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In post-mortem tissue studies that compare regional brain biomarkers across different mental

disorder diagnostic groups, subjects are often matched on several demographic characteristics

and measured on additional covariates. The goal of our research is to integrate the results

from these types of studies using two commonly used statistical discrimination techniques,

namely, linear discriminant analysis (LDA) and classification trees based on the algorithm

developed by Breiman, Friedman, Olshen, and Stone (BFOS), to identify the most discrim-

inatory subset of biomarkers. Subject matching and covariate effects don’t appear in the

literature implementing these discriminatory methods in the analysis of post-mortem tissue

studies (e.g., Knable et al. 2001; Knable et al. 2002).

Although there are methods that have been developed for LDA to account for covariate

effects on the response or feature variables of interest, none of these methods addresses the

fact that individuals may also be matched across several groups. One aspect of our research

extends this work to handle group matching.

To develop the theoretical foundations required to account for covariate effects in classi-

fication trees, we describe how to implement the BFOS algorithm, which is non-parametric

and traditionally implemented in a data based setting, when the feature variables come from

a known distribution. We then extend this algorithm to the case where the feature variables

come from a known distribution, conditional on a covariate value. From this development,

we carefully formulate a semi-parametric model for the conditional distribution of the feature

iii



variables that allows the use of the BFOS algorithm to construct a covariate adjusted tree

based on one unique set of feature variables, in both a theoretical setting and in the context

of training data. Finally, the tree construction procedure we develop using this conditional

model is extended to handle group matching.

Our adjustment methodology is successfully applied to a series of post-mortem tissue

studies conducted by Sweet et al. (2003, 2004, 2007, 2008) comparing several neurobiological

characteristics of schizophrenia subjects and normal controls, and to a post-mortem tissue

study conducted by Konopaske et al. (2008) comparing brain biomarker measurements of

monkeys across three treatment groups.

Keywords: linear discriminant analysis, classification trees, recursive partitioning algo-

rithm, matched design, post-mortem tissue studies, schizophrenia.
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1.0 INTRODUCTION

1.1 BACKGROUND

In the statistical analysis of a particular set of response or feature variables measured on

an individual, it is possible that an individual on whom these variables are measured may

belong to one of g (g ≥ 2) groups. In this case, if is often of interest to determine which of

these feature variables best differentiates among individuals belonging to these groups. The

motivation of our research and its ultimate application is on the analysis of post-mortem

brain tissue studies, which are used in neuroscience to detect differences in regional brain

biomarker measurements between subjects from different mental disorder diagnostic groups,

e.g., normal controls and subjects with schizophrenia. Over time, an increasing number of

these studies have been done on the same cohort of subjects, where each study considers

different biomarkers. It is of considerable interest to integrate the evidence from a set of such

comparative post-mortem tissue studies in order to identify among the examined biomarkers

those that best discriminate among the diagnostic groups under consideration. In general,

the identification of subsets of discriminatory biomarkers in such studies tends to be more

exploratory in nature with a goal to obtain better characterizations of the pathology or

pathologies of interest. The insights gained can be used in developing new hypotheses that

can be tested prospectively.

Rather than just fitting univariate models to each feature variable to determine which of

them significantly differs with respect to group, discrimination approaches obtain the most

discriminatory subset of feature variables by taking into account the interrelationships that

exist among these variables. Among the various statistical methods that accomplish this,

two are commonly used in practice, namely, linear discriminant analysis (LDA) and classifi-

1



cation trees. Linear discriminant analysis, first introduced by R. A. Fisher[8][9], is based on

the assumption that the feature data follow a normal distribution with a common variance-

covariance matrix across groups, where this latter assumption has been relaxed since Fisher’s

initial development. Classification trees are constructed using a computationally intensive

recursive partitioning algorithm that, unlike LDA, makes no assumptions regarding the dis-

tribution of the feature data. One notable complication in using any of these statistical

procedures to discriminate among groups occurs when the individuals on whom these fea-

ture data are measured are matched across groups on the basis of certain attributes, such

as age or gender. In many post-mortem brain tissue studies, individuals from each of the

diagnostic groups under consideration are matched to better control the inherent experimen-

tal variability that arises due to the manner in which brain tissue is processed. A further

challenge in these analyses is to also account for other subject characteristics or covariates

not included in the matching process. Although such covariates are not considered germane

in differentiating among the groups of interest, they may still have an important impact on

the feature variables under consideration.

Illustrative of such integrative analyses aimed at group discrimination are two recent

studies conducted by Knable et al. in 2001 [16] and 2002 [15], which are based on post-mortem

tissue specimens taken from the Stanley Foundation Neuropathology Consortium. The prin-

cipal purpose of the Knable et al. studies was to determine a subset of prefrontal cortical

markers that best discriminated among the following four diagnostic groups: schizophrenia,

bipolar disorder, major depressive disorder (MDD) without psychotic features, and normal

controls. In each of these two studies, there were 15 matched quadruples of individuals,

one from each of the four groups, where the matching was based on several characteristics,

including age at death and post-mortem interval (PMI), which is the amount of elapsed time

between actual time of death and time of tissue collection, so that there were a total of 60

subjects in each study. Also, while not matched for brain tissue storage time, the amount of

time for which brain tissue has been stored, this covariate was also measured for each subject.

Their 2001 study first used a stepwise variant of LDA to determine the most discriminatory

subset of prefrontal cortical markers, which subsequently served as a basis for traditional

LDA to measure the extent to which this subset correctly classified new individuals belong-

ing to one of these four diagnostic groups. In their 2002 study, the BFOS classification tree
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construction algorithm (see Breiman, Friedman, Olshen, and Stone (BFOS)[7]) was used to

identify the subset of cortical markers that best distinguished among the four diagnostic

groups and measure classification accuracy.

However, Knable et al. did not account for either the subject matching that was used

or the measurement of additional covariates, such as brain tissue storage time, in their dis-

criminatory analyses. This omission is potentially problematic due to the fact that cohort

processing and covariates can potentially have considerable influence on biomarker measure-

ments. In particular, tissue processing plays an important role in the variability of biomarker

measurements across cohorts. Tu et al. also point out that failure to account for design and

covariate effects on the feature data may produce misleading results with poor discriminatory

ability [37]. In general, the statistical methodology we develop aims to adjust, or control, for

the effects of subject matching and covariates in the identification of feature variables that

best discriminate among the groups of interest.

Schizophrenia is a chronic, severe, and debilitating mental disorder, characterized mainly

by cognition impairment. The Conte Center for the Neuroscience of Mental Disorders (CC-

NMD) in the Department of Psychiatry at the University of Pittsburgh has been involved in

conducting extensive neurobiological research concerning this disorder. One area of research

that the Center focuses on is the analyses of post-mortem tissue samples to detect neuro-

biological abnormalities in subjects with schizophrenia as compared to normal controls. In

each of the human post-mortem tissue studies conducted in the Center, every subject with

schizophrenia is pair matched with a control subject based on age at death, gender, and

PMI, with some studies including an additional matched diagnostic group, e.g., subjects

with MDD. Auxiliary covariate data, such as brain pH value and brain tissue storage time,

are also collected for each subject. Our goal is to take subject pairing and covariates into

account when integrating data from these post-mortem tissue studies in order to accurately

determine which biomarkers best discriminate schizophrenia subjects from normal controls.

We reiterate that our interest is primarily focused on discrimination and not classification.

Conceptually, we want to answer questions similar to that posed in the following scenario.

Suppose one is considering a hypothetical pair in a post-mortem tissue study consisting

of a control subject and a subject with schizophrenia who have the same age at death,

gender, and PMI and whose measured multiple biomarkers are obtained under the “same

3



conditions”, meaning that both members of the pair had their biomarkers measured in the

same manner. This is in recognition that differing batches of the same reagent might vary

in strength and, thus, impact the measurement process. The question then becomes which

biomarkers best distinguish the subject with schizophrenia from the control subject in any

given pair. In doing this discrimination, we also want to take into account the effects of

other covariates, such as brain tissue storage time, that were not considered in the pairing.

Moreover, we would like these obtained discriminatory biomarkers not to depend on either

the characteristics specific to that pair or how that pair was processed.

Although we present our adjustment methodology in the context of post-mortem tissue

studies, the applicability of this methodology extends to a wide variety of studies, including

traditional epidemiological case-control studies, imaging studies, and genomic studies.

1.2 RESEARCH OVERVIEW

Our research is centered on controlling for the effects of subject matching and additional

covariates when determining the discriminatory ability of a particular set of feature variables

and classifying new individuals using LDA and classification trees constructed using the

BFOS recursive partitioning algorithm.

An overview of post-mortem tissue studies is provided in Chapter 2, followed by a de-

scription of the standard statistical models used in these studies. We then discuss one

post-mortem tissue data set that, in part, motivates our subsequent research, along with

another data set to which we apply our adjustment methodology.

In Chapter 3, we give an overview of classification and consider traditional LDA. A

review of covariance adjusted linear discriminant analysis, a modification of traditional LDA

that utilizes the conditional distribution of the feature variables of interest, and a description

of the relevant literature is subsequently provided. We then introduce the formulation of

our method of paired LDA, which extends the methodology developed by Lachenbruch [19]

and Tu et al. [37] to handle the case where individuals are paired, as well as the case where

individuals are paired and also measured on covariates not included in the pairing. Finally,

we extend our adjustment procedure to handle matching across multiple groups.
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Chapter 4 begins with an overview of classification trees constructed using the BFOS

recursive partitioning algorithm, which is typically used in the context of training data. This

is followed by a more detailed description of the classification tree construction procedure,

first in a population setting and then in a data setting. We then discuss our modification to

the BFOS algorithm that we develop to adjust for the effects of covariates on the feature data.

Next, we extend this adjusted recursive partitioning method to develop semi-parametric

classification trees, which arise from our assumption that the conditional distribution of the

feature data is based on a parametric function of fixed covariate values. We then describe

how the procedure used in constructing semi-parametric classification trees can be applied

to adjust for the effect of subject matching across two or more groups, along with the effects

of additional covariates, on the feature data.

Our adjustment methodology is first applied in Chapter 5 to the analysis of six auditory

cortical biomarkers measured in four post-mortem tissue studies conducted by Sweet et al.

[33][34][35][36], which compared subjects with schizophrenia with control subjects. We then

discuss the application of our methodology to six biomarkers measured in one post-mortem

brain tissue study conducted by Konopaske et al. [17] that compared monkeys that were each

treated with one of three different drugs, namely, a sham drug, haloperidol, or olanzapine,

the latter two of which are antipsychotics.

Finally, we present in Chapter 6 a further discussion of our present research, including

the future work we plan to pursue, which includes an extension of our research methodology

to quadratic and logistic discriminant analysis, as well as to the tree ensemble construction

algorithm of random forests.
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2.0 MOTIVATING DATA

2.1 OVERVIEW OF POST-MORTEM TISSUE STUDIES

In the CCNMD, as of May 26, 2011, there are 86 subjects with schizophrenia and 181

control subjects in the Brain Tissue Bank. Post-mortem psychiatric information, such as

drug usage and cause of death, has been collected for these subjects, along with demographic

information. These subjects have been used repeatedly in studies conducted under the

auspices of the CCNMD. In a single study focused on a few select biomarkers, tissue is

first obtained for each subject from a specific brain region, such as the primary auditory

cortex, and several sections are sampled. Stereological techniques are then typically used to

randomly select a number of sites (i.e., sampling frames) within each section, from which to

obtain measurements for the several biomarkers of interest. Due to experimental resource

feasibility and tissue availability considerations, only varying subsets of the 86 subjects with

schizophrenia are used in individual studies.

Each individual study undergoes extensive statistical analysis. A typical approach to

analyze the biomarkers under consideration has been via ANCOVA models or their multi-

variate version (MANCOVA). The main goal of these studies is to identify which individual

biomarkers are significantly altered in subjects with schizophrenia compared with control

subjects, while accounting for the pairing and the important demographic characteristics.

In each study, every schizophrenia subject is matched with a control subject based upon

specific demographic and other traits, namely age at death, gender, and PMI. The tissue

samples obtained from a matched pair are then blinded and processed together in the tissue

processing necessary in a particular study, possibly in batches of pairs.
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2.2 INCORPORATING COVARIATES

In addition to variables on which control and schizophrenia subjects are paired, additional

covariates are measured for each subject, such as brain tissue storage time, i.e., the amount

of time that brain tissue has been stored in the Brain Tissue Bank. In analyzing individual

tissue studies, the primary ANCOVA or MANCOVA models employed in CCNMD studies

usually have diagnostic group as a main effect, pair as a blocking factor, and covariates such

as tissue storage time. These models are considered primary due to the fact that including

pair as a blocking factor usually reduces the experimental variability that arises due to the

way tissue is processed. To check the robustness of the primary model, secondary ANCOVA

or MANCOVA models are also typically used, in which the blocking factor of pair is replaced

by the covariates on which subjects are paired, namely age at death, gender, and PMI.

2.3 MOTIVATING DATA

Initially, we were interested in ascertaining which biomarkers differ between individuals with

schizophrenia and normal controls in a series of four human post-mortem tissue studies

conducted by Sweet et al. [33][34][35][36], which examined in totality six biomarkers. In

each of these studies, post-mortem human brain tissue, taken from the primary auditory

cortex, was collected from control and schizophrenia subjects pair matched on gender and

as closely as possible on age at death and PMI. Brain tissue storage time, which was not

used in the matching, was also included as a covariate. Once the tissue for each subject was

processed, a particular set of biomarkers was measured in multiple sections from this tissue

for each study. The primary and secondary MANCOVA models described above were used

in the individual studies to examine whether or not each biomarker of interest for subjects

with schizophrenia differed from that of normal controls, while controlling for the effects of

subject pairing and brain tissue storage time. A closer examination of this initial goal was

the motivation for our research to develop a new method which could integrate data from

these four studies to identify which of the six biomarkers best discriminated between the

control and schizophrenia diagnostic groups, while taking into account the effects of subject
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pairing and other relevant covariates on these biomarkers.

We note that there are methods that incorporate paired study design and covariates

when combining results from multiple post-mortem tissue studies, as developed by Wang et

al. [39]. However, these methods are not focused on group discrimination. The methodology

we develop is geared towards adjusting for pairing and covariate effects when integrating

paired post-mortem biomarker data, in order to better identify the biomarkers that best

distinguish schizophrenia subjects from normal controls.

2.4 KONOPASKE DATA

To get a better sense of the implications of our adjustment methodology beyond the paired

case, we also considered a monkey post-mortem brain tissue study conducted by Konopaske

et al. [17], where we examined in our analyses six different biomarkers. In this study, brain

tissue was collected from 18 male macaque monkeys that were matched in triads by terminal

body weight, i.e., body weight upon sacrifice. In each triad, each monkey had been treated

with one of three different drugs, sham, haloperidol, and olanzapine, the latter two of which

are antipsychotics used in the treatment of schizophrenia. However, unlike the Sweet et

al. data, no additional covariates were measured for these subjects. An ANOVA model

was used to determine which of the biomarkers under consideration differed among the

three drug groups, while controlling for the effect of group matching. In the Konopaske et

al. study, there were no significant differences among the treatment groups for the noted

biomarkers, other than a difference in astrocyte number between sham and antipsychotic

treated subjects. Nonetheless, to illustrate our matched adjustment methodology, we apply

it to the Konopaske et al. data as if to identify which of the six biomarkers best discriminate

among the three drug groups of interest while, at the same time, accounting for the effect of

triad matching.
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3.0 ACCOUNTING FOR MATCHING AND COVARIATE EFFECTS IN

LDA

3.1 CLASSIFICATION OVERVIEW

3.1.1 Bayes Classification Rule

Let Y = (Y1, . . . , YP )′ denote a P dimensional random continuous feature vector, y its

observed value for a particular individual, and Y the feature space or support of Y. Suppose

it is known that each examined individual belongs to one of g (g ≥ 2) groups. In the context

of post-mortem tissue studies, Y is the random vector of biomarker measurements and y

is the observed biomarker data for an individual who belongs to one of several diagnostic

groups, e.g., control or schizophrenia. The main purpose of classification is to find a rule or

function of y, which we denote as r(y), that accurately assigns an individual with feature

measurement y to one of these g groups. In other words, we wish to obtain a function r(y)

that optimally divides the feature space into g mutually exclusive and exhaustive regions

R1, . . . , Rg such that an individual with feature vector y is assigned to group i if y falls

in Ri [7][23]. While we present our overview from the point of view of classification, our

major focus is discrimination among the g groups, where our goal is to identify the most

discriminatory subset of feature variables among the feature variables under consideration.

First, we denote the prior probability that an individual belongs to group i as πi (i =

1, . . . , g) and the group conditional density of Y in the ith group as fi(y). Let cij be the

cost of inaccurately assigning a group i individual into group j. If an individual is assigned

correctly, then cii = 0, i.e., there is zero cost for correct assignment.

With the assumption that π1, . . . , πg are known and fixed, an optimal or Bayes rule r0(y)

is a rule that has the smallest expected loss or risk among all rules r(y) for a given y [1][23].
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If Ri (i = 1, . . . , g) denotes the classification regions resulting from the Bayes rule r0(y),

then [1][23]

Ri :

g∑
h=1
h 6=i

πhfh(y)chi <

g∑
h=1
h 6=j

πhfh(y)chj, j = 1, . . . , g; j 6= i. (3.1)

In other words, y is assigned to the group i for which
∑g

h=1,h6=i πhfh(y)chi is minimized. If∑g
h=1,h6=i πhfh(y)chi is minimized for two or more groups, then y is arbitrarily assigned to

any of these groups. We note that this Bayes rule is unique if the probability of equality

between the left and right hand sides of (3.1) is zero for each i and j (for each h) [1]. In

the special case that the costs of misclassification cij (i 6= j) are all equal, the rule in (3.1)

reduces to

Ri : πifi(y) > πjfj(y), j = 1, . . . , g; j 6= i. (3.2)

In this case, y is assigned to the group i for which πifi(y) is maximized. If πifi(y) is

maximized for two or more groups, then y is arbitrarily assigned to any of these groups. The

classification regions in (3.2) can also be expressed as

Ri :
fi(y)

fj(y)
>
πj
πi
, j = 1, . . . , g; j 6= i. (3.3)

In the absence of the prior probabilities πi, Anderson[1] and McLachlan[23] discuss the

conditions under which a rule can still be considered admissible, i.e., a rule that minimizes

the risk attributed to the classification function r(y) for a given y.

Techniques that use the Bayes rule in (3.1) to determine the optimal classification regions

Ri include logistic discriminant analysis [14][37], quadratic discriminant analysis (QDA)

[1][23], and linear discriminant analysis, which is a special case of QDA. Our focus is on linear

discriminant analysis for two or more groups, under the assumption that misclassification

costs are equal.

3.1.2 Traditional Linear Discriminant Analysis for Two Groups

Let Y have known prior probability πi of belonging to group i (i = 1, . . . , g), in which

Y ∼ NP (µY,i,ΣY Y ). Here, µY,i = (µY,1,i, . . . , µY,P,i)
′ is the vector of expected values for the
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ith group and

ΣY Y =


σ11 · · · σ1P

...
...

...

σP1 · · · σPP


is the common variance-covariance matrix in each of the g groups. The assumption of a

common group variance-covariance matrix is essential to being able to write the form for the

rule given in (3.3) in a simple fashion. Although the rule in (3.3) can easily be expressed in

terms of our assumed distribution of Y in the case of multiple groups, it is natural to discuss

the case of two groups due to the simplicity of the form for the rule yielded when g = 2 and,

thus, it is this case that we discuss in detail for the rest of this section. The multiple group

case is considered later in this chapter.

By taking the logarithm of both sides of (3.3) and using the monotonicity of the loga-

rithmic function, the rule given in (3.3) can be written as follows in the case of two groups,

based on the densities of Y in the 1st and 2nd groups:

R1 :

[
y − 1

2
(µY,1 + µY,2)

]′
Σ−1
Y Y (µY,1 − µY,2) ≥ log(

π2

π1

),

R2 :

[
y − 1

2
(µY,1 + µY,2)

]′
Σ−1
Y Y (µY,1 − µY,2) < log(

π2

π1

),

(3.4)

where y′Σ−1
Y Y (µY,1−µY,2) is called the population linear discriminant function (LDF) [1][14][23].

If
[
y − 1

2
(µY,1 + µY,2)

]′
Σ−1
Y Y (µY,1−µY,2) = log(π2

π1
), y could be assigned to either of the two

groups; we have arbitrarily assigned y to group 1 in this case. In the special case that π1 =

π2 = 0.5, log(π2

π1
) = 0.

The probability of misclassification associated with the rule in (3.4) is equal to

P (Y ∈ R1,Y ∈ group 2) + P (Y ∈ R2,Y ∈ group 1) = π2P
(2)(Y ∈ R1) + π1P

(1)(Y ∈ R2),

(3.5)

where P (i)(Y ∈ R) = P (Y ∈ R|Y ∈ group i). Based on (3.5), one can easily compute

the probability of misclassification, assuming µY,i (i = 1, 2) and ΣY Y are known. Let C =[
Y − 1

2
(µY,1 + µY,2)

]′
Σ−1
Y Y (µY,1−µY,2). We then have that C ∼ N(1

2
∆2,∆2) if Y belongs to

group 1 and C ∼ N(−1
2
∆2,∆2) if Y belongs to group 2, where ∆2 = (µY,1−µY,2)′Σ−1

Y Y (µY,1−
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µY,2), which is the Mahalanobis squared distance between NP (µY,1,ΣY Y ) and NP (µY,2,ΣY Y )

[1]. Based on the densities of C in each group, it can be shown that

π2P
(2)(Y ∈ R1)+π1P

(1)(Y ∈ R2) = π2Φ
(
−log(π2

π1
)− ∆2

2

∆

)
+π1Φ

(
log(π2

π1
)− ∆2

2

∆

)
, (3.6)

where Φ(�) is the cumulative distribution function for a standard normal random variable.

If π1 = π2 = 0.5, then the formula in (3.6) reduces to Φ(−∆
2

).

If the prior probabilities πi, µY,i, and ΣY Y are unknown, they must be estimated

from sample data obtained from each of the two groups, i.e., training data. Let yij =

(yij,1, . . . , yij,P )′ be the observed feature vector for the jth individual randomly sampled from

the ith group (i = 1, 2; j = 1, . . . , ni). With regards to the πi, they may be specified in

advance or, if appropriate, estimated from the training data. The sample-based counterpart

of (3.4) can then be obtained by plugging in maximum likelihood (ML) estimates of µY,i and

ΣY Y , which are given by ȳi =
∑ni
j=1 yij

ni
and Σ̂Y Y = 1

n1+n2−2

[∑2
i=1

∑ni
j=1(yij − ȳi)(yij − ȳi)

′
]
,

respectively. In addition, the unbiased estimate Σ̂∗Y Y = n1+n2

n1+n2−2
Σ̂Y Y can be used. The re-

sulting sample-based rule, which can be computed using standard software packages such

as SAS, is Bayes risk consistent in that its risk converges in probability, under reasonable

conditions, to that of the rule given in (3.4) [37].

One way to estimate the probability of misclassification based on the rule in (3.4) is to

obtain an estimate of ∆ from the training data and then plug it into the formula given in

(3.6) for the probability of misclassification. Another estimation method is the resubstitution

method, which involves computing the sample-based counterpart of the rule in (3.4) based

on the training data and using the resulting estimated rule to predict the group membership

for each individual in the training data. The proportion of individuals in the training data

that are misclassified using this procedure is the resubstituted estimate of the probability

of misclassification associated with (3.4). However, this estimate is asymptotically biased

due to the fact that it is computed using the same sample that was used to construct the

sample LDF in the first place [22][23]. To considerably reduce this bias, we can instead

use V -fold cross validation, where V ranges from 2 to the total sample size [12][23]. In

this procedure, the training data are first randomly split into V mutually exclusive subsets

of approximately equal size, where each of the V subsets are then dropped out while the
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remaining V − 1 subsets are used to compute the estimates of µY,i and ΣY Y . Once these

estimates are plugged into (3.4), the resulting estimated rule is used to predict the group

membership for each individual in the omitted subset. The cross validated estimate of the

probability of misclassification is then computed as π1p21 +π2p12, where pij is the proportion

of group j individuals in the training data that are misclassified into group i in this manner

(i, j = 1, 2; i 6= j). Both the resubstitution and cross validation estimation methods can be

easily implemented using standard software packages.

The raw discriminant coefficients, Σ−1
Y Y (µY,1 − µY,2), are highly dependent on the mea-

surement scale of the feature data. As a result, it is often desirable to standardize these

coefficients in order to accurately determine which feature variables have high classifying

significance relative to the others in the linear discriminant function. Each discriminant co-

efficient is standardized by taking the product of its original value and the feature variable’s

standard deviation. The feature variables whose standardized discriminant coefficients are

fairly large in absolute value are those that best discriminate between the first and second

groups. Similarly, for unknown µY,i and ΣY Y , it is often preferable to standardize the esti-

mated raw discriminant coefficients, Σ̂−1
Y Y (ȳ1 − ȳ2). Each estimated discriminant coefficient

is standardized by taking the product of its original value and the feature variable’s esti-

mated standard deviation, pooled across the groups under consideration [26][27]. We note

that these standardized discriminant coefficients are also equal to the estimated raw discrim-

inant coefficients obtained from implementing traditional LDA on the standardized training

data ystdij = (ystdij,1, . . . , y
std
ij,P )′. If σ̂pp denotes the estimated pooled variance for the pth feature

variable, then ystdij,p = 1√
σ̂pp

(yij,p − ȳ..,p), where ȳ..,p is the sample mean for the pth feature

variable. In this case, the sample-based counterpart of (3.4) is given by

R1 : L̂′ystd ≥ log(
π2

π1

), R2 : L̂′ystd < log(
π2

π1

),

where ystd = (ystd1 , . . . , ystdP )′ and L̂ is the P dimensional vector of estimated standardized

discriminant coefficients. The sign of the discriminant coefficient for the pth feature variable

(p = 1, . . . , P ) can then be used to determine whether relatively large or small values are

associated with group 1 compared with group 2, holding all other feature variables fixed.
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3.2 COVARIANCE ADJUSTED LINEAR DISCRIMINANT ANALYSIS

3.2.1 Motivation

In addition to determining a subset of feature variables that best discriminates among several

groups of interest, we seek to be able to classify an individual into one of these groups.

We do note that in the application to post-mortem tissue studies, the focus is solely on

discrimination, not classification.

However, the distribution of the feature data Y may depend on a particular set of

covariates X = (X1, . . . , XS)′. Therefore, it is necessary to control or adjust for these

covariate effects in order to accurately determine the true discriminatory power of the feature

data. To illustrate this fact, we present the following scenario in Figure 3.1 for univariate

Y and X. Here, we wish to discriminate between control and schizophrenia subjects, where

each subject has observed biomarker measurement y and storage time value x.

Figure 3.1: Plot of y vs. x, along with conditional means µy|x,c and µy|x,s

Based on the marginal distribution of Y, we see that, on average, large y values cor-

respond to the schizophrenia group while small y values correspond to the control group.

Thus, new subjects will be classified into the schizophrenia group if they have relatively large

y values and into the control group otherwise. If we examine the joint distribution of Y and
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X, we see that, on average, large values for y and x correspond to the schizophrenia group

while small values correspond to the control group. New subjects will then be classified into

the schizophrenia group if they have relatively large y and x values and into the control

group otherwise. Storage time can be viewed as being experimentally controlled and, thus,

is also extraneous to the clinical issue of interest as to whether there is a difference in the

biomarker Y between subjects with schizophrenia and controls. However, we do see that

the distribution of X depends on group in this case. Therefore, the discriminatory power of

Y may be clouded by the group differences in X. However, if we examine the distribution

of Y given X, we see that the conditional mean of Y is higher in the control group. Thus,

if storage time is fixed at a particular value, new subjects will be classified into the control

group if they have relatively large y values and into the schizophrenia group otherwise.

From this scenario, we see that in the presence of covariate effects, the only way to

get a clear picture of how well Y discriminates between the two diagnostic groups is to

focus on the conditional distributions of Y given X for each group. Cochran and Bliss[8],

Lachenbruch[19], and Tu et al. [37] recognized this fact and developed covariance adjusted

linear discriminant analysis to account for covariate effects. In Sections 3.2.2 and 3.2.3, we

summarize their methods, which use the conditional distribution of Y given X to determine

the discriminatory power of the feature data without the confounding effects of the covariates

one is not primarily interested in. Although we only consider the case of two groups for the

sake of notational simplicity, we note that covariance adjusted LDA can be easily extended

to handle more than two groups, an extension we develop in greater detail in Sections 3.5

and 3.6 for matching across multiple groups.

3.2.1.1 Bayes Conditional Classification Rule Let fi(y|x) denote the conditional

density of Y given X = x in the ith group (i = 1, . . . , g). If we assume equal misclassification

costs, then fi(y) can be replaced with fi(y|x) in (3.3) to give the following rule, on which

the development of covariance adjusted LDA is based, that is used to classify an individual

whose covariate vector x has been observed in correspondence with feature vector y [19][23]:

Ri :
fi(y|x)

fj(y|x)
>
πj
πi
, j = 1, . . . , g; j 6= i. (3.7)
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3.2.2 Traditional Covariance Adjusted LDA for Two Groups

Cochran and Bliss[8] assume that for the ith group (i = 1, 2), (Y,X) ∼ NP×S(µY,X,i,ΣY,X),

where:

µY,X,i =
(
µY,i,µX

)
and ΣY,X =

 ΣY Y ΣY X

ΣXY ΣXX

 .

Thus, the conditional distribution of Y given X = x in the ith group is multivariate normal

with mean vector

µY |X,i = µY,i + ΣY XΣ−1
XX(x− µX) = τ Y,i + ΣY XΣ−1

XXx (τY,i = µY,i −ΣY XΣ−1
XXµX)

and variance-covariance matrix ΣY |X = ΣY Y − ΣY XΣ−1
XXΣXY that is common to both

groups.

If we assume equal misclassification costs, then the rule given in (3.7) can be written as

follows, based on the conditional densities of Y given X = x:

R1 :

[
y − 1

2
(µY |X,1 + µY |X,2)

]′
Σ−1
Y |X(µY |X,1 − µY |X,2) ≥ log(

π2

π1

),

R2 :

[
y − 1

2
(µY |X,1 + µY |X,2)

]′
Σ−1
Y |X(µY |X,1 − µY |X,2) < log(

π2

π1

),

(3.8)

which can also be expressed as

R1 :

[
ỹ − 1

2
(µY,1 + µY,2)

]′
Σ−1
Y |X(µY,1 − µY,2) ≥ log(

π2

π1

),

R2 :

[
ỹ − 1

2
(µY,1 + µY,2)

]′
Σ−1
Y |X(µY,1 − µY,2) < log(

π2

π1

),

(3.9)

using the formula for µY |X,i, where ỹ = y − ΣY XΣ−1
XX(x − µX). Conditional on x, Ỹ =

Y−ΣY XΣ−1
XX(x−µX) ∼ NP (µY,i,ΣY |X) in the ith group, which implies that the rule based

on the densities of Ỹ can be expressed in the same form as that in (3.4) obtained from

traditional LDA, where the observed y is now suitably adjusted for all covariate effects and

the conditional variance-covariance matrix is used.

From (3.9), we obtain the vector of adjusted discriminant coefficients Σ−1
Y |X(µY,1−µY,2),

which we can use to identify the feature variables in Y that best discriminate between the

two groups, while accounting for all relevant covariate effects.
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Suppose πi, µY,X,i, and ΣY,X are unknown. We then have that ΣY |X is unknown and

that µY |X,i is an unknown function of x. In this case, we must use training data consisting

of (yij,xij), the observed feature and covariate vectors for the jth individual sampled from

the ith group (i = 1, 2; j = 1, . . . , ni), to estimate µY |X,i and ΣY |X . From the training

data, we can obtain the ML estimates µ̂Y,i, µ̂X , Σ̂Y Y , Σ̂Y X , and Σ̂XX . The sample-based

counterparts of (3.8) and (3.9) can then be obtained by plugging in the ML estimates µ̂Y |X,i

= µ̂Y,i + Σ̂Y XΣ̂−1
XX(x− µ̂X) and Σ̂Y |X = Σ̂Y Y − Σ̂Y XΣ̂−1

XXΣ̂XY [23]. The prior probabilities

πi may be obtained in the same manner as described in Section 3.1.2.

It is easy to show that the probability of misclassification based on the conditional

distributions of Y for a given x is equal to π2Φ
(
−log(

π2
π1

)−α2

2

α

)
+ π1Φ

(
log(

π2
π1

)−α2

2

α

)
, where

α2 = (µY,1 − µY,2)′Σ−1
Y |X(µY,1 − µY,2). In particular, in the case where π1 = π2 = 0.5, this

probability of misclassification reduces to Φ(−α
2

). Assuming Y and X are not independent,

it can be directly shown that Σ−1
Y |X −Σ−1

Y Y is positive definite and, thus,

α2 = (µY,1 − µY,2)′Σ−1
Y |X(µY,1 − µY,2)

> (µY,1 − µY,2)′Σ−1
Y Y (µY,1 − µY,2)

= ∆2.

It then follows that Φ(−α
2
) < Φ(−∆

2
) in this case. Therefore, for equal priors, we have that

if the distribution of X and the relationship between Y and X are not group dependent,

then conditioning on X produces lower population misclassification rates compared to those

obtained when X is ignored, a result first noted by Cochran and Bliss [8][19][37].

We note that traditional covariance adjusted LDA, as formulated by Cochran and Bliss,

is actually a special case of traditional covariance adjusted QDA, which is fully described by

Rawlings et al. in their discussion of conditional quadratic discrimination [29].

3.2.3 General Covariance Adjusted LDA for Two Groups

It is not always the case that the conditional mean of Y given X = x is a linear function of

x or that Y and X are jointly multivariate normal. Lachenbruch [19] and Tu et al. [37] relax

the assumption of joint normality of Y and X and, instead, only assume that given X = x,
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Y ∼ NP (hi(x),Σ) in the ith group (i = 1, 2), where Σ is the common conditional variance-

covariance matrix in each of the two groups, hi(x) = µi + ρ(x; Θ), µi = (µ1,i, . . . , µP,i)
′

corresponds to the effect of the ith group on Y, and ρ(x; Θ) = (ρ1(x;θ1), . . . , ρP (x;θP ))′ is

a known smooth function of a given x that does not depend on group, but does depend on

parameters θ1, . . . ,θP corresponding, respectively, to each of the P feature variables in Y.

We have that µi ∈ RP , θp ∈ RDp (Dp ∈ N; p = 1, . . . , P ), and Σ is assumed to be positive

definite. The assumption regarding the conditional distribution of Y made by Lachenbruch

and Tu et al. is a generalization of the assumption made by Cochran and Bliss in Section

3.2.2, namely, Y|x ∼ NP (µY |X,i,ΣY |X) in the ith group, where the conditional mean is given

by µY |X,i = τ Y,i + ΣY XΣ−1
XXx (τY,i = µY,i − ΣY XΣ−1

XXµX). Although we do not provide

the details in this discussion, we point out that general covariance adjusted LDA can be

extended to handle QDA by using Lachenbruch and Tu et al.’s approach to generalize the

assumptions made by Rawlings et al. in their development of traditional covariance adjusted

QDA [37].

Based on the conditional densities of Y given X = x, the rule given in (3.7) can be

written as follows:

R1 :

{
y − 1

2
[h1(x) + h2(x)]

}′
Σ−1 [h1(x)− h2(x)] ≥ log(

π2

π1

),

R2 :

{
y − 1

2
[h1(x) + h2(x)]

}′
Σ−1 [h1(x)− h2(x)] < log(

π2

π1

).

(3.10)

Using the formulas for hi(x), we have that 1
2

[h1(x) + h2(x)] = 1
2
(µ1 + µ2) + ρ(x; Θ) and

h1(x)− h2(x) = µ1 − µ2. Thus, the classification regions in (3.10) can be re-expressed as:

R1 :

[
ỹ − 1

2
(µ1 + µ2)

]′
Σ−1(µ1 − µ2) ≥ log(

π2

π1

),

R2 :

[
ỹ − 1

2
(µ1 + µ2)

]′
Σ−1(µ1 − µ2) < log(

π2

π1

),

(3.11)

where ỹ = y−ρ(x; Θ). Given X = x, Ỹ = Y−ρ(x; Θ) ∼ NP (µi,Σ) in the ith group. As was

the case for traditional covariance adjusted LDA, we see from (3.11) that the classification

rule based on the densities of Ỹ can be expressed in the same form as that in (3.4) for

traditional LDA, where the observed y is adjusted for all covariate effects and the conditional

variance-covariance matrix is used.
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Once they have been suitably standardized, the elements of the adjusted discriminant

coefficient vector Σ−1(µ1 − µ2) can be used to determine the feature variables that best

discriminate between the first and second groups, taking into account the effects of the

covariate vector X.

According to Tu et al. [37], the sample-based counterparts of (3.10) and (3.11) can be

obtained by plugging in consistent estimators of hi(x) and Σ. A consistent estimator of

hi(x) is given by ĥi(x) = µ̂i + ρ(x; Θ̂) = (µ̂1,i + ρ1(x; θ̂1), . . . , µ̂P,i + ρP (x; θ̂P ))′, where µ̂i

and θ̂1, . . . , θ̂P are consistent estimators of µi and θ1, . . . ,θP , e.g., ML or least squares (LS)

estimators, that are computed from the training data (yij,xij). Depending on the structure

of ρp(x;θp) (p = 1, . . . , P ), the parameter vectors µ1, µ2, θ1, . . . ,θP may not be identifiable,

which Tu et al. do not address in their discussion. If this is the case, then the estimates µ̂i,

θ̂1, . . . , θ̂P are not unique, which could mean that the sample-based counterpart of (3.10)

may vary depending on the values of these estimates.

In certain cases, however, the sample-based counterpart of (3.10) remains invariant even

if µ1, µ2, θ1, . . . ,θP are not identifiable. Specifically, if ρ(�; Θ) is a linear function of Θ, then

hi(x) is an estimable function of µi and Θ. Also, under sufficient regularity conditions[18],

hp,i(x) = µp,i + ρp(x;θp) is an estimable function of µp,i and θp if ρp(�;θp) is a nonlinear

function (p = 1, . . . , P ). In either of these two instances, hi(x) is an estimable function of

µi and Θ for a given x, which implies that the estimates ĥi(x) (i = 1, 2), ĥ1(x) + ĥ2(x),

and ĥ1(x)− ĥ2(x) are unique. Also, we later show that the estimability of h1(x) and h2(x)

implies that the estimate of Σ is also unique. Therefore, in these instances where hi(x) is

estimable, the sample-based counterpart of (3.10) remains invariant for a given x even when

the estimates µ̂1, µ̂2, θ̂1, . . . , θ̂P are not unique.

If xij, µ̂i, and θ̂1, . . . , θ̂P are held fixed, the covariate adjusted training feature data ˆ̃yij

= yij − ρ(xij; Θ̂) =
(
yij,1 − ρ1(xij|θ̂1), . . . , yij,P − ρP (xij|θ̂P )

)′
constitute a random sample

with mean µ̂i in the ith group. Using this fact, but with little attention to estimability issues,

Tu et al. [37] argue that conditional on xij, µ̂i, and θ̂1, . . . , θ̂P , a consistent estimator of Σ
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is given by

Σ̂ =
1

n1 + n2 − 2

[
n1∑
j=1

(y1j − ĥ1(x1j))(y1j − ĥ1(x1j))
′ +

n2∑
j=1

(y2j − ĥ2(x2j))(y2j − ĥ2(x2j))
′

]

=
1

n1 + n2 − 2

[
n1∑
j=1

(ˆ̃y1j − µ̂1)(ˆ̃y1j − µ̂1)′ +

n2∑
j=1

(ˆ̃y2j − µ̂2)(ˆ̃y2j − µ̂2)′

]
,

(3.12)

which we observe is unique if h1(x) and h2(x) are estimable. Once we plug in the estimates

ĥi(x) and Σ̂, the sample counterpart of (3.10) can be written as

R1 :

[
ˆ̃y − 1

2
(µ̂1 + µ̂2)

]′
Σ̂−1(µ̂1 − µ̂2) ≥ log(

π2

π1

),

R2 :

[
ˆ̃y − 1

2
(µ̂1 + µ̂2)

]′
Σ̂−1(µ̂1 − µ̂2) < log(

π2

π1

),

(3.13)

where ˆ̃y = y − ρ(x; Θ̂).

Tu et al. discuss how the resubstituted estimate of the probability of misclassification

for the rule in (3.10) can be computed in a manner similar to that used in traditional LDA.

To clarify, using the training data (yij,xij), the model for the conditional mean hi(xij) =

µi + ρ(xij; Θ) is first fit so that we may obtain the consistent estimators θ̂1, . . . , θ̂P , which

we then use to compute the covariate adjusted training feature data ˆ̃yij = yij − ρ(xij; Θ̂).

From this adjusted data, we can obtain the estimates µ̂1, µ̂2, and Σ̂ as described above and

subsequently compute the estimated rule in (3.13). Using this estimated rule, we predict

the group membership for each individual in the training data based on the value of ˆ̃yij,

and compute the proportion of individuals that are misclassified, which is the resubstituted

estimate of the misclassification probability for the rule in (3.10). However, because this

estimate is computed using the same sample used to obtain the estimates θ̂1, . . . , θ̂P , µ̂1,

µ̂2, and Σ̂, it underestimates the true probability of misclassification [37].

As with traditional LDA, V -fold cross validation may help to reduce this bias [37]. In

particular, once the covariate adjusted training feature data ˆ̃yij are computed as described

above, we split them into V mutually exclusive subsets of approximately equal size. Each of

these V subsets are then dropped out while the remaining V −1 subsets are used to compute

the estimates µ̂1, µ̂2, and Σ̂. Based on these estimates, we can compute the estimated rule in

(3.13) and use it to predict the group membership for each individual in the omitted subset
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based on his or her value of ˆ̃yij. As in traditional LDA, the cross validated estimate of the

probability of misclassification for the rule in (3.10) is computed as π1p21 + π2p12, where pij

is the proportion of group j individuals that are misclassified into group i in this manner

(i, j = 1, 2; i 6= j).

3.2.4 Summary of Covariance Adjusted LDA

Both the traditional and general versions of covariance adjusted LDA allow us to account

for the effects of the covariate vector X when using LDA methods to develop a rule from

which we can determine the most discriminatory subset of feature variables and classify

new individuals. With training data, this covariate adjusted classification rule can be easily

computed using any available software package that implements traditional LDA, thereby

eliminating the need to develop new software for covariance adjusted LDA.

The main difference between traditional covariance adjusted LDA and general covariance

adjusted LDA is that the general approach makes no assumptions regarding the joint distri-

bution of Y and X when it controls for covariate effects, which is beneficial with regards to

our research focus on post-mortem tissue studies. In these studies, biomarker measurements

are taken from control and schizophrenia subjects that are paired based on specific character-

istics and measured for additional covariates. When analyzing such data, we do not assume

that pair membership, biomarker values, and covariate values have a joint distribution and,

thus, the conditional model employed by Lachenbruch and Tu et al. is more appealing with

regards to our research than the jointly normal model employed by Cochran and Bliss.

However, in their development of covariance adjusted LDA, none of these authors ac-

counted for the fact that individuals may be matched on certain characteristics, where such

matching can also have an effect on the feature variables under consideration. For example,

in post-mortem brain tissue studies comparing the neurobiological characteristics of normal

controls and subjects with schizophrenia, subjects are typically paired on a number of de-

mographic variables. In these studies, the biomarkers of interest may depend not only on

covariates, such as brain tissue storage time, but also on the methods used to process the

brain tissue for each subject pair. Therefore, the work of these authors requires an exten-

sion to handle subject matching, which we detail in Sections 3.3 to 3.6. Due to the fact
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that general covariance adjusted LDA is more applicable to our research than its traditional

counterpart, we extend this formulation in Section 3.3 under the assumption that individuals

are paired on certain characteristics without any additional covariates. In Section 3.4, we

extend the methods developed in Section 3.3 to the case where paired individuals are also

measured on additional covariates. Our methodology to account for matching and covariate

effects is extended to the case of multiple groups in Sections 3.5 and 3.6.

3.3 PAIRED LINEAR DISCRIMINANT ANALYSIS

3.3.1 Normal Populations with Known Parameters

In the general case where individuals are matched across g (g ≥ 2) different groups, we

begin by considering the conditional distribution of the feature vector Y for a specific g-tuple

or match. We introduce a parameter vector γ = (γ1, . . . , γP )′, which corresponds to each

individual in a match across the P feature variables and denotes the effect of group matching

on Y. For example, in post-mortem tissue processing, γp may represent the strengths of

the processing solutions used in obtaining the pth biomarker of interest. Recall that in

Lachenbruch and Tu et al.’s model for the conditional mean, all of the model parameters

could be estimated from available training data, after which these estimates can be plugged

into the covariate adjusted linear discriminant rule in (3.10) to classify a new individual.

In our formulation to account for matching, we include the parameter γ in this model,

which can be estimated for each individual in each match in the training data. However,

for each individual in a new match beyond the training data, where, for example, a new

tissue processing solution may be used, γ must be re-estimated because it is specific to

each match under consideration. One can then view our matched adjustment methodology

as an extension of the conditional model under general covariance adjusted LDA to also

include parameters that are specific to each member of a particular match and, thus, must

be re-estimated for each new match.

We first present the case in which individuals are paired across two groups, where our

discussion focuses on three different approaches that can be taken to account for the effect
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of pairing from a population based standpoint. When given a set of feature measurements

for a particular pair, we know that one member belongs to the first group while the other

member belongs to the second group. In this case, it is equally likely that each pair member

belongs to either of the two groups because we assume there is no preference for which pair

member is designated as being the first or second member. Thus, for each pair, we assume

that the feature vector for each of the two members has prior probability 0.5 of belonging

to either group, i.e., π1 = π2 = 0.5. In addition, we assume equal misclassification costs.

3.3.1.1 Classifying One Pair Member using Known Pair Effect To account for the

effect of pairing, one approach we can take is to apply our previously described extension of

Lachenbruch and Tu et al.’s conditional model to the random feature vector for any individual

in a pair, namely, Yind. In other words, for known γ, we assume Yind ∼ NP (µi + γ,Σ)

in the ith group (i = 1, 2), where Σ is assumed to be positive definite. We note that our

application of this model based solely on Yind only makes sense in a population setting. In

practice, we can only apply our model if we consider the feature vectors for both members

of a particular pair, as we show in Section 3.3.2.1.

Based on the densities of Yind, we can apply LDA to obtain the following classifcation

regions

R1 :

[
ỹind −

1

2
(µ1 + µ2)

]′
Σ−1(µ1 − µ2) ≥ 0,

R2 :

[
ỹind −

1

2
(µ1 + µ2)

]′
Σ−1(µ1 − µ2) < 0,

(3.14)

where ỹind = yind − γ represents the feature measurement for an individual that has been

adjusted for the effect of pairing. Using this classification rule, we have that an individual

with the adjusted feature measurement ỹind is assigned to group 1 if ỹind falls in R1 and to

group 2 otherwise.

More importantly, once its coefficients have been suitably standardized, the linear dis-

criminant function ỹ′indΣ
−1(µ1−µ2) in (3.14) can be used to determine which of the feature

variables under consideration best discriminate between groups 1 and 2, adjusting for the

effect of pairing. The sign of the pth (p = 1, . . . , P ) element of the discriminant coefficient

vector Σ−1(µ1 − µ2) can be used to determine whether the pth adjusted feature variable
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is larger or smaller for group 1 compared with group 2, holding all other adjusted feature

variables fixed.

We show later on in Section 3.3.2.1 that with training data, which are collected in pairs,

one can estimate γ for each training pair, along with the values of µ1, µ2, and Σ, and plug

these estimates into (3.14) to predict the group membership of each member of each training

pair. On the other hand, for an individual belonging to a pair not included in the training

data, we must re-estimate γ in order to use the rule in (3.14) to classify this individual.

However, as we show in Section 3.3.2.1, it may not be possible to estimate γ if we’re only

provided with the feature data for this one individual.

3.3.1.2 Classifying One Pair Member using Pairwise Feature Difference A rather

intuitive alternative to the previous approach we develop to account for the effect of pairing

on the feature data is to implement traditional LDA on the pairwise differenced random

feature vector Yind −Ysib ≡ Ydiff for an individual in a pair, as used by Wang et al. [38],

where Yind and Ysib are the random feature vectors that correspond to an individual and

their sibling in a pair.

Specifically, we assume Ydiff ∼ NP (µdiff
i ,Σ∗) in the ith population (i = 1, 2), where

µdiff
1 = µ1−µ2 and µdiff

2 = µ2−µ1. If Ydiff belongs to the ith population, then Yind belongs

to the ith group. Regardless of whether the variance-covariance matrices for Yind and Ysib

are the same in each population, Σ∗ remains the same for each of the two populations. Also,

whether or not the covariance matrix between Yind and Ysib is symmetric, Σ∗ is still common

to each population of Ydiff.

For a given pair, each member is equally likely to belong to either of the two groups and

the labeling of a member as an individual or a sibling is assumed to be completely random.

Based on these two facts, and the fact that the feature vector Yind for an individual in a pair

belongs to the ith group in the ith population of Ydiff, we assume that the prior probability

of each population is 0.5. The rule in (3.4) used for traditional LDA can then be applied to

Ydiff to obtain

Rdiff
1 :

[
(yind − ysib)−

1

2

(
µdiff

1 + µdiff
2

)]′
Σ−1
∗
(
µdiff

1 − µdiff
2

)
≥ 0,

Rdiff
2 :

[
(yind − ysib)−

1

2

(
µdiff

1 + µdiff
2

)]′
Σ−1
∗
(
µdiff

1 − µdiff
2

)
< 0,

(3.15)
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which, after some simplification, reduces to

Rdiff
1 : (yind − ysib)

′Σ−1
∗ (µ1 − µ2) ≥ 0, Rdiff

2 : (yind − ysib)
′Σ−1
∗ (µ1 − µ2) < 0. (3.16)

For each pair member that we wish to classify, we first compute the pairwise feature difference

yind − ysib, the difference between the feature measurement for that pair member and that

of their sibling. If this difference falls into region Rdiff
1 , then this difference is assigned to the

first population and, thus, we classify that pair member into the first group. Otherwise, if

yind − ysib falls into region Rdiff
2 , then this difference is assigned to the second population

and we classify that pair member into the second group. In classifying each individual in

a pair using yind − ysib, we have that their sibling is classified using the difference ysib −

yind = −(yind − ysib). Based on the rule in (3.16), for which the discriminant function

(yind − ysib)
′Σ−1
∗ (µ1 − µ2) is compared to the cutpoint of zero, the fact that ysib − yind =

−(yind − ysib) ensures that if an individual in a pair is classified into the first group, then

their sibling is classified into the second group, and vice versa.

Once its coefficients have been properly standardized, the discriminant coefficient vector

Σ−1(µ1−µ2) in (3.16) can be used to identify the feature variables that best distinguish an

individual belonging to group 1 from that belonging to group 2 in any given pair. The sign

of the pth (p = 1, . . . , P ) discriminant coefficient can be used to determine whether large or

small values of the pth feature variable for an individual in a pair, relative to the values of

the same feature variable for the individual’s sibling in the same pair, are associated with

group 1 compared with group 2, holding all other feature variables fixed. For example, in the

context of paired post-mortem tissue studies, we can use the discriminant coefficient vector

Σ−1(µ1 − µ2) to identify the biomarkers that best distinguish a normal control in a given

pair from an individual with schizophrenia in the same pair who is essentially identical with

regards to the pairing variables, i.e., age at death, gender, and PMI. Also, the sign of the

pth discriminant coefficient can be used to determine whether the pth biomarker is larger or

smaller for a normal control compared with an individual with schizophrenia in a given pair,

holding all other biomarkers fixed.

An intriguing parallel exists between the adjustment approaches we develop in Sections

3.3.1.1 and 3.3.1.2 when these two approaches are applied to paired data. Specifically, we

show in Section 3.3.2.1 that when we apply the linear discriminant rule in (3.14) in the data
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setting, we get the same rule as that obtained when we apply the pairwise difference rule in

(3.16).

3.3.1.3 Classifying Two Pair Members using Known Pair Effect It is interesting

to note that we could have obtained the same classification rule in (3.16) by applying the

methodology we develop in Section 3.3.1.1 to the “stacked” feature vector Y+ =
[

Yind
Ysib

]
,

where we randomly assign each pair member as an individual or sibling. To elaborate, we

can assume that for known γ, Y+ ∼ N2P (µ+
i ,Σ

+) in the ith group ordering (i = 1, 2) for

a given pair, where µ+
1 =

[ µ1+γ
µ2+γ

]
, µ+

2 =
[ µ2+γ
µ1+γ

]
, Σ+ =

[
Σ+Ψ Ψ

Ψ Σ+Ψ

]
, and Ψ represents the

covariance between Yind and Ysib such that Ψ′ = Ψ, a typically reasonable assumption in

the context of post-mortem tissue studies. If Y+ belongs to the 1st group ordering, then Yind

and Ysib come from groups 1 and 2, respectively. Otherwise, Yind belongs to group 2 and

Ysib belongs to group 1. The details regarding the computation of the linear discriminant

rule based on this model for Y+ are provided in Appendix A.1.

When we’re dealing with paired data, the pairwise difference and stacked approaches we

developed in Sections 3.3.1.2 and 3.3.1.3, respectively, can be shown to produce identical

linear discriminant rules. This implies that in the paired case, the pairwise difference and

stacked approaches succeed in answering our primary question of interest, namely, which of

the feature variables of interest best discriminate an individual belonging to group 1 from an

individual belonging to group 2 in a given pair. In addition, both approaches can be shown

to yield identical classification results.

However, we show in Sections 3.5.1.2 and 3.5.1.3 that in the multiple group case, the

stacked and differencing approaches produce not only different classification regions, but

also different classification results. More importantly, in the multiple group case, the stacked

approach does not appear to answer our primary question of interest, namely, how to identify

the set of feature variables that best discriminates among the g groups of interest, once the

effect of group matching has been taken into account. In fact, the stacked approach can be

shown to produce complex results that are difficult to interpret when we match across more

than two groups. Also, in the context of classification trees, the stacked approach fails to

produce useful results when we match across any number of groups, as we discuss later on

in Section 4.4.1.3.
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3.3.2 Normal Populations with Unknown Parameters

We now discuss how to implement the methods we develop in Sections 3.3.1.1 to 3.3.1.3 on

training data consisting of yik, the observed feature vector for the member of the kth pair

belonging to group i (i = 1, 2; k = 1, . . . , K).

3.3.2.1 Classifying Each Member of a Given Pair, with Unknown Pair Effect

Since we know the feature measurements for an individual and their sibling in each pair

in the training data, we can apply our model in Section 3.3.1.1 to the random feature

vectors corresponding to each member of each training pair, so that we may estimate µ1,

µ2, and Σ, as well as γ for each training pair. To clarify, for each of the K pairs in the

training data, we let Yik denote the random feature vector corresponding to the member

of the kth pair belonging to group i (i = 1, 2; k = 1, . . . , K), with mean E[Yik] = µi + γk

and variance-covariance matrix Σ. Using the training data, we fit the model for E[Yik]

via ML estimation, which we can show, using standard arguments, yields the family of

estimates µ̂i(c
∗) = ȳi. − ȳ.. − c∗ and γ̂k(c

∗) = ȳ.k + c∗, where ȳi. =
∑K
k=1 yik
K

, ȳ.k =
∑2
i=1 yik

2
,

ȳ.. =
∑2
i=1

∑K
k=1 yik

2K
, c∗ = −ȳ.. + c, and c ∈ RP . Although the estimate µ̂i(c

∗) is not unique,

the ML estimate of µ1 − µ2 is, which is given by µ̂1(c∗) − µ̂2(c∗) = ȳ1. − ȳ2.. In addition,

the estimate of µi + γk is unique and is given by µ̂i(c
∗) + γ̂k(c

∗) = ȳi. − ȳ.. + ȳ.k.

The ML estimate of Σ is given by

Σ̂ =
1

2K

[
2∑
i=1

K∑
k=1

(yik − µ̂i(c∗)− γ̂k(c∗))(yik − µ̂i(c∗)− γ̂k(c∗))′
]
.

By substituting the estimates µ̂i(c
∗) and γ̂k(c

∗), we have that Σ̂ = 1
4

(
2Σ̂D

)
= 1

2
Σ̂D, where

Σ̂D =
1

2K

[
K∑
k=1

(
D1k,y − D̄1.,y

) (
D1k,y − D̄1.,y

)′]
=

1

2K

[
K∑
k=1

(
D2k,y − D̄2.,y

) (
D2k,y − D̄2.,y

)′]
,

Dik,y = yik − yjk, and D̄i.,y = ȳi. − ȳj. (i, j = 1, 2; i 6= j). At this point, it is clear that Σ̂ is

unique, as is well known.

Intriguingly, although the parameters µi and γk are not identifiable in our model, the

classification regions in (3.14) remain invariant when we apply them to the observations in
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the training data, which we can do to estimate the precision of the rule in (3.14). To clarify,

we first point out that when applied to the training data, (3.14) is of the form

R1 :

[
ˆ̃yik −

1

2
(µ̂1(c∗) + µ̂2(c∗))

]′
Σ̂−1(µ̂1(c∗)− µ̂2(c∗)) ≥ 0,

R2 :

[
ˆ̃yik −

1

2
(µ̂1(c∗) + µ̂2(c∗))

]′
Σ̂−1(µ̂1(c∗)− µ̂2(c∗)) < 0,

(3.17)

where ˆ̃yik = yik − γ̂k(c∗) denotes the training feature data that have been adjusted for the

effect of pairing. When we substitute the formulas for µ̂1(c∗), µ̂2(c∗), γ̂k(c
∗), and Σ̂, (3.17)

reduces to

R1 : D′ik,yΣ̂
−1
D (ȳ1. − ȳ2.) ≥ 0, R2 : D′ik,yΣ̂

−1
D (ȳ1. − ȳ2.) < 0. (3.18)

The estimated rule in (3.18) could also have been obtained if we had used the unbiased esti-

mate Σ̂∗D = 2K
2(K−1)

Σ̂D. We see that the estimated discriminant coefficient vector Σ̂−1
D (ȳ1. −

ȳ2.) is unique, so that the non-identifiability of µi is not an issue if we want to identify the

feature variables that best discriminate between an individual from group 1 and an individ-

ual from group 2 in a particular pair, which is an important result. For example, in the

context of post-mortem tissue studies, the fact that Σ̂−1
D (ȳ1.− ȳ2.) is unique implies that we

would identify a singular subset of biomarkers that best distinguishes a normal control from

an individual with schizophrenia in any given pair.

Based on the adjusted training feature data ỹik, the resubstitution method or K-fold

cross validation (where the adjusted training feature measurements ỹ1k and ỹ2k for each of

the K pairs are omitted at a time) as described in Section 3.2.3 are two methods that can

be used to obtain an estimate of the probability of misclassification for the rule in (3.14).

On the other hand, if we want to use the rule in (3.14) to classify an individual in a

new pair that is not part of the training data, we must re-estimate γ for this pair since γ is

specific to each pair. In this case, we extend Lachenbruch and Tu et al.’s conditional model

to include parameters that must be re-estimated for each new pair, namely, γ. Specifically, if

we know the feature measurements for an individual and their sibling in a particular pair, i.e.,

yind and ysib, we can begin by applying the model in Section 3.3.1.1 to the random feature

vectors Yind and Ysib for both pair members, while using the estimates µ̂1(c∗), µ̂2(c∗), and

Σ̂ obtained from the training data. In other words, for a given pair and conditional on
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the estimates µ̂1(c∗), µ̂2(c∗), and Σ̂, we let Yind ∼ NP (µ̂i(c
∗) + γ, Σ̂) in the ith group and

Ysib ∼ NP (µ̂j(c
∗)+γ, Σ̂) in the jth group (i, j = 1, 2; i 6= j), where Yind and Ysib are assumed

to be independent. Based on these distributions, we can alternately consider Yind−µ̂i(c∗) ≡

Y∗ind ∼ NP (γ, Σ̂) and Ysib− µ̂j(c∗) ≡ Y∗sib ∼ NP (γ, Σ̂). From the likelihood function based

on y∗ind and y∗sib, it can be shown that the ML estimate of γ is given by γ̂(c∗) = 1
2
(y∗ind+y∗sib) =

1
2

[(yind + ysib)− (µ̂1(c∗) + µ̂2(c∗))]. Since Y∗ind and Y∗sib are identically distributed, the

corresponding likelihood function remains invariant regardless of which groups Yind and

Ysib belong to, so that our estimate of γ is unique. We note that even if Yind and Ysib are

not independent, the likelihood function for y∗ind and y∗sib is still invariant, as long as the

covariance matrix between Yind and Ysib is symmetric. Once we replace γ, µ1, µ2, and Σ

in (3.14) with their corresponding estimates, we obtain

R1 : (yind − ysib)
′ Σ̂−1

D (ȳ1. − ȳ2.) ≥ 0, R2 : (yind − ysib)
′ Σ̂−1

D (ȳ1. − ȳ2.) < 0, (3.19)

which is the same rule as that provided in (3.16) based on the pairwise difference yind−ysib,

with the coefficient vector Σ−1
∗ (µ1−µ2) in (3.16) replaced with the estimate Σ̂−1

D (ȳ1.− ȳ2.).

In examining our estimate γ̂(c∗), we see that if we only knew the observation for an

individual in a new pair, we could not have estimated γ for this individual in the manner

previously described. Without an estimate of the parameter γ, using the rule in (3.14)

to classify this individual is not feasible. Of course, this is intuitively clear in the post-

mortem brain tissue setting, since any new brain tissue sample must be processed with the

appropriate reagents. The quality of these reagents can be viewed as one major determinant

of the value of γ. For example, suppose that the examined biomarkers tend to be higher

in controls compared to schizophrenia subjects and that the processing employed for a new

pair collectively elevates the pair’s biomarker values above that seen by reagents used for the

training data and by an unknown amount. Upon observing that only one member’s feature

measurements are relatively high, one cannot classify that individual into either the control

or schizophrenia diagnostic group without knowing γ.
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3.3.2.2 Classifying Each Member of a Given Pair using Pairwise Feature Dif-

ference We can also consider an alternate estimation approach that is based on the model

for the pairwise differenced random feature vector Yind−Ysib in Section 3.3.1.2. The param-

eters µdiff
1 , µdiff

2 , and Σ∗ in this model can be estimated using ML estimation based on the

training feature differences Dik,y = yik − yjk (i, j = 1, 2; i 6= j; k = 1, . . . , K), where Dik,y is

computed for the ith group member of the kth pair in the training data. Referring back to

our model for Yind −Ysib, we have that the differences D1k,y belong to the first population,

while the differences D2k,y belong to the second population.

The ML estimates of µdiff
1 , µdiff

2 , and Σ∗ can be shown to equal, respectively, D̄1.,y =

ȳ1.− ȳ2., D̄2.,y = ȳ2.− ȳ1., and Σ̂D, the formula of which is given in Section 3.3.2.1. Once we

plug these estimates into (3.15), we obtain the same rule as in (3.19). Also, when we apply

the rule in (3.15) to the differenced training feature data Dik,y, we get the same classification

regions as in (3.18).

Based on the training feature differences Dik,y, resubstitution or K-fold cross validation

(where the differences D1k,y and D2k,y for each of the K pairs in the training data are omitted

at a time) as described in Section 3.1.2 can be used to obtain an estimate of the probability

of misclassification for the rule in (3.15).

In conclusion, the rule in (3.14) based on the feature vector ỹind that is adjusted for the

effect of pairing is the same as the rule in (3.16) based on the pairwise feature difference

yind − ysib when applied in the data setting. Based on this fact, we have that both of the

estimation approaches in Sections 3.3.2.1 and 3.3.2.2 not only yield the same classification

results, but also help us identify, via the estimated discriminant coefficient vector Σ̂−1
D (ȳ1.−

ȳ2.), the same set of feature variables that best discriminates between an individual from

group 1 and an individual from group 2 in any given pair.

3.3.2.3 Classifying Both Members of a Given Pair, with Unknown Pair Effect

The pairwise difference and stacked approaches we developed in Sections 3.3.1.2 and 3.3.1.3,

respectively, were shown to yield the same linear discriminant classification rule in (3.16).

Thus, we do not provide the details of how the stacked approach can be implemented using

training data because Section 3.3.2.2 handles the training data results. We do point out

that using fairly detailed calculations, the stacked approach can be shown to produce the
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estimated rule in (3.19) when applied to paired data.

3.4 PAIRED LINEAR DISCRIMINANT ANALYSIS WITH COVARIATES

3.4.1 Normal Populations with Known Parameters

In Section 3.4, we extend the methodology developed for paired LDA in Section 3.3 to account

not only for the pairing of individuals, but also for the effects on Y that are attributed to

the covariate vector X. While this section is included for completeness, the details are very

similar to Section 3.3, so that the reader can safely move ahead to Section 3.5.

As we did in our development of paired LDA, we begin from a population based per-

spective and extend in Sections 3.4.1.1 to 3.4.1.3 the procedures we developed in Sections

3.3.1.1 to 3.3.1.3 for paired LDA to also account for the effects of additional covariates. In

our discussion, we retain our assumptions from Section 3.3.1 of equal misclassification costs

and equal prior probabilities.

It is worth noting that if we choose to ignore the effect of pairing on the feature data,

we could apply general covariance adjusted LDA to instead account for the effects of the

variables on which individuals were paired. For example, this application corresponds to

the secondary models described in Section 2.2 that are used in the analysis of many post-

mortem tissue studies conducted under the direction of the CCNMD. When we accounted

for pairing, we assumed that the feature vector for each member of a particular pair has

prior probability 0.5 of belonging to either group 1 or group 2 because we know that if

one member belongs to one group, then his or her sibling must belong to the other group.

However, when we ignore pairing, we no longer have this kind of information since we only

consider the feature data for one randomly selected individual in the population, rather

than the feature data for two individuals in a certain pair. As a result, depending on the

context, it may not necessarily be appropriate to assume in the unpaired case that Y has

an equal prior probability of belonging to either of the two groups under consideration. In

particular, depending on whether we want to use the model of Y to classify a randomly

chosen individual, we may, for example, want to use the population proportion of normal
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controls and that of individuals with schizophrenia.

3.4.1.1 Classifying One Pair Member using Known Pair and Covariate Effects

Let (Yind,Xind) denote the random feature and covariate vectors for any individual belonging

to a pair. In our extension of the paired adjustment methodology we develop in Section

3.3.1.1, we assume that for known γ and given Xind = xind, Yind ∼ NP (µi+γ+βxind,Σ(x))

in the ith group (i = 1, 2). The conditional variance-covariance matrix Σ(x) is assumed to be

common to both groups, independent of the value of xind, and positive definite. In addition,

β =

[
β1,1 ··· β1,S

...
...

...
βP,1 ··· βP,S

]
=

[
β1

...
βP

]
is a known parameter matrix that does not depend on group,

where βp,s is the parameter for the pth feature variable that corresponds to the sth covariate

(p = 1, . . . , P ; s = 1, . . . , S). Based on these conditional densities for Yind, we can apply the

conditional rule in (3.7) to obtain the following classification regions:

R1(x) :

[
ỹind(x) −

1

2
(µ1 + µ2)

]′
Σ−1

(x)(µ1 − µ2) ≥ 0,

R2(x) :

[
ỹind(x) −

1

2
(µ1 + µ2)

]′
Σ−1

(x)(µ1 − µ2) < 0,

(3.20)

where ỹind(x) = yind − γ − βxind denotes an individual’s feature measurement that has

been adjusted for both pairing and covariate effects. Using the rule in (3.20), we classify

an individual with adjusted feature measurement ỹind(x) into group 1 if this value falls into

R1(x) and to group 2 otherwise.

From (3.20), we can use the adjusted linear discriminant function ỹ′ind(x)Σ
−1
(x)(µ1 − µ2)

to identify which of the feature variables of interest best discriminate between groups 1 and

2, once the effects of both pairing and covariates on the feature data have been adjusted

for. In addition, we can use the sign of the pth (p = 1, . . . , P ) element of the adjusted

discriminant coefficient vector Σ−1
(x)(µ1 − µ2) to determine whether the pth adjusted feature

variable is larger or smaller for group 1 compared with group 2, holding all other adjusted

feature variables fixed.

In our discussion, we assume that the conditional mean of the feature vector Yind depends

on a linear function of the covariate data, namely, βxind. However, we can easily generalize

to the case where for a given pair and value of xind, Yind ∼ NP (µi +γ +ρ(xind; Θ),Σ(x)) in

the ith group, where the function ρ(x; Θ) is defined as in Section 3.2.3.
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3.4.1.2 Classifying One Pair Member using Covariate Adjusted Pairwise Fea-

ture Difference An alternate approach we can take is to extend our pairwise differencing

approach in Section 3.3.1.2 to also handle covariate effects, which we can do by applying

Lachenbruch and Tu et al.’s conditional model to the differenced random feature vector

Yind − Ysib. To elaborate, we first let Xind and Xsib denote the random covariate vectors

for an individual and their sibling in a pair, and let Xind −Xsib ≡ Xdiff denote the random

differenced covariate vector for an individual in this pair. Given Xdiff = xdiff, we assume

(Yind − Ysib) ∼ NP (µdiff
i + βxdiff,Σ∗(x)) in the ith population (i = 1, 2), where µdiff

i are

defined as in Section 3.3.1.2. In addition, Σ∗(x) remains the same for each of the two popula-

tions, regardless of whether the conditional variance-covariance matrix for Yind and that of

Ysib are the same in each population or whether the conditional covariance matrix between

Yind and Ysib is symmetric.

Retaining our assumption from Section 3.3.1.2 that the prior probability of each pop-

ulation is 0.5, we can apply general covariance adjusted LDA based on the conditional

distributions of Yind −Ysib in each population to obtain the following regions:

Rdiff
1(x) :

[
(yind − ysib)− β(xind − xsib)−

1

2

(
µdiff

1 + µdiff
2

)]′
Σ−1
∗(x)

(
µdiff

1 − µdiff
2

)
≥ 0,

Rdiff
2(x) :

[
(yind − ysib)− β(xind − xsib)−

1

2

(
µdiff

1 + µdiff
2

)]′
Σ−1
∗(x)

(
µdiff

1 − µdiff
2

)
< 0.

(3.21)

After further simplification, the regions in (3.21) can be re-expressed as

Rdiff
1(x) : [(yind − ysib)− β(xind − xsib)]

′Σ−1
∗(x)(µ1 − µ2) ≥ 0,

Rdiff
2(x) : [(yind − ysib)− β(xind − xsib)]

′Σ−1
∗(x)(µ1 − µ2) < 0.

(3.22)

For each individual in a given pair, we compute the covariate adjusted pairwise feature

difference (yind − ysib) − β(xind − xsib). If this difference falls into region Rdiff
1(x), then it is

assigned to the first population and we classify that individual into the first group. Otherwise,

if (yind − ysib)− β(xind − xsib) falls into region Rdiff
2(x), then this difference is assigned to the

second population and we classify that individual into the second group. As was the case

for the pairwise difference rule in (3.16), we have that if an individual in a pair is classified

into the first group based on the rule in (3.22), then their sibling is classified into the second

group, and vice versa.
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We note that the covariate adjusted pairwise difference (yind − ysib) − β(xind − xsib)

can also be written as (yind − βxind) − (ysib − βxsib), which is the difference between the

covariate adjusted feature measurement for an individual in a pair and that of their sibling.

When we view the covariate adjusted difference in this manner, we then have that the

adjusted discriminant coefficient vector Σ−1
∗(x)(µ1 − µ2) can be used to identify which of the

feature variables of interest, once they’ve been suitably adjusted for covariate effects, best

distinguish an individual belonging to group 1 from that belonging to group 2 in a given pair.

For example, in the context of post-mortem tissue studies, this coefficient vector can be used

to identify the subset of biomarkers, once the effects of covariates such as brain tissue storage

time are adjusted for, that best discriminates a normal control in a pair from an individual

with schizophrenia in the same pair. The sign of the pth (p = 1, . . . , P ) coefficient can then

be used to determine whether large or small values of the pth covariate adjusted feature

variable for an individual in a pair, relative to the values of the same covariate adjusted

feature variable for the individual’s sibling in the same pair, are associated with group 1

compared with group 2, holding all other covariate adjusted feature variables fixed.

3.4.1.3 Classifying Two Pair Members using Known Pair and Covariate Effects

The linear discriminant rule in (3.22) could also have been obtained if we had applied our

methodology in Section 3.4.1.1 to the stacked feature vector Y+ =
[

Yind
Ysib

]
. To clarify, we

first define X+ =
[

Xind
Xsib

]
as the random covariate vector corresponding to an individual

and their sibling in a pair. Given X+ = x+, we assume Y+ ∼ N2P (µ+
i(x),Σ

+
(x)) in the ith

group ordering (i = 1, 2) for a given pair, where µ+
1(x) =

[
µ1+γ+βxind
µ2+γ+βxsib

]
, µ+

2(x) =
[
µ2+γ+βxind
µ1+γ+βxsib

]
,

Σ+
(x) =

[
Σ(x)+Ψ Ψ

Ψ Σ(x)+Ψ

]
, and Ψ is defined as in Section 3.3.1.3. The details regarding the

computation of the linear discriminant classification rule based on the conditional model for

Y+ are provided in Appendix A.2.

3.4.2 Normal Populations with Unknown Parameters

In the next three sections, we discuss how to implement the adjustment procedures we

develop in Sections 3.4.1.1 to 3.4.1.3 based on training data consisting of (yik,xik), where

yik is defined as in Section 3.3.2 and xik denotes the observed covariate vector for the member

of the kth pair belonging to group i (i = 1, 2; k = 1, . . . , K).
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3.4.2.1 Classifying Each Member of a Given Pair, with Unknown Pair and

Covariate Effects We first discuss how our conditional model in Section 3.4.1.1 can be

used to estimate, using the available training data, the parameters β, γ, µi (i = 1, 2), and

Σ(x) needed to compute the classification rule in (3.20).

To clarify, we define Yik as in Section 3.3.2.1, with conditional mean E[Yik|xik] = µi +

γk + βxik and variance-covariance matrix Σ(x). Based on the training data, we use ML

estimation to fit the model for E[Yik|xik], whose design matrix we assume satisfies certain

conditions that ensure that the ML estimate β̂ is unique. In fitting this model, we obtain the

family of estimates µ̂i(c
∗
x) = ȳi.−β̂x̄i.−(ȳ..−β̂x̄..)−c∗x and γ̂k(c

∗
x) = ȳ.k−β̂x̄.k+c∗x, where ȳi.,

ȳ.k, and ȳ.. are defined as in Section 3.3.2.1, x̄i. =
∑K
k=1 xik
K

, x̄.k =
∑2
i=1 xik

2
, x̄.. =

∑2
i=1

∑K
k=1 xik

2K
,

and c∗x = −(ȳ.. − β̂x̄..) + c. The ML estimate of µ1 − µ2 is then given by µ̂1(c∗x)− µ̂2(c∗x)

= ȳ1. − ȳ2. − β̂(x̄1. − x̄2.), which we see is unique.

The ML estimate of Σ(x) is equal to

Σ̂(x) =
1

2K

[
2∑
i=1

K∑
k=1

(yik − µ̂i(c∗x)− γ̂k(c∗x)− β̂xik)(yik − µ̂i(c∗x)− γ̂k(c∗x)− β̂xik)
′

]
.

When we substitute the estimates µ̂i(c
∗
x) and γ̂k(c

∗
x), we have that Σ̂(x) = 1

4

(
2Σ̂D(x)

)
=

1
2
Σ̂D(x), where

Σ̂D(x) =
1

2K

[
K∑
k=1

(
D̂adj

1k,y −
¯̂
Dadj

1.,y

)(
D̂adj

1k,y −
¯̂
Dadj

1.,y

)′]

=
1

2K

[
K∑
k=1

(
D̂adj

2k,y −
¯̂
Dadj

2.,y

)(
D̂adj

2k,y −
¯̂
Dadj

2.,y

)′]
,

D̂adj
ik,y = Dik,y − β̂Dik,x, Dik,x = xik − xjk (i, j = 1, 2; i 6= j), and

¯̂
Dadj
i.,y = D̄i.,y − β̂D̄i.,x =

(ȳi. − ȳj.)− β̂(x̄i. − x̄j.).

Despite the fact that µi and γk are not identifiable, the classification regions in (3.20)

remain the same when applied to the training data, regardless of the value of µ̂i(c
∗
x) and

γ̂k(c
∗
x). In applying this rule, (3.20) takes on the form

R1(x) :

[
ˆ̃yik(x) −

1

2
(µ̂1(c∗x) + µ̂2(c∗x))

]′
Σ̂−1

(x)(µ̂1(c∗x)− µ̂2(c∗x)) ≥ 0,

R2(x) :

[
ˆ̃yik(x) −

1

2
(µ̂1(c∗x) + µ̂2(c∗x))

]′
Σ̂−1

(x)(µ̂1(c∗x)− µ̂2(c∗x)) < 0,

(3.23)
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where ˆ̃yik(x) = yik− γ̂k(c∗x)− β̂xik denotes the training feature data that have been adjusted

for pairing and covariate effects. Based on the formulas for µ̂1(c∗x), µ̂2(c∗x), γ̂k(c
∗
x), and Σ̂(x),

the rule in (3.23) can be expressed as

R1(x) :
[
Dik,y − β̂Dik,x

]′
Σ̂−1
D(x)

[
ȳ1. − ȳ2. − β̂ (x̄1. − x̄2.)

]
≥ 0,

R2(x) :
[
Dik,y − β̂Dik,x

]′
Σ̂−1
D(x)

[
ȳ1. − ȳ2. − β̂ (x̄1. − x̄2.)

]
< 0,

(3.24)

which could also have obtained by using the unbiased estimate Σ̂∗D(x) = 2K
2(K−1)

Σ̂D(x). To

estimate the probability of misclassification associated with the conditional rule in (3.20),

we can use either resubstitution or K-fold cross validation as described in Section 3.3.2.1

based on the adjusted training feature measurements ỹik(x).

In order to use the rule in (3.20) to classify an individual in a pair that is not part

of the training data, the parameter γ must be re-estimated for this pair, as was the case

when we only accounted for the effect of pairing. If we know the feature and covariate

measurements for both pair members, i.e., (yind,xind) and (ysib,xsib), we can start off by

applying our conditional model in Section 3.4.1.1 to the two random feature vectors Yind

and Ysib corresponding to this pair, while using the estimates β̂, µ̂i(c
∗
x) (i = 1, 2), and Σ̂(x)

from the training data. In other words, conditional on xind, xsib, β̂, µ̂1(c∗x), µ̂2(c∗x), and Σ̂(x),

we assume Yind ∼ NP (µ̂i(c
∗
x)+γ+ β̂xind, Σ̂(x)) in the ith group and Ysib ∼ NP (µ̂j(c

∗
x)+γ+

β̂xsib, Σ̂(x)) in the jth group for a given pair (i, j = 1, 2; i 6= j), where we assume Yind and Ysib

are independent. From these distributions, we can also consider Yind − µ̂i(c∗x) − β̂xind ≡

Y
∗(x)
ind ∼ NP (γ, Σ̂(x)) and Ysib − µ̂j(c∗x) − β̂xsib ≡ Y

∗(x)
sib ∼ NP (γ, Σ̂(x)). Based on the

resulting likelihood function, the ML estimate of γ is equal to γ̂(c∗x) = 1
2
(y
∗(x)
ind + y

∗(x)
sib ) =

1
2

[
(yind + ysib)− β̂(xind + xsib)− (µ̂1(c∗x) + µ̂2(c∗x))

]
. The fact that Y

∗(x)
ind and Y

∗(x)
sib are

identically distributed implies that the likelihood function based on y
∗(x)
ind and y

∗(x)
sib remains

the same regardless of the groups to which Yind and Ysib belong and, thus, the estimate

γ̂(c∗x) is unique. As long as the covariance matrix between Yind and Ysib is symmetric, this

likelihood function remains invariant even if Yind and Ysib are not independent.

After we plug in the estimates β̂, µ̂i(c
∗
x) (i = 1, 2), Σ̂(x), and γ̂(c∗x), the rule in (3.20)

becomes

R1(x) :
[
(yind − ysib)− β̂(xind − xsib)

]′
Σ̂−1
D(x)

[
ȳ1. − ȳ2. − β̂(x̄1. − x̄2.)

]
≥ 0,

R2(x) :
[
(yind − ysib)− β̂(xind − xsib)

]′
Σ̂−1
D(x)

[
ȳ1. − ȳ2. − β̂(x̄1. − x̄2.)

]
< 0,

(3.25)
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which we see is the classification rule in (3.22), with β and the coefficient vector Σ−1
∗(x)(µ1−µ2)

replaced with the estimates β̂ and Σ̂−1
D(x)

[
ȳ1. − ȳ2. − β̂(x̄1. − x̄2.)

]
, respectively.

3.4.2.2 Classifying Each Member of a Given Pair using Covariate Adjusted

Pairwise Difference Alternately, we can implement our differencing approach in Section

3.4.1.2 using the available training data. First, we let Dik,Y ≡ Yik −Yjk (i, j = 1, 2; i 6= j)

denote the random differenced feature vector for the member of the kth pair belonging to

group i (i = 1, 2; k = 1, . . . , K), i.e., in the kth pair, Dik,Y corresponds to the ith population.

Based on the conditional model for the feature difference Yind−Ysib that we specify in Section

3.4.1.2, we assume Dik,Y has conditional mean E[Dik,Y |Dik,x] = µdiff
i +βDik,x and conditional

variance-covariance matrix Σ∗(x). Using the differences (Dik,y,Dik,x), which are defined as in

Sections 3.3.2.1 and 3.4.2.1, we use ML estimation to fit the model for E[Dik,Y |Dik,x], whose

design matrix we assume satisfies certain conditions that ensure that the ML estimate β̂ is

unique. In doing so, we obtain the estimates µ̂diff
i =

¯̂
Dadj
i.,y (i = 1, 2) and Σ̂∗(x) = Σ̂D(x), where

¯̂
Dadj
i.,y and Σ̂D(x) are defined as in Section 3.4.2.1. In plugging the estimates β̂, µ̂diff

1 , µ̂diff
2 , and

Σ̂∗(x) into (3.21), we obtain the same rule as in (3.25). We also note that when we apply the

rule in (3.21) to the training data, we get the same classification regions as in (3.24).

Using the covariate adjusted training feature differences Dik,y − β̂Dik,x, resubstitution

or K-fold cross validation (where the covariate adjusted differences D1k,y − β̂D1k,x and

D2k,y − β̂D2k,x for each of the K pairs in the training data are omitted one at a time)

as described in Section 3.2.3 can be used to estimate the probability of misclassification

associated with the conditional rules in (3.21) and, equivalently, (3.22).

Based on the results we obtain in Sections 3.4.2.1 and 3.4.2.2, we have that both of the es-

timation approaches in these two sections produce the same estimated classification rules and,

thus, the same classification results when applied to paired data. They also help us identify,

using the estimated adjusted discriminant coefficient vector Σ̂−1
D(x)

[
ȳ1. − ȳ2. − β̂(x̄1. − x̄2.)

]
,

the same set of feature variables that best distinguishes an individual in group 1 from an

individual in group 2 in any given pair, once these feature variables have been suitably

adjusted for covariate effects.
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3.4.2.3 Classifying Both Members of a Given Pair, with Unknown Pair and

Covariate Effects As was the case when we only adjusted for the effect of pairing, it can

be shown that when applied in the data setting, our stacked approach in Section 3.4.1.3

yields the same estimated linear discriminant rule in (3.25) based on the covariate adjusted

pairwise feature differences.

3.5 ACCOUNTING FOR EFFECT OF MULTIPLE GROUP MATCHING

IN LDA

3.5.1 Normal Populations with Known Parameters

We now extend the three adjustment methodologies we develop for pairing in Sections 3.3.1.1

to 3.3.1.3 to handle the case where individuals are matched across g > 2 groups, where we

again begin our discussion from a population based perspective. Recall that in the paired

case, the three methodological approaches yielded linear discriminant rules that were rel-

atively clear and easy to interpret, regardless of whether we wanted to find the most dis-

criminatory subset of feature variables or classify each member belonging to a new pair.

On the other hand, the interpretation of the linear discriminant rules we obtain from ex-

tending the paired approaches in Sections 3.3.1.1 to 3.3.1.3 to handle matching across more

than two groups requires considerably more care, as we show in Sections 3.5.1.1 to 3.5.1.3.

To better clarify the results of our three extended adjustment approaches, we briefly de-

scribe how these three approaches could be applied to the post-mortem brain biomarker

data (Konopaske et al.) discussed in Section 2.4, which dealt with subject matching across

three treatment groups. In Section 5.2, we give a detailed discussion of the results we obtain

when we actually implement these adjustment approaches in Sections 3.5.1.1 to 3.5.1.3 using

the Konopaske data.

Given the feature measurements for all g members of a match, we know that the first

member belongs to group i1, the second member belongs to group i2, . . . , and the gth

member belongs to group ig (i1, i2, . . . , ig = 1, . . . , g; i1 6= i2 6= · · · 6= ig). In this case, it is

equally likely that each member belongs to one of the g groups under consideration since we
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assume there is no preference for which member is designated as the first member, the second

member, . . . , or the gth member. Therefore, even though our adjustment methodology can

handle any πi in general, it is appropriate to assume for each match that the feature vector

for each member has probability 1/g of belonging to any of the g groups, i.e., πi = 1/g

(i = 1, . . . , g). We also retain our assumption of equal misclassification costs.

3.5.1.1 Classifying One Member of a Match using Known Match Effect For

known γ, we assume Yind ∼ NP (µi+γ,Σ) in the ith group (i = 1, . . . , g), where the random

feature vector Yind corresponds to any individual that belongs to a particular match. In the

spirit of Lachenbruch and Tu et al., we apply LDA for multiple groups, as first introduced by

Fisher [9] and as described in greater detail, for example, by Anderson [1] and by McLachlan

[23], based on the densities of Yind to obtain the rule

Ri :

[
ỹind −

1

2
(µi + µj)

]′
Σ−1(µi − µj) > 0, j = 1, . . . , g; j 6= i, (3.26)

where ỹind = yind − γ is the feature vector that has been adjusted for the effect of group

matching. Using (3.26), we classify an individual in a match with adjusted feature measure-

ment ỹind into the ith group if ỹind falls into region Ri (i = 1, . . . , g).

Intuitively, (3.26) says that we classify an observation into group i if all g − 1 pairwise

comparisons of group i versus group j (i, j = 1, . . . , g; j 6= i) indicate that the observation

should be classified into group i. Interpreting (3.26) we see that the discriminant function

which differentiates group i from group j, while accounting for the effect of group matching,

is given by ỹ′indΣ
−1(µi−µj). Specifically, once its elements have been suitably standardized,

the discriminant coefficient vector Σ−1(µi−µj) can be used to identify the feature variables

that best discriminate between groups i and j, after adjusting for the effect of group match-

ing. The sign of the pth element (p = 1, . . . , P ) of the coefficient vector Σ−1(µi − µj) can

then be used to determine whether the pth adjusted feature variable is larger or smaller for

group i compared with group j, holding all other adjusted feature variables fixed.

For example, for the Konopaske biomarker data, suppose we label the haloperidol, olan-

zapine, and sham treatments as groups 1, 2, and 3, respectively, noting that this group

assignment is completely arbitrary. In considering this biomarker data, the three discrimi-

nant coefficient vectors Σ−1(µ1−µ2), Σ−1(µ1−µ3), and Σ−1(µ2−µ3) can help us determine
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which of the biomarkers under consideration, once they’ve been adjusted for the effect of

matching, best discriminate between the haloperidol and olanzapine treatment groups, which

of them best discriminate between the haloperidol and sham treatment groups, and which of

them best discriminate between the olanzapine and sham treatment groups, respectively. In

addition, the sign of the pth coefficient of Σ−1(µ1−µ2), Σ−1(µ1−µ3), and Σ−1(µ2−µ3) can

be used to determine whether the pth adjusted biomarker is larger or smaller for the haloperi-

dol group compared with the olanzapine group, the haloperidol group compared with the

sham group, and the olanzapine group compared with the sham group, respectively, holding

all other adjusted biomarker values fixed. Thus, to classify an individual into the sham

group, for example, the two comparisons of haloperidol versus sham and olanzapine versus

sham should both classify this individual as belonging to the sham group.

3.5.1.2 Classifying One Member of a Match using Feature Difference An alter-

nate approach we can take to account for the effect of group matching on the feature data is

to implement traditional LDA for multiple groups on the differenced random feature vector

Yind − 1
g−1

∑g−1
m=1 Ysib,m, where Yind,Ysib,1, . . . ,Ysib,g−1 denote the random feature vectors

for an individual and their g−1 siblings in a given match. Under this approach, we have that

(Yind − 1
g−1

∑g−1
m=1 Ysib,m) ≡ Ydiff ∼ NP (µdiff

i ,Σ∗) in the ith population (i = 1, . . . , g), where

µdiff
i = µi −

∑g
l=1
l6=i
µl (i = 1, . . . , g). In the ith population, Yind belongs to the ith group.

Recall that in the paired case, the variance-covariance matrix of the difference Yind −Ysib

remained the same in each population, even if the variance-covariance matrices of Yind and

Ysib did not stay the same across the two populations. However, when we’re dealing with

matching across more than two groups, Σ∗ remains the same in each population if we have

that the g variance-covariance matrices for Yind,Ysib,1, . . . ,Ysib,g−1 and the covariance be-

tween any pair of the g feature vectors Yind,Ysib,1, . . . ,Ysib,g−1 remain the same in each

population. We note that the covariance matrix between any pair of these g feature vectors

need not be symmetric in order for Σ∗ to stay the same in each population.

As we stated in Section 3.5.1, each member of a match is equally likely to belong to one

of the g groups and the labeling of a member as an individual or as any of the g− 1 siblings

is completely random. Based on these two facts, and the fact that the feature vector Yind

for an individual in a given match belongs to the ith group in the ith population of Ydiff, we
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assume that the prior probability of each population is 1/g. In the case of multiple groups,

applying the rule used for traditional LDA to the difference Ydiff yields the classification

regions

Rdiff
i :

[
ydiff −

1

2

(
µdiff
i + µdiff

j

)]′
Σ−1
∗
(
µdiff
i − µdiff

j

)
> 0, j = 1, . . . , g; j 6= i. (3.27)

For each member of a match, we compute the difference ydiff = yind − 1
g−1

∑g−1
m=1 ysib,m, the

difference between the feature measurement for that member and the average of the feature

measurements for their siblings in that match. If this difference falls into region Rdiff
i , we

classify that member into the ith group (i = 1, . . . , g). With the formula for µdiff
i , the rule in

(3.27) can be further simplified as

Rdiff
i :

ydiff −
g − 2

g − 1

µi + µj
2

− 1

g − 2

g∑
l=1
l6=i,j

µl



′

Σ−1
∗ (µi − µj) > 0, j = 1, . . . , g; j 6= i.

(3.28)

From the rule in (3.28), we can use the discriminant function y′diffΣ−1
∗ (µi − µj) to iden-

tify the feature variables that best discriminate between groups i and j, once the effect of

matching on these feature variables has been taken into account. For example, with regards

to the Konopaske data, we can compute the difference ydiff for each monkey in a partic-

ular triad and use the rule in (3.28) to classify this monkey based on their value of ydiff.

In addition, suppose we retain the same group assignments for the haloperidol, olanzapine,

and sham treatment groups as in Section 3.5.1.1. The three discriminant coefficient vectors

Σ−1
∗ (µ1 − µ2), Σ−1

∗ (µ1 − µ3), and Σ−1
∗ (µ2 − µ3) allow us to identify the biomarkers that

best discriminate between the haloperidol and olanzapine treatment groups, between the

haloperidol and sham treatment groups, and between the olanzapine and sham treatment

groups, once we account for the effect of triad matching on these biomarkers.

Similar to what we saw in the paired case, we show in Section 3.5.2.1 that when the

linear discriminant rule in (3.26) is applied in the data setting, we get the same rule as that

obtained when we apply the feature difference rule in (3.28).
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3.5.1.3 Classifying All Members of a Match using Known Match Effect The

adjustment methodology we develop in Section 3.5.1.1 can also be applied to the stacked

feature vector Y+, which corresponds to all members of a particular match. While the

derivation for any number of groups is computationally feasible, we present only the case of

matching across three groups for notational convenience.

Let Y+ =

[
Yind
Ysib,1

Ysib,2

]
denote the random feature vector corresponding to an individual and

their two siblings in a triad and y+ its observed counterpart, where the assignment of each

triad member as an individual or as any one of the two siblings is completely random with

no other preferences. Conceptually, based upon the three groups to which each member can

belong, Y+ can belong to one of 3! = 6 possible group orderings. For known γ, we assume

Y+ ∼ N3P (µ+
i ,Σ

+) in the ith group ordering (i = 1, . . . , 6) for a given match, where

µ+
1 =

[
µ1+γ
µ2+γ
µ3+γ

]
, µ+

2 =

[
µ1+γ
µ3+γ
µ2+γ

]
, µ+

3 =

[
µ2+γ
µ1+γ
µ3+γ

]
, µ+

4 =

[
µ2+γ
µ3+γ
µ1+γ

]
,

µ+
5 =

[
µ3+γ
µ1+γ
µ2+γ

]
, µ+

6 =

[
µ3+γ
µ2+γ
µ1+γ

]
, Σ+ =

[
Σ+Ψ Ψ Ψ

Ψ Σ+Ψ Ψ
Ψ Ψ Σ+Ψ

]
,

and Ψ represents the covariance between any two of the g random feature vectors in that

match such that Ψ′ = Ψ. From this model for Y+, we can obtain a set of classification

regions that allows us to simultaneously assign yind, ysib,1, and ysib,2 to one of the six possible

group orderings. For example, if y+ were classified into the first group ordering, then yind,

ysib,1, and ysib,2 would be classified into groups 1, 2, and 3, respectively. The details for

constructing these classification regions are provided in Appendix B.1.

In the paired case, we showed that the linear discriminant rules obtained from the pair-

wise difference approach and stacked approach in Sections 3.3.1.2 and 3.3.1.3, respectively,

were identical, which implied that both approaches provided the same information regard-

ing the discriminatory ability of the feature data and the same classification results. On

the other hand, when we extend to the case of matching across multiple groups, we see a

substantial difference in the results obtained when we construct our linear discriminant rule

based on the difference ydiff ≡ yind− 1
g−1

∑g−1
m=1 ysib,m and the stacked feature vector y+. To

better illustrate this fact, we briefly review the application of our differenced and stacked

approaches to the Konopaske biomarker data.
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Recall that if we apply the rule in (3.28) to the biomarker difference ydiff for each monkey

in a specific triad, then we would examine a total of three classification regions, each of which

consists of two discriminant functions, that we use to classify this monkey into one of the three

drug treatment groups. However, as we show in Appendix B.1, when we consider the stacked

biomarker vector y+ for a matched monkey triad, we examine a total of six classification

regions, each consisting of five discriminant functions dij that are used to simultaneously

classify all monkeys in this triad into one of the six possible treatment group orderings, and

where some of the 30 possible discriminant functions dij are distinct and some are the same.

For example, retaining the same group assignments for the three treatment groups as in

Section 3.5.1.1, we have that classification of a monkey triad into the first group ordering

entails classifying the first, second, and third monkeys in that triad into the haloperidol,

olanzapine, and sham treatment groups, respectively. Also, classification of a triad into the

fourth group ordering means classifying the first, second, and third monkeys in the triad

into the olanzapine, sham, and haloperidol treatment groups, respectively. In fact, not only

do the linear discriminant rules based on ydiff and y+ differ, but they also do not provide

us with the same classification information and can be shown to yield different classification

results.

Also, from (3.28), we could use the linear discriminant functions y′diffΣ−1
∗ (µ1 − µ2),

y′diffΣ−1
∗ (µ1 − µ3), and y′diffΣ−1

∗ (µ2 − µ3) to identify the biomarkers that best discriminate

between the haloperidol and olanzapine groups, between the haloperidol and sham groups,

and between the olanzapine and sham groups, respectively, once we’ve accounted for the

effect of matching on the biomarkers of interest. On the other hand, when we examine

all 30 discriminant functions dij across the six classification regions in our consideration of

y+, it is considerably more difficult to interpret the information that these functions convey

from a discrimination viewpoint. To elaborate, we first note that based on our discussion in

Appendix B.1, it can be shown that whether or not the discriminant function dij is positive is

what distinguishes the ith group ordering from the jth group ordering (i, j = 1, . . . , 6; i 6= j).

For example, whether or not d14 is positive is what differentiates between the first and fourth

treatment group orderings. In other words, if d14 is positive, then the first monkey in a triad

is assigned to the haloperidol group as opposed to the olanzapine group, the second monkey

is assigned to the olanzapine group as opposed to the sham group, and the third monkey is
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assigned to the haloperidol group as opposed to the sham group. However, it is not evident

that we can use this information to identify among the biomarkers under consideration those

that best discriminate among the three treatment groups once the effect of group matching

has been accounted for, which is our main interest in our analysis.

3.5.2 Normal Populations with Unknown Parameters

We now discuss how to implement our adjustment procedures in Sections 3.5.1.1 to 3.5.1.3

using training data consisting of yik, the observed feature vector for the member of the kth

match belonging to the ith group (i = 1, . . . , g; k = 1, . . . , K).

3.5.2.1 Classifying Each Member of a Given Match, with Unknown Match Ef-

fect Based on our knowledge of the feature measurements for an individual and their g−1

siblings in each match in the training data, we now apply our model in Section 3.5.1.1 to

the random feature vectors corresponding to each member of each training match so that we

may estimate all parameters in (3.26), including γ for each training match.

In other words, we first let Yik denote the random feature vector corresponding to the

member of the kth match belonging to the ith group (i = 1, . . . , g; k = 1, . . . , K). Based

on our assumed model in Section 3.5.1.1, we have that Yik has mean E[Yik] = µi + γk

and variance-covariance matrix Σ. Once we fit this model using ML estimation, we obtain

the family of estimates µ̂i(c
∗) = ȳi. − ȳ.. − c∗ and γ̂k(c

∗) = ȳ.k + c∗, where ȳi. =
∑K
k=1 yik
K

,

ȳ.k =
∑g
i=1 yik
g

, ȳ.. =
∑g
i=1

∑K
k=1 yik

gK
and c∗ = −ȳ..+c. Despite the fact that µi is not identifiable

in our model, the ML estimate of µi − µj is unique and is given by µ̂i(c
∗) − µ̂j(c∗) =

ȳi. − ȳj. (i, j = 1, . . . , g; i 6= j). Also, the estimate of µi + γk is unique and is given by

µ̂i(c
∗) + γ̂k(c

∗) = ȳi. − ȳ.. + ȳ.k.

The ML estimate of Σ is equal to

Σ̂ =
1

gK

[
g∑
i=1

K∑
k=1

(yik − µ̂i(c∗)− γ̂k(c∗))(yik − µ̂i(c∗)− γ̂k(c∗))′
]
.

Once we substitute the estimates µ̂i(c
∗) and γ̂k(c

∗), we have that Σ̂ =
[
g−1
g

]2

Σ̂D, where

Σ̂D =

[
1

gK

][ g∑
i=1

K∑
k=1

(
Dik,y − D̄i.,y

) (
Dik,y − D̄i.,y

)′]
,
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Dik,y = yik− 1
g−1

∑g
l=1
l 6=i

ylk and D̄i.,y = ȳi.− 1
g−1

∑g
l=1
l6=i

ȳl.. As in the paired case, our estimate

of Σ is unique.

Even though µi and γk are not identifiable parameters in our model, the classification

regions in (3.26) can be shown to remain invariant when we apply them to the training data.

When applied to the training feature measurements, the rule in (3.26) is given by

Ri :

[
ˆ̃yik −

1

2
(µ̂i(c

∗) + µ̂j(c
∗))

]′
Σ̂−1(µ̂i(c

∗)− µ̂j(c∗)) > 0 j = 1, . . . , g; j 6= i, (3.29)

where ˆ̃yik = yik − γ̂k(c∗) denotes the training feature data that have been adjusted for the

effect of matching. When we plug in the formulas for µ̂i(c
∗), µ̂j(c

∗), γ̂k(c
∗), and Σ̂, the rule

in (3.29) simplifies to

Ri :

Dik,y −
g − 2

g − 1

 ȳi. + ȳj.
2

− 1

g − 2

g∑
l=1
l6=i,j

ȳl.



′

Σ̂−1
D (ȳi.−ȳj.) > 0, (i, j = 1, . . . , g; j 6= i)

(3.30)

after some simplification, which could also have been obtained by using the unbiased estimate

Σ̂∗D = gK
g(K−1)

Σ̂D. Since the estimated discriminant coefficient vector Σ̂−1
D (ȳi.− ȳj.) is unique,

the fact that µi is not identifiable is not problematic if we want to determine the feature

variables that best discriminate between groups i and j, once we account for the effect of

group matching. With regards to the Konopaske biomarker data, the estimated coefficient

vectors Σ̂−1
D (ȳ1. − ȳ2.), Σ̂−1

D (ȳ1. − ȳ3.), and Σ̂−1
D (ȳ2. − ȳ3.) help us identify the biomarkers,

once they’ve been adjusted for the effect of matching, that best discriminate between the

haloperidol and olanzapine treatment groups, the haloperidol and sham treatment groups,

and the olanzapine and sham treatment groups, respectively.

Using the adjusted training feature data ỹik, we can estimate the probability of misclas-

sification for the rule in (3.26) using resubstitution or K-fold cross validation (where the

adjusted training feature measurements ỹ1k, . . . , ỹgk for each of the K matches are omitted

at a time) as described in Section 3.2.3.

If we want to use the linear discriminant rule in (3.26) to classify an individual in a new

match beyond the training data, the parameter γ must be re-estimated for this match. As

we did in the paired case, we extend Lachenbruch and Tu et al.’s conditional model in this

instance to include parameters that must be re-estimated for each new match, i.e., γ. To
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elaborate, suppose we know the feature measurements for an individual and their g−1 siblings

in a match, namely, yind, ysib,1, . . . , ysib,g−1. If we view the estimates µ̂1(c∗), . . . , µ̂g(c
∗), and

Σ̂ from the training data as fixed, we can apply our model in Section 3.5.1.1 to the random

feature vectors Yind, Ysib,1, . . . , Ysib,g−1 so that for a given match, Yind ∼ NP (µ̂i1(c∗)+γ, Σ̂)

in group i1, Ysib,1 ∼ NP (µ̂i2(c∗) + γ, Σ̂) in group i2, . . . , Ysib,g−1 ∼ NP (µ̂ig(c
∗) + γ, Σ̂)

in group ig (i1, i2, . . . , ig = 1, . . . , g; i1 6= i2 6= · · · 6= ig), where we assume Yind, Ysib,1,

. . . , Ysib,g−1 are mutually independent. Alternatively, we can examine Yind − µ̂i1(c∗) ≡

Y∗ind ∼ NP (γ, Σ̂), Ysib,1 − µ̂i2(c∗) ≡ Y∗sib,1 ∼ NP (γ, Σ̂), . . . , Ysib,g−1 − µ̂ig(c∗) ≡ Y∗sib,g−1 ∼

NP (γ, Σ̂). Using the likelihood function based on y∗ind, y∗sib,1, . . . , y∗sib,g−1, the ML estimate

of γ is given by γ̂(c∗) = 1
g
(y∗ind +

∑g−1
m=1 y∗sib,m) = 1

g

[
(yind +

∑g−1
m=1 ysib,m)−

∑g
i=1 µ̂i(c

∗)
]
,

assuming the estimates from the training data are given. Due to the fact that Y∗ind, Y∗sib,1, . . . ,

Y∗sib,g−1 are all identically distributed, the likelihood function remains invariant no matter

which groups Yind, Ysib,1, . . . , Ysib,g−1 belong to, so that the estimate γ̂(c∗) is unique. Even

if Yind, Ysib,1, . . . , Ysib,g−1 are not mutually independent, the likelihood function for y∗ind,

y∗sib,1, . . . , y∗sib,g−1 remains invariant as long as the covariance matrix between any two of

the g feature vectors, Yind,Ysib,1, . . . ,Ysib,g−1, remains the same and is symmetric. Once

we plug the estimates γ̂(c∗), µ̂i(c
∗), µ̂j(c

∗) (i, j = 1, . . . , g; i 6= j), and Σ̂ into (3.26) and

simplify our result, we obtain the classification regions

Ri :

ydiff −
g − 2

g − 1

 ȳi. + ȳj.
2

− 1

g − 2

g∑
l=1
l6=i,j

ȳl.



′

Σ̂−1
D (ȳi. − ȳj.) > 0, j = 1, . . . , g; j 6= i,

(3.31)

where ydiff = yind − 1
g−1

∑g−1
m=1 ysib,m. We see that the rule in (3.31) is identical to the rule

in (3.28) based on the feature difference ydiff = yind − 1
g−1

∑g−1
m=1 ysib,m, with Σ−1

∗ (µi − µj)

in (3.28) replaced with the estimate Σ̂−1
D (ȳi. − ȳj.).

When we examine our estimate γ̂(c∗), we see that we could not have estimated γ for an

individual in a new match in the manner we just described if we only knew the feature data

for this individual. Without an estimate of γ, we cannot use the classification rule in (3.26)

to classify this individual.

3.5.2.2 Classifying Each Member of a Given Match using Feature Difference

We can also consider an estimation approach based on our formulated model for the differ-
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enced random feature vector Ydiff ≡ Yind− 1
g−1

∑g−1
m=1 Ysib,m in Section 3.5.1.2. The parame-

ters µdiff
i = µi−

∑g
l=1
l 6=i
µl (i = 1, . . . , g) and Σ∗ in this model can be estimated via ML estima-

tion using the training feature differences Dik,y = yik− 1
g−1

∑g
l=1
l 6=i

ylk, where Dik,y is computed

for the ith group member of the kth match in the training data (i = 1, . . . , g; k = 1, . . . , K).

Based on our model for Ydiff, the training feature differences D1k,y, D2k,y, . . . , and Dgk,y

belong to the 1st, 2nd, . . . , and gth populations, respectively.

The ML estimates of µdiff
i and Σ∗ can be shown to equal, respectively, D̄i.,y = ȳi. −

1
g−1

∑g
l=1
l6=i

ȳl. and Σ̂D, which is defined as in Section 3.5.2.1. After we plug these estimates

into (3.27), we obtain the same rule as in (3.31). In addition, when we apply the rule in

(3.27) to the differenced training feature data Dik,y, we get the same estimated rule as in

(3.30).

Based on the training feature differences Dik,y, we can use resubstitution or K-fold cross

validation (where the differences D1k,y, . . . ,Dgk,y for each of the K matches in the training

data are omitted at a time) as described in Section 3.1.2 to estimate the probability of

misclassification for the rule in (3.27).

In examining the results we obtain from our estimation approaches in Sections 3.5.2.1

and 3.5.2.2, we see that the rule in (3.26) based on the feature vector ỹind that is adjusted for

the effect of group matching is the same as the rule in (3.28) based on the feature difference

ydiff = yind − 1
g−1

∑g−1
m=1 ysib,m when applied to matched data. As a result, not only do both

estimation approaches produce the same classification results in the data setting, but they

also help us identify, via the estimated discriminant coefficient vector Σ̂−1
D (ȳi.−ȳj.), the same

set of feature variables that best distinguishes group i from group j (i, j = 1, . . . , g; j 6=

i), once we account for the effect of group matching. For example, referring back to the

Konopaske biomarker data, we could apply either estimation approach to identify among

the examined biomarkers a unique set that best discriminates between the haloperidol and

olanzapine treatment groups, a unique set that best discriminates between the haloperidol

and sham treatment groups, and a unique set that best discriminates between the olanzapine

and sham treatment groups, while, at the same time, accounting for the effect of triad

matching on these biomarkers.

3.5.2.3 Classifying All Members of a Given Match, with Unknown Match Ef-

fect Unlike the paired case, the differenced and stacked approaches we develop in Sections
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3.5.1.2 and 3.5.1.3, respectively, to handle matching across multiple groups do not yield the

same linear discriminant classification rule. Therefore, when we implement both of these ap-

proaches on actual data, we still do not obtain the same linear discriminant rule. The details

on how to implement our stacked approach using the available training data are provided in

Appendix B.2, where, for notational simplicity, we focus on the case where individuals are

matched across three groups.

3.6 ACCOUNTING FOR EFFECTS OF MULTIPLE GROUP MATCHING

AND COVARIATES IN LDA

3.6.1 Normal Populations with Known Parameters

In Section 3.6, we extend our methodology to account not only for the effects of group

matching on the feature data, but also for the effects of additional covariates. For the

reader, this section extends Section 3.5 in the same way Section 3.4 extended Section 3.3.

and, thus, can be safely skipped.

We begin with an extension of the matched adjustment methodologies we develop in

Sections 3.5.1.1, 3.5.1.2, and 3.5.1.3 to also take into account covariate effects, retaining our

assumptions of equal priors and equal misclassification costs. As we noted in the paired

case, we could alternately ignore the effect of group matching on the feature data and apply

general covariance adjusted LDA to instead account for the effects of the variables on which

individuals were matched and, thus, all comments made in the paired case are relevant here.

3.6.1.1 Classifying One Member of a Match using Known Match and Covariate

Effects First, we let (Yind,Xind) denote the random feature and covariate vectors for any

individual in a match. For known γ and given Xind = xind, we assume Yind ∼ NP (µi +

γ + βxind,Σ(x)) in the ith group (i = 1, . . . , g), where β is defined as in Section 3.4.1.1 and

Σ(x) is assumed to be common to all g groups, is independent of the value of xind, and is

assumed to be positive definite. Based on these conditional densities for Yind, we can apply
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the conditional rule in (3.7) to obtain the classification rule

Ri(x) :

[
ỹind(x) −

1

2
(µi + µj)

]′
Σ−1

(x)(µi − µj) > 0, j = 1, . . . , g; j 6= i, (3.32)

where ỹind(x) = yind−γ−βxind denotes the feature measurement for an individual that has

been adjusted for both matching and covariate effects. Using the rule in (3.32), we classify

an individual with adjusted feature measurement ỹind(x) into the ith group if this value falls

into region Ri(x).

Once its coefficients have been suitably standardized, we can use the adjusted linear

discriminant function ỹ′ind(x)Σ
−1
(x)(µi−µj) in (3.32) to identify the feature variables that best

discriminate between groups i and j, after we adjust these feature variables for matching and

covariate effects. We can also use the sign of the pth (p = 1, . . . , P ) element of the adjusted

discriminant coefficient vector Σ−1
(x)(µi − µj) to determine whether the pth adjusted feature

variable is larger or smaller for group i compared with group j, holding all other adjusted

feature variables fixed.

As in the paired case, we can generalize our conditional model for Yind such that for

known γ and given Xind = xind, Yind ∼ NP (µi + γ + ρ(xind; Θ),Σ(x)) in the ith group

(i = 1, . . . , g), where ρ(x; Θ) is defined as in Section 3.2.3.

3.6.1.2 Classifying One Member of a Match using Covariate Adjusted Feature

Difference An alternative to the previous approach is to extend our differencing approach

in Section 3.5.1.2 to also account for covariate effects on the feature data, which we can

carry out by applying Lachenbruch and Tu et al.’s conditional model to the random feature

difference vector Yind − 1
g−1

∑g−1
m=1 Ysib,m.

First, we let Xind,Xsib,1, . . . ,Xsib,g−1 denote the random covariate vectors for an individ-

ual and their g− 1 siblings in a given match, and let Xind− 1
g−1

∑g−1
m=1 Xsib,m ≡ Xdiff denote

the random differenced covariate vector for an individual in this match. Given Xdiff = xdiff,

we assume (Yind − 1
g−1

∑g−1
m=1 Ysib,m) ≡ Ydiff ∼ NP (µdiff

i + βxdiff,Σ∗(x)) in the ith popu-

lation (i = 1, . . . , g), where µdiff
i are defined as in Section 3.5.1.2. We have that Σ∗(x)

remains the same in each population if the g conditional variance-covariance matrices for

Yind,Ysib,1, . . . ,Ysib,g−1, along with the covariances for all pairs of the g feature vectors
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Yind,Ysib,1, . . . ,Ysib,g−1 for given xind, xsib,1, . . . , xsib,g−1, do not change depending on pop-

ulation. As in Section 3.5.1.2, the covariance matrix between any pair of these g feature

vectors need not be symmetric in order for Σ∗(x) to remain the same in each population.

Retaining our assumption from Section 3.5.1.2 that the prior probability of each popula-

tion is 1/g, we can apply general covariance adjusted LDA based on the conditional densities

of Ydiff to obtain the linear discriminant rule

Rdiff
i(x) :

[
ỹdiff(x) −

1

2

(
µdiff
i + µdiff

j

)]′
Σ−1
∗(x)

(
µdiff
i − µdiff

j

)
> 0, j = 1, . . . , g; j 6= i, (3.33)

where ỹdiff(x) = (yind− 1
g−1

∑g−1
m=1 ysib,m)−β(xind− 1

g−1

∑g−1
m=1 xsib,m) is the covariate adjusted

feature difference. When we plug in the formula for µdiff
i , the rule in (3.33) can be re-expressed

as

Rdiff
i(x) :

ỹdiff(x) −
g − 2

g − 1

µi + µj
2

− 1

g − 2

g∑
l=1
l 6=i,j

µl



′

Σ−1
∗(x)(µi−µj) > 0, j = 1, . . . , g; j 6= i.

(3.34)

For each individual in a match, we compute the covariate adjusted difference ỹdiff(x) and

classify this individual into the ith group if this difference falls into region Rdiff
i(x) (i = 1, . . . , g).

From (3.34), we can use the adjusted discriminant coefficient vector Σ−1
∗(x)(µi − µj) to

determine which of the feature variables of interest best discriminate between groups i and

j, once the effects of group matching and additional covariates on these feature variables

have been accounted for.

3.6.1.3 Classifying All Members of a Match using Known Match and Covariate

Effects We can also apply the adjustment methodology we develop in Section 3.6.1.1

to the stacked feature vector Y+. For notational simplicity, we again focus on the case

where individuals are matched across three groups. In our discussion, we define Y+ as in

Section 3.5.1.3 and let X+ =

[
Xind
Xsib,1

Xsib,2

]
denote the random covariate vector that corresponds

to an individual and their two siblings in a triad. Given X+ = x+, we assume Y+ ∼

N3P (µ+
i(x),Σ

+
(x)) in the ith group ordering (i = 1, . . . , 6) for a given match, where

µ+
1(x) =

[
µ1+γ+βxind
µ2+γ+βxsib,1
µ3+γ+βxsib,2

]
, µ+

2(x) =

[
µ1+γ+βxind
µ3+γ+βxsib,1
µ2+γ+βxsib,2

]
, µ+

3(x) =

[
µ2+γ+βxind
µ1+γ+βxsib,1
µ3+γ+βxsib,2

]
, µ+

4(x) =

[
µ2+γ+βxind
µ3+γ+βxsib,1
µ1+γ+βxsib,2

]
,

µ+
5(x) =

[
µ3+γ+βxind
µ1+γ+βxsib,1
µ2+γ+βxsib,2

]
, µ+

6(x) =

[
µ3+γ+βxind
µ2+γ+βxsib,1
µ1+γ+βxsib,2

]
, Σ+

(x) =

[
Σ(x)+Ψ Ψ Ψ

Ψ Σ(x)+Ψ Ψ

Ψ Ψ Σ(x)+Ψ

]
,
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and Ψ is defined as in Section 3.5.1.3. From this conditional model for Y+, we can obtain a

set of classification regions that allows us to simultaneously classify an individual in a triad

and their two siblings in that triad into one of the six group orderings using the stacked

observed feature and covariate values y+ =
[ yind

ysib,1
ysib,2

]
and x+ =

[ xind
xsib,1
xsib,2

]
. The details for

constructing the classification rule based on the conditional model for Y+ are provided in

Appendix B.3.

When we accounted for pairing and covariate effects on the feature data, we showed that

the differencing and stacked approaches in Sections 3.4.1.2 and 3.4.1.3, respectively, produced

the same linear discriminant classification rule. As a result, both approaches not only yield

the same classification results, but also provide us with the same information with regards

to which feature variables best discriminate between the two groups under consideration,

once we account for both pairing and covariate effects. However, when we proceed to the

multiple group case, we have that the linear discriminant rule we obtain in Section 3.6.1.2

based on the conditional model for Ydiff ≡ Yind − 1
g−1

∑g−1
m=1 Ysib,m is entirely different from

the rule we obtain in Section 3.6.1.3 based on the conditional model for Y+. In fact, it can

be shown that not only do these two approaches produce different classification results, but

they also do not provide us with the same information from a discriminatory standpoint, as

we saw in Section 3.5.1.3 when we only accounted for the effect of group matching on the

feature data.

3.6.2 Normal Populations with Unknown Parameters

We now discuss how the adjustment procedures we develop in Sections 3.6.1.1 to 3.6.1.3

can be implemented using training data consisting of (yik,xik), the observed feature and

covariate vectors for the member of the kth match belonging to the ith group (i = 1, . . . , g; k =

1, . . . , K).

3.6.2.1 Classifying Each Member of a Given Match, with Unknown Match and

Covariate Effects Based on our conditional model in Section 3.6.1.1, we let the ran-

dom feature vector Yik, which is as defined as in Section 3.5.2.1, have conditional mean

E[Yik|xik] = µi + γk + βxik and variance-covariance matrix Σ(x). Using ML estimation
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to fit this model based on the training data, we assume that the design matrix for this

model satisfies suitable conditions so that the ML estimate β̂ is unique. The family of

estimates for µi and γk are given by µ̂i(c
∗
x) = ȳi. − β̂x̄i. − (ȳ.. − β̂x̄..) − c∗x and γ̂k(c

∗
x)

= ȳ.k − β̂x̄.k + c∗x, where ȳi., ȳ.k, and ȳ.. are defined as in Section 3.5.2.1, x̄i. =
∑K
k=1 xik
K

,

x̄.k =
∑g
i=1 xik
g

, x̄.. =
∑g
i=1

∑K
k=1 xik

gK
, and c∗x = −(ȳ.. − β̂x̄..) + c. We then have that the ML

estimate of µi−µj is given by µ̂i(c
∗)−µ̂j(c∗) = ȳi.− ȳj.− β̂(x̄i.− x̄j.) (i, j = 1, . . . , g; i 6= j).

The ML estimate of Σ(x) is equal to

Σ̂(x) =
1

gK

[
g∑
i=1

K∑
k=1

(yik − µ̂i(c∗x)− γ̂k(c∗x)− β̂xik)(yik − µ̂i(c∗x)− γ̂k(c∗x)− β̂xik)
′

]
.

After we substitute the estimates µ̂i(c
∗) and γ̂k(c

∗), we have that Σ̂(x) =
[
g−1
g

]2

Σ̂D(x),

where

Σ̂D(x) =
1

gK

[
g∑
i=1

K∑
k=1

(
D̂adj
ik,y −

¯̂
Dadj
i.,y

)(
D̂ik,y − ¯̂

Dadj
i.,y

)′]
,

D̂adj
ik,y = Dik,y−β̂Dik,x = (yik− 1

g−1

∑g
l=1
l 6=i

ylk)− β̂(xik− 1
g−1

∑g
l=1
l 6=i

xlk), and
¯̂
Dadj
i.,y = D̄i.,y−β̂D̄i.,x

= (ȳi. − 1
g−1

∑g
l=1
l 6=i

ȳl.) − β̂(x̄i. − 1
g−1

∑g
l=1
l 6=i

x̄l.).

When applied to the training data, the rule in (3.32) has the form

Ri(x) :

[
ˆ̃yik(x) −

1

2
(µ̂i(c

∗
x) + µ̂j(c

∗
x))

]′
Σ̂−1

(x)(µ̂i(c
∗
x)−µ̂j(c∗x)) > 0, j = 1, . . . , g; j 6= i, (3.35)

where ˆ̃yik(x) = yik− γ̂k(c∗x)− β̂xik denotes the training feature data that have been adjusted

for matching and covariate effects. The estimated rule in (3.35) can also be expressed as

Ri(x) :

D̂adj
ik,y −

g − 2

g − 1

 ȳ∗i. + ȳ∗j.
2

− 1

g − 2

g∑
l=1
l 6=i,j

ȳ∗l.



′

Σ̂−1
D(x)(ȳ

∗
i.−ȳ∗j.) > 0, j = 1, . . . , g; j 6= i,

(3.36)

where ȳ∗i. = ȳi. − β̂x̄i., ȳ∗j. = ȳj. − β̂x̄j., and ȳ∗l. = ȳl. − β̂x̄l.. We could also have obtained

(3.36) by using the unbiased estimate Σ̂∗D(x) = gK
g(K−1)

Σ̂D(x). Based on the adjusted training

feature data ỹik(x), we can use resubstitution or K-fold cross validation as described in

Section 3.5.2.1 to estimate the probability of misclassification for the conditional rule in

(3.32).

To use the rule in (3.32) to classify an individual in a match that is not part of the

training data, we must re-estimate γ for this match. Suppose we are provided with the
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feature and covariate measurements for this individual and their g − 1 siblings in that

match, i.e., (yind,xind), (ysib,1,xsib,1), . . . , (ysib,g−1,xsib,g−1). Using the estimates β̂, µ̂i(c
∗
x)

(i = 1, . . . , g), and Σ̂(x) from the training data, we assume for a given match and given

xind, xsib,1, . . . , xsib,g−1, β̂, µ̂i(c
∗
x), and Σ̂(x), Yind ∼ NP (µ̂i1(c∗x) + γ + β̂xind, Σ̂(x)) in

group i1, Ysib,1 ∼ NP (µ̂i2(c∗x) + γ + β̂xsib,1, Σ̂(x)) in group i2, . . . , Ysib,g−1 ∼ NP (µ̂ig(c
∗
x) +

γ + β̂xsib,g−1, Σ̂(x)) in group ig (i1, i2, . . . , ig = 1, . . . , g; i1 6= i2 6= · · · 6= ig), where we

again assume Yind, Ysib,1, . . . , Ysib,g−1 are mutually independent. We can also consider

Yind − µ̂i1(c∗x) − β̂xind ≡ Y
∗(x)
ind ∼ NP (γ, Σ̂(x)), Ysib,1 − µ̂i2(c∗x) − β̂xsib,1 ≡ Y

∗(x)
sib,1 ∼

NP (γ, Σ̂(x)), . . . , Ysib,g−1 − µ̂ig(c∗x) − β̂xsib,g−1 ≡ Y
∗(x)
sib,g−1 ∼ NP (γ, Σ̂(x)). From the like-

lihood function based on Y
∗(x)
ind ,Y

∗(x)
sib,1, . . . ,Y

∗(x)
sib,g−1, we obtain the ML estimate γ̂(c∗x) =

1
g
(y
∗(x)
ind +

∑g−1
m=1 y

∗(x)
sib,m) = 1

g

[
(yind +

∑g−1
m=1 ysib,m)− β̂(xind +

∑g−1
m=1 xsib,m)

]
− 1

g

∑g
i=1 µ̂i(c

∗
x).

We have that Y
∗(x)
ind , Y

∗(x)
sib,1, . . . , Y

∗(x)
sib,g−1 are identically distributed, so that the correspond-

ing likelihood function remains invariant no matter which groups Yind, Ysib,1, . . . , Ysib,g−1

belong to, which implies that γ̂(c∗x) is unique. Even if Yind, Ysib,1, . . . , Ysib,g−1 are not

mutually independent, but the covariance matrix between any two of these g vectors re-

mains the same and is symmetric, the invariance of the likelihood function based on y
∗(x)
ind ,

y
∗(x)
sib,1, . . . , y

∗(x)
sib,g−1 would still hold. When we substitute the estimates β̂, µ̂i(c

∗
x), µ̂j(c

∗
x)

(i, j = 1, . . . , g; i 6= j), Σ̂(x), and γ̂(c∗x), the rule in (3.32) takes on the form

Ri(x) :

ˆ̃ydiff(x) −
g − 2

g − 1

 ȳ∗i. + ȳ∗j.
2

− 1

g − 2

g∑
l=1
l 6=i,j

ȳ∗l.



′

Σ̂−1
D(x)(ȳ

∗
i.−ȳ∗j.) > 0, j = 1, . . . , g; j 6= i,

(3.37)

after some simplification, where ˆ̃ydiff(x) = (yind− 1
g−1

∑g−1
m=1 ysib,m)− β̂(xind− 1

g−1

∑g−1
m=1 xsib,m).

We have that the rule in (3.37) is identical to the rule in (3.34), with β and the adjusted

discriminant coefficient vector Σ−1
∗(x)(µi − µj) in (3.34) replaced with the estimates β̂ and

Σ̂−1
D(x)(ȳ

∗
i. − ȳ∗j.), respectively.

3.6.2.2 Classifying Each Member of a Given Match using Covariate Adjusted

Feature Difference An alternate estimation approach we can take is to implement the

differencing approach we develop in Section 3.6.1.2 using the available training data. We

begin by letting Dik,Y ≡ Yik − 1
g−1

∑g
l=1
l 6=i

Ylk denote the random differenced feature vector
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for the member of the kth match belonging to the ith group (i = 1, . . . , g; k = 1, . . . , K),

i.e., in the kth match, Dik,Y corresponds to the ith population. Based on our conditional

model for the feature difference Yind − 1
g−1

∑g−1
m=1 Ysib,m in Section 3.6.1.2, we assume Dik,Y

has conditional mean E[Dik,Y |Dik,x] = µdiff
i + βDik,x and conditional variance-covariance

matrix Σ∗(x). We then fit the model for E[Dik,Y |Dik,x] using ML estimation based on the

differences (Dik,y,Dik,x), which are defined as in Sections and 3.5.2.1 and 3.6.2.1, and retain

our assumption that the design matrix for our model satisfies suitable conditions so that

the ML estimate β̂ is unique. In fitting this model, we obtain the estimates µ̂diff
i =

¯̂
Dadj
i.,y

(i = 1, . . . , g) and Σ̂∗(x) = Σ̂D(x), where
¯̂
Dadj
i.,y and Σ̂D(x) are defined as in Section 3.6.2.1.

When we plug the estimates β̂, µ̂diff
i , µ̂diff

j (i, j = 1, . . . , g; i 6= j), and Σ̂∗(x) into (3.33), we

obtain the same rule as in (3.37). Also, when we apply the rule in (3.33) to the training

data, we get the same estimated rule as in (3.36).

Using the covariate adjusted training feature differences D̂adj
ik,y, which are defined as in

Section 3.6.2.1, we can use resubstitution or K-fold cross validation (where the covariate

adjusted differences D̂adj
1k,y, . . . , D̂adj

gk,y for each of the K matches in the training data are

omitted at a time) as described in Section 3.2.3 to estimate the probability of misclassification

associated with the conditional rules in (3.33) and, equivalently, (3.34).

Based on our results in Sections 3.6.2.1 and 3.6.2.2, we have that the rule in (3.32) based

on the adjusted feature vector ỹind(x) is the same as the rule in (3.34) based on the covariate

adjusted feature difference ỹdiff(x) when applied to matched data. Therefore, not only do the

estimation approaches we develop in these two sections yield the same classification results

in the data setting, but they also help us identify, via the estimated adjusted discriminant

coefficient vector Σ̂−1
D(x)(ȳ

∗
i. − ȳ∗j.), the same set of feature variables that best distinguishes

group i from group j (i, j = 1, . . . , g; j 6= i), once we account for the effects of both matching

and additional covariates on the feature data.

3.6.2.3 Classifying All Members of a Given Match, with Unknown Match and

Covariate Effects It can be shown that when implemented on matched data, the differ-

encing and stacked approaches we develop in Sections 3.6.1.2 and 3.6.1.3 do not yield the

same classification rule. We give a detailed discussion of how our stacked approach in Section

3.6.1.3 can be applied in the data setting in Appendix B.4.
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4.0 ACCOUNTING FOR MATCHING AND COVARIATE EFFECTS IN

CLASSIFICATION TREES

4.1 TRADITIONAL CLASSIFICATION TREES

4.1.1 Overview

In general, linear discriminant analysis uses training data to compute a linear rule that splits

the feature space Y into g distinct subsets, such that a new subject who falls into one of

these subsets is classified into one of the g groups. In the same spirit, classification trees

were initially developed by various authors, including Morgan and Sonquist [25], Morgan and

Messenger [24], and Friedman [10], to obtain from training data a nonlinear rule from which

to classify new subjects, as well as determine the feature variables that best discriminate

among the g groups under consideration. Hand [13] notes that Breiman, Friedman, Olshen,

and Stone (BFOS) were the first authors to formally integrate and provide a theoretical

justification for all previously developed tree construction procedures in their 1984 book [7].

In addition, the BFOS algorithm for recursive partitioning of the feature space is still among

the most popular tree construction procedures. Thus, it is their work that is summarized in

our subsequent discussion of classification trees.

Classification trees are constructed by using training data to recursively split on the

coordinate axes until some stopping criterion is satisfied, such that the feature measurements

in each resulting subset are as homogeneous as possible with respect to group. A new

subject that falls into one of these subsets is then classified into the group most commonly

represented in the subset. The feature variables that are chosen to split the feature space

Y in this manner are those that best discriminate among these groups of interest, which is

what interests us most in our application of classification trees, even though classification
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tends to be the main goal in general. Although classification trees can also split Y using

linear combinations of the feature variables, it is very computationally intensive to do so

and may yield results that are hard to interpret. Thus, we do not discuss this approach

here. Classification trees are usually constructed by using binary splits to iteratively split

each subset of the feature space. This iterative process is typically described using decision

theoretic tree notation, in which node t denotes a subset of the feature space and root node

t0 denotes the entire feature space. On the other hand, there is no recursive partitioning

involved in traditional LDA, where a set of
(
g
2

)
hyperplanes is used to split the entire feature

space.

Traditional LDA is usually developed primarily from a theoretical or population based

standpoint, where the resulting classification rule is usually first constructed under the as-

sumption that the feature data come from a normal population with known parameters for

each group under consideration. The parameters must then be estimated from training data.

This LDA development is in distinction to the development of classification trees, which is

typically data driven.

Our discussion of the construction of classification trees in the general case of g groups

using the BFOS recursive partitioning algorithm is first done from a population based per-

spective, as is typically done in traditional LDA. We amplify the approach Friedman initially

took in his development of classification trees [10][30], and that which Shang and Breiman

took in their preliminary development of distribution based trees [31]. In particular, Fried-

man briefly discussed how, in the case of two known continuous distributions, the well known

Kolmogorov-Smirnov distance measure could be used to determine the optimal set of split-

ting variables and cutpoints for a specific classification tree. Similarly, Shang and Breiman

used the Gini index (see Section 4.1.2.2) to achieve the same goal in the case of at least

two known continuous distributions. Our goal is to prepare a deeper understanding of the

theoretical roots of the BFOS algorithm, so that we can introduce carefully the use of co-

variates in our tree construction procedure. In this chapter, we first consider classification

trees using g known continuous distributions. For example, we show how such trees can be

developed for normal populations. We then show how classification trees are constructed

when the distribution functions for the g groups must be estimated from available training

data.
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4.1.2 Known Distributions

4.1.2.1 Tree Construction Procedure Let Y = (Y1, . . . , YP )′ have prior probability

πi (i = 1, . . . , g) of belonging to group i, in which Y has some known continuous cumulative

distribution function (CDF) F
(i)
Y (�). In addition, we assume equal misclassification costs.

To construct a tree, we first choose a feature variable Y , that is, one of the components

of Y, and a cutpoint c in R that splits the root node t0 into descendant nodes tL and tR,

such that a specific goodness of split (GOS) criterion (described in Section 4.1.2.2) defined

by the split Y ≤ c is maximized. The basic idea is to choose Y and c to maximize the group

purity (homogeneity) of nodes tL and tR. This splitting procedure is then applied recursively

to tL, tR, and all subsequent descendant nodes until further splitting ceases to significantly

increase group homogeneity, as defined by some specific criterion. Once splitting stops, we

let T ′ denote a tree obtained in this manner. Nodes not split in T ′ are called terminal nodes

and we let T̃ ′ denote the set of terminal nodes of T ′.

Based on our assumption of equal misclassification costs, each terminal node t in T̃ ′ is

assigned to group i if P (Y ∈ group i|Y ∈ t) > P (Y ∈ group j|Y ∈ t) (j = 1, . . . , g; j 6= i).

We use the fact that

P (Y ∈ group i|Y ∈ t) =
πiP

(i)(Y ∈ t)
P (Y ∈ t)

, (4.1)

where P (i)(Y ∈ t) = P (Y ∈ t|Y ∈ group i), to re-express our group assignment rule of

terminal node t as

Ri :

{
t :

P (i)(Y ∈ t)
P (j)(Y ∈ t)

>
πj
πi

}
, j = 1, . . . , g; j 6= i. (4.2)

In the case of two groups, the rule in (4.2) can be expressed as

R1 :

{
t :

P (1)(Y ∈ t)
P (2)(Y ∈ t)

≥ π2

π1

}
, R2 :

{
t :

P (1)(Y ∈ t)
P (2)(Y ∈ t)

<
π2

π1

}
.

Once we obtain T ′, we can use it to classify an individual based on their observed feature

vector y.

Using the rule in (4.2), we have that the true misclassification rate for node t is equal to

P (Y ∈ t)−maxi=1,...,g

[
πiP

(i)(Y ∈ t)
]
, (4.3)
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where

P (Y ∈ t) =

g∑
i=1

πiP
(i)(Y ∈ t). (4.4)

For each node t in the set of terminal nodes T̃ ′, we compute this error rate so that we may

obtain the following true misclassification rate for tree T ′

R∗(T ′) =
∑
t∈T̃ ′

{
P (Y ∈ t)−maxi=1,...,g

[
πiP

(i)(Y ∈ t)
]}
,

which can be expressed as
∑

t∈T̃ ′mini=1,2

[
πiP

(i)(Y ∈ t)
]

for two groups. BFOS prove that

no other group assignment rule for a given tree T ′ yields a misclassification rate lower than

R∗(T ′) [7]. When πi and F
(i)
Y (�) are known, R∗(T ′) can be computed.

We now discuss the two GOS criteria that are used in the BFOS recursive partitioning al-

gorithm to determine the optimal split for a particular node, assuming equal misclassification

costs. Without loss of generality, we assume these costs are equal to one.

4.1.2.2 GOS Criteria In choosing the feature variable Y and cutpoint c that best splits

a particular node t into descendant nodes tL and tR, one GOS criterion that is commonly

used in the data setting is based on a measure of impurity for node t, which is denoted M(t).

For g groups, M(t) = φ (P (Y ∈ group 1|Y ∈ t), . . . , P (Y ∈ group g|Y ∈ t)), where φ(�) is a

function defined on the set of g-tuples of numbers (p1, . . . , pg) such that pi ≥ 0 (i = 1, . . . , g)

and
∑g

i=1 pi = 1. We have here that φ(�) is an impurity function of p1, . . . , pg since it is

maximized when pi = 1
g
, minimized when pi = 1 and pj = 0 (j 6= i), and is a symmetric

function of p1, . . . , pg [7]. This impurity measure based GOS criterion, which we rephrase

for use in the case of known distributions, is

M(t)− [P (Y ∈ tL|Y ∈ t)M(tL) + P (Y ∈ tR|Y ∈ t)M(tR)] (4.5)

(see [7][13][23]). If we choose Y and c to maximize (4.5) over all Y in Y and all c ∈ R, then

we can also choose Y and c to minimize the bracketed quantity in (4.5), which can be shown

to equal
P (Y ∈ tL)M(tL) + P (Y ∈ tR)M(tR)

P (Y ∈ t)
. (4.6)

The fact that the bracketed quantity in (4.5) is equal to the quantity in (4.6) holds due to

the fact that tL and tR are both subsets of node t.
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Another GOS criterion that has been used primarily in the data setting is the twoing

criterion (see [5][7][13][23][30]), which can be defined from a population based standpoint as

1

4 [P (Y ∈ t)]2
× P (Y ∈ tL)× P (Y ∈ tR)×[

g∑
i=1

|P (Y ∈ group i|Y ∈ tL)− P (Y ∈ group i|Y ∈ tR)|

]2

.

(4.7)

Unlike the GOS criterion in (4.5), the twoing criterion is not dependent on a particular

impurity measure M(t).

However, we note that both the impurity measure based GOS criterion and the twoing

criterion given by (4.5) and (4.7), respectively, are functions of probabilities of the form

P (Y ∈ t) and P (Y ∈ group i|Y ∈ t), which can be easily re-expressed using (4.1) and (4.4).

Thus, for example, the impurity measure based GOS criterion is given by

M(t) = φ

(
π1P

(1)(Y ∈ t)
P (Y ∈ t)

, . . . ,
πgP

(g)(Y ∈ t)
P (Y ∈ t)

)
= φ

(
π1P

(1)(Y ∈ t)∑g
j=1 πjP

(j)(Y ∈ t)
, . . . ,

πgP
(g)(Y ∈ t)∑g

j=1 πjP
(j)(Y ∈ t)

)
.

Similarly, the twoing criterion in (4.7) can be re-expressed as

1

4
[∑g

j=1 πjP
(j)(Y ∈ t)

]2 ×

[
g∑
j=1

πjP
(j)(Y ∈ tL)

]
×

[
g∑
j=1

πjP
(j)(Y ∈ tR)

]
×

[
g∑
i=1

πi

∣∣∣∣∣ P (i)(Y ∈ tL)∑g
j=1 πjP

(j)(Y ∈ tL)
− P (i)(Y ∈ tR)∑g

j=1 πjP
(j)(Y ∈ tR)

∣∣∣∣∣
]2

.

(4.8)

One particular impurity measure used in the literature is the Gini index, which is defined

by MG(t) ≡ 1 −
∑g

i=1 [P (Y ∈ group i|Y ∈ t)]2 for g groups (see [5][13][14][30][32]). Based

on (4.4) and the fact that P (Y ∈ t)MG(t) = 2
∑g

i,j=1
i<j

πiπj

[
P (i)(Y∈t)P (j)(Y∈t)∑g

l=1 πlP
(l)(Y∈t)

]
for g groups,

the quantity we seek to minimize in (4.6) based on the Gini index MG(t) can be expressed

as

2∑g
l=1 πlP

(l)(Y ∈ t)

g∑
i,j=1
i<j

πiπj

[
P (i)(Y ∈ tL)P (j)(Y ∈ tL)∑g

l=1 πlP
(l)(Y ∈ tL)

+
P (i)(Y ∈ tR)P (j)(Y ∈ tR)∑g

l=1 πlP
(l)(Y ∈ tR)

]
.

(4.9)
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In the case of two groups, the Gini index reduces to

MG(t) = 2P (Y ∈ group 1|Y ∈ t)P (Y ∈ group 2|Y ∈ t)

= 2π1π2
P (1)(Y ∈ t)P (2)(Y ∈ t)

[P (Y ∈ t)]2

= 2π1π2
P (1)(Y ∈ t)P (2)(Y ∈ t)[∑2

j=1 πjP
(j)(Y ∈ t)

]2

and P (Y ∈ t)MG(t) = 2π1π2
P (1)(Y∈t)P (2)(Y∈t)∑2

j=1 πjP
(j)(Y∈t) , so that (4.9) can be expressed as

2π1π2∑2
j=1 πjP

(j)(Y ∈ t)

[
P (1)(Y ∈ tL)P (2)(Y ∈ tL)∑2

j=1 πjP
(j)(Y ∈ tL)

+
P (1)(Y ∈ tR)P (2)(Y ∈ tR)∑2

j=1 πjP
(j)(Y ∈ tR)

]
.

Another impurity measure that is commonly used in the literature is the cross-entropy

or Deviance index MD(t), where

MD(t) = −
g∑
i=1

P (Y ∈ group i|Y ∈ t) log [P (Y ∈ group i|Y ∈ t)]

= −
g∑
i=1

πiP
(i)(Y ∈ t)

P (Y ∈ t)
log

[
πiP

(i)(Y ∈ t)
P (Y ∈ t)

]

= −
g∑
i=1

πiP
(i)(Y ∈ t)∑g

j=1 πjP
(j)(Y ∈ t)

log

[
πiP

(i)(Y ∈ t)∑g
j=1 πjP

(j)(Y ∈ t)

]

(see [5][13][14][30][32]). Based on (4.4) and the fact that P (Y ∈ t)MD(t) = −
∑g

i=1 devi,t,

where devi,t = πiP
(i)(Y ∈ t) log

[
πiP

(i)(Y∈t)∑g
j=1 πjP

(j)(Y∈t)

]
, the quantity we seek to minimize in (4.6)

for the Deviance index MD(t) can be expressed as

− 1∑g
j=1 πjP

(j)(Y ∈ t)

g∑
i=1

(devi,tL + devi,tR) . (4.10)

Although the Gini and Deviance indices are among several impurity measures that can

be used in the construction of classification trees using the BFOS algorithm (see [13][14][30]),

they are the ones that are most commonly used due to the fact that they are strictly concave

functions of P (Y ∈ group i|Y ∈ t) [7][14]. Since Y is assumed to be continuous, this

property ensures that the impurity measure based GOS criterion in (4.5) is always positive,

which is shown in Proposition C.1.1 in Appendix C.1. In other words, for continuous Y,

the use of a strictly concave impurity function in (4.5) ensures that the impurity of node t

is always decreased when it is split.
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We note one interesting fact regarding the connection of the GOS criterion in (4.5)

to the majorization concept of Schur concavity. A function ω(�) has the previously noted

properties of the impurity function φ(�) and is strictly concave if and only if ω(�) is strictly

Schur concave, i.e., symmetric and strictly concave, of which the Gini and Deviance indices

are two examples [2][21]. Thus, if the measure M(t) is based on any strictly Schur concave

function ω(�), the GOS criterion in (4.5) remains positive for continuous Y.

Along with our group assignment rule for node t, we have that both GOS criteria and

all impurity measures M(t) can be computed using only our knowledge of πi and F
(i)
Y (�)

(i = 1, . . . , g), from which we can compute P (i)(Y ∈ t), P (i)(Y ∈ tL), and P (i)(Y ∈ tR).

4.1.2.3 Tree Construction Procedure for Known Normal Populations It is inter-

esting to note that if we retain our assumption from traditional LDA that Y = (Y1, . . . , YP )′ ∼

NP (µY,i,ΣY Y ) in the ith group (i = 1, . . . , g), we can use the population version of the BFOS

algorithm to obtain another approach for discriminating in the classical LDA normal setting.

To elaborate, in the case where g = 2, suppose that π1 = π2 = 0.5. In the first step of our

tree construction procedure, we seek to split the root node t0 into tL and tR and use the

fact that
Yp−µY,p,i√

σpp
∼ N(0, 1) for the ith group (p = 1, . . . , P ). We then proceed to find, for

each feature variable Yp, the cutpoint c̀1,p that minimizes the quantities in (4.9) or (4.10)

or maximizes the quantity in (4.8), depending on the GOS criterion and impurity measure

that is chosen. For the three quantities in (4.8), (4.9), and (4.10), we have that P (Y ∈ t) =

P (Y ∈ t0) = 1 because t0 is the entire feature space. For each Yp and c̀1,p, P
(i)(Y ∈ tL) =

P (i)(Yp ≤ c̀1,p) = Φ
(
c̀1,p−µY,p,i√

σpp

)
and P (i)(Y ∈ tR) = P (i)(Yp > c̀1,p) = Φ

(
µY,p,i−c̀1,p√

σpp

)
. Using

the differentiability of the Gini and Deviance indices and the twoing criterion, we can show

that c̀1,p = 1
2
(µY,p,1 + µY,p,2). We then let cν denote the cutpoint c̀1,p that minimizes (4.9) or

(4.10) or maximizes (4.8) across all p and let Yν denote the feature variable that corresponds

to this particular cutpoint. To gain further insight into what this particular result entails,

suppose that Y is univariate (i.e., P = 1), so that Y = Y1. Then, the optimal cutpoint

1
2
(µY,1,1 + µY,1,2) corresponding to Y1 that first splits the feature space Y using the BFOS

algorithm is the same cutpoint used to split Y in traditional LDA for two groups. Thus,

if splitting were to terminate at this point, the true misclassification rates for our resulting

tree T ′ and the linear discriminant rule given in (3.4) in Section 3.1.2 would be identical.
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However, we note that the parallel between the results obtained from traditional LDA and

the BFOS algorithm for univariate Y when we first split Y can be shown to no longer exist

when we deal with more than two groups.

We now consider the case of general P . Suppose we seek to split the left daughter node tL

of t0. It follows that P (Y ∈ t) is now equal to P (Yν ≤ cν) = 0.5
[
Φ
(
cν−µY,ν,1√

σνν

)
+ Φ

(
cν−µY,ν,2√

σνν

)]
.

For each Yp and cutpoint c̀2,p (p = 1, . . . , P ), we also have that P (i)(Y ∈ tL) = P (i)(Yν ≤

cν , Yp ≤ c̀2,p) and P (i)(Y ∈ tR) = P (i)(Yν ≤ cν , Yp > c̀2,p) = P (i)(Yν ≤ cν)−P (i)(Yν ≤ cν , Yp ≤

c̀2,p), where P (i)(Yν ≤ cν , Yp ≤ c̀2,p) is the bivariate normal CDF corresponding to (Yν , Yp)
′

in the ith group (i = 1, 2; p = 1, . . . , P ;Yν 6= Yp). For the case in which Yp = Yν , c̀2,p < cν

and, thus, P (i)(Y ∈ tL) = Φ
(
c̀2,p−µY,ν,i√

σνν

)
, and P (i)(Y ∈ tR) = Φ

(
cν−µY,ν,i√

σνν

)
− Φ

(
c̀2,p−µY,ν,i√

σνν

)
.

We then let cκ denote the cutpoint c̀2,p for which (4.9) or (4.10) are minimized or (4.8) is

maximized across all p and let Yκ denote the feature variable corresponding to this particular

cutpoint. The right daughter node tR of t0 is split in the same manner.

We continue to split all subsequent descendant nodes in this fashion until some stopping

criterion is met, as described in Section 4.1.2.1, and use the rule in (4.2) to assign each

terminal node in our tree T ′ to one of the two groups. Using the MATLAB R© software

package, we have been able to construct T ′ in this manner based on a number of examples,

one of which deals with the case of p = 6.

4.1.2.4 Monotone Invariance Property We now discuss the following important

known property of the method used in the construction of classification trees, which we

carefully prove for our purposes.

Proposition 4.1.2.1. Based on either the impurity measure based GOS criterion or the

twoing criterion, let T ′ be the classification tree based on the priors π1, . . . , πg and the

distribution functions F
(1)
Y (�), . . . , F

(g)
Y (�) (g ≥ 2). Further, let Z = (Z1, . . . , ZP )′ =

(ζ1(Y1), . . . , ζP (YP ))′ ≡ ζ(Y), where ζp(Yp) is a strictly increasing function of Yp (p =

1, . . . , P ) or, in other words, ζ(Y) is a monotonic transformation of Y. Let T ′Z be the

classification tree based on the priors π1, . . . , πg and the distribution functions G
(1)
Z (�), . . . ,

G
(g)
Z (�). Then, T ′ and T ′Z have the same structure, with the set of splitting variables for T ′,

YT ′, related to those of T ′Z, ZT ′Z
, by ZT ′Z,p = ζp(YT ′,p) (p = 1, . . . , P ) and the set of cutpoints

for T ′, cT ′, related to those of T ′Z, cT ′Z, by cT ′Z = ζ(cT ′).
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Proof. The proof proceeds by induction.

Suppose that Yν and cν are chosen to split the root node t0 into descendant nodes tL and

tR, such that the selected GOS criterion defined by the split Yν ≤ cν is maximized. In our

discussion of the GOS criteria in Section 4.1.2.2, we noted that whether we seek to minimize

the formula in (4.6) based on the impurity measure M(t) or maximize the twoing criterion

over each Yp (p = 1, . . . , P ) in Y and all cutpoints c ∈ R, both quantities can be expressed

as functions of πi (i = 1, . . . , g), P (Y ∈ t0) = 1,

P (i)(Y ∈ tL) = P (i)(Yν ≤ cν)

= P (i)(ζν(Yν) ≤ ζν(cν))

= P (i)(Zν ≤ ζν(cν)),

and

P (i)(Y ∈ tR) = P (i)(Yν > cν)

= P (i)(ζν(Yν) > ζν(cν))

= P (i)(Zν > ζν(cν)).

For example, based on the Gini index MG(t), we have that the formula in (4.6) is equal to

2π1π2

[
F

(1)
Yν

(cν)F
(2)
Yν

(cν)

π1F
(1)
Yν

(cν) + π2F
(2)
Yν

(cν)
+

F̄
(1)
Yν

(cν)F̄
(2)
Yν

(cν)

π1F̄
(1)
Yν

(cν) + π2F̄
(2)
Yν

(cν)

]

= 2π1π2

[
G

(1)
Zν

(ζν(cν))G
(2)
Zν

(ζν(cν))

π1G
(1)
Zν

(ζν(cν)) + π2G
(2)
Zν

(ζν(cν))
+

Ḡ
(1)
Zν

(ζν(cν)) Ḡ
(2)
Zν

(ζν(cν))

π1Ḡ
(1)
Zν

(ζν(cν)) + π2Ḡ
(2)
Zν

(ζν(cν))

]
,

for two groups, where F
(i)
Y (c) = P (i)(Y ≤ c), G

(i)
Z (ζ(c)) = P (i)(Z ≤ ζ(c)), F̄

(i)
Y (c) = 1−F (i)

Y (c),

and Ḡ
(i)
Y (ζ(c)) = 1 − G(i)

Y (ζ(c)). Therefore, if Yν and cν are first chosen to split the feature

space Y in the construction of tree T ′, then Zν and ζν(cν) are first chosen to split Z, the

monotonic transformation of Y , in the construction of tree T ′Z.

Suppose now that we are in a step of the algorithm where there are m descendant nodes

or subsets of {Y : Yν ≤ cν} in T ′ and {Z : Zν ≤ ζν(cν)} in T ′Z, as well as the m′ descendant

subsets of {Y : Yν > cν} in T ′ and {Z : Zν > ζν(cν)} in T ′Z. By the induction setup, we

assume that if the split Yυ ≤ cυ is used for a particular node t in T ′, then the split Zυ ≤ ζυ(cυ)

is used for the corresponding node tZ in T ′Z.
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Let Yκ and cκ be chosen to split the (m + 1)st descendant node t of {Y : Yν ≤ cν},

into daughter nodes tL and tR, such that the selected GOS criterion defined by the split

Yκ ≤ cκ is maximized. Using the same procedure as that used to split t0, we can conclude

that if Yκ and cκ are chosen to split the (m + 1)st descendant node of {Y : Yν ≤ cν} in the

construction of tree T ′, then Zκ and ζκ(cκ) are chosen to split the (m+ 1)st descendant node

of {Z : Zν ≤ ζν(cν)} in the construction of tree T ′Z. The same result holds if we wish to split

the (m′ + 1)st descendant node of {Y : Yν > cν}.

Thus, by induction, we have that ZT ′Z
= ζ(YT ′) and cT ′Z = ζ(cT ′).

Based on Proposition 4.1.2.1, classification trees are invariant under all monotonic

coordinate-wise transformations of Y. For example, suppose we consider the trees T ′ and

T ′Z based on Y and the monotonic transformation Z ≡ ζ(Y), respectively. We have that

the split Yν ≤ cν (ν ∈ (1, 2, . . . , P )) in T ′ is equivalent to the split ζν(Yν) ≤ ζν(cν) in T ′Z.

Specifically, the observations that fall in the left descendant node of the split Yν ≤ cν are the

same as those that fall in the left descendant node of the split ζν(Yν) ≤ ζν(cν) and likewise for

the right descendant nodes of these splits. Therefore, T ′ and T ′Z have the same classification

results and if T ′ identifies a set of discriminatory feature variables, then T ′Z identifies the

same set, transformed by the function ζ(�).

4.1.3 Estimation of Unknown Distributions using Training Data

Suppose that we only have access to training data consisting of the observed feature mea-

surements yij (i = 1, . . . , g; j = 1, . . . , ni), where N =
∑g

i=1 ni is the total sample size. We

note that this is the traditional setting in which the BFOS recursive partitioning algorithm

was developed. The prior probabilities πi are typically specified in advance or sometimes

estimated from the training data.

There are a few approaches we can take to carry out the tree construction procedure

in Section 4.1.2.1 using the training data. If one were to assume known distributions with

unknown parameters, then we suggest applying our population-based extension of the BFOS

algorithm to this parametric case, after estimating the parameters from the training data.

On the other hand, if no distributional assumptions are made, F
(i)
Y (�) can be estimated non-

parametrically using either empirical CDFs, as is done in the traditional BFOS algorithm in
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the data setting, or kernel density estimation, which Shang and Breiman consider in their

tree construction methodology [31].

4.1.3.1 Parametric Approach We can assume that, for the ith group, Y comes from

some parametric distribution and use the training data to estimate any unknown parameters.

Once we obtain the estimated parameters, we can use the assumed distribution of Y to

obtain the estimated probabilities P̂ (i)(Y ∈ t), P̂ (i)(Y ∈ tL), and P̂ (i)(Y ∈ tR). The tree

construction procedure can then proceed as in Section 4.1.2.1, terminating only when the

number of observations in node t is less than some user defined value.

For example, we might assume that Y ∼ NP (µY,i,ΣY Y ) in the ith group, where µY,i and

ΣY Y are unknown. We can then use the training data to obtain the ML estimates µ̂Y,i = ȳi

and Σ̂Y Y and construct our tree using the procedure described in Section 4.1.2.3, which, as

we indicated, we have been able to implement in MATLAB R©.

4.1.3.2 Non-parametric Approach The standard approach used in constructing

classification trees is to non-parametrically estimate the CDFs F
(i)
Y (�) (i = 1, . . . , g) and use

them in the tree construction procedure described in Section 4.1.2.1 [7][13][14][30]. Although

Shang and Breiman proposed a method to estimate F
(i)
Y (�) using kernel density estimation

[31], the usual approach is to compute the empirical CDF, F̂
(i)
Y (�), of Y in the ith group,

where

F̂
(i)
Y (c) = P̂ (i)(Y1 ≤ c1, . . . , YP ≤ cP ) =

∑ni
j=1 I(yij,1 ≤ c1, . . . , yij,P ≤ cP )

ni
(4.11)

and I(�) is the indicator function. Although we assume in our discussion that Y is continuous,

the estimate in (4.11) is applicable for any quantitative feature vector.

In general, P (i)(Y ∈ t) can then be estimated as

P̂ (i)(Y ∈ t) =

∑ni
j=1 I(yij ∈ t)

ni
, (4.12)

the sample proportion of feature observations in group i that fall in node t. BFOS prove

that, under appropriate conditions, the group assignment rule in (4.2) based on πi and

P̂ (i)(Y ∈ t) is Bayes risk consistent [7]. In other words, as the sample sizes ni approach
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infinity, the estimated misclassification rate for node t based on the training data converges

in probability to the Bayes or true misclassification rate for node t in (4.3).

Once we obtain πi and the probability estimates in (4.12), the tree construction procedure

can then proceed as in Section 4.1.2.1. In particular, splitting continues until all feature

measurements in t belong to the same group or are identical, or the number of observations

in t is less than some user defined value [7][23]. It is important to note that this non-

parametric procedure can be readily implemented using various software packages, e.g., R

or Salford Systems CART R©. In addition, the procedure described in this section has been

extended to handle missing data [7][14].

4.1.3.3 Misclassification Rate Estimates Let Tmax denote a tree obtained using ei-

ther the parametric or non-parametric approach and T̃max denote the set of terminal nodes

of Tmax. Since the distribution of Y is unknown for each group, we can no longer deter-

mine R∗(Tmax), the true misclassification rate for Tmax. One estimate of R∗(Tmax) is the

resubstituted or plug in estimate

R̂∗(Tmax) =
∑

t∈T̃max

{
P̂ (Y ∈ t)−maxi=1,...,g

[
πiP̂

(i)(Y ∈ t)
]}

,

where P̂ (Y ∈ t) =
∑g

i=1 πiP̂
(i)(Y ∈ t). However, one problem with using R̂∗(T ) to estimate

the true misclassification rate R∗(T ) for tree T is that it is computed using the same sample

that was used to construct T , instead of an independent sample. Thus, R̂∗(Tmax) is likely

to be overly optimistic in estimating the accuracy of Tmax. Furthermore, it is known that

R̂∗(T ) becomes increasingly less accurate as the T grows larger in size, where the size (or

complexity) of T is the number of terminal nodes in T [7][23]. On the other hand, estimates of

the true misclassification rate for T that are obtained from independent sampling techniques,

i.e., test sampling or V -fold cross validation (V = 2, . . . , N), have been shown to be more

accurate and less biased compared to those obtained from resubstitution [7][13][23].

4.1.3.4 Minimal Cost-Complexity Pruning Several authors highlight the fact that

if Tmax is constructed using the standard non-parametric approach, then Tmax substantially

overfits the training data, which contributes to splits at the lower levels of Tmax being deter-

mined mainly by sampling fluctuations rather than actual underlying data structures for the
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groups of interest [7][13][23]. Thus, Tmax cannot be generalized to new data in this case. In

their attempt to solve this problem, BFOS devised a backward node recombination strategy

specific to their non-parametric tree construction procedure called minimal cost complexity

pruning [7]. Prior to presenting this method, we introduce some notation. A branch of tree

T consists of a parent node t in T and all descendant nodes of t. Pruning a branch with

parent node t from T entails cutting off all descendant nodes of t. A subtree of T is then

obtained when a particular branch or branches are pruned from T . The cost-complexity

of T is defined as Cα(T ) = R̂∗(T ) + α | T̃ |, where R̂∗(T ) is the observed or resubstituted

misclassification rate for tree T , | T̃ | is the size of T , and α is a positive real number called

the complexity parameter.

The goal of minimal cost-complexity pruning is to prune from Tmax the weakest-link

branch or branches necessary to obtain a subtree T∗ of Tmax that has the smallest cost

complexity. BFOS prove that for every α value, there exists a unique smallest subtree T (α)

of Tmax that minimizes Cα(T ) [7]. For example, if α = 0, then T (0) = T1, where T1 is

the smallest subtree of Tmax such that R̂∗(T1) = R̂∗(Tmax). Increasing α yields the nested

sequence of optimal subtrees of Tmax of decreasing size T1 ⊃ T2 ⊃ · · · ⊃ {t0}, each of

which is the best tree of its size, i.e., has the smallest cost complexity [7][13][23]. T∗ is the

best subtree in this sequence and is chosen on the basis of misclassification rate estimates

computed using either test sampling or V -fold cross validation techniques, both of which can

be carried out using any software package that can implement the standard non-parametric

approach described in Section 4.1.3.2.

We begin with a brief description of test sampling, which starts out by randomly selecting

N (ts) of the N individuals in the training data to constitute the test sample and the remaining

N − N (ts) individuals the learning sample. Tmax is constructed using only the learning

sample data and is then pruned upward to yield the nested sequence of optimal subtrees

T1 ⊃ T2 ⊃ · · · ⊃ {t0}. Each of the trees in this sequence is used to classify all of the

individuals in the test sample. For each subtree Tm (m = 1, 2, . . . ), we let R
(ts)
m (j) denote

the proportion of group j (j = 1, . . . , g) test cases that are misclassified, after which the test

sample misclassification rate estimate for Tm is computed as R(ts)(Tm) =
∑g

j=1 πjR
(ts)
m (j).

The subtree T∗ of Tmax is chosen such that R(ts)(T∗) = minm R
(ts)(Tm).

On the other hand, V -fold cross validation begins by constructing Tmax using the entire
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training data set. Tmax is then pruned upward to yield the nested sequence of optimal

subtrees T1 ⊃ T2 ⊃ · · · ⊃ {t0}, from which we must find the subtree T∗ with the smallest

cost complexity. Once Tmax is pruned in this manner, the training data is randomly split

into V (V = 2, . . . , N) mutually exclusive subsets of approximately equal size, stratified by

group. Each of the V subsets is dropped out, while the tree T vmax (v = 1, . . . , V ) is computed

using the remaining V − 1 subsets, so that V additional trees are constructed along with

Tmax. Using the same procedure as that used for Tmax, T
v
max is pruned upward to yield

the nested sequence of optimal trees of decreasing size T v1 ⊃ T v2 · · · ⊃ {t0}. We note here

that the number of subtrees in this sequence is the same as that for Tmax. Each of the

subtrees T v1 , T
v
2 , . . . are then used to classify each individual in the omitted subset. For each

subtree T vm, the number of group j individuals in the vth subset that are misclassified as

belonging to group i (i, j = 1, . . . , g; i 6= j) is computed and added across all V subsets,

with this sum denoted as Nm
ij . With regards to the nested sequence T1 ⊃ T2 ⊃ · · · ⊃ {t0}

for Tmax, the cross validated misclassification rate estimate for subtree Tm is computed as

R(cv)(Tm) =
∑g

j=1

∑g
i=1
i6=j

πj
Nm
ij

nj
. The subtree T∗ of Tmax is then chosen such that R(cv)(T∗) =

minm R
(cv)(Tm).

4.2 CONDITIONAL CLASSIFICATION TREES

4.2.1 Motivation

From our discussion of traditional classification trees in the previous section, we saw that

the tree construction procedure used to partition the feature space Y is solely based on the

feature data. However, this procedure does not account for the relationship that may exist

between the feature data and other relevant covariates. For example, in the context of post-

mortem tissue studies that compare schizophrenia subjects with normal controls, traditional

classification trees would not account for the relationship that typically exists between a

particular set of biomarkers and covariates such as storage time or brain pH. Thus, we cannot

be confident that such trees will help us determine the subset of biomarkers, as well as the

corresponding splits on these biomarkers, that truly discriminate between the control and
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schizophrenia diagnostic groups. In our motivation of covariance adjusted LDA, we showed

how examining the conditional distribution of the feature data while holding covariates fixed

allows us to accurately determine the true discriminatory power of the feature data. We now

develop the approach to extend the ideas of the BFOS recursive partitioning algorithm in

order to adjust for covariate effects in the construction of classification trees.

In their development of covariance adjusted LDA, Cochran and Bliss [8],

Lachenbruch [19], and Tu et al. [37] assume that, if all covariates are held fixed, the feature

data come from a normal population for each group with a known conditional mean and

variance-covariance matrix that is common across groups.

Our goal is to extend the traditional BFOS classification tree construction procedure to

account for the effects of covariates on the feature data, which would help us achieve our

primary goal of determining the subset of feature variables that best discriminate between the

groups of interest without the confounding effects of any covariates under consideration. We

again follow the approach used in LDA in that we begin from a population based standpoint

and then apply our results to the case where we only have access to training data. Our

development of conditional classification trees first considers g known conditional continuous

distributions for the feature data. Although we show in Section 4.2.2.2 that our methodology

for constructing conditional classification trees can be developed for normal populations, our

focus is on the case of g known arbitrary conditional distributions. We then discuss how our

methodology can be implemented using available training data in Section 4.2.3.

4.2.2 Known Conditional Distributions

4.2.2.1 Tree Construction Procedure Given X = x, let Y have some known condi-

tional CDF F
(i)
Y|x(�) in the ith group (i = 1, . . . , g). For a given x, Y conceptually could also

have a known prior probability πi(x) of belonging to group i, depending on the covariate

value x. In other words, given X = x, the conditional distribution of Y is a mixture of the

conditional distributions of Y across the g groups, so that

FY|x(�) =

g∑
i=1

πi(x)F
(i)
Y|x(�). (4.13)

We also retain our assumption from Section 4.1.2.1 of equal misclassification costs.
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In our construction of the tree T ′ in Section 4.1.2.1, the GOS criteria and group assign-

ment rule were primarily expressed as functions of probabilities of the form P (Y ∈ t) and

P (Y ∈ group i|Y ∈ t). However, we were able to re-express these probabilities in terms

of πi and P (i)(Y ∈ t), which are computed using the CDF of Y in the ith group F
(i)
Y (�)

(i = 1, . . . , g), i.e., the distribution of Y is a mixture of the marginal distributions of Y

across all g groups.

For a given x, we replace P (Y ∈ t) and P (Y ∈ group i|Y ∈ t) with their con-

ditional counterparts Px(Y ∈ t) = 1
f(x)

∫
y∈t f(x,y)dy and Px(Y ∈ group i|Y ∈ t) =∫

y∈t,y∈group i f(x,y)dy∫
y∈t f(x,y)dy

in our construction of the conditional tree T
′(x). For notational conve-

nience, we assume in the above formulas and throughout our discussion that all relevant

random variables are continuous with existing density functions.

We now describe how to construct T
′(x) based on our knowledge of the conditional CDFs

F
(i)
Y|x(�) and priors πi(x) for a given x. First, we point out that the conditional probabilities

Px(Y ∈ t) and Px(Y ∈ group i|Y ∈ t) can also be expressed as

Px(Y ∈ t) =

g∑
i=1

Px(Y ∈ group i,Y ∈ t)

=

g∑
i=1

Px(Y ∈ group i)Px(Y ∈ t|Y ∈ group i) =

g∑
i=1

πi(x)P (i)
x (Y ∈ t)

(4.14)

and

Px(Y ∈ group i|Y ∈ t) =
Px(Y ∈ group i,Y ∈ t)

Px(Y ∈ t)
=

πi(x)P
(i)
x (Y ∈ t)∑g

j=1 πj(x)P
(j)
x (Y ∈ t)

, (4.15)

where P
(i)
x (Y ∈ t) = Px(Y ∈ t|Y ∈ group i) are computed using the conditional CDFs

F
(i)
Y|x(�) (i = 1, . . . , g). We see that the formulas in (4.14) and (4.15) are identical to those in

(4.4) and (4.1), respectively, for P (Y ∈ t) and P (Y ∈ group i|Y ∈ t), where πi and P (i)(Y ∈

t) are replaced with πi(x) and P
(i)
x (Y ∈ t). Therefore, assuming that the conditional CDFs

F
(i)
Y|x(�) and prior probabilities πi(x) are known for a given x, we can construct our tree T

′(x)

in the same manner as that used to construct the traditional classification tree T ′ in Section

4.1.2.1 by simply replacing the probabilities πi, P
(i)(Y ∈ t), P (i)(Y ∈ tL), and P (i)(Y ∈ tR)

used to construct T ′ with their conditional counterparts πi(x), P
(i)
x (Y ∈ t), P (i)

x (Y ∈ tL),

and P
(i)
x (Y ∈ tR).
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Alternately, we can have that the joint distribution of X and Y and the marginal distri-

bution of X are known, rather than the conditional distribution of Y. To elaborate, we let

the joint distribution of X and Y be a mixture of the joint distributions of X and Y across

all g groups so that

f(x,y) =

g∑
i=1

π∗i (x)fi(x,y), (4.16)

where the prior probabilities π∗i (x) and the densities fi(x,y) are known, and, thus,

f(x) =

g∑
i=1

π∗i (x)

∫ ∞
−∞

fi(x,y)dy =

g∑
i=1

π∗i (x)fi(x).

When constructing our conditional tree T
′(x) in practice, we want the prior probability that

Y given x belongs to the ith group to be a function of x that does not change depending

on whether we use the model in (4.13) for the conditional distribution of Y or (4.16) for

the joint distribution of X and Y. The reason we want this to hold at this stage in our

development of conditional classification trees is that we do not want to be concerned with

the specifics of the data sampling methods. Therefore, we discuss certain conditions that

must hold so that the prior probabilities π∗i (x) in (4.16) are the same functions of x as the

prior probabilities πi(x) in (4.13), i.e., π∗i (x) = πi(x). Specifically, based on the model in

(4.16),

f(y|x) =
1

f(x)

g∑
i=1

π∗i (x)fi(x,y) =
1

f(x)

g∑
i=1

π∗i (x)fi(y|x)fi(x) =

g∑
i=1

π∗∗i (x)fi(y|x), (4.17)

where π∗∗i (x) =
π∗i (x)fi(x)

f(x)
. We have that the probabilities π∗∗i (x) associated with fi(y|x) in

(4.17) are mixture weights since π∗∗i (x) ≥ 0 and

g∑
i=1

π∗∗i (x) =

∑g
i=1 π

∗
i (x)fi(x)

f(x)
=
f(x)

f(x)
= 1.

From (4.17), FY|x(�) =
∑g

i=1 π
∗∗
i (x)F

(i)
Y|x(�), which is equivalent to the model in (4.13) if and

only if π∗∗i (x) = πi(x). In addition, based on the formula for π∗∗i (x), we have that π∗∗i (x) =

π∗i (x) if fi(x) ≡ f(x). Thus, if π∗∗i (x) = πi(x) and fi(x) ≡ f(x), then π∗i (x) = π∗∗i (x) = πi(x)

and the model in (4.13) can equivalently be obtained from the model in (4.16). In particular,

if π∗∗i (x) = πi(x) and fi(x) ≡ f(x), then the prior probabilities and conditional probabilities
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Px(Y ∈ t) and Px(Y ∈ group i|Y ∈ t) needed to construct T
′(x) for a given x remain the

same under each of the models in (4.13) and (4.16).

It is important to note that the conditional tree T
′(x) varies depending on x. In other

words, the feature variable Y in Y and the cutpoint c chosen to split any node t in T
′(x)

both depend on the value at which x is fixed. Although it is not problematic in the context

of classification that the cutpoints for T
′(x) are covariate dependent, the fact that the set of

splitting variables chosen for T
′(x) changes depending on the value of x is not a desirable

property in certain contexts, such as those pertaining to post-mortem tissue studies. There-

fore, we want to develop a model for the conditional distribution of Y for a given x or the

joint distribution of X and Y, depending on which is known, such that the set of feature

variables selected in the construction of T
′(x) remains the same regardless of the value of x,

although cutpoints will vary.

In the spirit of Lachenbruch and Tu et al. and for ease of computation, we only consider

the conditional model in (4.13) from this point on in our construction of T
′(x). Based on the

monotone invariance property (Proposition 4.1.2.1), we have that the set of feature variables

chosen for T
′(x) does not depend on x if πi(x) ≡ πi regardless of x and the conditional

distribution of Y belongs to a location-scale family, which we show in greater detail in

Section 4.3.1.1. The assumption that πi(x) ≡ πi is of practical relevance in our development

of conditional classification trees. Specifically, having the prior probabilities be covariate

dependent implies that X also has discriminatory importance, which we assume in our

discussion is not the case. Rather, we only want to account or control for covariate effects in

order to more accurately identify the feature variables in Y with the highest discriminatory

importance. For example, even though tissue storage time or brain pH may differ somewhat

between schizophrenia subjects and normal controls in post-mortem tissue studies, we have

no interest in including these covariates in our discrimination, other than to control for their

effects on the biomarker data.

In general, the methodology we formulate in this section allows us to construct a tree

that adjusts for the effects of the covariate vector X, while still using the traditional tree

construction approach described in Section 4.1.2.1.
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4.2.2.2 Tree Construction for Known Normal Populations Given X = x, suppose

Y = (Y1, . . . , YP )′ has prior probability πi(x) ≡ πi of belonging to the ith group (i = 1, . . . , g),

where Y ∼ NP (ς i(x),Σx) and ς i(x) = (ςi,1(x), . . . , ςi,P (x))′ is some known function of x.

We note that this is the conditional model on which general covariance adjusted LDA is

based. First, we split the root node t0 into tL and tR and use the fact that given X = x,

Yp−ςi,p(x)
√
σpp(x)

∼ N(0, 1) for the ith group, where σpp(x) denotes the conditional variance of Yp

(p = 1, . . . , P ). We then proceed to find, for each feature variable Yp, the cutpoint c̀1,p that

minimizes the quantities in (4.9) or (4.10) or maximizes the quantity in (4.8), depending on

the GOS criterion and impurity measure that is chosen. For these three formulas, we replace

P (Y ∈ t), P (i)(Y ∈ tL), and P (i)(Y ∈ tR) with the conditional probabilities Px(Y ∈ t),

P
(i)
x (Y ∈ tL), and P

(i)
x (Y ∈ tR). In the first step of our tree construction procedure, Px(Y ∈

t) = Px(Y ∈ t0) = 1, since t0 is the entire feature space. For each Yp and c̀1,p, P
(i)
x (Y ∈ tL)

= P
(i)
x (Yp ≤ c̀1,p) = Φ

(
c̀1,p−ςi,p(x)
√
σpp(x)

)
and P

(i)
x (Y ∈ tR) = P

(i)
x (Yp > c̀1,p) = Φ

(
ςi,p(x)−c̀1,p√

σpp(x)

)
. We

then let cν denote the cutpoint c̀1,p that minimizes (4.9) or (4.10) or maximizes (4.8) across

all p and let Yν denote the feature variable that corresponds to this particular cutpoint,

noting that Yν and cν now depend on x.

Suppose we consider the case of two groups, such that Y = (Y1, . . . , YP )′ ∼ NP (µY |X,i,ΣY |X)

in the ith group (i = 1, 2), where πi = 0.5 and µY |X,i and ΣY |X are defined as in Section 3.2.2

for traditional covariance adjusted LDA. We may also examine the covariate adjusted feature

vector Ỹ = (Ỹ1, . . . , ỸP )′ ∼ NP (µY,i,ΣY |X) in the ith group, where Ỹ is defined as in Section

3.2.2. If we use the differentiability of the Gini and Deviance indices and the twoing criterion,

then it can be shown that the optimal cutpoint ˜̀c1,p for each Ỹp is equal to 1
2
(µY,p,1 + µY,p,2).

In particular, if Ỹ is univariate such that Ỹ = Ỹ1, the optimal cutpoint 1
2
(µY,1,1 + µY,1,2)

corresponding to Ỹ1 in the first split of our covariate adjusted tree is the same cutpoint used

to split the feature space Y in traditional covariance adjusted LDA for two groups. If we

were to stop splitting at this point, we would have that the true misclassification rates for

our resulting adjusted tree and the classification rule given in (3.8) in Section 3.2.2 would

be identical. Under the assumptions of this two group case, it can also be shown that if

the feature space Y is only split once, then our covariate adjusted tree would yield a lower

misclassification rate than the traditional tree T ′, assuming the distribution of Y is also

normal in each of the two groups. When we deal with more than two groups, however, the
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results obtained from traditional covariance adjusted LDA and the BFOS algorithm based

on univariate Ỹ when we first split the feature space can be shown to no longer be the same.

In the general case of g groups, the splitting procedure described in the first step is

then applied recursively to tL, tR, and all subsequent descendant nodes until some stopping

criterion is satisfied, as in Section 4.1.2.3 in the traditional case. The rule in (4.2), where

P (i)(Y ∈ t) are replaced with P
(i)
x (Y ∈ t) (i = 1, . . . , g), is then used to assign each node in

our tree T
′(x) to a particular group. Based on our assumptions that πi(x) ≡ πi and that the

conditional distribution of Y belongs to a location-scale family, we have from the monotone

invariance property (Proposition 4.1.2.1) that the set of feature variables chosen for T
′(x)

does not change depending on the value of x. Using several examples, we have been able to

construct T
′(x) in the manner described in this section using MATLAB R©.

4.2.3 Estimation of Unknown Conditional Distributions using Training Data

Suppose we do not have direct knowledge of the conditional CDFs F
(i)
Y|x(�) and only have

access to the training data (yij,xij), the observed feature and covariate measurements for the

jth individual sampled from the ith group (i = 1, . . . , g; j = 1, . . . , ni). As in the traditional

case, the priors πi(x) may be specified in advance or estimated from the training data, which

can be carried out using several estimation procedures, including logistic regression. With

regards to F
(1)
Y|x(�), . . . , F (g)

Y|x(�), we now describe two approaches we can take to estimate

these g CDFs from the training data.

4.2.3.1 Parametric Approach We may assume that the conditional distribution of

Y in the ith group belongs to some known parametric family of distributions and use the

training data to estimate all unknown parameters. Once we obtain the estimated parameters,

we can use the assumed distribution of Y to obtain the estimated conditional probabilities

P̂
(i)
x (Y ∈ t), P̂ (i)

x (Y ∈ tL), and P̂
(i)
x (Y ∈ tR). Using these probability estimates, along with

the values of πi(x), our tree construction procedure can then proceed as in Section 4.1.2.1,

terminating only when the number of observations in node t is less than some user defined

value.

For example, we might assume that given X = x, Y ∼ NP (µY |X,i,ΣY |X) in the ith

group and that Y has prior probability πi of belonging to the ith group. Based on the
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training data, we can estimate µY,i, ΣY X , ΣXX , µX , and ΣY |X using ML estimation. At

this point, we note that the covariate adjusted feature vector Ỹ ∼ NP (µY,i,ΣY |X) in the

ith group, where Ỹ is defined as in Section 3.2.2. We can then plug the ML estimates µ̂Y,i

and Σ̂Y |X into the P -variate normal density for Ỹ in order to estimate the probabilities

P (i)(Ỹ ∈ t), P (i)(Ỹ ∈ tL), and P (i)(Ỹ ∈ tR). Once we estimate these probabilities and

obtain the values of πi, we can use the population based method described in Section 4.2.2.2

to construct our covariate adjusted tree, which we can carry out using MATLAB R©. Using

the monotone invariance property (Proposition 4.1.2.1), along with our assumptions that

the prior probabilities are not covariate dependent and that the conditional distribution of

Y belongs to a location-scale family, we note that the same set of feature variables is chosen

for a tree constructed using either the conditional distribution of Y or the distribution of Ỹ.

4.2.3.2 Non-parametric Approach On the other hand, we may have no knowledge

regarding the conditional distribution functions F
(i)
Y|x(�) (i = 1, . . . , g), in which case we

must obtain a non-parametric estimate of F
(i)
Y|x(�). If we were, for a moment, to make the

simplifying assumption that X takes on only discrete values, one possible estimate of F
(i)
Y|x(�)

is

F̂
(i)
Y|x(c) = P̂ (i)

x (Y1 ≤ c1, . . . , YP ≤ cP ) =

∑ni
j=1 I(yji,1 ≤ c1, . . . , yji,P ≤ cP ,xji = x)∑ni

j=1 I(xji = x)
, (4.18)

which is applicable for both continuous and quantitative discrete feature data. Using the

estimates F̂
(i)
Y|x(c) and the values of πi(x), we can construct a tree for each x value from

the training feature data using the standard non-parametric approach described in Section

4.1.3.2. However, the estimated CDF in (4.18) does not make sense if X is continuous and

creates a number of problems even if X is discrete, including the fact that a considerable

amount of information is lost when computing the estimate in (4.18) because it is obtained

from a comparatively small percentage of the training data [20].

Li and Racine[20] and Peracchi[28] have developed procedures to estimate the conditional

CDFs F
(i)
Y |x(�) (i = 1, . . . , g) for univariate Y using kernel density estimation and semi-

parametric estimation, respectively. If we have univariate feature data, we can use their

estimates of F
(i)
Y|x(�) and our tree construction procedure can proceed as in Section 4.1.2.1.
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It is clear that if we have no knowledge regarding the conditional distribution of Y, then

there appears to be no available method of computing the empirical conditional CDFs for

the feature data in a way that is generally applicable for all Y and X. More importantly,

unless certain conditions hold for the conditional distribution of the feature data, the feature

variables chosen for the conditional tree T
′(x) constructed using any of the estimates of

F
(i)
Y|x(�) described in Section 4.2.3 changes depending on the value of x, which may create

interpretation problems in certain contexts. To address these two key concerns that arise in

our construction of T
′(x), we develop certain conditions for the conditional distribution of

Y for a given x so that the feature variables chosen for T
′(x) do not depend on x and the

conditional CDFs F
(i)
Y |x(�) can be estimated empirically in a way that can be handled by the

standard BFOS tree construction algorithm. This is the topic of the next section.

4.3 SEMI-PARAMETRIC CLASSIFICATION TREES

4.3.1 Motivation

As we previously pointed out, there are two important issues that arise, a primary one and a

secondary one, when we condition on X = x in our construction of a particular classification

tree.

The primary issue is the fact that if we have no knowledge regarding the conditional

distribution of Y in each group, then there is no completely non-parametric method of esti-

mating the conditional distribution functions F
(1)
Y|x(�), . . . , F (g)

Y|x(�) for a given x that applies

regardless of whether X is discrete or continuous or whether Y is univariate or multivariate.

Therefore, our primary goal is to extend the standard non-parametric procedure in Section

4.1.3.2 so that it is applicable for all continuous Y and all X in general. We note that

Lachenbruch and Tu et al. developed general covariance adjusted LDA by simply applying

traditional LDA to feature data from which all effects of some known function of x were

removed, i.e., feature data adjusted for all relevant covariate effects. Although various as-

sumptions were made in their development, the assumption that the known function of x

did not depend on group mainly contributed to the fact that Lachenbruch and Tu et al. were
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able to work with the adjusted feature data while retaining all other aspects of traditional

LDA.

Thus, if we could construct a tree for a given x using an estimate of the conditional

CDF in the ith group based on the covariate adjusted feature vector, we can still account

for the effects of x without having to worry about the number of feature variables in Y or

whether X is discrete or continuous. Therefore, our primary goal is to develop a model for

the conditional distribution of Y for a given x in each group that allows us to construct a

conditional classification tree based on training data by implementing the standard BFOS

non-parametric tree construction procedure on training feature data that have been adjusted

for all relevant covariate effects.

The secondary issue that arises when we condition on X = x in our tree construction

procedure is the fact that the feature variable Y in Y and the cutpoint c chosen to split

a particular node t into tL and tR both depend on the value at which x is fixed. For

example, if we condition on gender, then the feature variable and cutpoint that are chosen

to split node t may depend on whether Y corresponds to a male or female individual.

Although there is nothing intrinsically wrong with having a different set of optimal splitting

variables depending on a particular value of x, it does not make sense in certain contexts.

For example, in the context of post-mortem tissue studies, having a subset of biomarkers

that best discriminates between the control and schizophrenia diagnostic groups depend on

tissue storage time or PMI may be of little practical use because one would not expect tissue

storage time or PMI to differentially affect which biomarkers are chosen for a particular tree.

Conceptually, however, it is possible for the effect of subject age on the biomarker data to be

differentially expressed and in such cases, the models we use in our formulation of conditional

classification trees may need to be modified.

The goal of post-mortem tissue studies is to obtain a subset of discriminatory biomarkers,

when appropriate, that does not vary depending on the value of the experimental covariate(s)

we wish to account for. Therefore, in addition to our primary goal, we would also like to

develop a model for the conditional distribution of Y given X = x in each group such that

regardless of the value that x takes on, only one subset of feature variables is chosen when

constructing our conditional classification tree.
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4.3.1.1 Linear Invariance Property

Proposition 4.3.1.1. Suppose Y has CDF F
(i)
Y (�) in the ith group (i = 1, . . . , g). Given

X = x, let Yx denote the translated feature vector with conditional distribution function

F
(i)
Y|x(�) in the ith group, such that Yx is equal in distribution to Y+ξ(x) (i.e., Yx

d
= Y+ξ(x))

and ξ(x) = (ξ1(x), . . . , ξP (x))′ is a known function of x. In addition, suppose Yx has prior

probability πi of belonging to the ith group, regardless of the value of x. Based on either the

impurity measure based GOS criterion or the twoing criterion, let T
′(xa) be the classification

tree based on π1, . . . , πg and F
(1)
Y|xa(�), . . . , F

(g)
Y|xa(�) for covariate value xa, and T

′(xb) be the

classification tree based on π1, . . . , πg and F
(1)
Y|xb(�), . . . , F

(g)
Y|xb(�) for covariate value xb. Then,

T
′(xa) and T

′(xb) have the same set of splitting variables and the set of cutpoints for T
′(xa),

cT ′(xa), are related to those of T
′(xb), cT ′(xb), by cT ′(xb) = cT ′(xa) − ξ(xa) + ξ(xb).

Proof. For a given xa and xb, Yxb = Yxa − ξ(xa) + ξ(xb). In other words, Yxb = ζ(Yxa)

is an increasing linear function of Yxa , i.e., a monotonic transformation of Yxa , where

ζ(Y) = Y − ξ(xa) + ξ(xb). It now directly follows from the monotone invariance property

(Proposition 4.1.2.1) that the set of splitting variables for T
′(xa) and T

′(xb) are the same and

that cT ′(xb) = cT ′(xa) − ξ(xa) + ξ(xb).

Therefore, if the prior probability of group membership for Y does not depend on x and

the conditional distribution of Y for a given x is simply a location shift of the distribution

of Y by the known function ξ(x), then we can be assured that the set of splitting variables

chosen for our conditional tree T
′(x) will not change depending on x, as we pointed out in

Section 4.2.2.1. From the linear invariance property, we see that if ξ(x) depended on group,

then the set of cutpoints for a particular tree would also depend on group, which does not

make sense in the context of classification trees. Thus, it is necessary and reasonable to

assume that the function ξ(x) does not depend on group, an assumption Tu et al. also make

for general covariance adjusted LDA.

Proposition 4.3.1.1 lays the groundwork for a model for the conditional distribution of Y

for a given value of x to ensure that the feature variable chosen to split a particular node t

in T
′(x) does not depend on x. In addition, we show how this model allows us to implement

the standard BFOS tree construction procedure on feature data that have been suitably

adjusted for covariate effects.
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4.3.2 Proposed Model for Known Conditional Distributions

Given X = x, we let Yx denote the random feature vector conditional on x with known CDF

F
(i)
Y|x(c) = F

(i)
Y (c − ξ(x; Θ)) in the ith group (i = 1, . . . , g), where F

(i)
Y (�) are fixed CDFs,

i.e., they do not depend on x, and ξ(x; Θ) = (ξ1(x|θ1), . . . , ξP (x|θP ))′ is a known smooth

function of x and known parameter vectors θ1, . . . ,θP . Thus, if Y has distribution function

F
(i)
Y (�) in the ith group, then Yx

d
= Y+ξ(x; Θ). In addition, we let Yx have prior probability

πi of belonging to the ith group, regardless of x. Our model for the conditional CDFs F
(i)
Y|x(�)

can be viewed as semi-parametric because it has both a parametric component, namely, the

parametric function ξ(x; Θ), and the non-parametric component F
(i)
Y (�) (i = 1, . . . , g).

Alternatively, we may examine the covariate adjusted feature vector Ỹ = Yx − ξ(x; Θ)

with prior probability πi and known CDF F
(i)

Ỹ
(�) in the ith group, where F

(i)

Ỹ
(�) ≡ F

(i)
Y (�).

Since the CDFs F
(i)
Y (�) and F

(i)

Ỹ
(�) are the same, the conditional probabilities P

(i)
x (Yx ∈ t),

P
(i)
x (Yx ∈ tL), and P

(i)
x (Yx ∈ tR) obtained from F

(i)
Y|x(�) can equivalently be expressed as

P (i)(Ỹ ∈ t), P (i)(Ỹ ∈ tL), and P (i)(Ỹ ∈ tR) obtained from F
(i)

Ỹ
(�).

Assuming equal misclassification costs, we can construct the covariate adjusted tree

T
′adj(x) using the traditional population-based method in Section 4.1.2.1 by simply replacing

the probabilities P (i)(Y ∈ t), P (i)(Y ∈ tL), and P (i)(Y ∈ tR) used to construct T ′ with the

probabilities P (i)(Ỹ ∈ t), P (i)(Ỹ ∈ tL), and P (i)(Ỹ ∈ tR). The tree T
′adj(x) can then be used

to classify a randomly selected individual in the population into one of the g groups based

on this individual’s covariate adjusted feature measurement ỹ.

Therefore, in assuming that our feature vector Y is shifted by the known function ξ(x; Θ),

we can implement the population-based BFOS recursive partitioning algorithm on the co-

variate adjusted feature vector Ỹ in the population setting to construct the tree T
′adj(x) that

suitably adjusts for the effects of the covariate vector X. Based on the linear invariance prop-

erty (Proposition 4.3.1.1), the following facts regarding T
′adj(x) hold: (1) regardless of the

value of x, T
′adj(x) helps us identify a unique set of feature variables that best discriminates

among the g groups under consideration while accounting for all relevant covariate effects; (2)

if Ỹν and Yν,x correspond to any of the P feature variables in Ỹ and Yx (ν ∈ (1, 2, . . . , P )),

respectively, then the split Ỹν ≤ c̃ν in T
′adj(x) is equivalent to the split Yν,x ≤ c̃ν + ξν(x|θν)

in the tree based on Yx. For example, in the context of post-mortem studies, if a biomarker
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adjusted for the effect of storage time is greater than a constant value for a specific split in

our adjusted tree, then this biomarker, when expressed on the original scale, will be greater

than a value that will depend on storage time.

4.3.3 Tree Construction for the Semi-Parametric Model, using Training Data

Our first step in estimating F
(i)

Ỹ
(�) (i = 1, . . . , g) is to estimate the parameter vectors

θ1, . . . ,θP from the training data (yij,xij), after which we can estimate the CDF of Ỹ

in each of the g groups. In the next two sections, we provide a method that can be used

to estimate θ1, . . . ,θP , and follow with a discussion of how to estimate F
(i)

Ỹ
(�) based on the

estimates of θ1, . . . ,θP .

4.3.3.1 Estimation of Unknown Parameters We begin by first estimating the pa-

rameter vectors θ1, . . . ,θP from the training data. A simple approach we use is to assume

that the conditional mean of Yij = (Yij,1, . . . , Yij,P )′, the random feature vector correspond-

ing to the jth individual randomly sampled from the ith group (i = 1, . . . , g; j = 1, . . . , ni), is

given by E[Yij|xij] = λi + ξ(xij; Θ) = (λ1,i + ξ1(xij|θ1), . . . , λP,i + ξP (xij|θP ))′ (which uses

Lachenbruch and Tu et al.’s notation), where λi = (λ1,i, . . . , λP,i)
′ corresponds to the effect

of Yij belonging to the ith group. We can then use least squares (LS) estimation to obtain

the estimates θ̂1, . . . , θ̂P , i.e., θ̂p is the value of θp that minimizes the LS criterion Qp =∑g
i=1

∑ni
j=1(Yij,p − λp,i − ξp(xij|θp))2 (p = 1, . . . , P ).

4.3.3.2 Tree Construction Procedure Once we obtain the estimates θ̂1, . . . , θ̂P , we

can easily compute the covariate adjusted training feature data ˆ̃yij = (ˆ̃yij,1, . . . , ˆ̃yij,P )′ =

(yij,1− ξ1(xij|θ̂1), . . . , yij,P − ξP (xij|θ̂P ))′ = yij−ξ(xij; Θ̂). Holding xij, θ̂1, . . . , θ̂P fixed, we

then view ˆ̃yij as a random sample of ni observations from F
(i)

Ỹ
(�), so that we can estimate

F
(i)

Ỹ
(�) as

F̂
(i)

Ỹ
(c̃) = P̂ (i)(Ỹ1 ≤ c̃1, . . . , ỸP ≤ c̃P ) =

∑ni
j=1 I(ˆ̃yij,1 ≤ c̃1, . . . , ˆ̃yij,P ≤ c̃P )

ni
, (4.19)

and estimate P (i)(Ỹ ∈ t) as

P̂ (i)(Ỹ ∈ t) =

∑ni
j=1 I(ˆ̃yij ∈ t)

ni
, (4.20)
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the sample proportion of covariate adjusted feature observations in group i that fall in node

t. Based on πi and the probability estimates in (4.20), we can implement the traditional non-

parametric approach in Section 4.1.3.2 on the adjusted training feature data to construct our

adjusted tree and prune it accordingly using the minimal cost-complexity pruning procedure

described in Section 4.1.3.4. Our construction of a covariate adjusted tree in this manner can

be easily achieved using standard software packages such as R or Salford Systems CART R©.

As was the case in the population setting, we can apply the linear invariance property

(Proposition 4.3.1.1) to state that the cutpoints for our covariate adjusted tree are fixed con-

stants when expressed in terms of the adjusted feature variables, but are covariate dependent

when expressed in terms of the original feature variables, even though the directionality of

a particular tree split is preserved for both the adjusted and original feature data.

Depending on the structure of ξp(x;θp) (p = 1, . . . , P ), the parameter vectors θ1, . . . ,θP

may not be identifiable, in which case the LS estimates θ̂1, . . . , θ̂P are not unique. However,

regardless of the values of θ̂1, . . . , θ̂P , our covariate adjusted tree yields the same discrim-

ination and classification results. Specifically, suppose we obtain two LS estimates of Θ,

namely, Θ̂a and Θ̂b (Θ̂a 6= Θ̂b), such that ξ(xij; Θ̂a) = (ξ1(xij|θ̂1,a), . . . , ξP (xij|θ̂P,a))′ and

ξ(xij; Θ̂b) = (ξ1(xij|θ̂1,b), . . . , ξP (xij|θ̂P,b))′. Consider the covariate adjusted trees T
′adj(x)
a

and T
′adj(x)
b constructed using the two adjusted data sets ˆ̃yij,a = yij − ξ(xij; Θ̂a) and

ˆ̃yij,b = yij − ξ(xij; Θ̂b), respectively, where ˆ̃yij,b = ˆ̃yij,a + ξ(xij; Θ̂a) − ξ(xij; Θ̂b). Based

on the linear invariance property (Proposition 4.3.1.1), the following facts hold: (1) the

same set of feature variables is chosen for T
′adj(x)
a and T

′adj(x)
b ; (2) the split Ỹν,a ≤ c̃ν,a in

T
′adj(x)
a (ν ∈ (1, 2, . . . , P )) is equivalent to the split Ỹν,b ≤ c̃ν,a + ξν(x|θ̂ν,a) − ξν(x|θ̂ν,b) in

T
′adj(x)
b for any given covariate value x. In other words, the observations that fall in the left

descendant node of the split Ỹν,a ≤ c̃ν,a are identical to those that fall in the left descendant

node of the split Ỹν,b ≤ c̃ν,a + ξν(x|θν,a) − ξν(x|θν,b) and likewise for the right descendant

nodes, so that T
′adj(x)
a and T

′adj(x)
b yield the same classification results.

In short, when we construct a tree based on the covariate adjusted training feature data,

we obtain a tree that helps us determine the set of feature variables and corresponding splits

that best discriminates among the g groups of interest, while, at the same time, accounting

for covariate effects on the feature data.
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4.3.4 Summary of Semi-Parametric Classification Trees

Our formulation of semi-parametric classification trees has a number of desirable properties.

First, and perhaps most importantly, it allows us to use the traditional BFOS recursive

partitioning algorithm in both the population and data settings to construct a tree based on

the covariate adjusted feature vector Ỹ that adjusts for the effects of the covariate vector

X. In particular, we can construct such a tree using available training data and prune

it accordingly using any software package that implements the standard non-parametric

approach described in Section 4.1.3.2 and minimal cost-complexity pruning as described in

Section 4.1.3.4. Therefore, if we wish to construct semi-parametric classification trees in the

data setting, there is no need to develop new software packages to do so.

In addition, the development of our semi-parametric conditional model for the feature

data helps us obtain a covariate adjusted tree that allows us to not only classify new in-

dividuals, but also identify a unique set of feature variables and corresponding splits that

best discriminates among the g groups of interest, while accounting for all relevant covariate

effects. For example, in the context of post-mortem tissue studies, semi-parametric classifi-

cation trees can help us identify which biomarkers best discriminate between the control and

schizophrenia diagnostic groups, without the confounding effects of additional covariates,

e.g., brain tissue storage time.

We now discuss two extensions of our semi-parametric tree construction methodology to

handle the case where individuals are matched across two or more groups and measured on

additional covariates. In Section 4.4, we develop a methodology to adjust for the effect of

group matching on the feature variables of interest and then extend our matched adjustment

methodology in Section 4.5 to also account for covariate effects.

4.4 MATCHED CLASSIFICATION TREES

4.4.1 Known Distributions

In this section, our focus is on constructing a classification tree that accounts for the effect

of subject matching on the feature data, so that we may more accurately determine the

subset of feature variables and corresponding splits that best discriminates among the g
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(g ≥ 2) groups under consideration, as well as classify each individual belonging to a new

g-tuple or match. For example, with regards to the Konopaske biomarker data, we would

like to account for the effect of triad matching on the examined biomarkers in order to better

identify the biomarkers that best discriminate among the haloperidol, olanzapine, and sham

treatment groups. In addition, in the context of post-mortem tissue studies where normal

controls and schizophrenia subjects are paired on certain characteristics, we want to adjust

for the effect of subject pairing on the biomarker data when constructing our tree, so that

we may have a clearer picture of which biomarkers and corresponding splits best distinguish

a normal control from an individual with schizophrenia subject in a given pair.

First, we consider the conditional distribution of Y for a given match. As we did when

we adjusted for subject matching in LDA, we let the parameter vector γ = (γ1, . . . , γP )′

correspond to each individual in a match across the P feature variables, where γ denotes the

effect of group matching on Y. Using our semi-parametric conditional model based on the

estimated parameter vectors θ̂1, . . . , θ̂P from the training data, we compute the covariate

adjusted feature data for a new individual whose measurement is not part of the training

data, and classify this individual using his or her covariate adjusted feature measurement.

When we include γ in our conditional model to account for matching, however, we must

re-estimate γ for each new individual in a match (i.e., an individual not included in the

training data), since γ is specific to each match. The procedure we develop to account for

the effect of group matching on the feature data can be viewed as an extension of our semi-

parametric model to include parameters that must be re-estimated for each individual in a

match that is not part of the training data, along with parameters that are estimated solely

from available training data.

We first present the general case where individuals are matched across two or more

groups, where we develop three different approaches to account for the effect of group

matching from a population based perspective. When given a set of feature measure-

ments for all g members of a match, we know that the first member belongs to group

i1, the second member belongs to group i2, . . . , and the gth member belongs to group ig

(i1, i2, . . . , ig = 1, . . . , g; i1 6= i2 6= · · · 6= ig). In this case, it is equally likely that each

member belongs to one of the g groups, i.e., πi = 1/g (i = 1, . . . , g), since we assume there is

no preference for which member is labeled first, second, etc. We also retain our assumption
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in Section 4.3.1.1 of equal misclassification costs.

4.4.1.1 Tree Construction using Feature Vector, adjusting for Effect of Match-

ing For known γ, we let Yγ,ind denote the random feature vector for any individual be-

longing to a particular match and let Yγ,ind have known CDF F
(i)
Yind

(c− γ) in the ith group

(i = 1, . . . , g), where Yind denotes the random feature vector for any individual in a match

and has CDF F
(i)
Yind

(c) in the ith group, i.e., Yγ,ind
d
= Yind + γ.

We may also examine the feature vector for an individual that has been suitably ad-

justed for the effect of matching, namely, Ỹind = Yγ,ind − γ with known CDF F
(i)

Ỹind
(�) in

the ith group. Since F
(i)

Ỹind
(�) ≡ F

(i)
Yind

(�), the probabilities obtained from F
(i)
Yind

(c − γ) can

equivalently be obtained from F
(i)

Ỹind
(�).

Under our assumptions of equal priors and equal misclassification costs, we can construct

a tree T
′adj(γ) that adjusts for the effect of matching on the feature data by using the

traditional population-based approach in Section 4.1.2.1, replacing the probabilities P (i)(Y ∈

t), P (i)(Y ∈ tL), and P (i)(Y ∈ tR) used to construct T ′ with the probabilities P (i)(Ỹind ∈ t),

P (i)(Ỹind ∈ tL), and P (i)(Ỹind ∈ tR) obtained from F
(i)

Ỹind
(�). The adjusted tree T

′adj(γ)

can then be used to classify any individual in a match based on their adjusted feature

measurement ỹind. More importantly, we can use T
′adj(γ) to identify the set of feature

variables, once the effect of group matching has been adjusted for, and corresponding splits

that best discriminate among the g groups. In the context of post-mortem tissue studies,

this adjusted tree can be used to identify the biomarkers and splits on these biomarkers that

best discriminate between the control and schizophrenia diagnostic groups, once we adjust

for the effect of subject pairing on the biomarker data. With regards to the Konopaske et

al. data, the tree T
′adj(γ) can help us determine which biomarkers, suitably adjusted for the

effect of triad matching, and corresponding splits best differentiate among the haloperidol,

olanzapine, and sham treatment groups.

4.4.1.2 Tree Construction using Differenced Feature Vector An alternate method

we develop to account for the effect of group matching when constructing a classification tree

is to apply the traditional BFOS recursive partitioning algorithm to the differenced random

feature vector Ydiff ≡ Yind − 1
g−1

∑g−1
m=1 Ysib,m, where Yind,Ysib,1, . . . ,Ysib,g−1 denote the
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random feature vectors for any individual and their g − 1 siblings in a given match.

To clarify, we begin with the assumption that Ydiff has known CDF

F
(i)
Ydiff

(c) = P (i)(Y1,diff ≤ c1, . . . , YP,diff ≤ cP ) (4.21)

in the ith population (i = 1, . . . , g), where Yind belongs to the ith group. For the same reasons

as those stated in Section 3.5.1.2, we assume that the prior probability of each population

of Ydiff is equal to 1/g.

In this case, the tree T
′(diff) can be constructed using the standard approach in Section

4.1.2.1 by replacing P (i)(Y ∈ t), P (i)(Y ∈ tL), and P (i)(Y ∈ tR) used to construct T ′ with

P (i)(Ydiff ∈ t), P (i)(Ydiff ∈ tL), and P (i)(Ydiff ∈ tR) based on the CDFs F
(i)
Ydiff

(�), where

P (i)(Ydiff ∈ t) = P (Ydiff ∈ t|Ydiff ∈ population i). We then use the following rule to assign

each terminal node t of T
′(diff) to the ith population of Ydiff, based on our assumption of

equal priors and equal misclassification costs:

Rdiff
i :

{
t : P (i)(Ydiff ∈ t) > P (j)(Ydiff ∈ t)

}
, j = 1, . . . , g; j 6= i. (4.22)

For each individual in a match, we compute the difference ydiff = yind − 1
g−1

∑g−1
m=1 ysib,m,

the difference between the feature measurement for that individual and the average of the

feature measurements for their siblings in that match. If this difference falls into a terminal

node of T
′(diff) that has been assigned to the ith population according to the rule in (4.22),

then we classify that individual into the ith group (i = 1, . . . , g).

When we’re dealing with matched pairs, one notable difference exists between the classi-

fication results obtained from our pairwise differencing approaches for LDA and classification

trees in Sections 3.3.1.2 and 4.4.1.2, respectively. Recall that in our discussion of paired LDA,

the classification regions in (3.16) based on the pairwise difference yind − ysib were obtained

by comparing the linear discriminant function (yind − ysib)
′Σ−1
∗ (µ1−µ2) to the cutpoint of

zero, which ensured that an individual and their sibling in a pair would be classified into

different groups. On the other hand, if the tree T
′(diff) is constructed based on the pairwise

difference Yind −Ysib ≡ Ydiff, it is possible that T
′(diff) will classify an individual and their

sibling in a pair into the same group. For example, in our construction of T
′(diff), suppose

we only split once on one of the P elements of Ydiff, namely, Ydiff,ν (ν ∈ (1, 2, . . . , P )) whose

corresponding optimal cutpoint cν is some positive value, so that the left and right terminal
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nodes of T
′(diff) are assigned to the first and second populations, respectively, based on the

rule in (4.22). If the value of ydiff,ν satisfies 0 < ydiff,ν ≤ cν , then ydiff,ν falls into the left

terminal node of T
′(diff) and we would classify this individual into the first group. However,

since this individual’s sibling is classified based on the difference −ydiff,ν , where in this ex-

ample −ydiff,ν < 0 < cν , we would also classify this sibling into the first group. In addition,

we note that it also possible for the tree T
′adj(γ) in Section 4.4.1.1 to classify both members

of a pair into the same group.

In conclusion, we can use T
′(diff) to identify among the feature variables of interest those

that best discriminate among the g groups, once we account for the effect of group matching

on these feature variables. In the case of subject pairing, we note that T
′(diff) can be used to

determine which feature variables best distinguish an individual belonging to group 1 from

that belonging to group 2 in any given pair. In addition, the cutpoints of T
′(diff) can be used

to determine whether large or small values of each splitting variable in T
′(diff) for an individual

in a pair, relative to the values of the same splitting variable for the individual’s sibling in

the same pair, are associated with group 1 compared with group 2. For example, consider

the case where we construct T
′(diff) based on biomarker data obtained from schizophrenia

subjects that are paired with normal controls. Suppose that in our construction of T
′(diff),

we only split once on one of the P differenced biomarkers in Ydiff, so that the left and

right terminal nodes of T
′(diff) are assigned to the control and schizophrenia populations,

respectively, based on the rule in (4.22). In this case, we can infer from this tree that for

any given pair, normal controls have smaller values of this biomarker relative to individuals

with schizophrenia.

Intriguingly, when applied to matched data, the two adjustment approaches we develop

in Sections 4.4.1.1 and 4.4.1.2 based on the adjusted random feature vector Ỹind and the dif-

ferenced random feature vector Ydiff, respectively, produce trees that have the same structure

and identical sets of splitting variables, which we show in Section 4.4.2.2.

4.4.1.3 Tree Construction using Stacked Feature Vector, adjusting for Effect of

Matching Recall that for LDA, we developed a methodology to adjust for the effect of

group matching based on the stacked random feature vector Y+. We now briefly discuss

how this methodology can be implemented in the context of classification trees, and why it
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does not yield practical results.

Clearly, we can apply our adjustment methodology in Section 4.4.1.1 to Y+
γ =

 Yγ,ind

Yγ,sib,1

...
Yγ,sib,g−1

,

which denotes the random feature vector corresponding to an individual and their g − 1

siblings in a given match for known γ, where Yγ,ind has known CDF F
(i1)
Y (cind − γ) in

group i1, Yγ,sib,1 has known CDF F
(i2)
Y (csib,1 − γ) in group i2, . . . , and Yγ,sib,g−1 has known

CDF F
(ig)
Y (csib,g−1 − γ) in group ig (i1, i2, . . . , ig = 1, . . . , g; i1 6= i2 6= · · · 6= ig). For sim-

plicity, we assume mutual independence among all g vectors in Y+
γ so that Y+

γ has CDF

F
(i1)
Y (cind−γ)×F (i2)

Y (csib,1−γ)×. . . F (ig)
Y (csib,g−1−γ) ≡ F

(l)

Y+(cind−γ, csib,1−γ, . . . , csib,g−1−γ)

in the lth group ordering (l = 1, . . . , g!). In the paired case, for example, if Y+
γ belongs to

the first group ordering, then Yγ,ind and Yγ,sib,1 belong to groups 1 and 2, respectively.

Otherwise, Yγ,ind belongs to group 2 and Yγ,sib,1 belongs to group 1. The details on how to

construct the tree T
′adj(γ+) based on the stacked feature vector Y+

γ can be found in Appendix

C.2.

In theory, it is possible to construct a tree T
′adj(γ+) based on the stacked feature vector

Y+
γ and use T

′adj(γ+) to simultaneously classify all members of a match into one of the

g! group orderings, as we show in Appendix C.2. However, T
′adj(γ+) does not provide us

with direct information that we can use in practice to help us discriminate among the g

groups under consideration. The practical problem is that in constructing a tree based

on Y+
γ , the pth feature variable in Yγ,ind, the pth feature variable in Yγ,sib,1, . . . , and the

pth feature variable in Yγ,sib,g−1 (p = 1, . . . , P ) are treated as g different feature variables,

even though they all correspond to the same feature variable. For example, suppose this

construction method were applied to the Sweet et al. data. The pth biomarker for each

subject in each pair would then be treated as two different biomarkers, even though they

both correspond to the same biomarker. As a result, it is possible to construct T
′adj(γ+)

based on one biomarker that corresponds to a normal control in a given pair and another

biomarker that corresponds to a schizophrenia subject in the same pair, which does not

make sense from a discriminatory standpoint. Thus, we see in this case that T
′adj(γ+) would

not yield sensible results that we can use to determine which biomarkers best distinguish

between the control and schizophrenia diagnostic groups in a given pair.

Although T
′adj(γ+) may be computable and perhaps useful in classification, the fact that
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each of the P feature variables of interest is counted g times in the construction of T
′adj(γ+)

entails that this tree does not produce practical results that we can use to determine the

feature variables that best discriminate among the g groups.

4.4.2 Estimation of Unknown Distributions Using Training Data

Due to the key issue that arises in using the stacked approach (in Section 4.4.1.3), we only

discuss how to apply the procedures we develop in Sections 4.4.1.1 and 4.4.1.2 using the

available training data yik, the observed feature vector for the member of the kth match

belonging to group i (i = 1, . . . , g; k = 1, . . . , K).

4.4.2.1 Tree Construction using Feature Data, adjusting for Effect of Matching

To implement the approach in Section 4.4.1.1 using the available training data, we must

first estimate γ for the kth match in the training data (k = 1, . . . , K), which we denote

as γk = (γk,1, . . . , γk,P )′. Letting Yik denote the random feature vector corresponding to

the member of the kth match belonging to group i (i = 1, . . . , g; k = 1, . . . , K), we can

begin by assuming that for a given match, the mean of Yik is given by E[Yik] = λi + γk =

(λ1,i + γk,1, . . . , λP,i + γk,P )′. Based on the training data, we use LS estimation to estimate

γ1,p, . . . , γK,p, λp,1, . . . , λp,g by minimizing Qp =
∑g

i=1

∑K
k=1(yik,p−λp,i−γk,p)2 (p = 1, . . . , P ).

Using standard arguments, we can easily show that the LS estimates of λi and γk are not

unique and are given by λ̂i(c
∗) = ȳi.− ȳ..− c∗ and γ̂k(c

∗) = ȳ.k + c∗, where ȳi., ȳ.k, and ȳ..

are defined as in Section 3.5.2.1, c∗ = −ȳ.. + c, and c ∈ RP . We see that the estimates of λi

and γk are the same as the estimates of µi and γk in Section 3.5.2.1 for matched LDA.

Once the estimates γ̂k(c
∗) are computed for a particular c∗, we can obtain the adjusted

training feature measurements (ˆ̃yik,1, . . . , ˆ̃yik,P )′ = ˆ̃yik = yik − γ̂k(c∗), which can readily be

shown to equal g−1
g

Dik,y − c∗, where Dik,y = yik − 1
g−1

∑g
l=1
l 6=i

ylk. Based on the adjusted

feature data ˆ̃yik, we can estimate the CDF of Ỹind in the ith group (i = 1, . . . , g) as

F̂
(i)

Ỹind
(c̃) = P̂ (i)(Ỹ1,ind ≤ c̃1, . . . , ỸP,ind ≤ c̃P ) =

∑K
k=1 I(ˆ̃yik,1 ≤ c̃1, . . . , ˆ̃yik,P ≤ c̃P )

K
, (4.23)

so that we estimate P (i)(Ỹind ∈ t) as

P̂ (i)(Ỹind ∈ t) =

∑K
k=1 I(ˆ̃yik ∈ t)

K
. (4.24)
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Using the priors πi = 1/g and the probability estimates in (4.24), we can apply the standard

non-parametric procedure in Section 4.1.3.2 to the adjusted training feature data ˆ̃yik to

construct a tree Tγ̂ that takes into account the effect of group matching and prune Tγ̂ using

traditional minimal cost-complexity pruning, which can be implemented using presently

available software.

In order to use Tγ̂ to classify each individual in a new match beyond the training data,

we must re-estimate γ for this match. This is precisely the case where our semi-parametric

model in Section 4.3.2 needs to be extended to include parameters that must be re-estimated

for each individual in a new match, namely, γ. If we know the feature measurements for

an individual and their g − 1 siblings in a match, yind, ysib,1, . . . , ysib,g−1, then we begin by

applying our model for the random feature vector Yik to the random feature vectors Yind,

Ysib,1, . . . , Ysib,g−1 corresponding to a particular match, while retaining the LS estimates

λ̂i(c
∗) (i = 1, . . . , g) obtained from the training data. Specifically, for a given match and

conditional on the estimates λ̂i(c
∗), we assume Yind has mean λ̂i1(c∗) + γ in group i1,

Ysib,1 has mean λ̂i2(c∗) + γ in group i2, . . . , and Ysib,g−1 has mean λ̂ig(c
∗) + γ in group ig

(i1, i2, . . . , ig = 1, . . . , g; i1 6= i2 6= · · · 6= ig). We can also examine Yind − λ̂i1(c∗) ≡ Y∗ind,

Ysib,1 − λ̂i2(c∗) ≡ Y∗sib,1, . . . , Ysib,g−1 − λ̂ig(c∗) ≡ Y∗sib,g−1 which all have mean γ. Next,

we use LS estimation to estimate γp (p = 1, . . . , P ) by minimizing Qp = (y∗ind,p − γp)
2 +∑g−1

m=1(y∗sib,m,p − γp)2 so that the LS estimate of γ is given by

γ̂(c∗) =
1

g
(y∗ind +

g−1∑
m=1

y∗sib,m) =
1

g

[
(yind +

g−1∑
m=1

ysib,m)−
g∑
i=1

λ̂i(c
∗)

]
, (4.25)

which can be shown to equal 1
g
(yind +

∑g−1
m=1 ysib,m) + c∗. No matter which groups Yind,

Ysib,1, . . . , Ysib,g−1 belong to, the LS criteria Qp remain invariant and, thus, γ̂(c∗) remains

the same. From (4.25), we see that our estimate of γ for a new match is identical to the

estimate of γ for each match in the training data, namely, γ̂k(c
∗) = ȳ.k+c∗. The adjusted tree

Tγ̂ can then be used to classify each individual in any given match based on their adjusted

value ỹind = yind− γ̂(c∗), which is equal to g−1
g

ydiff−c∗, where ydiff = yind− 1
g−1

∑g−1
m=1 ysib,m.

On the other hand, if we only know the feature measurement yind for an individual in a

new match, then we cannot estimate γ for this individual in the manner we just described.

Without an estimate of γ, it’s clear that we cannot use Tγ̂ to classify this individual. As we
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suggested previously, in studies where subjects are matched across the g groups of interest,

such as post-mortem tissue studies, it makes no sense to try to classify a single observation

of a match without knowing the remaining g − 1 observations in that match.

We now discuss several properties of our adjusted tree Tγ̂ , which follow from the linear

invariance property (Proposition 4.3.1.1). First, the set of splitting variables chosen for Tγ̂

does not change depending on c∗. Also, suppose we consider any of the P feature variables

in Ỹind, namely, Ỹν,ind (ν ∈ (1, 2, . . . , P )), and the trees Tγ̂,a and Tγ̂,b constructed using the

estimates γ̂k(c
∗
a) and γ̂k(c

∗
b), respectively, where c∗a = −ȳ.. + ca, c∗b = −ȳ.. + cb, and ca 6= cb.

We then have that the split Ỹν,ind,a ≤ c̃ν,a in Tγ̂,a is equivalent to the split Ỹν,ind,b ≤ c̃ν,b in

Tγ̂,b, where Ỹν,ind,a = Yν,ind − γ̂ν,a, Ỹν,ind,b = Yν,ind − γ̂ν,b, γ̂ν,a and γ̂ν,b are the νth elements of

γ̂(c∗a) and γ̂(c∗b), and γ̂(c∗) is defined as in (4.25). These two splits are equivalent due to the

fact that Ỹν,ind,b = Ỹν,ind,a+ γ̂ν,a− γ̂ν,b and c̃ν,b = c̃ν,a+ γ̂ν,a− γ̂ν,b. Since the splits Ỹν,ind,a ≤ c̃ν,a

and Ỹν,ind,b ≤ c̃ν,b are equivalent, so are the splits Yν,ind ≤ c̃ν,a + γ̂ν,a and Yν,ind ≤ c̃ν,b + γ̂ν,b,

which implies that c̃ν,a+ γ̂ν,a ≡ c̃ν,b+ γ̂ν,b. In other words, the following can be said of Tγ̂ : (1)

regardless of the value of c∗, Tγ̂ yields the same classification results; (2) the set of optimal

cutpoints for Tγ̂ changes depending on c∗ when Tγ̂ is expressed in terms of the adjusted

feature data Ỹind, but not when Tγ̂ is expressed in terms of the original feature data Yind.

4.4.2.2 Tree Construction using Differenced Feature Vector Alternately, we can

apply the differencing approach in Section 4.4.1.2 using training data. In this case, we begin

by estimating the CDFs F
(i)
Ydiff

(�) in the ith population (i = 1, . . . , g) from the training feature

differences (Dik,y,1, . . . , Dik,y,P )′ = Dik,y = yik − 1
g−1

∑g
l=1
l 6=i

ylk, where Dik,y is computed for

the ith group member of the kth match (i = 1, . . . , g; k = 1, . . . , K). Based on our model for

Ydiff in Section 4.4.1.2, the training feature difference Dik,y belongs to the ith population.

We can then estimate F
(i)
Ydiff

(�) by computing the empirical CDF

F̂
(i)
Ydiff

(c) = P̂ (i)(Y1,diff ≤ c1, . . . , YP,diff ≤ cP ) =
1

K

K∑
k=1

I(Dik,y,1 ≤ c1, . . . , Dik,y,P ≤ cP ),

(4.26)

from which P (i)(Ydiff ∈ t) can be estimated as

P̂ (i)(Ydiff ∈ t) =

∑K
k=1 I(Dik,y ∈ t)

K
. (4.27)
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Based on the probability estimates in (4.27) and our assumption of equal priors, we can

implement the standard non-parametric construction approach in Section 4.1.3.2 on the

training feature differences Dik,y to construct a tree Tdiff that adjusts for the effect of group

matching and use minimal cost-complexity pruning to prune Tdiff accordingly, which we can

carry out using available software.

In comparing the trees Tγ̂ and Tdiff constructed using ˆ̃yik and Dik,y, respectively, we

point out the following facts, which follow from the linear invariance property (Proposition

4.3.1.1). First, since ˆ̃yik = g−1
g

Dik,y − c∗, as we showed in Section 4.4.2.1, we have that ˆ̃yik

is an increasing linear function of Dik,y and, thus, the same set of feature variables is chosen

for Tγ̂ and Tdiff. Also, if Yν,diff and Ỹν,ind correspond to any of the P feature variables in

Ydiff and Ỹind (ν ∈ (1, 2, . . . , P )), respectively, then the split Yν,diff ≤ cν in Tdiff is equivalent

to the split Ỹν,ind ≤ g−1
g
cν − c∗ν in Tγ̂ , where c∗ν is the νth element of c∗ and c∗ is defined

as in Section 4.4.2.1. As a result, Tγ̂ and Tdiff produce the same classification results and,

more importantly, identify the same set of feature variables that best discriminate among

the g groups under consideration, once the effect of group matching on the feature data is

accounted for.

4.5 MATCHED CLASSIFICATION TREES WITH COVARIATES

4.5.1 Known Distributions

In Section 4.5, we extend our construction methodology for matched classification trees to

also account for the effects of additional covariates on the feature data. Although Section

4.5 is included for completeness, the details are very similar to Section 4.4 and, thus, the

reader can safely skip this section.

Retaining our assumptions from Section 4.4 of equal priors and equal misclassification

costs, we begin with an extension of our population-based procedures in Sections 4.4.1.1 and

4.4.1.2 to also account for covariate effects. Due to the fact that the construction approach

in Section 4.4.1.3 based on the stacked feature data Y+
γ does not produce results that are

useful for our purposes, mainly those pertaining to group discrimination, we do not provide
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an extension of this approach.

We note that we could choose to ignore the effect of matching and apply our semi-

parametric tree construction procedure to instead account for the effects of the variables

on which individuals are matched, e.g., age at death, gender, and PMI in post-mortem

tissue studies. When we ignore matching, however, we only consider the feature data for one

randomly selected individual in the population, rather than the feature data for g individuals

in a particular match. In this case, the feature vector Y for this randomly selected individual

may not necessarily have an equal probability of belonging to any of the g groups of interest,

as is the case if we know that Y corresponds to an individual in a match. Thus, in the

unmatched case, an assumption of equal priors across the g groups may not be appropriate

in certain contexts. For example, we may find it more appropriate to use the population

proportion of normal controls and that of individuals with schizophrenia.

4.5.1.1 Tree Construction using Feature Vector, adjusting for Matching and

Covariate Effects Let Xind denote the random covariate vector an individual in a match.

For known γ and given Xind = xind, let Yγ,xind denote the random feature vector for any

individual belonging to a match, conditional on xind. We let Yγ,xind have known conditional

CDF F
(i)
Yind

(c−γ−βxind) in the ith group (i = 1, . . . , g), where Yind is defined as in Section

4.4.1.1 and β is known and is defined as in Section 3.4.1.1. In other words, Yγ,xind
d
= Yind +

γ +βxind. Equivalently, we may examine the random feature vector that has been adjusted

for both matching and covariate effects, namely, Ỹind(x) = Yγ,xind − γ − βxind with known

CDF F
(i)

Ỹind(x)
(�) in the ith group, where F

(i)

Ỹind(x)
(�) ≡ F

(i)
Yind

(�). Although we only consider

a linear function of the covariate data in our discussion, we can easily generalize to the

case where conditional on xind, Yγ,xind has CDF F
(i)
Yind

(c− γ − ξ(xind; Θ)), where ξ(x; Θ) is

defined as in Section 4.3.2.

Based on the distribution of Ỹind(x), and our assumption of equal priors and misclas-

sification costs, we can use the traditional population-based approach in Section 4.1.2.1 to

construct a tree T
′adj(γ,x) that adjusts for matching and covariate effects by replacing the

probabilities P (i)(Y ∈ t), P (i)(Y ∈ tL), and P (i)(Y ∈ tR) used to construct T ′ with the prob-

abilities P (i)(Ỹind(x) ∈ t), P (i)(Ỹind(x) ∈ tL), and P (i)(Ỹind(x) ∈ tR) obtained from F
(i)

Ỹind(x)
(�).

We can then use the adjusted tree T
′adj(γ,x) to classify any individual in a match based on
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their adjusted feature measurement ỹind(x). In addition, we can use this tree to determine

the feature variables, once adjusted for matching and covariate effects, and corresponding

splits that best differentiate among the g groups of interest. For example, in the context of

post-mortem tissue studies, this tree can be used to identify the biomarkers and correspond-

ing splits that best discriminate between the control and schizophrenia diagnostic groups,

once we account for the effects of both subject pairing and additional covariates, such as

brain tissue storage time, on the biomarker data.

4.5.1.2 Tree Construction using Covariate Adjusted Differenced Feature Vector

Another approach we can take to account for both matching and covariate effects is to apply

our semi-parametric tree construction procedure to the differenced random feature vector

Ydiff ≡ Yind − 1
g−1

∑g−1
m=1 Ysib,m.

To elaborate, we first let Xind,Xsib,1, . . . ,Xsib,g−1 denote the random covariate vectors

for any individual and their g − 1 siblings in a match, and let Xind − 1
g−1

∑g−1
m=1 Xsib,m ≡

Xdiff denote the differenced random covariate vector for any individual in a match. Given

Xdiff = xdiff, we let Ydiff(x) denote the differenced random feature vector conditional on xdiff

with known CDF F
(i)
Ydiff

(c − βxdiff) in the ith population (i = 1, . . . , g), where F
(i)
Ydiff

(c) are

defined as in (4.21) and β is known. As a result, Ydiff(x)
d
= Ydiff + βxdiff. We note that if

Ydiff(x) belongs to the ith population, then Yind belongs to group i.

We may also consider the covariate adjusted differenced feature vector Ỹdiff(x) = Ydiff(x)−

βxdiff with known CDF F
(i)

Ỹdiff(x)
(�) in the ith population, where F

(i)

Ỹdiff(x)
(�) ≡ F

(i)
Ydiff

(�). Since the

CDFs F
(i)
Ydiff

(�) and F
(i)

Ỹdiff(x)
(�) are the same, the conditional probabilities P

(i)
xdiff(Ydiff(x) ∈ t) =

Pxdiff
(Ydiff(x) ∈ t|Ydiff(x) ∈ population i) obtained from F

(i)
Ydiff

(c−βxdiff) can also be expressed

as P (i)(Ỹdiff(x) ∈ t) = P (Ỹdiff(x) ∈ t|Ỹdiff(x) ∈ population i) obtained from F
(i)

Ỹdiff(x)
(�).

Retaining our assumption from Section 4.4.1.2 of equal priors across the g populations, we

can construct our adjusted tree T
′(diff(x)) using the traditional procedure in Section 4.1.2.1 by

replacing P (i)(Y ∈ t), P (i)(Y ∈ tL), and P (i)(Y ∈ tR) used to construct T ′ with P (i)(Ỹdiff(x) ∈

t), P (i)(Ỹdiff(x) ∈ tL), and P (i)(Ỹdiff(x) ∈ tR). The following rule is then used to assign each

terminal node t of T
′(diff(x)) to the ith population of Ỹdiff(x):

Rdiff
i(x) :

{
t : P (i)(Ỹdiff(x) ∈ t) > P (j)(Ỹdiff(x) ∈ t)

}
, j = 1, . . . , g; j 6= i. (4.28)

For each individual in a match, we compute the covariate adjusted difference ỹdiff(x) = (yind−
1
g−1

∑g−1
m=1 ysib,m)−β(xind − 1

g−1

∑g−1
m=1 xsib,m). If this difference falls into a terminal node of
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T
′(diff(x)) that has been assigned to the ith population based on the rule in (4.28), then we

classify that individual into the ith group (i = 1, . . . , g).

Using the adjusted tree T
′(diff(x)), we can identify among the feature variables of interest

those that best discriminate among the g groups, once we account for group matching and

covariate effects on the feature data. As we did in Section 4.4.1.2 when we only accounted

for the effect of matching, we briefly discuss what we can determine from T
′(diff(x)) when

we’re dealing with matched pairs. First, we point out that the covariate adjusted difference

Ỹdiff(x) can also be written as (Yind−βxind)− (Ysib−βxsib), which is the difference between

the covariate adjusted random feature vector for an individual in a pair and that of their

sibling. When we view Ỹdiff(x) in this manner, we have that in the case of matched pairs,

the adjusted tree T
′(diff(x)) helps us identify the feature variables that best distinguish an

individual belonging to group 1 from that belonging to group 2 in any given pair, once these

feature variables have been suitably adjusted for covariate effects. Also, as was the case for

T
′(diff), the cutpoints of T

′(diff(x)) can be used to determine whether large or small values of

each covariate adjusted splitting variable in T
′(diff(x)) for an individual in a pair, relative to

the values of the same adjusted splitting variable for the individual’s sibling in that pair, are

associated with group 1 compared with group 2.

4.5.2 Estimation of Unknown Distributions Using Training Data

With available training data consisting of (yik,xik), the observed feature and covariate vec-

tors for the member of the kth match belonging to group i (i = 1, . . . , g; k = 1, . . . , K), we

now discuss how to estimate the adjusted CDFs F
(i)

Ỹind(x)
(�) and F

(i)

Ỹdiff(x)
(�) in Sections 4.5.1.1

and 4.5.1.2, respectively.

4.5.2.1 Tree Construction using Feature Data, adjusting for Matching and Co-

variate Effects We begin by first estimating the parameters β and γ for each match in

the training data. One approach we can take is to assume that the conditional mean of the

random feature vector Yik is given by E[Yik|xik] = λi + γk + βxik =

(λ1,i + γk,1 + β1xik, . . . , λP,i + γk,P + βPxik)
′. Based on the training data, we use LS esti-

mation to estimate βp, γ1,p, . . . , γK,p, λp,1, . . . , λp,g by minimizing Qp =
∑g

i=1

∑K
k=1(yik,p −
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λp,i− γk,p−βpxik)2 (p = 1, . . . , P ). Assuming that the design matrix for our model satisfies

suitable conditions so that the LS estimate β̂ =

[
β̂1

...
β̂P

]
is unique, the LS estimates of λi and

γk are given by λ̂i(c
∗
x) = ȳi.− β̂x̄i.− (ȳ..− β̂x̄..)−c∗x and γ̂k(c

∗
x) = ȳ.k− β̂x̄.k+c∗x, which are

the same as the estimates of µi and γk in Section 3.6.2.1 for matched LDA with covariates.

For a specific c∗x, we can compute the training feature data that have been adjusted

for matching and covariate effects (ˆ̃yik(x),1, . . . , ˆ̃yik(x),P )′ = ˆ̃yik(x) = yik − γ̂k(c∗x) − β̂xik,

which can easily be shown to equal g−1
g

D̂adj
ik,y − c∗x, where D̂adj

ik,y = (yik − 1
g−1

∑g
l=1
l 6=i

ylk) −

β̂(xik− 1
g−1

∑g
l=1
l 6=i

xlk) (i = 1, . . . , g). From the adjusted training feature data, we can estimate

the CDF of Ỹind(x) in the ith group as

F̂
(i)

Ỹind(x)
(c̃) = P̂ (i)(Ỹ1,ind(x) ≤ c̃1, . . . , ỸP,ind(x) ≤ c̃P ) =

∑K
k=1 I(ˆ̃yik(x),1 ≤ c̃1, . . . , ˆ̃yik(x),P ≤ c̃P )

K
(4.29)

and the probabilities P (i)(Ỹind(x) ∈ t) as

P̂ (i)(Ỹind(x) ∈ t) =

∑K
k=1 I(ˆ̃yik(x) ∈ t)

K
. (4.30)

Based on the priors πi = 1/g and the probability estimates in (4.30), we can implement the

standard non-parametric approach in Section 4.1.3.2 on the adjusted training feature mea-

surements ˆ̃yik(x) to construct a tree Tγ̂,x that adjusts for the effects of both group matching

and additional covariates on the feature data, and then prune this adjusted tree using mini-

mal cost-complexity pruning. To construct Tγ̂,x in this manner, we can use several software

packages, e.g., R or Salford Systems CART R©.

To use the tree Tγ̂,x to classify each member of a new match, we must have an estimate

of γ for this match, which we can obtain if we know the feature and covariate measurements

for an individual and their g − 1 siblings in that match, (yind,xind), (ysib,1,xsib,1), . . . ,

(ysib,g−1,xsib,g−1). Based on the LS estimates β̂ and λ̂i(c
∗
x) from the training data, we apply

the conditional model for the random feature vector Yik to the random feature vectors Yind,

Ysib,1, . . . , Ysib,g−1 for a new match. To clarify, for any given match and given xind, xsib,1, . . . ,

xsib,g−1, λ̂i(c
∗), and β̂, we assume Yind has conditional mean λ̂i1(c∗x)+γ+ β̂xind in group i1,

Ysib,1 has conditional mean λ̂i2(c∗x)+γ+ β̂xsib,1 in group i2, . . . , and Ysib,g−1 has conditional

mean λ̂ig(c
∗
x) + γ + β̂xsib,g−1 in group ig (i1, i2, . . . , ig = 1, . . . , g; i1 6= i2 6= · · · 6= ig).
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Alternately, we can consider Yind−λ̂i1(c∗x)−β̂xind ≡ Y
∗(x)
ind , Ysib,1−λ̂i2(c∗x)−β̂xsib,1 ≡ Y

∗(x)
sib,1,

. . . , Ysib,g−1− λ̂ig(c∗x)− β̂xsib,g−1 ≡ Y
∗(x)
sib,g−1 which all have mean γ. We then estimate γp by

minimizing the LS criteria Qp = (y
∗(x)
ind,p − γp)2 +

∑g−1
m=1(y

∗(x)
sib,m,p − γp)2 (p = 1, . . . , P ) so that

the LS estimate of γ is given by

γ̂(c∗x) =
1

g
(y
∗(x)
ind +

g−1∑
m=1

y
∗(x)
sib,m) =

1

g

[
(yind +

g−1∑
m=1

ysib,m)− β̂(xind +

g−1∑
m=1

xsib,m)−
g∑
i=1

λ̂i(c
∗
x)

]
,

(4.31)

which can be shown to equal 1
g
[(yind +

∑g−1
m=1 ysib,m) − β̂(xind +

∑g−1
m=1 xsib,m)] + c∗x. As in

Section 4.4.2.1, we have that no matter which groups Yind, Ysib,1, . . . , Ysib,g−1 belong to,

the LS criteria Qp remain invariant and γ̂(c∗x) remains the same. Also, we see that our

estimate of γ in (4.31) for a new match is the same as the estimate of γ for each training

match, i.e., γ̂k(c
∗
x) = ȳ.k− β̂x̄.k +c∗x. We can then use our adjusted tree Tγ̂,x to classify each

individual in a given match based on their adjusted value ỹind(x) = yind − γ̂(c∗x) − β̂xind,

which can be shown to equal g−1
g

ỹdiff(x) − c∗x, where ỹdiff(x) = (yind − 1
g−1

∑g−1
m=1 ysib,m) −

β̂(xind − 1
g−1

∑g−1
m=1 xsib,m).

Based on the linear invariance property (Proposition 4.3.1.1), we note the following facts

regarding the adjusted tree Tγ̂,x. As was the case for the tree Tγ̂ in Section 4.4.2.1, the

set of splitting variables chosen for Tγ̂,x remains the same regardless of the value of c∗x.

In addition, using an argument similar to the one made in Section 4.4.2.1 for Tγ̂ , we have

that Tγ̂,x yields the same classification results regardless of c∗x and that the set of optimal

cutpoints for Tγ̂,x depends on c∗x when Tγ̂,x is expressed in terms of the adjusted feature

variables Ỹ1,ind(x), . . . , ỸP,ind(x), but not when Tγ̂,x is expressed in terms of the original feature

variables Y1,ind(x), . . . , YP,ind(x).

4.5.2.2 Tree Construction using Covariate Adjusted Differenced Feature Vector

Another estimation approach we can take is to implement the differencing approach we

develop in Section 4.5.1.2 using the available training data. First, we let Dik,Y ≡ Yik −
1
g−1

∑g
l=1
l6=i

Ylk denote the random differenced feature vector for the member of the kth match

belonging to the ith group (i = 1, . . . , g; k = 1, . . . , K), such that the difference Dik,Y

belongs to the ith population. Using our conditional model for the differenced random

feature vector Ydiff in Section 4.5.1.2, we assume that the conditional mean of Dik,Y is given
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by E[Dik,Y |Dik,x] = λdiff
i + βDik,x =

(
λdiff

1,i + β1Dik,x, . . . , λ
diff
P,i + βPDik,x

)′
, where Dik,x =

xik− 1
g−1

∑g
l=1
l 6=i

xlk. Based on the differenced training data (Dik,y,Dik,x), we use LS estimation

to estimate βp, λ
diff
p,1 , . . . , λdiff

p,g by minimizing Qp =
∑g

i=1

∑K
k=1(Dik,y,p−λdiff

p,i −βpDik,x)
2, where

Dik,y,p is the pth element of Dik,y (p = 1, . . . , P ). We assume that the design matrix for our

model satisfies suitable conditions so that the LS estimate β̂ is unique.

Once we obtain the estimate β̂, our next step is to compute the covariate adjusted

training feature differences (D̂adj
ik,y,1, . . . , D̂

adj
1k,y,P )′ = D̂adj

ik,y = Dik,y − β̂Dik,x (i = 1, . . . , g).

Based on these adjusted differences, we can estimate the CDF F
(i)

Ỹdiff(x)
(�) in the ith population

by computing the empirical CDF

F̂
(i)

Ỹdiff(x)
(c̃) = P̂ (i)(Ỹ1,diff(x) ≤ c̃1, . . . , ỸP,diff(x) ≤ c̃P ) =

1

K

K∑
k=1

I(D̂adj
ik,y,1 ≤ c̃1, . . . , D̂

adj
ik,y,P ≤ c̃P ),

(4.32)

from which we can estimate P (i)(Ỹdiff(x) ∈ t) as

P̂ (i)(Ỹdiff(x) ∈ t) =

∑K
k=1 I(D̂adj

ik,y ∈ t)
K

. (4.33)

Using the probability estimates in (4.33) and our assumption of equal priors, we can im-

plement the standard non-parametric approach in Section 4.1.3.2 on the covariate adjusted

training feature differences D̂adj
ik,y to construct a tree Tdiff(x) that accounts for both matching

and covariate effects, and use minimal cost-complexity pruning to prune this tree.

When we compare the trees Tγ̂,x and Tdiff(x) constructed using ˆ̃yik(x) and D̂adj
ik,y, respec-

tively, we can state the following based on the linear invariance property (Proposition 4.3.1.1).

First, due to the fact that ˆ̃yik(x) = g−1
g

D̂adj
ik,y−c∗x, as we showed in Section 4.5.2.1, ˆ̃yik(x) is an

increasing linear function of D̂adj
ik,y and, thus, the same set of feature variables is chosen for

Tγ̂,x and Tdiff(x). In addition, suppose Ỹν,diff(x) and Ỹν,ind(x) denote the νth feature variables in

Ỹdiff(x) and Ỹind(x) (ν ∈ (1, 2, . . . , P )), respectively. We then have that the split Ỹν,diff(x) ≤ c̃ν

in Tdiff(x) is equivalent to the split Ỹν,ind(x) ≤ g−1
g
c̃ν−c∗ν,x in Tγ̂,x, where c∗ν,x is the νth element

of c∗x and c∗x is defined as in Section 4.5.2.1. Therefore, the adjusted trees Tγ̂,x and Tdiff(x)

both yield identical classification results and identify the same set of feature variables that

best distinguishes among the g groups of interest, once the effects of both group matching

and covariates on the feature data have been taken into account.
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5.0 APPLICATIONS TO POST-MORTEM TISSUE DATA

5.1 SWEET DATA

5.1.1 Description of Dataset

We first explore our adjustment methodology for LDA and classification trees of our motivat-

ing post-mortem tissue data set obtained from the four post-mortem tissue studies conducted

by Sweet et al. [33][34][35][36]. In total, six biomarkers, listed in Table 5.1, were measured

by Dr. Sweet and his collaborators in post-mortem human brain tissue taken from the pri-

mary auditory cortex. In each of the four studies, individuals with schizophrenia and normal

controls were pair matched on gender, age at death, and PMI (the latter two matches were

as close as possible). Tissue storage time, which was not used in the matching, was also

included as a covariate. The same subject matches were used in all four studies and while

there were slight differences in the numbers of pairs in each study, there were 15 pairs in

common to all four studies that were used in the analyses we present in Section 5.1. In

the published analyses for each individual study, a primary model was fit accounting for the

effects of subject pairing and tissue storage time on each biomarker to determine the effect

of diagnostic group. A secondary model that ignored pairing and instead accounted for the

effects of the variables on which subjects were paired, i.e., age at death, gender, and PMI

(see Sweet et al. [33][34][35][36] for results) was used to establish robustness of the findings.

Each of the six biomarker measurements was taken in three tissue sections for each

subject. However, due to the fact that section numbering is not comparable across studies,

the data from each biomarker were averaged across the three sections. This was done by

first calculating the mean value for each section and then averaging the three resulting mean

values to obtain one average.
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Table 5.1: Details of Sweet et al. Auditory Cortical Biomarkers

Biomarker Brodmann’s Publication Number

Area (BA) of Pairs

Synaptophysin- 41 Sweet et al., 2007 [33] 15

Immunoreactive

(SY-IR) Puncta

Density

Synaptophysin- 42

Immunoreactive

(SY-IR) Puncta

Density

(Pyramidal Cell) 41 Sweet et al., 2004 [34] 16

Somal Volume

(natural log scale)

(Pyramidal Cell) 42 Sweet et al., 2003 [36] 18

Somal Volume

(natural log scale)

(Dendritic) Spine 41 Sweet et al., 2008 [35] 15

Density

(Dendritic) Spine 42

Density
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5.1.2 Summary of Application Methods for Sweet Studies

5.1.2.1 Linear Discriminant Analysis To account for the effects of subject pairing

and tissue storage time on the biomarker data, we applied the pairwise difference approach

in Section 3.4.2.2, which produces the same linear discriminant rule as that obtained using

the adjustment approaches described in Sections 3.4.2.1 and 3.4.2.3 in the data setting. In

addition, we did another analysis ignoring subject pairing and instead adjusted each of the

six biomarkers for the effects of age at death, gender, PMI, and storage time, based on the

conditional model utilized by Lachenbruch and Tu et al. in Section 3.2.3. The SAS REG

procedure was used to adjust the biomarkers using these two methods. For completeness,

we also used the approach taken by Knable et al. (2001) and implemented LDA on the

original biomarker data, which were not adjusted for either pairing or covariate effects.

The classification rules for these three methods were computed using the SAS DISCRIM

procedure, assuming equal prior probabilities. In each case, the discriminant coefficients

were suitably standardized. We report the observed (resubstituted) misclassification rates in

our discussion, along with the misclassification rates obtained using 15-fold cross validation.

To implement 15-fold cross validation, we omitted one pair of observations at a time when

computing our discriminant rule, which we carried out using a macro we developed in SAS.

5.1.2.2 Classification Trees The construction methodology we developed in Section

4.5.2.2 based on the covariate adjusted feature differences was first applied to the biomarker

data to adjust for the effects of subject pairing and tissue storage time. (Note that the

adjustment methodology in Section 4.5.2.1 would have yielded a tree with the same structure

and the same set of splitting variables, as noted in Section 4.5.2.2). In an additional analysis,

we adjusted the six biomarkers for the effects of age at death, gender, PMI, and storage time

while ignoring subject pairing, using the semi-parametric tree construction procedure in

Section 4.3.3. Finally, we used the approach taken by Knable et al. (2002) and implemented

the standard non-parametric BFOS construction procedure as described in Section 4.1.3.2 on

the original (unadjusted) biomarker data. The classification trees for these three methods

were constructed using Salford Systems CART R© software, based on the Gini index and

assuming equal prior probabilities. The resulting trees were then pruned using 15-fold cross
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validation as described in Section 4.1.3.4.

5.1.3 Results for Sweet Studies

5.1.3.1 Linear Discriminant Analysis For each of the three approaches, we identified

those biomarkers with the largest standardized discriminant coefficients (in absolute value)

relative to other biomarkers as having the highest discriminatory importance.

After adjusting for the effects of subject pairing and tissue storage time, somal volume

and spine density for BA 42, as well as SY-IR puncta density and spine density for BA 41,

were identified as the four biomarkers with the highest discriminatory importance. Based

on the signs of the coefficients for these four adjusted biomarkers, the following facts hold,

assuming all other adjusted biomarkers are held fixed: (1) adjusting for the effect of tissue

storage time, SY-IR puncta density for BA 41, as well as somal volume and spine density

for BA 42, are larger for normal controls compared with individuals with schizophrenia in a

given pair; (2) spine density for BA 41, suitably adjusted for storage time effects, is smaller

for normal controls compared with individuals with schizophrenia in a given pair. Using the

adjusted linear discriminant rule based on all six biomarkers, we correctly classified 93% of

all subjects measured in the data set, while the cross validated correct classification rate for

this adjusted rule was 80%.

Alternately, after adjusting for the effects of age at death, gender, PMI, and tissue storage

time, SY-IR puncta density and somal volume for BA 41 were identified as the biomarkers

that best discriminated between the control and schizophrenia diagnostic groups. Based on

the signs of the discriminant coefficients, each of these two adjusted biomarkers are larger

for normal controls compared with individuals with schizophrenia, holding all other adjusted

biomarker values fixed. Using our adjusted linear discriminant rule, we correctly classified

90% of all subjects, while the cross validated correct classification rate was 77%.

When we applied LDA to the unadjusted biomarker data, SY-IR puncta density and spine

density for BA 41 were identified as having the highest discriminatory importance. Based

on the signs of the discriminant coefficients, each of these two biomarkers are larger for

normal controls compared with individuals with schizophrenia, holding all other biomarker

values fixed. Using this linear discriminant rule, which does not adjust for either pairing or
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covariate effects, we correctly classified 87% of all subjects, while the cross validated correct

classification rate was 77%.

Tables 5.2 and 5.3 provide, respectively, the standardized discriminant coefficients and

the classification results for all three approaches.

Table 5.2: Standardized Linear Discriminant Coefficients (Coefficients with relatively large

values highlighted in bold.)

Approach Biomarker BA Coefficient

Paired LDA SY-IR Puncta Density 41 2.27220

with SY-IR Puncta Density 42 0.583876

Storage Time Somal Volume 41 0.218094

Somal Volume 42 2.37256

Spine Density 41 -2.04184

Spine Density 42 2.98220

Adjusting SY-IR Puncta Density 41 1.32272

for Age, PMI SY-IR Puncta Density 42 -0.471332

Gender, and Somal Volume 41 1.20111

Storage Time Somal Volume 42 0.303869

Spine Density 41 0.499051

Spine Density 42 0.383178

Unadjusted SY-IR Puncta Density 41 0.831568

SY-IR Puncta Density 42 -0.485671

Somal Volume 41 0.574881

Somal Volume 42 0.347356

Spine Density 41 0.919880

Spine Density 42 -0.0441287

5.1.3.2 Classification Trees Based on the tree we constructed to account for the effects

of subject pairing and tissue storage time, schizophrenia subjects were best discriminated

from normal controls by SY-IR puncta density and somal volume for BA 41. Specifically,

small values of SY-IR puncta density for BA 41, once adjusted for the effect of tissue storage

time, are associated with schizophrenia subjects compared with normal controls in a given

pair. Among individuals with large values of this adjusted biomarker in a given pair, small

values of somal volume for BA 41, adjusted for the effect of tissue storage time, are associated

with schizophrenia subjects, while large values are associated with normal controls. Based

on our adjusted tree, 90% of all subjects measured in the data set were correctly classified.
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Table 5.3: LDA Classification Results Based on All Six Biomarkers

(C - control, S - schizophrenia, MC Rate - misclassification rate)

Approach From Classified Classified Total Observed 15-fold CV
Diag as C as S MC Rate MC Rate

Paired LDA C 14 1 15 0.07 0.2
with S 1 14 15

Storage Time Total 15 15 30

Adjusting for C 13 2 15 0.1 0.233
Age, PMI, Gender S 1 14 15
and Storage Time Total 14 16 30

Unadjusted C 13 2 15 0.133 0.233
S 2 11 15

Total 16 14 30

When we ignored subject pairing and instead adjusted the six biomarkers for the effects

of age at death, gender, PMI, and tissue storage time, we obtained a tree where individu-

als with schizophrenia were discriminated from normal controls by SY-IR puncta density,

somal volume, and spine density for BA 41. Based on this adjusted tree, small values of

adjusted spine density and somal volume for BA 41 are associated with schizophrenia sub-

jects, while large values of adjusted spine density and SY-IR puncta density for BA 41 are

associated with normal controls. Among individuals with small adjusted spine densities

and large adjusted somal volumes, small adjusted SY-IR puncta density values correspond

to schizophrenia subjects while large values correspond to normal controls. In addition,

large adjusted spine densities and small adjusted SY-IR puncta densities are associated with

schizophrenia subjects. Using our adjusted tree, we correctly classified 90% of all subjects.

When we applied the standard BFOS algorithm to the unadjusted biomarker data, spine

density for BA 41 was the only discriminatory biomarker chosen, with low and high val-

ues corresponding to schizophrenia subjects and normal controls, respectively. Among the

subjects examined, 80% were correctly classified.

Figures 5.1, 5.2, and 5.3 display, respectively, the pruned tree that accounts for pairing

and storage time effects, the pruned tree that adjusts for the effects of age at death, gender,

PMI, and tissue storage time, and the pruned tree that is based on the unadjusted biomarker

data. The classification results corresponding to these three trees are displayed in Table 5.4.
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Figure 5.1: Paired classification tree with storage time. SynDens41 and SomVol41 correspond

to SY-IR Puncta Density and Somal Volume for BA 41.

Figure 5.2: Semi-parametric classification tree. SpDens41, SomVol41, and SynDens41 cor-

respond to Spine Density, Somal Volume, and SY-IR Puncta Density for BA 41.
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Figure 5.3: Traditional classification tree. SpDens41 corresponds to Spine Density for BA

41.

Table 5.4: Classification Results for Classification Trees Pruned Using 15-fold CV

(C - control, S - schizophrenia, MC rate - misclassification rate)

Approach From Classified Classified Total Observed
Diag as C as S MC Rate

Paired Tree C 15 0 15 0.1
with S 3 12 15

Storage Time Total 18 12 30

Adjusting for C 15 0 15 0.1
Age, PMI, Gender S 3 12 15
and Storage Time Total 18 12 30

Unadjusted C 11 4 15 0.2
S 2 13 15

Total 13 17 30
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5.1.4 Discussion of LDA and Classification Tree Results for Sweet Studies

SY-IR puncta density and somal volume for BA 41 consistently appear as important dis-

criminatory biomarkers in our adjusted linear discriminant rules and classification trees.

Thus, among all the six biomarkers examined, these seem to be the two biomarkers that

best discriminate between the control and schizophrenia diagnostic groups, once we take

into account the effects of pairing and brain tissue storage time. However, had we taken the

traditional approach to both LDA and classification trees that is seen in the neuroscience

literature, as exemplified by Knable et al. (2001, 2002), and not adjusted for either pairing

or covariate effects, we would not have been able to identify SY-IR puncta density and somal

volume for BA 41 as being the most discriminatory.

From the results in Tables 5.3 and 5.4, we see that the misclassification rates appear

to be comparable for the two adjustment methods and the unadjusted approach we use to

construct our linear discriminant rules and classification trees. This may be explained by

the fact that in earlier models that were fit based on the biomarker data, pairing and tissue

storage time effects were not significant for most of the six biomarkers. To elaborate, in each

primary model that was fit to account for the effects of subject pairing and tissue storage

time on each biomarker, these two effects were only significant for spine density for BA 42

and somal volume for BA 41, respectively. In addition, in each secondary model that was fit

to control for the effects of age at death, gender, PMI, and storage time on each biomarker,

only the effect of storage time was significant in any of the six models, namely, the model for

SY-IR puncta density for BA 41. Based on the model results in this case, adjusting these

six biomarkers for the effects of pairing (or the pairing variables) and storage time is not

expected to yield substantial gains in classification accuracy.

5.2 KONOPASKE DATA

5.2.1 Description of Dataset

Next, we apply our adjustment methodology to data obtained from a post-mortem brain tis-

sue study conducted by Konopaske et al. [17]. We examine a total of six biomarkers, listed
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in Table 5.5, that were measured by Dr. Konopaske and his collaborators in post-mortem

monkey brain tissue taken from the left parietal lobe. In this study, 18 male macaque mon-

keys were matched in triads by terminal body weight where, in each triad, each monkey was

treated with a sham drug, haloperidol, or olanzapine, the latter two drugs being antipsy-

chotics. Unlike the Sweet et al. data, no covariates were included in the Konopaske data.

To determine the effect of drug treatment group, Konopaske et al. fit an ANOVA model

for each biomarker, while controlling for the effect of triad matching (see Konopaske et al.

[17] for results). We note that among the examined biomarkers, astrocyte number was the

only one that significantly differed between the sham and antipsychotic treatment groups.

Thus, our application to the Konopaske data should be viewed as illustrative, rather than

providing new insights.

Table 5.5: Details of Konopaske et al. Biomarkers

Biomarker Publication Number

of Triads

Oligodendrocyte Number Konopaske et al., 2008 [17] 6

Oligodendrocyte Density

Ratio of Oligodendrocyte

Number to Glial

Cell Number

(Oligodendrocyte Ratio)

Astrocyte Number

Astrocyte Density

Ratio of Astrocyte

Number to Glial

Cell Number

(Astrocyte Ratio)

5.2.2 Summary of Application Methods for Konopaske Study

5.2.2.1 Linear Discriminant Analysis To account for the effect of triad matching on

the biomarker data, we applied our differencing adjustment method in Section 3.5.2.2 to

the six biomarkers, which yields the same results as those obtained using our adjustment

procedure in Section 3.5.2.1. For completeness, we also implemented LDA on the origi-
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nal biomarker data, which were not adjusted for the effect of matching. In addition, to

clearly illustrate the difference between the differencing and stacked adjustment approaches

we develop in Sections 3.5.2.2 and 3.5.2.3 in the data setting, we re-applied our differencing

approach and also applied our stacked approach to oligodendrocyte number, density, and

ratio, where we only included these three biomarkers in our comparison for ease of compu-

tation when implementing the stacked approach. Assuming equal priors, we used the SAS

DISCRIM procedure to compute the corresponding classification rules. In our discussion,

we report the observed misclassification rates, along with those obtained using 6-fold cross

validation, where we omitted one triad of observations at a time when computing our linear

discriminant rule.

5.2.2.2 Classification Trees We first applied our differencing adjustment approach in

Section 4.4.2.2 to the biomarker data. For comparative purposes, we also implemented

the standard non-parametric BFOS construction method in Section 4.1.3.2 on the original

(unadjusted) biomarker data. To construct these two trees, we used Salford Systems CART R©

software based on the Gini index and the assumption of equal priors, and pruned them using

6-fold cross validation as discussed in Section 4.1.3.4.

5.2.3 Results for Konopaske Study

5.2.3.1 Linear Discriminant Analysis When we applied each LDA approach, we ob-

tained three linear discriminant functions from which we identified the biomarkers that best

discriminate between the haloperidol and olanzapine treatment groups, the haloperidol and

sham treatment groups, and the olanzapine and sham treatment groups. We then standard-

ized the coefficients in each discriminant function to identify the biomarkers with the largest

standardized discriminant coefficients (in absolute value) relative to the other biomarkers as

having the highest discriminatory importance in that discriminant function.

In implementing our differencing adjustment approach and using the signs of the coef-

ficients in each discriminant function, we can state the following when we hold all other

biomarker values fixed.

Astrocyte number is largest for sham treated subjects, followed by subjects treated with
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haloperidol, and is smallest for olanzapine treated subjects. Also, oligodendrocyte number

is larger for olanzapine treated subjects compared with either haloperidol or sham treated

subjects, while astrocyte density is smaller for olanzapine treated subjects compared with

sham treated subjects. Finally, oligodendrocyte ratios are larger and astrocyte ratios are

smaller for sham treated subjects compared with either haloperidol or olanzapine treated

subjects. Based on the three estimated linear discriminant functions, we correctly classified

72% of all subjects measured in the data set, while the cross validated correct classification

rate was 39%.

Although we leave the details of the results obtained when we apply our differencing and

stacked adjustment approaches to oligodendrocyte number, density, and ratio for Appendix

D, we point out the fact that these two approaches produced entirely different types of results.

Not only do both approaches yield, in their context, different discriminant functions, but

also the interpretation of these functions necessarily differs, as explained in Appendix D.

These results allow us to see the practical interpretation of the population based difference

that we showed in Section 3.5.1.3.

Tables 5.6 and 5.7 provide, respectively, the standardized discriminant coefficients and

classification results obtained from implementing the differencing and traditional approach

to all six biomarkers.

5.2.3.2 Classification Trees When we applied our differencing adjustment approach,

we obtained a tree (see Figure 5.4) where astrocyte number and the ratio of astrocyte

number to glial cell number (astrocyte ratio) were identified as the two biomarkers that

best discriminated among the three drug treatment groups. To elaborate, once we adjust for

the effect of triad matching on the biomarker data, small values of these two discriminatory

biomarkers are associated with olanzapine treated subjects. Among subjects with large

values of adjusted astrocyte ratio, those with small values of adjusted astrocyte number are

associated with the haloperidol treatment group. Regardless of whether adjusted astrocyte

ratio is large or small, we have that large values of adjusted astrocyte number correspond

to sham treated subjects. Based on this adjusted tree, we correctly classified 83% of all

subjects measured in the data set.

Figures 5.4 and 5.5 display, respectively, the matched tree obtained from our differencing
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Table 5.6: Standardized Linear Discriminant Coefficients for Haloperidol (H) vs. Olanzapine

(O), Haloperidol vs. Sham (S), and Olanzapine vs. Sham

(Coefficients with relatively large values highlighted in bold.)

Approach Biomarker Coefficient Coefficient Coefficient

(H vs. O) (H vs. S) (O vs. S)

Matched LDA Oligodendrocyte Number -16.2784 0.943648 17.2220

Oligodendrocyte Density 3.73358 2.94737 -0.786208

Oligodendrocyte Ratio 10.9869 -3.80169 -14.7886

Astrocyte Number 22.5686 -7.37721 -29.9458

Astrocyte Density -10.5711 2.21073 12.7818

Astrocyte Ratio -8.81832 4.07302 12.8913

Unadjusted Oligodendrocyte Number -11.7108 -1.66035 10.0504

Oligodendrocyte Density 2.27314 4.70486 2.43173

Oligodendrocyte Ratio 8.18420 -3.28950 -11.4737

Astrocyte Number 15.1880 -2.55505 -17.7431

Astrocyte Density -5.47579 -1.90730 3.56849

Astrocyte Ratio -6.90072 3.71335 10.6141

Table 5.7: LDA Classification Results Based on All Six Biomarkers

(H - haloperidol, O - olanzapine, S - sham, MC rate - misclassification rate)

Approach From Classified Classified Classified Total Observed 6-fold CV
Group as H as O as S MC rate MC rate

Matched LDA H 0 3 3 6 0.28 0.61
O 0 6 0 6
S 3 2 1 6

Total 3 11 4 18

Unadjusted H 1 2 3 6 0.28 0.61
O 2 4 0 6
S 4 0 2 6

Total 7 6 5 18
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approach in Section 4.4.2.2 to account for the effect of triad matching on the biomarker data

and the tree obtained when we implement the standard BFOS algorithm on the unadjusted

biomarker data. The corresponding classification results are provided in Table 5.8.

Figure 5.4: Matched classification tree. Astro Num and Astro Ratio correspond to astrocyte

number and astrocyte ratio.
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Figure 5.5: Traditional classification tree. Astro Ratio corresponds to astrocyte ratio.

Table 5.8: Classification Results for Classification Trees Pruned Using 6-fold CV

(H - haloperidol, O - olanzapine, S - sham, MC rate - misclassification rate)

Approach From Classified Classified Classified Total Observed
Group as H as O as S MC Rate

Matched Tree H 5 1 0 6 0.17
O 0 6 0 6
S 0 2 4 6

Total 5 9 4 18

Unadjusted H 5 1 0 6 0.39
O 0 6 0 6
S 3 3 0 6

Total 8 10 0 18
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5.2.4 Discussion of LDA and Classification Tree Results for Konopaske Study

Regardless of whether we use LDA or classification trees to discriminate among the three

treatment groups, astrocyte number and the ratio of astrocyte number to glial cell number

are always identified as important discriminatory biomarkers when we adjust for the effect

of triad matching. Therefore, once we account for the effect of triad matching on all six

biomarkers, we have that these are the two biomarkers that best discriminate among the

haloperidol, olanzapine, and sham treatment groups. We note that if we had ignored the

effect of triad matching, we would not have identified astrocyte number as a discriminatory

biomarker in our classification tree.

Although the classification results obtained from using the differencing and traditional

approaches appear to be comparable for LDA, as we see in Table 5.7, we have that our

matched classification tree correctly classifies a noticeably higher percentage of the examined

subjects, relative to the tree based on the unadjusted biomarker data. Thus, in this instance,

our methodology to account for subject matching gives us not only a clearer picture of which

of the six biomarkers best discriminate among the three treatment groups, but also more

accurate classification results, compared with those obtained when we ignore the effect of

matching.

5.3 SUMMARY OF APPLICATION RESULTS

We show that our methodology to adjust for the effects of group matching and covariates

in LDA and classification trees can be easily applied to data, e.g., post-mortem tissue data.

Based on the results of our application to both the Sweet et al. and Konopaske et al. data, we

found that our adjustment methodology allows us to better determine which of the biomark-

ers in each of these two data sets best discriminates among the diagnostic or treatment

groups under consideration and can also yield generally more accurate classification results,

compared with traditional LDA or classification trees.
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6.0 CONCLUSIONS AND FUTURE WORK

6.1 CONCLUSIONS

In this dissertation, we successfully develop a methodology for two commonly used discrim-

ination methods, namely, LDA and classification trees, that adjusts the feature variables of

interest for the effects of group matching and covariates. If not properly taken into account,

matching and covariates can potentially mask the true discriminatory ability of the feature

data. Using our adjustment methodology, we can get a clearer and more accurate picture

of which feature variables, among those examined, best discriminate among the g (g ≥ 2)

groups under consideration. In addition, our research methodology for group discrimination

can be easily applied to any study where subjects are matched across different groups and/or

measured on additional covariates, e.g., post-mortem brain tissue studies.

The concept of adjusting for covariate effects in LDA using the conditional distribution

of the feature data was initially explored by Cochran and Bliss [8] and generalized more

extensively by Lachenbruch [19] and Tu et al. [37]. However, none of these authors addressed

the fact that individuals may be matched across the g groups under consideration and that

such matching may also greatly impact the feature variables under study. Therefore, an

extension of these authors’ covariate adjustment methodologies to also account for the effect

of group matching is clearly required. In Chapter 3, we successfully formulate and develop

an extension of these authors’ covariate adjustment methodologies to also account for the

effect of group matching in both a theoretical framework and in the context of data.

On the other hand, there appears to be little in the literature that deals with accounting

for either the effects of group matching or covariates on the feature variables of interest when

constructing classification trees. In the spirit of Lachenbruch and Tu et al., we carefully
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develop in Chapter 4 a tree construction methodology that adjusts for these two effects

by incorporating the conditional distribution of the examined feature variables for a given

match and/or a given set of covariate values. We begin by detailing how the BFOS tree

construction method can be implemented in the case where the feature data belong to a

known continuous distribution in each group. This approach subsequently leads to our

development of a parametric alternative to the standard non-parametric BFOS algorithm

that can be implemented using training data. More importantly, this population based

approach provides us with a basis to use the conditional distribution of the feature data when

constructing a particular tree. We then formulate a specific semi-parametric model for the

conditional distribution of the feature data which allows us to construct a tree that suitably

adjusts for covariate effects and is based on a unique set of feature variables that does not

change depending on the value at which a set of covariates is fixed. In our development, we

show that our semi-parametric tree construction procedure can be easily applied to training

data by using standard classification and regression tree software packages. Thus, there

is no need to develop new software to implement our approach. An extension of our semi-

parametric construction methodology is developed for the case where individuals are matched

across two or more groups, and then to the case in which matched individuals are measured

on additional covariates.

In Chapter 5, we successfully apply our adjustment methodology for LDA and classifica-

tion trees to two post-mortem brain tissue data sets in which subjects are matched, namely,

that obtained from the studies conducted by Sweet et al. [33][34][35][36] and that from the

study conducted by Konopaske et al. [17]. In applying our methodology to the Sweet data,

we are able to identify among the six biomarkers of interest those that best distinguish a

control subject from a schizophrenia subject in any given pair, while, at the same time,

accounting for the effect of brain tissue storage time on these biomarkers. Also, when we

apply our adjustment procedure to the Konopaske data, we can determine the biomarkers

that best discriminate among the sham, haloperidol, and olanzapine treatment groups, while

taking into account the effect of triad matching.
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6.2 FUTURE WORK

6.2.1 Discriminant Analysis

As we noted in Section 3.2.3, the methodology behind general covariance adjusted LDA can

be easily extended to quadratic discriminant analysis (QDA). To elaborate, Tu et al. [37]

also develop general covariance adjusted QDA by considering the case in which given X =

x, Y ∼ NP (hi(x),Σi) in the ith group (i = 1, . . . , g), where Σi is the conditional variance-

covariance matrix in the ith group, hi(x) = µi+ρi(x; Θi), µi corresponds to the effect of the

ith group on Y, and ρi(x; Θi) = (ρ1,i(x;θ1,i), . . . , ρP,i(x;θP,i))
′ is a known smooth function

of x and the parameter vectors θ1,i, . . . ,θP,i in the ith group. Since Tu et al. do not address

in their development the fact that individuals may also be matched, we would like to extend

general covariance adjusted QDA to also account for the effect of group matching on the

feature variables of interest.

If the number of elements in Y = (Y1, . . . , YP )′ is smaller than the number of observations

in the training data, N , then no major issues arise when we implement either LDA or QDA

based on the training data. However, if we have high dimensional feature data (P >> N),

e.g., microarray data, then we encounter a number of issues, including the fact that the

parameter estimates used in traditional LDA and QDA may be highly unstable [11]. To

address these issues, Friedman proposed regularized discriminant analysis (RDA), a “hybrid”

between traditional LDA and QDA, which shrinks the group specific variance-covariance

matrices in QDA to one that is common to all groups, as in LDA [11][14]. Specifically, the

estimated regularized variance-covariance matrix in the ith group (i = 1, . . . , g) has the form

Σ̂Y Y,i(η) = ηΣ̂Y Y,i + (1− η)Σ̂Y Y , where η ∈ [0, 1], and Σ̂Y Y,i and Σ̂Y Y are the group specific

and pooled estimates of the variance-covariance matrix of Y. We would like to explore how

RDA can be modified to account for the effects of group matching and covariates on the

feature data.

Tu et al. [37] also introduce general covariance adjusted logistic discriminant analysis

for two groups. Specifically, Tu et al. define the covariance adjusted logistic discriminant

function as

log

[
f1(y|x)

f2(y|x)

]
= η + ςỹ,
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for a given x, where the conditional densities fi(y|x) (i = 1, 2) are defined as in Section

3.2.1.1, η ∈ R, ς = (ς1, . . . , ςP ), ỹ = y − ρ(x; Θ) denotes the covariate adjusted feature

vector, and ρ(x; Θ) is defined as in Section 3.2.3. In this modification to traditional logistic

discriminant analysis, the feature data are only adjusted for covariate effects. Due to the fact

that individuals may also be paired across the two groups, we are interested in extending

general covariance adjusted logistic discriminant analysis to also handle subject pairing.

6.2.2 Classification Trees

Our assumption of equal misclassification costs is prevalent in all of the adjustment method-

ologies we develop in Sections 4.2 to 4.5 for classification trees. In certain contexts, this

assumption may not be appropriate and, thus, we are interested in exploring ways to modify

these construction procedures to handle variable misclassification costs. However, additional

issues may arise in using this particular cost structure. For example, the Gini index is no

longer necessarily a strictly concave function of P (Y ∈ group i|Y ∈ t) under this cost struc-

ture and, thus, it is possible that the impurity of node t may increase when it is split in this

instance [7].

In Sections 4.1.2.3 and 4.2.2.2, we developed two tree construction approaches for nor-

mal populations based on the same assumptions made in traditional and covariance adjusted

LDA, respectively. We also noted the parallel between the classification trees using these two

approaches and the classification regions obtained from traditional and covariance adjusted

LDA in the case of univariate Y. However, we would like to further extend this compari-

son of classification trees for normal data and linear discriminant classification regions for

multivariate Y. For instance, we would like to theoretically justify whether traditional or

covariance adjusted LDA are better methods to partition the feature space Y than the con-

struction methods we formulate in Sections 4.1.2.3 and 4.2.2.2, respectively, or vice versa.

We are also interested in exploring how the BFOS tree construction algorithm can be imple-

mented for normal populations based on the assumptions made in traditional and covariance

adjusted QDA, as well as how the trees obtained from these two approaches compare with

the classification regions obtained from traditional and covariance adjusted QDA.

If we’re dealing with high dimensional feature data, the same issues arise when we imple-
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ment the BFOS algorithm for normal data as those that arose for traditional LDA and QDA.

In this case, we would like to explore whether this normal-based tree construction method

can be modified by regularizing the variance-covariance matrices of Y using the approach

Friedman took in his development of RDA. We are also interested in exploring whether we

can implement this modification if we consider the conditional distribution of the normal

feature data for a given covariate value. Assuming we can modify our traditional and condi-

tional data-based tree construction procedures in Sections 4.1.3.1 and 4.2.3.1, respectively,

in such a manner, we would like to explore how the corresponding results compare with those

obtained from traditional RDA, as well as RDA where the feature data have been suitably

adjusted for covariate effects.

In Section 4.1.1, we noted that classification trees can also split the feature space us-

ing linear combinations of the feature variables in Y [7]. Such splits partition the feature

space using a particular set of hyperplanes, as is the case for traditional LDA. Although

this construction approach yields trees that are considerably harder to interpret, relative

to trees obtained using splits of the form Y ≤ c, we are interested in examining how tradi-

tional classification trees using linear combination splits compare with traditional LDA when

we deal with normal populations. We would also like to explore how our conditional tree

construction approach in Section 4.2.2.2 for normal populations can be modified to handle

linear combination splits, and how the trees obtained from this approach compare with the

classification regions in covariance adjusted LDA.

To further illustrate the improvement of our semi-parametric and matched classification

tree methodologies, we may consider implementing them using simulated data, in order

to examine how these resulting trees compare with trees constructed using the traditional

BFOS algorithm. We are also interested in investigating other estimation methods beyond

that of LS estimation that can be used to estimate the parameters needed to construct our

semi-parametric trees, as well as our matched classification trees.

6.2.3 Tree Ensemble Construction Methods

Although there are several benefits to using classification trees, not least of which is their

simple and interpretable structure, they all share one important weakness. They are consid-

118



ered unstable because relatively small changes to the training data may lead to large changes

in the resulting tree [3]. Therefore, various authors have looked into possible solutions to

this issue, the most well known of which is Breiman’s, who proved that the accuracy of all

types of unstable classifiers could be increased by generating multiple classifiers obtained by

permuting the training data set or construction method and aggregating them to yield one

single classifier or ensemble [3][4]. He then proceeded to develop the bootstrap aggregating

or bagging algorithm [3], in which B classification trees are constructed using B bootstrap

replicates of the original training data set. Unlike the BFOS algorithm, trees constructed

using the bagging algorithm are not pruned. With the original training data used as a test

set, each individual is finally assigned to the group having the majority among the B trees.

Several extensions to bagging have subsequently been developed, the most notable of which

is the random forests algorithm [6].

As with bagging, random forests consist of B classification trees constructed from B

bootstrap replicates of the original training data set. However, for random forests, only a

randomly chosen subset of the P feature variables in Y is considered when constructing

each of these B trees. Each tree is then used to classify all individuals in the training data

so that each individual is classified into the majority group among all trees in a particular

forest. To clarify, suppose we construct a random forest of 100 trees based on the Sweet

et al. biomarker data. If a subject is assigned to the control diagnostic group in 60 of the

trees and assigned to the schizophrenia diagnostic group in the remaining 40 trees, then the

random forest based on the Sweet et al. data would classify this subject into the control

group.

However, we note that each classification tree in a random forest or similar tree en-

semble is constructed using the same procedure utilized in the traditional BFOS recursive

partitioning algorithm. Therefore, we can easily apply to random forests the adjustment

methodologies we develop for semi-parametric trees and matched classification trees in Sec-

tions 4.3 to 4.5 to account for the effects of group matching and/or covariates, an application

we plan to refine further post-dissertation.
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6.2.4 Clustering

In the context of post-mortem tissue studies, schizophrenia has been considered a disease

consisting of various subtypes. Due to the fact that this heterogeneity may be explained by

examining select brain regions, another goal of such studies is to analyze a particular set

of biomarkers in order to identify possible subpopulations of subjects with schizophrenia.

However, when determining these clusters of schizophrenia subjects, it is important to ac-

count for the fact that subjects in these studies are paired and also measured on additional

covariates, as was addressed by Wu in his development of several methods to cluster subjects

with schizophrenia in post-mortem tissue studies [40]. Although it is beyond the scope of

this dissertation, we would like to examine how the adjustment methodology we develop for

LDA and classification trees can be applied to various clustering techniques, so that we may

adjust for matching and covariate effects when we use clustering to reveal subpopulations

that may exist among a group of individuals.

6.3 SUMMARY

In studies where individuals from different groups are measured on a particular set of feature

variables, it may be of interest to determine which of these variables best discriminate among

these groups. When these individuals are also matched across these groups and measured

on additional covariates, it is important to account for both matching and covariate effects

when determining the discriminatory ability of the feature variables of interest in order to

avoid obtaining misleading results. However, there appears to be nothing in the literature

that incorporates both subject matching and covariate effects in the implementation of any

discrimination procedure, including LDA and classification trees. Due to their fairly common

usage, our research concentrates on modifying these two discriminatory methods to adjust

for the effects of group matching and covariates on the feature data. For any study that

involves matching subjects across different groups and/or measuring these subjects on other

covariates, the research methodology we develop in this dissertation is highly beneficial and

has potentially powerful applications.
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APPENDIX A

A.1 CLASSIFYING TWO PAIR MEMBERS IN LDA USING KNOWN

PAIR EFFECT

For a given pair, we assume Y+ ∼ N2P (µ+
i ,Σ

+) in the ith group ordering (i = 1, 2) of Yind

and Ysib, where

µ+
1 =

 µ1 + γ

µ2 + γ

 , µ+
2 =

 µ2 + γ

µ1 + γ

 , Σ+ =

 Σ + Ψ Ψ

Ψ Σ + Ψ

 ,
and Ψ represents the covariance between Yind and Ysib. To ensure that Σ+ is positive

definite in this instance, we assume that both Σ and Σ + 2Ψ are positive definite.

Due to the invariance of LDA to nonsingular transformations [1][23], Y+ and AY+ yield

the same linear discriminant classification rule, where A is a nonsingular 2P × 2P matrix.

For our purposes, we let A =
[

IP −IP
IP IP

]
, where IP is the P × P identity matrix, such that

AY+ =
[

Yind−Ysib
Yind+Ysib

]
≡ [ U

V ]. We then have that AY+ ∼ N2P (Aµ+
i ,AΣ+A′) in the ith group

ordering (i = 1, 2), where

Aµ+
1 =

 η1

η2 + 2γ

 , Aµ+
2 =

 −η1

η2 + 2γ

 , AΣ+A′ =

 2Σ∗ 0

0 2Σ1

 ,
η1 = µ1 − µ2, η2 = µ1 + µ2, Σ∗ = Σ, and Σ1 = Σ + 2Ψ.

From this parametrization, we have that Σ∗ and Σ1 are both positive definite based on

our previous assumption regarding Σ and Σ + 2Ψ. Based on our assumptions regarding

Σ∗ and Σ1, it follows that AΣ+A′ is also positive definite. Since the matrix W is positive

definite if and only if BWB′ is positive definite, where B is a nonsingular square matrix,

AΣ+A′ being positive definite implies that (A−1)(AΣ+A′)(A−1)′ = Σ+ is also positive

definite. We note here that our assumption that Ψ′ = Ψ is a sufficient condition for U and

V to be independent.
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Since U and V are independent, and the distribution of V provides no information for

discriminatory purposes, V can be ignored when constructing our classification rule. In other

words, we only need to consider the densities of U in each group ordering. As we stated

in Section 3.3.1, it is equally likely that each member of a given pair belongs to either of

the two groups and the labeling of a member as an individual or a sibling is assumed to be

completely random. Thus, we assume that the prior probability of each group ordering is

0.5. We can then apply to U the rule in (3.4) used for traditional LDA in order to obtain

the rule

R+
1 : (yind − ysib)

′Σ−1
∗ (µ1 − µ2) ≥ 0, R+

2 : (yind − ysib)
′Σ−1
∗ (µ1 − µ2) < 0,

which is identical to the rule in (3.16). In particular, we classify an individual in a pair and

their sibling into the first and second groups, respectively, if yind − ysib falls into region R+
1 ,

and vice versa if yind − ysib falls into region R+
2 .

A.2 CLASSIFYING TWO PAIR MEMBERS IN LDA USING KNOWN

PAIR AND COVARIATE EFFECTS

Given X+ = x+, we assume Y+ ∼ N2P (µ+
i(x),Σ

+
(x)) in the ith group ordering (i = 1, 2) of

Yind and Ysib for a given pair, where

µ+
1(x) =

[
µ1+γ+βxind
µ2+γ+βxsib

]
, µ+

2(x) =
[
µ2+γ+βxind
µ1+γ+βxsib

]
, Σ+

(x) =
[

Σ(x)+Ψ Ψ

Ψ Σ(x)+Ψ

]
,

and Ψ represents the covariance between Yind and Ysib. To ensure that Σ+
(x) is positive

definite, we assume that both Σ(x) and Σ(x) + 2Ψ are positive definite.

Based on the invariance property of LDA, we can equivalently consider the conditional

distribution of AY+, where A and AY+ ≡ [ U
V ] are defined as in Appendix A.1. Specifically,

given X+ = x+, AY+ ∼ N2P (Aµ+
i(x),AΣ+

(x)A
′) in the ith group ordering (i = 1, 2), where

Aµ+
1(x) =

[
η1+β(xind−xsib)

η2+2γ+β(xind+xsib)

]
, Aµ+

2(x) =
[
−η1+β(xind−xsib)

η2+2γ+β(xind+xsib)

]
, AΣ+

(x)A
′ =
[

2Σ∗(x) 0

0 2Σ1(x)

]
,

Σ∗(x) = Σ(x), Σ1(x) = Σ(x) + 2Ψ, and η1 and η2 are defined as in Appendix A.1.
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Based on our previous assumption regarding Σ(x) and Σ(x) + 2Ψ, the matrices Σ∗(x) and

Σ1(x) are both positive definite and, thus, AΣ+
(x)A

′ is also positive definite. Using the same

argument as in Appendix A.1, we have that if AΣ+
(x)A

′ is positive definite, then Σ+
(x) is also

positive definite. Our assumption that the covariance matrix Ψ is symmetric is a sufficient

condition for U ≡ Yind −Ysib and V ≡ Yind + Ysib to be independent.

For a given value of x+, U and V are independent, and the distribution of V provides no

information that is useful for discrimination purposes. Therefore, we can ignore V and only

consider the conditional distribution of U in each group ordering. Retaining our assumption

from Appendix A.1 of equal priors for each group ordering, we can apply general covariance

adjusted LDA based on the conditional distributions of U in each group ordering to obtain

the rule

R+
1(x) : [(yind − ysib)− β(xind − xsib)]

′Σ−1
∗(x)(µ1 − µ2) ≥ 0,

R+
2(x) : [(yind − ysib)− β(xind − xsib)]

′Σ−1
∗(x)(µ1 − µ2) < 0,

(A.1)

which is identical to the rule provided in (3.22). Based on (A.1), we classify an individual in

a pair and his or her sibling into the first and second groups, respectively, if (yind − ysib)−

β(xind − xsib) falls into region R+
1(x), and vice versa if (yind − ysib)− β(xind − xsib) falls into

region R+
2(x).

We note that even if β differs between the two groups, we can still implement our discrim-

inant approach based on Y+. In this case, however, it can be shown that β and Σ−1
∗(x)(µ1−µ2)

in (A.1) are now replaced with 1
2
(β1 +β2) and Σ−1

∗(x) [(µ1 − µ2) + (β1 − β2)(xind − xsib)], re-

spectively. Therefore, if the (assumed linear) relationship between the feature and covariate

data depends on group, then the subset of covariate adjusted feature variables we identify

as best discriminating between an individual in group 1 and an individual in group 2 in a

given pair also depends on the covariate difference xind − xsib.
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APPENDIX B

B.1 CLASSIFYING ALL MEMBERS OF A MATCH IN LDA USING

KNOWN MATCH EFFECT

For notational convenience, we consider the case of matching across three groups, where

Y+ ∼ N3P (µ+
i ,Σ

+) in the ith group ordering (i = 1, . . . , 6) of Yind, Ysib,1, and Ysib,2 for a

given match, where

µ+
1 =

[
µ1+γ
µ2+γ
µ3+γ

]
, µ+

2 =

[
µ1+γ
µ3+γ
µ2+γ

]
, µ+

3 =

[
µ2+γ
µ1+γ
µ3+γ

]
, µ+

4 =

[
µ2+γ
µ3+γ
µ1+γ

]
,

µ+
5 =

[
µ3+γ
µ1+γ
µ2+γ

]
, µ+

6 =

[
µ3+γ
µ2+γ
µ1+γ

]
, Σ+ =

[
Σ+Ψ Ψ Ψ

Ψ Σ+Ψ Ψ
Ψ Ψ Σ+Ψ

]
,

and Ψ represents the covariance between any two of the three random feature vectors in that

match such that Ψ′ = Ψ. We assume Σ and Σ + 3Ψ are positive definite to ensure that Σ+

is positive definite.

Since LDA is invariant to nonsingular transformations, constructing a classification rule

using either Y+ or AY+ yields the same result, where A is a nonsingular 3P ×3P matrix in

this case. For our purposes, we let A =

[
IP − 1

2
IP − 1

2
IP

0 IP IP
IP IP IP

]
so that AY+ =

[
Yind− 1

2
(Ysib,1+Ysib,2)

Ysib,1−Ysib,2

Yind+Ysib,1+Ysib,2

]
≡
[

Z
S
W

]
. Thus, AY+ ∼ N3P (Aµ+

i ,AΣ+A′) in the ith group ordering (i = 1, . . . , 6), where

Aµ+
1 =

[
υ1
υ2

υ3+3γ

]
, Aµ+

2 =
[ υ1
−υ2

υ3+3γ

]
, Aµ+

3 =

[
− 1

2
υ1+ 3

4
υ2

υ1+ 1
2
υ2

υ3+3γ

]
, Aµ+

4 =

[
− 1

2
υ1+ 3

4
υ2

−υ1− 1
2
υ2

υ3+3γ

]
,

Aµ+
5 =

[
− 1

2
υ1− 3

4
υ2

υ1− 1
2
υ2

υ3+3γ

]
, Aµ+

6 =

[
− 1

2
υ1− 3

4
υ2

−υ1+ 1
2
υ2

υ3+3γ

]
, AΣ+A′ =

[
3
2
Σ∗ 0 0

0 2Σ∗ 0
0 0 3Σ1

]
,

υ1 = µ1− 1
2
(µ2 +µ3), υ2 = µ2−µ3, υ3 = µ1 +µ2 +µ3, Σ∗ = Σ, and Σ1 = Σ + 3Ψ. Based

on this parametrization, the parameters υ1, υ2, and υ3 are all in RP . Due to the fact that

Σ∗ and Σ1 are positive definite based on our previous assumption regarding Σ and Σ + 3Ψ,

the covariance matrix AΣ+A′ is also positive definite and, thus, so is Σ+. It is easy to show
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that our assumption that Ψ = Ψ′ is a sufficient condition for the random vectors Z, S, and

W to be mutually independent.

Since W is independent from both Z and S and the distribution of W provides no

discriminatory information, W can be ignored so that we only consider the distribution

of [ Z
S ] in each group ordering when constructing our classification rule. Since each triad

member is equally likely to belong to one of the three groups, as was discussed in Section

3.5.1, and the labeling of a member as an individual or as any of the other two siblings is

completely random, we assume that each group ordering is equally likely. In other words, we

assume the prior probability of each group ordering is 1/6. We can then apply traditional

LDA for multiple groups to the stacked differenced vector [ Z
S ], which yields the following

classification regions:

R+
i :

[
d∗ − 1

2

(
µ

+(∗)
i + µ

+(∗)
j

)]′ [
2
3
Σ−1
∗ 0

0 1
2
Σ−1
∗

] (
µ

+(∗)
i − µ+(∗)

j

)
> 0 j = 1, . . . , 6; j 6= i,

(B.1)

where d∗ is the observed counterpart of [ Z
S ] and µ

+(∗)
i denotes the first 2P components of

Aµ+
i (i = 1, . . . , 6). From (B.1), we have that a new triad with an observed feature value

d∗ would be classified into the ith group ordering if d∗ falls into region R+
i (i = 1, . . . , 6).

Using the formulas for µ
+(∗)
i and µ

+(∗)
j , we can re-express the rule in (B.1) as

R+
i : dij > 0 j = 1, . . . , 6; j 6= i, (B.2)

where

d12 = (ysib,1 − ysib,2)′Σ−1
∗ (µ2 − µ3), d13 = (yind − ysib,1)′Σ−1

∗ (µ1 − µ2),

d16 = (yind − ysib,2)′Σ−1
∗ (µ1 − µ3), d24 = (yind − ysib,2)′Σ−1

∗ (µ1 − µ2),

d25 = (yind − ysib,1)′Σ−1
∗ (µ1 − µ3), d34 = (ysib,1 − ysib,2)′Σ−1

∗ (µ1 − µ3),

d35 = (yind − ysib,2)′Σ−1
∗ (µ2 − µ3), d46 = (yind − ysib,1)′Σ−1

∗ (µ2 − µ3),

d56 = (ysib,1 − ysib,2)′Σ−1
∗ (µ1 − µ2),

d14 = d12 + d24, d15 = d13 + d35, d23 = d13 − d12, d26 = d24 + d46, d36 = d16 − d13, and d45 =

d25−d24. We can compute the other 15 dij functions by using the fact that dji = −dij. Based

on the regions R+
i , it is not difficult to show that the discriminant function dij distinguishes

the ith group ordering from the jth group ordering (i, j = 1, . . . , 6; i < j) and, thus, there

are a total of 15 distinct discriminant functions that differentiate one group ordering from

another.
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B.2 CLASSIFYING ALL MEMBERS OF A MATCH IN LDA USING

UNKNOWN MATCH EFFECT

We now discuss how the approach we develop in Appendix B.1, which focuses on matching

across three groups, can be implemented using available training data consisting of yik,

the observed feature vector for the member of the kth triple belonging to the ith group

(i = 1, 2, 3; k = 1, . . . , K). To evaluate the classification rule in (B.2), we need to estimate

the parameters Σ∗, µ1 − µ2, µ1 − µ3, and µ2 − µ3. We can do so by first considering the

model for the transformed stacked feature vector AY+ in Appendix B.1, where we showed

that the models for Y+ and AY+ yielded the same linear discriminant rule. Recall from our

model for AY+ that µ1 − µ2 = υ1 − 1
2
υ2, µ1 − µ3 = υ1 + 1

2
υ2, and µ2 − µ3 = υ2.

We can estimate υ1, υ2, and Σ∗ using the transformed training data
[

zik
sjk
wik

]
, where

zik = yik − 1
2
(yjk + ylk), sjk = yjk − ylk, and wik = yik + yjk + ylk (i, j, l = 1, 2, 3; i 6=

j 6= l). Based on the facts that υ1 and υ2 are unconstrained, Σ∗ is only constrained to be

positive definite, and the random vector W is independent of the difference vectors Z and

S in our model for AY+, we can estimate υ1, υ2, and Σ∗ solely based on the differenced

training feature vector [ zik
sjk ]. Using ML estimation, the ML estimates of υ1, υ2, and Σ∗

can be shown to equal υ̂1 = z̄1. = ȳ1. − 1
2
(ȳ2. + ȳ3.), υ̂2 = s̄2. = ȳ2. − ȳ3., and Σ̂∗ =

1
2K

[
2
3

∑K
k=1 (z1k − z̄1.) (z1k − z̄1.)

′ + 1
2

∑K
k=1 (s2k − s̄2.) (s2k − s̄2.)

′
]
. Hence, the ML estimates

of µ1 − µ2, µ1 − µ3, and µ2 − µ3 can be directly obtained.

B.3 CLASSIFYING ALL MEMBERS OF A MATCH IN LDA USING

KNOWN MATCH AND COVARIATE EFFECTS

We again focus on the case where individuals are matched across three groups. Given

X+ = x+, we assume Y+ ∼ N3P (µ+
i(x),Σ

+
(x)) in the ith group ordering (i = 1, . . . , 6) of Yind,

Ysib,1, and Ysib,2 for a given match, where

µ+
1(x) =

[
µ1+γ+βxind
µ2+γ+βxsib,1
µ3+γ+βxsib,2

]
, µ+

2(x) =

[
µ1+γ+βxind
µ3+γ+βxsib,1
µ2+γ+βxsib,2

]
, µ+

3(x) =

[
µ2+γ+βxind
µ1+γ+βxsib,1
µ3+γ+βxsib,2

]
, µ+

4(x) =

[
µ2+γ+βxind
µ3+γ+βxsib,1
µ1+γ+βxsib,2

]
,

µ+
5(x) =

[
µ3+γ+βxind
µ1+γ+βxsib,1
µ2+γ+βxsib,2

]
, µ+

6(x) =

[
µ3+γ+βxind
µ2+γ+βxsib,1
µ1+γ+βxsib,2

]
, Σ+

(x) =

[
Σ(x)+Ψ Ψ Ψ

Ψ Σ(x)+Ψ Ψ

Ψ Ψ Σ(x)+Ψ

]
,
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and Ψ represents the symmetric covariance matrix between any two of the three random

feature vectors in that match. To ensure that Σ+
(x) is positive definite, we assume Σ(x) and

Σ(x) + 3Ψ are positive definite.

Using the invariance property of LDA, we can equivalently consider the conditional dis-

tribution of AY+, where A and AY+ ≡
[

Z
S
W

]
are defined as in Appendix B.1. Given X+ =

x+, AY+ ∼ N3P (Aµ+
i(x),AΣ+

(x)A
′) in the ith group ordering (i = 1, . . . , 6), where

Aµ+
1(x) =

[
υ1+βxdiff,1

υ2+βxdiff,2

υ3+3γ+βxsum

]
, Aµ+

2(x) =

[
υ1+βxdiff,1

−υ2+βxdiff,2

υ3+3γ+βxsum

]
, Aµ+

3(x) =

[
− 1

2
υ1+ 3

4
υ2+βxdiff,1

υ1+ 1
2
υ2+βxdiff,2

υ3+3γ+βxsum

]
,

Aµ+
4(x) =

[
− 1

2
υ1+ 3

4
υ2+βxdiff,1

−υ1− 1
2
υ2+βxdiff,2

υ3+3γ+βxsum

]
, Aµ+

5(x) =

[
− 1

2
υ1− 3

4
υ2+βxdiff,1

υ1− 1
2
υ2+βxdiff,2

υ3+3γ+βxsum

]
, Aµ+

6(x) =

[
− 1

2
υ1− 3

4
υ2+βxdiff,1

−υ1+ 1
2
υ2+βxdiff,2

υ3+3γ+βxsum

]
,

AΣ+
(x)A

′ =

[ 3
2
Σ∗(x) 0 0

0 2Σ∗(x) 0

0 0 3Σ1(x)

]
,

xdiff,1 = xind− 1
2
(xsib,1 +xsib,2), xdiff,2 = xsib,1−xsib,2, xsum = xind+xsib,1 +xsib,2, Σ∗(x) = Σ(x),

Σ1(x) = Σ(x) + 3Ψ, and υ1, υ2, and υ3 are defined as in Appendix B.1.

From our assumption regarding Σ(x) and Σ(x) + 3Ψ, we have that Σ∗(x) and Σ1(x) are

both positive definite and, thus, so is AΣ+
(x)A

′. Based on our argument in Appendix A, the

fact that AΣ+
(x)A

′ is positive definite implies that Σ+
(x) is also positive definite. It is not

difficult to show that our assumption that Ψ is symmetric is a sufficient condition for Z, S,

and W to be mutually independent based on our conditional model for AY+.

For a given match and a given value of x+, W is independent from both Z and S, and

the conditional distribution of W provides no information that aids in discriminating among

the six group orderings. Thus, we only need to consider the conditional distribution of [ Z
S ]

in each group ordering when constructing our classification rule. Retaining our assumption

from Appendix B.1 of equal priors for each group ordering, we can apply general covari-

ance adjusted LDA based on the conditional distributions of [ Z
S ] to obtain the following

classification rule:

R+
i(x) :

[
d∗ − 1

2

(
µ

+(∗)
i(x) + µ

+(∗)
j(x)

)]′ [ 2
3
Σ−1
∗(x)

0

0 1
2
Σ−1
∗(x)

](
µ

+(∗)
i(x) − µ

+(∗)
j(x)

)
> 0 j = 1, . . . , 6; j 6= i,

(B.3)

where d∗ is defined as in Appendix B.1 and µ
+(∗)
i(x) denotes the first 2P components of Aµ+

i(x)

(i = 1, . . . , 6). A new triad with an observed feature value d∗ would then be classified into

the ith group ordering if d∗ falls into region R+
i(x) (i = 1, . . . , 6).
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Based on the formulas for µ
+(∗)
i(x) and µ

+(∗)
j(x) , the rule in (B.3) can be re-expressed as

R+
i(x) : dij(x) > 0 j = 1, . . . , 6; j 6= i, (B.4)

where

d12(x) = [ysib,1 − ysib,2 − β(xsib,1 − xsib,2)]′Σ−1
∗(x)(µ2 − µ3),

d13(x) = [yind − ysib,1 − β(xind − xsib,1)]′Σ−1
∗(x)(µ1 − µ2),

d16(x) = [yind − ysib,2 − β(xind − xsib,2)]′Σ−1
∗(x)(µ1 − µ3),

d24(x) = [yind − ysib,2 − β(xind − xsib,2)]′Σ−1
∗(x)(µ1 − µ2),

d25(x) = [yind − ysib,1 − β(xind − xsib,1)]′Σ−1
∗(x)(µ1 − µ3),

d34(x) = [ysib,1 − ysib,2 − β(xsib,1 − xsib,2)]′Σ−1
∗(x)(µ1 − µ3),

d35(x) = [yind − ysib,2 − β(xind − xsib,2)]′Σ−1
∗(x)(µ2 − µ3),

d46(x) = [yind − ysib,1 − β(xind − xsib,1)]′Σ−1
∗(x)(µ2 − µ3),

d56(x) = [ysib,1 − ysib,2 − β(xsib,1 − xsib,2)]′Σ−1
∗(x)(µ1 − µ2),

d14(x) = d12(x) + d24(x), d15(x) = d13(x) + d35(x), d23(x) = d13(x) − d12(x), d26(x) = d24(x) + d46(x),

d36(x) = d16(x) − d13(x), and d45(x) = d25(x) − d24(x). We can compute the other 15 dij(x)

functions by using the fact that dji(x) = −dij(x). Using the regions R+
i(x), it can be shown

that the discriminant function dij(x) distinguishes the ith group ordering from the jth group

ordering (i, j = 1, . . . , 6; i < j) and, thus, there are 15 distinct discriminant functions that

differentiate one group ordering from another.

B.4 CLASSIFYING ALL MEMBERS OF A MATCH IN LDA USING

UNKNOWN MATCH AND COVARIATE EFFECTS

With training data consisting of (yik,xik), the observed feature and covariate vectors for

the member of the kth triple belonging to the ith group (i = 1, 2, 3; k = 1, . . . , K), we

can estimate the parameters β, Σ∗(x), µ1 − µ2, µ1 − µ3, and µ2 − µ3 that are needed to

compute the classification regions in (B.4). To estimate these parameters, we consider the
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conditional model for Y+ in Appendix B.3, as well as the conditional model for AY+, for

which µ1 − µ2 = υ1 − 1
2
υ2, µ1 − µ3 = υ1 + 1

2
υ2, and µ2 − µ3 = υ2.

We first obtain a consistent estimator of β, which we estimate from the training data

based on our conditional model for Y+. To elaborate, let Yik denote the random feature

vector that corresponds to the member of the kth triple belonging to the ith group (i =

1, 2, 3; k = 1, . . . , K), with conditional mean E[Yik] = µi+γk+βxik. To obtain a consistent

estimator of β, we can use LS estimation to fit our assumed model for the conditional mean

E[Yik] using the training data. The design matrix for this model is assumed to satisfy

suitable conditions so that the LS estimate β̂ is unique.

Once we obtain the estimate β̂, which we view as fixed, we can estimate Σ∗(x), µ1−µ2,

µ1−µ3, and µ2−µ3 using a procedure similar to that used in Appendix B.2, where we only

accounted for the effect of triple matching. Specifically, we compute the covariate adjusted

differenced training feature vector
[

z∗ik
s∗jk

]
, where z∗ik = [yik− 1

2
(yjk+ylk)]−β̂[xik− 1

2
(xjk+xlk)],

and s∗jk = yjk−ylk− β̂(xjk−xlk) (i, j, l = 1, 2, 3; i 6= j 6= l) and, based on this data, use the

same ML estimation procedure as in Appendix B.2. In doing so, we obtain the ML estimates

υ̂1 = z̄∗1. = [ȳ1. − 1
2
(ȳ2. + ȳ3.)] − β̂[x̄1. − 1

2
(x̄2. + x̄3.)], υ̂2 = s̄∗2. = ȳ2. − ȳ3. − β̂(x̄2. − x̄3.),

and Σ̂∗(x) = 1
2K

[
2
3

∑K
k=1 (z∗1k − z̄∗1.) (z∗1k − z̄∗1.)

′ + 1
2

∑K
k=1 (s∗2k − s̄∗2.) (s∗2k − s̄∗2.)

′
]
. From these

estimates of υ1 and υ2, we can obtain the corresponding estimates of µ1−µ2, µ1−µ3, and

µ2 − µ3.
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APPENDIX C

C.1 PROPERTIES OF IMPURITY MEASURE BASED GOS CRITERIA

Proposition C.1.1. Let φ(p1, . . . , pg) be a strictly concave function such that pi ≥ 0 (i =

1, . . . , g) and
∑g

i=1 pi = 1. For M(t) = φ (P (1|t), . . . , P (g|t)), where P (Y ∈ group i|Y ∈ t)

= P (i|t),

M(t)− PLM(tL)− PRM(tR) ≥ 0, (C.1)

where PL = P (Y ∈ tL|Y ∈ t) and PR = P (Y ∈ tR|Y ∈ t). Equality in (C.1) holds if and

only if P (i|tL) = P (i|tR) = P (i|t) (i = 1, . . . , g). If Y is continuous, the inequality in (C.1)

is strict.

Proof. Since φ is strictly concave,

PLM(tL) + PRM(tR) = PL φ (P (1|tL), . . . , P (g|tL)) + PR φ (P (1|tR), . . . , P (g|tR))

≤ φ (PLP (1|tL) + PRP (1|tR), . . . , PLP (g|tL) + PRP (g|tR)) ,
(C.2)

with equality holding in (C.2) if and only if P (i|tL) = P (i|tR) = P (i|t) (i = 1, . . . , g). Since

PL =
P (Y ∈ tL,Y ∈ t)

P (Y ∈ t)
=
P (Y ∈ tL)

P (Y ∈ t)
(tL ⊂ t) and

PR =
P (Y ∈ tR,Y ∈ t)

P (Y ∈ t)
=
P (Y ∈ tR)

P (Y ∈ t)
(tR ⊂ t),

it follows that

PLP (i|tL) + PRP (i|tR) =
[P (Y ∈ group i,Y ∈ tL) + P (Y ∈ group i,Y ∈ tR)]

P (Y ∈ t)

=
P (Y ∈ group i,Y ∈ t)

P (Y ∈ t)

= P (i|t).

(C.3)

From (C.3), the right hand side of the inequality in (C.2) is equal to φ (P (1|t), . . . , P (g|t))

= M(t) and, thus, M(t) − PLM(tL) − PRM(tR) ≥ 0. Equality holds if and only if P (i|tL)
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= P (i|tR) = P (i|t) (i = 1, . . . , g). If Y is continuous, this condition will never hold and

M(t)− PLM(tL)− PRM(tR) will be positive.

C.2 TREE CONSTRUCTION USING STACKED FEATURE VECTOR,

ADJUSTING FOR EFFECT OF MATCHING

Based on the distribution of the stacked random feature vector Y+
γ , we can also consider

Ỹ+ =

 Ỹind

Ỹsib,1

...
Ỹsib,g−1

 =

 Yγ,ind−γ
Yγ,sib,1−γ

...
Yγ,sib,g−1−γ

, which has been adjusted for the effect of matching and

has known CDF F
(i1)

Ỹ
(c̃ind) × F (i2)

Ỹ
(c̃sib,1) × . . . F (ig)

Ỹ
(c̃sib,g−1) ≡ F

(l)

Ỹ+(c̃ind, c̃sib,1, . . . , c̃sib,g−1)

in the lth group ordering (i1, i2, . . . , ig = 1, . . . , g; i1 6= i2 6= · · · 6= ig; l = 1, . . . , g!).

As was previously stated in Section 4.4.1, it is equally likely that each member of a given

match belongs to either of the two groups and the labeling of a member as an individual

or as any of the g − 1 siblings is assumed to be completely random. Therefore, we assume

that each group ordering is equally likely, i.e., the prior probability of each group ordering

is equal to 1/g!. Based on this assumption and our assumption of equal misclassification

costs, we can construct the adjusted tree T
′adj(γ+) using the traditional population-based

approach in Section 4.1.2.1 by replacing the probabilities P (i)(Y ∈ t), P (i)(Y ∈ tL), and

P (i)(Y ∈ tR) used to construct T ′ with the probabilities P (l)(Ỹ+ ∈ t), P (l)(Ỹ+ ∈ tL), and

P (l)(Ỹ+ ∈ tR) based on the CDF of Ỹ+ in the lth group ordering, where P (l)(Ỹ+ ∈ t) =

P (Ỹ+ ∈ t|Ỹ+ ∈ ordering l). We can use the following rule to assign each terminal node t of

T
′adj(γ+) to the lth group ordering of Ỹ+:

R+
l :
{
t : P (l)(Ỹ+ ∈ t) > P (j)(Ỹ+ ∈ t)

}
, j = 1, . . . , g!; j 6= l. (C.4)

If the observed adjusted feature data for a new match, ỹ+, falls into a terminal node of

T
′adj(γ+) that has been assigned to the lth group ordering according to the rule in (C.4), then

we simultaneously classify all members in that match into the lth group ordering.
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APPENDIX D

APPLICATION OF DIFFERENCING AND STACKED LDA APPROACHES

TO KONOPASKE DATA

To show the difference between the differencing and stacked approaches in Sections 3.5.2.2

and 3.5.2.3, we applied these two approaches to the following three biomarkers measured in

the Konopaske et al. brain tissue study: oligodendrocyte number, oligodendrocyte density,

and the ratio of oligodendrocyte number to glial cell number (oligodendrocyte ratio). The

linear discriminant functions obtained from the differencing approach are displayed in Table

D1.

Table D1: Linear Discriminant Functions for Haloperidol (H) vs. Olanzapine (O), Haloperi-

dol vs. Sham (S), and Olanzapine vs. Sham (Differencing Approach)

Biomarker Coefficient Coefficient Coefficient

(H vs. O) (H vs. S) (O vs. S)

Oligodendrocyte Number 0.00000011 -0.00000047 -0.00000059

Oligodendrocyte Density -0.0008469 0.0011501 0.001997

Oligodendrocyte Ratio 36.67692 2.71122 -33.9657

In our application of the stacked approach, we have the following six treatment group

orderings:

Ordering Ordering Ordering Ordering Ordering Ordering
Member 1 2 3 4 5 6

Individual haloperidol haloperidol olanzapine olanzapine sham sham

Sibling 1 olanzapine sham haloperidol sham haloperidol olanzapine

Sibling 2 sham olanzapine sham haloperidol olanzapine haloperidol
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The estimates of the linear discriminant functions dij (i, j = 1, . . . , 6; i < j) in (B.2) are

provided in Tables D2 through D4.

Table D2: Linear Discriminant Functions for Konopaske Data (Stacked Approach)

(Oligo Number - Oligodendrocyte Number, Oligo Density - Oligodendrocyte Density,

Oligo Ratio - Oligodendrocyte Ratio)

Member Biomarker d12 d13 d14 d15 d16

Individual Oligo Number 0 0.00000011 0.00000011 -0.00000047 -0.00000047

Oligo Density 0 -0.0008469 -0.0008469 0.0011501 0.0011501

Oligo Ratio 0 36.67692 36.67692 2.71122 2.71122

Sibling 1 Oligo Number -0.00000059 -0.00000011 -0.00000059 -0.00000011 0

Oligo Density 0.001994 0.0008469 0.001994 0.0008469 0

Oligo Ratio -33.9657 -36.67692 -33.9657 -36.67692 0

Sibling 2 Oligo Number 0.00000059 0 0.00000047 0.00000059 0.00000047

Oligo Density -0.001994 0 -0.0011471 -0.001997 -0.0011501

Oligo Ratio 33.9657 0 -2.71122 33.9657 -2.71122

Table D3: Linear Discriminant Functions for Konopaske Data cont. (Stacked Approach)

Member Biomarker d23 d24 d25 d26 d34

Individual Oligo Number 0.00000011 0.00000011 -0.00000047 -0.00000047 0

Oligo Density -0.0008469 -0.0008469 0.0011501 0.0011501 0

Oligo Ratio 36.67692 36.67692 2.71122 2.71122 0

Sibling 1 Oligo Number 0.00000047 0 0.00000047 0.00000059 -0.00000047

Oligo Density -0.0011471 0 -0.0011501 -0.001997 0.0011472

Oligo Ratio -2.71122 0 -2.71122 33.9657 2.71122

Sibling 2 Oligo Number -0.00000059 -0.00000011 0 -0.00000011 0.00000047

Oligo Density 0.001994 0.0008469 0 0.0008469 -0.0011472

Oligo Ratio -33.9657 -36.67692 0 -36.67692 -2.71122
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Table D4: Linear Discriminant Functions for Konopaske Data cont. (Stacked Approach)

Member Biomarker d35 d36 d45 d46 d56

Individual Oligo Number -0.00000059 -0.00000059 -0.00000059 -0.00000059 0

Oligo Density 0.001997 0.001997 0.001997 0.001997 0

Oligo Ratio -33.9657 -33.9657 -33.9657 -33.9657 0

Sibling 1 Oligo Number 0 0.00000011 0.00000047 0.00000059 0.00000011

Oligo Density 0 -0.0008469 -0.0011501 -0.001997 -0.000847

Oligo Ratio 0 36.67692 -2.71122 33.9657 36.67692

Sibling 2 Oligo Number 0.00000059 0.00000047 0.00000011 0 -0.00000011

Oligo Density -0.001997 -0.0011501 -0.0008469 0 0.000847

Oligo Ratio 33.9657 -2.71122 36.67692 0 -36.67692

We can compute the other 15 discriminant functions dij (i, j = 1, . . . , 6; i > j) by using

the fact that dji = −dij. In addition, using the classification regions obtained from the

differencing and stacked approaches, we have that the cross validated correct classification

rates obtained from these two approaches are 44% and 50%, respectively.

The three discriminant functions in Table D1 can be used, after appropriate standardiza-

tion, to identify which of the three biomarkers under consideration best discriminate among

the haloperidol, olanzapine, and sham treatment groups. On the other hand, although we

have that the discriminant functions dij in Tables D2 to D4 (i, j = 1, . . . , 6; i < j) discrim-

inate between the ith and jth treatment group orderings, it is not readily apparent that we

can use this kind of information to determine which of the three biomarkers best distinguish

among the three treatment groups.

In examining the discriminant functions and correct classification rates obtained from

applying our differencing and stacked approaches to the Konopaske et al. biomarker data,

we clearly see that as was the case in the population setting, these two approaches yield

completely different types of results in practice from both a discrimination and classification

standpoint.
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