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Kidney transplantation is the treatment of choice for end-stage renal disease (ESRD), and drug 

therapy plays a significant role in the management of transplant recipients.  A variety of 

commonly used drugs are actively secreted by transporters in the kidney, yet the functional 

expression and activity of these proteins in transplant patients has not been investigated.  The 

first objective of this research was to characterize anionic tubular secretion capacity in kidney 

transplant recipients by evaluating the pharmacokinetics of cidofovir, a prototypical organic 

anion transporter substrate frequently used to treat BK virus infections in this patient population.  

A sensitive and specific analytical technique was developed to measure cidofovir concentrations 

in human plasma.  Pharmacokinetic analysis of cidofovir in adult kidney transplant recipients 

suggested reduced OAT1-mediated secretion in these patients.  The mechanistic basis of this 

observation was evaluated in a syngeneic rat model of kidney transplantation, which established 

that the transplant process itself leads to a sustained reduction in the expression of anionic 

transport proteins localized to the basolateral membrane of the renal proximal tubule.  

Additionally, apical anionic transporters were differentially regulated in this model.   

The next objective was to evaluate the pharmacodynamics of cidofovir in kidney 

transplant patients. This study demonstrated that cidofovir transiently reduced the degree of BK 
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viremia and viruria in vivo, though the effect was not sustained, and viral loads returned to 

baseline by the next sampling period.  A retrospective analysis employed serum creatinine-based 

estimates of cidofovir clearance in a large cohort of kidney transplant recipients to approximate 

aggregate cidofovir exposure, and correlated drug exposure with virologic response.  Higher 

systemic exposure was significantly associated with a larger reduction in the degree of BK 

viremia.  However, only 11% of the variance in the decline in the BK viral load could be 

explained by variation in cumulative cidofovir exposure, indicating that other factors, likely 

immune-mediated, play a major role in viral clearance.  Collectively, this work broadens our 

understanding of drug disposition in kidney transplant recipients and provides fundamental 

knowledge that may improve the treatment of BK virus infections. 
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1.1 KIDNEY TRANSPLANTATION 

Chronic kidney disease (CKD) is a major worldwide public health problem. An estimated 26 

million adults in the United States have physiological evidence of CKD, representing 13% of the 

adult population [1].  Of these individuals, over 500,000 are classified as having end-stage renal 

disease (ESRD), defined as a glomerular filtration rate of less than 15 mL/min/1.73 m2 [2].  The 

principal therapeutic options for patients with ESRD include peritoneal dialysis, hemodialysis, 

and kidney transplantation.  Kidney transplantation is the treatment of choice because it provides 

the largest potential for improvement in the patient’s quality of life and reduces mortality risk 

compared to maintenance dialysis [3].  The most common etiologies of renal disease leading to 

transplantation are diabetes, chronic glomerulonephritis, hypertension, and polycystic kidney 

disease [4]. 

In the United States, over 16,000 kidney transplants are performed annually [5]. Patient 

and graft survival rates following kidney transplantation have markedly improved over the past 

several decades.  At present, five-year patient survival rates are 91% and 84% for living donor 

kidney transplantation and deceased donor kidney transplantation, respectively [5].  The high 

survival rates are attributed to advances in the field of transplantation, including organ 

preservation, surgical techniques, post-operative management, and drug therapy.  Unfortunately, 

despite a good prognosis, kidney transplant recipients still face numerous complications, both 

infectious and non-infectious in nature. 
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1.2 INFECTIOUS COMPLICATIONS IN KIDNEY TRANSPANT RECIPIENTS 

Transplant recipients are vulnerable to a variety of bacterial, fungal, and viral infections, which 

represent an impediment to successful clinical outcomes.  Infections are a major cause of 

morbidity and mortality in kidney transplant patients, and it is estimated that 40-80% of 

recipients experience at least one infection during the first post-transplant year [6].   In fact, post-

transplant infections now exceed acute rejection as a cause for hospitalization for kidney 

transplant patients [7].  The widespread use of potent immunosuppressive agents simultaneously 

reduces the risk of rejection and increases susceptibility to opportunistic infections.  As a result 

of the growing number of immunosuppressed transplant patients with extended survival, 

guidelines have been established for the management of infectious diseases in this patient 

population [8]. 

At the time of presentation, infections in transplant recipients may be advanced because 

of compromised inflammatory and immunologic responses.  Additionally, serological testing 

may be of little value secondary to delayed seroconversion.  The overall risk of infection is 

considered to be a semi-quantitative relationship between (1) the epidemiologic exposure of the 

patient and (2) the net state of immunosuppression, characterized by the type, dose, and duration 

of immunosuppressive therapy, underlying disease states, and several host factors affecting the 

immune function [9].  Thus, maintaining an optimal degree of immunosuppression is critical in 

the medical management of transplant patients.  

In the immediate post-operative period (< 1 month), infections derived from the donor 

and infectious complications of the surgical procedure prevail.  Donor derived infections in the 

immunosuppressed host may include herpesviruses [cytomegalovirus (CMV), herpes simplex 

virus (HSV), varicella zoster virus (VZV)], human immunodeficiency virus (HIV), 
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meningococcus, syphilis, candida, and aspergillus [10]. Antimicrobial resistant strains, such as 

methicillin-resistant staphylococci (MRSA) and vancomycin-resistant enterococci (VRE), may 

also present significant complications during this period.  Common infectious postoperative 

complications, including typical gram (+) surgical site infections and line infections, may be 

amplified because of the immunocompromised status of the transplant recipient.  The organisms 

responsible for these complications are classically the bacteria and fungi that colonize the 

recipient, as well as the flora in the hospital.   

Following the immediate post-operative period, the nature of infectious complications 

changes and patients are at high-risk for contracting opportunistic infections.  Opportunistic 

pathogens recognized to cause systemic disease in transplant recipients during the period of 1 to 

5 months post-transplant include pneumocystic carinii, protozoal diseases, viral pathogens 

(herpesviruses, cytomegalovirus, Epstein-Barr virus), fungal infections (histoplasma capsulatum, 

Coccidioides species), and mycobacteria (tuberculosis) [11].  Consequently, prophylactic 

regimens with anti-bacterial, anti-fungal, and anti-viral agents are routinely used in the majority 

of patients (Table 1). 
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Table 1. Prophylactic anti-infective medications used in kidney transplant recipients 

Infection Medication Dose Notes 

Cytomegalovirus Valganciclovir 450 - 900 mg by mouth 
daily 

- Requires dose 
adjustment for renal 
insufficiency 
- Risk is highest for 
seronegative recipients 
receiving an organ 
from a seropositive 
donor 

Fungal infections 
(Candida, 

Aspergillus) 
Voriconazole 200 mg by mouth every 12 

hours 

- Therapeutic drug 
monitoring may be 
used to maintain 
steady state trough 
concentrations within 
1 – 6  µg/mL 

PCP pneumonia 
(Pneumocystis 

jiroveci) 

Trimethoprim/ 
sulfamethoxazole 

(TMP-SMX) 

80/400 mg by mouth daily 
-OR- 

160/800 mg by mouth three 
times weekly 

Dapsone may be used 
in patients who cannot 
tolerate TMP-SMX 
 

 

At six months post-transplant, the majority of patients receive reduced stable 

immunosuppression (e.g. target tacrolimus trough concentrations of 5-7 ng/mL).  At this point, 

patients are prone to community-acquired pneumonias due to pneumococcus, respiratory viruses, 

and Legionella [11].  Opportunistic pathogens may also play a role, as well as delayed 

reactivation of latent viral infections, including HSV, CMV, VZV, HBV, and BK virus (BKV) 

[12].  In all cases, early identification and prompt initiation of efficacious treatment are critical to 

patient and graft survival. 
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1.2.1 BK Virus 

BK virus is a member of the polyomavirus family, so named because of the viruses' ability to 

produce multiple (poly-) tumors (-oma).  BK virus was first isolated in 1971 from the urine of a 

Sudanese kidney transplant recipient with the initials B.K. [13] and BK virus nephropathy 

(BKVN) was later diagnosed in Pittsburgh in 1993 by needle biopsy in a kidney transplant 

recipient suspected of having acute rejection [14]. Presently it is the most common viral disease 

affecting renal allografts and an important cause of graft dysfunction and graft loss following 

renal transplantation [15]. 

 

1.2.1.1 Biology 

 

BK polyomavirus is a small (30 to 45 nm), nonenveloped, double-stranded, circular DNA virus 

that is ubiquitous in humans, occurring with a seroprevalence of approximately 70 % [16-21].  

Primary infections typically occur in childhood via oral and/or respiratory exposure, though the 

initial infection is innocuous and the virus remains latent within the renal epithelium [22].  

Healthy individuals may experience intermittent viral replication and asymptomatic shedding of 

the virus into the urine [23].  Viral shedding is significantly more common in 

immunocompromised patients, particularly immunosuppressed kidney transplant recipients and 

bone marrow recipients [24, 25].  During BK virus reactivation, the virus multiplies in the 

nucleus of renal tubular epithelial cells and eventually bursts from the host cell, causing cell 

lysis.  
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BK virus encodes six viral proteins: two early nonstructural or enzymatic proteins, an 

agnoprotein, and three late proteins [26]. The early proteins are the large and small tumor 

antigens, which are involved in cell immortalization and latency. The agnoprotein is responsible 

for the assembly of viral particles. The late genes encode three viral capsid proteins that make up 

the protein shell of the virus.  These capsid proteins are termed VP-1, VP-2, and VP-3.  

Importantly, polymerase chain reaction (PCR) approaches to detect BK virus in biological fluids 

are targeted at a conserved region of VP-1 [27, 28].   

1.2.1.2 Epidemiology  

 

In the United States and Europe, 60 to 80% of adults have antibodies to BK virus, independent of 

gender, socioeconomic status, and rural versus urban residence [29].  In kidney transplant 

recipients, reactivation of BK virus carries a substantial disease burden, with an estimated 

incidence of viruria, viremia, and nephropathy of 35-40%, 11-13%, and 5-8%, respectively [30, 

31] 

1.2.1.3 Risk factors in kidney transplant recipients 

 

The risk of developing BK virus infection in transplant recipients does not appear to be related to 

the use of a specific immunosuppressive agent or regimen [22, 32].  A randomized, prospective 

study found that the frequency of BK viremia and viruria were similar in patients receiving 

tacrolimus or cyclosporine, as well as patients receiving mycophenolate mofetil compared to 

azathioprine [30].  Further, BK virus nephropathy has been documented in patients receiving 

various regimens, including different combinations of cyclosporine, azathioprine, mycophenolate 
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mofetil, sirolimus, and calcineurin inhibitor free regimens [33-35].  Hence the overall degree of 

immunosuppression, encompassing both drug therapy and the humoral and cellular immunity of 

the patient, is believed to be the primary risk factor for viral reactivation.  Retrospective analyses 

have revealed additional factors that increase the relative risk of developing BK viruria, viremia, 

or nephropathy beyond immunosuppression.  These include advanced or young age, male 

gender, diabetes mellitus, white ethnicity, high donor antibody BK titers, and donor BK-

seropositivity [36-38].   

1.2.1.4 Clinical manifestations and diagnosis in kidney transplant recipients 

 

BK virus initially presents in kidney transplant recipients as a slow progressive rise in serum 

creatinine [39].  Although the mean onset of disease is approximately one year after transplant, 

reactivation of the latent infection may begin within days or after several years [40, 41].  Patients 

are often asymptomatic or may have a mild non-specific fever [42]. 

Cytopathic changes are often observed on renal allograft biopsy; however, because of the 

focal nature of the infection, negative biopsy results cannot rule out BK virus nephropathy with 

certainty [43].  The histopathology of BKV nephropathy is characterized by intranuclear 

inclusion bodies in tubular epithelial cells, which are associated with necrosis, inflammatory cell 

infiltrates, and tubular atrophy [15].  A representative biopsy of renal medullary tissue displaying 

these changes is displayed in Figure 1. 
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Figure 1.  Biopsy of renal allograft tissue displaying cytopathic changes characteristic of BK virus 

nephropathy (top); renal biopsy without BK virus, for comparison (bottom) 

 

University of Pittsburgh School of Medicine, Department of Pathology, Division of Transplantation Pathology 

 Used with permission 
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As viral replication proceeds, BK virus is shed from renal tubular cells and urinalysis 

generally reveals pyuria, hematuria, and/or cellular casts consisting of renal tubular cells and 

inflammatory cells.  Additionally, infected cells, referred to as “decoy cells”, may be shed into 

the urine from the renal tubules and detected by urine cytology.  Decoy cells are not diagnostic 

for BK virus, however, and their presence has a low positive predictive value, because CMV 

infections may also lead to urinary shedding of cells with intranuclear inclusions [44].  A recent 

development is the detection of polyomavirus aggregates in the urine using electron microscopy.  

The presence of these aggregates, termed Haufen, is associated with a high sensitivity and 

specificity for BK nephropathy [45].  Urinary Haufen may one day serve as a noninvasive 

approach to diagnose BK nephropathy, but the utility of this test is presently questionable. 

The identification of BK viral DNA in plasma and urine of infected patients is 

characteristic of the disease.  Polymerase chain reaction is often employed to detect viral DNA in 

patients who present with a spectrum of symptoms consistent with BK virus (i.e. rising serum 

creatinine in the absence of evidence of rejection).  Qualitatively, BK viral DNA in plasma, and 

to a lesser extent in urine, is associated with high sensitivity and specificity for biopsy-proven 

nephropathy.  Additionally, quantitative PCR is a useful tool in monitoring progression of the 

disease and evaluating response to treatment.   BK virus generally follows a course where 

detection is first made in the urine (secondary to lysis of renal tubular cells) and detection in 

plasma follows as disease severity increases. 
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1.2.1.5 Therapeutic interventions 

 

Optimal therapeutic interventions for BK virus infections in kidney transplant recipients have yet 

to be elucidated [46].  However, several approaches are routinely undertaken.  First, because BK 

virus is considered a disease of over-immunosuppression, the overall immunosuppression is 

reduced.  The most common approaches include withdrawal of mycophenolate or azathioprine 

[47], and a decrease in target trough concentrations of tacrolimus or cyclosporine [30].  Specific 

immunosuppressive dosing regimens to allow immunologic clearance of BK virus and 

simultaneously maintain a low risk of acute rejection of the graft have not been conclusively 

established [15].   

Antiviral regimens may be initiated if BK infection persists after reducing 

immunosuppression.  Leflunomide, an orally administered disease modifying antirheumatic drug 

(DMARD) marketed for the treatment of rheumatoid arthritis, possesses immunosuppressive 

properties [48] and its active metabolite (A771726) has in vitro activity against BK virus [49].  

Leflunomide is often used in the management of patients with refractory BK virus.  In a case 

series report (n=26), 86% of patients treated with leflunomide after discontinuation of MMF had 

BK viral clearance and stabilization of graft function [50].  These patients received a loading 

dose (100 mg daily for 3-5 days) followed by 20-60 mg daily to maintain serum concentrations 

of the active metabolite between 50 and 100 µg/mL.  The authors noted poorer outcomes in 

patients with concentrations of the active metabolite of less than 40 µg/mL.  A recent report 

described the largest cohort of patients treated with leflunomide for BK (n = 61), again targeting 

serum concentrations of A771726 between 50 and 100 µg/mL [51].  A total of 53 patients 

(86.9%) had a positive response, defined as clearance of viremia (<2500 copies per mL) or 
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viruria (<50,000 copies per mL), and 8 (13.1%) had a negative response to therapy.  The mean 

time to clearance of viremia was approximately 6.3 months.  In light of these results, the authors 

conclude that leflunomide may be an effective adjunct therapy for BK virus treatment in renal 

allograft recipients.  Although the role of leflunomide in the treatment of BKV in transplant 

patients is not categorically determined, the need for therapeutic drug monitoring and the long 

half-life of the active metabolite (> 14 days) make its use clinically challenging.  A summary of 

the published literature on the use of leflunomide for the management of BK virus is presented in 

Table 2. 
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Table 2.  Summary of published literature for the management of BK virus with leflunomide 

Leflunomide 
dosing regimen1 

Number 
of 

patients 

Reduction in 
immunosupression Results/comments Reference 

LD: 100 mg for 5 
days 

MD: 20–60 mg 
daily 

Trough: 50–100 
µg/mL 

26 
Discontinued MMF 

↓ tacrolimus trough to 
4–6 ng/mL 

All patients with 
nephropathy prior to 

treatment; 
7 patients received 

0.25 mg/kg cidofovir 
every other week after 

failing to respond; 
Overall graft failure in 

15% 

[50] 

LD: 60 mg for 3 
days 

MD: 20–60 mg 
daily 

21 
Discontinued MMF      

↓ tacrolimus trough to 
< 5 ng/mL 

8 patients received 
low-dose cidofovir, 
overall graft loss in 
19%; consistent low 
dose steroids used 
throughout in all 

patients 

[52] 

LD: 100 mg for 5 
days 

MD: 30-70 mg 
daily 

Trough: 40 – 80 
µg/mL 

12 

Discontinued MMF 
↓ tacrolimus trough to 

6–10 ng/mL 
 

Renal function 
improved in 50%, 
remained stable in 

16.6%, and 
deteriorated in 33.4%; 

Anemia in 6 cases 
 

[53] 

LD: 100 mg for 5 
days 

MD: 20-60 mg 
daily 

Trough: 50-100 
µg/mL 

8 
Discontinued MMF 

↓ tacrolimus trough to 
4–6 ng/mL 

No graft loss during 12 
mo follow-up; 

Leflunomide d/c in 1 
patient due to 

unnamed side effects 

[54] 

MD: 20 mg daily 7 
Discontinued MMF 

↓ tacrolimus trough to 
4–6 ng/mL 

Graft failure in 28% at 
follow-up of 5-44 mo; 
5 patients with stable 

graft function 

[55] 

Trough: 40–100 
µg/mL 4 

 
Discontinued MMF 

↓ tacrolimus trough to 
2 ng/mL 

 
 

No graft loss during 14 
month follow up [56] 
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LD: 100 mg for 3 
days 

MD: 40 mg daily 
4 

Discontinued MMF  
↓ tacrolimus trough to 

5–8 ng/mL 

Graft loss in 50%, no 
monitoring of 
leflunomide 

concentrations; all 
patients with 

kidney/pancreas 
transplant 

[57] 

Trough: 40–100 
µg/mL 4 

Maintained only on 
leflunomide and 

corticosteroid 

No graft loss; 
1 patient with prior 

cidofovir use 
[58] 

LD: 100 mg for 3 
days 

MD: 20 mg daily 
2 

Discontinued MMF 
↓ tacrolimus trough to 

4–6 ng/mL 

No graft loss during 13 
month follow-up 

 
[59] 

MD: 20 mg daily 1 
Discontinue MMF 

↓ cyclosporine 
 

No graft loss at 12 mo 
follow-up [60] 

 

1.  LD, loading dose; MD, maintenance dose 
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Cidofovir is a nucleotide analog antiviral drug approved by the United States Food and 

Drug Administration (FDA) for the treatment of cytomegalovirus retinitis in individuals with 

AIDS.  Although the drug has in vitro and in vivo activity against a wide variety of DNA viruses, 

including adenoviruses, herpesviruses, papillomaviruses, poxviruses, and polyomaviruses, its 

clinical efficacy has only been thoroughly demonstrated against CMV [61-63].    However, 

cidofovir has been used as an adjunct therapy for BK virus based on several case series 

describing clearance of BK virus DNA from plasma and improvement or stabilization in graft 

function following treatment [64-68]. Cidofovir suppresses viral replication by inhibition of 

DNA polymerase and, unlike nucleoside analogs (i.e. acyclovir), does not require activation by 

viral kinases for efficacy [69].  Nevertheless, phosphorylation does occur intracellularly and the 

phosphorylated metabolites account for much of the antiviral activity [70].  Resistance to 

cidofovir has not been reported in the treatment of BK virus; however, reduced susceptibility of 

CMV to cidofovir has been confirmed in clinical CMV isolates from immunocompromised 

patients undergoing treatment, which are associated with mutations in the DNA polymerase gene 

[71, 72].   

For CMV, cidofovir is administered as a 1-hour intravenous infusion at a dose of 5 

mg/kg, which yields peak plasma concentrations of approximately 11 µg/mL [73].  In patients 

with normal kidney function, the majority (> 80%) of the dose is ultimately eliminated 

unchanged in the urine with a plasma half-life of 2.5 to 3.5 hours [74].  However, the 

intracellular metabolites are eliminated far more slowly [70] and allow for an extended dosing 

frequency of once weekly or once every two weeks.  In monkeys, the terminal elimination half-

life of the phosphorylated cidofovir metabolite was estimated to be 36 hr after intravenous 

administration of [14C]-cidofovir [70], which is consistent with the long intracellular half-life of 
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phosphorylated cidofovir observed in both cultured human embryonic lung cells (48 hr) [75] and 

retinal cells in vivo after intravitreal injection of cidofovir to rabbits (>55 hr) [76]. 

In patients with normal kidney function receiving a 5 mg/kg dose of cidofovir, the total 

body clearance is approximately 248 mL/min and the renal clearance is 209 mL/min, or 84% of 

the total body clearance [73].  The nonrenal clearance (e.g. metabolic clearance) is therefore 39 

mL/min.  Moreover, by comparing renal clearance to baseline creatinine clearance in the same 

patients, the clearance of cidofovir due to active tubular secretion is approximately 84 mL/min 

[73].  The secretion of cidofovir is the result of an active uptake process facilitated by transport 

proteins localized to the basolateral membrane of renal proximal tubule cells [77].  Additionally, 

the drug possesses profound nephrotoxic potential that is minimized by co-administration with 

the uricosuric agent probenecid, which reduces renal uptake of cidofovir and prolongs the 

systemic exposure [78].  For this reason, the FDA-approved labeling recommends that each dose 

of cidofovir be given with probenecid [79].  The primary mechanism by which probenecid 

reduces uptake into the kidney and thereby provides nephroprotection is thought to be due to 

competitive inhibition of the basolateral renal drug transport of cidofovir.  The effect of 

probenecid (90mg/kg, intravenous) on the distribution of [3H]cidofovir (5 mg/kg , 20 μCi/kg) 

following intravenous administration was investigated in male New Zealand white rabbits.  In 

this report, probenecid significantly reduced the distribution of total radioctivity in the kidney at 

30 min, 6 h, and 24 h by 8.2%, 16.7%, and 53% respectively (p<0.05 for all time points) [80].   

The use of cidofovir to treat BK virus in kidney transplant patients presents a challenge.   

On one hand, the drug is ideal because it has anti-BK activity and extraordinary affinity for the 

kidney via uptake into the cells where viral replication occurs.  Conversely, the nephrotoxicity of 

cidofovir is problematic because kidney transplant recipients with BK virus usually have 
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underlying renal insufficiency.  In light of these conflicting issues, many transplant centers use 5-

10% of the FDA-approved dose (0.25-0.6 mg/kg) once per week without co-administration of 

probenecid [64-67, 81].  Although the low cidofovir dose was chosen to minimize 

nephrotoxicity, this dosing regimen has yet to be fully validated.  A summary of the published 

literature on the use of cidofovir for the management of BK virus is presented in Table 3. 
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Table 3. Summary of published literature for the management of BK virus with cidofovir 

Cidofovir treatment1 
Number 

of 
patients 

Outcomes/comments Reference 

Cidofovir 0.5 - 1.0 
mg/kg/week for 4 – 
10 weeks  
 
 

 
8 

• No graft loss occurred (median follow-up 
of 24.8 months) and graft function 
stabilized in all patients 

 
• Mean viral load at 12 months did not differ 

between patients treated with adjuvant 
cidofovir and recipients not treated with 
cidofovir (p=0.41). Viremia was unaltered  

[66] 

Cidofovir 1.5 
mg/kg/week for 1.5-
3 months in patients 
who failed reduction 
in 
immunosuppression  
 

 
5 

• All 4 patients had advanced BKVN (mean 
SCr 5.3 mg/dL) 

 
• Two patients experienced graft loss; 3 did 

not require dialysis after 4 months of 
follow-up 

[82] 

Cidofovir 0.25 
mg/kg/dose every 2 
weeks for 
6 - 30 weeks 

 
5 

• BK viruria resolved within 4-12 weeks 
after cidofovir therapy 

 
• All patients had stable graft function at 6-

26 months post therapy 
 
• 2 patients post-therapy developed recurrent 

viruria without viremia and with stable 
renal function 

[83] 

Cidofovir 0.33 
mg/kg/dose every 2 
weeks for 3 months 

 
2 

• One patient had stable renal function and 
undetectable viremia at 4.5 months post 
treatment and the second patient 
experienced graft loss 4 months post-
therapy 

[34] 

Cidofovir 0.25 
mg/kg/dose every 2 
weeks 

 
2 

• Viremia became undetectable after 2 
months of cidofovir but viruria persisted 

 
• Renal function stabilized and further 

biopsies did not reveal nephropathy 

[84] 

Cidofovir 0.3 
mg/kg/dose every 2 
weeks for 7 doses 

 
2 

• After 2 doses of cidofovir, renal function 
stabilized and viremia was undetectable at 
12 months post-treatment (viruria 
persisted) 

 
• Renal biopsy at the end of cidofovir 

therapy found no BKVN 

[85] 
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• The second patient stopped therapy due to 

non-specific adverse events of headache 
and leg swelling after 4 doses. Renal 
function deteriorated and viremia increased 

Cidofovir 0.25 
mg/kg/dose every 2 
weeks for 8 doses 

 
1 

• After the treatment, renal function 
stabilized, viremia was undetectable 
 

• Viruria persisted 
 

• A biopsy 3 months post-treatment showed 
no BKVN 

[86] 

Cidofovir 0.25 
mg/kg dose x 1 dose 
and 0.42 mg/kg/dose 
every 2 weeks for 7 
months 

 
1 

 
• Four months post-treatment, viremia is 

undetectable, renal function is stable,         
viruria is persistent 

[87] 

Cidofovir 0.25 
mg/kg/dose every 2 
weeks 

 
5 

• No graft loss, clearance of viremia, 
persistent viruria [88] 

Cidofovir 0.25 
mg/kg every 2 weeks 
for a total of four 
doses; Patients with 
persistent BKVN 
received additional 
doses of 0.5 mg/kg 
every 2 weeks for 
four to five doses 

 
6 

 
 

• No association between cidofovir use and 
viral clearance.  No graft loss at 20 months 
follow-up [89] 

Cidofovir 0.25 - 1 
mg/kg/dose every 2 -
3 weeks for 1- 4 
doses 

 
4 

• BK viruria resolved within 4-12 weeks 
after therapy 

 
• All patients had stable graft function at 6- 

26 
months post therapy 

 
• 2 patients post-therapy developed recurrent 

viruria without viremia and with stable 
renal function 

[90] 

1. In each report reduced immunosuppression was also utilized; BKVN, BK virus-associated nephropathy 
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The major gaps in knowledge in the use of cidofovir for the treatment of BK virus in 

kidney transplant recipients include the following:  (1) the dose of cidofovir that will most 

effectively reduce the viral load without nephrotoxicity is not known; (2) the appropriateness of 

weekly or biweekly cidofovir dosing has not been evaluated; (3) the pharmacokinetics of 

cidofovir in kidney transplant recipients and the sources of intra- and inter-patient variability 

have not been described; (4) the relationship between cidofovir exposure and virologic response 

has yet to be elucidated, and the effect of probenecid on augmenting the response is not 

understood.  As cidofovir uptake into the proximal tubules is desired to obtain high drug 

concentrations at the site of action, competitive inhibition of cidofovir uptake with probenecid 

may be deleterious; (5) it is not clear whether the expression and activity of the transporter that is 

responsible for uptake of cidofovir into the proximal tubule cells, OAT1, is normal or altered in 

kidney transplant patients.  Therefore, a systematic evaluation of the pharmacokinetics and 

pharmacodynamics of cidofovir and an evaluation of the expression and functional activity of 

OAT1 in kidney transplant patients will further our knowledge and our ability to better use 

cidofovir in kidney transplant patients with BK virus. 

The following section will review our current knowledge of drug disposition in patients 

with kidney disease and kidney transplantation. 
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1.3 EFFECTS OF KIDNEY DISEASE AND TRANSPLANTATION ON DRUG 

DISPOSITION 

The kidney plays a major role in the disposition of cidofovir as discussed in the previous section.  

A discussion of various factors that can alter the pharmacokinetics of drugs in kidney disease and 

kidney transplantation is presented in this section.  Pharmacokinetics quantitatively describes the 

steps involved in the processes of drug absorption and disposition (including distribution, 

metabolism, and excretion).  Optimization of drug therapy, including immunosuppressive agents, 

anti-infectives, and other medications used to treat underlying medication conditions, is essential 

for long-term graft and patient survival in transplant patients.  Therefore, it is critical to evaluate 

how kidney transplantation may alter the pharmacokinetic properties of medications used in this 

patient population. 

Prior to transplantation, patients with kidney disease experience a progressive 

deterioration of kidney function.  During this period, the clearance of drugs removed 

predominantly by renal filtration is reduced, which intuitively leads to a dose reduction of such 

drugs.  As the severity of kidney disease increases, the magnitude of these effects becomes 

greater, as renal clearance (CLR) is directly related to kidney function.  In addition, active 

transporter-mediated processes involved in tubular secretion may be altered [91].    Finally, a 

growing body of evidence suggests that nonrenal drug clearance pathways, encompassing 

intestinal and hepatic metabolism and transport, may be affected in patients with kidney disease 

[92, 93].  The most well accepted hypothesis to explain these changes in patients with kidney 

disease is that accumulated toxins characteristic of uremia (uremic toxins) down regulate or 

directly inhibit these pathways [94]. To date, more than 110 organic compounds have been 

identified as uremic toxins, many of which contribute to reduce metabolic and transporter 
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processes [95].  Patients with CKD, particularly ESRD, exist in a chronic inflammatory state and 

are subject to increased oxidative stress, which is likely due to an overabundance of the 

accumulated uremic toxins, including pro-inflammatory cytokines [95].  In fact, the 

concentrations of IL-1b, IL-6, and TNF-α are increased 2.7-fold, 6.9-fold, and 8.6-fold, 

respectively, in uremic patients [96].  Alteration in drug disposition during inflammation is not a 

novel observation, as the half-life of theophylline, which undergoes hepatic oxidative 

metabolism, was shown over 30 years ago to be significantly longer during the acute stage of a 

respiratory viral illness [97].  It is now well regarded that inflammatory cytokines can down 

regulate drug metabolizing enzymes and transporters [98].  For instance, treatment of primary 

human hepatocyte cultures with cytokines has been shown to reduce both mRNA levels and 

enzymatic activities of CYP3A, CYP2E1, CYP1A2, and CYP2C by at least 40%, with 

interleukin-1b (IL-1b), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF- α) being the most 

potent [99].  Inflammatory cytokines suppress the expression of several metabolic enzymes and 

transporter proteins through the ability to serve as ligands for the nuclear transcription factors 

pregnane X receptor (PXR) and constitutive androstane receptor (CAR) [100]. Reductions in the 

mRNA levels of PXR and CAR with a corresponding reduction in CYP enzymes have been 

reported in rodents with endotoxin induced (and cytokine mediated) inflammation [98].  Hence, 

altered metabolic enzyme and transporter function in patients with kidney disease may be a result 

of chronic downregulation of these proteins at the transcriptional level. 

Following successful kidney transplantation, the filtration capacity is at least partially 

restored and the uremic state reversed.  The disposition of drugs cleared principally by renal 

filtration may then return to normal, or at least reliably predicted based on clinical estimates of 

kidney function (i.e. creatinine clearance, eGFR).   On the other hand, transplant recipients are 
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vulnerable to immune- and/or infectious-mediated inflammation that may alter the expression of 

various metabolic enzymes and transporters in key organs such as the intestine, liver, and kidney.  

In kidney transplant recipients, elevations in several pro-inflammatory cytokines, including IL-6 

and TNF-α, have been documented in serum and urine during the immediate post-operative 

period, acute rejection episodes, periods of infection, and prior to late graft failure [101-103].  In 

addition, kidney transplant patients receive numerous medications, raising the possibility for 

drug interactions through inhibition or induction of these metabolic and transport proteins.   

The subsequent sections highlight the individual steps in drug disposition and describe 

(1) how kidney disease (i.e. pre-transplantation) affects each process and (2) the impact of 

restoration of kidney function via transplantation on pharmacokinetic properties. 

1.3.1 Absorption and uptake 

For orally administered medications, the concerted actions of intestinal drug metabolizing 

enzymes and uptake and efflux transporters are important determinants of a drug’s 

bioavailability, or the fraction of the dose that ultimately reaches the systemic circulation 

unchanged [104].  After oral administration, a drug encounters enterocytes lining the lumen of 

the gut wall where passive diffusion or active transport across the apical membrane may occur. 

When inside the enterocyte, the drug can be biotransformed to a more polar compound by drug 

metabolizing enzymes. Subsequently, the parent drug and/or metabolite may be either actively 

effluxed back across the apical membrane into the gut lumen to be fecally excreted or undergo 

repeated uptake-metabolism-efflux cycling, or translocated across the basolateral membrane into 

the portal circulation. Perturbation of the function of metabolizing enzymes and transporters 

involved in these pathways may affect bioavailability drastically, and thereby impact systemic 
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drug exposure.  Additionally, physiological changes in gastrointestinal motility or blood flow, 

bile secretion, gastric acid secretion, or gastric pH may modify the bioavailability of orally 

administered medications.  

Cytochrome P450 (CYP) enzymes are a superfamily of heme-containing 

monooxygenases that are responsible for biotransformation of up to 60% to 80% of currently 

marketed drugs that are known to be metabolized [105], and are the primary contributors to 

intestinal drug metabolism [106].  CYP3A is the most abundant and clinically relevant CYP 

present in human small intestine [106]. The bioavailability of several CYP3A drug substrates is 

increased in CKD, and one frequently cited possibility for this phenomenon is reduced CYP3A-

mediated intestinal metabolism [107].  However, conflicting experimental data and recent 

clinical studies have raised questions regarding this proposed mechanism. A 71% decrease in 

intestinal CYP3A2 protein expression has been observed in rats with chronic renal failure [107], 

yet others have reported that intestinal metabolism of the CYP3A substrate tacrolimus is not 

altered in rats with renal failure in which increased bioavailability was simultaneously 

demonstrated [108].  This may be related to the involvement of uptake or efflux transporters in 

the absorption of tacrolimus in the gut.  In a clinical pharmacokinetic study in ESRD patients, 

there were no significant differences in the pharmacokinetic parameters of oral midazolam, a 

selective phenotypic probe of intestinal and hepatic CYP3A function, compared with healthy 

control subjects [109].  This finding was recently corroborated in a pharmacokinetic study of the 

CYP3A substrate erythromycin, which demonstrated that intestinal bioavailability of 

erythromycin is not altered in patients with ESRD [110].  Together, these clinical data suggest 

that intestinal CYP3A function is not substantially altered in patients with ESRD receiving 

conventional hemodialysis therapy. 
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Several transporters also play key roles in the clearance of drugs and have been 

investigated in the setting of kidney disease. The organic anion-transporting polypeptide (OATP) 

family of drug transporters is involved in the cellular uptake of several structurally diverse 

compounds [111].  OATP is expressed on the apical surface of enterocytes and serves to increase 

enteral drug absorption. In contrast, P-glycoprotein (P-gp) is an energy dependent 

transmembrane protein expressed on the apical surface of many tissues, including enterocytes, 

where it is responsible for efflux or extracellular transport of substrates back into the intestinal 

lumen [111].  P-gp is able to transport numerous structurally dissimilar neutral or cationic 

compounds. Multidrug resistance-associated protein 2 (MRP2) is an organic anion transporter 

that is expressed in human liver, intestine, and kidney [112].  Like P-gp, MRP2-mediated efflux 

from enterocytes limits oral bioavailability of certain xenobiotics. P-gp and CYP3A share similar 

substrate specificity and close proximity in enterocytes, working in concert to reduce the amount 

of drug reaching the systemic circulation. OATP, and to a lesser extent MRP2, also exhibits 

overlapping substrate specificity with CYP3A and P-gp.  

Intestinal P-gp and MRP2 protein expression have been shown to be significantly reduced 

(40%) in rats with chronic renal failure, with corresponding reduction in the activity; however, 

OATP expression and activity are unchanged [113].  Decreased intestinal drug efflux activity 

through P-gp or MRP2 may lead to increased bioavailability and increased systemic exposure.  

In patients with kidney disease, the apparent oral clearance of fexofenadine, a P-gp and OATP 

substrate, was significantly decreased with a corresponding increase in exposure, as compared 

with control [109], suggesting downregulation of one or both of these transport pathways. 

The available animal and human data related to the expression and activity of intestinal 

metabolizing enzymes and transporters following kidney transplantation is comparatively less. 
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The oral bioavailability of furosemide [114] and prednisone [115], which are transported by 

intestinal P-gp [116], is similar to that observed in normal subjects, while cyclosporine 

bioavailablity (a P-gp and CYP3A substrate [117]) is similar to liver and heart transplant patients 

[118].  While limited, these data support the complete recovery of function of intestinal 

transporters and metabolic enzymes after uremia is reversed.  Furthermore, intestinal mRNA of 

the gene that encodes human P-gp (MDR1) is well expressed and serves as a predictive measure 

of tacrolimus pharmacokinetics in pediatric living-donor transplant recipients [119].  Overall, the 

bioavailability of both passive and carrier-mediated drug substrates in clinically stable kidney 

transplant recipients is expected to be similar to normal healthy individuals.  However, the 

influences of graft dysfunction, acute rejection, and infection (including associated 

inflammation) have not been evaluated in kidney transplant patients. 

1.3.2 Distribution 

Several factors affect the distribution of drugs within the body, including blood flow to 

various organs, tissue partitioning, fluid status, plasma protein binding, and tissue binding.  

Alterations in these factors may occur pre- and post-transplantation and hence influence the 

pharmacokinetic properties of various drugs.   Decreased perfusion of tissues and impaired tissue 

uptake will result in higher drug concentrations in blood and a lower volume of distribution. On 

the other hand, decreased plasma protein binding will result in an increased volume of 

distribution because more drug moves out of the vascular system and into the tissues.  As the 

unbound concentration in blood is typically responsible for therapeutic effect, these changes may 

be clinically relevant.  The significance of altered binding for drugs that are primarily hepatically 

cleared will depend upon the properties of the drug.  For medications with high intrinsic 
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clearance, hepatic clearance is dependent on blood flow and changes in binding will have 

meaningful clinical consequences.  Conversely, for drugs with a low intrinsic clearance, binding 

to blood constituents is a critical determinant of the overall hepatic clearance, though unbound 

concentrations responsible for therapeutic effect are not expected to be altered. 

Decreased binding of several drugs has been documented in patients with kidney disease, 

which results in a larger apparent volume of distribution and increased distribution of drug 

outside of the vascular system. For example, the protein binding of acetylsalicylic acid, salicylic 

acid, phenylbutazone, and thiopental is decreased in patients with acute renal failure [120, 121].  

This trend is also observed in patients with chronic kidney disease, where the unbound fraction 

of diazepam, furosemide, and phenytoin is significantly increased [122-124].  Plasma protein 

concentrations alone cannot account for these changes, and thus it has been suggested that 

accumulated organic waste products may block binding sites on plasma proteins and/or displace 

bound drugs, accounting for the increased unbound fraction and increased apparent volume of 

distribution [125].   

After transplantation, drug distribution will be determined by the net effect of changes in 

plasma and tissue binding.  The functional status of the transplanted kidney will influence the 

concentration of several plasma proteins as well as the clearance of uremic toxins.  In the 

immediate post-operative period, during rejection episodes, or during infectious processes, the 

plasma concentrations of acute-phase proteins, including alpha-1-acid glycoprotein (AAG), are 

increased [126]. Because AAG serves as a primary carrier of basic drugs (i.e. propranolol, 

quinidine, prazosin, disopyramide), increased AAG concentrations during times of inflammation 

can alter the distribution volume of these medications.  For example, the plasma protein binding 

of lidocaine is higher in renal transplant recipients compared to patients with kidney disease, 
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presumably related to the phenomenon of increased AAG concentration [122].  Further, the 

plasma protein binding of salicyclic acid, phenytoin, warfarin, diazepam, and morphine increases 

after kidney transplantation to a level consistent with normal healthy subjects [127-129].  This 

increase is seen within several days in some patients, and may take months for others.  The initial 

increase in drug binding may be related to removal of endogenous uremic toxins in plasma.  This 

phase is then followed by a slow increase in binding as new plasma proteins are synthesized. 

1.3.3 Hepatic metabolism and transport 

Hepatic drug clearance is the net result of metabolic enzyme activity and the activity of drug 

transport proteins responsible for hepatocellular uptake and efflux. After administration and entry 

of drugs and metabolites into the portal circulation, they may either diffuse or undergo active 

uptake across the sinusoidal membrane of the hepatocyte, followed by metabolism, then 

diffusion or efflux across the canalicular membrane into the bile for excretion.   

CYP3A is highly expressed in human liver, constituting 30% of total CYP expression 

[130]. Numerous reports of decreased expression and activity of hepatic CYP3A in experimental 

models of kidney disease, together with clinical studies showing reduced systemic clearance of 

nonspecific CYP3A drug substrates in patients with kidney disease, have led some investigators 

to conclude that the function of hepatic CYP3A is altered in this patient population [93, 131].  

However, recent studies that take into consideration enzyme-transporter interplay and the 

overlapping specificity of drug substrates suggest that drug transporters play a critical role.  The 

pharmacokinetics of midazolam, a selective phenotypic probe of CYP3A, which is neither a P-gp 

nor an OATP substrate, and its 1-hydroxymidazolam metabolite, are not altered in patients with 

ESRD, suggesting that hepatic CYP3A function is unaffected [109].  Corroborating evidence 
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using the 14C-erythromycin breath test shows lower 14CO2 flux after dialysis as compared to pre-

dialysis [132], which can be explained by the fact that erythromycin undergoes OATP uptake 

and P-gp efflux in the liver, in addition to hepatic CYP3A-mediated metabolism.  Recent 

observations in patients with kidney disease of reduced hepatic clearance of erythromycin [110] 

and imatinib [133, 134], both of which are CYP3A, OATP, and P-gp substrates, further implicate 

drug transporter activity in reduced hepatic clearance of these drugs in patients with kidney 

disease. Studies have shown that OATP-mediated uptake of erythromycin (using isolated rat 

hepatocytes) [135] and imatinib (using Xenopus laevis oocytes injected with OATP1B3 cRNA) 

[134] is directly inhibited by the uremic toxin 3-carboxy-4-methyl-5-propyl-2-furan propanoic 

acid, and suggest that this may be a mechanism by which their hepatic clearance is reduced. 

Overall, these data indicate that altered drug disposition in CKD, previously thought to be due to 

a reduction in CYP3A-mediated hepatic metabolism, may in fact be a manifestation of altered 

drug transport pathways in the gut and liver [93].  

Altered function of several other CYPs has also been reported in kidney disease. Recent 

clinical studies of the probe drug bupropion suggest that CYP2B6 activity is reduced in CKD. In 

nondialyzed patients, including individuals with advanced CKD (mean glomerular filtration rate 

30 mL/min), a 63% lower apparent oral clearance of bupropion was observed which could not be 

accounted for by CYP2B6 genotype [136].  Reduced bupropion oral clearance was also 

documented in nonuremic patients with glomerular disease and mean creatinine clearance values 

of 102 mL/min, again suggesting altered metabolic capacity of CYP2B6 [137].  The 50% 

increase in the S/R-warfarin ratio in ESRD patients exhibiting the CYP2C9*1/*1 genotype 

compared with healthy control subjects may be reflective of decreased hepatic CYP2C9 activity 

[138].  These data are supported by a recent report demonstrating that patients with reduced 
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kidney function require lower warfarin dosages to maintain therapeutic anticoagulation 

independent of CYP2C9 and VKORC1 genotype [139].  Finally, experimental models indicate 

that expression and activity of the rat homologue of CYP2C19 (CYP2C11) is significantly 

affected by uremia [140].  

Drug metabolism frequently involves a sequential oxidation-conjugation pathway that 

serves to increase the polarity of the substrate and facilitate excretion into bile or urine. 

Conjugation reactions are often mediated by the uridine diphosphate-glucuronosyltransferase 

(UGT) superfamily of enzymes or N-acetyltransferase (NAT) enzymes. UGT-mediated reactions 

involve the addition of glucuronides to apolar xenobiotics and the subfamilies UGT1A and 

UGT2B are responsible for the majority of human UGT metabolism [141].  NAT enzymes 

catalyze the conjugation of substrates with the acetyl moiety of acetyl-CoA. NAT1 and NAT2 

are the salient isoforms in human drug metabolism [142].  Conjugative pathways of metabolism 

are not as extensively characterized as oxidative pathways in patients with kidney disease, but 

several clinical studies have reported a reduction in the activity of these pathways in this patient 

population. The clearance of morphine, which is primarily glucuronidated by UGT2B7 and 

UGT1A3, is significantly reduced in CKD patients as compared with healthy volunteers [143].  

Zidovudine, an antiretroviral nucleoside reverse transcriptase inhibitor that is eliminated 

primarily by glucuronidation, has a significantly higher area under the plasma concentration-time 

curve (AUC) in patients with kidney disease as compared to patients with normal kidney 

function and this has been postulated to be due to reduced hepatic metabolism [144].  Similarly, 

the clearance of the NAT substrates isoniazid and procainamide is significantly reduced in 

patients with CKD as compared with healthy subjects, after stratifying both groups of patients 

into rapid and slow acetylators [145, 146].  Experimental models have shown that expression and 
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activity of NAT, but not UGT, are significantly reduced in uremic rats compared with control, 

suggesting that NAT-mediated metabolism may be altered in patients with kidney disease 

secondary to downregulation of the involved enzymes [142, 147]. 

Intestinal and hepatic CYP3A4 is significantly decreased at 3 months and 1 year after 

kidney transplantation in humans (−33% and −45%; −7% and −33%, respectively) [148].  These 

patients were clinically stable and had estimated creatinine clearances above 50 mL/min, 

potentially signifying that the mechanisms by which metabolic enzymes and transporters are 

down regulated may be different in patients with kidney disease when compared to transplant 

patients.  Hypothetically, uremic toxins are implicated in kidney disease, whereas immune and 

inflammatory mediated changes associated with transplantation are involved in the latter.  In 

contrast to the aforementioned data showing reduction in CYP3A4, a different report shows that 

antipyrine clearance in transplant recipients, a broad probe for hepatic oxidative metabolism 

(CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C18, and CYP3A4), is similar to that reported in 

normal subjects [149].  The expression and functional capacity of other CYP450 enzymes have 

not been evaluated in kidney transplant patients.  Further, the influences of deterioration in the 

function of the transplanted organ, rejection of the allograft, and infectious processes have not 

been rigorously evaluated as they relate to hepatic drug metabolism in transplant patients. 

In kidney transplant recipients, little is known about the functional activity of conjugation 

pathways in the liver.  The pharmacokinetics of isoniazid, cleared primarily by hepatic NAT, 

were evaluated in patients with advanced CKD before kidney transplantation and again after 

transplantation. Isoniazid acetylation was decreased, and the corresponding half-life was 

significantly longer in patients with CKD, as compared with control subjects, but both 

parameters were normalized after successful kidney transplantation [146].  However, the 
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transplant recipients in this report were clinically stable, and the long-term effects of 

transplantation on conjugation pathways are unknown. 

1.3.4 Renal excretion 

The kidney is a key excretory organ for drugs and their metabolites and is capable of rapidly 

eliminating large quantities of xenobiotics via high capacity filtration and transport systems.  

Filtration through the glomerular membrane is a simple unidirectional diffusion process involved 

in the excretion of drugs into urine, and this pathway is impaired in patients with renal disease.  

Guidelines outlining dosage adjustments for patients with impaired kidney function are produced 

at the drug development stage and formally included in the labeling of drug products. Following 

transplantation, the filtration capacity rapidly improves to accommodate the physiological 

demand of the recipient.  In a recent report of the recovery of graft function in 310 kidney 

transplant patients, 239 (77.1%) had immediate recovery of function after transplantation, with a 

mean pre-transplant serum creatinine of 7.1 mg/dL that decreased to 1.4 mg/dL at day 1 and 0.7 

mg/dL at day 14 [150].  A total of 71 of these patients (22.9%) had slow recovery of graft 

function, with a mean pre-transplant serum creatinine of 9.4 mg/dL, which decreased to 6.4 

mg/dL on day 1 and 1.4 mg/dL on day 14 [150].  Compounds that are eliminated primarily 

unchanged by renal filtration typically require dosage adjustments as eGFR declines below 

approximately 60 mL/min/1.73m2.  Thus a stable transplant recipient with a functioning kidney 

may not require dosage adjustments of medications that are normally filtered.   

 In addition to filtration, drugs may be excreted from the blood into the lumen across the 

proximal tubules through active transport processes.  Renal drug transporters are highly 

specialized membrane transport systems that are capable of transporting charged organic 



 33 

compounds in a specific and selective manner [151].  Many hormones, neurotransmitters, 

endogenous waste products, and a wide variety of drugs are classified as organic anions and 

cations.  Renal drug transporters form a defense system by rapidly detoxifying blood of these 

compounds.  These transporters are expressed on both the apical and basolateral (brush border) 

sides of the proximal tubule cells.  Organic anion transporters (OATs) and organic cation 

transporters (OCTs) are highly expressed on the basolateral membrane, involved in uptake of 

compounds from the peritubular capillaries into the cell [152], as well as the apical membrane, 

serving to efflux drugs from inside the cell into the lumen for elimination within the urine.  In 

addition to OATs and OCTs, other transporter families are present in the proximal tubules, such 

as P-gp, multidrug-resistance associated proteins (MRPs), multidrug and toxin extrusion 

(MATE) proteins, and oligopeptide transporters [153].  Because active secretion is often a 

critical step in drug elimination, alterations in this mechanism may result in increased systemic 

exposure or intracellular drug accumulation within the kidney.  A schematic model summarizing 

the major drug transporters within the human kidney proximal tubule is displayed in Figure 2. 
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Figure 2.  Schematic model of drug transporters in the human renal proximal tubule 

 

OA-, organic anion; OC+, organic cation; DC, dicarboxylate; ATP, adenosine triphosphate; 

ADP, adenosine diphosphate 
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1.3.4.1 Secretion of organic anions 

 

The organic anion transporter family of proteins mediates the uptake and efflux of small 

hydrophilic organic anions from plasma in the kidney [152].  This pathway includes organic 

anion transporters (OATs), organic anion-transporting polypeptides (OATPs), and the multidrug 

associated protein 2 (MRP2) [151, 154, 155].  

Organic anion transporters 1 and 3 (OAT1/3) are highly expressed on the basolateral 

membrane of the tubules and facilitate the active uptake of drugs.  Para-aminohippuric acid 

(PAH) is the classic prototype substrate for these transporters and has been extensively used to 

evaluate anion secretion in animal models, in vitro, and in the clinic [156, 157].  Para-

aminohippuric acid transport involves energy-dependent uptake via an anion/dicarboxylate 

exchanger in a saturable manner, primarily by OAT1 [158].  Common drug substrates of OAT1 

are presented in Table 4.  

The relationship between glomerular function and tubular function was investigated by 

Bricker and colleagues in dogs in the 1960s [159-161].  In this model, kidney disease was 

induced in a single kidney while the other kidney remained intact.  Separate urinary bladders 

were created, allowing for the clearance of probe compounds to be independently evaluated.  

Tubular function was assessed by the maximum reabsorptive capacity of phosphate (TmPHOS) 

and glucose (TmGLU), and the maximum secretory rate of PAH (TmPAH).  These indices were 

then compared to GFR (measured by inulin clearance) to provide an index of tubular function 

relative to glomerular function.  The ratios of tubular function indices to GFR were equivalent in 

the diseased and healthy kidneys, leading to the conclusion that nephron loss triggers adaptation 

by the remaining nephrons.  This forms the basis of the so-called “intact nephron hypothesis” 



 36 

which proposes that glomerular function and tubular secretion capacity are directly associated.  

However, numerous examples now indicate that active renal transport may be disassociated from 

glomerular function, perhaps through the regulation of renal transport proteins by inflammatory 

mediators. 

In rats with cyclosporine-induced nephropathy, the withdrawal of cyclosporine after 28 

days of treatment led to rapid improvement in the GFR.  However, tubular injury persisted for 

the entire observational period (28 days) after cyclosporine withdrawal, indicating that secretion 

may be diminished compared to filtration [162].  In patients with renal disease who have 

undergone surgical nephrectomy for renal carcinoma, mRNA levels of OAT1 in biopsy samples 

were significantly lower than in patients without kidney disease [91].  The mRNA levels in these 

patients also correlated with the clearance of the anionic drug cefazolin, which is transported by 

organic anion transport system.  These findings were confirmed in animals with renal impairment 

due to ischemia/reperfusion [163] or ureteral obstruction [164], where mRNA and protein levels 

of OAT1 were decreased.  In a rat model of ischemic acute renal failure, protein expression of 

OAT1 and OAT3 is reduced.  This effect is rescued by administration of anti-inflammatory 

medications, which implicates the involvement of inflammatory mediators in the down 

regulation of these transporters [165].  In a different study, rats with 5/6 nephrectomy-induced 

renal failure showed significant reductions in mRNA and protein expression of renal OAT1/3 

[92].  Incubation of human proximal tubules with serum from rats with renal failure showed 

similar observations [166], implying a role for uremic toxins in the down regulation of drug 

transporters in the kidney.   

On the apical membrane domain of the proximal tubule epithelia, the multidrug 

resistance protein 2 (MRP2) is highly expressed and serves as an ATP-dependent transporter for 
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organic anions across the luminal membrane [167].  MRP2 works in concert with organic anion 

transporters localized to the basolateral membrane to rapidly eliminate drug substrates, such as in 

the transport of the nucleotide analog reverse transcriptase inhibitor adefovir [168].  Regulation 

of MRP2 by inflammatory cytokines (TNF-α, IL-6, IL-1β) and the vasoactive hormone 

endothelin-1 (ET-1) has been described [169, 170].  The mRNA and protein expression of Mrp2 

is induced in rats with chronic renal failure [166], perhaps signifying a nephroprotective 

mechanism whereby basolateral transporters undergo downregulation and apical transporters are 

upregulated, ultimately serving to protect the kidney by limiting further exposure to 

nephrotoxins. 

In addition to OATs, organic anion transporting polypeptides (OATPs) are also expressed 

in the kidney and involved in the renal elimination of negatively charged substrates.  In humans, 

OATP1A2 (SLC21A3) is localized to the brush-border membrane of the proximal tubules, in 

contrast to the liver, where expression is found at the basolateral membrane of the hepatocytes 

(94).  On the other hand, OATP4C1 (SLC21A20) is expressed at the basolateral membrane of the 

tubules, in contact with the peritubular fluid [171].  The organic anion transporting polypeptide 

family is responsible for the disposition of a wide variety of endogenous substrates and drug 

substrates, including bromosulfophthalein, taurocholic acid, cholic acid, 17 β-estradiol 

glucuronide, leukotriene C4, fexofenadine, and digoxin [154].  The expression of renal OATP 

mRNA is strongly regulated by androgens and estrogens, and in female rats, renal Oatp mRNA 

expression is markedly less than in males [172].  OATP-mediated transport is ATP-dependent, 

Na+ independent, and bidirectional [173].  The impact of chronic renal failure on the expression 

of renal OATPs was recently investigated in a rat model.  In this report, rats with chronic renal 

failure induced by 5/6 nephrectomy exhibited differential protein expression of renal OATPs, 
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with Oatp2 and 3 significantly increased more than 2-fold versus control, and Oatp1 and 

Oatp4c1 significantly reduced by at least 50% in rats with renal failure versus control [166].  To 

date, no information is available regarding the expression or functional activity of renal OATs, 

OATPs, or MRP2 following kidney transplantation. 
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Table 4.  Drug and endogenous substrates of OAT1 

       Substrate Reference(s) 
 

Angiotensin converting 
enzyme inhibitors 

  

 Captopril [174, 175] 
 Quanapril [176] 

Angiotensin II receptor 
blockers   

 Olmesartan [177, 178] 
Diuretics   

 Acetazolamide [179] 
 Bumetanide [179, 180] 
 Furosemide [180] 

Antibiotics   
 Tetracycline [181] 
 Ceftibuten [174] 
 Cephaloride [174, 180] 
 Ceftizoxime [182] 

Antivirals   
 Acyclovir [183-185] 
 Adefovir [186] 
 Cidofovir [77] 
 Ganciclovir [184] 
 Tenofovir [187] 
 Zidovudine [185] 

Antineoplastics   
 Methotrexate [188, 189] 

Histamine receptor 2 
blockers   

 Cimetidine [190, 191] 
 Ranitidine [192] 

NSAIDs   
 Indomethacin [193] 
 Ibuprofen [194] 
 Ketoprofen [195] 
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Endogenous compounds 

Table 4, continued. 
 
 
 
 
 
 
 

 

 Estrone sulfate [196] 
 Folate [197] 
 Prostaglandin E2 [198] 
 Urate [199] 
 cAMP [193] 
   

 

 

     

1.3.4.2 Secretion of organic cations 

 

The tubular secretion of cations occurs by facilitated diffusion down an electrochemical gradient 

via transport proteins localized to the basolateral membrane [200].  Specific transporters 

expressed have been isolated and cloned, including the organic cation transporters 1 and 2 

(OCT1/2) [200].  The tubular secretion of cations was first described using the prototype 

tetraethylammonium (TEA) in a chicken [201].  As with anions, saturable transport of cations in 

the kidney has been reported in vitro and in animal models [202, 203].  Many commonly used 

medications undergo transport by the cationic pathway, including H2-receptor blockers 

(famotidine), antibiotics (trimethoprim), and antiarrhythmics (quinidine) [204].  Endogenous 

compounds, including creatinine, are also transported by OCT1 and/or OCT2, and may compete 

for common secretory mechanisms [205, 206]. As a result, the presence of competing cationic 
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xenobiotics can diminish the secretion of creatinine, reversibly raising the serum creatinine 

concentration without a corresponding decline in the glomerular filtration rate [207]. 

In renal failure, differential effects on anionic secretion versus cationic secretion have 

been reported.  In dogs with bilateral ureteral-venous anastomosis, the extraction of PAH is 

significantly lower than that of TEA [208].  This observation indicates that anionic transport may 

be impacted to a greater extent, perhaps through competition with endogenous anions.  On the 

other hand, Ji et al have shown that OCT2 protein is markedly depressed in rats with chronic 

renal failure, consistent with an observed reduction in cimetidine clearance in these animals 

[209]. 

 Collectively, these data indicate that anionic and cationic secretory pathways in the 

kidney are differentially altered in various disease states, and that decline in the functional 

capacity of these pathways may not occur in parallel with that of glomerular filtration.  

Importantly, no data presently exist regarding the functional activity and expression of renal drug 

transporters in kidney transplant recipients.  This information is particularly relevant because of 

the numerous medications routinely administered to this patient population that are eliminated in 

part by active secretion.  Renally secreted drug substrates commonly used in kidney transplant 

patients include antibiotics (cephalosporins, penicillins), antivirals (acyclovir, cidofovir, 

ganciclovir), histamine receptor blockers (cimetidine, ranitidine), and several antihypertensives. 
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1.3.4.3 Inhibition of active secretion 

 

Probenecid (p-dipropylsulfamoyl benzoic acid) is the prototypical inhibitor of renal drug 

secretion, initially developed to decrease the renal excretion of penicillin [210].  Additionally, 

because probenecid reduces systemic uric acid concentrations by inhibiting uric acid 

reabsorption in the kidney, it is widely used for the management of gout [211]. 

Following oral administration, probenecid is well absorbed from the gastrointestinal tract 

and undergoes significant hepatic metabolism, with a plasma half-life of 4-12 hours [212].  

Probenecid and its metabolites are mainly renally eliminated, with 5-10% of the dose appearing 

in the urine as unchanged parent compound [212].  Probenecid inhibits the active transport (and 

reduces the renal clearance) of both anionic and cationic drug molecules in the kidney, by 

competitive inhibition of a wide variety of basolaterally and apically expressed drug transporters, 

including OAT1, OAT3, and OCT2 [213].  The contribution of these transporters to the overall 

elimination of drug substrates can be assessed by co-administration with probenecid. 
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1.4 SUMMARY AND INTRODUCTION TO DISSERTATION 

 

Kidney transplantation is the therapy of choice for ESRD, and the aforementioned experimental 

and clinical evidence indicates that drug transport and metabolic pathways may be altered in 

kidney transplant recipients.  However, to date, no information exists on the functional activity 

of transporters involved in the elimination of numerous endogenous and exogenous substrates in 

the kidney.  Therefore, the body of work described in this dissertation was performed to 

characterize the secretion capacity in kidney transplant recipients, with the ultimate goal of 

improving drug therapy in these patients.  The central hypothesis guiding this project is that 

immunogenic inflammation, local inflammation from the transplant/surgery, and nephritis 

resulting from BK virus infection will down regulate drug transport proteins in the kidney, which 

in turn will lead to decreased clearance of transporter substrates.  This was investigated by 

employing cidofovir as a specific probe drug for renal OAT1.  Cidofovir was selected because it 

is not metabolized by oxidative nor conjugative pathways, not bound to plasma proteins, cleared 

by OAT1-mediated tubular secretion, and is frequently utilized in the patient population of 

interest. 

To examine this central hypothesis, it was first necessary to develop a novel sensitive 

analytical method to determine cidofovir concentrations in human plasma, as described in 

Chapter 2.  This was essential because cidofovir concentrations were expected to be low (< 50 

ng/mL) due to the low dose of cidofovir employed in kidney transplant patients with BK virus 

infection. 

We hypothesized that secretion of cidofovir would be reduced secondary to diminished 

OAT1 expression in the kidney.  Chapter 3 details a clinical pharmacokinetic study of cidofovir 
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without and with concomitant oral probenecid administration.  The goal of this study was to 

evaluate the anionic renal secretion capacity in kidney transplant recipients with BK viremia by 

evaluating the effect of probenecid (an inhibitor of anionic tubular secretion) on cidofovir 

clearance, assessed by both noncompartmental and compartmental pharmacokinetic approaches. 

Next, we predicted that the expression of OAT1 in the kidney would be reduced after 

transplantation.  An animal study was therefore used to evaluate the mRNA and protein 

expression of renal drug transporters and metabolic enzymes after kidney transplantation, as 

described in Chapter 4.  The study design allowed for interpretation of the impact of the 

transplant independent of BK virus. 

We hypothesized that in the use of cidofovir for the treatment of BK virus in kidney 

transplant recipients, a relationship exists between drug exposure and virologic response, and 

further predicted that the use of concomitant probenecid in this capacity would result in a 

decreased therapeutic effect due to reduced OAT1-mediated uptake of cidofovir into proximal 

tubule cells (the site of viral replication).  Chapter 5 describes the evaluation of the acute 

pharmacodynamic response of cidofovir used for BK virus, both without and with concomitant 

probenecid administration. Chapter 6 details the utilization of the positive linear relationship 

between cidofovir clearance and serum creatinine (ascertained in Chapter 3) to retrospectively 

evaluate the use of cidofovir for BK virus at a large academic transplant center.  We predicted 

that those patients with higher cumulative cidofovir exposure (AUC0- ∞) would have improved 

outcomes compared to patients with lower exposure. Finally, the conclusions and limitations of 

this body of work, as well as recommended future research directions, are discussed in Chapter 

7. 



 45 

2.0  DETERMINATION OF CIDOFOVIR IN HUMAN PLASMA AFTER LOW DOSE 

DRUG ADMINISTRATION USING HIGH-PERFORMANCE LIQUID 

CHROMATOGRAPHY-TANDEM MASS SPECTROMETRY 
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Determination of cidofovir in human plasma after low dose drug administration using high-
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2.1 ABSTRACT 

A sensitive and specific method for the determination of cidofovir in human plasma using high 

performance liquid chromatography with tandem mass spectrometry (LC–MS/MS) was 

developed and validated. Plasma samples were processed by a solid phase extraction (SPE) 

procedure using Varian® SAX extraction cartridges prior to chromatography. The internal 

standard was 13C5-Folic acid (13C5-FA). Chromatography was performed using a Luna C8(2) 

analytical column, 5 μm, 150 mm × 3.0 mm, using an isocratic elution with a mobile phase 

consisting of 43% methanol in water containing 12 mM ammonium acetate, at a flow rate of 0.3 

mL/min. The retention times of cidofovir and 13C5-FA were 2.1 min and 1.9 min, respectively, 

with a total run time of 5 min. The analytes were detected by a Micromass Quattro Micro triple 

quadrupole mass spectrometer in positive electron spray ionization (ESI) mode using multiple 

reaction monitoring (MRM). The extracted ions monitored following MRM transitions were m/z 

280.0→262.1 for cidofovir and m/z 447.0→294.8 for 13C5-FA (IS). The assay was linear over 

the range 20–1000 ng/mL. Accuracy (101.6–105.7%), intra-assay precision (4.1–5.4%), and 

inter-assay precision (5.6–6.8%) were within limits proposed by the U.S. Food and Drug 

Administration. No significant variation in the concentration of cidofovir was observed with 

different sample storage conditions. This method is simple, adaptable to routine application, and 

allows easy and accurate measurement of cidofovir in human plasma. 
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2.2 INTRODUCTION 

Cidofovir (VISTIDE®, CDV) is a nucleotide analog of deoxycytidine monophosphate with in 

vitro and in vivo activity against herpesviruses, adenoviruses, poxviruses, and polyomaviruses 

[49, 214-216].  Intravenous cidofovir is approved by the United States FDA for systemic 

treatment of cytomegalovirus retinitis in patients with AIDS. Additionally, a low 

dose cidofovir regimen of 0.25–0.5 mg/kg weekly is empirically used at many institutions for the 

treatment of BK polyomavirus virus (BKV) infections in kidney transplant recipients [65-67, 

217].  Although the pharmacokinetics of cidofovir have been described in patients with normal 

renal function and renal insufficiency [73, 218], no data is available regarding the disposition of 

this drug in patients with a single transplanted kidney. In order to elucidate the pharmacokinetics 

and pharmacodynamics of cidofovir used for the treatment of BKV in kidney transplant 

recipients, it was necessary to develop a sensitive and specific assay method for the 

determination of cidofovir in human plasma. To date, four HPLC methods and one LC–MS/MS 

method have been described in the literature [219-222]. The HPLC methods require a 

large blood volume making intensive sampling difficult, or involve a laborious pre-column 

fluorescence derivatization process. Further, due to the low dose of cidofovir used in the renal 

transplant population, the published LC–MS/MS method, with a selective detection in the range 

of 78.125–10,000 ng/mL requiring 300 μL serum, cannot be used [223]. This method is also 

difficult to reproduce as it employs an internal standard that is not commercially available. 

Therefore, the objective of this study was to develop a sensitive, specific and reproducible LC–

MS/MS analytical method to estimate cidofovir concentrations in human plasma following low 

dose intravenous administration to kidney transplant patients. 



 48 

2.3 MATERIALS AND METHODS 

2.3.1 Chemicals and materials 

The chemical structures of cidofovir and the internal standard, 13C5-Folic acid (13C5-FA), are 

represented in Figure 3.  Cidofovir reference standard was graciously supplied by Gilead 

Sciences, Inc. (Foster City, CA, USA).  13C5-FA was purchased from Merck Aprova AG 

(Schaffhausen, Switzerland).  Varian® Bond Elut SAX 1 mL (100 mg) extraction cartridges were 

purchased from Varian, Inc. (Lake Forest, CA, USA).  Luna C8(2) column (150 mm x 3.0 mm, 5 

μm, 100Å) and C8 SecurityGuard cartridge (4.0 mm x 2.0 mm) were purchased from 

Phenomenex (Torrance, CA, USA). Optima HPLC grade methanol and HPLC grade water were 

obtained from Fisher Scientific (Fair Lawn, NJ, USA).  Aliquots of blank human plasma used for 

preparation of spiked standards were obtained from the central blood bank (Pittsburgh, PA, 

USA).   
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Figure 3.  Chemical structures of cidofovir (top, molecular weight: 279.19) and 13C5-FA (internal 

standard, bottom, molecular weight: 446.4). 

 

2.3.2 Preparation of standards and quality control samples 

Stock solutions of cidofovir were prepared at 1 mg/mL in water and used for a maximum of 6 

months, while being stored at 4 ◦C in the dark.  On assay days, the working solution was diluted 

in human plasma to produce the following cidofovir concentrations: 20, 50, 100, 200, 350, 700, 

and 1000 ng/mL.  The stock internal standard solution (50 μg/mL) was prepared in 20 mmol/L 

phosphate buffer (pH 7.2) and diluted to the working standard solution (1 μg/mL) in mobile 

phase.  
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 Quality control (QC) stock solution was prepared independently from a separate 

weighing of cidofovir and stored at 4 ◦C in the dark.  This solution was diluted in control human 

plasma to produce the following QC samples: QC low (QCL) 60 ng/mL; QC mid (QCM) 400 

ng/mL; and QC high (QCH) 800 ng/mL.  Additionally, plasma samples were prepared from the 

QC stock solution at 20 ng/mL, which was the lower limit of quantitation (LLOQ).   

2.3.3 Sample preparation 

Routine daily calibration curves, controls, and clinical samples were thawed at room 

temperature.  Exactly 400 μL of plasma was diluted with 500 μL of water and passed through 

Varian® SAX 1 mL (100 mg) extraction cartridges, previously conditioned with methanol and 

water.  After washing with 2 mL of water, cidofovir was eluted with 2 mL of 5% acetic acid in 

methanol and the eluent was evaporated to dryness under air at 38 °C.  The residue was 

reconstituted in 50 μL of 10% ammonium hydroxide in 65% methanol and 50 μL of internal 

standard (1 μg/mL).  Following 5 min of centrifugation at 10,000 rpm at ambient temperature, 10 

μL of the solution was injected into the LC-MS/MS system. 

2.3.4 Chromatographic and mass spectrometer conditions 

The HPLC system was a Waters 2759 model (Waters Corporation, MA).  Separation was 

performed with a Luna C8(2) column (150 mm x 3.0 mm, 5 μm, 100Å) with a C8 SecurityGuard 

cartridge (4.0 mm x 2.0 mm).  An isocratic mobile phase was used consisting of 43% methanol 

in water containing 12mM ammonium acetate.  The total run time was 5 min at a flow rate of 0.3 

mL/min. 
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Analysis was performed on a Micromass Quattro Micro triple quadrupole mass 

spectrometer (Waters Corporation, MA) with positive electrospray ionization mode using 

multiple reaction monitoring (MRM).  For the analyte and internal standard, MRM settings used 

were as follows: capillary voltage 3.2 kV; source temperature 100 °C; desolvation temperature 

500 °C; cone gas flow 50 l/hr; desolvation gas flow 550 l/hr; argon pressure 20 ± 10 psig; 

nitrogen pressure 100 ± 20 psig.  Cone and collision energy are presented in Table 5.  The 

extracted ions following MRM transitions were monitored at m/z 280.0  262.1 for cidofovir 

and m/z 447.0  294.8 for 13C5-FA (IS).  The LC-MS system was controlled by the Masslynx® 

software version 4.1, and data were collected with the same software. 

 

Table 5. The cone and collision energy set in LC–MS for cidofovir and 13C5-FA (IS) 

 Parent 
m/z 

Daughter 
m/z 

Dwell 
 (s) 

Cone energy 
(V) 

Collision energy 
(V) 

CDV 280.0 262.1 0.1 28 14 
13C5-FA 447.0 294.8 0.1 22 11 

 

2.3.5 Validation procedures 

2.3.5.1 Calibration curve and lower limit of quantitation 

Decreasing concentrations of cidofovir in human plasma, prepared as previously described, were 

injected into the analytical system to achieve a signal-to-noise ratio of at least 5:1. Calibration 

standards, blank, and zero samples were analyzed in triplicate to establish the calibration range 

with acceptable accuracy and precision. The response for each sample was calculated by dividing 

the area of the cidofovir peak by the area of the internal standard peak. Standard curves of 



 52 

cidofovir were constructed by plotting the analyte-to-internal standard ratio versus the nominal 

concentration of cidofovir in each sample. Standard curves were fit by linear regression with 

weighting by 1/y2, without forcing the line through the origin, followed by the back calculation 

of concentrations. The deviations of these back-calculated concentrations from the nominal 

concentrations, expressed as percentage of the nominal concentration, reflected the assay 

performance over the concentration range. 

2.3.5.2 Accuracy and precision 

The accuracy and precision of the developed method were determined by analyzing plasma 

samples with cidofovir at the LLOQ, QCL, QCM, and QCH concentrations in a minimum of five 

replicates in 3 analytical runs together with an independently prepared, triplicate calibration 

curve. Accuracy was calculated at each test concentration as:  

Mean measured concentration
Nominal concentration

 x 100% 

The precision of the assay was expressed using % coefficient of variation (CV).  Intra-

assay and inter-assay precision were assessed by replicate analysis of specimen aliquots on a 

single day or successive days, respectively. 

2.3.5.3 Selectivity and specificity 

To investigate whether endogenous matrix constituents interfered with the assay, six individual 

batches of control, drug-free human plasma were processed and analyzed according to the 

described procedures. Responses of cidofovir at the LLOQ concentration were compared with 

the response in the blank samples. 
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2.3.5.4 Extraction recovery and matrix effect 

The extraction recovery of cidofovir from human plasma was determined by comparing the 

absolute response of an extract of control plasma to which cidofovir had been added after 

extraction with the absolute response of an extract of plasma to which the same amount of 

cidofovir had been added before extraction. The matrix effect of plasma on cidofovir was 

defined as the effect on the signal when comparing the absolute response of an extract of control 

plasma to which cidofovir had been added after the extraction with the absolute response of 

reconstitution solvent to which the same amount of cidofovir had been added.  Experiments were 

performed at the QCL, QCM, and QCH concentrations in triplicate. 

2.3.5.5 Stability 

The stability of cidofovir in plasma was evaluated at the QCL, QCM, and QCH concentrations in 

triplicate under different conditions.  The control plasma samples were stored for either 24 hr at 

room temperature, 7 days at 4 °C, 1 month at - 20 °C, or 3 months at - 80 °C .  Additionally, 

three freeze-thaw cycles of plasma samples prior to extraction were assessed. The reference 

concentration was calculated from freshly spiked plasma injected immediately post-extraction.  

Stability was expressed in terms of percentage of nominal concentration.  The acceptance 

criterion for % relative recovery was set at 100 ± 10%. 
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2.4 RESULTS 

2.4.1 Mass spectrometry and chromatography 

When cidofovir and 13C5-FA were injected directly into the mass spectrometer with a positive 

ion ESI interface, the protonated molecules (MH)+ were seen in abundance.  The mass to charge 

transition from parent ions to product ions were observed to have m/z 280.0  262.1 for CDV 

and m/z 447.0  294.8 for 13C5-FA.  The instrument parameters were selected to optimize 

specificity and selectivity of both parents and product ions and included capillary voltage of  3.2 

kV, source temperature of 100 °C, desolvation temperature of 500 °C, cone gas flow of 50 l/hr, 

desolvation gas flow of 550 l/hr, argon pressure of 20 ± 10 psig, and nitrogen pressure of 100 ± 

20 psig.  The daughter scan mass spectra (m/z) for cidofovir and 13C5-FA are displayed in Figure 

4. 
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Figure 4. Representative positive ion electrospray ionization MS/MS spectrums for cidofovir (top) 

and 13C5-FA (internal standard, bottom). 

 

The retention times for cidofovir and 13C5-FA were 2.1 min and 1.9 min, respectively, 

with a total run time of 5 min.  Typical chromatograms of human blank plasma, plasma spiked 

with 20 ng/mL cidofovir, and a clinical sample collected 30 min after initiation of 0.3 mg/kg 

intravenous cidofovir infusion are shown in Figure 5. 
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Figure 5. Representative MRM chromatograms of cidofovir and 13C5-FA in human plasma 

(A) Blank human plasma without cidofovir. (B) Cidofovir spiked 20 ng/mL in blank plasma. (C) Clinical 
plasma sample 30 min after initiation of 0.3 mg/kg intravenous cidofovir infusion. (D) Internal standard 

spiked blank plasma sample. 
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2.4.2 Calibration curve and lower limit of quantitation 

Triplicate standard curves were performed in plasma on five sequential days.  The ratio of peak 

area of cidofovir to 13C5-FA was linearly related to the concentration of cidofovir in the 

concentration range of 20 - 1000 ng/mL in plasma. A regression coefficient of > 0.99 was 

obtained in all analytical runs, with an equation of y = 0.0016x + 0.0002, where x = cidofovir 

concentration in ng/mL and y = cidofovir area/IS area.  The LLOQ was 20 ng/mL using a plasma 

volume of 400 μL, at a signal-to-noise ratio of > 10.  The individual values for the mean of the 

back-calculated values at each nominal concentration used in the standard curve and the 

accuracies calculated from those values are displayed in Table 6.  

 

Table 6. Assay performance data of the calibration samples for cidofovir in human plasma. 

Nominal 
concentration 

(ng/mL) 

Mean 
measured 

concentration 
(ng/mL) 

Accuracy 
(%) 

Intra-assay 
precision 

(%) 

Inter-assay 
precision 

(%) 

20 21.5 107.5 3.7 7.3 

50 50.8 101.6 4.8 5.8 

100 105.7 105.7 2.8 4.1 

200 194.2 97.1 4.5 5.3 

350 352.1 100.6 3.3 4.5 

700 702.8 100.4 5.5 6.1 

1000 992.1 99.2 3.6 4.1 
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2.4.3 Accuracy and precision 

The accuracies for all tested concentrations should be within ± 15%, except for the LLOQ, in 

which case these parameters should not exceed 20%.  The accuracies and intra- and inter-assay 

precisions for the tested concentrations (LLOQ, QCL, QCM, QCH) were all within these pre-

defined acceptance criteria (Table 7). 

 

Table 7. Assay performance data for the quantitation of LLOQ, QCL, QCM and QCH cidofovir 

concentrations in human plasma. 

Plasma 
concentration 

(ng/mL) 

Mean 
measured 

concentration 
(ng/mL) 

Accuracy 
(%) 

Intra-assay 
precision 

(%) 

Inter-assay 
precision 

(%) 

20 (LLOQ) 19.6 97.9 2.7 3.8 

60 (QCL) 61.9 103.3 5.4 6.2 

400 (QCM) 422.8 105.7 4.9 6.8 

800 (QCH) 812.8 101.6 4.1 5.6 
 

2.4.4 Selectivity and specificity 

To test for interference, 6 different sources of plasma were analyzed as blanks and after addition 

of cidofovir at the LLOQ (20 ng/mL).  The responses in blank plasma were always less than 5% 

of the signal at the LLOQ. 
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2.4.5 Recovery and ion suppression 

The extraction recovery of cidofovir was determined by comparing the absolute response of an 

extract of control plasma to which cidofovir had been added after extraction with the absolute 

response of an extract of plasma to which the same nominal concentration of cidofovir had been 

added before extraction [215, 224].  Recovery data and relative response when tested for matrix 

effects are displayed in Table 8.   

 

Table 8. Total and ion suppression recovery of cidofovir in human plasma. 

 

2.4.6 Storage stability data 

There was not a significant difference in the estimated concentrations of cidofovir in plasma 

samples maintained and analyzed under different stability conditions as compared to freshly 

spiked plasma samples (Table 9). 

 

 

 

Concentration 
(ng/mL) 

n=4 

Total Recovery  Ion suppression relative recovery 

Mean ± S.D. (%) CV (%)  Mean ± S.D. (%) CV (%) 

60 (QCL) 53.7 ± 2.7 4.9  107.7 ± 4.2 3.8 

400 (QCM) 54.9 ± 2.6 4.7  110.1 ± 9.5 8.4 

800 (QCH) 51.5 ± 2.4 5.6  94.4 ± 4.6 4.9 
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Table 9. Stability of cidofovir under varying conditions. 

Storage condition Concentration 
(ng/mL) Stability (%) CV (%) Replicates 

Stock solution 6 months 
4 °C 1,000,000  97.4 4.1 3 

      

Plasma 24 hr 
Ambient temp. 
 

QCL 60 105.5 2.3 3 
QCM 400 96.4 3.3 3 
QCH 800 101.8 5.5 3 

      

Plasma 3 freeze-thaw cycles 
- 80 °C 

QCL 60 93.2 6.2 3 
QCM 400 92.2 5.8 3 
QCH 800 93.5 6.7 3 

      

Plasma 1 month 
- 20 °C 

QCL 60 104.7 3.7 3 
QCM 400 101.9 9.6 3 
QCH 800 101.1 3.6 3 

      

Plasma 7 days 
4 °C 

QCL 60 105.7 3.3 3 
QCM 400 108.1 1.2 3 
QCH 800 103 0.9 3 

      

Plasma 3 months 
- 80 °C 

QCL 60 93.8 3.4 3 
QCM 400 94.3 5.5 3 
QCH 800 95.2 3.8 3 
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2.5 DISCUSSION 

Cidofovir has shown promise in the management of BK virus infections in renal transplant 

recipients [65-67, 217]. Low doses of cidofovir (representing 5–10% of the FDA approved dose 

for CMV retinitis) are typically used in this population due to the drug's nephrotoxicity. 

Although an LC–MS/MS assay has been previously published, its suitability for clinical 

pharmacokinetic studies of low-dose cidofovir is decreased by the lack of a commercially 

available internal standard and insufficient sensitivity [223]. The method described in the current 

manuscript is adequately sensitive to characterize systemic drug exposure following low 

dose cidofovir administration and capable of being implemented in laboratories with standard 

LC–MS instrumentation. Additionally, the reported assay has been validated according to the 

most recent FDA guidelines. 

Preliminary analysis of cidofovir was performed using both positive and negative ion 

modes. Enhanced sensitivity was observed with positive ionization and consequently selected for 

the assay. We next established a lack of endogenous interference in blank human plasma using 

HPLC and MS techniques. Additionally, because transplant patients take a regimen of 

immunosuppressive and anti-infective medications, plasma from kidney transplant recipients not 

administered cidofovir was tested and no interference was observed. 

An anion exchange solid phase extraction procedure was used to process plasma samples. 

Hydrophilic molecules such as cidofovir typically have low extraction recoveries from biological 

matrices. Accordingly, total recovery from the plasma extraction procedure averaged 53%. 

However, the extraction method was consistent and allowed for minimal ion suppression. 

Extraction recovery of all tested internal standard candidates was inconsistent and therefore the 

IS was added before injection to adjust for variation of LC–MS/MS analysis. 
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Separation of cidofovir from other components in plasma was performed using an 

analytical column with an isocratic profile. The selected column and mobile phase provided the 

most well separated and sharp peaks. Numerous compounds were evaluated as potential internal 

standards, including other nucleotide analogs and lipid ester analogs of cidofovir. 

However, 13C5-FA provided the most consistent response under the conditions utilized in this 

method. It also eluted close to the analyte of interest and facilitated a short run time. 

In pharmacokinetic studies plasma samples are stored at −20 or −80 °C until analysis and 

exposed to various temperatures during assay procedures. As a result, it was necessary to 

understand the stability of cidofovir at the conditions that samples would be subjected to prior to 

analysis. Stability was determined by the comparison of estimated concentrations of fresh 

samples to samples kept for 24 h at room temperature, 7 days at 4 °C, 1 month at −20 °C, and 3 

months at −80 °C. Different sample processing conditions did not affect 

estimated cidofovir concentrations indicating stability under the conditions evaluated. 

The majority of an intravenous dose of cidofovir is excreted unchanged in the urine. 

Therefore, in some instances it may be necessary to determine concentrations in urine samples in 

order to evaluate pharmacokinetic properties in urine. We applied the present method to both 

spiked blank urine (obtained from healthy volunteers) and clinical samples collected in a 

pharmacokinetic study. In all cases, large variability (>25%) was observed in the matrix effect 

in urine from different subjects. Given that cidofovir concentrations in urine are generally 

substantially higher than in plasma, previously published HPLC–UV methods can be used to 

readily quantitate cidofovir in urine. 
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In summary, we have developed and validated a sensitive LC–MS/MS method for 

quantitative assessment of cidofovir in human plasma that is useful in clinical pharmacokinetic 

studies in renal transplant recipients treated with low dose cidofovir. 
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3.0  ANIONIC TUBULAR SECRETION CAPACITY IN KIDNEY TRANSPLANT 

RECIPIENTS WITH PERSISTENT BK VIREMIA: CLINICAL PHARMACOKINETICS 

OF LOW-DOSE CIDOFOVIR WITHOUT AND WITH CONCOMITANT PROBENECID 

ADMINISTRATION  
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3.1 ABSTRACT 

Transporters in the kidney mediate active tubular secretion of endogenous compounds and drugs. 

However, the functional activity of renal drug transporters involved in the movement of anionic 

drugs across the basolateral membrane of the proximal tubule has not been evaluated in kidney 

transplant patients.  Therefore, we investigated the disposition of cidofovir, a prototypical 

organic anion transporter substrate used in the management of BK virus infection, in this patient 

population.  We assessed the contribution of renal secretion, mediated by OAT1, to the overall 

clearance of cidofovir by evaluating the effect of probenecid, an inhibitor of anion transport, on 

the pharmacokinetics of cidofovir in 10 kidney transplant patients infected with BK virus.  The 

plasma concentration of cidofovir declined with an overall disposition half-life of 5.1 ± 3.3 hr 

and 5.3 ± 2.9 in the absence and in the presence of probenecid, respectively (p>0.05).  

Approximately 60% of the intravenous dose was recovered unchanged in the urine in 12 h, 

irrespective of whether probenecid was concomitantly administered.  Co-administration of oral 

probenecid had no significant effect on the non-compartmental pharmacokinetics or population 

pharmacokinetics of cidofovir in kidney transplant recipients.  These data suggest that 

probenecid-sensitive active tubular secretion does not contribute significantly to the clearance of 

low-dose cidofovir in kidney transplant patients and that OAT1-mediated tubular secretion may 

potentially be impaired in kidney transplant recipients with BK virus infection. 
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3.2 INTRODUCTION 

BK virus (BKV) is a human polyomavirus that is associated with premature graft failure in 

immunosuppressed renal transplant recipients [14, 17, 225, 226].  BKV carries a substantial 

disease burden, with an estimated incidence of viruria, viremia, and nephropathy of 35-40%, 11-

13%, and 5-8%, respectively [30, 31].  Optimal therapeutic interventions for BKV have yet to be 

elucidated and a firmly established antiviral therapy is lacking.   

Cidofovir (VISTIDE®) is a nucleotide analog of deoxycytidine monophosphate with in 

vitro and in vivo activity against herpesviruses, adenoviruses, poxviruses, and polyomaviruses 

[49, 214-216].  A low-dose cidofovir regimen of 0.25–1.0 mg/kg weekly is often empirically 

used at for the management of BKV infection in kidney transplant recipients.  However, the 

literature on the clinical efficacy of cidofovir for BKV is conflicting, with some studies reporting 

apparent stabilization of renal function [64, 90], while others describe no discernible benefit [68, 

89].  These contradictory data may reflect the absence of a clearly defined pharmacokinetic-

pharmacodynamic relationship, which could be utilized to improve the dosing regimen of 

cidofovir in the treatment of BK virus infections. 

The disposition of cidofovir has been investigated in healthy subjects, patients infected 

with human immunodeficiency virus, and patients with varying degrees of renal insufficiency 

[73, 74, 218, 227].  In all instances, tubular secretion plays a significant role in cidofovir 

clearance, as renal clearance is 60-70% higher than baseline creatinine clearance.  Further in 

vitro studies have demonstrated that secretion of cidofovir involves human organic anion 

transporter 1 (OAT1) mediated basolateral uptake into renal proximal tubule cells in a saturable, 

probenecid-sensitive manner (Figure 6) [77].  However, the functional activity of OAT1 has not 

been evaluated in kidney transplant recipients with BK virus infection.   
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Figure 6. Model of probenecid-sensitive cidofovir transport in human proximal tubule cells 

 

 

Therefore, the present study was conducted to (1) determine the pharmacokinetics of 

cidofovir in kidney transplant recipients with BKV infection in order to allow for future 

investigations into exposure-response relationships, and (2) assess the anionic renal secretion 

capacity in kidney transplant patients by evaluating the effect of probenecid on the systemic and 

renal clearance of cidofovir. 

3.3 MATERIALS AND METHODS 

3.3.1 Patients 

This study was performed in ten adult renal transplant recipients who were diagnosed with BKV 

infection and received treatment with low-dose cidofovir after failing to respond to a two-week 

period of reduced immunosuppression.  The protocol was approved by the Institutional Review 

Board of the University of Pittsburgh (IRB# 08060393) and written informed consent was 

obtained from all patients prior to participation in this study.  Exclusion criteria included: (i) 
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hypersensitivity to cidofovir or other nucleotide analogs, (ii) hypersensitivity to probenecid or 

sulfonamides, (iii) currently receiving another drug known to affect renal anionic drug secretion, 

(vi) pregnancy or breastfeeding women.  

3.3.2 Study design 

Patients were studied on two separate occasions in a crossover design.  In Part 1, the 

pharmacokinetic parameters of intravenous low-dose cidofovir were evaluated.  In Part 2, 

following a one-week washout period, the study procedures were repeated with concomitant oral 

probenecid administration.  Probenecid (2g) was given 1 h prior to cidofovir administration and 

again at 2 h and 8 h (1g each) after the completion of the cidofovir infusion.  On both occasions, 

patients received 1 L of 0.9% sodium chloride immediately prior to cidofovir administration.  

Cidofovir was diluted in 100 mL of 0.9% sodium chloride and infused over 1 hr.  A diagram of 

the study design is represented in Figure 7. 
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Figure 7. Schematic of the cidofovir pharmacokinetic study design 

 
CL, clearance of cidofovir in the absence of probenecid; CLPRB, clearance of cidofovir in the 
presence of probenecid; CLSEC, clearance of cidofovir attributed to OAT1-mediated active secretion 
 

3.3.3 Blood and urine sampling 

Blood samples (7 mL) were collected in Vacutainers at 0, 0.5, 1, 1.5, 2, 4, 6, 8, and 12 hours 

after starting the cidofovir infusion.  Plasma was separated and frozen at – 80 C until analysis.  

Urine was collected in aliquots from 0-1, 1-2, 2-4, 4-8, and 8-12 hours after the start of the 

cidofovir infusion and stored at – 80 C until analysis. 
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3.3.4 Analytical methodology 

The concentrations of cidofovir in plasma were determined by the liquid chromatographic-mass 

spectrometric method described in Chapter 2.  Briefly, plasma samples were processed by an 

anion exchange solid phase extraction procedure and chromatography was performed using a 

Luna C8(2) analytical column, 5 µm, 150mm×3.0mm, with isocratic elution.  Cidofovir was 

detected by a triple quadrupole mass spectrometer in positive electron spray ionization mode 

using multiple reaction monitoring with 13C5-Folic acid as the internal standard. 

Cidofovir concentrations in urine samples were determined using high-performance 

liquid chromatography (HPLC) with UV detection at 274 nm. Chromatography was performed 

with a Waters 2695 separations module and Waters 2998 photodiode Array Detector set at 274 

nm. The data acquisition was performed with Empower 3 Chromatography Data Software. Urine 

samples (100 µL) were mixed with 100 µL of mobile phase, consisting of 35% 1.5 mM of 

tetrabutylammonium dihydrogen phosphate and 3.5 mM of disodium hydrogenphosphate, 12% 

acetonitrile, and 53% water, and centrifuged at 14,000 rpm for 8 min. Fifty µL of the resulting 

supernatant was injected onto the HPLC.  Chromatographic separation was achieved on a 

Symmetry 5 µm C18 column (250mm×4.6mm). The mobile phase was delivered isocraticly at 

1.2 mL/min and the retention time of cidofovir was 6.5 min.  Representative chromatograms of a 

blank urine sample spiked with cidofovir and a patient urine sample are displayed in Figure 8 

and Figure 9, respectively.  
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Figure 8.  Representative chromatogram of blank human urine spiked with 50 µg/mL of cidofovir 

 

 

 

 

 

 

Figure 9.  Representative chromatogram of a urine sample obtained from a patient following 

intravenous cidofovir administration. 
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The concentrations of probenecid in plasma were determined using high-performance 

liquid chromatography (HPLC) with UV detection at 242 nm.   Chromatography was performed 

with a Waters 2695 separations module and Waters 2998 photodiode Array Detector set at 242 

nm. The data acquisition was performed with Empower 3 Chromatography Data Software. 

Plasma samples (200 µL) were mixed with 20 µL of HCl (3N) and vortexed with 300 µL 

methanol for 3 min. The mixture was centrifuged for 8 min at 14,000 rpm and 100 µL of the 

resulting supernatant was injected onto the HPLC system, where chromatographic separation 

was achieved on a Symmetry 5 µm C18 column (250mm×4.6mm). The mobile phase, consisting 

of 0.4% ammonium acetate (solvent A) and acetonitrile (solvent B), was delivered at a gradient 

at 1 mL/min.  The retention time of probenecid was 5.8 min.  Representative standard and patient 

sample chromatograms are displayed in Figure 10 and Figure 11, respectively. 
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Figure 10.  Representative chromatogram of blank human plasma spiked with 100 µg/mL of 

probenecid. 

 

 

 

 

Figure 11. Representative chromatogram of a plasma sample obtained from a  patient following oral 

administration of probenecid. 
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3.3.5 Noncompartmental pharmacokinetic and statistical analysis 

Descriptive pharmacokinetic parameters for cidofovir were estimated by noncompartmental 

analysis (WinNonlin software, version 5; Pharsight Corp, Mountain View, CA).  The maximum 

concentration in plasma (Cmax) and the time to Cmax (tmax) were estimated by visual inspection of 

the concentration versus time profiles.  The terminal disposition rate constant (λz) was obtained 

by linear regression of at least the last 3 data points, and half-life (t1/2) was calculated by dividing 

0.693 by λz.  The area under the plasma concentration-time profile from the time of dosing until 

infinity was calculated by the log-linear trapezoidal method with extrapolation beyond the last 

measured concentration, according to: 

AUC0- ∞ = AUC0-12 + C12/ λz 

Systemic clearance (CL) and the volume of distribution at steady state (Vss) were 

determined using the following equations: 

CL = Dose / AUC0- ∞ 

Vss= [(Dose)(AUMC0- ∞)/( AUC0- ∞)2]  

Renal clearance (CLr) was calculated as Ae(0–12)/AUC0–12, where Ae is the amount of drug 

recovered in the urine in 12 hours, and AUC0–12  is the area under the plasma concentration 

versus time curve from 0 to 12 hours.  The fraction eliminated unchanged in the urine (fe) was 

calculated as the amount of drug recovered in the urine over the entire collection interval divided 

by the dose.  Semi-logarithmic plots of the amount remaining to be excreted (A.R.E.) and the 

excretion rate were constructed and used to estimate the elimination rate constant (kel), according 

to: 

kel = m = ln(C2/C1)/(t2 – t1) 
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Results are reported as mean ± SD or SEM.  Statistical comparisons between cidofovir 

pharmacokinetic parameters without and with probenecid were performed by a Student's paired 

t-test.  The data were analyzed with GraphPad Prism 5.0 (GraphPad Software, San Diego, CA).  

The threshold of statistical significance was set at 5% (α= 0.05). 

 

3.3.6 Population pharmacokinetic analysis 

The pooled dataset containing cidofovir plasma concentration-time data and the cumulative 

amount of cidofovir in the urine was used for modeling purposes.  Plasma and urine data from all 

individuals were fitted simultaneously, using the first-order conditional estimation with 

interaction (FOCE INTERACTION) option in the nonlinear mixed-effects modeling program 

NONMEM, version VII (Globomax, Hanover, MD, USA).  Discrimination between hierarchical 

models was based on the objective function value (OFV) provided by NONMEM at a 

significance level of 0.001, equal to a decrease of 10.8 in the OFV. Graphical analysis of 

residuals and predictions in model diagnostics were completed using R (version 2.1.2, Vienna, 

Austria). The population pharmacokinetic model for low-dose cidofovir in kidney transplant 

recipients was developed as follows: 

Step 1: Development of the covariate-free model  

Different structural pharmacokinetic models, including a one-compartment model and a 

two-compartment model with linear and nonlinear clearance, were tested during the model-

building procedure.  Pharmacokinetic parameters estimated with the model included total body 

clearance (CL), intercompartmental clearance (Q), volume of the central compartment (V1), 

volume of the peripheral compartment (V2), elimination rate constant (k), and 
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intercompartmental rate constants (k12, k21). The analysis allowed for both covariance between 

CL and V1 along with covariance between main parameters. The distribution of the parameters 

was assumed to be log-normal.  

Interindividual variability was estimated using an exponential error model:  

Pij = TV(Pj) × eηij                               

where Pij is the ith individual’s estimate of the jth pharmacokinetic parameter, TV(Pj) is 

the typical value of the jth pharmacokinetic parameter, and ηij is a random variable for the ith 

individual and the jth pharmacokinetic parameter distributed with a mean of zero and a variance 

of ωj2.  

The intraindividual variability was modeled using a mixed proportional and additive error 

model: 

Cobs = Cpred�1 + εikrel� + εikabs       

where Cobs and Cpred represent the observed and predicted cidofovir plasma concentration 

in ith individual, respectively. The error terms εrel and εabs are the components of the proportional 

(relative error) and additive error (absolute error), respectively, and both are assumed to have a 

mean of zero and variance of σ2. The adequacy of fitting was examined by plotting predicted 

versus observed concentrations (goodness of fit) and weighted residuals versus predicted 

concentrations. 

Step 2: Incorporation of significant covariates  

A total of fourteen covariates were considered in the analysis. Continuous variables included 

serum creatinine, creatinine clearance, blood urea nitrogen, weight, height, body surface area, 

bilirubin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline 

phosphatase (ALP), albumin, and age. Patient sex and the absence of presence of comcomitant 
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probenecid administration were considered as categorical variables. Body surface area was 

calculated according to the Dubois equation as follows: 

 

BSA (m²) = 0.20247 x Height(m)0.725 x Weight(kg)0.425 

 

Covariates were tested using a forward inclusion and backward elimination approach. An 

initial analysis was conducted with estimates of the parameters of the two-compartment base 

model (i.e., without covariates). Potential covariates were added sequentially to the base model 

and the influence of these fixed effects was assessed with the objective function value (OFV) and 

the distribution of the weighted residuals. Changes in the OFV on the addition of one covariate 

approximate a χ2 distribution with 1 degree of freedom (df). A patient variable was considered 

significant if all the following criteria were met: (i) a decrease in objective function value (OFV) 

of 6.63 for 1 degree of freedom (p<0.01), (ii) improved goodness of fit, (iii) reduced 

interindividual variability, and (iv) clinical plausibility for incorporation of the variable. 

Precision of parameter estimation, stability of the covariate models, and normality of the 

distribution of the parameter estimates were evaluated using bootstrapping (resampling repeated 

3,500 times) using Wings for NONMEM (http: //wfn.sourceforge.net). Nonparametric statistics 

(median and 95% confidence interval) of parameter estimates were obtained from bootstrapping. 



 78 

3.4 RESULTS 

3.4.1 Patient demographics 

Patient characteristics are summarized in Table 10.  All enrolled patients completed the study, 

with the exception of one subject who completed only Part 1 secondary to difficulty in obtaining 

IV access during Part 2.  On average, the study participants were 55.7 ± 11.8 years of age, 

weighed 84.4 ± 20.3 kg, and were 13.1 ± 15.7 months post-kidney transplantation.  Participants 

had received a median of 3 doses of cidofovir prior to enrollment in the study.  All of the 

subjects had a reduced estimated glomerular filtration rate (eGFR), ranging from mild to severe, 

though none of the patients were on dialysis at the time of the study.  A total of 9 subjects were 

Caucasian and one subject was African American.   All patients had BK viremia and viruria, 

though none had evidence of tubulointerstitial nephropathy.  The median BK viral loads in 

plasma and urine were 3.5 (range: 2.7 – 6.1) log10 copies/mL and 6.2 (range: 4.7 – 9.3) log10 

copies/mL, respectively.  The majority of patients (9/10) were on a tacrolimus-based 

immunosuppressive regimen, and one patient was on a cyclosporine-based regimen.  

Prophylactic regiments taken by most patients included valganciclovir and sulfamethoxazole-

trimethoprim.  Other medications commonly used to treat underlying medical conditions 

included antihypertensives (metoprolol, amlodipine), proton pump inhibitors (omeprazole, 

pantoprazole), antihyperlipidemic agents, and antidepressants.  No patients were taking 

medications that are known to be eliminated via tubular secretion aside from cidofovir. 
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Table 10. Patient characteristics. 

Patient  Sex Age 
(years) 

Graft age 
(months) 

Body 
Weight 

(kg) 

Serum 
Creatinine 
(mg/dL) 

eGFRa 
(mL/min/1.73m2) 

Cidofovir 
dose 
(mg) 

Cidofovir 
dose 

(mg/kg) 

# of doses 
prior to 

enrollment 
          
1 F 43 12.6 74.1 0.9 68 20 0.27 3 
2 M 29 5.4 111.3 1.8 45 27 0.24 3 
3 M 59 10.0 85.6 1.8 39 22 0.26 3 
4 M 53 56.2 64.7 3.7 17 40 0.62 15 
5 F 59 2.9 59.7 1.1 51 20 0.34 7 
6 M 63 13.6 75.3 1.0 75 22 0.29 3 
7 M 67 2.8 120.0 1.5 45 35 0.29 2 
8 M 69 4.4 91.1 1.3 55 35 0.38 4 
9 F 58 9.7 97 1.5 43 23 0.24 2 
10 F 57 13.4 65.7 1.2 46 20 0.30 3 
Mean 
(SD) 

 55.7  
(11.8) 

13.1 
 (15.7) 

84.4 
 (20.3) 

1.58 
 (0.8) 

48.4 
 (15.8) 

26.4 
 (7.5) 

0.32 
(0.11) 

4.5 
(3.9) 

          
a Estimated glomerular filtration rate, calculated by the 4-variable Modification of Diet in Renal Disease 
(MDRD) Study equation 

3.4.2 Pharmacokinetics of cidofovir 

3.4.2.1 Non-compartmental analysis 

Linear plots of cidofovir plasma concentration versus time profiles without and with concomitant 

probenecid in each patient are displayed in Figure 12.  The concentration-time curves were 

virtually superimposable, suggesting probenecid-insensitive cidofovir elimination.  A positive 

linear relationship (r2 = 0.64) was observed between cidofovir dose and the maximum plasma 

concentration (Figure 13). 
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Figure 12. Observed cidofovir plasma concentrations following intravenous administration with a 1 h 

infusion without (•) and with () concomitant oral probenecid in ten individual renal transplant recipients.   
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Figure 13. Relationship between cidofovir dose and the maximum plasma concentration. 

CDV, cidofovir alone; CDV + PRB, cidofovir with concomitant probenecid 

 

The percentage of the cidofovir dose eliminated unchanged in the urine from 0 to 12 hours was 

not significantly different when probenecid was concurrently administered (Figure 14; data 

presented as mean +/- SEM). 
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Figure 14. The percentage of the cidofovir dose excreted unchanged in the urine from 0 to 12 hours 

without (•) and with () concomitant oral probenecid.   

A strong positive correlation was observed between cidofovir clearance and estimated 

GFR irrespective of probenecid administration (r2 = 0.75 without probenecid; r2 = 0.71 with 

probenecid).  Linear regression of systemic cidofovir clearance versus estimated glomerular 

filtration rate is presented in Figure 15.  The regression equations describing these relationships 

are: y = 1.3x + 13.6 (in the absence of probenecid); y = 1.02x + 15.04 (in the presence of 

probenecid). 
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Figure 15. Relationship between systemic cidofovir clearance and estimated glomerular filtration 

rate without (A) and with (B) concomitant probenecid. 

 

The urinary excretion rate plots and the amount remaining to be excreted plots used to calculate 

the cidofovir urinary excretion rate constant (kel) are displayed below in Figure 16 and Figure 17, 

respectively.  
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Figure 16. Semi-log plots of ΔU/Δt versus timemidpoint 
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Figure 17. Semi-log plots of the amount of cidofovir remaining to be excreted (A.R.E) versus the end 

of the urine collection interval. 

 

A summary of the model-independent pharmacokinetic parameters for intravenous 

cidofovir is presented in Table 11.  Pharmacokinetic parameters in plasma (Cmax, tmax, λz, AUC0∞, 

Vss, CL) and urine (ClR, fe) were not significantly different when probenecid was simultaneously 

administered (p > 0.05).  The distribution of calculated noncompartmental cidofovir clearance 

values without and with probenecid is displayed in Figure 18. 
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Table 11. Non-compartmental pharmacokinetic parameters of low-dose cidofovir in kidney 

transplant recipients without and with concomitant probenecid. 

  
Cidofovir 

(n=10) 
Cidofovir + probenecid 

(n=9) p* 

     
Plasma   

   

Cmax (ng/mL/mg)  33.8 ± 8.3 37.9 ± 5.2 0.17 

Tmax (hr)  1.0 ± 0 1.0 ± 0 - 

AUC (ng*hr/mL/mg)  223.8 ± 144.8 240.9 ± 131.4 0.31 

λz (1/hr)  0.16 ± 0.04 0.15 ± 0.05 0.57 

t ½ β (hr)  5.1 ± 3.3 5.3 ± 2.9 0.71 

Vss (L)  32.8 ± 5.2 30.6 ± 6.1 0.49 

Vss/BW (L/kg)  0.41 ± 0.09 0.36 ± 0.05 0.33 

CL (mL/min)  84.7 ± 27.1 80.4 ± 24.8 0.58 

CL/BW (mL/min/kg)  1.03 ± 0.37 0.96 ± 0.29 0.47 

Urine   
   

CLR (mL/min)  62.1 ± 9.14 57.5 ± 9.78 0.68 

CLR/BW (mL/min/kg)  0.74 ± 0.13 0.64 ± 0.11 0.58 

fe  0.66 ± 0.06 0.71 ± 0.08 0.63 

kel (l/hr) (excretion rate)  0.12 ± 0.2 0.13 ± 0.3 0.37 

kel (l/hr) (A.R.E.)  0.1 ± 0.3 0.09 ± 0.2 0.41 

 
* calculated from two-tailed student’s paired t-test  
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Figure 18. Box plots displaying the distribution of cidofovir clearance values, stratified according to 

the absence or presence of concomitant probenecid administration. 

The plots display the 10th, 25th, 75th, and 90th percentiles.  The median and the mean are denoted by a 

horizontal line and a plus sign, respectively. 

 

 

Considerable systemic probenecid exposure was observed in all subjects following oral 

dosing with an average AUC0-14 of 1109 ± 171.3 µg*hr/mL.  One subject was incorrectly 

administered 4 gm of probenecid at time 0 rather than the correctly spaced regimen. The plasma 

probenecid concentration versus time profiles for the patients who received the correct 

probenecid dosing schedule (n=8) and the patient who received the incorrect probenecid dosing 

schedule are shown in Figure 19.  In both instances the probenecid dosing regimen is delineated 

beneath the plot.  Data are presented as mean ± SEM.  Blood and urine sampling were not 

performed during the probenecid elimination phase and thus a full pharmacokinetic profile is not 

reported. 
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A. 

 

 

B. 

 

Figure 19. Plasma probenecid concentration versus time profiles following oral administration.   

A) Probenecid (2g) given 1 h prior to cidofovir administration and again at 2 h and 8 h (1g 
each) after the completion of the cidofovir infusion (n=8) 
B) Probenecid (4g) given 1 h prior to the cidofovir administration (n=1) 
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3.4.2.2 Population pharmacokinetic analysis 

Base model 

A two-compartment model with first-order elimination (ADVAN 3 subroutine in NONMEM) 

was chosen as the final model for the description of the plasma cidofovir concentration-time 

course as it best described the data as compared to a one-compartment mode (Figure 20).  In the 

two-compartment model, population predictions and individual predictions agreed well with 

observations (r2 =0.96) 

 

 

Figure 20.   Goodness-of-fit of a one-compartment model (top) and a two-compartment model 

(bottom) for plasma cidofovir concentrations. 
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The structural pharmacokinetic model used the following parameters: clearance (CL), the 

volume of the central compartment (V1), intercompartmental clearance (Q), and the 

volume of the peripheral compartment (V2).  The median cidofovir clearance for the study 

population was estimated to be 5.75 liters/h and the volume of the central compartment was 28.7 

liters. Median estimates for the intercompartmental clearance and volume of distribution of the 

peripheral compartment were 2.06 liters/h and 5.48 liters, respectively. All pharmacokinetic 

parameters were precisely estimated, with relative standard errors (RSEs) of < 3%.  

Interindividual variabilities were estimated to be 47% for CL, 21% for the volume of the central 

compartment, 58% for the volume of the peripheral compartment, and 58% for 

intercompartmental clearance. 

 

Covariate model 

Exploratory graphical analyses revealed a direct correlation between cidofovir clearance and 

various markers of renal function (serum creatinine and estimated creatinine clearance) and body 

surface area (Figure 21). Intercompartmental clearance (in liters per hour) and the volume of the 

central compartment (in liters) were correlated with body weight (Figure 22) (Figure 23). There 

were no obvious relationships between the volume of the peripheral compartment and any of the 

tested covariates.  Additionally, no significant association was found between estimates of 

cidofovir pharmacokinetics and administration of probenecid.  The individual concentration 

versus time profiles with observed concentrations, population predictions, and individual 

predictions are displayed in Figure 24.  
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The final model for cidofovir clearance was determined to be: 

 

CL = 5.47 × (
CRCL
67.7

)1.12 

CL = 5.70 − 1.94 × (SCR − 1.43) 

CL = 5.00 + 0.11 × (BSA − 2.02) 

 

 where CL = cidofovir clearance (in liters per hour), CRCL = estimated creatinine 

clearance, SCR = serum creatinine, and BSA = body surface area. 

Both intercompartmental clearance and the volume of the central compartment were 

determined to be functions of body weight, as follows: 

 

Q = 1.21 × (
WT
87.6

)2.18 

V1 = 27.8 × (
WT
87.6

)0.40 

 

where  WT = body weight in kilograms. 

 Population estimates of the pharmacokinetic parameters in the base model and final 

model are presented in Table 12 and a summary of the population pharmacokinetic modeling 

process is displayed in Table 13.    
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Figure 21.  Correlation between apparent total body clearance of cidofovir and creatinine clearance, 

serum creatinine, and body surface area 
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Figure 22. Correlation between intercompartmental clearance and body weight 

 

 

Figure 23.  Correlation between the volume of the central compartment and body weight 
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Figure 24.  Individual plasma concentration versus time profiles for cidofovir following intravenous 

administration characterized by a two compartmental model without (Period 1) and with (Period 2) 

concomitant probenecid. 

Note: circles represent observed concentrations; red solid line represents individual predicted concentrations; blue 

solid line represents population predicted concentrations 
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Figure 24 (cont). Individual plasma concentration versus time profiles for cidofovir following 

intravenous administration characterized by a two compartmental model without (Period 1) and with (Period 

2) concomitant probenecid. 

Note: circles represent observed concentrations; red solid line represents individual predicted concentrations; blue 

solid line represents population predicted concentrations 



 96 

Table 12. Pharmacokinetic parameter estimates and associated inter-individual variability 

     Inter-individual variability (%)  Residual error 

Population 

estimates 

CL Q V1 V2 CL Q V1 V2 proport

ional 

additive 

(µg/mL) 

base model 5.75 2.06 28.7 5.48 47 58 21 58 14 0.003 

final model 5.31 2.52 28.5 9.69 22 46 18 18 13 0.003 

CL= apparent total body clearance of cidofovir; Q= intercompartmental clearance; V1=apparent distribution 

volume of the central compartment; V2=apparent distribution volume of the peripheral compartment. 

 

Table 13. Summary of population pharmacokinetic model building process for significant covariates 

Parameter            Covariate ∆OFV p-value Equation 

CL CRCL ‒ 18.6 <0.001 Eq. 1 

 SCR ‒ 17.9 <0.001 Eq. 2 

 BSA ‒ 12.1 <0.001 Eq. 3 

Q WT ‒ 8.5 <0.01 Eq. 4 

V1 WT ‒ 6.9 <0.01 Eq. 5 

∆OFV: change in the OFV (objective function value) compared to the base model; CL= apparent 

total body clearance; Q= intercompartmental clearance; V1=apparent distribution volume of the central 

compartment; creatinine clearance (CRCL), serum creatinine (SCR), body weight (WT), body surface area 

(BSA) 

 

CL = 5.47 × (CRCL
67.7

)1.12                         (1) 

CL = 5.70 − 1.94 × (SCR − 1.43)      (2) 

CL = 5.00 + 0.11 × (BSA − 2.02)      (3) 

Q = 1.21 × (WT
87.6

)2.18                           (4) 

V1 = 27.8 × (WT
87.6

)0.40                          (5) 
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3.4.3 Safety and tolerability 

Overall, low-dose cidofovir and probenecid were well tolerated.  No changes were observed in 

biochemical indices of kidney or liver function after administration.  One patient experienced 

transient nausea and vomiting which was successfully treated with intravenous antiemetics.  This 

incident was attributed to incorrect probenecid administration by the nursing staff (4 gm given at 

once).   

3.5 DISCUSSION 

The current study describes the pharmacokinetics of low-dose cidofovir in kidney transplant 

recipients with BK viremia, and assesses the active secretion capacity of this patient population 

by evaluating the impact of concomitant probenecid administration on cidofovir clearance.   

Cidofovir is a suitable probe drug to assess anionic secretion because it is not 

significantly metabolized [218, 228], exhibits negligible binding to plasma proteins (< 0.5%) 

[227], is transported by renal OAT1 [77], and is cleared via renal filtration and secretion with no 

evidence of reabsorption [218].  Although the uptake of cidofovir by OAT1 is established, drug 

transporters responsible for cidofovir efflux across the apical membrane and into the lumen have 

not been identified. 

The results demonstrate that renal filtration is the primary clearance mechanism, and that 

active secretion does not appreciably contribute to elimination of cidofovir in kidney transplant 

patients with BK virus infection.  This conclusion is supported by: (1) cidofovir clearance is 

linearly related to eGFR in the absence and in the presence of probenecid; (2) probenecid, the 
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classical inhibitor of tubular secretion of organic anions, had no appreciable effect on the non-

compartmental pharmacokinetic parameters for cidofovir, particularly systemic and renal 

clearance; and (3) population pharmacokinetic modeling did not identify concomitant probenecid 

administration as a significant categorical covariate contributing to the variability in total body 

clearance of cidofovir.  Further, the 90% confidence interval of the relative mean of the log-

transformed AUC(0-∞) of cidofovir without and with probenecid is 1.02 – 1.16, which, according 

to U.S. Food and Drug Administration Bioequivalance Guidelines [229], represents “the absence 

of a significant difference in the extent to which the active ingredient becomes available at the 

site of drug action”. 

In patients with normal kidney function receiving a 5 mg/kg dose of cidofovir, the total 

body clearance is approximately 248 mL/min and the renal clearance is 209 mL/min [73].  The 

nonrenal clearance (e.g. metabolic clearance) is therefore 39 mL/min.  By comparing renal 

clearance to baseline creatinine clearance in the same patients, the clearance of cidofovir due to 

active tubular secretion is approximately 84 mL/min.  In this study, the average creatinine 

clearance was 66 mL/min, and renal clearance values of cidofovir were 62 mL/min without 

probenecid and 57 mL/min with probenecid.  Since renal clearance of cidofovir did not exceed 

creatinine clearance, this suggests that active secretion of the drug did not occur. 

Noncompartmental analysis revealed that renal clearance accounted for only 73.3% and 

71.5% of total body clearance in the absence and presence of probenecid, respectively. This 

difference likely reflects some degree of intracellular phosphorylation, which produces the active 

cidofovir metabolites.  Yet, after intravenous administration of [14C]cidofovir to African green 

monkeys (43 mg/kg, 29.5 µCl/kg), only 5% of the dose was recovered as phosphorylated 

cidofovir [70].  However, the data described herein are consistent (though slightly lower) with 
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previously reported values in HIV-infected patients receiving 3.0 mg/kg cidofovir dosing [228], 

which describe renal clearance values accounting for 83% of total body clearance.  Clearance 

pathways accounting for the difference between total body clearance and renal clearance are 

unknown, but could potentially be due to a small degree of hepatic metabolism or elimination in 

bile. In this study, co-administration with probenecid did not alter the nonrenal clearance of 

cidofovir.  Further, discrepancy between values in this study and previous reports may indicate 

imprecise urine collection during sampling in some patients, as renal clearance calculations were 

highly dependent upon urine volume. 

The nonlinear mixed-effects modeling process identified serum creatinine, creatinine 

clearance, and body surface area as significant covariates for cidofovir clearance (p < 0.001).  

The identification of creatinine and creatinine clearance in accounting for variability in cidofovir 

total body clearance is consistent with the results of the noncompartmental analysis; however, 

the recognition of body surface area as a significant covariate was unique.  However, this finding 

may reflect colinearity between body surface area and both creatinine and creatinine clearance.  

For example, in the study population, body surface area was related to serum creatinine (r2 >0.5, 

y = 0.771x – 0.2049) and creatinine clearance (r2 >0.5, y = 42.3x – 12.39).  As correlation 

between predictors should be avoided in population pharmacokinetic analyses [230] it is rational 

to estimate clearance based on estimates of renal filtration and avoid inclusion of body surface 

area.  Additionally, creatinine clearance reduced the objective function value to a higher degree 

than both body surface area and creatinine alone, and therefore should be utilized in predictions. 

One possible explanation for the lack of cidofovir secretion may be the low plasma 

concentrations achieved.  In this study, cidofovir was dosed at 4.8% - 12.4% of the FDA 

approved dose for CMV retinitis in HIV-infected patients, to avoid cidofovir-associated 
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nephrotoxicity [227].  Accordingly, maximum plasma concentrations achieved at the end of the 

infusion (1 hour) were approximately 8.6% of those achieved with the 5 mg/kg dose.  However, 

previous studies in healthy human volunteers have demonstrated concentration-independent 

secretion of probe drugs eliminated via this pathway [231].  Moreover, in microdosing studies of 

famotidine (eliminated via OCT1-mediated active renal secretion), active renal secretion is 

evident when only 2.5% of a typical dose is administered, with total clearance values 

approaching 3.2 mL/min/kg [232]. 

Another possible explanation may be that sufficient concentrations of probenecid were 

not achieved in the kidney to inhibit cidofovir secretion.  Probenecid was dosed according to the 

FDA approved use of cidofovir for cytomegalovirus (CMV) retinitis in individuals with HIV 

[233]. Probenecid plasma concentrations were determined to ensure sufficient absorption from 

the gastrointestinal tract to a degree that would be expected to inhibit renal secretion. Significant 

systemic exposure of probenecid was observed, indicating the drug was adequately absorbed in 

renal transplant recipients.  Further, previous studies have demonstrated that probenecid 

concentrations of 15.86 µg/mL are sufficient to inhibit the tubular secretion of diprophylline 

[234].  In this study, average probenecid plasma concentrations were four-fold higher than this 

value within two hours of oral dosing of probenecid. 

Yet another potential explanation for the lack of cidofovir secretion may be related to the 

expression and activity or anionic renal drug transporters in kidney transplant patients.  It is well 

established that inflammatory cytokines can down regulate drug metabolizing enzymes and 

transporters [98].  Transplant patients are susceptible to a high degree of inflammation, and BK 

virus infection in the kidney is likely to further increase the concentrations of inflammatory 

mediators, including circulating cytokines.  This raises the possibility that renal OAT1 
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expression is reduced in kidney transplant patients with BK virus infections, leading to decreased 

secretion of organic anion substrates. 

The current study has a few limitations.  First, the majority of the study participants were 

Caucasian and genotyping of OAT1 was not performed.  This raises the possibility that the 

results may not be dependably extrapolated to other ethnic groups.  However, only six non-

synonymous OAT1 variants have been identified and none are associated with loss of function.  

Further, these variants were identified in < 1% of a large population with diverse ethnicities 

[235].  Thus, polymorphisms in OAT1 do not appear to contribute to inter-individual variation in 

drug disposition, and the ethnic homogeneity of the study population and the lack of OAT1 

genotyping do not represent major pitfalls.  Another potential limitation is the relatively small 

sample size (n=10). Nevertheless, variability in the pharmacokinetic parameters could be reliably 

accounted for by clinical estimates of renal filtration.  

A linear relationship was documented between cidofovir clearance and eGFR both in the 

absence and presence of probenecid.  This relationship allows for the prediction of systemic 

cidofovir exposure in individual patients according to rearrangement of the equation: 

Cls = 
Cidofovir dose

AUC
 

This relationship can be utilized to evaluate the pharmacokinetic-pharmacodynamic relationship 

between cidofovir exposure and BK virologic response.  Potentially, this association can be used 

to improve the dosage regimen of cidofovir for kidney transplant patients with BK virus. 

 In the present study, the probenecid-insensitive elimination of cidofovir 

potentially suggests impaired renal secretion of organic anions via this mechanism.  This finding 

may have far-reaching implications for drug therapy in renal transplant patients with BK virus.  

Several commonly used medications are substrates for OAT1, including angiotensin converting 
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enzyme (ACE) inhibitors (captopril, quinapril), angiotensin II receptor blockers (olmesartan), 

diuretics (bumetadine, furosemide), antibiotics (ceftibuten, ceftizoxime, cephaloride, 

tetracycline), antivirals (adefovir, ganciclovir, acyclovir), antineoplasics (methotrexate), 

histamine receptor 2 blockers (cimetidine, ranitidine), and non-steroidal anti-inflammatory 

agents (ibuprofen, indomethacin).  Therefore, transplant recipients with BK viremia receiving the 

aforementioned drugs may be subject to increased plasma concentrations and potential toxicities.  

It is unknown if the impaired secretion observed in this study is unique to renal transplant 

recipients with BK viremia, or if the finding applies to kidney transplant patients in general. 
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4.0  EXPRESSION OF RENAL DRUG METABOLIZING ENZYMES AND 

TRANSPORTERS FOLLOWING KIDNEY TRANSPLANTATION IN RATS 
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4.1 ABSTRACT 

Kidney transplantation is the treatment of choice for end-stage renal disease (ESRD) and drug 

therapy plays a major role in the management of transplant recipients.  Active renal secretion of 

several commonly used drugs is mediated by drug transporters in the kidney.  However, the 

functional activity of these transporters in transplant patients has not been systematically 

investigated.  The objective of this work was to study the impact of kidney transplantation on the 

mRNA and protein expression of drug transporters (OAT1, OAT3, OCT2, MRP2, MDR1) and 

oxidative metabolic enzymes (CYP3A, CYP2E1) in the rat after kidney transplantation.  Male 

Lewis rats underwent syngeneic orthotopic kidney transplantation and were sacrificed at various 

time points post-transplant to assess both the short-term (< 1 day) and long-term (> 60 days) 

effect of transplantation.  The mRNA and protein expression of OAT1 and OAT3, as well as the 

mRNA expression of OCT2, MRP2, MDR1, CYP3A, and CYP2E1, were determined in rat 

kidney.  A significant decrease in both OAT1 and OAT3 protein expression was observed in the 

transplanted kidney beginning at 6 h post-transplantation, and persisting for the entire 

observational period of 78 days.  At 24 h post-kidney transplant, the mRNA expression of renal 

OCT2 and CYP2E1 were significantly reduced while MRP2, MDR1, and CYP3A were 

unchanged.  At 78 days post-transplant, the mRNA expression of renal OCT2 was significantly 

reduced, while MRP2 expression was increased by 47% (p<0.05) and MDR1, CYP3A, and 

CYP2E1 were unchanged.  These results demonstrate that renal transplantation differentially 

alters the mRNA and protein expression of various metabolic enzymes and transporters in the 

kidney, and may contribute to clinical complications observed in kidney transplant patients. 
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4.2 INTRODUCTION 

Interindividual variability in drug disposition represents a significant challenge in optimizing 

pharmacotherapy [236-239]. The expression and activity of drug metabolizing enzymes and 

transporters largely dictates the degree of systemic drug exposure and consequently induction or 

inhibition of these proteins may lead to clinically relevant changes in drug exposure.  It is well 

appreciated that alteration in the expression of phase I (oxidation, reduction, or hydrolysis) or 

phase II (conjugation) metabolic enzymes and drug transporters may occur in various 

inflammatory diseases, such as rheumatoid arthritis, or acute inflammatory illnesses, such as 

viral infections [240-243]. Inflammatory cytokines suppress the expression of several metabolic 

enzymes and transporters through the ability to serve as ligands for the nuclear transcription 

factors pregnane X receptor (PXR) and constitutive androstane receptor (CAR) [244]. 

Reductions in the mRNA levels of PXR and CAR with a corresponding reduction in CYP 

enzymes have been reported in rodents with endotoxin induced (and cytokine-mediated) 

inflammation [98].  In renal transplant recipients, elevations in several pro-inflammatory 

cytokine, including interleukin 6 (IL-6) and tumor necrosis factor α (TNF- α), have been 

documented in serum and urine during the immediate post-operative period (presumably related 

to ischemia/reperfusion injury), in acute rejection episodes, during periods of infection, and prior 

to late graft failure [101-103].  This raises the possibility that modification in the expression of 

renal metabolic enzymes and/or drug transporters, which mediate the influx of xenobiotics into 

the proximal tubule or accelerate their extrusion from the cell into the lumen, may occur in renal 

transplant recipients at various time points.  Further, the previous chapter describes potentially 

impaired active renal secretion of the OAT1 probe drug cidofovir in kidney transplant recipients 

with BK virus infection.  Therefore, the present study was conducted to mechanistically 
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understand this clinical observation by evaluating the impact of renal transplantation on the 

mRNA and protein expression of the major renal oxidative drug metabolizing enzymes and 

transport proteins in an animal model of kidney transplantation. 

4.3 MATERIALS AND METHODS 

4.3.1 Animals 

Inbred male Lewis rats were used purchased from Harlan Sprague Dawley Inc. (Indianapolis, 

IN) and used as donors and recipients.  The animals, weighing between 200 and 250 gm, were 

maintained in a 12-hour light/dark cycle at the University of Pittsburgh Animal Center in laminar 

flow cages in a pathogen-free animal facility with a standard diet and water ad libitum. The 

University of Pittsburgh Guidelines of the Council on Animal Care and the National Research 

Council’s Guide for the Humane Care and Use of Laboratory Animals were followed for all 

procedures.  All chemicals were purchased from Sigma Chemical Co. (St. Louis, MO) unless 

otherwise noted. 

4.3.2 Orthotopic kidney transplantation  

Orthotopic kidney transplantation was performed using a previously described technique [245]. 

Following intravenous heparinization (300 U), the left kidney was removed from the donor with 

the left renal artery in continuity with a short aortic segment and the left renal vein with a patch 

of vena cava. The excised graft was flushed with 3 ml of University of Wisconsin solution 
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(Viaspan, Du Pont, Wilmington, DE) and preserved for 24 h in UW solution at 4 ◦C.  The kidney 

graft was then orthotopically transplanted into a syngeneic recipient, after 30 min of warm 

ischemia, by end-to-side microvascular anastomoses between graft aorta and recipient infrarenal 

abdominal aorta, and between graft renal vein and recipient infrarenal vena cava with 10-0 

Novafil suture. Both native kidneys of the recipient were removed, and end-to-end ureteral 

anastomosis was performed using 10-0 Novafil suture. Recipients received prophylactic 

antibiotics (Cefotetan, 100 mg/kg, intramuscularly) for 3 days following the transplant.  

Immunosupression was not used due to the syngeneic nature of the transplant.  Approximately 

10% of recipients died of surgical complications such as bowel obstruction and stenosis of ureter 

anastomosis, and those recipients were excluded from the study 

4.3.3 Experimental design 

The mRNA expression of the major renal drug transporters (OAT1, OAT3, OCT2, MRP2, 

MDR1) and oxidative metabolic enzymes (CYP2E1, CYP3A) were evaluated at various time 

points after renal transplantation to assess both the short-term (< 1 day) and long-term (> 60 

days) effect of the transplantation.  The protein expression of OAT1 and OAT3 were also 

assessed at these time points.  Control animals were used to establish baseline mRNA and 

protein expression to which all experimental groups were compared.  Because an organ from a 

cadaveric donor typically undergoes periods of cold storage and warm ischemia, these conditions 

were also assessed experimentally for OAT1 and OAT3 protein abundance.  A total of 3 animals 

were evaluated in each group, with different groups being used for mRNA and protein 

experiments.  All kidney samples were stored immediately at – 80 ° C until analysis.  To assess 
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the recovery of kidney function over the entire observational period, serum creatinine values 

were also periodically recorded. 

4.3.4 Preparation of kidney tissue and protein determination for western blot analysis 

Frozen kidneys (approximately 200 mg) were homogenized using a dounce hemogenizer and 

resuspended in 400 ul of cellular lysis buffer containing 25 mM Tris HCl adjusted to pH 7.6, 150 

mM NaCl, 1% NP-40, 1% sodium deoxycholate, and 0.1% SDS.  To prevent proteolytic 

degradation during cell lysis, 10 µL of Halt protease inhibitor cocktail (Thermo Scientific, 

Waltham, Massachusetts, USA) was added per 1 mL of lysis buffer.  Samples were transferred to 

microcentrifuge tubes and centrifuged for 10 minutes at 10,000 x g at 4° C.  The supernatant 

containing whole cell lysate was collected and stored in aliquots at – 80 ° C. 

Protein concentrations were determined using the bicinchoninic acid (BCA) assay.  Stock 

solutions were prepared with bovine serum albumin at protein concentrations of 0, 0.25, 0.5, 1, 

and 2 mg/mL.  The BCA working reagent was prepared as 100:2 of Reagent A (1 gm sodium 

bicinchoninate, 2 gm sodium carbonate, 0.16 gm sodium tartrate, 0.4 gm NaOH, and 0.95 gm 

sodium bicarbonate, brought to 100 ml with distilled water, pH adjusted to 11.25 with 10 M 

NaOH) and Reagent B (0.4 gm cupric sulfate in 10 ml distilled water).  Exactly 25 µl of each 

standard and sample combined with 200 µl of the working reagent was added to a 96-well 

microplate in replicates of three.  Following 15 minutes in an incubator at 37°C, absorbance of 

each well was read at 570 nm using a microplate reader.  Protein concentrations in samples were 

read from the standard curve. 
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4.3.5 Western blot analysis for the abundance of OAT1 and OAT3 protein 

Protein expression in whole cell lysates from kidney tissue was determined using western 

blotting with polyclonal rabbit anti-rat OAT1 and OAT3 antibodies (Alpha Diagnostic, San 

Antonio, TX, USA).  Samples (200 µg) were heated at 37 °C for 30 minutes in 1x loading buffer, 

applied to a 12% gel for separation by SDS-PAGE, and electroblotted to nitrocellulose 

membranes.  The nitrocellulose membranes were then blocked with 5% nonfat dry milk in 1X 

phosphate buffered saline tween-20 and incubated overnight with rabbit anti-rat OAT1 antibody 

(1:500) or rabbit anti-rat OAT3 antibody (1:500) at 4 °C.  After rinsing with phosphate buffered 

saline for 5 minutes, the membranes were incubated with a Horseradish Peroxidate conjugated 

goat anti-rabbit antibody (1:2000) for 1 hour at room temperature.  After washing with phosphate 

buffered saline, membranes were incubated with a chemiluminescent reagent for 5 minutes and 

developed.  Blots were then densitometrically analyzed using QuantityOne Analysis Software 

(BioRad, Hercules, CA, USA) and normalized to the optical density of beta actin in each sample. 

4.3.6 RT-PCR 

RNA from kidney samples (approximately 200 mg) was extracted using the TRIzol® Plus RNA 

Purification Kit (Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s instructions.  

Briefly, tissue samples were homogenized in 2 mL of TRIzol Reagent, mixed with 0.4 mL of 

chloroform, and centrifuged at 12,000 x g for 15 minutes at 4 °C.  Approximately 600 μL of the 

colorless, upper phase containing RNA was transferred to an RNase-free tube and mixed with an 

equal volume of 70% ethanol.  Samples were then purified using the PureLink RNA Mini Kit 

(Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s directions. RT-PCR was 
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performed according to the SuperScript® III One-Step RT-PCR System with Platinum® Taq 

DNA Polymerase system protocol (Invitrogen, Carlsbad, CA, USA).  cDNA was generated at 

55°C for 30 min and then the samples were denatured at 94°C for 2 min. PCR amplification was 

performed in 30 cycles of 94°C for 15 s, then 50°C for 30 s, and 68°C for 60 s. The final 

elongation step was 68°C for 10 min.  Primers against OAT1, OAT3, OCT2, MRP2, P-

glycoprotein (MDR1), CYP3A, and CYP2E1 were designed using the PrimerQuest Software 

(Integrated DNA Technologies (Coralville, IA, USA) (Table 14).  Electrophoresis was 

performed on a 1% agarose gel and samples were imaged and optical density determined using 

QuantityOne Analysis Software (BioRad, Hercules, CA, USA) and normalized to the optical 

density of beta actin in each sample. 
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Table 14. Primers used for RT-PCR 

Gene Accession 
Number Primers 

OAT1 NM017224 Sense: 5’-AGAGTCACAGAGCCCTGCATTGAT-3’ 
Antisense: 5’-AAGCATACAAACTTGGCAGGCAGG-3’ 

OAT3 NM031332 Sense: 5’-TGGATGGCTGGATCTACAACAGCA-3’ 
Antisense: 5’-TAGATGTTGATGAGATGGCCCGCA-3’ 

OCT2 NM031584 Sense: 5’-ATTGGCTACCTAGCGGACAGGTTT-3’ 
Antisense: 5’-TGTCACACATGGAGGAGCAGACAA-3’ 

MRP2 NM012833 Sense: 5’-TCGCTGGCACTCTTGTCATGATCT-3’ 
Antisense: 5’-AGCTGTAGGCCAGACACAAAGGAT-3’ 

P-glycoprotein NM012623 Sense: 5’-TGACAGCTTCTCAACCAAGGGACA-3’ 
Antisense: 5’-AAGTCAACTCAGAGGCACCAGTGT-3’ 

CYP3A NM001024232 Sense: 5’-TGTGGAGATTGTGGCTCAGTCCAT-3’ 
Antisense: 5’-GCCAGCACTTTGGGTCTTTGTGAA-3’ 

CYP2E1 NM031543 Sense: 5’-GGTTCTTGGCATCACCATTGCCTT-3’ 
Antisense: 5’-AGAGTTGTGCTGGTGGTCTCAGTT-3’ 

 

4.3.7 Measurement of serum creatinine in rat plasma  

Serum was obtained from blood samples, and serum creatinine levels were measured using a 

Beckman autoanalyzer employing a modification of the Jaffe procedure (Beckman Instruments, 

Fullerton, CA, USA). 
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4.3.8 Statistical analysis 

Statistical significance was determined by an unpaired Student’s t-test for densitometric data 

obtained from western blotting and RT-PCR. Data from control animals were tested against 

transplanted animals and differences were considered statistically significant when p < 0.05.  

Serum creatinine values were analyzed using one-way analysis of variance with Dunnett’s post-

hoc test where all values from transplanted rats were compared against control.  Values are 

presented as mean ± S.D or S.E.M. as indicated.  Statistical analyses were performed using 

GraphPad Prism 5.0 (La Jolla, CA, USA). 

4.4 RESULTS 

4.4.1 Serum creatinine 

The mean serum creatinine values before and periodically for a period of 72 days following 

kidney transplantation are displayed in Figure 25.  Prior to the transplant procedure, serum 

creatinine values averaged 0.45 +/- 0.05 mg/dL.  At 24 hr post-transplant, serum creatinine was 

increased 10-fold over baseline and remained elevated until day 4. At day 7, serum creatinine 

had stabilized with no significant difference noted between baseline.  Serum creatinine continued 

to remain normal (p>0.05, 1-way ANOVA with Dunnett’s post-hoc test) through day 78. 
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Figure 25.  Stabilization of serum creatinine following kidney transplantation in rats 

Results presented as mean +/- SEM 

 

 

4.4.2 OAT1 and OAT3 mRNA and protein expression 

Neither cold storage nor warm ischemia affected OAT1 or OAT3 protein expression.  On the 

other hand, kidney transplantation led to a sustained reduction in the expression of renal OAT1 

and OAT3 mRNA (Figure 26 and Figure 27) and protein (Figure 28 and Figure 29).   Reduced 

expression of OAT1 and OAT3 was apparent beginning at 24h and 6h following kidney 

transplantation, respectively.  For both anionic transporters, down regulation of both mRNA and 

protein was apparent at 78 days after the procedure.  At 24 hours post-transplant, the mRNA 

expression of renal OAT1 and OAT3 were reduced by 60% and 24%, respectively (Figure 26).  

At 78 days post-transplant, the mRNA expression of renal OAT1 was reduced by 39% and 



 114 

OAT3 was reduced by 29% (Figure 27).  The relative protein expression of renal OAT1 and 

OAT3 expressed as a percentage of control is displayed in Figure 30.  For OAT1, protein 

expression approached 25% of control at 24h, and recovered to a maximum of approximately 

50% expression at 62 days and 78 days.   

 

 

 

 

     

Figure 26. Renal mRNA expression of OAT1 and OAT3 at 24 h post-kidney transplantation 
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Figure 27. Renal mRNA expression of OAT1 and OAT3 at 72 days post-kidney transplantation 
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Figure 28.  Representative blots displaying the effect of cold storage (24h), warm ischemia (30 min), 

and orthotopic syngeneic kidney transplantation on the protein levels of renal OAT1 in rats. 

 

 

 

Figure 29.  Representative blots displaying the effect of cold storage (24h), warm ischemia (30 min), 

and orthotopic syngeneic kidney transplantation on the protein levels of renal OAT3 in rats. 
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4.4.3 OCT2, MRP2, MDR1, CYP3A, and CYP2E1 mRNA expression 

A representative image of the mRNA expression of OCT2 is displayed in Figure 31. 

 

Figure 31. mRNA expression of OCT2 

The first three lanes represent control animals, the middle three lanes represent animals 24 hours post-kidney 

transplant, and the final three lanes represent animals 78 days post kidney-transplant. 

Figure 30. Protein expression of renal OAT1 and OAT3 normalized to β-actin relative to control 

Results are presented as mean ± standard deviation 
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At 24 hours post-transplant, the mRNA expression of renal OCT2 and CYP2E1 were reduced by 

27% and 30%, respectively (Figure 32).  The mRNA expression of MRP2, MDR1, and CYP3A 

were unchanged.  

 

 

 

Figure 32. Renal mRNA expression of drug transporters (OCT2, MRP2, MDR1) and metabolic enzymes 

(CYP3A, CYP2E1) at 24 hr post-kidney transplantation 

 

 

At 78 days post-transplant, the mRNA expression of renal OCT2 was reduced by 33% and the 

expression of MRP2 was increased by 47% (Figure 33).  The mRNA expression of MDR1, 

CYP3A, and CYP2E1 were unchanged.   
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Figure 33. Renal mRNA expression of drug transporters (OCT2, MRP2, MDR1) and metabolic 

enzymes (CYP3A, CYP2E1) at 78 days post-kidney transplantation 
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4.5 DISCUSSION 

The mammalian proximal tubule plays a critical role in rapidly clearing the blood of many 

exogenous and endogenous substrates.  In this capacity, transport proteins localized to the 

basolateral membrane (OAT1, OAT3, OCT2) and the apical membrane (MDR1, MRP2) form 

the secretory pathway of the kidney and mediate the excretion of a wide variety of charged 

organic compounds.   A number of frequently utilized drugs, including many antivirals, β-lactam 

antibiotics, nonsteroidal anti-inflammatory drugs, and diuretics are eliminated via these carrier-

mediated pathways and altered expression of transporters may have significant consequences 

with respect to the pharmacokinetics of such substrates.  Further, several metabolic enzymes 

involved in oxidative drug metabolism (CYP3A, CYP2E1) are also expressed in the kidney.  The 

present study employed an animal model of kidney transplantation to investigate the effect of 

renal transplantation on the mRNA and protein expression of these renal drug transporters and 

enzymes.   

The results described herein demonstrate decreased protein expression of OAT1 and 

OAT3 following orthotopic syngeneic kidney transplantation in rats.  Reduced expression was 

noted shortly after the transplant procedure, at 24 hr for OAT1 and 6 hr for OAT3, with a 

sustained down regulation of both proteins over the duration of the 78-day study period.  The 

mRNA expression of OAT1 and OAT3 was consistent with protein expression.  Additionally, 

the mRNA expression of OCT2 was reduced at both 24 hr and 78 days post-transplant, while the 
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expression of CYP2E1 was diminished at 24 hr but returned to baseline by day 78.  In contrast to 

the basolateral transporters, the mRNA expression of the apical transporter MRP2 was 

significantly increased at day 78.  The physiological relevance of this observation is unknown, 

but these data may suggest a possible protective mechanism by which uptake into the proximal 

tubules is reduced while the efflux capacity into the lumen is increased. 

  Serum creatinine values were recorded at several time points after the transplant 

procedure to assess renal filtration.  A significant increase in serum creatinine was noted in all 

animals after the procedure, with stabilization by day 7.  Although serum creatinine returned 

close to baseline in the short-term, altered mRNA and protein expression of several drug 

transporters persisted for over two months after renal transplantation.  These results potentially 

suggest that kidney transplant patients may have a normal or mildly reduced GFR yet still have 

significantly reduced renal clearance of drugs which undergo extensive renal secretion (i.e. ClR 

>> GFR) secondary to diminished transporter expression.  This result is consistent with a 

previous report where rats with cyclosporine-induced nephropathy showed a rapid improvement 

in GFR upon withdrawal of the insult.  However, tubular dysfunction persisted after 

normalization of the GFR for the entire observational period (28 days) [162], suggesting 

disassociation of glomerular function and tubular function. 

 Reduced mRNA and protein expression of OAT1 following kidney transplantation is 

consistent with the previously described clinical observation of the limited role of renal secretion 

in the clearance of the OAT1 substrate cidofovir in kidney transplant recipients.  However, 

several limitations should be noted in translating these results to kidney transplantation in 

humans. First, animals in this study underwent a syngeneic transplant and immunosuppression 

was not utilized.  The effect of increased immune response in recipients of an allogeneic kidney 
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transplant and the impact of varying degrees of immunosuppression was not specifically 

addressed in the current study.  Further, participants in the clinical study were treated with 

cidofovir for BK virus infection.  The effect of BK-associated nephritis on expression of drug 

transport proteins was not pursued in the current experimental approach; however, additional 

inflammatory mediators would likely have a cumulative rather than differential effect on 

decreasing transporter expression.  It would have been useful to evaluate biochemical markers of 

inflammation in order to relate this information to protein expression (i.e. semi-quantitatively 

describe the relationship between the serum concentration of pro-inflammatory cytokines and the 

degree of down regulation).  This data would be valuable in revealing underlying mechanistic 

insight and should be addressed in future investigations.  

 Few reports on the impact of kidney transplantation on the expression of drug 

metabolizing enzymes or transporters are available.  In one human study, hepatic CYP3A4 

significantly decreased at 3 months and 1 year following kidney transplantation (−33% and 

−45%; −7% and −33%, respectively) [148].  As certain metabolic enzymes and transporters are 

regulated via a similar nuclear receptor-mediated mechanism, a comparable down regulation in 

transporters may be expected.   

Additionally, reduced renal OAT1 expression has been identified in different disease 

states.  Sakurai, et al describe lower mRNA levels of OAT1 in biopsy samples of patients with 

renal disease following surgical nephrectomy for renal carcinoma [91].  Conversely, in a 5/6 

nephrectomized rat model, protein expression of the cationic transporter OCT2 was down 

regulated, but expression of OAT1 and OAT3 was maintained [209].  These discrepant results 

suggest differential regulation of drug transporters in the kidney during varying disease states.   
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 It has been reported that ischemic acute renal failure in rats leads to an increase in 

prostaglandin E2 (PGE2) via the cyclooxygenase (COX2) pathway, which in turn down 

regulates renal OAT1 and OAT3 and leads to decreased organic anion secretion [165].  COX 

inhibition with indomethacin or competitive inhibition of the uptake of PGE2 with probenecid 

rescues this effect.  This report is consistent with our observation of reduced OAT1 and OAT3 

protein expression in the short-term after the transplant as trauma from the surgery and transplant 

would be expected to cause an increase in inflammatory mediators, including PGE2.  However, 

it remains unclear why the effect is sustained for a period of several months, at which time 

inflammation should be substantially reduced. 

 In summary, the present study demonstrates that renal transplantation alters the mRNA 

and protein expression of various metabolic enzymes and transporters in the kidney in rats.  This 

finding is relevant due to the large role that drug therapy plays in the management of kidney 

transplant recipients and the high number of drug substrates that are eliminated via carrier-

mediated tubular secretion. 
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5.0  PHARMACODYNAMICS OF CIDOFOVIR AND BK VIREMIA AND VIRURIA 

IN KIDNEY TRANSPLANT RECIPIENTS 
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5.1 ABSTRACT 

BK virus infection in kidney transplant recipients is associated with progressive graft 

dysfunction and graft loss.  Cidofovir, an antiviral agent that demonstrates in vitro activity 

against BK virus, has been used concurrently with reduced immunosuppression for treatment of 

BK virus infection in renal allograft recipients.  However, the effectiveness of this approach has 

not been rigorously evaluated and the dosage regimen currently used is empiric.  The current 

study, which was performed in 8 densely sampled adult renal transplant recipients, investigated 

both the acute pharmacodynamic response subsequent to cidofovir administration and the 

relationship between drug exposure and viral clearance.  At 12 hr post-cidofovir infusion, viral 

loads in plasma and urine were significantly reduced, reflecting the short in vivo half-life of the 

virus.  However, the effect was not sustained, and viremia and viruria returned to baseline at the 

next sampling period (8 days later for plasma; 1 day later for urine).  No association was found 

between metrics of systemic cidofovir exposure and decline in viremia or viruria.  We conclude 

that cidofovir transiently reduces BK viremia and viruria and may be an efficacious add-on 

treatment option in the pharmacological management of BK virus in renal transplant recipients.  

However, as viremia and viruria quickly recovered to pre-treatment levels, the dosage regimen of 

cidofovir requires further optimization.  Prospective trials are warranted to define the optimal 

cidofovir dose and frequency of administration for the treatment of BK virus. 
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5.2 INTRODUCTION  

BK virus has emerged as an important cause of allograft dysfunction in kidney transplant 

patients [246-249].  The use of potent immunosuppressive therapy is the primary risk factor 

associated with reactivation of BK virus in renal epithelium and subsequent detection in plasma 

and urine, which serve as quantifiable surrogate markers for the course of the disease [41, 250-

255].  Consequently, the initial step in the management of this complication is a reduction in 

immunosuppression, including reduced calcineurin inhibitor dosing and discontinuation of 

antimetabolic agents [256-258].  However, this approach is only marginally successful and 

carries risk of graft injury due to immune-mediated rejection [259-262].  Cidofovir, an inhibitor 

of viral DNA synthesis, is used at low doses at many transplant centers as an add-on second-line 

treatment option, though the dosing regimen is empiric and its effectiveness is not fully 

understood [21, 39, 84-86, 90, 263-266].  Randomized controlled trials evaluating the use of 

cidofovir for the treatment of BK virus infection in kidney transplantation have not yet been 

performed; however, comparisons of cidofovir-treated patients with non-treated patients appear 

to indicate improved outcomes [66, 81].  Although rigorous prospective evaluations of cidofovir 

for BK virus in transplantation are underway [267], patients in these trials typically undergo 

multiple interventions, most often with reduced target tacrolimus trough concentrations of < 6 

ng/mL [15].  Hence, it is difficult to independently gauge if viral clearance is the result of 

cidofovir, decreased immunosuppression, or both. A recent report characterizing the in vivo 

dynamics of BK virus revealed a short half-life of 1-2 hours in plasma, suggesting rapid viral 

turnover in the kidney [46].  Therefore, the current study was performed to assess the acute 

pharmacodynamic response subsequent to cidofovir administration in densely sampled renal 

transplant recipients.  We anticipated that because of the previously demonstrated activity of 
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cidofovir against BKV in vitro [49] and the short in vivo half life of BKV, a reduction in the BK 

viral load in plasma and urine would occur directly following drug administration.  The degree 

and duration of viral decline in relation to cidofovir exposure could then potentially be used to 

optimize the cidofovir dosing regimen.  Additionally, as probenecid is used with cidofovir for 

other indications to reduce OAT1-mediated uptake into proximal tubule cells and decrease 

cidofovir associated nephrotoxicity, we also evaluated the effect of probenecid on the virologic 

response. Since BKV is localized in proximal tubule cells, decreased cidofovir uptake in the 

presence of probenecid should cause an attenuated response.  Yet, because OAT1-mediated 

active secretion was not observed in the previously described clinical pharmacokinetic study in 

kidney transplant recipients (Chapter 3), we predicted that concomitant probenecid 

administration would not alter the pharmacodynamic response to cidofovir. 

5.3 MATERIALS AND METHODS 

5.3.1 Patients 

This study was performed in eight adult renal transplant recipients undergoing treatment with 

low-dose once-weekly intravenous cidofovir for polymerase chain reaction-confirmed BK 

viremia and viruria.  The protocol was approved by the Institutional Review Board of the 

University of Pittsburgh (IRB# 08060393) and written informed consent was obtained from all 

patients prior to participation.  Exclusion criteria included: (i) hypersensitivity to cidofovir or 

other nucleotide analogs, (ii) hypersensitivity to probenecid or sulfonamides, (iii) currently 

receiving another drug known to affect renal anionic drug secretion, (vi) pregnancy or 
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breastfeeding women.  On average, the study participants were 55.3 ± 13.4 years of age, weighed 

85.2 ± 21.4 kg, and were 13.5 ± 17.8 months post-kidney transplant.  All of the subjects had a 

reduced estimated glomerular filtration rate (eGFR), ranging from mild to severe, though no 

patients were on dialysis at the time of the study.  All patients had positive BK viral loads in 

plasma and urine, though none had evidence of tubulointerstitial nephritis. Viral loads in 

individual patients at the time of enrollment are presented in Table 15.  

 

 

Table 15.  Patient characteristics and plasma and urine viral loads at time of enrollment. 

Patient  Age 
(years) 

Body 
Weight 

(kg) 

Cidofovir 
dose 
(mg) 

Cidofovir dose 
(mg/kg) 

Plasma viral load 
(log10 copies/mL) 

Urine viral load 
(log10 copies/mL) 

       
1 43 74.1 20 0.27 3.00 9.35 

2 29 111.3 27 0.24 2.73 5.54 

3 59 85.6 22 0.26 3.25 5.62 

4 53 64.7 40 0.62 3.05 6.80 

5 59 59.7 20 0.34 4.05 5.44 

6 63 75.3 22 0.29 3.80 4.74 

7 67 120.0 35 0.29 4.05 8.99 

8 69 91.1 35 0.38 6.12 9.31 
Mean 
(SD) 

55.3 
(13.4) 

85.2 
(21.4) 

27.6 
(7.9) 

0.34 
(0.12) 

3.76 
(1.08) 

6.97 
(1.94) 

       
 

5.3.2 Study design 

The study design included two phases.  During Phase 1, intravenous low-dose cidofovir was 

administered as a 1 hr infusion without concomitant probenecid.  Phase 2 took place one week 
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later, when cidofovir was administered with concomitant oral probenecid.  Probenecid (2g) was 

given 1 h prior to cidofovir administration and again at 2 h and 8 h (1g each) after the completion 

of the cidofovir infusion.  During both phases, patients received 1 L of 0.9% sodium chloride 

immediately prior to cidofovir administration and cidofovir was diluted in 100 mL of 0.9% 

sodium chloride.  Blood samples (7 mL) were collected in Vacutainers at 0, 1, and 12 hours after 

the start of the cidofovir infusion.  Plasma was separated and frozen at – 80 °C until analysis.  

Midstream urine samples (~ 20 mL) were collected at 0 and 12 hours, and for three consecutive 

days after cidofovir administration.  Urine samples were stored at – 80 °C until analysis 

5.3.3 Quantitation of BK Virus DNA with TaqMan Real-Time PCR  

DNA was extracted from plasma and urine samples using the QIAamp maxikit (Qiagen, Hilden, 

Germany) for urine or the QIAamp minikit (Qiagen, Hilden, Germany) for plasma.  DNA 

extraction was achieved by using 5 ml of uncentrifuged urine or 200 μl of plasma. The following 

oligonucleotide sequences, derived from the BKV (Dunlop strain; GenBank accession no. 

NC001538) capsid protein-1 (VP-1) gene, were synthesized (IT BioChem, Salt Lake City, Utah): 

forward primer, 5’ GCA GCT CCC AAA AAG CCA AA 3’; reverse primer, 5’ CTG GGT 

TTAGGA AGC ATT CTA 3’. 

Quantitative real-time PCR assays were performed using the Roche Light-Cycler. PCR 

amplifications were run in a reaction volume of 20 μl containing 2 μl of the DNA sample, Roche 

10X SybrGreen FasStart mastermix, 2.5 mM magnesium chloride, and 500 nM (each) forward 

and reverse primers. Thermal cycling was initiated with a first denaturation step of 10 min at 

95°C, followed by 40 cycles of 95°C for 10 s, 62°C for 10 s, 72°C for 5 s, and 78°C for 10 s, at 

the end of which fluorescence was read. Real-time PCR amplification data were analyzed with 
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software provided by the manufacturer. Standard curves for the quantification of BKV were 

constructed using serial dilutions of a plasmid containing the entire linearized genome of the 

BKV Dun strain inserted into the BamHI restriction site of the pBR322 plasmid (ATCC 45025). 

The plasmid concentrations plotted ranged from 1 to 109 genomic copies of BKV DNA per PCR. 

All patient samples were tested in duplicate and results are presented as the mean.  The number 

of BKV copies for each plasma and urine sample was calculated from the standard curve (Figure 

34). Data are expressed as copies of viral DNA per milliliter of urine or plasma. Standard 

precautions designed to prevent contamination during PCR were followed. No-template control 

lanes and negative-control samples containing DNA extracted from human peripheral blood 

lymphocytes were included in each run. 

 

Figure 34.  Quantitative PCR assay of BKV standards 
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5.4 RESULTS 

BK viral loads were quantitated in all plasma samples and urine samples using RT-PCR.  The 

median BK viral loads in plasma and urine prior to cidofovir dosing were 3.8 (range: 2.7 – 6.1) 

log10 copies/mL and 6.2 (range: 4.7 – 9.3) log10 copies/mL, respectively.  In both urine and 

plasma, a significant reduction in the log transformed viral load was detected 12 hr after 

cidofovir administration for both Phase 1 and Phase 2 (Figure 35 and Figure 36).  However, the 

effect was not sustained, and viremia and viruria returned to baseline at the next sampling period 

(8 days later for plasma; 1 day later for urine).  In plasma, the average percent change in the viral 

load 12 hours after drug administration was – 21% (Figure 37).  In those patients with a higher 

initial degree of viremia (> 6000 copies/mL) the magnitude of the effect was greater, with an 

average change of – 66%.  No association was found between metrics of cidofovir exposure, 

including dose, AUC0-12, AUC0-∞, and Cmax (all identified in Chapter 3), and BK viral clearance 

(absolute or % change from baseline). 
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Figure 35.  Acute change in BK viral load in plasma following cidofovir administration 

 

Figure 36.  Acute change in BK viral load in urine following cidofovir administration 
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Figure 37. Change in plasma BK viral load 12 hours after cidofovir administration 

 

 

 Viral loads from paired plasma and urine samples were modestly correlated (r2 = 

0.41) suggesting viruria may serve as a surrogate marker for viremia when blood samples are 

unable to be obtained.  (Figure 38) 
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Figure 38. Linear regression analysis of log transformed BK viral loads in plasma and urine from 

paired samples 
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5.5 DISCUSSION 

 

This study represents the first report of the acute effect of cidofovir administration on the BK 

viral load in plasma and urine in renal transplant recipients.  Cidofovir is widely used for the 

management of BK virus in transplant patients, though consensus regarding the most appropriate 

dosing regimen is lacking.  Here, we show that cidofovir transiently reduces BK viremia and 

viruria, but the effect is not sustained as viral loads quickly recover to baseline.  Given the 

temporal relationship between drug administration and viral decline, this affect can be 

independently attributed to cidofovir therapy and not to other therapeutic interventions (i.e. 

reduced immunosuppression). 

   Our results provide in vivo proof of concept that cidofovir possesses some degree of 

efficacy for the management of BK virus infections in renal transplant recipients.  However, the 

temporary reduction in viremia and viruria suggest the dosage regimen requires modification.  

Increasing the cidofovir dose and/or the frequency of administration could be an effective 

strategy to increase the efficacy for BK virus.  The potential benefit of these approaches must be 

carefully weighted against the profound nephrotoxic potential of cidofovir, especially in light of 

the fact that probenecid is not typically used for this indication.  However, in the present study 

cidofovir did not elicit any nephrotoxicity, as serum creatinine and BUN remained unchanged in 

the study population.  This has been confirmed at other transplant centers over a longer duration 

[64, 84].  Funk et al recently proposed that a BK viral load of 1000 copies/mL corresponds to 1 

lysed kidney tubular epithelial cell per day [268].  Hence, only partially impeding viral 

replication allows BKV to produce significant cytopathic wear over time. Modification to the 
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cidofovir dosing regimen to increase drug exposure may therefore be clinically warranted, and 

investigations into the risk-benefit ratio of this approach should be undertaken. 

The 50% effective concentration (EC50) in vitro for cidofovir against BK virus is 

approximately 36 μg/mL [49], though the previously described study of  the clinical 

pharmacokinetics of low dose cidofovir in renal transplant recipients (Chapter 3) showed 

maximum plasma concentrations approaching only 1 μg/mL.  However, in rabbits, [14C] 

cidofovir achieved concentrations 10-fold higher in the kidney than in plasma [80].  The high 

affinity of cidofovir for the kidney may partially explain the initial robust virologic response 

observed in this study despite the low dose employed.  Moreover, concomitant administration of 

oral probenecid did not significantly augment the pharmacodynamic effect.  This finding is 

consistent with the observation of the limited role of active renal transport of cidofovir in 

transplant recipients with BK viremia, as described in Chapter 3. 

This study was not designed to evaluate long-term outcomes with cidofovir treatment, 

such as graft survival and patient mortality, nor is it intended to define the role of cidofovir in the 

treatment of BK virus.  Rather, we show herein that low-dose cidofovir does transiently produce 

a significant reduction in BK viral loads in urine and plasma and could be a suitable antiviral 

agent if the dose and frequency could be optimized.  Unfortunately, no relationship was 

discovered between cidofovir exposure and response to guide this adjustment, though this may 

be related to the small sample size.  This objective is further pursued through retrospective 

analysis of kidney transplant recipients treated with cidofovir for BK virus at a large academic 

medical center, as described in the following chapter. 

Although the results of this work reveal that cidofovir reduces BK viremia and viruria, 

maintaining sustained inhibition of BKV replication with cidofovir could be problematic as viral 
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loads in urine recovered in as little as one day.  Cidofovir must be administered in a hospital 

setting with pre-hydration with intravenous fluids for nephroprotection, and it is unrealistic for 

dosing to be performed more than twice per week for outpatients.  The orally available lipid 

conjugate of cidofovir, CMX001, may represent a viable option for the treatment of BK virus 

since administration would note require hospitalization.  This agent also inhibits BKV replication 

in human renal tubular epithelial cells [269], presumably by the same mechanism as cidofovir.  

However, the role of renal tubular drug transporters in the disposition of CMX001 needs to be 

examined, as active transport of antiviral drugs into the site of action is desirable to achieve 

maximum exposure and effect. 
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6.0  RETROSPECTIVE ANALYSIS OF THE CLINICAL EFFICACY OF 

CIDOFOVIR USED FOR THE MANAGEMENT OF BK VIRUS IN KIDNEY 

TRANSPLANT RECIPIENTS 
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6.1 ABSTRACT 

 

BK virus is a major cause or morbidity in kidney transplant recipients and there is no therapy 

with proven efficacy.  The use of cidofovir to treat BK virus infection remains controversial, as 

some case series have reported no discernable benefit.  We have previously determined that 

baseline renal filtration is significantly correlated with cidofovir clearance in kidney transplant 

patients, thus affecting total drug exposure.  Therefore, we hypothesized that uniform dosing 

with low-dose cidofovir in all patients may be inadequate, as exposure will vary widely and 

potentially influence treatment outcomes.  The present retrospective study used serum creatinine-

based estimates of cidofovir clearance to approximate aggregate cidofovir exposure in 104 

individual transplant recipients, and this information was then correlated with viral response.  

Regression analysis demonstrated that higher estimated systemic exposure was significantly 

associated with a larger reduction in the degree of BK viremia, as measured by real-time 

quantitative RT-PCR (p < 0.05).  However, the predicted reduction in viremia was low as 

compared with average pre-treatment viral loads in the study population.  Only 11% of the 

variance in the decline in BK viral loads in plasma could be explained by variation in cumulative 

cidofovir exposure, suggesting that other factors, presumably immune-mediated, may play a 

major role in viral clearance.  Finally, analyses of allograft survival suggest a marginal treatment 

benefit with cidofovir.  These results highlight the need for continued investigations to discover 

and implement more effective antiviral treatment strategies for BK virus infection in transplant 

recipients. 
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6.2 INTRODUCTION 

BK virus (BKV) is a polyomavirus usually acquired in childhood that remains latent in the 

genitourinary tract throughout life [270].  BK virus reactivation in kidney transplant recipients is 

associated with allograft failure, and optimal pharmacotherapeutic regimens have not been 

identified to effectively manage this condition [271].  Cidofovir is a potent antiviral nucleotide 

analog, which has broad-spectrum activity against many DNA viruses, including 

cytomegalovirus (CMV) and polyomaviruses [49].  Case reports and anecdotal evidence describe 

conflicting results on the value of low-dose cidofovir (0.25–1.0 mg/kg given intravenously once 

weekly or every other week) in the management of BK virus infections in renal transplant 

recipients, with some studies reporting clearance of the virus [64, 90] and others describing no 

apparent benefit [68, 89].  We have previously elucidated the pharmacokinetics of low-dose 

cidofovir in kidney transplant patients (Chapter 3), and demonstrated that glomerular filtration 

rate (GFR) is significantly correlated with cidofovir clearance, thus affecting total drug exposure.  

Therefore, we predicted that discrepant clinical experience with cidofovir could be related to 

inadequate drug exposure in some patients.  Further, we anticipated that those patients with 

higher exposure would have improved outcomes.  To test this prediction, we retrospectively 

evaluated all patients with BK virus at our institution, and assessed the impact of estimated 

cidofovir exposure on viral response. 
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6.3 MATERIALS AND METHODS 

6.3.1 Study design and statistical analysis 

This single-center, retrospective, non-randomized study was conducted at the University of 

Pittsburgh Medical Center in Pittsburgh, Pennsylvania. Information used for analyses was 

obtained through databases maintained by the University of Pittsburgh Starzl E. Transplantation 

Institute, under the auspices of, and with formal approval by, the Institutional Review Board of 

the University of Pittsburgh (IRB # 0307037). Research data were coded to prevent the 

identification of subjects.  Adult renal transplant recipients were included if they had any of the 

following at any time post-transplantation: (i) detection of BK virus in plasma by real-time 

quantitative polymerase chain reaction (RT-PCR), (ii) detection of BK virus in urine by RT-

PCR, (iii) biopsy-proven BKV infection.  Descriptive statistics are used to detail the incidence of 

BK virus among the population by comparing to the total number of transplant recipients over 

the same time period.  The impact of intravenous cidofovir therapy on allograft survival was 

evaluated by the Kaplan-Meier test using the LIFETEST procedure in SAS (Cary, NC, USA).  

Patients who died with a functioning graft and graft failures not due to BK (including acute and 

chronic rejection) were counted as non-failures. 

Systemic cidofovir exposure was estimated based on previously conducted 

pharmacokinetic analyses of low-dose cidofovir in renal transplant recipients (as described in  

Chapter 3).   
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Cidofovir clearance was calculated as: 

 

CL = 5.70 − 1.94 × (SCR − 1.43) 

 

where CL is cidofovir total body clearance (in liters per hour) and SCR is serum creatinine (in 

mg/dL).  The systemic exposure from each cidofovir dose was then calculated according to: 

 

AUC  = 
Dose

CL
   

 

where Dose is the cidofovir dose (in mg) and AUC is the estimated area under the cidofovir 

plasma concentration versus time curve from 0 to infinity (in mg*h/L).  The cumulative 

cidofovir exposure in each patient was then calculated as: 

 

AUCtotal  = AUCdose 1 + AUCdose 2 + …  AUCdose n 

 

where dose n is the final cidofovir dose received.  The change in viremia was calculated as the 

maximum viral load prior to cidofovir treatment minus the viral load at the conclusion of the 

regimen (in copies/mL).  Regression between cumulative systemic cidofovir exposure and the 

change in viremia was conducted using the REG Procedure in SAS (Cary, NC, USA). 
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6.4 RESULTS 

6.4.1 Incidence of BK virus  

Overall, 551 BKV-positive patients were identified.  These patients received kidney transplants 

from November 1988 to March 2011.  On average, subjects were 50.4 +/- 14.8 years of age, 64% 

were male, and the majority (88.9%) were Caucasian.  A total of 66.2% of the patients had 

received a kidney from a cadaveric donor, while 33.8% received an organ from a living donor.  

The primary reason for graft failure in the study population was BK-associated chronic allograft 

nephropathy, which accounted for 34% of all failures.  Of the patients with all-cause graft loss, 

28.2% received a re-transplant.   

A total of 507 patients had BK viruria, 207 had viremia, and 141 had a primary or 

secondary diagnosis from a needle biopsy of the kidney of BK viral infection.  During the same 

time period, a total of 4645 patients received a kidney transplant at our institution.  Thus, the 

overall incidence of BK viruria, viremia, and biopsy-confirmed BK nephropathy was 10.9%, 

4.5%, and 3%, respectively. The demographic and clinical characteristics of the study population 

are reviewed in Table 16.  

A total of 5787 viral loads were quantitated in urine in 507 patients.  The average viral 

load, in log10 copies/mL, was 5.45 +/- 1.94 (median: 5.24).  In plasma, there were 1480 samples 

collected in 207 patients over the observational period, with an average viral load of 3.57 +/- 

0.915 log10 copies/mL (median: 3.39).  The frequency distribution of BK viral loads in urine and 

plasma are displayed in Figure 39 and Figure 40, respectively.   
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Table 16.  Characteristics of the 551 BK virus-positive kidney transplant recipients  

Characteristic  Value Range 

Recipient age, y  50.4 (14.8) 18 - 82 

Donor age, y  38.6 0 - 79 

Male, %  64.6%  

Donor type, %    

     Cadaveric  66.2%  
     Living  33.8%  

Transplant type, %    

     Kidney  88.9%  

     Kidney/pancreas/small bowel  11.1%  

Patient race, %    

     Caucasian  88.9%  
     Black  8.89%  
     Asian  0.36%  
     Indian  1.09%  
     Middle-east  0.73%  

Days post-transplant until detection of BK virus  651 (947) 0 - 5479 

Prevalence of BKV in the study population    

     Viruria, %  37.6%  
     Viremia, %  92.2%  
     Positive BK biopsy, %  25.6%  

Number of patients with graft failure  152  

Cause of graft failure, %    

     Chronic allograft nephropathy  34%  
     Acute rejection  11.1%  
     Chronic rejection  17.7%  
     Primary non-function  6.6%  
     Graft functioning at death  16.4%  
     Unknown/other  14.2%  

Patients with retransplantation after graft loss, %  28.2%  

Data are expressed as mean (SD) unless otherwise noted 
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Figure 39.  Frequency distribution of positive BK viral loads in urine during routine monitoring 

 

 

 

Figure 40. Frequency distribution of positive BK viral loads in plasma during routine monitoring 
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6.4.2 Impact of treatment with cidofovir on allograft survival 

A total of 104 BK-virus positive patients (18.9%) received treatment with low-dose cidofovir.  

The use of cidofovir was at the discretion of the treating physician and no standardized algorithm 

was followed. The average cidofovir dose was 28.18 ± 31.17 mg, or 0.37 ± 0.37 mg/kg.  The 

median number of cidofovir doses received was 20, which ranged from 1 dose to 94 doses.  The 

Kaplan-Meier estimator was used to evaluate two-year allograft survival stratified by the use or 

non-use of cidofovir in renal transplant recipients with persistent BK viremia.  Patients who died 

with a functioning graft and graft failures not due to BK (including acute rejection, chronic 

rejection, primary non-function, or unknown/other) were counted as non-failures.  In cidofovir 

treated patients, the percent survival at two-years from the detection of viremia was 98.08% 

versus 92.19% in patients without cidofovir treatment, though this difference did not reach 

statistical significance (p > 0.05) (Figure 41).  Due to the inherent bias of stratifying patients 

based on the use or non-use of cidofovir therapy (i.e. those patients with higher severity of illness 

are more likely to receive the drug), we also tested the survival function in an identical number 

of kidney transplant recipients (161) with viremia detected before and after January 1, 2007.  

This date was chosen because the majority of low-dose cidofovir use (85%) occurred during or 

after 2007.  In patients with viremia detected pre-2007, the percent survival at two years was 

89.4% versus 96.8% in patients with viremia detected post-2007 (p < 0.05).  As the primary 

difference between the two groups was the more frequent use of cidofovir after January 1, 2007, 

this indicates a possible additional benefit of cidofovir use for graft survival in patients with BK 

virus infection. 
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Figure 41. Kaplan-Meier estimates of two year graft survival in renal transplant recipients from the time of 
detection of viremia 

 

Top: patients stratified according to use or non-use of cidofovir 
Bottom: patients stratified according to date of detection of viremia (pre- and post- January 1, 2007) 
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6.4.3 Relationship between cidofovir exposure and viral decline 

Overall, 2288 administrations of low-dose cidofovir were given over the 10-year time period 

between July 2001 and May 2011.  A high degree of variability was present in the total degree of 

aggregate exposure, ranging from a minimum of 2 mg*h/L to a maximum of 758 mg*h/L. 

Regression analysis between cumulative cidofovir exposure and change in viremia from prior to 

initiation of the cidofovir regimen to the completion of the regimen revealed that higher systemic 

exposure was associated with a larger reduction in the degree of BK viremia (p=0.0238) (Figure 

42).  The equation describing this relationship is: 

 

Δ BK viremia =  −[(AUC𝑡𝑜𝑡𝑎𝑙 ∗ 2407) + 32059] 

 

where AUCtotal is the cumulative cidofovir exposure in mg*h/L and the change in viremia is 

expressed in copies/mL.  However, the goodness of fit of the linear model was poor, with a 

coefficient of determination  (r2) of only 0.11.  Further, predicted reduction in viremia was low 

as compared with average pre-treatment viral loads. 
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Figure 42. Linear model of the relationship between cumulative cidofovir exposure and change in 

viremia 
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6.5 DISCUSSION 

In the past two decades, the human polyomavirus BK has surfaced as a significant pathogen in 

kidney transplant recipients.  At the present time, optimal treatment regimens are lacking, though 

cidofovir is often used on an empiric basis with mixed results.  Although several case reports and 

anecdotal evidence support the use of cidofovir for this indication, the utility of cidofovir in the 

treatment of BK virus has not been meticulously explored in randomized controlled trials.  We 

have previously demonstrated that the disposition of low-dose cidofovir in kidney transplant 

recipients is highly dependent on glomerular filtration rate. Patients with varying degrees of 

kidney function receiving the same cidofovir dose, as is often done clinically, will consequently 

have vastly different systemic exposure to cidofovir, which could contribute to variability in 

treatment response.  The objectives of this study were to evaluate the incidence of BK viruria, 

viremia, and biopsy-proven nephropathy at a large academic transplant center over an 

approximately 15 year period, and to assess the use of the antiviral agent cidofovir in the 

management of BK virus infection.  Our results regarding the incidence of BKV are consistent 

with those of other centers, which describe BK affecting a substantial number of renal allografts.  

We found viremia, viruria, and nephropathy of 10.9%, 4.5%, and 3%, respectively.  These results 

are slightly lower than other centers have reported; however, we evaluated a long-term period, at 

the beginning of which routine surveillance for BK was not common.  This likely contributed to 

an underestimation of the total prevalence.  The lack of routine surveillance in the early period 

may also explain why the average number of days post-transplant until identification of BK virus 

in this study is longer than previous reports (1.8 years versus 1 year) [40, 41]. 

 Cidofovir-treated patients did not have significantly higher allograft survival than non-

treated patients, though it is probable that patients receiving cidofovir were more ill and therefore 
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with higher risk of graft loss.  We did discern, nevertheless, that in the 5-year period when 

cidofovir use was more prevalent, allograft survival was higher as compared to the period prior, 

suggesting a potential benefit with the use of the drug.  On the other hand, this finding could 

signify more vigilant monitoring for BKV in plasma and urine, as well as prompt initiation of 

reduced immunosuppression upon detection, including lowered target trough concentrations for 

calcineurin inhibitors and discontinuation of antimetabolic agents.  Additionally, practice 

patterns have changed over time, and since 2007 treatment is routinely initiated upon the 

detection of viremia and/or significant viruria, whereas in the period prior to 2007 treatment was 

generally withheld pending evidence of nephropathy on kidney biopsy. 

This study retrospectively employed serum creatinine-based estimates of cidofovir 

clearance to approximate cidofovir exposure in individual transplant recipients.  Predictions were 

then correlated to the microbiological response.  We found that those patients with higher 

exposure did have an improved response, though the reduction in viremia was low when 

compared to the baseline values prior to treatment.  For instance, the average maximum plasma 

viral load in the 207 patients with viremia was 3.89E+06 copies/mL.  Assuming a cidofovir dose 

of 0.37 mg/kg in a 80 kg patient with a serum creatinine of 2 mg/dL, the single dose AUC would 

be estimated as 6.43 mg*h/L.  Therefore, based on the regression analysis, a 6-month treatment 

course of once-weekly low-dose cidofovir encompassing 24 doses would be expected to reduce 

the degree of viremia by only 10.4%.  Further, only 11% of the variance of the decline in BK 

viral loads in plasma could be explained by variation in cumulative cidofovir exposure.   This 

indicates that other factors, presumably reduced immunosuppression allowing for an increased 

immune response, play a major role in viral clearance.  Moreover, this data suggests that the low 
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doses of cidofovir used in renal transplant recipients may be inadequate to produce optimal 

therapeutic concentrations in the kidney at the site of action. 

The current study has several limitations.  First, we used predicted rather than measured 

cidofovir AUC estimates.  However, we have demonstrated that accurate estimation of cidofovir 

clearance is possible using the renal filtration rate.  Next, when analyzing the relationship 

between drug exposure and virologic response, we used cumulative exposure, which 

incorporated each of the doses received.  Those patients with a higher cumulative AUC would 

have received more doses over a longer period of time, allowing for a longer time frame for 

immune-mediated viral clearance.  Third, no institutional protocol was used to guide the use of 

cidofovir for BK virus infection.  In the future, it is recommended that an algorithm be followed, 

which would remove variance from the patterns of practice and provide more meaningful data to 

advance patient care.  Finally, we did not obtain the characteristics of the entire kidney transplant 

population at our institution over the study period, which would have been useful in identifying 

independent risk factors for the development of BK virus and its complications.  However, this 

has been done previously and several reports are available in the literature [36-38].  

In summary, BK virus continues to represent a major cause of morbidity and mortality to 

kidney transplant recipients, and cidofovir use as practiced currently only marginally improves 

outcomes and viral clearance.  Although patients with higher cumulative cidofovir exposure had 

a larger decline in plasma BK viral loads, the reduction may not be sufficient to consistently 

bring viremia below the limit of detection in the long-term in the majority of cidofovir-treated 

patients.  These results highlight the need for continued investigations to discover and implement 

more effective treatments.  
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7.0  SUMMARY AND FUTURE DIRECTIONS 
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7.1 DISCUSSION AND SUMMARY 

The objective of the work carried out in this dissertation was to characterize anionic tubular 

secretion capacity in kidney transplant recipients and to evaluate the role of actively secreted 

antiviral agent cidofovir in the treatment of BK virus infection in this patient population.  This 

was investigated by (i) development of a novel analytical technique to determine low 

concentrations of the OAT1 probe drug cidofovir in human plasma, (ii) conducting a clinical 

pharmacokinetic study of cidofovir in renal transplant recipients without and with inhibition of 

active secretion, (iii) performing a translational animal study that explored the impact of kidney 

transplantation on expression of drug transporters and metabolic enzymes in the kidney, (iv) 

analyzing the acute pharmacodynamic response after administration of cidofovir in kidney 

transplant recipients with BK viremia, and (v) retrospectively assessing the use of cidofovir for 

management of BK virus in kidney transplant recipients at a large academic transplant center. 

 In the first part of the study, we used non-compartmental and population pharmacokinetic 

approaches to elucidate the disposition of low-dose cidofovir in densely sampled kidney 

transplant recipients with BK viremia.  The OAT1-dependent active secretion capacity was 

evaluated by assessing the impact of concomitant probenecid administration on cidofovir total 

body clearance and renal clearance.  Cidofovir was selected as a probe substrate for anionic 

secretion because it is not significantly metabolized [228], exhibits negligible binding to plasma 

proteins (< 0.5%) [227], undergoes transport by renal OAT1 [77], is cleared via renal filtration 

and secretion with no evidence of reabsorption [218], and is frequently administered to the 

patient population of interest.  Potential correlations between pharmacokinetic parameters and 

patient variables were also considered to explain sources of variability.  We demonstrate that 

renal filtration is the predominant clearance mechanism and that active secretion likely does not 
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appreciably contribute to cidofovir elimination in kidney transplant patients, despite the fact that 

previous studies in healthy volunteers and HIV-infected patients with normal kidney function 

show that renal clearance is 60-70% higher than baseline creatinine clearance.  

Noncompartmental estimates of cidofovir clearance were linearly related to eGFR in both the 

absence and presence of probenecid.  In the population analysis, a two-compartment model with 

first order elimination adequately described the data and estimates of CL and Vd were 5.31 L/hr 

and 28.5 L, respectively.  Probenecid administration was not identified as a significant 

categorical covariate for cidofovir clearance.  Overall, our data suggest that both systemic 

clearance (CLS) and renal clearance (CLR) were lower in kidney transplant recipients than in 

patients with normal renal function, and probenecid did not alter the renal clearance of cidofovir.   

The metabolic clearance (CLM; e.g. CLM = CLS – CLR) was also not significantly altered, 

accounting for approximately 22% of systemic clearance. These data indicate that OAT1-

mediated drug secretion may be impaired in renal transplant recipients with BK viremia, on the 

basis that cidofovir (a prototypical OAT1 substrate) was not transported by a probenecid-

sensitive mechanism.  Possible explanations for this finding include altered intracellular 

phosphorylation of cidofovir in kidney transplant patients, the presence of probenecid-insensitive 

drug elimination pathways, lack of intracellular α-ketoglutarate stores in transplant patients 

necessary for counter transport of cidofovir, or reduced expression and/or activity of drug 

transporters in the renal epithelium 

In the second part of the study, we conducted a translational animal study to understand 

the mechanistic basis of the above-mentioned clinical observation.  Specifically, we evaluated if 

kidney transplantation itself alters the expression of anionic transporters in the kidney.  An 

orthotopic, syngeneic rat transplant model was employed and the mRNA and protein expression 
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of the primary drug transporters and oxidative metabolic enzymes were evaluated at various time 

points after transplantation.  We demonstrate a significant decrease in both OAT1 and OAT3 

protein expression in tissue homogenates beginning at 6 h post-transplantation and persisting for 

the entire observational period of 78 days.  At 24 h post-renal transplant, the mRNA expression 

of renal OCT2 and CYP2E1 were significantly reduced while MRP2, MDR1, and CYP3A were 

unchanged.  At 78 days post-transplant, the mRNA expression of renal OCT2 was significantly 

reduced while MRP2 expression was increased by 47% (p<0.05) and MDR1, CYP3A, and 

CYP2E1 were unchanged.  All animals had stabilization of serum creatinine to pre-transplant 

levels with 7 days, indicating that alteration in filtration and secretion may not occur in parallel.  

These results show that renal transplantation alters the mRNA and protein expression of various 

metabolic enzymes and transporters in the kidney, and the data regarding OAT1 in particular are 

in agreement with the clinical pharmacokinetic study of cidofovir. 

In the third part of the study, we appraised the pharmacodynamics of cidofovir used for 

the treatment of BK virus in renal transplant recipients.  This study also evaluated the inhibition 

of OAT1-mediated uptake of cidofovir (with probenecid) on the virologic response in plasma 

and urine.  As BK virus is localized in proximal tubule cells, decreased cidofovir uptake in the 

presence of probenecid should cause an attenuated response.  Yet, because OAT1-mediated 

active secretion was not observed in the pharmacokinetic study in kidney transplant recipients 

and reduced expression of OAT1 was noted in the rat transplant model, we hypothesized that 

concomitant probenecid administration would not alter the response.  The results demonstrate a 

significant reduction in viruria and viremia at 12 hr post-cidofovir infusion, reflecting the short 

in vivo half-life of the virus.  However, the effect was not sustained, and viremia and viruria 

returned to baseline at the next sampling period (8 days later for plasma; 1 day later for urine).  
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We observed no association between metrics of systemic cidofovir exposure and decline in 

viremia or viruria.  We conclude that cidofovir transiently reduces BK viremia and viruria and 

may be an efficacious add-on treatment option in the pharmacological management of BK virus 

in renal transplant recipients; however, as viremia and viruria quickly recovered to pre-treatment 

levels, the dosage regimen may require modification.  Additionally, probenecid did not change 

the degree or duration of decline in viruria and viremia, providing further evidence to support a 

lack of cidofovir uptake into the renal epithelium in kidney transplant recipients.   

In the last study, serum creatinine-based estimates of cidofovir clearance were used to 

retrospectively approximate aggregate cidofovir exposure in 104 individual transplant recipients, 

and this information was then correlated with microbiological response.  Regression analysis 

demonstrated that higher estimated systemic exposure was significantly associated with a larger 

reduction in the degree of BK viremia, though the predicted reduction in viremia was low as 

compared with average pre-treatment viral loads in the study population.  Further, only a small 

percentage of the variance in the decline in BK viral loads in plasma could be explained by 

variation in aggregate cidofovir exposure, suggesting that other factors, presumably immune-

mediated, play a major role in viral clearance.  

The major site of BK viral replication in vivo is within the kidney tubules, and our results 

suggest that OAT1-facilitated uptake of cidofovir into these cells may be reduced in kidney 

transplant recipients.  This potentially implies that cidofovir should not be expected to achieve 

adequate concentrations at the site of pharmacological action.  Yet our results demonstrate that 

cidofovir does elicit a therapeutic response when used for the treatment of BK virus infection in 

this patient population.  Potential explanations for these two seemingly contradictory 

observations include: (1) cidofovir crosses the basolateral membrane of the proximal tubules in a 
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passive, probenecid-insensitive manner, (2) cidofovir is actively transported into the tubules by a 

probenecid-insensitive pathway, (3) cidofovir is efficiently transported across the basolateral 

membrane into the tubules by a probenecid-insensitive mechanism and efflux across the apical 

membrane into the collecting duct is impaired such that active secretion of the drug was not 

detected upon pharmacokinetic analysis, or (4) cidofovir produces an anti-BKV effect locally 

within the blood and urine, and not within the kidney.  

In summary, the work detailed in this dissertation collectively broadens our 

understanding of drug disposition in kidney transplants recipients and provides fundamental 

knowledge that may improve the treatment of BK virus infections in kidney transplant recipients.   

7.2 CLINICAL IMPLICATIONS 

1) The LC-MS/MS method that was developed and validated for quantitative assessment 

of cidofovir in plasma is suitable for implementation in laboratories with standard 

instrumentation and would be useful in future studies of low-dose cidofovir, especially where 

high sensitivity is required. 

 

2) Renal anionic drug secretion facilitated by OAT1 may be compromised in kidney 

transplant recipients with BK viremia, possibly secondary to diminished OAT1 expression in the 

kidney.  Renal clearance of several OAT1 substrates may be reduced in this patient population 

and dosage adjustments may be warranted to avoid toxicities associated with these drugs.  
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3)  Endogenous prostaglandins, including the proinflammatory prostaglandin E2 (PGE2), are 

OAT1 substrates and reduced elimination in the setting of diminished renal OAT1 expression in 

kidney transplant recipients may lead to increased inflammation, which in turn may further down 

regulate OAT1 in a cyclical nature. 

 

4) The clearance of cidofovir after low-dose administration could be accurately predicted 

using clinical estimates of renal filtration (SCR, eGFR, CrCl).  The linear relationship between 

these variables can be utilized to guide drug dosing for BK virus, provided an optimal degree of 

cidofovir systemic exposure is identified through future investigations. 

 

5) The administration of low-dose cidofovir on a once weekly basis to transplant recipients 

with BK virus infection only transiently reduced the degree of viruria and viremia.  Once weekly 

dosing may be insufficient to produced a sustained response in order to clear the virus in the 

majority of treated patients.  Increasing the dosing frequency to at least twice weekly may be 

justified in light of this finding.  Additionally, we demonstrate a lack of nephrotoxicity from 

once weekly low-dose cidofovir. However, the benefit of this approach should be thoroughly 

categorized in prospective, randomized controlled trials. 

7.3 LIMITATIONS AND RECOMMENDED FUTURE RESEARCH DIRECTIONS  

1) Drug transport facilitated by renal OAT1 is potentially reduced in kidney transplant 

recipients based on the absence of cidofovir secretion as compared to estimates of renal 

filtration. The anionic tubular function in this population should be confirmed by characterizing 
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the OAT1 functional secretory capacity with the gold standard substrate para-aminohippuric acid 

(PAH).  Ideally, the glomerular filtration rate should be precisely measured with markers such as 

inulin or iothalamate.  While this approach would be more invasive than the probe drug approach 

employed in this dissertation, the results would conclusively establish the activity of this 

pathway.  Further, such a study could be expanded to include patients with various stages of 

CKD, as well as transplant recipients without and with BK virus infection. 

 

2) The pharmacokinetic-pharmacodynamic studies were carried out in a relatively ethnically 

homogenous patient sample, potentially limiting the applicability of the conclusions to other 

populations. 

 

3) Altered expression of various drug transporters and metabolic enzymes localized to the 

proximal tubule of the kidney was observed following renal transplantation in a rat model, 

though it is unknown how this finding translates to humans.  To understand the clinical 

relevance, the mRNA and protein expression of anionic and cationic drug transporters and 

oxidative enzymes should be evaluated in kidney biopsy samples from renal transplant recipients 

when such samples are available through the normal scope of care. 

 

4) The results of the work herein suggest that renal transplantation and BK virus reduce 

OAT1 expression and activity, though the impact of each of these factors was not thoroughly 

studied independently.  To address this limitation, the OAT1-dependent basolateral-to-apical 

transport of cidofovir should be evaluated in an in vitro model system using Madin-Darby canine 

kidney (MDCK) type II distal tubular polarized cells stably expressing the human OAT1 
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isoform. Modification of the model system by inclusion of varying concentrations of 

inflammatory cytokines or viral infection with BKV would allow for discrimination between the 

effects of each factor on OAT1 expression and functional activity. 

 

5) A prospective, randomized trial to establish the safety, tolerability, and effectiveness of 

cidofovir for the management of BK virus in renal transplant recipients is warranted.  Such a trial 

should include cohorts receiving escalating cidofovir dosages.  Additionally, the results of the 

work in this dissertation demonstrate that more frequent dosing would potentially be 

advantageous, and this approach should be incorporated into future investigations.   

 

6) The use of low-dose cidofovir for the treatment of BK virus produced only modest 

benefit in retrospective analyses and was not definitively associated with improved allograft 

survival. Continued investigations to discover and implement more effective and less-toxic 

treatments for the management of BK virus in renal transplant recipients are necessary. 

 

7) The orally available lipid conjugate of cidofovir CMX001 is under investigation for the 

treatment of BK virus.  Although the anti-BKV activity of this agent has been demonstrated in 

human renal tubular epithelial cells [269], the role of renal tubular drug transporters in the 

disposition of CMX001 should be explored, as active transport into the site of action is desirable 

to achieve maximum therapeutic effect. 

 

8) We hypothesized that the altered expression of drug transporters and metabolic enzymes 

observed following kidney transplantation in rats is secondary to increased inflammatory 
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mediators.  However, circulating cytokine concentrations were not measured.  Future 

investigations should determine cytokine concentrations and relate to the degree and duration of 

renal transporter mRNA and protein down regulation. 
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APPENDIX A 

[IRB PROTOCOL] 
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Abstract 

Polyoma BK virus causes destructive nephropathy in approximately 8% of renal allografts 

and is an important cause of renal graft dysfunction. Currently no firmly established 

treatment regimen exists for BK virus infection in renal transplant patients. Cidofovir is an 

acyclic nucleotide analog antiviral agent with activity against BK virus. A low dose of 0.25 

to 0.5 mg/kg of cidofovir (representing 5-10% of the standard dose for other indications) is 

empirically used in kidney transplant patients due to concern of the drug’s nephrotoxicity at 

normal doses. However, it is unclear whether this dose is adequate to treat BK virus in this 

patient population. Recently there have been methods developed to measure BK viral load in 

plasma and urine. Since adequate levels of cidofovir in the kidney are important to treat BK 

virus, it is important to understand the urinary excretion and pharmacokinetics of cidofovir 

and changes in BK viral load in plasma and urine in renal transplant patients receiving 

cidofovir in order to optimize its use in this patient population.  

     In this study we will evaluate the BK viral load, and characterize the pharmacokinetics of 

cidofovir in renal transplant patients on two separate occasions - while it is administered 

alone and again when it is administered along with probenecid, a drug that blocks the active 

excretion of cidofovir in the kidney. During each study section, eligible consenting patients 

will be asked to provide blood sampling over the course of 12 hours just before, during, and 

after initiation of the infusion of cidofovir. Urine will also be collected throughout this time 

period. If patients reside locally, we will obtain a 24, 48, and 72-hour blood and urine 

sample. If patients are not local we will attempt to obtain the samples if possible. Plasma will 

be analyzed for cidofovir and probenecid concentrations and BK virus DNA. Urine will be 

analyzed for cidofovir and probenecid concentrations and BK virus DNA. When available, 
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kidney biopsy samples will be subjected to mRNA and protein analysis of the cidofovir 

transport protein, OAT1. BK viral load from plasma and urine is presently assessed routinely 

in the clinics. Viral load measurements will be incorporated into this study to aid in the 

development of a pharmacokinetic-pharmacodynamic model. Subjects will also be asked to 

provide a 24-hour urine collection before initiation of cidofovir dose and after the last dose 

or after the tenth dose, whichever occurs first. Urine will be analyzed for creatinine 

concentration to assess the effect of cidofovir on creatinine clearance and corresponding 

creatinine clearance (CrCl).  

 

Hypotheses and Specific Aims 

 

We hypothesize that there will be a relationship between BK viremia and BK viruria and 

cidofovir plasma and urine concentration. 

 

Specific Aim #1. To quantify changes in plasma and urine BK virus DNA using real-time 

quantitative polymerase chain reaction, and to correlate with cidofovir concentrations in 

plasma and urine. This will be pilot study to evaluate relationship between drug 

concentration and clinical outcome. 

 

We hypothesize that cidofovir pharmacokinetics will be altered and the renal secretion of 

cidofovir will be impaired in renal transplant patients due to impaired renal secretion process.  

 

Specific Aim #2: To evaluate the pharmacokinetics of cidofovir in renal transplant patients 
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with BK viremia. To assess the contribution of renal secretion to the overall clearance of 

cidofovir by evaluating the effect of probenecid (an inhibitor of the renal secretion pathway) 

on cidofovir pharmacokinetics.  

 

We hypothesize that protein principally involved in cidofovir transport (organic anion 

transporter 1-OAT1) will be down-regulated secondary to increased pro-inflammatory 

cytokines associated with organ transplantation. We hypothesize that the low expression of 

OAT1 will lead to the low urinary secretion of cidofovir.  

 

Specific Aim #3. To evaluate the mRNA / protein expression of organic anion transporter 1 

(OAT1) in kidney biopsy samples (whenever available) from renal transplant recipients. 

 

We hypothesize that the use of low dose of cidofovir will lead to minimal alteration in the 

glomerular filtration rate. 

 

Specific Aim #4. To evaluate the effect of low-dose cidofovir on glomerular filtration rate 

(GFR) of the transplanted kidney. 

 

Background and Significance 

            The ultimate goal is to develop an improved dosing regimen for cidofovir using 

pharmacokinetic/pharmacodynamic (viral load) data to optimize therapy for BK virus in 

renal transplant recipients. 
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      BK polyomavirus has emerged as an important complication following kidney 

transplantation. Currently no firmly established therapy exists for the treatment of BK virus 

infection. Standard practice includes lowering immunosuppression and monitoring BK virus 

DNA in plasma and urine. If infection persists, cidofovir therapy may be initiated. Cidofovir, 

an acyclic nucleotide analog antiviral agent, has been shown to be effective against BK virus 

in vitro. A low dose of 0.25 to 0.5 mg/kg given weekly or biweekly is commonly used due to 

concern of the drug's nephrotoxicity. However, it is unclear if this dose/frequency is 

adequate. The cidofovir dose used is empiric and represents only 5-10% of the recommended 

dose used for patients with normal renal function undergoing treatment for CMV. 

Additionally, the relationship between changes in BK viral load and cidofovir concentration 

has not yet been elucidated.  

There is limited data on the course of BK viral load in kidney transplant patients. 

Nothing is known about the pharmacokinetics and pharmacodynamics of cidofovir in renal 

transplant patients. This pilot research study is important to validate cidofovir as an effective 

treatment for BK virus infection and to establish appropriate dosage regimen in kidney 

transplant patients. 

Patients who receive cidofovir for clinical treatment will be enrolled in this study. 

Cidofovir will not be administered for research purposes. Cidofovir is standard of care for 

BK virus infection in patients not responding to a reduction in immunosuppression. 

Research design and methods 

Study 1: 

Part 1: 24 hr urine collection:  

This may be performed from 5 days to 1 day prior to IV cidofovir administration  
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Study 1: 

Part 2: BK viral load and pharmacokinetics of Cidofovir when administered alone: 

This will take place within 5 days after study 1 part 1. On the day of cidofovir 

administration, participants will come to Montefiore Hospital Clinical and Translational 

Research Center by 7 am. One liter of 0.9% sodium chloride solution will be given 

intravenously over a 1 hr period immediately prior to cidofovir infusion. Cidofovir 0.25-6 

mg/kg (based on the discretion of the treating physician) will be administered intravenously 

over 1 hr. Blood samples (approximately 8 ml) will be collected in vacutainers just before 

and at 0.5, 1, 1.5, 2, 4, 6, 8, and 12 hours after the start of the cidofovir infusion. Urine will 

be collected in aliquots from 0 to 1, 1 to 2, 2 to 4, 4 to 8, and 8 to 12 hours after the start of 

the cidofovir infusion. All procedures will be performed by CTRC nursing staff. Subjects 

will receive meals during the stay at the CTRC. If patients reside locally we will obtain 

additional blood (approximately 8 ml) and urine samples at 24, 48, and 72 hours at the 

CTRC, however, these samples may be drawn during routine clinical visits. If patients are 

not local we will attempt to get blood and urine samples at 24, 48, and 72 hours if possible. 

These additional samples will be helpful to fully understand the effect of cidofovir on viral 

replication. Only blood and urine collection is done for research purposes. Concentrations of 

cidofovir and probenecid in each plasma and urine sample will be measured by high 

performance liquid chromatography mass spectrometry (HPLC-MS).  

Each plasma and urine sample will be analyzed for BK virus DNA measured using 

RT-PCR and correlated with cidofovir concentrations in plasma and urine.  The 

instrumentation and methodology for the RT-PCR is available within Transplantation 

Pathology.  This PCR test is routinely done clinically but will be carried out more often for 
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research purposes on blood and urine samples already collected for pharmacokinetic study. 

This will be pilot study to evaluate relationship between drug concentration and clinical 

outcome. If available through the normal scope of clinical care, kidney biopsy samples may 

be analyzed for expression of the cidofovir transport protein OAT1 using western blot 

techniques. No biopsy samples will be taken strictly for research purposes. 

 

Study 2: BK viral load and Pharmacokinetics of Cidofovir when administered with 

probenecid: 

Part 1: 

This study will take place either one week or two weeks after Study 1 Part 2. However, if due 

to clinical judgment or a patient who is unable to attend the study session, this time period 

may be extended to 1 month. On the day of cidofovir administration, participants will come 

to Montefiore Hospital Clinical and Translational Research Center by 7 am. Participants will 

receive two grams of probenecid orally approximately 1-2 hours prior to the infusion of 

cidofovir. One liter of 0.9% sodium chloride solution will be given intravenously over a 1 hr 

period immediately prior to cidofovir infusion. Cidofovir will be administered intravenously 

over 1 hr. One gram of probenecid will be given orally at 2 hours and again at 8 hours 

following completion of the cidofovir infusion. Blood samples (approximately 8 ml) will be 

collected before and at 0.5, 1, 1.5, 2, 4, 6, 8, and 12 hours after the start of the cidofovir 

infusion. Urine will be collected in aliquots from 0 to 1, 1 to 2, 2 to 4, 4 to 8, and 8 to 12 

hours after the start of the cidofovir infusion. All procedures will be performed by CTRC 

nursing staff.  Subjects will receive meals during they stay at the CTRC. If patients reside 

locally we will obtain additional blood (approximately 8 ml) and urine samples at 24, 48, and 



 170 

72 hours at the CTRC, however, these samples may be drawn during routine clinical visits. If 

patients are not local, we will attempt to get blood and urine samples at 24, 48, and 72 hours 

if possible. The dispensing and administration of probenecid and blood/urine collection is 

done for research purposes. However, probenecid is normally used with cidofovir in other 

patient populations. Concentrations of cidofovir and probenecid in each plasma and urine 

sample will be measured by high performance HPLC-MS.  Each plasma and urine sample 

will be analyzed for BK virus DNA using RT-PCR by clinical lab and correlated with 

cidofovir concentrations in plasma and urine. This test is clinically done routinely but will be 

carried out more often for research purposes on blood and urine samples already collected for 

pharmacokinetic study. This will be pilot study to evaluate relationship between drug 

concentration and clinical outcome. If available through the normal scope of clinical care, 

kidney biopsy samples may be analyzed for expression of the cidofovir transport protein 

OAT1 using western blot techniques. No biopsy samples will be taken strictly for research 

purposes. 

 

Study 3: 

Part 1: 24 hr urine collection: 

This will be performed after ten doses of IV cidofovir administration have been given or 

after the patient's last cidofovir dose, whichever occurs first. This information will be used to 

access changes in GFR in the patients pre and post cidofovir use. This can be done at patients 

home or in the hospital. Participants will be given containers and asked to collect urine for a 

24-hour period.  

Creatinine clearance will be calculated as [(UCr * UVol * 1/1440min) / (Plasma Cr)]  
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Human Subjects  

Inclusion criteria 

- Age greater than or equal to 18 years and less than or equal to 70 years 

- Recipient of kidney transplant  

- BK virus infection diagnosed by a positive plasma or urine PCR assay for BK virus DNA 

or renal biopsy demonstrating BK virus within 30 days prior to receipt of first dose of 

cidofovir 

- Ordered treatment with cidofovir as part of standard medical care 

Exclusion criteria 

- Unable to provide informed consent.  

- Hypersensitivity to cidofovir or other nucleotide analogues 

- Hypersensitivity to probenecid or sulfonamides 

- Hemoglobin less than 9 gm/dL and/or hematocrit less than 26% 

- Currently receiving another drug known to affect active renal secretion of anionic drugs 

- Pregnant or breast feeding women.  
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APPENDIX B 

[CONSENT FORMS AND STUDY SHEETS] 
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Why is this research being done? 

Cidofovir is an antiviral drug that is approved by the Food and Drug Administration 

(FDA) for the treatment of cytomegalovirus (CMV) infections. It is commonly used with 

another drug called probenecid in order to prolong (extend) its effect to treat this type of 

infection and to protect the kidney. 

In some kidney transplant patients, a virus called BK virus, can cause dysfunction (make 

the kidney not to work properly) or possible failure of the kidney. Currently, Cidofovir is 

not FDA approved for the treatment of BK virus but it has been used in small doses for 

the treatment of the BK virus (off-label) in kidney transplant patients. We are looking to 

gather more information to check whether the current dose and dosing schedule is 

appropriate for kidney transplant recipients. This study will be the first study to look at 

blood and urine levels of these medications during treatment with Cidofovir, both with 

and with out the addition of the second medication probenecid, in kidney transplant 

patients.  

 

Who is being asked to take part in this research study? 

You are being invited to take part in this research study because you are a male or female 

between the ages of 18-70 years, have had a kidney transplant and have been diagnosed 

with the BK virus. Your transplant physician is recommending treatment with the 

medication cidofovir, since a reduction of your immunosuppressive medication(s) has not 

been adequate for the treatment of the virus. We will be enrolling approximately 14 

individuals at this medical center for this study. 

 



 175 

 

How will the study be done? 

If you decide to take part in this research study, you will undergo screening procedures 

that are not part of your standard medical care.  

Screening Procedures:  

Procedures to determine if you are eligible to take part in a research study are called 

“screening procedures.” For this research study, the screening procedures include: 

For women who could possibly be pregnant, a urine sample will be collected for a 

pregnancy test. Pregnant women or women who are currently breast feeding will not be 

allowed to take part in this study. 

Treatment Procedures: 

Your treatment plan will be very similar to the routine treatment plan for patients with BK 

virus (the treatment you would receive regardless if you participate in this study), but who 

may not participate in this study.  However, for the purpose of this study we will be 

evaluating the concentration of the drug in your blood and urine during two of your 

treatments with cidofovir.  

One treatment will be with cidofovir only and one treatment will be with cidofovir plus 3 

doses of a medication, called probenecid (that is normally used along with Cidofovir in 

other patient populations to protect the kidney). You will be asked to provide blood and 

urine samples before, during and after these treatments.    

 

You may receive Cidofovir once a week or every other week, as per the decision of your 

physicians. Once you are enrolled, you will be scheduled for two visits that will last 
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approximately 12 to 14 hours, at our Clinical and Translational Research Center (CTRC) 

located on the 6th floor of Montefiore Hospital.  You will also be scheduled to return to the 

CTRC at 24, 48, and 72 hours after you are given cidofovir for additional blood draws and 

urine samples. You will complete your participation within a maximum of six months. On 

your first visit you will receive only cidofovir intravenously (through a vein in your arm).  

On your second visit, the medication probenecid will be given orally (by mouth) once 

before and two times after the Cidofovir administration. During your stay, there will be 

blood sampling and urine collection at specific times throughout the day. 

 

1. Prior to scheduled treatment with cidofovir:  A 24 hour urine collection will be carried out 

within 5 days of the first dose of scheduled Cidofovir treatment. You will be given a 

plastic container to collect all of your urine for a 24 hour period. When you are finished 

with the collection, you will bring the container to your next scheduled transplant clinic 

visit. 

2. Treatment with cidofovir only (Study 1):  On the day that you are scheduled for your 

Cidofovir treatment you will arrive at the CTRC by 7 AM.  The nurses will place an IV 

catheter (a thin plastic tube) into your arm and begin to give you an IV of normal saline (a 

fluid) to keep you hydrated.  Prior to starting the treatment, you will have a blood sample 

taken (about 1 teaspoon).  They will then give your medication, cidofovir through the IV, 

which will take approximately 1 hour. Blood samples (approximately 2 teaspoons each 

time) will also be collected at 30 minutes, 1, 1 ½, 2, 4, 6, 8, and 12 hours after the start of 

the medication. You will be asked to collect your urine in plastic containers during the 

entire stay.  After leaving the CTRC you will be asked to return to provide blood (about 2 
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teaspoons) and urine samples at 24, 48, and 72 hours after you have been given cidofovir. 

3. Treatment with cidofovir and probenecid (Study 2):  On the day that you are scheduled for 

your treatment you will arrive at the CTRC by 7 AM. On your arrival, you will be given 

the medication probenecid to take by mouth 1 to 2 hours prior to the start of cidofovir. 

The nurses will place an IV catheter (a thin plastic tube) into your arm and begin to give 

you an IV of normal saline (a fluid) to keep you hydrated. During this time, a blood 

sample will be taken (about 2 teaspoons). One to two hours after taking the probenecid, 

they will start giving you the cidofovir through your IV. This will take approximately 1 

hour. After finishing the cidofovir, probenecid will be given 2 hours later and again 8 

hours later. Blood samples (1 teaspoon each time) will also be collected at 30 minutes, 1, 

1 ½, 2, 4, 6, 8, and 12 hours after the start of the cidofovir. You will be asked to collect 

your urine in plastic containers during the entire stay.  After leaving the CTRC you will be 

asked to return to provide blood (about 1 teaspoon) and urine samples at 24, 48, and 72 

hours after you were given cidofovir. 

4. 24 hour urine collection (Study 3):  Additionally, a 24 hour urine collection will be done 

after you have received several treatments with cidofovir (up to 10 treatments) or after 

your last cidofovir dose, whichever occurs first. You will be given a plastic container to 

collect all of your urine within 24 hours. When you are finished with the collection, you 

will bring the container to your next scheduled transplant clinic visit. If at any time during 

your participation in this study a kidney biopsy is done for your routine clinical care, 

additional testing may be performed on the biopsy sample. No biopsies will be taken for 

research purposes only. 

5. Follow-up procedures:  You will be followed as per your routine visits to the Starzl 
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Transplantation Clinic. 

 

What are the possible risks, side effects, and discomforts of this research study? 

There may be certain risks associated with participation in this study. These may include: 

Risks of Venipuncture:  

Common risks (occurs in 10-25% or 10 to 25 out of 100 people):  Discomfort, bruising, 

bleeding or slight swelling at the site of where the blood was drawn. 

Infrequent (rare) risks (occur in 1-10% or 1 to 10 out of 100 people):  Infection may occur 

at the site of where the blood was drawn or fainting may occur after you have had your 

blood drawn. 

Risks of intravenous catheter insertion: 

Common risks (occurs in 10-25% or 10 to 25 out of 100 people):  Discomfort, bruising, 

bleeding or slight swelling at the site of the IV catheter. 

Infrequent (rare) risks (occur in 1-10% or 1 to 10 out of 100 people): Clot formation or 

infection may occur at the site of the IV catheter. 

Risks of Probenecid:  

Common risks (occurs in 10-25% or 10 to 25 out of 100 people):  Headache, 

nausea/vomiting, anorexia (loss of appetite). 

Infrequent (rare) risks (occur in 1-10% or 1 to 10 out of 100 people): Dizziness, flushing, 

alopecia (loss of hair), polyuria (frequent urination), nephrotic syndrome (swelling of the 

kidney), interstitial nephritis (inflammation of the kidney), leukopenia (low white blood 

cell count), anemia (low red blood cell count), allergic reaction (itching, swelling, hives), 

anaphylactic shock (severe/life threatening allergy). 
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As with the use of any drug there may be adverse events or side effects that are 

currently unknown and it is possible that certain of these unknown risks could be 

permanent, serious and life threatening.  

Being a part of this study while pregnant or breastfeeding may expose the unborn 

child or nursing infant to risks that are known and unknown. Therefore, pregnant and 

nursing women will not be included in this study. If you are a woman of childbearing 

potential, a urine pregnancy test will be done during a screening visit. It must be negative 

before you can enter this study. While receiving study drug, and for a period of 30 days 

after that you must agree to use appropriate methods of birth control. Medically 

acceptable birth control methods include: (1) surgical sterilization, (2) approved hormonal 

contraceptives (such as birth control pills or Lupron Depot), (3) barrier methods (such as 

a condom or diaphragm) used with a spermicide, or (4) an intrauterine device (IUD).  

 

What are possible benefits from taking part in this study? 

There is no guarantee that you will receive any benefit from participating in this study. 

However, your participation may help others in the future by what the doctors learn from 

your involvement in this study.   
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What treatment or procedures are available if I decide not to take part in this research 

study? 

If you decide not to take part in this research study, you will undergo normal procedures 

associated with the treatment of BK virus in kidney transplant recipients.  No routine 

treatment will be withheld. 

 

If I agree to take part in this research study, will I be told of any new risks that may be 

found during the course of the study? 

You will be promptly notified if, during the conduct of this research study, any new 

information develops which may cause you to change your mind about continuing to 

participate in this study. 

 

Will my insurance provider or I be charged for the costs of any procedures performed 

as part of this research study? 

All costs and tests done to treat you before and after your kidney transplant should be 

covered by your medical insurance. The tests included in this study are those that would 

normally be performed in kidney transplant recipients with the BK virus.  

Some of the services you will receive during this are “research only services” that 

are being done only because you are in the study. These services will be paid for by the 

study and will not be billed to your health insurance company or you.   The administration 

of the medication probenecid, pregnancy tests, the blood and urine testing done on study 1 

and 2 and the 24 hour urine collection test done twice will be paid for by the research 

study.   
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Some of the services you will receive during this study are considered to be 

“routine clinical services” that you would have even if you were not in the study.  An 

example would be receiving the cidofovir medication as your treatment.  These services 

will be billed to your health insurance company or you, if you do not have health 

insurance.   

You will be responsible for paying any deductibles, co-payments or co-insurance 

that are a normal part of your health insurance. You may want to get more detailed 

information about what “routine clinical services” your health insurance is likely to pay 

for.  You may want to talk to a member of the study staff and/or a UPMC financial 

counselor to get more information.   

 

Will I be paid if I take part in this research study? 

You will receive payment for parking during your participation in this study. In addition, 

you will receive meals during your 12-hour stay at the CTRC. 

 

Who will pay if I am injured as a result of taking part in this study? 

University of Pittsburgh researchers and their associates who provide services at 

University of Pittsburgh Medical Center (UPMC) recognize the importance of your 

voluntary participation in their research studies. These individuals and their staffs will 

make reasonable efforts to minimize, control, and treat any injuries that may arise as a 

result of this research. If you believe that you are injured as a result of the research 

procedures being performed, please contact immediately the Principal Investigator or one 

of the co-investigators listed on the first page of this form. 
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Emergency medical treatment for injuries solely and directly related to your 

participation in this research study will be provided to you by UPMC. It is possible that 

UPMC may bill your insurance provider for the costs of this emergency treatment, but 

none of these costs will be charged directly to you. If your research-related injury requires 

medical care beyond this emergency treatment, you will be responsible for the costs of 

this follow-up care unless otherwise specifically stated below. There is no plan for 

monetary compensation.  You do not, however, waive any legal rights by signing this 

form.  

 

Who will know about my participation in this research study? 

Any information about you obtained from this research will be kept as confidential 

(private) as possible. All records related to your involvement in this research study will be 

stored in a locked file cabinet. Your identity on these records will be indicated by a case 

number rather than by your name, and the information linking these case numbers with 

your identity will be kept separate from the research records. You will not be identified by 

name in any publication of the research results unless you sign a separate consent form 

giving your permission (release). 

 

Will this research study involve the use or disclosure of my identifiable medical 

information? 

This research study will involve the recording of current and/or future identifiable medical 

information from your hospital and/or other (e.g., physician office) records. The 
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information that will be recorded will be limited to information concerning demographics 

(age, gender, and race) and concurrent conditions and medications you are receiving.  

This research study will result in identifiable information that will be placed into 

your medical records held at the Starzl Transplantation Institute.  The nature of the 

identifiable information resulting from your participation in this research study that will 

be recorded in your medical record includes your age, gender, date of transplant, and lab 

values. Note that this information may already be in your medical records regardless of 

whether or not you agree to participate in this study. 

 

Who will have access to identifiable information related to my participation in this 

research study? 

In addition to the investigators listed on the first page of this authorization (consent) form 

and their research staff, the following individuals will or may have access to identifiable 

information (which may include your identifiable medical information) related to your 

participation in this research study:  

Authorized representatives of the University of Pittsburgh Research Conduct and 

Compliance Office may review your identifiable research information (which may include 

your identifiable medical information) for the purpose of monitoring the appropriate 

conduct of this research study. 

Authorized representatives from the Food and Drug Administration may review and or 

obtain your identifiable (which may include your identifiable medical information) related 

to your participation in this research study for the purposes of monitoring the accuracy 

and completeness of the research data.  While the U.S. Food and Drug Administration 
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understands the importance of maintaining the confidentiality of your identifiable research 

and medical information, the UPMC and University of Pittsburgh cannot guarantee the 

confidentiality of this information after it has been obtained by the U. S. Food and Drug 

Administration. 

          

Authorized representatives of UPMC hospitals or other affiliated health care providers 

may have access to identifiable information (which may include your identifiable medical 

information) related to your participation in this research study for the purpose of (1) 

fulfilling orders, made by the investigators, for hospital and health care services (e.g., 

laboratory tests, diagnostic procedures) associated with research study participation; (2) 

addressing correct payment for tests and procedures ordered by the investigators; and/or 

(3) for internal hospital operations (i.e. quality assurance). 

 

In unusual cases, the investigators may be required to release identifiable information 

(which may include your identifiable medical information) related to your participation in 

this research study in response to an order from a court of law.  If the investigators learn 

that you or someone with whom you are involved is in serious danger or potential harm, 

they will need to inform, as required by Pennsylvania law, the appropriate agencies. 

 

For how long will the investigators be permitted to use and disclose identifiable 

information related to my participation in this research study? 

The investigators may continue to use and disclose, for the purposes described above, 

identifiable information (which may include your identifiable medical information) 
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related to your participation in this research study for a minimum of 7 years and for as 

long (indefinite) as it may take to complete this research study. 

 

May I have access to my medical information that results from my participation in this 

research study? 

In accordance with UPMC Notices of Privacy Practices document that you have been 

given, you are permitted access to information (including information resulting from your 

participation in this research study) contained within your medical records filed with your 

health care provider. 

 

Is my participation in this research study voluntary? 

Your participation in this research study, to include the use and disclosure of your 

identifiable information for the purposes described above, is completely voluntary. (Note, 

however, that if you do not provide your consent for the use and disclosure of your 

identifiable information for the purposes described above, you will not be allowed to 

participate in the research study.)  Whether or not you provide your consent for 

participation in this research study will have on effect on your current and future care at a 

University or Pittsburgh or UPMC hospital or affiliated health care provider or your 

current or future relationship with a health care insurance provider.  

 Your doctor may be an investigator in this research study, and as an investigator, is 

interested both in your medical care and in the conduct of this research. Before entering 

this study or at any time during the research, you may discuss your care with another 
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doctor who is in no way associated with this research project. You are not under any 

obligation to participate in any research study offered by your doctor.  

 

May I withdraw, at a future date, my consent for participation in this research study? 

You may withdraw, at any time, your consent for participation in this research study, to 

include the use and disclosure of your identifiable information for the purposes described 

above.  (Note, however, that if you withdraw your consent for the use and disclosure of 

your identifiable medical record information for the purposes described above, you will 

also be withdrawn, in general, from further participation in this research study.)  Any 

identifiable research or medical information recorded for, or resulting from, your 

participation in this research study prior to the date that you formally withdrew your 

consent may continue to be used and disclosed by the investigators for the purposes 

described above. 

To formally withdraw your consent for participation in this research study you 

should provide a written and dated notice of this decision to the principal investigator of 

this research study at the address listed on the first page of this form. 

If you decide to withdraw from study participation after you have received the 

study drug, you should participate in described monitoring follow-up procedures directed 

at evaluating the safety of cidofovir and probenecid. 
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If I agree to take part in this research study, can I be removed from the study without 

my consent? 

 

It is possible that you may be removed from the research study by the researchers if, for 

example, your pregnancy test proves to be positive. You may be removed from the study 

if you experience unexpected or life-threatening side effects and in the opinion of the 

investigators that it is in your best interest. If you are withdrawn from participation in this 

research study, there will be no effect on your current or future medical care at a UPMC 

hospital or affiliated health care provider or your current or future relationship with a 

health care insurance provider. 
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******************************************************************** 

VOLUNTARY CONSENT 

 

All of the above has been explained to me and all of my current questions have been answered.  I 

understand that I am encouraged to ask questions about any aspect of this research study during the 

course of this study, and that such future questions will be answered by the researchers listed on the first 

page of this form.   

Any questions which I have about my rights as a research participant will be answered by the Human 

Subject Protection Advocate of the IRB Office, University of Pittsburgh (1-866-212-2668).  

� By signing this form, I agree to participate in this research study.  A copy of this     
      consent form will be given to me. 

 

________________________________   __________________ 

Participant’s Signature     Date 

 

CERTIFICATION of INFORMED CONSENT 

I certify that I have explained the nature and purpose of this research study to the above-named 

individual(s), and I have discussed the potential benefits and possible risks of study participation.  Any 

questions the individual(s) have about this study have been answered, and we will always be available to 

address future questions as they arise.”  

___________________________________  ________________________ 

Printed Name of Person Obtaining Consent  Role in Research Study 

 

_________________________________  ____________ 

Signature of Person Obtaining Consent  Date  
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