Fluorous Mixture Synthesis (FMS) of Four Isomers of 4,8,12,-Trimethylnonadecanol and the Development of an NMR-based Method for Determining the Configurations of Polyisoprenoid Structures

by

An-Hung Edmund Yeh

Bsc, Queen’s University, Kingston, Canada, 2004

MA, CCNY, New York, 2006

Submitted to the Graduate Faculty of

the Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2011
This dissertation was presented

by

An-Hung Edmund Yeh

It was defended on
November 22, 2011
and approved by
Professor Paul E. Floreancig, Department of Chemistry
Professor Scott G. Nelson, Department of Chemistry
Professor Billy W. Day, Department of Pharmaceutical Sciences
Dissertation Advisor: Professor Dennis P. Curran, Department of Chemistry
Fluorous Mixture Synthesis (FMS) of Four Isomers of 4,8,12,-Trimethylnonadecanol and the Development of an NMR-based Method for Determining the Configurations in Polyisoprenoid Structures

An-Hung Edmund Yeh, PhD

University of Pittsburgh, 2011

Copyright © by An-Hung Edmund Yeh

2011
Fluorous Mixture Synthesis (FMS) of Four Isomers of 4,8,12,-Trimethylnonadecanol and the Development of an NMR-based Method for Determining the Configurations in Polyisoprenoid Structures

An-Hung Edmund Yeh, PhD

University of Pittsburgh, 2011

The chiral polyisoprenoid motif has been identified in various natural products such as vitamin E, chlorophyll-d, and β-mannosyl phosphomycoketide. This motif features stereocenters bearing branched methyl groups at every fourth carbon of a long alkyl chain. Due to the lack of function group, assigning the configurations of these structures is difficult.

Herein, we describe the fluorous mixture synthesis (FMS) of the 4\textit{S},8\textit{S},12\textit{S}, 4\textit{S},8\textit{R},12\textit{S}, 4\textit{R},8\textit{S},12\textit{S}, and 4\textit{R},8\textit{R},12\textit{S}-trimethylnonadecanol isomers. The FMS features a new family of ultra-light fluorous O-phenyl thionocarbonate tags and employees the most efficient fluorous tagging strategy to date. The analyses of these four isomers were found to exhibit small but reliable differences in 1H and 13C NMR spectra. Furthermore, these chemical shifts of the branched methyl groups were diagnostic of relative configurations. By deducing the relative relationship between configuration and chemical shift, we developed predictions of 4,8,12,16-tetramethyltricoanol, and 4,8,12,16,20-pentamethyl-heptacosanol.
TABLE OF CONTENTS

LIST OF ABBREVIATIONS .. XV

PREFACE .. XVI

1.0 INTRODUCTION ... 1

1.1 FLUOROUS MIXTURE SYNTHESIS (FMS) ... 1

1.1.1 Fluorous Separation by Fluorous-HPLC .. 2

1.1.2 Uses of FMS in Natural Product Synthesis ... 4

1.1.3 Fluorous Tagging Strategies ... 5

1.1.4 Current Limitations of FMS ... 8

1.2 NATURAL PRODUCTS CONTAINING CHIRAL SATURATED POLYISOPRENOID MOTIFS 9

1.2.1 Vitamin E ... 10

1.2.2 β-Manosyl Phosphomycoketide (MPM) .. 12

1.2.3 Project Design and Overview: Identifying Branched Methyl Group Configurations in Polyisoprenoid Systems by NMR Spectroscopy ... 15

1.3 INITIAL ITERATIVE FMS APPROACH TOWARDS FOUR ISOMERS OF 4,8,12-TRIMETHYLNONADECANOL ... 16

1.3.1 Synthetic Design .. 17

1.3.2 Initial FMS of 4,8,12-Trimethylnonadecanol with TIPSF tags .. 18
1.3.3 Conclusions from The Initial Synthesis .. 20

2.0 NEW ITERATIVE APPROACH TOWARDS FMS OF FOUR ISOMERS OF 4,8,12-TRIMETHYLNONADECANOL ... 21

2.1 THE REVISED ITERATIVE APPROACH ... 21

2.2 CROTYLATION REACTIONS .. 22

2.2.1 Brown Crotylation ... 22

2.2.2 Roush Crotylation ... 23

2.3 HYDROFORMYLATION IN THE PRESENCE OF O-PHENYL THIONOCARBONATE ... 26

2.3.1 Rh-Catalyzed Hydroformylation in the Presence of O-Phenyl Thionocarbonate ... 27

2.4 CROTYLATION REACTIONS IN THE PRESENCE OF O-PHENYL THIONOCARBONATE ... 29

2.4.1 Brown Crotylation of Aldehyde (4R,5R)-43 .. 29

2.4.2 Roush Crotylation of Aldehyde (4R,5S)-43 .. 30

2.4.3 O-Phenyl Thionocarbonate Compatibility with Crotylation Reaction Summary .. 32

2.5 FLUOROUS O-PHENYL THIONOCARBONATE TAGS .. 32

2.5.1 4-Perfluoroalkyl-O-Phenyl Thionocarbonate Tags .. 32

2.5.2 Ultra-Light Fluorous O-Phenyl Thionocarbonate Tags 35

2.5.3 O-Phenyl Thionocarbonate Fluorous Tag Summary 36

3.0 THE FMS OF FOUR ISOMERS OF 4,8,12-TRIMETHYLNONADECANOL USING ULTRA-LIGHT FLUOROUS O-PHENYL THIONOCARBONATE TAGS 37
3.1 THE NEW APPROACH WITH O-PHENYL, O-2-FLUOROPHENYL, AND O-4-FLUOROPHENYL THIONOCARBONATE TAGS ... 38

3.1.1 Tagging Scheme ... 38

3.1.2 First Cycle .. 39

3.1.3 Second Cycle ... 39

3.1.4 Third Cycle ... 40

3.1.5 Characterizations and Fluorous Demixing of Mixture M-71 ... 42

3.2 THE NEW APPROACH WITH O-PHENYL, O-4-FLUOROPHENYL, AND O-3,4-DIFLUOROPHENYL THIONOCARBONATE TAGS 43

3.2.1 Tagging Scheme ... 43

3.2.2 Second Cycle .. 44

3.2.3 Third Cycle .. 45

3.2.4 Characterizations and Fluorous Demixing of Mixture M-78 .. 46

3.2.5 Global Radical Deoxygenation (Detagging) of F-O-Phenyl Thionocarbonate .. 49

3.2.6 FMS Summary ... 51

3.3 SPECTROSCOPIC ANALYSES OF FOUR ISOMERS OF 4,8,12-TRIMETHYLNONADECANOL .. 52

3.3.1 Analyses of 1H NMR Spectra of M-79 and Four Isomers of 4,8,12-Trimethyl-nonadecanol 52

3.3.2 Analysis of 13C NMR Spectra of M-79 and Four isomers of 4,8,12-Trimethylnonadecanol 56

3.3.3 Isomeric Purity Estimation in Each Sample ... 61
3.3.4 Development of an NMR-Based Method for Assigning the Methyl Group Configurations in a Polyisoprenoid System ... 63

4.0 SPECTROSCOPIC PREDICTIONS ... 65

4.1 SPECTROSCOPIC PREDICTIONS OF EIGHT ISOMERS OF 4,8,12,16-TETRAMETHYLTRICOSANOL ... 66

4.2 SPECTROSCOPIC PREDICTIONS OF SIXTEEN ISOMERS OF 4,8,12,16,20-PENTAMETHYLHEPTACOSANOL .. 69

5.0 SUMMARY AND CONCLUSION ... 74

6.0 EXPERIMENTAL .. 76

APPENDIX A .. 101

APPENDIX B .. 103

APPENDIX C .. 105

APPENDIX D .. 107

APPENDIX E .. 109

BIBLIOGRAPHY ... 189
LIST OF TABLES

Table 2.1. Rh-catalyzed hydroformylation of model substrate 42 .. 28

Table 3.1. Recovery of each isomer after demixing ... 48

Table 3.2. Relationship table for methyl group matching in 4,8,12-trimethylnonadecanol 79 .. 54

Table 3.3. The complete assignments of the 7 different methyl proton signals in 1H NMR spectra ... 55

Table 3.4. The complete assignments of the seven different methyl carbon signals in 13C NMR spectra ... 59

Table 3.5. The percentage composition of each isomer in the four samples 62

Table 3.6. The estimated percentage C20, C21, and C22 intensities in 13C NMR spectra 62

Table 3.7. Chemical shifts of the seven principle types of methyl configuration in 1H and 13C NMR ... 64

Table 4.1. Characterization table for 4,8,12,16-tetramethyltricosanol 80.............................. 66

Table 4.2. Methyl group characterization table for 4,8,12,16,20-pentamethylheptacosanol 81.. 70
LIST OF FIGURES

Figure 1.1. Stationary phase of the heptadecafluorodecyl dimethylsilyl (RP-F10) column........ 3
Figure 1.2. Fluorous separation of fluorinated benzene by RP-F10 column^5......................... 3
Figure 1.3. Two-dimentional structure of murisolin A.. 4
Figure 1.4. Common fluorous tags.. 4
Figure 1.5. Examples of single tagging FMS strategy... 5
Figure 1.6. Examples of double tagging FMS strategy... 6
Figure 1.7. Recently completed FMS targets based on hydroxy group tagging...................... 9
Figure 1.8. Natural products with polyisoprenoid motif highlighted in red 10
Figure 1.9. Structure of α-tocopherol (vitamin E).. 11
Figure 1.10. Selected 13C NMR spectra of (2R,4'R,8'R)-12, (2S,4'R,8'S)-12, and stereorandom 12
... 11
Figure 1.11. Illustration of the “relay” type mechanism discussed by Ingold and coworkers..... 12
Figure 1.12. Structure of β-mannosyl phosphomycoketide (MPM) 1 and 2 13
Figure 1.13. CD1–glycolipid antigen–T-cell receptor interactions binding model 13
Figure 1.14. A 2D comparison of the side chain of MPM-1 and 4,8,12-trimethylnonadecanol 16
Figure 1.15. The four target isomers of 4,8,12-trimethylnonadecanol 16
Figure 2.1. 19F NMR spectra of (+)- and (−)-Mosher ester derivatives of 31 and 32 23
Figure 2.2. 19F NMR spectra of (+)- and (−)-Mosher ester 36 and 37 ... 25

Figure 2.3. 13C NMR spectra comparisons of allylic alcohols 30 at C3 and C5 position 25

Figure 2.4. Determination of enantioselectivity of Brown crotylation of (4R,5R)-43 by 13C NMR spectrum .. 30

Figure 2.5. Determination of enantioselectivity of Roush crotylation of (4R,5S)-43 by 13C NMR spectrum .. 31

Figure 2.6. Fluorous HPLC trace of 53, 60, 61, 62, 63, and 64 mixture by PF-C8 column$a)$ 36

Figure 3.1. Fluorous HPLC trace of mixture M-71 by PF-C8 column .. 42

Figure 3.2. Fluorous HPLC trace of mixture M-78 by PFC-8 column$a)$ 47

Figure 3.3. Semi-prep fluorous HPLC trace of mixture M-78 by PF-C8 column$a)$ 48

Figure 3.4. F-HPLC trace of each quasiisomer by PF-C8 column .. 49

Figure 3.5. Designations of the methyl groups in 4,8,12-trimethylnonadecanol 79 52

Figure 3.6. 1H NMR spectra between regular and the Traficante algorithm processing 53

Figure 3.7. 1H NMR of methyl region expansion of the four isomers 54

Figure 3.8. 1D TOCSY of (4S,8S,12S)-trimethylnonadecanol 79 .. 56

Figure 3.9. The three regions in 13C NMR spectra with differentiable signals 57

Figure 3.10. 13C NMR spectra between regular processing and Traficante algorithm processing .. 58

Figure 3.11. 13C NMR methyl branch expansion of the mixture M-79 and four isomers 59

Figure 3.12. Expansion of the branched methyl region of the inverse 2D HMQC of (4S,8R,12S)-79 .. 60

Figure 3.13. Spectral comparison between actual and simulated 13C NMR spectra 62

Figure 4.1. Branched methyl group designations for isoprenoid structures 65
Figure 4.2. The structure of 4,8,12,16-tetramethyltricosanol 80 ... 66
Figure 4.3. 1H NMR spectra prediction of 8 isomers of 4,8,12,16-tetramethyltricosanol 80 67
Figure 4.4. 13C NMR spectra prediction of 8 isomers of 4,8,12,16-tetramethyltricosanol 80 67
Figure 4.5. The structure of 4,8,12,16,20-pentamethylheptacosanol 81.. 69
Figure 4.6. 1H NMR spectra prediction of 16 isomers of 4,8,12,16,20-pentamethylheptacosanol
.. 70
Figure 4.7. 13C NMR spectra prediction of 16 isomers of 4,8,12,16,20-pentamethylheptacosanol
... 71
Figure A.1. The initial hydroformylation setup ... 101
Figure A.2. Parr EA3911 Hydrogenator ... 101
Figure A.3. Parr© general purpose pressure reactor ... 102
Figure B.1. F-HPLC trace of substrates 53, 60, 61, 62, 63, and 64 on a PFP columna,b 103
Figure B.2. F-HPLC trace of M-71 on a PFP column .. 104
Figure B.3. F-HPLC trace of M-78 on a reverse phase RP-C18 column 104
Figure C.1. 1D TOCSY of (4S,8R,12S)-79 .. 105
Figure C.2. 1D TOCSY of (4R,8S,12S)-79 .. 106
Figure C.3. 1D TOCSY of (4R,8R,12S)-79 .. 106
Figure D.1. Inverse 2D HMQC experiment of (4S,8R,12S)-79 ... 107
Figure D.2. Inverse 2D HMQC experiment of (4R,8S,12S)-79 .. 108
Figure D.3. Inverse 2D HMQC experiment of (4R,8R,12S)-79 .. 108
LIST OF SCHEMES

Scheme 1.1. Schematic flowchart of FMS ... 2
Scheme 1.2. The first application of fluorous HPLC in FMS 3
Scheme 1.3. Example of the orthogonal double tagging FMS strategy 7
Scheme 1.4. Total synthesis of all-S MPM-1 by Feringa and coworkers 14
Scheme 1.5. The utility of auxiliary hydroxy for the FMS of 4,8,12-trimethylnonadecanol 17
Scheme 1.6. Observed Chugeav elimination during cross-metathesis by Dr. Kumli 17
Scheme 1.7. First cycle of the initial approach by Dr. Kumli 18
Scheme 1.8. Second and third FMS cycles by Dr. Kumli 19
Scheme 1.9. Simultaneous hydroxy activation of M-26 20
Scheme 2.1. O-phenyl thionocarbonate tag ... 21
Scheme 2.2. The new approach with O-phenyl thionocarbonate tags 22
Scheme 2.3. Preparation of (−)-(Z)-Brown reagent 29 .. 22
Scheme 2.4. Brown crotylation of heptanal and Mosher ester derivatization 23
Scheme 2.5. Syntheses of Roush reagents 33 and 34 .. 24
Scheme 2.6. Roush crotylation of heptanal .. 24
Scheme 2.7. Mild Rh-catalyzed hydroformylation using diphenylphosphinopyridone ligand 4126
Scheme 2.8. Synthesis of diphenylphosphinopyridone ligand 41 27
Scheme 2.9. Synthesis of O-phenyl thionocarbonate containing alkene 42 27
Scheme 2.10. Brown crotylation of aldehyde (4R,5R)-43 ... 29
Scheme 2.11. Crotylation of aldehyde (4R,5S)-43 with Roush reagent 33 31
Scheme 2.12. Synthesis of O-4-perfluoroalkylphenyl chlorothionoformate 51 33
Scheme 2.13. Synthesis of 4-(4,4,5,5,6,6,7,7,7-nonafluorohexyl)phenol 50 33
Scheme 2.14. Verification of formation of 51 by reaction with ethanol 34
Scheme 2.15. Synthesis of 53 as control experiment ... 34
Scheme 2.16. Syntheses of “fluorous” O-phenyl chlorothionoformate 54 to 59 35
Scheme 2.17. Syntheses of model “fluorous” bis-O-phenyl thionocarbonatetagged olefins 35
Scheme 3.1. Synthetic plan of FMS of four isomers of 4,8,12-trimethylnonadecanol 37
Scheme 3.2. Tagging scheme of the first attempt of the new approach 38
Scheme 3.3. First cycle of the initial second generation approach 39
Scheme 3.4. Second cycle of the initial second generation approach 40
Scheme 3.5. Third cycle of the initial second generation approach .. 41
Scheme 3.6. Tagging scheme of the new second generation approach 43
Scheme 3.7. Second cycle of the second attempt of the new FMS approach 44
Scheme 3.8. Third cycle of the second attempt of the new FMS approach 45
Scheme 3.9. Model radical global deoxygenation of mixture M-78 .. 50
Scheme 3.10. Global radical deoxygenation of four quasi-isomers .. 50
LIST OF ABBREVIATIONS

APC antigen presenter cell
Boc t-butyl carbamate
CBz carboxybenzyl
CD1c cluster of differentiation 1c
DIABAL-H diisobutylaluminum hydride
Equiv equivalent
Fmoc fluorenylmethoxycarbonyl
FMS fluorous mixture synthesis
HMOC heteronuclear multiple quantum coherence
HPLC high pressure liquid chromatography
HRMS high resolution mass spectrometry
MPM β-mannosyl phosphomycoketide
MTPA α-methoxytrifluorophenylacetic acid
NMR nuclear magnetic resonance
OEG oligoethylene glycol tags
PF-C8 perfluoroocyethyl silyl HPLC column
PFP perfluorophenyl HPLC column
ph phenyl
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMB</td>
<td>p-methoxybenzyl</td>
</tr>
<tr>
<td>py</td>
<td>pyridine</td>
</tr>
<tr>
<td>RP-3</td>
<td>reverse phase n-propyl silyl HPLC column</td>
</tr>
<tr>
<td>RP-10</td>
<td>reverse phase decyl silyl HPLC column</td>
</tr>
<tr>
<td>rt</td>
<td>room temperature ($25^\circ C$)</td>
</tr>
<tr>
<td>THF</td>
<td>tetrahydrofuran</td>
</tr>
<tr>
<td>TIPS</td>
<td>triisopropylsilyl</td>
</tr>
<tr>
<td>TOCSY</td>
<td>total correlation spectroscopy</td>
</tr>
</tbody>
</table>
There is a saying that “it takes a village to raise a child.” In my opinion, it also takes a village to raise a Ph.D. I would like to take a moment here to acknowledge those who have made an impact in my scientific career so far.

First and foremost, I’d like to thank my Ph.D thesis advisor Dr. Dennis Curran, who has tirelessly guided me through my research in the past five years. The lessons I learned will forever be my guide as I journey further into the scientific jungle. I would also like to thank my Master’s thesis advisor Dr. Mahesh Lakshman, who took me under his wings during a difficult period of my life and re-ignited my passion for science during my tenure at The City College of New York.

Second, I want to acknowledge all the Curran group members, past and present, for their supports, academically and otherwise. I would like to thank especially Dr. Bin Sui, Dr. David Guthrie, and Dr. Mantosh Sinha, who have helped me at different stages of my graduate school career. I am also very grateful to have an esteemed panel of professors, Dr. Billy Day, Dr. Paul Floreancig, and Dr. Scott Nelson on my committee. Special thanks also go out to Dr. Ted Cohen for serving as my proposal mentor, and Dr. Damodaran Krishnan for helping me with all my NMR related problems.

Last, but definitely not least, I would like to dedicate this thesis to my family. To my lovely fiancée, Christine Killmeyer, thank you for keeping me grounded and being there for me
in everything I do. To my brother, Dr. An-Chou Yeh, thank you for setting a great example for me to follow. I will probably never achieve the academic heights you did, but I will keep trying. To my dad and mom, Sui-Chung Yeh and Cheng-Wu Lu, thank you both for allowing me to pursue my dreams and passions. I am forever indebted to you for everything you have sacrificed to get me here.

This thesis belongs to all of you, and I thank you all for being in my village!
Fluorous mixture synthesis (FMS) is a solution-phase technique that was introduced by Curran and coworkers in 2001.¹ FMS relies on the ability of fluorous stationary phases to separate molecules by fluorine content during fluorous HPLC experiments.¹

A typical FMS takes place in four stages, 1) pre-mixing; 2) mixture synthesis; 3) demixing; 4) and detagging (Scheme 1.1).¹ During the pre-mixing stage, individual reactions are carried out in parallel, and each member of a series of substrate \((S_1 \cdots S_n)\) is tagged with a specific fluorous tag \((F_1 \cdots F_n)\). The tagged molecules \((S_1 F_1 \cdots S_n F_n)\) are then mixed together (M1) and carried through a sequence of reactions in the mixture synthesis stage. During this stage, each encoded molecule \((S_1 F_1 \cdots S_n F_n)\) within a mixture (M1) undergoes transformations to arrive at the final mixture (M2). M2 is then separated by fluorous HPLC (F-HPLC) into the constituent components \((P_1 F_1 \cdots P_n F_n)\) based on the fluorine content of the tag(s) in the demixing stage. The fluorous tag from each component is removed during the detagging stage to access the target molecules \((P_1 \cdots P_n)\).
Similar to other mixture synthesis techniques such as solid phase mixture synthesis, FMS has often been used in library synthesis. Unlike the solid phase mixture synthesis, however, FMS is compatible with all solution-phase synthetic and analytical methods.\(^2\)

1.1.1 Fluorous Separation by Fluorous-HPLC

At the heart of FMS is the fluorous demixing, which is defined as the separation and isolation of individual fluorinated molecule based on its fluorine content using silica gel with a fluorocarbon stationary phase.\(^1\) This process is usually carried out by HPLC with a fluorous column. Fluorous separation is different from normal phase or reverse phase separation because of the C-F bonds in the stationary phase contain significant dipole character, which interact strongly with halogenated molecules.\(^3\)

The strong fluorine-fluorine interaction between a fluorinated molecule and a fluororous column was first observed by de Galan and coworkers in 1980, when previously inseparable benzene and monofluorobenzene (by reverse phase columns RP-3 and RP-10) were separated by heptadecafluorodecyl dimethylsilyl bounded (RP-F10) column (Figure 1.1).\(^4\) In a follow-up study, de Galan and coworkers further demonstrated the characteristic of strong fluorine-fluorine interactions between mobile and stationary phases with the sequential separation of five different fluorobenzenes by fluorine content (Figure 1.2).\(^5\)
The first use of F-HPLC in FMS was reported by Curran and coworkers in 2001 to separate a mixture (M-3) of the two mappicine quasiisomers \((R)-3\) and \((S)-3\) with TIPS tags (TIPSF13 and TIPSF17, respectively) by a fluorous column (Scheme 1.2). The superscripts F13 and F17 refer to the corresponding fluorine content in the perfluoroalkyl chain. Upon subjecting M-3 to F-HPLC with a FluofixTM column, \((R)-3\), which had the lower fluorine content, was eluted first. This was followed by \((S)-3\) with the higher fluorine content. Removal of the fluorous TIPS tag on each molecule by desilylation after demixing gave the two enantiomers of mappicine.6

Scheme 1.2. The first application of fluorous HPLC in FMS
1.1.2 Uses of FMS in Natural Product Synthesis

One of the most popular uses of FMS is in natural product library synthesis. In particular, molecules with structures that are difficult to assign have been targeted.7 For example, in order to assign the stereocenters in murisolin A, 28 of the 64 possible stereoisomers were synthesized through FMS by Dr. Q. Zhang and coworkers in 2005 (Figure 1.3).7c A synthetic effort of this magnitude by conventional parallel synthesis would take a substantially longer time to accomplish.

Figure 1.3. Two-dimensional structure of murisolin A

![Murisolin A Structure](image_url)

The fluorous tags in FMS of natural products have so far been based on protecting groups of alcohols or amines. Figure 1.4 shows some of the most common fluorous tags, including F-TIPS, F-PMB, F-Fmoc, F-Cbz, and F-Boc.2 These fluorous tags function not only as protecting groups, but also encode the specific configurations of the molecules as well as assist in F-HPLC separations.

Figure 1.4. Common fluorous tags

![Fluorous Tags](image_url)

\(R_f = \text{perfluoroalkyl chain} \)
1.1.3 Fluorous Tagging Strategies

The tagging strategy of each FMS often depends on the individual target structure and synthetic design, but in general there are three different types of tagging strategies to date: 1) single tagging; 2) double tagging; 3) and orthogonal double tagging.

The single tagging strategy uses a single tagging site on the molecule to encode the specific configurations of all target isomers in a FMS. Two examples of this tagging strategy are FMS of murisolin A and pinesaw fly sex pheromone. In the FMS of murisolin A, tagging of the C20 hydroxy group with four different \(\text{F} \)PMB groups encoded the four quasiisomers of protected murisolin A as a mixture M-4. In the FMS of the pinesaw fly sex pheromone, tagging of the C2 hydroxy group with four different \(\text{F} \)PMB groups encoded for the four quasiisomers of protected pinesaw fly sex pheromone as a mixture M-5 (Figure 1.5). The mixtures (M-4 and M-5) were subjected to F-HPLC to separate the constituting quasiisomers based on fluorine content. The respective isomers of the natural products were obtained after the deprotection/detagging of the protected quasiisomers by Pd/C catalyzed hydrogenolysis.

Figure 1.5. Examples of single tagging FMS strategy

The double tagging strategy uses two different tagging sites to encode the specific configurations of the target isomers in a given FMS. For example, in the FMS of passifloricin the hydroxy groups at C7 and C9 positions were tagged with three different fluorous
tags (TIPSF0, TIPSF7, and TIPSF9) to encode the four quasiisomers of protected passifloricin in M-6. Each TIPSF tagged quasiisomer contained a different number of fluorine atoms for F-HPLC demixing. Depending on the complexity and synthetic design of the target molecule, the number of fluorous tag in a double tagging FMS can vary from two to four. For instance, the FMS of SCH725674 only used two different fluorous tags (TIPSF0 and TIPSF5) to encode four quasiisomers of protected SCH725674 in M-79c, while the FMS of cytostatin used four different fluorous tags (TIPSF0, TIPSF9, TIPSF13, and TIPS17) to encode four quasiisomers of protected cytostatin precursor in M-8 (Figure 1.6).10 The double tagging strategy typically allows for re-use of the same fluorous tag as seen in the FMS of passifloricin with TIPSF7 tag and the FMS of SCH725674 with the TIPSF5 tag, as long as each quasiisomer is encoded with a unique number of fluorine atoms.

Figure 1.6. Examples of double tagging FMS strategy
The orthogonal double tagging strategy also uses two different tagging sites to encode the stereo-information of the isomers, but instead of using only one class of tag, two different classes of tags are used. For example, in the second generation FMS of murisolin A,7b,9a fluorous and oligoethylene glycol OEG tags were used. OEG tags are a class of polarity-based solution phase mixture synthesis tag developed by Wilcox and coworkers.11 In this synthesis, the PMBF tags were used to code for four quasiisomers at C20 position in fragment M-9 and the OEG tags were used to code for four quasiisomers at the C4 position in fragment M-10. After connecting the two fragments via Julia-Kolcienski olefination followed by hydrogenation, the final mixture M-11 contained 16 quasiisomers of protected murisolin A (Scheme 1.3). The mixture M-11 was first subjected to flash chromatography to separate four fractions based on polarity of the OEG tags from OEG\textsubscript{1} (least polar) to OEG\textsubscript{4} (most polar). Each fraction was then subjected to F-HPLC to separate each quasiisomer based on the number of fluorine atom. Following detagging, a total of 16 isomers were obtained from the FMS.

Scheme 1.3. Example of the orthogonal double tagging FMS strategy
One way to judge the efficiency of an FMS is by the total number of fluorine atoms used to encode a library of isomers. The fewer fluorines used, the more efficient the route. To date, the most efficient FMS was the library synthesis of SCH725674 by Dr. Moretti and coworkers, which used a total of 30 fluorine atoms to encode four stereoisomers.9c In contrast, typical use of four different single tags such as the FMS of murisolin needed 44 fluorine atoms. Double tagging strategy used in the FMS of passifloricin and cytostatin needed 46 and 72 fluorine atoms respectively.

\subsection*{1.1.4 Current Limitations of FMS}

Despite the convenience and efficiency of FMS in natural product library syntheses, there are at least two current limitations. The first limitation is the large number of fluorine atoms introduced by the perfluoroalkyl tags. Each increase in perfluoroalkyl chain length adds two additional fluorine atoms to the tag. As the number of fluorine atom increases, the molecular weight and the F-HPLC demixing time also increase. This causes isolation problems because of the prolonged retention time on the fluorous column. Additionally, the solubility of highly fluorinated molecules in non-fluorinated organic solvents decreases with increasing fluorine contents. Typically, 60\% fluorine by weight is considered the threshold for good solubility.12 Currently, perfluoroalkyl groups are the only class of tag in FMS. It would be desirable to develop other class of fluorous tags, especially ones with fewer fluorine atoms.

The second limitation is regarding the type of natural products that usually can be targeted. Because all current fluorous tags are based on protecting groups of hydroxy and amino groups, to date the molecules targeted by FMS all contained either functionality for fluorous tagging (Figure 1.7). It would be advantageous to develop non-protecting group based tags, such
as traceless tags, to expand the scope of FMS into natural products without convenient handles for tagging.

Figure 1.7. Recently completed FMS targets based on hydroxy group tagging

![Recently completed natural products by FMS:](image)

1.2 NATURAL PRODUCTS CONTAINING CHIRAL SATURATED POLYISOPRENOID MOTIFS

One of the most common types of chiral isoprenoid motifs is a long alkyl chain with asymmetric methyl branching at every fourth carbon. This substructure can be found in a variety of natural products including vitamins K and E, chlorophyll, \(\beta \)-mannosyl phosphomycoketide, and pinesaw fly pheromones (Figure 1.8).\(^{13}\) Despite the structural similarities between the polyisoprenoid side chains, the biosynthetic pathways of these natural products are very different. The side chains in vitamin K and E, and chlorophyll come from the non-mevalonate pathway, and the side chain of \(\beta \)-mannosyl phosphomycoketide comes from a polyketide synthase pathway.\(^{13d,14}\)
Because of the lack of functionality on the alkyl chain, the asymmetric synthesis and the identification of the methyl branch configurations are challenging. While methods to efficiently synthesize these asymmetric polyisoprenoid structures have advanced considerably since the early 1980s, to date, there is no established method for determining the methyl branch configurations directly by spectroscopic means. The standard way to identify the methyl branch configurations in a natural product is by a combination of optical rotation comparison with a library of synthetic isomers.

1.2.1 Vitamin E

α-Tocopherol 12 (vitamin E) is a common natural product first isolated from vegetable oil in 1922. It is an antioxidant best known to protect polyunsaturated fatty acids and cell membranes from radical damage. The structure of α-tocopherol consists of a shikimate-derived aromatic ring connected to a chiral saturated polyisoprenoid side chain with 2R,4'R and 8'R stereocenters (Figure 1.9). Although the natural vitamin E is found to contain only the
$2R,4'R,8'R-\alpha$-tocopherol17 tests have shown that the $2R,4'R S,8'R S-\alpha$-tocopherol mixture exhibits comparable bioactivity,18 i.e. the 4' and 8' methyl configurations on the side chain do not affect the bioactivity.

Figure 1.9. Structure of α-tocopherol (vitamin E)

The determination of the methyl branch configurations of the natural α-tocopherol was highly sought after between 1980 and 1990.5,16b,17,19 In 1981, Cohen and coworkers reported combined GC analysis with optical rotation to confirm the methyl branch configurations of the natural α-tocopherol to be exclusively $2R,4'R,8'R$. In the same year, Bremser and coworkers showed that the natural $(2R,4'R,8'R)$-12 and the synthetic $(2S,4'R,8'S)$-12 could be distinguished by the C2', C3', C5', C6', C7', and C8' signals in 13C NMR spectra (Figure 1.10).20

Figure 1.10. Selected 13C NMR spectra of $(2R,4'R,8'R)$-12, $(2S,4'R,8'S)$-12, and stereorandom 12

(taken from ref. 20 with permission)
In 1988 Ingold and coworkers published an in-depth 13C NMR study detailing how the methyl branch configurations in α-tocopherol and related molecules influence chemical shifts in the rest of the molecule.19a They observed the maximum differences in chemical shift per bond at the carbon signals one, three, and five bonds away from the stereocenters (C2, C4', and C8'). Based on this observation, they postulated that “at a low energy, chain extended conformers, the interaction between two nearest asymmetric carbons is likely to occur by a relay type mechanism” through interactions between the methyl branch carbons and the hydrogen atoms of the middle carbon.19a For example, the interaction between the 4' and 8' carbons is likely to involve primarily the methyl groups attached to the 4' and 8' carbons relay by the hydrogen atoms on the 6' carbon (Figure 1.11). This thorough analysis of vitamin E provides some insights into how chirality may propagate through the bonds in a polyisoprenoid system and provided the basis for future analyses of polyisoprenoid natural products.21

Figure 1.11. Illustration of the “relay” type mechanism discussed by Ingold and coworkers

![Figure 1.11](image)

1.2.2 β-Manosyl Phosphomycoketide (MPM)

β-D-Mannosyl phosphomycoketides (MPMs) 1 and 2 (Figure 1.12) are potent mycobacterial antigens isolated by Moody and coworkers in 2000 from the cell walls of *Mycobacterium tuberculosis* and *Mycobacterium avium*.13d Similar to the structure of vitamin E, the structure of MPM-1 and MPM-2 contain a polyisoprenoid motifs of five isoprenoid units connected to a phosphate sugar of β-mannosyl linkage. In 2002, Crich and coworkers confirmed
the β-mannosyl linkage by comparing the MS fragmentation patterns of β-MPM-2 with a stereorandom isoprenoid side chain and the natural β-MPM-2.22

Figure 1.12. Structure of β-mannosyl phosphomycoketide (MPM) 1 and 2

![Structure of β-mannosyl phosphomycoketide (MPM) 1 and 2](image)

The exceptional potency of MPMs comes from the strong binding of their hydrophobic tails with the deep hydrophobic pocket of the CD1c antigen presenting protein on the antigen presenter cell (APC), which leaves the hydrophilic phosphate sugar group free to interact with the T-cell receptor protein on T-cell (Figure 1.13).23

Figure 1.13. CD1–glycolipid antigen–T-cell receptor interactions binding model

![CD1–glycolipid antigen–T-cell receptor interactions binding model](image)

(taken from ref. 23 with permission)

In 2006, Feringa and coworkers postulated that all the methyl stereocenters have the same configuration because they are introduced by the same polyketide synthase through an iterative action.24 Feringa and coworkers then accomplished a stereoselective total synthesis of the all-S isomer of MPM-1 by using a highly convergent approach with four chiral building blocks 13, 14, 15, and 16.25 Aside from 16, all other building blocks contained branched methyl groups.
introduced by an asymmetric conjugate addition reaction developed by Feringa and coworkers.26 Each of the building blocks were connected by Julia-Kocienski olefination27 followed by Pd/C catalyzed hydrogenation to give the all-\textit{S} isoprenoid alcohol 17. Coupling of 17 with the mannosyl phosphate building block 16 followed by deacetylation to complete the synthesis of the all-\textit{S} MPM-\textit{1} (Scheme 1.4).

\textbf{Scheme 1.4.} Total synthesis of all-\textit{S} MPM-\textit{1} by Feringa and coworkers

The synthetic all-\textit{S} MPM-\textit{1} was shown to elicit similar level of T-cell response as the natural MPM-\textit{1}, while the stereorandom MPM-\textit{2} showed 20–40 folds lower response than the natural MPM-\textit{2}. Additionally, a crystal structure of CD1c in complex with MPM was recently reported by Scharf and coworkers to show the synthetic all-\textit{S} MPM binding deeply inside the hydrophobic groove of the CD1c protein.28 Based on the above evidence, the natural product was assigned to have the all-\textit{S} branch methyl configuration.25,29 To date, however, only one isomer has been tested. Could there be other isomers that have similar activity to the natural
product? Ideally, it would be better to develop analytical or spectroscopic tools for the assignment.

1.2.3 Project Design and Overview: Identifying Branched Methyl Group Configurations in Polyisoprenoid Systems by NMR Spectroscopy

While structurally simpler polyisoprenoid molecules like vitamin E and its isomers can now be differentiated spectroscopically, more complex molecules like MPM have not been fully studied. In vitamin E, the repeating isoprenoid unit CH₃CH₂CH(CH₃)CH₂ occurs only twice, whereas in MPM it occurs five times. Will the stereoisomers of MPM side chain have different spectra or not? Can the structures be assigned from spectra?

To begin answering these questions, a study of how the relative methyl configuration affects chemical shift in a shorter polyisoprenoid system such as 4,8,12-trimethyl-nonadecanol was carried out because it is structurally similar to the side chain of MPM-1, yet it only contains three repeating isoprenoid units. As shown in Figure 1.14, the structures of the MPM-1 side chain and 4,8,12-trimethylnonadecanol both contain two end methyl groups (end-1 and end-2), the only difference between the two molecules is the number of saturated isoprene units in the middle. It was hypothesized that one could develop a tool to identify the branched methyl group configurations of the isomers of 4,8,12-trimethylnonadecanol spectroscopically, we may be able to extend the method towards more complex systems such as the side chain of MPM-1.
The primary objectives of this project were to first synthesize four isomers of 4,8,12-trimethylnonadecanol and then develop spectroscopic tools to characterize the branched methyl group configurations of these polyisoprenoids. The plan was to utilize FMS to rapidly access the $4S,8S,12S$-, $4S,8R,12S$-, $4R,8S,12S$-, and $4R,8R,12S$-trimethylnonadecanols (Figure 1.15), then thoroughly characterize them by 1H and 13C NMR spectroscopy. Would the spectra of these four isomers be different? Would there be a decipherable relationship between the branched methyl group configurations and their respective chemical shifts? Could an NMR-based method be developed to identify the configurations of these branched methyl groups, and can it be applied to higher order polyisoprenoid molecules?

Figure 1.15. The four target isomers of 4,8,12-trimethylnonadecanol
1.3.1 Synthetic Design

The initial synthetic effort towards FMS of 4,8,12-trimethylnonadecanol was started by Dr. Eveline Kumli, and her first challenge was to design an FMS synthesis of a target molecule without any functional group for fluorous tagging. Dr. Kumli proposed the use of “auxiliary functional groups”, which are hydroxy groups that are used to append different fluorous tags during the FMS and cleaved off at the end of the synthesis by global deoxygenation (Scheme 1.5).

Scheme 1.5. The utility of auxiliary hydroxy for the FMS of 4,8,12-trimethylnonadecanol

The initial FMS approach of 4,8,12-trimethylnonadecanol contained an *en route* double tagging strategy of three iterations of Brown crotylation, fluorous xanthate tagging, cross-metathesis, and hydrogenation followed by global deoxygenation. This approach was abandoned when cross-metathesis of 18 and 19 did not give the desired product 20, but instead gave diene 20′ through a Chugeav elimination (Scheme 1.6). Apparently the cross-metathesis reaction worked in the presence of xanthate functionality, but the product was not stable.

Scheme 1.6. Observed Chugeav elimination during cross-metathesis by Dr. Kumli
To circumvent this unwanted elimination reaction, Dr. Kumli changed from the fluorous xanthate tag to the more stable fluorous TIPS (TIPSF) to complete the FMS. This new approach also added two extra steps (desilylation and hydroxy activation) to the synthesis at the end. The fluorous TIPS tags are herein represented in TIPSFn form, the superscript F indicates it contains a fluorous tag, and n indicates the number of fluorine atoms on the tag. In case of a fluorous mixture, the tags are represented in TIPSFn,Fm form, the two different tags are separated by a comma.

1.3.2 Initial FMS of 4,8,12-Trimethylnonadecanol with TIPSF tags

The first cycle of the FMS of 4,8,12-trimethylnonadecanol started with Brown crotylation of heptanal with (−)-(Z)-crotyldiisopino-campheylborane (Brown reagent31) followed by TIPS protection to give alkene 21 in 74\% over 2 steps. Cross-metathesis of 21 with crotonaldehyde gave \(\alpha,\beta\)-unsaturated aldehyde 22 in 66\% yield. This was subjected to Pd-C catalyzed hydrogenation to form aldehyde 23. The overall yield of the first iteration was 47\% (Scheme 1.7).

Scheme 1.7. First cycle of the initial approach by Dr. Kumli

At the start of the second cycle of the FMS, aldehyde 23 was split into two portions and reacted with either (−)- or (+)- (Z)-Brown reagent in the crotylation step. The resulting allylic
alcohols were tagged with TIPSF0 and TIPSF9 tag respectively. The fluorous-tagged allylic alcohols were then mixed and subjected to cross-metathesis then hydrogenation to afford mixture aldehyde M-24. The overall yield of the second cycle was 36%. The third cycle was completed in the same fashion as the second cycle by splitting followed by separate crotylations. The resulting allylic alcohols were tagged with TIPSF0 and TIPSF13 respectively. At the end of the third cycle, aldehyde M-25 was reduced to alcohol M-26 with DIBAL-H. Alcohol M-26 could not be demixed, because it lacked UV absorption for detection. Dr. Kumli then converted the primary alcohol to a benzoate ester to provide UV-absorbance for HPLC detection. Fluorous HPLC demixing of benzoate protected alcohol M-27 with a FluoroFlashTM (PF-C8) column successfully yielded four quasiisomers (Scheme 1.8).

Scheme 1.8. Second and third FMS cycles by Dr. Kumli

The final deoxygenation was first evaluated on the mixture M-27. Desilylation of M-27 gave triol M-28 in 99% yield. However, hydroxy activation of triol M-28 could not be achieved in good yield by tosylation, thionocarbonate or xanthate formation.34,35,36 The subsequent global deoxygenation step was never successfully performed (Scheme 1.9).
1.3.3 Conclusions from The Initial Synthesis

Dr. Kumli was able to demonstrate the utility of FMS by rapidly synthesizing a mixture of four TIPS^F-protected quasiisomers M-27 through three cycles of Brown crotylation, TIPS tagging, cross-metathesis and hydrogenation. This FMS highlighted the first use of auxiliary hydroxy groups for fluorous tagging in a molecule lacking either hydroxyl or amino groups. The overall yields per cycle varied from 38% to 48%.

The work also identified two major problems that needed to be resolved before a stereoisomer library of 4,8,12-trimethylnonadecanol could be made. First, the yields per cycle (38% to 48%) were not consistently high. Second, the simultaneous activation of multiple hydroxy groups was not accomplished, so the subsequent global deoxygenation steps were unsolved problems.
2.0 NEW ITERATIVE APPROACH TOWARDS FMS OF FOUR ISOMERS OF 4,8,12-TRIMETHYLNONADECANOL

2.1 THE REVISED ITERATIVE APPROACH

This new approach was developed to address two main problems: 1) to improve the yields and consistency per cycle, and 2) to circumvent the global deoxygenation problems. Since the global deoxygenation problems began at the multiple hydroxy groups activation, the auxiliary hydroxy groups were tagged with radical labile fluorous tags en route during each cycle. This new approach would avoid the activation all hydroxy groups at once and also allow for global deoxygenation directly after the last cycle ends. O-Phenyl thionocarbonate35 based fluorous tags were chosen because they can be conveniently appended to a hydroxy group by a simple (thiono)acylation reaction and can be readily cleaved (Scheme 2.1). Additionally, they also possess UV-absorbance, which aids in fluorous HPLC demixing. To ensure the success of this new approach, all reactions per cycle (crotylation and carbonylation) were first examined for compatibility with the O-phenyl thionocarbonate functionality (Scheme 2.2).

\textit{Scheme 2.1. O-phenyl thionocarbonate tag}

![Scheme 2.1. O-phenyl thionocarbonate tag](image-url)
Scheme 2.2. The new approach with O-phenyl thionocarbonate tags

![Chemical diagram]

2.2 CROTYLATION REACTIONS

The first goal of the synthesis was to identify a suitable crotylation reaction with high yields and high stereoselectivity. Common crotylation reactions Brown crotylation\(^{31}\) and Roush crotylation\(^{37}\) were assessed with commercially available heptanal as starting aldehyde.

2.2.1 Brown Crotylation

The (−)-(Z)-Brown reagent\(^{31}\) was prepared *in situ* before each reaction according to literature procedure: KOtBu was added to a stirring solution of *cis*-butene in THF over 10 min, followed by addition of *n*-BuLi at −78 °C. The resulting mixture was stirred for 45 min before the addition of (−)-Ipc\(_2\)BOMe and then BF\(_3\)·OEt\(_2\). The corresponding aldehyde was added to this crude mixture of (−)-(Z)-Brown reagent 29 in THF at −78 °C to begin the crotylation reaction (Scheme 2.3).\(^{31}\)

Scheme 2.3. Preparation of (−)-(Z)-Brown reagent 29

Heptanal was added directly to the (−)-Brown reagent 29 (1.5 equiv) in THF at −78 °C and the resulting mixture stirred for 16 h. After complete consumption of heptanal by TLC, the
reaction was quenched by addition of 3N NaOH and 30% H₂O₂ then slowly warmed to room temperature over 3 h. The target allylic alcohol (3R,4R)-30 was isolated in 75% yield by column chromatography. The enantioselectivity of Brown crotylation was determined by analysis of Mosher esters 31 and 32. The esters were made from reactions of (+)- or (−)-Mosher acid with allylic alcohol (3R,4R)-30 in the presence of DCC and DMAP (Scheme 2.4).³⁸ The crude ¹⁹F NMR spectra showed 93/7 enantioselectivity was achieved (Figure 2.1).

Scheme 2.4. Brown crotylation of heptanal and Mosher ester derivatization

![Scheme 2.4](image)

Figure 2.1. ¹⁹F NMR spectra of (+)- and (−)-Mosher ester derivatives of 31 and 32

2.2.2 Roush Crotylation

The two Roush reagents (−)-diisopropyl-Ð-tartrate-(E)-crotylborate 33 and (+)-diisopropyl-L-tartrate-(E)-crotylborate 34 were used in the initial screening process. The reagents were prepared from literature procedures:³⁷ KOTBu was added to a solution of trans-butene in THF over 10 min, followed by slow addition of n-BuLi at −78 °C. To the resulting mixture was added
triisopropyl borate and the resulting mixture was poured into 1 N HCl. Followed by addition of either diisopropyl-D-tartrate in ether to form 33 or a solution of diisopropyl-L-tartrate in ether to form 34 (Scheme 2.5). The organic layer was concentrated and then diluted with toluene to be stored at −20 °C. The concentration of each reagent in toluene was determined by measuring the yield of a crotylation reaction with 1 equiv of heptanal. The 33 solution was 1.0 M and the 34 solution was 0.53 M (see experimental section for details).

Scheme 2.5. Syntheses of Roush reagents 33 and 34

Heptanal (10 g, 88 mmol) and 15 mg of powdered 4 Å molecular sieves were treated with 1.5 equiv of (−)-(Z)-Roush reagent 33 in toluene (1.0 M) at −78 °C. The reaction was completed after 3 h. After aq NaOH workup, 87% of allylic alcohol (3R,4S)-30 was isolated by column chromatography. The enantioselectivity of Roush crotylation was determined by analyses of Mosher esters 36 and 37 made from reactions of allylic alcohol (3R,4S)-30 with (+)-or (−)-Mosher acids in the presence of DCC and DMAP (Scheme 2.6). The crude 19F NMR spectra showed that 89/11 enantioselectivity was achieved (Figure 2.2).

Scheme 2.6. Roush crotylation of heptanal
Figure 2.2. 19F NMR spectra of (+)- and (‒)-Mosher ester 36 and 37

![Figure 2.2.](image)

The syn/anti diastereoselectivity of both Brown and Roush crotylation was determined by 13C NMR comparison of the C3 and C5 signals between allylic alcohols (3R,4R)-30, (3R,4S)-30, and rac-30. The allylic alcohol rac-30 was synthesized by reaction of heptanal with 1-methyl-2-propenyl magnesium bromide at 0 °C. The 13C NMR spectra comparisons of signals at C3 and C5 positions of 30 showed excellent reagent-controlled diastereoselectivities. The Brown crotylation gave exclusively syn product (3R,4R)-30, and the Roush crotylation gave exclusively anti product (3R,4S)-30 (Figure 2.3).

Figure 2.3. 13C NMR spectra comparisons of allylic alcohols 30 at C3 and C5 position

![Figure 2.3.](image)
2.3 HYDROFORMYLATION IN THE PRESENCE OF O-PHENYL THIONOCARBONATE

In the initial approach by Dr. Kumli, the transformation from terminal alkene 21 to aldehyde 23 was accomplished by a two-step cross-metathesis and then hydrogenation sequence (Section 1.3.1). A new reaction was sought because, 1) the cross-metathesis reaction took over 48 h and the yields were inconsistent, varying from 56% to 80%; and 2) the cross-metathesis reaction was reported to be incompatible with the xanthate functionality (Section 1.3.1), which is an analog of the O-phenyl thionocarbonate.

Because of the mild conditions reported, the Rh-catalyzed reaction by Breit and coworkers was chosen as a potential candidate for the hydroformylation step.39 It was reported that under 1 atm syngas (1:1 v/v, CO/H\textsubscript{2}) at room temp, 1-bromo-6-hexene was converted to 6-bromo-hexanal in 91% yield using Rh(CO)\textsubscript{2}acac and the 6-diphenylphosphino-2-pyridone ligand 41 (Scheme 2.8).

Scheme 2.7. Mild Rh-catalyzed hydroformylation using diphenylphosphinopyridone ligand 41

![Scheme 2.7](image)

The 6-diphenylphosphino-2-pyridone ligand 41 used in this hydroformylation reaction was synthesized from reaction of 2,6-dichloropyridine with KOrBu to give 39 in 89% yield. Treatment of 39 in liquid ammonia, sodium, and triphenylphosphine afforded 40 in 86% yield. Hydrolysis of 40 afforded the target pyridone 41 in 77% yield (Scheme 2.9).
2.3.1 Rh-Catalyzed Hydroformylation in the Presence of O-Phenyl Thionocarbonate

The compatibility of the O-phenyl thionocarbonate functionality with this hydroformylation was evaluated with alkene 42, which was synthesized in two steps (63% yield) from commercially available heptanal. In the initial experiment, alkene (3R,4R)-42 was added to a mixture of 7 mol% Rh(CO)₂acac, 35 mol% pyridone ligand 41 in THF. The resulting mixture was subjected to 1 atm (15 psi) of 1:1 mixture of CO/H₂ at 25 °C. The CO and H₂ gases in this initial experiment were introduced to the reaction vessel by two separate balloons via a T-shape connector (Appendix A, Figure 1). After 48 h, target aldehyde (4R,5R)-43 was isolated by flash chromatography in 43% yield, but 50% of starting alkene 42 was also recovered (Scheme 2.10).

Prolonging the reaction time to 72 h, only improved the yield marginally to 65%, and 30% of starting alkene (3R,4R)-42 was recovered (entry 2, Table 2.1). Next, the experiment was conducted in a Parr© EA apparatus (Appendix A, Figure 2) and syngas (1:1 v/v mixture of
CO/H\textsubscript{2}) was used instead of separate CO and H\textsubscript{2} balloons. At a pressure of 70 psi, the desired aldehyde 43 was isolated in 65% yield after only 48 h (entry 3, Table 2.1). Increase in temperature from 25 to 45 °C at 70 psi further increased the speed of the reaction. The starting material disappeared after 48 h and aldehyde (4R,5R)-43 was isolated in 87% yield (entry 4, Table 2.1). The next sets of experiments were conducted in a pressure reactor (Appendix A, Figure 3) to allow for higher operating pressure. At 45 °C and 100 psi, the starting material was completely consumed after only 30 h and aldehyde (4R,5R)-43 was isolated in 86% yield (entry 5, Table 2.1). Increasing the pressure and temperature to 120 psi and 60 °C sped up the reaction further to give 89% yield of (4R,5R)-43 in just 20 h (entry 6, Table 2.1). All the crude products were found to contain trace amount (~1–2%) of branched aldehyde product 44, but this byproduct could easily be separated by column chromatography. Based on the results, the conditions listed in entry 6 were chosen for the iterative cycle, because they gave the maximum yield in the shortest time.

Table 2.1. Rh-catalyzed hydroformylation of model substrate 42

<table>
<thead>
<tr>
<th>entry</th>
<th>pressure</th>
<th>temperature</th>
<th>reaction time</th>
<th>%yield</th>
<th>% recovered</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15 psi</td>
<td>25 °C</td>
<td>48 h</td>
<td>43%</td>
<td>50%</td>
</tr>
<tr>
<td>2</td>
<td>15 psi</td>
<td>25 °C</td>
<td>72 h</td>
<td>65%</td>
<td>30%</td>
</tr>
<tr>
<td>3</td>
<td>70 psi</td>
<td>25 °C</td>
<td>48 h</td>
<td>65%</td>
<td>30%</td>
</tr>
<tr>
<td>4</td>
<td>70 psi</td>
<td>45 °C</td>
<td>45 h</td>
<td>87%</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>100 psi</td>
<td>45 °C</td>
<td>30 h</td>
<td>86%</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>120 psi</td>
<td>60 °C</td>
<td>20 h</td>
<td>89%</td>
<td>-</td>
</tr>
</tbody>
</table>

-all reactions conducted at 0.1 M in THF
The next goal was to determine the compatibility of Brown and Roush crotylation reactions with the new synthetic route using O-phenyl thionocarbonate containing aldehyde \((4R,5R)-43\) and \((4R,5S)-43\). The starting aldehydes was prepared by Rh-catalyzed hydroformylation of alkene \((3R,4R)-42\) and \((3R,4S)-42\) (See Section 2.3.1).

2.4.1 Brown Crotylation of Aldehyde \((4R,5R)-43\)

The (−)-(Z)-Brown reagent was prepared in situ as described in Section 2.2.1. Several Brown crotylation reactions of aldehyde \((4R,5R)-43\) were conducted using 1.6 to 2 equiv of Brown reagent, but the isolated yields varied from 51% to 65%. Furthermore, when 3 equiv of Brown reagent was used, only 35% of allylic alcohol \((3R,4R,7R,8R)-45\) was isolated. There were substantial difficulties associated with the purification of allylic alcohol \((3R,4R,7R,8R)-45\) because it co-eluted with the isopinol by-product 46. The low, variable yields were probably due to the multiple flash chromatographies that took place to purify the crude product (Scheme 2.12).

Scheme 2.10. Brown crotylation of aldehyde \((4R,5R)-43\)

The Brown crotylation selectivity in the second cycle was determined by integration of the carbinol carbon signals in the \(^{13}\text{C}\) NMR spectrum of target allylic alcohol \((3R,4R,7R,8R)-45\). As shown in Figure 2.4, the ratio of major to minor peaks was determined to be roughly 86/14
dr. This ratio was consistent with two cycles of Brown crotylation with 93/7 enantioselectivity plus its minor enantiomer (0.93*0.93 + 0.07*0.07 = 0.869). Therefore the enantioselectivity of the second Brown crotylation reaction appeared to also be 93/7 with no apparent erosion of selectivity (Figure 2.4).

Figure 2.4. Determination of enantioselectivity of Brown crotylation of (4R,5R)-43 by 13C NMR spectrum

2.4.2 Roush Crotylation of Aldehyde (4R,5S)-43

The compatibility of O-phenyl thionocarbonate functionality with the Roush crotylation reaction was assessed by treating aldehyde (4R,5S)-43 (made in two steps from (3R,4S)-30) with 2 equiv of a 1.0 M solution of Roush reagent 33 and 4 Å MS in toluene at −78 °C (Scheme 2.13). The initial experiment showed complete consumption of aldehyde (4R,5S)-43 after 3 h by TLC. After aq NaOH workup, 87% of the desired allylic alcohol (3R,4S,7R,8S)-45 was isolated by column chromatography. This experiment was repeated several times and consistent yields (83%–87%) were obtained.
Scheme 2.11. Crotylation of aldehyde (4R,5S)-43 with Roush reagent 33

Roush crotylation diastereoselectivity for the second cycle was determined by the integration of carbinol carbon signals of allylic alcohols (3R,4S,7R,8S)-45. The integrations the carbinol carbon signals in 13C NMR spectra showed an 83/17 ratio of major and minor peaks (Figure 2.5). This ratio was consistent with the two cycles of Roush crotylation of 89/11 enantioselectivity. No erosion of selectivity was observed during the second cycle.

Figure 2.5. Determination of enantioselectivity of Roush crotylation of (4R,5S)-43 by 13C NMR spectrum
2.4.3 O-Phenyl Thionocarbonate Compatibility with Crotylation Reaction Summary

Although the Brown crotylation gave slightly better enantioselectivity, the difficult isolation process resulted in only 35%–63% yield of the target allylic alcohol (3R,4R,7R,8R)-45. On the other hand, the Roush crotylation gave only moderate enantioselectivity, but it consistently gave 85%–87% yields of target allylic alcohol (3R,4S,7R,8S)-45. The Roush crotylation was chosen in the new approach because the consistent yields and easy isolation were better suited for the iterative approach.

2.5 FLUOROUS O-PHENYL THIONOCARBONATE TAGS

Two different ways to introduce fluorine into the O-phenyl thionocarbonate functionality were explored next, either by appending a perfluoroalkyl chain or by substituting fluorine atom(s) directly onto the phenyl ring.

2.5.1 4-Perfluoroalkyl-O-Phenyl Thionocarbonate Tags

The first focus was on synthesizing O-phenyl thionocarbonate with perfluoroalkyl chains. It was envisioned that these fluororous analogs could be synthesized from 4-perfluoroalkylphenyl chlorothionoformate 51, which could be accessed from the corresponding 4-perfluoroalkyl phenol 50 in one step (Scheme 2.14).
Scheme 2.12. Synthesis of O-4-perfluoroalkylphenyl chlorothionoformate 51

4-(4,4,5,5,6,6,7,7,7-Nonafluorohexyl)phenol 50 was synthesized in three steps from 4-hydroxybenzaldehyde (Scheme 2.11). Benzyl protection of 4-hydroxybenzaldehyde followed by Wittig reaction with iodo(3,3,4,4,5,5,6,6,6-nonafluorohexyl)triphenylphosphorane 48 furnished the benzyl-protected perfluoroalkylphenol 49 in 32% yield over two steps. Hydrogenation of 49 gave the target perfluoroalkylphenol 50 in 97% yield.

Scheme 2.13. Synthesis of 4-(4,4,5,5,6,6,7,7,7-nonafluorohexyl)phenol 50

4-(4,4,5,5,6,6,7,7,7-Nonafluorohexyl)phenol 50 was converted to the (O-4-(4,4,5,5,6,6,7,7,7-nonafluorohexyl)phenyl)chlorothionoformate 51 upon treatment with thiophosgene in the presence of aq NaOH. The crude product 51 was used directly in the thionoacylation step without further purification. The structure of 51 was confirmed by a reaction with ethanol to give the corresponding ethyl(O-4-(4,4,5,5,6,6,7,7,7-nonafluorohexyl)-phenyl)chlorothionoformate 52 in 80% yield (Scheme 2.16).
Scheme 2.14. Verification of formation of 51 by reaction with ethanol

![Scheme 2.14](image)

Reaction of model allylic alcohol ($3R,4R,7R,8R$)-45 with 52 in the presence of 5 equiv of pyridine in CH$_2$Cl$_2$ did not give the desired bis-O-phenyl thionocarbonate containing product. Instead, 95% of starting alcohol ($3R,4R,7R,8R$)-45 was recovered. Other acylation attempts with stronger bases such as NaH or NaHMDS resulted in decomposition of ($3R,4R,7R,8R$)-45.

As a control experiment, allylic alcohol ($3R,4R,7R,8R$)-45 was also reacted with O-phenyl chlorothionofomate in CH$_2$Cl$_2$ in the presence of pyridine (5 equiv), and this successfully furnished the desired bis-O-phenyl thionocarboxylated product ($3R,4R,7R,8R$)-53 in 90% yield (Scheme 2.17). This experiment shows that it is possible to attach a second O-phenyl thionocarbonate group to the allylic alcohol ($3R,4R,7R,8R$)-45. Because the perfluoroalkyl analog of O-phenyl chlorothiono-formate could not be attached to model allylic alcohol ($3R,4R,7R,8R$)-45. Therefore the second strategy in which the fluorine atoms were attached directly on the phenyl ring was explored.

Scheme 2.15. Synthesis of 53 as control experiment

![Scheme 2.15](image)
2.5.2 Ultra-Light Fluorous O-Phenyl Thionocarbonate Tags

The syntheses of fluorine-substituted O-phenyl thionoformates were examined. The O-phenyl chlorothionoformates 56 and 59 were commercially available. The other O-phenyl thionocarbonates 54, 55, 56, 57, 58, and 59 were synthesized by reaction the corresponding fluorinated phenol with thiophosgene in the presence of aq NaOH (Scheme 2.18).

Scheme 2.16. Syntheses of “fluorous” O-phenyl chlorothionoformate 54 to 59

Reactions of fluorous O-phenyl chlorothionoformates 54, 55, 56, 57, 58 and 59 with allylic alcohol (3R,4R,7R,8R)-45 in the presence of pyridine (5 equiv) in CH$_2$Cl$_2$ successfully furnished the corresponding fluorinated analogs of the bis-O-phenyl thionocarbonate tagged olefins 60, 61, 62, 63, and 64 (Scheme 2.19). The only exception was the reaction of alcohol (3R,4R,7R,8R)-45 with 59 which resulted in decomposition.

Scheme 2.17. Syntheses of model “fluorous” bis-O-phenyl thionocarbonate tagged olefins
The F-HPLC separation of these fluorous bis-\textit{O}-phenyl thionocarbonate molecules 53, 60, 61, 62, 63, and 64 was examined using a FluoroFlashTM (PF-C8) column. The elution time of each fluorous analog was established first by individual injections before co-injection of all six compounds. The HPLC trace of the co-injection shows five separate peaks based on increasing fluorine content with one overlapping peak that contained mono-fluorinated analogs 61 and 62 (Figure 2.6). The F-HPLC with a PFP column gave a similar separation pattern except the 53 and 60 fractions, which overlapped on a PFP column (Appendix B, Figure 1).

Figure 2.6. Fluorous HPLC trace of 53, 60, 61, 62, 63, and 64 mixture by PF-C8 columna)

\begin{center}
\includegraphics[width=0.7\textwidth]{figure2.6.png}
\end{center}

\textit{a.} conditions: isocratic 75/25 acetonitrile: H\textsubscript{2}O, 1 mL/min

\subsection*{2.5.3 \textit{O}-Phenyl Thionocarbonate Fluorous Tag Summary}

Two different analogs of \textit{O}-phenyl chlorothionoformate, one with a perfluoroalkyl chain, and the other with direct fluorine substitution on the phenyl rings were synthesized. The acylation reactions to append the analog with perfluoroalkyl chain to model allylic alcohol (3\textit{R},4\textit{R},7\textit{R},8\textit{R})-45 were unsuccessful. The acylation reactions of (3\textit{R},4\textit{R},7\textit{R},8\textit{R})-45 with fluorinated phenyl analogs of \textit{O}-phenyl chlorothionoformate were successful. The resulting \textit{bis-\textit{O}-phenyl} thionocarbonate molecules 53, 60, 61 (or 62), 63, and 64 were separable by F-HPLC.
3.0 THE FMS OF FOUR ISOMERS OF 4,8,12-TRIMETHYLNONADECANOL USING ULTRA-LIGHT FLUOROUS O-PHENYL THIONOCARBONATE TAGS

After developing a high yielding route that is compatible with the use of O-phenyl thionocarbonate group tags and successfully validating the fluorous separations of model compounds containing the new tags, the FMS of 4,8,12-trimethylnonadecanol could commence.

The new synthetic plan involved three cycles of Roush crotylation, tagging, and Rh-catalyzed hydroformylation followed by aldehyde reduction, demixing, and finally global deoxygenation to furnish the (4S,8S,12S)-, (4S,8R,12S)-, (4R,8S,12S)-, and (4R,8R,12S)-trimethylnonadecanol isomers (Scheme 3.1).

Scheme 3.1. Synthetic plan of FMS of four isomers of 4,8,12-trimethylnonadecanol
3.1 THE NEW APPROACH WITH O-PHENYL, O-2-FLUOROPHENYL, AND O-4-FLUOROPHENYL THIONOCARBONATE TAGS

3.1.1 Tagging Scheme

This FMS follows an *en route* double tagging strategy using three different ultra-light O-phenyl thionocarbonate tags. In this first attempt of the new route, the hope was that the lowest possible number of fluorine atoms to encode the four isomers could be used. As shown in Section 2.5.2, the three lowest separable tags were the O-phenyl thionocarbonate (F⁰), the O-2-fluorophenyl (F¹) and the O-4-fluorophenyl thionocarbonate (F¹’) tags.

After the tags were chosen, the tagging was devised. During the first cycle, the hydroxy group adjacent to the methyl stereocenter fixed at the R configuration would be tagged with the F⁰ tag. During the second cycle, the hydroxy group adjacent to the R methyl stereocenter would be tagged with the F⁰ tag, and the hydroxy group adjacent to the S methyl stereocenter would be tagged with a F¹ tag. During the third cycle, the hydroxy group adjacent to the R methyl stereocenter would be tagged the F⁰ tag and the hydroxy group adjacent to the S methyl stereocenter would be tagged with a F¹’ tag. This tagging scheme would result in the use of only two fluorine atoms to encode for four quasiisomers (Scheme 3.2).

Scheme 3.2. Tagging scheme of the first attempt of the new approach
3.1.2 First Cycle

The first cycle started with Roush crotylation of heptanal with diisopropyl-D-tartrate-(E)-crotylborate 33 in toluene at −78 °C. This furnished (3R,4S)-3-methyldec-1-en-4-ol 30 in 88% yield with 89/11 enantioselectivity (Section 2.2.2.). Allylic alcohol (3R,4S)-30 in CH₂Cl₂ was then treated with O-phenyl chlorothionoformate (1.5 equiv) in the presence of pyridine (5 equiv) at 25 °C to give the F⁰-tagged alkene (3R,4S)-42 in 85% yield. Hydroformylation of (3R,4S)-42 in the presence of 7 mol% Rh(CO)₂acac and 35 mol% pyridone ligand 41 under 120 psi of syngas at 60 °C afforded aldehyde (3R,4S)-43 in 80% yield. The overall yield for the first cycle was 60% over 3 steps (Scheme 3.3).

Scheme 3.3. First cycle of the initial second generation approach

3.1.3 Second Cycle

To start the second cycle, aldehyde (3R,4S)-43 was split into two half-portions. One half portion was reacted with diisopropyl-D-tartrate-(E)-crotylborate 33 to give allylic alcohol (3R,4S,7R,8S)-45 in 83% yield with 82/18 dr, and the other half portion was reacted with diisopropyl-L-tartrate-(E)-crotylborate 34 to give allylic alcohol (3S,4R,7R,8S)-45 in 83% yield with 83/17 dr (see Section 2.4.2). Allylic alcohol (3R,4S,7R,8S)-45 in CH₂Cl₂ was treated with O-phenyl chlorothionoformate in the presence of pyridine (5 equiv) at 25 °C to furnish bis-(F⁰,F⁰)-tagged alkene (3R,4S,7R,8S)-53 in 81% yield. Allylic alcohol (3S,4R,7R,8S)-45 in
CH$_2$Cl$_2$ was treated with O-2-fluorophenyl chlorothionoformate 54 in the presence of pyridine (5 equiv) at 25 °C to give the bis-(F^0,F^1)-tagged alkene (3$S,4R,7R,8S$)-60 in 84% yield. A 1:1 mixture of (3$R,4S,7R,8S$)-53 and (3$S,4R,7R,8S$)-60 was then subjected to the Rh-catalyzed hydroformylation afford mixture aldehyde M-65 in 82% yield. The overall yield for the second cycle was 56% over 3 steps (Scheme 3.4).

Scheme 3.4. Second cycle of the initial second generation approach

![Scheme 3.4](image)

3.1.4 Third Cycle

To start the third cycle, aldehyde M-65 was again split into two half portions. One half was reacted with diisopropyl-D-tartrate-(E)-crotylborate 33 to give mixture allylic alcohol M-66 in 80% yield, and the other half was reacted with diisopropyl-L-tartrate-(E)-crotylborate 34 to give mixture allylic alcohol M-67 in 83% yield. Allylic alcohol M-66 in CH$_2$Cl$_2$ was treated with O-phenyl chlorothionoformate in the presence of pyridine (5 equiv) at 25 °C to give alkene
M-68 in 87% yield. Allylic alcohol M-67 in CH$_2$Cl$_2$ was treated with O-4-fluorophenyl chlorothionoformate 56 in the presence of pyridine (5 equiv) at 25 °C to give alkene M-69 in 84% yield. Following fluorous tagging, a 1:1 mixture of M-68 and M-69 was subjected to Rh-catalyzed hydroformylation reaction to afford mixture aldehyde M-70 in 83% yield. The third cycle gave the overall yield of 58% yield over three steps. Mixture aldehyde M-70 was reduced by DIBAL-H at 0 °C to furnish the mixture of four fluorous-tagged quasiisomers of 4,8,12-trimethylnonadecanol M-71 in 87% yield (Scheme 3.5). The overall yield was 17% yield over 16 steps, and 140 mg of M-71 was obtained at the end of the synthesis.

Scheme 3.5. Third cycle of the initial second generation approach
3.1.5 Characterizations and Fluorous Demixing of Mixture M-71

The 19F NMR spectrum of M-71 showed the presence of both the O-2-fluorophenyl and the O-4-fluorophenyl thionocarbonate tags, and the 1H NMR spectrum of M-71 at 700 MHz showed the presence of a triplet signal at 3.64 ppm, which is consistent with the carbinol signal of a primary alcohol, and a multiplet signal at 5.39 ppm, which is consistent with the secondary carbinol proton signals. A triplet signal at 0.89 ppm, which was consistent with the terminal methyl group was identified. The HRMS of M-71 confirmed the presence of all four quasiisomers.

The mixture M-71 was first injected into F-HPLC with a FluoroFlash™ (PF-C8) column and eluted with isocratic 65:35 acetonitrile/H$_2$O system (Figure 3.1). Four different fluorous quasiisomers were observed but they eluted too closely to be isolated individually. M-71 was also analyzed by a Discovery® HS F5 PFP column on F-HPLC, but the trace gave even less separation between each fluorous quasiisomers than the analysis on a FluoroFlash™ (Appendix.B, Figure 2). Although four peaks could be observed using the FluoroFlash™ PF-C8 column, baseline resolution was only achieved between peaks 2 and 3. It was concluded that preparative demixing on a larger scale would not succeed.

Figure 3.1. Fluorous HPLC trace of mixture M-71 by PF-C8 column

![Fluorous HPLC trace of mixture M-71 by PF-C8 column](image)
3.2 THE NEW APPROACH WITH O-PHENYL, O-4-FLUOROPHENYL, AND O-3,4-DIFLUOROPHENYL THIONOCARBONATE TAGS

3.2.1 Tagging Scheme

It was hypothesized that the tight separations between peaks 1 and 2, and peaks 3 and 4 in the previous attempt were due to the use of the O-2-fluorophenyl thionocarbonate (F\(^1\)) tag (Figure 3.1). To circumvent this problem, the F\(^1\) tag was substituted with the O-3,4-difluorophenyl thionocarbonate (F\(^2\)) tag in the second attempt. The three tags used in this second attempt were O-phenyl (F\(^0\)), O-4-fluorophenyl (F\(^1\)') and O-3,4-difluorophenyl (F\(^2\)) thionocarbonate tags. This new attempt would start from the second cycle because the first cycle was identical to the first attempt.

During the second cycle, it was planned to tag the hydroxy group adjacent to the \(R\) methyl with the F\(^0\) tag, and tag the hydroxy group adjacent to the \(S\) methyl with the F\(^1\)' tag. During the third cycle, it was planned to tag the hydroxy group adjacent to the \(R\) methyl with the F\(^0\) tag, and tag the hydroxy group adjacent to the \(S\) methyl with the F\(^2\) tag (Scheme 3.6). This tagging scheme would result in the use of six fluorine atoms to encode for four isomers.

Scheme 3.6. Tagging scheme of the new second generation approach
3.2.2 Second Cycle

The product of the first cycle, aldehyde (3R,4S)-43 was split into two half portions. The first half portion was reacted with diisopropyl-d-tartrate-(E)-crotylborate 33 to give allylic alcohol (3R,4S,7R,8S)-45 in 88% yield. The second half portion was reacted with diisopropyl-l-tartrate-(E)-crotylborate 34 to give allylic alcohol (3S,4R,7R,8S)-45 in 84% yield. Allylic alcohol (3R,4S,7R,8S)-45 was treated with O-phenyl chlorothionoformate in the presence of pyridine (5 equiv) at 25 °C to give bis-(F^0-F^0)-tagged alkene (3R,4S,7R,8S)-53 in 84% yield. Allylic alcohol (3S,4R,7R,8S)-45 in CH₂Cl₂ was treated with O-4-fluorophenyl chlorothionoformate 56 in the presence of pyridine (5 equiv) at 25 °C to give bis-(F^0-F^1')-tagged alkene (3S,4R,7R,8S)-62 in 84% yield. After fluorous tagging, a 1:1 mixture of (3R,4S,7R,8S)-53 and (3S,4R,7R,8S)-62 was subjected to the Rh-catalyzed hydroformylation reaction to afford aldehyde M-72 in 82% yield. The overall yield for the second cycle was 59.4% over 3 steps (Scheme 3.7).

Scheme 3.7. Second cycle of the second attempt of the new FMS approach
3.2.3 Third Cycle

The third cycle started with splitting of aldehyde M-72 in two half portions. The first half portion was reacted with diisopropyl-D-tartrate-(E)-crotylborate 33 to give mixture allylic alcohol M-73 in 84% yield. The second half portion was reacted with diisopropyl-L-tartrate-(E)-crotylborate 34 to give mixture allylic alcohol M-74 in 84% yield. Mixture allylic alcohol M-73 was reacted with O-phenyl chlorothionoformate in the presence of pyridine (5 equiv) to give alkene M-75 in 86% yield. Mixture allylic alcohol M-74 was reacted with O-3,4-difluorophenyl chlorothionoformate 57 in the presence of pyridine (5 equiv) to give alkene M-76 in 88% yield. A 1:1 mixture of M-75 and M-76 was subjected to the Rh-catalyzed hydroformylation to afford mixture aldehyde M-77 in 80% yield. Aldehyde M-77 was reduced by DIBAL-\(H\) at 0 °C to give 880 mg of a mixture of four fluorous tagged 4,8,12-nonadecanols M-78 in 88% yield (Scheme 3.8). The yield for the third cycle was 56% over 3 steps. The overall yield for the synthesis of M-78 was 18% over 16 steps. The yields per cycle were reliably between 56% and 60%.

Scheme 3.8. Third cycle of the second attempt of the new FMS approach
3.2.4 Characterizations and Fluorous Demixing of Mixture M-78

The 19F NMR spectrum of M-78 showed the presence of both the O-4-fluorophenyl and the O-3,4-difluorophenyl thionocarbonate tags, and the 1H NMR spectrum of M-78 showed the presence of a triplet at 3.65 ppm which is consistent with the carbinol signal of a primary alcohol and a multiplet at 5.33 ppm, which is consistent with the secondary carbinol proton signal. A triplet signal at 0.892 ppm, which is consistent with the terminal methyl group was also identified. The HRMS of M-78 confirmed the presence of all four quasiisomers.

Injection of M-78 into F-HPLC with a FluoroFlash™ PF-C8 column eluting with isocratic 65:35 (acetonitrile/H$_2$O) gave baseline separation of all four quasiisomers (Figure 3.2). Analysis of M-78 on Discovery® HS F5 PFP column gave a similar separation, but the analysis of M-78 on the reverse phase RP-C18 column gave only one large unresolved peak (Appendix B, Figure 3).
The semi-prep scale F-HPLC demixing of alcohol M-78 was achieved on the PF-C8 column (FluoroFlash® 100 Å, 5 μm) by eluting with a gradient of 60:40 CH₃CN/H₂O to 100% CH₃CN over 1 h (Figure 3.3). Because of the close elution of the four peaks, the demixing was accomplished by several 1 mL injections of 10 mg/mL of M-78 in CH₃CN. The four different peaks were collected and the products were identified by ¹⁹F NMR. The first peak, which did not give any signal in the ¹⁹F NMR spectrum, was identified as the (4R,5S,8R,9S,12R,13S)-78 quasiisomer; the second peak, which gave 1 fluorine signal at −115.89 ppm in the ¹⁹F NMR spectrum, was identified as the (4R,5S,8S,9R,12R,13S)-78 quasiisomer; the third peak, which gave 2 fluorine signals at −134.14 and −139.75 ppm, was identified as the (4S,5R,8R,9S,12R,13S)-78 quasiisomer; and the fourth peak, which gave 3 fluorine signals at −115.77, −134.14 and −139.63 ppm, was identified as the (4S,5R,8S,9R,12R13S)-78 quasiisomer.

Figure 3.2. Fluorous HPLC trace of mixture M-78 by PFC-8 column

a) conditions: isocratic 70/30 acetonitrile: H₂O, 1 mL/min
Overall, 107 mg of M-78 was subjected to semi-prep HPLC, the recovery of each isomer is summarized in Table 3.1. The overall % recovery was calculated to be ~70%. To confirm the purity of each quasi-isomer, each fraction was re-injected to the HPLC under analytical conditions. The F-HPLC traces showed that the first quasi-isomer was pure, but that the following three quasi-isomers were contaminated with 1–3% of the previous isomer (Figure 3.4). Since the samples were expected to have ~35% of true isomer contaminants from the Roush crotylations, the 1–3% of quasi-isomer contaminants were not significant in comparison. So the samples were detagged without further purification.

Table 3.1. Recovery of each isomer after demixing

<table>
<thead>
<tr>
<th>Isomer</th>
<th>recovered (mg)</th>
<th>% recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4S,8S,12S)-78</td>
<td>20</td>
<td>74%</td>
</tr>
<tr>
<td>(4S,8R,12S)-78</td>
<td>19</td>
<td>71%</td>
</tr>
<tr>
<td>(4R,8S,12S)-78</td>
<td>16</td>
<td>68%</td>
</tr>
<tr>
<td>(4R,8R,12S)-78</td>
<td>20</td>
<td>67%</td>
</tr>
</tbody>
</table>
3.2.5 Global Radical Deoxygenation (Detagging) of F-O-Phenyl Thionocarbonate

The global radical deoxygenation step was first evaluated with mixture M-78 using dimethylimidazolium carbene borane (diMe-Imd-BH₃) at room temp and with heating conditions.⁴¹ In the room temp experiment, 5 equiv of both diMe-Imd-BH₃ and Et₃B were added to a solution of M-78 in benzene-₆. The mixture was initially stirred in open air for 3 h, TLC analysis showed that staring alcohol M-78 remained, so an additional 5 equiv of Et₃B was added. After 3 h more, the solvent was removed. The ¹H NMR spectrum of the crude product showed a large signal at 5.33 ppm, indicating the presence of the secondary O-phenyl thionocarbonate and showing that incomplete deoxygenation. In the heated condition, 5 equiv of both diMe-Imd-BH₃ and AIBN were added to a solution of M-78, and the mixture was heated to 80 °C. After 3 h, TLC analysis showed the complete consumption of alcohol M-78. The mixture 4,8,12-trimethylnonadecanol M-79 was isolated in 75% yield after flash chromatography (Scheme 3.9).
The 19F NMR spectrum of M-79 showed no signals, indicating that no fluous tags remained. This sample served as the standard for spectroscopic characterization of the mixed products. It should contain four different isomers in a ratio of 1/1/1/1.

Scheme 3.9. Model radical global deoxygenation of mixture M-78

The global deoxygenation of quasiisomers $(4R,5S,8R,9S,12R,13S)$-78, $(4R,5S,8S,9R,12R,13S)$-78, $(4S,5R,8S,9R,12R,13S)$-78, and $(4S,5R,8S,9R,12R,13S)$-78 were accomplished by heating with diMe-Imd-BH$_3$/AIBN to afford $(4S,8S,12S)$-79, $(4S,8R,12S)$-79, $(4S,8R,12S)$-79, and $(4R,8R,12S)$-79 in 67%, 52%, 65%, and 63% yields, respectively after purification by column chromatography (Scheme 3.10).

Scheme 3.10. Global radical deoxygenation of four quasiisomers

3.2.6 FMS Summary

The FMS of four isomers of 4,8,12-trimethylnonadecanol was accomplished in 16 steps (including F-HPLC recovery, and the global deoxygenation steps) with an average of 7.8% overall yield. This FMS was accomplished by using the new ultra-light fluorous O-phenyl thionocarbonato tags. These new fluorous tags were used to successfully encode four stereoisomers with only six fluorine atoms, making it the most efficient FMS to date. This is a dramatic improvement over the previously most efficient FMS (FMS of SCH725674),9c which used 30 fluorine atoms to code for four isomers.
3.3 SPECTROSCOPIC ANALYSES OF FOUR ISOMERS OF 4,8,12-TRIMETHYLNONADECANOL

3.3.1 Analyses of 1H NMR Spectra of M-79 and Four Isomers of 4,8,12-Trimethyl-nonadecanol

The 1H NMR spectra of the mixture M-79 and the four individual isomers were recorded in CDCl$_3$ at 700 MHz, and the complete 1H NMR spectra are shown in Appendix E. The five spectra were similar in all respects except for the methyl region (0.82–0.90 ppm). To simplify the labeling of the branched methyl groups, the terminal methyl is herein designated as 19, C4-methyl as 20, the C8-methyl as 21, and the C12-methyl as 22 (Figure 3.5).

Figure 3.5. Designations of the methyl groups in 4,8,12-trimethylnonadecanol 79

Upon expanding the methyl region (0.82–0.90 ppm) of the four spectra of single isomers, we learned that all the branched methyl group protons (H20, H21, and H22) signals are distinguishable in all four isomers. Furthermore, each spectrum showed a unique combination of chemical shifts for the major H20, H21, and H22 signals, and the terminal methyl group H19 signal remained the same in all four spectra. The 1H NMR spectra from standard processing did not give good enough resolution to show all the signals, however, because they are so close. Therefore, each spectrum was subjected to additional processing by using the Traficante algorithm followed by forward linear prediction to improve the resolution.42 Figure 3.6 shows the overlay of the methyl region of (4S,8S,12S)-79 spectrum of the before and after additional processing. The red spectrum was generated with standard processing and the black spectrum
was generated with the Traficante processing. The black spectrum clearly resolves the two overlapping doublets of 0.844 and 0.840 ppm (right group of peaks), and the overlapping doublet and triplet of 0.882 and 0.874 ppm (left group of peaks). Small peaks of expected stereoisomer impurities are also clearly visible.

Figure 3.6. 1H NMR spectra between regular and the Traficante algorithm processing

By lining up the methyl regions of the four 1H NMR spectra (Figure 3.7), it was learned that both (4S,8S,12S)-79 (spectrum 2) and (4R,8R,12S)-79 (spectrum 5) contained a doublet at 0.874 ppm, but the other two signals differed. These two isomers also both have the C20 in a *syn* relationship to the C21. It was deduced that the 0.874 ppm signal must belong to the H20 in both (4S,8S,12S)-79 and (4R,8R,12S)-79. Likewise, both (4S,8R,12S)-79 and (4R,8S,12S)-79, which have the C20 in a *anti* relationship to the C21, contained a doublet signal at 0.872 ppm in their 1H NMR spectra. Therefore, we assigned this doublet signal to the H20 for (4S,8R,12S)-79 and (4R,8S,12S)-79. By a similar process of deduction, we were able to assign all the methyl signals in all four isomers (Table 3.3). The complete assignments of the methyl group region are listed under the corresponding methyl group in Figure 3.7. There are a total of seven different doublets
found in the methyl region, H20-syn (0.874 ppm), H20-anti (0.872 ppm), syn-H21-syn (0.844 ppm), syn-H21-anti or anti-H21-syn (0.842 ppm), anti-H21-anti (0.841 ppm), H22-syn (0.840 ppm), H22-anti (0.839 ppm) (Table 3.3). The 0.841 and 0.840 ppm signals overlapped in the 1H NMR of M-79 as one larger signal (spectrum 1, Figure 3.7). These seven signals correspond to the seven different types of methyl groups as indicated in Table 3.3. Five of the methyl group types appear twice, and two appear once, for the total of seven.

Figure 3.7. 1H NMR of methyl region expansion of the four isomers

<table>
<thead>
<tr>
<th>spectrum</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>—</td>
<td>no match</td>
<td>H22-syn</td>
<td>H20-syn</td>
</tr>
<tr>
<td>3</td>
<td>no match</td>
<td>—</td>
<td>H20-anti</td>
<td>H22-anti</td>
</tr>
<tr>
<td>4</td>
<td>H22-syn</td>
<td>H20-anti</td>
<td>—</td>
<td>anti-H21-syn</td>
</tr>
<tr>
<td>5</td>
<td>H20-syn</td>
<td>H22-anti</td>
<td>syn-H21-anti</td>
<td>—</td>
</tr>
</tbody>
</table>
Table 3.3. The complete assignments of the 7 different methyl proton signals in 1H NMR spectra

<table>
<thead>
<tr>
<th>type of methyl proton</th>
<th>chemical shift (δ, ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H20-syn</td>
<td>0.874</td>
</tr>
<tr>
<td>H20-anti</td>
<td>0.872</td>
</tr>
<tr>
<td>syn-H21-syn</td>
<td>0.844</td>
</tr>
<tr>
<td>syn-H21-anti and anti-H21-syn</td>
<td>0.842</td>
</tr>
<tr>
<td>anti-H21-anti</td>
<td>0.841*</td>
</tr>
<tr>
<td>H22-syn</td>
<td>0.840*</td>
</tr>
<tr>
<td>H22-anti</td>
<td>0.839</td>
</tr>
</tbody>
</table>

* - shows up as an overlapping signal in 1H NMR spectrum of M-89

The purity of each isomer was not estimated due to the large number of possible peaks ($3 + 2 \times 7 = 17$) found in a small region. The isomeric purity of each sample becomes clearer in the subsequent 13C NMR spectroscopic analysis due to fewer numbers of possible peaks.

The H20, H21, and H22 assignments in 1H NMR were verified by 1D TOCSY experiments conducted by Dr. D. Krishnan. In each experiment, the carbinol proton signal were first excited, followed by a recording of the spectrum after a 0.3 sec delay, and then a second recording after a 0.5 sec delay. During the delay, the initial magnetization was gradually transferred to the methyl groups depending on their distance from the carbinol protons.

An example of the results from the 1D TOCSY experiment of (4S,8S,12S)-79 is shown in Figure 3.8. The carbinol proton signal at 3.634 ppm was irradiated. After 0.3 sec the spectrum showed an increase in the doublet at 0.874 ppm. This signal was assigned to the closest H20. After 0.5 sec, the spectrum showed an increase of a second doublet at 0.844 ppm. This was assigned to the second closest H21. The remaining unaffected doublet at 0.840 ppm was assigned to the furthest away H22. Likewise, the methyl groups of the other three isomers were assigned. The assignments from the 1D TOCSY experiments agreed with the previous assignments made by the direct comparative method. The 1D TOCSY spectra of (4S,8R,12S)-79, (4R,8S,12S)-79, and (4R,8R,12S)-79 are shown in Appendix C.
3.3.2 Analysis of 13C NMR Spectra of M-79 and Four isomers of 4,8,12-
Trimethylnonadecanol

The 13C NMR spectra of the mixture M-79 and the four isomers were recorded in CDCl$_3$ at 150 MHz. The 13C NMR spectra of the four isomers were slightly different in three regions, 19.5–20.0 ppm, 32.0–33.5 ppm, and 37.0–37.5 ppm. Based on the 13C NMR assignments of α-tocopherol by Ingold and coworkers,19a these three regions were identified as the C20, C21, and C22 methyl region at 19.5–19.9 ppm, the C4, C8, and C12 methine region at 32.6–33.1 ppm, and the C3, C5, C7, C9, C11, and C13 methylene region at 37.0–37.5 ppm (Figure 3.9).
Figure 3.9. The three regions in 13C NMR spectra with differentiable signals

The most downfield region is difficult to analyze because it contains six closely spaced resonances with some overlapping one another. Both the methane and branched methyl regions have three resonances. We chose to analyze the later region (19.0–20.5 ppm) further to see if the methyl configurations to chemical shifts correlations observed in 1H NMR spectra also exist in the 13C NMR spectra. To improve the resolution of the 13C NMR spectra, the five samples (M, 79, 4S,8S,12S-79, 4S,8R,12S-79, 4R,8S,12S-79, 4R,8R,12S-79) were first subjected to 13C NMR experiments with a narrower scanning range between 19.0–20.5 ppm. The resulting spectra were then processed with the Traficante algorithm processing. Figure 3.10 shows the improvement in resolution by overlaying the 19.50–19.90 ppm expansion of the (4S,8S,12S)-79 13C NMR spectrum. The red spectrum was generated from standard processing and the black spectrum
was generated from the additional Traficante algorithm processing. The black spectrum clearly shows three major peaks and several minor peaks.

Figure 3.10. 13C NMR spectra between regular processing and Traficante algorithm processing

![NMR spectra](image)

The 13C NMR spectrum expansion of the C20, C21, C22 methyl region (19.0–20.5 ppm) in the mixture M-79 showed seven distinct carbon signals in roughly equal heights, indicating the presence of seven different configurations (types) of the methyl group in the four isomers. After lining up the five 13C NMR spectra, we learned that each spectrum contained 7 peaks, 3 major peaks and four minor peaks, and all seven peaks aligned with the seven peaks found in the 13C NMR spectrum of the mixture M-79 (Figure 3.11). We were able to assign the three major peaks and four minor peaks in each spectrum by the same comparative method introduced earlier. To illustrate this method, in Figure 3.11 we color-code the methyl group with *syn* relationship(s) with its neighboring methyl group(s) in red; the methyl group with *anti* relationship(s) with its neighboring methyl group(s) in blue; and the methyl group with a *syn* relationship on one side and an *anti* relationship on the other in black (Figure 3.11). The complete assignments of the
seven methyl carbon signals are summarized in Table 3.4. It is important to note that all seven signals appear within a 0.18 ppm span.

Figure 3.11. 13C NMR methyl branch expansion of the mixture M-79 and four isomers

![Methyl branch expansion](image)

Table 3.4. The complete assignments of the seven different methyl carbon signals in 13C NMR spectra

<table>
<thead>
<tr>
<th>type of methyl carbon</th>
<th>chemical shift (δ, ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C20-syn</td>
<td>19.67</td>
</tr>
<tr>
<td>C20-anti</td>
<td>19.61</td>
</tr>
<tr>
<td>syn-C21-syn</td>
<td>19.79</td>
</tr>
<tr>
<td>syn-C21-anti and anti-C21-syn</td>
<td>19.73</td>
</tr>
<tr>
<td>anti-C21-anti</td>
<td>19.66</td>
</tr>
<tr>
<td>C22-syn</td>
<td>19.77</td>
</tr>
<tr>
<td>C22-anti</td>
<td>19.70</td>
</tr>
</tbody>
</table>
The methyl group carbon assignments were verified by correlating the methyl carbon signals with their corresponding proton signals in inverse 2D HMQC experiments conducted by Dr. D. Krishnan. For example, in the methyl region expansion of the 2D HMQC spectrum of \((4S,8S,12S)\)-79 shown in Figure 3.12., the 19.79 ppm signal was correlated to the C21 methyl proton doublet signal at 0.844 ppm; the 19.77 ppm signal was correlated to the C22 methyl proton doublet signal at 0.840 ppm; and the 19.67 ppm signal was correlated to the C20 methyl proton doublet signal at 0.874 ppm. These 2D HMQC assignments agreed with the assignments made by the comparative method. The methyl group assignments of remaining three isomers were verified by similar 2D HMQC experiments (Appendix D).

Figure 3.12. Expansion of the branched methyl region of the inverse 2D HMQC of \((4S,8R,12S)\)-

![Figure 3.12](image-url)
3.3.3 Isomeric Purity Estimation in Each Sample

Due to the different isomeric impurities present in each sample, we decided to estimate the purity of each sample by comparing the 13C NMR spectra to the simulated 13C NMR spectra of each final product based on 89/11 Roush crotylation selectivity per cycle (for three cycles). To simulate these four 13C NMR spectra, we first constructed a table of percentage compositions for each isomer in a given sample (Table 3.5). For example, sample 1 contains ~70% of $(4S,8S,12S)$-79 isomer ($0.89 \times 0.89 \times 0.89 = 0.70$), ~9% of the $(4S,8R,12S)$-79 isomer ($0.89 \times 0.11 \times 0.89 = 0.09$), ~9% of the $(4R,8S,12S)$-79 isomer, ~9% of the $(4S,8S,12R)$-79 isomer, ~1% of the $(4R,8R,12S)$-79 isomer (0.11$^*0.11^*0.89 = 0.01$), ~1% of the $(4R,8S,12R)$-79 isomer, ~1% of the $(4R,8R,12S)$-79 isomer, and ~0.1% of the $(4R,8R,12R)$-79 isomer.

Based on Table 3.5, we then calculated the percentage intensity of each carbon signal. For example, for the sample 1, the percentage of syn-C20 (19.67 ppm) was calculated to be ~0.80. This was calculated by adding the percentage composition of the main isomer $(4S,8S,12S)$-79, and impurities $(4S,8S,12R)$-79, $(4R,8R,12S)$-79, and $(4R,8R,12R)$-79 isomers, which all contain a syn-C20 signal ($0.70 + 0.09 + 0.01 + 0.001 = 0.80$). The percentage intensity of the anti-C20 (19.61 ppm) signal was calculated to be ~20% by adding the impurities $(4S,8R,12S)$-79, $(4S,8R,12R)$-79, $(4R,8S,12S)$-79, and $(4R,8S,12R)$-79 isomers ($0.09 + 0.01 + 0.09 + 0.01 = 0.20$). Together, syn-C20 and anti-C20 makes up to 100% of all C20 signals. The percentage intensity of each type of C21 and C22 are calculated in the same way using Table 3.5, and summarized in Table 3.6.

The four simulated 13C NMR spectra with 89/11 selectivity at each cycle were created using Table 3.6 with an NMR spectra simulator-WINDNMR©. These spectra are shown in Figure 3.13.
Table 3.5. The percentage composition of each isomer in the four samples

<table>
<thead>
<tr>
<th>Sample (%)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4S,8S,12S)-79</td>
<td>70</td>
<td>9</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>(4S,8S,12R)-79</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>(4S,8R,12S)-79</td>
<td>9</td>
<td>70</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>(4S,8R,12R)-79</td>
<td>1</td>
<td>9</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>(4R,8S,12S)-79</td>
<td>9</td>
<td>1</td>
<td>70</td>
<td>9</td>
</tr>
<tr>
<td>(4R,8S,12R)-79</td>
<td>1</td>
<td>0.1</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>(4R,8R,12S)-79</td>
<td>1</td>
<td>9</td>
<td>9</td>
<td>70</td>
</tr>
<tr>
<td>(4R,8R,12R)-79</td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

Sample 1 contains (4S,8S,12S)-89 as the major isomer; sample 2 contains (4S,8R,12S)-89 as the major isomer; sample 3 contains (4R,8S,12S)-89 as the major isomer; sample 4 contains (4R,8R,12S)-89 as the major isomer.

Table 3.6. The estimated percentage C20, C21, and C22 intensities in 13C NMR spectra

<table>
<thead>
<tr>
<th>Sample (ppm)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>syn-C20 (19.67 ppm)</td>
<td>80</td>
<td>20</td>
<td>20</td>
<td>80</td>
</tr>
<tr>
<td>anti-C20 (19.61 ppm)</td>
<td>20</td>
<td>80</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>syn-C21-syn (19.79 ppm)</td>
<td>71</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>syn-C21-anti (19.73 ppm)</td>
<td>20</td>
<td>20</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>anti-C21-anti (19.66 ppm)</td>
<td>10</td>
<td>71</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>syn-C22 (19.77 ppm)</td>
<td>80</td>
<td>20</td>
<td>80</td>
<td>20</td>
</tr>
<tr>
<td>anti-C22 (19.70 ppm)</td>
<td>20</td>
<td>80</td>
<td>20</td>
<td>80</td>
</tr>
</tbody>
</table>

Figure 3.13. Spectral comparison between actual and simulated 13C NMR spectra

a). sample 1: (4S,8S,12S)-79

b). sample 2: (4S,8R,12S)-79
As shown in Figure 3.13, the simulated 13C NMR spectra closely resemble the actual 13C NMR spectra in all four samples. Therefore, it can be conclude that the isomeric purities in each sample are ~70% as a result of three cycles of Roush crotylation at about 89% for each cycle. No apparent erosion in enantioselectivity for Roush crotylation between the second and third cycle was observed.

3.3.4 Development of an NMR-Based Method for Assigning the Methyl Group

Configurations in a Polyisoprenoid System

The spectroscopic analyses of isoprenoids M-79, 4S,8S,12S-79, 4S,8R,12S-79, 4R,8S,12S-79, and 4R,8R,12S-79 showed that the methyl groups at the same position with the same relative configuration with neighboring methyl group(s) would share identical 1H and 13C NMR chemical shifts. This phenomenon is further evident by the fact that only seven, instead of 12, different signals were observed in both the 1H and the 13C NMR spectra of the mixture M-79. These seven principle signals were identified as C20-syn, C20-anti, syn-C21-syn, syn-C21-anti (or anti-
C21-syn), anti-C21-anti, C22-syn, and C22-anti methyl configurations. Table 3.7 lists the 1H and ^{13}C NMR chemical shifts for the 7 principle methyl configurations.

Table 3.7. Chemical shifts of the seven principle types of methyl configuration in 1H and ^{13}C NMR

<table>
<thead>
<tr>
<th>type of methyl group</th>
<th>1H NMR chemical shift (δ, ppm)</th>
<th>^{13}C NMR chemical shift (δ, ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C20-syn</td>
<td>0.874 (d)</td>
<td>19.67</td>
</tr>
<tr>
<td>C20-anti</td>
<td>0.872 (d)</td>
<td>19.61</td>
</tr>
<tr>
<td>syn-C21-syn</td>
<td>0.844 (d)</td>
<td>19.79</td>
</tr>
<tr>
<td>syn-C21-anti</td>
<td>0.842 (d)</td>
<td>19.73</td>
</tr>
<tr>
<td>anti-C21-anti</td>
<td>0.841 (d)</td>
<td>19.66</td>
</tr>
<tr>
<td>C22-syn</td>
<td>0.840 (d)</td>
<td>19.77</td>
</tr>
<tr>
<td>C22-anti</td>
<td>0.839 (d)</td>
<td>19.70</td>
</tr>
</tbody>
</table>

Based on these observations, it was postulated that the methyl group chemical shifts in repeating isoprenoid system will be dictated predominantly by the 1,5-methyl-methyl interaction(s). Based on this, it can be predicted that the appearance of branched methyl group 1H and ^{13}C NMR region of any isoprenoid molecule by applying the appropriate chemical shifts and multiplicities from Table 3.4. If these values are inputted into an NMR simulator such as WINDNMR©, the resulted predicted spectra can be visualized and compared with the spectra of synthetic or natural products for the purpose of structural identification or purity assessments.
4.0 SPECTROSCOPIC PREDICTIONS

The first step in predicting the appearance of the branched methyl region of 1H and 13C NMR spectra of a given polyisoprenoid is to set up a characterization table that includes the quantity and type of branched methyl within the given polyisoprenoid. The 1H and 13C NMR spectra can then be simulated by inputting these values into WINDNMR©.

To generalize the labeling of the branched methyl groups, we will herein refer to the C20 or the left-most methyl carbon as the end1, the C21 or the middle methyl carbon(s) as middle, and C22 or the right-most methyl carbon as end2. In any polyisoprenoid system there will be one end1 methyl group, and one end2 methyl group, but depending on the number of repeating units there can be many middle methyl groups (Figure 4.1).

Figure 4.1. Branched methyl group designations for isoprenoid structures

![Branched methyl group designations](chart)
4.1 SPECTROSCOPIC PREDICTIONS OF EIGHT ISOMERS OF 4,8,12,16-TETRAMETHYLTRICOSANOL

To predict the 1H and 13C NMR spectra of 4,8,12,16-tetramethyltricosanol, the characterization table for each isomer was setup. As shown in Figure 4.2, 4,8,12,16-tetramethyltricosanol contains four branched methyl groups: one end-1 methyl group, one end-2 methyl group and two middle methyl groups. The methyl group characterization table (Table 4.1) is set up with the 8 diastereomers on vertical axis and the seven principle type of methyl on the horizontal axis. The numbers correspond to the quantity of each type of methyl group in a given isomer.

Figure 4.2. The structure of 4,8,12,16-tetramethyltricosanol

![Structure of 4,8,12,16-tetramethyltricosanol](image)

Table 4.1. Characterization table for 4,8,12,16-tetramethyltricosanol

<table>
<thead>
<tr>
<th></th>
<th>syn-e1</th>
<th>anti-e1</th>
<th>syn-m-syn</th>
<th>syn-m-anti</th>
<th>anti-m-anti</th>
<th>syn-e2</th>
<th>anti-e2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4S,8S,12S,16S</td>
<td>1</td>
<td>—</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>4S,8S,12S,16R</td>
<td>1</td>
<td>—</td>
<td>1</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>4S,8S,12R,16S</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td>1</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>4S,8R,12S,16S</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>4S,8S,12R,16R</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>—</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>4S,8R,12R,16S</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>2</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>4S,8R,12S,16R</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>4S,8R,12R,16R</td>
<td>—</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

$e1$ = end1; m = middle; $e2$ = end2

The spectra can then be simulated using WINDNMR© by referencing chemical shifts and multiplicities of each corresponding methyl group from Table 3.4. The 1H NMR spectra are simulated at 700 MHz and the 13C NMR are simulated at 150 MHz. The predicted 1H NMR spectra are shown in Figure 4.3 and the predicted 13C NMR spectra are shown in Figure 4.4.
Figure 4.3. 1H NMR spectra prediction of 8 isomers of 4,8,12,16-tetramethyltricosanol 80

Figure 4.4. 13C NMR spectra prediction of 8 isomers of 4,8,12,16-tetramethyltricosanol 80
From the predicted 1H and 13C NMR spectra of 4,8,12,16-tetramethyltroclosanol, it can be seen that the spectra of all eight isomers are different. The 1H NMR spectra contain either 9 (one triplet and three doublets) or 11 (one triplet and four doublets) signals and the 13C NMR spectra contain either 3 or 4 signals. Since the terminal methyl always appear as a triplet at 0.882 ppm in the 1H NMR spectra, and the two end methyl groups (end1 and end2) appear as two doublets in the 1H NMR spectra and as two signals in the 13C NMR spectra. The only factor that determines whether a spectrum would have nine or 11 signals in the 1H NMR spectra and three or four signals in the 13C NMR spectra is the type of middle methyl groups. If the two middle methyl groups are the same type, then their signals would overlap to give only nine signals (one triplet and three doublets) in the 1H NMR spectra and three signals in the 13C NMR spectra with the overlapping signals having double intensities [e.g., (4S,8S,12S,16S)-, (4S,8S,12R,16R)-, (4S,8R,12R,16S)-, and (4S,8R,12S,16R)-80]. On the other hand, if the two middle methyl groups are different types, then there would be a total of 11 signals in the 1H NMR spectra, and 4 signals
in the 13C NMR spectra with all signals in equal intensities [e.g. (4S,8S,12S,16R)-, (4S,8S,12R,16S)-, (4S,8R,12S,16S)-, and (4S,8R,12R,16R)-80].

4.2 SPECTROSCOPIC PREDICTIONS OF SIXTEEN ISOMERS OF 4,8,12,16,20-PENTAMETHYLHEPTACOSANOL

The 4,8,12,16,20-pentamethylheptacosanol 81, which was identified as the polyisoprenoid side chain of the natural product MPM-1, contains five branched methyl groups: one end1 methyl group; one end2 methyl group; and three middle methyl groups (Figure 4.5).

Figure 4.5. The structure of 4,8,12,16,20-pentamethylheptacosanol 81

To predict the 1H and 13C NMR spectra of 4,8,12,16,20-pentamethylheptacosanol 81, the characterization table (Table 4.2) was setup. Although there are sixteen diastereomers, Table 4.2 shows that there are only fourteen unique methyl group profiles. Two sets of isomers share the same methyl group characterizations. Therefore, each of the two sets of isomers would have the same 1H and 13C NMR spectra and the remaining 12 isomers would have unique spectra. The isomers that share the same methyl group profiles are (4S,8S,12S,16R,20R)- and the (4S,8S,12R,16R,20R)-81 isomers (highlighted in yellow), which have one syn-e1, one syn-e2, one syn-m-syn, and two syn-m-anti methyl groups, and the (4S,8R,12S,16S,20R)- and the (4S,8R,12R,16S,20R)-81 isomers (highlighted in red), which have one anti-e1, one anti-e2, two syn-m-anti, and one anti-m-anti methyl groups.
Table 4.2. Methyl group characterization table for 4,8,12,16,20-pentamethylheptacosanol

<table>
<thead>
<tr>
<th>syn-e1</th>
<th>anti-e1</th>
<th>syn-m-syn</th>
<th>anti-m-syn</th>
<th>syn-e2</th>
<th>anti-e2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4S,8S,12S,16S,20S</td>
<td>1</td>
<td>—</td>
<td>3</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>4S,8S,12S,16S,20R</td>
<td>1</td>
<td>—</td>
<td>2</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>4S,8S,12S,16R,20S</td>
<td>1</td>
<td>—</td>
<td>1</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>4S,8S,12R,16S,20S</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4S,8R,12S,16S,20S</td>
<td>—</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>4S,8S,12S,16R,20R</td>
<td>1</td>
<td>—</td>
<td>1</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>4S,8S,12R,16R,20S</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>3</td>
<td>—</td>
</tr>
<tr>
<td>4S,8S,12R,16S,20S</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>4S,8R,12S,16S,20R</td>
<td>—</td>
<td>1</td>
<td>—</td>
<td>2</td>
<td>—</td>
</tr>
<tr>
<td>4S,8S,12R,16R,20R</td>
<td>1</td>
<td>—</td>
<td>—</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4S,8R,12S,16R,20S</td>
<td>—</td>
<td>1</td>
<td>1</td>
<td>—</td>
<td>1</td>
</tr>
<tr>
<td>4S,8R,12R,16R,20R</td>
<td>—</td>
<td>1</td>
<td>1</td>
<td>—</td>
<td>1</td>
</tr>
</tbody>
</table>

After Table 4.2 was set up, the branched methyl region of the fourteen 1H and 13C NMR spectra of 4,8,12,16,20-pentamethylheptacosanol were predicted based on the same method described in Section 4.1. The predicted 1H NMR spectra are shown in Figure 4.6, and the predicted 13C NMR spectra are shown in Figure 4.7.

Figure 4.6. 1H NMR spectra prediction of 16 isomers of 4,8,12,16,20-pentamethylheptacosanol

70
Figure 4.7. 13C NMR spectra prediction of 16 isomers of 4,8,12,16,20-pentamethylheptacosanol
As shown in the predicted 1H NMR spectra, there are four spectra that contain nine signals (one triplet and three doublets), eight spectra that contain 11 signals (one triplet and four doublets), and two spectra that contain 13 signals (one triplet and five doublets) signals. And from the predicted 13C NMR spectra, there are four spectra that contain three signals, eight spectra that contain 4 signals, and two spectra that contain five signals. For the same reason
discussed in Section 4.1, the types of the three middle methyl groups determines how many
signals appear in both 1H and 13C NMR spectra. If all three middle methyl groups are the same
type, they would all overlap to give nine signals (one triplet and three doublets) in the 1H NMR
spectra, and three signals in the 13C NMR with the overlapping signals giving triple intensities
[e.g., (4S,8S,12S,16S,20S)-, (4S,8S,12R,16R,20S)-, (4S,8R,12R,16S,20S)-, and (4S,8R,12S,
16R,20S)-81]. If the two middle methyl groups are the same type and one middle methyl group
is a different type, the same type of methyl group would overlap to give 11 signals (one triplet
and four doublets) in the 1H NMR spectra, and 4 signals in the 13C NMR spectra with the
overlapping signals giving double intensities [e.g., (4S,8S,12S,16S,20R)-, (4S,8S,12R,16S,20S)-,
(4S,8S,12R,16R,20R)-, (4S,8S,12S,16R,20R)-, (4S,8S,12R,16S,20R)-, (4S,8R,12S,16S,20R)-,
(4S,8S,12R,16S,20R)-, (4S,8R,12S,16R,20R)-, and (4S,8R,12R,16R,20R)-81]. Furthermore, if all
three middle methyl groups are different types, then there would be 13 signals (one triplet and
five doublets) in the 1H NMR spectra, and 5 signals in the 13C NMR with all the signals in equal
intensities [e.g., (4S,8S,12S,16R,20S)- and (4S,8R,12S,16S,20S)-81].
5.0 SUMMARY AND CONCLUSION

In summary, we successfully synthesized four isomers of 4,8,12-trimethylnonadecanol by FMS of three iterations of Roush crotylation, O-phenyl thionocarbonate formation (tagging), and Rh-catalyzed hydroformylation. DIBAL-H reduction and fluorous demixing gave four quasiisomers. Global deoxygenation/detagging of each quasiisomer afforded the four target 4,8,12-trimethylnonadecanols (Scheme 3.10). The average yield per cycle (three steps) was 59% and the overall yield before fluorous demixing was 17.6% over 14 steps. This FMS showcased the first utility of the fluorous O-phenyl thionocarbonate tags and the first successful demixing of quasiisomers with tags that only differ in one fluorine atom. The global deoxygenation step was accomplished cleanly using the new diMe-Imd-BH$_3$ reagent. Overall, this FMS used only six fluorine atoms to encode for four quasiisomers, making this synthesis by far the most efficient FMS to date.

The spectroscopic analyses of the 1H and 13C NMR spectra of the four isomers of 4,8,12-trimethylnonadecanol revealed there are seven principle methyl types in a repeating polyisoprenoid system. A way to predict the appearance of the branched methyl group region 1H and 13C NMR of 4,8,12,16-tetramethyltricosanol (four branched methyl groups) and 4,8,12,16,20-pentamethyl-heptacosanol (five branched methyl groups) by identifying the number and nature of the branched methyl group, then applying the appropriate methyl group chemical
shifts was developed. These predictions set the stage for a direct NMR-based identification of the methyl configurations of polyisoprenoid natural products such as the side chain of MPM-1.
6.0 EXPERIMENTAL

General information: All reactions were performed under argon atmosphere unless otherwise noted. All reaction solvents were freshly dried by passing through a column of activated alumina. All reagents were purchased commercially and used without further purification unless otherwise mentioned. Reaction progresses were monitored by TLC with 0.25 mm E. Merck precoated silica gel plates. All crude mixtures were purified by flash chromatography with silica gel 60 (0.040–0.063 mm) supplied by Sorbent Technology unless otherwise stated. Products and reactions were analyzed by 1H, 13C, and 19F NMR spectrometry, FT-IR, optical rotation, and HRMS.

The NMR spectra were recorded on a Bruker Advance III 400 MHz, a Bruker Advance III 600 MHz, or a Bruker Advance III 700 MHz spectrometer using deuterated chloroform spiked with 1 mole% trimethylsilane (TMS), unless otherwise indicated. The signals are given as in part per million (δ, ppm) and were determined relative to the proton and carbon resonance of TMS at 0 ppm as the internal standard. In the case of 19F NMR spectrometry, no internal standard was used. The spectral data of single molecules were reported in the following order: chemical shift (d), multiplicity, coupling constant (Hz), number of nuclei. The spectral data of mixtures (with the designation M- before number) were not reported, but the spectra are provided in appendix E.
Infrared (IR) spectra were taken on a Mattson Genesis FT-IR spectrometer as thin film on NaCl plate and the peaks are reported in wave numbers (cm\(^{-1}\)). Optical rotations were measured on a Perkin-Elmer 241 polarimeter at a Na D-line (\(\lambda = 589\) nm) using a 1 dm cell. HPLC analyses and separations were performed on a Waters 600E system with a Waters 2487 dual \(\lambda\) absorption detector. Compound names were obtained from ChemDraw Ultra 12.0 (Cambridge Soft Corp.).

(4S,5S)-Diisopropyl 2-((E)-but-2-en-1-yl)-1,3,2-dioxaborolane-4,5-dicarboxylate (33): To a stirring suspension of KOrBu (23.8 g, 0.21 mol.) in THF (175 mL, freshly distilled) at \(-78\) °C was added \(E\)-butene (53 mL, 1.06 mol.) via cannula. After addition of \(E\)-butene, \(n\)-BuLi (133 mL, 1.6 M) was added while carefully maintaining the internal temperature to be below \(-65\) °C. The resulting orange suspension was warmed to \(-25\) °C and stirred for 30 min before cooling to \(-78\) °C. Triisopropyl borate was then added neat over 45 min (keeping the internal temperature at \(-70\) °C). After addition of the borate, the mixture was stirred for 10 more min then poured into 1N HCl (200 mL, aq). The pH was then adjusted to pH 1 by addition of 1N HCl solution. Diisopropyl-L-tartrate (48.82 g, 0.21 mol.) in ether (50 mL, dry) was then added to the reaction mixture and the aqueous and organic layers were separated. The aqueous layer was washed with ether (4 x 20 mL) and the organic layer was dried over MgSO\(_4\) for 2 h. The solution was then filtered under argon atmosphere and concentrated. The crude product was diluted with toluene (150 mL, dry) and used in subsequent reactions without further purification. The concentration of the solution was determined to be 1 M.
(4R,5R)-Diisopropyl 2-((E)-but-2-en-1-yl)-1,3,2-dioxaborolane-4,5-dicarboxylate (34): The same procedure used in the synthesis of Roush reagent 33 was used to make 34, the only difference was the use of diisopropyl-d-tartrate (48.82 g, 0.21 mol) instead of diisopropyl-l-tartrate. The crude product was diluted with toluene (150 mL, dry) and used in subsequent reactions without further purification. The solution was determined to have a concentration of 0.53 M.

6-(Diphenylphosphino)pyridin-2(1H)-one (41): The ligand for Rh-catalyzed hydroformylation was synthesized in a 3-step procedure from 2,6-dichloropyridine. The synthesis and NMR information were reported by Breit et al.39

General Procedure 1: the synthesis of fluorinated phenyl chlorothionoformates (54–59)

The corresponding fluorinated phenol in 1N aq. NaOH was added dropwise to a solution of thiophosgene in CHCl₃. The resulting mixture was stirred at 0 °C for 1.5 h. The reaction progress was monitored by TLC. After complete consumption of the starting phenol, the reaction was quenched by 1N HCl. The organic layer was dried over MgSO₄ and then concentrated. The crude product was used in the next step without further purification.
General Procedure 2: the Roush crotylboration reaction of aldehydes

To a solution of Roush reagent (33 or 34, 3 equiv) in toluene was added powdered 4 Å molecular sieves (20 mg/mL), and then cooled to −78 °C. After 10 min, the corresponding aldehyde was added neat to the mixture and the resulting solution was stirred at −78 °C for further 3 h. 2 N NaOH was added to quench the reaction over 20 min at 0 °C then filtered through a pad of celite. The aqueous layer was extracted with ether (10 mL, 3 times). The combined organic layer was dried with K₂CO₃ and concentrated. The crude product was purified by column chromatography (9:1 hexane-diethyl ether).

General Procedure 3: thionocarbonate formation (fluorous tagging)

To the allylic alcohol in CH₂Cl₂ was added pyridine (anhydrous) at 25 °C. After 10 min, the reaction mixture was cooled to 0 °C. O-Phenyl chlorothionoformate (2 equiv) was added dropwise into the reaction mixture, which was slowly warmed to room temperature overnight (16 h). Aqueous NH₄Cl was added to quench the reaction at 0 °C followed by aqueous layer extraction with CH₂Cl₂ (10 mL, 3 times). The combined organic layer was dried over MgSO₄ and then concentrated. The crude product was purified by column chromatography (99:1 hexanes-diethyl ether).

General procedure 4, Rh-catalyzed hydroformylation:

The pyridone ligand 41 (20 mol%) and Rh (CO)₂acac (4 mol%) were added to THF under Ar, and the resulting mixture was stirred at room temp. After 10 min, the corresponding alkene was added neat to the premixed catalysts in THF. The resulting mixture was transported to the pressure vessel and stirred at 60 °C under 150 psi of CO/H₂ for 15 h. After complete
consumption of the starting alkene, the solvent was evaporated under reduced pressure and the crude mixture was purified by column chromatography (3:1 hexanes-diethyl ether).

(3R,4S)-3-Methyldec-1-en-4-ol (30): This crotylation reaction was performed according to General Procedure 2 using heptanal (12 g, 105.1 mmol) and Roush reagent 33 (315 ml, 315 mmol). Allylic alcohol (3R,4S)-30 was isolated in 16 g, 89% yield as a colorless oil: [α]$_D^{25}$ = −0.66 (c = 1.54, CHCl$_3$); 1H NMR (CDCl$_3$, 300 MHz, ppm) δ = 5.755 (ddd, J = 8.4, 11.3, 16.7 Hz, 1H), 5.106 (d, J = 11.0 Hz, 1H), 5.087 (d, J = 16.8 Hz, 1H), 3.387 (s br, 1H), 2.192 (ddq, J = 6.7, 6.8, 6.9 Hz, 1H), 1.200–1.600 (m, 11H), 1.030 (d, J = 6.9 Hz, 3H), 0.882 (t, J = 6.0 Hz, 3H);

13C NMR (CDCl$_3$, 75 MHz, ppm) δ = 140.40, 116.27, 74.70, 44.14, 34.26, 31.87, 29.42, 25.71, 22.66, 16.32, 14.11; FTIR (thin film) v_{max} 3372, 3075, 2956, 2928, 2857, 1639, 1459, 999, 961, 912 cm$^{-1}$; HRMS calcd for C$_{11}$H$_{22}$O: 170.1668, found 170.1670.

O-((3R,4S)-3-Methyldec-1-en-4-yl) O-phenyl carbonothioate 42: This acylation reaction was performed according to General Procedure 3 using (3R,4S)-3-methyldec-1-en-4-ol 30 (24 g, 141 mmol) and O-phenyl chlorothionoformate (24.3 g, 141 mmol). Alkene (3R,4S)-42 was isolated in 34 g, 78% yield as a colorless oil: [α]$_D^{25}$ = −12.19 (c = 2.33, CHCl$_3$); 1H NMR (CDCl$_3$, 300 MHz, ppm) δ = 7.415 (t, J = 7.5 Hz, 2H), 7.283 (t, J = 7.5 Hz, 1H), 7.095 (d, J = 7.8 Hz, 2H), 5.871 (ddd, J = 8.4, 11.3, 16.7 Hz, 1H), 5.372 (dt, J = 4.5, 8.4 Hz, 1H), 5.113 (d, J = 6.3 Hz, 1H),

80
5.102 (d, J = 16.8 Hz, 1H), 2.648 (ddq, J = 6.7, 6.8, 6.9 Hz, 1H), 1.500-1.850 (m, 2H), 1.200-1.500 (m, 8H), 1.099 (d, J = 6.9 Hz, 3H), 0.891 (t, J = 6.0 Hz, 3H); 13C NMR (CDCl$_3$, 75 MHz, ppm) δ =195.17, 153.38, 138.86, 129.45, 126.42, 122.03, 116.06, 88.59, 41.10, 31.69, 30.65, 29.17, 25.25, 22.59, 15.70, 14.08; FTIR (thin film) v_{max} 3076, 2956, 2928, 2857, 1592, 1490, 1276, 1197, 1002, 918, 768 cm$^{-1}$; HRMS calcd for C$_{18}$H$_{26}$O$_2$S: 306.1658, found 306.1653.

O-((4R,5S)-4-Methyl-1-oxoundecan-5-yl) O-phenyl carbonothioate 43: This Rh-catalyzed hydroformylation reaction was performed according to General Procedure 4 using O-((3R,4S)-3-methyldec-1-en-4-yl) O-phenyl carbonothioate 42 (10 g, 330 mmol), pyridone ligand 41 (3.2 g, 100 mmol), and Rh catalyst (0.64 g, 20 mmol). Aldehyde (4R,5S) 43 was isolated in 9.3 g, 85% yield as a colorless oil: $[\alpha]_D^{25} = -2.30$ (c = 1.87, CHCl$_3$); 1H NMR (CDCl$_3$, 300 MHz, ppm) δ = 9.799 (t, J = 1.2 Hz, 1H), 7.421 (t, J = 7.5 Hz, 2H), 7.315 (t, J = 7.5 Hz, 1H), 7.099 (d, J = 7.8 Hz, 2H), 5.320 (quint, J = 4.5 Hz, 1H), 2.476-2.593 (m, 2H), 2.008 (ddq, J = 6.7, 6.8, 6.9 Hz, 1H), 1.200-1.833 (m, 12H), 0.983 (d, J = 6.9 Hz, 3H), 0.898 (t, J = 6.0 Hz, 3H); 13C NMR (CDCl$_3$, 75 MHz, ppm) δ =201.94, 195.08, 153.34, 129.67, 129.49, 126.49, 122.00, 121.83, 88.98, 41.56, 35.32, 34.68, 31.70, 29.69, 29.22, 25.33, 24.19, 22.67, 22.60, 14.92, 14.15, 14.10; FTIR v_{max} 2956, 2928, 2857, 2720, 1725, 1592, 1490, 1458, 1358, 1282, 1197, 1003, 770 cm$^{-1}$; HRMS calcd for C$_{19}$H$_{28}$O$_3$S Na: 359.1657, found 359.1672.
O-((7S,8R,11S,12R)-11-Hydroxy-8,12-dimethyltetradec-13-en-7-yl) O-phenyl carbonothioate 45: This crotylation reaction was performed according to General Procedure 2 using aldehyde (4R,5S)-43 (1.5 g, 4.46 mmol) and Roush reagent 33 (8.9 ml, 8.9 mmol). Allylic alcohol (3R,4S,7R,8S)-45 was isolated in 1.46 g, 83% yield as a colorless oil: $[\alpha]_D^{25} = -2.64$ ($c = 1.67$, CHCl$_3$); 1H NMR (CDCl$_3$, 300 MHz, ppm) $\delta = 7.413$ (t, $J = 7.5$ Hz, 2H), 7.281 (t, $J = 7.5$ Hz, 1H), 7.102 (d, $J = 7.8$ Hz, 2H), 5.753 (ddd, $J = 8.4$, 11.3, 16.7 Hz, 1H), 5.347 (s br, 1H), 5.133 (d, $J = 6.9$ Hz, 1H), 5.120 (d, $J = 17.1$ Hz, 1H), 3.394 (s br, 1H), 2.217 (ddq, $J = 6.7$, 6.8, 6.9 Hz, 1H), 2.010 (s br, 1H), 1.200-1.800 (m, 14H), 1.043 (d, $J = 6.9$ Hz, 3H), 0.976 (d, $J = 6.9$ Hz, 3H) 0.896 (t, $J = 6.0$ Hz, 3H); 13C NMR (CDCl$_3$, 75 MHz, ppm) $\delta =$195.07, 153.38, 140.25, 140.16, 129.43, 126.39, 122.04, 116.51, 116.47, 89.78, 89.53, 74.83, 74.57, 44.23, 44.16, 35.77, 31.71, 31.65, 29.56, 29.38, 29.23, 25.44, 25.38, 22.60, 16.36, 16.31, 15.06, 14.84, 14.08; FTIR ν_{\max} 3443, 3072, 2957, 2928, 2859 1592, 1490, 1458, 1369, 1283, 1197, 1002, 914, 769 cm$^{-1}$; HRMS calcd for C$_{23}$H$_{36}$O$_3$SNa: 415.2283, found 415.2260.

O-((7S,8R,11R,12S)-11-Hydroxy-8,12-dimethyltetradec-13-en-7-yl) O-phenyl carbonothioate 45: This crotylation reaction was performed according to General Procedure 2 using aldehyde (4R,5S)-43 (1.2 g, 3.5 mmol) and Roush reagent 34 (10.1 ml, 5.3 mmol). Allylic
alcohol (3S,4R,7R,8S)-45 was isolated in 1.2 g, 83% yield as a colorless oil: \([\alpha]_D^{25} = -0.70 \ (c = 1.62, \text{CHCl}_3)\); \(\text{^1H NMR} \ (\text{CDCl}_3, 300 \text{ MHz, ppm}) \delta = 7.410 \ (t, J = 7.5 \text{ Hz, 2H}), 7.279 \ (t, J = 7.5 \text{ Hz, 1H}), 7.101 \ (d, J = 7.8 \text{ Hz, 2H}), 5.752 \ (ddd, J = 8.4, 11.3, 16.7 \text{ Hz, 1H}), 5.340 \ (s \text{ br, 1H}), 5.129 \ (d, J = 6.9 \text{ Hz, 1H}), 5.118 \ (d, J = 17.1 \text{ Hz, 1H}), 3.389 \ (s \text{ br, 1H}), 2.212 \ (ddq, J = 6.7, 6.8, 6.9 \text{ Hz, 1H}), 1.994 \ (s \text{ br, 1H}), 1.200-1.800 \ (m, 14H), 1.039 \ (d, J = 6.9 \text{ Hz, 3H}), 0.971 \ (d, J = 6.9 \text{ Hz, 3H})\) 0.896 \ (t, J = 6.0 \text{ Hz, 3H}); \(\text{^13C NMR} \ (\text{CDCl}_3, 75 \text{ MHz, ppm}) \delta = 195.10, 153.35, 140.24, 140.14, 129.44, 126.40, 122.03, 116.53, 116.49, 89.77, 89.52, 74.80, 74.55, 44.23, 44.16, 35.77, 31.93, 31.70, 31.62, 29.70, 29.53, 29.35, 29.23, 28.50, 28.21, 25.43, 25.38, 22.60, 16.36, 16.31, 15.04, 14.82, 14.08; \text{FTIR} \ \nu_{\text{max}} \ 3439, 3072, 2956, 2928, 2858, 1197, 1002, 914, 768 \text{ cm}^{-1}; \text{HRMS calcd for C}_{23}\text{H}_{36}\text{O}_3\text{SNa}: 415.2283, \text{found 415.2267.}

\[
\begin{align*}
\text{O, O'-((3R,4S,7R,8S)-3,7-Dimethyltetradec-1-ene-4,8-diyl) O, O'-diphenyl dicarbonothioate} \\
\text{53: This acylation reaction was performed according to General Procedure 3 using allylic}
\end{align*}
\]

alcohol (3R,4S,7R,8S)-45 (2.2 g, 5.6 mmol) and O-phenyl chlorothionoformate (1.06 g, 6.2 mmol). Alkene (3R,4S,7R,8S)-53 was isolated in 2.5 g, 84% yield as a colorless oil: \([\alpha]_D^{25} = -1.68 \ (c = 1.79, \text{CHCl}_3)\); \(\text{^1H NMR} \ (\text{CDCl}_3, 300 \text{ MHz, ppm}) \delta = 7.409 \ (t, J = 7.5 \text{ Hz, 4H}), 7.269 \ (t, J = 7.5 \text{ Hz, 2H}), 7.089 \ (d, J = 7.8 \text{ Hz, 4H}), 5.761 \ (ddd, J = 8.4, 11.3, 16.7 \text{ Hz, 1H}), 5.282-5.386 \ (m, 2H), 5.123 \ (d, J = 17.1 \text{ Hz, 1H}), 5.112 \ (d, J = 6.9 \text{ Hz, 1H}), 2.651 \ (ddq, J = 6.7, 6.8, 6.9 \text{ Hz, 2H}), 1.995 \ (s \text{ br, 1H}), 1.200-1.800 \ (m, 14H), 1.099 \ (d, J = 6.9 \text{ Hz, 3H}), 0.981 \ (d, J = 6.9 \text{ Hz,}
O,O'-(3S,4R,7R,8S)-3,7-Dimethyltetradec-1-ene-4,8-diyl) O'-2-fluorophenyl O-phenyl dicarbonothioate 60: This acylation reaction was performed according to General Procedure 3 using allylic alcohol (3S,4R,7R,8S)-45 (1.1 g, 2.8 mmol) and the crude mixture of O-2-fluorophenyl chlorothionoformate 54 (0.85 g, 4.5 mmol). Alkene (3S,4R,7R,8S)-60 was isolated in 1.3 g, 84% yield as a colorless oil: $[\alpha]_D^{25} = -1.22$ ($c = 1.05$, CHCl$_3$); 1H NMR (CDCl$_3$, 400 MHz, ppm) $\delta = 7.090$–7.425 (m, 9H), 5.777 (ddd, $J = 8.1$, 10.4, 17.1 Hz, 1H), 5.308–5.390 (m, 2H), 5.128 (d, $J = 18.1$ Hz, 1H), 5.118 (d, $J = 9.1$ Hz, 1H), 2.665 (ddq, $J = 6.7$, 6.8, 6.9 Hz, 2H), 1.931–2.002 (m, 1H), 1.800–1.931 (m, 1H), 1.211–1.800 (m, 12H), 1.110 (d, $J = 6.9$ Hz, 3H), 0.983 (d, $J = 6.8$ Hz, 3H) 0.894 (t, $J = 6.7$ Hz, 3H); 13C NMR (CDCl$_3$, 100 MHz, ppm) $\delta =$ 195.13, 194.03, 192.43, 155.63, 155.38, 153.39, 152.32, 152.05, 140.99, 140.83, 140.74, 140.58, 138.51, 138.41, 129.47, 128.28, 128.18, 127.78, 127.69, 126.43, 124.75, 124.69, 124.55, 124.50, 124.00, 123.68, 122.07, 117.31, 117.07, 117.01, 116.77, 116.40, 89.41, 89.25, 88.96, 41.14, 35.79, 35.67, 31.72, 29.77, 29.68, 29.25, 28.35, 28.27, 27.81, 27.49, 25.35, 22.63, 15.76, 15.61,
O,O'-((3S,4R,7R,8S)-3,7-Dimethyltetradec-1-ene-4,8-diyl) O'-(4-fluorophenyl) O-phenyl dicarbonothioate 62: This acylation reaction was performed according to General Procedure 3 using allylic alcohol (3S,4R,7R,8S)-45 (2.2 g, 6.0 mmol) and O-4-fluorophenyl chlorothionoformate 56 (1.3 g, 6.7 mmol). Alkene (3S,4R,7R,8S)-62 was isolated in 2.6 g, 85% yield as a colorless oil: $[\alpha]_D^{25} = -1.35$ (c = 1.11, CHCl$_3$); 1H NMR (CDCl$_3$, 400 MHz, ppm) $\delta =$ 7.410 (t, J = 7.5 Hz, 2H), 7.293 (t, J = 7.5 Hz, 1H), 7.099 (d, J = 7.8 Hz, 2H), 7.049 (d, J = 6.3 Hz, 4H), 5.785 (ddd, J = 8.1, 10.4, 17.1 Hz, 1H), 5.308-5.390 (m, 2H), 5.128 (d, J = 18.1 Hz, 1H), 5.118 (d, J = 9.1 Hz, 1H), 2.665 (ddq, J = 6.7, 6.8, 6.9 Hz, 2H), 1.965-2.033 (m, 1H), 1.833-1.936 (m, 1H), 1.220-1.806 (m, 12H), 1.107 (d, J = 6.9 Hz, 3H), 0.983 (d, J = 6.8 Hz, 3H) 0.896 (t, J = 6.7 Hz, 3H); 13C NMR (CDCl$_3$, 100 MHz, ppm) $\delta =$ 195.23, 195.16, 161.83, 159.42, 159.39, 153.42, 149.39, 149.36, 149.24, 149.22, 138.70, 138.59, 129.50, 126.47, 123.63, 123.59, 123.55, 123.41, 123.32, 122.09, 116.59, 116.36, 116.31, 116.18, 116.14, 116.07, 115.95, 89.34, 89.21, 88.70, 88.32, 41.16, 36.11, 35.86, 34.71, 34.56, 31.75, 31.63, 30.02, 29.89, 29.30, 29.10, 28.32, 28.13, 27.99, 27.56, 25.32, 25.29, 22.70, 22.65,20.75, 18.81, 15.82, 15.64, 15.13, 15.03, 14.18, 14.14; FTIR v_{max} 3076, 2958, 2929, 2858, 1502, 1280, 1191, 1003, 922, 839, 738 cm$^{-1}$; HRMS calcd for C$_{30}$H$_{39}$O$_4$S$_2$FNa: 569.2172, found 569.2173.
Mixture of $O,O'-(4R,5S,8R,9S)-4,8$-dimethyl-1-oxopentadecane-5,9-diyl) O,O'-diphenyl dicarbonothioate and $O,O'-(4S,5R,8R,9S)-4,8$-dimethyl-1-oxopentadecane-5,9-diyl) $O'-(2$-fluorophenyl) O-phenyl dicarbonothioate (M-65): This Rh-catalyzed hydroformylation reaction was performed according to General Procedure 4 using 1:1 mixture of (3$R,4S,7R,8S$)-53 + (3$S,4R,7R,8S$)-60 (2.0 g, 3.8 mmol), pyridone ligand 41 (0.18 g, 12.2 mmol), and Rh catalyst (0.04 g, 2.5 mmol). Aldehyde M-65 was isolated in 4.4 g, 82% yield as a colorless oil: HRMS calcd for $C_{31}H_{42}O_5S_2Na$: 581.2371, found 581.2336; calcd for $C_{31}H_{41}O_5S_2FNa$: 599.2277, found 599.2228.

Mixture of $O,O'-(4R,5S,8R,9S)-4,8$-dimethyl-1-oxopentadecane-5,9-diyl) O,O'-diphenyl dicarbonothioate and $O,O'-(4S,5R,8R,9S)-4,8$-dimethyl-1-oxopentadecane-5,9-diyl) $O'-(4$-fluorophenyl) O-phenyl dicarbonothioate M-72: This Rh-catalyzed hydroformylation reaction was performed according to General Procedure 4 using 1:1 mixture of (3$R,4S,7R,8S$)-53 + (3$S,4R,7R,8S$)-62 (5.08 g, 9.4 mmol), pyridone ligand 41 (0.46 g, 1.7 mmol), and Rh catalyst (0.09 g, 0.33 mmol). Aldehyde M-72 was isolated in 4.4 g, 82% yield as a colorless oil: HRMS
calcd for C$_{31}$H$_{42}$O$_5$S$_2$Na: 581.2371, found 581.2393; calcd for C$_{31}$H$_{41}$O$_5$S$_2$FNa: 599.2277, found 599.2264.

Mixture of O,O'-((7S,8R,11S,12R,15S,16R)-15-hydroxy-8,12,16-trimethylloctadec-17-ene-7,11-diyl) O,O'-diphenyl dicarbonothioate and O'-(2-fluorophenyl) O,O'-((7S,8R,11R,12S,15S,16R)-15-hydroxy-8,12,16-trimethylloctadec-17-ene-7,11-diyl) O-phenyl dicarbonothioate M-66: This Roush crotylation reaction was performed according to General Procedure 2 using mixture aldehyde M-65 (0.6 g, 0.52 mmol) and Roush reagent 33 (1.0 ml, 1.0 mmol). Allylic alcohol M-66 was isolated in 0.52 g, 80% yield as a colorless oil: HRMS calcd for C$_{31}$H$_{50}$O$_5$S$_2$Na$_1$: 637.2997, found 637.3007; HRMS calcd for C$_{23}$H$_{36}$O$_3$S$_1$F$_1$Na$_1$: 655.2903, found 655.2900.

Mixture of O,O'-((7S,8R,11S,12R,15S,16R)-15-hydroxy-8,12,16-trimethylloctadec-17-ene-7,11-diyl) O,O'-diphenyl dicarbonothioate and O'-(4-fluorophenyl) O,O'-((7S,8R,11R,12S,15S,16R)-15-hydroxy-8,12,16-trimethylloctadec-17-ene-7,11-diyl) O-phenyl dicarbonothioate M-73: This Roush crotylation reaction was performed according to General Procedure 2 using mixture aldehyde M-72 (2.16 g, 3.8 mmol) and Roush reagent 33 (8.0 ml, 8.0 mmol).
Allylic alcohol M-73 was isolated in 2.0 g, 84% yield as a colorless oil: HRMS calcd for C_{31}H_{50}O_{5}S_{2}Na: 637.2997, found 637.3015; HRMS calcd for C_{23}H_{36}O_{3}SFNa: 655.2903, found 655.2964.

Mixture of O,O'-(7S,8R,11S,12R,15R,16S)-15-hydroxy-8,12,16-trimethylloctadec-17-ene-7,11-diyldiphenyl dicarbonothioate and O'-(2-fluorophenyl) O,O'-(7S,8R,11R,12S,15R,16S)-15-hydroxy-8,12,16-trimethylloctadec-17-ene-7,11-diylo-phenyl dicarbonothioate M-67: This Roush crotylation reaction was performed according to General Procedure 2 using mixture aldehyde M-65 (0.6 g, 0.52 mmol) and Roush reagent 34 (1.0 ml, 1 mmol). Allylic alcohol M-67 was isolated in 0.52 g, 79% yield as a colorless oil: HRMS calcd for C_{31}H_{50}O_{5}S_{2}Na: 637.2997, found 637.3005; HRMS calcd for C_{23}H_{36}O_{3}SFNa: 655.2903, found 655.2878.

Mixture of O,O'-(7S,8R,11S,12R,15R,16S)-15-hydroxy-8,12,16-trimethylloctadec-17-ene-7,11-diyldiphenyl dicarbonothioate and O'-(4-fluorophenyl) O,O'-(7S,8R,11R,12S,15R,16S)-15-hydroxy-8,12,16-trimethylloctadec-17-ene-7,11-diylo-phenyl dicarbonothioate M-74: This Roush crotylation reaction was performed according to General Procedure 2
using mixture aldehyde M-72 (2.36 g, 4.16 mmol) and Roush reagent 34 (15 ml, 8.3 mmol). Allylic alcohol M-74 was isolated in 2.18 g, 83% yield as a colorless oil: HRMS calc'd for C_{31}H_{50}O_{5}S_{2}Na: 637.2997, found 637.3016; HRMS calc'd for C_{23}H_{36}O_{3}SFNa: 655.2903, found 655.2924.

\[
\text{Allylic alcohol M-74 was isolated in 2.18 g, 83\% yield as a colorless oil: HRMS calc'd for C}_{31}\text{H}_{50}\text{O}_{5}\text{S}_{2}\text{Na: 637.2997, found 637.3016; HRMS calc'd for C}_{23}\text{H}_{36}\text{O}_{3}\text{SFNa: 655.2903, found 655.2924.}
\]

Mixture of \(O,O',O''\)-triphenyl \(O,O',O'\)\(((3R,4S,7R,8S, 11R,12S)-3,7,11\text{-trimethyloctadec-1-ene-4,8, 12-triyl})\) tricarbonothioate and \(O'\)-(2-fluorophenyl) \(O,O''\)-\(((3R,4S,7S,8R,11R,12S)-3,7,11\text{-tri-methyloctadec-1-ene-4,8,12-triyl})\) tricarbonothioate M-68: This acylation reaction was performed according to General Procedure 3 using mixture allylic alcohol M-66 (0.3 g, 0.24 mmol) and \(O\)-phenyl chlorothionoformate (0.09 g, 0.54 mmol). Alkene M-68 was isolated in 0.32 g, 88% yield as a colorless oil: HRMS calc'd for C_{42}H_{54}O_{6}S_{3}Na: 773.2980, found 773.2962; HRMS calc'd for C_{42}H_{55}O_{6}S_{3}FNa: 791.2886, found 791.2934.

\[
\text{Mixture of \(O,O',O''\)-triphenyl \(O,O',O'\)\(((3R,4S,7R,8S, 11R,12S)-3,7,11\text{-trimethyloctadec-1-ene-4,8, 12-triyl})\) tricarbonothioate and \(O'\)-(4-fluorophenyl) \(O,O''\)-\(((3R,4S,7S,8R,11R,12S)-3,7,11\text{-tri-methyloctadec-1-ene-4,8,12-triyl})\) tricarbonothioate M-}
\]

89
This acylation reaction was performed according to General Procedure 3 using mixture of allylic alcohol M-73 (2.0 g, 3.1 mmol) and O-phenyl chlorothionoformate (0.61 g, 3.6 mmol). Alkene M-75 was isolated in 2.6 g, 86% yield as a colorless oil: HRMS calcd for C₄₂H₅₄O₆S₃Na: 773.2980, found 773.2962; HRMS calcd for C₄₂H₅₃O₆S₃FNa: 791.2886, found 791.2870.

M-69: This acylation reaction was performed according to General Procedure 3 using allylic alcohol M-67 (0.3 g, 0.24 mmol) and O-4-fluorophenyl chlorothionoformate (0.1 g, 0.54 mmol). Alkene M-69 was isolated in 0.32 g, 88% yield as colorless oil: HRMS calcd for C₄₂H₅₂O₆S₂F₂Na: 809.2792, found 809.2755; HRMS calcd for C₄₂H₅₃O₆S₃FNa: 791.2886, found 791.2934.

12-triyl) tricarbonothioate M-76: This acylation reaction was performed according to General Procedure 3 using allylic alcohol M-74 (2.0 g, 3.16 mmol) and the crude product of O-3,4-difluorophenyl chlorothiono-formate 57 (~0.70 g, 3.30 mmol). Alkene M-76 was isolated in 2.2 g, 88% yield as a colorless oil: HRMS calcd for C_{42}H_{52}O_{6}S_{3}F_{2}Na: 809.2792, found 809.2757; HRMS calcd for C_{42}H_{51}O_{6}S_{3}F_{3}Na: 827.2698, found 827.2710.

\[
\begin{align*}
\text{Mixture of } & O,O',O''\text{-triphenyl } O,O',O''-(4R, 5S, 8R, 9S, 12R,13S)-4,8,12\text{-trimethyl-1-oxononadecane-5,9, 13-triyl) tricarbonothioate, } O'-(2\text{-fluorophenyl) } O, O''\text{-diphenyl } O,O', O''-(4R,5S,8S,9R,12R,13S)-4,8,12\text{-trimethyl-1-oxononadecane-5,9,13-triyl) tricarbonothioate, } O'-(4\text{-fluorophenyl) } O,O',O''-(4S,5R,8R,9S,12R,13S)-4,8,12\text{-trimethyl-1-oxononadecane-5,9,13-triyl) tricarbonothioate, and } O''-(4\text{-fluorophenyl) } O'-(2\text{-fluorophenyl) } O\text{-phenyl } O,O',O''-(4S,5R,8S,9R,12R,13S)-4,8,12\text{-trimethyl-1-oxononadecane-5,9,13-triyl) tricarbonothioate.}
\end{align*}
\]

M-70: This Rh-catalyzed hydroformylation reaction was performed according to General Procedure 4 using 1:1 mixture of M-68 plus M-69 (0.3 g, 0.39 mmol), pyridone ligand 41 (0.07 g, 0.14 mmol), and Rh catalyst (0.007 g, 0.027 mmol). Aldehyde M-70 was isolated in 0.26 g, 83% yield as a colorless oil: HRMS calcd for C_{43}H_{56}O_{7}S_{3}Na: 803.3086, found 803.3066; HRMS calcd for C_{43}H_{55}O_{7}S_{3}FNa: 821.2992, found 821.3021; HRMS calcd for C_{43}H_{54}O_{7}S_{3}F_{2}Na: 839.2897, found 839.2896.
Mixture of O,O',O''-triphenyl O,O',O''-((4R, 5S, 8R, 9S, 12R,13S)-4,8,12-trimethyl-1-oxononadecane-5,9, 13-triy1) tricarbonothioate, O'-(4-fluorophenyl) O, O''-diphenyl O,O', O''-((4R,5S,8S,9S,12R,13S)-4,8,12-trimethyl-1-oxononadecane-5,9,13-triy1) tricarbonothioate, O''-(3,4-difluorophenyl) O,O'-diphenyl O,O', O''-((4S,5R,8R,9S,12R,13S)-4,8,12-trimethyl-1-oxononadecane-5,9,13-triy1) tricarbonothioate, and O''-(3,4-difluorophenyl) O'-(4-fluorophenyl) O-phenyl O,O',O''-((4S,5R,8S,9R,12R,13S)-4,8,12-trimethyl-1-oxononadecane-5,9,13-triy1) tricarbonothioate M-77: This Rh-catalyzed hydroformylation reaction was performed according to General Procedure 4 using 1:1 mixture of M-75 plus M-76 (3.6 g, 4.6 mmol), pyridone ligand 41 (0.81 g, 1.6 mmol), and Rh catalyst (0.09 g, 0.32 mmol). Aldehyde M-77 was isolated in 3.0 g, 80% yield as a colorless oil: HRMS calcd for $C_{43}H_{56}O_7S_3Na$: 803.3086, found 803.3066; HRMS calcd for $C_{43}H_{55}O_7S_3FNa$: 821.2992, found 821.2988; HRMS calcd for $C_{43}H_{54}O_7S_3F_2Na$: 839.2897, found 839.2916; HRMS calcd for $C_{43}H_{53}O_7S_3F_3Na$: 857.2803, found 857.2819.

M-71: To a solution of M-70 in THF (4 mL) at 0 °C was added DIBAL-H (0.30 mL, 0.29 mmol). The reaction was stirred for 3 h at 0 °C. The reaction was quenched by addition of saturated aq NH₄Cl (1 mL) followed by extraction of the aqueous layer with Et₂O (5 mL, 3 times). The combined organic layers was dried over MgSO₄ and concentrated. The crude product was purified by column chromatography (9:1 hexanes-diethylether). Mixture alcohol M-71 was isolated in 0.14 g, 71.5% yield as a colorless viscous oil: HRMS calcd for C₄₃H₅₈O₇S₃Na: 805.3242, found 805.3220; HRMS calcd for C₄₃H₅₇O₇S₃F₁Na: 823.3148, found 823.3088; HRMS calcd for C₄₃H₅₆O₇S₃F₂Na: 841.3054, found 841.3113.

nonadecane-5,9,13-triyl) O-phenyl tricarbonothioate M-78: To a solution of M-77 in THF (10 mL) at 0 °C was added DIBAL-H (1.95 mL, 1.95 mmol.). The reaction was stirred for 3 h at 0 °C. The reaction was quenched with addition of saturated aq NH₄Cl (3 mL) followed by extraction of the aqueous layer with Et₂O (5 mL, 3 times). The combined organic layers was dried over MgSO₄ and concentrated. The crude product was purified by column chromatography (9:1 hexanes-diethylether). Mixture alcohol M-78 was isolated in 0.88 g, 88% yield as a colorless viscous oil: HRMS calcd for C₄₃H₅₈O₇S₃Na: 805.3242, found 805.3287; HRMS calcd for C₄₃H₅₇O₇S₃FNa: 823.3148, found 823.3119; HRMS calcd for C₄₃H₅₆O₇S₃F₂Na: 841.3054, found 841.3100; HRMS calcd for C₄₃H₅₅O₇S₃F₃Na: 859.2960, found 859.3012.

Fluorous HPLC demixing

The F-HPLC demixing procedures and conditions were described in details in Section 3.2.4.
The purity of each demixed product contain ~70% of the title product and ~10% of each of the other quasisomers as fully explained in section 3.3.3.

![Compound Structure](image)

O,O',O''-triphenyl tricarbonothioate [(4R,5S,8R,9S,12R,13S)-78]: (4R,5S,8R,9S,12R,13S)-78 was obtained in 32 mg, 74% recovery: [α]D²⁵ = +9.32 (c = 0.21, CHCl₃); ¹H NMR (CDCl₃, 400 MHz, ppm) δ = 7.395 (t, J = 7.8 Hz, 4H), 7.347 (t, J = 7.8 Hz, 2H), 7.266 (t, J = 7.8Hz 3H), 7.098 (d, J = 7.7 Hz, 6H), 5.323-5.344 (m, 3H), 3.638 (t, J =6.1, 2H), 1.969-2.036 (m, 3H),
1.251-1.952 (m, 22H), 1.007 (d, J = 6.8 Hz, 3H), 1.001 (d, J = 6.3 Hz, 3H), 0.985 (d, J = 6.7 Hz, 3H), 0.891 (t, J = 6.7 Hz, 3H); 13C NMR (CDCl$_3$, 100 MHz, ppm) δ = 195.11, 195.08, 153.36, 153.33, 153.30, 129.46, 126.44, 122.04, 122.02, 89.46, 89.14, 89.11, 89.06, 62.96, 35.99, 35.91, 35.88, 35.62, 31.70, 30.23, 30.20, 30.04, 29.77, 29.26, 29.25, 28.47, 28.33, 28.27, 28.06, 28.00, 27.86, 27.66, 27.58, 27.53, 27.41, 27.03, 25.28, 22.60, 15.15, 15.10, 15.04, 14.97, 14.93, 14.87, 14.09; FTIR ν_{max} 3354, 3044, 2959, 2927, 2857, 1592, 1489, 1457, 1359, 1281, 1197, 1003, 769 cm$^{-1}$; HRMS calcd for C$_{43}$H$_{58}$O$_7$S$_3$Na: 805.3242, found 805.3222. $\ O^\prime$-(4-Fluorophenyl) $\ O,O',O''$-((4R,5S,8S,9R,12R,13S)-1-hydroxy-4,8,12-trimethylnona-decane-5,9,13-triy1) $\ O,O''$-diphenyl tricarbonothioate [(4R,5S,8S,9R,12R,13S)-78]: (4R,5S, 8S,9R,12R,13S)-78 was obtained in 28 mg, 72% recovery: $[\alpha]_{D}^{25}$ = +2.33 (c = 0.32, CHCl$_3$); 1H NMR (CDCl$_3$, 400 MHz, ppm) δ = 7.390 (t, J = 7.8 Hz, 4H), 7.383 (t, J = 7.8 Hz, 2H), 7.274 (t, J = 7.8Hz 3H), 7.098 (d, J = 8.2 Hz, 2H), 7.091 (d, J = 8.3 Hz, 2H), 7.001-7.068 (m, 4H), 5.313-5.356 (m, 3H), 3.654 (t, J =6.0, 2H), 1.968-2.075 (m, 3H), 1.252-1.939 (m, 22H), 1.002 (d, J = 6.5 Hz, 3H), 0.994 (d, J = 6.7 Hz, 6H), 0.891 (t, J = 6.6 Hz, 3H). 13C NMR (CDCl$_3$, 100 MHz, ppm) δ = 195.29, 195.25, 195.17, 161.81, 159.38, 153.39, 153.34, 153.32, 149.23, 149.20, 129.50, 126.50, 126.47, 123.68, 123.60, 122.08, 122.05, 116.30, 116.07, 89.44, 89.15, 89.06, 62.96, 36.02, 35.89, 35.67, 31.73, 30.25, 30.22, 30.11, 29.87, 29.30, 28.52, 28.39, 28.32, 28.12, 28.04, 27.88, 27.74, 27.57, 27.44, 27.06, 25.27, 22.63, 15.19, 15.14, 15.10, 15.04, 14.96, 14.92,
14.90, 14.12; FTIR \(\nu_{\text{max}} \) 3352, 2959, 2928, 2859, 1592, 1502, 1457, 1359, 1281, 1198, 1004, 738 cm\(^{-1}\); HRMS calcd for C\(_{43}\)H\(_{57}\)O\(_7\)S\(_3\)FNa: 823.3148, found 823.3115.

\[O''-(3,4\text{-Difluorophenyl}) \text{ \(O,O'\)-}(4S,5R,8R,9S,12R,13S)-1-hydroxy-4,8,12-trimethylnona decane-5,9,13-triy] \text{ \(O,O'\)-diphenyl tricarbonothioate [(4S,5R,8R,9S,12R,13S)-78]: (4S,5R, 8R,9S,12R,13S)-78 was obtained in 30 mg, 71\% recovery: [\alpha]_{D}^{25} = -1.34 (c = 0.25, CHCl}_3); \text{ \(^1\)H NMR (CDCl}_3, 400 MHz, ppm) \delta = 7.347-7.411 (m, 4H), 7.287-7.289 (m, 2H), 7.086-7.176 (m, 5H), 6.952-7.001 (m, 1H), 6.823-6.865 (m, 1H), 5.323-5.344 (m, 3H), 3.638 (t, \(J = 6.1 \), 2H), 1.969-2.036 (m, 3H), 1.251-1.952 (m, 22H), 1.007 (d, \(J = 6.8 \) Hz, 3H), 1.001 (d, \(J = 6.3 \) Hz, 3H), 0.985 (d, \(J = 6.7 \) Hz, 3H), 0.891 (t, \(J = 6.7 \) Hz, 3H); \text{ \(^{13}\)C NMR (CDCl}_3, 100 MHz, ppm) \delta = 195.22, 195.16, 194.64, 153.39, 153.35, 151.44, 149.91, 148.94, 148.80, 148.74, 148.70, 148.65, 148.62, 148.57, 148.45, 129.50, 129.49, 126.52, 122.06, 118.45, 118.39, 118.35, 117.44, 117.25, 112.51, 112.31, 90.10, 89.64, 89.42, 89.33, 89.11, 62.91, 53.46, 35.98, 35.88, 35.84, 35.61, 31.72, 30.20, 30.02, 29.77, 29.28, 28.51, 28.39, 28.09, 28.12, 28.03, 27.89, 27.67, 27.47, 26.97, 25.30, 22.62, 15.18, 15.11, 15.03, 14.97, 14.94, 14.87, 14.10; FTIR \(\nu_{\text{max}} \) 3385, 2959, 2928, 2858, 1513, 1490, 1458, 1284, 1195, 1004, 771 cm\(^{-1}\); HRMS calcd for C\(_{43}\)H\(_{56}\)O\(_7\)S\(_3\)F\(_2\)Na: 841.3054, found 841.3025.
$O'-(3,4$-Difluorophenyl) $O,O',O''-(4$-fluorophenyl) $O,O',O''-((4$S,5$R,8$S,9$R,12$R,13$S)-1$-hydroxy-4,8,12$-trimethyl$-nonadecane$-5,9,13$-triy)$ O-phenyl tricarbonothioate $[(4$S,5$R,8$S,9$R,12$R,13$S)-78]$: $3S,5R,8S,9R,12R,13S)-78$ was obtained in 29 mg, 71% recovery: $[\alpha]_D^{25} = -5.81$ (c = 0.22, CHCl$_3$); 1H NMR (CDCl$_3$, 400 MHz, ppm) $\delta = 7.347-7.412$ (m, 2H), 7.287-7.297 (m, 1H), 7.086-7.185 (m, 7H), 6.945-7.001 (m, 1H), 6.818-6.861 (m, 1H), 5.289-5.352 (m, 3H), 3.654 (t, $J = 6.1$, 2H), 1.955-2.080 (m, 2H), 1.195-1.942 (m, 22H), 1.007 (d, $J = 6.7$ Hz, 3H), 0.994 (d, $J = 6.5$ Hz, 3H), 0.986 (d, $J = 6.7$ Hz, 3H), 0.891 (t, $J = 6.7$ Hz, 3H); 13C NMR (CDCl$_3$, 100 MHz, ppm) $\delta = 195.24$, 195.15, 194.65, 161.82, 159.38, 153.36, 153.32, 151.43, 151.29, 150.03, 149.91, 149.14, 149.12, 148.80, 148.68, 148.65, 148.60, 148.57, 147.57, 147.45, 129.47, 126.46, 123.61, 123.52, 122.05, 118.38, 118.34, 118.29, 117.43, 117.24, 116.30, 116.06, 112.49, 112.30, 90.06, 89.60, 89.36, 89.11, 89.07, 88.86, 62.90, 35.95, 35.89, 35.66, 31.71, 30.20, 30.10, 29.85, 29.28, 28.50, 28.37, 28.28, 28.11, 28.02, 27.86, 27.62, 27.58, 27.43, 27.01, 26.95, 25.24, 22.61, 15.11, 14.96, 14.89, 14.86, 14.09; FTIR ν_{max} 3377, 2959, 2929, 2859, 1504, 1290, 1198, 1005, 839, 796, 772, 738 cm$^{-1}$; HRMS calcd for $C_{43}H_{55}O_7S_3F_3Na$: 859.2960, found 859.2902.

General Procedure 5: radical deoxygenation

To a solution of triphenylthionocarbonate tagged trimethylnonadecanol and 5 equiv of dimethylimidazolium carbene-borane (diMe-Imd-BH$_3$) in benzene-d were added AIBN. The reaction mixture was heated at 80 °C. After 2 h, the solvent was evaporated and the residue was first
extracted with hexanes (3 x 5 mL) then concentrated. The crude product was isolated by column chromatography (9:1) hexane-diethyl ether.

(4S,8S,12S)-4,8,12-Trimethylnonadecan-1-ol [(4S,8S, 12S)-79]: This deoxygenation reaction was performed according to General Procedure 5 using triphenylthionocarbonate (4R,5S,8R,9S,12R,13S)-78 (0.020 g, 0.024 mmol), diMe-Imd-BH$_3$ (0.037 g, 0.12 mmol), and AIBN (0.020 g, 0.12 mmol). Alcohol (4S,8S,12S)-79 was obtained in 0.006 g, 69% yield: $[\alpha]_D^{25} = -7.2$ (c = 0.28, CHCl$_3$); 1H NMR (CDCl$_3$, 700 MHz, ppm) $\delta = 3.635$ (t, $J = 6.6$ Hz, 2H), 1.664–1.504 (m, 2H), 1.443–1.003 (m, 30H), 0.882 (t, $J = 7.0$ Hz, 3H), 0.874 (d, $J = 6.6$ Hz, 3H), 0.840 (d, $J = 6.6$ Hz, 6H); 13C NMR (CDCl$_3$, 100 MHz, ppm) $\delta = 63.51, 37.43, 37.37, 37.33, 37.16, 37.06, 33.00, 32.90, 32.80, 32.78, 32.65, 31.94, 30.36, 30.00, 29.42, 27.10, 25.33, 25.18, 24.47, 24.44, 22.71, 19.79, 19.77, 19.67, 14.15; FTIR ν_{\max} 3333, 2959, 2924, 2854 cm$^{-1}$; HRMS calcd for C$_{22}$H$_{45}$O: 325.3470, found 325.3443.

(4S,8R,12S)-4,8,12-Trimethylnonadecan-1-ol [(4S,8R, 12S)-79]: This deoxygenation reaction was performed according to General Procedure 5 using triphenylthionocarbonate (4R,5S,8S,9R,12R,13S)-78 (0.020 g, 0.025 mmol), diMe-Imd-BH$_3$ (0.014 g, 0.125 mmol), and AIBN (0.020 g, 0.125 mmol). Alcohol (4S,8R,12S)-79 was obtained in 0.0052 g, 64% yield: $[\alpha]_D^{25} = 1.5$ (c = 0.38, CHCl$_3$); 1H NMR (CDCl$_3$, 700 MHz, ppm) $\delta = 3.635$ (t, $J = 6.6$ Hz, 2H), 1.664–1.504 (m, 2H), 1.443–1.003 (m, 30H), 0.882 (t, $J = 7.0$ Hz, 3H), 0.872 (d, $J = 6.6$ Hz, 3H), 0.842 (d, $J = 6.6$ Hz, 3H), 0.839 (d, $J = 6.6$ Hz, 3H); 13C NMR (CDCl$_3$, 100 MHz, ppm) $\delta =$
63.51, 37.40, 37.35, 37.28, 37.15, 32.99, 32.91, 32.76, 32.63, 32.64, 31.94, 30.36, 30.00, 29.71, 29.41, 27.11, 25.32, 25.17, 24.47, 24.43, 22.71, 19.70, 19.66, 19.61, 14.14; FTIR ν_{max} 3349, 2959, 2925, 2855 cm^{-1}; HRMS calcd for C_{22}H_{45}O: 325.3470, found 325.3442.

(4R,8S,12S)-4,8,12-Trimethylnonadecan-1-ol [(4R,8S, 12S)-79]: This deoxygenation reaction was performed according to General Procedure 5 using triphenylthionocarbonate (4S,5R,8R,9R,12R,13S)-78 (0.017 g, 0.020 mmol), diMe-Imd-BH₃ (0.011 g, 0.100 mmol), and AIBN (0.017 g, 0.100 mmol). Alcohol (4R,8S,12S)-79 was obtained in 0.0042 mg, 63.3% yield: [α]_D^{25} = -2.4 (c = 0.2, CHCl₃); ^1H NMR (CDCl₃, 700 MHz, ppm) δ = 3.634 (t, J = 6.6 Hz, 2H), 1.664–1.504 (m, 2H), 1.443–1.003 (m, 30H), 0.882 (t, J = 7.0 Hz, 3H), 0.874 (d, J = 6.6 Hz, 3H), 0.842 (d, J = 6.6 Hz, 3H), 0.840 (d, J = 6.6 Hz, 3H); ^13C NMR (CDCl₃, 100 MHz, ppm) δ = 63.51, 37.49, 37.43, 37.38, 37.33, 37.16, 37.06, 32.99, 32.90, 32.78, 32.63, 31.94, 30.37, 30.36, 30.00, 29.71, 29.42, 27.10, 25.18, 24.48, 24.43, 22.71, 19.77, 19.73, 19.61, 14.15; FTIR ν_{max} 3333, 2958, 2925, 2854 cm^{-1}; HRMS calcd for C_{22}H_{45}O: 325.3470, found 325.3444.

(4R,8R,12S)-4,8,12-Trimethylnonadecan-1-ol [(4R,8R, 12S)-79]: This deoxygenation reaction was performed according to General Procedure 5 using triphenylthionocarbonate (4S,5R,8R,9R,12R,13S)-78 (0.017 g, 0.020 mmol), diMe-Imd-BH₃ (0.011 g, 0.100 mmol), and AIBN (0.017 g, 0.100 mmol). Alcohol (4R,8R,12S)-79 was obtained in 0.0042 mg, 63.3% yield: [α]_D^{25} = -2.4 (c = 0.2, CHCl₃); ^1H NMR (CDCl₃, 700 MHz, ppm) δ = 3.634 (t, J = 6.6 Hz, 2H), 1.664–1.504 (m, 2H), 1.443–1.003 (m, 30H), 0.882 (t, J = 7.0 Hz, 3H), 0.874 (d, J = 6.6 Hz, 3H),
3H), 0.842 (d, J = 6.6 Hz, 3H), 0.839 (d, J = 6.6 Hz, 3H); 13C NMR (CDCl$_3$, 100 MHz, ppm) δ = 63.50, 37.47, 37.43, 37.38, 37.33, 37.16, 33.00, 32.91, 32.78, 32.76, 32.66, 31.93, 30.37, 30.00, 29.41, 27.11, 25.18, 24.46, 24.45, 23.46, 22.70, 19.73, 19.70, 19.67, 14.13; FTIR v_{max} 3334, 2958, 2925, 2855 cm$^{-1}$; HRMS calcd for C$_{22}$H$_{45}$O: 325.3470, found 325.3449.
APPENDIX A

HYDROFORMYLATION APPARATUS

Figure A.1. The initial hydroformylation setup

![Diagram of hydroformylation setup]

Figure A.2. Parr EA3911 Hydrogenator
Figure A.3. Parr© general purpose pressure reactor
APPENDIX B

FLUOROUS HPLC TRACE

Figure B.1. F-HPLC trace of substrates 53, 60, 61, 62, 63, and 64 on a PFP columna,b

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{trace}
\end{figure}

\begin{enumerate}
\item a. conditions: isocratic 75:25 acetonitrile/H\textsubscript{2}O, 1 mL/min
\item b. conditions: isocratic 65:35 acetonitrile/H\textsubscript{2}O, 1 mL/min
\end{enumerate}
Figure B.2. F-HPLC trace of M-71 on a PFP column

![F-HPLC trace of M-71](image)

conditions: isocratic 65:35 acetonitrile/H$_2$O, 1 mL/min

Figure B.3. F-HPLC trace of M-78 on a reverse phase RP-C18 column

![F-HPLC trace of M-78](image)

conditions: isocratic 80:20 acetonitrile/H$_2$O, 1 mL/min
1D TOCSY OF FOUR ISOMERS OF 4,8,12-TRIMETHYLNONANODECANOL

Figure C.1. 1D TOCSY of (4S,8R,12S)-79
Figure C.2. 1D TOCSY of (4R,8S,12S)-79

Figure C.3. 1D TOCSY of (4R,8R,12S)-79
APPENDIX D

2D INVERSE HMQC OF FOUR ISOMERS OF 4,8,12-TRIMETHYLNONADECANOL

Figure D.1. Inverse 2D HMQC experiment of (4S,8R,12S)-79

(4S,8R,12S)-79
Figure D.2. Inverse 2D HMQC experiment of (4R,8S,12S)-79

(4R,8S,12S)-79

C22 C21 C20

H22
H21
H20

Figure D.3. Inverse 2D HMQC experiment of (4R,8R,12S)-79

(4R,8R,12S)-79

C21 C22 C20

H22
H21
H20

19.34 19.72 19.70 19.68 19.66 F2 [ppm]
APPENDIX E

1H, 13C, AND 19F NMR SPECTRA

The 1H NMR spectra were recorded on a Bruker Advance III 700 MHz; the 13C NMR spectra were recorded on a Bruker Advance III 600 MHz; and the 19F NMR spectra were recorded on a Bruker Advance III 400 MHz.
EY−NB07094 repurified fraction 5 28 Mar 2010
EY-1804.47042 slight impure C13 18 June 2010
195.19
195.13
195.09
193.93
155.22
153.38
153.34
153.32
152.72
140.71
140.59
140.22
140.13
129.45
127.72
127.65
126.42
126.40
124.53
124.50
124.00
122.06
122.03
116.94
116.76
116.53
116.50
89.93
89.74
89.46
89.23
77.34
77.23
77.03
76.71
74.81
74.48
74.45
44.26
44.21
44.16
35.96
35.86
35.79
31.70
31.65
31.60
30.01
29.82
29.67
29.26
29.24
28.63
28.53
28.45
28.37
28.33
28.25
28.09
27.99
27.61
27.51
27.21
27.10
26.88
25.34
25.27
22.61
16.36
16.31
EY−NB47045 pure F19 23 June 2010
EY−NB47047 pure C13 25 June 2010
EY-NB47035 top pure 26 May 2010
EY−NB47050 pure 29 Jun 2010
EY−NB47050 pure C13 29 Jun 2010
EY−NB47051−4concentrated C13 pure 07 Mar 2011

40. Le Stang, S.; Meier, R.; Rocaboy, C.; Gladysz, J. A., Convenient Syntheses of Fluorous Phenol of the Formula HOCH₃CH₂(CH₂)₃(CF₂)₇CF₃ (n = 1, 2) and the Corresponding Triarylphosphites. *J. Fluorine Chem.* **2003**, *119*, 141-149.

