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As the need for reaching fuel reserves at greater depths increases, over the past 30 years 

scientists have been exploring and developing the technology required to efficiently drill rock at 

highly pressured environments; yet, there are still gaps in the understanding of the physical 

phenomena involved. One of the basic problems has to do with the cutter-to-rock interaction 

during the cutting process. 

This study employs the Finite Element Method (FEM) to investigate the mechanics of 

rock cutting because of its flexibility in handling material heterogeneity, nonlinearity and 

boundary conditions. Using the FEM to model fracturing of a brittle material like rock –and 

consequently treating its discontinuous chips– is a challenging undertaking that requires the 

tackling of a sequence of complex problems: As the cutter advances and touches the rock 

material, a contact problem first arises. This is followed by nonlinear deformation and the 

determination as to when and whether the rock would fail. Subsequently, the question of how to 

initiate the fragmentation process has to be resolved if the rock fails. The cycle repeats starting 

with a new contact problem after new surfaces are generated due to fracture.  

At present, few researchers have focused on crack initiation and subsequent crack 

propagation, but even fewer have accounted for actual chip formation, and none has considered 

the dynamic interaction amongst chips, newly formed surfaces, and the cutter. One important 

goal of this study is to advance the modeling such that it is possible to follow the cutter in a 

complete cutting process in a credible manner. 

A framework of three-dimensional FEM modeling was developed so that the 

fragmentation process observed in laboratory rock scratching tests could be properly simulated. 

A thorough calibration of the rock material model was carried out, together with extensive 
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 v 

sensitivity analyses of contact models, damage based failure and its associated fracture modeling 

using the commercial software LS-DYNA.  

This study was able to obtain ductile failure mode for shallow cuts, and brittle failure for 

deep cuts as observed in the laboratory, all without a priori setting on the failure modes. Also, 

cutting force magnitudes and tendencies obtained from the study correlated well with published 

results of the physical experiments. Moreover, in a limited scope, this study also investigated the 

effects of applying external hydrostatic pressure on rock cutting. Preliminary numerical results 

indicate a good comparison with few published data. Lastly, theoretical models for obtaining 

cutting forces were assessed, providing a better understanding of their limitations and usability. 
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1.0 INTRODUCTION 

1.1 BACKGROUND 

While domestic oil reserves remain plentiful at present, this supply is increasingly concentrated 

in geologically challenging and operationally complex settings such as deep formations, deep-

water offshore, and lower permeability formations. Drilling a well into a reservoir is an 

expensive and time-consuming operation. From an economic perspective, the drilling rate of 

penetration (ROP) is the single most important factor in determining the cost of drilling a well 

(Schlumberger Data and Consulting Services 2005). Low ROP, e.g. 0.914 to 1.524 m/hr (3 to 5 

ft/hr) is mainly a result of the elevated compressive strength of the highly overburdened 

formations encountered at greater depths. The extreme environment found at bottom-hole could 

reach pressures up to 206.8 MPa (30,000 psi) and temperatures up to 250 °C (481 °F). 

At first, the tricone bits with hardened inserts used for drilling hard formations at 

shallower depths were applied as wells went deeper. However, at larger depths it is complicated 

to identify when the tricone bit's bearings have failed, which can occur more frequently when 

larger weight is applied to the bit in a deep well. This can lead to repeated failures, lost cones, 

higher costs, and lower overall ROP.  

A solution to the drawback of using tricone bits under extreme conditions was the 

introduction of fixed cutter bits with Polycrystalline Diamond Compact (PDC) cutters. The PDC 

cutting surface has synthetic polycrystalline diamonds bonded to a tungsten-carbide stud or blade 

(see Figure 1-1). This type of bit holds the record for single-run footage in a well, i.e. 6,700 

meters (22,000 feet), and it typically drills several times faster than tricone bits, particularly in 

softer formations (NETL 2010). Each PDC cutter placed on the bit removes a given amount of 

rock depending on bit design, operating conditions, and bit motion. 
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Figure 1-1: PDC cutter (left), drill bit (right) (Kappele 2009) 

1.2 MOTIVATION 

It is crucial to understand and be able to predict the dynamics at the cutter-to-rock interface in 

the bottom of a well because the optimum performance of a PDC bit is based on the force 

developed from the interaction between rock and cutters (see Figure 1-2). This force magnitude 

depends upon the volume of rock removed by each cutter, the rock strength, and the cutter 

geometry, among others.  

 

 

Figure 1-2: Oil well drilling scenario. Detail of a PDC bit at bottom hole (NETL 2007)  
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During the past 30 years, scientists have been exploring and developing the technology required 

to efficiently drilling rock at high-pressure conditions; nevertheless, there is still a gap in 

understanding all the physical phenomena that take place during the cutting process. 

Failure, fracture, or fragmentation of rock by mechanical tools has been extensively 

investigated by analytical, experimental, and numerical methods. Generally, experimental and 

numerical studies are performed with the aim of validating what the analytical theories propose. 

Physical tests on rocks in a controlled environment are rather direct and the results are easily 

accepted. However, due to random factors, especially the intrinsic heterogeneity in natural 

materials, quite a number of tests are necessary in order to rule out the influence of such random 

factors. This makes the cost rather high and yields rather limited results. In addition, one can 

only acquire knowledge of the final stage with ordinary measuring equipment and experimental 

methods, and obtain very little understanding of the breakage process (Kou et al. 2004). On the 

other hand, numerical modeling often yields reliable results for a given set of conditions, and 

sometimes offers useful visualization of breakage processes, although it constantly includes 

some important simplifications. Therefore, an ideal approach is to combine numerical modeling 

with physical tests. 

The numerical methods most widely used for analysis of the rock fracture process are the 

finite difference method (FDM), the finite element method (FEM), the boundary element method 

(BEM) and the discrete element method (DEM). Due to the its flexibility in handling material 

heterogeneity, nonlinearity and boundary conditions, the FEM is perhaps the most widely 

applied numerical method in engineering today with many well developed and verified 

commercial codes with large capacities in terms of computing power, material complexity and 

user friendliness. 

The purpose of this research work lies on the difficulty of reproducing quantitatively and 

realistically the fragmentation process documented in rock cutting experiments, by modeling the 

problem through FEM. Once the simulations yield consistent results based on proper validation 

of fracture modes and cutting forces, as well as validation of the stress-strain behavior of rock in 

different standard stress states, it is then possible to implement the proposed methodology into 

modeling rock drilling in high-pressure environments. 
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1.3 PROBLEM STATEMENT 

The idea of using FEM to model fracturing of a solid material and consequently treat 

discontinuous elements or groups of elements (chips) has been a challenge to rock cutting 

scientists and, in general, to researchers attempting to model the interaction between a penetrator 

(cutter) and a solid, breakable target (rock). The challenge appears as a sequence of complex 

problems due to the highly nonlinear nature of the process and the material involved. As the 

penetrator advances and touches the target material, a contact problem first arises. The contact 

problem is followed by nonlinear deformation and the difficulty of determining when and 

whether or not the material fails. Subsequently, the question of how to initiate the fragmentation 

process after the material fails has to be resolved. This cycle repeats starting with a new contact 

problem after new surfaces are generated due to fracture.  

Furthermore, when simulating problems involving impact and fracturing there is a 

consensus in the research community that, although powerful in tracking element properties and 

in incorporating complex material models, the typical pure Lagrangian mesh-based technique of 

the FEM presents limitations such as: 

• Inability to use a simple but realistic crack propagation formulation; 

• Numerical instabilities caused by local mesh distortions due to highly concentrated 

loads, especially in dynamic large deformation analysis; and, 

• High computational costs and loss of accuracy when implementing adaptivity or 

remeshing procedures to reduce mesh entangling. 

The aforementioned problems may well be the reason why the literature search did not find prior 

FEM work modeling the complete dynamic process of rock cutting. A limited amount of 

research has focused on crack initiation and subsequent crack propagation (see Section 1.4.2); 

however, it does not account for actual chip formation or for the dynamic interaction amongst 

chips, newly formed surfaces, and the cutter. This is precisely what the proposed study is 

intended to do.  
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1.4 STATE OF THE ART IN ROCK CUTTING MODELING 

As mentioned in Section 1.2, the most frequently used numerical methods for modeling the rock-

tool interaction problem are the finite difference method (FDM), the finite element method 

(FEM), the boundary element method (BEM) and the discrete element method (DEM).  

This investigation is part a larger research effort –funded by the U.S. Department of 

Energy– that is aimed at establishing a numerical framework that is capable of modeling the 

process of a drill cutter advancing into HPHT rock and its associated rock fragmentation. To this 

end, this DOE-supported project was set out to use a continuum approach, i.e. FEM, and a 

discrete approach, i.e. DEM. 

1.4.1 The Use of the Finite Element Method 

In looking for the best continuum method to employ, the FEM is found to be the most reliable 

for simulating the rock cutting process. The FEM has been the most popular numerical method in 

engineering sciences, including rock mechanics and rock engineering (Jing 2003). Its popularity 

is largely owed to the flexibility in treating material heterogeneity, nonlinear deformability 

(mainly plasticity), complex boundary conditions, and dynamic problems, in conjunction with 

reasonable efficiency in dealing with complex constitutive models and even fracturing. 

The interest of this investigation is to discretize the continuum domain of the rock in such 

a way that it can mimic a particle assembly, which should be able to fracture when subjected to a 

failure stress state. In this order of ideas, the BEM does not serve the purpose because its 

discretization scheme is limited to the boundaries of the domain. In addition, the BEM is not 

capable of treating inhomogeneous, nonlinear problems (Gaul 2004).  

As far as the FDM is concerned, it has a certain level of rivalry with the FEM. In the FDM, every 

derivative in the set of governing equations is replaced directly by an algebraic expression 

written in terms of the field variables (e.g., stress or displacement) at discrete points in space 

(Itasca 2001). Without iterative solutions of the global matrix of the system of equations as in the 

FEM, the FDM has an advantage in simulating complex constitutive material behavior, such as 

plasticity and damage. However, explicit representation of fractures is not easy in the FDM 

because it requires continuity of the functions between the neighboring nodes. Therefore, the 
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FDM uses the smeared crack approach (Fang and Harrison 2002) or nulled elements (Tulu et al. 

2008) to catch material failure or damage propagation of the elements without specifically 

creating fracture surfaces in the model. This fact makes the FDM not suitable for simulating the 

fragmentation process in rock cutting.  

Taking advantage of LS-DYNA’s excellent functionalities and high performance, this 

well-known commercial software has been selected to serve the purpose of this research work. 

LS-DYNA is a program that analyzes large deformation behavior of structures by using a time-

stamp history in explicit form, and has advantages in fields such as crash/shock analysis, falling 

shock analysis, plastic forming analysis, and penetration/crack/fracture analysis. In those fields, 

LS-DYNA is a highly reliable program with several proven introduction in industries like the 

automotive, the metal forming and the defense. 

1.4.1.1 The Explicit FEM 

The explicit FEM was originally developed to solve problems in wave propagation and impact 

engineering, but it is currently used for many other applications such as sheet metal forming, 

underwater simulations, failure analysis, glass forming, metal cutting, pavement design, and 

earthquake engineering, among others. The implicit FEM becomes expensive when thousands of 

timesteps must be taken to solve a dynamic problem because of the cost of inverting stiffness 

matrices to solve the large sets of nonlinear equations, especially for models with thousands of 

degrees of freedom or when nonlinearities are present. In an explicit FEM, the solution can be 

achieved without forming a global stiffness matrix. The solution is obtained on an element-by-

element basis and therefore a global stiffness matrix does not have to be formed. As a result, the 

explicit approach can treat large three-dimensional models (thousands of degrees of freedom) 

with comparatively modest computer storage requirements. Other advantages include easy 

implementation and accurate treatment of general nonlinearities. However, the explicit method is 

conditionally stable and therefore small timesteps must be used. For stable computations, the 

time step is selected by the computer code such that (for undamped problems): 

Δ𝑡 ≤
𝑙
𝑐𝑤

 (1-1) 
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where ݈ is related to the smallest element size and ܿ௪ is its fastest wave speed (speed at which 

stress waves travel in the element). The physical interpretation of this condition for linear 

displacement elements is that Δݐ must be small enough so that information does not propagate 

across more than one element in a timestep, therefore this could result in excessive simulation 

times as the level of discretization increases. 

1.4.1.2 The Finite Element Approximation 

Three steps are required to complete a FEM analysis: 1) domain discretization, 2) local 

approximation, and 3) assemblage and solution of the global matrix equation. The domain 

discretization involves dividing the deformable body occupying a spatial domain V into a finite 

number of internal contiguous elements of regular shapes defined by a fixed number of nodes, 

Nnod. In the case of linear elasticity, the domain V can be described by the following equations:  

ߝ ൌ ଵ

ଶ
൬

డ௨

డ௫ೕ


డ௨ೕ

డ௫
൰          .  .  . strain-displacement (kinematic) eqs.       (1-2) 

ߪ ൌ ܦ
                    .  .  . stress-strain (constitutive) equations       (1-3)ߝ

డఙೕ

డ௫ೕ
 തܾ

 ൌ 0                    .  .  . equilibrium (static) equations                 (1-4) 

In the above, ui is the displacement vector, ߝ is the column matrix of strain components, ߪ is 

the column matrix of stress components, തܾ
 is the vector of body forces, and ܦ

  is the elastic 

material stiffness matrix. 

In the standard displacement version of the FEM, the displacement components are 

approximated as linear combinations of suitably chosen interpolation –or shape– functions  

ூܰሺ࢞ሻ, where I = 1, 2, … Nnod, and x is the vector of Cartesian components x1, x2, and x3. A 

typical property of the FE shape functions is that each of them is associated with one of Nnod 

nodes of the domain, and the value of the I-th shape function is equal to one at node number I 

and equal to zero at all other nodes. The displacement approximation is defined as  
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ሻ࢞ሺݑ ൌ ∑ ூܰሺ࢞ሻே
ூୀଵ  ݀ூ                         i = 1, 2, 3  (1-5) 

where dIi are unknown displacement parameters. In matrix notation, the approximation in 

Equation (1-5) is rewritten as  

ሻ࢞ሺ࢛ ൌ  (1-6) ࢊሻ࢞ሺࡺ

Similarly, the kinematic Equations (1-2) provide an approximation of the strains,  

ሻ࢞ሺࢿ ൌ ሻ࢞ሺ࢛ࣔ ൌ ࢊሻ࢞ሺࡺࣔ ൌ  (1-7) ࢊሻ࢞ሺ

where  ൌ  is the strain-displacement matrix –or B-matrix– containing the derivatives of the ࡺࣔ

shape functions with respect to the spatial coordinates. 

Substituting the strain approximation (1-7) into the constitutive equations (1-3) we obtain 

the stress approximation 

ሻ࢞ሺ࣌ ൌ ሻ࢞ሺࢿሻ࢞ሺࡰ ൌ  (1-8) ࢊሻ࢞ሺሻ࢞ሺࡰ

where the argument x at De marks explicitly that the elastic properties may be position-

dependent. 

Although the approximations of displacements, strains and stresses satisfy the kinematic 

and constitutive equations exactly, the static differential equations of equilibrium (1-4) in general 

cannot be satisfied exactly at every point of the body, i.e., in a strong sense, because the adopted 

approximations depend only on a finite number of unknown displacement parameters. Instead of 

using the static equations directly, they are replaced by the principle of virtual work, which leads 

into the weak form of the equilibrium equations. The weak form introduces an arbitrary matrix of 

virtual displacement parameters, ࢊߜ, in its integral-based equality.  

Taking into account that d and ࢊߜ are not functions of the spatial coordinates and as such 

can be taken out of the integrals of the virtual work equations (Jirásek 2007), the weak form of 

the equilibrium equations can be written as 
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𝒅Τ𝑲𝑒
𝑇𝛿𝒅 = 𝒇𝑒𝑥𝑡𝑇 𝛿𝒅 (1-9) 

where 

𝑲𝑒  = � 𝑩𝑇(𝒙)𝑫𝑒(𝒙)𝑩(𝒙)d𝑉
𝑉

 (1-10) 

is the (global) elastic stiffness matrix and 

𝒇𝑒𝑥𝑡  = � 𝑵𝑇(𝒙)𝒃�d𝑉
𝑉

 (1-11) 

is the (equivalent) external force vector. Equation (1-9) is satisfied for 𝛿𝒅 if and only if 

𝒇𝑒𝑥𝑡 =  𝑲𝑒𝒅 (1-12) 

These are the discretized equations of equilibrium from which it is possible to compute the 

unknown displacement parameters d. 

1.4.1.3 Central Difference Scheme for Explicit Time Integration 

As stated before, in an explicit FEM, the solution can be achieved without forming a global 

stiffness matrix. LS-DYNA uses the central-difference method, which is characteristic of explicit 

methods for direct time integration. In this method, the solution is determined in terms of 

previous (before current timestep 𝑡𝑛) elastic displacements and time derivatives of these 

displacements. By using this method, the finite element solution is then obtained using the 

following equations (with no damping):  

�̇�𝑡
𝑛+12

= �̇�𝑡
𝑛−12

+ ∆𝑡𝑛 𝐌−𝟏 �𝒇𝑒𝑥𝑡,𝑡𝑛 − � 𝑩Τ𝝈𝑡𝑛  d𝑉
𝑉

� (1-13) 

𝒖𝑡𝑛+1 = 𝒖𝑡𝑛 + ∆𝑡
𝑛+12

 �̇�𝑡
𝑛+12

 (1-14) 
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where 𝒇𝑒𝑥𝑡,𝑡𝑛 is the vector of applied forces associated with the boundary conditions and body 

forces at timestep 𝑡𝑛, M is the mass matrix, and ∫𝑩Τ𝝈𝑡𝑛  d𝑉  is the internal force vector (Benson 

2001). 

In each timestep, the velocities and displacements are updated. In general, implicit 

methods have the form: 

𝒖𝑡𝑛+1 = 𝑓��̇�𝑡𝑛+1 , �̈�𝑡𝑛+1 , �̇�𝑡𝑛 , … �   (1-15) 

and therefore the computation of the current nodal displacements requires the knowledge of the 

time derivatives of 𝒖𝑡𝑛+1, which are unknown. Consequently, simultaneous equations need to be 

solved to compute the current displacements. On the other hand, explicit methods have the form: 

𝒖𝑡𝑛+1 = 𝑓�𝒖𝑡𝑛 , �̇�𝑡𝑛 , �̈�𝑡𝑛 ,𝒖𝑡𝑛−1 , … �   (1-16) 

and therefore the current nodal displacements can be determined in terms of completely 

historical information consisting of displacements and time derivatives of displacements at 

previous time steps. If a diagonal mass matrix is used, Equation (1-13) is a system of linear 

algebraic equations and a solution is obtained without solving simultaneous equations. Once 

displacements are updated, strains can be computed, which are then used to determine stresses 

and eventually nodal forces. 

1.4.2 Previous Research on Rock Cutting Modeling 

1.4.2.1 Some Numerical Approaches Used 

Numerous investigators have applied numerical methods to the problem of rock-tool interaction. 

Table 1-1 summarizes the most relevant examples of numerical studies in rock cutting in the last 

couple of decades. This table reports the material constitutive models implemented, the type of 

rock modeled, and the status of the chip formation and fragmentation process. 



11 

Table 1-1: Previous research in rock cutting modeling 

No. Numerical 
Method Code Rock constitutive model Type of rock modeled Type of crack initiation 

and fragmentation Reference 

1 FEM (2D) RFPA Elastic-brittle model. 
Generic. Heterogenity 
included throughout 
elements. 

No explicit fracture. (Tang 1997) 

2 FDM (2D) FLAC 
Strain-Softening Mohr-
Coulomb Constitutive 
Model. 

Generic, homogeneous No explicit fracture. Small 
deformation. 

(McKinnon and 
Garrido 1998) 

3 FDM (2D) FLAC 

Elastic perfectly plastic 
model with a Mohr-
Coulomb yield condition 
and plastic potential. 

Generic, homogeneous No explicit fracture. Small 
deformation. (Huang et al. 1998) 

4 FEM (2D) RFPA Coulomb with tensile cut-
off model. 

Sandstone. 
Heterogenity included 
throughout elements. 

Crack formed by smeared 
elements. No chip 
separation. 

(Tang et al. 1998) 

5 BEM (2D) In-house 
code 

Maximum tensile strength 
criterion 

Generic, anisotropic, 
homogeneous 

Predefined crack with 
incremental crack 
extension with piece-wise 
linear discretization. No 
fragmentation. 

(Chen et al. 1998) 

6 FEM (2D) RFPA Mohr-Coulomb model. 
Generic. Heterogenity 
included throughout 
elements. 

Crack formed by smeared 
elements. No chip 
separation. 

(Tang et al. 1998) 

7 FEM (2D) ALGOR 
Elastic–perfectly plastic 
model with Drucker–Prager 
plasticity in tension 

Generic, homogeneous 
Crack predefined and 
propagated by remeshing. 
No chip separation. 

(Jonak 2001) 

8 FEM (2D) R-T Elastic-brittle model. 
Generic. Heterogenity 
included throughout 
elements. 

Crack formed by smeared 
elements. No chip 
separation. 

(Liu et al. 2002) 

9 FDM (2D) FLAC 
Elasto-plastic Mohr-
Coulomb model with 
stiffness degradation 

Generic. Heterogenity 
included throughout 
elements. 

Crack formed by smeared 
elements. No chip 
separation. 

(Fang and Harrison 
2002) 
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Table 1-1 (continued) 

No. Numerical 
Method Code Rock constitutive model Type of rock modeled Type of crack initiation 

and fragmentation Reference 

10 FEM (2D) LS-DYNA 
Elastic plastic damage - 
Johnson-Holmquist 
concrete model. 

Granite, homogeneous No explicit fracture. Small 
deformation. (Tuomas 2004) 

11 DEM PFC Parallel bond model Marble, homogeneous Crack is formed. Chip is 
separated. (Lei et al. 2004) 

12 FEM (2D) R-T 
Double elliptic strength 
criterion with elastic 
damage. 

Granite, marble and 
sandstone. 
Heterogenity included 
throughout elements. 

Crack formed by smeared 
elements. No chip 
separation. 

(Liu 2004) 

13 FEM (2D) RFPA Elastic damage 
Sandstone. 
Heterogenity included 
throughout elements. 

Crack formed by smeared 
elements. No chip 
separation. 

(Zhu and Tang 2004) 

14 DEM with 
FEM (2D) 

In-house 
code 

Elastic plastic with elastic 
damage (for FEM part) 

Sandstone, 
homogeneous 

Crack is formed. Chip is 
separated. (DEM part) 

(Oñate and Rojek 
2004) 

15 FEM (2D) In-house 
code 

Quasi-brittle material 
model 

Limestone, 
homogeneous 

Fragmentation has been 
modeled analytically. 
There is no evidence of 
cracks or chip separation. 

(Rouabhi et al. 2005) 

16 FEM (3D) LS-DYNA 

Elastic plastic model. 
Erosion of elements upon 
tensile or shear stress 
threshold. 

Generic, homogeneous No explicit fragmentation. (Yu 2005) 

17 FDM and 
DEM (2D) 

FLAC and 
PFC 

Mohr-Coulomb plasticity 
model (for FDM part) Marble, homogeneous No explicit fracture. Large 

deformation. (Stavropoulou 2006) 

18 FDM (2D) FLAC Elastic Mohr-Coulomb 
model 

Limestone, 
homogeneous 

No explicit fracture. Small 
deformation. 

(Innaurato et al. 
2007) 

19 DEM (2D) In-house 
code 

Elastic perfectly brittle 
contact model 

Sandstone, 
homogeneous 

Crack is formed. Chip is 
separated.  (Rojek 2007) 

20 DEM (2D) PFC Linear contact model with 
contact bonds 

Sandstone, 
homogeneous 

Crack is formed. Chip is 
separated.  

(Huang and 
Detournay 2008) 
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Table 1-1 (continued) 

No. Numerical 
Method Code Rock constitutive model Type of rock modeled Type of crack initiation 

and fragmentation Reference 

21 FEM (2D) R-T 
Double elliptic strength 
criterion with elastic 
damage 

Sandstone, marbel, 
granite. Heterogenity 
included throughout 
elements. 

Crack formed by smeared 
elements. No chip 
separation. 

(Liu et al. 2008) 

22 FDM (3D) FLAC Strain-softening Mohr 
Coulomb plasticity model 

Shale and Sandstone, 
homogeneous 

Elements are "nulled" 
upon reaching failure. No 
crack initiated or 
fragmentation reported. 

(Tulu 2009; Tulu et 
al. 2008) 

23 DEM (2D) PFC Linear contact model with 
parallel bonds 

Sandstone, 
heterogeneous 

Crack is formed. Chip is 
separated.  (Block and Jin 2009) 

24 DEM (2D) PFC 

Linear contact model with 
parallel bonds and  
implementation of particle 
crushing 

Sandstone, 
heterogeneous 

Crack is formed. Chip is 
separated.  (Mendoza 2010) 

25 DEM (3D) PFC Linear contact model with 
parallel and contact bonds 

Sandstone, 
homogeneous 

No clear crack formed. 
Small chips separated, but 
mostly particles dispersed 
in space. 

(Rojek et al. 2011) 

26 DEM (3D) PFC Linear contact model with 
parallel and contact bonds 

Sandstone and 
Limestone, 
heterogeneous. 

No explicit fracture. 
Particles dispersed in 
space. 

(Su and Akcin 2011) 

27 FEM (2D) RFPA 
Linear elastic damage 
based on tensile strain or 
Mohr-Coulomb criteria 

Generic. Heterogeneity 
included throughout 
elements. 

Cracks formed by smeared 
elements. No chip 
separation 

(Wang et al. 2011) 
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As can be concluded from the information in Table 1-1, none of the continuum approaches 

succeeds in modeling explicitly the crack propagation and chip formation and separation seen in 

rock cutting physical experiments. Currently, the only numerical method presenting such 

features is the DEM. From the set of DEM simulations found in the literature, (Mendoza 2010) 

presents the most comprehensive analysis of the dynamic rock-tool interaction. 

1.4.2.2 Numerical Contributions Through the Use of FEM 

Previous attempts to simulate the rock fragmentation mechanism with the FEM stop when 

fragments are formed. Some require a prior knowledge of the crack initiation angle to plot a path 

for element removal or domain remeshing for simulating crack growth (Jonak 2001; Saouma and 

Kleinosky 1984; Swenson and Ingraffea 1988; Wawrzynek and Ingraffea 1989). Figure 1-3  

illustrates the trajectory of the primary crack and distribution of displacements near a cutting 

wedge with negligible friction simulated by Jonak (2001). 

 

 

Figure 1-3: Rock cutting simulation by Jonak (2001) 
 

 

As can be seen in Table 1-1, the great majority of the published two-dimensional studies in FEM 

belong to the research group at the Division of Mining of the Luleå University of Technology, 

where the Rock Failure Process Analysis code (RFPA) and the Rock Tool Interaction code (R-T) 

were developed (Kou et al. 1999; Liu 2004; Liu et al. 2008; Liu et al. 2002; Tang 1997; Wang et 

al. 2011; Zhu and Tang 2004). The fundamental premise of the RFPA and R-T codes is based on 

the conceptualization of ‘smeared cracks’ by modifying the material constitutive relations in a 

particular fashion. By employing this technique, the stress in each element is monitored; when an 
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element reaches the failure stress or strain threshold, it remains part of the continuum domain but 

loses its load carrying capacity (stiffness and/or strength) in certain directions. In this way, the 

cracks are not represented explicitly, but characterized by a change in color for visualization, as 

shown in Figure 1-4, where the different grey scales represent different values of Young’s 

modulus. 

 

 
(a) Cutter displacement = 0.01 mm 

 
(b) Cutter displacement = 0.048 mm 

Figure 1-4: Rock cutting simulated with RFPA2D (Kou et al. 1999) 

 

At the time of this literature review preparation, RFPA and R-T were the codes that offered the 

best results in modeling the fracture mechanics due to rock-tool interaction, as well as the best 

visualization of cracks. It has been claimed that this approach is capable of giving reasonable 

estimates of cutter forces and fracture patterns from rock indentation; however, its use is limited 

in simulating the entire fragmentation process while the cutter continuously moves forward. The 

program fails to provide real fragment separation as the failed elements still maintain their 

topological relationship with their neighbors. Additionally, no interfacial relationship for 

elements around failure zones is incorporated. In conclusion, this technique is not capable of 

modeling the rock cutting behavior beyond the stages of initial contact followed by crack 

growth. 

Alternatively, only few researchers have implemented the explicit FEM in analyzing the 

nonlinear transient problem of tool-rock interaction. Tuomas (2004) investigated the effect of the 

velocity in rock indentation simulations using a complex concrete material model, however, 

failure of the material is identified by a damage value and actual fracture does not take place. On 

the other hand, Yu (2005) analyzed the rotation and advance of a continuous miner cutter head 



16 

through the use of a dynamic contact model with an element erosion algorithm. While this model 

stayed away from the limitations mentioned in Section 1.3, it did not consider the initiation and 

growth of cracks in the rock, and neither had it employed a robust constitutive material model 

that described the nonlinear behavior of rock. 

Lastly, in recent published papers and two Master’s theses on the simulation of rock and 

drill cutter behavior, Tulu et al. (2008), Tulu and Heasley (2009), Sunal (2009), and Tulu (2009) 

–all from West Virginia University– attempt to develop a cutter-rock numerical model used to 

back analyze laboratory experiments of rock cutting in a HPHT environment, which is the same 

aim of the investigation in this dissertation. Their approach is based on the use of FLAC3D, 

which currently presents limitations to address the non-connectivity of failed elements. Their 

treatment of damaged material is similar to the one that Yu (2005) implements, where elements 

are "nulled" or erased upon reaching failure, as shown in Figure 1-5. 

 

  
Figure 1-5: Cutting simulation on Catoosa Shale at 1.905 mm (0.075 in) of depth (Sunal 2009) 

 
 

Although Tulu (2009) claims to have simulated “the propagation of a crack and formation of a 

chip” with his model, referring to the images in Figure 1-6, the author of the present work 

considers this fragmentation process unsuccessful. Tulu’s “crack propagation” is simulated by 

the failure of elements following the Mohr-Coulomb criterion and the removal of elements at a 

pre-determined percentage of plastic strain, i.e. 30%. On one hand, the user-predefined plastic 

strain threshold of 30%, for the elements to be nulled from the simulation, appears to be 

excessive. Accordingly, and along with the inadequate numerical characteristics of the finite 
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element model and the lack of more robust material constitutive laws, the approach employed by 

this group of researchers does not seem to reflect the actual natural complex behavior of rock 

material upon different mechanisms of loading during the cutting process. 

 

  
Figure 1-6: Apparent crack formation and chip formation (Tulu 2009)  
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1.5   RESEARCH OBJECTIVES AND SCOPE 

1.5.1 Main Objective 

The primary objective of the proposed study is to develop a reliable finite element model that 

properly simulates the fragmentation process observed in laboratory tests of rock cutting. Both 

fracture modes and cutting forces from the numerical simulations should correlate with the 

physical experiments. Subsequently, inclusion of pressure effect to the FEM model would aid in 

the prediction of the PDC bit performance by building a sound understanding of the rock fracture 

mode created by a single cutter under HPHT conditions. 

1.5.2 Specific Objectives  

In order to accomplish the main objective, the following aims have to be fulfilled: 

1.  To apply an effective and rational contact formulation to treat the contact at the 

interface between: (a) rock and cutter, (b) cutter and newly formed rock surfaces after 

fracture, and (c) rock and rock chips. 

2. To incorporate a robust constitutive law that is capable of describing the nonlinear 

elastic-plastic stress-strain response of the rock material under different stress 

conditions (i.e. compression, tension, and shear). The material model should be well 

calibrated for it to reproduce the experimental mechanical behavior of the rock as a 

function of strain rate and pressure. 

3. To implement and validate a consistent procedure to initiate cracks as discontinuities 

that can propagate and eventually connect –forming chips– without knowing a priori 

the direction and trajectory of the cracks during the rock cutting process. Afterward, 

the arbitrarily formed chips should act as independent bodies in the finite element 

domain.  
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4. To implement the modeling procedure developed herein towards the simulation of a 

three-dimensional (3D) case of linear scratching tests, where shear on the side walls 

of a cutting groove is considered. 

5. To analyze the effect of cutting depth (d) and cutter width (w) on the specific energy 

(ε = Fx/wd) of Vosges sandstone. Various depths of cut and cutter widths shall be 

used in the simulation of 2D and 3D rock cutting tests, and the relationship of specific 

energy with the ratio w/d would be corroborated with experimental data by Richard 

(1999). 

6. To apply the developed framework to a preliminary FEM model of groove rock 

cutting under high hydrostatic pressure. The preliminary 3D linear-cutting model is 

aimed at simulating a laboratory study of the rotational cutting under different 

pressures, which mimics the drill-bit’s single cutter action at great depths in the field. 

7. To compare the magnitude of simulated cutting forces with theoretical values 

obtained from traditional analytical formulae. Validation of numerically obtained 

forces through analytical forces –calculated based on a single PDC mechanistic 

performance model– will aid in the authentication of the FEM model developed in 

this study. 
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2.0 EXPERIMENTAL BENCHMARK 

Beside the analytical theories, a good means to validate the FEM model proposed in this work is 

to compare the simulated failure mechanisms and cutting forces with data and images from 

laboratory tests. To this end, the experimental scratching tests on Vosges Sandstone performed 

by Richard (1999) have been selected as the benchmark for evaluation. 

This section also presents the sets of laboratory data to which input parameters of the LS-

DYNA material models selected for analysis are fitted and calibrated. A suite of laboratory tests 

on Vosges sandstone performed by Bésuelle et al. (2000) served as benchmark for the input 

parameter calibration process, thus their stress-strain response plots are presented in Section 2.2. 

Some of the input parameters in the more complex models required the use of advance 

curve-fitting techniques, for which the genetic algorithm from Matlab served the purpose, as 

explained in Section 2.3. 

2.1 LABORATORY SCRATCHING TESTS 

Part of the extensive research work by Richard includes two main types of experiments that were 

run to demonstrate the nature of the cutter’s impact on Vosges Sandstone; these are the “shallow 

cut” and the “deep cut” laboratory tests in the Rock Strength Device (RSD) illustrated in Figure 

2-1.  

According to Richard, the cutter influence can cause “either ductile and/or brittle failure, 

with the ductile mode associated with damage of the rock and/or plastic flow, and the brittle 

mode with the propagation of cracks.” Furthermore, he concluded that ductile failure mode took 

place when the cutting depth is no deeper than 1mm, i.e. shallow cut, whereas a deeper cut 

would induce brittle failure.  
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Figure 2-1: Rock Strength Device (FPMS 2007) 

 

In general, the scratching tests are virtually non-destructive, as they involve the removal of rock 

along the surface of a rock core over a depth, which is typically 1 mm (0.04 in) or less, and over 

a width of 10 mm (0.4 in). It was developed at the University of Minnesota as an alternative to 

determine rock properties such as strength in a more economic way than the standard rock 

mechanical laboratory measurements. 

The RSD measures the normal and tangential components of force Fc applied to a cutter 

(see Figure 2-2) while performing a groove at a constant depth d on the surface of a rock 

specimen with a sharp tool. The specimen is clamped at the bottom to a static base while a 

moving frame holding the PDC cutter advances on top of the rock. 

 

  

Figure 2-2: Forces acting on a sharp cutter 
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The test is kinematically controlled, i.e., the relative horizontal velocity v between the cutter and 

the rock, and the depth of cut d are fixed and remain constant during the test. According to 

Richard, the cutting process is characterized by the following parameters: 

1. the rake angle θ; 

2. the relative velocity v between the cutter and the rock; 

3. the depth of cut d; 

4. the cutter geometry description, limited to the width w for the case of rectangular 

shape cutters; and, 

5. the surfaces of contact between the rock and the cutter (the cutting face and its 

inclination β with respect to the direction of the velocity vector); 

 

The experimental data used in the present study come from tests carried out on slabs of Vosges 

Sandstone having the same width as the cutter, as shown in Figure 2-3, because the author 

wanted to remove the possibility of any side effect. The non-constrained dimensions of the rock 

specimen are 10 mm in thickness, 20 mm in height and between 100 and 200 mm in length. The 

rock mechanical properties of the studied rock are presented in Table 2-1.  

 

  

Figure 2-3: Scratch test on sandstone slab at shallow depth (Degrain et al. 2009)  
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Table 2-1: Mechanical properties of Vosges Sandstone 

Mass density 2,000 kg/m3                       (125 lb/ft3) 

Young’s modulus 8.25 GPa                     (1,196,561 psi) 

Poisson’s ratio 0.33
 

 

Uniaxial compressive strength 33.1 x10-3  GPa                  (4,801 psi) 
 

2.1.1 Mechanics of the Scratching Tests 

A rake angle of 15 degrees is set up constant for all the tests. The following detailed descriptions 

of the physical phenomena observed during the rock cutting experiments was made by Richard 

(1999). Deep and shallow cut mechanisms are explained below. Obviously, the frequency and 

magnitude of these two modes greatly vary with the depth of cut, but they usually coexist at 

intermediate depths of cut. 

2.1.1.1 Deep Cut Experiments 

At large depth of cut (typically more than 1 mm for medium strength sandstone), brittle failure 

occurs, as shown in Figure 2-4. Isolate events can easily be recognized. Macroscopic cracks are 

initiated from the tool tip and propagated unstably ahead of the cutter. The process is 

characterized by unstable failure, which is accompanied by significant sounds. The process is 

cyclic; after a chip is removed, the effective depth of cut is almost zero, and progressively 

increase until a new chip is formed. The successive increase and abrupt release of stress ahead of 

the cutter can generate, in the case of very hard rock, vibrations of the entire frame of the testing 

apparatus.  

The crack paths are variable, either going upwards at various inclinations, horizontally 

ahead of the cutter, or vertically downwards. The first case immediately produces a chip; a 

horizontal crack creates fragments that could fail under various mechanisms such as buckling, 

compression, or even deviation of the crack to the surface. Vertical downward cracks lead 

sometimes to a complete splitting of the specimen. The location of initiation of the crack is not 

clearly defined. However, some observations tend to show the crack starts slightly above the 

cutter tip. Rock chips present various shapes and sizes. 
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Figure 2-4: Brittle failure on Berea Sandstone while cutting at 4 mm of depth 

 

Their size and occurrence frequency increase with depth of cut. In terms of size, they vary from a 

cluster of a few grains to almost rectangular chips with a height equal to the depth of cut. In 

brittle material or at very large depth of cut, when cutting in whole cores, the maximum lateral 

width of the chip can exceed the cutter width. In this case, the failure is really a three-

dimensional process. There is, however, no characteristic size of chips at any given depth of cut. 

Even at large depth of cut, small chips are present.  

2.1.1.2 Shallow Cut Experiments 

At shallow depth of cut (typically less than 1 mm for a medium strength sandstone), the rock is 

intensively sheared ahead of the cutter and crushed at the tip. The material is reduced to powder 

or isolated grains. The cutter contact with the rock does not extend over the full depth of cut, but 

seems to be limited to a small area at the bottom of the cutting face. The cutting proceeds in a 

continuous manner, in a sense that no particular event can be isolated while cutting (see Figure 

2-5). This cutting mode is mainly characterized by de-cohesion of the constitutive matrix and 

grains of the rock with grains and powder accumulating progressively in front of the cutter. From 

this point of view, this cutting mode can be defined as ductile. 
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Figure 2-5: Ductile failure on Berea Sandstone while cutting at 0.3 mm of depth 
 

2.1.2 Force Signals from Scratching Tests 

The difference between the two mechanisms explained above is noticeable in the shape of the 

force signal. With a homogeneous rock sample (i.e. with no major change of strength along the 

cutting direction), in this case Vosges Sandstone, the signal in the chipping mode presents a 

marked saw-tooth pattern (see Figure 2-6), whereas the signal in the ductile mode may be viewed 

as a white noise (see Figure 2-7). The cutting velocity for the analyzed scratching tests is 4 

mm/s, and the forces on the cutter are recorded with a frequency of 100 Hz, resulting in a 

sampling rate of 25 data/mm. 
 

 

Figure 2-6: Horizontal force during test at 3.6 mm depth of cut (Richard 1999) 
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Figure 2-7: Horizontal force during test at 0.3 mm depth of cut (Richard 1999) 

 

The signal representing the brittle cutting mode (chipping) presents more coverage between 

peaks. In the horizontal direction, we can clearly identify an increase of the force over several 

millimeters up to a peak, when a crack is initiated. The abrupt drop of the force, after the peak, is 

associated with unstable propagation of the crack leading ultimately to the formation of a chip.  

2.2 LABORATORY CHARACTERIZATION FOR PARAMETER CALIBRATION 

The behavior of a Vosges sandstone was studied by Bésuelle et al. (2000). They tested the rock 

homogeneous behavior with about 60 experiments in isotropic compression, in triaxial 

compression, and in triaxial extension. A large range of confining pressures, i.e. 0–60 MPa (0-

8,702 psi) was investigated, showing a significant evolution of material response.  

2.2.1 Experimental Isotropic Compression 

Figure 2-8 depicts the experimental curves of the compression test in the mean stress (pressure) 

versus volumetric strain plane. The origins of the curves of the compression tests are sequentially 

placed on the curve of the isotropic compression test, after each one’s consolidation stage.  
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Figure 2-8: Experimental isotropic compression of Vosges sandstone (Bésuelle et al. 2000) 

 

 

2.2.2 Experimental Triaxial Compression 

As shown in Figure 2-9(a), in compression, the loading modulus and the maximum strength 

increase with confining pressure. However, it seems that after 50 MPa (7,252 psi) of confining 

pressure, the deviatoric strength reaches a peak, and it is not surpassed by rock compressive 

strength at greater pressure. As far as volumetric curves are concerned (see Figure 2-9(b)), “an 

initial contractancy at all confining pressures is observed first. Then, up to the peak stress, 

depending on the confining pressure, there is either dilatancy –larger at low confining pressure–, 

or contractancy –small, only at 60 MPa (8,702 psi).” (Bésuelle et al. 2000) 
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(a) Effective Stress vs. Axial Strain 

 
(b) Volumetric Strain vs. Axial Strain 

Figure 2-9: Experimental triaxial compression of Vosges sandstone (Bésuelle et al. 2000) 

 

 

 

 



29 

2.2.3 Experimental Triaxial Extension 

The behavior of the sandstone in the extension tests is shown in Figure 2-10. The total axial 

stress at failure for the different confining pressures is almost the same, about 10 MPa (1,450 psi) 

in traction, which implies a quasi-linear failure curve in the Mohr diagram. However, a test 

performed at 100 MPa (14,504 psi) confining pressure shows that the curve becomes nonlinear at 

higher stress, such as for the compression test (Bésuelle et al. 2000). The volumetric dilatancy is 

quasi-linear with the axial strain, and depends only slightly on the confining pressure. 

 

 

  
(a) Effective Stress vs. Axial Strain 

 
(b) Volumetric Strain vs. Axial Strain 

Figure 2-10: Experimental triaxial extension of Vosges sandstone (Bésuelle et al. 2000) 
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2.2.4 Experimental Failure Envelopes 

Given the deviatoric stress at failure and its corresponding pressure, the Mohr diagram can be 

plotted for both compression and extension tests as shown in Figure 2-11. 

 

 
 

Figure 2-11: Experimental strength at failure of Vosges sandstone (Bésuelle et al. 2000) 

 

2.3 GENETIC ALGORITHM FOR CURVE-FITTING OPTIMIZATION 

Complex material models such as Mat_111, Mat_72R3 and Mat_159 consist of nonlinear 

constitutive relationships (equations). In order to obtain a good fit of these equations to the 

existing laboratory curves, it is essential to use an advanced technique so the appropriate 

nonlinear regression is achieved. The genetic algorithm method from the Global Optimization 

Toolbox in Matlab is used for this purpose. 
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In general, “the genetic algorithm solves optimization problems by mimicking the 
principles of biological evolution, repeatedly modifying a population of individual points 
using rules modeled on gene combinations in biological reproduction. Due to its random 
nature, the genetic algorithm improves your chances of finding a global solution. It 
enables you to solve unconstrained, bound-constrained, and general optimization 
problems, and it does not require the functions to be differentiable or continuous.” (The 
Mathworks 2009)  

Herein, the genetic algorithm solver, ga, is implemented to minimize an objective function  𝑋 =

𝑔𝑎(�ittnessfcn,𝑛𝑣𝑎𝑟𝑠), so the result of ga is the least squared error. ga finds a local 

unconstrained minimum, x, to the objective function, which accepts the vector X of size 1-by-

nvars, and returns a scalar evaluated at X. The optimal value of the objective is weakly smaller as 

nvars are added, by the fact that relatively unconstrained minimization leads to a solution which 

is weakly smaller than relatively constrained minimization.  
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3.0 ROCK BEHAVIOR THROUGH CONSTITUTIVE MODELS 

One of the biggest challenges associated with modeling the behavior of rock cutting with 

numerical continuum methods is the difficulty of incorporating a realistic material model that 

can accurately represent the natural, inhomogeneous characteristics of the physical system.  

 

“It is known that at the initial stage of rock cutting, intense crushing of the rock 
occurs under the tool and, only then, as cutting progresses, cracks are generated at 
a certain depth in the rock, leading to the formation of a chip (fragment). The 
formation of the chip is one of greatest interests, since precisely at this stage the 
maximum effectiveness of fracturing is achieved.” (Gnuchii et al. 1988) 

 

To predict both the initiation of a fracture (location, size) and further propagation of the crack 

(growth path), it is necessary to know in detail the stress field, which is highly dependent on the 

material model performance. This section discusses the material constitutive models evaluated 

during the course of this work. Ultimately, the selection of one of the material models in LS-

DYNA was made, and it is aimed to serve as benchmark for future investigations on rock cutting 

by means of FEM. 

3.1 MODELING ROCK WITH CONCRETE CONSTITUTIVE LAWS 

Generally, the behavior of an element in a rock continuum, even in plane stress, cannot be 

satisfactorily modeled using uniaxial stress-strain characteristics, and the consideration of triaxial 

stress conditions is desirable for better understanding its behavior. Failure limits in rock can be 

represented as surfaces in a three-dimensional principal-stress space such as the failure surfaces 
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for concrete depicted in Figure 3-1, where σ1, σ2 and σ3 are principal stresses and (in this case) 

the compressive stresses are negative. 

 

  

Figure 3-1: Schematic failure surface of concrete in 3D stress space (Chen 2007) 

 

A failure criterion for isotropic materials based upon a state of stress must be an invariant 

function of the state of stresses, i.e. it must be independent of the choice of the coordinate system 

by which is defined. Therefore, a failure criterion is usually defined using stress invariants. This 

is precisely how the different material models assessed in the present work are formulated. 

3.1.1 Definition of the Failure Criterion 

The general shape of a failure surface in the three-dimensional stress space can best be described 

by its cross-sectional shapes in the deviatoric plane and its meridians. The cross-sections of the 

failure surface are the intersection curves between the failure surface and a deviatoric plane, 

which is perpendicular to the hydrostatic axis. The meridians of the failure surface are the 

intersection curves between the failure surface and a plane (the meridian plane) containing the 

hydrostatic axis. Figure 3-2 shows an example of a cross-section of the failure surface.  

In this figure, the plane of the paper is the deviatoric plane, and the coordinate axes σ1, σ2, 

and σ3 are projected onto this plane. The two extreme meridian planes (farthest and closest 

intersections from the hydrostatic axis) are called the compressive meridian and tensile meridian, 

respectively.  
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Figure 3-2: Deviatoric cross-section of the failure surface 

 

As shown in Figure 3-2, the cross-section has a triangular shape and it can be defined by a point 

in the compressive meridian and by a point in the tensile meridian. The path between the 

compressive and the tensile meridians (distance r as a function of θ) is defined by an elliptical 

curve developed by Willam and Warnke (1974). 

Failure surfaces can be combined with plasticity-based constitutive models for the 

analysis of three-dimensional concrete or rock. These three-dimensional surfaces are used to 

construct initial yield surfaces and subsequent loading surfaces, from which the incremental 

stress-strain relationships of the material can be constructed (Chen 2007). Typically, the strength 

envelope is defined in the stress space in such way that, once the current state of stress reaches a 

defined surface, the material fails. However, the particular definitions of the models 

implemented in this study account for material damage, which takes place after the peak strength 

is reached. This means that actual failure does not occur immediately upon reaching the failure 

surface, but it occurs after a damage value exceeds 99%. 

3.1.2 Stress State before Failure 

The simplest representation of the stress state at a point is obtained by treating the stress state as 

two components: the hydrostatic part and the deviatoric part. Hydrostatic pressure has a 

Point on the compressive 
meridian (where θ = 60°) 

Point on the tensile 
meridian (where θ = 0°) 
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significant influence on the strain hardening and failure of geomaterials. Under hydrostatic 

pressure, concrete and rock can be consolidated beyond the limit of elasticity but cannot be 

crushed to failure; therefore, their compressive failure is governed by the deviatoric components 

–or shear components– of the stress state. 

The yield surface marks the onset of weakening of the material under increasing load. As 

seen in Figure 3-1, the yield surface has a similar shape to the maximum surface but it is reduced 

in size. The maximum surface (or failure surface) is fixed in the principal stress space at some 

distance from the yield surface. During initial loading or reloading, the deviatoric stresses remain 

elastic until the stress point reaches the initial yield surface. The deviatoric stresses can then 

increase further until the maximum failure surface is reached. Beyond this stage, the response 

can be perfectly plastic or soften to a residual surface. 

The following sections, 3.2.1 through 3.2.4, contain the description of the constitutive 

equations that characterize the material models under consideration. 

3.2 ROCK MATERIAL MODELS IN LS-DYNA 

With the aim of reproducing a realistic behavior of the rock response pre and post-failure during 

the cutting event, it is critical to implement a complex and rational material model. Fortunately, 

LS-DYNA contains a comprehensive suite of material models, including specific concretes and 

geomaterials, from which three were selected and evaluated. 

After a detailed survey of the material models available in LS-DYNA, a group of 

materials, which suitably characterize rock and concrete behavior, was picked. Table 3-1 lists the 

features present in each of the geomaterials chosen. Each material model in LS-DYNA is 

represented by a number. If a material model includes any of the following attributes, a “Y” 

appears in the respective column of Table 3-1. 

SRATE- Strain-rate effects 

FAIL- Failure criteria 

EOS- Equation-of-State for 3D solids and 2D continuum elements 

THERM- Thermal effects 

ANISO- Anisotropic/orthotropic 
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DAM- Damage effects 

TENS- Tension handled differently than compression in some manner 

 

In addition to the concrete or rock application of these material models, other additional potential 

applications –in terms of the type of physical behavior– are abbreviated in the table as follows: 

CM- Composite 

FM- Foam 

MT- Metal 

 
Table 3-1: Concrete and rock material models in LS-DYNA 

 
 

 

In the beginning of this study, upon inspection of the robustness of each of the materials in Table 

3-1, it was determined that Material 72 (MAT_CONCRETE_DAMAGE or MAT_72) was very 

comprehensive in characterizing the rock behavior in a wide range of stress states. However, 

little implementation of this material model was found in the literature (see Section 3.2.3), thus 

some uncertainty arises about its performance as a rock. For this reason, Material 111 

(MAT_JOHNSON_HOLMQUIST_CONCRETE or MAT_111) was identified as a potential 

reliable model, since more studies implementing this model were found (see Section 3.2.2).  

In view of the complex nature of Materials 72 and 111, a more straightforward material 

model was also studied in order to assess the feasibility of some numerical features offered by 

LS-DYNA. The simple material selected was Material 105 (MAT_DAMAGE_2 or MAT_105) 

ALE SPH
16 Pseudo Tensor Geological Model Y Y Y Y Y Y Y
25 Inviscid Two Invariant Geologic Cap Y Y Y
26 Honeycomb Y Y Y Y CM, FM
72 Concrete Damage Y Y Y Y Y Y Y
78 Soil Concrete Y Y Y Y
84 Winfrith Concrete (with rate effects) Y Y Y FM
96 Brittle Damage Y Y Y Y Y Y

111 Johnson Holmquist Concrete Y Y Y Y Y
126 Modified Honeycomb Y Y Y Y Y CM, FM
145 Schwer Murray Cap Model Y Y Y Y Y
159 CSCM Y Y Y Y
172 Concrete EC2 Y Y Y MT
198 Jointed Rock Y Y Y

TE
N

S

FA
IL

EO
S

TH
ER

M

A
N

IS
O

D
A

M

Additional 
potential 

applications

Implemented also in 

Mat No. Name SR
A

TE



37 

(see description in Section 3.2.1). Although this material model is not considered among the 

potential geomaterials listed in Table 3-1, it was implemented in some simulations of rock 

cutting for comparison purposes. Its numerical attributes are presented in Table 3-2. 

 
Table 3-2: “Damage 2” material attributes in LS-DYNA 

 
 

 

The above-mentioned material models were subjected to a thorough calibration of their input 

parameters with the aim of properly simulating the fragmentation evolution observed during the 

rock cutting experiments. It is important to mention that these models do not contemplate 

element erosion (see Section 5.3.1) implicitly in their formulation, therefore, “addition” of 

element erosion needs to be set up, as provided by LS-DYNA.  

Unfortunately, however, it was concluded that the implementation of any of those three 

material models was limited due to the impossibility to determine a specific erosion criterion (or 

a combination of criteria) for the deletion of elements. Adequately configured element erosion 

must be able to produce initiation of cracks and eventually would aid in the chipping of rock 

fragments out of the simulated rock continuum.  

There was a need for a rational approach where elements were deleted upon material 

failure, in par with the constitutive laws of the material model. Ultimately, Material 159 

(MAT_CONTINUOUS_SURFACE_CAP_MODEL, or MAT_CSCM or MAT_159) was found 

to serve this objective (see Section 3.2.4). 

3.2.1 Mat_105 – Damage 2 Model 

In LS-DYNA, Mat_105 is an elastic isotropic visco-plastic material combined with the 

Continuum Damage Mechanics (CDM) model proposed by Lemaitre (1984). Although the 

damage parameter is calculated as a function of pressure (see Equation (3-5)), the effective stress 

𝜎� in this model is not pressure dependent. This implies that the application of this material model 
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is limited and not suitable to simulate geomaterials under pressure (it rather serves to model 

metal behavior).  

The effective stress is identified by: 

𝜎� =
𝜎

1 − 𝐷
  (3-1) 

where D is the damage variable. The evolution equation for the damage variable is defined as:  

�̇� = �
0, 𝑟 ≤ 𝑟𝐷

𝑌
𝑆(1 − 𝐷) �̇�, 𝑟 > 𝑟𝐷   and     𝜎1 > 0

�  (3-2) 

where r is the damage accumulated plastic strain, 𝑟𝐷 is the damage threshold (user defined), S is 

a positive material constant (user defined), Y is the so-called “damage strain-to-energy release 

rate”, and  𝜎1 is the maximum principal stress (positive in tension). Variable r can be calculated 

from:  

�̇� = 𝜀�̇�𝑓𝑓
𝑝 (1 − 𝐷) (3-3) 

where 𝜀�̇�𝑓𝑓
𝑝  is the effective plastic strain rate.  

On the other hand, the damage strain-to-energy release rate may be calculated by:  

𝑌 =
𝜎𝑒𝑞2𝑅𝑣

2𝐸(1 − 𝐷)2 (3-4) 

where 𝜎𝑒𝑞 is the equivalent von-Mises stress, E is the elastic modulus, and the triaxiality variable 

𝑅𝑣 is defined as a function of the Poisson’s ratio 𝜐 and the hydrostatic stress or pressure 𝑝: 

𝑅𝑣 =
2
3

(1 + 𝜐) + 3(1 − 2𝜐)�
𝑝
𝜎𝑒𝑞

�
2

  (3-5) 
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It is important to emphasize that in Mat_105 formulation, damage can only develop for tensile 

stresses, thus D = 0 for compressive strains. The principal strain directions are fixed within an 

integration point as soon as either principal strain exceeds the initial threshold strain in tension. 

Mat_105 accounts for strain rate effects using the Cowper and Symonds’ model, which 

scales the yield stress with the factor:  

strain rate factor = 1 + �
𝜀̇
𝐶�

1
𝑃

  (3-6) 

where C and P are user-defined input parameters, and the strain rate is 𝜀̇ = �𝜀�̇�𝑗  𝜀�̇�𝑗. 

3.2.1.1 Mat_105 Input Calibration 

As mentioned in Section 3.2, due to the simplicity of Mat_105, this material model was used 

only to assess the feasibility of some numerical features offered by LS-DYNA. Although it is not 

considered among the potential geomaterials listed in Table 3-1, it was implemented in some 

simulations of rock cutting for comparison purposes. 

Herein, only parameters that control the elastic-perfectly plastic response of MAT_105 

were determined for input, therefore the basic mechanical properties of Vosges Sandstone, as the 

ones listed in Table 2-1, are used. In addition, damage parameters were calibrated by trial and 

error such that the performance of the rock cutting simulations appeared reasonable and the 

mechanisms involved were close to reality. Table 3-3 lists the input parameters used for 

MAT_105. 

 
Table 3-3: Input Parameters for MAT_105 

ρ 2.0 x10-6  kg/mm3                 (125 lb/ft3) 

E 5.2 GPa                              (754,196 psi) 

ν 0.33 

σyield = σc 33.1 x10-3  GPa                      (4,801 psi) 

rD 0.003 

S 1.0 

DC 1.0 x10-3   
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3.2.2 Mat_111 – Johnson Holmquist Concrete Model 

Based on LS-DYNA theory manual (Hallquist 2006), this model can be used for concrete 

subjected to large strains, high strain rates, and high pressures, and was developed by Holmquist 

et al. (1993). The equivalent stress is expressed as a function of pressure, strain rate and includes 

the effect of permanent crushing. The damage value is accumulated as a function of the plastic 

volumetric strain, equivalent plastic strain, and pressure. 

The equivalent stress is defined as:  

𝜎𝑒𝑞 = 𝑓𝑐′ �𝐴(1 − 𝐷) + 𝐵 �
𝑝
𝑓𝑐′
�
𝑁
� �1 − 𝐶 ln �

ε̇
ε0̇
�� (3-7) 

where 𝑓𝑐′ is the uniaxial compressive strength, D is the damage parameter, p is pressure, A, B, C 

and N are user-defined input parameters, and ε0̇ is the reference strain rate, also user defined as 

an input.  

3.2.2.1 Damage Accumulation in Mat_111 

The model accumulates damage both from equivalent plastic strain and from plastic volumetric 

strain and it is expressed as:  

𝐷 = �
∆𝜀𝑒𝑞

𝑝 + ∆𝜀𝑉
𝑝

𝐷1 �
𝑝
𝑓𝑐′

+ 𝑇
𝑓𝑐′
�
𝐷2 (3-8) 

where T is the maximum tensile hydrostatic pressure, and D1 and D2 are material damage 

constants, all three defined by the user. The denominator of Equation (3-8) represents the plastic 

strain to fracture under a constant pressure, p. As it is evident from this equation, the concrete 

material cannot undergo any plastic strain at p = -T and alternatively, the plastic strain to fracture 

increases as p increases. A third damage constant, EFMIN, should be provided by the user to 

allow for a finite amount of plastic strain to fracture the material. This is included to suppress 

fracture from low magnitude tensile waves. 
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Damage due to plastic volumetric strain is included in Equation (3-8) because concrete 

will lose cohesive strength during air void collapse. However, under most circumstances, the 

majority of the damage will occur from equivalent plastic strain. 

3.2.2.2 Pressure-Volume Relationship in Mat_111 

In a hydrostatic (isotropic) compression plot, the pressure-volume response is separated into 

three response regions: 

1. The first region is linear elastic and occurs at 𝑝 ≤ 𝑃𝑐𝑟𝑢𝑠ℎ. 𝑃𝑐𝑟𝑢𝑠ℎ and 𝜀𝑉𝑐𝑟𝑢𝑠ℎ (user 

inputs) are the pressure and volumetric strain respectively, that occur in a uniaxial 

stress compression test.  

2. The second region is referred to as the transition region and occurs at 𝑃𝑐𝑟𝑢𝑠ℎ < 𝑝 <

𝑃𝑙𝑜𝑐𝑘. In this region, the air voids are gradually compressed out of the concrete 

producing plastic volumetric strain. Unloading in this region occurs along a modified 

path that is interpolated from the adjacent regions. 

3. The third region defines the relationship for fully dense material (all air voids 

removed from the concrete). The air voids are completely removed from the material 

when the pressure reaches 𝑃𝑙𝑜𝑐𝑘 with the corresponding 𝜀𝑉𝑙𝑜𝑐𝑘 (both user inputs) and 

the relationship is expressed as: 

𝑝 = 𝐾1 𝜀𝑉��� + 𝐾2 𝜀𝑉���2 + 𝐾3 𝜀𝑉���3 (3-9) 

𝜀𝑉��� =
𝜀𝑉 − 𝜀𝑉𝑙𝑜𝑐𝑘

1 − 𝜀𝑉𝑙𝑜𝑐𝑘
 

(3-10) 

The modified volumetric strain, 𝜀𝑉���, is used so that the user-defined constants (𝐾1, 𝐾2, and 𝐾3) 

are equivalent to those used for material with no voids. 

For tensile pressure, 𝑝 = 𝐾𝜀𝑉 in the elastic region, 𝑝 = 𝐾1𝜀𝑉 in the fully dense region, 

and  𝑝 = [(1 − 𝐹)𝐾 + 𝐹 𝐾1]𝜀𝑉  in the transition region. The interpolation factor is:  

𝐹 = �𝜀𝑉𝑚𝑎𝑥 − 𝜀𝑉𝑐𝑟𝑢𝑠ℎ� �𝜀𝑉𝑙𝑜𝑐𝑘 − 𝜀𝑉𝑐𝑟𝑢𝑠ℎ� �  (3-11) 
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where 𝜀𝑉𝑚𝑎𝑥 is the maximum volumetric strain reached prior to unloading. A similar method is 

used for compressive unloading except that the higher order terms 𝐾2 𝜀𝑉���2 and 𝐾3 𝜀𝑉���3 are 

included. The tensile pressure is limited to T (1 - D). 

3.2.2.3 Mat_111 Input Calibration 

The values for some of the input parameters in Mat_111 have been taken from the original 

formulation reference by Holmquist et al. (1993). These inputs are C, EFMIN, D1, D2, 𝑃𝑙𝑜𝑐𝑘, K1, 

K2, and K3. The rest of the parameters are calibrated as explained below. Table 3-4 displays the 

values of all input parameters for Mat_111 as used in this study. 

Failure Envelope Parameters 

Equation (3-7) provides the relationship between the equivalent (von-Mises) stress and pressure 

for Mat_111. It also includes the effect of accumulated damage, D, and strain rate, ε̇, on the 

equivalent stress. When performing the characterization tests explained in Section 2.2, the strain 

rate during the tests is ε̇ = 10−5 s−1, a quasi-static condition, making the testing strain rate equal 

to the reference strain rate, ε0̇; therefore no strain rate effect is experienced. Additionally, during 

the laboratory tests no damage of the rock is contemplated, thus Equation (3-7) could be used 

here as:  

𝜎𝑒𝑓𝑓
𝑓𝑐′

= 𝐴 + 𝐵 �
𝑝
𝑓𝑐′
�
𝑁

 (3-12) 

Using the genetic algorithm, described in Section 2.3, constants A, B, and N are estimated. Figure 

3-3 presents the regression that best fits the maximum failure strength envelope. 
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Figure 3-3: Maximum compressive failure envelope fitting by Mat_111 

 

The strength constant  𝜎∗𝑚𝑎𝑥  is estimated by:  

𝜎∗𝑚𝑎𝑥 =
𝜎𝑚𝑎𝑥

𝑓𝑐′
≈ 4.0 (3-13) 

Pressure-Volume Relationship Parameters 

𝑃𝑐𝑟𝑢𝑠ℎ =
𝑓𝑐′
3

= 11.03 MPa   (1,600 psi) (3-14) 

𝜀𝑉𝑐𝑟𝑢𝑠ℎ =
𝑓𝑐′(1 − 2𝜈)

𝐸
= 8.882 x10−4 

(3-15) 

𝜀𝑉𝑙𝑜𝑐𝑘 = �
𝜌𝑔𝑟𝑎𝑖𝑛
𝜌0

� − 1 = 0.325 (3-16) 

 

 

0 

50 

100 

150 

0 20 40 60 80 100 120 

de
vi

at
or

ic
 st

re
ss

 (M
Pa

) 

mean stress (MPa) 

Equation (5.1) 

Lab. Data - compression 

(3-12) 

𝜎𝑒𝑓𝑓
𝑓𝑐′

= 0.2239 + 1.88 �
𝑝
𝑓𝑐′
�
0.65

 

 



44 

Table 3-4: Input Parameters for MAT_111 

𝜌0 2000  kg/m3            (125 lb/ft3)  𝑃𝑐𝑟𝑢𝑠ℎ 11.03  MPa            (1,600 psi) 

G 2,662  GPa         (386 x106 psi)  𝜀𝑉𝑐𝑟𝑢𝑠ℎ 8.882 x10-4 

A 0.2239  𝑃𝑙𝑜𝑐𝑘 800  MPa           (116,030 psi) 

B 1.88  𝜀𝑉𝑙𝑜𝑐𝑘 0.325 

C 0.007  D1 0.04 

N 0.65  D2 1 

𝑓𝑐′ 33.1  MPa                (4,801 psi)  K1 85 

𝑓𝑡 3.1  MPa                     (450 psi)  K2 -171 

ε0̇ 10-5  s-1  K3 208 

EFMIN 0.01  FS 0 

𝜎∗𝑚𝑎𝑥 4  T 4  MPa                      (580 psi) 
 

 

3.2.3 Mat_72R3 – Concrete Damage Rel. 3 Model 

Mat_72R3, also known as the Karagozian & Case (K&C) model, is an improved and more 

robust version of Mat_16, Concrete/Geological material model in LS-DYNA. In release III of 

this concrete model, an automatic input capability was added to generate the input data needed to 

specify a particular concrete, and the strategy used in fitting the strain softening was modified. 

Automatic data generation can provide a complete default set of 72 input parameters with 

knowledge of only the concrete unconfined compressive strength and the system of units 

(Malvar et al. 1999).  

This model is a plasticity-based formulation with three independent failure surfaces, as 

shown in Figure 3-4, which change shape depending on the level of pressure. The curves above 

and below the p-axis correspond to compressive and tensile meridians, respectively: 
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Figure 3-4: Failure surfaces (a) and concrete constitutive behavior (b) in Mat_72R3 model 

 

 

3.2.3.1 Mat_72R3 Input Calibration 

Eight out of twenty-two input parameters in this model were calibrated via the experimental 

triaxial tests presented in Section 2.2: LABORATORY CHARACTERIZATION FOR 

PARAMETER CALIBRATION. These parameters are namely the coefficients required for the 

compressive meridians (see Section 3.2.3.2). Six other input parameters have been generated by 

the automatic option of MAT_72R3; these are b1, b2, b3 (described in Section 3.2.3.5), ω, 𝐸𝑑𝑟𝑜𝑝, 

and Sλ.  Table 3-5 displays the values of all input parameters for Mat_72R3 as used in this study.  

In addition to the twenty-two input parameters, Mat 72_R3 requires the input of a 

tabulated equation of state that relates the volumetric strain of the rock with pressure, therefore 

the isotropic compression curve of the simulated material perfectly agrees with experimental 

data. Moreover, a tabulated damage function and a strain-rate effect function have to be defined. 
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Table 3-5: Input Parameters for MAT_72R3 

ρ 2.0 x10-6  kg/mm3      (125 lb/ft3)  a0 6.0 x10-3  GPa                 (870 psi) 

ν 0.33  a1 0.35 

ft 3.215 x10-3  GPa           (466 psi)  a2 4.50  GPa-1            (3.1x10-5 psi -1) 

b1 1.60  a1f 0.45 

b2 1.35  a2f 4.50  GPa-1            (3.1x10-5 psi -1) 

b3 1.15  a0y 6.92 x10-3  GPa            (1,004 psi) 

ω 0.5  a1y 0.53 

Sλ 100  a2y 12.0  GPa-1            (8.3x10-5 psi -1) 

Nout 4  LOC-WIDTH 1.35  mm                          (0.05 in) 

Edrop 1.0  R-SIZE 39.97 x10-3  in / mm 

Npoints 13  UCF 145.0 x103  psi / GPa 

 

3.2.3.2 Compressive Meridians in Mat_72R3 

In the model, the compressive failure surfaces depicted in Figure 3-4 are defined as follows:  

∆𝜎𝑚 = 𝑎0 + 𝑝
𝑎1+𝑎2 𝑝

                                 (maximum failure surface)  (3-17) 

∆𝜎𝑟 = 𝑝
𝑎1𝑓+𝑎2𝑓 𝑝

                                        (residual failure surface) (3-18) 

∆𝜎𝑦 = 𝑎0𝑦 + 𝑝
𝑎1𝑦+𝑎2𝑦 𝑝

                             (yield failure surface)  (3-19) 

where:  𝑎𝑖= input parameters determined from available laboratory data in unconfined 
compression tests and triaxial compression tests at a range of confining pressures; 

𝑝 = (𝜎1 + 𝜎2 + 𝜎3)/3 = Pressure (positive in compression); 

𝜎1, 𝜎2,  𝜎3 = Principal stresses (positive in compression); 

∆𝜎 = �3𝐽2 = Failure surface for the deviatoric stress (von-Mises stress); 

𝐽2 = �𝑆12 + 𝑆22 + 𝑆32�/3 = Second invariant of the deviatoric stress tensor; and, 

𝑆1, 𝑆2,  𝑆3 = Principal deviatoric stresses. 
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Maximum Failure Surface 

Using the genetic algorithm, constants a0, a1, and a2  in Equation (3-17)  are estimated from the 

laboratory triaxial tests in compression. Figure 3-5 presents the regression that best fits the 

maximum failure strength envelope. 

 

 

Figure 3-5: Maximum failure surface fitting by Mat_72R3 

 

Residual Failure Surface 

 The values of experimental residual strength as a function of pressure are taken from Figure 2-9: 

Experimental triaxial compression of Vosges sandstone (Bésuelle et al. 2000). Similar to the 

maximum failure surface, the genetic algorithm is used to find constants a1f, and a2f  in Equation 

(3-18). Figure 3-6 presents the regression that best fits the residual strength envelope. 
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Figure 3-6: Residual surface fitting by Mat_72R3 

 

Initial Yield Surface 

Malvar et al. (1997) suggest that this surface is approximately the locus of points at ∆𝜎 =

0.45 ∆𝜎𝑚 on triaxial compression paths. For a point (𝑝, ∆𝜎𝑚) on the maximum failure surface, 

the corresponding point (𝑝′, ∆𝜎𝑦) on the yield surface is:  

∆𝜎𝑦 = 0.45 ∆𝜎𝑚     and     𝑝′ = 𝑝 −
0.55

3
∆𝜎𝑚 (3-20) 

From the latter equation, p can be rewritten as a function of 𝑝′, while the former equation gives 

∆𝜎𝑦 as a function of p:  

∆𝜎𝑦 = 0.45 �𝑎0 +
𝑝

𝑎1 + 𝑎2 𝑝�
 (3-21) 

Eventually, ∆𝜎𝑦 can be computed as a function of  𝑝′, 𝑎0, 𝑎1, and 𝑎2. This computed curve is 

then used to obtain a regression that fits the following equation:  

∆𝜎𝑦 = 𝑎0𝑦 +
𝑝′

𝑎1𝑦 + 𝑎2𝑦 𝑝′
 (3-22) 
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Again, the genetic algorithm is used to find constants a0y, a1y, and a2y in Equation (5-8). Figure 

3-7 presents the regression that best fits the initial yield strength envelope. 

 

 

Figure 3-7: Initial yield surface fitting by Mat_72R3 

 

3.2.3.3 Calculation of Current Deviatoric Stress in Mat_72R3 

After reaching the initial yield surface but before reaching the maximum failure surface, the 

current surface is obtained as a linear interpolation between the two:  

∆𝜎 = 𝜂�∆𝜎𝑚 − ∆𝜎𝑦� + ∆𝜎𝑦 (3-23) 

where 𝜂 varies from 0 to 1 depending on an accumulated effective plastic strain parameter 𝜆. The 

function 𝜂(𝜆) has to be entered by the user as a series of (𝜆, 𝜂) pairs in the input file. The value 𝜂 

is intended to begin from zero at 𝜆 = 0, increase to 1 at some value 𝜆 = 𝜆𝑚, and then decrease to 

zero at some larger value of 𝜆, representing softening. Since 𝜆 is a non-decreasing function of 

time, this would permit ∆𝜎 to sequentially take on the values ∆𝜎𝑦, ∆𝜎𝑚, and ∆𝜎𝑟. Therefore, the 

function 𝜂(𝜆) is a parameter that indicates the relative location of the current surface. After 
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reaching the maximum surface, the current failure surface is similarly interpolated between the 

maximum and the residual:  

∆𝜎 = 𝜂(∆𝜎𝑚 − ∆𝜎𝑟) + ∆𝜎𝑟 (3-24) 

As a result, the concrete stress-strain behavior will be as the one depicted in Figure 3-4: Failure 

surfaces (a) and concrete constitutive behavior (b) in Mat_72R3 model. 

As mentioned above, the stress factor, η, as a function of the damage parameter –or 

accumulated effective plastic strain parameter, λ– is a user input for MAT_72R3. Table 3-6 

displays input data regarding this damage function, which has been taken from the automatic 

initialization of MAT_72R3. 

 
Table 3-6: Stress factor vs. Accumulated effective plastic strain 

Accumulated effective 
plastic strain 
parameter, λ  Stress Factor, η 

0 0 
8.01E-06 0.85 
2.40E-05 0.97 
4.00E-05 0.99 
5.60E-05 1 
7.20E-05 0.99 
8.80E-05 0.97 
3.20E-04 0.5 
5.20E-04 0.1 
5.70E-04 0 

1 0 
10 0 

100 0 
 

3.2.3.4 Tensile Meridians in Mat_72R3 

The tensile or extension meridian of the failure surface for concrete is usually lower (closer to 

the hydrostatic at the same pressure) than the compressive meridian. According to Malvar and 

Simons (1996), experimental data suggest that the ratio of the tensile to compressive meridian, 
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herein denoted ψ, varies from about 0.5 at negative (tensile) pressures to unity at high 

confinements. Using equal meridians at low pressures would yield erroneous results.  

Malvar et al. (1994) offer a detailed description of the meaning of ψ for different pressure 

ranges, as well as the definition of the tensile and pressure cutoffs, the strain rate enhancement 

feature, and the correction of shear modulus due to the assumption of constant Poisson’s ratio. 

As far as the strain rate enhancement, Table 3-7 reports input data for this function, 

which has been adopted from LS_DYNA user’s manual (Hallquist 2009). 

 
Table 3-7: Strain rate enhancement function 

Effective      
strain rate                 

(1/ms)  
Shear strength 
enhancement 

-30 9.7 
-0.3 9.7 
-0.1 6.72 

-0.03 4.5 
-0.01 3.12 

-0.003 2.09 
-0.001 1.45 

-0.0001 1.36 
-0.00001 1.28 

-0.000001 1.2 
-1E-07 1.13 
-1E-08 1.06 

0 1 
3E-08 1 
1E-07 1.03 

0.000001 1.08 
0.00001 1.14 
0.0001 1.2 
0.001 1.26 
0.003 1.29 
0.01 1.33 
0.03 1.36 
0.1 2.06 
0.3 2.94 
30 2.94 
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3.2.3.5 Damage Accumulation in Mat_72R3 

This material model implements shear damage accumulation by including rate effects and by 

treating damage evolution differently in tension than in compression, as follows:  

𝜆 = ∫ 𝑑𝜀𝑝����

𝑟𝑓�1+
𝑝

𝑟𝑓𝑓𝑡
�
𝑏1

𝜀𝑝����

0                                 for  𝑝 ≥ 0 (3-25) 

𝜆 = ∫ 𝑑𝜀𝑝����

𝑟𝑓�1+
𝑝

𝑟𝑓𝑓𝑡
�
𝑏2

𝜀𝑝����

0                                 for  𝑝 < 0 (3-26) 

where  𝑑𝜀𝑝��� = ��2
3
� 𝜀𝑖𝑗

𝑝   𝜀𝑖𝑗
𝑝  is the effective plastic strain increment, 𝑟𝑓 is a user-defined 

experimental rate enhancement factor (or function) from unconfined uniaxial compression tests, 

and 𝑏1 and  𝑏2 are the softening parameters explained below, also user-defined. 

Additionally, Mat_72R3 accounts for volumetric damage. With damage accumulation as 

just described, if a triaxial tensile test is modeled, wherein the pressure decreases from 0 to -ft 

with no deviators, then no damage accumulation occurs. Parameter λ remains 0 and so does η. 

The equation of state reduces the pressure to -ft but keeps it at that level thereafter. To implement 

pressure decay after tensile failure, a volumetric damage increment is added to the deviatoric 

damage whenever the stress path is “close” to the triaxial tensile test path, i.e., the negative 

hydrostatic axis. The closeness to this path is measured by the ratio ��3𝐽2 𝑝� �, which, for 

example, is 1.5 for the biaxial tensile test. To limit the effects of this change to the paths close to 

the triaxial tensile path, the incremental damage is multiplied by a factor 𝑓𝑑 given by:  

𝑓𝑑 = �
1 − 10��3𝐽2 𝑝� �, 0 ≤ ��3𝐽2 𝑝� � < 0.1

 
0, otherwise

� (3-27) 

 

 



53 

and the modified effective plastic strain is incremented by:  

∆𝜆 = 𝑏3𝑓𝑑𝑘𝑑�𝜀𝑉 − 𝜀𝑉
𝑦𝑖𝑒𝑙𝑑� (3-28) 

where 𝑏3 is a user input scalar multiplier, 𝑘𝑑 is an internal scalar multiplier, 𝜀𝑉 is the volumetric 

strain, and 𝜀𝑉
𝑦𝑖𝑒𝑙𝑑 is the volumetric strain at yield. 

Parameter 𝑏1, in Equation (3-25), governs softening in compression, whereas 𝑏2, in 

Equation (3-26), has an effect on the uniaxial tensile strain softening; 𝑏3, in Equation (3-27), 

affects the triaxial tensile strain softening. These softening parameters can be determined by 

iteration until the value of the fracture energy, 𝐺𝑓, converges for a specified characteristic length, 

which is associated with the localization width (i.e. the width of the localization path transverse 

to the crack advance).  

In this study, parameters 𝑏1, 𝑏2, and 𝑏3 are taken from the values given by Mat_72R3’s 

automatic initialization; their values are 1.60, 1.35 and 1.15 respectively.  

3.2.3.6 Pressure-Volume Relationship in Mat_72R3 

In LS-DYNA, this material model is used in conjunction with an equation of state 

(EOS_TABULATED_COMPACTION), which provides the current element pressure 𝑝 as a 

function of the current and previous volumetric strain. In this tabulated compaction model, 

pressure is defined by the following formula:  

𝑝 = 𝐶(𝜀𝑉) (3-29) 

Once the pressure is known, the stress tensor can be calculated as being a point on a movable 

surface that can be a yield surface or a failure surface. Function 𝐶(𝜀𝑉) should be entered by the 

user as a series of (𝜀𝑉 ,𝑝,𝐾) sets, where K is the bulk modulus correspondent to the different  

𝑝 − 𝜀𝑉  pairs. 

The equation of state mentioned above, which describes the rock compaction behavior, is 

tabulated in Table 3-8 and plotted in Figure 3-8. Data points for this curve are obtained directly 

from Figure 2-8: Experimental isotropic compression of Vosges sandstone (Bésuelle et al. 2000). 
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Table 3-8: Equation of state (EOS_TABULATED_COMPACTION) for MAT_72R3 

Volumetric 
Strain 

Pressure 
(GPa) 

Bulk 
Modulus       

(GPa) 
0.0 0.0 5.30 

0.00143 0.002 1.07 
0.00380 0.004 1.20 
0.00584 0.008 2.16 
0.00765 0.012 3.03 
0.00903 0.017 4.21 
0.01023 0.023 4.76 
0.01193 0.033 6.36 
0.01446 0.050 7.45 
0.02385 0.130 8.69 

 

 

 

  

Figure 3-8: Equation of state for MAT_72R3 
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3.2.4 Mat_159 – Continuous Surface Cap Model 

The Continuous Surface Cap Model is a visco-elastic-plastic damage model for concrete and 

other geologic materials developed and implemented by APTEK as a result of a research effort 

funded by the Federal Highway Administration (FHWA) with the aim of simulating the 

deformation and failure of concrete in roadside safety structures impacted by vehicles. A 

thorough formulation is described by Murray (2007b) and the main constitutive equations are 

described below. 

Besides the fact that this model contemplates strain softening and modulus reduction of 

the material based on an isotropic damage formulation –which considers brittle and ductile 

damage separately– the major relevant and most beneficial attribute of this material model in 

simulating rock cutting is that it incorporates element erosion upon material failure. This denotes 

a dramatic advantage over the material models described before. Section 5.3 elucidates the 

importance of element erosion for this numerical modeling effort. 

Mat_159 is a cap model with a smooth intersection between the shear surface and the 

hardening cap, as shown in Figure 3-9. In the model, the initial damage surface coincides with 

the yield surface and the strain rate effects are modeled with viscoplasticity. 

 

 

 
Figure 3-9: General shape of the yield surface in Mat_159 model (Murray 2007b) 

 

 

 
(a) Three-dimensional 

 

(b) Two-dimensional in the meridional plane 
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The yield surface is formulated in terms of three stress invariants: 𝐼1 is the first invariant of the 

stress tensor, 𝐽2 is the second invariant of the deviatoric stress tensor, and 𝐽3 is the third invariant 

of the deviatoric stress tensor. The invariants are defined in terms of the deviatoric stress tensor, 

𝐒𝑖𝑗 and pressure, p, as follows:  

𝐼1 = 3𝑝 (3-30) 

𝐽2 =
1
2

S𝑖𝑗S𝑖𝑗 =
1
3
�𝜎𝑒𝑞2� 

(3-31) 

𝐽3 =
1
3

S𝑖𝑗S𝑗𝑘S𝑘𝑖 = det�𝐒𝑖𝑗� = 𝑆1𝑆2𝑆3 (3-32) 

3.2.4.1 Mat_159 Input Calibration 

Mat_159 requires the specification of 45 input parameters, 22 of which were carefully calibrated 

by fitting the laboratory test data presented in Section 2.2. Determination of these parameters is 

shown in the following sections as applicable. The rest of the input parameters were estimated or 

taken from typical values reported by Murray in her material user’s manual for the FHWA 

(Murray 2007b). Table 3-9 displays the values of all input parameters for Mat_159. 

 
Table 3-9: Input Parameters for MAT_159 

 

Control factors  Shear surface hardening 
ρ 2.0x10-6  kg/mm3              (125 lb/ft3)  NH 0 
NPLOT 1  CH 0 
INCRE -  Cap geometry and hardening 
IRATE 1  R 0.6 
ERODE 1  X0 3.0 x10-3 GPa                  (435 psi) 
RECOV 10.5  W 0.009 
IRETRC 1  D1 30 GPa-1               (2.0 x10-4 psi-1) 
PRED 0  D2 0 GPa-2                             (0 psi-2) 
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Stiffness   Damage  
G0 3.1  GPa                       (449,617 psi)  b 100 
K0 8.75  GPa                  (1,269,080 psi)  d 0.1 
Yield surface  Gfc 3.5 x10-3  GPa              (507.6 psi) 
α 75 x10-3 GPa                  (10,878 psi)  Gft 3.5 x10-5  GPa              (5.076 psi) 
θ 1 x10-4  Gfs 3.5 x10-5  GPa              (5.076 psi) 
λ 70 x10-3 GPa                  (10,153 psi)  pwrc 5 
β 0.008 x103 GPa-1          (5.5 x10-5 psi-1)                pwrt 1 
α1 68 x10-3 GPa                    (9,863 psi)  pmod 0 
θ1 0.02  Rate effects 
λ1 65 x10-3 GPa                    (9,427 psi)  ηc0 1x10-4 
β1 0.0078 x103 GPa-1    (5.4 x10-5 psi-1)                          Nc 0.78 
α2 73 x10-3 GPa                  (10,588 psi)  ηt0 6.0x10-5 
θ2 5 x10-4  Nt 0.48 
λ2 71 x10-3 GPa                  (10,298 psi)  overc 20 x10-3 GPa                 (2,901 psi) 
β2 0.007 x103 GPa-1          (4.8 x10-5 psi-1)                          overt 20 x10-3 GPa                 (2,901 psi) 
   Srate 1 
   repow 1 

 

3.2.4.2 Plasticity Surface in Mat_159 

The yield function is based on the three invariants in Equations (3-30) through (3-32) and the cap 

hardening parameter, 𝜅, as follows:  

𝑓(𝐼1, 𝐽2, 𝐽3, 𝜅) = 𝐽2 − ℜ2 𝐹𝑓2 𝐹𝑐 (3-33) 

where 𝐹𝑓 is the shear failure surface, 𝐹𝑐 is the hardening cap, and ℜ is the Rubin three-invariant 

reduction factor. The cap hardening parameter 𝜅 is the value of the pressure invariant at the 

intersection of the cap and the shear surfaces. 

Trial elastic stress invariants are temporarily updated via the trial elastic stress tensor, 

𝜎trial. The invariants are denoted by 𝐼1trial, 𝐽2trial, and 𝐽3trial. Elastic stress states are modeled 

when 𝑓�𝐼1trial, 𝐽2trial, 𝐽3trial, 𝜅trial� ≤ 0. Elastic-plastic stress states are modeled when 

𝑓�𝐼1trial, 𝐽2trial, 𝐽3trial, 𝜅trial� > 0. In this case, the plasticity algorithm returns the stress state to 

the yield surface in such a way that 𝑓(𝐼1p, 𝐽2p, 𝐽3p, 𝜅p) = 0, where the p superscript denotes 
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inviscid. This is accomplished by enforcing the plastic consistency condition with associated 

flow. 

Shear Failure Surface (Compressive Meridian) 

The strength of concrete is modeled by the shear surface in the tensile and low confining 

pressure regimes. The shear surface Ff  is defined along the compression meridian as:  

𝐹𝑓(𝐼1) = 𝛼 − 𝜆 exp−𝛽 𝐼1 +𝜃 𝐼1 (3-34) 

where the values of 𝛼, 𝛽, 𝜆, and 𝜃 are selected by fitting the model surface to strength 

measurements from triaxial compression (TXC) tests conducted on plain cylinders. 

Using the genetic algorithm, constants 𝛼, 𝛽, 𝜆, and 𝜃 in Equation (3-34) are estimated 

based on the set of laboratory triaxial tests in compression. Figure 3-10 presents the regression 

that best fits the shear surface along the compressive meridian. 

 

  

Figure 3-10: Compressive shear surface fitting by Mat_159 
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Rubin Scaling Function 

Concrete fails at lower values of �3 𝐽2  (principal stress difference) for triaxial extension (TXE) 

and shear (TOR) tests than it does for TXC tests conducted at the same pressure. The Rubin 

scaling function ℜ determines the strength of concrete for any state of stress relative to the 

strength under TXC, via ℜ 𝐹𝑓. Therefore, ℜ = 𝑄1 when the strength is under TOR, and ℜ = 𝑄2 

when the strength is under TXE. The strength model for these two cases is given by:  

𝑄1𝐹𝑓 = 𝛼1 − 𝜆1 exp−𝛽1 𝐼1 +𝜃1 𝐼1 (3-35) 

𝑄2𝐹𝑓 = 𝛼2 − 𝜆2 exp−𝛽2 𝐼1 +𝜃2 𝐼1 (3-36) 

Tensile Meridian:

(3-36)

 Similar to the compressive shear failure surface, the genetic algorithm is used 

to find constants 𝛼2, 𝛽2, 𝜆2, and 𝜃2 in Equation  using the set of laboratory triaxial tests in 

extension. Figure 3-11 presents the regression that best fits the shear surface along the tensile 

meridian. 

 

  

Figure 3-11: Tensile shear surface fitting by Mat_159 
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Shear Meridian:

The Mohr-Coulomb fit defines a straight line fit between the TXE and TXC states. The 

strength ratios are estimated based upon the following relationships:  

 When enough experimental data is not available to obtain the fitting parameters 

that characterize the Rubin Scaling Function, the user can incorporate theoretical relationships 

between the strength ratios 𝑄1 and  𝑄2, such as the Mohr-Coulomb fit (Murray 2007b). 

𝑄1 =
√3 𝑄2 
1 + 𝑄2

 (3-37) 

𝑄2 =
𝑇𝑋𝐸 
𝑇𝑋𝐶

 (3-38) 

𝑄1 and 𝑄2 as expressed above are independent of pressure and only apply for  𝐼1 = 0. 

Considering the magnitude of the tensile failure envelope, TXE at 𝐼1 = 0 in relation to the 

magnitude of the compressive failure envelope, TXC at 𝐼1 = 0, Equation (3-38) results in 

𝑄2 = 0.9733, which represents the average ratio of TXE over TXC. Consequently, 𝑄1 can be 

computed from Equation (3-37), giving 𝑄1 = 0.8543. Finally, by assuming a constant ratio of 

TOR over TXC, i.e. parallel meridians, parameters 𝛼1, 𝛽1, 𝜆1, and 𝜃1 in Equation (3-35) are 

estimated through manual inspection. Figure 3-12 presents the regression that best fits the shear 

surface along the shear (TOR) meridian.  

 

 

Figure 3-12: Torsion shear surface fitting by Mat_159 
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3.2.4.3 Cap Hardening in Mat_159 

The strength of concrete is modeled by a combination of the cap and shear surfaces in the low to 

high confining pressure regimes. The cap is used to model plastic volume change related to pore 

collapse (although the pores are not explicitly modeled).  

As observed in Figure 3-13(b), the isotropic hardening cap is a two-part function that is 

either unity or an ellipse, such that:  

𝐹𝑐(𝐼1, 𝜅) = 1 −
[𝐼1 − 𝐿(𝜅)][|𝐼1 − 𝐿(𝜅)| + 𝐼1 − 𝐿(𝜅)]

2[𝑋(𝜅) − 𝐿(𝜅)]2  (3-39) 

where 𝐿(𝜅) is defined as:  

𝐿(𝜅) = �
𝜅, 𝜅 > 𝜅0
𝜅0, otherwise

� (3-40) 

The equation for 𝐹𝑐 is equal to unity for 𝐼1 ≤ 𝐿(𝜅) and it describes an ellipse for  𝐼1 > 𝐿(𝜅). The 

intersection of the shear surface and the cap is at 𝐼1 = 𝜅, as denoted by the “branch point” in 

Figure 3-13(c). 𝜅0 is the value of 𝐼1 at the initial intersection of the cap and shear surfaces before 

hardening is engaged (before the cap moves). The equation for 𝐿(𝜅) restrains the cap from 

retracting past its initial location at 𝜅0.  

A simpler but less complete way of writing Equations (3-39) and (3-40) is:  

𝐹𝑐(𝐼1, 𝜅) = �1 −
(𝐼1 − 𝜅)2

(𝑋(𝜅) − 𝜅)2 , 𝐼1 ≥ 𝜅

1, otherwise
� (3-41) 

The intersection of the cap with the 𝐼1-axis (hydrostat) is at 𝐼1 = 𝑋(𝜅), marking the point at 

which pressure under hydrostatic loading would be sufficient to induce pore collapse (Fossum 

and Brannon 2004).  

𝑋(𝜅) = 𝐿(𝜅) + 𝑅 𝐹𝑓 �𝐿(𝜅)� (3-42) 
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Figure 3-13: Cap curvature model (Fossum and Brannon 2004) 
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This intersection depends upon the cap ellipticity ratio R, which is the ratio of the ellipse’s major 

to minor axes. As depicted in Figure 3-13(c), R can be interpreted as the ratio of the horizontal 

distance a* to the vertical distance b* of the branch point. The value of R in Mat_159 is user 

defined, and it is determined as explained below. 

The cap moves to simulate plastic volume change. The cap expands, i.e. 𝑋(𝜅) and 𝜅 

increase, to simulate plastic volume compaction. The cap contracts, i.e. 𝑋(𝜅) and 𝜅 decrease, to 

simulate plastic volume expansion, called dilation. The motion (expansion and contraction) of 

the cap is based upon the hardening rule:  

𝜀𝑉
𝑝 = 𝑊�1 − exp−𝐷1(𝑋−𝑋0)−𝐷2(𝑋−𝑋0)2� (3-43) 

where 𝜀𝑉
𝑝 is the plastic volume strain, W is the maximum user-defined plastic volume strain, and 

𝐷1 and 𝐷2 are model fitting parameters defined by the user, as well as 𝑋0, which is the initial 

location of the cap when 𝜅 = 𝜅0 (See Figure 3-14).  

 

 

Figure 3-14: Example of parameter determination on isotropic compression curve (Murray 2007b) 
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The four user-defined input parameters, W,  𝑋0 , 𝐷1 and 𝐷2 in Equation (3-43) are obtained from 

fits to the pressure-volumetric strain curve in isotropic compression, in this case study, Figure 

2-8: Experimental isotropic compression of Vosges sandstone (Bésuelle et al. 2000).  

A non-straightforward analysis of the model was performed to calibrate these parameters, 

which are determined as follows: 

𝑋0 is the initial cap location and it is the pressure invariant (I1) at which compaction 

initiates in isotropic compression, thus the curve becomes nonlinear. Based upon Figure 2-8, 

Vosges sandstone does not exhibit any elastic (linear) strain range, thus 𝑋0 corresponds to the 

intercept of the curve at 𝜀𝑉 = 0, i.e. 𝑝 = 1.0 MPa (145.04 psi), so 𝑋0 = 3.0 MPa (435.12 psi). 

The non-elastic-strain behavior of Vosges sandstone can be appreciated and confirmed with the 

curve of Effective Stress vs. Axial Strain in Figure 2-9 at 0.1 MPa (14.5 psi) of confinement 

pressure. The fact that there is essentially no elastic volume change also implies that the branch 

point in Figure 3-13 (b and c) is initially located at  𝐼1 = 0, therefore, 𝜅0 = 0. As a result of this, 

on one hand, the magnitude of a* can be determined from Figure 3-13 (c) as:  

𝑎∗ = 𝑋 − 𝜅 = 𝑋0 − 𝜅0 = 𝑋0 = 3 MPa (435.12 psi) (3-44) 

On the other hand, the value of b* is determined similarly as the intercept of the shear limit 

function on the �𝐽2-axis. Solving Equation (3-34) for  𝐼1 = 0  results in 𝐹𝑓(0) =  𝛼 − 𝜆, thus:  

𝑏∗ = 𝐹𝑓(0) =  𝛼 − 𝜆 = 75 − 70 = 5 MPa (725.2 psi) (3-45) 

According to Fossum and Brannon (2004), the ellipticity ratio, R, remains constant as hardening 

proceeds. Consequently, having obtained a* and b*, the constant input value of R for Vosges 

sandstone is:  

𝑅 =
𝑎∗

𝑏∗
=

3 MPa
5 MPa

= 0.6 (3-46) 

W is the maximum plastic volume change that defines the range in volumetric strain over which 

the pressure-volumetric strain is nonlinear (from onset to lock-up). Based upon Figure 2-8, the 

input value of W for Vosges sandstone is 0.009. 



65 

Having established parameters W and  𝑋0, determination of 𝐷1 and 𝐷2 is made by manual 

inspection by fitting Equation (3-43) to the curve in Figure 2-8, as these two parameters describe 

the shape of the pressure-volumetric strain curve. Figure 3-15 presents the plot of Equation 

(3-43) with the selected constant values, in contrast with the experimental isotropic compression 

data. 

 

 

Figure 3-15: Isotropic compression curve fitting by Mat_159 
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Unfortunately, during this parameterization endeavor, it was discovered that these 

hardening parameters do not operate properly, i.e. the material model could have a bug. The 

following responses were exhibited while doing sensitivity analyses to 𝑁𝐻 and 𝐶𝐻:  

• By default, 𝑁𝐻 = 1; if this value is changed to a lower number, the maximum 

compressive strength is reached immediately when carrying out a 1-element uniaxial 

compression test, with its value being less than a hundredth of the actual material 

strength. The lower the value of 𝑁𝐻, the lower the final maximum strength achieved, and 

the longer the model takes to run. 

• By default,  𝐶𝐻 = 0; when changed to different values greater than zero, the model did 

not experienced any change.  

As a result of the above-mentioned drawbacks, the values used in this study are the default for 

𝑁𝐻 and 𝐶𝐻. 

3.2.4.5 Damage Accumulation in Mat_159 

Concrete exhibits softening in the tensile and low to moderate compressive regimes.  

𝜎𝑖𝑗D = (1 − 𝐷)𝜎𝑖𝑗
vp (3-47) 

A scalar damage parameter, D, transforms the visco-plastic stress tensor without damage, 𝜎𝑖𝑗
vp, 

into a stress tensor with damage, 𝜎𝑖𝑗D. Damage accumulation is based upon two distinct 

formulations, herein called brittle damage and ductile damage. 

Brittle and ductile damage initiate with plasticity. This effectively means that the initial 

damage surface is coincident with the plastic shear surface. Therefore, a distinct damage surface 

or threshold is not defined by the user

Each strain energy term (ductile or brittle) in Equations 

. Damage initiates at peak strength on the shear surface 

where the plastic volume strain is dilative. Damage does not initiate on the cap, where plastic 

volume strain is compactive.  

(3-48) and (3-49) must increase 

in value above its previous maximum in order for damage to accumulate. When energy remains 

constant or decreases, damage temporarily stops accumulating. This corresponds to an expanding 

damage surface. 
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Ductile Damage 

Ductile damage accumulates when the pressure, p, is compressive and an energy-type term, 𝜏𝑐, 

exceeds the damage energy threshold, 𝜏𝑐0, which is internally determined. Ductile damage 

accumulation depends upon the total strain components, 𝜀𝑖𝑗, as follows: 

𝜏𝑐 = �1
2

 𝜎𝑖𝑗  𝜀𝑖𝑗 (3-48) 

The stress components,  𝜎𝑖𝑗, are the elasto-plastic stresses (with kinematic hardening) calculated 

before application of damage and rate effects. 

Brittle Damage 

Brittle damage accumulates when the pressure is tensile and an energy-type term, 𝜏𝑡, exceeds the 

damage energy threshold, 𝜏𝑡0, which is internally determined. Brittle damage accumulation 

depends upon the maximum principal strain, 𝜀max, and the elastic Young’s modulus, E, as 

follows: 

𝜏𝑡 = �𝐸 𝜀max2 (3-49) 

Softening Function 

As damage accumulates, the damage parameter D increases from an initial value of zero towards 

a maximum value of one, via the following formulae: 

• For ductile damage (𝑝 ≥ 0): 

𝐷(𝜏𝑐) =
0.999
𝑏

�
1 + 𝑏

1 + 𝑏 exp−𝑎(𝜏𝑐−𝜏𝑐0) 
− 1� (3-50) 

• For brittle damage (𝑝 < 0): 

𝐷(𝜏𝑡) =
𝐷max
𝑑

�
1 + 𝑑

1 + 𝑑 exp−𝑐(𝜏𝑡−𝜏𝑡0) 
− 1� (3-51) 
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The damage parameter applied to the six components of the stress corresponds to the current 

maximum of the brittle or ductile damage parameter. Parameters a and b in Equation (3-50), or c 

and d in Equation (3-51) set the shape of the softening curve plotted as stress-displacement or 

stress-strain. Parameters b and d should be user-defined and a and c are internally calculated. 

Parameter 𝐷max in Equation (3-51) is the maximum damage level that can be attained, and it is 

calculated internally by 𝐷max = ��3𝐽2 𝐼1� �
1.5

. The compressive softening parameter, a, may also 

be reduced with confinement, using the input parameter pmod, by:  

𝑎′ = 𝑎(𝐷max + 0.001)𝑝𝑚𝑜𝑑 (3-52) 

Nevertheless, the modified moderate pressure softening parameter pmod is used as suggested by 

(Murray 2007a), pmod = 0. 

A sensitivity analysis has been performed for parameter b, by changing its value and 

running a single-element unconfined compression test. Results of these simulations demonstrated 

that as the input value for b increased, the damage accumulation was lower, so the maximum 

compressive strength attained was larger. Consequently, as mentioned before, some input 

parameters were taken from typical values reported by Murray in her material user’s manual for 

the FHWA (Murray 2007b). She evaluated a regulatory technique for material softening, 

reporting the ductile shape parameter as b = 100 in compression (p >0), and the brittle shape 

parameter as d = 0.1.  

3.2.4.6 Regulating Mesh Size Sensitivity in Mat_159 

Mat_159 model maintains constant fracture energy, regardless of the element size. The fracture 

energy is defined here as the area under the stress-displacement curve from peak to zero strength. 

This is done by internally formulating the softening parameters a and c in terms of the element 

length, l (cube root of the element volume), the fracture energy, 𝐺𝑓, and the initial energy 

damage threshold, 𝜏𝑐0 or 𝜏𝑡0. 

The fracture energy is calculated as a function of five user-defined input parameters (𝐺𝑓c, 

𝐺𝑓t, 𝐺𝑓s, pwrc, pwrt). The user specifies three distinct fracture energy values. These are the 
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fracture energy in uniaxial compression, 𝐺𝑓c, the fracture energy in uniaxial tension, 𝐺𝑓t, and the 

fracture energy in pure shear, 𝐺𝑓s.  

By definition, the input value for  𝐺𝑓c, was calculated based upon the stress-displacement 

curve for Vosges sandstone, directly related to the stress-strain curve presented in Figure 2-9. 

The area under the unconfined compression curve from zero to peak strength is equal to 3.5 

MPa-mm (20 psi-in). The other fracture energy parameters were determined following Murray’s 

validation of the material model (Murray 2007b), such that  𝐺𝑓t = 𝐺𝑓s = 0.01 𝐺𝑓c, = 0.035 MPa-

mm (0.2 psi-in). 

The model internally selects the fracture energy from equations that interpolate between 

the three fracture energy values as a function of the stress state (expressed via two stress 

invariants). The interpolation equations depend upon the user-specified input powers pwrc and  

pwrt, as follows:  

• If pressure is compressive (𝑝 ≥ 0): 

𝐺𝑓 = 𝐺𝑓𝑠 + �𝐺𝑓𝑐 − 𝐺𝑓𝑠�𝑡𝑟𝑎𝑛𝑠                      𝑡𝑟𝑎𝑛𝑠 = �
𝐼1

�3𝐽2
�
𝑝𝑤𝑟𝑐

 (3-53) 

• If pressure is tensile (𝑝 < 0): 

𝐺𝑓 = 𝐺𝑓𝑠 + �𝐺𝑓𝑡 − 𝐺𝑓𝑠�𝑡𝑟𝑎𝑛𝑠                      𝑡𝑟𝑎𝑛𝑠 = �
−𝐼1
�3𝐽2

�
𝑝𝑤𝑟𝑡

 (3-54) 

where the internal parameter trans is limited to range between 0 and 1. 

The shear-to-compression transition parameter, pwrc, and the shear-to-tension transition 

parameter, pwrt, are setup as suggested by Murray (2007a) in her validation example, i.e., 5 and 

1, respectively. 
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3.2.4.7 Visco-plastic Rate Effects in Mat_159 

At each timestep, the visco-plastic algorithm interpolates between the elastic trial stress, 𝜎𝑖𝑗trial,  

and the inviscid stress (without rate effects), 𝜎𝑖𝑗
p , to set the visco-plastic stress (with rate effects), 

𝜎𝑖𝑗
vp by:  

𝜎𝑖𝑗
vp = (1 − 𝛾)𝜎𝑖𝑗trial + 𝛾 𝜎𝑖𝑗

p  (3-55) 

𝛾 =
∆𝑡 𝜂⁄

(1 + ∆𝑡) 𝜂⁄
 

(3-56) 

This interpolation depends upon the effective fluidity coefficient, 𝜂, and the timestep size, ∆𝑡. 

The effective fluidity coefficient is internally calculated as a function of five user-supplied input 

parameters and interpolation questions: 

• If pressure is compressive (𝑝 ≥ 0): 

𝜂 = 𝜂𝑠 + (𝜂𝑐 − 𝜂𝑠)𝑡𝑟𝑎𝑛𝑠                      𝑡𝑟𝑎𝑛𝑠 = �
𝐼1

�3𝐽2
�
𝑝𝑤𝑟𝑐

 (3-57) 

• If pressure is tensile (𝑝 < 0):  

𝜂 = 𝜂𝑠 + (𝜂𝑡 − 𝜂𝑠)𝑡𝑟𝑎𝑛𝑠                      𝑡𝑟𝑎𝑛𝑠 = �
−𝐼1
�3𝐽2

�
𝑝𝑤𝑟𝑡

 (3-58) 

where: 

𝜂𝑐 =
𝜂𝑐0
𝜀̇𝑁𝑐

              𝜂𝑡 =
𝜂𝑡0
𝜀̇𝑁𝑡

               𝜂𝑠 = 𝑆rate 𝜂𝑡 (3-59) 

and, where 𝜀̇ is the effective strain rate. The input parameter values are selected based on 

Murray’s example (Murray 2007a) as follows:  
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• For uniaxial compressive stress:  

o the rate effect parameter, 𝜂𝑐0 = 1x10-4 

o the rate effect power, 𝑁𝑐 = 0.78 

o the maximum overstress allowed, overc = 20x10-3 GPa (2,900 psi) 

• For uniaxial tensile stress:  

o the rate effect parameter, 𝜂𝑡0 = 6x10-5 

o the rate effect power, 𝑁𝑡 = 0.48 

o the maximum overstress allowed, overt = 20x10-3 GPa (2,900 psi) 

• The ratio of effective shear stress to tensile stress fluidity parameter, 𝑆rate = 1 

 

Mat_159 model may predict substantial rate effects at high strain rates (𝜀̇ > 100). To limit rate 

effects at high strain rates, the user may input overstress limits in compression (overc) and in 

tension (overt) (values stated above). These input parameters limit the calculation of the fluidity 

parameter, 𝜂, by:  

if    𝐸 𝜀̇ 𝜂 > 𝑜𝑣𝑒𝑟       then       𝜂 =
𝑜𝑣𝑒𝑟
𝐸 𝜀̇

 (3-60) 

The user has the option of increasing the fracture energy as a function of effective strain rate via 

the repow input parameter by:  

𝐺𝑓𝑟𝑎𝑡𝑒 = 𝐺𝑓 �1 +
𝐸 𝜀̇ 𝜂
𝑓′ �

𝑟𝑒𝑝𝑜𝑤

 (3-61) 

where 𝐺𝑓𝑟𝑎𝑡𝑒 is the fracture energy enhanced by rate effects, and f’ is the yield strength before 

application of rate effects (which is calculated internally by the model). The term in parenthesis 

is greater than, or equal to one, and is the approximate ratio of the dynamic to static strength. In 

this study repow = 1. 
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4.0 SINGLE ELEMENT TESTS FOR MATERIAL MODEL VALIDATION 

The material model evaluation is performed with one-element tests simulated to check the 

validity of the models via examination of the stress versus displacement behavior; namely by 

simulating isotropic compression tests, and triaxial compression and extension tests under 

different confinement pressures. The simulated tests are compared with actual laboratory data 

from tests on Vosges sandstone performed by Bésuelle et al. (2000) (see Section 2.2). 

Through the assessment of the material models presented in Sections 4.2 to 4.5, it can be 

observed that Mat_111 does not characterize the triaxial response of Vosges sandstone, as good 

as does Mat_72R3. Since the purpose of this investigation requires a reasonable formulation that 

allows fracturing by means of “element erosion”, the author has to discard the good performance 

of Mat_72R3, while implementing Mat_159. The following chapters demonstrate how Mat_159 

is superior in simulating fracturing and chip formation in rock cutting problems. 

4.1 TEST SETUP 

All simulations were conducted in a prismatic hexagonal solid element of 25 mm x 25 mm x 100 

mm. These dimensions indicate the use of a quarter of symmetry in the vertical axis, made 

possible through nodal boundary conditions, as shown in Figure 4-1.  

Three loading conditions are analyzed. These are the isotropic compression (or 

consolidation stage), the triaxial compression, and the triaxial extension at different confining 

pressures. Before each triaxial test, the (one-element) “sample” is subjected to isotropic load, at a 

constant rate of 0.2 MPa/s (29 psi/s), until it reaches the desired confining pressure. This 

compressive load is applied as distributed stress over the moving faces of the sample, i.e. top, 

front, and right segments. 
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Figure 4-1: Nodal degrees of freedom in one-element tests 

 

Subsequently, for each confining pressure, the sample is loaded axially in compression or tension 

at a strain rate of 1x10-5 s-1. This strain-controlled axial load is applied by means of nodal 

displacement (of top nodes only). 

4.2 VALIDATION OF MAT_105 

Based on the bi-linear behavior of MAT_105 and its pressure independence, it is expected that 

the nonlinear triaxial stress-strain response of the rock and its variable behavior with respect to 

pressure are not achieved. Likewise, the quasi-static and controlled nature of triaxial tests does 

not allow for the development of tensile damage during the simulated tests, therefore, the set of 

damage parameters used in this study for MAT_105 are not validated, and are just utilized as a 

testing means to the numerical tuning of the rock cutting simulations. 

Figure 4-2 depicts the response of Mat_105 subjected to compressive triaxial load at 0.1 

MPa (unconfined) and 50 MPa of confining pressure. It can be observed that Mat_105 is 

indifferent to the effect of the confining pressure, and this why it is meant for metal modeling, as 

suggested by LS-DYNA User’s Manual (Hallquist 2009). The calculation of the triaxial stress 

state is straightforward, given the “yield strength” and the Young’s elastic modulus input. As 
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seen in Figure 4-2(a), in the compressive tests, the value for the “yield strength” corresponded to 

the unconfined compressive strength of Vosges sandstone.  

 

 

 
(a) Effective Stress vs. Axial Strain 

 
 

 
(b) Volumetric Strain vs. Axial Strain 

Figure 4-2: Simulated triaxial compression with Mat_105 under different confinement 
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Triaxial extension tests were also modeled with Mat_105. In this case, the “yield strength” was 

input as the sandstone’s tensile strength, because the material model is not capable of treating 

tension or compression differently. The results of these tests are identical to the compressive 

instance, only that failure occurs exactly at the “yield strength value” provided. With these 

results, it was confirmed that Mat_105 is not suitable for modeling proper rock behavior. 

As far as the isotropic compression is concerned, Mat_105 maintains a constant elastic 

modulus throughout the consolidation phase, thus the response is perfectly linear, as is expected 

(see Figure 4-15). The magnitude of the volumetric strain as function of pressure is significantly 

less than actual Vosges sandstone, especially at lower pressures.  

Although the response is not characteristic of a geomaterial, mostly due to its pressure 

independency, Mat_105 has been implemented in rock cutting models as a first attempt to 

calibrate other numerical attributes in LS-DYNA. 

4.3 VALIDATION OF MAT_111 

Johnson-Holmquist Concrete material model has been used successfully in the numerical 

simulation of: 

• ballistic penetrations in concrete plates (Holmquist et al. 1993);  

• dynamic behavior of reinforced concrete plates under normal impact (Tai and Tang 

2006a);  

• response of ultra-high strength concrete to projectile impacts (Tai and Tang 2006b); and, 

• concrete structures under blast loads (Du and Li 2009; Shi et al. 2007).  

4.3.1 Triaxial Stress-Strain Response in Mat_111  

When testing the performance of Mat_111 in confined compression tests, it revealed a bi-linear 

elastic-plastic response of the effective stress, reaching extremely large axial strain values 

corresponding to the expected maximum strength at different confining pressures (see Figure 

4-3(a)). In triaxial extension, although bi-linear as well, the stress-strain data were consistent 

with the experimental response (see Figure 4-4(a)).  
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(a) Effective Stress vs. Axial Strain 

 
(b) Volumetric Strain vs. Axial Strain 

Figure 4–3: Simulated triaxial compression with Mat_111 under different confinement 
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(a) Effective Stress vs. Axial Strain 

 

 
(b) Volumetric Strain vs. Axial Strain 

Figure 4–4: Simulated triaxial extension with Mat_111 under different confinement 
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In terms of the volumetric strain, the response of Mat_111 in triaxial compression failed to show 

the initial contraction stage (larger with larger confining pressure) followed by a dilated volume 

(see Figure 2-9(b)); on the contrary, the volumetric response was constantly contractive, 

increasing with axial strain, to very a large extent (see Figure 4-3(b)). Additionally, there seems 

to be no effect of the confinement, which implies no evolution of the stiffness properties 

(porosity) as a function of pressure. On the other hand, in triaxial extension, the material 

expanded linearly, although much less than the experimental tests (see Figure 4-4(b)). 

As suggested above, Mat_111 lacks appropriate calculation of the volumetric strain, and 

this is confirmed with the isotropic compression test. Figure 4-15 shows how Mat_111 keeps a 

linear pressure-volumetric strain relationship, i.e. bulk modulus. Although having an initial low 

volume change, after 10 MPa this modulus decreases significantly with no apparent reason, and 

remains constant thereafter, producing very large a volume change with pressure, compared with 

laboratory data. 

4.3.3 Strength at Failure in Mat_111  

Figure 4-5 presents the failure envelopes for Mat_111 resulting upon data from each simulated 

triaxial test in compression and in tension. These curves are representative of the constitutive 

relationship in Equation (3-12) of Mat_111 (recalled below), where the effective stress is 

expressed as a function of pressure. The dashed lines in Figure 4-5 correspond to the stress paths 

during each test, from the beginning of axial loading until failure. 
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Figure 4–5: Simulated strength at failure with Mat_111 

 

4.4 VALIDATION OF MAT_72R3 

In the past, the Concrete Damage Rel3 model has been used successfully for modeling: 

 the behavior of standard reinforced concrete dividing walls subjected to blast loads 

(Malvar et al. 1997);  

 penetration and perforation of concrete with projectiles (Unosson 2002);  
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 the response of standard uniaxial, biaxial, and triaxial concrete tests in both tension and 

compression (Schwer and Malvar 2005).  

4.4.1 Triaxial Stress-Strain Response in Mat_72R3  

In the present study, this very complex material model has proven to be the one that best captures 

the nonlinear stress-strain response of Vosges sandstone in compression and tension. Except for 

the pressure-volumetric strain in triaxial compression, Figure 4-6 and Figure 4-7 show excellent 

correlation of the simulated stress-strain characterization with the laboratory tests. Figure 4-6(a) 

reveals a shortcoming in the computation of the volumetric strain, attributed perhaps to the 

constant increase in the Poisson’s ratio of the material, internally modified by the code based on 

input data. 

As mentioned in the calibration Section 3.2.2.1, Mat_72R3 requires the input of an 

equation of state that relates the volumetric strain of the rock with pressure, therefore, the 

isotropic compression curve of the simulated material perfectly agrees with experimental data, as 

can be observed in Figure 4-15. 

Unfortunately, when implementing this material model in the simulation of rock cutting, 

the outcome is not acceptable. Although Mat_72R3 provides a satisfactory agreement of the 

stress-strain response of Vosges sandstone with experimental data (under controlled conditions), 

it does not comprise a built-in element erosion formulation. It has been confirmed that even with 

the possibility of adding a user-supplied element erosion criterion, the rock does not behave in a 

realistic way (see Section 5.3.2). This fact makes Mat_72R3 limited to applications where 

fracturing is not expected. Section 5.3.2 illustrates the negative effect produced by inconsistent 

element erosion criteria. 



81 

 
(a) Effective Stress vs. Axial Strain 

 

 
(b) Volumetric Strain vs. Axial Strain 

Figure 4–6: Simulated triaxial compression with Mat_72R3 under different confinement 
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(a) Effective Stress vs. Axial Strain 

 

 
(b) Volumetric Strain vs. Axial Strain 

Figure 4–7: Simulated triaxial extension with Mat_72R3 under different confinement 
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4.4.2 Strength at Failure in Mat_72R3  

Figure 4-8 presents the failure envelopes for Mat_72R3 resulting upon data from each simulated 

triaxial test in compression and in tension. These curves are representative of the constitutive 

relationship in Equation (3-17) of Mat_72R3 (recalled below), where the effective stress is 

expressed as a function of pressure. The dashed lines in Figure 4-8 correspond to the stress paths 

during each test, from the beginning of axial loading until failure. 
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Figure 4–8: Simulated strength at failure with Mat_72R3 
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4.5 VALIDATION OF MAT_159 

The Continuous Surface Cap Model is perhaps the most robust material model in LS-DYNA in 

regards to geomaterial constitutive laws. It is fundamentally based on Sandia Geomaterial Model 

(Fossum and Brannon 2004) and was developed and implemented for the Federal Highway 

Administration in LS-DYNA as a means for research on concrete used in roadside safety 

structures when involved in a collision with motor vehicles (Murray 2007b). 

After a rigorous and lengthy effort to analyze the performance of Mat_159 and to 

calibrate its input parameters, the final set of established input parameters for this material model 

showed the most realistic behavior under different loading conditions. Although some 

formulation problems were encountered (as described in Section 4.5.2), the rock-cutting 

simulations presented in Chapters 6.0, 7.0, and 8.0 are based upon this calibrated and validated 

values. 

4.5.1 Triaxial Stress-Strain Response in Mat_159 

As mentioned in Section 3.2.4.4, the material model parameters that could describe the natural 

nonlinearity of Vosges sandstone –before reaching the peak strength– are not functional. 

Therefore, as shown in Figure 4-9(b), there is no sign of hardening (dilation), and the shape of 

the stress-strain curves does not exhibit pronounced roundness before failure for confining 

pressures larger than 20 MPa (2,900 psi) in the triaxial compressive tests. Furthermore, this 

behavior is even more characteristic of the triaxial extension simulation results (see Figure 4-10), 

where all the loading moduli seem to have the same constant value, and the magnitude of the 

dilative (volumetric) strain is significantly lower and more erratic than expected.  

Despite this drawback, the material model characterizes favorably the failure envelope in 

compression for Vosges sandstone. This is considered of greater connotation, due to the nature of 

the rock-cutting simulations, where the highly dynamic mechanics of the problem rely heavily on 

the plastic, post-failure response of the rock material, as a function of pressure. 
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(a) Effective Stress vs. Axial Strain 

 

 
(b) Volumetric Strain vs. Axial Strain 

Figure 4–9: Simulated triaxial compression with Mat_159 under different confinement 
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(a) Effective Stress vs. Axial Strain 

 

 
(b) Volumetric Strain vs. Axial Strain 

Figure 4–10: Simulated triaxial extension with Mat_159 under different confinement 
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4.5.2 Strength at Failure in Mat_159  

Based upon the definition of the compression failure surface (meridian) in Equation (3-34), as 

well as the failure surface in shear and tension described by Equations (3-35) and (3-36), 

respectively, the results from triaxial test simulations in compression, tension and shear should 

look like the following example (Murray 2007b):  

 

Figure 4-11: Example plots of the failure surfaces of LS-DYNA Model 159 in the meridian plane 

 

Although in triaxial compression (TXC) the material performed perfectly (see Figure 4-12), 

unfortunately, when modeling triaxial extension (TXE) tests at different confining pressures, the 

maximum strength at failure in each test was produced too soon. In other words, the maximum 

failure envelope in extension, as seen in Figure 4-14, is too low compared to tensile meridian 

depicted in Figure 4-11. 

As illustrated in Figure 4-13, the simulated failure envelope in extension has presumably 

been calculated just by using a constant value of  ܳଶ ൌ 0.5 in the formulation of the tensile 

meridian (see Figure 3-11), instead of using the actual variable function for this failure envelope. 

According to the User’s manual for LSDYNA concrete material model 159 (Murray 

2007b), “the shape of the yield surface in the deviatoric plane transitions with pressure from 

triangular, to irregular hexagonal, to circular.” “Currently, the eight input parameters, which 

define Q1 and Q2 [in Equations (3-35) and (3-36)], set the shape of the three-invariant yield 

surface when the pressure is compressive, but not when the pressure is tensile. When the 
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pressure is tensile, the model automatically sets Q1 = 0.5774 and Q2 = 0.5. These values simulate 

a triangular yield surface in the deviatoric plane, and cannot be overwritten by the user. With the 

triangular yield surface, the strengths attained in uniaxial, biaxial, and triaxial tensile stress 

simulations are approximately equal.” 
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Figure 4-12: Failure envelope in triaxial compression 
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Figure 4-13: Failure envelope in triaxial extension 
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Although the theoretical model described above states that the value of Q2 will only be a constant 

value of 0.5 when pressure is negative, it is evident that the current model in LS-DYNA version 

9.71 release 4 maintains Q2 = 0.5 during the simulation of any stress state where 3 > 1, 

regardless of the sign of the pressure value. Conversely, it was observed that once the calibrated 

material reached the yield meridian while in extension mode, it continued to raise its resistance 

upon decreasing the vertical stress, leading to a much larger critical strength associated with 

plastic deformation. This phenomenon was distinct at large confining pressures (i.e. p ≥ 100 

MPa). Due to the ambiguity as to when the maximum strength is attained when 3 > 1, the 

validity of the simulated element erosion during the rock cutting is guaranteed by defining the 

additional erosion criterion of 1 = 0.05 (see Section 5.3.3). 

Since this validation study did not include the simulation of torsion tests (failure in direct 

shear), the performance of Equation (3-35) and Q1  were not corroborated. 

Figure 4-14 presents the failure envelopes for Mat_159 resulting upon data from each 

simulated triaxial test in compression and in tension. These curves are representative of the 

constitutive relationship in Equation (3-34) of Mat_159 (recalled below), where the effective 

stress is expressed as a function of pressure. The dashed lines in Figure 4-14 correspond to the 

stress paths during each test, from the beginning of axial loading until failure. 
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Figure 4–14: Simulated strength at failure with Mat_159 
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4.6 COMPARISON OF TEST RESULTS: LABORATORY VS. SIMULATION 

Figure 4-15 illustrates the simulated pressure-volumetric strain response of all the material 

models analyzed in contrast with actual laboratory data. Similarly, in the following sections, 

Figure 4-16 through 4-20 display the experimental triaxial response of Vosges sandstone in 

comparison to the simulated response of Mat_111, Mat_72R3 and Mat_159. The later charts 

have been previously presented in greater size and detail in Sections 4.3, 4.4 and 4.5. 

4.6.2 Isotropic Compression 

 

 

Figure 4-15: Pressure vs. Volume strain - Comparison between experimental and simulated results 
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4.6.2 Triaxial Compression 

 

(a) Laboratory data (Besuélle et al. 2000) 

 

(b) Simulation with Mat_111 

    

(c) Simulation with Mat_72R3 

 

(d) Simulation with Mat_159 (v.4) 

Figure 4-16: TXC Effective stress (MPa) vs. axial strain - Comparison of experimental and simulated results 

 

(a) Laboratory data (Besuélle et al. 2000) 

      

(b) Simulation with Mat_111 

      

(c) Simulation with Mat_72R3 
     

(d) Simulation with Mat_159 (v.4) 

Figure 4-17: TXC Volume strain vs. axial strain - Comparison of experimental and simulated results 
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4.6.3 Triaxial Extension 

 

(a) Laboratory data (Besuélle et al. 2000) 

            

(b) Simulation with Mat_111 

            

(c) Simulation with Mat_72R3 

           

(d) Simulation with Mat_159 (v.4) 

Figure 4-18: TXE Effective stress (MPa) vs. axial strain - Comparison of experimental and simulated results 

          

(a) Laboratory data (Besuélle et al. 2000) 

            

(b) Simulation with Mat_111 

 

(c) Simulation with Mat_72R3 

           

(d) Simulation with Mat_159 (v.4) 

Figure 4-19: TXE Volume strain vs. axial strain - Comparison of experimental and simulated results 

‐0.012 
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4.6.4 Failure Envelope  

           
(a) Laboratory data (Besuélle et al. 2000) 

 
(b) Simulation with Mat_111 

 
(c) Simulation with Mat_72R3 

 
(d) Simulation with Mat_159 (v.4) 

Figure 4-20: Effective stress (MPa) vs. Pressure (MPa) - Comparison of experimental and simulated results 

 

 

Despite some shortcomings of the volumetric strain response of Mat_159 in the compression and 

extension triaxial tests –as shown in the previous figures–, overall, this material model is the 

most suitable material in LS-DYNA for the rock-cutting simulations in this research study; not 

only due to the robust theoretical model, but also due to its unique incorporation of element 

erosion upon material constitutive damage, which allows the simulation of realistic rock 

fracturing and fragmentation. 
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5.0 CALIBRATION OF THE ROCK CUTTING MODEL 

An important component of the proposed research initiative includes the critical implementation 

of several key features offered by LS-DYNA, which are described in the following sections.  

5.1 THE ROCK DOMAIN 

5.1.1 Mesh Sensitivity 

Depending on the application, the finite element domain representing the model in question is 

determinant in the final resolution of the stress-strain state. In this particular case, where the 

initiation and propagation of cracks is the main interest, the mesh definition plays a major role. 

Two basic characteristic of the mesh are relevant in obtaining good results: 1) the element size, 

and 2) the element type. 

One of the most important implementations in these cutting simulations is the use of 

element erosion upon failure (see Section 5.3); therefore, the eroded surface of the rock, as well 

as the path that a crack may follow should be as realistic (not uniform) as possible. To achieve 

this, the smallest, non-cubic element would be ideal; however, it is vital to avoid am excessive 

number of elements in the domain and its associated long run time. The element size in these 

simulations was selected based upon the actual particle size in Vosges Sandstone, i.e. between 

0.15 mm and 0.45 mm (Bésuelle et al. 2000). The finer established mesh, located at the top of 

the rock samples where cutting takes place, is formed by elements of 0.14 mm in average size. In 

this way, the concept of continuum may be disputable. 

In LS-DYNA the default and perhaps mostly used solid element type is the hexahedron 

constant-stress element, due to its one-integration point efficiency. This element type was used 



95 

extensively during the course of this investigation, leading to the conclusion that its orthogonal 

shape makes it impossible to replicate the heterogeneity of the particle assembly in a rock. As a 

result, the 1-integration-point tetrahedron element is found to serve this purpose in a better 

manner. The influence of the different element types in the crack propagation process can be 

compared in Figure 5-1. 
 

 
(a) Hexahedron solid elements 

 
(b) Tetrahedron solid elements  

Figure 5-1: Different element types evaluated in rock cutting 

 

5.1.2 Rock Specimen Geometry 

The size of the finite element models follow the premise by Richard et al. (1998) that the cutting 

force from the experiments should be averaged over a distance of at least one order of magnitude 

larger than the depth of cut, d; therefore, the minimum horizontal dimension, l, of the numerical 

models is consistent with the ratio 𝑙 𝑑� ≥ 10.  
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Moreover, for each independent laboratory test simulated, as described in, and 8.0, the 

three-dimensional FE models represent the actual geometry of the tested specimens of rock in 

such a way that the simulation results are not affected by the boundary conditions of the model 

(see Section 5.1.3). The deep and shallow scratch tests performed by Richard (1999) (see Section 

2.1.1) are run in prismatic samples or slabs of rock of 10 mm in thickness, thus even a deep cut 

(e.g. 3.6 mm deep) could be considered to behave as in plane strain mode. Chapter 6.0 presents 

the model geometry and simulation results of these scratch tests.  

Chapter 7.0 and 8.0 portray the simulations of rock cutting in a “groove” based upon 

additional experimental tests by Richard (1999) and Kaitkay and Lei (2005). Richard wanted to 

study the influence of the cutter width especially considering the creation of side walls along the 

groove. Kaitkay and Lei ran experiments of rock cutting with a circular-shape cutter under 

hydrostatic pressure. In both cases, the rock samples are subjected to a three-dimensional stress 

loading –in contrast to the plane strain conditions of the scratching tests in rock slabs. Therefore, 

the rock models for these simulations employ larger domains, but still follow the principles of 

generating finite elements as small as the grain particles comprising the rock, (see Section 5.1.1). 

It is important to highlight that regardless of the depth of cut, the finite elements being 

cut should have a consistent size as noted above. This fact significantly affects the behavior of 

the fracture mode, being either ductile or brittle. In other words, in order to compare numerical 

simulations results from different depths and widths of cut, the element sizes (or the particle 

sizes in the case of the Discrete Element Method) must have the same dimensional 

characteristics. 

5.1.3 Boundary Conditions 

When simulating rock cutting on slabs, the plane strain condition is provided by means of nodal 

constraints so that the front and rear faces act as symmetry planes. Table 5-1 reports the 

configuration of the nodal degrees of freedom of rock and cutter nodes. In both, deep and 

shallow cut simulations, the following boundary conditions apply. 

These same nodal constraints apply to the rock models for groove cutting. The plane 

strain condition does not apply in these cases because of the size of the rock samples. Yet, this 
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size is large enough so the boundary effect does not interfere with the stress state distributions 

from the cutting test.  

 
Table 5-1: Nodal degrees of freedom in FE models  

  Degree of freedom (1 = fixed, 0 = free) 
  Translational  Rotational 
   X Y Z X Y Z 

Rock nodes 
bottom surface 0 1 0 1 0 1 
right and left side surfaces 1 0 0 0 1 1 
front and rear surfaces  0 0 1 1 1 0 
top surface  0 0 0 0 0 0 

Cutter nodes All nodes 0 1 1 1 1 1 
 

In addition, surfaces on the bottom, right, and left sides of the rock part are treated as “non-

reflective boundaries”, which allow stress waves to be dissipated instead of being reflected, thus 

there is no such boundary effect affecting the stress distribution near the edges of the model. This 

non-reflecting boundary condition in LS-DYNA is based on the wave propagation concept that 

the stress is proportional to the velocity. The following are the characteristics of the method:  

𝜎 = 𝜌𝑐𝑣 (5-1) 

where 𝜌 is the element mass density,  𝑐 = �𝐸 𝜌⁄  = stress wave speed, and v = velocity. 

Stress can be written in terms of a force 𝑓𝑑 such that:  

𝑓𝑑 = 𝜎𝐴 = ���𝐸𝜌�𝑣�𝐴 (5-2) 

where A is the area of the element face on the non-reflecting boundaries.  

Equation (5-2) is essentially a viscous damping force described by: 

𝑓𝑑 = 𝑑𝑐𝑣 (5-3) 

where the damping constant, 𝑑𝑐, is equivalent to 𝑑𝑐 = 𝐴�𝐸𝜌. Accordingly, a non-reflecting 

boundary is constructed by adding viscous damping to the boundary. 

Lastly, prior to starting the rock cutting transient analysis, gravity load –i.e., g = 9.81 

m/s2 (32.2 ft/s2) – is applied to the rock piece through an initial dynamic relaxation stage (see 

Section 5.4.2.1 for details). 
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5.2 CONTACT FORMULATION 

Contact treatment forms an integral part of many large-deformation problems. Accurate 

modeling of contact interfaces between bodies is crucial to the prediction capability of the finite 

element simulations. In LS-DYNA, a contact is defined by identifying what locations (parts, part 

sets, segment sets, and/or node sets) are to be checked for potential penetration of a slave node 

through a master segment. A search for penetrations is made every time step.  

In this particular simulation problem, two different contact models must be implemented: 

one that treats the cutter-rock interface and a separate one that treats the rock-rock interface. The 

latter becomes necessary due to the newly exposed rock surfaces after element erosion (see 

Section 5.3). Element erosion leads to the initiation of cracks and potential rock chips that would 

eventually be detached and would get in contact with any solid surface in an arbitrary way. 

5.2.1 Cutter-Rock Contact 

During the course of this work, an extensive assessment of numerous parameters related to 

contact models has been performed. Among all the types of contact formulations available in LS-

DYNA, the following were analyzed for treating the cutter-rock contact: 

• Eroding nodes to surface, 
• Eroding surface to surface, and, 
• Eroding single surface. 

It was observed that cutting forces on the cutter were greatly sensitive to the type of contact 

model used, and to their input parameters. Treatment of slave and master stiffness for the 

removal of penetrations was the most influential factor and did not allow for a consistent 

calculation of contact force. For this reason, it was eventually decided that the best cutter-rock 

contact behavior was provided by using a rigid wall embodying the cutter, because it is assumed 

non-deformable, which makes the contact calculation more efficient.  

According to LS-DYNA, a RIGIDWALL is used for treating deformable nodes against 

“rigid” geometric surfaces. The analytical equations defining the geometry of the surface are 

used in the contact calculations. This is an improvement over the usual segmented surface as 

represented by a mesh (Bala 2001). It is very important to note that a constraint-based approach 



99 

(see Section 5.2.1.1) is used herein to calculate the forces that resist penetration, however, when 

treating the cutter with a rigid wall, the simplification stated in Section 5.2.1.2 is implemented. 

The prism analytical shape of the RIGIDWALL algorithm has been selected to act as the 

cutter. In order to minimize computational time, slave nodes from the rock are defined using a 

“box”, which encompasses only a set of nodes in the upper portion of the rock, where the cutting 

action takes place. Only the nodes within this box will be checked for penetration. Figure 5-2 

portrays the setup of the rigid wall prism and the box surrounding the upper portion of a rock 

sample. 

 

Figure 5-2: Rigid-wall-prism and its node-checking box 

5.2.1.1 Constraint Contact Formulation 

The constraint algorithm implemented in LS-DYNA is based on the predictor-corrector 

algorithm developed by Taylor and Flanagan (1989). The biggest advantage of this contact 

model is that interface nodes remain on or very close to the surface they are in contact with. 

Furthermore, elastic vibrations that can occur in penalty formulations are insignificant with the 

constraint technique. The problem related to finding good penalty constants for the contact is 

totally avoided by this approach. 

At every timestep, 𝑡𝑛, the contact algorithm must first predict accelerations, velocities, 

and displacements for the next timestep 𝑡𝑛+1. LS-DYNA obtains these predictors (i.e., �̈�𝑡𝑛+1
𝑝𝑟𝑒𝑑 , 

�̇�𝑡𝑛+1
𝑝𝑟𝑒𝑑, 𝒖𝑡𝑛+1

𝑝𝑟𝑒𝑑) from its explicit integration routine, assuming that no contact occurs. During 
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timestep 𝑡𝑛, the nodal accelerations must be corrected for any changes in the traction boundary 

conditions, i.e., changes in acceleration due to surface contact determined from the displacement 

prediction for time 𝑡𝑛+1 (i.e., 𝒖𝑡𝑛+1
𝑝𝑟𝑒𝑑).  

To ensure that two surfaces do not interpenetrate, any penetrating slave node and its 

associated master surface must have accelerations applied to negate the predicted penetration. 

First, the penetration force of each slave node at time 𝑡𝑛 is calculated by: 

𝒇S𝑝,𝑡𝑛 =
𝑚S𝛿𝑡𝑛+1

𝑝𝑟𝑒𝑑

∆𝑡𝑛2
𝐧� (5-4) 

in which 𝑚S is the mass of the slave node (denoted by subscript S), δ is the penetration distance 

on the predictor configuration, ∆𝑡𝑛 is the current timestep size, and 𝐧� is the master surface 

normal unit vector. 

Next, this force is balanced to the master nodes (denoted by subscript M) using a linear 

interpolation function NSM(η,ξ) across the contact surface where η and ξ correspond to the point 

of contact of the node with the surface.  

𝑚SM = 𝑁SM 𝑚S (5-5) 

𝒇SM,𝑡𝑛 = 𝑁SM 𝒇S𝑝,𝑡𝑛 (5-6) 

Once this is complete, the contributions from the slave nodes contacting the master node 

(denoted by subscript SM) are summed, and virtual work is used to generate the normal (denoted 

by subscript n) acceleration correction for the master nodes: 

�̈�M_𝐧
𝑐 =

∑ 𝒇SM,𝑡𝑛S

(𝑚M + ∑ 𝑚SMS ) (5-7) 

where 𝑚M is the mass of the particular master node. The correction for the slave node is then 

calculated using master nodes response. For the particular case of a rectangular contact master 

surface (i.e. the cutter), M = 4: 
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�̈�S_𝐧
𝑐 = �𝑁MS �̈�M_𝐧

𝑐
4

M=1

− �
𝒇S𝑝,𝑡𝑛

𝑚S
� (5-8) 

This corrections are in turn used to get the final accelerations in the absence of friction for the 

slave and master nodes, at timestep 𝑡𝑛:  

�̈�S,𝑡𝑛 = �̈�S,𝑡𝑛+1
𝑝𝑟𝑒𝑑 + �̈�S_𝐧

𝑐 (5-9) 

�̈�M,𝑡𝑛 = �̈�M,𝑡𝑛+1
𝑝𝑟𝑒𝑑 + �̈�M_𝐧

𝑐 (5-10) 

Friction Treatment in Constraint Contact 

A Coulomb friction model is also adopted by LS-DYNA from (Taylor and Flanagan 1989). 

Friction forces are handled by a velocity dependent model, in which they resist the relative in-

plane motion of the contacting surfaces. The relative velocity, �̇�𝑡𝑛
𝑟𝑒𝑙, between the slave node and 

the corresponding master surface at timestep 𝑡𝑛 is predicted by: 

�̇�𝑡𝑛
𝑟𝑒𝑙 = �̇�S,𝑡𝑛+1

𝑝𝑟𝑒𝑑 − � 𝑁MS �̇�M,𝑡𝑛+1
𝑝𝑟𝑒𝑑

4

M=1

 (5-11) 

where �̇�S,𝑡𝑛+1
𝑝𝑟𝑒𝑑  and  �̇�M,𝑡𝑛+1

𝑝𝑟𝑒𝑑  are the predicted velocities for the slave node and master nodes, 

respectively. From this, the relative tangential velocity, �̇�𝑡𝑛_𝐭
𝑟𝑒𝑙  , its magnitude 𝑣𝑡𝑛_𝐭

𝑟𝑒𝑙  , and the 

tangential unit vector �̂� can be found by: 

�̇�𝑡𝑛_𝐭
𝑟𝑒𝑙 = �̇�𝑡𝑛

𝑟𝑒𝑙 − �𝐧� ∙ �̇�𝑡𝑛
𝑟𝑒𝑙�𝐧� (5-12) 

𝑣𝑡𝑛_𝐭
𝑟𝑒𝑙 = ��̇�𝑡𝑛_𝐭

𝑟𝑒𝑙 ∙ �̇�𝑡𝑛_𝐭
𝑟𝑒𝑙  (5-13) 
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�̂� =
�̇�𝑡𝑛_𝐭
𝑟𝑒𝑙

𝑣𝑡𝑛_𝐭
𝑟𝑒𝑙  

(5-14) 

Similar to the treatment of penetration, a tangential contact force –defined as a fraction of the 

force that must be applied to the slave node to cancel its relative motion– is given by: 

𝑓S𝐭𝐚𝐧,𝑡𝑛 =
𝑚S𝑣𝑡𝑛_𝐭

𝑟𝑒𝑙

∆𝑡𝑛
 (5-15) 

An additional acceleration correction for the slave node is then calculated by: 

�̈�S_𝐭
𝑐 = −min��𝜇 �̈�S_𝐧

𝑐� ∙ 𝐧�    ,   
𝑣𝑡𝑛_𝐭
𝑟𝑒𝑙

∆𝑡𝑛
� (5-16) 

where 𝜇 is the friction coefficient at the contact interface. 

Finally, the corrected accelerations in Equations (5-9) and (5-10) are re-defined as 

follows:  

�̈�S,𝑡𝑛 = �̈�S,𝑡𝑛+1
𝑝𝑟𝑒𝑑 + �̈�S_𝐧

𝑐 +  �̈�S_𝐭
𝑐 �̂� (5-17) 

�̈�M,𝑡𝑛 = �̈�M,𝑡𝑛+1
𝑝𝑟𝑒𝑑 +  �̈�M_𝐧

𝑐 −  �𝑁SM 
𝑚S �̈�S_𝐭

𝑐

𝑚M
�̂�� 

(5-18) 

5.2.1.2 Rigid Wall Contact Simplification 

The advantage of the constraint method is that it always guarantees the slave nodes to lie on the 

positive side of the master surface, i.e. no penetration permitted. Nevertheless, when the method 

is applied to treat the contact between a rigid wall and a deformable node, it does not conserve 

momentum or energy. The penetrating node is first moved back onto the surface of the rigid 

wall, and then its velocity and acceleration normal to the wall are immediately reset to zero: 
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�̈�S,𝑡𝑛 = �̈�S,𝑡𝑛+1
𝑝𝑟𝑒𝑑 − �𝐧� ∙ �̈�S,𝑡𝑛+1

𝑝𝑟𝑒𝑑 �𝐧� (5-19) 

�̇�S,𝑡𝑛 = �̇�S,𝑡𝑛+1
𝑝𝑟𝑒𝑑 − �𝐧� ∙ �̇�S,𝑡𝑛+1

𝑝𝑟𝑒𝑑 �𝐧� (5-20) 

This procedure for stopping nodes represents a perfectly plastic impact resulting in an 

irreversible energy loss. 

5.2.2 Rock-Rock Contact 

When simulating the fragmentation process in rock cutting in FEM, it is necessary to define a 

separate contact model to handle the rock-rock interaction because newly exposed rock surfaces 

after element erosion (see Section 5.3) will be present. 

The “Eroding Single Surface” contact model is employed to treat the rock-rock interface 

because it allows the contact surface to be updated as exterior elements are removed. The slave 

surface is typically defined as a set of parts. No master surface is defined. Contact is considered 

between all the parts in the slave set, including self-contact of each part (in this case, only the 

rock part is included). The Eroding-Single-Surface contact model in this particular study is 

defined through a penalty formulation to calculate the contact force. This penalty force is 

dependent on a penalty stiffness value, and a segment-based approach (see Section 5.2.2.2) has 

been chosen to calculate the force.  

5.2.2.1 Penalty Contact Formulation 

In line with the theoretical manual of LS-DYNA (Hallquist 2006), when applying the penalty 

method, each slave node is checked for penetration through the master surface at every timestep 

(cycle). In this study, the bucket-sorting algorithm for detecting penetrations is established. It 

divides the target surface into cubes (buckets), and the contacting nodes or segments can contact 

any segment of the target surface in the same bucket or adjacent buckets. A number of 25 cycles 

between bucket-sort contact searches has been specified.  
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If the slave node does not penetrate, nothing is done. If it does penetrate, a normal 

interface force, 𝑓S𝑝 , is applied between the slave node and its contact point: 

𝑓S𝑝 = 𝑘M 𝛿  (5-21) 

where 𝑘M is the stiffness factor for the master segment (see Section 5.2.2.2) and δ is the amount 

of normal penetration through the master segment (∆1 or ∆2 in Figure 5-3). This can be thought 

of as the addition of an interface spring. 

𝑓S𝑝 is then resolved in a local coordinate system embedded at the master element (contact 

point) to determine the normal and shear components. The sliding resistance is then computed 

using the friction parameters of the master segment and the normal force component as shown in 

Figure 5-3. 

  

Figure 5-3: Penetration removal process (Bala 2006) 

5.2.2.2 Contact Stiffness Calculation 

LS-DYNA provides two methods of calculating the stiffness factor (or spring stiffness); these are 

the Penalty-based approach and the Soft Constraint (or Segment)-based approach.  

The penalty-based approach is the most typical and the default in LS-DYNA; it uses the 

size of the contact segment and its material properties to determine the contact spring stiffness. 

This method was analyzed during the course of this investigation, and it was found that since it 

depends on the actual material bulk modulus, instabilities were caused while simulating the rock 

p2 

p1 
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cutting process. As the rock stiffness moduli are decreased during plastic deformation, the 

stiffness factor no longer works effectively, and the contact eventually breaks down causing 

undesirable penetration. Consequently, the segment-based penalty formulation is employed to 

calculate the contact stiffness. 

Segment-based Approach for Contact Stiffness 

With the segment-based contact algorithm, contact between segments is employed rather than 

using the common node-to-segment treatment. When two 4-noded segments come into contact, 

forces are applied to eight nodes to resist segment penetration. This treatment has the effect of 

distributing forces more realistically. The contact stiffness factor for the master segment is 

calculated by:  

𝑘M =
1
2

 𝑆𝐿𝑆𝐹𝐴𝐶 ∙ 𝑆𝐹𝑆 ∙ �
𝑚1 𝑚2

𝑚1+ 𝑚2
� �

1
∆𝑡�

2

 (5-22) 

where: SLSFAC is a scale factor for sliding interface penalties. (SLSFAC = 0.1) 

SFS is a scale factor for slave penalty stiffness. (SFS = 1.0) 

m1 and m2 are the segment masses (=1/2 element mass). 

∆𝑡 is automatically set to the initial solution timestep size, which is updated only if the 

solution timestep grows by more than 5%. 

5.2.2.3 Calibration of Penalty Contact Parameters 

As a result of an extensive trial-and-error process, the following input parameters for the Penalty 

Contact Formulation have been calibrated, and their values greatly affect the performance of the 

contact model for the rock simulated. 

The frictional coefficient at the rock-rock interface is assumed to be dependent on the 

relative velocity  𝑣𝑡𝑛_𝐭
𝑟𝑒𝑙   of the surfaces in contact:  

𝜇𝑐 = 𝐹𝐷 + (𝐹𝑆 − 𝐹𝐷)𝑒−𝐷𝐶�𝑣𝑡𝑛_𝐭
𝑟𝑒𝑙 �  (5-23) 

where  FS = 0.6 = Static coefficient of friction 

FD = 0.4 = Dynamic coefficient of friction 

DC = 20 = Exponential decay coefficient 
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Additionally, the validated contact parameters listed in Table 5-2 are critical: 

 
Table 5-2: Calibrated input parameters for Penalty Contact 

Parameter Value Meaning 
XPENE 4.0 Contact surface maximum penetration check multiplier. 

PENCHEK 2 

Flag for small penetration in contact search. If the slave node 
penetrates more than the segment’s 
(shortest diagonal ∙ 𝑋𝑃𝐸𝑁𝐸 20⁄ ), the penetration is ignored 
and the slave node is set free. 

EROSOP 1 Flag for storage allocation so that eroding contact can occur. 
BSORT 25 Number of cycles between bucket sorts. 
FRCFRQ 2 Number of cycles between contact force updates. 

ENMASS 1 

Flag for treatment of the mass of eroded nodes in contact. 
Eroding nodes of solid elements are retained and continue to be 
active in contact calculation. This option affects the contact 
where nodes are removed after surrounding elements fail. 

 

5.3 CRACK INITIATION AND FRAGMENT FORMATION 

Without knowing a priori the direction and trajectory of cracks during the rock cutting process, 

the success of the FEM simulation is dependent upon the implementation of element erosion in 

order to produce fragmentation of the rock piece.  

Depending on the state of stress, erosion of elements could sequentially take place either 

at the front of the cutter –mainly due to the material compressive failure (crushing)– or 

throughout a failure surface, representing a crack.  

When the simulated crack propagates to a free surface, or when it joins other cracks, a 

chip of rock may be formed and chipped out from the rock continuum piece. Thereafter, 

independent chips continue to behave according to the rock’s constitutive material model. The 

calculation of contact remains active between these chips and the cutter, as well as among chips 

and rock piece, thus they have the potential to break further.  
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5.3.1 Element Erosion 

In general, the “added” element erosion technique in LS-DYNA removes elements from the 

simulation once an element satisfies the user-supplied criteria. Since many of the material 

constitutive models do not allow failure together with erosion in their formulation, this added 

option provides a means for including erosion in these models. This option can also be applied to 

constitutive models with other failure/erosion criteria. Table 5-3 provides the details of the 

erosion criteria available in LS-DYNA, which are independent of the material model to which 

they can be added in a one-by-one basis. 

Although this capability of LS-DYNA is very useful when using material models whose 

performance could be “controlled” by the user, its application becomes limited when trying to 

simulate the most-likely-spontaneous behavior of geomaterials. 

In addition, no general guidelines exist for selecting such criteria. During the course of 

this investigation, it has been found that the response of the overall rock-cutting simulation is 

very sensitive to the value of the erosion parameter selected (see Section 5.3.2); therefore, the 

selection of the right parameter, among the ones available (see Table 5-3), is a trial-and-error 

task.  

The ideal element erosion technique is one that follows the constitutive law of the 

material, hence is able to erode elements once the material has failed upon different loading 

conditions. In other words, the material model has to be able to incorporate element erosion in its 

formulation. From the set of robust concrete/geomaterial models available in LS-DYNA, it was 

ultimately found that Mat_159 fulfills this necessity. 

5.3.1.1 Treatment of the Mass of Eroded Elements 

The fact that elements are deleted from the finite element model is commonly thought as an 

infringement of the basic modeling principle of conservation of mass. Fortunately, LS-DYNA 

provides a mechanism to circumvent this violation. It is important to note that within the 

definition of contact controls (see Section 5.2.2.3), the parameter ENMASS equals 1, which 

works by retaining the mass of the eroded nodes in the calculation, and keeping them active in 

contact. Consequently, the overall energy calculation of the system is not affected, as its mass is 

not reduced. 
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Table 5-3: Erosion criteria available in LS-DYNA  

Parameter Erosion Criterion Meaning 

𝑝max 𝑝 ≥ 𝑝max 𝑝 is the pressure (positive in compression), and 𝑝max is 
the maximum pressure for erosion. 

𝜀min 𝜀3 ≤ 𝜀min 
𝜀3 is the minimum principal strain (negative in 
compression), and 𝜀min is the minimum principal strain 
for erosion. 

𝑝min 𝑝 ≤ 𝑝min 𝑝 is the pressure (positive in compression), and 𝑝min is 
the minimum pressure for erosion. 

𝜎max 𝜎1 ≥ 𝜎max 
𝜎1 is the maximum principal stress (positive in 
tension), and 𝜎1_max is the maximum principal stress 
for erosion. 

𝜎max������ �3
2
𝜎ij′𝜎ij′ ≥ 𝜎max������ 

𝜎ij′ are the deviatoric stress components and 𝜎max������ is 
the equivalent stress for erosion. 

𝜀max 𝜀1 ≥ 𝜀max 
𝜀1 is the maximum principal strain (positive in 
tension), and 𝜀max is the maximum principal strain for 
erosion. 

𝛾max 𝛾1 ≥ 𝛾max 𝛾1 is the maximum shear strain = (𝜀1 − 𝜀3)/2 , and 
𝛾max is the shear strain for erosion. 

NCS - Number of failure conditions to satisfy before element 
erosion occurs. 

 

5.3.2 Sensitivity Analysis of “Added” Erosion Criteria 

Since Mat_72R3 proved to be a rational material model characterizing the triaxial response of 

Vosges Sandstone (see Sections 4.6.1 through 4.6.4) in compression and tension, it was used to 

carry out a parametric study of the element erosion criteria available in LS-DYNA, while 

simulating scratching tests on rock (see Section 2.1). The added erosion criteria evaluated during 

this study are listed in Table 5-4; these include shear strain  𝛾max, maximum  principal strain 

𝜀1max (tension), and minimum principal strain, 𝜀3min (compression). Depending on the case 

analyzed, one or two criteria are to be satisfied before an element is deleted from the simulation. 

For illustration purposes, Figure 5-4 compares the first six cases proposed in Table 5-4. 

This figure illustrates the rock deformation and fracturing in response to different erosion criteria 

in Mat_72R3, after the cutter has advanced 2.4 mm (0.1 in) at time 4.8 ms. Color contours are 

values of von-Mises or equivalent stress (red corresponds to a maximum value of 0.1 GPa 

(14,500 psi)). It can be seen how sensitive the material is to these erosion criteria, and how poor 
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the rock performs using Mat_72R3. In order to initiate a crack and propagate it, the elements are 

subjected to very high, irrational strain values. 

 
Table 5-4: Erosion criteria analyzed  

Simulation Name A 
γ > 

B 
ε1 > 

C 
ε3 < 

A_0.3 0.3   
A_0.5 0.5   
A_0.8 0.8   
B_0.5  0.5  
B_0.7  0.7  
B_0.8  0.8  
AB_0.5 0.5 0.5  
BC_0.5  0.5 -0.5 
BC_0.8  0.8 -0.8 
BC_0.5_0.8  0.5 -0.8 
BC_0.8_0.5  0.8 -0.5 

 

 

It was observed that values smaller than 0.3 (30%) of any of the strains analyzed, produced a 

very quick element erosion, resembling crushing of the material. For this reason, no crack could 

be developed throughout the simulation, thus values larger than 0.3 were tried and evaluated. 

The deformation of the rock in all cases shown in Figure 5-4 is found to be irrational 

because it experiences extremely large plastic deformation before breaking (i.e. is not brittle), so 

the model configuration is not useful. Lower values of erosion criteria could minimize this effect, 

however, that would lead into a pure crushing failure mode without crack propagation. 

It can be concluded that the “added” erosion method is very subjective and may lead to 

inappropriate stress-strain conditions. As mentioned in Section 5.3.1, the ideal element erosion 

technique is one that follows the constitutive law of the material, hence is able to erode elements 

once the material has failed upon different loading conditions. In other words, the material model 

has to be able to incorporate element erosion in its formulation. From the set of robust 

concrete/geomaterial models available in LS-DYNA, it was ultimately found that Mat_159 

fulfills this necessity.  
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(a)  Element erosion fulfilling criterion γ > 0.3 

 
 

 
(d)  Element erosion fulfilling criterion ε1 > 0.5 

 
 

 
(b)  Element erosion fulfilling criterion γ > 0.5 

 
 

 
(e)  Element erosion fulfilling criterion ε1 > 0.7 

 
 

 
(c)  Element erosion fulfilling criterion γ > 0.8 

 
 

 
(f)  Element erosion fulfilling criterion ε1 > 0.8 

 

Figure 5-4: Erosion criteria sensitivity analysis on Mat_72R3 – Color fringe of Equivalent stress 

Equivalent Stress (GPa) 
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5.3.3 Sensitivity Analysis of Erosion Criteria in Mat_159 

As mentioned in Section 3.2.4, Mat_159 automatically enables element erosion when the 

element loses all strength and stiffness as the damage parameter approaches a value of 1.0. To 

prevent computational difficulties with very low stiffness, element erosion is available as a user 

option. An element erodes when the damage variable D is greater than 0.99 and, simultaneously, 

the maximum principal strain, ε1-erosion, is greater than a user-supplied input value, ERODE, 

minus 1.  

This automatic –and rational– erosion capability of Mat_159 makes this material model 

the most appropriate

A sensitivity analysis has been completed to determine the value of ERODE that best 

suits the model so it replicates the laboratory tests of rock cutting. ERODE = 1 + ε1-erosion, where 

ε1-erosion is the threshold of maximum principal strain in an element in order for it to be eroded 

from the simulation. Mat_159 allows the user to include ε1-erosion together with the built-in 

damage magnitude calculation, both that would determine the element erosion. Values of 0%, 

5%, and 10% of ε1-erosion were attempted and compared. The benchmark for comparison of the 

results presented in this section is found in Section 

 to use in the simulation of rock cutting with FEM, using LS-DYNA. 

2.1.1.1, Deep Cut Experiments. In addition, a 

video of the actual rock scratching experiment in the laboratory is examined and used for 

comparison. 

Figures Figure 5-5, Figure 5-6 and Figure 5-7 display the performance of input parameter 

ERODE equal to 1.00, 1.05, and 1.10 respectively, during the simulation of rock cutting. They 

illustrate the rock deformation and fracturing after the cutter has advanced 0.8 and 7.6 mm (0.03 

and 0.3 in). Color contours are values of accumulated damage (red corresponds to a maximum 

value of 0.7). 

It can be observed that as the value of ε1-erosion increases, the accumulated damage 

increases as well. Furthermore, increasing the value of ε1-erosion implies that the rock is subjected 

to larger deformation before breaking. This produces a larger energy release when cutting, thus 

fragmentation occurs more abruptly, being evident by larger fragments chipped away from the 

rock sample. 
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Figure 5-8 shows the time history of the accumulated amount of volume being eroded 

from the rock, and Figure 5-9 shows the time history of the horizontal cutting force, both for the 

three cases evaluated. These figures accurately validate the abovementioned observations. 

After intensive sensitivity analyses of this parameter combined with others (as explained 

in Section 5.4.2), and using an improved set of input values for the Mat_159, it can be concluded 

that the value of ERODE that provides the most reasonable fragmentation mode is ERODE = 

1.05. 
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(a) Cutter travel distance, l = 0.8 mm at time t = 1.6 ms 

 

 
(b) Cutter travel distance, l = 7.6 mm at time t = 15.2 ms 

 
 

Figure 5-5: Erosion criterion in Mat_159, ERODE = 1.00 – Color fringe of Damage value 

  

Damage 



114 

 
(a) Cutter travel distance, l = 0.8 mm at time t = 1.6 ms 

 

 
(b) Cutter travel distance, l = 7.6 mm at time t = 15.2 ms 

 

Figure 5-6: Erosion criterion in Mat_159, ERODE = 1.05 – Color fringe of Damage value 

  

Damage 
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(a) Cutter travel distance, l = 0.8 mm at time t = 1.6 ms 

 

 
(b) Cutter travel distance, l = 7.6 mm at time t = 15.2 ms 

 

Figure 5-7: Erosion criterion in Mat_159, ERODE = 1.10 – Color fringe of Damage value 

  

Damage 
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(a) ERODE = 1.00 

 

 
(b) ERODE = 1.05 

 

 
(c) ERODE = 1.10 

Figure 5-8: Eroded volume fraction from rock piece during cutting simulation in Mat_159 
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(a) ERODE = 1.00 

 

 
(b) ERODE = 1.05 

 

 
(c) ERODE = 1.10 

Figure 5-9: Horizontal force during erosion criteria assessment in Mat_159 
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5.4 ANALYSIS OF FORCES FROM SIMULATIONS 

5.4.1 Force Signal Filtering and Calibration 

Due to the nature of the solution implemented, i.e. element erosion (see Section 5.3), it is 

expected that the simulated forces show frequent drops to zero as the elements in front of the 

cutter are deleted and a loss of contact takes place between the rock piece and the cutter. 

Consequently, the shape of the force plot from the simulations would lack correspondence with 

the shape of the laboratory measurements, while the magnitude of the peak forces could agree. 

In order to be able to compare quantitatively the results from the simulations, a sound 

filtering procedure has to be implemented on the recorded simulated forces. Taking into account 

that the computer simulation is capable of sampling the force values with a time interval as short 

as the timestep size (e.g. 1.0215 x 10-8 s), it would be easy to treat the data so that the right 

amount of computed force points are compared to the experimental data. Table 5-5 compares the 

data acquisition characteristics for both the laboratory scratching tests (see Section 2.1.1) and the 

numerical simulations of the rock-cutting tests. Based on these values it is clear that the 

simulation force signals are not only capturing 8 times more events occurring at a scale smaller 

than the rock grain size (i.e., 0.15–0.45 mm (0.006-0.018 in)), but they are also getting a higher 

fluctuation of the force magnitude due to fictitious phenomena associated with the numerical 

erosion implementation. Section 5.4.1.1 reviews the data-filtering technique found to be 

appropriate for this specific modeling application. 

 
Table 5-5: Characteristics of the force time history in the lab experiments and simulations 

 Lab. Scratching Tests FEM Simulations 

Cutting velocity 4 x 10-3 m/s 4 m/s 

Data acquisition frequency 100 Hz 800,000 Hz 

Measurement time interval 1 x 10-2 s 1.25 x 10-6 s 

Sampling rate 25 points/mm 200 points/mm 

Measurement length (spatial resolution) 0.04 mm 0.005 mm 
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Once the simulation force has been filtered and an average force has been estimated (see Section 

5.4.1.2), the viability of the numerical model could be assessed quantitatively, not only by 

comparing with the laboratory results, but also with calculated force values from analytical 

solutions (see Chapter 9.0). 

5.4.1.1 Butterworth Filter on Simulation Force Signal 

Curves can be filtered to remove high frequency noise. The technique is typically applied to 

acceleration or force traces. LS-Prepost is the post processing package for LS-DYNA’s output, 

and it offers four filtering options to attenuate output data. These are: the standard SAE filter, the 

FIR 100 (Finite Impulse Response) filter, the raised cosine filter, and the Butterworth filter. After 

studying these filters capabilities, it was found that the Butterworth filtered the cutting force 

output data satisfactorily, in order to be compared with the force time series measured in the 

laboratory tests. 

All filtering options require the curves to have a constant time increment between points. 

This will generally be the case in for the LS-DYNA time history results. Typically, the time 

increment should be at least 10 times the cut-off frequency. 

The Butterworth filter is designed to have a frequency response which is as flat as 

mathematically possible in the pass band. It is a low pass filter with two input variables: order 

and cut-off frequency. The order of the filter controls the roll-off rate, i.e. higher orders (roll-off 

rates) attenuate the results more quickly. On the other hand, the cut-off frequency is the 

frequency at which the magnitude of the signals is halved by the filter. The lower the frequency, 

the less noise passes through, and any peaks in the signal tend to get reduced in magnitude. 

With careful analysis of the force time history characteristics, listed in Table 5-5, it was 

established that the cut-off frequency using the Butterworth filter of LS-Prepost should be 1 kHz, 

which is equivalent to 1 Hz filtering frequency on the lab data.  

5.4.1.2 Force Signal Calibration: Experiment vs. Simulation 

Having the force signals from the shallow-cut and deep-cut scratching tests as point of reference 

(see Section 2.1.1), it is possible to compare and validate the quality of the force output from the 

LS-DYNA simulations.  
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After applying the Butterworth filter to the horizontal cutting force output signal, with a 

cut-off frequency of 1 kHz, the shape of the force profiles for the shallow-cut and deep-cut 

simulation compare very well with the background trends of the experimental force series. 

Figure 5-10 and Figure 5-11 illustrate both profiles side by side for the shallow-cut and deep-cut 

respectively. In the simulation output plots, the red series correspond to the original signal, and 

the blue series correspond to the filtered data. 

 

 

 
(a) Experimental force signal (Richard 1999) 

 
(b) Numerical force signal 

 

Figure 5-10: Validation of force signals from 0.3-mm shallow-cut 

 

 

 

 
(a) Experimental force signal (Richard 1999) 

 
(b) Numerical force signal 

 

Figure 5-11: Validation of force signals from 3.6-mm shallow-cut 
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In agreement with Richard’s findings (1999), the force fluctuation increases with the depth of 

cut. Furthermore, in order to find the most representative value of the average force for each test, 

it is opportune to follow his analysis for the determination of this value, which will help us 

compare and validate the results in a quantitative basis. Richard states that when cutting in the 

ductile mode –i.e. at a shallow depth less than the critical depth, where only damage of the rock 

(crushing) and a plastic flow of particles occurs– the mean force is the relevant output parameter 

of the test. Conversely, when cutting in the brittle regime –i.e. a deep cut where cracks and 

fragmentation of the rock takes place– the peaks of the force signal seem to be more adapted to 

characterize this failure mode, thus an average of the peak forces is the output value to consider. 

To evaluate this average, only the peak values located above the mean value are isolated and 

taken into consideration. 

To ensure the validity of the filtering technique used, it is important to note that the mean 

force calculated from the filtered simulated force history yielded the same results as the force 

obtained from the “external work” LS-DYNA output from each run. 

After the filter is passed through the simulated force signal in question, the above-

mentioned criteria are applied and a quantitative value of the force is obtained with the aim of 

comparing with the experimental value. In this way, it is possible to corroborate the viability of 

the rock-cutting simulation results and the filtering technique employed to treat the output force 

data. Figure 5-12 and Figure 5-13 include a comparison of the mean forces from the laboratory 

(reported by Richard (1999)) and the simulation for shallow cut and deep cut, respectively. 

 
 

 
(a) Experimental force signal (Richard 1999) 

 
(b) Numerical force signal 

Figure 5-12: Validation of force magnitude from 0.3-mm shallow-cut 

Mean x-force = 6600..00  NN  
 Mean x-force = 5577..77  NN  

 



122 

 

  
(a) Experimental force signal (Richard 1999) 

 
(b) Numerical force signal 

 

Figure 5-13: Validation of force magnitude from 3.6-mm deep-cut 

 

5.4.2 Factors Affecting Resulting Cutting Forces and Chip Formation 

The calculated results of the finite element models –such as stresses, deformations, and thus 

forces– are particularly sensitive to user defined factors associated with the dynamic nature of 

the rock-cutting simulations. Throughout the development of the optimum FEM model for rock 

cutting, hundreds of simulations were run as part of several parametric studies searching for the 

proper material model parameters, and the proper numerical control parameters. The most 

influential non-material-related factors affecting the results of this study were found to be the 

cutting velocity, the numerical damping properties of the rock material, and the size and shape of 

the elements comprising the rock piece.  

In addition to the above-mentioned factors related to the physics of the problem, several 

input parameters within LS-DYNA material models are significantly dominant in the results of 

the simulations. It is very important to carry out a thorough calibration of the input values in 

order to simulate the rock material behavior as realistic as possible. That is essentially one of the 

main objectives of this research effort, and it is portrayed throughout Chapters 3.0, 4.0, and 5.0.  

Another significant aspect that affects the rock cutting force output from the simulations 

is the element erosion parameter, as described in Section 5.3.1. The element erosion user input 

value for Mat_159 is limited to an additional criterion, i.e. the tensile strain magnitude, to be 

Average Peak x-force = 440000  NN  Mean x-force = 441144..44  NN  
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fulfilled together with the element damage value, which is calculated internally by the code. 

Although Section 5.3.3 illustrates three different cases for this user-defined parameter, further 

sensitivity was carried out in combination with other parameters. Before acquiring the best 

understanding of the behavior of Mat_159 and thus its input parameters, a range of sensitivity 

analyses were performed based on the variation of dominant factors such as the damage 

threshold input, ERODE, and the moduli recovery input, RECOV (see Section 5.4.2.3 for 

details). Results from these simulations helped in establishing the final set of input values 

appropriate for this rock-cutting modeling effort, as seen in Figure 5-5 through Figure 5-7 for the 

erosion parameter calibration and Figure 5-24 through Figure 5-29 for stiffness recovery 

parameter calibration. 

Once Mat_159 was ultimately calibrated and perfected, 28 different simulations of the 

same scratch test case (i.e., 3.6-mm (0.142 in) deep cut) that were run as a result of combining 

variable parameters like damping, erosion criteria, and moduli recovery, as well as of changing 

boundary conditions such as the lateral constraint of the rock piece, and the cutting velocity. 

Table 5-6 lists these 28 combinations, from which one was eventually selected to be the one that 

yielded the best results. Circled numbers are the simulation ID numbers. Comparison of these 

simulated cases with the actual laboratory test was made on a qualitative basis –based upon the 

fracturing/cracking mode, chip formation, and shape of the force signal– as well as on a 

quantitative basis –with the averaged horizontal cutting force magnitude. 

The set of inputs that produced the best rock-cutting simulation include:  

• Both external faces of the rock piece are constrained in the Z-direction (thus plane 
strain is fulfilled) 

• Cutting velocity = 4 m/s (13.12 ft/s) –in contrast with 4x10-3 m/s in the lab–  

• System damping constant = 1x10-8 (Essentially no numerical damping) 

• RECOV = 10.5 for Mat_159 (Moduli partially recovered based on pressure and 
sign of volumetric strain) 

• ERODE = 1.05 for Mat_159 

 

The following subsections exemplify the effect of the most relevant factors within this sensitivity 

analysis, i.e., the system damping constant, the cutting velocity, and value of the stiffness 

recovery parameter, RECOV. 
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Table 5-6: Combinatory of critical input parameters for sensitivity analysis 

 

5.4.2.1 System Damping 

As mentioned in Section 5.1.3, part of the boundary conditions of the developed models in this 

research accounts for a gravity-application stage prior to start the cutting (transient) simulation. 

During the dynamic relaxation phase (for initialization), LS-DYNA applies a static load, i.e. the 

gravitational load defined by the author, and the calculation begins and executes with damping 

incorporated in the update of the displacement field. LS-DYNA’s starting point is the dynamic 

equilibrium equation, Equation (1-13), with the addition of a damping term, at the nth timestep tn:  

𝐌 �̈�𝑡𝑛 + 𝐂 �̇�𝑡𝑛 + 𝑄𝑡𝑛�𝒖𝑡𝑛� = 0 (5-24) 
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𝑄𝑡𝑛�𝒖𝑡𝑛� = 𝒇𝑒𝑥𝑡,𝑡𝑛 − � 𝑩Τ𝝈𝑡𝑛  d𝑉
𝑉

 (5-25) 

where we recall that M is the mass matrix, C is the damping matrix, �̈�𝑡𝑛 is the acceleration, �̇�𝑡𝑛 

is the velocity, and 𝒖𝑡𝑛 is the displacement vector.  

Based on the central difference scheme, for �̇�𝑡𝑛 we can assume an averaged value of 

�̇�𝑡𝑛 =
1
2

 ��̇�𝑡
𝑛+12

+ �̇�𝑡
𝑛−12

� (5-26) 

Furthermore, as a starting procedure for the quasi-static solution, LS-DYNA imposes  �̇�𝑡0 = 0  

and  𝒖𝑡0 = 0, thus  �̇�𝑡
0+12

= �̇�𝑡
0−12

. Consequently, the velocity at timestep 𝑡0+12
  is 

�̇�𝑡
0+12

= −
1
2

 ∆𝑡0 𝐌−𝟏 𝑄𝑡0 (5-27) 

At this point of the calculation, a damping coefficient must be selected to obtain convergence to 

the static solution in minimal time. The best estimate for damping values is based on the 

frequencies of the structure (Hallquist 2006). One choice is to focus on an optimal damping 

parameter, so that the dynamic relaxation is nothing else but a critically damped system 

𝐶 = 𝐶𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 2 𝜔𝑚𝑖𝑛 𝑚 (5-28) 

where m is the nodal mass. The problem here is finding the dominant eigenvalue (natural 

frequency) in the structure related to the “pseudo-dynamic” behavior of the structure. As the 

exact estimate would be rather costly and not fit into the explicit algorithm, an estimate must be 

used. The automatic estimate of the minimum eigenvalue of the structure is calculated based on 

Papadrakakis’ paper as described in LS-DYNA’s Theory Manual (Hallquist 2006). 

If the automatic estimate for  𝜔𝑚𝑖𝑛  is not used, LS-DYNA’s default method to apply 

damping during the dynamic relaxation phase includes an input damping factor η (defaulted to 

0.995), such that 
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�̇�𝑡
𝑛+12

= 𝜂 �̇�𝑡
𝑛−12

+ �̈�𝑡𝑛  ∆𝑡𝑛 (5-29) 

The relaxation process continues until a convergence criterion based on global kinetic energy is 

met, i.e. convergence is assumed if  

𝐸𝑘 < 𝑐𝑣𝑡𝑜𝑙 ∙ 𝐸𝑘𝑚𝑎𝑥 (5-30) 

where cvtol is the convergence tolerance (defaulted to 0.001). The kinetic energy excludes any 

rigid body component. Initial velocities assigned in the input are stored during the relaxation. 

Once convergence is attained the velocity field is initialized to the input values.  

Mass Weighted Damping 

With mass weighted damping, the damping force in Equation (5-24) is simplified into 

𝐹𝑡𝑛
𝑑𝑎𝑚𝑝 =  𝐂 �̇�𝑡𝑛 = 𝐷𝑠 𝑚 �̇�𝑡𝑛 (5-31) 

As can be seen from Figure 5-14 and as discussed above, the best damping constant for the 

system is usually some value approaching the critical damping factor for the lowest frequency 

mode of interest; therefore, LS-DYNA recommends the use of  𝐷𝑠 =  2 𝜔𝑚𝑖𝑛.  

 
Figure 5-14: Effect of damping coefficients applied to a 1-degree-of-freedom oscillator (Hallquist 2006) 
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One expects that the application of a mass weighted damping factor to the system provides 

resistance against disturbance motion (as in the rock-cutting dynamic problem), and eventually 

this motion subsides until a state of quasi-static deformation is reached due to frictional losses 

and spreading of shock waves. These shock waves can be represented as mechanical waves of 

finite amplitude and are initiated when the material undergoes a fast compression. The rock-

piece medium is comprised of material points, which are forced away from their equilibrium 

position as the disturbance propagates through the material. In this order of ideas, the use of a 

system damping coefficient should be able to considerably affect the resulting cutting forces, as 

the internal element vibration and thus the kinetic energy of the system is supposed to decrease.  

Commonly, researchers dealing with numerical modeling of rock cutting (or associated 

problems) make use and describe the application of a system damping factor to attenuate out-of-

balance (non-contact-related) forces behind a shock front. Some instances include investigations 

on fracture initiation, growth and effect of stress field (McKinnon and Garrido 1998), numerical 

modeling of indentation and scratch problems (Cheng 1996), combination of discrete element 

and finite element methods for dynamic analysis of geomechanical problems (Oñate and Rojek 

2004), and discrete element modeling of rock cutting (Rojek 2007). Although these research 

groups implement global damping factors into their rock cutting simulations, they do not specify 

the effect that such a parameter has on their results.  

In the present work, the influence of the system damping constant, Ds is studied by 

varying its value as shown in Table 5-6. As a quantitative measure of the simulation results, the 

average peak force from all the cases has been compiled in Table 5-7 (see Section 5.4.1 for 

details on the force averaging method). Surprisingly, there seems to be no dramatic variation in 

the force magnitude due to the application of damping coefficients of different value. There is 

only a slightly decrease in the average cutting force, as the damping coefficient is reduced. This 

trend is illustrated in Figure 5-15, where the results from runs 12 through 23 are plotted. This 

group of runs encompasses all those that had one of the rock slab faces not constrained, and a 

cutting velocity of 2 m/s (6.56 ft/s). These include also the variation of the erosion criterion 

value. It can be seen that for simulations with ERODE = 1.0, the effect of the damping 

coefficient is negligible, whereas for ERODE = 1.05 and 1.10 the influence is notorious, being 

somewhat stronger for ERODE = 1.05. 
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Table 5-7: Final sensitivity analysis: Resultant cutting forces 
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Figure 5-15: Effect of damping coefficients on simulated horizontal cutting forces 

As far as the quality of the force signal, Figure 5-16 presents the raw data and the filtered time 

history of cutting forces for runs 12 through 23. Based on these, it is possible to validate the 

statement that the cutting force is not importantly affected by the damping coefficient. This can 

as well be corroborated by the illustrations of the fracturing modes in all the analyzed rock-

cutting cases. Figure 5-17 depicts the element damage value (with damage equal or greater than 

50% in red) at a certain stage of each of the runs, where the creation of cracks and the potential 

formation of chips are expected once a red line (thin red zone) is propagated through the rock. 

Within the damage contour plots, in general, for a crack to start at the cutter edge and 

propagate to the surface, thus a chip is formed and separated, there should not be a concentration 

red elements at the cutting face. Damaged elements at the cutter front represent elements that are 

being crushed before a crack is propagated forward. It is arguable that some of these cases reflect 

a good fracturing mode, however, the optimal simulation, in agreement with the experimental 

scratching tests, should develop more chips than the runs shown in Figure 5-17. 

 In addition, it is expected that the peak forces are more spaced apart (about the same 

distance as the cutting depth, i.e. 3.6 mm), because this is an indication of chip formation. 

Therefore, due to the magnitude of the forces, and the quality of the fragmentation process, runs 

12 through 23 do not have the best model configuration to validate the experimental tests. 

It is then demonstrated that a fixed boundary condition on all rock piece faces, with non-

reflective characteristics works best in this rock cutting modeling. This assures that a plane strain 

condition (with constant behavior in the z-direction) is met. 
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Figure 5-16: Damping sensitivity in deep-cut simulation: Force signals  
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Figure 5-17: Damping sensitivity in deep-cut simulation: Chip formation 
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5.4.2.2 Cutting Velocity 

The velocity of the cutting tool in numerical simulations is a critical feature of the model as it 

can drastically change the results when implementing rock materials that are strain / load rate 

sensitive and have a non-linear behavior. It is also important due to the transient nature of the 

problem, where the dynamics of the model should resemble the real physical situation. 

Although there are no findings in the literature of numerical modeling of rock cutting 

reporting any effect of the tool velocity on the cutting forces, some researchers have accounted 

for the influence of the cutter velocity on numerical models of ceramic and granular material, as 

well as on rock specimens in the experimental setting. The observations are followed by a wide-

range of conclusions; from direct proportionality to independence between the cutting velocity 

and forces. 

Nouguier et al. (2000) checked the influence of the cutting velocity on the mean force 

when pushing granular material simulated with a DEM computer code. At a high velocity –i.e. 

0.5 m/s, as compared to 0.02 m/s– they observed a dynamic regime where the granular material 

intermittently got loose from the tool, a fact revealed by the force vanishing at some moments. 

They also observed that when increasing the cutting velocity, a certain fluidization of the free 

surface manifested by its larger void ratio. Their simulation results led them to conclude that the 

mean force increases quadratically with the cutting velocity. 

Furthermore, El-Wardany et al. (2009)) simulated the process of green machining fragile 

ceramic compacts with FEM modeling. They state that the “hydrostatic pressure in the 

workpiece is mainly controlled by speed and tooltip radius. The increase in the hydrostatic 

pressure reduces the [detrimental] crack initiation, which indicates that higher speed and lower 

tooltip radius are recommended” for this manufacturing process.  

In contrast, as far as experimental rock cutting, Germay et al. (2009) indicate that the 

forces on single cutter tests depend on the depth of cut but not on the cutting velocity, at least in 

the range suitable to field conditions. They also describe steady-state kinematically controlled 

experiments of rock drilling with bit forces depending on the rate of penetration and on the bit 

angular velocity, only through their ratio, i.e., on the depth of cut, which suggests that the force 

is rate-independent. 
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This study includes the sensitivity analysis of the cutter force to the cutting velocity, by 

varying its value as listed in Table 5-6. As a quantitative measure of the simulation results, the 

average peak force from all the cases has been compiled in Table 5-7 (see Section 5.4.1 for 

details on the force averaging method). In contrast to the findings described in the previous 

section, and due to the fragmentation mode observed, only the models in the sub-group of “All 

surface nodes constrained in the Z-direction” with an ERODE value of 1.05 are displayed in this 

section and used to draw the conclusions on the effect of the velocity on the horizontal cutting 

force. 

 As shown in Figure 5-18 , with the exception of run 8B, there is a clear trend of the mean 

force increasing with the magnitude of the cutting velocity. Although run 8B presents a lower 

mean force, this can be the result of the lack of simulation time (fewer data), and in reality, this 

particular case could have a larger value of force reflected by the time history illustrated in 

Figure 5-19. It can be seen in this figure that with larger velocity, the peaks of the forces are 

more spaced apart. It also shows that the forces tend to drop lower after peaks when the velocity 

is higher. This fact validates the statement of Nouguier et al. (2000) mentioned above regarding 

the loss of contact between the material being cut and the tool, and that the force is proportional 

to the velocity.  

 

 
 

Figure 5-18: Effect of cutting velocity on horizontal cutting forces from deep-cut simulation 
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Figure 5-19: Cutting velocity and RECOV sensitivity in deep-cut simulation: Force signals  

9A 9B 

8A 8B 

7A 7B 

5A 5B 

3A 3B 



 

135 

Ds RECOV = 10.5 RECOV = 1

v 
= 
1 
m
/s

0.0001

3A 3B

0.0001

5A 5B

1.00E‐08

7A 7B

0.0001

8A 8B

1.00E‐08

9A 9B

v 
= 
2
 m
/s

All surface nodes constrained in Z‐dir

Additional  1 criterion for Erosion = 5%

v 
= 
4
 m
/s

 

Figure 5-20: Cutting velocity and RECOV sensitivity in deep-cut simulation: Chip formation 
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On the other hand, although the deep-cut simulation results seem to contradict the claim made by 

Germay et al. (2009) regarding the independence of the cutting force from the velocity, Figure 

5-21 shows that there is indeed a point where the horizontal cutting force converges to a value 

and is not affected by larger velocities. The simulation results plotted in Figure 5-21 belong to 

the velocity sensitivity analysis performed at a shallow depth of cut, i.e. 0.3 mm (0.012 in) on a 

10-mm (0.4 in) wide rock slab.  

 

 
 

Figure 5-21: Effect of cutting velocity on horizontal cutting forces from shallow-cut simulation 

 

Obtaining a relatively constant force after the 2 m/s (6.6 ft/s) velocity in the shallow-cut scenario 
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the rock cutting simulations that wanted to be compared with experimental scratching tests at an 

actual speed of 4 mm/s (0.16 in/s). In addition to the good results obtained at this cutting speed, 

there is a tremendous benefit as far as computational time. 

This selection is supported also by the quality of the force signals in the deep and shallow 

cut simulations (see Figure 5-19 and Figure 5-22 respectively), and moreover by the 

fragmentation process revealed by the cases run at 4 m/s (13.1 ft/s). It can be appreciated in 
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amongst the runs with the largest velocity, especially those with the lowest value of the system 
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Figure 5-22: Cutting velocity sensitivity in shallow-cut simulations
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5.4.2.3 Damage Recovery 

Parameter RECOV is thought to be a determinant characteristic of Mat_159 material model, 

because it is responsible of tracking the damage parameters and controlling their behavior. Due 

to the nature of the material model implemented for this research, this feature has significant 

implications as shown below. 

As part of Mat_159’s formulation, and as explained in the User’s Manual for LS-DYNA 

Concrete Material Model 159 (Murray 2007b), the damage parameters in Equation (3-50) and 

(3-51) are tracked as follows: 

a) The ductile damage

b) The 

 parameter, 𝐷(𝜏𝑐) increases in value whenever the ductile damage 

formulation is active (i.e., when pressure is compressive) and 𝜏𝑐 exceeds the current 

damage threshold. The value of the ductile damage never decreases, even temporarily. 

brittle damage

 

 parameter, 𝐷(𝜏𝑡) increases in value whenever the brittle damage 

formulation is active (i.e., when pressure is tensile) and 𝜏𝑡 exceeds the current damage 

threshold. When inactive, 𝐷(𝜏𝑡) is temporarily set equal to zero in order to model 

stiffness recovery with crack closing. In other words, brittle damage drops to zero (i.e., 

stiffness is recovered) when the pressure switches from tensile to compressive. The 

maximum value of 𝐷(𝜏𝑡) is recovered when the brittle formulation becomes active again. 

The input parameter RECOV is user-specified to control the stiffness recovery. Is it by default 

zero, which means that 100% of stiffness and strength is recovered when pressure becomes 

compressive. A value of 1 would provide no recovery of stiffness and strength; hence, brittle 

damage remains at its maximum level. Partial recovery is modeled for values of RECOV 

between 0 and 1. Its implementation considers one of the following two optional conditions: 

c) Input value between 0 and 1. A recovery percentage –corresponding to the RECOV 

value– is based upon the sign of the pressure invariant only (compressive to be active), 

thus RECOV works according to criteria a) or b) above. 

d) Input value between 10 and 11. A recovery percentage –corresponding to RECOV = 

RECOV-10– is based upon the sign of both the pressure and volumetric strain 

(compressive to be active). A flag is set to request the volumetric strain check. 

 
Equation (5-32) and Figure 5-23 describe how RECOV controls the moduli behavior: 
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𝐷(𝜏𝑡) = RECOV ∙ 𝐷(𝜏𝑡) (5-32) 

 
 

Figure 5-23: Modulus degradation with strength -example for concrete under cyclic loading (Murray 2007a) 

 

During the beginning stages of this parametric study, it was intuitively thought that in order to 

simulate a clear generation of cracks and subsequent rock chips while cutting, it was necessary to 

maintain the brittle damage condition at its maximum, thus RECOV = 1 and consequently the 

stiffness was not recovered. However, this configuration of the model did not yield the best 

results, as compared to other values of RECOV. Figure 5-24  through Figure 5-29  depict the 

outcome of 6 simulations upon the variation of the RECOV value as 0, 0.5, 1, 10, 10.5, and 11 

respectively. This group of runs corresponds to a limited rock size version of the 3.6-mm (0.142-

in) deep cut, at a speed of 0.5 m/s. Each of the Figure 5-24  through Figure 5-29contains a 

sequence of cutting illustrations at 3 different fixed times of the simulation, such as 0.4 ms, 2.8 

ms, and 13.8 ms, as well as the time history of horizontal cutting force. It is important to note 

that the quality of the force signals is not the best, as the material model used herein was not 

completely calibrated at that moment. However, these runs serve as a means to visualize the 

influence of the RECOV parameter. Although not completely evident from this graphic record, 

the most appropriate fragmentation mode was provided by the case with RECOV = 10.5. 
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Figure 5-24: Preliminary simulation of 3.6-mm deep rock cut with RECOV = 0 

 

  

  
 

Figure 5-25: Preliminary simulation of 3.6-mm deep rock cut with RECOV = 0.5 
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Figure 5-26: Preliminary simulation of 3.6-mm deep rock cut with RECOV = 1 

 

  

  
 

Figure 5-27: Preliminary simulation of 3.6-mm deep rock cut with RECOV = 10 
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Figure 5-28: Preliminary simulation of 3.6-mm deep rock cut with RECOV = 10.5 

 

  

  
 

Figure 5-29: Preliminary simulation of 3.6-mm deep rock cut with RECOV = 11 



143 

Theoretically in the case of RECOV = 10.5, the rock recovers half of its stiffness modulus and 

strength once its elements are damaged to some degree (less than 99%, otherwise elements are 

eroded) through tension and subsequently compressed. This imitates the process of an almost-

developed crack which is compressed back and still provides some strength upon loading. 

With the material model fully calibrated, runs denominated with letters A and B in Table 

5-6 were intended to reveal the influence of the RECOV parameter with values 10.5 and 1. 

Figure 5-18 not only shows the effect of the cutting velocity on the mean force of each run, but it 

also exposes the effect of RECOV on the cutting force. For runs with Ds = 1x10-8 ms-1, there is a 

marked tendency of getting larger mean values of force with RECOV = 10.5.  

As a matter of fact, simulation 9A –with additional erosion criterion ε1 = 5%, cutting 

velocity of 4 m/s (13.1 ft/s), system damping coefficient Ds = 1x10-8 ms-1, and RECOV = 10.5– 

results in the closest value of mean peak horizontal force to the experimental results by Richard 

(1999). For the deep-cut scratch test in Vosges Sandstone, the simulated mean peak force of 

414.41 N (93.16 lbf) compares very well with the reported experimental force of 400 N (30.0 

lbf). 

In addition to the quantitative validation obtained, Figure 5-19 and Figure 5-20 present 

the force signals and fracturing process images, respectively, for rock cutting cases at different 

velocities, with a couple of different damping coefficients, and additionally, the two columns in 

each figure compare the variation in RECOV value, from 10.5 to 1. Evidently run 9A exhibits 

the best quality in force signal and fragmentation mode output. This is shown in detail in Section 

6.1. 

Due to the successful validation through the different aspects described in this and former 

sub-sections, the configuration of run 9A is selected as the baseline for future simulations of rock 

cutting in LS-DINA –as mentioned in page 123. 
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6.0 NUMERICAL SIMULATION OF CUTTING ON ROCK SLABS 

This chapter presents the numerical simulation of the scratch tests performed by Richard (1999). 

Not only the models resemble the rock fragmentation seen in the laboratory, but the resulting 

cutting forces can be successfully validated by comparing with the experimental measurements. 

The rock material simulated herein corresponds to Vosges sandstone modeled with Mat_159, 

following all the considerations explained in Section 3.2.4 and Chapter 5.0. The same rock slab 

model is used to simulate scratching tests at a depth of 0.3, 0.6, 0.8, 1.0, 1.4, 2.0, and 3.6 mm 

(0.012, 0.024, 0.031, 0.04, 0.055, 0.079 and 0.14 in).  

Sections 6.2.1 and 6.2.2 illustrate in detail a time series of the simulation of deep cut (i.e. 

3.6 mm) and shallow cut (i.e. 0.3 mm) tests, respectively, in par with pictures of the laboratory 

tests on Berea Sandstone. This remarkable achievement helps verify the robustness of the 

numerical models developed. The last section in this chapter provides a quantitative assessment 

of the model by comparing the obtained specific energy from the simulations and from the 

experiments. 

6.1 MODEL GEOMETRY 

6.1.1 Rock Specimen Geometry 

The level of damage experienced in the shallow cut –less than 1.5 mm in depth– remains very 

close to the surface, so practically, the numerical rock mesh could be limited to a thickness of 

only 10 times the cutting depth to guarantee no boundary influence over the element stresses in 

the cut zone. Nevertheless, the deep-cut model imposes a great challenge associated with the 

large number of elements and the need to maintain element sizes as small as the actual particle 
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sizes in these sandstones, throughout the area where the fragmentation takes place. Figure 6-1 

shows the geometry of the numerical domain used for all the slab cut simulations regardless of 

the depth of cut. Only half of the actual slab thickness is modeled in order to save on 

computational time; however, the cutting forces reported are adequately proportioned to the full 

thickness. A fine mesh with average element size of 0.18 mm (0.007 in) forms the top of the 

sample, while a coarse mesh with average element size of 1.1 mm (0.04 in) is distributed 

throughout the rest of the rock piece. The total number of nodes is 81,276 and total number of 

elements is 454,870. 

 

 
 

 

 
Figure 6-1: Rock model geometry for slab cuts 

6.3 mm 

13.2 mm 

3.6 mm,

depth of cut

19.5 mm 

38.4 mm

5 mm 



146 

6.1.2 Cutter Geometry 

Since the contact model implemented between the cutter and the rock is RIGIDWALL (see 

Section 5.2.1.2), as its name implies, the cutter is characterized by rigid body. This simplifies the 

model of the cutter as there is no need for element discretization throughout its volume, but 

instead, a simple 1-solid- element body is all takes to simulate the PDC cutter. 

The only dimension requiring a specific definition is the width of the cutter. It has to be 

greater than the rock slab width to guarantee full contact along the cutting front. The other 

dimensions of the cutter are selected arbitrarily. Figure 6-4 shows the geometry of the cutter 

model used for all the slab cut simulations regardless of the depth of cut. It is tilted 15 degrees 

forward (negative rake angle), such as the experimental configuration. Only half of the actual 

slab thickness is modeled in order to save on computational time; however, the cutting forces 

reported have been adequately proportioned to the full thickness. 

 

 
 

  
 

 
Figure 6-2: Cutter geometry for slab cuts 
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6.2 SIMULATION OUTPUT 

6.2.1 Deep Cut Simulation Output 

First, Figure 6-3 depicts the horizontal force signal –original and filtered– from the simulation of 

cutting Vosges Sandstone at a depth of 3.6 mm. On this plot, selected stages of the simulation are 

indicated with small red letters in parenthesis. This sequence of stages is presented in Table 6-1. 

The selected images correspond to various instances of the rock experiencing different loading 

conditions over time. A brief account of the potential mechanisms found at each stage is 

described in Table 6-1. The color contours seen throughout the rock model correspond to the 

maximum element damage, with red being equal or larger than 50% and blue equal to zero. 

Elements are eroded once the element damage value is greater than 99%. 

Moreover, a good comparison of the simulated horizontal force history and magnitude 

with that measured in the laboratory can be appreciated in Section 5.4.1.2. 

 

 
Figure 6-3: Horizontal force during simulation of Vosges Sandstone cutting (3.6-mm deep) 

0 

200 

400 

600 

800 

1000 

1200 

0 5 10 15 20 25 30 35 40 

H
or

iz
on

ta
l F

or
ce

 (N
) 

Cutter Displacement (mm) 

raw 
filtered 

(t1) (t2) 

(t3) 

(t4) 

(t5) 

(t6) (t7) 

(t8) 

(t9) 



148 

Table 6-1: Simulated cutting sequence on Vosges Sandstone at a depth of 3.6 mm (damage contours) 

 
(t1) First peak strength overcome. Tension cracks are formed and directed downwards upon cutter front compression. 

 
(t2) Right before the second peak is reached, the crack grows following a curved path. Its depth is related to the rake angle. 

 
(t3) Force reduces rapidly upon the quick propagation of a secondary shear crack –closest to the free surface. 
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Table 6-1 (continued) 

 
(t4) First rock fragment separates and cutting face area in contact with cutter is reduces significantly; so does the force. 

 
(t5) Force accumulates again and reaches a maximum while crushing some front material. Tension at the tip creates new crack.

 
(t6) Multiple interconnected tension cracks initiate upon the large stress concentration after (t5). 
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Table 6-1: (continued) 

 
(t7) The force drops to a minimum as the cracks reach the free surface and chips are eventually sheared off the rock. 

 
(t8) As the front material is potentially more degraded, it gets crushed in front of the cutter, until stronger material is met. 

 
(t9) Again, compression at the front eventually creates tension cracks propagated forward. Cutting cycle may re-start at (t1). 
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In addition to the very realistic fragmentation process observed during the simulation of Vosges 

Sandstone cutting at 3.6 mm of depth (presented above), cutting of Berea Sandstone (with 

material properties slightly different) at a depth of 4 mm (0.16 in) has been simulated and 

compared with the physical scratching experiment. Figure 6-4 allows us to appreciate a sequence 

of stages where different fracturing forms are observed in the simulation, and can be suitably 

corroborated by snapshots from the experimental test. Among the random combination of failure 

mechanisms found during the rock cutting process, the following instances were selected and 

validated with laboratory images: 

• Figure 6-4 (a, a*): As the material is compressed horizontally, superficial cracks can be 

created due to tension in the direction perpendicular to cutting. 

• Figure 6-4 (b, b*): Once the small fragments in front of the cutter are chipped away, the 

cutter loses contact with the material ahead, causing the forces to drop. 

• Figure 6-4 (c, c*): Large fragments result from deep shear failure and are pushed in front 

of the cutter. 

• Figure 6-4 (d, d*): Cracks propagated longitudinally ahead of the cutter can produce big 

sharp fragments. 

• Figure 6-4 (e, e*): Despite small fragments getting caught between the cutter and the 

rock, a shear crack may be initiated and may grow toward the free surface.  

 

6.2.2 Shallow Cut Simulation Output 

The time history of the simulated horizontal cutting force at a depth of 0.3 mm for Vosges 

Sandstone is plotted in Figure 6-5. Three stages of the simulation are indicated with small red 

letters in parenthesis on the force plot and displayed in Figure 6-6. The color contours seen 

throughout the rock model correspond to the maximum element damage, with red being equal or 

larger than 50% and blue equal to zero. Elements are eroded once the element damage value is 

greater than 99%. 

As it is expected, the failure mechanism involves only crushing of particles (elements), in 

this case simulated by element removal. This is the reason why the force plot reflects frequent 

drops to zero, as the cutter loses contact with the crushed material ahead.  
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Figure 6-4: Cutting sequence on Berea Sandstone at 4-mm deep. LEFT: Simulation, RIGHT: Laboratory 
 

(b) l = 5.0 mm (b*) 

(e) l = 29 mm (e*) 

(d) l = 19 mm (d*) 

(c) l = 12.5 mm (c*) 

(a) l = 1.3 mm (a*) 
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Figure 6-5: Horizontal force during simulation of Vosges Sandstone cutting (0.3-mm deep) 

 

 

 

 

Figure 6-6: Simulated cutting sequence on Vosges Sandstone at a depth of 0.3 mm 
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This persistent drop to zero makes the simulated and laboratory force signals look different (as 

seen in Section 5.4.1.2). Nevertheless, after applying the filtering technique to the output data, as 

explained in Section 5.4.1, the filtered time series as well as the averaged force magnitude can be 

compared satisfactorily with the experimental results. 

In addition to the ductile failure mode observed during the simulation of Vosges 

Sandstone cutting at 0.3 mm of depth (presented above), cutting of Berea Sandstone (with 

material properties slightly different) at a depth of 0.3 mm (0.012 in) has been simulated and 

compared with the physical scratching experiment. Figure 6-7 shows a sequence of three stages 

where the continuous ductile damage of the rock surface is observed, and can be suitably 

corroborated by snapshots from the experimental test. 

 

      

      

      

Figure 6-7: Cutting sequence on Berea Sandstone at 0.3-mm deep. LEFT: Simulation, RIGHT: Laboratory 

 

(b) l = 12.5 mm (b*) 

(c) l = 20 mm (c*) 

(a) l = 5 mm (a*) 
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6.2.3 The Effect of Cutting Depth on the Force 

The resulting horizontal cutting force signals and their filtered series for different depths of cut 

are tabulated in Table 6-2. As discussed in Section 5.4.1.2, once the original force signals from 

the simulation have been filtered, for cutting tests considered shallow (in ductile failure mode), 

the mean force value is computed simply by averaging all the filtered data. On the other hand, 

based on the suggested procedure by Richard (1999), for cutting tests considered deep (in brittle 

failure mode), the mean force is obtained by averaging only the data greater than the mean. It is 

important to note that the mean peak force for simulated deep cuts in the present work is 

calculated slightly different. Only the peak values above the mean of the filtered forces are 

considered in the average.  

Figure 6-8 combines laboratory data reported by Richard et al. (1998) and simulation data 

from this study. The original plot has been used by Richard et al. to describe the transition from 

ductile to brittle failure mode in relationship with the depth of cut. For Vosges Sandstone, he 

identifies a critical depth of cut of 1.5 mm (0.06 in) at which the behavior of the braking 

mechanism evolves from ductile to brittle. This transition is particularly characterized by the first 

appearance of small chips, and consequently the first peak signals in the force history. 

 

  
 

Figure 6-8: Slab horizontal cutting force as a function of depth. Laboratory vs. Simulation ** 

** Original plot by Richard et al. (1998) with superimposed simulation data from this study.  

Laboratory data 

Simulation data 
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Table 6-2: Horizontal force signals at different cutting depths for slab cut simulations 
 

d 
(mm) Horizontal Force (N) vs. Cutter displacement (mm) Mean 

Force (N) 
Mean Peak 
Force (N) 

0.3 

 

60.0 67.3 

0.6 

 

80.4 94.2 

0.8 

 

102.6 112.1 

1.0 

 

109.8 124.1 

1.4 

 

140.2 158.3 

2.0 

 

178.6 245.2 

3.6 

 

246.4 414.4 
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It can be observed in Figure 6-8 that the mean and mean peak force data points from the 

simulation are relatively close to the mean values from the laboratory up to a depth of 1 mm 

(0.04 in). It can be claimed that both of these forces from the simulation follow a linear trend 

during the ductile failure mode, such as Richard states. With a cutting depth larger than 1 mm, 

however, the discrepancy between the experimental and numerical forces starts to increase 

gradually.  

In addition, when focusing on the brittle mode, the mean peak data from the simulations 

follow a steeper linear trend, in contrast with the non-linear variation of the force in relation with 

the cutting depth reported by Richard –which eventually becomes a horizontal asymptote. Figure 

6-9 presents the information of the linear regression that best fits the ductile and brittle modes 

(separately) for the mean peak forces, and the polynomial regression that best represents the 

mean force values over all the simulations. 

  

Figure 6-9: The effect of cutting depth on the slab-cut simulation forces 
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Although the tendency of the force in the brittle mode differs between Richard’s laboratory 

results and the numerical simulations, the latter agree with several authors who have obtained the 

same upward trend of the mean peak cutting force (using sharp cutters in the laboratory) while 

increasing the depth of cut in the brittle regime. Among them are Glowka (1987), Garcia-

Garavito (1998), Wise et al. (2002), Kaitkay and Lei (2005), and Bilgin et al. (2006). 

This study has also demonstrated that there could be a cutting depth at which the fracture 

mode transitions from ductile to brittle, i.e., d > 1.4 mm (0.055 in), as seen in Table 6-2 and 

Figure 6-9. Nonetheless, from the simulated results, it can be claimed that such a transition is 

experienced gradually rather than at a definite critical depth. This statement can be further 

validated throughout the next section. 

6.3 EROSION ANALYSIS FOR SLAB CUT SIMULATIONS 

One of LS-DYNA’s useful outputs available is the percentage of rock that has been eroded 

during each run. Additionally, a clear representation of this measure is provided by displaying 

the elements that have been “eroded” from the model. These eroded elements are considered as 

being “crushed” upon reaching maximum strength and strain criteria, and help in visualizing the 

gradual evolution of the fracturing mechanism, from ductile to brittle. Figure 6-10 portraits the 

rock models from each slab cut simulation with the elements that have been eroded –colored in 

light or dark brown– once the cutter has passed through. The remaining rock elements show the 

maximum damage value reached. The color contours of maximum damage range from blue for 

zero damage, to red for damage equal or greater than 50%.  

It can be seen in this group of illustrations that as the depth of cut increases, the exposed 

rock surface becomes more erratic, and the rock elements more damaged. Also, although it is not 

so evident in this set of images, the rock chips detached from the specimen become larger in size 

and more abundant as the cut is deeper. 

As far as the actual volume fraction of rock that is eroded from the model, this 

measurement is plotted against the cutter displacement and shown in Figure 6-11 for all the slab 

cut simulations. It can be seen how the eroded volume pattern gradually changes from a quasi-

straight line for a cutting depth of 0.3 mm, to a more rippled line for a depth of 2.0 mm, to a very 

bumpy line for a depth of 3.6 mm. 
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Figure 6-10: Visualization of eroded elements in slab-cut simulations 
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Figure 6-11: Eroded volume fraction during each slab-cut simulation 

 

In order to quantify the amount of rock material that gets crushed with respect to the nominal 

amount (depth) of material intended to be cut during each slab cut simulation, the following 

parameters are introduced: 

𝑉𝑐𝑟𝑢𝑠ℎ𝑒𝑑 = 𝐸𝑉𝐹𝑚𝑎𝑥  ×  𝑉0 (6-1) 

𝐴𝑐𝑟𝑢𝑠ℎ𝑒𝑑 =
𝑉𝑐𝑟𝑢𝑠ℎ𝑒𝑑

𝑙𝑚𝑎𝑥
 (6-2) 

𝑑𝑐𝑟𝑢𝑠ℎ𝑒𝑑 =
𝐴𝑐𝑟𝑢𝑠ℎ𝑒𝑑

𝑤
 (6-3) 
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𝑑𝑠𝑙𝑎𝑏∗ =
𝑑𝑐𝑟𝑢𝑠ℎ𝑒𝑑

𝑑
 × 100% (6-4) 

where 𝑉𝑐𝑟𝑢𝑠ℎ𝑒𝑑 is the maximum volume of rock that has been eroded from the model after the 

cutter has passed, 𝐸𝑉𝐹𝑚𝑎𝑥 is the maximum eroded volume fraction, 𝑉0 is the rock sample initial 

volume, 𝐴𝑐𝑟𝑢𝑠ℎ𝑒𝑑 is the averaged cross-sectional area considered crushed, 𝑑𝑐𝑟𝑢𝑠ℎ𝑒𝑑 is the 

averaged rock depth considered crushed, and 𝑑𝑠𝑙𝑎𝑏∗  is an index that represents the percentage of 

crushed rock material with respect to the intended depth of cut, 𝑑.  

Both variables in Equations (6-3) and (6-4) have been graphed in Figure 6-12 against the 

fixed cutting depth in each simulated case. Focusing on the primary y-axis, it is evident that all 

the values of 𝑑𝑐𝑟𝑢𝑠ℎ𝑒𝑑, except for the one corresponding to d = 3.6 mm, are located to the right of 

the 1-to-1 dashed line (in blue). This means that the actual crushed depth –once the cutter 

passes– is greater than the fixed depth that was intended to be cut. The percentage of actual 

crushed material with respect to the intended depth of cut is plotted on the secondary y-axis. 

 

  

Figure 6-12: Measurement of crushed material for slab cut simulations 

y = 1.5852x0.6119 
R² = 0.9978 

0% 

50% 

100% 

150% 

200% 

250% 

300% 

0 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

0 0.5 1 1.5 2 2.5 3 3.5 4 

(mm) 

d (mm) 

d_crushed (mm) 

d*_slab (%) 

𝒅𝒄𝒓𝒖𝒔𝒉𝒆𝒅 𝒅𝒔𝒍𝒂𝒃∗  

𝒅𝒔𝒍𝒂𝒃∗  

𝒅𝒄𝒓𝒖𝒔𝒉𝒆𝒅 

 



162 

Likewise, focusing on left-hand y-axis, it can be seen that all the values of 𝑑𝑠𝑙𝑎𝑏∗ , except 

for the one corresponding to d = 3.6 mm, fall above the 100% dotted line (in red). This is the 

numerical representation of what is illustrated in Figure 6-11. For all slab-cut images, the amount 

of eroded material always seems to go lower than the level of the fixed cutter depth –shown to 

scale on the far right end of each model.  

The case of d = 3.6 mm in particular (and also, in less proportion, the case of d = 2 mm) 

exhibits lower values of 𝑑𝑐𝑟𝑢𝑠ℎ𝑒𝑑 –and correspondingly 𝑑𝑠𝑙𝑎𝑏∗ – because of the presence of 

detached solid rock fragments whose volume is being left out this calculation. This behavior is 

expected to occur in the brittle failure mode scenarios. The larger the depth of cut, the less 

material should be eroded, and instead, should be chipped away in the form of independent rock 

fragments. 

Overall, the calculation of 𝑑𝑐𝑟𝑢𝑠ℎ𝑒𝑑 and 𝑑𝑠𝑙𝑎𝑏∗  is found to be a useful measure to confirm 

the observations in Section 6.2.3. It has been discussed that based upon the cutting force as a 

function of depth, the numerical models result in a gradual transition from ductile to brittle 

fracture mode. Figure 6-12 not only displays soft curves for 𝑑𝑐𝑟𝑢𝑠ℎ𝑒𝑑 and 𝑑𝑠𝑙𝑎𝑏∗ , but is also shows 

the regression that best fits the 𝑑𝑐𝑟𝑢𝑠ℎ𝑒𝑑 data. It is a power function with an outstanding 

coefficient of correlation equal to 0.9978. These model output parameters are considered to be 

reliable, not only due to the robustness of the numerical model, but also because the elements 

that comprise the rock model have an average size of 0.18 mm (0.007 in) while the real Vosges 

Sandstone particle sizes range from 0.15 mm (0.006 in) to 0.45 mm (0.018 in). 

Ultimately, 𝑑𝑐𝑟𝑢𝑠ℎ𝑒𝑑 and 𝑑𝑠𝑙𝑎𝑏∗  as defined in this section, will aid in the calculation of a 

true specific energy (as seen in Section 6.4) and will be used as a standard way to compare the 

results from additional numerical simulations of rock cutting under different conditions (as seen 

in Sections7.4 and 8.3). 
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6.4 SPECIFIC ENERGY IN ROCK CUTTING 

6.4.1 Background on Specific Energy 

Within the framework of the ultimate goals of the NETL towards the subject of borehole drilling 

in rock environments under extreme conditions –as presented in the introductory chapter of this 

work– it is essential to understand how to obtain an optimum rate of penetration (ROP) in order 

to lower the costs of drilling, maximize the efficiency, and improve safety of the operations.  

The optimum ROP is directly related to the minimum specific energy attained while 

cutting, because this is a measure of cutting efficiency. Specific energy within the context of 

rock cutting is a synonym of energy density, which is defined as the amount of energy consumed 

in cutting a unit volume of rock.  

Detournay and Defourny (1992) in their paper introduce the concept of Intrinsic Specific 

Energy, ε, and define it as the proportionality factor between the averaged horizontal cutting 

force and the cross-sectional area of rock being cut. They emphasize that the word intrinsic 

refers to the pure cutting action (with a sharp cutter), and use ε conveniently with units of stress 

(i.e. MPa) instead of units of specific energy (i.e. J/cm3), as these two are numerically identical. 

According to Richard et al. (1998), the intrinsic specific energy parameter should be 

calculated only for rock cutting scenarios characterized by the ductile failure mode, i.e., at 

shallow depths. For the case of rock cutting in the brittle regime, the mean cutting force “evolves 

non-linearly with the depth of cut, thus the specific energy is found smaller than the intrinsic 

specific energy.” (Richard et al. 2010) 

6.4.2 Specific Energy for Slab Cutting Simulations 

Being aware of the great difference between the nominal (intended) depth of cut, d, and the 

actual crushed depth, 𝑑𝑐𝑟𝑢𝑠ℎ𝑒𝑑, it is important that the latter is used in the calculation of the 

specific energy for the slab cutting simulations in this study. As the shallow cut simulations (i.e., 

0.3 mm < d < 1.4 mm) do not produce any chipping and indeed behave in a ductile regime, it is 
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definite that the quantity provided by 𝑑𝑐𝑟𝑢𝑠ℎ𝑒𝑑 is equivalent to 100 % of rock volume crushed. 

As a result, the specific energy for the simulated slab cut runs is defined as:  

𝜖 =  
𝐹𝑚𝑒𝑎𝑛
𝐴𝑐𝑟𝑢𝑠ℎ𝑒𝑑

 =  
𝐹𝑚𝑒𝑎𝑛

𝑤 ×  𝑑𝑐𝑟𝑢𝑠ℎ𝑒𝑑
 (6-5) 

where w is the fixed width of the rock slab, equal to 10 mm (0.4 in).  

Table 6-3 summarizes the values of actual crushed depth, mean horizontal cutting force 

and specific energy for the slab cut simulations in ductile regime. It can be seen how the value of 

specific energy has a very small variation as a function of cutting depth –having an average of 

7.33 MPa (1,064 psi) and a standard deviation of only 0.34 MPa (49 psi)– which can 

satisfactorily confirm that the value of ε can be interpreted as having an association with the 

material strength, as suggested by Richard et al. (1998). They indicate that there is a range of 

depth of cut that is characterized by a constant intrinsic specific energy, and that scratching 

should ideally take place in this range. 

 
Table 6-3: Output parameters for slab cut simulations in the ductile regime 

Nominal Depth of Cut dcrushed Fmean ε 
(mm) (in) (mm) (in) (N) (lbf) (MPa) (psi) 

0.3 0.012 0.77 0.030 59.97 13.48 7.76 1,125 
0.6 0.024 1.16 0.046 80.37 18.07 6.90 1,001 
0.8 0.031 1.36 0.054 102.60 23.06 7.52 1,091 
1.0 0.039 1.54 0.061 109.82 24.69 7.12 1,033 
1.4 0.055 1.90 0.075 140.24 31.53 7.36 1,068 

     Average 7.33 1,064 
 

The specific energy results from the above table will be further analyzed together with a larger 

set of results from groove cutting cases in the following chapter. 
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7.0 NUMERICAL SIMULATION OF GROOVE CUTTING IN ROCK 

In order to further verify the soundness of the numerical model developed throughout this 

research effort, a set of rock cutting simulations has been carried out mimicking the groove 

cutting experiments performed by Richard (1999) on Vosges Sandstone. 

The objective of this series of tests was exploring the influence of the cutter width for a 

groove with four sharp cutters of different widths: 2.56 mm (0.1 in), 5 mm (0.197 in), 10 mm 

(0.394 in) and 15 mm (0.59 in). Throughout this chapter a comparison of the experimental and 

the numerical simulation results is presented and discussed. 

Sixteen cases of the groove cut tests are simulated varying the depth of cut four times for 

each cutter width studied. The cutting depths used for this part of the study are 0.3, 0.6, 0.8, and 

1.0 mm (0.012, 0.024, 0.031, 0.04 in), which ensure the material failure mode falls within the 

ductile regime. The rock material simulated herein corresponds to Vosges sandstone modeled 

with Mat_159, following all the considerations explained in Section 3.2.4 and Chapter 5.0. 

To facilitate the understanding of the effect of the groove edges on the resulting cutting 

forces, empirical equations of the cutting force are derived from the two-dimensional and three-

dimensional test results as a function of the cutting dimensions. These 2 models are eventually 

integrated into a more generalized formula, which characterizes the numerical results. 

7.1 MODEL GEOMETRY 

7.1.1 Rock Specimen Geometry 

As the simulations conducted herein do not represent brittle fragmentation, the rock 

models do not require a great dimension in the vertical direction; however, as these cases are 
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aimed at investigating the effect of the cutter width in the groove cutting, then the width of the 

rock specimen must be considerably larger than the slab rock samples (i.e. truly three-

dimensional). 

Like the rock model for the slab cut simulations, the rock models prepared for groove 

cutting consist of an upper fine mesh where cutting takes place, and a lower coarser mesh that 

guarantee no boundary effects from the bottom on the elements’ behavior upon the cutting load. 

The width of the rock model for each case is similarly defined wide enough so that there are no 

boundary effects from the side edges. Moreover, only half of the actual sample thickness is 

modeled in order to save on computational time; yet, the cutting forces reported are adequately 

proportioned to the full thickness. In this regards, (half of) the groove is cut along the 

longitudinal (x-axis) edge of the rock model, and the results are interpreted by mirroring the 

model with respect to the xy-plane highlighted in Figure 7-1. 

Figure 7-1 displays the variable dimensions established for the groove cut specimens, and 

Table 7-1 lists the variables’ value for each one of the cases simulated. The table also includes 

and the average element size in the fine zone, the total number of elements and total number of 

nodes in each model. 

 

 

Figure 7-1: Rock model geometry for groove cuts 
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Table 7-1: Dimensional information of the groove cut rock models 

 

 

 

 

w d L x L y L z L fine

Avg. element size 

(fine zone)

(mm) (mm) (mm) (mm) (mm) (mm) (mm)

d1w1 2.56 0.3 10.8 2.3 3.28 1.0 0.145 6,159 31,185

d2w1 2.56 0.6 10.8 3.6 4.28 1.5 0.145 11,657 61,750

d3w1 2.56 0.8 10.8 4.8 5.28 2.0 0.145 14,522 77,889

d4w1 2.56 1 10.8 6.0 6.28 2.5 0.144 29,641 165,030

d1w2 5 0.3 10.8 2.3 4.50 1.0 0.144 7,796 39,503

d2w2 5 0.6 10.8 3.6 5.50 1.5 0.145 15,393 83,092

d3w2 5 0.8 10.8 4.8 6.50 2.0 0.142 20,598 112,616

d4w2 5 1 10.8 6.0 7.50 2.5 0.144 32,752 181,250

d1w3 10 0.3 10.8 2.3 7.00 1.0 0.144 10,589 53,661

d2w3 10 0.6 10.8 3.6 8.00 1.5 0.144 19,010 101,824

d3w3 10 0.8 10.8 4.8 9.00 2.0 0.143 23,636 112,501

d4w3 10 1 10.8 6.0 10.00 2.5 0.142 51,237 290,082

d1w4 15 0.3 10.8 2.3 9.50 1.0 0.142 14,282 72,891

d2w4 15 0.6 10.8 3.6 10.50 1.5 0.142 21,921 117,497

d3w4 15 0.8 10.8 4.8 11.50 2.0 0.143 24,020 129,371

d4w4 15 1 10.8 6.0 12.50 2.5 0.140 52,960 294,779

Model ID
Total 

Number of 

Elements

Total 

Number of 

Nodes

w d L x L y L z L fine

Avg. element size 

(fine zone)

(in) (in) (in) (in) (in) (in) (in)

d1w1 0.10 0.01 0.425 0.091 0.129 0.039 0.0057 6,159 31,185

d2w1 0.10 0.02 0.425 0.142 0.169 0.059 0.0057 11,657 61,750

d3w1 0.10 0.03 0.425 0.189 0.208 0.079 0.0057 14,522 77,889

d4w1 0.10 0.04 0.425 0.236 0.247 0.098 0.0057 29,641 165,030

d1w2 0.20 0.01 0.425 0.091 0.177 0.039 0.0057 7,796 39,503

d2w2 0.20 0.02 0.425 0.142 0.217 0.059 0.0057 15,393 83,092

d3w2 0.20 0.03 0.425 0.189 0.256 0.079 0.0056 20,598 112,616

d4w2 0.20 0.04 0.425 0.236 0.295 0.098 0.0057 32,752 181,250

d1w3 0.39 0.01 0.425 0.091 0.276 0.039 0.0057 10,589 53,661

d2w3 0.39 0.02 0.425 0.142 0.315 0.059 0.0057 19,010 101,824

d3w3 0.39 0.03 0.425 0.189 0.354 0.079 0.0056 23,636 112,501

d4w3 0.39 0.04 0.425 0.236 0.394 0.098 0.0056 51,237 290,082

d1w4 0.59 0.01 0.425 0.091 0.374 0.039 0.0056 14,282 72,891

d2w4 0.59 0.02 0.425 0.142 0.413 0.059 0.0056 21,921 117,497

d3w4 0.59 0.03 0.425 0.189 0.453 0.079 0.0056 24,020 129,371

d4w4 0.59 0.04 0.425 0.236 0.492 0.098 0.0055 52,960 294,779

Model ID

Total 

Number of 

Nodes

Total 

Number of 

Elements
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7.1.2 Cutter Geometry 

The cutter geometry for groove cutting simulations follows the same premises described 

in Section 6.1.2. The only difference lies in the variation of the cutter width (in the y-direction) 

for each case. The actual dimension of the cutter model width is established as one half of that 

tabulated in Table 7-1 under the w dimension. 

7.2 GROOVE CUT SIMULATION OUTPUT 

As it is expected for all the groove cut cases simulated, the failure mechanism exhibited is purely 

ductile, thus all elements in front of the cutter get crushed (eroded) as it passes through. The 

behavior of these cutting models resembles the one described in Section 6.2.2 for the shallow cut 

of rock slabs. What can be observed herein is the effect of cutting side walls along the cutting 

length.  

7.2.1 Stresses Caused by Different Groove Size 

Table 7-2 displays the effective stress (Von-mises) distribution in each case’s rock 

specimen at the same instance in time. These illustrations allow us to compare the impact of the 

groove size on the tested rock model. The color contours of effective stress range from a 

magnitude of 0 MPa in blue, to 10 MPa or greater in red. Although the effect of the cutting depth 

is not clearly appreciated, it is indeed evident when comparing these images at the same scale 

that the stressed zone along the groove edge in the y-direction is irrespective of the nominal 

cutter width and the nominal depth of cut. For example, for all cases with d = 1.0mm (0.04 in), 

the stressed zone on each side of the groove extends approximately 0.73 mm (0.028 in) in the y-

direction. The same stressed zone size can actually be measured on most of the models, provided 

they have some boundary elements still in blue. 
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Table 7-2: Effective Stress (contours) when cutter displacement is 8.6 mm in all groove cutting cases 
 

Nominal Width of Cutter, w   

 w1 = 2.56 mm  w2 = 5 mm w3 = 10 mm w4 = 15 mm     
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7.2.2 The Effect of Groove Size on the Horizontal Cutting Force 

The resulting cutting force signals and their corresponding filtered series for different depths of 

cut and different cutter widths are tabulated in Table 7-3. As discussed in Section 5.4.1.2, once 

the original force signals from the simulation have been filtered, for cutting tests considered 

shallow (in ductile failure mode), the mean force value is computed simply by averaging the 

filtered data. The mean value of the cutting force for each case is also reported on this table. 

Furthermore, Figure 7-2 presents a summary of the simulation forces for groove cutting 

tests as a function of cutting depth, for each of the cutting widths selected, and compares it with 

the same summary from Richard’s laboratory results. Although it is evident that there is a 

discrepancy in the magnitude of the forces between the numerical and experimental results, 

particularly larger as the cutting depth increases, there is a good agreement in that the trend is 

essentially linear in most of the cases. For w = 2.56 mm, both the simulations and the laboratory 

tests are characterized better by a curvature (2nd order polynomial) that might eventually 

converge to the lineal pattern of the other sets with larger d. 

Figure 7-2(a) shows the linear regression equations and coefficients of correlation for 

each set of runs, with an excellent relationship between the cutting force and the groove nominal 

dimensions when w is greater than 2.56 mm. By normalizing these linear equations with respect 

to their corresponding w, it is be possible to obtain a general expression for the mean cutting 

force as a function of the groove size, as follows:  

𝐹𝑚𝑒𝑎𝑛 =  �𝐴𝑓 ∙ 𝑑 + 𝐵𝑓�𝑤 (7-1) 

where 𝐴𝑓 and 𝐵𝑓 are the averaged coefficients from the linear regression equations (for w > 2.56 

mm) in Figure 7-2(a). Determination of these coefficients is abridged in Table 7-4. As a result, 

the groove horizontal cutting force from these (initial) set of simulations can be expressed as: 

𝐹𝑚𝑒𝑎𝑛 =  (11.96 ∙ 𝑑 + 3.07)𝑤      (N) (7-2) 

where d and w are used in millimeters. 
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Table 7-3: Horizontal force signals at different cutting depths and widths for groove cut simulations 
 

Nominal Width of Cutter, w   

 w1 = 2.56 mm  w2 = 5 mm w3 = 10 mm w4 = 15 mm     
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m
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 d2 =
 0.6 m

m
  

 

 d3 =
 0.8 m

m
  

 

 d4 =
 1.0 m

m
  

Fmean = 20.8 N 

Fmean = 28.1 N 

Fmean = 35.7 N 

Fmean = 51.2 N 

Fmean = 33.2 N 

Fmean = 58.3 N 

Fmean = 68.3 N 

Fmean = 75.0 N 

Fmean = 64.8 N 

Fmean = 95.3 N 

Fmean = 124.2 N 

Fmean = 150.0 N 

Fmean = 97.8 N 

Fmean = 150.5 N 

Fmean = 179.5 N 

Fmean = 221.5 N 
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(a) Numerical Simulation Results 

 

 

 
(b) Laboratory Results (Richard 1999) 

 
 

Figure 7-2: Groove cutting force as a function of depth. (a) Simulation vs. (b) Laboratory 
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Table 7-4: Coefficient determination for Fmean expression as a function of groove size 

 w2 = 5 mm w3 = 10 mm w4 = 15 mm 

Linear regression 𝐹 = 60.12𝑑 + 18.13 𝐹 = 122.71𝑑 + 25.75 𝐹 = 173.73𝑑 + 45.04 

Normalized function 𝐹
𝑤

= 12.02𝑑 + 3.63 
𝐹
𝑤

= 12.27𝑑 + 2.58 
𝐹
𝑤

= 11.58𝑑 + 3.00 

Coefficient 𝐴𝑓 
𝐴𝑓2 = 12.02 (N/mm) 𝐴𝑓3 = 12.27 (N/mm) 𝐴𝑓4 = 11.58 (N/mm) 

𝑨𝒇−𝒂𝒗𝒈= 11.96 (N/mm) 

Coefficient 𝐵𝑓 
𝐵𝑓2 = 3.63 (N) 𝐵𝑓3 = 2.58 (N) 𝐵𝑓4 = 3.0 (N) 

𝑩𝒇−𝒂𝒗𝒈= 3.07 (N) 

 

7.3 EROSION ANALYSIS FOR GROOVE CUT SIMULATIONS 

Following the same logic explained in Section 6.3, it is important to analyze the “actual” volume 

extracted during a cutting test in contrast to the “nominal” volume intended to be taken by the 

cutter dimensions, especially in the three-dimensional case of groove cutting. 

Figure 7-3 through Figure 7-6 depict the rock models from each groove cut simulation 

with the elements that have been eroded –colored in dark brown– once the cutter has passed 

through. The remaining rock elements show the maximum damage value reached. The color 

contours of maximum damage range from blue for zero damage, to red for damage equal or 

greater than 50%. The rock model for each case contains a series of measurements shown in the 

picture: the white lines correspond to the nominal dimensions of the cutter, i.e., intended depth, 

d, and width, w, of cut; and the yellow lines represent the average actual depth, 𝑑𝑐𝑟𝑢𝑠ℎ𝑒𝑑, and 

average actual width 𝑤𝑐𝑟𝑢𝑠ℎ𝑒𝑑 extracted by the cutter from the groove. 

The values of 𝑑𝑐𝑟𝑢𝑠ℎ𝑒𝑑 and 𝑤𝑐𝑟𝑢𝑠ℎ𝑒𝑑 are iteratively estimated and marked on each case’s 

picture of “eroded elements” based upon the computed value of  𝐴𝑐𝑟𝑢𝑠ℎ𝑒𝑑 for all groove cut 

simulations. The averaged cross-sectional area considered crushed, 𝐴𝑐𝑟𝑢𝑠ℎ𝑒𝑑, is calculated with 

Equation (6-2), which makes use of the eroded volume fraction history output from each run. 
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Figure 7-3: Visualization of deleted elements in groove-cut simulations: w = 2.56 mm, d = variable (half model shown) 
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Figure 7-4: Visualization of deleted elements in groove-cut simulations: w = 5 mm, d = variable (half model shown) 
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Figure 7-5: Visualization of deleted elements in groove-cut simulations: w = 10 mm, d = variable (half model shown) 
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Figure 7-6: Visualization of deleted elements in groove-cut simulations: w = 15 mm, d = variable (half model shown) 

w = 15.0 mm, d = 0.8 mm w = 15.0 mm, d = 1.0 mm
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Like in the analysis of the slab cut simulations, three geometric indices are introduced here to 

quantify the amount of rock material that gets crushed. They relate the actual depth, width and 

area being crushed within a groove to its corresponding nominal dimension. These are: 

𝑑𝑔𝑟𝑜𝑜𝑣𝑒∗ =
𝑑𝑐𝑟𝑢𝑠ℎ𝑒𝑑

𝑑
 × 100% (7-3) 

𝑤𝑔𝑟𝑜𝑜𝑣𝑒∗ =
𝑤𝑐𝑟𝑢𝑠ℎ𝑒𝑑

𝑤
 × 100% (7-4) 

𝐴𝑔𝑟𝑜𝑜𝑣𝑒∗ =
𝐴𝑐𝑟𝑢𝑠ℎ𝑒𝑑

𝐴
 × 100% (7-5) 

Figure 7-7 through Figure 7-9 show the plot of these quantities against nominal values in the 

simulated groove cut tests. Together with the visualization of the eroded elements within each 

groove’s geometry, these graphs provide valuable information that indicates the occurrence of 

certain patterns that are not so straight forward. 

It is clear from Figure 7-7(a) that by staying within the ductile failure mode range (i.e. 

shallow depths, less than 1.4 mm for Vosges Sandstone) the relationship between the nominal 

depth of cut and its corresponding actual eroded depth is perfectly linear. This linear behavior is 

independent of the width of cut. This figure also shows that by increasing the width of the cutter, 

the actual depth of cut slightly increases. This behavior is evidently less perceptible as the 

nominal depth of cut gets larger, as seen in Figure 7-7(b). 

Figure 7-8 illustrates the values of actual crushed width (in magnitude and percentage) 

against the nominal width of cut. Although the four graphs in this figure seem identical, each one 

of them corresponds to a different cutting depth. There is no doubt that varying the cutter depth 

has practically no effect in the amount of actual eroded width. It can be observed that this lateral 

dimension is actually not too far from the 1-to-1 line, or the 100% line in relation to the nominal 

width, whereas the depth of cut indeed shows a significantly greater variation. 
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Figure 7-7: Measurement of crushed material with respect to nominal depth in groove cut simulations 
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(a)   d = 0.3 mm 
 

 

 
 

(b)   d = 0.6 mm 
 

 

 
 

(c)   d = 0.8 mm 
 

 

 
 

(d)   d = 1.0 mm 
 

 
 
 

Figure 7-8: Measurement of crushed material with respect to nominal width in groove cut simulations 
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Figure 7-9: Measurement of crushed material with respect to nominal area in groove cut simulations 
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Taking advantage of the linear regressions presented in Figure 7-7(a) and Figure 7-8 for each set 

of runs, and following a similar procedure as the one summarized in Table 7-4, a couple of 

expressions are derived so that they characterize the actual amount of material eroded as a 

function of the nominal cutter dimensions during the groove cutting of Vosges Sandstone in the 

ductile regime. 

𝑑𝑐𝑟𝑢𝑠ℎ𝑒𝑑 = 0.8985 𝑑 +   0.2402 𝑤0.169        (N) (7-6) 

𝑤𝑐𝑟𝑢𝑠ℎ𝑒𝑑 = 1.03 𝑤 +   0.702                         (N) (7-7) 

If order to identify the effect that these trends have in the actual area of cut, which will ultimately 

define the specific energy required to cut through a groove in rock, the data points in Figure 7-7 

and Figure 7-8 have been compiled in Figure 7-9 in the form of area. 

Overall, groove cuts with the smallest value of d (i.e. 0.3 mm) show the largest impact in 

the actual eroded material amount in relation to their nominal size, as reflected by the steepest 

trend of the yellow data points in Figure 7-9(a) and the highest percentages in Figure 7-9(b). On 

the other hand, larger nominal cutter sizes not only show a proportional reduced effect on the 

actual crushed area, but the trends also imply a convergence point where the minimum area 

crushed lies in the vicinity of 135% of the nominal area, which is seen for cutter widths greater 

than 5 mm and depths of cut greater than 0.8 mm. 

7.4 SPECIFIC ENERGY IN GROOVE CUTTING 

Following the same line of thought as described in Section 6.4 for the slab cutting simulations, 

the actual crushed area, 𝐴𝑐𝑟𝑢𝑠ℎ𝑒𝑑 , as defined in Section 7.3 is used to calculate the specific energy 

for the groove cutting simulations in this study. Equation (6-5); is re- defined as: 

𝜖 =  
𝐹𝑚𝑒𝑎𝑛
𝐴𝑐𝑟𝑢𝑠ℎ𝑒𝑑

 =  
𝐹𝑚𝑒𝑎𝑛

 𝑤𝑐𝑟𝑢𝑠ℎ𝑒𝑑  ×  𝑑𝑐𝑟𝑢𝑠ℎ𝑒𝑑
 (7-8) 
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Table 7-5 summarizes the values of dimensions, mean horizontal cutting force and specific 

energy for the groove cut simulations in ductile regime.  

 

Table 7-5: Output parameters for groove cut simulations in the ductile regime 

 

 

w d A w crushed d crushed A crushed
F mean 

(mm) (mm) (mm2) (mm) (mm) (mm2) (N) (MPa)

d1w1 2.56 0.3 0.77 3.34 0.55 1.84 20.77 11.31

d2w1 2.56 0.6 1.54 3.24 0.81 2.62 28.13 10.72

d3w1 2.56 0.8 2.05 3.30 1.01 3.33 35.74 10.72

d4w1 2.56 1 2.56 3.32 1.20 3.98 51.22 12.86

d1w2 5 0.3 1.5 5.90 0.60 3.54 33.18 9.37

d2w2 5 0.6 3.0 5.90 0.86 5.07 58.35 11.50

d3w2 5 0.8 4.0 5.90 1.03 6.08 68.35 11.25

d4w2 5 1 5.0 5.84 1.20 7.01 74.95 10.70

d1w3 10 0.3 3.0 11.06 0.63 6.97 64.82 9.30

d2w3 10 0.6 6.0 11.06 0.89 9.85 95.29 9.67

d3w3 10 0.8 8.0 11.06 1.08 11.94 124.21 10.40

d4w3 10 1 10.0 11.00 1.24 13.64 150.00 11.00

d1w4 15 0.3 4.5 16.12 0.64 10.32 97.76 9.48

d2w4 15 0.6 9.0 16.06 0.91 14.61 150.49 10.30

d3w4 15 0.8 12.0 16.20 1.17 18.97 179.49 9.46

d4w4 15 1 15.0 16.14 1.29 20.82 221.48 10.64

Average 10.54

Standard Deviation 0.96

w d A w crushed d crushed A crushed
F mean 

(in) (in) (in2) (in) (in) (in2) (lbf) (psi)

d1w1 0.10 0.01 1.2E‐03 0.131 0.022 2.85E‐03 4.67 1639.8

d2w1 0.10 0.02 2.4E‐03 0.128 0.032 4.07E‐03 6.32 1554.7

d3w1 0.10 0.03 3.2E‐03 0.130 0.040 5.17E‐03 8.03 1555.2

d4w1 0.10 0.04 4.0E‐03 0.131 0.047 6.18E‐03 11.52 1864.8

d1w2 0.20 0.01 2.3E‐03 0.232 0.024 5.49E‐03 7.46 1359.6

d2w2 0.20 0.02 4.7E‐03 0.232 0.034 7.86E‐03 13.12 1667.8

d3w2 0.20 0.03 6.2E‐03 0.232 0.041 9.42E‐03 15.36 1631.2

d4w2 0.20 0.04 7.8E‐03 0.230 0.047 1.09E‐02 16.85 1551.2

d1w3 0.39 0.01 4.7E‐03 0.435 0.025 1.08E‐02 14.57 1349.2

d2w3 0.39 0.02 9.3E‐03 0.435 0.035 1.53E‐02 21.42 1402.4

d3w3 0.39 0.03 1.2E‐02 0.435 0.043 1.85E‐02 27.92 1508.2

d4w3 0.39 0.04 1.6E‐02 0.433 0.049 2.11E‐02 33.72 1595.0

d1w4 0.59 0.01 7.0E‐03 0.635 0.025 1.60E‐02 21.98 1374.3

d2w4 0.59 0.02 1.4E‐02 0.632 0.036 2.27E‐02 33.83 1493.5

d3w4 0.59 0.03 1.9E‐02 0.638 0.046 2.94E‐02 40.35 1372.3

d4w4 0.59 0.04 2.3E‐02 0.635 0.051 3.23E‐02 49.79 1542.9

Average 1528.9

Standard Deviation 138.7

Model ID

Model ID
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Just as happened with the slab cutting cases of the present study, it can be seen in Figure 7-10(a) 

how the value of specific energy has a very small variation as a function of the cut area –having 

an average of 10.54 MPa (1,529 psi) and a standard deviation of 0.96 MPa (139 psi)– which can 

satisfactorily confirm that the value of ε can be interpreted as having an association with the 

material strength, as suggested by Richard et al. (1998). They indicate that there is a range of 

depth of cut that is characterized by a constant intrinsic specific energy, and that scratching 

should ideally take place in this range.  

 

 
 

Figure 7-10: Specific energy as a function of w/d ratio: Simulation vs. Lab 
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It is apparent that the magnitude of the specific energy reported by Richard (1999) and shown in 

Figure 7-10(b) is greater than the specific energy obtained by the numerical simulations. The 

same situation is reflected in the comparison of groove cutting forces in Figure 7-2; however, 

this is significantly less obvious in the case for the slab cutting forces compared in Figure 6-8. 

Particularly within the ductile regime, the simulation forces compare well with the forces from 

slab cutting experiments. Since all the slab-cutting experiments are run on the same rock 

specimen (according to the sample preparation description provided in Richard’s Master’s 

thesis), it is likely that when doing groove cutting experiments, numerous external factors affect 

the outcome of the tests. The repeatability of the results has a low probability of occurrence 

when multiple rock specimens are tested and when human error plays a role.  

Furthermore, it is believed that although the calibration efforts during this investigation 

have been vast, it would be necessary to expand the suit of rock materials modeled in order to a 

have a stronger foundation for accurate prediction of force values. Nevertheless, the 

contributions made through the numerical models in the present work have been superlative as 

far as reproducing the rock behavior under numerous loading conditions, including the never-

seen modeled fracture propagation and chip formation. More importantly, these features help to 

understand the entire physical phenomena that takes place during the rock cutting process, and 

consequently could aid in achieving a cost-effective means to develop optimum PDC drill bits 

under extreme conditions. 

7.5 EDGE EFFECT IN GROOVE CUTTING 

The graph shown in Figure 7-10(a), relating the specific energy and w/d ratio for the numerical 

simulations, is presented in logarithmic scale for comparison purposes; however, if one would 

like to focus on a potential trend of these values, it would be convenient to plot the same graph in 

linear scale as shown in Figure 7-11.  

In agreement with Richard’s findings, these results suggest that there is a three-

dimensional effect which could be identifiable when the ratio w/d is less than 10. With w/d 

greater than 10, the groove-cut data have a tendency to converge asymptotically to the specific 

energy obtained for the slab-cut simulations, which would be the minimum value for this specific 
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rock type. This implies that when d → 0, the groove-cut force with essentially no sides

 

, would 

yield the same result as the slab-cut force, for a given width of cut. 

 
 

Figure 7-11: Specific energy as a function of w/d ratio in FE simulations 

 
 

The previous statement could be verified by using the expressions (regressions) derived for both 

slab-cut and groove-cut forces as function of the cutter nominal dimensions –in the ductile 

regime. Recalling the regression for slab-cut mean forces from Figure 6-9, the corresponding 

normalized force with respect to the 10-mm cutter width is: 

𝐹𝑠𝑙𝑎𝑏
𝑤

=  
1

10
(−7.96 𝑑2  + 87.95 𝑑 +   33.15) (7-9) 

Conversely, for groove-cut mean forces, Equation (7-2) can be re-written as: 

𝐹𝑔𝑟𝑜𝑜𝑣𝑒
𝑤

= 11.96 𝑑 +   3.07 (7-10) 

where the units for both of the expressions above are Newton / millimeter. 
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Based upon the hypothesis that Equations (7-9) and (7-10) should result in the same value 

when evaluating d → 0, it is convenient to average the independent constant in both equations 

(i.e. specifically 3.315 and 3.07) and fixing it to a value of 3.2 in order to adjust the regressions 

that characterize the slab-cut and groove-cut forces. As a result, after going back to the data plots 

that yielded these two regressions, and forcing the intercept to be at Fmean / w = 3.2, the tuned 

expressions are:  

𝐹𝑠𝑙𝑎𝑏
𝑤

=  
1

10
(−8.28 𝑑2  +  89.38 𝑑 +  32) (7-11) 

𝐹𝑔𝑟𝑜𝑜𝑣𝑒
𝑤

= 11.83 𝑑 +  3.2 (7-12) 

Graphing Equations (7-11) and (7-12) simultaneously provides a better representation of the 

effect of the vertical sides when cutting a groove in rock. 

 

 
 

Figure 7-12: Variation of normalized forces in slab and groove cutting as a function of depth 
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Figure 7-13: Groove cutting sketch 

 

Considering the fact that the horizontal cutting force in the groove should counteract the 

resistance from both the bottom (as in the slab cut) and the groove sides as illustrated in Figure 

7-13, the expressions in Equations (7-11) and (7-12) are utilized to derive a final equation to 

relate the slab-cut and groove-cut forces:  

𝐹𝑔𝑟𝑜𝑜𝑣𝑒
𝑤

=  
𝐹𝑠𝑙𝑎𝑏
𝑤

(1 + 0.516 𝑑 − 0.173 𝑑2) (7-13) 

where the force units are Newtons and dimensions units are millimeters. The terms  �0.516 𝑑 −

0.173 𝑑2) are clearly associated with the shear resistance that the groove sides impose, which is 

thought to be dependent not only on the rock shear strength parameters (cohesion and friction 

angle), but also on the cutter’s rake angle. 
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8.0 GROOVE CUTTING IN ROCK UNDER PRESSURE 

Having obtained a sound FE model to simulate the rock cutting and fragmentation process in a 

realistic manner, it is possible now to utilize this in an attempt to model the high pressure 

conditions of a drill bit at bottom-hole. Yet, a new additional challenge to undertake this goal is 

the difficult implementation of an environment pressure within the numerical models of rock 

cutting in LS-DYNA.  

The rock material model has been calibrated and its performance is satisfactory upon 

standard quasi-static tests with increasing confinement pressure (see Section 4.5). Nonetheless, 

there has been no explicit methodology so far reported in the literature concerning the use of 

ambient pressure during a highly dynamic cutting simulation with a lagrangian finite element 

model. Several alternatives were explored within the framework of LS-DYNA’s capabilities. 

This section describes a numerical technique found to positively provide the presence of fluid 

pressure during the rock cutting process under extreme conditions. 

The focus of this investigation now turns onto a different experimental investigation 

reported in the literature, i.e., the work performed by Kaitkay and Lei (2005). A preliminary 

three-dimensional FE model has been developed to simulate three different scenarios from the 

laboratory study of the rotational cutting of rock under varying hydrostatic pressures. Although 

not all the experimental variables are modeled identically (e.g., rock material type), this effort is 

aimed at emulating the proper rock response trend in a qualitative fashion, rather than 

quantitatively. 
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8.1 EXPERIMENTAL BENCHMARK OF GROOVE CUTTING UNDER PRESSURE 

Kaitkay and Lei (2005) performed machining experiments on Carthage Marble samples at 

atmospheric pressure and under different hydrostatic pressures using a single PDC cutter. Part of 

their objectives was to study the variation of cutting forces with respect to depth of cut, cutter 

rake angle, and hydrostatic pressure.  

8.1.1 Experiment Setup 

As described in detail in their paper, Kaitkay and Lei have two separate settings for their 

experiments at both atmospheric and confining pressures. Herein, only the setup of the tests 

subjected to pressure is modeled, and thus accounted for as follows: The Carthage Marble 

sample is placed into a pressure vessel in which external hydrostatic pressure is maintained using 

a set of pumps. A rigid frame supports the pressure vessel –that can withstand pressures up to 69 

MPa (10,000 psi)– and the drive unit. Two motors impart rotary motion to a rotating rod, which 

in turn drives the cutting tool. The feed rod can also move vertically, and is equipped with strain-

gage-based load cell to transmit signals for the main (horizontal) and thrust (vertical) force 

components exerted on the cutter. The cutting tool is shown in Figure 8-1. The modeled rake 

angle used in the experiments is 15 degrees. 

 

 
 
 

Figure 8-1: Cutting tool for confined experiments of rock cutting (Kaitkay and Lei 2005) 
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The cutter is mounted on the test machine at a distance of 35 mm (1.375 in) from the center and 

rotates around the center at 273 rpm, resulting in a speed of the cutter tip equal to 1 m/s. The 

steady cutting depth maintained during each revolution corresponds to 0.8 mm. Cutting forces 

are collected at a sampling rate of 500 points/s during 6 seconds for each test. The system also 

collects data for the water pressure during the test. 

Some of the tests run by Kaitkay and Lei include rock cutting at atmospheric pressure –

i.e. 0.1 MPa (14.7 psi)–, 3.44 MPa (500 psi), and 34.4 MPa (5,000 psi). Their results are shown 

below. 

8.1.2 Experimental Results 

Figure 8-2 shows a typical force history for cutting under hydrostatic pressure, in this case 34.4 

MPa (500 psi).  

 
 

Figure 8-2: Experimental cutting forces at a 34.4-MPa confinement pressure (Kaitkay and Lei 2005) 

 

The reported average values of force in Figure 8-3 consider only the force signal after the cutter 

has traversed a vertical distance of 2.3 mm (0.084 in). It can be observed in this figure that the 

mean cutting force increases significantly with the application of pressure. According to Kaitkay 

and Lei, this behavior is accompanied by an increase in chip length. They state that the presence 

of external hydrostatic pressure can transform the rock cutting process from a dominantly brittle 

fracture to an intermediate ductile-brittle mode. 
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Figure 8-3: Experimental average force as a function of hydrostatic pressure (Kaitkay and Lei 2005) 

 

Among their findings they claim that the cutting forces increase with increasing negative rake 

angle and hydrostatic pressure. Additionally, they conclude that shear failure increases when 

applying external pressure, resulting in more shear flow during chip formation. They obtained 

larger rock chips, which they attribute to the plastic chip formation induced by applied confining 

pressures. 

8.2 NUMERICAL SIMULATION OF PRESSURED GROOVE CUTTING IN ROCK 

As stated above, the models developed in this stage of the present investigation are aimed at 

establishing a foundation for future research of rock cutting under pressure. The comparison of 

the results from the numerical simulations and the laboratory tests should be considered only for 

illustration purposes. These FE models under pressure include the implementation of the same 

Vosges Sandstone material calibrated in Section 3.2.4, as well as the simulation of a linear 

scratching test at a depth of 0.8 mm, as opposed to modeling Carthage Marble (which is actually 

limestone) and a rotational scratching test. 

The essential contribution from this section is providing a methodology, using LS-

DYNA’s optional features, capable of simulating the transient problem of rock cutting as 

presented in previous chapters, but in this case adding the presence of pressure in the 

environment during the tests. 
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8.2.1 Model Geometry 

8.2.1.1 Rock Specimen Geometry 

Like in the simulations presented in Section 7.0, brittle fragmentation is not expected throughout 

these new set of rock cutting tests, thus the rock model does not require a great dimension in the 

vertical direction. Figure 8-4 depicts the size and mesh configuration of this rock specimen, 

which is identical to the model identified as d3w3 in the previous section (see Section 7.1.1). The 

average element size in the cutting zone is 0.143 mm (0.079 in), the total number of nodes is 

23,635 and the total number of elements is 128,867. 

Once again, only half of the actual sample thickness is modeled in order to save on 

computational time; yet, the cutting forces reported are adequately proportioned to the full 

thickness. In this regards, (half of) the groove is cut along the longitudinal (x-axis) edge of the 

rock model, and the results are interpreted by mirroring the model with respect to the xy-plane 

highlighted in Figure 8-4. 

 

 

 

Figure 8-4: Rock model geometry for groove cutting under pressure 
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8.2.1.2 Cutter Geometry 

The cutter for the groove cutting simulations under pressure is modeled to resemble the PDC 

used in the laboratory experiments, as can be observed in Figure 8-1. Mimicking the actual size 

of the PDC, the cutter used in the simulations is an entire cylinder, whereas it is trimmed in the 

laboratory. In addition, it is tilted 15 degrees forward (negative rake angle), such as the 

experimental configuration 

Due to the use of RIGIDWALL as the contact model between the cutter and the rock (see 

Section 5.2.1.2), there is no need for discretization of the mesh that comprises the cutter body. 

Nevertheless, in order to create a cylindrical shape for the PDC cutter, its mesh is actually made 

out of 1,064 hexahedral elements, and 2191 nodes, as can be seen in Figure 8-5.  

 

 

 
 

 
Figure 8-5: Cutter geometry for groove cutting under pressure 
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8.2.2 Application of Hydrostatic Pressure 

Typically, for a (static) finite element model that requires application of pressure as a boundary 

condition, the finite element codes easily allow the definition of a pressure value that is 

fundamentally transformed into a localized nodal force, or load on an integration point. If this 

technique were to be used in the particular case of the rock cutting model as developed in the 

present work, however, a problem arises due to the erosion of elements from the continuum. 

Since any defined load would be directly applied to the initially-exposed surfaces of the rock, it 

would be lost once the loaded surface is eroded, causing the newly-exposed elements to be free 

of pressure. Hence, an alternative solution for the application of pressure is needed. 

LS-DYNA seems to contain numerous options that theoretically meet the requirement of 

modeling the rock elements with a constant surrounding pressure regardless of their position 

within the numerical domain. In an attempt to find an effective mechanism to apply hydrostatic 

pressure to the model, some of these options were explored, such as INITIAL_STRESS_SOLID, 

BOUNDARY_PORE_FLUID, and LOAD_DENSITY_DEPTH. At the time when this effort 

was carried out, several issues were found when trying to implement the first two options just 

mentioned.  

As far as the INITIAL_STRESS_SOLID option, it is designed to initialize the stresses 

and plastic strains for solid elements during the dynamic relaxation stage. The user defines 

explicitly the value of the six components of stress in an element for as many elements as 

desired. Although the input parameters in this option were meticulously and repeatedly set up, 

during dynamic relaxation –while ramping up the stress values over time– the rock material 

always experienced the excitation of a high frequency response. Also, although supposedly 

achieving equilibrium, the rock model always finished up with tensile stresses in the vertical 

direction. Due to these issues, this option was discarded.  

On the other hand, the BOUNDARY_PORE_FLUID option seemed to have a good 

potential for the sought application. It is designed to define “parts” (i.e. solid entities in LS-

DYNA) that contain pore fluid and apply a calculated hydrostatic pore water pressure on their 

elements. It considers drained or undrained conditions, the vertical coordinate of the water table, 

the density of the pore water, the gravitational acceleration, among others parameters. 

Unfortunately, the model was never able to run while using the definition of this option in the 
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input deck. As soon as the simulation started, it stopped without any warning or error message. It 

is believed that this option was not well implemented in LS-DYNA at the moment.  

Consequently, the LOAD_DENSITY_DEPTH was the numerical resource used in this 

work. This option of LS-DYNA defines density versus depth for gravity loading, and it has been 

occasionally used for analyzing underground and submerged structures where the gravitational 

preload is important (Hallquist 2009). Its purpose is to initialize the hydrostatic pressure field at 

the integration points in all the elements comprising a part.  

A density-vs.-depth curve is used as the input to initialize hydrostatic pressure due to 

gravity acting on an overburden material. The hydrostatic pressure acting at a material point at 

depth, D, is defined by Hallquist (2009) as:  

𝑝 =  − � 𝜌(𝑧) 𝑔  d𝑧

𝐷𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝐷

 (8-1) 

where 𝐷𝑠𝑢𝑟𝑓𝑎𝑐𝑒 is the depth of the surface of the material to be initialized (usually zero), 𝜌(𝑧) is 

the mass density at depth z, and g is the acceleration of gravity. This integral is evaluated for 

each integration point. According to LS-DYNA User’s Manual (Hallquist 2009), “depth may be 

measured along any of the global coordinate axes and the sign convention of the global 

coordinate system should be respected. The sign convention of gravity also follows that of the 

global coordinate system.”  

It is important to note that by following the sign convention instructions above, the 

pressure that the elements are subjected to has a positive sign (denoting compression), while the 

x, y and z components of the elements’ computed stress have a negative sign (denoting 

compression too). This leads to the assumption that the negative sign shown in Equation (8-1) is 

not properly implemented in the code, and may cause misinterpretation of the pressure input 

definition. 

8.2.2.1 Important considerations to define LOAD_DENSITY_DEPTH 

The following methodology is implemented in order to configure the input parameters in each 

one of the simulated rock cutting tests under different pressures: 
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Knowing a priori the magnitude of hydrostatic pressure desired for application over the 

rock part, the values of depth in the density-vs.-depth curve are determined assuming the 

existence of a column of water which will produce such a pressure. The coordinate system in the 

model is established so that the datum (z = 0) is located at the top surface of the rock part. 

Taking this into account and considering the actual thickness and density of the rock part, as well 

as the density of water, the only unknown is the actual water table coordinate, 𝐷𝑠𝑢𝑟𝑓𝑎𝑐𝑒, which 

can be back-calculated. The sketch presented in Figure 8-6 helps to visualize the concept behind 

LOAD_DENSITY_DEPTH. 

 

 
 

Figure 8-6: Interpretation of hydrostatic pressure for definition of LOAD_DENSITY_DEPTH 

 

It is clear that right at the interface between the water bottom and the rock top surface, a 

continuous condition for the value of pressure should be satisfied, thus  𝑝0−𝑤𝑎𝑡𝑒𝑟 = 𝑝0−𝑟𝑜𝑐𝑘. With 

this in mind, caution should be taken when defining the density-vs.-depth curve because 

consecutive values, either in the abscissa or the ordinate, cannot be the same, as can be seen in 

Figure 8-7. Additionally, the thickness of the rock part used in the developed models is 
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significantly less (by several orders of magnitude) than the head of water necessary to produce 

the desired pressures; therefore, it is assumed that  𝑝0−𝑟𝑜𝑐𝑘  ≈  𝑝𝑏𝑜𝑡𝑡𝑜𝑚. 

Known parameters in Figure 8-6 are: 

• 𝜌𝑤𝑎𝑡𝑒𝑟= 1,000 kg/m3 (62.4 lb/ft3), 

• 𝜌𝑟𝑜𝑐𝑘= 2,000 kg/m3 (124.9 lb/ft3), 

• 𝐷𝑏𝑜𝑡𝑡𝑜𝑚= -4.8 mm (-0.19 in), 

• g = 9.81 m/s2 (32.2 ft/s2), and  

•  𝑝0−𝑤𝑎𝑡𝑒𝑟 , which varies with each specific test (e.g., 3.44 MPa, 34.4 MPa, etc.). 

 

Following the premises mentioned above, the density vs. depth curve should look like: 

 

 
 

Figure 8-7: Density vs. depth curve for use in LOAD_DENSITY_DEPTH definition 
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Based upon the desired magnitude of pressure to be applied on the rock cutting test, the value of 

𝐷𝑠𝑢𝑟𝑓𝑎𝑐𝑒 is solved by:  

𝐷𝑠𝑢𝑟𝑓𝑎𝑐𝑒 =  
𝑝0−𝑤𝑎𝑡𝑒𝑟
𝜌𝑤𝑎𝑡𝑒𝑟  ∙ 𝑔

 (8-2) 

Table 8-1 tabulates the solved values for 𝐷𝑠𝑢𝑟𝑓𝑎𝑐𝑒 to be used in each model’s definition of 

pressure application. 
 

Table 8-1: Calculated values of Dsurface corresponding to each modeled pressure 

Hydrostatic Pressure during Test 

MPa (psi) 

Dsurface  

mm 

3.44 (500 psi) 350.7 x 103 

34.4 (5,000 psi) 3,507 x 103 

100 (14,504 psi) 10,194 x 103 

 

8.2.2.2 Additional Recommendations 

As a result of a comprehensive review on the proper implementation of this pressure application 

feature in LS-DYNA, the following strategies should be taken into account: 

• Any hydrostatic pressure applied onto the model must be incorporated during the 

dynamic relaxation phase of the simulation. The duration of this phase should be 

manually adjusted to guarantee that equilibrium of stresses is reached (by checking the 

internal energy dissipation). The maximum simulation time allowed in the 100-MPa case 

to reach equilibrium is 0.25 ms, for instance.  

• In order to avoid excitation of the rock elements due to a high frequency response during 

the dynamic relaxation phase, it is recommended to increase temporarily the value of the 

coefficient of global damping, so the time to reach equilibrium is as short as possible. In 

this particular case, a damping vs. time curve was implemented, having a damping 
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constant of 50 over the dynamic relaxation duration (i.e. first 0.25 ms), and then changed 

to 1.0 x10-8 for the duration of the transient analysis. 

• Due to the extremely small size of the rock part, in comparison with the water head, the 

value of rock density is insignificant in the computation of the pressure over the material 

in this particular set of simulations. However, for other applications in general, it is 

important to keep in mind that the “saturated” density of the rock has to be used in the 

definition of pressure, not the “dry” density. 

• It was found that once equilibrium was reached during the dynamic relaxation phase, the 

values of element pressure and stress converge to a value somewhat smaller than the 

specified through the definition of LOAD_DENSITY_DEPTH. This behavior was 

experienced with both a linear elastic isotropic material (i.e. MAT_1) and MAT_159, 

leading to think that there is a bug in the code of this option in LS-DYNA. A work-

around has to be used in which the value of 𝐷𝑠𝑢𝑟𝑓𝑎𝑐𝑒 has to be iteratively adjusted in 

order to yield the desired magnitude of pressure in the model.  

8.2.3 Pressured Groove Cut Simulation Output 

The results of the preliminary simulations of rock cutting subjected to external pressure exhibit 

general material behaviors that are in agreement with some of the observations and statements 

made by the authors of the experimental study described in Section 8.1.2, as well as other 

investigators in the subject of rock cutting under pressure. Figure 8-8 shows some of the most 

relevant results as a function of the applied hydrostatic pressure. It includes illustrations of the 

level of element damage when the cutter displacement is 7mm (0.27 in) on the left hand side, and 

the horizontal cutting force history on the right.  

On one hand, it can be easily appreciated that with increasing pressure on the rock, the 

level of damage is reduced on the newly-exposed surface –once the cutter has passed– as well as 

in its surrounding elements. It is worth to reiterate that the computed level of damage is 

fundamentally a representation of the formation of microcracks in the loaded rock, which 

eventually coalesce and produce the rock matrix breakdown while in the ductile regime (which is 

part of the element crushing so far referred to).  
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Figure 8-8: Simulation results during rock cutting under different hydrostatic pressures 
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This damage-reduction phenomenon, as presented in Figure 8-8, can be explained within the 

framework of a cataclastic deformation mode as described by Paterson and Wong (2005). They 

affirm that the “increase in confining pressure not only makes microcrack growth more difficult 

but the growth that is produced under the higher stresses now applied tends to be stabilized, 

eventually leading to sufficient disintegration or fragmentation of the specimen by proliferation 

of stable microcracks”, which also explains the increased amount of eroded material, as seen in 

Section 8.3, as the pressure is elevated. 

As can be seen in Figure 8-8, the horizontal cutting force signals for each pressure case 

simulated make it evident that with larger hydrostatic pressure, the force magnitude increases 

(mean values are shown in Figure 8-12). Also, when the pressure is higher, the peak forces tend 

to concentrate and last (or be sustained) longer, demonstrating a gradual increase of the 

localization of plastic deformation. In other words, the fewer drops of the force signal with 

increasing pressure are associated with larger “energy-releasing events” of material crushing, 

which is confirmed by the irregular, step-like form of the accumulated eroded internal energy 

history output by LS-DYNA (see Figure 8-9). Observations of the same phenomenon are 

discussed by Garcia-Garavito (1998), who obtains smaller force fluctuations while increasing the 

confining pressure in his rock-cutting experiments. Furthermore, Kaitkay and Lei’s remarks 

(mentioned in Section 8.1.2) regarding the rock chip size after their experiments are also 

validated with these numerical simulation results. 

8.3 EROSION AND SPECIFIC ENERGY FOR PRESSURED GROOVE CUT 

SIMULATIONS 

As opposed to the sets of simulations analyzed in Chapters 6.0 and 7.0, where the dimensions of 

the cut varied (depth and width), in this particular stage of this investigation the nominal size of 

the groove is fixed while the external pressure applied is increased in each simulation. In this 

section, the variation of the actual size of the groove is quantified based upon the amount of 

eroded elements for the simulations where the external pressure is 0, 3.44 and 34.4 MPa, and it is 

again utilized to calculate the specific energy necessary to cut the rock under these conditions. 
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First, the internal energy required to cut through the rock (i.e., to erode the rock elements) 

during each pressure scenario is presented in Figure 8-9.  

 

 

Figure 8-9: Eroded internal energy during groove cut simulations under pressure 

 

 

Figure 8-10: Eroded volume fraction during groove cut simulations under pressure 
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As far as the actual volume fraction of rock that is eroded from the model, for the three pressure 

cases of groove cutting, this measurement is plotted against the cutter displacement and shown in 

Figure 8-10, and the visualization of the eroded elements is portrayed in Figure 8-11. It can be 

seen how the eroded volume pattern gradually changes from a quasi-straight line for p = 0 MPa, 

to a slightly more rippled line for p = 3.44 MPa, to a bumpy line for p = 34.4 MPa, reflecting the 

likelihood of getting larger chips being disintegrated instantaneously as the hydrostatic pressure 

is greater. 

 

 
 

(a)  p = 0 MPa 
 

(b)  p = 3.44 MPa 
 

(c)  p = 34.4 MPa 

 
Figure 8-11: Visualization of eroded elements in groove cut simulations under pressure 

 

According to Paterson and Wong (2005), it has been proved in earlier experimental 

investigations that in porous rocks, such as the Vosges Sandstone modeled, the so-called 

cataclasis (or breaking down of the rock into a granular mass) arises from grain crushing, rather 

than propagation and interconnection of cracks. As the cataclasis develops upon higher pressure, 

the mechanism of deformation can change from primarily elastic distortion, with minor 

contributions from the opening of cracks and some sliding on cracks, to predominantly granular 

flow, resulting from the relative movement of the chips produced by the cataclasis. 

On the other hand, Figure 8-12 depicts the computed values of actual crushed area, 

, as defined in Section 6.3, together with its corresponding average force and specific 

energy as a function of pressure. Figure 8-12(b) resembles the trend of the experimental forces-

vs.-pressure shown in Figure 8-3, which is similar to the general trend reported by Garcia-

Garavito (1998) and Prakash (1982), whose results are shown in Figure 8-13 and Figure 8-14, 

respectively. Moreover, the resulting specific energy shown in Figure 8-12(c) is consistent with 

the results for  presented in Figure 7-11. 
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Figure 8-12: Horizontal force and specific energy in groove cut simulations under pressure 
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Figure 8-13: Cutting force vs. confining pressure for Carthage Limestone (Garcia-Garavito 1998) 

 

 

 
 

Figure 8-14: Cutting force variation with respect to the borehole pressure for Mancos Shale (Prakash 1982) 
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9.0 VALIDATING THE F.E. MODELS THROUGH THEORETICAL SOLUTIONS 

Although the rock-cutting problem involves a rather complex mechanism, over the years, several 

analytical and empirical models have been proposed to describe it. The analytical solutions must 

inevitably suffer from the disadvantage of making major simplifications to the problem, which 

may result in inaccurate predictions. Nevertheless, an ideal elucidation for the optimization of 

the rock cutting performance could be found by coupling the results from experimental, 

theoretical, and numerical models.  

The analytical models aim at calculating the cutting force from the mechanical strength 

of rock, cutter geometry, and depth of cut. This calculated force is the peak cutting force since it 

is acting on the cutter at the instant of initial rock failure. The most common models found in the 

literature consider the problem two-dimensional (2D) because generally the depth of cut is much 

less than the width of the cutter, thus plane strain conditions apply. Each model considers a 

particular crack propagation angle with a corresponding particular shape of rock chip (or plastic 

zone); however, they do not contemplate the mechanics of the rock cutting process beyond the 

maximum rock strength.  

Cutting forces will be computed using three analytical models, namely the ones proposed 

by Evans (1961), Nishitmatsu (1972), and Detournay and Atkinson (2000); subsequently, these 

will be compared with the numerical simulation results. The following subsections present the 

most widely recognized and most frequently cited analytical models in rock cutting. Also, 

Merchant model for metal cutting is described first, as it is the source for later works. 
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9.1 MERCHANT MODEL (1944) 

The analytical model by Merchant (1944; 1945) has been the foundation in the area of metal 

cutting research by introducing the basic mechanics of chip formation. In addition, numerous 

rock-cutting researchers have applied and modified this formulation to describe the rock cutting 

mechanics. The chip formation formulation in the original Merchant model includes the 

following assumptions: 

1. The plastic flow mechanism involves a single moving shear failure plane, which is 

inclined at an angle θ  from the horizontal (see Figure 9-1). 

2. The chip is a separate body held in equilibrium by the tool-chip forces and the forces on 

the shear plane. This ignores inertial loading from the chip, which at ordinary cutting 

speeds is significantly lower than the forces of deformation and friction. 

3. The contact between the cutting face and the cut material is frictional. 

4. A linear Mohr-Coulomb relationship exists between the normal and shear stress across 

the shear failure plane. 

 

 

Figure 9-1: Chip formation diagram according to Merchant (1944) 
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The Mohr-Coulomb failure criterion relates the shear stress, 𝜏, and the normal stress, 𝜎𝑛, on the 

failure plane to the cohesion, c, and the internal friction angle of the workpiece, 𝜑, as follows: 

𝜏 = 𝑐 + 𝜎𝑛 tan𝜑  (9-1) 

Equilibrium of forces in Figure 9-1 yields:  

𝜏 =
sin 𝜃
𝑑

𝐹 sin(𝜃 + 𝛿 − 𝛼)  (9-2) 

𝜎𝑛 =
sin 𝜃
𝑑

𝐹 cos(𝜃 + 𝛿 − 𝛼)  (9-3) 

Replacing Equations (9-2) and (9-3) into Equation (9-1) yields the following cutting force per 

unit width: 

𝐹 = 𝑐
 𝑑
sin 𝜃

 
cos𝜑

cos(𝜃 + 𝛿 − 𝛼 + 𝜑) (9-4) 

The shear angle, θ, is estimated by assuming that it is oriented such that the work to form the 

chip is the minimum. This can be accomplished by assuming that the tool-chip friction angle, δ, 

and stresses on the shear plane do not vary with θ. Then, differentiating Equation (9-4) with 

respect to θ and equating the outcome to zero provides the condition that will make F minimal. 

Consequently,  

𝜃 =
𝜋
4
−

1
2

(𝛿 − 𝛼 + 𝜑)         (rad)  (9-5) 

Finally, after replacing Equation (9-5) into Equation (9-4), one can obtain the magnitude of the 

cutting force at the moment of failure. The horizontal and vertical components of the cutting 

force defined by Merchant’s model are:  
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𝐹𝑥 =  𝑐 �
2 𝑑 cos𝜑

1 − sin(𝛿 − 𝛼 + 𝜑)� cos(𝛿 − 𝛼) (9-6) 

𝐹𝑦 =  𝑐 �
2 𝑑 cos𝜑

1 − sin(𝛿 − 𝛼 + 𝜑)� sin
(𝛿 − 𝛼)  (9-7) 

If Equations (9-4) and (9-5) are replaced into Equation (9-3), it is possible to determine the 

condition for which the normal stress on the failure surface is tensile (i.e. 𝜎𝑛< 0). This condition 

is given by:  

𝛼 <
𝜋
2
− (𝛿 + 𝜑)         (rad) (9-8) 

9.1.1 Inclination of the Cutting Force 

As seen in Figure 9-1, the cutting force F is inclined with respect to the normal vector of the 

cutter face at an angle δ. Extensive testing performed and reported by Richard (1999) indicates 

that δ is relatively insensitive to the type of rock being cut. In addition, Richard demonstrated 

that δ remains almost constant throughout the duration of a given test.  

As a result of Richard’s examination of the effect of the cutting depth on the parameter 

tan(δ−α) –i.e., the factor that relates the horizontal to the vertical components of the cutting 

force–, he determines that tan(δ−α) typically decreases with increasing depth of cut until it 

reaches a constant value. Table 9-1 lists some of the values of force angles that Richard obtained 

while cutting Vosges Sandstone using a sharp PDC cutter with a rake angle of 15 degrees.  

The values in Table 9-1 will be used in the calculation of forces using the analytical 

expressions as defined in the following sections. 
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Table 9-1: Inclination of the total cutting force measured in the laboratory 

d tan (δ - α) (δ - α) α δ 
(mm) (-) (deg) (deg) (deg) 
0.3 0.71 35.37 -15 20.37 
0.6 0.65 33.02 -15 18.02 
0.8 0.63 32.21 -15 17.21 
1.0 0.62 31.80 -15 16.80 
1.4 0.61 31.38 -15 16.38 
1.6 0.61 31.38 -15 16.38 
1.8 0.61 31.38 -15 16.38 

 
Experimental data after Richard (1999) 

9.2 EVANS MODEL (1961) 

Evans model is one of the most accepted theories for rock cutting with chisel and conical picks, 

and has been widely used in the design of mechanical excavators such as shearers, continuous 

miners, and roadheaders (Bilgina et al. 2006). Evans suggested a model based on observations on 

coal breakage by wedges. The original Evans model includes the following assumptions: 

1. The rock breaks in tension along a circular failure surface, and the produced chip rotates 

about point b in Figure 9-2. 

2. The failure starts at the wedge (cutting tool) tip, with the initial direction tangential to the 

bisector of the wedge angle, and reaches the surface at point b, some distance in front of 

the wedge. 

3. The force required to break the rock is such that it produces the minimum work along the 

circular failure surface (i.e. 𝜕𝐹 𝜕𝜒⁄ = 0). 

4. The force required to push the wedge normal to a chip face can be accounted for in terms 

of a “penetration resistance” closely allied to the compressive strength 𝜎𝑐 of the rock (see 

Equation (9-11)). 

5. The ratio of compressive strength, 𝜎𝑐, and tensile strength, 𝜎𝑡, is approximately 10 for 

brittle materials (i.e. 𝜎𝑐 ≈ 10 𝜎𝑡). 
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The tensile force T normal to the failure surface is given by: 

𝑇 = 2 𝜎𝑡 𝑟 sin 𝜒 (9-9) 

Equation (9-10) presents the equilibrium of moments for the chip about point b, through which 

force S acts in the nature of a “reaction through the hinge”.  

 

 
Figure 9-2: Schematic of rock cutting according to Evans (1961) 

 

𝐹 ∙ �
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2 cos𝛼
+ 2 𝑟 sin 𝜒 sin(𝛼 − 𝜒 − 𝛿)� = 𝑇 ∙ 𝑟 sin 𝜒 (9-10) 

On the other hand, based on assumption # 4, if the penetration of the wedge into the rock is small 

in relation to the depth of cut, then: 

𝜎𝑐 =
𝐹

cos 𝛿�
ℎ cos𝛼�

=
𝐹 cos𝛼
ℎ cos 𝛿

 (9-11) 
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𝐹 =
𝜎𝑐  ℎ  cos 𝛿

cos𝛼
 

(9-12) 

Equation (9-12) in conjunction with Equations (9-9) and (9-10), result in an expression that is 

subjected to assumptions # 3 and # 5. Consequently, the condition that will make F minimal is:  

𝜒 =
1
2

(𝛼 − 𝛿)          (9-13) 

Eventually, after considering the penetration of the wedge negligibly small, and using the 

condition that  0 < 𝜒 < 𝜋 2⁄ , the force that acts upon the chip can be solved for: 

𝐹 =
𝜎𝑡 𝑑

1 − cos(𝛼 − 𝛿) (9-14) 

Finally, the horizontal and vertical components of the cutting force defined by Evans’ model are:  

𝐹𝑥 = 𝜎𝑡  �
𝑑 

1 − cos(𝛼 − 𝛿)� cos(𝛼 − 𝛿) (9-15) 

𝐹𝑦 = 𝜎𝑡 �
 𝑑 

1 − cos(𝛼 − 𝛿)� sin
(𝛼 − 𝛿) 

(9-16) 

 

9.2.1 Horizontal Slab-Cut Forces Based on Evans Model 

Making use of the tensile strength of Vosges Sandstone, i.e., 𝜎𝑡 = 3.215 MPa (466 psi), and  

Equation (9-15), the horizontal cutting force as defined by Evans can be computed for the 

analyzed two-dimensional cases of slab cutting (presented in Section 6.2.3). Note that Equation 

(9-15) yields the force per unit thickness; therefore, the 10-mm slab thickness is accounted for in 

the final calculation of the forces tabulated in Table 9-2: 
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Table 9-2: Horizontal force as a function of cutting depth according to Evans Model 

d (α − δ) cos (α - δ) Fx Fx, 10mm slab 
(mm) (deg) (-) (N/m) (N) 

0.3 -35.37 0.815 4,259.8 42.60 
0.6 -33.02 0.838 10,011.1 100.11 
0.8 -32.21 0.846 14,139.2 141.39 
1.0 -31.80 0.850 18,204.4 182.04 
1.4 -31.38 0.854 26,265.3 262.65 
2.0 -31.38 0.854 37,521.9 375.22 
3.6 -31.38 0.854 67,539.4 675.39 

 

 

9.3 NISHIMATSU MODEL (1972) 

Nishimatsu (1972) presented a theory for the cutting of rock in which he first assumes that the 

magnitude of the resulting stress, R, acting on the failure line ab is proportional to the nth power 

of the distance from surface point b and it is constant in the direction along ab (see Figure 9-3). 

The resulting stress is given by:  

𝑅 = 𝑅0 �
𝑑

sin 𝜃
− 𝜆�

𝑛

 (9-17) 

where,𝑅0  is a constant determined from the equilibrium of forces, 

d  is the depth of cut, 

𝜃  is the shear angle from the horizontal, 

𝜆  is the distance from the edge point a to an arbitrary point on the line ab, 

𝑛  is the stress distribution factor, i.e. a constant concerned with the state of stress in the 

rock cutting process. 
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Figure 9-3: Orthogonal rock-cutting forces and stresses according to Nishimatsu (1972) 

 

In addition, the original Nishimatsu model includes the following assumptions: 

1. The rock-cutting process is brittle, without any accompanying plastic deformation (no 

ductile crushing zone). 

2. A linear Mohr-Coulomb relationship exists between the normal and shear stress across 

the shear failure plane. 

3. The force required to shear the rock is such that it produces the minimum work along the 

failure line ab (i.e. 𝜕𝐹 𝜕𝜃⁄ = 0). 

The integration of the resultant stress R along line ab should be in equilibrium with the resultant 

cutting force, F. From the equilibrium of forces, the constant 𝑅0 can be determined:  

𝑅0 = 𝐹 (𝑛 + 1) �
𝑑

sin 𝜃�
−(𝑛+1)

 (9-18) 

This is replaced in Equation (9-17), and then the normal and tangential components of the 

resultant stress, R, can be resolved:  

𝜎𝑛 = 𝐹 (𝑛 + 1) �
𝑑

sin 𝜃�
−(𝑛+1)

�
𝑑

sin 𝜃
− 𝜆�

𝑛

sin(𝜃 + 𝛿 − 𝛼) (9-19) 
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𝜏 = 𝐹 (𝑛 + 1) �
𝑑

sin 𝜃�
−(𝑛+1)

�
𝑑

sin 𝜃
− 𝜆�

𝑛

cos(𝜃 + 𝛿 − 𝛼) 
(9-20) 

Next, following assumption # 2, Equations (9-19) and (9-20) are replaced into the Mohr-

Coulomb relationship in Equation (9-1), from which the solution for the cutting force, F, can be 

obtained. Based on assumption # 3, the expression for the cutting force is differentiated with 

respect to θ and equated to zero. As a result, the formula of the resultant cutting force is given 

by:  

𝐹 = 𝑐 �
1

𝑛 + 1� �
2 𝑑 cos𝜑

1 − sin(𝛿 − 𝛼 + 𝜑)� (9-21) 

where c is the cohesion and 𝜑 is the internal friction angle of the rock. Finally, the horizontal and 

vertical components of the cutting force defined by Nishimatsu’s model are:  

𝐹𝑥 =  𝑐 �
1

𝑛 + 1� �
2 𝑑 cos𝜑

1 − sin(𝛿 − 𝛼 + 𝜑)� cos(𝛿 − 𝛼) (9-22) 

𝐹𝑦 =  𝑐 �
1

𝑛 + 1� �
2 𝑑 cos𝜑

1 − sin(𝛿 − 𝛼 + 𝜑)� sin
(𝛿 − 𝛼)  (9-23) 

Note that if 𝑛 = 0, Nishimatsu’s forces become Merchant’s forces (see Equation (9-6) and 

(9-7)). However, according to Nishimatsu (1972), the stress distribution factor should not depend 

on the mechanical properties of the rock, but on the state of stress in the rock, which would 

substantially depend on the rake angle of the cutting tool. This prediction was verified by 

laboratory tests on sandy tuff and cement mortar (Nishimatsu 1972), which provided an 

empirical estimate of the stress distribution factor as a function of the rake angle:  

𝑛 = 11.3 − 0.18 𝛼                        𝛼  in degrees (9-24) 
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9.3.1 Horizontal Slab-Cut Forces Based on Nishimatsu Model 

Making use of the shear strength parameters of Vosges Sandstone, i.e., cohesion, 𝑐 =

5 MPa (725.2 psi) and friction angle φ = 25.4 degrees, together with  Equations (9-22) and (9-24), 

the horizontal cutting force as defined by Nishimatsu can be computed for the analyzed two-

dimensional cases of slab cutting (presented in Section 6.2.3). Note that Equation (9-22) yields 

the force per unit thickness; therefore, the 10-mm slab thickness is accounted for in the final 

calculation of the forces tabulated in Table 9-3: 

 
Table 9-3: Horizontal force as a function of cutting depth according to Nishimatsu Model 

d n (δ−α) (δ−α+φ) sin (δ−α+φ) cos (δ−α) Fx Fx, 10mm slab 
(mm) (deg) (deg) (deg) (-) (-) (N/m) (N) 

0.3 14.0 35.37 60.77 0.87 0.815 1,157.3 11.57 
0.6 14.0 33.02 58.42 0.85 0.838 2,046.3 20.46 
0.8 14.0 32.21 57.61 0.84 0.846 2,620.2 26.20 
1.0 14.0 31.80 57.20 0.84 0.850 3,210.1 32.10 
1.4 14.0 31.38 56.78 0.84 0.854 4,405.0 44.05 
2.0 14.0 31.38 56.78 0.84 0.854 6,292.9 62.93 
3.6 14.0 31.38 56.78 0.84 0.854 11,327.3 113.27 

 

Evidently, the resulting forces in Table 9-3 are underestimated, perhaps due to the use of the 

suggested stress distribution factor for sandy tuff and cement mortar in Equation (9-24). If the 

stress distribution factor were to be adjusted to characterize this particular scenario of rock 

cutting more appropriately, a value of n = 3.0 would yield a better comparison with the 

numerical and experimental data. The adjusted Nishimatsu forces are shown in Table 9-4: 

 
Table 9-4: Adjusted horizontal force as a function of cutting depth according to Nishimatsu Model 

d n (δ−α) (δ−α+φ) sin (δ−α+φ) cos (δ−α) Fx Fx, 10mm slab 
(mm) (deg) (deg) (deg) (-) (-) (N/m) (N) 
0.3 3.0 35.37 60.77 0.87 0.815 4,318.2 43.18 
0.6 3.0 33.02 58.42 0.85 0.838 7,635.3 76.35 
0.8 3.0 32.21 57.61 0.84 0.846 9,777.0 97.77 
1.0 3.0 31.80 57.20 0.84 0.850 11,978.0 119.78 
1.4 3.0 31.38 56.78 0.84 0.854 16,436.7 164.37 
2.0 3.0 31.38 56.78 0.84 0.854 23,481.1 234.81 
3.6 3.0 31.38 56.78 0.84 0.854 42,265.9 422.66 
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It is important to note that adjusting the value of the stress distribution factor, n, in Equation 

(9-23), in order to obtain a better validation of the results, makes invalid Nishimatsu’s 

assumption regarding its dependence on the value of the rake angle. As expressed in Equation 

(9-24), by setting n = 3, the corresponding rake angle should be hypothetically 46 degrees. 

Conversely, as the nature of the cutter geometry analyzed by Nishimatsu differs from the PDC 

geometry studied in this work (i.e. with a negative rake angle), it is likely that the value of n 

could be attributed to a different expression taking into account the negative-rake-angle case. 

9.4 DETOURNAY & ATKINSON MODEL (2000) 

In their formulation, Detournay and Atkinson (2000) obtained a straightforward generalization of 

Merchant’s solution to account for the presence of fluid during the rock-cutting process, as 

illustrated in Figure 9-4. In this case, F, is the differential cutting force, defined as the force 

required to move the cutter minus the force acting on the cutter (due to mud pressure, pm) when it 

is not in contact with the rock. 

 

  
Figure 9-4: Rock-cutting problem definition according to Detournay and Atkinson (2000) 
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To extend Merchant model, Detournay and Atkinson introduced the following assumptions: 

1. The Mohr-Coulomb failure criterion is satisfied by the effective normal stress, (𝜎𝑛 − 𝑝𝑏), 

and the shear stress across the rock failure plane: 

𝜏𝑅 = 𝑐 + (𝜎𝑛 − 𝑝𝑏) tan𝜑  (9-25) 

where 𝑝𝑏 is the pore pressure, c is the cohesion and 𝜑 is the internal friction angle of the 

rock. 

2. The contact friction angle at the cutter-rock interface, 𝛿, produces:  

𝜏𝑖 = (𝜎𝑛 − 𝑝𝑚) tan 𝛿  (9-26) 

3. The interstitial fluid pressure along the cutter-rock interface is equal to pm. 

From assumptions # 2 and # 3, the horizontal and vertical components of the differential cutting 

force have the following relationship:  

𝐹𝑦 = − tan(𝛿 − 𝛼)𝐹𝑥 (9-27) 

Then, following the same considerations as in Merchant model, the horizontal component of the 

cutting force according to Detournay and Atkinson is:  

𝐹𝑥 =  [𝑐 + (𝑝𝑚 − 𝑝𝑏) tan𝜑] �
2 𝑑 cos𝜑

1 − sin(𝛿 − 𝛼 + 𝜑)� cos(𝛿 − 𝛼) (9-28) 

9.4.1 Horizontal Slab-Cut Forces Based on Detournay and Atkinson Model 

Making use of the shear strength parameters of Vosges Sandstone, i.e., cohesion, 𝑐 =

5 MPa (725.2 psi) and friction angle φ = 25.4 degrees, together with  Equation (9-28), the 

horizontal cutting force as defined by Detournay and Atkinson can be computed for the analyzed 

two-dimensional cases of slab cutting (presented in Section 6.2.3). The mud and pore pressure, 
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𝑝𝑚 and 𝑝𝑏, are considered zero in this case, which will essentially make Equation (9-28) become 

Merchant model. Note that Equation (9-28) yields the force per unit thickness; therefore, the 10-

mm slab thickness is accounted for in the final calculation of the forces tabulated in Table 9-5: 

 
Table 9-5: Horizontal force as a function of cutting depth according to Detournay and Atkinson Model 

d (δ−α) (δ−α+φ) sin (δ−α+φ) cos (δ−α) Fx Fx, 10mm slab 
(mm) (deg) (deg) (-) (-) (N/m) (N) 

0.3 35.37 60.77 0.87 0.815 17,359.1 173.59 
0.6 33.02 58.42 0.85 0.838 30,693.9 306.94 
0.8 32.21 57.61 0.84 0.846 39,303.5 393.03 
1.0 31.80 57.20 0.84 0.850 48,151.6 481.52 
1.4 31.38 56.78 0.84 0.854 66,075.7 660.76 
2.0 31.38 56.78 0.84 0.854 94,393.9 943.94 
3.6 31.38 56.78 0.84 0.854 169,908.9 1699.09 

 

9.5 NUMERICAL VS. EXPERIMENTAL VS. ANALYTICAL SOLUTIONS 

As mentioned in the beginning of this chapter, the analytical models for rock cutting offer a 

quantitative interpretation of the peak cutting force, while the rock is being fractured primarily in 

a brittle fashion. Nonetheless, there are two different mainstreams concerning the mechanism 

being considered as the source of the breaking process once the cutting tool penetrates the rock. 

On one hand, Evans (1961) claims that the failure is the result of the propagation under tensile 

stresses of cracks contained in the material. This is apparent to him given the fact that brittle 

materials are considerably weaker in tension than in compression. On the other hand, both 

Nishimatsu (1972) and Detournay and Atkinson (2000), based upon Merchant’s model (1944) 

assume a shear failure plane along a macroscopic crack to form a coarse cutting chip. 

In actuality, none of these premises are unsuitable. After having an understanding of the 

phenomena taking place during the rock cutting process, it can be said that the analytical models 

should be applied with caution depending upon the failure regime, which is essentially mandated 

by the depth of cut, as has been demonstrated through the experimental and numerical scratch 

tests (see Sections 2.1.1 and 6.2, respectively).  
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Table 9-6 presents a comparison of the average horizontal cutting force required to cut 

Vosges Sandstone at different depths obtained from the simulations developed within this 

investigation, from the experiments performed by Richard (1999), and from computations of the 

analytical equations derived by Evans, Nishimatsu and Detournay and Atkinson, D&A (i.e. 

Merchant). Moreover, in order to visualize the discrepancies or similarities at large, the force 

values in Table 9-6 have been plotted against the cutting depth. Figure 9-5(a) presents the mean 

horizontal cutting force from the FE simulations and from the experiments in contrast with the 

calculated forces from the analytical models discussed. This plot covers both the ductile and 

brittle regime cutting-depth ranges; yet, since it is anticipated that the analytical models 

characterize best one or the other failure regime, Figure 9-5(b) zooms into the data 

corresponding to the ductile regime. Likewise, Figure 9-6(a) and Figure 9-6(b) show the same 

data, only that the forces from the FE simulations and the experiments are the mean peak 

averages. 

 

 
Table 9-6: Average horizontal cutting force from numerical, experimental, and analytical solutions 

 

Cutting 
Depth 

Horizontal Cutting Force (N) 

 Numerical 
Simulation Experimental Analytical 

 (mm) Mean 
Mean 
Peak Mean 

Mean 
Peak Evans Nishimatsu 

Nishimatsu 
Adjusted D&A 

D
uc

til
e 

R
eg

im
e 

0.3 60 67.3 57.7 88.6 42.6 11.6 43.2 173.6 

0.6 80.4 94.2 101.2 160.4 100.1 20.5 76.4 306.9 

0.8 102.6 112.1 119.0 203.3 141.4 26.2 97.8 393.0 

1 109.8 124.1 128.6 249.0 182.0 32.1 119.8 481.5 

1.4 140.2 158.3 141.5 301.2 262.7 44.1 164.4 660.8 

B
rit

tle
 

R
eg

im
e 2 178.6 245.2 147.1 386.9 375.2 62.9 234.8 943.9 

3.6 246.4 414.4 
approx. 
250 

approx. 
400 675.4 113.3 422.7 1699.1 
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Figure 9-5: Mean horizontal forces: numerical vs. experimental vs. analytical solutions 
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Figure 9-6: Mean peak horizontal forces: numerical vs. experimental vs. analytical solutions 
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Evans’s postulation of failure through a tensile crack is more indicative of shallower rock break-

ups, thus it would be appropriate to compare Evan’s forces with the values that lie within the 

ductile regime –even though his theory refers to no sign of plastic deformation in the vicinity of 

the surface of breakage. Figure 9-5(b) reveals how Evans’s forces are only roughly comparable 

to the numerical and experimental mean values at a cutting depth equal or less than 0.6 mm. 

When the cutting depth increases, Evans’s results gradually diverge more. This could be 

explained by the gradual transition from ductile to brittle failure mode in the rock as a function 

of cutting depth, where it is expected that the chips get formed by initiating with a tensile crack 

that evolves into a shear failure surface. 

Furthermore, it can be inferred from both Figure 9-5 and Figure 9-6 that Detournay and 

Atkinson’s evaluation of the cutting force, as used in this exercise, overestimates by far its 

magnitude. A potential reason for this large difference in the results could be attributed to the 

limitation of the model as specifically acknowledged by the authors: “the present model is 

suitable for low-permeability rocks under “near-undrained” conditions”. This implies that the 

model might be strictly applied to scenarios where the mud and pore pressure, 𝑝𝑚 and 𝑝𝑏, are 

present. In addition, these researchers contemplate the fact that the value of the cohesion used in 

their equation “could be considerably smaller than the cohesion deducted from peak strength 

measured in conventional triaxial experiments since the cutting problem involves very large 

shear strains and since rock experiences a loss of cohesion after relatively small strain.” 

(Detournay and Atkinson 2000) According to this last statement, if a reduction factor were to be 

applied on the (typical) cohesion value used in Equation (9-28), a factor of 0.25 would make 

Detournay and Atkinson’s calculated forces identical to the adjusted Nishimatsu forces, which 

are tabulated in Table 9-4.  

Lastly, taking into account the nature of the Merchant-based models, the focus should be 

geared towards the mean peak forces within the brittle regime range, as these models 

characterize shear failure along a crack that propagates to produce a coarse chip (or fragment). 

Figure 9-6(a) shows how the adjusted Nishimatsu model successfully resembles the values of the 

force from the FE simulations for depths of cut equal or greater than 1 mm. Interestingly, looking 

at the mean forces in Figure 9-5(a), Nishimatsu’s adjusted model also matches the simulation 

forces corresponding to the ductile regime, i.e., at shallow cutting depths.  
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10.0 CONCLUDING REMARKS 

10.1 SUMMARY AND CONCLUSIONS 

The most important accomplishment gained through this study has been an improved 

understanding of the mechanical phenomena involved in rock cutting. A reliable finite element 

model was developed that was able to properly simulate the fragmentation process observed in 

laboratory tests of rock cutting. Fracture modes and cutting force magnitudes and trends 

correlated well with the physical experiments.  

In addition, a scheme for applying external pressure was effectively incorporated into the 

rock cutting model. Albeit the lack of calibration data, preliminary numerical results indicate a 

good comparison with physical experiments of the rock response tendency when cutting with a 

single sharp cutter under different magnitudes of hydrostatic pressure. 

Lastly, the traditional theoretical models of the cutting force were evaluated and 

compared with the simulation and experimental results, which provided a better understanding of 

their limitations and usability. 

10.1.1 Rock Behavior through a Sound Constitutive Model 

Chapter 3.0 describes several material models available in LS-DYNA which would normally be 

useful to simulate a geo-material. Nevertheless, given that the rock cutting problem analyzed 

involves a series of complex breaking processes –including crack propagation and fragment 

separation–, it is imperative that the material model implemented leads to a robust simulation. 

Material 159 of LS-DYNA, namely the Continuous Surface Cap Model, was found to fulfill this 

purpose (see Section 3.2.4). 
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Among the salient features of Mat_159, the element erosion built into this material model 

is what makes it the most suitable to emulate a realistic rock fracturing behavior upon different 

loading conditions (see Section 5.3.3). Twenty-two out of forty-five input parameters that the 

model requires were obtained by means of fitting laboratory data from standard strength tests on 

Vosges Sandstone (see Section 3.2.4.1).  

Once the input parameters were established for all the potential geo-material models 

under evaluation, standardized strength tests were conducted for validation. Chapter 4.0 presents 

the assessment of these geo-material models by carrying out simulations of the isotropic 

compression test, triaxial compression, and triaxial extension tests under different confining 

pressures.  

After a rigorous effort to analyze the performance of Mat_159 and to calibrate its input 

parameters, the final set of established input parameters for this material model projected a 

realistic behavior of the rock under different loading conditions. Although some formulation 

problems were encountered (as described in Section 4.5.2), and the one-element volumetric-

strain response was not as expected, the rock-cutting simulations presented in Chapters 6.0, 7.0, 

and 8.0 are based upon this calibrated and validated values. 

10.1.2 Configuring LS-DYNA’s Capabilities to Simulate Rock Cutting 

Chapter 5.0 presents in detail the key features of the commercial software LS-DYNA, which 

have a large impact on the performance of the rock-cutting model. A sensitivity analysis was 

performed on essential options of the software relevant for the study, and as a result, baseline 

inputs were established for simulating the fragmentation process sought.  

In a nutshell, the most important LS-DYNA functionality utilized in this modeling effort 

was the so-called element erosion (see Section 5.3), which allows the removal of elements from 

the mesh domain upon material failure. This characteristic dictates the definition of other 

important components of the model, such as mesh discretization, contact among materials, and 

even the way the output data are analyzed.  

At the outset, it was determined that the finite element mesh of the rock specimen must 

be comprised of non-uniform (non-orthogonal) elements and that their size should be small 

enough so that a failure crack thickness would be as realistic as possible.  
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Also, the contact formulation to treat both the cutter-rock and rock-rock interfaces was 

studied (see Section 5.2). It was found that the most effective technique to work out the 

interaction between the cutter tool and the rock material is one that assumes the cutter to be a 

rigid body, eliminating the effect of its deformation. On the other hand, due to the newly exposed 

rock surfaces after element erosion, a contact model that updates its contact surface is required; 

the “Eroding Single Surface” contact model in LS-DYNA fulfilled this purpose. Both contact 

models required the specification of numerous input parameters which were carefully calibrated. 

In addition, the effect of other numerical factors on the results, as well as output data 

interpretation procedures were analyzed. Section 5.4 describes how the resulting cutting forces 

from the simulations were sensitive to factors such as system damping, cutting velocity and 

material damage recovery; optimum input values for these factors were determined. This section 

also presents a proposed technique to filter and interpret the cutting force data recorded during 

the numerical simulations.  

10.1.3 Simulating Scratch Tests on a Rock Slab (Two-dimensional Cutting) 

Chapter 6.0 presents the numerical simulation of the scratch tests performed by Richard (1999) 

in the laboratory. Not only the models developed were able to resemble the rock fracturing and 

fragmentation seen in the laboratory, including the ductile and brittle failure modes, but the 

resulting cutting forces could be successfully validated by comparing with the experimental 

measurements.  

Although a “critical depth” of cut, as defined by Richard (1999), was identified by the 

numerical results with the same value as his (i.e., 1.5 mm), it was observed that there is a definite 

gradual transition between the brittle and ductile regimes, which covered all the cutting depths 

within the range tested. Furthermore, the trend of force-vs.-depth numerical data within the 

brittle failure range appears to oppose that from Richard’s laboratory tests, in that it follows a 

steeper upward (quasi-linear) variation, in contrast with his horizontal asymptotic tendency (see 

Section 6.2.3). 
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10.1.4 Simulating Scratch Tests with a Groove (Three-dimensional Cutting) 

Sixteen cases of groove cutting in Vosges Sandstone were modeled under conditions similar to 

Richard’s groove scratch experiments (1999). Preparation of these models and their results are 

included in Chapter 7.0. In this particular case, the objective was to get an understanding of the 

implications of cutting the groove side walls. For this, a combinatory of 4 different depths of cut 

(d) with 4 different cutter widths (w) was simulated within the ductile regime of Vosges 

Sandstone.  

The magnitude of the mean horizontal cutting forces obtained from the numerical 

simulations were found inconsistent with respect to the laboratory results, particularly as the 

cutting depth increased; however, a good agreement in the force-vs.-depth linear trend was 

achieved, as well as in the variation of the force as a function of cutter width. Based upon these 

findings, it is believed that, for values of w/d ratio greater than 5, a rational expression could 

characterize the force in terms of depth and width of cut. Accordingly, an empirical formula was 

derived for the calculation of the mean force in groove cutting, as a function of the cut nominal 

dimensions (see Section 7.2.2). 

10.1.5 On the Computation of a True Specific Energy 

The “Eroded Volume Fraction” output data from LS-DYNA was employed to quantify the 

amount of rock material that is in effect removed by the cutting action, in contrast to the nominal 

amount given by the fixed cut dimensions, w and d. The eroded volume output not only 

confirmed the nature of the ductile-to-brittle transition mentioned above for the two-dimensional 

scratch tests (see Section 6.3), but is also served as a tool to propose a new methodology for 

estimating the actual specific energy required to cut the rock. Using the data pertaining to the 

ductile failure regime, a constant value of specific energy for the scratch tests –independent of d– 

was obtained based on this methodology, reassuring that the specific energy is an inherent 

mechanical property of the rock, and could be associated with its compressive strength (see 

Section 6.4). 

Following up on the development of the proposed methodology, Section 7.3 presents its 

extended application by taking into account the three-dimensional nature of the groove cutting 
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tests. Upon analysis of the actual groove cut dimensions, some important conclusions can be 

made: 

 The actual depth of cut (crushed depth, ) in a groove made by a sharp cutter has a 

linear relationship with d, along with a slight power proportionality to w. A preliminary 

empirical formula was derived to associate these variables. 

 The actual width of cut (crushed width, ) in a groove made by a sharp cutter has 

a linear relationship with w, and is independent of d. A preliminary empirical formula 

was derived to associate these variables. 

 Overall, groove cuts with the smallest value of d (i.e. 0.3 mm) show the largest impact in 

the actual eroded material amount in relation to their nominal size. 

 Larger nominal cutter sizes not only show a decreasing effect on the actual crushed area, 

but the trends also imply a convergence point where the minimum area crushed lies in the 

vicinity of 135% of the nominal area. 

 
From the groove cutting simulation results it can also be stated that the actual specific energy of 

Vosges Sandstone has a very small (arbitrary) variation as a function of the groove dimensions. 

In fact, it can be inferred that the specific energy is independent of nominal groove dimensions 

that yield a w/d ratio less than 10. The value of specific energy calculated through groove cutting 

data is somewhat larger than the one obtained from slab cutting data, indicating indeed the 

influence of the side wall presence in the three-dimensional case (see Section 7.4). 

10.1.6 The Effect of the Groove Edges on the Cutting Force 

Based on the numerical simulation results, Section 7.5 presents the derivation of empirical 

equations for the mean horizontal cutting force as a function of w and d, in both slab cutting and 

groove cutting cases. Based upon the hypothesis that these two normalized expressions with 

respect to w converge to the same result when d is equal to zero, it was possible to establish an 

empirical relationship between the slab and groove forces. Therefore, the cutting force for a 

three-dimensional groove can be provided by the summation of the two-dimensional slab force 

and an additional term that depends on d, which most likely characterizes the shear resistance 

along the side walls. 
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10.1.7 Groove Cutting Under Hydrostatic Pressure 

Chapter 8.0 presents preliminary finite element simulations of rock cutting under hydrostatic 

pressure, following the configuration of a set of laboratory experiments carried out by Kaitkay 

and Lei (2005). In addition to implementing all the considerations explained throughout Section 

3.2.4, Chapter 5.0, and Chapter 7.0, the numerical models include the application of external 

pressure, which was not a straight-forward process due to the dynamic nature of the rock-cutting 

problem. 

The essential contribution laid in Chapter 8.0 is the provision of a methodology, using 

LS-DYNA’s optional features, capable of simulating the “constant presence of fluid pressure” in 

the environment during the cutting tests, without it being eradicated by the removal of the 

external surface (of rock elements) on which the fluid pressure is virtually applied. Namely, the 

LOAD_DENSITY_DEPTH option from LS-DYNA was employed. 

The results obtained from these simulations corroborate several observations made by 

other investigators in the experimental arena, such as: 

 As expected, when the external pressure increases, the mean cutting force is larger and 

follows a polynomial trend of second order as a function of pressure. 

 With larger pressure applied to the rock during cutting, fewer microcracks are developed 

in the rock as the cutter passes. This fact was demonstrated by the distribution of damage 

illustrated for each model in relation to its applied pressure (see Section 8.2.3). 

 There are smaller fluctuations of the force when the pressure is higher, and thus it reflects 

localized crushing events of greater intensity. This was made evident after executing an 

erosion analysis as explained in former chapters (see Section 8.3).  

10.1.8 Comparing the Results with Analytical Solutions 

The theoretical models postulated by Evans (1961), Nishimatsu (1972), and Detournay and 

Atkinson (2000) were evaluated on the basis of the two-dimensional scratch tests modeled and 

discussed in Section 6.2.3. Based on these theories, the computed horizontal forces were 

compared with the mean and mean peak forces obtained through the numerical simulations and 

through Richard’s laboratory experiments (see Section 9.5) 
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In general, it was observed that these analytical solutions have limitations in terms of the 

range of cutting depths evaluated, as the depth of cut dictates the rock failure mode. Evan’s 

theory is based on a tensile crack assumption, thus the shallower cutting depth scenarios within 

the ductile regime range are more prone to exhibit this type of failure. This was, in fact, 

successfully demonstrated among the compared values of forces presented in Section 9.5. 

Conversely, the other two theories, which are founded on Merchant’s cutting model, assume a 

shear failure surface during the generation of a coarse-size chip. This implies that the latter 

models apply to the deeper cutting scenarios within the brittle regime of failure as previously 

defined. However, the calculated force based on the original Nishimatsu model yielded much 

lower values compared to both the numerical and experimental results. Similarly, Detournay and 

Atkinson’s forces showed a very large discrepancy, but these being much greater in magnitude 

than the numerical and experimental.  

Analyzing the premises upon which the force equation was proposed, an adjustment of 

the equation parameters was made for both Nishimatsu’s and Detournay and Atkinson’s forces. 

By doing that, the computed values of force from both theories were identical. Additionally, a 

satisfactory comparison was achieved between the adjusted theoretical forces and the forces from 

the numerical simulations. 

10.2 RECOMMENDATIONS FOR FUTURE WORK 

To continue and to expand research on modeling rock cutting, recommendations for future work 

in the following areas are suggested: 

The material model selected from LS-DYNA’s pool (i.e. Mat_159) is very versatile; 

however, important improvement would be desirable. First and foremost is the inclusion of a 

brittle-to-ductile transition formulation as a function of pressure, and the coupling of the high 

pressure behavior with high temperature.  

To facilitate the generalization of the complex processes that take place during a rock 

cutting action, it is desirable to conduct simulations using a wide range of rock types.  

Larger finite element domains are necessary to simulate larger scale problems, and it 

would be impractical to keep element size as small as rock particle sizes. Therefore, it is 
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important to investigate how to scale up element sizes in an optimal fashion given a problem 

domain. 

Regarding the theoretical solutions studied, and based upon the parameter adjustment 

exercised to Nishimatsu’s or Detournay & Atkinson’s equations, it is likely that a reduced shear 

strength value of the rock material has to be considered in order to get more realistic results. 

Considering the limitations of the analytical models, a more fundamental proposal considering 

fracture mechanics, at least for deep cuts, may be a better approach to characterize the cutting 

forces during the brittle failure of the rock. 
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