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GENOMIC META-ANALYSIS COMBINING MICROARRAY STUDIES

WITH CONFOUNDING CLINICAL VARIABLES: APPLICATION TO

DEPRESSION ANALYSIS

Xingbin Wang, PhD

University of Pittsburgh, 2011

Major depressive disorder (MDD) is a heterogeneous psychiatric illness with mostly un-

characterized pathology and is the fourth most common cause of disability according to

the World Health Organization (WHO) and has a significant impact on public health in the

United States. To understand the genetics of MDD, we aim to develop effective meta-analysis

approaches to provide high-quality characterization of MDD related biomarkers and path-

ways with proper clinical variable adjustment. First, genomic meta-analysis in MDD faces

multiple unique difficulties, such as weak expression signal of MDD, substantial clinical het-

erogeneity and small sample size. Given these obstacles, it is hard to identify consistent and

robust biomarkers in an individual study. To achieve a more accurate and robust detection

of differentially expressed (DE) genes and pathways associated with MDD, we proposed a

statistical framework of meta-analysis for adjusting confounding variables (MetaACV). The

result showed that more MDD related biomarkers and pathways were detected that greatly

enhanced understanding of MDD neurobiology. Secondly, Meta-analysis has become popu-

lar in the biomedical research because it generally can increase statistical power and provide

validated conclusions. However, its result is often biased due to the heterogeneity. Meta-

regression has been a useful tool for exploring the source of heterogeneity among studies

in a meta-analysis. In this dissertation, we will explore the use of meta-regression in mi-

croarray meta-analysis. To account for heterogeneities introduced by study-specific features

such as sex, brain region and array platform in the meta-analysis of major depressive disorder
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(MDD) microarray studies, we extended the random effects model (REM) for genomic meta-

regression, combining eight MDD microarray studies. The result shows increased statistical

power to detect gender-dependent and brain-region-dependent biomarkers that traditional

meta-analysis methods cannot detect. The identified gender-dependent markers have pro-

vided new biological insights as to why females are more susceptible to MDD and the result

may lead to novel therapeutic targets. Finally, we present an open-source R package called

Meta-analysis for Differential Expression analysis (MetaDE) which provides 12 commonly

used methods of meta-analysis. It is a friendly used software such that biologists implement

meta-analysis in their research.
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1.0 INTRODUCTION

Major depressive disorder (MDD) is a heterogeneous psychiatric illness with mostly un-

characterized pathology, contributs to death by suicide, and is the fourth most common

cause of disability according to the World Health Organization (WHO). To understand the

genetics of MDD, gene expression analysis is a effective approach to identify the biomarkers

associated with MDD. Differentially expressed (DE) gene detection is one of the most com-

mon analyses in microarray data, which are generally comprised of three components: (1) the

gene expression data; (2) the outcome variable, such as disease status; and (3) patient-specific

covariates, including treatment history and additional clinical and demographic information.

The primary aim of many gene expression studies is to identify the DE genes by character-

izing the relationship between the first two of these components, the gene expression and

the disease outcome. Thus, in the literature, most psychiatric disease-related microarray

studies of similar design did not carefully consider how these factors (the third component)

influence the relationship between the gene expression and the disease status. Usually they

either ignored the clinical variables or applied simple linear regression to include all variables

in the model. Our results clearly show the limits to those two approaches. To our knowledge,

this is the first study that systematically considers the critical elements in the data structure

in order to obtain more accurate DE gene and pathway detection. In addition, due to the

very weak expression signal of MDD, a substantial clinical heterogeneity and small sample

size, it is hard to identify consistent and robust biomarkers in an individual study. In this

dissertation, we aim to develop effective meta-analysis approaches to fill this gap and provide

high-quality characterization of MDD related biomarkers and pathways with proper clinical

variable adjustment.
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This dissertation is organized as follows: in Chapter 1, the concept of MDD is first

described in section 1.1; then, the statistics used in individual analysis, meta-analysis and

pathway analysis methods are reviewed in sections 1.3,1.4 and 1.5, respectively. In chapter 2,

we describe a statistical approach for meta-analysis to tackle weak signal expression profiles

that have small sample size, case-control paired design and confounding covariates in each

study. In Chapter 3, a meta-regression model with variable selection is described. In Chapter

4, the implementation and usage of the MetaDE package are described. Conclusions and

future works are provided in Chapter 5.

1.1 MAJOR DEPRESSIVE DISORDER

Major depressive disorder (MDD) is a mental disorder characterized by an all-encompassing

low mood accompanied by low self-esteem, and by loss of interest or pleasure in normally

enjoyable activities. MDD is a disabling condition which adversely affects a person’s family,

work or school life, sleeping and eating habits, and general health[65]. It involves a minimum

two-week continuous period of at least five of the following symptoms: lowered mood for

the majority of the day, diminished pleasure in daily activities, weight loss or gain, sleep

disturbance, agitation or lethargy, fatigue, feelings of worthlessness or helplessness, impaired

thought or memory, and recurring thoughts of self-harm or death (DSM-IV 2000). Depression

is a common human psychiatric disorder and the leading cause of disability in North America,

afflicting an estimated 18% of the population with an approximate lifetime incidence of 12%

in men and 20% in women [55]. Around 3.4% of people with major depression commit

suicide, and up to 60% of people who committed suicide had depression or another mood

disorder. The symptoms of depression are the greatest contributor to the global burden of

disease [46] as calculated by total days lived with the disorder. It remains the fourth leading

cause of worldwide disability, after accounting for higher mortality in other diseases. This

ranking is expected to rise to second place by the year 2020, as current effective treatment

for other diseases become more globally accessible.
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Risk factors for depression: Major risk factors for depression include the sex of an in-

dividual, previous history of the illness, genetic predisposition/family history, and chronic

or acute stress [30]. Some combination of these can prompt a depressive episode, but the

requisite combination varies by individual. The threshold for depression is sensitive to social

support, religiosity, age, and life stressors [14, 56, 57]. These environmental factors interact

with the genetics of depression estimated at 33% heritance [30]. This is a lower heritability

than bipolar disorder, or schizophrenia, which adds to the difficulty in teasing apart con-

tributory factors. Depression itself is a risk factor for the disorder, as untreated depression

is likely to reoccur [70]. This is particularly problematic as a significant percentage of pa-

tients (varying from placebo levels of 30%, up to 40% depending on the study) never meet

the criteria for complete remission and will commonly endure increasingly lengthy bouts of

depression [36, 58].

Complexity obscure the neuropathology of depression: Depression’s continued toll on

society is a function of multiple genetic and environmental susceptibilities that recruits a di-

verse cadre of further genetic factors to sustain the condition [6]. To date, most experiments

have examined single aspects of the disease, but the complex causal factors in depression

make it resistant to highly specific approaches. One immediate question is: Why not cre-

ate sub-divisions of depression that have more homogeneous symptom groups that will be

amenable to a pathology classification? However, clinical evidence does not strongly support

this approach. In patients with repeated depressive episodes there is no correspondence of

symptoms across episodes, preventing definitive clinical subdivisions that might have more

consistent pathophysiology[74]. There is some evidence to suggest that classes of antidepres-

sants have distinct response rates in different DSM-IV classifications of depression (atypical,

psychotic, bipolar etc) [4]. However, a meta-analysis of over 100 antidepressant drugs trials

found no difference in response rates as an interaction of drug class and putative subtype[17].

3



Table 1.1: Data description of eight MDD microarray studies

Study Gender Brain region sample Platform

MD1 ACC M ACC 32(16) Affymetrix

MD3 ACC F ACC 44(22) Illumina

C MD2 ACC F ACC 18(9) Illumina

C MD2 ACC M ACC 26(13) Affymetrix

MD1 AMY M AMY 28(14) Illumina

MD3 AMY F AMY 42(21) Illumina

C MD2 DLPFC F DLPFC 28(14) Affymetrix

C MD2 DLPFC M DLPFC 32(16) Affymetrix

1.2 DATA DESCRIPTION AND PROBLEMS ENCOUNTERED IN GENE

EXPRESSION ANALYSIS

Data description In this dissertation, we will focus on 8 human studies listed in Table 1.1

obtained from Dr. Sibille’s lab for meta-analysis. In most of the patient cohorts, MDD

patients are matched to control patients by their demographics such as age, sex and race.

MDD related clinical variables of the patients are available for most studies, including alcohol

consumption (AH), history of taking anti-depressant drugs (AD), death by suicide (SC), pH

level of brain tissues (pH), disease recurrence (RC) and postmortem interval (PMI). Each

study has three study-level features that may need adjustment in the analysis: sex, brain

region, and array platform.

Problems encountered in gene expression analysis: Detecting candidate markers in tran-

scriptomic studies is often difficult in MDD studies: First, as described in section 1.1, MDD

is thought to be a complex and heterogeneous disease, associated with multiple genetic,

genomic, post-translational, and environmental factors. Furthermore, patients might have

varying disease severity, with some having psychotic features as well as exposure to a variety

of medications and dosage levels to control their illness. Secondly, the genetic disease effects
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are potentially confounded by many covariates, which include (1) demographical variables

such as age, sex and race; (2) clinical variables such as anti-depressant drug usage, death by

suicide and alcohol dependence; (3) technical variables inherent in the use of post-mortem

brain samples, such as the pH level of brain tissues, brain region and post-mortem interval

(PMI). If the statistical models employed to identify differentially expressed genes fail to

incorporate these sources of heterogeneity, not only can this reduce the statistical power, but

also it will introduce sources of spurious signals to the gene detection. Finally, sample sizes

for these studies are generally small (between 9-22 pairs of MDDs and controls) due to the

limited availability of suitable brain specimens and the significant costs associated with their

collection. These three features in MDD studies severely hamper accurate biomarker detec-

tion. In section 1.3, we listed several statistical methods often used in the literature for DE

gene detection in individual analysis, such as paired or unpaired t-test or the simple linear

regression model. The former approach undoubtedly ignored the effects from confounding

covariates; the latter approach was not efficient or not even applicable when the number of

covariates is large and the number of samples in each study is small. These methods have

been shown to have low statistical power in each MDD study with weak signal expression

profiles, small sample size, case-control paired design and confounding covariates.

1.3 EXISTING METHODS FOR DE GENE DETECTION IN SINGLE

STUDY

Gene-expression microarrays hold tremendous promise for revealing the patterns of coor-

dinately regulated genes. Because of the large volume and intrinsic variation of the data

obtained in each microarray experiment, statistical methods has been used as a way to sys-

tematically extract biological information and to assess the associated uncertainty. SAM

and LIMMA are popular methods for microarray. Methods we covered here are more naive

versions.
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1.3.1 T-TEST

The t test perhaps is the most popular method for detecting differentially expressed genes

due to its simplicity and availability. The t statistic is defined as

Tg =
ȲD − ȲC

S
√

1
nD

+ 1
nC

, (1.1)

where ȲD and ȲC are the mean values of disease (MDD) and control groups; nD and nC are

the number of replicates in disease and control groups. S is the pooled standard deviation,

which is estimated by S =
√

(nD−1)S2
D+(nC−1)S2

C

nD+nC−2
. Under normal assumption, Tg follows a

central student’s t distribution with degree of freedom nC + nC − 2 under null hypothesis

if we assume that MDD and control group have the same variance and the experiment was

not pair-designed.

1.3.2 Paired T-TEST

The matched groups design is another popular form in medicine research in which subjects

from disease and control groups are matched on some demographic variables such as age,

gender and race. In this situation, paired t-test is the conventionally used test, which is

defined as,

Tg =
ȲD − ȲC

S
√

1
n

, (1.2)

where S is the standard deviation of differences of each pair, which is estimated by S =√∑n
i=1[(YDi−YCi)−(ȲD−ȲC)]2

(n−1)
. Tg follows Student’s t distribution with degree of freedom of n−

1 under assumptions that the paired differences are independent and identically normally

distributed. In general, paired test has more power than unpaired test whenever the within-

pairs covariance is positive. Note that an alternative to the paired Student’s t-test when

the population can not be assumed to be normally distributed is the Wilcoxon singed-rank

test[102].
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1.3.3 MODERATED T-TEST

The gene-specific t test is not affected by heterogeneity in variance across genes because it

only uses information from one gene at a time. It may, however, have low power because

the sample size is small. In addition, the variances estimated from each gene are not stable:

for example, if the estimated variance for one gene is small, by chance, the Tg value can be

large even when the corresponding mean difference is small. To account for gene-specific

fluctuations, a moderated t statistics [27, 99] is defined as below,

Tg =
ȲD − ȲC

sg + s0
, (1.3)

where ȲD and ȲC are the mean values of expression for gene g in disease and control

groups, respectively; sg is the standard deviation of repeated expression measurements:sg =√
[(nD−1)S2

D+(nC−1)S2
C ][ 1

nD
+ 1

nC
]

nD+nC−2
; s0 is a positive constant to minimize the variability among

sg(1 ≤ g ≤ G). In SAM, a regression procedure was used to select the optimal value of s0.

For simplicity, s0 was often selected as the median of sg. With this modification, genes with

small mean differences will not be selected as significant, and this removes the problem of

stability mentioned above.

1.3.4 LINEAR REGRESSION MODEL

A simple linear regression model[67, 76] has been commonly used to detect DE genes to

account for additional variability resulting from many confounding variables. (e.g., in MDD

studies, Age, pH, PMI and RIN). The model is described as below:

Ygi = µg + βg0X0i +
L∑
l=1

βglXli + ϵgi, (1.4)

In the model, Ygi was the gene expression value of gene g(≤ g ≤ G) and sample i . X0i

was the disease label that took value one if the sample was disease and zero if sample was a

control. Xli represented values for potential confounding covariate l (1 ≤ l ≤ L); 0-1 binary

for categorical variables of two levels and numerical for continuous variables). Finally, ϵgi

were independent random noises that followed a normal distribution with mean zero and
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variance σ2
g . Under this model, βg0 was the disease effect of gene g and was the parameter

of major interest. To obtain a disease-associated biomarker candidate list in a single study

analysis, likelihood ratio test (LRT) or wald test was used to assess the p-values of testing

H0 : βg0 = 0 (vs HA : βg0 ̸= 0).

1.4 EXISTING MICROARRAY META-ANALYSIS METHODS

Many high-throughput genomic technologies have advanced dramatically in the past decade.

Microarray experiment is one example that evolved into relative maturity with general con-

sensus experimental protocol and data analysis strategy. Its extensive application in the

biomedical field has led to an explosion of gene expression profiling studies publicly avail-

able. The noisy nature and small sample size in each dataset, however, often result in

inconsistent biological conclusions. Consequently, meta-analysis methods for combining mi-

croarray studies have been widely applied to increase statistical power and provide validated

conclusions. Four major categories of statistical methods have been used to combine microar-

ray studies in differentially expressed (DE) gene detection: combining p-values, combining

effect sizes, combining ranks and directly merge after normalization. In this dissertation,

we mainly focused on the first two categories, one is to combine statistical significance (p-

value)[52, 79, 80] from each individual study, and the other is to combine the effect sizes

[15, 66]from each individual study. In general, among these microarray meta-analysis meth-

ods used in the literature, most methods have their pros and cons depending on the data

structure and biological goal [47, 78]. Briefly, methods based on combining p-values are free

of distribution assumptions and more powerful when the studies combined are heterogeneous,

but do not support inferences about magnitudes and directions. On the other hand, meth-

ods based on combining effect sizes provide information about magnitudes and directions

(e.g. down-regulated or up-regulated), but are more stringent on assumptions. In section

1.4.1, we described several representative methodologies for the first category. The represen-

tative methodologies for the second category were described in section 1.4.2. In these two

sections, we consider K independent experiments have been performed to detect a certain

8



effect, θgk is the parameter that characterizes the condition (e.g. disease) effect in study

k, k = 1, 2, · · · , K for gene g, (1 ≤ g ≤ G). The kth experiment is concerned to test the

hypothesis H0gk : θgk = 0 against an alternative H1gk : θgk ̸= 0, and the p-value associated

with the above test is denoted as pgk.

1.4.1 METHODS COMBINING P-VALUES

1.4.1.1 Fisher’s method(Fisher) Fisher’s method (Fisher)[31, 32]is perhaps the most

widely used combination procedure, which uses the product of p-values from tests in each

study and transform it to chi-square scores using −2 log transformation.

V Fisher
g = −2

K∑
k=1

log(pgk) (1.5)

Under the null hypothesis, statistics V Fisher
g follows a χ2 distribution with 2K degrees of

freedom. This method aggregates statistical significance from each study and generally has

good detection power. It, however, can detect genes that are extremely significant (e.g.

p=1E-20) in one study but not significant in the other four studies, a set of genes normally

of less biological interests. See Li and Tseng [52] for more discussion.

1.4.1.2 Tippett’s method(minP) This method is called minimum p-value (minP)

method proposed by Tippett [82].

V minP
g = min

1≤k≤K
pgk (1.6)

Under the null hypothesis, V minP
g has a Beta distribution with degrees of freedom 1 and K.

This method is also viewed as the union-intersection method. Say the rejection region for

the test of H0gk is {pgk ≤ α}, where α is the overall significance level. Like Fisher’s method,

this method is also sensitive to very small p values in partial studies, but it is less powerful

than Fisher’s approach.
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1.4.1.3 Wilkinson’s Method(maxP) Maximum p-value(maxP) is a special case pro-

posed by Wilkinson[103].

V maxP
g = max

1≤k≤K
pgk (1.7)

Under the null hypothesis, V maxP
g has a Beta distribution with degrees of freedom K and 1.

In contrast to Fisher’s method, maxP detects genes that have small p-values in all studies

but is usually less powerful than Fisher’s method.

1.4.1.4 Generalized ordered statistics(rOp) maxP method is very conservative in

that it requires all genes differentially expressed in all studies. A robust alternative is to

apply the r-th ordered p-value ( rOp). Let pg(r) denote the rth order statistic of K p-values,

pg1, pg2, · · · , pgK .

V rop
g = pg(r) (1.8)

Under the null hypothesis, V rop
g has a Beta distribution with degrees of freedom r and

K − r + 1. The r-th ordered p-value method (rOP) provides an alternative approach with

robustness when large numbers of studies with potentially heterogeneous patient cohorts and

variable quality are combined.

1.4.1.5 Stouffer’s Method(Stouff) Stouffer’s method is also called the inverse normal

method proposed by Stouffer [90]. This procedure involves transforming each p-value to the

corresponding normal score. and then taking the average. More specifically, define Zk by

pk = Φ(Zk), where Φ(x) is the standard normal cumulative distribution function. Then

Stouffer’s test statistic is defined as,

V Stuof =

∑K
k=1Φ

−1(pk)√
K

, (1.9)

Under null hypothesis, V Stuof has the standard normal distribution. A weighted inverse

normal method was generalized by Mosteller and Bush[69] to give different weights to each

study according to their power. The weighted inverse normal test statistic is defined as

V W Stuof =

∑K
k=1wkΦ

−1(pk)√∑K
k=1w

2
k

, (1.10)
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Under null hypothesis, V w Stouff also has the standard normal distribution. Whitlock [101]

suggests that the weights can be chosen to be the inverse of squared standard error. He

further shows weighted method is superior to the un-weighted version.

1.4.1.6 Adaptively weighted Fisher’s Method(AW) Li and Tseng[52] elucidated

two statistical hypothesis settings behind two separate biological goals in combining mul-

tiple array studies and developed an adaptively-weighted (AW) method. Genes that are

differentially expressed in all studies were termed as HSA type (hypothesis setting A) while

genes differentially expressed in at least one study was called HSB type. The adaptively-

weighted statistic is defined as:

Ug(wg) = −
K∑
k=1

wgk log(pgk), (1.11)

V AW
g = min

wg∈W
pU(µg(wg)), (1.12)

,where wg = (wg1, wg2, · · · , wgK), and µg(w) is the observed statistic for Ug(w), and W =

{w|wi ∈ {0, 1}}. Because the exact distribution of AW statistic can not be derived analyti-

cally, the p-value is usually calculated by permutation method. It has been shown that AW

method has the power to identify DE genes considered significant in either partial or full data

sets, and the resulting weight provides a natural categorization of the detected biomarkers

for further biological investigation.

1.4.2 METHODS COMBINING EFFECT SIZES

The effect size (ES) reflects the magnitude of the disease effect or (more generally) the

strength of association with clinical outcome and was widely used to combine information in

meta-analysis. There are many different metrics that can be used to measure effect size,such

as the r statistics(correlation coefficients)[81], d statistics[20, 44] and the odds ratio (OR)[35].

Here, we mainly focus on the d statistics proposed by Hegdes [44].Specifically,denote the

gene expression value of gene g(1 ≤ g ≤ G) in the disease (D) and control(C) groups of pair

i(1 ≤ i ≤ nk) and study k(1 ≤ k ≤ K) by Xd
gki and Y C

gki, respectively. We assume that these

studies are independent and that each of the XD
gki and Y C

gki is normally distributed. More
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succinctly, XD
gki ∼ N (µd

gk, σ
2
gk) and Y C

gki ∼ N (µc
gk, σ

2
gk), (1 ≤ g ≤ G, 1 ≤ i ≤ nk, 1 ≤ k ≤ K).

The effect size parameter δgk for gene g in kth study is defined as

δgk =
µd
gk − µc

gk

σgk

, k = 1, 2, · · · , K (1.13)

To estimate the population effect size, the d statistic for standardized effect size mea-

sures is often used in the literature [15, 44]; however, it is a biased estimator of the pop-

ulation effect size(δgk), and underestimate when the sample size is relatively small. Thus,

an unbiased estimator, d
′
, is alternatively developed by multiplying a correction factor,

c(m) = Γ(m/2)√
m/2Γ((m−1)/2)

, in [66, 26], where Γ(x) is the Gamma function and m is the degree

of freedom of d statistics. Below, we show detailed formulation to estimate σgk from studies

that are unpaired or paired design.

Computing d and d
′
from studies that are unpaired design: We can estimate the stan-

dardized mean difference (δgk)from studies that are unpaired design with two independent

samples as:

d =
ȲD − ȲD

Sp

(1.14)

where ȲD and ȲC are the sample means in the disease and control group, respectively. In the

denominator, Sp is the pooled standard deviation across groups, Sp =
√

(nD−1)S2
D−(nC−1)S2

C

nD+nC−2
,where,

SD and SC are the sample standard deviations in disease and control group, respectively.

The estimator of the variance of d is given in [15, 44]

V ar(d) =
nDnC

nD + nC

+
d2

2(nD + nC)
(1.15)

, which is an asymptotic estimator. Then, the exact form of the variance is provided by

Hedges[43] and used by Marot [66], it can be shown that

V ar(d) =
m

(m− 2)ñ
[1 + ñd2]− d2

c2(m)
(1.16)

, where ñ = nDnC

nD+nC
,and m = nD + nC − 2.
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Correspondingly, the d
′
statistic and its variance is given by,

d
′

= c(m)d (1.17)

V ar(d
′
) = c2(m)V ar(d). (1.18)

Computing d and d
′
from studies that are paired design: While the studies are paired

design with matched groups, the standardized mean difference (δgk)from studies can be

estimated by :

d =
ȲD − ȲD

Sp

, (1.19)

where ȲD and ȲC are the sample means in the disease and control group, respectively. In the

denominator, Sp is the pooled standard deviation across groups, Sp =
√

S2
D + S2

C − 2SDSCr,where,

SD and SC are the sample standard deviations in disease and control group, respectively,and

r is the sample correlation coefficient, r =
∑n

i=1(YiD−ȲD)(YiC−ȲC)

SDSC
. The estimator of the variance

of d is given in [9, 26]

V ar(d) =
2(1− r)

n
+

d2

2(n− 1)
(1.20)

, which is an asymptotic estimator. Then, the exact form of the variance is provided by

Becker [9] and corrected by Morris [68], it can be shown that

V ar(d) =
2(1− r)

n
(
n− 1

n− 3
)[1 +

nd2

2(1− r)
]− d2

c2(n− 1)
(1.21)

, where n is the sample size in each group.

Correspondingly, the d
′
statistic and its variance is given by,

d
′

= c(m)d (1.22)

V ar(d
′
) = c2(m)V ar(d). (1.23)
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1.4.2.1 Fixed Effects model(FEM) Fixed effects model is an often-used method of

combining effect sizes when the studies to be combined are homogeneous, in which only

within-study variability is considered. The assumption is that studies use identical methods,

samples, and measurements; that they should produce identical results; and that differences

are only due to within-study variation. The general model is given by

Ygk = µg + αgk. (1.24)

Under the fixed-effect model we assume that there is one true effect size which underlies all

the studies in the analysis, and that all differences in observed effects are due to sampling

error. Thus Ygk ∼ N(µg, σ
2
gk). The most efficient and unbiased estimator of 1 is the weighted

average of estimates where the weight is determined by inverse of their standard errors. The

estimate is

µ̂g =

∑K
k=1wgkYgk∑K

k=1wgk

, (1.25)

where wgk = S−2
gk and S2

gk s the estimated within-study variance in study k for gene g. The

variance of µ̂g is then

V ar(µ̂g) =
1∑K

k=1 wgk

. (1.26)

So, a Z-score to test the null hypothesis that the common true effect µg is zero can be

computed using

ZFEM
g =

µ̂g√
V ar(µ̂g)

. (1.27)

which follows a standard normal distribution.
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1.4.2.2 Random Effects model (REM) REM method is a popular method for comb-

ing effect sizes in meta-analysis, which makes the assumption that individual studies are

estimating different treatment effects. Choi et al [15] were probably among the first authors

to raise this issue of meta-analysis in the context of microarray data to find DE genes using

this method, where the effect size is defined as the standardized mean difference d = ȲD−ȲC

Sp
,

where ȲD and ȲC represent the means of disease (MDD) and control groups, respectively,

and Sp indicates an estimation the pooled variation. The corresponding model used was

described as:

Ygk = µg + αgk + ηgk, (1.28)

where Ygk is the observed effect size in study k for gene g; the parameters αgk and ηgk

are the between-study and within-study errors, respectively. It assumeshin-study variances,

respectively. Usually, the estimate of σ2
gk can be produced in each study k. The between-

study variance can be estimated using a method of weighted moments (MM) estimator of

τ 2g , which can be derived from the heterogeneity statistic Qg =
∑K

k=1wgk(Ygk − µ̂g)
2, where

µ̂g = (
∑K

k=1wgkYgk)/
∑K

k=1wgk is the feasible weighted least-squares estimator with weights

wgk = s−2
gk , and s−2

gk is the estimate of σ2
gk. Then, the weighted unbiased MM estimator of τ 2g

suggested by DerSimonian and Larird (DL)[22]: τ̂ 2g = max{0, Q−(K−1)
s1−(s2/s1)

}, where wgk = s−2
gk ,

and sr = wr
gk(r = 1, 2), and K is the number of studies. Under the assumption that the gene

expression levels were normally distributed, a z-score to test for DE genes was constructed as,

ZREM
g = µ̂(τg)√

V ar(µ̂(τg))
, which follows a normal distribution with zero mean and unit variance.

The p-values of each gene could then be calculated and subsequent inferences could be made.

1.4.2.3 Fixed effects model versus Random effects model When we perform a

meta-analysis using a fixed effects model or random effects model, one of first decisions we

have to make is ”Which model is more appropriate for current data?”. The selection of a

computational model should be based on our expectation about whether or not the studies

share a common effect size and on our goals in performing the analysis. It makes sense to

use the fixed effects model if we believe that all the studies included in the analysis are func-

tionally identical. By contrast, when the data sets are accumulated from a series of studies
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that had been performed by researchers operating independently, it would be unlikely that

all the studies were functionally equivalent. Typically, the subjects or interventions in these

studies would have differed in ways that would have impacted the results, and therefore we

should not assume a common effect size. Therefore, in these cases the random effects model

is more easily justified than the fixed-effect model. Therefore, a random effects model may

be more general, in which both the random variation within the studies and the variation

between the different studies is incorporated. However, more data are required for random

effects models to achieve the same statistical power as fixed effects models. Testing how

much heterogeneity there is is a way to determine whether the fixed effects model or random

effects model is appropriate.Heterogeneity in meta-analysis refers to the variation in study

outcomes between studies.

In practice, the question of which model is appropriate for given studies can be addressed

by testing for the homogeneity of study effects. There are some general ways to assess hetero-

geneity in meta-analysis, but each has a liability for interpretation. In this dissertation, we

focused on the one now widely-used chi-squared test (a Q-statistic) proposed by Cochran[8].

The Q statistic is defined as Qg =
∑K

k=1wgk(Ygk−µ̂g)
2, where µ̂g = (

∑K
k=1 wgkYgk)/

∑K
k=1wgk

is the feasible weighted least-squares estimator with weights wgk = s−2
gk , and s−2

gk is the esti-

mate of σ2
gk. Under the hypothesis of homogeneity, it follows a χ2

K−1 distribution. A large

observed value of the statistic Q relative to this distribution indicates rejection of the hy-

pothesis of homogeneity, which therefore a random effect model is more appropriate. The

previous method is based on gene by gene test. To further confirm the existence of the

heterogeneities, we assume that the genes can be treated as independent samplings and the

homogeneity can be explored over all the genes. The histogram of the observed Q values and

quantile-quantile plots (Q-Q plot) of the observed versus expected values are used confirm

the existence of the heterogeneity overall.
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1.5 PATHWAY ENRICHMENT ANALYSIS

In above sections, meta-analysis methods that combine gene expression information across

studies were reviewed. Gene expression information can be also integrated within a study.

Specifically, instead of studying each gene individually, we can also study a gene set. A

gene set is a pre-defined set of genes that may have similar locations or functions or form a

particular pathway. If genes in a gene set act in concert, this gene set may have important

biological effects on the phenotype of concern [91]. Thus, it is important to test whether a

set of genes is coherently associated with the phenotype of interest. This type of analysis is

called gene set enrichment analysis or pathway enrichment analysis[73, 91, 96]. When gene

sets are defined by biological pathways, the term gene set enrichment analysis and pathway

enrichment analysis are interchangeable. The common gene set/pathway databases include

KEGG, Biocarta, and the gene ontology (GO) databases [37, 54]. The molecular signatures

database (MsigDB) [91] is a collection of gene sets (including KEGG, Biocarta and GO) that

has five major categories, including C1: positional gene sets; C2: curated gene sets; C3: motif

gene sets; C4: computational gene sets and C5: GO gene sets. In this dissertation, pathway

enrichment analysis was mainly used to evaluate the findings in in individual analyses and

meta-analyses.

In the following sections, we give a brief review of two most commonly used pathway

enrichment methods. Fisher’s exact test is described in Section 1.5.1, and Kolmogorov-

Smirnov (KS) test is described in Section 1.5.2.

1.5.1 Fisher’s Exact Test

The Fisher’s exact test method has been widely used in pathway enrichment analysis as

a result of its simplicity[12, 24, 25, 106, 108]. The purpose for Fisher’s exact test in this

study was to determine whether the ratio of DE genes in a gene set was higher than the

ratio outside of the pathway. If the ratio was higher than would be expected by chance, the

pathway was referred to as an enriched pathway. The first step in Fisher’s exact test method

was to identify DE genes, the number of DE genes both inside and outside of the pathway
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Table 1.2: 2× 2 Contingency Table for Pathway Enrichment Analysis

In pathway out of pathway Total

DE c l-c l

Non-DE t-c G-l-t+c G-l

Total t G-t G

was then counted as a 2 × 2 contingency Table (Table 1.2). The p-value for enrichment

of a pathway was calculated by testing the independence of the 2 × 2 contingency Table

using Fisher’s exact test. The null and alternative hypothesis for the Fisher’s exact test is:

H0 : p1 = p2 and Ha : p1 > p2, where p1 and p2 are the probability of DE genes inside and

outside of the pathway. In the Fisher’s exact test, suppose a total number of G genes in the

genome were considered, among them t genes were in the pathway, l genes were contained

in the biomarker list and c genes were common to the target pathway (gene set) and the

biomarker list (shown in Table 1.2). The p-value of the pathway enrichment was calculated

from a hypergeometric distribution by p =
∑min(l,t)

x=c

(
t
x

)(
G−t
l−c

)
/
(
G
l

)
.

1.5.2 Kolmogorov-Smirnov (KS) Test

The Kolmogorov-Smirnov test (KS test) is a nonparametric test for the equality of contin-

uous, one-dimensional probability distributions that can be used to compare a sample with

a reference probability distribution (one-sample KS test), or to compare two samples (two-

sample KS test). The two-sample KS test is one of the most useful and general nonparametric

methods for comparing two samples, as it is sensitive to differences in both location and shape

of the empirical cumulative distribution functions of the two samples, so it was widely used

in pathway enrichment analysis[91, 61]. Specifically, the p-values calculated from individual

analyses or meta-analyises for assessing the DE genes are classified into two categories, in the

pathways (P ) and out of pathway (PC). Let p(1), p(2), · · · , p(n) and p̃(1), p̃(2), · · · , p̃(m) denote

the order statistics of the p-values in P and PC , respectively. The corresponding empirical
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distribution functions, F̂P (x) and F̂PC (x) for P and PC can be defined as:

F̂P (x) =


0, if x < p(1)

k/n, p(k) ≤ x < p(k+1) for k = 1, 2, · · · , n− 1

1, if x ≥ p(n)

and

F̂PC (x) =


0, if x < p̃(1)

k/m, p̃(k) ≤ x < p̃(k+1) for k = 1, 2, · · · ,m− 1

1, if x ≥ p̃(m)

Let FP and FPC denote the population distribution for P and PC , respectively. The one-sided

two sample KS test can be defined based on the formula:

TKS = sup
x
(FP (x)− FPC (x)) (1.29)

in which the null hypothesis and the alternative hypothesis are:

H0 : FP (x) = FPC (x) for all X (1.30)

Ha : FP (x) ≥ FFC (x) for all x (1.31)

FP (x) > FPC (x) for some x (1.32)

Under the null hypothesis, the rejection region has the form of TKS > Kα at level of α.

Rejection of H0 means that P is stochastically less than PC (the CDF of P lies above and

hence to the left of that for PC). In other words, the p-values of genes in the pathway P

are stochastically less than the p-values of genes outside of pathway PC . This indicates that

genes in the pathway P have a stronger association with phenotype than genes from outside

of the pathway PC ; thus, the pathway is of interest. Small p-value associated with KS test

indicates a good performance of the methods.
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2.0 A SYSTEMATIC STATISTICAL APPROACH TO INTEGRATE

WEAK-SIGNAL MICROARRAY STUDIES ADJUSTED FOR

CONFOUNDING VARIABLES WITH APPLICATION TO MAJOR

DEPRESSIVE DISORDER

2.1 MOTIVATIONS

Microarray technology enables researchers to examine the expression of thousands of genes

in parallel. Differentially expressed (DE) gene detection is one of the most common anal-

yses in microarray data. In such an analysis, genes differentially expressed under multiple

conditions are detected and are used for generating further biological hypotheses, developing

potential diagnostic tools, or investigating therapeutic targets. The extensive applications of

microarray technology have led to an explosion of gene expression profiling studies publicly

available. However, the noisy nature of microarray data, together with small sample size

in each study, often results in inconsistent biological conclusions [28, 92, 107]. Therefore,

meta-analysis, a set of statistical techniques to combine multiple studies under related re-

search hypotheses, has been widely applied to microarray analysis to increase the reliability

and robustness of results from individual studies. In the literature, three major categories of

meta-analysis methods have been applied to genomic meta-analysis: combining effect sizes

[15, 66] , combining p-values [52, 79, 80] and combining rank statistics [21, 48]. In general,

different approaches have different underlying assumptions and pros and cons in the appli-

cation [78]. Major depressive disorder is a heterogeneous illness with mostly uncharacterized

pathology. Despite many gene expression studies of MDD [3, 53, 85, 88, 87] published, the

biological mechanisms of MDD remain mostly uncharacterized [7]. Although biomarkers

and pathways have been identified in specific studies, the findings are not consistently ob-
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served from study to study. This variability may be due to several factors. Firstly, MDD is

thought to be a complex and heterogeneous disease [72], associated with multiple genetic,

genomic, post-translational, and environmental factors. Furthermore, patients might have

varying disease severity, with some having psychotic features as well as exposure to a variety

of medications and dosage levels to control their illness. Secondly, the genetic disease effects

are potentially confounded by many covariates, which include (1) demographical variables

such as age, gender and race; (2) clinical variables such as anti-depressant drug usage, sui-

cide and alcohol consumption; (3) technical variables inherent in the use of post-mortem

brain samples, such as the pH level of brain tissues, brain region and postmortem interval

(PMI). If the statistical models employed to identify differentially expressed genes fail to

incorporate these sources of heterogeneity, not only can this reduce the statistical power,

but also it will introduce sources of spurious signals to the gene detection. Finally, sample

sizes for these studies are generally small (between 10-25 pairs of MDDs and controls) due

to the limited availability of suitable brain specimens and the significant costs associated

with their collection. In this paper, we propose a statistical framework to tackle weak signal

expression profiles that have small sample size, case-control paired design and confounding

covariates in each study. We use a set of five major depressive disorder (MDD) expression

profiles as an illustrative example. In the literature, most analyses of similar data struc-

ture either ignored the potentially confounding covariates by using paired or unpaired t-test

[18, 51, 98] or applied simple linear regression model to incorporate all covariates [67, 76].

The former approach undoubtedly ignored effects from confounding covariates; the latter

approach was not efficient or even not applicable when the number of covariates is large and

the number of samples in each study is small. In this paper, we will propose a framework

that uses a random intercept model (RIM) to account for the case-control paired design and

confounding covariates in single study analysis. An improved RIM with gene-specific vari-

able selection (namely RIM minP or RIM BIC to be introduced later) will be performed to

accommodate the small sample size and relatively large number of covariates in individual

studies. We will then apply and compare three popular meta-analysis methods: Fisher’s

method [31, 32], inverse variance weighted random effects model [15, 44], and maximum p-

value method [50, 86, 103]. Our proposed framework is general and applicable in commonly
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Table 2.1: Data description of five MDD microarray studies

Study Gender Brain region sample Platform

MD1 ACC M ACC 32(16) Affymetrix

MD2 ACC M ACC 20(10) Illumina

MD3 ACC F ACC 50(25) Illumina

MD1 AMY M AMY 28(14) Affymetrix

MD3 AMY F AMY 42(21) Illumina

encountered microarray meta-analysis of complex genetic diseases. Simulations considering

various correlation structures among disease state, gene expression and covariates will be

performed to demonstrate the better performance of this framework. The application of

combining five MDD microarray studies also show improved DE gene detection power and

superior statistical significance of pathway detection using our proposed method.

2.2 MATERIALS

Description of motivating MDD data: This research is motivated from the meta-analysis

of combining five MDD transcriptomic studies. Brain tissues of three patient cohorts (MD1,

MD2 and MD3) obtained from different sources at different time were analyzed. For all

three patient cohorts, tissues from the anterior cingulated cortex (ACC) brain region were

analyzed by microarray experiments independently to generate three microarray studies:

MD1 ACC, MD2 ACC and MD3 ACC. Similarly, tissues from the amygdala (AMY) brain

region in MD1 and MD3 cohorts were analyzed to generate MD1 AMY and MD3 AMY.

Details of the five patient cohorts and microarray studies are available in Table 2.1. In each

patient cohort, MDD patients were matched to control patients by three demographic vari-

ables: age, sex and race. Three additional clinical variables (alcohol consumption, history

of taking anti-depressant drugs and history of committing suicide) and two technical vari-
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Table 2.2: Pearson correlation between covariates in three MDD cohorts (collinearity evaluation)

Age Alcohol Antidep Suicide pH PMI

Age — (-0.05, 0.34, 0) (0.15, 0.14, 0.04) (0.02, -0.26, 0) (-0.12, -0.01, -0.04) (-0.19, -0.17, 0.37)

Alcohol (-0.05, 0.34, 0) — (-0.21, 0.63, 0.28) (0.41, 0.15, 0.22) (0.09, 0.22, -0.08) (-0.02, -0.29, -0.04)

Antidep (0.15, 0.14, 0.04) (-0.21, 0.63, 0.28) — (0.31, 0.19,0.22) (0.18, 0.36,-0.21) (-0.13, -0.35, -0.18)

Suicide (0.02, -0.26, 0) (0.41, 0.15, 0.22) (0.31, 0.19,0.22) — (0.19, -0.3, 0.06) (-0.17, -0.38, -0.02

pH (-0.12, -0.01, -0.04) (0.09, 0.22, -0.08) (0.18, 0.36,-0.21) (0.19, -0.3, 0.06) — (0.41, -0.03, -0.03)

PMI (-0.19, -0.17, 0.37) (-0.02, -0.29, -0.04) (-0.13, -0.35, -0.18) (-0.17, -0.38, -0.02) (0.41, -0.03, -0.03) —

ables (pH level of brain tissues and post-mortem interval PMI) were also available for each

patient. Among the covariates described above, six variables (age, alcohol, drug, suicide, pH

and PMI) are considered potential confounders in the DE gene detection of MDD. These six

covariates were not highly correlated in our analysis and thus the collinearity issue does not

exist in the linear models below (see Table 2.2).

Data preprocessing, gene matching and gene filtering: Microarray images were

scanned and summarized by manufacturers’ defaults. Data from Affymetrix arrays were

processed by RMA method and data from Illumina are processed by manufacturer’s soft-

ware for probe analysis. When samples in each study were processed in multiple batches,

potential batch effects were evaluated and normalizations were performed to correct batch

biases when necessary. Probes (or probe sets) were then matched to official gene symbols

using Bioconductore package. When multiple probes (or probe sets) matched to an iden-

tical gene symbol, the probe that generated the best disease association (by paired t-test)

was selected to match to the gene symbol. This selection may cause potential bias but can

increase statistical power in such weak-signal data. After genes were matched across five

studies, 16,715 unique gene symbols were available across all five studies and intensities were

all log-transformed (base 2). Two sequential steps of gene filtering were then performed. In

the first step, we filtered out genes with very low gene expression that were identified with

small average expression values across majority of studies. Specifically, mean intensities of

each gene across all samples in each study were calculated and the corresponding ranks were

obtained. The sum of such ranks across five studies of each gene was calculated and genes

with the highest 30% rank sum were considered un-expressed genes (i.e. small expression in-
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tensities) and were filtered out. Similarly, in the second step, we filtered out non-informative

(small variation) genes by replacing mean intensity in the first step with standard deviation.

Genes with the lowest 40% rank sum of standard deviations were filtered out. Supplement

Figure 1 shows the preprocessing diagram and the number of genes remained in each pre-

processing step. Finally, 7,020 matched genes (16715× 0.7× 0.6 = 7020) in five studies were

analyzed.

2.3 METHODS

2.3.1 Single study analysis for DE gene detection

Paired t-test and Wilcoxon signed rank test:As a comparison, paired t-test andWilcoxon

signed rank test were performed. These two methods took into the MDD and control paired

design into consideration but ignored the confounding covariates.

Random intercept model (RIM) and fixed effects model (FEM): To account for

paired design (MDD samples paired with corresponding controls) and existence of MDD re-

lated covariates, we applied a random intercept model (RIM). For a given gene g, we fit the

model

Ygik = µg + βg0X0ik +
L∑
l=1

βglXlik + αk + ϵgik, (2.1)

In the model, Ygik was the gene expression value of gene g(≤ g ≤ G) and sample i (i = 1 for

control and 2 for MDD) in pair k(1 ≤ k ≤ K). X0ik was the disease label that took value one

if the sample was MDD and Zero if sample was a control. Xlik represented values for potential

confounding covariate l (1 ≤≤ 6; 0-1 binary for alcohol, drug and suicide and numerical for

age, pH and PMI). αk was the random intercept from a normal distribution with mean zero

and variance τ 2g , which represented the deviation of averaged expression values in the kth

pair from the average in the whole population. Finally, ϵgik were independent random noises

that followed a normal distribution with mean zero and variance σ2
g . Under this model, βg0
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was the disease effect of gene g and was the parameter of major interest. To obtain an MDD-

associated biomarker candidate list in a single study analysis, likelihood ratio test (LRT) was

used to assess the p-values of testing H0 : βg0 = 0 (vs HA : βg0 ̸= 0). The p-values were

then be corrected by Benjamini-Hochberg procedure [8] for multiple comparison.

Fixed effects model (FEM) below ignores the paired design while still considers the

covariates in the model. It can be used when diseased and control samples are not paired.

Ygik = µg + βg0X0ik + s

L∑
l=1

βglXlik + ϵgik (2.2)

RIM and FEM with variable selection: Although RIM model can effectively ad-

just for confounding covariates in DE gene detection, the small sample size (10-25 pairs) and

relatively high number of potential confounders (6 covariates) can make the model inefficient

and impractical. In this paper, we developed and evaluated two choices of variable selection

procedures in the random intercept model (namely, RIM BIC and RIM minP). Specifically,

all possible RIM models that included at most two (0, 1 or 2) clinical variables were computed

and compared. In RIM BIC, the model with the smallest Bayesian Information Criterion

(BIC) [84] value was selected. For RIM minP, we selected the model that yielded the small-

est p-value associated with the likelihood ratio test for testing the disease effect H0 : βg0 = 0.

Conceptually, BIC selected the model with the best model fitting and prediction while minP

focused on the model that gave the best statistical significance of the disease effect. This

additional variable selection avoided to include more than 2 clinical variables in the model

and allowed assessment of biomarkers affected by different sets of covariates in each gene

(e.g. gene A is confounded by alcohol while gene B is confounded by drug), which biologi-

cally gave more appealing conclusions and interpretations. Similar to RIM model, likelihood

ratio test were used to generate p-values of testing H0 : βg0 = 0 in each gene for the selected

model by BIC or minP. These attached p-value numbers were, however, not the true p-values

for DE gene detection since they were biased from the variable selection procedure and the

type I error control was voided. As a result, we performed a permutation test that randomly

permuted the disease labels within each pair to generate a null distribution for p-value as-

sessment. Figure 2.1 shows the simulated null distribution from permutation analysis. The

skewed distribution deviating from uniform distribution between 0 and 1 showed the need
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Figure 2.1: Simulated null distributions of disease effect p-value in the best model (left:

RIM minP; right: RIM BIC) from permutation analysis in the five MDD studies. The

result shows bias (deviation from uniform distribution) caused by variable selection.

of the permutation analysis for p-value correction. Subsequently, the resulting unbiased p-

values after permutation correction were then corrected by Benjamini-Hochberg procedure

for multiple comparison in each study for DE gene detection. Detailed algorithm of the per-

mutation analysis is described in AppendixA. In contrast to RIM minP and RIM BIC, we

denote by RIM ALL the RIM model that includes all covariates without variable selection.

Testing significance of interaction terms of each covariate: In the literature, age

as well as other covariates has been found to be confounders of the disease effect with

significant interaction term in some important biomarkers. [34, 39] In other words, the disease

effect on gene expression may be affected by age differently in older and in younger cohorts.
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Table 2.3: The number of significant interaction terms between disease state and covariates in
FEM model and RIM.

FEM RIM

M
D
1
A
C
C

M
D
2
A
C
C

M
D
3
A
C
C

M
D
1
A
M
Y

M
D
3
A
M
Y

M
D
1
A
C
C

M
D
2
A
C
C

M
D
3
A
C
C

M
D
1
A
M
Y

M
D
3
A
M
Y

FDR=0.05

Age 0 0 0 0 0 54 1 0 0 0

pH 0 1 0 0 0 0 7 2 0 0

PMI 0 0 0 0 0 0 2 0 0 0

To evaluate the overall impact of the interaction terms in each covariate, we performed the

following simple linear model

Ygik = µg + βg0X0ik + βglXlik + γglX0ikXlik + ϵgik (2.3)

, and random intercept model

Ygik = µg + βg0X0ik + βglXlik + γglX0ikXlik + αk + ϵgik, (2.4)

where the notations were the same as in FEM model and RIM model with only one covariate

l included and a corresponding interaction term involved. We performed likelihood ratio test

for H0 : γgl = 0 to test the statistical significance of the interaction term of gene g and

covariate l. Table 2.3 summarizes the number of significant interaction terms in the genome

of each covariate. The result shows that the interaction terms between each covariate (Age,

pH or PMI) and MDD were not significant in most of the genes under false discovery rate

FDR = 5% (Benjamini-Hochberg correction). As a result, we did not consider the interaction

terms in our RIM models hereafter.
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2.3.2 Meta-analysis for DE gene detection

Among the many microarray meta-analysis methods used in the literature, most methods

have their pros and cons depending on the data structure and biological goal [47, 78]. In this

paper, we compared three most popular methods described in sections 1.4.1.1 ,1.4.1.3,1.4.2.2,

repectively, Fisher, maxP and IVW.

2.3.3 Pathway analysis

We applied Fisher’s exact test to detect enriched pathways in detected DE gene lists from

individual study analyses and three meta-analysis methods. Pathways were obtained from

the MSigDB database [91] and Gene Ontology, in which we only considered pathways that

included at least five genes. We evaluated C1-C4 in MSigDB and gene ontologies in ”GOstats”

package in Bioconductor. In the Fisher’s exact test, suppose a total number of g genes

in the genome were considered, among them t genes were in the pathway, l genes were

contained in the biomarker list and c genes were common to the target pathway (gene

set) and the biomarker list. The p-value of the pathway enrichment was calculated from a

hypergeometric distribution by p =
∑min(l,t)

x=c

(
t
x

)(
g−t
l−c

)
/
(
g
l

)
. We evaluated p-values for each

pathway independently and then corrected the p-values by Benjamini-Hochberg procedure

for multiple comparison to generate q-values. As will be seen in Figure 6, the three meta-

analysis methods detect different sets of DE genes. To avoid bias and as an attempt to retain

advantages from all three meta-analysis methods, we develop a minimum p-value method

(minP) for integrating results from Fisher, maxP and IVW. Specifically, a minP statistics is

defined as UminP
g = min(pFishe

g r, pmaxP
g , pIV W

g ), where pFisher
g , pmaxP

g and pIV W
g are p-values

of gene g generated by each meta-analysis method. Under null hypothesis, UminP
g follows a

beta distribution with degrees of freedom 1 and 3. The resulting p-values are then adjusted

by Benjamini-Hochberg procedure for q-values.
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2.3.4 Post hoc analysis on the confounding variables after meta-analysis

An essential advantage of our gene-specific variable selection scheme is the possibility of

post hoc analysis on the selected confounders across studies in a genome-wide scale. Three

questions can be explored and answered: (1) Which variable(s) is the most or least frequently

included in the model selection to confound with disease effect? (2) Are variables repeatedly

selected across studies more frequently than by random (e.g. alcohol is selected in most or

all studies in a given gene)? (3) Are the directions of effect sizes of a variable consistent

across studies (e.g. patients who take alcohol have higher expression than non-alcohol in

most studies for a given gene)? For the first question, we first generated a list of DE genes

under a given FDR threshold and counted the frequency of each variable being selected in

the gene list. The variables were ranked according to the frequencies in each study and a

rank average of each variable was calculated across five studies. A small averaged rank of a

given gene showed frequent appearance of the variable in the DE genes’ models and was a

frequent confounder. For question (2), we computed a pair-wise co-appearance score (T1)

for a given gene set and assessed its statistical significance. For example, VGF in Table 4

had detected age effects in 2 studies, alcohol effects in 3 studies, anti-depressant effect in 1

study and suicide effect in 3 studies. By summing up co-appearing pairs of the five studies in

each variable, we obtained a T1,g statistics of 7 (C2
2 +C3

2 +0+C3
2 = 7 ) for g=VGF. Summing

up all 10 genes, we obtained T1 =
∑

g T1,g = 66. Permutation test was then performed to

assess the statistical significance of T1.

To answer question (3), we further computed rate of expression concordance among all

co-appearance pairs. Specifically, we examined all co-appearing pairs that contributed to

T1 and count the number of pairs that are concordant (up-regulation in both studies or

down-regulation in both studies). The total aggregated score for pair-wise concordance was

denoted as T2 and the ratio of concordance was R = T1/T2. In the example of Table 4, 45

out of 66 co-appearing pairs were concordant and R = 0.68. Similarly, permutation test was

performed to assess the statistical significance of observed R scores. Detailed mathematical

notation and permutation algorithm are outlined in Appendix B.
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2.3.5 Evaluation and simulation

To evaluate performance of different models and methods in a real data analysis, we compared

the number of detected DE genes and the statistical significance of important pathways.

For the former criterion, we argue that with adequate modelling and multiple comparison

correction, detecting more DE genes shows better statistical power of a method and should

be a preferred method. There is, however, no rigorous proof to reason that detecting more

DE genes guarantees better performance of a method, in terms of its type I error control

and statistical power. Since the type I error and statistical power could not be evaluated

in real data analysis, we performed extensive simulations to facilitate the evaluation. For

a given gene, we considered three variables of a continuous vector of gene expression Y ,

a corresponding binary vector of disease state X and multiple vectors of potential binary

confounding covariate Z. Figure 2.2 shows three correlation structures of interest among

(X, Y, Z) that are systematically simulated. Scenario I demonstrated that both disease

state X and confounding variables Z affect gene expression, a model we are most interested

in this paper. Scenario II and III showed situations when confounding variables Z did

not directly affect gene expression Y . In these latter two scenarios, including confounding

variables Y in the model should not improve performance. The detailed simulation scheme

and evaluation criteria are available in the Supplement Materials Part III. For each scenario,

we simulated a data set with 1000 independent genes and 50 samples (25 diseased and 25

controls). Among the 1000 genes, 100 are true DE genes and 900 are non-DE genes. t-

test, FEM minP, FEM BIC and FEM ALL were applied to evaluate the effect of modelling

confounding variables and variable selection in each correlation structure. We repeated the

simulation 50 times. Type I error and power were calculated for each method in each data

set and averaged over 50 repeated simulations.
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Figure 2.2: Three correlation structures of interest among disease variables X, gene expression

variable Y and covariates Z that are used in the simulation. Scenario I: gene expression

depends on both disease state and covariates. Scenario II: gene expression depends only on

disease state. Scenario III: gene expression depends on disease state directly and depends

on covariates indirectly through disease state.

2.4 RESULTS AND DISCUSSION

2.4.1 Recommended statistical framework

From the motivating MDD example, we proposed a statistical framework to consider poten-

tial confounding covariates, paired design and gene-specific variable selection in the meta-

analysis modelling. Figure 2.3 shows a diagram of the framework. The framework consisted

of four major steps: individual study analysis, meta-analysis, pathway analysis and post
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hoc analysis. In the first ”individual study analysis” step, collinearity of confounders was

assessed and RIM minP or FEM minP method with variable selection was applied depend-

ing on paired or un-paired design. One or multiple meta-analysis methods were applied and

compared in Step II. Pathway analysis was then performed on the detected DE gene list(s)

to identify enriched pathways in Step III. Finally, post hoc analysis was performed to sum-

marize importance of each confounding variables and to evaluate the consistency of disease

effects and confounders’ effects across studies. This framework is general and abstract that

can be applied to any weak-signal data from a complex disease similar to the motivating

MDD example.

2.4.2 Comparison of various methods in single study analysis

Adjusting confounders and variable selection improve DE gene detection For each

single study analysis, we compared the number of detected DE genes under different p-value

thresholds (p=0.001, 0.005, 0.01 and 0.05) from different methods. In Figure ??, RIM minP

and RIM BIC both detected more DE genes than RIM ALL, showing the fact that variable

selection helped to ignore irrelevant clinical variables when sample size was small. Among

the two variable selection methods, RIM minP detected more genes than RIM BIC, support-

ing that the focus of RIM minP to obtain the most significant disease effect outperformed

RIM BIC’s focus for best model fitting in this example. Under p=0.005, RIM minP de-

tected (1.7 to 2.3) times of DE genes than RIM BIC and (1.5 to 6) times than RIM ALL in

the five studies. The result suggested that RIM minP is the most effective method in this

data set to incorporate confounding variables in the model. In Figure 2.5, RIM minP was

further compared to paired t-test (PT) and Wilcoxon signed rank test (WT) and was found

to detect more DE genes, showing the advantage of incorporating confounding covariates in

the model. RIM minP identified (0.8 to 3.9) times of DE genes than PT and (2.5 to 6.4)

times than WT under p=0.005.

Paired design improves DE gene detection: To evaluate the improvement of in-

cluding paired design in the model, we compared RIM minP and FEM minP in Figure

2.6. We observed more powerful DE gene detection of RIM minP compared to FEM minP.
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Figure 2.3: Three correlation structures of interest among disease variables X, gene expression

variable Y and covariates Z that are used in the simulation. Scenario I: gene expression

depends on both disease state and covariates. Scenario II: gene expression depends only on

disease state. Scenario III: gene expression depends on disease state directly and depends

on covariates indirectly through disease state.

RIM minP detected more DE genes than FEM minP in most studies except for MD1 AMY.

The result showed that pairing cases to controls by age, race and sex usually helped increase

statistical power.

Conclusion In conclusion, incorporation of potential confounding covariates with variable

selection and considering paired design in the model performed the best. We used RIM minP

hereafter for single study analyses and as the foundation of meta-analysis. In Table 1, the

first five columns show the number of biomarkers detected by RIM minP under different
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Figure 2.4: Comparison of RIM minP, RIM BIC and RIM ALL in individual study analyses.

The result showed that RIM minP detected the largest number of DE genes among the three

methods.

p-value and false discovery rate (FDR) thresholds. After multiple comparison correction

by Benjamini-Hochberg procedure, only MD3 ACC detected one DE gene and all other four

studies detected none DE gene under FDR=5%. This motivated us to perform meta-analysis

below to increase the statistical power of DE gene detection.

2.4.3 Comparing three meta-analysis methods in combining all five studies

In the literature, many microarray meta-analysis methods have been proposed and compared

[13, 47, 78]. As was discussed in the method section, different methods have different strength

for detecting different types of differentially expressed genes. In Li et al [52], genes that are
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Figure 2.5: Comparison of RIM minP, paired t-test (PT) and Wilcoxon signed-rank test

(WT) in individual study analyses. The result showed that RIM minP detected the largest

number of DE genes among the three methods.

differentially expressed in all studies were termed as HSA type (hypothesis setting A) while

genes differentially expressed in at least one study was called HSB type. Among the three

methods compared in this paper, maxP and IVW were methods that detect HSA type DE

genes, while Fisher’s method detected HSB type DE genes. Table 2.4 shows the number

of detected DE genes from five individual study analyses and from meta-analysis of five

studies (Meta 3ACC+2AMY by Fisher, maxP and IVW) under different p-value and FDR

threshold. A Venn diagram of DE gene lists detected by three meta-analysis methods under

p=0.005 is shown in Figure F1. The result showed that the three meta-analysis methods

detected different sets of DE genes, suggesting different algorithms and assumptions behind
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Figure 2.6: Comparison of RIM minP and FEM minP in individual study analyses. The

result showed that RIM minP usually detected more DE genes.

the methods. Figure 2.8 shows heamaps on genes detected by Fisher alone (A), maxP alone

(B) or both (C). In Figure 2.8 A, majority of DE genes detected by Fisher but not by maxP

were dominated by strong differential expression in one or two studies (many in MD3 AMY

and some in MD2 ACC or MD3 ACC). Although Fisher’s method has been popularly applied

in the microarray meta-analysis literature, the result showed its weakness to be dominated by

single strong signal studies that included potential false positives. On the other hand, maxP

had better power to detect many genes with weak DE evidence in all studies (Figure 2.8B)

that Fisher’s method cannot detect. Conceptually, we were more interested in identifying

genes differentially expressed across all studies through maxP or IVW although we still

apply a unified minimum p-value method to integrate advantages of all three meta-analysis
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Table 2.4: Results of individual study analyses and meta-analysis combining p-values calculated
from RIM minP

Individual studies Meta-analysis

(3ACC) (3ACC+2AMY) (2AMY)

MD1 ACC MD2 ACC MD3 ACC MD1 AMY MD3 AMY Fisher maxP IVW Fisher maxP IVW Fisher maxP IVW

p=0.001 5 25 29 3 118 73 123 246 220 255 425 64 50 340

p=0.005 42 122 123 30 448 304 371 572 658 664 569 283 185 828

FDR=0.05 0 0 0 0 0 8 86 106 574 605 552 0 0 143

FDR=0.1 0 0 1 0 882 149 534 812 1815 1909 616 33 0 996

methods. For a complete comparison, we also performed partial meta-analysis by combining

three ACC studies (Meta 3ACC) and two AMY studies (Meta 2AMY). The results are

outlined in Table 2.4.

To further evaluate the biological meaning of the detected DE genes by various methods,

pathway analysis was performed. For a fair comparison, DE gene lists detected by vari-

ous methods (individual study analyses or Fisher, maxP and IVW meta-analysis methods)

under p=0.005 without multiple comparison adjustment were evaluated and Table 2 (See

Appendix) shows the pathway analysis results. Comparing single study analysis and meta-

analysis results in pathway analysis, the p-values of many important psychiatric related path-

ways were much smaller in the meta-analysis results than those from single study analysis,

showing increased statistical power by meta-analysis in the functional analysis. For example,

the gene set ”ASTON MAJOR DEPRESSIVE DISORDER DN” obtained from a previous

MDD study had none to marginal statistical significance in pathway analysis of each individ-

ual study. Meta-analysis by Fisher or maxP method generated high statistical significance

from pathway analysis (p=4E-12 and 2E-9). Pathways with known or putative correlation

with MDD were marked with asterisk in Table (in Appendix). Many of these insightful
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Figure 2.7: Venn diagram of DE gene lists obtained from Fisher, maxP and IVW under

0.005 p-value threshold.

pathways were, however, generated by split of the three methods, suggesting that Fisher,

maxP and IVW may have their own characteristics and advantages to detect different path-

ways. To generate a more unbiased and unified result, we applied a minimum p-value (minP)

method to integrate pathway analysis results from Fisher, maxP and IVW (details described

in ”Method” section). Table includes 87 pathways (in C2, C3 and gene ontology databases)

detected by minP under a loose p-value threshold at 0.01 without multiple comparison. C1

and C4 databases in MsigDB did not generate any pathway with high statistical significance

(3 out of 326 pathways in C1 and 9 out of 881 in C4 with p-value smaller than 0.01) and thus

are excluded from the presentation. Many pathways listed in Appendix Table 1 were found

related to signal transduction, neural development and neuropsychiatry, providing deep in-
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Figure 2.8: Heatmap of minus log10-transformed p-values obtained from all five studies and

meta-analysis for detecting DE genes. Red indicates small p-values and green indicates large

p-values. (A) DE genes detected by Fisher’s method but not by maxP method; (B) DE

genes detected by maxP but not by Fisher’s method; (C) DE genes detected by both Fisher

and maxP method.

sight to the underlying genetic mechanism of MDD. In C2 curated gene set category, the

gene sets (”ASTON MAJOR DEPRESSIVE DISORDER DN”) includes numerous down-

regulated genes that are specific to oligodendrocytes [3], the major myelin-forming cell type

in the brain, which have been shown to be reduced in numbers in depression [41]. The gene

set (”BLALOCK ALZHEIMERS DISEASE DN”) highlights the potential biological interac-

tion between the co-occurrence of de-pressive symptoms in Alzheimer disease patients. Other

identified gene sets relate to biological functions that have been identified as causative, or at
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least as risk factors for the development of depres-sion (i.e. interleukin-related function, ”MA-

HAJAN RESPONSE TO IL1A UP”, ”MARZEC IL2 SIGNALING UP”). Other gene sets

potentially relate to biological functions involved in the therapeutic treatment of the illness

(ie, ”ROPERO HDAC2 TARGETS ”, ”RODRIGUES THYROID CARCINOMA DN”. In

C3 motif gene sets, six motifs ”CCTGCTG,MIR-214”, ”CTTTGCA,MIR-527”, ”CAGGTG

V$E12 Q6”, ”GAANYNYGACNY UNKNOWN”, ”V$SP1 Q2 01”, ”AAGCCAT,MIR-135A,

MIR-135B”, ”V$CDPCR3HD 01” for various miRNA and transcription factor targets had

p-values smaller than 0.001. For gene ontologies, many pathways related to metabolism and

signal transduction were identified. In particular, ”cell communication”, ”nervous system de-

velopment”, ”synaptic transmission”and ”ensheathment of neurons”were insightful pathways

related to MDD.

2.4.4 Distribution of covariate inclusion in the models of detected DE genes

To evaluate the impact of covariates on the gene expression values and degree of confounding

with disease effect, especially among DE genes, we counted the number of appearances of

covariates in the RIM minP models for 664 DE genes detected by maxP method under 0.005

p-value threshold. We calculated the rank of each covariate in each study and computed rank

averages of each co-variate to indicate relative degree of frequency that a covariate impacted

gene expression and confounds with disease effect (see Table 2.5). PMI (appeared in 16-24%

models of 664 DE genes) and pH (appeared 14-37%) consistently had high rank, indicating

that they seldom confounded and influenced the disease effect estimate. Age (appeared 28-

39%), alcohol (appeared 25-43%) and antide-pressant (appeared 17-48%) were three factors

that consistently ranked among the most influential factors. Suicide ranked among the lowest

in three studies (appeared 44-52%) but the highest in two studies (appeared 15-19%). The

ranking of MD3 ACC and MD3 AMY was highly correlated (Spearman correlation=0.9)

and the correlation between rankings of MD1 ACC and MD1 AMY was also high (Spearman

correlation=0.71). The high within cohort correlations showed a cohort dependent structure

and suggested that more studies may be needed to provide empirical evidence on the covariate

impacts, particularly for the impact of antidepressant and suicide.
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Table 2.5: Frequency of covariates appearing in RIM minP models among 664 DE genes detected
by maxP method under p-value threshold 0.005. Rank is shown in parentheses and rank average of
each covariate is calculated to indicate relative degree of frequency that a covariate impacts gene
expressions and confounds with disease effect

MD1 ACC MD2 ACC MD3 ACC MD1 AMY MD3 AMY rank average

Age 186 (4) 258 (2) 238 (2) 192 (3) 233 (3) 2.8

Alcohol 243 (3) 230 (3) 165 (4) 286 (1) 173 (4) 3

Antidep 291 (1) 115 (6) 202 (3) 277 (2) 320 (1.5) 2.7

pH 247 (2) 143 (4) 127 (6) 176 (4) 94 (6) 4.4

PMI 109 (5) 139 (5) 160 (5) 154 (5) 109 (5) 5

Suicide 97 (6) 295 (1) 345 (1) 126 (6) 320 (1.5) 3.1

To further explore effects of covariates, we identified a set of 10 genes that have been

previously associated with MDD in the literature (see Appendix Figure F). Intuitively, we

expected that a co-variate should be included in the model across studies more frequently

than by random and effects of a covariate should have consistent differential expression direc-

tion across studies. We constructed two hypothesis testing using the co-appearing statistics

T1 and concordant ratio statistics R described in Method section and performed the tests on

the 10 MDD-related genes and on 664 DE genes detected by maxP under p=0.005 threshold.

The result showed weak to marginal statistical significance of the first hypothesis (p=0.172

for the 10 MDD genes and p=0.05 for 664 DE genes), suggesting covariates were consistently

selected across studies. For the second hypothesis, tests for both 10 MDD gene list and

664 DE gene list were statistically significant (p=0.019 and 0.002). The result demonstrated

that covariates overall impacted gene expression changes consistently and confounded with

disease effects among the two MDD-related candidate gene lists tested.
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2.4.5 Simulation results

Simulation results are shown in Table 2.6. In Scenario I simulation, the effect of disease

state X on gene expression Y was confounded by two out of ten clinical variables in Z. The

result showed that t-test had low statistical power due to the confounders (power=0.679).

FEM ALL also had low power due to the inclusion of all ten clinical variables in the model

(power=0.697). Both FEM models with variable selection perform well. FEM BIC per-

formed slightly better than FEM minP (power=0.729 versus 0.746). The type I errors for all

methods were close to the nominal 5% rate, showing adequacy of the models and statistical

inference. For Scenario II, all clinical variables were independent from the gene expression.

Not surprisingly, t-test performed the best with statistical power 0.938. FEM minP and

FEM BIC both had similar high power at 0.929 and 0.925. FEM ALL forced all variables

in the model and obtained a statistical power at 0.85. From Scenario I and Scenario II sim-

ulation, FEM BIC and FEM minP performed well in both extreme cases, demonstrating its

sensitivity and robustness. Scenario III examined a situation that variables Z impact gene

expression Y through disease state X. Similar to Scenario II, t-test performed the best in this

situation since Z is not confounded (power=0.938). Both FEM BIC and FEM minP had sim-

ilar high power (power=0.925 and 0.916) but FEM ALL again had low power (power=0.851).

Overall, the simulation results confirmed our findings in MDD data analysis that variable

selection by BIC and minP procedures had better sensitivity and robustness in DE gene

detection.

2.5 DISCUSSION

In this paper, we described a statistical framework, namely MetaACV (Meta-analysis ad-

justed for confounding variables), to tackle weak signal expression profiles that have small

sample size, case-control paired design and confounding covariates in each study. The re-

sults showed increased statistical power from confounding variable adjustment, paired design

modelling and meta-analysis in this genomic setting and more profound biological findings
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Table 2.6: Evaluation of t-test, FEM minP, FEM BIC and FEM ALL methods by simulations.The
Average of Type I errors, average of statistical powers, and average number of detected DE genes
by each method are shown.

Type (I) error Power (%) DE gene number

(s.e) (s.e) (s.e)

Scenario t-
te
st

F
E
M

m
in
P

F
E
M

B
IC

F
E
M

A
L
L

t-
te
st

F
E
M

m
in
P

F
E
M

B
IC

F
E
M

A
L
L

t-
te
st

F
E
M

m
in
P

F
E
M

B
IC

F
E
M

A
L
L

I
estimate 0.051 0.048 0.050 0.052 80.4 87.2 87.9 84.0 37.3 49.4 52.8 43.5

s.e (0.001) (0.001) (0.001) (0.001) (0.005) (0.004) (0.004) (0.005) (1.228) (1.063) (1.029) (1.162)

II
estimate 0.051 0.052 0.050 0.051 93.8 92.9 92.5 85.0 73.4 73.0 69.8 49.7

s.e (0.001) (0.001) (0.001) (0.001) (0.003) (0.003) (0.003) (0.005) (0.846) (0.915) (0.956) (1.368)

III
estimate 0.051 0.053 0.051 0.051 93.8 92.5 91.6 85.1 71.8 68.3 66.5 45.8

s.e (0.001) (0.001) (0.001) (0.001) (0.003) (0.004) (0.004) (0.005) (0.928) (0.940) (0.876) (1.047)

have been discovered in MDD neurobiology. Pathway analysis and post hoc analysis of vari-

able selection revealed insightful biological conclusions. Simulations under three correlation

structures were performed to verify improved performance of our proposed frame-work. In

the literature, most psychiatric disease-related microarray studies of similar design either

ignored the clinical variables or applied simple linear regression to include all variables in

the model. Our results clearly show limits to those two approaches. To our knowledge, this

is the first paper, which systematically considers the critical elements in the data structure

in order to obtain more accurate DE gene and pathway detection. The framework is general

and can be applied to microarray meta-analysis of other complex diseases with similar data

structure. Specifically, this approach will be of great use in human post-mortem studies of

the brain, where confounding factors are intrinsic (1) to the nature of the cohorts (demo-

graphic parameters), (2) to their method of collection (post-mortem interval) and (3) to the

illness per se (clinical heterogeneity). Since dilution of expression signal is likely to occur in

complex tissue such as the brain, DE genes often show small and weak effects, so reducing
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the statistical interference of confounding factors is critical to detect disease effects. In the

variable selection of the RIM model, we tested both BIC and minP approaches. The real

data analysis showed that minP seemed to identify more DE genes and pathways in the

MDD example while simulations showed similar performance and statistical power of the

two methods. Another potential alternative is to apply popular regularization and shrinkage

methods, such as Lasso or ridge regression, in the variable selection. A prohibitive down-side

of such approaches is its extensive computation load for ge-nome-wide analysis, particularly

in the estimation of the tuning parameter lambda. In our analysis, BIC and minP procedures

limited to up to two covariates in the model balance well in biological inter-pretation and

computation feasibility.

The goal of this study was to determine optimal analytical ap-proaches for complex

datasets with multiple putative confounding variables. For this purpose, we focused on

datasets produced by our group, in order to avoid additional confounding factors due to

differences in laboratory protocols, brain bank collection, tissue treatment and sample han-

dling. Now that we have established such analytical guidelines, the next step will be to

increase the scope of meta-analyses by including additional datasets that are progressively

made available in the literature. However, as expected, this also comes with added variabil-

ity, which necessitates the development of complementary mathematical tools. For instance,

we have designed a data-driven ”meta-QC” quality control approach to rigorously assess the

quality and potential load of confounding variables for any microarray datasets (Kang et al,

paper in preparation). This preliminary quality control test is critical to assess whether the

inclusion of additional datasets will increase the analytical power, or be detrimental to the

meta-analysis, due to substantial quality control confounding load. Finally, as briefly eluci-

dated in this report, mechanisms underlying neurological and neuropsychiatric disorders are

likely to involve a distributed sets of brain regions linked in functional neural networks. The

detection of molecular pathologies associated with those disorders will thus also critically

depend on a priori hypotheses for converging or opposing effects in selected brain regions,

for the presence (or not) of control brain regions. For instance, genetic risk factors may be

hypothesized to similarly affect biological pathways across brain regions, while compensatory

mechanisms leading to pathological dysfunction may display regional specificity, depending
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on the respective activation or inhibition of different components of neural networks. Hence,

the biological impact of the studies performed here will be investigated, validated and dis-

cussed more in-depth elsewhere. The studies combined in this paper have significant cohort

features that may introduce significant heterogeneity. The five studies came from three dis-

tinct cohorts (MD1, MD2 and MD3), different sexes (male and female), array platforms

(Affymetrix and Illumina) and brain regions (ACC and AMY). Future research is needed

to further decipher such study-specific features. In this paper, we performed separated

meta-analysis by brain region (Meta 3ACC and Meta 2AMY) for an initial comparison. A

future direction is to collect more studies and apply meta-regression techniques to identify

sex-specific or brain-region-specific genes in a unified meta-analysis.
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3.0 META-REGRESSION MODELS TO DETECT BIOMARKERS

CONFOUNDED BY STUDY-LEVEL COVARIATES IN MAJOR

DEPRESSIVE DISORDER MICROARRAY DATA

3.1 INTRODUCTION

Meta-regression has grown in popularity in recent years, paralleling the increasing numbers

of systematic and meta-analysis published medical literature. Traditional methods of meta-

analysis attempt to combine results in order to obtain a single summarized effect size, such as

the overall weighted effect size estimated by random effects model[44, 15]. The observed effect

size in each study is an estimated , with some imprecision , of the true effect in that study.

Usually, the statistical heterogeneity refers to the variation of effect sizes across studies, which

cold result from clinical or methodological differences among the studies or could simply be

because of chance[93]. In general, failure to consider the heterogeneity can cause bias in the

results of a meta-analysis. Therefore, the potential scientific value of explorations of sources

of heterogeneity has been emphasized in the past [9, 93, 94, 95],perhaps,this is the reason

that meta-regression is now becoming a more widely used technique.

We conducted a systematic search from PubMed, SciSearch, Social SciSearch and AMEC

(Allied and Complementary Medicine) using the search terms ”meta-regression” in order to

identify publications on meta-regression. The systematic review produced 205 publications

relevant to meta-regression. We categorized the publications into two categories based on the

primary focus of the article: The first category was the main meta-regression methods: fixed

effects models (1 Publications [38] ), random effects models (5 Publications [10, 11, 60, 45, 49])

and Bayesian or hierarchical models (2 publications[35, 89]); the second category was the

application papers using the methods mentioned in the first category(197 publications). In
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addition, there were two review paper about meta-regression [94, 5]. Among these papers

related to meta-regression, we found that the the meta-regression was mainly used in clinical

studies, and has never been used in genomic studies due to the availability of microarray

studies. For example, it has been used to relate the standardised treatment response in RCTs

to study-level variables (study duration, number of follow-up assessments, outpatients versus

inpatients, per protocol analysis versus intention to treat analysis)[71], vaccine efficacy to geo-

graphical latitude[19], coronary risk benefit to serum cholesterol reduction [62]and properties

of diagnostic tests to methodological quality of diagnostic accuracy studies[63]. In this paper,

we will explore the use of meta-regression in gene expression analysis using 8 major depres-

sive disorder (MDD) studies in which each study has three study-specific factors(sex,brain

region and array platform). MDD is a heterogeneous illness with mostly uncharacterized

pathology. Despite many gene expression studies of MDD [3, 53, 85, 88, 87], the biological

mechanisms of MDD remain mostly uncharacterized [7]. MDD is thought to be a complex

and heterogeneous disease [72], associated with multiple genetic, genomic, post-translational,

and environmental factors. Furthermore, patients might have varying disease severity, with

some having psychotic features as well as exposure to a variety of medications and dosage

levels to control their illness. Secondly, the genetic disease effects are potentially confounded

by many covariates, which include (1) demographical variables such as age, gender and race;

(2) clinical variables such as anti-depressant drug usage, suicide and alcohol consumption;

(3) technical variables inherent in the use of post-mortem brain samples, such as the pH

level of brain tissues, brain region and postmortem interval (PMI). If the statistical models

employed to identify differentially expressed genes fail to incorporate these sources of hetero-

geneity, not only can this reduce the statistical power, but also it will introduce sources of

spurious signals to the gene detection. In our previous paper [100], we proposed a statistical

framework to tackle weak signal expression profiles that have small sample size,case-control

paired design and confounded with these sample-level covariates in each study. The results

showed increased statistical power by incorporating the following considerations in the anal-

ysis: (1) inclusion of confounding clinical variables, (2) gene-specific variable selection, (3)

random effects for paired design, and (4) meta-analysis. More MDD related biomarkers and

pathways were detected that greatly enhanced understanding of MDD neurobiology.
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The studies combined in that paper have significant cohort features that may introduce

significant heterogeneity. The five studies came from three distinct cohorts (MD1, MD2

and MD3), different sexes (male and female), array platforms (Affymetrix and Illumina)

and brain regions (ACC and AMY). In previous paper, we only had five studies, so we just

performed sub-group meta-analysis by brain region (Meta3 ACC and Meta2 AMY) for ini-

tial comparison and did not decipher this study-specific features. After collecting another

three MDD studies,in this paper, which has an appealing property to identify confounded

study-level covariates and obtain a more accurate disease effect size after adjustment. An im-

proved MetaRG with variable selection (namely MetaRG BIC to be introduced later) will be

performed to accommodate the small number of studies and relatively large number of study-

level variables, especially, some variables may be multi-class variables. The result shows ad-

ditional statistical power to detect gender-dependent and brain-region-dependent biomarkers

that traditional meta-analysis methods, such as random effects model and Fisher’s method,

cannot detect.

3.2 METHODS

3.2.1 Description of motivating MDD data

Description of motivating MDD data This research is motivated from the meta-analysis of

combining eight MDD transcriptomic studies. Brain tissues of four patient cohorts (MD1,

MD2 M, MD2 F, and MD3) obtained from different sources at different time were analyzed.

For all three patient cohorts, tissues from the anterior cingulated cortex (ACC) brain region

were analyzed by microarray experiments independently to generate four microarray studies:

MD1 ACC, C MD2 ACC F, C MD2 ACC M and MD3 ACC. Tissues from the amygdala

(AMY) brain region in MD1 and MD3 cohorts were analyzed to generate MD1 AMY and

MD3 AMY. Similarly, tissues from the dorsolateral prefrontal cortex (DLPFC) brain region

in MD2 cohorts were analyzed to generate C MD2 DLPFC F, C MD2 DLPFC M. Details of

the five patient cohorts and microarray studies are available in Table 1.1. Within each patient
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cohort, MDD patients were matched to control patients by three demographic variables: age,

sex and race. Three additional clinical variables (alcohol consumption, history of taking anti-

depressant drugs and history of committing suicide) and two technical variables (pH level of

brain tissues and post-mortem interval PMI) are also available for each patient. Six variables

(age, alcohol-consumption, anti-depressant drug, suicide, pH and PMI) are considered as

sample-level covariates. A random intercept model with Bayesian Information Criteria (BIC)

variable selection has been proposed previously to account for these sample-level factors in

single study analysis. For each of the eight microarray studies, three study-level factors

(sex, brain region and array platform) are available and will be considered in the proposed

meta-regression approach in this paper.

3.2.2 Data preprocessing, gene matching and gene filtering

Microarray images are scanned and summarized by manufacturers’ defaults. Data from

Affymetrix arrays are processed by RMA method and data from Illumina are processed by

manufacturer’s software for probe analysis. When samples in each study are processed in

multiple batches, potential batch effects are evaluated and normalizations are performed to

correct batch biases when necessary. Probes (or probe sets) are then matched to official gene

symbols using Bioconductore package. After genes are matched across nine studies, 11840

unique gene symbols are available across all five studies. Two sequential steps of gene filtering

are then performed. In the first step, we filter out genes with very low gene expression that are

identified with small average expression values across majority of studies. Specifically, mean

intensities of each gene across all samples in each study are calculated and the corresponding

ranks are obtained. The sum of such ranks across nine studies of each gene is calculated

and genes with the lowest 20% rank sum are considered un-expressed genes and are filtered

out. Similarly, in the second step, we filter out non-informative (small variation) genes by

replacing mean intensity in the first step with standard deviation. Genes with the lowest 20%

rank sum of standard deviations are filtered out. Finally, 7, 577 = 11840×(1−0.2)×(1−0.2)

matched genes in nine studies are analyzed.
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3.2.3 Single study analysis incorporation sample-level variables

To account for paired design (MDD samples paired with corresponding controls) and sample-

level covariates, we applied a random intercept model (RIM). For a given gene g, we fit the

model

Ygik = µg + βg0X0ik +
L∑
l=1

βglXlik + αk + ϵgik, (3.1)

where Ygik was the gene expression value of gene g(1 ≤ g ≤ G) and sample i (i=1,2 represent-

ing control and MDD, respectively) in pair k(1 ≤ k ≤ K). X0ik was the MDD indicator that

took value one if the sample was MDD and zero if the sample was a control. Xlik represented

values for clinical variable l (e.g. 0-1 binary for alcohol consumption or numerical for pH

values in brain) and αk was the random intercept from a normal distribution with mean zero

and variance τ 2g , which represented the deviation of averaged expression values in the kth pair

from the average in the whole population. Finally, ϵgik were independent random noises that

followed a normal distribution with mean zero and variance σ2
g . Under this model, βg0 was

the disease effect of gene g and was the parameter of major interest. To obtain an MDD-

associated biomarker candidate list in a single study analysis, likelihood ratio test (LRT)

was used to assess the p-values of testing H0 : βg0 = 0(vsHA : βg0 ̸= 0). Although RIM

model can effectively adjust for confounding varables, the small sample size (9-22 pairs) and

relatively high number of potential confounders (6 covariates) can make the model inefficient

and impractical. In previous paper, we performed further variable selection to generate an

optimal random intercept model( RIM BIC), where the ”optimal” referred to the model with

the smallest Bayesian Information Criterion (BIC)[84]. Specifically, all possible RIM models

that included at most two (0, 1 or 2) clinical variables were computed and compared. The

model with the smallest BIC value was selected. This additional variable selection avoided

to include more than 2 clinical variables in the model and allowed assessment of biomarkers

affected by different sets of covariates in each gene (e.g. gene A is confounded by alcohol

while gene B is confounded by drug), which biologically gave more appealing conclusions and

interpretations. Similar to RIM model, likelihood ratio test were used to generate p-values
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of testing H0 : βg0 = 0 in each gene for the selected model. These attached p-value num-

bers were, however, not the true p-values for DE gene detection since they were biased from

the variable selection procedure and the type I error control was voided. As a result, we

performed a permutation test that randomly permuted the disease labels within each pair

to generate a null distribution for p-value assessment. Subsequently, the resulting unbiased

p-values after permutation correction were then corrected by Benjamini-Hochberg procedure

for multiple comparisons in each study for DE gene detection. Based on the optimal model

selected, the standardized effect size for each gene was defined as the coefficient of MDD di-

vided by its standard error (i.e. β̂g0/sg0 in the RIM BIC model) from single study analysis;

sg0 represented the estimated standard error of β̂g0.

3.2.4 Meta-analysis and Meta-regression

Fixed effects model: Fixed effects models is one of often used methods of combining effect

sizes when the studies to be combined are homogeneous, in which only within-study vari-

ability is considered. The assumption is that studies use identical methods, samples, and

measurements; that they should produce identical results; and that differences are only due

to within-study variation. The general model is given by

Ygk = µg + αgk (3.2)

Under the fixed-effect model we assume that there is one true effect size which underlies all

the studies in the analysis, and that all differences in observed effects are due to sampling

error. Thus Ygk ∼ N(µg, σ
2
gk). The most efficient and unbiased estimator of 1 is the weighted

average of estimates where the weights is determined by inverse of their standard errors. The

estimate is

µ̂g =

∑K
k=1wgkYgk∑K

k=1wgk

, (3.3)

where wgk = S−2
gk and S2

gk s the estimated within-study variance in study k for gene g. The

variance of µ̂g is then

V ar(µ̂g) =
1∑K

k=1 wgk

. (3.4)
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So, a Z-score to test the null hypothesis that the common true effect µg is zero can be

computed using

ZFEM
g =

µ̂g√
V ar(µ̂g)

. (3.5)

which follows a standard normal distribution.

Random effect model (REM) is a popular method for combining of effect sizes in meta-

analysis. Choi et al [15] was probably among the first to raise the issue of meta-analysis

in the context of microarray data to find DE genes using this method, where the effect size

is defined as the standardized mean difference d = YD−YC

Sp
, where YD and YC represent the

means of disease (MDD) and control groups, respectively and Sp indicates an estimation of

the pooled variation. The corresponding model used was described as:

Ygk = µg + αgk + ηgk (3.6)

, where Ygk is the observed effect size in study k for gene g; the parameters αgk and

ηgk are the between-study and within-study errors, respectively. It assume that αgk ∼

N(0, τ 2g ) and ηgk ∼ N(0, σ2
gk), and τ 2gk and σ2

gk are the between-study and within-study vari-

ance. Usually, the estimate of σ2
gk can be produced in each study k. The between-study

variance can be estimated using a method of weighted moments (MM) estimator of τ 2gk,

which can be derived from the heterogeneity statistic Qg =
∑K

k=1wgk(Ygk − µ̂g)
2, where

µ = (
∑K

k=1wgkYgk)/
∑K

k=1wgk is the feasible weighted least-squares estimator with weights

wgk = 1/S2
gk. Then, the weighted unbiased MM of τ 2g suggested by DerSimonian and Larird

(DL) [22]: τ 2g = max{0, (Qg−(K−1))/(S1−(S2/S1))}, where wgk = S−2
gk , and Sr = wr

gk, and

K is the number of studies.The average weighted effect size was estimated as µ(τg) =
∑

vgkYgk∑
vgk

and V ar(µ(τg) = 1/vgk, where vgk = 1/(τ̂ 2g + S2
gk) . Under the assumption that the gene

expression levels are normally distributed, a z-score to test for DE genes is constructed as,

Zg =
µ(τg)√

V ar(µ(τg)
, which follows a normal distribution with zero mean and unit variance.

Random effects meta-regression model with one study-level Knapp and Hartung [60] pro-

posed the following random effects meta-regression model with s single covariate:

Ygk ∼ N(µg + βgxk, τ
2
g + σ2

gk), k = 1, 2, · · · , K (3.7)
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Where the parameter σ2
gk stands for the within-study variance, and τ 2g is the between-study

variance. Like in REM, every study k produces an estimate of σ2
gk denoted S2

gk. The between-

study variance can be estimated using a method of weighted moments (MM) estimator of

τ 2g , which can be derived from the heterogeneity statistic Q̃g =
∑K

k=1wgk(Ygk − µ̂g − β̂gxk)
2,

where µ̂g and β̂g are the feasible weighted least-squares estimator weights wgk = 1/S2
gk. Then,

the weighted unbiased MM of τ 2g is given in its truncated form as: τ 2g = max{0, Q̃g−(K−2)

F (wgk,x)
}

with F (wgk, x) =
∑

wgk −
∑

w2
gk

∑
wgkx

2
k−2

∑
w2

gkxk+
∑

wgk
∑

w2
gkx

2
k∑

wgk
∑

wgkx
2
k−(

∑
wgkxk)2

When there is no covariate,

the above estimator reduces to the DL estimator.

Random effects Meta-regression model with multiple study-level covariates: Model3.7 can

be straightforwardly extended to the case where there are multiple study-specific covariates.

The general random effect meta-regression model is

Ygk = µg +
L∑
l=1

βglXkl + αgk + ηgk, k = 1, 2, · · · , K (3.8)

, which can be written as a matrix form Yg ∼ N(Xβg, τ
2
g IK+∆), where Yg = (Yg1, Yg2, · · · , YgK)

′

is a K × 1 vector including the observed effect sizes from K studies; X = (X0, X1, · · · , XL)

is the K × (L + 1)-dimensional predictor matrix with rank r(X) = r < K − 1 and X0 =

(1, 1, · · · , 1)′ and Xl = (X1l, X2l, · · · , XKl)
′
l = 1, 2, · · · , L; βg = (µg, βg1, βg2, · · · , βgL)

′
is

the unknown parameter vector of the fixed effects; τ 2g stands for the between-study variance;

IK is a K × K dimensional identity matrix; ∆ is a K × K dimensional diagonal diagonal

matrix with entries σ2
gk, k = 1, 2, · · · , K, that is, ∆ contains the within-study variances. In

this setting, the method of moment estimator of τ 2gk is given by[60]: τ̂ 2g = Q−(K−r)
F (X,∆−1)

, where

Q = Y
′
P

′
∆−1PYg with P = (IK − X(X

′
∆−1X)−1X

′
∆−1),and F (X,∆−1) = tr(∆−1 −

tr((X
′
∆−1X)−1X

′
∆−2X), in which tr(X) denotes the trace of matrix X.

Meta-regression with variable selection : Exploring sources of heterogeneity my result in

false positive conclusions through ’data dredging’[95]. Unlike meta-analysis in clinical or epi-

demiological research where up to hundreds of studies may be available for meta-regression

model, only a small number (e.g. 5-15) of studies are available in a common microarray

meta-analysis. When the number of study-level variables that potentially contribute to het-

erogeneity becomes large (greater than 2-3 studies), the regression model is not applicable.

It is, however, reasonable to assume that only very small number (e.g. 0-1) of variables
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contribute to the expression heterogeneity in each gene and the contributing variables are

gene-specific. This leads to the variable selection approach we adopt in this paper. Specif-

ically, all possible meta-regression models that include at most one (0 or1) study-specific

variables are computed and compared.

MetaRG(wg) : Ygk = µg +
L∑
l=1

wlβglXlk + αgk + ηgk, (3.9)

where wl is the weight assigned to the lth study-level variable and wg = (wg1, wg2, · · · , wgL),

which belongs to W = {(w1, w2, · · · , wL)|wl ∈ 0, 1and
∑

wl ≤ 1}. We denote by BIC(wg) as

the Bayesian Information Criterion value associated with meta-regression modelMetaRG(wg).

The adaptive weight w∗
g is defined as: w∗

g = (w∗
g1, w

∗
g2, · · · , w∗

gL) = argmin(w∈W )BIC(w),

which serves as a convenient basis for gene categorization in follow-up biological interpreta-

tions and explorations. Based on the selected model MetaRG(w∗
g), likelihood ratio test is

applied to test H0 : µg = 0 and {βgl = 0 if w∗
gl = 1} versus HA : µg ̸= 0 or {βgl ̸=

0 if w∗
gl = 1}. to derive the p-value of gene g. This added variable selection avoids includ-

ing more than one study-specific variable in the model and allows assessment of biomarkers

related to different study-specific variable ( e.g. gene A might be related gender while gene

B might be related to brain region or platform), which biologically gives a more appealing

conclusion and interpretation. These attached p-value numbers are, however, not the real

p-values for DE gene detection since they are biased from the variable selection procedure.

As a result, we perform a permutation test that randomly permutes the disease labels within

each pair to generate a null distribution effect sizes, then we repeat above variable selec-

tion procedure, and calculate the p-values, which server as the null distribution of p-values.

Subsequently, the resulting unbiased p-values can then be corrected by Benjamini-Hochberg

procedure for multiple comparisons for DE gene detection. Detailed algorithm of the per-

mutation analysis is described in Appendix A.

3.2.5 Post hoc analysis on study-level variables after meta-regression

An essential advantage of our gene-specific mete-regression with variable selection scheme is

the possibility of post hoc analysis on the selected study-specific variables in a genome-wide
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scale. Two questions can be explored and answered: (1) Which variable(s) is the most or

least frequently included in the model selection to influence disease effect? (2) Are variables

repeatedly selected across genes more frequently than by random (e.g. sex is selected in

most or all genes)? For the first question, we first generated a list of DE genes under a

given FDR threshold and counted the frequency of each variable being selected in the gene

list. Higher frequency showed that the variable more frequently influence the disease effects

in different genes. For the second question, permutation test was performed to assess the

statistical significance of the observed frequency. Specifically, suppose that we identified N

DE genes among which we observed variable X was selected N0 times. To generate the null

distribution for hypothesis testing, we randomly chose N genes from the entire genome and

count the frequency of variable X appearing in models associated with these genes as Nb.

By repeating B times, the p-value of of the observed frequency is p(X) =
∑B

b=1 I(Nb≥N0)

B
. We

use B=10000 in this paper.

3.2.6 Evaluation

To evaluate performance of different models and methods in a real data analysis, we compared

the number of detected DE genes among a specified set of MDD-related genes and performed

gene enrichment analysis using the same set of MDD-related genes, where the MDD-related

genes set was defined by web-tool (Gene Prospector: http://hugenavigator.net) by inputting

the search term, major depressive disorder. The search review produced 297 genes reported

with MDD among which 147 genes were included in our study. In addition, we identified

a set of 9 genes (”SST” , ”VGF”, ”TAC1”, ”MBP”, ”MOBP”, ”RTN4”, ”QPRT”, ”DGCR2”,

”EPHB6”) that have been previously associated with MDD in the literature, but not in-

cluded in the data base of Gene Prospector. For gene enrichment analysis, we performed

Kolmogorove-Smirnov (KS) test, which was widely used in gene enrichment analysis [61, 91]

because it is sensitive to differences in both location and shape of the empirical cumulative

distribution functions of the two samples. Specifically, the p-values calculated from individ-

ual analyses or meta-analyises for assessing the DE genes are classified into two categories,

in the specified MDD-related gene set (P ) and out of pathway (PC). Let p(1), p(2), · · · , p(n)
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and p̃(1), p̃(2), · · · , p̃(m) denote the order statistics of the p-values in P and PC , respectively.

The corresponding empirical distribution functions, F̂P (x) and F̂PC (x) for P and PC can be

defined as:

F̂P (x) =


0, if x < p(1)

k
n
, if p(k) ≤ x < p(k+1) k = 2, 3, · · · , n− 1

1, if x ≥ p(n)

(3.10)

and

F̂PC (x) =


0, if x < −p̃(1)

k
m
, if p̃(k) ≤ x < p̃(k+1) k = 2, 3, · · · ,m− 1

1, if x ≥ p̃(n)

(3.11)

Let FP and FPC denote the population distribution for P and PC , respectively. The

one-sided two sample KS test can be defined based on the formula:

TKS = max
x

[Fp(x)− FPC (x)], (3.12)

where the null hypothesis and the alternative hypothesis are :

H0 : FP (x) = FPC (x) for all x (3.13)

Ha : FP (x) ≥ FPC (x)for all x (3.14)

&FP (x) > FPC (x)for some x (3.15)

Under the null hypothesis, the rejection region has the form of TKS > Cα at level of α.

Rejection of H0 means that P is stochastically less than PC (the CDF of P lies above and

hence to the left of that for PC). In another words, the p-values of genes in the genes set P

are stochastically less than the p-values of genes outside of gene set PC. This indicates that

genes in the pathway P have a stronger association with MDD than genes from outside of

the gene set PC . Small p-value associated with KS test indicates a good performance of the

methods.
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3.3 RESULTS

3.3.1 Fixed effect model and Random effect model

We applied the chi-squared test using a Q-statistic proposed by Cochran [18] to assess homo-

geneity of the studies. Under the hypothesis of homogeneity, if follows a χ2
K−1 distribution.

A large deviation of observed Q statistic relative to the null distribution indicates rejection of

the hypothesis of homogeneity, which therefore a random effect model is more appropriate.

Although this test is known to have low statistical power [42], the result shows that the

heterogeneity exits among 3594 genes after controlling FDR at 5%. The previous method

is based on gene by gene test. To further confirm the existence of the heterogeneities , we

assume that the genes can be treated as independent samplings and the homogeneity can be

explored over all the genes. The histogram of the observed Q values and quantile-quantile

plot (Q-Q plot) of the observed versus expected values are shown in Figure 3.1. The sample

mean and variance of Q values are 17 and 114, respectively, which are much larger than that

of the expected mean and variance, 7 and 14 and argue overall heterogeneity of the studies

in meta-analysis.

3.3.2 comparing individual analysis and meta-analysis

Among the many microarray meta-analysis methods used in the literature, most methods

have their pros and cons depending on the data structure and biological goal [47, 78]. In

this paper, although we mainly focused on comparing REM and MetaRG, we also included

the results of Fisher’s method since it has been popularly applied in the microarray meta-

analysis literature. Figure 3.2 showed the DE number plots of both meta-analysis results

and compared with individual study analyses under various FDR thresholds. The exact DE

numbers were listed in Table 3.1, and the result shows that individual study results had

very weak signal and meta-analysis improved the statistical power and provided validated

conclusions.
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Figure 3.1: Gene by gene testing for the homogeneity of study effects. Overall test results

are shown by the histogram of the observed Q values and the plot of the observed versus

expected Q quantiles for the 8 MDD studies

3.3.3 Comparing REM and MetaRG

REM versus MetaRG: MetaRG detects both consistent markers that REM can detect and

also markers confounded by study-level variables that REM cannot detect. MetaRG detects

more markers than REM in general. A Venn diagram of DE gene lists detected by REM

and MetaRG methods under FDR=1% is shown in Figure 3(a). The result showed that the

three meta-analysis methods detected different sets of DE genes. Furthermore, in Figure

4(b), we drew the density plot of q-values calculated by MetaRG method for those 73 DE

genes detected by REM only and the density plot of q-values calculated by REM method for

those 175 DE genes detected by MetaRG only, the result shew that almost all genes detected
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Table 3.1: Results of individual study analyses and meta-analysis

C
M
D
2
D
L
P
F
C

M

M
D
1
A
C
C

M

C
M
D
2
A
C
C

M

M
D
1
A
M
Y

F

M
D
2
M
D
2
D
L
P
F
C

F

M
D
3
A
C
C

F

C
M
D
2
A
C
C

F
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D
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F

F
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R
E
M
(I
V
W

)

M
et
aR

G

p=0.001 30 12 28 5 79 26 22 113 394 116 139

p=0.005 186 50 144 42 292 131 107 391 997 241 339

FDR=0.05 0 0 0 0 4 0 0 0 1307 103 124

FDR=0.1 0 0 0 0 97 1 0 406 2407 167 269

by REM can be detected by MetaRG if the FDR threshold is slightly relaxed. But many

genes detected by MetaRG cannot be detected by REM. For example, Figure 2 shows the

forest plot of an example gene SST (somatostatin; a gene known to affect neurotransmission

in the central nervous system). When using conventional random effect (REM) model, the

p-value is marginally significant (p=0.01) and the gene cannot be detected after multiple

comparison. The forest plot shows a clear pattern that female MDD patients generally have

down-regulation in SST while males have only slight down-regulation. Another example,

Figure 3 shows the forest plot of an example gene ELP3 ( elongation protein 3 homolog;

a gene known to regulate the maturation of projection neurons). When using conventional

random effect (REM) model, the p-value is marginally significant (p=0.02) and the gene

cannot be detected after multiple comparison. The forest plot shows a clear pattern that

this gene generally have down-regulation in AMY brain region while have slight up-regulation

in ACC and DLPFC brain region.

59



0.00 0.05 0.10 0.15

0
50

0
10

00
15

00
20

00
25

00
30

00

FDR cut−off

Sig
nif

ica
nt 

tes
ts

C_MD2_DLPFC_M
MD1_ACC_M
C_MD2_ACC_M
MD1_AMY_M
C_MD2_DLPFC_F
MD3_ACC_F
C_MD2_ACC_F
MD3_AMY_F
Fisher
REM
MetaRG

Figure 3.2: The DE number plot of both meta-analysis and individual analyses under various

FDR thresholds.

Fisher: the most sensitive but can be tricky. Powerful for virtually all kinds of potential

markers but may also contain many false positives. Can detect: (1) most of genes detected

by REM (2) many of the genes detected by meta-regression (3) genes confounded unknown

factors that can not be explicitly identified by meta-regression.

3.3.4 Frequencies of study-level covariates confounded with disease effect

MetaRG not only detects more biomarkers than REM by including biomarkers confounded by

study-level covariates, but also has the advantage of showing the overall impact (frequency)

of a study-level covariate confounded with the disease effect in the genome. One of MetaRG’s

potential abilities is to work out whether particular characteristics of studies are related to
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Figure 3.3: (a) the venn diagram of DE gene lists detected by REM and MetaRG at FDR

1%. (b) the density plot of q-values calculated from MetaRG for three categorical sets of

DE genes.(c) The density plot of q-values calculated from REM for three categorical sets of

DE genes

the effect sizes or not. To evaluate the impact of each characteristic of studies on the disease

effect, especially among DE genes, we counted the numbers of appearances of study-specific

variables in the meta-regression models for DE genes detected by MetaRG method under

various p-value or FDR thresholds (see Table3.1). For example, under FDR=0.1 threshold,

among which, 146 were sex-dependent markers, 37 were brain-region-dependent, and 39

were array-platform dependent. The p-values for testing whether sex, brain region and array

platform are selected more frequently than by random are 0, 0.04 and 0.2, respectively, which

indicates that sex is more frequently to influence the MDD effect, especially, among those
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Figure 3.4: (a) the forest plot of gene SST. (b) the forest plot of gene ELP3.

DE genes. The wider spread of sex-dependent candidate markers provides an opportunity

to investigate why women are more vulnerable to MDD than men [55].

3.3.5 Result of Komogorv-Smirnow test

To further evaluate the performance of individual analysis and three meta-analysis meth-

ods, Figure3.5 showed the number of MDD-related genes detected from meta-analysis and

from individual study analyses under various FDR thresholds. The results showed again

that MeteRG method could detect more MDD-related genes than REM method, and Fisher

method detected much more MDD-related genes than REM and MetaRG because because

there might be many unidentifiable confounders (surrogate variables) that Fisher could cap-

ture. The result of KS test was shown in Table 3, which showed that overall the performance
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Figure 3.5: The number of genes detected from both meta-analysis and individual analyses

among 156 MDD-related genes under various FDR thresholds.

of meta-analysis was better than that of individual analysis. Among three meta-analysis

methods, Fisher and MetaRG had the similar performance which was better than that of

REM.

3.4 DISCUSSION AND CONCLUSION

In this paper, we applied the meta-regression model on 8 MDD microarray studies, and

compared it with the random effect model (REM) often used in gene expression analysis.

The results showed that the meta-regression model gain some power of DE gene detection
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by considering the heterogeneity potentially introduced by the three study-specific variables

(i.e. sex, brain-region and array platform). More importantly, the meta-regression model

has the potential ability to identify the biomarkers related to some study-specific variables,

such as gene SST may be related to sex and gene ELP3 may be related to brain region.

A common situation in genomic study is that there are few studies in a meta-analysis

but many possible study-level variables that might explain heterogeneity. In this situation,

careful selection of appropriate covariates for inclusion into a meta-regression analysis is

imperative for getting trustworthy results. In this paper, we proposed a meta-regression

model with variable selection in which we allowed at most one study-level variable to be

included in the meta-regression model. This provide a unified procedure to deal with the

problem encountered in above situation. One of advantages of the meta-regression with

variable selection is to biologically give a more appealing conclusion and interpretation,

compared the univariate meta-regression, where we have a difficult to interpret the results

after carrying out three mete-regressions with only one of three study-level variables. For

example, based on the adaptive weights for each gene, we can figure out whether the effect

sized is influenced by some specific variables.

In this paper, we compared three meta-analysis methods. Suppose that the heterogeneity

can be totally explained by at least one of three study-level variables, MetaRG should yield

the best result compared Fisher and REM methods. However, in this genome setting, Fisher

yielded the better results in both DE gene detection and gene enrichment analysis than

MetaRG and REM because because there may be many unidentifiable confounders (surrogate

variables) that Fisher can capture. Therefore, a future direction is to explore methods to

adjust the heterogeneity introduced by some surrogate variables, such as latent variable

methods and surrogate variable analysis (SVA) proposed by Leek[38].
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4.0 METADE: A R PACKAGE TO PERFORM META-ANALYSIS FOR

DIFFERENTIAL EXPRESSION ANALYSIS

4.1 INTRODUCTION

Many high-throughput genomic technologies have advanced dramatically in the past decade.

Microarray experiment is one example that evolved into relative maturity with generally

consensus experimental protocol and data analysis strategy. Its extensive application in the

biomedical field has led to an explosion of gene expression profiling studies publicly available.

The noisy nature and small sample size in each dataset, however, often result in inconsistent

biological conclusions [28, 92, 107]. Consequently, meta-analysis methods for combining mi-

croarray studies have been widely applied to increase statistical power and provide validated

conclusions. Four major categories of statistical methods have been used to combine microar-

ray studies in differentially expressed (DE) gene detection: combining p-values[52, 79, 80],

combining effect sizes[15, 66], combining ranks [21, 48]and directly merge after normaliza-

tion. In the ”combining p-value” category, Fisher’s method was the first analytical method

applied to microarray meta-analysis. Other methods such as Stouf-fer, minimum p-value

(minP), maximum p-value (maxP), rth ordered p-value (rOP), adaptively weighted Fisher

(AW) and vote counting have also been widely used. In the category of ’combining effect

sizes”, there are two major types of statistical analysis: fixed and random effects models.

For example, Choi et al (2003) combined effect sizes using weighted estimate for individual

genes based on the fixed or random effects models Detailed description and comparison are

given in section 1.4. In the category was initially proposed to detect differentially expressed

genes for a single experiment (Breitling et al., 2004). Our package provides functions that

perform most commonly used classical methods in each category as well as the proposed
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methods from our group,such s AW method, roP methods and three meta-analysis methods

with one-sided correction (minP OC, maxP OC, and roP OC) which were given more detail

description in subsection 4.1.1.

Despite the popularity of meta-analysis in microarray data, no comprehensive software

package exists to date for easy implementation and comparison. Existing packages usually

only provide limited functions to perform one or two methods; examples include GeneMeta

(implements fixed and random effects models), metaMA (implements random effects model

and Stouffer’s method), metaArray (implements meta-analysis of probability of expression,

POE), OrderedList (compares ordered gene lists), SequentialMA (determines sensitivity and

decides whether more samples are needed to assure firm conclusion), RankProd (implements

rank product method) and RankAggreg (implements various advanced rank aggregation

methods). Methods implemented in the above packages mostly focus on binary outcomes

and are not applicable to general continuous, multi-class and time-to-event outcomes. When

applied to a specific microarray meta-analysis project, different algorithms generate different

top ranked DE genes and q-values. Hong et al.[47] and Campain and Yang [13] are, by

far, the only two comparative studies that evaluated the results of different meta-analysis

algorithms. The included methods, tested examples and resulting conclusions in these two

papers are, however, not yet conclusive enough to guide applications. It is very helpful that

one can easily implement various methods for further comparison, assessment and selection

to present results of all of the different methods. As a result, we developed the MetaDE

package to provide comprehensive method selection, flexible while unified data input for-

mats, options of different outcome types, various test statistics for DE analysis and choice

of p-value calculation by fast parametric or robust permutation inferences. The goal is to

provide a hands-on implementation of a given microarray meta-analysis project and easy

evaluation and comparison of the results by different analytical methods. The computation

is optimized by embedded C code and the open-source R environment allows extensibility

for added features or methods in the future.

66



4.1.1 Meta-analysis methods with one-sided correction

Comparing the first two categories of meta-analysis methods in Section 1.4.1 and Section

1.4.2, combining effects sizes (e.g. random or fixed effects model) automatically identifies

genes that have consistent up- or down-regulation in all studies. This may not be the case

for methods combining p-values if the p-values are obtained from two-sided hypothesis test-

ing. In this case, up- and down-regulation are treated as equally strong evidence and a gene

may be detected from the meta-analysis with strong up-regulation evidence in one study

but strong down-regulation evidence in another study, which leads to confusing conclusions.

Theoretically, the discordance may reflect underlying biological truth due to population het-

erogeneity. In practice, however, such concordances are mostly results of technical artifacts

such as gene annotation mistakes or cross-hybridization. A convenient solution to avoid

the concordances is to generate p-values or ranks by one-sided tests. Owen [75] applied

a similar Pearson one-sided test adjustment for Fisher’s method. One-sided correction is

helpful to guarantee identification of DE genes with concordant DE regulation directions.

In this dissertation, we extended this modification to minP, maxP and roP methods which

are described in following sub-sections. Under null hypothesis, the analytical cumulative

distribution functions (CDF) of these three methods were derived (see Appendix D). Note

that the consistent up- or down-regulation issue only exists in two-class comparison in DE

gene detection and does not apply to other types of response variables (e.g. multi-class,

continuous or survival).

4.1.1.1 Notations For gene g and study k, we let βgk denote the effect of MDD. The

Null hypothesis for βgk is H0 : βgk = 0. Then, for k = 1, 2, · · · , K, we can consider the

hypotheses:

H0,gk : βgk = 0

HL,gk : βgk < 0

HR,gk : βgk > 0
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and

HU,gk : βgk ̸= 0,

based on the sign of βgk. These are the null hypotheses, left- and right-sided alternatives

and an undirected alternative, respectively.

Using β̂obs
gk as test statistics, we may define

p̃gk = Pr(β̂gk ≤ β̂obs
gk |βgk)

and

pgk = Pr(|β̂gk| ≥ |β̂obs
gk ||βgk = 0)

The p−values for alternatives HL,gk, HR,gk and HU,gk, respectively, are p̃gk, 1 − p̃gk and

pgk = 2min(p̃gk, 1− p̃gk).

4.1.1.2 Pearson’s method(Fisher OC) To guarantee identification of DE genes with

concordant DE direction, Owen [75] revisited Pearson’s method[77] and showed that Pear-

son’s method has proved useful in a genomic setting[105], screening for age-related genes.

Let p̃gk denote the p-value for the test of left-sided alternative in study k(1 ≤ k ≤ K).

QL
g = −2 ∗

∑K
k=1 ln p̃gk (4.1)

QR
g = −2 ∗

∑K
k=1 ln(1− p̃gk) (4.2)

Then, the test statistic of Pearson is defined as

V Fisher OC
g = max{QL

g , Q
R
g } (4.3)

Under null hypothesis, the distribution of V Fisher OC
g can not be derived analytically. A

conservative p-value was suggested by Owen.
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4.1.1.3 minP method with one-sided correction(min OC) From hereafter, we will

omit the subscript g. Under the null hypothesis,p̃k , 1 − p̃k and pk all have the U(0, 1)

distribution. It follows that

QminP
L = min{p̃1, p̃2, · · · , p̃K} (4.4)

QminP
R = min{1− p̃1, 1− p̃2, · · · , 1− p̃K} (4.5)

and

QminP
U = min{p1, p2, · · · , pK} (4.6)

All have the Beta(1, K) distribution under H0.

Then, the one-sided test statistic is defined as

QminP
C = min(QminP

L , QminP
R ) (4.7)

Theorem 4.1.1. If p̃1, · · · , p̃K independently and identically follow U(0, 1) distribution, then

the cumulative distribution function (CDF) of statistic QminP
C is given by

G(z) =

1− (1− 2z)K , if 0 ≤ z ≤ 0.5

1, if 0.5 ≤ z ≤ 1

(4.8)

69



4.1.1.4 maxP method with one-sided correction (maxP OC) Similarly, Let p̃gk

denote the p-value for the test of left-sided alternative in study k(1 ≤ k ≤ K).

QL
g = max1≤k≤K p̃gk (4.9)

QR
g = max1≤k≤K(1− p̃gk) (4.10)

Then, the test statistic of maxP OC is defined as

QmaxP OC
g = min{QL

g , Q
R
g } (4.11)

Under null hypothesis, the p-value associated with QmaxP OC
g can be assessed by the following

Theorem, which is proved in AppendixD.

Theorem 4.1.2. If p̃1, · · · , p̃K independently and identically follow U(0, 1) distribution, then

the cumulative distribution function (CDF) of statistic QmaxP OC
g is given by

F (z) =

2zK , if 0 ≤ z < 0.5

2zK − (2z − 1)K , if 0.5 ≤ z ≤ 1

(4.12)

4.1.1.5 roP method with one-sided correction(roP OC) Similarly, Let p̃gk denote

the p-value for the test of left-sided alternative in study k(1 ≤ k ≤ K).

QL
g = pg(r){p̃1, p̃2, · · · , p̃K} (4.13)

QR
g = pg(r){1− p̃1, 1− p̃2, · · · , 1− p̃K} (4.14)

(4.15)

Then, the test statistic of roP OC is defined as

V roP OC
g = min{QL

g , Q
R
g } (4.16)

Under null hypothesis, the p-value associated with V roP OC
g can be assessed by the following

Theorem.
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Theorem 4.1.3. If p̃1, · · · , p̃K independently and identically follow U(0, 1) distribution, then

the cumulative distribution function (CDF) of statistic V roP OC
g is given by Case1: r ≥

K − r + 1.

F (z) =

2(1− F (r − 1, K, z)), if 0 ≤ z < 0.5

1−
∑r−1

j=K−r+1

∑K−j
h=K−r+1

K!
j!h!(K−j−h)!

(1− z)j+h(2z − 1)K−j−h, if 0.5 ≤ z ≤ 1

(4.17)

(4.18)

Case2: r < K − r + 1

F (z) =

1−
∑r−1

l=0

∑r−1
m=0

K!
l!m!(K−l−m)!

zm+l(1− 2z)K−l−m, if 0 ≤ z ≤ 0.5

1, if 0.5 ≤ z ≤ 1

(4.19)

4.2 IMPLEMENTATION

MetaDE package implements 12 major meta-analysis methods for differential expression

analysis: Fisher, Stouffer, adaptively weighted Fisher (AW), minimum p-value (minP), max-

imum p-value (maxP), rth ordered p-value (rOP), vote counting, fixed effects model (FEM),

random effects model (REM), rank product (rankProd), näıve rank sum/product and meta-

analysis adjusted for confounding variables (MetaACV) (Table 4.1). Detailed algorithms,

their restrictions and general pros and cons are discussed in the online supplement doc-

ument. In addition to selecting a meta-analysis method, several other considerations are

involved in the implementation. (1) Choice of test statistics: Multiple test statistics are

available for each type of outcome variable. For multi-class outcomes, the minimum multi-

class correlation (min-MCC) was particularly developed to capture concordant expression

patterns that F-statistics can fail [50]. (2) One-sided correction: For binary outcomes, DE

genes with discordant regulations (e.g. up-regulation in one study but down-regulation in

another study) can often be identified if two-sided p-values are to be combined and the re-

sults are difficult to interpret. One-sided correction that was considered by Pearson (1938)

is helpful to guarantee identification of DE genes with concordant DE regulation directions.
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Figure 4.1: Summary of 12 microarray meta-analysis methods included.

(3) Adjustment for confounding variables: Clinical or technical variables (e.g. gender, race

etc) can be important confounders that affect sen-sitivity of DE gene detection. We have

adopted the Meta-Analysis Adjusted for Confounding Variables (meta-ACV) with effective

gene-specific variable selection [100] and applied the approach to all p-value combination

methods and all outcomes except for multi-class variables. MetaDE takes two types of uni-

fied input formats: standard Ex-pressionSet objects from Bioconductor or lists of ordinary

data matrixes in R. Options of gene matching across studies and gene filtering are available.

Missing values are allowed if a gene is miss-ing in partial studies. Outputs of the meta-

analysis results include DE gene lists with corresponding q-values and various visualization

tools. A technical document, a tutorial and R help files are available online, accompanying

the package.
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4.2.1 Data pre-processing

Gene matching: Usually different microarray platforms use their own probe IDs. To perform

metan-analysis, we need match probe IDs from different platforms to the unique official gene

ID, such as ENTREZ ID or gene symbol. In this package, we focus on the gene symbol. In

MetaDE package, we provide two options to match probe ID to gene symbol when multiple

probes (or probe sets) matched to an identical gene symbol: one is average method in which

we take the average value of expression values among multiple probe IDs to represent the

corresponded gene symbol; another one is ”IQR” method in which we selected the probe

ID with the largest interquartile range (IQR) of expression values among all multiple probe

IDs to represent the corresponded gene symbol. The procedure of gene matching can be

implemented by function Match.gene(). The arguments of this function are

Match.gene(x,pool.replicate=c("average","IQR"))

where x is an eSet (Container for high-throughput assays and experimental metadata), and

one column named by ”GENESYMBOL”of featureData of x must include the gene symbols.

The arguments for pool.replicate are then:

• ”average”: the average method mentioned as above was chosen to perform gene match-

ing;

• ”IQR”: the ”IQR”method mentioned as above was chosen to perform gene matching;

Gene filtering: If we hold an enormous number of Genes, thus raise many practical and

theoretical problems in controlling the false discovery rate(FDR). Biologically, it is likely

that most genes are either un-expressed or un-informative. In gene expression analysis to

find DE genes, these genes contribute the false discoveries, so it is desirable to filter out

these genes prior to analysis. After genes were matched across five studies, the unique gene

symbols were available across all studies. Two sequential steps of gene filtering were then

performed. In the first step, we filtered out genes with very low gene expression that were

identified with small average expression values across majority of studies. Specifically, mean

intensities of each gene across all samples in each study were calculated and the corresponding

ranks were obtained. The sum of such ranks across all studies of each gene was calculated

and genes with the highest α% rank sum were considered un-expressed genes (i.e. small
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expression intensities) and were filtered out. Similarly, in the second step, we filtered out non-

informative (small variation) genes by replacing mean intensity in the first step with standard

deviation. Genes with the lowest β% rank sum of standard deviations were filtered out.

Finally, the total number of matched genes is G×(1−α)×(1−β), which are used for further

analysis. The procedure of gene filtering can be implemented by function Gene.filter. The

arguments of this function are

Gene.filter(x,DelPerc=c(alpha,beta)),

where x is the input variable,which is a list of a list datasets and a list of labels; argument

DelPerc is a numeric vector of length 2, which specify how many percent of genes need to

be filtered out during the two sequential steps of gene filtering.

4.2.2 Perform individual analysis

Before beginning with a meta-analysis, one must first obtain a set of p-values or effect

size estimates with their corresponding sampling variances.The MeteDE package provides

the ind.analysis() function, which can be used to perform various test statistics for DE

analysis based on the type of the outcome and choice of p-value calculation by fast parametric

or robust permutation inferences.For the default interface, the arguments of the function are

ind.analysis(x,ind.method=c("regt","modt","pairedt","pearsonr","spearmanr",

"F"), nperm,tail,...)

where x is the input variable,which is a list of a list datasets and a list of labels; argument

ind.mehtodis a character string specifying which test statistic should be used to calculated

the p-values.The options for argument ind.method are then:

• regt: The regular t-statistics.

• modt: The moderated-t statstics.

• pairedt: The paired t-statistics.

• pearsonr: The Pearson product correlation statistics.

• F: The F-statistics.

• spearmanr: The Spearman rank correlation statistics.
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nperm is an argument to specify the choice of p-value calculation by fast parametric or

robust permutation inferences. If it is NULL(default), the parametric method is used; If it is

an integer, the permutation method is used, and the integer is the number of permutations

used to infer the p-values. tail is a character string specifying the direction of alternative

hypothesis , must be one of ”low”(left-side p-value), ”high”(right-sided p-value) or ”abs”(two-

sided p-value).

The MetaDE package also provides an function cal.ES to calculate various effect sizes

(and the corresponding sampling variances) that are commonly used in meta-analyses.The

arguments for this interface are

cal.ES(y,l,paired=FALSE)

where arguments yand l are the gene expression matrix and the vector of labels of outcome,

respectively; paired is a logical indicating whether the experiment is paired design or not,

and then the effect sizes(and corresponding sampling variances) are calculated. The output

of this function is an matrix including the biased and unbiased effect size estimates (and

corresponding variances) (see section 1.4.2).

4.2.3 Perform meta-analysis

The various meta-analyses can be implemented by three main functions,MetaDE.radata(),

MetaDE.pvalue() and MetaDE.ES(), in MetaDE package. The arguments of function

MetaDE.radata() are given by

MetaDE.rawdata(x, ind.method=c("modt","regt","pairedt","F","pearsonr",

"spearmanr","logrank"),meta.method=c("maxP","maxP.OC","minP","minP.OC",

"Fisher","Fisher.OC","AW","AW.OC","roP","roP.OC","vote","vote.OC",

"minMCC","rankProd","naiveranksum"),rth=NULL,nperm=NULL,ind.tail="high"

,asymptotic=FALSE,...)

As above,x is the raw data (the gene expression matrices and the labels of outcome),which is

a list of a list datasets and a list of labels; the argument ind.method is the same as that in

function ind.analysis(); The various meta-analysis methods described in section 1.4 that
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can be specified via the meta.method argument are then:

• maxP: The maximum p-value method;

• maxP.OC: The maximum p-value with one-sided correction;

• minP: The minimum p-value method;

• minP.OC: The minimum p-value method with one-sided correction;

• Fisher The Fisher’s method;

• Fisher.OC: The Fisher’s method with one-sided correction;

• AW: The adaptive weight method;

• AW.OC: The adaptive weight method with one-sided correction;

• roP: The r-th ordered p-value method;

• roP.OC: The r-th ordered p-value method with one-sided correction;

• vote: The vote counting method;

• vote.OC: The vote counting method with one-side correction;

• minMCC: The the minimum multi-class correlation method [50];

• rankProd: The rank product method [48];

• naiveranksum”:The naive rank summation method;

If the meta.method is chosen as ”roP”or ”roP.OC”, an integer need input via argument rth

to specify which rth ordered p-value as the statistic; If the argument asymptotic is TRUE,

then the parametric method is used in meta-analysis to calculate the p-values; the argument

nperm is the same as in function ind.analysis().

If p-values or effect sizes (and corresponding variances) have been calculated already, for

example by other methods not used in functions ind.analysis() or cal.ES() with the help

of other software, then the meta-analysis can be implemented by function MetaDE.pvalue()

or MetaDE.ES(). The arguments of these two functions are given by

MetaDE.pvalue(x,meta.method=c("maxP","minP","Fisher","Pearson","Stouffer",

"roP","AW","maxP.OC","roP.OC"),asymptotic=FALSE)

, where argument x is a list whose first object is the p-value matrix,and second object are

the permutated matrices. If the second object of x is NULL, the parametric method is then

used in meta-analysis.
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MetaDE.ES(x,paired=FALSE,REM=TRUE,correct=TRUE)

, where xis the raw data (the gene expression matrices and the labels of outcome),which is

a list of a list datasets and a list of labels; argument paired is a logical indicating whether

the studies are paired design or not; argument REM is a logical specifying whether a fixed-

or a random/mixed-effects model(default) should be fitted. Random/mixed-effects models

are fitted by using ”DL”method to estimate the between-study variance(see 1.4.2).

4.2.4 Draw plots

The MetaDE package provides several functions for creating plots that are frequently used in

meta-analyses.For example,the heatmap.sig.genes() function is used to create the Heatmaps

plots of the DE genes under some p-value or FDR threshhold across studies; The forestplt()

is use to darw the Forest plots of selected genes can be generated for binary outcomes; the

draw.DEnumber() function is used to generate the DE number plots (a plot showing the num-

ber of detected DE genes under different p-value or q-value threshold) can be shown to com-

pare sensitivity in individual study analyses and different meta-analyses methods. To view

the exact number of DE genes detected by different methods, the function count.DEnumber()

can be used to generate the tables in which the numbers of DE genes detected by different

methods under various p-value and FDR thresholds are listed. Several examples are given

in next section to illustrate how such plots can be created.

4.2.5 EXAMPLE

To demonstrate the functionality of MetaDE, we performed meta-analysis to combine 4 major

depressive disorder (MDD) studies. We present the results of maxP without confounder

adjustment (Figure )under p-value threshold 0.001.The Figure was created with the following

code.

>maxP.pt<-MetaDE.rawdata(x,ind.method="pairedt",meta.method="maxP",

ind.tail="abs",asymptotic=TRUE)

> heatmap.sig.genes(maxP.pt,pval.cut=0.001)
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Figure 4.2: The heatmap of DE genes detected by maxP method under p-value threshold

0.001 based result of paired t-test in individual analysis.

Figure 4.3(A) and (B) shows the DE number plots of both meta-analysis results and

compared with individual study analyses. The result shows that individual study results

had very weak signal. Meta-analysis improved the statistical power and provided validated

conclusions.The Figures were created with the following code.

#Figue (A)

minP.pt<-MetaDE.rawdata(x,ind.method="pairedt",meta.method="minP",

ind.tail="abs",

asymptotic=TRUE)

fisher.pt<-MetaDE.rawdata(x,ind.method="pairedt",meta.method="Fisher",

ind.tail="abs",
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asymptotic=TRUE)

stouf.pt<-MetaDE.rawdata(x,ind.method="pairedt",meta.method="Stouffer",

ind.tail="abs",

asymptotic=TRUE)

REM.pt<-MetaDE.ES(x,paired=TRUE,REM=TRUE,correct=TRUE)

pm.pt<-cbind(maxP.pt$ind.p,maxP.pt$meta.analysis$pval,

fisher.pt$meta.analysis$pval,REM.pt$pval)

method<-c(c("MD1_ACC_M","MD3_ACC_F","C_MD2_ACC_F","C_MD2_ACC_M",

"maxP","Fisher","REM"))

mlwd<-rep(c(2,4),c(4,4))

#Figue (B)

x<-list()

x$p<-p.m[,c("MD1_ACC_M","MD3_ACC_F","C_MD2_ACC_F","C_MD2_ACC_M")]

x$bp<-NULL

maxP.acv<-MetaDE.pvalue(x,meta.method="maxP",asymptotic=T)

fisher.acv<-MetaDE.pvalue(x,meta.method="Fisher",asymptotic=T)

ES.acv<-ES.m[,c("MD1_ACC_M","MD3_ACC_F","C_MD2_ACC_F","C_MD2_ACC_M")]

Var.acv<-Var.m[,c("MD1_ACC_M","MD3_ACC_F","C_MD2_ACC_F","C_MD2_ACC_M")]

REM.acv<-get.REM(ES.acv,Var.acv)

pm.acv<-cbind(x$p,maxP.acv$pval,fisher.acv$pval,REM.acv$pval)

method<-c(c("MD1_ACC_M","MD3_ACC_F","C_MD2_ACC_F","C_MD2_ACC_M","maxP",

"Fisher","REM"))

mlwd<-rep(c(2,4),c(4,4))

count.DEnumber(pm.acv,c(0.001,0.005),c(0.01,0.05,0.1),method)

#draw Figure

par(mfrow=c(1,2))

draw.DEnumber(pm.pt,0.005,0.004,method,mlwd)

title("(A) Paired t-test")

draw.DEnumber(pm.acv,0.005,0.004,method,mlwd)

title("(B) MetaACV")
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We also can use count.DEnumber() function to list the exact number of DE genes under

various p-value or FDR thresholds. For example, the tables can be created by the following

code:

> #paired t-test

> count.DEnumber(pm.pt,c(0.001,0.005),c(0.01,0.05,0.1),method)

$pval.table

MD1_ACC_M MD3_ACC_F C_MD2_ACC_F C_MD2_ACC_M maxP Fisher REM

p=0.001 2 14 8 23 155 73 13

p=0.005 22 85 52 154 425 291 59

$FDR.table

MD1_ACC_M MD3_ACC_F C_MD2_ACC_F C_MD2_ACC_M maxP Fisher REM

FDR=0.01 0 0 0 0 0 0 0

FDR=0.05 0 0 0 1 169 5 0

FDR=0.1 0 0 0 3 572 96 0

> #MetaACV

> count.DEnumber(pm.acv,c(0.001,0.005),c(0.01,0.05,0.1),method)

$pval.table

MD1_ACC_M MD3_ACC_F C_MD2_ACC_F C_MD2_ACC_M maxP Fisher REM

p=0.001 12 26 22 28 122 90 71

p=0.005 50 131 107 144 323 301 169

$FDR.table

MD1_ACC_M MD3_ACC_F C_MD2_ACC_F C_MD2_ACC_M maxP Fisher REM

FDR=0.01 0 0 0 0 3 0 7

FDR=0.05 0 0 0 0 72 8 36

FDR=0.1 0 1 0 0 264 171 65

In the on-line technical document, we presented two other examples: prostate cancer

studies (multi-class outcome) and breast cancer (survival outcome).
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Figure 4.3: (A)The DE number plot of paired t-test.(B) The DE number plot of MetaACV.

4.3 DISCUSSION AND CONCLUSION

The MetaDE package provides a wide collection of classical and emerging meta-analysis

methods for identifying DE genes. Comparing to other packages, MetaDE offers much wider

options of analysis methods for both individual dataset analysis and meta-analysis. It is

suitable to researchers who want to easily obtain an analysis and tailor their choices to

the biological questions of interest. For example, if one is interested in finding genes that

are differentially expressed between cases and controls in all datasets. One could select

”moderated t-test” from the individual analysis and select ”maxP” from the meta-analysis

to combine the p-values for moderated t-test. This would form the ”modt+maxP” method

for the whole process. One also could select ”REM” as the meta-analytic method for this
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purpose. In this case, the effect sizes are generated during the stage of individual analysis

and they are combined through the REM as described in previous section. This setting is

highly suitable for those who want more flexibility. Moreover, a detailed online tutorial will

guide the user to make a choice on the methods that are suitable for their research questions.

Users should be aware of the limitations of the methods implemented in the MetaDE

package. First, the Bayesian approaches have not been implemented. Second, we assumed

that all studies contain identical matched gene list with no missing values. In real practice,

separate studies to be combined usually come from different microarray platforms. Requiring

an identical matched gene list and no missing values will exclude many important genes that

appear in certain studies but not in others, thus requiring an extension that allows for missing

values.

While we focused on combining multiple microarray studies in this paper, the package

can also be used to identify differentially expressed biomarkers from similar data types, for

example, multiple genomic, epigenomic and/or proteomic datasets.

The MetaDE package provides R functions to perform meta-analysis for differential ex-

pression analysis.
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5.0 CONCLUSIONS AND FUTURE WORKS

5.0.1 CONCLUSIONS

Meta-analysis or information integration of multiple genomic studies helps to increase sta-

tistical power of biomarker detection. However, the results of meta-analysis are easily biased

due to failure to incorporate important covariates at either the study or person level. For

example, in MDD studies, many clinical variables (sample-level or study-level), such as sex,

age, alcohol, antidepressant drug, or death by suicide, have been shown to be potential factors

characterizing subtypes of MDD. If the statistical models employed to identify differentially

expressed genes fail to incorporate these sources of heterogeneity, not only can this reduce the

statistical power, but also it will introduce sources of spurious signals to the gene detection.

In this dissertation, firstly, we proposed a statistical approach for meta-analysis to tackle

weak signal expression profiles that have small sample size, case-control paired design and

confounding covariates in each study. The results showed increased statistical power from

confounding variable adjustment, paired design modelling and meta-analysis in this genomic

setting and more profound biological findings have been discovered in MDD neurobiology.

Secondly, to adjust the effect of study-level variables, we extended the idea of random effects

method and gene-specific variable selection to meta-regression (MetaRG) approach, which

has an appealing property to identify confounded study-level covariates and obtain a more

accurate disease effect size after adjustment. To our knowledge, this is the first systematic

investigation in this area, which systematically considers the critical elements in the data

structure in order to obtain more accurate DE gene and pathway detection. The framework

is general and can be applied to microarray meta-analysis of other complex diseases with

similar data structure. Finally, we developed the MetaDE package to provide comprehen-
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sive method selection, flexible while unified data input formats, options of different outcome

types, various test statistics for DE analysis and choice of p-value calculation by fast para-

metric or robust permutation inferences. This provided a hands-on implementation of a

given microarray meta-analysis project and easy evaluation and comparison of the results by

different analytical methods.

5.0.2 FUTURE WORKS

hierarchical meta-analysis model: MDD, Bipolar and Schizophrenia are three kinks of highly

correlated, but different, brain diseases. To study the linkage among these three brain dis-

orders,a biology question of interest is whether some genes are related to all of these three

diseases, or partially related to them. To addresse this question, we proposed a hierarchi-

cal meta-analysis model,which combines two complementary meta-analysis methods, rOp

and AW, to detect the biomarkers partially associated with MDD, Bipolar and Schizophre-

nia. The hierarchical meta-analysis is given in Figure 5.1. Specifically,in Figure 5.2, we

illustrate how two meta-analysis designs might be combined for an integrated hierarchical

meta-analysis to detect biomarkers related to brain disorder subtypes. In the first layer of

the hierarchical design, we combine studies with the same brain disease (MDD, Bipolar or

schizophrenia) and control samples using rOp or maxP method to get the consistent biomark-

ers associated with each disease. In the second layer, AW method is used to combine the

p-values obtained from the first layer to identify biomarkers associated or partially associated

with these three brain disorders based on the adaptive weights. However, I did not get time

to carry out this investigation during during my Ph.D study. I will continue to finish this

project.

Evaluation of meta-analysis methods: Among the many microarray meta-analysis meth-

ods used in the literature, most methods have their pros and cons depending on the data

structure and biological goal. However,so far, there is no any rigorous criteria and method to

evaluate the performance of each method. Therefore, it will be very useful to develop some

methods to evaluate the performance of the meta-analysis methods.
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Figure 5.1: The flow chart of a hierarchical meta-analysis.

Improvement of the MetaDE Package: The MetaDE package is developing. We need to

improve its functionality, for example, to include more methods in this package.
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Figure 5.2: The diagram of hierarchical meta-analysis.
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APPENDIX A

ALGORITHM OF PERMUTATION ANALYSIS

The procedure of permutation with minP variable selection method::

• Step1: For a give gene g, fit all possible RIM (FEM) models that include at most r

(0,1,or r) clinical variables;

• Step2: Select the model RIM minP(FEM minP) with minimum p-value associated with

LRT for testing H0 : βg0 = 0. Denote the resulting minimum p-values as p
(o)
g ;

• Step3: Permute the labels of disease and control within each pair (or among all samples)

B times. For the bth permutation, repeat step1-2 to get minimum

p-value, p
(b)
g (1 ≤ b ≤ B, 1 ≤ g ≤ G);

• Step4: The corrected p-value for gene g is calculated by

pg =
∑B

b=1 I(p
(b)
g ≤p

(o)
g )

B
1 ≤ b ≤ B, 1 ≤ g ≤ G),

where I(.) is an indicator function, which takes values ones when the statement is true

and zero otherwise.
Remark: Similarly, the above procedures can be used to correct the p-values associated

with the RIM BIC (FEM BIC) models. Note that BIC is used to choose the RIM BIC

(FEM BIC) models in step 2-3.
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APPENDIX B

ALGORITHM OF CONCORDANCE TEST

Procedure to test consistency of covariate effects in detected DE genes. We denote by eglk

the effect of covariate Xl(1 ≤ l ≤ L) on the gene expression of gene g in the kth study if the

covariate is selected by RIM minP model selection. When covariate Xl is note selected by

RIM minP, eglk is not defined. Define

Cgl(i, j) =


1, if egli.eglj > 0

−1, if egli.eglj < 0

0, if egli or eglj is not defined

(B.1)

Cgl(i, j) takes value 1 if covariate Xl(1 ≤ l ≤ L) appears in RIM minP modes in study i

and j, and both effects have the same direction (both positive or both negative). In this

situation, the effect Xl(1 ≤ l ≤ L) in study i and j are consistent. On the contrary, Cgl(i, j)

takes value -1 when covariate Xl(1 ≤ l ≤ L) appears in the RIM minP models in study i

and j, and have discordant effect sizes. When the covariate Xl(1 ≤ l ≤ L) does not appear

in the RIM minP model of either study i or j, Cgl(i, j) takes value 0. To test whether the

covariates are selected by common covariates across studies more frequently than random,

we calculate the total number of times a covariate is selected by RIM minP among all pairs

of studies for a given gene set G
′
and denote as test statistics T1 below

T1(G
′
) =

∑
g∈G′

L∑
l=1

∑
1≤i<≤K

|Cgl(i, j)| (B.2)
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To test the concordance of covariate effects across studies, we count only the concordant

cases in T1:

T1(G
′
) =

∑
g∈G′

L∑
l=1

∑
1≤i<≤K

I(Cgl(i, j) = 1) (B.3)

The concordance rate is then defined as R(G
′
) = T2(G

′
)/T1(G

′
). To test whether T1(G

′
) and

R(G
′
is larger than obtained by random with statistically significance. Permutation analysis

below is performed:

Algorithm :Test the concordance::

• Step 1: Given a table of gene set G
′
,we calculate the observed statistics of T1(G

′
)

and R(G
′
) and denote them as T

(o)
1 and R(o), respectively;

• Step 2: Randomly permute the observed (0,1,-1) values across clinical variables for

a given gene and a give study for B times. For each permuted data, calculate

the T1(G
′
) and R(G

′
) similarly to obtained T

(b)
1 and R(b).

• Step 3: Calculate the p-values associated with T1(G
′
) and R(G

′
as pT1 =

∑B
b=1 I(T

(b)
1 ≥T

(o)
1 )

B

pR =
∑B

b=1 I(R
(b)≥R(o))

B
.
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APPENDIX C

ALGORITHM OF META-REGRESSION ANALYSIS

Algorithm :to assess the p-value associated with MetaRG BIC::

• Step 1: Fit the RIM BIC models in each individual analysis, and estimate the observed

effect sizes Ygk and within-study variance σ2
gk.

• Step 2: Fit all the MetaRG models that include at most one (0 or 1) study-specific

variable,and then calculate the adaptive weight w∗, and then calculate the p-value

: P [Z(w∗)], denoted as p(o)

• Step 3: permute the MDD and control labels within each pair in each study. For bth

permutation, repeat step 1 and step 2. Denote the p-value in bth permutation as p
(b)
g

• Step 4: The resulting unbiased p-value for gene g is calculated as

pg =

∑G

g
′
=1

∑B
b=1 I(p

(b)
g ≤p

(o)
g )

B
, where I(.) is an indicator function,

which takes value one when the statement is true and zero otherwise.
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APPENDIX D

THE PROOF OF ONE-SIDED CORRECTION METHODS

Theorem D.0.1. If p̃1, · · · , p̃K independently and identically follow U(0, 1) distribution,

then the cumulative distribution function (CDF) of statistic QminP
C is given by

G(z) =

1− (1− 2z)K , if 0 ≤ z ≤ 0.5

1, if 0.5 ≤ z ≤ 1

(D.1)

Proof. Let p̃[r] denote the rth order statistics of p̃1, · · · , p̃K . Then, we have

S = QminP
L = p̃[1]

and

T = QminP
R = 1− p̃[K]

Therefore, we have

X = p̃[1] = S

and

Y = p̃[K] = 1− T
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By theorem ??, we have the joint pdf of X and Y :

g(x, y) = K(K − 1)(y − x)K−2

if 0 < x ≤ y < 1, and zero otherwise. The Jacobian is J=-1, so the joint pdf of S and T is

given by

f(s, t) = K(K − 1)(1− s− t)k−2 (D.2)

If 1− s− t > 0, 0 < s < 1 and 0 < t < 1, and zero otherwise.

Thus, we have

G(z) = Pr(QminP
C ≤ z)

= Pr(min(S, T ) ≤ z)

= 1− Pr(min(S, T ) > z)

= 1− Pr(S > z, T > z)

if 0 < z < 0.5

Pr(S > z, T > z) =

∫ 1−z

z

∫ 1−s

z

K(K − 1)(1− s− t)K−2dtds

= (1− 2z)K

if 0.5 ≤ z ≤ 1

Pr(S > z, T > z) = 0

Then, we have

G(z) =

1− (1− 2z)K , if 0 ≤ z < 0.5

1, if 0.5 ≤ z ≤ 1
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Theorem D.0.2. If p̃1, · · · , p̃K independently and identically follow U(0, 1) distribution,

then the cumulative distribution function (CDF) of statistic QmaxP OC
g is given by

F (z) =

2zK , if 0 ≤ z < 0.5

2zK − (2z − 1)K , if 0.5 ≤ z ≤ 1

(D.3)

Proof. Let p̃[r] denote the rth order statistics of p̃1, · · · , p̃K . Then, we have

S = QmaxP
L = p̃[K]

and

T = QmaxP
R = 1− p̃[1]

Therefore, we have

X = p̃[1] = 1− T

and

Y = p̃[K] = S

By theorem ??, we have the joint pdf of X and Y :

g(x, y) = K(K − 1)(y − x)K−2

if 0 < x ≤ y < 1, and zero otherwise. The Jacobian is J=-1, so the joint pdf of S and T is

given by

f(s, t) = K(K − 1)(s+ t− 1)k−2 (D.4)

If s+ t− 1 > 0, 0 < s < 1 and 0 < t < 1, and zero otherwise.
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Thus, we have

G(z) = Pr(QmaxP
C ≤ z)

= Pr(min(S, T ) ≤ z)

= 1− Pr(min(S, T ) > z)

= 1− Pr(S > z, T > z)

if 0 < z < 0.5

Pr(S > z, T > z) =

∫ 1−z

z

∫ 1

1−s

K(K − 1)(s+ t− 1)K−2dtds+

∫ 1

1−z

∫ 1

z

K(K − 1)(s+ t− 1)K−2dtds

= 1− 2zK

if 0.5 ≤ z ≤ 1

Pr(S > z, T > z) =

∫ 1

z

∫ 1

z

K(K − 1)(s+ t− 1)K−2dtds

= 1− 2zK + (2z − 1)K

Then, we have

G(z) =

2zK , if 0 ≤ z < 0.5

2zK − (2z − 1)K , if 0.5 ≤ z ≤ 1
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Theorem D.0.3. If p̃1, · · · , p̃K independently and identically follow U(0, 1) distribution,

then the cumulative distribution function (CDF) of statistic V roP OC
g is given by Case1:

r ≥ K − r + 1.

F (z) =

2(1− F (r − 1, K, z)), if 0 ≤ z < 0.5

1−
∑r−1

j=K−r+1

∑K−j
h=K−r+1

K!
j!h!(K−j−h)!

(1− z)j+h(2z − 1)K−j−h, if 0.5 ≤ z ≤ 1

(D.5)

(D.6)

Case2: r < K − r + 1

F (z) =

1−
∑r−1

l=0

∑r−1
m=0

K!
l!m!(K−l−m)!

zm+l(1− 2z)K−l−m, if 0 ≤ z ≤ 0.5

1, if 0.5 ≤ z ≤ 1

(D.7)

Proof. Let X[r] = X[r]{X1, · · · , XK} denote the rth order statistic of K random variables

X1, · · · , XK ,Under the null hypothesis,p̃k , 1− p̃k and pk all have the U(0, 1) distribution. It

follows that

Qrop
L = X[r]{p̃1, p̃2, · · · , p̃K} (D.8)

Qrop
R = X[r]{1− p̃1, 1− p̃2, · · · , 1− p̃K} (D.9)

and

Qrop
U = X[r]{p1, p2, · · · , pK} (D.10)

All have the Beta(r,K − r + 1) distribution under H0.

Then, the one-sided test statistic is defined as

Qrop
C = min(Qrop

L , Qrop
R ) (D.11)

Let p̃[r] denote the rth order statistics of p̃1, · · · , p̃K . Then, we have

S = Qrop
L = p̃[r]
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and

T = Qrop
R = 1− p̃[K−r+1]

Therefore, we have

X = p̃[K−r+1] = 1− T

and

Y = p̃[r] = S

Case1: r > K − r + 1. Then, by theorem, we have the joint pdf of X and Y :

g(x, y) =
xK−r(y − x)2r−K−2(1− y)K−r

B(r,K − r + 1)B(K − r + 1, 2r −K − 1)

if 0 < x < y < 1, and zero otherwise, and B(., .) is the Beta function. The Jacobian is J=-1,

so the joint pdf of S and T is given by

f(s, t) =
(1− t)K−r(s+ t− 1)2r−K−2(1− s)K−r

B(r,K − r + 1)B(K − r + 1, 2r −K − 1)
(D.12)

If s+ t− 1 > 0, 0 < s < 1 and 0 < t < 1, and zero otherwise.

Thus, we have

G(z) = Pr(Qr
Cop ≤ z)

= Pr(min(S, T ) ≤ z)

= 1− Pr(min(S, T ) > z)

= 1− Pr(S > z, T > z)
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if 0 < z < 0.5

Pr(S > z, T > z) =

∫ 1−z

z

∫ 1

1−s

(1− t)K−r(s+ t− 1)2r−K−2(1− s)K−r

B(r,K − r + 1)B(K − r + 1, 2r −K − 1)
dtds

+

∫ 1

1−z

∫ 1

z

(1− t)K−r(s+ t− 1)2r−K−2(1− s)K−r

B(r,K − r + 1)B(K − r + 1, 2r −K − 1)
dtds

=

∫ 1−z

z
(1− s)K−rsr−1ds

B(r,K − r + 1)
+ (F (r − 1, K, z)− F (K − r,K, z))

= (F (r − 1, K, z)− F (r − 1, K, 1− z)) + (F (r − 1, K, z)− F (K − r,K, z))

= 2F (r − 1, K, z)− F (r − 1, K, 1− z)− F (K − r,K, z)

= 2F (r − 1, K, z)− 1

,whre F (x,K, p) = Pr(X ≤ x) is the CDF of random variableX from a binomial distribution

with the sample size K and the ”probability of success”,p

if 0.5 ≤ z ≤ 1

Pr(S > z, T > z) =

∫ 1

z

∫ 1

z

(1− t)K−r(s+ t− 1)2r−K−2(1− s)K−r

B(r,K − r + 1)B(K − r + 1, 2r −K − 1)
dtds

=
1

B(r,K − r + 1)

∫ 1

z

(1− s)K−rsr−1I 1−z
s
(K − r + 1, 2r − k − 2)ds

=
1

B(r,K − r + 1)

r−1∑
j=K−r+1

(r − 1)!

j!(r − 1− j)!
(1− z)j

∫ 1

z

(1− s)K−r(s− 1 + z)r−1−jds

=
1

B(r,K − r + 1)

r−1∑
j=K−r+1

(r − 1)!

j!(r − 1− j)!
(1− z)jzK−j

∫ 1−z
z

0

vK−r(1− v)r−1−jdv

=
r−1∑

j=K−r+1

K−j∑
h=K−r+1

K!

j!h!(K − j − h)!
(1− z)j+h(2z − 1)K−j−h

Then, we have

G(z) =

2(1− F (r − 1, K, z)), if 0 ≤ z < 0.5

1−
∑r−1

j=K−r+1

∑K−j
h=K−r+1

K!
j!h!(K−j−h)!

(1− z)j+h(2z − 1)K−j−h, if 0.5 ≤ z ≤ 1
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Case2: r < K − r + 1, similarly, we have

g(x, y) =
xr−1(x− y)K−2r(1− x)r−1

B(r,K − r + 1)B(K − 2r + 1, r)

and

g(s, t) =
sr−1(1− s− t)K−2r(t)r−1

B(r,K − r + 1)B(K − 2r + 1, r)

if 1− t− s > 0, 0 < t < 1 and 0 < s < 1, and zero otherwise.

Then, if 0 ≤ z < 0.5, we have

Pr(S > z, T > z) =

∫ 1−z

z

∫ 1−s

z

sr−1(1− s− t)K−2rtr−1

B(r,K − r + 1)B(K − 2r + 1, r)
dtds

=
K−r∑

j=K−2r+1

r+j∑
h=j+1

K!

(K − r − j)!h!(r + j − h)!
zK−h(1− 2z)h

if 0.5 ≤ z < 1, we have Pr(S > z, T > z) = 0

G(z) =

1−
∑K−r

j=K−2r+1

∑r+j
h=j+1

K!
(K−r−j)!h!(r+j−h)!

zK−h(1− 2z)h, if 0 ≤ z ≤ 0.5

1, if 0.5 ≤ z ≤ 1

=

1−
∑r−1

l=0

∑r−1
m=0

K!
l!m!(K−l−m)!

zm+l(1− 2z)K−l−m, if 0 ≤ z ≤ 0.5

1, if 0.5 ≤ z ≤ 1
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APPENDIX E

TABLE OF SIMULATIONS
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Figure E1: Simulation scheme of three correlation structures in Scenario I, II and III. (X:

disease state; Y: gene expression; Z: clinical variables)
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APPENDIX F

TEN MDD RELATED GENES

101



Figure F1: The direction of covariates effect in RIM minP models for 10 MDD related genes

from literature.
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