE
Micro, 27(3):31-48, 2007.

114

[49] R. McGowen, “Adaptive designs for power and thermal optimization,” International
Conference on Computer Aided Design, pp. 118-121, 2005.

[50] Francisco J. Mesa-Martinez, Ehsan K. Ardestani, Jose Renau “Characterizing processor
thermal behavior,” ASPLOS 2010: 193-204.

[51] P. C. Monferrer, G. Magklis, J. González, A. González, “Distributing the frontend for
temperature reduction,” the 11th International Symposium on High-Performance Com-
puter Architecture, pp. 61-70, 2005.

[52] J. Moore, J. Chase, P. Ranganathan, R. Sharma, “Making scheduling ‘cool’:
temperature-aware workload placement in data centers,” USENIX 2005 Annual Technical
Conference, pp. 61-75, 2005.

[53] N. Muralimanohar, R. Balasubramonian, N. P. Jouppi “Architecting Efficient Intercon-
nects for Large Caches with CACTI 6.0,” IEEE Micro 28(1): 69-79 (2008).

[54] S. Mysore, B. Agrawal, N. Srivastava, S. Lin, K. Banerjee, T. Sherwood, “Introspective
3D chips,” ASPLOS 2006, pp. 264-273.

[55] P. Pillai, K. G. Shin, “Real-time dynamic voltage scaling for low-power embedded oper-
ating systems,” The 18th ACM Symposium on Operating Systems Principles, pp. 89-102,
2001.

[56] M. D. Powell, M. Gomaa, T. N. Vijaykumar, “Heat-and-run: leveraging SMT and CMP
to manage power density through the operating system,” ASPLOS 2004, pp. 260-270.

[57] K. Puttaswamy, G. H. Loh “Thermal analysis of a 3D die-stacked high-performance
microprocessor,” ACM Great Lakes Symposium on VLSI, pp. 19-24, 2006.

[58] K. Puttaswamy, G. H. Loh, “Thermal herding: microarchitecture techniques for control-
ling hotspots in high-performance 3D-integrated processors,” HPCA, pp. 193-204, 2007.

[59] S. R. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, J. Torrellas, “VAR-
IUS: A model of process variation and resulting timing errors for microarchitects”, IEEE
Transactions on Semiconductor Manufacturing, Volume 21, Issue 1, Feb. 2008 Page(s):3 -
13

[60] K. Skadron, T. Abdelzaher, M. R. Stan, “Control-theoretic techniques and thermal-RC
modeling for accurate and localized dynamic thermal management,” the 8th International
Symposium on High-Performance Computer Architecture, pp. 17-28, 2002.

[61] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, D. Tarjan,
“Temperature-aware microarchitecture,” the 30th International Symposium on Computer
Architecture, pp. 2-13, 2003.

115

[62] K. Skadron, K. Sankaranarayanan, S. Velusamy, D. Tarjan, M. R. Stan, and W. Huang.,
“Temperature-aware microarchitecture: modeling and implementation,” ACM TACO,
1(1):94-125, Mar. 2004.

[63] J. Srinivasan, S. V. Adve, “Predictive dynamic thermal management for multimedia
applications,” the 17th Annual International Conference on Supercomputing, pp. 109-120,
2003.

[64] B. Sprunt, “Brink and abyss Pentium 4 performance counter tools for Linux,” TR,
February 2002.

[65] J. Stoer, R. Bulirsch, “Introduction to numerical analysis,” Springer-Verlag, 2nd ed.
1991.

[66] Chong Sun, Li Shang, Robert P. Dick, “Three-dimensional multiprocessor system-on-
chip thermal optimization,” CODES+ISSS 2007: 117-122.

[67] J. Dorsey, S. Searles, M. Ciraula, E. Fang, S. Johnson, N. Bujanos, R. Kumar, D.Wu, M.
Braganza, and S. Meyers, “An integrated quad-core Opteron processor,” ISSCC 07:IEEE
International Solid-State Circuits Conference Digest of Technical Papers, 2007.

[68] Radu Teodorescu, Josep Torrellas, “Variation-aware application scheduling and power
management for chip multiprocessors,” ISCA 2008: 363-374.

[69] S. Wang, R. Bettati, “Reactive speed control in temperature-constrained real-time sys-
tems,” the 18th Euromicro Conference on Real-Time Systems, 2006.

[70] Yefu Wang, Kai Ma, Xiaorui Wang, “Temperature-constrained power control for chip
multiprocessors with online model estimation, ” ISCA 2009: 314-324.

[71] S. Wang, R. Bettati, “Delay analysis in temperature-constrained hard real-time systems
with general task arrivals,” IEEE Real-Time Systems Symposium, pp. 323-334, 2006.

[72] D. West, “Introduction to Graph Theory (2nd ed.),” Prentice Hall, Chapter 3, 1999.

[73] W. Wu, L. Jin, J. Yang, P. Liu, S. X. Tan “A systematic method for functional unit
power estimation in microprocessors,” DAC 2006, pp. 554-557.

[74] W. Wu, L. Jin, J. Yang, P. Liu, S. X.Tan “Efficient power modeling and software thermal
sensing for runtime temperature monitoring,” ACM Trans. Design Autom. Electr. Syst.
12(3): (2007).

[75] Y. Xie, G. Loh, B. Black, and K. Bernstein, “Design space exploration for 3D architec-
ture,” ACM Journal of Emerging Technologies for Computer Systems, Vol. 2. No. 2, pp.
65-103, April 2006.

116

[76] J. Yang, X. Zhou, M. Chrobak, Y. Zhang, L. Jin, “Dynamic thermal management
through task scheduling,” ISPASS, pp. 191-201, 2008.

[77] W. Yuan, K. Nahrstedt, “Energy-efficient soft real-time CPU scheduling for mobile
multimedia systems,” the 19th ACM Symposium on Operating Systems Principles, pp.
149-163, 2003.

[78] N. Zeldovich, R. Chandra, “Interactive performance measurement with VNCplay,”
FREENIX Track: USENIX Annual Technical Conference, 2005.

[79] X. Zhou, Y. Xu, Y. Du, Y. Zhang, J. Yang, “Thermal management for 3D processor
via task scheduling,” International Conference on Parallel Processing, Sept. 2008.

[80] C. Zhu, Z. P. Gu, L. Shang, R. P. Dick, and R. Joseph, “Three-dimensional chip-
multiprocessor run-time thermal management,” IEEE Trans. Computer-Aided Design of
Integrated Circuits and Systems, vol. 27, no. 8, Aug. 2008.

[81] http://www.hardocp.com/article/2010/01/03/intel westmere 32nm clarkdale core i5661 review/

[82] http://www.kernel.org/pub/linux/utils/kernel/cpufreq/cpufreq.html

[83] http://en.wikipedia.org/wiki/Dynamic frequency scaling

[84] http://en.wikipedia.org/wiki/Dynamic Voltage Scaling

[85] “Enhanced Intel SpeedStep Technology for the Intel Pen-
tium M Processor”, white paper, Intel, March, 2004, http://xnu-
speedstep.googlecode.com/files/PentiumM SpeedStepDoc.pdf.

[86] “AMD PowerNow! Technology Platform Design Guide for Embed-
ded Processors Application”, application note, AMD, December, 2000,
http://www.amd.com/epd/processors/6.32bitproc/8.amdk6fami/x24267/24267a.pdf.

[87] “Intel Pentium 4 processor in the 478-pin package thermal design guidelines,” design
guide, Intel, May 2002, http://developer.intel.com/design/pentium4/guides/249889.htm

[88] “Intel 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A,”
http://www.intel.com/Assets/PDF/manual/253668.pdf.

[89] http://en.wikipedia.org/wiki/List of Intel microprocessors.

[90] Predictive Technology Model, http://www.eas.asu.edu/ ptm/

[91] http://www.spec.org/cpu2006/

117

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Classifications of program thermal intensity.
	2. Workload combinations consisting of relatively hot (H), warm (W) and cool (C) jobs.
	3. The combination of benchmarks in simulation
	4. IPC characteristics of benchmarks in SPEC06
	5. The combination of benchmarks when the number of jobs is 8.

	LIST OF FIGURES
	1. Average error rates for last power value predictor.
	2. Thermal-aware task scheduling methodologies.
	3. The impact of scheduling a hot and cool program in different orders.
	4. Variation in latencies for VNCplay in our thermal-aware scheduler.
	5. A close-up of the execution traces for four different algorithms. Each graph compares the default Linux scheduler (dashed line) with one algorithm (solid line). In all graphs, the top portion shows the temperature variation with time. The middle portion shows the job switching sequence and the bottom portion shows whether a frequency scaling, a reduction from 3GHz to 1.5GHz (downward arrow), occurred.
	6. Thermal profiles of the IntReg for all 22 SPEC2K (left) and media, net, and packetbench (right).
	7. Number of thermal emergency triggers, normalized to the baseline scheduler (Linux default).
	8. Percentage of execution time under DTM in the baseline scheduler.
	9. The percentage of the execution time reduction from the baseline.
	10. Drastic performance changes to individual jobs by MinTempPlus scheduler (mild thermal environment).
	11. Details of the time overhead(represented in percentage in y-axis) incurred by the temperature computation and task switching(upper area marks the overhead of temperature prediction), normalized to the execution time in Baseline in the medium thermal environment.
	12. The relative performance improvement by ThreshHot over Baseline, under different scheduling intervals.
	13. The distribution of last value prediction results.
	14. The offline performance comparison of last_value power predictor and oracle power predictor
	15. The overhead from context switch and temperature computation(x-axis shows the number of processes)
	16. 3D chip multiprocessor floorplan options.
	17. A face-to-back 3D die stacking structure as an example, and the corresponding thermal model.
	18. Thermal correlation between adjacent dies.
	19. Demonstration of the top die being hotter than the bottom die.
	20. The temperature balancing-by-stack algorithm.
	21. Temperatures of the benchmark in SPEC2000
	22. A zoom-in of temperature variation over time under different scheduling algorithms.
	23. Peak temperatures of different scheduling algorithms.
	24. Thermal emergency time reductions in homogeneous floorplans.
	25. Performance improvements for homogeneous floorplans.
	26. The individual and combined effects of three heuristics. The results are relative to that of the Random scheduler.
	27. Thermal emergency time reductions in heterogeneous floorplans.
	28. Performance improvements for heterogeneous floorplan.
	29. (a)The variation of the frequencies of the cores on sample die 1, 3 and 7 among the 20 sample dies. (b) The variation of the leakage power of the cores on sample die 1, 3 and 7 at the temperature of 100C.
	30. The relative throughput attained(left) and the relative DVFS triggered(right) by running varied number of jobs when the interval is 8ms and the thermal environment is hot.
	31. K4,4 complete bipartite graph, symbolizing the possibilities of mapping jobs onto cores
	32. The matrices generated for throughput prediction.
	33. The error rate of power prediction by using last-value prediction method.
	34. The impact of DVFS on the temperature and the linear interpolation of the temperature
	35. The relationship among current temperature, predicted future temperature, and future frequency((a)die 3, core 7, 2.48GHz;(b)die 3, core 13, 3.06GHz.)
	36. The relative error rate of future frequency prediction under varied scheduling intervals when the number of jobs is 8 and the thermal environment is hot.
	37. The absolute and relative error of IPC prediction by using last-value prediction method.
	38. The comparison between the future throughput achieved by using oracle IPC knowledge and the future throughput achieved by using last-value IPC in MBM.
	39. The simulated floorplan of CMP-PV.
	40. A 16-core CMP with process variation. The colormap under the floorplan shows the within-die variation of the threshold voltage.
	41. Histograms of the ratio between (a) the average leakage power of the cores and the power of the least leaky core (b) and between the average frequency of the cores and the frequency of the slowest core in the die.
	42. The relative throughput achieved by running varied number of jobs when the interval is 8ms and the thermal environment is hot.
	43. The relative DVFS triggered by running varied number of jobs when the interval is 8ms and the thermal environment is hot.
	44. The relative throughput achieved by different workloads when the number of jobs is 8, the interval is 8ms, and the thermal environment is hot.
	45. The number of DVFS triggered by different workloads when the number of jobs is 8, the interval is 8ms, and the thermal environment is hot.
	46. The relative throughput under different thermal environments when the interval is 8ms and the number of jobs is 8.
	47. The relative throughput achieved by varying scheduling interval length when the number of jobs is 8 and the thermal environment is hot.
	48. The relative throughput penalized due to all sorts of overhead under different scheduling intervals when the number of jobs is 8 and the thermal environment is hot.
	49. The relative energy per instruction(EPI) by running varied number of jobs when the interval is 8ms and the thermal environment is hot.

	ACKNOWLEDGEMENTS
	1.0 INTRODUCTION
	1.1 THERMAL ISSUES IN CURRENT AND FUTURE PROCESSORS
	1.1.1 Thermal problem in a single-core processor
	1.1.2 Thermal issues in 3D stacked CMP
	1.1.3 Thermal issues in the CMP impacted by process variation
	1.1.4 Performance losses caused by HW DTM
	1.1.5 DVFS details

	1.2 MOTIVATION AND PROBLEM STATEMENT
	1.3 THESIS OVERVIEW
	1.3.1 ThreshHot - approaching threshold as close as possible
	1.3.2 Power balancing tailored to 3D thermal conditions
	1.3.3 MBM - maximum bipartite matching on CMP-PV

	1.4 CONTRIBUTIONS
	1.5 ROADMAP

	2.0 OBTAINING POWER AND TEMPERATURE
	2.1 Temperature Obtaining and Computation
	2.1.1 Thermal sensor readings are insufficient.
	2.1.2 Temperature model.
	2.1.3 Temperature calculation speedup.

	2.2 Computing the powers
	2.2.1 Power estimation
	2.2.2 Power prediction

	2.3 Workflow summary
	2.4 The accuracy of temperature calculation

	3.0 RELATED WORK
	3.1 Prior work in a single core processor
	3.2 Prior work in CMP built with stacked dies
	3.3 Prior work in CMP with process variation

	4.0 PROPOSED TASK SCHEDULING SOLUTIONS
	4.1 THRESHHOT
	4.1.1 Thermal scheduling algorithms
	4.1.1.1 The principle
	4.1.1.2 In practice

	4.1.2 Linux kernel implementation
	4.1.2.1 The skeleton of the Linux scheduler
	4.1.2.2 Our modification

	4.1.3 Anatomy and comparison of different scheduling algorithms
	4.1.3.1 Random scheduler
	4.1.3.2 Priority scheduler
	4.1.3.3 Mintemp+ scheduler
	4.1.3.4 Threshot scheduler

	4.1.4 Experimental evaluation
	4.1.4.1 Benchmark classification
	4.1.4.2 Thermal scheduling results
	4.1.4.3 DTM reductions
	4.1.4.4 Performance improvements
	4.1.4.5 Overhead
	4.1.4.6 Impact of varied intervals on ThreshHot
	4.1.4.7 Impact of power misprediction
	4.1.4.8 Scalability

	4.2 BALANCING BY STACK IN 3D CMP
	4.2.1 Motivation and rationale
	4.2.1.1 A representative floorplan
	4.2.1.2 Vertically adjacent layers have strong thermal correlations
	4.2.1.3 The die layers further from the heat sink are usually hotter

	4.2.2 Scheduling algorithms
	4.2.2.1 The baseline
	4.2.2.2 Random (Baseline+)
	4.2.2.3 Round-Robin
	4.2.2.4 Temperature balancing by core
	4.2.2.5 Temperature balancing by stack

	4.2.3 Experimental methodology
	4.2.3.1 Floorplan setup
	4.2.3.2 Simulation tool and power trace collection
	4.2.3.3 Benchmark classification
	4.2.3.4 DVFS implementation and context switching overhead

	4.2.4 Results and analysis
	4.2.4.1 Homogeneous floorplan
	4.2.4.2 Heterogeneous floorplan

	4.3 MAXIMUM BIPARTITE MATCHING IN CMP WITH PROCESS VARIATION
	4.3.1 Motivation
	4.3.2 MBM algorithm
	4.3.3 Preparation of input to MBM
	4.3.3.1 Predicting future temperatures
	4.3.3.2 Frequency prediction
	4.3.3.3 An evaluation of temperature and frequency estimation error
	4.3.3.4 IPS prediction
	4.3.3.5 Algorithms used in comparisons

	4.3.4 Experimental setup
	4.3.4.1 Floorplan
	4.3.4.2 PV modeling
	4.3.4.3 Simulation tools and benchmarks
	4.3.4.4 Overhead

	4.3.5 Results
	4.3.5.1 DVFS and throughput
	4.3.5.2 Detailed throughput for different workloads
	4.3.5.3 Thermal environment
	4.3.5.4 Varied interval length
	4.3.5.5 Overhead
	4.3.5.6 Energy consumption per instruction

	5.0 CONCLUDING REMARKS
	5.1 SUMMARY OF RESULTS
	5.2 FUTURE WORK
	5.2.1 Implementation of our algorithms onto real chips
	5.2.2 Self adaptive scheduling algorithms
	5.2.3 Online computation of thermal coefficients
	5.2.4 More accurate prediction of power consumption of jobs
	5.2.5 New optimization objectives

	BIBLIOGRAPHY

