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This study investigated phonological awareness, phonological memory and rapid automatic 

naming abilities of adults who stutter and typically fluent peers. Many theorists posit that a delay 

or breakdown occurs during “phonological encoding,” or the retrieval or construction of 

phonological segments (Howell & Au-Yeung, 2002; Perkins, Kent & Curlee, 1991; Postma & 

Kolk, 1993; Wingate 1988). Efficient phonological encoding is predicated upon the ability to 

segment phonological representations in a rapid, precise manner. According to current theories, a 

delay or incomplete retrieval of lexical segments could impede the execution of the articulatory 

plan, thereby resulting in disfluent speech. Unfortunately, the process of phonological encoding 

is not directly observable and must therefore be explored though alternate processes that reflects 

its incremental nature. Phonological awareness, phonological memory and rapid automatic 

naming can be examined to accomplish this task. Several core mechanisms are utilized during 

phonological processing, and a deficit in any of these mechanisms could account for 

performance differences in phonological processing tasks. Completion of these tasks is 

dependent upon the quality of phonological representations in the lexicon, the ability to construct 

novel phonological codes online, and the ability to maintain phonological representations in 

memory. The process of redintegration, whereby pre-existing lexical-semantic knowledge is used 
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to supplement decaying or delayed phonological code (Hulme et al., 1997), can also play an 

important role in the completion of phonological processing tasks.  

Participants completed several tasks examining different aspects of their phonological 

processing abilities. Significant between-group differences were revealed on nonlexical 

phonological awareness tasks, nonword repetition tasks, and rapid automatic naming tasks that 

used lexical stimuli. Adults who stutter performed significantly less well than typically fluent 

adults on tasks that used nonlexical stimuli. Adults who stutter appear to rely heavily on lexical-

semantic information (redintegration) to bolster lower performance in other aspects of 

phonological encoding. Participants in both groups performed equally well on tasks that used 

lexical stimuli but not on tasks with nonlexical stimuli, indicating that between-group differences 

in phonological encoding exist. Differences in core mechanisms of phonological processing may 

reveal subtle linguistic differences that may contribute to an unstable speech system in people 

who stutter. 
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1.0 INTRODUCTION 

 

Stuttering is a communication disorder that is outwardly characterized as a difficulty in the 

initiation of speech (Bloodstein & Bernstein Ratner, 2008). Surface features of stuttering often 

involve word- or sound-repetitions (i.e., the first sound of a word is repeated multiple times), 

prolongations (i.e., the first sound of a word is drawn out before the rest of the word is spoken), 

or blocks (i.e., the first sound of a word is difficult to initiate). A number of theories of stuttering 

(Howell & Au-Yeung, 2002; Karniol, 1995; Kolk & Postma, 1997; Perkins, Kent and Curlee, 

1991; Postma & Kolk, 1993; Wingate 1988) have suggested that one potential cause for 

stuttering is a difficulty with the underlying selection and preparation of the sounds that form the 

words in a speaker’s message. Current psycholinguistic theories of typical language formulation 

refer to this process as "phonological encoding” (Dell, 1986; Dell & O'Seaghdha, 1992; Jansma 

& Shiller, 2004; Levelt, 1989; Levelt, Roelofs, & Meyer, 1999; Roelofs, 2004; Shattuck-

Hufnagel, 1979, 1992). Phonological encoding involves the retrieval of segments of 

phonological code (i.e., phonemes or syllables of a word) in an incremental, just-in-time manner 

to allow for efficient construction of phonological words. Although details of the stuttering 

theories vary, they all hypothesize that a delay or breakdown occurs when phonological words 

are constructed from individual phonemes (i.e., during the process of phonological encoding). 

There is evidence to suggest that aspects of phonological encoding may not be as efficient or 

effective in individuals who stutter, although some of these findings are equivocal (Bosshardt & 
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Fransen, 1996; Burger & Wijnen, 1999; Hennessey, Nang & Beilby, 2008; Sasisekaran & de Nil, 

2006; Sasisekaran, de Nil, Smyth & Johnson, 2006; Weber-Fox, Spencer, Spruill & Smith, 2004; 

Wijnen & Boers, 1994). Thus, further investigation of the role phonological encoding plays in 

stuttering is warranted. 

Phonological encoding is embedded within the language formulation process, thereby 

making it difficult to isolate from the rest of the language processes. Although many stuttering 

theorists suggest that phonological encoding may be a possible contributing factor in stuttering, it 

is a process that is obscured from direct observation (Coles, Smid, Scheffers, & Otten, 1995; 

Meyer 1992). Observation of other related processes may provide a window into phonological 

encoding and provide a parallel form of measurement. Thus, one way to learn about 

phonological encoding is through the investigation of phonological processing abilities. 

Phonological processing is an “umbrella term” that includes the skills of phonological 

awareness, phonological memory, and rapid automatic naming (Wagner, Torgesen, & Rashotte, 

1999). Phonological awareness is an individual’s ability to combine and break apart the 

individual sounds of words. Phonological memory is the ability to maintain phonological and 

auditory information for short-term retrieval, and rapid automatic naming is an individual’s 

ability to retrieve coded phonetic information rapidly by converting orthographic symbols into a 

meaningful string of phonemes. Performance on tasks of phonological awareness (that reflect the 

construction and deconstruction of phonemes, syllables and words) and phonological memory 

(that help maintain the phonological code while the entirety of a word’s phonological code is 

retrieved) parallels the processes that occurs during phonological encoding, thus providing a 

valuable research tool in the investigation of the phonological encoding skills of people who 
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stutter (Acheson & MacDonald, 2009; Sasisekaran & de Nil, 2006; Sasisekaran et al., 2006; 

Weber-Fox et al., 2004; Wijnen & Boers, 1994).  

Despite the interest in phonological encoding in theories of stuttering, there is little 

published research that explicitly examines the phonological processing skills of individuals who 

stutter. Some evidence exists that children who stutter perform differently on phonological 

processing tasks as compared to their non-stuttering peers (Anderson, Wagovich, & Hall, 2006; 

Arnold, Conture, Byrd, Key, Mathiesen, & Coulter, 2006; Byrd, Conture, & Ohde, 2007; Hakim 

& Bernstein Ratner, 2004; Pelczarski & Yaruss, 2008; Seery, Watkins, Ambrose & Throneburg, 

2006; Weber-Fox, Spruill, Spencer & Smith, 2008). Few studies have investigated these same 

processes in adults who stutter. This is surprising considering that the theoretical models of 

stuttering are nearly all based on the fully-specified adult speech system (Howell & Au-Yeung, 

2002; Kolk & Postma, 1997; Perkins et al., 1991; Postma & Kolk, 1993; Wingate 1988; cf. 

Karniol, 1995). Thus, it would be beneficial to investigate the phonological processing skills of 

adults who stutter to be able to equate the results directly with the theoretical models of 

stuttering.  

Exploration of the individual aspects of phonological processing may help identify 

specific factors that influence phonological encoding. Potential differences in phonological 

encoding may be the result of phonological awareness difficulties (suggesting that any 

difficulties may lie in the incremental retrieval process of phonological encoding), phonological 

memory difficulties (suggesting that short-term memory may be impaired in terms of 

maintaining the phonological code during phonological encoding), or rapid automatic naming 

(suggesting that the ability to rapidly decode symbols of the language may influence 
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phonological encoding). These differences may further inform what is known about phonological 

encoding in people who stutter and provide additional information about linguistic factors that 

influence stuttering in both children and adults. Understanding these linguistic factors can help 

direct future evidence-based clinical treatments by allowing clinicians to treat areas of weakness 

or utilize strengths in the phonological encoding system. Thus, this study investigates the 

phonological processing abilities of adults who stutter, while examining the individual 

components of phonological processing and how they interact in adults who stutter.  
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2.0 LITERATURE REVIEW 

 

Thorough investigation of the phonological processing skills of adults who stutter requires 

review of a number of different literatures. First, a model of typical language planning is 

presented to provide an overview of how language is formulated and the role phonological 

encoding plays in that process. Many theories of stuttering implicate phonological encoding as a 

possible locus for stuttering which suggests that closer examination of a more specified model of 

phonological processing is warranted. Ramus, Peperkamp, Christophe, Jacquemot, Kouider, & 

Dupoux (2010) provide such a model and it is reviewed in the context of phonological 

processing skills. A model of phonological memory (Baddeley & Hitch, 1974; Baddeley, 2000) 

is presented to provide a theoretical framework for understanding the contribution of both short- 

and long-term memory stores to phonological processing. Next, a review of the phonological 

processing literature provides some background on how phonological awareness, phonological 

memory, and rapid automatic naming skills present in typically fluent individuals. The recent 

research on the phonological processing skills of adults who stutter is presented next and 

discussed within a theoretical framework. Finally, six research questions are offered as an outline 

of the goals of the current study. Review of this evidence will allow for a clear understanding of 

the importance of phonological processing in adults who stutter and how examination of 

phonological processing skills will aid in furthering our understanding as to whether adults who 

stutter possess different phonological encoding skills.  
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2.1 TYPICAL LANGUAGE FORMULATION 

 

WEAVER++, a model of lexical access developed by Levelt and colleagues, is one of the most 

often-cited and fully specified theories of typical language formulation (Cholin, Levelt & 

Schiller, 2006; Cholin, Schiller, & Levelt, 2004; Jansma & Shiller, 2004; Levelt, 1989; Levelt et 

al., 1999; Roelofs, 1997a; 1997b; 1999; 2004). The current version of the model consists of four 

general processing stages: 1) conceptualization, 2) lexical selection, 3) formulation, and 4) 

articulation (Figure 1). The first stage of language formulation begins with a thought or idea at 

the level of the conceptualizer. It is during this process that the conceptualizer generates the 

content of a speaker’s intended message. Each entry in the mental lexicon is represented by a 

lemma that contains an item’s specific meaning and syntactic information, while the 

phonological form of the item is contained within the lexeme. The lexicon is considered a long-

term memory store for this information (Gathercole, 1995). The formulation stage of 

WEAVER++ uses the information stored in both the lemma and lexeme to facilitate two 

encoding processes: grammatical encoding and phonological encoding. Grammatical encoding is 

a process that utilizes the information from the lemma to select appropriate syntactic structures to 

create grammatically correct utterances. The process of phonological encoding, on the other 

hand, retrieves the phonological code from the selected lexemes to assemble the phonetic form  
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Figure 1. Outline of WEAVER++ stages of language formulation. (Levelt et al., 1999) 
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of an utterance. The phonological code obtained from the lexeme does not contain any metrical 

or defined syllabic properties. Such information is added at the level of phonological encoding. 

Syllable boundaries, as well as metrical and segmental information, are determined in the context 

of the utterance during the process of phonological encoding and are utilized in phonetic 

encoding. The two processes of phonological encoding and phonetic encoding occur nearly 

simultaneously but involve different tasks (Cholin et al., 2004; Cholin et al. 2006; Levelt et al., 

1999). Once the phonemes that make up the initial syllable are retrieved during phonological 

encoding, phonetic encoding begins to incrementally retrieve the articulatory gestures for each 

phonologically specified syllable of the utterance in a sequential manner. These gestures are then 

utilized in the process of articulation. This final process is responsible for the execution of an 

articulatory plan for the intended utterance resulting in the output of overt speech. Many aspects 

of WEAVER++ have been experimentally supported through empirical investigations, although 

embedded processes such as phonological and phonetic encoding have been difficult to isolate 

and measure. Investigation of the more observable processes of phonological encoding is one 

way to gain additional information about the complex process of language formulation.  

Although WEAVER++ is an influential language formulation model, it only partially 

represents the processes required to complete tasks of phonological awareness and phonological 

memory. WEAVER++ models the journey from a thought or concept through to speech output. 

However, most phonological processing tasks require more than just the “output” stage of 

language formulation. These tasks require an individual to hear stimuli, perform some sort of 

manipulation or identification, depending on the task, and then provide a spoken response. 

WEAVER++ only models language formulation, thus describing only half of the process that 
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occurs during the completion of phonological processing tasks. A model that includes both 

speech perception and production would provide a framework to specifically examine 

phonological processing skills and is reviewed below.   

 

2.1.1 An information processing model of speech perception and production 

 

Ramus et al. (2010) present what they label a “general model” of speech perception and 

production, based on theories like WEAVER++.  Ramus et al. have embedded WEAVER++ into 

their model (as indicated by the gray-shaded boxes in Figure 2) and inserted additional processes 

to provide a more comprehensive view of what occurs during completion of phonological 

processing tasks. Upon closer examination, it appears that two main routes that can be accessed 

when an individual completes a phonological awareness task: a lexical route, indicated by the 

large red circle, and a phonological route, indicated by the relatively smaller blue circle (see 

Figure 2). The lexical route is one that uses information contained in the lexicon to generate a 

response to speech input. This would be the case for most situations, with the exception being 

nonword repetition tasks (discussed below in section 2.2.2). Working from the bottom up, the 

lexical route begins when words are spoken by an outside source and an individual must make 

sense of the incoming acoustic information. This is accomplished by the retrieval of the acoustic 

representation and the subsequent decoding of the acoustic signal, via Arrow 2b, into a speech-

specific phonological code (i.e., phonological word) at the level of Input Sublexical  
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Figure 2.Information processing model of speech perception and production. Blue (small dashes) and red (long 
dashes) colored routes added by the current author for illustrative purposes. (Ramus et al., 2010) 
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Phonological Representation. The lexicon is then accessed, via Arrow 1b, in an attempt to match 

the auditorily presented phonological word to existing entries in the lexicon. Situated at the top 

of the figure, the lexicon contains orthographic, semantic, and phonological representations that 

provide information comparable to the lexemes found in WEAVER++ (Levelt, 1989; Levelt et 

al., 1999, Roelofs, 1997a). Once at the level of the lexicon, the meaning of the utterance can be 

determined and a response formulated. When an individual generates a response to the 

phonological input, the top of Figure 2 serves as the point of initiation and follows a series of 

steps similar to those found in WEAVER++ (Levelt, 1989; Levelt et al., 1999, Roelofs, 1997a). 

The phonological code is retrieved from the lexical phonological representation and travels 

down to the Output Sublexical Phonological Representation via Arrow 1a. Output Sublexical 

Phonological Representation acts as Levelt’s phonological encoding, while Arrow 2a acts as 

Levelt’s phonetic encoding. Arrow 2a delivers the phonetic code as the articulatory 

representation resulting in the output of speech. This is the route that would occur during most 

instances of speech. The phonological route (blue circle) provides an alternative to the typical 

lexical route and can be used in the performance of phonological processing tasks. The bi-

directional arrows that share information between the Input and Output Sublexical Phonological 

Representation levels (i.e., the blue circle) would allow an individual to hear an auditorily 

presented item and repeat it back without a need to access the lexicon at all (Ramus et al., 2010).  

Nonword stimuli are commonly used to test the phonological processing skills of 

phonological awareness and phonological memory. The lexicon does not possess any semantic, 

orthographic or phonological representations for nonwords, thus, the phonological route could be 

utilized for tasks involving nonwords, as with phonological awareness and phonological memory 
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tasks. To access the phonological route, the speech input would be heard and the code would 

travel up Arrow 2b to the input phonological representation. Instead of continuing up Arrow 1b 

to the lexicon, the phonological code would be directly communicated from input to output 

sublexical phonological representation where the articulatory plan could be generated. The 

inclusion of two separate routes connected bi-directionally originated from case studies of 

conductive aphasia, where individuals with relatively intact language skills were able to repeat 

auditorily-presented real words, but not nonword utterances (Caramazza, Basili, Koller & 

Berndt, 1981). Ramus suggested that repetition of a nonword could bypass the lexicon all 

together and simply travel from the input phonological representation to the Output Sublexical 

Phonological Representation. However, this explanation does not account for the well-known 

influence of word-likeness on nonword repetition. Nonwords that are more “real word-like” are 

repeated faster and more accurately than less “word-like” nonwords (Hulme, Maughan, & 

Brown, 1991). There is also a tendency for nonwords to be lexicalized in error when the 

nonword is replaced with a real word that already exists in the lexicon (Ferraro & Sturgill, 1998). 

Additionally, many researchers argue for the existence of a process termed redintegration, in 

which access to lexical-semantic knowledge found in the lexicon are used to support language 

processes that might be weak or degraded (Baddeley, 1966; 1968; 2000; Baddeley & Hitch, 

1974; Baddeley & Larsen, 2007; Hoffman, Jefferies, Ehsan, Jones, & Lambon, 2009; Hulme et 

al., 1997; Mueller, Seymour, Kieras, & Meyer, 2003; Roodenrys, Hulme, Alban, & Ellis, 1994). 

These factors argue against the idea of a purely phonological route, and suggest that perhaps the 

two routes may be combined. 
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A third possible route, in addition to the separate lexical and phonological routes, would 

include simultaneous lexical access while the phonological code of a nonword is communicated 

between input and output routes. Concurrent access to the lexicon, as well as communication 

between Input and Output Sublexical Phonological Representations, would account for the 

phenomena mentioned above.  

Although the model was not designed to specifically account for what occurs during a 

phonological processing task, it can be used to hypothesize how the tasks could be completed 

within the model’s framework. An example of a typical phonological awareness task 

demonstrates how the interaction between Input and Output Sublexical Phonological 

Representations can occur. Elision is a task that creates an artificial situation that does not occur 

in typical communication, but is used to measure phonological awareness skills. In this task, a 

phoneme of a given target word is removed, resulting in a new word (e.g., /fɑrm/ without saying 

/f/ = /ɑrm/). The task begins with the auditory delivery of the stimulus word and the phoneme to 

be removed. The task may then proceed in a number of different ways. The first scenario 

requires lexical access to complete the task. The phonological code of the stimulus word is heard 

and travels from the Input Phonological Representation level up to the lexical phonological 

representations in the lexicon via the lexical access route. The Input Sublexical Phonological 

code would then be matched to the lexical phonological representation in the lexicon and passed 

down to the level of Output Sublexical Phonological Representations (via Arrow 1a). There, the 

phonological code could be manipulated by the removal of a phoneme (e.g., /fɑrm/ “farm” minus 

/f/). The newly-formed phonological code (e.g., /ɑrm/) is then “double checked” with the input 

phonological representation via the bi-directional connection between input- and output- 
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sublexical phonological representations. It is also possible that the lexicon is accessed again to 

confirm the newly-formed word via Arrow 1b after the phoneme has been removed.  A second 

scenario that could theoretically describe the completion of the phonological awareness task of 

elision would entail use of the phonological route to complete the task. The stimulus word would 

be heard and maintained at the level of Input Phonological Representation and transferred 

directly to the Output Phonological Representation, thus by-passing the lexicon. There, the 

phonological code could be manipulated by the removal of a phoneme (e.g., /fɑrm/ minus /f/). 

The newly-formed phonological code (e.g., /ɑrm/) could then be turned into an articulatory 

representation and spoken aloud. In the final theoretical scenario to complete an elision task, 

access to a combination of these two routes could occur. The phonological code would be 

directly transmitted from Input to Output Phonological Representation for processing via the bi-

directional pathway while the lexicon is concurrently accessed. The lexical access component 

would include activation of the original stimulus word (e.g., /fɑrm/), as well as an attempt to find 

a lexical match for the new target item (e.g., /ɑrm/). The various scenarios presented above are 

speculation at this point, as Ramus et al.’s model is not yet specified enough to provide an 

answer as to what may occur during these types of tasks. Considering the widely accepted 

influence of the lexicon it would be difficult to find sufficient evidence to support a purely 

phonological route. Yet, there may be certain situations where that may be the case (i.e., 

nonword repetition). The scenario that accounts for the strong influence of the lexicon, described 

above points toward the likelihood that individuals use a combination of both lexical and 

phonological routes the majority of the time.  
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The elision task described above illustrates how the phonological code of a given 

stimulus could be segmented and manipulated, via the removal of a given phoneme resulting in 

the creation of a new word. However, while considering what occurs during elision, it becomes 

clear that completion of the task would not be possible without the contribution of some 

mechanism that allows for the phonological code to be maintained long enough for the 

manipulation to occur (i.e., via phonological working memory).  

 

2.1.2 Contribution of phonological working memory to language  

 

Theoretical models of working memory account for a wide range of working memory systems, 

including visual working memory, episodic working memory, short-term memory, and long-term 

memory (Baddeley, 2000; Baddeley & Hitch, 1974; Baddeley & Larsen, 2007; Baddeley, 

Thomson & Buchanan, 1975; Baddeley & Wilson, 1993). Baddeley and Hitch (1974) proposed a 

prominent model of working memory that originally consisted of two components mediated by a 

single controlling entity. The most recent iteration of Baddeley’s working memory model (2000) 

includes multiple components that work together to integrate and maintain information from both 

short-term and long-term memory stores (Figure 3). The model consists of a central executive 

that is the controlling body of the working memory system. The central executive mediates and 

integrates short-term storage information received from two main streams: the visiospatial 

sketchpad which is responsible for visual input, and a phonological loop which is responsible for 

auditory input. Additionally, an episodic buffer serves as a third short-term storage device that 

integrates “multi-dimensional code” obtained from the visiospatial sketchpad, the phonological 
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loop, and long-term memory (i.e., visual, episodic, and language). This information is bound 

together to create an “episode” that can be volitionally recalled and is believed to aid in long-

term learning (Baddeley, 2000).  Auditory information is analyzed by the phonological loop and  

forwarded to a phonological buffer. The information in the phonological buffer is subject to  

 

 

Figure 3. Baddeley’s model of working memory. This figure represents the most recent iteration of the model and 
includes additional features to account for influences of visual semantics, episodic LTM and linguistic influences 

(Baddeley, 2000). 

 

rapid decay, as the system will only hold phonological information for a brief window of time. 

Phonological data in the buffer can be recycled and maintained for longer periods via silent or 

overt rehearsal (Baddeley, 1966; 1968; 2000; Baddeley & Hitch, 1974; Baddeley & Larsen, 

2007). Additionally, the short-term maintenance of decaying phonological codes can also be 

refreshed via access to long-term memory stores, like the lexicon, which further bind information 

contained within the phonological buffer (Dell, Schwartz, Martin, Saffran, & Gagnon, 1997; 

Hoffman et al., 2009; Martin & Gupta, 2004; Martin, Lesch, & Bartha, 1999; Patterson, Graham, 

& Hodges, 1994; Thorn, Gathercole, & Frankish, 2005). These processes highlight the 
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importance of lexical access in working memory as well as in the perception and production of 

speech (Dell et al., 1997; Hoffman et al., 2009; Martin & Gupta, 2004; Martin et al., 1999; 

Patterson et al., 1994; Thorn et al., 2005). Both working memory and language formulation and 

production are influenced in similar ways by positional constraints, phonological similarity and 

long-term effects of linguistic knowledge (Acheson & MacDonald, 2009). Acheson and 

MacDonald suggest that working memory “might be viewed as the phonological encoding 

process itself” (p.56), providing further support that phonological processing skills are a valuable 

tool to investigate the obscured process of phonological encoding. 

Baddeley’s model is intended to cover a wide range of short-term memory phenomena 

but is not specific to any one aspect of short-term memory. Of particular interest to the current 

discussion is phonological memory, which is the ability to maintain phonological and auditory 

information for short-term retrieval and is so vital to performance of phonological processing 

tasks. In the present study, the discussion is focused specifically on phonological memory and its 

connections to the lexicon; a long-term memory store that can be used to help with the 

maintenance of phonological code in working memory.  Gupta and MacWhinney (1997) 

suggests that phonological memory and vocabulary acquisition are closely connected and share 

some of the same underlying mechanisms.  
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2.2 PHONOLOGICAL PROCESSING 

 

As mentioned above, phonological processing is an umbrella term that includes three skill sets: 

phonological awareness, phonological memory, and rapid automatic naming. The 

Comprehensive Test of Phonological Processing: 5-6 year olds (CTOPP; (Wagner, Torgesen, & 

Rashotte, 1999) is one standardized test that can be used to measure all three skill sets. 

Successful completion of phonological encoding requires the efficient retrieval of phonological 

segments, while phonological processing tasks measure an individual’s ability to identify and 

manipulate these phonological segments. Although phonological encoding and phonological 

processing are distinct abilities, investigation of phonological processing can provide insight into 

the specificities of an individual’s phonological encoding abilities. Thus, each of the specific 

skills comprising phonological processing will be discussed in more detail in the sections below. 

 

2.2.1 Phonological awareness 

 

Phonological awareness is an individual’s ability to identify, isolate, and manipulate various-

sized segments of speech (e.g., words, syllables, onsets/rimes, & individual phonemes). 

Phonological awareness begins to develop in very young children and continues to mature into 

adulthood. During the initial stages of development, a child’s awareness is implicit: there is some 

level of understanding of sentences and words, but a child cannot isolate or identify these 

segments volitionally (Carroll, Snowling, Hulme, & Stevenson, 2003; Gombert, 1992). This 
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vague awareness is inconsistently present until approximately the age of five, when phonological 

awareness is believed to stabilize enough to be reliably measured (Bryant, MacLean, Bradley, & 

Crossland, 1990; Lonigan, Burgess, & Anthony, 2000; Nittrouer et al., 1989; Snowling & 

Hulme, 1994; Wagner, Torgesen, Laughon, Simmons, & Rashotte, 1993; Wagner et al., 1997). 

As children mature, phonological awareness expands to include not only large phonemic units, 

such as sentences and words, but also an awareness of more fine-grained phonemic 

representations, such as syllables and individual phonemes. Phonological awareness in older 

school-age children and adults is explicit: they are able to volitionally identify, segment, and 

manipulate words down to the smallest constituent sound (Anthony & Lonigan, 2004; Anthony, 

Lonigan, Driscoll, Phillips, & Burgess, 2003; Fox & Routh, 1975; Liberman, Shankweiler, 

Fischer, & Carter, 1974; Nittrouer et al., 1989; Treiman, 1992; Treiman & Breaux, 1982, 

Treiman & Zukowski, 1991; 1996). Tasks that measure phonological awareness must be diverse 

enough to capture the full range of abilities and include measures of identification, blending, 

segmentation, and the ability to reverse or manipulate the position of specific phonemes. 

 

2.2.1.1 Phonological awareness measurement 

 

Various aspects of phonological awareness can be measured through a battery of tasks that are 

sensitive to the developmental changes that occur as a child matures to adulthood. This can be 

accomplished through task selection, as well as through hierarchical adjustments to the stimuli 

used in each task. There are three main accommodations that can be used to adjust the difficulty 
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level for each task:  (a) segment size, (b) number of syllables, and (c) degree of phonological 

complexity. The segment size to be manipulated or identified can make a task more or less 

difficult. The smaller the size of the segment (e.g., phonemes vs. words), the more 

developmentally difficult it is to identify and manipulate. The length of the stimuli in terms of 

the number of syllables used for each individual task can also be altered to account for 

developmental differences. Tasks containing more syllables are more difficult to complete as 

there are more phonemes to identify, sort, or blend (Sevald, Dell & Cole, 1995). The level of 

phonological complexity of the stimulus items will increase in difficulty with the presence of 

consonant clusters, as well as the inclusion of later developing phonemes (Moore, Tompkins, & 

Dollaghan, 2010; Storkel, 2001). Based on these parameters, the ability to identify and isolate an 

individual phoneme that is embedded in a consonant cluster is the most difficult because it is the 

most developmentally advanced. Many children consider consonant clusters to be a single unit, 

rather than individual phonemes (Snowling & Hulme, 1994, Storkel, 2001). For instance, 

children will identify /trit/ as having 3 phonemes: /tr-i-t/, rather than 4 phonemes: /t-r-i-t/. 

Segment size, stimuli length, and phonological complexity are all factors that are modified in the 

tasks of elision, word- and sound- blending, segmentation, word reversal, and phoneme deletion. 

These task modifications provide access to different facets of phonological awareness ability.  

Accuracy and response time are two performance measures of phonological awareness 

tasks. The number of correct answers or productions determines an accuracy score, while the 

length of time required to complete a task is measured by verbal response time. Adults who 

stutter can demonstrate motoric instability during spoken word production, even during 

perceptually fluent speech (DeNil, 1995; McClean, Kroll, & Loftus, 1990; McClean, 
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Levandowski, & Cord, 1994; Smith, Sadagopan, Walsh, & Weber-Fox, 2010; Zimmermann, 

1980). Thus, even if only perceptually fluent spoken samples are used, any between-group 

differences in tasks requiring verbal responses may reflect motoric differences or differences due 

to linguistic planning stages of the task. Several researchers have reported that adults who stutter 

complete phonological awareness tasks more slowly than typically fluent adults (discussed in 

more detail in section 2.3.1). Although delays have been reported, it is unclear whether these 

reported delays are due to processing delays or delays due to differences in speech motor control. 

An alternative to a timed verbal task is to conduct a silent phonological awareness task 

immediately followed by a lexical decision task which provides a nonverbal response from 

which to determine how long it takes to complete the primary phonological awareness task. 

Phonological awareness tasks can also be modified through use of lexical (i.e., real word) 

or non-lexical (i.e., nonword) stimuli to access different processing routes. Real word stimuli 

would access the lexical route, while the nonword tasks may be processed via the phonological 

route as outlined in Ramus et al.’s model. As mentioned in the section on theoretical models of 

language, access to the lexicon can influence task performance (i.e., redintegration). Tasks using 

words with an existing lemma (i.e., real words) have well-established activations that are 

accessed more quickly because they do not have to be newly constructed. The example of the 

elision task above illustrates that while the target phoneme is removed from the phonological 

code of the original word; the lexicon is searching for an appropriate target by comparing the 

partial phonemic code to possible matches. Often, a match can be found without the complete 

phonological code, before the task is fully completed, through a general understanding of 

language and phonotactic constraints (Gathercole, Frankish, Pickering & Peaker, 1999; Storkel, 
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2001; Storkel, Armbruster, & Hogan, 2006). Alternatively, non-lexical stimuli do not profit as 

much from the aid of the lexicon as do real-word stimuli. If a task is performed solely through 

the manipulation of the phonological code, as is presumed to be the case when nonwords are 

used, the target word would need to be newly assembled (Ramus et al., 2010). Construction of a 

novel phonological code takes longer to complete because it is generated on-line thereby 

increasing the length of time required to complete phonological awareness task that use nonword 

stimuli (Durgunoglu & Oney, 1999; Wagner et al., 1999). Although tasks using nonword stimuli 

take longer to complete, they can provide a closer approximation of phonological awareness skill 

level, separate from the influence of lexical access (Durgunoglu & Oney, 1999; Wagner et al., 

1999). The resulting task creates an artificial situation, because lexical access is not typically 

restricted during speech, yet it isolates the processes that are used in phonological awareness 

tasks. 

Phonological memory also contributes to performance ability in phonological awareness 

tasks discussed above, and a strong relationship exists between the two (Dickinson, McCabe, 

Anastasopoulos, Peisner-Feinberg, & Poe 2003; Dickinson & Snow, 1987; Wagner, Torgesen, & 

Rashotte 1994). Empirical evidence suggests that phonological processing skills interact more in 

younger children and separate into distinct processing skill-sets in older children and adults 

(Cornwall, 1992; Gathercole, Willis & Baddeley, 1991; Savage et al., 2005). Although 

phonological memory tasks have been shown to measure abilities that are distinct from 

phonological awareness, phonological memory remains a skill that is necessary for the 

completion of phonological awareness tasks (Lonigan, Wagner, Torgesen & Rashotte, 2007; 

Wagner et al., 1999). As the length and complexity of a stimulus item increases, so does the 

requirement that the phonological codes be maintained in phonological memory to allow for 
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successful completion of the desired manipulation via a phonological route (Lonigan et al., 2007; 

Wagner et al., 1999). A full understanding of the range of phonological awareness skills, and the 

influence of lexicality on performance of phonological awareness tasks, can be gained through 

administration of a series of tasks that explore the segmental nature of language both with and 

without access to the lexicon. These tasks are discussed in detail next as well as in Table 1.  

 

2.2.1.2 Elision 

 

Elision, as mentioned above, requires the breaking apart of auditorily presented words to create a 

new word through the removal of specific phonological segments. The participants are presented 

with a target word (e.g., /mit/ “meet”) and instructed to remove one phoneme to create a different 

word (e.g., /mit/ without /t/ is /mi/). As mentioned above, phonological awareness tasks for 

children differ from adults primarily in the length and complexity of the stimuli. Thus, removal 

of larger segments, such as those found in compound words (e.g., Say /rplen/ “airplane” without 

saying /r/, with the correct response being /plen/), is developmentally easier than the removal of 

smaller segments, such as phonemes at the beginning of a word (e.g., Say /kʌp/ “cup” without 

saying /k/, with the correct answer being /ʌp/), or at the end of a word (e.g., /ut/ “shoot” without 

/t/ is /u/). Most difficult is the removal of phonemes in the middle of a word (e.g., say /taIgɚ/ 

“tiger” without saying /g/ with the correct answer being /taIɚ/) because the embedded phoneme 

needs to be extracted while keeping the other phonemes in mind to create the new word. This 
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task requires the maintenance and manipulation of the phonological code in phonological 

memory while the mental lexicon is searched for the new target word.  

 

2.2.1.3 Blending 

 

Blending requires the combination of individually presented words, syllables, and phonemes to 

be formed into a real word (e.g., /p--p-k-ɔr-n/ “popcorn” blends together as /ppkɔrn/; / m-æn/ 

“man” blends together as / mæn/; / k-æ-t/ “cat” blends together as / kæt/). Again, difficulty for 

blending can be modified through the adjustment of the size of the segments to be blended. 

Small segments are more challenging to blend than syllable- or word-sized segments. For 

example, blending the word /pɑp- kɔrn/ is an easier task than blending individual phonemes, as 

in / p-ɑ-p-k-ɔr-n/. Stimuli length can be modified by increasing the number of phonemes to be 

blended, thus increasing the task difficulty (e.g., /mi/ “me” versus / græshǒpɚ/ “grasshopper”). 

The increased difficulty of the task can be attributed to having more phonemes to blend, but an 

additional contribution from phonological working memory is also required (Lonigan et al., 

2007; Wagner et al., 1999). Phonological complexity is the final parameter that can be adjusted 

to account for developmental differences. The more consonant clusters contained in the blended 

target, the more difficult the task (e.g., / t-ɛ-l-ʌ-f-o-n/ = / tɛlʌfon/ “telephone” is easier than / s-p-

r-ɪ-ŋ-b-ɔr-d/ = /sprɪŋbɔrd/ “springboard”).  
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2.2.1.4 Segmentation 

 

Segmentation is a task that requires participants to listen to a word and repeat back the 

constituent phonemes individually (e.g., / mæt/ “mat” becomes / m-æ-t/). Task items that contain 

consonant clusters are more difficult, as it is developmentally more difficult to separate 

consonant clusters (e.g., /græshǒpɚ/ becomes /g-r-æ-s-h-ǒ-p-ɚ/). Segmentation of consonant 

clusters is one of the more difficult tasks for younger children (Sevald et al., 1995). The task of 

identifying and breaking apart the individual phonemes of a word into segments relies heavily on 

phonological memory. A word’s phonological code is heard and maintained in phonological 

memory, while each phoneme is spoken individually. Segmentation tasks can achieve various 

difficulty levels through modification of stimuli length and phonological complexity. The longer 

the stimulus item, the longer it must be maintained in memory while it is broken apart (e.g.,  

/mæθʌmætɪks / “mathematics” becomes /m-æ-θ-ʌ-m-æ-t-ɪ-k-s/).  

 

2.2.1.5 Phoneme reversal  

 

School-aged children and adults are able to perform more complex phonological awareness tasks 

that require manipulation of phonemes in addition to combining or separating sounds, as is the 

case with elision, blending and segmentation. Participants completing a phoneme reversal task 

are presented with a pseudo-word (e.g., /nups/ “noops”) and asked to reverse the order of the 

phonemes to create a new real word (e.g., /nups/ is /spun/ “spoon” backwards). This task requires 

the auditory perception of a word and the maintenance of the phonological code in working 
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memory while the phonemes to be reversed are identified and manipulated. Presumably, this can 

be accomplished solely through maintenance in phonological working memory, or in the more 

likely scenario, through the use of lexical access (i.e., redintegration) to help identify the new 

target word as is the case for phoneme blending and elision tasks (Hulme et al., 1997; Roodenrys 

et al., 1994). 

 

2.2.1.6 Silent phoneme blending task 

 

In addition to determining task accuracy, a combined silent phoneme blending/lexical decision 

task can help determine if adults who stutter perform phonological awareness tasks more slowly 

than adults who do not stutter without involving the speech motor system. This task uses both 

real word and nonword stimuli, so both the lexical and phonological routes would be accessed 

during completion of this task. Participants hear the individual phonemes and silently blend them 

together into either a real word or a nonword. Once the item is blended, a choice can be made 

regarding the blended item’s lexical status. The decision would then be recorded through the 

pressing of a button on a stimulus response box that marks the accuracy and length of time taken 

to complete the task. Details of this procedure are discussed in more detail in section 3.5.3. 

Closely paired with the silent phoneme blending/lexical decision task is the tradition lexical 

decision task. The lexical decision task serves two purposes. The first goal of the task is to 

provide a measure of the participants’ lexical abilities. Specifically, it is important to determine 

whether there are any between-group differences in lexical access that might account for 

potential differences revealed in the silent phoneme blending/lexical decision task.  One way to 
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confirm that the groups have typical lexical abilities is to determine the presence of the well-

documented and expected lexical status effect (Durgunoglu & Oney, 1999; Wagner et al., 1999) 

and length effect (Meyer, Roelofs, & Levelt, 2003; Meyer, Belke, Hacker, and Mortensen, 2007; 

Santiago, MacKay, Palma, & Rho, 2000). Typical populations are able to discern real word 

stimuli more quickly than nonword stimuli (i.e., lexical status effect) and to respond to shorter 

stimuli faster than longer stimuli (length effect). The presence of these robust effects would 

indicate whether or not the two groups’ lexical abilities are typical. The second purpose of the 

task is to provide a means for “subtracting out” the time required for a lexical decision from the 

silent phoneme blending/lexical decision task. When the participants’ lexical decision time is 

statistically removed, a closer estimate of the time taken to blend the phonemes remains. Similar 

instructions are used for the lexical decision task as are used for the silent phoneme 

blending/lexical decision task. Participants listen to an aurally-delivered stimulus and make a 

decision regarding the item’s lexical status by pressing a button to indicate their choice. The 

same stimulus response box is used to record the length of time and accuracy of an individual’s 

decision as to whether the stimulus was a real word or nonword. Silent phoneme blending/lexical 

decision tasks allows for a duration measurement without the interference of the speech motor 

system. 

 

2.2.1.7 Summary 

 

The tasks reviewed above allow for use of both the lexical and phonological access routes. 

Phonological awareness task difficulty can be modified through manipulation of a number of 
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parameters, including lexical status, stimulus length, and phonological complexity. These stimuli 

manipulations allow the same tasks to be used with both young children and adults without the 

risk of ceiling effects. The facilitative role lexical access plays in successful completion of 

elision, sound blending, and phoneme reversal tasks also highlights the importance of using both 

real-word and nonword stimuli to fully measure an individual’s range of phonological awareness 

abilities. Finally, although phonological awareness and phonological memory are separate skills, 

phonological memory is an essential component in the completion of these tasks phonological 

awareness tasks. Without it, the phonological codes could not be maintained in short-term 

memory long enough for the manipulations required by phonological awareness tasks to be 

completed.  
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Table 1. Phonological awareness tasks.  Descriptions and examples of phonological awareness tasks. 

Task  Task Description  Examples 

Elision  
(Lexical Route) 

Create new words from existing words 
by removing a given segment (word or 
phoneme) 

/ɛrplen/ “airplane” without saying /ɛr/ = /plen/    

/kʌp/ “cup” without saying /k/ = /ʌp/  

/taɪgɚ/ “tiger” without saying /g/ = /taɪɚ/ 

Elision  
(Non-lexical/ 
Phonological Route) 

Create new non-word from existing 
real words by removing a given 
segment (word or phoneme) 

/kɑrn/ “karn” without /k/ is /ɑrn/ = nonword 

Blending  
(Lexical Route) 

Formation of real words by 
synthesizing sounds together (words, 
syllables, phonemes) 

/k-æ-t/ “c-a-t” blends together as /kæt/ 

Blending 
(Non-lexical/ 
Phonological Route) 

Formation of nonwords by 
synthesizing sounds together 
(syllables, phonemes) 

/l-u-d-æ-t/ “loodat” blends together as /ludæt/ 

Segmentation  
(Lexical Route) 

Name the constituent phonemes that 
construct a given word 

/mæt/ “mat”  = /m-æ-t/ 

Segmentation  
(Non-lexical/ 
Phonological Route) 

Name the constituent phonemes that 
construct a given nonword 

/slobo/ “slowboe”= /s-l-o-b-o/ 

Phoneme Reversal 
(Lexical Route)  

Reversal of a nonword into a real 
word  

/nups/ “noops” is /spun/ “spoon” backwards 

Phoneme Reversal 
(Non-lexical/ 
Phonological Route) 

Reversal of a real word into a 
nonword 

/plæn/ “plan” becomes /nælp/ “nalp” 
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2.2.2 Phonological memory 

 

Baddeley’s theoretical model of memory, reviewed in detail above in section 2.1.2, describes 

phonological memory as the ability to maintain phonological code in memory for use in 

everyday speech. Typically, lexical and semantic representations of a word help with the recall 

and retention of that word in phonological memory (Dell et al., 1997; Hoffman et al., 2009; 

Martin & Gupta, 2004; Martin et al., 1999; Patterson et al., 1994). In fact, Gupta and 

MacWhinney’s (1997) model of phonological working memory suggests that vocabulary 

acquisition (i.e., new word learning) and phonological memory share many of the same 

underlying mechanisms. Gupta and MacWhinney suggest that phonological memory aides in the 

creation of the representations of new lexical items and that lexical access assists in the 

maintenance of phonological memory. These factors work in concert with phonological memory 

to improve performance; however, the assistance that lexical access provides may obscure 

analysis of an individual’s true phonological memory ability. Thus, nonwords are often used to 

measure phonological memory. A number of researchers argue that nonword repetition tasks are 

also influenced by a number of factors in addition to phonological memory (Coady & Evans, 

2008; Edwards & Lahey, 1998; Gathercole, 2006). According to Coady and Evans (2008):  

 

Successful repetition of a nonword involves speech perception, phonological 
encoding (or segmenting the acoustic signal into speech units that can be stored in 
memory), phonological assembly (or formulating a motor plan that assembles the 
relevant speech units), and articulation. Further, it requires a robust representation 
of underlying speech units, and sufficient memory both to temporarily store and 
operate on the novel phonological string. A deficit in any of these component 
skills results in less accurate repetition. (Coady and Evans, 2008, p. 2) 



 
31 

 

 

It can be difficult to parse apart which process is truly being measured with all the factors that 

contribute to phonological memory and nonword repetition. Still, nonword repetition can provide 

some valuable information regarding phonological memory abilities and the phonological route 

when used in concert with another task such as digit span recall. Both nonword repetition and 

digit span tasks typically begin with shorter stimuli and increase in length as a way to tax 

memory capacity. Numbers typically have well-established phonological representations that 

suggest performance on a digit span recall task would be less susceptible to difficulties in 

creating or assembling a phonological plan (Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001; 

Damien, 2004). Taken together, the two tasks can provide some insight into phonological 

memory abilities (Baddeley, Gathercole, & Papagno, 1998; Gathercole et al., 1999; Gathercole, 

Willis, Emslie, & Baddeley, 1992; Levelt et al., 1999; Roodenrys & Hinton, 2002; Thorn & 

Frankish, 2005; Thorn et al., 2005; Vitevitch & Luce, 2005).   

  

2.2.2.1 Phonological memory measurement 

 

Nonword Repetition and Memory for Digits are two tasks that are used in the CTOPP to measure 

phonological memory. The Nonword Repetition subtest requires an individual to repeat back 

aurally-presented stimulus items that adhere to the phonotactic rules of English but have no 

corresponding lexical or semantic representations (i.e., nonsense words). Memory for Digits 

requires an individual to hear a series of numbers of increasing lengths and repeat back the 

numbers in the exact order they were presented. Both of these tasks are thought to reflect 

phonological working memory ability (Baddeley et al., 1998; Brown & Hulme, 1996; 
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Gathercole, 1995; Houghton, Hartley, & Glasspool, 1996) and are highly correlated in typical 

populations (Baddeley & Wilson, 1993; Butterworth, Campbell & Howard, 1986; Gathercole, 

Briscoe, Thorn & Tiffany, 2008; Gupta, 2003).  

The difficulty level of nonword stimuli, similar to phonological awareness stimuli, can be 

manipulated along three dimensions: (a) syllable length; (b) phonological complexity; and (c) 

phonotactic frequency or “word-likeness.” Nonwords with more syllables are more difficult to 

repeat due to the increased memory load required, particularly since there are no lexical entries 

to help facilitate maintenance of the phonological code. Increased phonological complexity via 

the presence of consonant clusters and later-acquired phonemes also contribute to the difficulty 

of a nonword repetition task (Dollaghan & Campbell, 1998; 2003; Edwards & Lahey, 1998; 

Moore et al., 2010). Word-likeness, or how “word-like” a nonword seems, is another variable 

that can be manipulated. Many researchers argue that phonotactic frequency is a factor in 

determining the word-likeness of a nonword (Gathercole et al., 1999; Storkel, 2001; Storkel et 

al., 2006). Nonwords that contain high-frequency phonotactic syllables are considered more 

word-like and are easier to produce (e.g., “stirple;” “blonterstaping;” Gathercole, 1995). 

Nonwords with low phonotactic frequency are more difficult to produce and considered “less 

word-like” (e.g., “kipser;” “perplisteronk;” Gathercole, 1995). Less word-like nonwords, 

although more difficult to repeat and remember, appear to provide more insight into 

phonological memory because the system is not relying on phonotactic familiarity to aid in 

repetition of the nonword (Cholin et al, 2006; Gathercole & Baddeley, 1993; Hulme et al., 1991; 

Snowling & Hulme, 1994). Word-like nonword repetition tasks used to measure phonological 

memory can be interpreted as accessing some level of lexical or phonotactic information, 
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whereas less word-like nonword stimuli can be interpreted to be slower and less accurate to 

produce because there is less facilitative lexical influence (Hulme et al., 1991).  

A prominent test of nonword repetition for children, The Nonword Repetition Task 

(NRT), was created by Dollaghan and Campbell (1998) to be sensitive to language differences in 

children and has been used as a test of phonological memory as well. The nonword stimuli for 

the NRT is constructed with “Early-8” and “Middle-8” consonants (Shriberg & Kwiatkowski, 

1994) in an effort to reduce the articulatory demands of the task due to the young age of the 

children it was meant to test. The stimuli range from 1- to 4- syllables in length and do not 

contain any consonant clusters. The NRT can be used to test nonword repetition ability in young 

children while avoiding floor effects, although the test may not be sensitive enough to determine 

subtle differences in older children and adults (Moore et al., 2010). In response to the concern 

that adolescents and adults may experience ceiling effects with the NRT, Dollaghan & Campbell 

(2003) designed the Late-8 Nonword Repetition Task (L8NRT). This task uses Shriberg & 

Kwiatkowski’s later developing “Late-8” consonants (e.g., /s, z, ʃ, ʒ, θ, ð, l, r/), ranges from 1-to 

4- syllables, and contains no consonant clusters. The L8NRT is designed to test the nonword 

repetition abilities of older children and adults by increasing the articulatory demands of the 

stimuli, thereby taxing the speech system and avoiding potential ceiling effects.  

 Memory for Digits, a digit-span recall task, is another method used to test phonological 

memory that requires an individual to accurately repeat back digit strings of increasing length in 

the order that they were presented. The limited number of single digits (i.e., ordinal numbers 1-9) 

used to create a digit string also helps to reduce potential semantic activations that may interfere 

with recall. The digits are similar in syllable length, articulatory duration, phonological 
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complexity and phonotactic frequency and are modified only by adjusting the length of the digit 

string.  

 

2.2.3 Rapid automatic naming 

 

The ability to rapidly retrieve coded phonetic information by converting orthographic symbols 

into a meaningful string of phonemes that represent entries in the mental lexicon is called rapid 

automatic naming (Anthony, Williams, MacDonald, & Francis, 2007; de Jong, & Vrielink, 2004; 

Manis, Seidenberg, & Doi 1999). Efficient rapid automatic naming is predicated on the notion 

that an individual can decode orthographic symbols or pictures and transform them into a string 

of phonological representations. Rapid transcription of orthographic symbols into phonological 

code enables a person to gain access to representations quickly and efficiently.  

 

2.2.3.1 Rapid automatic naming measurement 

 

Rapid automatic naming is measured via timed naming tasks requiring the participants to name 

the visual stimuli presented as quickly and accurately as possible. Children under the age of six 

are typically presented with non-orthographic stimuli, such as colors, pictures of objects, or large 

vs. small size discriminations, while older children and adults are presented with letters and 

digits (Anthony et al., 2007; Badian, 1993; Bowers, Sunseth, & Golden, 1999; de Jong & 

Vrielink, 2004; Manis et al., 1999; Meyer, Wood, Hart, & Felton, 1998; Savage & Frederickson, 

2005; Savage et al., 2005; Torgesen, Wagner, Rashotte, Burgess, & Hecht, 1997). Well-known 
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stimuli are traditionally used because rapid automatic naming tasks are intended to target the 

automatic process of translating the visual input into spoken words. Numbers and letters are 

often not yet habituated to the point of being automatic in young children, so picture stimuli are 

used instead. However, the pictures can activate additional semantic and phonological 

representations, as well as demonstrating increased phonological complexity and articulatory 

durations. As a result, completion times for rapid automatic naming tasks with picture stimuli 

typically take longer to produce in most populations (Coltheart et al., 2001; Wagner et al., 1999). 

 

2.2.4 Core mechanisms 

 

The majority of phonological processing tasks are influenced by certain core mechanisms or 

processes, including the quality of the phonological code, the ease with which a person can 

construct or assemble phonological codes, and the ability to sustain phonological code in 

memory long enough for the given task to be completed. If deficits or differences exist in any of 

these mechanisms, performance may be affected. Further discussion of how performance on 

phonological awareness tasks could be influenced occurs in the following sections. 

 

2.2.4.1 Quality of the phonological representations 

 

Phonological awareness tasks require the identification and manipulation of individual phonemes 

within words. Degraded phonological representations could make these tasks more difficult, 

particularly if the degraded phoneme was the one to be manipulated. Pre-existing lexical-
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semantic knowledge would allow for the code to be strengthened whether an individual phoneme 

was strengthened contextually within a pre-existing lexical entry or if access to the lexicon 

allowed for more frequent “refreshing” of the code during the phonological awareness task (i.e., 

redintegration). The quality of the phonological representations would also affect performance 

on nonword repetition tasks if the code for individual phonemes were degraded, the strength of 

the phonological representation would have to stand on its own. The benefit of semantic-lexical 

knowledge would not be present. 

 

2.2.4.2 Construction of phonological representations 

 

Impaired ability to construct phonological words can result in reduced performance on a variety 

of phonological awareness and phonological memory tasks. Phonological awareness tasks like 

phoneme blending can be challenging if the system has difficulty in the piecing together 

individual phonemes. Redintegration can help compensate for an impaired ability to construct 

phonological representations through use of existing lexical-semantic representations. If the 

phonological awareness task requires the manipulation of nonwords and redintegration is not 

able to bolster the weakened mechanism with pre-existing lexical-semantic knowledge to help 

recombine phonological code then any impairment in that mechanism could be reflected in poor 

phonological awareness performance. Repetition of nonword stimuli would require the 

generation and construction of a novel phoneme pattern and would require the online assembly 

of individual phonemes without use of pre-existing lexical information.  
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2.2.4.3. Maintenance of phonological representations 

 

Completion of phonological awareness and nonword repetition tasks would also be affected if an 

individual had difficulty with the maintenance of phonological code in memory. Active code is 

necessary to allow for the manipulation required of phonological awareness tasks and for the 

repetition of nonwords. Typically, the phonological code of a word can be refreshed via access to 

the long-term memory store of the lexicon, thus reducing the demands on short-term memory. 

Phonological awareness tasks would evidence reduced performance if the system was unable to 

“refresh” or sustain the code to allow for task completion. Alternately, nonword repetition tasks 

and phonological awareness tasks that utilize nonword stimuli would not be able to benefit from 

long-term knowledge since there are no pre-existing nonword representations. These tasks would 

show a decrement in performance if any of these mechanisms were impaired or deficit.  

 

2.2.5 Summary 

 

The phonological processing skills of phonological awareness, phonological memory, and rapid 

automatic naming appear to be separate, albeit intertwined, skills that have been demonstrated by 

researchers to influence phonological processing abilities. Lexical access can influence 

performance on all three phonological processing tasks. Completion of phonological awareness 

tasks using real word stimuli are typically completed faster and with increased accuracy than 

tasks using nonword stimuli. Phonological memory tasks are completed more quickly and 

accurately when the stimuli are more “word-like” than when “less word-like” nonwords are used. 
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Timed rapid automatic naming tasks can also be influenced by lexical access. Tasks that require 

participants to quickly name colors and objects, which are words with lexical associations, are 

identified faster than digits and numbers, which possess fewer lexical associations. Factors such 

as phonological complexity, articulatory duration, and phonotactic frequency also influence 

speed of performance and accuracy of production for all three phonological processing tasks and 

should be considered when conducting any study of phonological processing.  

 

2.3 PHONOLOGICAL PROCESSING IN INDIVIDUALS WHO STUTTER 

 

Studies of phonological priming (Arnold, et al., 2006; Byrd et al., 2007) and behavioral tasks 

(Pelczarski & Yaruss, 2008; Weber-Fox, et al. 2008) report significant differences in the 

phonological awareness abilities of children who stutter as compared to typically fluent children. 

Pelczarski & Yaruss (2008) investigated a broad range of phonological processing skills in 5- 

and 6- year old children who do and do not stutter using the CTOPP. This version of the test was 

specifically designed to measure the developing phonological processing skills of preschool 

children. A variety of subtests measured performance on phonological awareness (e.g., Elision, 

Word Blending, Sound Blending, and Sound Matching), phonological memory (e.g., Nonword 

Repetition and Memory for Digits), and rapid automatic naming (e.g., Rapid Color Naming and 

Rapid Object Naming). Phonological awareness tasks that used nonword stimuli were not used in 

the Pelczarski and Yaruss study, since 5- and 6-year-old children are not yet developmentally 

able to complete tasks using nonword stimuli (Snowling & Hulme, 1994; Wagner et al. 1994). 

The results for each skill set will be discussed in the relevant section, thus only the findings of 
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the phonological awareness tasks will be discussed here. Participants were well-matched on 

general language ability, sex, and socioeconomic status; all factors that influence performance on 

phonological processing skills. Significant differences between groups were found for 

phonological awareness and phonological memory tasks, but not for rapid automatic naming, 

further supporting the premise that aspects of phonological processing are different or delayed in 

children who stutter. Although statistically significant differences were present between groups, 

nearly all participants scored within normal limits indicating that the significant, yet subtle 

differences were present even when confounding factors were controlled. Some researchers 

(Hakim & Bernstein Ratner, 2004; Newman & Bernstein Ratner, 2007) term these differences as 

“sub-clinical” to indicate that differences are present and skills maybe somewhat depressed, but 

not considered disordered. 

Phonological processing tasks, such as phonological awareness, can be completed through purely 

phonological methods, as suggested by the Ramus et al. model, or with some degree of lexical 

access (i.e., redintegration). Reliance on lexical access relieves some of the memory burden and 

allows the phonological awareness tasks to be completed with the help of pre-existing 

phonological codes. These skills are not stagnant; they grow and develop, leading to increased 

understanding and awareness of the precise facets of phonological code, specifically awareness 

of onset, rimes, and individual phonemes. Thus, performance abilities for children become more 

fine-tuned as they age, resulting in quantitatively different abilities as adults. Table 2 

demonstrates that there is evidence to assert that there are subtle differences in the phonological 

awareness and phonological memory abilities of children who stutter as compared to normally 

fluent peers. A comprehensive study of the phonological processing skills of adults who stutter 
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would allow for comparison to earlier studies that have measured these same abilities in children 

who stutter (Pelczarski & Yaruss, 2008) to determine if these differences persist into adulthood. 

Investigating phonological processing (i.e., phonological encoding) in people who stutter 

provides a more detailed picture of a process that is implicated in a number of psycholinguistic 

theories of stuttering. 

Although no previous studies have explicitly designated phonological awareness and 

phonological memory as dependent variables with adults who stutter, these skills have been 

studied, albeit using different terminology. Thus, the following section reviews the existing 

literature within the framework of phonological processing, even if the original intention was not  

 

Table 2. Phonological awareness in children. Research studies of stuttering and phonological awareness in children 
who stutter (CWS) and children who do not stutter (CNWS). 

Authors Participants Results 

 

Melnick, Conture, & Ohde 
(2003) 

3-5 yr. old 
CWS/CWNS 

No significant differences in response latencies. Children who 
do not stutter demonstrated greater variability than children who 
stutter from age 3 to age 5. 

Byrd, Conture, & Ohde 
(2007) 
 

3-5 yr. old 
CWS/CWNS 
 

Significant difference at age 5. Children who stutter continued 
to respond to holistic primes faster than incremental primes (like 
adults and 5 year-old children who do not stutter) 

Arnold et al. (2006) 
 

3-5 yr. old 
CWS/CWNS 

Replicated Byrd et al. 5 year-old children who stutter continued 
to respond to holistic primes faster than incremental. 

Bajaj, Hodson, & 
Scholmmer-Aikins (2004) 

5-8 yr. old 
CWS/CWNS 

No significant differences in phonological awareness tasks, but 
tasks were too difficult for participants. 

Pelczarski & Yaruss 
(2008) 

5-8 yr. old 
CWS/CWNS 

Children who stutter performed significantly below children 
who do not stutter, although still scored within normal limits. 

Weber-Fox, Spruill, 
Spencer, & Smith (2008) 

9-13 yr. old 
CWS/CWNS 
 

Children who stutter were significantly less accurate on a visual 
rhyming task across all conditions, while reaction times between 
groups were similar. 
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explicitly to investigate phonological processing abilities. Use of the phonological processing 

paradigm allows for comparison and compilation of existing data through the use of common 

terminology. The results are then analyzed and synthesized to provide a comprehensive picture 

of phonological processing and stuttering. A number of studies using phonological awareness 

tasks also integrated phonological memory tasks into the research design as well. For the sake of 

clarity, only the results relevant to the specific section (i.e., phonological awareness or 

phonological memory) are discussed in an effort to more clearly outline and distinguish between 

the phonological awareness, phonological memory, and rapid automatic naming abilities of 

adults who stutter. 

  

2.3.1 Phonological awareness and individuals who stutter  

 

A number of studies provide empirical support for the existence of differences in the 

phonological awareness abilities of adults who stutter (Bosshardt & Fransen, 1996; Burger & 

Wijnen, 1999; Hennessey et al., 2008; Sasisekaran & de Nil, 2006; Sasisekaran et al., 2006; 

Weber-Fox et al., 2004; Wijnen & Boers, 1994) despite the fact that phonological awareness 

goals were not the stated aim. Many phonological awareness tasks were used even though they 

were not necessarily labeled as such. These studies are reviewed below and summarized in Table 

3. 

Wijnen and Boers (1994) conducted a priming study to investigate the facilitation effect 

of phonologically similar and different primes in nine adults who stutter and nine typically fluent 
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adults. Participants learned to associate specific response words with visually presented cue 

words requiring a rapid spoken response. The cue word was paired with a semantically related 

target response word and tested in sets of five word pairs across two conditions: homogeneous 

and heterogeneous. In the homogeneous condition, the five target-word responses shared an 

initial syllable segment, where either the initial consonant (C-prime) or the consonant plus vowel 

(CV-prime), with the target word to be produced by the participants in response to the cue word. 

All the response words started with the same initial consonant or consonant + vowel, while the 

prime word was semantically related to the target word. The same word pairs were divided into a 

heterogeneous condition where dis-similar phonological onsets were used for the target words 

(i.e., the target words did not share initial segments, but semantic primes were still used). Wijnen 

and Boers reported that adults who stutter were significantly slower than nonstuttering adults in 

all conditions. The authors also reported a significant facilitation effect (i.e., faster naming times) 

for typically fluent adults when the target words shared segments in the homogeneous condition, 

with greater facilitation noted for larger segments (i.e., consonant + vowel, as compared to 

sharing only a consonant). Meanwhile, adults who stutter only demonstrated a significant 

facilitation effect when prime and target shared a larger segment (e.g., consonant plus vowel) but 

not in the consonant-only condition. Wijnen and Boers interpreted these findings to indicate “the 

encoding of non-initial parts of syllables, particularly the (stressed) vowel, is delayed” in people 

who stutter (p.1). Further, the authors argued that stuttering, particularly initial phoneme 

repetition and prolongation, “result[s] from attempts at executing a syllable prior to the 

incorporation of correct vowel information in the articulatory plan” (Wijnen & Boers, 1994, p. 

1). 
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These findings can also be considered in the context of a phonological processing framework. 

Awareness of large phonological segments is an early-developing skill in typical populations and 

individual phoneme awareness is usually solidified in young school-age children. The authors 

reported that adults who stutter responded faster to only larger primes, rather than the more 

developmentally appropriate smaller segmental primes, whereas typically fluent adults were 

primed faster with smaller segments. Thus, it becomes clear that there is evidence supporting the 

existence of a difference in phonological awareness in adults who stutter. The one caveat to this 

study was that the primes were semantically, not phonologically, related to the target words. 

Target-word responses shared similar onsets, which the authors labeled as phonological priming. 

Typically, many phonological priming paradigms are constructed so that both the cue and target 

word share similar phonemes, leading to more direct measurement of the phonological priming 

effect without engaging semantic activation. Although phonological priming may have existed, 

as both groups demonstrated a facilitation effect, it is difficult to determine how much semantic 

and phonological priming contributed to the speed of response. The design of the study does not 

allow for specification of what aspects of phonological awareness may be different. Still, the fact 

that adults who stutter responded significantly slower than typically fluent adults across 

conditions suggests that there is some delay in phonological processing of adults who stutter.   

Burger and Wijnen (1999) sought to replicate and expand the findings by Wijnen and 

Boers (1994) by utilizing a larger sample size and different stimuli to allow for manipulation of 

lexical stress factors. Again, word pairs were semantically related, reportedly to aid in learning 

of the pairs. In this study, as with Wijnen and Boers (1994), each target word appeared in both 
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Table 3. Phonological awareness in adults. Research studies of stuttering and phonological awareness in adults who 

stutter (AWS) and adults who do not stutter (AWNS). 
Authors Participants Results 

 

Wijnen & Boers 
(1994) 

9 AWS & 
9 AWNS 

AWS were significantly slower than AWNS in all conditions. AWNS 
demonstrated a significant facilitation response with similar 
phonological primes (C & CV primes). AWS only demonstrated the 
facilitation effect with larger segment primes (CV prime). 

Bosshardt & 
Fransen (1996) 

14 AWS & 
14 AWNS 

No significant differences between groups for any of the conditions 
(identical, rhyme, or category judgment). No differences for rhyme 
judgments. The presence of multiple processes makes it hard to tease 
apart the contributing factors. 

Burger & Wijnen 
(1999) 

21 AWS & 
17 AWNS 

AWS responded significantly slower than AWNS, as before. The 
pattern where AWS only achieved facilitation with CV primes was not 
replicated (i.e., both groups responded faster to larger segment primes). 
However, new stimuli were used and stress patterns were modified. 

Weber-Fox, 
Spencer, Spruill & 
Smith, 2004 

11 AWS & 
11 AWNS 

AWS were significantly slower to judge in the rhyming but 
orthographically similar condition of rhyme judgment task. No other 
differences present (CWS were less accurate). 

Sasisekaran, de Nil, 
Smyth & Johnson 
(2006) 

11 AWS & 
11 AWNS 

AWS had significantly longer monitoring times for phonemes than 
AWNS in the silent naming task, but not in any other monitoring task. 
No difference in accuracy was reported. 

Sasisekaran & de 
Nil (2006) 

10 AWS & 
12 AWNS 

No between group differences were found for the perception tasks 
(orally presented targets), but a significant group difference was 
revealed for phoneme monitoring in silent naming with AWS taking 
longer to monitor for phonemes than AWNS. 

Hennessey, Nang, & 
Beilby (2008) 

18 AWS & 
18 AWNS 

No significant difference between groups for phonologically related 
primes or semantically related primes. However, AWS were 
significantly slower in lexical status RT (i.e., slower to repeat a 
nonword pair quickly than repeating a real word pair) than AWNS, but 
not in accuracy. 
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conditions (homogeneous and heterogeneous) and served as its own control. Speech-onset times 

for adults who stutter again responded significantly slower than typically fluent adults across 

conditions. Both groups, however, responded similarly to the homogeneous priming condition 

with all participants demonstrating greater facilitation with larger prime segments (CV-prime vs. 

C-prime). Although adults who stutter demonstrated significantly slower response times, they 

did not require larger segments to achieve facilitation as was evident in Wijnen and Boers 

(1994). It should be noted that Burger and Wijnen’s study was not an exact replication of Wijnen 

and Boers’s earlier study, as different stimuli were employed. The rationale for this change was 

to allow for variation in syllabic stress markers. In the original study, the target words all 

received stress on the initial syllable. The authors suggested that adults who stutter do not have 

difficulty in phonological encoding because the pattern of adults who stutter requiring larger 

segments to achieve facilitation was not evident. However, they did not provide a hypothesis of 

why the adults who stutter demonstrated significantly slower response times. This difference 

could have been due to difficulty with the articulatory initiation of the target word, influences of 

semantic priming, or phonological encoding. These two studies provide evidence that some 

difference does exist in phonological processing skills of adults who stutter as compared to 

normally fluent peers, but additional investigation is necessary to determine what specific 

aspects of phonological awareness may be affected.  

Sasisekaran et al. (2006) explored the relationship of phonological encoding in the silent 

speech of adults who stutter as compared to typically fluent adults by judging the response time 

and accuracy of participants’ monitoring abilities. Participants were screened for vocabulary and 

some phonological awareness abilities (i.e., a rhyme judgment task and identification of initial 
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and final phonemes of an auditorily presented word). In addition to the screening and control 

measures, participants were administered a single word picture-naming task, auditory tonal 

monitoring task, and phoneme monitoring during silent naming task that required the participants 

to silently name a picture while scanning for the presence of a designated phoneme. The tonal 

monitoring task was included to help rule out any difficulty in auditory processing. Individuals 

who stutter demonstrated significantly longer monitoring times for phonemes than nonstuttering 

individuals in the silent naming task, but not in any other monitoring task. Adults who stutter 

were reported to be significantly slower in phoneme monitoring as compared to typically fluent 

adults, but no difference in accuracy was reported. The authors suggested that the longer 

response times demonstrated in phoneme monitoring were evidence of difficulties in 

phonological encoding. Additionally, although these were not dependent variables in the study, 

there were significant group differences in accuracy on two of the phonological awareness tasks: 

rhyme judgment accuracy and onset segmentation (identification of initial phoneme from aurally 

presented stimuli). Despite the significant differences on these two phonological awareness 

measures, the authors reported that all participants scored within normal limits on the measures, 

thus indicating a subtle, yet significant difference in phonological awareness abilities of adults 

who stutter. 

Further evidence supporting the continued investigation of the phonological awareness 

skills of adults who stutter was provided by a similar, concurrently-run study using a different set 

of participants. Sasisekaran and De Nil (2006) used a phoneme monitoring task akin to the one 

used in Sasisekaran et al. (2006), but the complexity of the stimuli was modified to include noun 

phrases or compound words instead of a single bi-syllabic word. Additionally, the participants 
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were required to listen to aurally presented stimuli and monitor for phonemes during a perception 

task. No between-group differences were found for the perception tasks, but a significant group 

difference was revealed for phoneme monitoring in silent naming. Adults who stutter took longer 

to monitor for phonemes than typically fluent peers. The authors interpreted these findings, in 

addition to the findings from their earlier study (Sasisekaran et al., 2006), as evidence that adults 

who stutter “were slower in the encoding of segmental, phonological units during silent naming” 

(p. 284). Sasisekaran and de Nil indicated there may be a delay in the phonological encoding of 

adults who stutter, rather than a difference, because both groups demonstrated equivalent 

accuracy scores. Although the stimuli were varied in complexity with compound words (e.g., 

“greenhouse”) compared to short noun phrases (e.g., “a green house”), the stimuli may not have 

been complex enough to reveal a difference. Thus, the fact that there were no significant 

differences in accuracy between groups should be interpreted cautiously, as a ceiling effect may 

have been present due to the utilization of relatively simple phonological stimuli. More complex 

stimuli may tax the participants’ phonological encoding systems more, which may transform 

delays found with simple stimuli into inaccuracies with more complex stimuli. Sasisekaran and 

colleagues cited a delay in phonological encoding as an explanation for their data; however, 

other researchers have suggested that this delay could also be indicative of processes other than 

phonological encoding, such as semantic, syntactic or word frequency processing (Newman & 

Bernstein Ratner, 2007). The significant differences in response times reported by Sasisekaran 

and de Nil provide evidence that adults who stutter possess a difference in at least one 

phonological awareness task. The concerns raised by Newman and Bernstein Ratner are valid, 

and could be easily addressed though investigation of a full range of phonological awareness 

tasks that use both lexical and non-word stimuli to mitigate confounding factors. Use of both 
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real-word and non-word stimuli would allow for performance comparison to determine to some 

extent the influence of lexical factors on phonological awareness skills.  

Weber-Fox et al. (2004) used forced-choice rhyme judgments (i.e., participant indicates 

whether a pair of words rhyme by selecting either a “yes” or “no” button) to investigate the 

speed and accuracy of rhyme judgments for word pairs that varied in terms of both orthographic 

and phonological congruency. The authors compared a group of 11 adults who stutter to a group 

of 11 adults who do not. Participants were required to judge rhyme similarity for word pairs in 

the following four conditions: (a) rhyming pairs with congruent orthography/phonology (e.g., 

wood/hood); (b) incongruent orthography/phonology (e.g., could/hood); (c) non-rhyming pairs 

with similar orthography/phonology (e.g., blood/hood); and (d) dissimilar 

orthography/phonology (e.g., air/hood). Participants were required to determine if the visually 

presented target words rhymed or not. Orthographic translation involves additional processes that 

require the conversion of symbols to phonological representations to be maintained in 

phonological memory while determining rhyme judgments. Adults who stutter demonstrated 

significantly slower response times than typically fluent adults for the non-rhyming, but 

orthographically similar, condition of the rhyme judgment task. The authors interpreted the 

longer reaction times to be indicative of differences that are only revealed when task demands 

were highest, suggesting that adults who stutter do not have a core phonological processing 

difficulty, but are susceptible to delays due to higher cognitive loads. The phonological 

processing framework would suggest that the differences are so subtle that they are only revealed 

when the phonological awareness tasks are most difficult. However, it would be difficult to 

determine whether increased cognitive load was a contributing factor or if the phonological 
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encoding system was taxed due to the complexity of the phonological awareness task. 

Investigation of multiple phonological awareness tasks that are sensitive to subtle differences 

would be helpful in determining whether differences would be found on multiple phonological 

awareness tasks, or just ones with increased cognitive load. If differences were found on other 

phonological awareness tasks, that would be suggestive of an overall difference or delay in 

phonological awareness.  

Weber-Fox et al. (2008) conducted a study similar to Weber-Fox et al. (2004) described 

above using the same methodology with children who stutter. The children who stutter were less 

accurate in rhyming judgments across conditions, but were not significantly slower than the 

group of typically fluent children. Conversely, adults who stutter were equally as accurate in 

rhyming judgments but demonstrated a delay in reaction time. The authors presented these 

results as evidence of the maturation effect, suggesting children who stutter are still developing, 

although not at the same rate as their typically fluent peers, and thus perform differently than 

adults who stutter. Studies such as these highlight the importance of extending investigation to 

various age groups to help identify overall differences versus delays. As noted earlier, the 

research design was targeting phonological processing as one relatively ambiguous skill set and 

presumably unintentionally tapped into more than one phonological processing skill (i.e., both 

phonological awareness and rapid automatic naming). The results of the study do provide 

evidence of differences in phonological processing, but the design precludes any further 

distinction regarding what specific phonological processing skill may be different in these 

groups. Further investigation into the contributions of phonological awareness, phonological 

memory and rapid automatic naming in both children and adults who stutter will help determine 
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in what way these skills develop as a child who stutters matures into adulthood. The evidence 

suggests that differences in the phonological awareness skills of children who stutter may “catch 

up” somewhat to their typically fluent peers. 

Rhyme monitoring is a task that can be used to determine phonological awareness 

abilities. Bosshardt and Fransen (1996) used a rhyme-monitoring paradigm to investigate 

phonological and semantic processing of 14 adults who stutter and 14 adults who do not stutter. 

Participants were asked to silently read a number of sentences and monitor for a target word 

embedded in the sentence that was either phonologically related, where the target word rhymed 

with cue word, categorically related, where the target word belonged to same category (e.g., 

types of fruit), or was the same as the cue word. The phonologically related cues were presented 

visually, requiring the participants to convert orthographic symbols to phonological 

representations and hold in phonological memory in order to make the rhyming judgments (both 

a phonological awareness and phonological memory task). Bosshardt and Fransen reported that 

adults who stutter were significantly slower in the category judgment task but not in the rhyme 

monitoring task. Adults who stutter were also slower to make rhyme judgments, but not 

significantly so. Bosshardt and Fransen interpreted their findings as evidence that adults who 

stutter do not have deficits in phonological encoding. However, Bosshardt and Fransen’s results 

can also be interpreted within a phonological processing framework. Visually presented tasks 

require an individual to encode orthographic information (rapid automatic naming) while 

maintaining a target word in memory (phonological memory) while making rhyme judgments 

(phonological awareness). The authors acknowledged that adults who stutter were slower to 

respond overall, but not significantly so. These results may be due to the overlapping of abilities 
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required to complete the stated tasks. The phonological processing skills of phonological 

awareness, phonological memory, and rapid automatic naming do not all need to be operating 

optimally to be able to complete phonological processing tasks (Lonigan et al., 2000). Indeed, 

deficits in one aspect can be mediated by strength in another skill set. If an individual possesses a 

deficit in phonological awareness, for instance, but demonstrates strong phonological memory 

skills, the individual could still compensate to a certain degree. The presence of all three 

processing tasks makes it difficult to determine the contributing factor or factors using this 

research design; however, there are ways to tease apart the contributions of the various 

phonological processing skills, as will be discussed below. Thus, further investigation of the 

phonological awareness skills of adults who stutter using carefully controlled methodologies for 

studies is warranted. 

Hennessey et al. (2008) conducted an auditory priming study that investigated a number 

of different processes in adults who stutter, including phonological facilitation, semantic 

inhibition, and nonword repetition reaction times (RT). Only the phonological and semantic 

priming are discussed in this section, while the nonword repetition RT task are discussed further 

in the phonological memory section. Participants were required to rapidly name a semantically 

related, a phonologically related, or an unrelated prime. No between-group differences were 

revealed for semantic or phonological prime trials. Hennessey et al. interpreted their findings as 

evidence that there is no deficit in linguistic encoding for adults who stutter; however, a number 

of factors may account for the lack of differences. The stimuli used in the phonological priming 

facilitation task consisted of one- and two- syllable words and contained no consonant clusters. 

The stimuli used may not have been long enough or complex enough to sufficiently tax the 

participants’ system to reveal the subtle differences known to exist for adults who stutter 
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(Bernstein Ratner, 1997; Conture, 2001; Hall, Wagovich, & Bernstein Ratner, 2007; Pelczarski 

& Yaruss, 2008). Additionally, the authors acknowledged that their stimuli were used repeatedly, 

resulting in additional practice for participants. Repeated presentations may have masked delays 

that could have been revealed after only one presentation. Indeed, other studies have reported 

significant, “subclinical” differences in phonological priming when each stimulus item was only 

presented once (Hakim & Bernstein Ratner, 2004; Newman & Bernstein Ratner, 2007; Prins, 

Main, & Wampler, 1997). Thus, methodological concerns may account for the discrepant 

findings, and may not truly represent adults who stutter’s phonological awareness abilities.  

Caution must be used when exploring the speed of phonological awareness in people who 

stutter as in the studies described above. Tasks that require spoken response times may be longer 

for adults who stutter due to difficulties other than delays in phonological awareness and 

phonological memory (Smith et al., 2010). Delays in motor initiation, planning, speech 

avoidance, or anxiety could be responsible for response-time differences. Even if only 

perceptibly stutter-free responses are used, it would be difficult to guarantee a stutter-free 

response for every stimulus item. Without careful control, it would be difficult to separate out if 

a delay is due to the influence of possible motor issues or of a delay in phonological awareness. 

Although the stimuli used in prior studies may not have been complex enough to detect a 

difference, both accuracy and response times of phonological processing tasks should be 

measured. Exploration of these processes will provide a more robust understanding of the 

phonological processing and phonological encoding abilities of adults who stutter.  
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2.3.1.1 Summary of phonological awareness and individuals who stutter 

 

Wijnen and Boers (1994), Weber-Fox et al. (2008), Burger and Wijnen (1999), Sasisekaran et al. 

(2006), and Sasisekaran and de Nil (2006) all presented evidence of significantly longer response 

times for adults who stutter across rhyme judgment and phoneme monitoring tasks indicating 

that there may be a delay in some aspects of phonological awareness processing. Weber-Fox and 

colleagues (2004; 2008) conducted investigations with both children and adults who stutter. The 

children who stutter were revealed to be significantly less accurate across conditions with no 

difference in response time, while the adults were reported to have demonstrated longer response 

times with no differences in accuracy. As with the other studies detailed above, longer 

processing times for adults who stutter may indicate a difference or difficulty in completing 

phonological awareness tasks. Thus, children who stutter were reported to have accuracy issues 

that appeared to resolve themselves in adults by apparently trading speed for accuracy. Bosshardt 

and Fransen (1996) and Hennessey et al. (2008) provided evidence against the possibility of 

differences in the phonological awareness skills of adults who stutter. Bosshardt and Fransen 

reported slower judgment times for adults who stutter, but statistical significance was not 

reached. Hennessey et al. did not report any differences in the response to phonologically related 

primes, but did report slower lexical status judgment was demonstrated by adults who stutter. As 

reviewed above, studies by both Hennessey et al. and Bosshardt and Fransen had methodological 

issues that may have masked significant findings. Despite the evidence suggesting adults who 

stutter have slower phonological awareness skills, most of the studies only looked at one or two 

aspects of phonological awareness and used rather simplistic stimuli. A more in-depth 

investigation of all of the different phonological awareness processing tasks with varying 
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degrees of difficulty would provide a clearer picture of the phonological awareness abilities of 

adults who stutter.  

 

2.3.2 Phonological memory and individuals who stutter 

 

As mentioned above, phonological memory is a component of phonological processing that 

contributes to the completion of many language processes, including phonological awareness and 

novel word learning. Phonological memory is most often measured through two tasks that are 

found to be highly correlated in typical populations: nonword repetition and digit recall 

(Baddeley & Wilson, 1993; Butterworth et al., 1986; Gathercole et al., 2008; Gupta, 2003). Very 

few studies have explicitly investigated phonological memory in adults who stutter, but there 

have been a number of studies that have investigated nonword repetition (typically considered a 

measure of phonological memory) in children who stutter (Table 4). There is some evidence that 

digit recall and nonword repetition may not measure the same process in people who stutter. 

Pelczarski and Yaruss (2008) reported that there was a significant difference in the performance 

of children who stutter on the nonword repetition and digit naming tasks of the CTOPP; 

specifically, that performance was better on the digit recall task than on the nonword repetition 

task. Although these two tasks are highly correlated in non-stuttering populations, they were not 

correlated for children who stutter. Further investigation of the data revealed that the significant 

finding was due solely to scores on the nonword repetition task, while digit naming did not 

contribute to the variance in a statistically significant way. Pelczarski & Yaruss’ findings suggest 

that phonological memory, specifically performance on nonword repetition tasks, is different in 
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children who stutter as compared to normally fluent peers. This evidence suggests that nonword 

repetition appears to be “tapping into” some processing that memory for digits does not. Perhaps 

this is evidence of a difficulty not exclusively in phonological memory, but in the establishment 

or assembly of new phonological representations that may not be fully specified (Coady & 

Evans, 2008; Edwards & Lahey, 1998). Further investigation into the between-group differences 

in phonological memory and between nonword repetition and digit recall tasks is required. Some  

 

Table 4. Phonological memory in children. Studies of phonological memory in children who stutter (CWS) and 
children who do not stutter (CWNS). 

Authors Participants Results 

 

Anderson et al. 
(2006) 

3-5 year old 
CWS/CWNS 

Significant differences in nonwords repetition only at 2- and 
3- syllable levels  

Pelczarski & 
Yaruss (2008) 

5 &6 yr. old 
CWS/CWNS 

Significant difference in nonword repetition, although within 
normal limits. 

Hakim & 
Bernstein Ratner 
(2004) 

4-8  yr. old 
CWS/CWNS 

Significant difference in nonword repetition only at 3- 
syllable level. 

Bakhtiar et al. 
(2009) 

5-8 yr. old 
CWS/CWNS 

No significant differences for 2- and 3- syllable nonwords, 
but lower scores reported for children who stutter. 

Seery et al. (2006) 8 ½ - 12 ½ yr. 
old 
CWS/CWNS 

Significant difference in nonword repetition only at 4-
syllable level.  

 

.   
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additional studies (Anderson et al., 2006; Hakim & Bernstein Ratner, 2004; Seery et al., 2006) 

have also provided evidence suggesting that phonological memory, as measured by nonword 

repetition, is different in children who stutter as compared to their typically fluent peers. Studies 

that have investigated phonological awareness in both children and adults who stutter have 

reported significant differences in both populations (Weber-Fox et al., 2004; 2008). Thus, there 

is evidence to suggest that the differences found in nonword repetition may be present in adults 

who stutter as well. 

Only a handful of studies have used nonword repetition tasks with adults who stutter 

(Sasisekaran, Smith, Sadagopan, & Weber-Fox, 2010; Smits-Bandstra & de Nil, 2009; Smits-

Bandstra, de Nil & Saint Cyr, 2006), but the tasks were used to measure sequence-skill learning 

rather than phonological memory skills. The participants were required to repeatedly practice 

speaking nonwords aloud while accuracy and learning were measured. Repeated practice does 

not explicitly measure phonological memory ability, but rather measure how well novel speech 

sequences were learned. As such, the results of these studies are not directly related to the current 

discussion. A number of other studies have reported on the accuracy and speed of nonword 

repetition tasks performed by adults who stutter as compared to typically fluent adults 

(Bosshardt, 1993; Hennessey et al., 2008; Ludlow, Siren & Zikira, 1997; Smith et al., 2010). 

Table 5 summarizes these studies and they are described in more detail below. 
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Table 5. Phonological memory in adults. Studies of phonological memory in adults who stutter (AWS) and adults 
who do not stutter (AWNS). 

Authors Participants Results 

 

Bosshardt (1993) 19 AWS & 
30 AWNS 

Short-term memory and recall task. AWS were 
significantly less accurate in recognition and recall of 
CVC nonwords. 

Ludlow, Siren, & Zikira 
(1997) 

5 AWS & 
5 AWNS 

AWS demonstrated significantly more errors than AWNS 
after repeated practice of phonologically complex 
nonwords. 

Hennessey, Nang, & 
Beilby (2008) 

18 AWS & 
18 AWNS 

AWS were significantly slower than AWNS in the 
word/nonword choice reaction task. 

Smith, Sadagopan, Walsh, 
& Weber-Fox (2010) 

17 AWS & 
17 AWNS 

AWS showed no difference in accuracy of nonword 
repetition task. All participants were either at, or near, 
ceiling on the task. AWS repeated nonwords more slowly 
than AWNS. 

 

Bosshardt (1993) used a nonword recall task that required participants to silently read 

visually presented nonwords and write down the nonwords that were presented. Adults who 

stutter were significantly less accurate in recognition and recall of CVC nonwords. In this case, 

the nonwords were used in a memory recall task, not a nonword repetition task.  Although 

Bosshardt’s study may address some aspects of phonological memory in adults who stutter, the 

main goal of the study was to measure immediate and delayed memory recall. Additionally, the 

visual presentation of the stimuli makes it difficult to separate to what extent visual memory 

contributed to performance on phonological memory tasks.   

An investigation conducted by Ludlow et al. (1997) compared the ability of participants 

to produce phonologically complex nonwords (e.g., “abisthwoychleet”) with repeated practice. 

The expectation was that accuracy and speed would improve with repeated practice, as was 



 
58 

 

 

demonstrated by adults who do not stutter. Adults who stutter, however, did not demonstrate 

improved accuracy or speed with increased repetitions and the between group difference was 

significant. Thus, even with practice, the adults who stutter were still demonstrating phoneme 

errors when repeating the phonologically-complex nonwords in later trials. Ludlow et al. 

interpreted the results as reflective of reduced abilities in adults who stutter to learn new 

sequencing skills due to deficits in phonological encoding. Another interpretation exists when 

examined in a phonological processing context; there is the possibility that the lack of 

improvement with practice was the result of less well-formed phonological memory abilities, or 

relatedly, as unstable or under-specified phonological representations. More research to explore 

the nature of phonological memory abilities in adults who stutter would allow for increased 

understanding of the contributions of the various inter-related factors.   

Hennessey et al. (2008) investigated nonword repetition in adults who stutter. Although 

the primary focus of their study was not an examination of phonological memory skills, the study 

can still inform our knowledge of phonological memory in this population. In addition to the 

phonological awareness tasks reviewed above, the authors investigated three RT tasks: choice 

RT, simple RT, and picture naming RT. Choice RT required the participants to learn to associate 

shapes with either a word or nonword pair. This task can also be considered a word-learning task 

as well. Once a shape was projected onto the screen, the participants were required to identify the 

pair and say the target word item (i.e., word and nonword) associated with the shape as quickly 

as possible. Simple RT was similar to choice RT except each item had only one shape and 

corresponding word or nonword. Picture naming RT required the participants to name a picture 

as quickly as possible. The authors reported that adults who stutter were significantly slower than 

typically fluent adults in the choice RT (i.e., when required to repeat the word and nonword 
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pairs), but not the simple reaction time or picture naming task. Although adults who stutter were 

significantly slower in choice RT, Hennessey et al. deduced that there was no evidence to 

support a difference in phonological encoding because there was not a large difference between 

the nonword trials and the real word trials. The authors argued that nonwords would require 

online assembly of a novel speech plan that would not be necessary for real words as they would 

already have an existing speech plan. Thus, a timing difference should have been evident, with 

real words spoken faster than nonwords. This result was not present; however, closer 

investigation of the stimuli used in the study revealed that they were used multiple times across 

trials. That is, the picture/word or picture/nonword pairs were used in both choice RT and simple 

RT tasks resulting in repeated practice for the targets. Multiple repetitions of nonword targets 

would create a new speech plan that could account for the similar timings found for both word 

and nonword RT. Additionally, the choice RT task was the most challenging of the three tasks; 

the difference in performance on only that task may have been due to increased complexity of 

the task. Thus, as with studies discussed above, more stringent controls need to be utilized to 

obtain a more accurate understanding of the full extent of phonological memory skills of adults 

who stutter. 

Smith et al. (2010) used nonword stimuli in a motor sequencing study, but also recorded 

behavioral data on the accuracy of nonword repetition using the NRT (Dollaghan & Campbell, 

1998). As discussed above in section 2.2.2, NRT was designed and created to be a more sensitive 

measure for determining language disorders in children, but when administered to adults would 

often results in ceiling effects with participants performing at or near ceiling on the measure. 

Smith et al. reported that “both groups performed at or near-ceiling in the 1-, 2-, and 3-syllable 

nonword repetition. For the 4-syllable nonword repetition, median scores were 89% and 85% for 
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normally fluent and stuttering adults” (Smith et al., 2010, p. 8). These data were used by the 

authors to suggest that there were no differences evident between adults who stutter and adults 

who do not stutter  in nonword repetition ability. Interpreting Smith and colleagues’ results with 

the knowledge that NRT is developmentally inappropriate to use with adult participants then 

provides more support for the argument that nonword repetition tasks that contain stimuli 

constructed out of earlier developing phonemes do not tax the adult system sufficiently to 

determine between-group differences. There is very little published about the phonological 

memory skills of adults who stutter, even though there is evidence that children who stutter 

demonstrate a difference in these abilities. Thus, further investigation into the phonological 

memory skills of adults who stutter is warranted.  

 

2.3.3 Rapid automatic naming and individuals who stutter 

 

Rapid automatic naming is the ability to quickly retrieve and name common visual symbols 

paired with phonetic representations. A number of studies have investigated reading rates of 

adults who stutter (Bloodstein, 1944; Bosshardt & Nandyal, 1988; Cullinan, 1963; Jasper and 

Murray, 1932; Max, Caruso, & Vandevenne, 1997; Moser, 1938; Roland, 1972), but those tasks 

are not considered rapid automatic naming tasks because the stimuli did not require automatic 

responses. Traditionally, rapid automatic naming stimuli include basic colors, letter or digits that 

can be retrieved quickly and by-pass any additional semantic activations. Pelczarski and Yaruss 

(2008) conducted a study that included an investigation of rapid automatic naming, along with 
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phonological awareness and phonological memory in children who stutter, but did not reveal any 

differences in rapid automatic naming ability as compared to normally fluent peers. The results 

may be questionable due to the data pattern that revealed that some children who stutter 

performed very well on rapid automatic naming tasks, while an equal number performed on the 

lower end of normal. It is possible that these two response patterns may have cancelled out a 

significant finding in that sample of children. As a phonological processing skill that is so closely 

affiliated with phonological awareness and phonological memory, performance on rapid 

automatic naming matures with time as well. The equivocal results from Pelczarski & Yaruss 

suggest that further investigation may clarify whether there are differences in the rapid automatic 

naming abilities of adults who stutter. Thus, investigation of rapid automatic naming skills in 

adults who stutter is warranted to determine if this aspect of phonological processing changes 

with age or remains the same as when they are young in people who stutter. 

 

2.4 PHONOLOGICAL PROCESSING AND STUTTERING SUMMARY 

 

Evidence suggests that the phonological processing skills of children who stutter are different 

from their normally fluent peers (Anderson et al., 2006; Arnold et al., 2006; Byrd et al., 2007; 

Hakim & Bernstein Ratner, 2004; Pelczarski & Yaruss, 2008; Seery et al., 2006; Weber-Fox et 

al., 2008), but these findings cannot be generalized to the phonological processing abilities of 

adults who stutter because of the influence of maturation on these skills. As a child who stutters 

matures, the differences in phonological processing that were present may become exacerbated, 

reduced, or resolved altogether once adulthood is reached. A comprehensive study of the 
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phonological processing skills of adults who stutter will allow for comparison to earlier studies 

that have measured these same abilities in children who stutter (Pelczarski & Yaruss, 2008) to 

determine if these subtle, subclinical differences will persist into adulthood. A thorough 

investigation would include lexical and non-lexical phonological awareness tasks (i.e., elision of 

words and phonemes, blending of word and phonemes, segmentation of words and phonemes, 

and phoneme reversal), phonological memory tasks (i.e., nonword repetition and digit span), and 

rapid automatic naming tasks (i.e., color, object, letter and digit naming). While Pelczarski and 

Yaruss (2008) reported significant differences in accuracy for children who stutter, studies of 

adults who stutter report only differences in the speed, but not the accuracy, of responses.  

The studies reviewed above provide preliminary evidence that adults who stutter have 

different phonological processing skills; however, this evidence is gleaned from a small number 

of studies and some limitations exist. First, investigation of only one or two phonological 

processing tasks out of a wide range of abilities provides an incomplete picture of the 

phonological processing profile of an individual who stutters. Second, non-specification of 

which phonological processing skills were being measured coupled by the use of different 

nomenclature increases the difficulty of comparing and analyzing available evidence. Even 

though only a limited number of abilities were investigated, researchers tended to apply their 

results to phonological processing/phonological encoding as a whole. This is a very broad, and 

somewhat inaccurate, interpretation of the results. Third, nonword stimuli were not used in 

phonological awareness tasks in any study that would have allowed for a more accurate 

representation of phonological encoding free from the influence of lexical knowledge. Finally, 

the stimuli in the studies reviewed above may not have been complex enough to reveal the subtle 



 
63 

 

 

linguistic differences in adults who stutter. Many studies have reported that linguistic differences 

in people who stutter tend to be subtle, where individuals who stutter scored within normal 

limits, yet still demonstrated a significant between-group difference (Bernstein Ratner, 1997; 

Conture, 2001; Hall et al., 2007; Pelczarski & Yaruss, 2008). The factors that influence 

performance on phonological processing skills can be controlled while utilizing a wide range of 

tasks that would be sufficiently difficult to stress the system in an attempt to reveal any subtle 

differences. 

 

2.5 RESEARCH QUESTIONS 

 

The focus of the current investigation was to utilize sensitive and well-controlled tasks to 

evaluate the full range of phonological processing abilities in adults who stutter. Evidence was 

presented that the phonological processing abilities of children who stutter are different from 

their typically fluent peers. Preliminary evidence also suggested that adults who stutter may have 

a delay or difference in phonological processing, although the evidence for adults who stutter 

came from investigations that did not closely control for variables known to influence 

phonological processing tasks. Thus, a well-controlled, comprehensive exploratory study of the 

phonological processing skills of adults who stutter was warranted.  

The first aim of this study was to determine if the accuracy of phonological awareness 

abilities of adults who stutter were different from typically fluent adults. The phonological 

awareness tasks from the CTOPP, discussed in section 2.2.1, contain real-word stimuli and were 
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similar to the ones administered in Pelczarski and Yaruss (2008) that revealed a significant 

difference in the phonological processing abilities of children who stutter. Use of a similar array 

of phonological processing tasks with adults who stutter allowed for direct comparison of the 

phonological processing skills of children and adults who stutter to determine if these abilities 

change as an individual matures. Previous studies have used tasks that have resulted in ceiling 

effects, yet if tasks and stimuli are sensitive enough to detect subtle linguistic differences it is 

hypothesized that adults who stutter will perform less accurately than non-stuttering participants.  

The second aim of the study was to determine if adults who stutter possessed different 

phonological awareness skills when using non-lexical stimuli, as determined by accuracy 

performance on phonological awareness tasks with nonword stimuli. Lexical access has been 

shown to aid in the completion of phonological awareness tasks, thus making it difficult to 

determine whether performance is due to the help of the lexicon or is an accurate measure of an 

individual’s phonological awareness ability. One way to address this concern was to utilize non-

lexical stimuli in tasks to help isolate phonological awareness ability while reducing lexical 

influence. The Segmenting Nonwords and Blending Nonword subtests from the Alternate 

Phonological Awareness Composite Score of the CTOPP used non-lexical stimuli and could be 

used to address this concern. The differences in phonological awareness of children who stutter 

were reported to be significant, yet subtle, and it was believed that the differences in the more 

mature, adult system would require a more sensitive task to detect a difference. It was predicted 

that the nonword phonological awareness tasks would be more difficult for both groups; 

although adults who stutter would demonstrate more inaccurate responses than adults who do not 

stutter. Two sets of results were examined: within-group differences and between-group 
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differences. Within-group differences between real word and nonword tasks were expected for 

both groups, with nonword tasks being more difficult than real word tasks. Between-group 

differences were also predicted, with the expectation that adults who stutter would perform less 

well on nonword phonological awareness tasks than typically fluent adults. A between-group 

difference on nonword phonological awareness tasks would indicate a difficulty retrieving 

phonological code at the level of phonological encoding instead of at the level of lexical access. 

If between-group differences were found for real word phonological awareness tasks, but not 

nonword phonological awareness tasks, the reverse would be true. It would be indicative of a 

difference involving the retrieval of the phonological code at the lexical level but not the level of 

phonological encoding.  

The third aim of the study was to investigate whether adults who stutter perform 

phonological awareness tasks more slowly than their fluent peers.  A number of studies have 

reported that adults who stutter display a delay, but not a difference, in the completion of 

phonological awareness tasks (Hennessey et al., 2008; Sasisekaran & de Nil, 2006; Sasisekaran 

et al., 2006; Weber-Fox et al., 2004; Wijnen & Boers, 1994). Some of these studies measured the 

time it took for participants to initiate a verbally spoken response (Hennessey et al., 2008; 

Wijnen & Boers, 1994). There is evidence that even the perceptually fluent speech of adults who 

stutter is different than the speech of typically fluent adults (Smith et al., 2010). Thus, it is 

difficult to know if the differences reported are due to a speech motor difficulty or a difference in 

phonological processing. An alternate way to access the processing speed of a phonological 

awareness task could be through the silent completion of the task (Sasisekaran & de Nil, 2006; 

Sasisekaran et al., 2006; Weber-Fox et al., 2008). In the present study, the participants performed 
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a given phonological awareness task and used the result of that task to make a timed lexical 

decision as to whether or not the resulting item was a real word or a nonword. Although there 

was an added level of lexical access, due to the inclusion of a lexical decision component, the 

task could be completed without the possible influences of speech-motor differences which may 

be present even in perceptually fluent speech. 

The fourth aim of the study was to determine whether adults who stutter perform less 

accurately on phonological memory tasks than people who do not stutter. Participants completed 

traditional tasks of phonological memory: digit naming and nonword repetition. These tasks are 

typically highly correlated and considered a good measure of phonological memory (Baddeley & 

Wilson, 1993; Butterworth et al., 1986; Gathercole et al., 2008; Gupta, 2003). Despite the strong 

correlation typically observed, the two subtests were not correlated in a study of children who 

stutter (Pelczarski & Yaruss, 2008). It was hypothesized in this study that adults who stutter will 

perform less accurately than adults who do not stutter on tests of nonword repetition, but not 

digit naming. If adults who stutter demonstrate no differences, contrary to the prediction, it 

would indicate that the phonological memory skills of adults who stutter have “caught up” to the 

performance of non-stuttering adults.  

The fifth research aim also concerns phonological memory and nonword repetition. Not all 

nonword repetition tasks are sensitive enough to detect subtle linguistic differences. Specifically, 

it has been argued that the Nonword Repetition Task (Dollaghan & Campbell, 1998) may not be 

sensitive enough detect performance differences in older children and adults. Results of this test 

with adults and school-age children who stutter have often been cited as evidence that 

phonological encoding is not different in adults who stutter (Bakhtiar, Ali, & Sadegh, 2009; 
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Seery et al., 2006; Smith et al. 2010); however, there is evidence that ceiling effects are present 

with adults. The fifth research aim was to determine if adults who stutter performed differently 

within groups on the Late-8 Nonword Repetition Task (Dollaghan & Campbell, 2003) as 

compared to the Nonword Repetition Task. Between-group comparisons for each test were also 

conducted. 

The sixth research aim was to determine if rapid automatic naming skills in adults who 

stutter were different from their typically fluent peers. Rapid automatic naming is closely 

associated with phonological awareness and phonological memory. Only one study has 

investigated rapid automatic naming in children who stutter and there are no studies that have 

investigated these skills in adults. The results of the study with children who stutter were 

equivocal (Pelczarski & Yaruss, 2008) but these abilities are known to develop with age, 

therefore, rapid automatic naming skills will be investigated as well.  

Finally, it is important to note that performances on all tasks, even if significantly different 

from adults who do not stutter, are predicted to still be within normal limits or just slightly 

depressed (i.e., showing “sub-clinical” differences when compared to adults who do not stutter.; 

Newman & Bernstein Ratner, 2007; Hakim & Bernstein Ratner, 2004). If, contrary to the 

predicted results, adults who stutter were found to be no different from typically fluent adults in 

phonological processing, then one of three factors might be in play: (a) phonological encoding 

really may not actually be deficient in people who stutter (disproving the theoretical models of 

stuttering), (b) phonological processing skills may be interacting and supplementing each other 

to mask actual performance resulting in no between-group differences as evidenced by 

performance in the individual subtests and composite scores, or (c) phonological processing may 
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not mirror phonological encoding as some researchers have suggested (Acheson & MacDonald, 

2009).  

In summary, the research questions are as follows: 

1. Are adults who stutter less accurate in the completion of phonological awareness tasks as 

compared to adults who do not stutter indicating that phonological awareness differences 

persist into adulthood?  

2.  Does the lexical status of the stimuli (i.e., real word or nonword) influence the 

performance of adults who stutter on phonological awareness tasks indicating that lexical 

knowledge contributes equally for both groups?  

3. Do adults who stutter take longer to complete phonological awareness tasks as compared 

to typically fluent adults, suggesting a speed-accuracy tradeoff? 

4. Are adults who stutter less accurate in the completion of phonological memory tasks as 

compared to adults who do not stutter indicating that phonological memory differences 

persist into adulthood? 

5. Will performance differences exist for adults who stutter on tests of nonword repetition 

that vary in phonological complexity, indicating that previous null findings (i.e., 

Nonword Repetition Task) have resulted due to the tasks not been sensitive enough to 

detect differences in phonological memory in adults who stutter? 

6. Do adults who stutter take longer to complete rapid automatic naming tasks 

demonstrating a difference in rapid naming for adults that was not present for children?  
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The results of this line of research will help to clarify whether the phonological processing (i.e., 

phonological encoding) skills of adults who stutter are different from typically fluent adults.  

Findings from these research questions will also allow for comparison of the phonological 

processing skills of children who stutter (Pelczarski & Yaruss, 2008) to adults who stutter to 

determine if changes in these abilities occur across the lifespan. Finally, the research questions 

for the present study will help to support or disprove current psycholinguistic theories of 

stuttering that suggest that phonological encoding is delayed or disrupted in individuals who 

stutter. 
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3.0 METHOD 

 

3.1 PARTICIPANTS 

 

Participants were 19 monolingual, Standard American English speaking adults who stutter 

matched on age, sex, and education level to 19 adults who do not stutter. Participants ranged in 

age from 22 to 45 (mean age adults who stutter, M = 32.68; mean age adults who do not stutter, 

M = 33.21; t(19) = .1627, p = 1.459). The lower age limit was set at twenty-one years old to 

reflect the National Institutes of Health’s definition of an “adult” being a person age 21 or older. 

The upper cut-off age for the study was 50 years old based on results reported by Fisk, McGee & 

Giambra (1988) that indicated young (i.e., aged 19-22) and middle-aged (i.e., aged 37-50) 

participants perform similarly on reaction-time studies and have reduced response variability as 

compared to an older group (i.e., aged 64-88) of participants. Each participant group consisted of 

14 males and 5 females which reflected proportions similar to the sex ratio of 3 males to 1 

female found in the general population (Bloodstein & Bernstein Ratner, 2008). A power analysis 

was performed with G*Power 3.0.10 to determine the appropriate number of participants 

necessary to reveal a medium effect size (.25) for this preliminary study. Alpha was set to .05 

and power was .8 for a MANOVA with 2 groups and 1 response variable, recommended a total 

sample size of 34. The actual sample size of 38 was 13% larger than what was recommended by 

the power analysis.  This study was approved by the Institutional Review Board (IRB) at the 

University of Pittsburgh. In accordance with IRB guidelines, all participants were read a 

“recruitment script” prior to their participation in the study. Participant recruitment occurred 

through the following four avenues: (a) fliers and advertisements posted around Pittsburgh, (b) 
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referral by other speech-language pathologists, (c) word-of-mouth advertising for both stuttering 

and non-stuttering participants, and (d) the National Stuttering Association’s membership. Aside 

from stuttering exhibited by the adults who stutter, all participants were free of known speech, 

language, hearing, or neurological difficulties based on participants’ report.  

 

3.2 INCLUSION AND MATCHING CRITERIA 

 

3.2.1 Speech fluency 

 

Participants were assigned to the group of adults who stutter if: (a) the participant received an 

overall score of at least 11 (mild) on the Stuttering Severity Instrument – 4th edition (SSI-4; 

Riley, 2009), (b) the participant identified him- or her-self as a person who stutters, and (c) the 

participant exhibited 3 or more stutter-like disfluencies (single-syllable word repetitions, part-

word repetitions, sound prolongations, or blocks; e.g., Yairi & Ambrose, 1999) per 100 words of 

conversational speech. A range of mild to severe stuttering severities were included in the 

current study (very mild, N =4; mild, N =5; mild-moderate, N = 1; moderate, N = 1; moderate to 

severe, N = 5; severe, N = 3). Participants were placed in the group of adults who do not stutter 

if: (a) the participant received a total overall score of 10 (less than mild) or below on the SSI-4, 

(b) the participant did not identify him- or her-self as a person who stutters, and (c) the 

participant exhibited less than three disfluencies per 100 words of conversational speech (Yairi 

& Ambrose, 1999). Item (b) above indicates the participant’s self-defined determination of their 
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stuttering status, while item (c) indicates the speech-language pathologist’s classification of the 

participant’s overt stuttering characteristics. 

 

3.2.2 Group matching criteria 

 

Participants were matched by sex, age, and education level as these factors are known to 

influence language abilities. Equal numbers of male and female participants were balanced 

across groups. Participants were matched by age plus or minus 5 years to limit potential 

variability of language and/or cognitive ability that can occur in people of different age groups 

(Glisky, 2007).  Education level of participants is often used as a measurement of SES and 

reading exposure. Participants’ education level was obtained as one of the following categories: 

(a) some high school, N = 0; (b) graduated high school, N = 2; (c) some college, N = 6; (d) 

graduated college, N = 10; (e) advanced degree, N = 20.  Table 6 summarizes the participants’ 

demographic and background variables. 
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Table 6. Demographics. Demographics of adults who stutter (AWS) and adults who do not stutter (AWS). 

Pair 
Number 

Fluency 
Status Age ARHQ EVT PPVT Gender Education 

level 
Stuttering 
Severity  

Pair 1  
 

AWS 
AWNS 

34 
35 

0.42 
0.22 

100 
103 

122 
108 

Male College 
Degree 

Mild 
 

Pair 2 
 

AWS 
AWNS 

29 
30 

0.47 
0.11 

128 
100 

119 
115 

Male Graduate 
Degree 

Mild 

Pair 3 
 

AWS 
AWNS 

37 
38 

0.42 
0.27 

96 
108 

96 
105 

Male Graduate 
Degree 

Moderate-
Severe 

Pair 4 
 

AWS 
AWNS 

24 
23 

0.16 
0.38 

97 
90 

113 
108 

Male Graduate 
Degree 

Moderate-
Severe 

Pair 5 
 

AWS 
AWNS 

35 
35 

0.2 
0.57 

112 
103 

102 
110 

Male Graduate 
Degree 

Mild 
 

Pair 6 AWS 
AWNS 

28 
 29 

0.22 
0.24 

113 
103 

122 
107 

Male Graduate 
Degree 

Mild 
 

Pair 7 AWS 
AWNS 

33 
35 

0.22 
0.38 

102 
110 

119 
110 

Male Graduate 
Degree 

Very Mild 
 

Pair 8 AWS 
AWNS 

32 
33 

0.37 
0.29 

90 
90 

90 
97 

Male 
 

Graduate 
Degree 

Severe 
 

Pair 9 AWS 
AWNS 

42 
44 

0.3 
0.23 

93 
120 

96 
112 

Male 
 

Graduate 
Degree 

Moderate-
Severe 

Pair 10 AWS 
AWNS 

31 
28 

0.44 
0.32 

88 
97 

94 
103 

Male 
 

Some 
College 

Mild-Moderate 

Pair 11 AWS 
AWNS 

32 
39 

0.33 
0.36 

91  
101 

97 
95 

Male 
 

College 
Degree 

Moderate-
Severe 

Pair 12 AWS 
AWNS 

45 
43 

0.28 
0.31 

110 
89 

110 
92 

Male 
 

High School Very Mild 
 

Pair 13 AWS 
AWNS 

36 
39 

0.45 
0.25 

92 
92 

98 
108 

Male 
 

Some 
College 

Moderate 
 

Pair 14 AWS 
AWNS 

30 
29 

0.28 
0.26 

81 
89 

85 
97 

Male 
 

College 
Degree 

Moderate-
Severe 

Pair 15 AWS 
AWNS 

29 
29 

0.22 
0.24 

94 
93 

92 
100 

Female 
 

College 
Degree 

Severe 
 

Pair 16 AWS 
AWNS 

24 
22 

0.39 
0.16 

96 
104 

102 
107 

Female 
 

Graduate 
Degree 

Severe 
 

Pair 17 AWS 
AWNS 

28 
26 

0.17 
0.16 

90 
99 

108 
107 

Female 
 

Graduate 
Degree 

Very Mild 
 

Pair 18 AWS 
AWNS 

38 
38 

0.3 
0.42 

100 
90 

96 
100 

Female 
 

Some 
College 

Mild 
 

Pair 19 AWS 
AWNS 

34 
36 

0.21 
0.33 

97 
96 

104 
100 

Female 
 

College 
Degree 

Very Mild 
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3.3 BACKGROUND DATA 

 

3.3.1 Reading history 

 

Reading ability and phonological processing are intricately linked (Stahl & Murray, 1994; 

Treiman & Zukowski, 1991), so a measure of reading history was obtained. The Adult Reading 

History Questionnaire (ARHQ; Lefly & Pennington, 2000) is a self-report questionnaire with 

Likert-scale scoring that can be used to determine if participants have a history of difficulty with 

reading. A ratio score is obtained and “a score of .30 is considered to be indicative of a positive 

history of reading disability” (Lefly & Pennington, 2000, p 296).   

 

3.3.2 Vocabulary  

 

Many aspects of language development have been shown to influence phonological awareness 

skills in children (Cooper, Roth, Speece, & Schatschneider, 2002), although less is known about 

phonological processing skills in adults. Still, vocabulary ability is highly correlated with 

phonological processing in children (Walley, Metsala & Garlock, 2003) and was measured to 

ensure that vocabulary was not a factor that influenced the results. Two standardized tests of 

vocabulary were administered to measure: (a) receptive vocabulary ability (Peabody Picture 

Vocabulary Test – III [PPVT-III], Dunn & Dunn, 1997), and (b) expressive vocabulary 

(Expressive Vocabulary Test [EVT], Williams, 1997). The PPVT-III required the participant to 

listen to a target vocabulary word and point to one of four pictures that best depicts the given 
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word. The EVT required the participant to listen to a target word while looking at a descriptive 

picture and provide a synonym for the given word. Group-wise comparisons of the data from 

these measures were completed to provide additional information on the participants’ overall 

language abilities. Vocabulary and reading history can influence performance on phonological 

processing tasks, thus it was important for the groups to perform equally on these tasks to ensure 

that any difference found in phonological awareness abilities were not due to differences in the 

background measures. 

 

3.4 INSTRUMENTATION 

 

Digital audio recordings of the stimuli were used for the CTOPP tasks, the Nonword Repetition 

Task, the Late-8 Nonword Repetition Task, the silent phonological awareness/lexical decision 

task, and the traditional lexical decision tasks. The sound files were played via a Lenovo 

ThinkPad T510 laptop and presented to the participants via Sony Dynamic Stereo Headphones 

MDR-7506. The silent phoneme blending/lexical decision task, traditional lexical decision task, 

Nonword Repetition Task and Late-8 Nonword Repetition Task were programmed into E-Prime 

Professional v. 2.0, and run on the Lenovo ThinkPad laptop. Lexical decision choice was 

recorded on a Psychological Software Tools serial response box (model #200A). The 

participants’ responses were recorded electronically by the serial response box and E-Prime 

software onto the laptop’s hard drive, as well as manually by the examiner to ensure accurate 

data collection. Digital audio and video files of the entire session were recorded on a Samsung 
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AD69 Flash CAM digital video recorder. The sound and video files were used in reliability 

testing as described more fully in section 3.7.  

 

3.5 DATA COLLECTION 

 

3.5.1 Phonological awareness tasks with lexical stimuli 

 

Four subtests that measure traditional phonological awareness skills were administered: Elision, 

Blending Words, Phoneme Reversal, and Segmenting Words (CTOPP, Wagner et al., 1999). 

These tasks were used to determine a Phonological Awareness Composite Score as instructed by 

the CTOPP manual. The Elision subtest required participants to listen, via headphones, to a 

digital recording of a word as well as instructions to remove one phoneme from the word to 

create a new target word (e.g., /mit/ “meet” without /t/ is /mi/). Stimuli difficulty increased 

through manipulation of the number of syllables, the location of the phoneme to be removed, and 

the presence of consonant clusters. Participants were provided with practice trials before the task 

was initiated. Participants spoke their responses aloud, and stuttered responses were included in 

the scoring totals because accuracy was being measured regardless of whether the answer was 

stuttered. Participants were scored on accuracy, not speed, until a ceiling was reached. A raw 

score was recorded and a standard score for the task was determined.  

 The Blending Words subtest required the participants to listen to a digital recording of 

individually-presented phonemes through headphones and were instructed to blend the sounds 

together to create a word (e.g., /k-æ-t/ “c-a-t” = / kæt/). Participants were asked to say their 



 
77 

 

 

responses out loud to determine accuracy of the blending task. This task also progressed from 

developmentally simple to more difficult through adjustment of stimuli characteristics. The 

stimuli increased in terms of number of phonemes, ranging from two to ten phonemes, as well as 

number of syllables, ranging from one to four syllables. Accuracy was again the metric used and 

stuttered responses were also included in the scoring totals. Once a ceiling was reached, the raw 

score was translated into a standard score and combined with the standard score of the elision 

subtest to create a Phonological Awareness Composite Score of a participant’s abilities when 

using real-word stimuli.    

Two additional subtests that were not included in either of the Composite Scores (i.e., 

Phoneme Reversal and Segmenting Words subtests) were also administered. The Phoneme 

Reversal subtest was the most developmentally difficult task to complete, and as such, had the 

potential to detect differences between the abilities of adults who stutter and typically fluent 

adults. Participants listened to a digital recording of a nonword via headphones and were given 

instructions to first repeat the nonword to ensure the item was heard correctly and then to 

“reverse the sounds to say the word backwards” (e.g. /kiʧ/ “keech” = / ʧik/ “cheek” backwards). 

Stimuli increased in difficulty through the number of phonemes that increased from two to 

seven, number of syllables that increased from one to two, and the presence or absence of 

consonant clusters. A spoken response was again required, and practice items were provided to 

allow participants to gain some experience with the task. Participants were scored on accuracy 

and a standard score was obtained by following the protocol outlined by the CTOPP’s authors.  

Segmenting Words is another subtest that was administered to participants but was not 

included in a Composite Score for the CTOPP. This task required a real word to be spoken by 
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the primary investigator and was to be repeated back by the participant to confirm that the item 

was heard correctly. Participants were then instructed to say the individual phonemes of the word 

aloud (e.g., “Say pie. Now say pie one sound at a time” = /p-i/). Just as with the other subtests, 

the stimuli increased in difficulty in terms of phonemes that increased from two to nine, syllable 

length that increased from one to three syllables, and the presence of consonant clusters. Practice 

items were completed before initiating the task. Participants’ responses were scored according to 

accuracy and converted into standard scores.  

 

3.5.2 Phonological awareness tasks with nonword stimuli 

 

Phonological awareness tasks that use nonword stimuli provide additional information on the 

phonological awareness abilities without the aid of lexical knowledge (Durgunoglu & Oney, 

1999; Wagner et al., 1999).  Thus, an Alternative Phonological Awareness Composite score was 

also obtained using nonword stimuli via the administration of the supplemental subtests: 

Blending Nonwords and Segmenting Nonwords. Stimuli for both subtests were digitally 

recorded and listened to by the participant via headphones. Blending Nonwords is similar to the 

Blending Words subtest described above in section 3.5.1, except that the phonemes are blended 

together to create a nonword. Several practice items were provided. Participants were asked to 

verbalize their responses to be transcribed by the examiner on-line. Any error in the response 

was marked as an incorrect answer regardless of the number of errors. Stuttered responses were 

counted as either correct or incorrect based on the answer, not on whether a stutter was present. 

A standard score was obtained by following the protocol outlined by the CTOPP’s authors.  
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 The Segmenting Nonwords subtest of the CTOPP was also completed by the participants 

to provide additional data on non-lexical tasks. While listening to the stimuli through 

headphones, the participants heard a nonword and were asked to repeat the nonword out loud. 

The participants were then required to repeat the item back one sound at a time while the 

examiner transcribed the responses. As with the blending nonwords subtest, one phoneme error 

resulted in the item being marked incorrect and any stuttered responses were included in the 

scoring totals. The participants were provided with several practice items before the task was 

initiated.  

 

3.5.3 Phonological awareness reaction times  

 

3.5.3.1 Silent phonological awareness/lexical decision  

 

There is evidence that adults who stutter take significantly longer to complete phonological 

awareness tasks than typically fluent adults (Sasisekaran & de Nil, 2006; Sasisekaran et al., 

2006; Weber-Fox et al., 2004; Wijnen & Boers, 1994).  Thus, a silent phoneme blending task 

was performed to allow access to the timing of phonological awareness abilities of people who 

stutter without requiring a spoken response (Sasisekaran & de Nil, 2006; Sasisekaran et al., 

2006; Weber-Fox et al., 2004). The lexical decision component of the task was predicated on the 

successful blending of the item and the subsequent classification of the stimulus as a word or 

nonword. Stimuli were digitally recorded and programmed into E-Prime. Participants listened to 

the stimuli via headphones and were instructed to place the index finger of their dominant hand 

on “home base” of the response box (i.e., a button between the “word” and “nonword” buttons). 
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The same finger was used to select the response button for each trial, with the finger returning to 

a neutral position after each response. Initiating responses from the “home base” position 

ensured that the distance traveled to the response buttons on either side was the same, thus 

reducing the potential influence of distance on reaction times.  Four practice opportunities were 

provided to allow participants a chance to become acclimated to the task. Participants were 

informed that they would first hear a brief tone followed by a string of phonemes spoken one at a 

time. Both groups were given instructions to blend those phonemes together silently to create 

either a real word or a nonword. Participants were then required to make a lexical decision by 

pressing the appropriate response-time button to indicate their choice. After the lexical decision 

was made, participants were asked to produce the newly blended item aloud to allow for an 

accuracy determination of the phoneme blending task by the examiner. This accuracy measure 

was recorded in addition to the lexical decision accuracy and response-time data collected by the 

E-Prime software. Responses were transcribed and scored by the clinician to determine a percent 

correct score. The E-Prime software was programmed to pause after recording the lexical 

decision response and not to proceed with the next item until the researcher pressed the space bar 

to re-initiate the program. This allowed the participant ample time to respond, and also allowed 

the researcher time to record the behavioral data. Both timing and accuracy data were collected 

on the lexical decision aspect of the task. Any stuttered response was indicated on the transcript 

and scored according to the accuracy of the response regardless of the stutter.  

The stimuli used in the silent phoneme blending/lexical decision task contained 36 items 

balanced across two lists. Thirteen real words, 13 nonwords, and 10 filler words (i.e., five filler 

real words and five filler nonwords) populated the lists. The words range in length from two to 
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ten phonemes, with three stimulus items at each length. The stimuli in each list were categorized 

into three separate blocks, each containing three sets of phoneme lengths (i.e., Block 1 = 

phoneme lengths 2, 3, & 4; Block 2 = phoneme lengths 5, 6, & 7; Block 3 = phoneme lengths 8, 

9, & 10). The standard practice for tests of phonological processing is to gradually increase the 

length of the stimuli (Wagner et al., 1999), presenting shorter stimuli first and ending with 

longer, more challenging stimuli. Table 7 illustrates that this principle was followed in the 

presentation order for the current study; although the stimuli within each block was quasi-

randomized to address presentation order concerns while still generally preserving the 

progression from shorter, simpler stimuli to longer, more complex stimuli. 

The stimuli were created in consideration of multiple factors. First, the potential pool of 

words was restricted by word frequency (i.e., average word frequency: 43,399; range 25,500-

65,500) according to the English Language Project (ELP; Balota et al., 2007), which rates word 

frequency according to the number of times a word occurs per every million words. Potential 

stimuli were excluded if they were compound words or contained grammatical morphemes (i.e., 

-s, -ed, -ly, -ing, un-, re-). Stimuli were then limited by mean accuracy in lexical decision tasks 

with an average accuracy score falling between 0.9 and 1.0 (ELP; Balota et al., 2007). Lists were 

also balanced for phonotactic probability between real word and nonword test items (t = .387; p 

= 0.705), between lists containing both real words and nonword test items (t = .387; p = .705), 

and between full lists of real word and nonword test and filler items (t = .004; p = 0.99). These  
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Table 7: Silent phoneme blending. Stimuli and presentation order for silent phoneme blending/lexical decision task.   

    Number of 
Phonemes 

List 1  
Stimuli  

Number of 
Phonemes 

List 2  
Stimuli 

2  ɚ
 

4 
3 

 
2 

4 
 

3 
2 

 
4 

4 
 

3 
3 

 
2 

5 
 

6 
6 

 
7 

7 
 

5 
5 

 
6 

7 
 

7 
6 

 
5 

8 
 

8 
9 

 
9 

10 
 

8 

9 
 

10 
10 

 
9 

8 
 

10 
 * = filler words. 
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probability measures were determined through the Phonotactic Probability Calculator (PPC; 

Vitevitch & Luce, 2004). Nonword test stimuli were created from real words that matched the 

above-mentioned criteria and were converted into nonwords by changing the final phoneme 

only. Although the resulting nonwords were very “word-like” and thus easier to process than 

“less word-like” nonwords (Gathercole, 1995), the primary goal of the task was phoneme 

blending, and it was important for the participant to attend to the entire stimulus item. Typical 

populations have been observed to name real words faster than nonwords. Nonwords with a 

single phoneme changed in both the initial and medial positions were also included as foils. All 

stimuli were recorded onto a Dell Optiplex 760 desktop computer in a sound booth while using 

Adobe Audition 3.0 software and an Audio-Technica ATR20 microphone. Each individual 

phoneme of a stimulus item was recorded onto a single track and then cut, spliced, and saved 

into a separate sound file for each word. Phonemes were separated by 500 milliseconds of 

silence generated by the Adobe Audition 3.0 software, as this is the standard length of silence for 

tasks of this type (Wagner et al., 1999).  

 

3.5.3.2 Traditional lexical decision  

 

The instructions for the lexical decision task were similar to those for the silent phoneme 

blending/lexical decision task. Again, participants listened to the stimuli using headphones and 

were instructed that they would hear a short tone (75 milliseconds) followed by an aurally 

delivered stimulus item. In this task a word or nonword was presented instead of individual 

phonemes. A decision regarding an item’s lexical status was made by pressing the appropriate 
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button on the stimulus response box, with no verbal response required. Once the button was 

pressed, the E-Prime software triggered the presentation of the next stimulus item after a 500 

millisecond pause. In addition to the timing and accuracy data collected by the E-Prime program, 

the experimenter collected accuracy data by recording the individual’s response on a score sheet 

during testing.  

The purpose of this task was to; (a) ensure there were no significant between-group 

differences in lexical access, and (b) to provide data to “subtract out” the lexical decision 

component of the silent phoneme blending/lexical decision task. Thus, the stimuli for the 

traditional lexical decision task were created in the same manner as the silent phoneme 

blending/lexical decision task. Word frequency (i.e., average word frequency: 43,399; range 

25,500-65,500; ELP; Balota et al., 2007) and phonotactic probability (PPC; Vitevitch & Luce, 

2004) were controlled for experimental real words and nonwords as well as fillers for both lists. 

No differences in phonotactic probability were present between real words and nonwords           

(t = 1.213; p = .420), between lists of both real word and nonword experimental items (t = 1.317; 

p = .204), between full lists of experimental and filler items (t = 1.169; p = .257) or between-task 

(e.g., silent phoneme blending/lexical decision and lexical decision tasks) lists (t = .498;              

p = .624). Table 8 demonstrates that the presentation order for the items by phoneme length was 

identical to the preceding task. In addition to the experimental stimuli, both real word and 

nonword fillers were included as foils. Stimuli were digitally recorded and programed into E-

Prime.  
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Table 8: Lexical Decision. Presentation order and stimuli for traditional lexical decision task. 

Number of 
Phonemes 

List 1  
Stimuli  

Number of 
Phonemes 

List 2  
Stimuli 

2 
 

4 

3 
 

2 

4 
 

3 

2 
 

4 

4 
 

3 

3 
 

2 

5 
 

6 ɚ

6 ɚv
 

7 

5 
 

5 

7 
 

6 

6 
 

7 

7 ɚ
 

5 

8 
 

8 ɚ

9 
 

9 

10 
 

10 

9 ɚ
 

8 

10 
 

9 

8 ɚ/
 

10 
* = filler words 

 

  



 
86 

 

 

3.5.3.3 Pilot data 

 
Typical populations demonstrate a word-length effect when performing a lexical decision task. 

Shorter words containing fewer phonemes are responded to faster than longer words containing 

more phonemes (Meyer, Roelofs, & Levelt, 2003; Meyer, Belke, Hacker, and Mortensen, 2007; 

Santiago, MacKay, Palma, & Rho, 2000). A similar effect exists when completing a lexical  

 

Table 9. Length effect. Mean (M), standard deviation (SD) and paired t-test (t), p-value (p), and Cohen’s d (d) 
demonstrating evidence of a length effect. 

 
Average Response 
Time in Seconds 
for 2-4 Phonemes  

Average Response 
Time in Seconds 
for 8-10 Phonemes 

Test Statistics 

Stimulus Length 
Effect 

M = 1152 
SD = 271 

M = 2134 
SD = 639 

t = 3.293 
p = .030 
d = -2.31 

 

decision task with real word and nonword stimuli; the lexical items are responded to faster than 

non-lexical items in typical populations (Meyer & Schvaneveldt, 1971). One aim of the current 

lexical decision task was to demonstrate that these effects were present when using these stimuli 

to ensure that they would produce representative results. Tables 9 and 10 detail the results of a 

small pilot study (N = 6) that confirmed that both findings were present (t > 2.583; p < .03). A 

large effect size was present for both length and lexical status (d > .70). These data demonstrate 

that the stimuli for the silent phoneme blending/lexical decision task will produce the expected 

lexical-status effect and phoneme-length effect as expected in typical populations.  
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Table 10. Lexical status effect. Mean (M), standard deviation (SD) and paired t-test (t), p-value (p), and Cohen’s d 

(d) demonstrating evidence of a lexical status effect. 

 Real Word Stimuli Nonword Stimuli Test Statistics 

Lexical Status 
Effect 

M = 1466 
SD = 719 

M = 1999 
SD = 829 

t = 2.583 
p = .021 
d = -.70 

 

 

3.5.4 Phonological memory 

 

The Phonological Memory Composite Score represents the participant’s performance on two 

traditional tasks of phonological memory from the CTOPP: Memory for Digits and Nonword 

Repetition. The Memory for Digits subtest required the participants to listen to a digital audio 

recording of digit strings via headphones and repeat the numbers back in the correct order. The 

digit recall began with two ordinal numbers from one through nine and increased in length up to 

eight ordinal numbers, and four practice opportunities were provided. The responses were 

recorded by the examiner on-line and included stuttered responses in the scoring total.  

The Nonword Repetition subtest of the CTOPP required the participants to listen to a 

digital audio recording of phonotactically-legal nonwords and repeat them back aloud as 

accurately as possible. Stimuli increased in difficulty according to the number of syllables (e.g., 

ranging from one to seven syllables), number of phonemes (e.g., ranging from three to 15 

phonemes), and the presence of consonant clusters. Three practice trials were presented before 

data collection began. The examiner transcribed the participants’ responses, including any 

stuttered responses, to determine a standard score.   
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3.5.5 Nonword repetition  

 

Two additional nonword repetition tasks were performed by the participants. The Nonword 

Repetition Task and Late-8 Nonword Repetition Task stimuli were digitally recorded and were 

presented to the participants via headphones. Each task consisted of 16 stimuli and ranged from  

 

Table 11. Nonword repetition. Nonword Repetition Task and Late-8 Nonword Repetition Task stimuli. 
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one to four syllables (four stimuli at each syllable level, see Table 11). Participants were 

instructed to repeat the nonwords as clearly and accurately as possible to allow for the responses 

to be transcribed by the examiner.  A percent-phoneme correct score was determined for both 

tasks.  

 

3.5.6 Rapid automatic naming 

 

A Rapid Automatic Naming Composite score was determined through the administration of four 

rapid automatic naming subtests: Rapid Object Naming, Rapid Color Naming, Rapid Letter 

Naming, and Rapid Digit Naming. All items from the four subtests (i.e., objects, colors, letters, 

and numbers) were expected to be familiar to adult participants. Before each subtest, participants 

were asked to name all of the items included in the rapid naming task to ensure participants’ 

familiarity with the items. Administration of the four subtests occurred in the same manner and 

only differed in the stimuli that were depicted in the test booklet (e.g., objects, colors, letters, or 

digits). The participants viewed a sheet that depicted four rows of stimuli (36 stimuli per sheet) 

and were instructed to name them aloud as quickly as possible. The task was timed on a digital 

stopwatch and the examiner recorded the number of seconds it took to complete the task. The 

participants then repeated the task using the second sheet of stimuli, which depicted the same 

items as the first time, although in a different order, and a second time was obtained. The first 

and second times were added together to obtain a raw score that was converted into a standard 

score. 
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3.6 PROCEDURES 

 

Participants were seated at a table with the examiner while performing all tasks, and all sessions 

were video- and audio- recorded to allow for reliability checks (please refer to section 3.7 below 

for more detail). Digital recordings of the task stimuli were used to provide consistency across 

participants. The stimuli were listened to via headphones and participants were asked to adjust 

the volume to a comfortable loudness level. The examiner also listened to the stimuli 

presentation via headphones to ensure that the stimuli were presented according to specifications. 

Testing occurred in a single session that lasted approximately one and a half hours, with short 

breaks taken as necessary. Speech fluency can change as the participants become more 

comfortable, so a fluency count was obtained at the beginning of the session during 

conversational speech between the participants and the researcher and also from a short reading 

sample. The Adult Reading History Questionnaire was also completed by the participants at the 

beginning of the session. Completion of the questionnaire required little effort by the participant 

and allowed some time for the participant to get situated before moving on to the completion of 

more difficult tasks. One of three presentation orders was administered by the examiner after the 

speech sample and reading history were obtained. Table 12 outlines the three quasi-randomized 

presentation orders.  
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Table 12. Counter-balanced task administration orders. 

ORDER 1 ORDER 2 ORDER 3 

Stuttering Severity Instrument-4 Stuttering Severity Instrument -4 Stuttering Severity Instrument-4 

Adult Reading History 
Questionnaire 

Adult Reading History 
Questionnaire 

Adult Reading History 
Questionnaire 

Peabody Picture Vocabulary 
Test-III 

Comprehensive Test of 
Phonological Processing Nonword Repetition Task 

Expressive Vocabulary Test Traditional Lexical Decision 
Task  Late-8 Nonword Repetition Task 

Comprehensive Test of 
Phonological Processing 

Silent Phoneme Blending / 
Lexical Decision Task 

Peabody Picture Vocabulary 
Test-III 

Traditional Lexical Decision 
Task Late-8 Nonword Repetition Task  Expressive Vocabulary Test 

Silent Phoneme Blending / 
Lexical Decision Task Nonword Repetition Task   Comprehensive Test of 

Phonological Processing 

Nonword Repetition Task Expressive Vocabulary Traditional Lexical Decision 
Task  

Late-8 Nonword Repetition Task  Peabody Picture Vocabulary 
Test-III Test 

Silent Phoneme Blending / 
Lexical Decision Task 
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3.7 MEASUREMENT RELIABILITY 

 

3.7.1 Standardized test reliability and validity 

 

Well-established, standardized phonological awareness subtests of Elision, Blending Words, 

Segmenting Words and Phoneme Reversal from the CTOPP were given to the participants. The 

CTOPP has been reported as a reliable and valid tool for measuring phonological processing. 

The reliability coefficients range from .77 to .90 for the individual subtests and from .83 to .95 

for composite scores demonstrating a suitable degree of test reliability (Wagner et al., 1999). Per 

guidelines from Ebel (1972) and Pyrczak (1973), the CTOPP has also demonstrated adequate 

content validity of greater than .35 (r = .41 to .72) for all subtests and composite scores. The 

construct validity of the CTOPP yielded a confirmatory factor analysis of .99 (out of a possible 

1.00) and yielded a Chi Square of 27.6, with 6 degrees of freedom, providing support for the 

test’s construct validity (Wagner et al., 1999). 

 

3.7.2 Inter- and intra-rater reliability 

 

All data were collected by the examiner, a certified speech-language pathologist with eight years 

of experience administering standardized tests, to maintain consistency in instructions and 

procedures. Scoring was conducted on-line during the original experimental session, while the 

standard scores were calculated for a given participant after data collection was completed. Due 

to the overt nature of stuttering, it was not possible to completely blind the speech-language 

pathologist to the participant’s group status (i.e., stuttering or non-stuttering). Thus, the data from 
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the first six participants (i.e., three from each group; 15% of the data) were independently scored 

by a second certified speech-language pathologist to ensure that evaluator bias was not present. 

The second speech-language pathologist was experienced in the administration and scoring of 

the tests in the battery as well as in the analysis of disfluent speech. The original scores were 

compared to the independently scored data to determine percentages of agreement for the 

CTOPP (range = 90% to 100%; average = 95%), NRT (range = 94% to 100%; average = 97%), 

L8NRT (range = 92% to 97%; average = 94.5%), lexical decision (range = 99% to 100%; 

average = 99.5%), and silent phoneme blending/lexical decision task (range = 96% to 99%; 

average = 97.5%). 

Intra-rater reliability was determined by randomly selecting six different participants 

(three from each group; 15% of the data) to be scored a second time by the examiner 

approximately two months after data collection was completed. The examiner was blinded to the 

original scores of the participants. The second round of scoring was compared to the original 

data to determine percentages of agreement for the CTOPP (range = 97% to 100%; average = 

98.5%), NRT (range = 98% to 100%; average = 99%), L8NRT (range = 96% to 99%; average = 

97.5%), lexical decision (range = 100%; average = 100%), and silent phoneme blending/lexical 

decision task (range = 99% to 100%; average = 99.5%). 
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3.8 ANALYSES 

 

The current exploratory study sought to investigate whether adults who stutter would perform 

less well on phonological processing tasks as compared to typically fluent peers. As such, a 

series of paired, one-tailed t-tests were conducted to compare the groups’ performance on the 

phonological awareness, phonological memory and rapid automatic naming tasks from the 

CTOPP. This exploratory study maintained individual p-values of .05 to maintain the paired 

samples and test the hypothesis that adults who stutter perform less well than adults who do not 

stutter. Because the individual alpha was set to .05, the results must be interpreted with caution 

and re-evaluated with future studies. General Linear Model analyses were conducted on the 

traditional lexical decision task and the silent phoneme blending task to determine the residual 

data for the silent phoneme blending task. Once the influence of the lexical decision times were 

removed from the overall silent phoneme blending times, only the residual data remained.  The 

subtraction of the lexical decision reaction times then revealed silent phoneme blending reaction 

times that more closely represented the time required to complete the task. Finally, an ANOVA 

was conducted to compare the different length and lexical status conditions between groups. The 

outcomes from these analyses will be discussed next. 
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4.0 RESULTS 

 

The aim of the current investigation was to determine if differences existed in the phonological 

awareness, phonological memory and rapid automatic naming abilities of adults who stutter as 

compared to adults who do not stutter. The following section provides the result of these 

analyses. 

 

4.1 DESCRIPTIVE MEASURES 

 

Table 13 displays the means and standard deviations for both groups on the descriptive 

measures. One-tailed, paired t-tests revealed no significant between-group differences (t > .829; 

p > .05) for age, reading history (ARHQ), expressive vocabulary (EVT), or receptive vocabulary 

(PPVT-III). Similar group performances indicated that the groups were relatively well matched 

on these factors. Effect sizes were at or near zero.  
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Table 13. Descriptive measures. Means (M), standard deviation (SD), within-group, one-tailed t-test (t), p-value (p) 
and Cohen’s d (d) for descriptive measures including age, reading history, and vocabulary. 

 

 

4.2 PHONOLOGICAL AWARENESS WITH LEXICAL STIMULI 

 

The CTOPP contains Phonological Awareness subtests that utilize both lexical (i.e., real word) 

stimuli and non-lexical (i.e., nonword) stimuli in the performance of similar tasks. Lexical and 

non-lexical stimuli are believed to assess different functions, and both were examined. Degrees 

of freedom for each task in the CTOPP varied due to the removal of outlier data as discussed in s

section 3.8.  The composite and subtest scores analyzed in the following section use real-word 

stimuli to which allows an individual to access stored lexical information that can influence 

performance on phonological awareness tasks.  

 
 
 
 
 

 
 
 

Adults  
Who Stutter 

Adults Who  
Do Not Stutter Test Statistics 

Age  M = 33.4 
SD = 5.74 

M = 33.9 
SD = 6.75 

t(18) = -1.459 
p = .163  
d = -.09 

Adult Reading History Questionnaire M = .30 
SD = .09 

M = .30 
SD = .08 

t(18) = 1.012  
p = .325  
d = .19  

Expressive Vocabulary Test  M = 94.2 
SD = 7.19 

M = 95.8 
SD = 6.67 

t(18) = .829  
p = .418  
d = -.11 

Peabody Picture Vocabulary Test-III  M = 99.3 
SD = 9.17 

M = 102.2 
SD = 6.20 

t(18) = -.946 
p = .357 
d = -.10 
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4.2.1 Phonological awareness composite score  

 

A series of five one-tailed paired t-tests are summarized in Table 14.  No significant difference in 

performance on the Phonological Awareness Composite score  was present for adults who stutter 

as compared to nonstuttering adults (t = -1.692; p = .119). Analysis of performance on the 

constituent subtests of Elision and Blending Words revealed that adults who stutter scored 

significantly lower than adults who do not stutter on the Elision subtest (t = -2.555; p = .02) yet 

performed similarly on the Blending Words subtest. The Phoneme Reversal and Segmenting 

Words subtests, which were not included in the computation of the Composite scores, did not 

reveal any significant differences (t > -1.692; p > .05) in group performance on these two 

subtests. As described above, the differences between groups were expected to be subtle, and 

these data may indicate that adults who stutter have difficulty with some phonological awareness 

tasks. This difference may not have been strong enough to reveal differences in both subtests, but 

still provides an indication that some differences are present.  
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Table 14. Phonological awareness - lexical. Means (M) standard deviation (SD), between-group t-test (t), p-value (p) 
and Cohen’s d (d) for Phonological Awareness Composite Score (lexical) and subtests of the Comprehensive Test of 

Phonological Processing. 

 

 Adults  
Who Stutter 

Adults Who  
Do Not Stutter 

Test Statistics 

Phonological Awareness Composite  M = 96 
SD = 12.5 

M = 88 
SD = 10.8 

t(17) = -1.639 
p = .119 
d = -.42 

Elision subtest M = 101 
SD = 8.7 

M = 93 
SD = 11.1 

t(17) = -2.555 
p = .020 
d = -.64 

Blending Words subtest M = 10.1 
SD = 2.7 

M = 10.4 
SD = 2.3 

t(17) = -1.118 
p = .279 
d = -.12 

Phoneme Reversal subtest  M = 8.8 
SD = 1.7 

M = 9.8 
SD = 2.0 

t(15) = -2.052 
p = .056 
d = - .55 

Segmenting Words subtest  M = 8.9 
SD = 2.7 

M = 9.7 
SD = 1.9 

t(18) = -1.692 
p = .108 
d = -.35 

    Indicates subtests were not included in Composite Score 

 

 

4.3 PHONOLOGICAL AWARENESS WITH NON-LEXICAL STIMULI 

 

Phonological awareness tasks that use both lexical (i.e., real word) and non-lexical (i.e., 

nonwords) are included in the CTOPP, as discussed in section 4.2. The following section 

presents the between-group comparisons and correlational analyses of the Alternate Phonological 

Awareness tasks that utilize non-lexical stimuli. 
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4.3.1 Alternate phonological awareness composite scores 

 

Table 15 presents the means and standard deviations for both the alternate and traditional 

Phonological Awareness Composite scores. One-tailed, paired t-tests revealed that both groups 

performed better on tasks with lexical, rather than non-lexical, stimuli demonstrating a large 

effect size (d.>.73; t > 2.558; p < .05). 

 

Table 15. Phonological awareness composite scores. Mean (M) and standard deviation (SD), within-group t-test (t), 
p-value (p) and Cohen’s d (d) for adults who stutter and adults who do not stutter on phonological awareness tasks. 

 
Phonological 
Awareness Composite 
Scores (Lexical) 

Alternative 
Phonological 
Awareness Composite 
Scores (Non-lexical) 

Test Statistics 

Adults Who Stutter M = 96 
SD = 12.5 

M = 88 
SD = 10.8 

t(18) = 2.558 
p = .019 
d = .73 

Adults Who Do Not Stutter M = 101 
SD = 8.7 

M = 93 
SD = 11.1 

t(18) = 2.807 
p = .011 
d = .80 

 

 

Table 16 shows the average scores, standard deviations and between-group, one-tailed, 

paired t-tests for the non-lexical Alternative Composite and the related subtests. Adults who 

stutter performed significantly lower than typically fluent adults on the Alternate Phonological 

Awareness Composite score that used tasks with non-lexical stimuli (t > -2.164; p < .05). This 

difference was also present with the two constituent subtests: Blending Nonwords and 

Segmenting Nonwords (t > -2.168; p < .05). The results from the Elision task described in the 
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previous section indicate that some differences in phonological awareness ability were present 

for adults who stutter when using lexical stimuli. These differences in performance on 

phonological awareness tasks became more pronounced when nonword stimuli were used. Taken 

together, these findings indicate that adults who stutter appear to perform better than 

nonstuttering adults on phonological awareness tasks until the real word stimuli are replaced 

with nonword stimuli. The use of nonword stimuli precludes access to lexical-semantic 

information that can bolster reduced phonological awareness abilities, thus masking any potential 

difference. Deficits in the phonological awareness of adults who stutter were fully revealed when 

nonword stimuli were used. 

 

Table 16. Phonological awareness – nonlexical. Mean (M) and standard deviation (SD), between group t-test (t), p-
value (p) and Cohen’s d (d) for Alternative Phonological Awareness Composite score (non-lexical) and subtests of 

the Comprehensive Test of Phonological Processing. 

 

 Adults  
Who Stutter 

Adults Who  
Do Not Stutter Test Statistics 

Phonological Awareness Composite  M = 96.3 
SD = 12.5 

M = 100.7 
SD = 8.7  

t(17) = -1.639 
p = .119 
d = -.42 

Alternate Phonological Awareness 
Composite 

M = 88.0 
SD = 10.8 

M = 92.9 
SD = 11.1 

t (18) = -2.164 
p = .022 
d = -.42 

Blending Nonwords subtest  M = 7.7 
SD = 2.7 

M = 9.2 
SD = 2.5 

t (18) = -2.168 
p = .044 
d = -.12 

Segmenting Nonwords subtest M = 7.7 
SD = 2.0 

M = 8.4 
SD =1.8 

t (17) = -2.232 
p = .039 
d = -.38 
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4.4 PHONOLOGICAL AWARENESS REACTION TIMES 

 

A lexical decision task and a silent phoneme blending/lexical decision task were completed to 

determine how quickly adults who do and do not stutter were able to complete the task. The 

lexical decision task was used as a baseline to compare to the silent phoneme blending/lexical 

decision task, while the silent phoneme blending task was used to determine if adults who stutter 

complete phonological awareness tasks as quickly as typically fluent adults. The results of these 

analyses are discussed below.  

 

4.4.1 Lexical decision accuracy 

 

Table 17 outlines the number of stimuli that were correctly identified in the lexical decision task 

at each length and lexical status level. Chi squared analyses were conducted to determine 

whether the distribution of the number of correctly answered stimuli was equivalent for both 

groups across the length and lexical status conditions. No significant differences between groups 

were present for accuracy, as both groups performed the lexical decision task as expected for 

both real words (χ2 = .131; p = .936) and nonwords (χ2 = .171; p = .917). Table 18 provides the 

lexical decision reaction time means and standard deviations for each word length (i.e., short, 

medium, long) and lexical status (i.e., word, nonword) for adults who stutter and typically fluent 

adults. No statistically significant differences were present, indicating that the groups were 

comparable in terms of accuracy as well as reaction times (t > .735; p > .05).   
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Table 17. Lexical decision accuracy by length and lexical status. Accuracy and Chi Squared (2) levels on 
traditional lexical decision task for adults who stutter and adults who do not stutter at short, medium, and long 

stimuli lengths. 

 Adults  
Who Stutter 

Adults Who  
Do Not Stutter 

Chi Squared for  
Words and Nonwords 

Word Short 221 225  

Word Medium 182 187  

Word Long 165 161 χ2 = .131 
p = .936 

Nonword Short 190 183  

Nonword Medium 203 199  

Nonword Long 184 188 χ2 = .171 
p = .917 

Total Number Correct 1145 1143  

 

 

 

Table 18. Lexical decision between groups. Mean (M) and standard deviation (SD), between group t-test (t), p-value 
(p) and Cohen’s d (d) for lexical decision reaction times by group, lexical status and length. 

 Adults Who Stutter Adults Who Do Not Stutter Test Statistics 

Word Short M = 411.5 
SD = 106.8 

M = 400.1 
SD = 122.6 

t(18) = .783 
p = .444 
d = .05 

Word Medium M = 306.1 
SD = 169.7 

M = 290.3 
SD = 130.7 

t(18) = 1.199 
p = .246 
d = .23 

Word Long M = 302.5 
SD = 170.0 

M = 320.3 
SD = 181.9 

t(18) = 1.232 
p = .234 
d = -.28 

Nonword Short M = 461.9 
SD = 174.5 

M = 442.1 
SD = 164.1 

t(18) = .833  
p = .416 
d = .08 

Nonword Medium M = 472.4 
SD = 209.5 

M = 463.6 
SD = 180.9 

t(18) = .854 
p = .404 
d = -.08 

Nonword Long M = 441.1 
SD = 278.4 

M = 469.0 
SD = 295.7 

t(18) = .735 
p = .472 
d = -.03 
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4.4.2 Lexical decision reaction times - lexical status 

 

A series of four one-tailed, paired t-tests were conducted to determine if the expected within-

group differences were present. Table 19 shows that significant within-group differences existed 

when comparing lexical and nonlexical stimuli were present (t > 2.736; p < .05), demonstrating 

that this effect was present for both adults who stutter and those who do not. Moderate effects 

sizes were found for the short and long conditions (d > -.74), while large effect sizes (d > -1.08) 

were present for medium and cumulative conditions. 

 

Table 19. Lexical status effect. One-tailed, paired t-test (t), p-value (p) and Cohen’s d (d) within-group analyses of 
lexical status effect for adults who stutter and adults who do not stutter. 

 Adults Who Stutter Adults Who Do Not 
Stutter 

Total Words vs. Nonwords  

t (18) = 9.167 
p = < .001 
d = -1.33 
 

t (18) = 14.464 
p = < .001 
d = -1.08 

Word short  - Nonword short  
t (18) = 2.736 
p = .013 
d = -.57 

t (18) = 3.311 
p = .003 
d = .57 

Word medium  - nonword medium  
t (18) = 5.857 
p = < .001 
d = -1.54 

t (18) = 8.609 
p = < .001 
d = -1.61 

Word long – Nonword long  
t (18) = 3.501 
p = .002 
d = .57 

t (18) = 4.940 
p = < .001 
d = -.74 
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4.4.3 Lexical decision reaction times - length effect 

 

Table 20 shows the results of one-tailed, paired t-tests that revealed significant within-group 

differences in length for both groups in the real word context (t = 3.210; p = .004), but not in the 

nonword context (t = 1.586; p = .129). Adults who stutter demonstrated a large effect size for the 

word condition (d > .80), but a near zero effect size was reported for nonwords (d < .20). 

Typically fluent adults demonstrated a small effect size for both word and nonword conditions (d 

< .40). No significant differences were present for either group when all short real words and 

nonwords were collapsed together and compared. These length effect results, combined with the 

lexical status effect results discussed in section 4.4.2, indicate that both adults who stutter and 

typically fluent adults demonstrated the word length effect and word status effect. No between-

group differences were detected on the lexical decision task, suggesting that no deficits were 

present at the lexical level.  

 

Table 20. Word length effect. One-tailed, paired t-test (t), p-value (p) and Cohen’s d (d) within-group analyses of 
word length effect for adults who stutter and adults who do not stutter. 

Word Length and Lexical Status Adults Who Stutter Adults Who Do Not Stutter 

Word Short - Word Long  
t(18) = 4.099 
p = < .001 
d = 1.06 

t(18) = 3.210 
p = .004 
d = .40 

Nonword Short - Nonword Long 
t(18) = 1.070 
p = .299 
d = -.13 

t(18)  = 1.586 
p = .129 
d = -.20 

All Short Stimuli – All Long 
Stimuli 

t(18)  = 1.958 
p =  .065 
d = .26 

t(18)  = 1.032 
p = .315 
d = .006 
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4.4.4 Silent phoneme blending/lexical decision task accuracy 

 

Participants’ silent phoneme blending/lexical decision reaction times were averaged 

according to participant, group, stimuli length, and lexical status and is outlined in Table 21. The 

data were inserted into a linear regression model to determine to what extent lexical decision 

contributes to the variance of silent phoneme blending. Lexical decision reaction-time data, 

outlined in Table 22, was entered into a generalized linear model which revealed a main effect 

for length and an interaction between lexical status and length. A linear regression analysis was 

subsequently conducted to determine to what extent the lexical decision reaction times 

contributed to the variance of the silent phoneme blending task. Silent phoneme blending data 

were entered into the statistical model as the dependent variable and lexical decision as the 

independent variable. Residual data were calculated as the values that remained after the 

variance attributed to lexical decision was removed, leaving only the silent blending data behind, 

as outlined in Table 23. The silent phoneme blending residuals were run through a generalized 

linear model, in the same way as the lexical decision data were, which continued to demonstrate 

a main effect for length. No main effects of group on interactions for blending were present, 

indicating that no difference was detected, but the performance of both groups was reduced as 

the stimuli length increased. Only stimuli that had a correct lexical decision response and a 

correct phoneme blending response were included in the analyses. Appendix A below displays 

the number of eligible stimuli and average reaction times for each participant. The degrees of 

freedom for each level of stimuli vary, and in some instances the average reaction times were  
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Table 21. Reaction times silent phoneme blending. Silent phoneme blending task reaction times for adults who 
stutter (AWS) and adults who do not stutter (AWNS). 

  

 

AWS 
Word 
Long 

 

AWS 
Word 
Short 

 

AWS 
Nonword 

Long 
 

AWS 
Nonword 

Short 
 

AWNS 
Word 
Long 

 

AWNS 
Word 
Short 

 

AWNS 
Nonword 

Long 
 

AWNS 
Nonword 

Short 
 

S1 - 748 - 2388 864 861.7 716 1009.5 

S2 1706.3 1137.7 - 2045.5 407.3 386.8 1101.5 982.5 

S3 45.0 701.3 1660 1243 339 713.3 - 1215 

S4 627 632.3 2577 1766.5 - 863.5 - 1202.3 

S5 1026 970.3 - 2065 1312 2260 - 3095 

S6 1155.5 930.75 - 1454.7 1096 2392.5 - 1843 

S7 914 1495.5 - 2048 558.3 369 3978 1107.7 

S8 542.5 970.2 - 2608 174 1252.5 5274 1744.3 

S9 1845 1116.5 - 2044.3 1340 1894.3 - 2528 

S10 159 1436.8 - 1737.8 685.5 694 - 1095 

S11 1418 1249.7 - 2161.7 1564 1598.5 2838 1664.7 

S12 - 2125 - 1445.3 681 701.5 - 7147 

S13 581.6 1392.7 - 893.3 - 705.6 - 949 

S14 - 1182 - 2234 - 939.2 - - 

S15 488 995 954 1001.25 1432.5 816.5 - 1638.5 

S16 813.5 972.3 - 1501.6 1908 713.7 1439.5 1654.5 

S17 765.5 683.3 - 1554 791.3 663.3 1143 978.6 

S18 662 651 - 821 1919 1923.5 - 2040.5 

S19 1268.2 1622.6 - 1750 592.5 2202.2 7351 111 
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Table 22. Reaction times lexical decision. Lexical decision task reaction times for adults who stutter (AWS) and 
adults who do not stutter (AWNS). 

 

 

  

 

AWS 
Word 
Long 

 

AWS 
Word 
Short 

 

AWS 
Nonword 

Long 
 

AWS 
Nonword 

Short 
 

AWNS 
Word 
Long 

 

AWNS 
Word 
Short 

 

AWNS 
Nonword 

Long 
 

AWNS 
Nonword 

Short 
 

S1 510.7 523.8 493.8 355.2 423.3 476 409.5 320.3 

S2 712.5 784 551 512 377 483.3 357.5 216.6 

S3 458.5 386.2 336.5 341.8 267.1 214.8 330 239.4 

S4 463.3 287.3 324.8 200.7 413.2 392.3 370.9 244.3 

S5 376.2 579.3 460.3 199.6 705.2 749.2 605.1 666.5 

S6 454.5 245.7 427.9 273.3 553.1 363.6 416.5 327.8 

S7 688.8 830.7 446.8 468.5 431.2 269.5 276.5 230.6 

S8 312.5 645.3 416.4 319.1 630.1 571.2 540.2 572.1 

S9 398.2 299.4 421.4 243.3 546.7 690.2 533.8 535.3 

S10 557.5 647 366.7 403.1 292.2 327.6 260.5 187.8 

S11 421.1 616.7 344.1 228.4 409.8 310.6 292.3 212.5 

S12 401.7 576.1 353.4 272 442.7 414.6 446.5 272.7 

S13 432.5 322 382.3 294.5 408.8 334.2 304.9 334.6 

S14 430.4 373.6 372.7 191.6 567.5 1009 389.4 497.8 

S15 290.4 296.3 290 208.2 230.5 288.4 231.8 207.7 

S16 368 353.7 439.2 332.3 289.1 263.7 243 267.2 

S17 425.2 562.4 478.7 337 426 527.7 454.3 408.2 

S18 317.5 256.5 254 454 640.3 682.1 620.1 497.5 

S19 579.1 370.4 433 272 356.2 408.2 415.8 287.1 
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Table 23. Residual data. Residual silent phoneme blending reaction times adults who stutter (AWS) and adults who 
do not stutter (AWNS). 

  

 

AWS 
Word 
Long 

 

AWS 
Word 
Short 

 

AWS 
Nonword 

Long 
 

AWS 
Nonword 

Short 
 

AWNS 
Word 
Long 

 

AWNS 
Word 
Short 

 

AWNS 
Nonword 

Long 
 

AWNS 
Nonword 

Short 
 

S1 - -674.4 - 982.9 -548.1 -555.9 -694.7 -392.1 

S2 264.5 -311.4 - 624.3 -1000.0 -1031.5 -303.9 -408.4 

S3 -1370.7 -707.0 256.8 -160.8 -1057.1 -677.4 - -178.3 

S4 -789.2 -765.8 1175.0 377.2 - -545.4 - -191.4 

S5 -381.3 -457.9 - 675.8 -129.0 814.5 - 1657.9 

S6 -259.8 -463.2 - 57.9 -329.4 958.5 - 440.7 

S7 -525.4 41.6 - 631.2 -854.6 -1027.4 2581 -284.7 

S8 -858.3 -464.6 - 1206.6 -1259.3 -174.8 3850 316.9 

S9 435.4 -282.9 - 650.7 -84.8 454.8 - 1104.4 

S10 -1266.9 1.7 - 327.7 -713.2 -708.3 - -293.0 

S11 6.1 -182.3 - 769.5 153.3 197.9 1439.3 274.2 

S12 - 697.2 - 48.7 -733.1 -709.7 - 5750.3 

S13 -831.5 -9.0 - -505.6 - -697.4 - -454.0 

S14 - -225.0 - 845.6 - -533.0 - - 

S15 -910.5 -404.1 -444.5 -388.8 40.1 -581.8 - 248.5 

S16 -593.0 -432.7 - 98.8 509.6 -682.1 45.9 258.4 

S17 -646.8 -743.1 - 150.7 -621.1 -759.6 -272.3 -432.0 

S18 -739.3 -744.0 - -594.3 484.6 484.8 - 620.8 

S19 -159.9 215.9 - 353.4 -812.6 791.6 5939.6 -1287.2 
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taken from a single reaction-time response. Caution should be taken when interpreting these 

results, as the data sets for the nonword and long-length conditions have limited data points. The 

silent phoneme blending task was examined in two parts: first, the lexical decision reaction times 

for all correctly answered stimuli in lexical decision and second, the reaction times for only the 

stimuli in which the correct lexical decision was made and phoneme blending response was 

obtained as well. Table 24 displays average reaction times by group, lexical status, and length. 

Chi Squared analyses were again conducted to determine if both groups performed similarly in 

terms of accuracy. The distribution of correctly answered nonword stimuli were not evenly 

distributed (χ2 = 6.419; p = .040), while the word stimuli was not significantly different (χ2 = 

.541; p = .763). More errors were made on nonword stimuli resulting in an uneven distribution of 

data between the groups. As such, results should be interpreted with caution knowing that only a 

few data points contributed to the analysis, particularly at the nonword long level. Table 25 

contains the means, standard deviations, t-tests and Cohen’s d for both groups. No significant 

differences were present between groups across both lexical and length conditions (t > .833; p > 

.05).  
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Table 24. Accuracy and Chi Squared (2) levels for silent phoneme blending/lexical decision task at short, medium, 
and long stimuli lengths. 

Stimuli Length Adults  
Who Stutter 

Adults Who  
Do Not Stutter 

Chi Squared for  
words and nonwords 

Word Short 56 65  

Word Medium 51 67  

Word Long 34 36 χ2 = .541 
p = .763 

Nonword Short 48 38  

Nonword Medium 19 29  

Nonword Long 3 10 χ2 = 6.419 
p = .040 

Total Number Correct 211 245  

 

 

 

Table 25. Mean (M) and standard deviation (SD), one-tailed t-test (t), p-value (p) and Cohen’s d (d) for silent 
phoneme blending/lexical decision reaction times by group, lexical status and length. 

Stimuli Length Adults Who Stutter Adults Who Do Not 
Stutter Test Statistics 

Word Short M = 1105.9 
SD = 385.6 

M = 1155.3 
SD = 666.0 

t(18) = .869 
p = .395 
d = -.09 

Word Medium M = 1198.5 
SD = 481.5 

M = 1317.5 
SD = 1205.8 

t(16) = 1.075 
p = .298 
d = -.13 

Word Long M = 876.1 
SD = 506.9 

M = 979.0 
SD = 546.7 

t(13) = 1.030 
p = .31 
d = -.2 

Nonword Short M = 1724.4 
SD = 505.1 

M = 1778.1 
SD = 1497.8 

t(17) = .833 
p = .416 
d = -.05 

Nonword Medium M = 1883.2 
SD = 723.0 

M = 1507.2 
SD = 864.9 

t(9) = 1.668 
p = .129 
d = .5 

Nonword Long M = 1730.3 
SD = 813.8 

M = 2980.1 
SD = 2384.1 

t(9) = 1.230 
p = .231 
d = -.49 
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4.4.5 Silent phoneme blending/lexical decision - lexical status 

 

One-tailed, paired t-tests were conducted for (a) lexical status and (b) length for the silent 

phoneme blending/lexical decision task. Within-group analyses of lexical status are outlined in 

Table 26. Adults who stutter were able to correctly complete the silent phoneme blending task 

significantly faster for real words than for nonwords in the total list, short and medium lengths (t 

> 3.552; p < .01), but not the long length (t = 2.328; p = .102). Large effect sizes for all lexical 

status lengths (d > 1.15) were present for adults who stutter. Conversely, adults who do not 

stutter demonstrated a significant difference for the total list and the long length condition (t > 

3.288; p < .05), but not the short and medium lengths (t > 1.076; p > .05). Large effect sizes were 

present for the word verses nonword comparison at the long length and the total combined word 

verses nonword (d > -1.04), while the short condition revealed a moderate effect for adults who 

do not stutter (d >-.55). 

 

Table 26. Within-group analyses of lexical status effect for adults who stutter and adults who do not stutter in the 
silent phoneme blending/lexical decision task. 

 Adults Who Stutter Adults Who Do Not 
Stutter 

Total Words vs. Nonwords  
t(18) = 6.788 
p = < .001 
d = -1.37 

t(18) = 3.288 
p =  .004 
d = -1.04 

Word short  - Nonword short  
t(18) = 4.645 
p = < .001 
d = -1.42 

t(18) = 1.982 
p = .062 
d = -.55 

Word medium  - nonword medium  
t(12) = 3.552 
p = .003 
d = -1.15 

t(13) = 1.076 
p = .301 
d = -.19 

Word long – Nonword long  
t(2) = 2.328 
p = .102 
d = -1.20 

t(7) = 4.183 
p = .024 
d =  -1.18 
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4.4.6 Silent phoneme blending/lexical decision - length effects 

 

One-tailed, paired t-test analyses were conducted for the silent phoneme blending/lexical 

decision task that was similar to analyses conducted for the traditional lexical decision task.  

Table 27 outlines within-group analyses of stimulus length analyses for adults who stutter and 

those who do not. A comparison of all short stimuli and all long stimuli for adults who stutter 

resulted in statistically significant differences (t = 3.722; p = .004). No other significant 

differences were reported for either adults who stutter or adults who do not stutter based on 

stimuli length (t > 1.617; p > .05). 

 

Table 27. Within-group, one tailed, paired t-test and Cohen’s d demonstrating word length effect and effect size for 
the silent phoneme blending/lexical decision task. 

Word Length and Lexical Status Adults Who Stutter Adults Who Do Not Stutter 

Word Short - Word Long  
t = 1.819 
p = .088 
d = .53 

t = 1.729 
p = .104 
d = .30 

Nonword Short - Nonword Long 
t = 1.617 
p = .126 
d = -.01 

t = 2.014 
p = .062 
d = -.039 

All Short Stimuli – All Long Stimuli 
t = 3.722 
p =  .04 
d = .54 

t = 1.622 
p = .122 
d = .02 

 

 

4.5 PHONOLOGICAL MEMORY 

 

Phonological memory was measured in this investigation through the administration of the 

Phonological Memory Composite score, Memory for Digits and Nonword Repetition subtests of 
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the CTOPP. Data were collected on two additional tests of nonword repetition abilities: the NRT 

and the Late-8 NRT. The results from these tasks are discussed below.  

 

4.5.1 Phonological memory composite scores 

 

One-tailed, paired t-tests revealed no significant between-group differences (t = -1.034; p = .158) 

for the Phonological Memory Composite. Table 28 outlines the means and standard deviations 

for the phonological memory tasks of the CTOPP. Although there was no difference in the 

Phonological Memory Composite scores, adults who stutter performed significantly lower than 

the adults who do not stutter on the Nonword Repetition subtest (t = 3.157; p = .01), while the 

Memory for Digits subtest displayed no between-group differences (t = .734; p = .05). Adults 

who stutter performed below nonstuttering adults on the Nonword Repetition subtest but not the 

Memory for Digits subtest. This finding indicates that adults who stutter demonstrated more 

difficulty assembling novel phonological sequences, as compared to retrieving existing phoneme 

sequences. 

 
 
Table 28. Mean (M) and standard deviation (SD), one-tailed, between group t-test (t), p-value (p) and Cohen’s d (d) 

for adults who stutter and adults who do not stutter on phonological memory tasks. 

 Adults  
Who Stutter 

Adults Who  
Do Not Stutter 

Test Statistics 

Phonological Memory Composite  M = 97.9 
SD = 7.4 

M = 100.5 
SD = 7.4 

t(17) = -1.034 
p  = .158 
d = -.36 

Memory for Digits subtest  M = 11.3 
SD = 2.0 

M = 11.3 
SD = 2.5 

t(18) = 0.734  
p  = .472 
d < 0.01 

Nonword Repetition subtest M = 7.7 
SD =1.2 

M = 8.5 
SD = 1.2 

t(17) = 3.157 
p  = .006 
d = -.63 
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4.5.2 Nonword repetition tasks  

 

Table 29 shows that one-tailed, paired t-tests revealed that adults who stutter performed 

significantly lower than adults who do not stutter on the NRT Total Score, 2- syllable and 3-

syllable levels (t > -2.641; p < .05) but not on the 1- or 4-syllable level of the Nonword 

Repetition Task (t > 1.567; p > .05). Adults who stutter also performed significantly lower than 

typically fluent adults on the Late-8 NRT Total Score, 2-syllable, 3-syllable, and 4-syllable 

levels (t > -2.293; p < .05). No significant differences were apparent for 1-syllable nonwords (t 

=1.567; p =.135). Large effect sizes were present for all of the significant differences. 

Table 30 presents the effect sizes and within-group differences between the NRT and the 

Late-8 NRT for both groups at each length level. The expected within-group differences were 

present with the NRT scores being significantly more difficult than the Late-8 NRT scores for 

both adults who stutter and typically fluent adults (t > 3.061; p < .05). The analyses revealed that 

the Late-8 NRT was significantly more difficult than the NRT for both groups at all levels, with 

the only exception being the 1-syllable level for typically fluent adults (t = 1.533; p >.135). 

Small and moderate effect sizes were present at the one-syllable level (d > .43), while large 

effect sizes were present for the remaining analyses (d > 1.04). These results indicate that a large 

effect of articulatory complexity was present for both groups; nonwords constructed with earlier 

developing phonemes (NRT) were easier for the groups to correctly repeat than nonwords 

constructed using late-8 phonemes (L8NRT).  
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Table 29.  Mean (M), standard deviation (SD), one-tailed t-test (t), p-value (p) and Cohen’s d (d) for adults who 
stutter and adults who do not stutter on the Nonword Repetition Task and the Late-8 Nonword Repetition Task. 

Syllable Lengths Adults  
Who Stutter 

Adults Who  
Do Not Stutter Test Statistics 

Nonword Repetition Task 
Total Score  

M = 91.4 
SD = 4.4 

M = 94.1 
SD = 3.1 

t(17) = -2.766 
p  = .013 
d = -.73 
 

Nonword Repetition Task 
1 syllable  

M = 98.2 
SD = 3.6 

M = 96.5 
SD = 4.2 

t(17) = 1.567 
p  =.135 
d = .45 
 

Nonword Repetition Task 
2 syllable  

M = 96.1 
SD = 3.6 

M = 99.1 
SD = 2.0 

t(16) = -2.641 
p  = .017 
d = -1.02 
 

Nonword Repetition Task 
3 syllable  

M = 96.8 
SD = 2.9 

M = 98.8 
SD = 2.5 

t(17) = -2.808 
p  = .012 
d = -.76 
 

Nonword Repetition Task 
4 syllable  

M = 82.0 
SD = 9.4 

M = 85.5 
SD = 9.9 

t(18) = -1.717 
p  = .104 
d = -.37 
 

Late-8 Nonword Repetition Task 
Total Score  

M = 82.5 
SD = 5.5 

M = 87.3 
SD = 5.2 

t(18) = -2.871 
p  =.010 
d = -.92 
 

Late-8 Nonword Repetition Task 
1 syllable  

M = 93.9 
SD = 7.3 

M = 94.3 
SD = 6.2 

t(18) = -.808 
p  =.430  
d = -.06 
 

Late-8 Nonword Repetition Task 
2 syllable  

M = 88.7 
SD = 4.4 

M = 91.6 
SD = 4.1 

t(18) = -2.432 
p  =.026 
d = -.70 
 

Late-8 Nonword Repetition Task 
3 syllable  

M = 86.5 
SD = 8.2 

M = 91.3 
SD = 6.0 

t(18) = -2.293 
p  =.035 
d = -.69 
 

Late-8 Nonword Repetition Task 
4 syllable  

M = 72.4 
SD = 9.6 

M = 79.2 
SD = 8.6 

t(18) = -2.386 
p  =.029 
d = -.77 
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Table 30. Within-group performance t-test (t), p-value (p) and Cohen’s d (d) on the Nonword Repetition Task as 
compared to the Late-8 Nonword Repetition Task (total score and at each syllable level). 

Syllable Length Adults Who Stutter Adults Who Do Not Stutter 

Total t(18) = 7.926 
p = < .001 
d = 1.84 

t(17) = 5.637 
p = < .001 
d = 1.63 
 

1 syllable  
 

t(17) = 3.061 
p = .006 
d = .77 

t(18)  = 1.533 
p = .142 
d = .43 

2 syllables 
 

t(18) = 5.237 
p = < .001 
d = 1.89 

t(16)  = 8.086 
p = < .001 
d = 2.39 

3 syllables 
 

t(18) = 6.961 
p = < .001 
d = 1.72 

t(17) t = 5.691 
p = < .001 
d = 1.68 

4 syllables 
 

t(18)  = 3.821 
p = .001 
d = 1.04 

t(18)  = 3.272 
p = .004 
d = .70 

 

 

4.6 RAPID AUTOMATIC NAMING 

 

The rapid automatic naming measures in the current investigation include the four subtests from 

the CTOPP; the Rapid Color Naming, Rapid Object Naming, Rapid Digit Naming, and Rapid 

Letter Naming. The results for both groups of participants are discussed below. 

 

4.6.1 Rapid automatic naming composite scores  

 

One-tailed, paired t-tests, summarized in Table 31, revealed no significant between-group 

differences for the Rapid Automatic Naming Composite score or any of the rapid automatic 
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naming subtests (i.e., Rapid Color Naming, Rapid Object Naming, Rapid Digit Naming, Rapid 

Letter Naming) (t > -1.022; p >.05). Adults who stutter scored significantly lower than typically 

fluent adults on the Alternate Rapid Automatic Naming Composite score only (t = -2.187; p = 

.042). The between-group difference reached significance according to the individual alpha set at 

.05; however, in the series of comparisons it cannot be considered particularly robust. 

 
 

Table 31. Mean (M), standard deviation (SD), one-tailed t-test (t), p-value (p) and Cohen’s d (d) for adults who 
stutter and adults who do not stutter on for rapid automatic naming composite scores and subtests of the 

Comprehensive Test of Phonological Processing. 

 

 Adults  
Who Stutter 

Adults Who  
Do Not Stutter Test Statistics 

Rapid Automatic Naming Composite  M = 100.5 
SD = 13.6 

M = 107.1  
SD = 18.3 

t(16) = -1.537  
p  = .142 
d = -.42 

Alternate Rapid Automatic Naming 
Composite  

M = 96.0 
SD = 11.7 

M = 107.6 
SD = 20.3 

t(17) = -2.187  
p  = .042 
d = -.72 

Rapid Color Naming subtest  M = 9.8 
SD = 2.3 

M = 10.8 
SD = 2.9 

t(17) = -1.497 
p = .152 
d = -.39 

Rapid Object Naming subtest  M = 9.5 
SD = 2.5 

M = 11.2 
SD = 3.9 

t(16) = -1.917 
p = .072 
d = -.53 

Rapid Digit Naming subtest  M = 10.7 
SD = 3.0 

M = 11.3 
SD = 3.2 

t(17) = -1.022 
p = .320 
d = -.20 

Rapid Letter Naming subtest  M = 10.2 
SD = 2.7 

M = 11.1 
SD = 3.0 

t(16) = -1.217 
p = .240 
d = -.32 
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4.7 RESULTS SUMMARY 

 

The results discussed above revealed that adults who stutter performed below typically fluent 

adults on a number of phonological processing tasks. Compared to nonstuttering peers, adults 

who stutter demonstrated reduced phonological awareness ability that was initially masked when 

using real word stimuli, although one difference was still present (i.e., Elision subtest). When 

nonlexical stimuli were used, as in the Alternate Phonological Awareness Composite scores, 

adults who stutter were not able to rely on pre-existing lexical-semantic knowledge to bolster 

performance, thereby revealing a significant difference in phonological awareness abilities. 

Significant differences in phonological memory were evidenced for adults who stutter in 

nonword repetition tasks, but not in immediate digit naming, again suggesting that people who 

stutter over-rely on lexical access to complete phonological memory tasks. Performance is 

reduced when lexical access is not available to supplement the relatively  reduced abilities. This 

same trend was also evident in the results for NRT and L8NRT. Adults who stutter performed 

less well than nonstuttering adults on the majority of the nonword repetition tasks. Performance 

on phonological awareness and phonological memory tasks was lower for people who stutter as 

compared to people who do not. Conversely, Rapid Automatic Naming subtests that used lexical 

stimuli (i.e., colors and objects) revealed significant differences for adults who stutter, while 

subtests that employed highly automatized digits and letters did not reveal any differences 

between groups.  

 No significant differences were revealed for phonological awareness subtests that used 

lexical stimuli (i.e., Segmenting Words, Phoneme Reversal, Blending Words). Performance on 



 
119 

 

 

the phonological memory task of digit naming was not significantly different between groups 

and the automatic letter and digit naming tasks also did not reveal group differences. These 

findings all suggest that adults who stutter rely heavily on pre-existing lexical knowledge to 

perform phonological processing tasks, and decreased performance is revealed when that 

knowledge is not available (i.e., in nonword tasks).  
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5.0 DISCUSSION 

 

This exploratory study compared the phonological processing skills of adults who stutter to 

typically fluent adults matched on age, sex, and education. Phonological awareness, 

phonological memory and rapid automatic naming abilities were evaluated in both groups 

through a series of tasks designed to evaluate a wide range of skills and difficulty levels. The 

results are discussed according to each phonological processing skill type. These processes and 

mechanisms responsible for these tasks are so closely intertwined that the performance on the 

different phonological processing skill sets are discussed within each section and also discussed 

in the larger theoretical context at the end of this discussion.  

 

5.1 OVERALL PERFORMANCE 

 

5.1.1 General performance 

 

One general hypothesis of the study predicted that adults who stutter would perform within 

typical limits even if between-group differences were present. Pelczarski & Yaruss (2008) 

reported that although children who stutter were significantly different from their nonstuttering 

peers in phonological processing abilities, they still performed within typical limits. Thus, it was 

anticipated that any differences in phonological encoding ability exhibited adults who stutter 

would also be “sub-clinical” (Hakim & Bernstein Ratner, 2004; Newman & Bernstein Ratner, 

2007) in nature. Individuals who stutter scored below typically fluent adults on a number of 
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measures, but the majority of the scores for both groups fell within one standard deviation from 

the mean, supporting this hypothesis. This finding is not suggestive of “disordered” phonological 

processing, because the majority of scores for adults who stutter (84%) fell within typical limits. 

The small percentage of scores that fell more than one standard deviation below the mean (16%) 

was not indicative of poor performance on all tasks for a given participant. Rather, performance 

was below normal limits on one or two skill sets or tasks (e.g., phonological awareness, 

phonological memory, rapid automatic naming, or constituent subtest, but not all three) and 

within normal limits in the other skill areas. It is not uncommon for one or two phonological 

processing skills to be weaker than the others in a given individual. An individual exhibiting this 

type of performance profile would appear to have typical phonological processing skills overall, 

even though closer examination would reveal that some abilities are weaker than others. 

(Lonigan et al., 2000; Snowling & Hulme, 1994).  

 

5.2 DESCRIPTIVE MEASURES 

 

Descriptive data on the participants were collected to determine if differences were present in 

basic abilities or factors that are known to influence performance on phonological processing 

tasks (e.g., expressive and receptive vocabulary skills, reading history, age, sex, and education 

level). No significant differences were present between groups for any of these measures. 

Furthermore, a traditional lexical decision task found no between-group differences in the 

general lexical abilities of participants who do and do not stutter. The relative equality of the 

background measures for the groups suggests that differences found in the dependent variables 
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are reflective of phonological processing ability and not the result of potentially influential or 

contaminating factors.   

 

5.3 MECHANISMS OF PHONOLOGICAL PROCESSING 

 

Completion of phonological processing tasks requires that certain core mechanisms operate in 

concert to produce a successful outcome (e.g., correctly completed phonological awareness 

tasks). The process of redintegration, as discussed in sections 2.2.1 and 2.2.3, accounts for how 

lexical-semantic knowledge can compensate for potentially deficient or delayed mechanisms. 

This top-down lexical knowledge can aid in the completion of phonological processing tasks by 

(a) bolstering degraded or unstable phonological representations, (b) supporting the construction 

of phonological codes, and/or (c) contributing to the maintenance of phonological 

representations in memory. Deficits in any of these mechanisms could present as disordered 

phonological awareness, phonological memory, or rapid automatic naming. In the following 

sections, the results from the current study are discussed in terms of deficiencies in the quality, 

construction or maintenance of the phonological representations. The implications of 

deficiencies in these mechanisms for adults who stutter are reviewed within each section and also 

in the summary discussion to provide an overview of the findings.  
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5.4 PHONOLOGICAL AWARENESS 

 

5.4.1 Phonological awareness - real word stimuli 

 

Adults who stutter were predicted to perform less well on phonological awareness tasks as 

compared to nonstuttering peers, for previous research reported that individuals who stutter take 

longer to complete phonological awareness tasks than individuals who do not stutter (Burger & 

Wijnen, 1999; Sasisekaran and de Nil, 2006; Sasisekaran et al., 2006; Weber-Fox et al., 2008; 

Wijnen & Boers, 1994). It was argued in section 2.2.1 that some previous studies’ tasks and/or 

stimuli may have been too simple to reveal subtle differences present and that the delay reported 

may have represented a timing/accuracy tradeoff. Thus, an increase in complexity of the stimuli, 

coupled with greater task difficulty, was hypothesized to result in significant between-group 

differences. Contrary to prediction, however, phonological awareness tasks were performed 

equally well by individuals who do and do not stutter, even for the most challenging task, 

Phoneme Reversal. This outcome is consistent with other studies that reported no differences in 

the accuracy of performance between groups on phonological awareness tasks (Burger & 

Wijnen, 1999; Hennessey et al., 2008; Sasisekaran & de Nil, 2006; Sasisekaran et al., 2006; 

Weber-Fox et al., 2004). The lack of difference found in phonological awareness abilities could 

be attributed to task difficulty; if the task was too challenging for both groups, any difference 

would be mitigated. Although possible, this explanation is not likely, for the majority of scores 

for both groups fell within the typical range. Looking at these data in isolation, it appears that 

phonological awareness abilities of individuals who stutter are not different from nonstuttering 

individuals when completing tasks that utilize real word stimuli. It is possible that the presence 
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of subtle deficits could have been masked due to the facilitative effects of long-term lexical 

knowledge. This process of redintegration can help bolster a weaker mechanism by using 

information from the lexicon to strengthen it. As such, it is still difficult to know if there were 

truly no differences in the underlying mechanisms responsible for the completion phonological 

awareness tasks without looking at the entirety of the data collected in the current study. 

Examination of the phonological awareness skills of children who stutter discussed in the 

following section may inform this issue further. 

 Between-group differences were not found for adults who stutter in phonological 

awareness tasks with real word stimuli; however, empirical evidence indicates that phonological 

awareness abilities are different for children who stutter as compared to typically fluent peers 

(Pelczarski & Yaruss, 2008; Weber-Fox et al., 2008). Weber-Fox and colleagues (2008) reported 

that children who stutter were significantly less accurate in rhyme judgment and awareness 

(common phonological awareness tasks) as compared to children who do not stutter. The same 

tasks completed by adults who stutter did not show a difference in accuracy (Weber-Fox et al., 

2004). Pelczarski and Yaruss (2008) also reported that children who stutter have significantly 

lower phonological awareness skills than typically fluent peers, while the current study with 

adults who stutter used similar phonological awareness tasks and found no between-group 

differences. Taken together, these studies suggest that phonological awareness abilities in 

children who stutter are less well developed than in nonstuttering children. One possible scenario 

to describe these findings is that the between-group difference present for children who stutter 

may completely resolve as the children mature, resulting in typical performance for adults who 

stutter. This could be due to a delayed or disrupted core mechanism “catching up” with typically 
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fluent peers as they develop. The second alternative is that the phonological awareness skills 

remain “sub-clinically” different in adults who stutter, but due to increases in adult vocabulary 

knowledge, pre-existing lexical information may help to compensate for these subtle deficits, 

thus concealing any between-group differences in adults. It is unknown which of the core 

mechanisms might be responsible for phonological awareness differences present in children and 

possibly adults who stutter. Further investigation of the phonological awareness tasks using 

nonword stimuli from the current study may help to determine the nature of these differences. 

 

5.4.2 Phonological awareness - nonword stimuli 

 

Nonword phonological awareness tasks from the current study revealed results that differed from 

those reported for phonological awareness tasks that used real-word stimuli in this study. Both 

groups had a more difficult time completing the nonword phonological awareness tasks (i.e., the 

Alternate Phonological Awareness tasks), but participants who stutter performed significantly 

less well than typically fluent participants on this task. The nonword and real word tasks used 

similar tasks that differed primarily in the lexical status of the stimuli. Despite the similarities in 

the types of tasks used for both composite scores, there were marked differences in performance 

between groups. This evidence, combined with the results from the real word phonological 

awareness tasks, suggests that adults who stutter have reduced phonological awareness ability 

that is revealed once the lexicon cannot be depended on to supplement construction or retrieval.  

Participants who stutter demonstrated significantly different between-group performance 

only on nonword phonological awareness tasks, indicating that lexical access plays an important 
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role for adults who stutter. Typical performance on real word phonological awareness tasks, but 

not nonword tasks, suggests that individuals who stutter may rely heavily on pre-existing lexical-

semantic knowledge to supplement decreased functioning in one of the core mechanisms that 

contribute to phonological awareness. The performance benefit evidenced when lexical 

knowledge was used during redintegration indicates that the quality of phonological 

representations are likely sufficient to contribute to completion of real word phonological 

awareness tasks. The facilitative influence of pre-existing semantic-lexical knowledge would 

have been cancelled out if the phonological representations were not stable and robust, resulting 

in poor performance on both real and nonword tasks. In the present study, only nonword tasks 

were deficient, indicating that the quality of phonological representations was likely not 

responsible for the differences displayed by adults who stutter. These findings indicate that the 

diminished process resides further “downstream” in language formulation planning, that is, a 

process closer to construction of phonological code before production. In prior studies (e.g., 

Arnold, et al., 2006; Byrd et al., 2007; Pelczarski & Yaruss, 2008; Weber-Fox et al., 2008), 

preschool children who stutter have only been administered real-word tasks because nonword 

tasks would have been beyond their developmental ability. Still, they scored below typically 

fluent peers on phonological awareness tasks. This could indicate that children who stutter 

initially have compromised or less well defined phonological representations that are 

strengthened or stabilized as they get older, perhaps through the development of larger 

vocabularies (Walley et al., 2003).   
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5.4.3 Phonological awareness timing  

 

Previous studies reported that adults who stutter took significantly longer to complete a 

phonological awareness task but reported no difference in accuracy (Sasisekaran & de Nil, 2006; 

Sasisekaran et al., 2006). Weber-Fox and colleagues (2004) reported an increase in response time 

only on the more complicated tasks of the experiment. Weber-Fox argued that the longer 

reaction times were due to increased cognitive load. In the present study, it was hypothesized 

that those results were representative of a speed/accuracy tradeoff. It was predicted that when 

adults who stutter were presented with a more complex nonverbal phonological awareness task 

(e.g. silent phoneme blending/lexical decision task), an increase in processing time and a 

decrease in accuracy would result. That prediction was not supported in the present study, though 

it should be noted that the analyses lacked sufficient power. The task was intended to be 

challenging in an attempt to reveal potential differences, but the stimuli were too long and 

complex to be completed successfully by both groups. No between-groups differences were 

revealed for the effect of length or the effect of lexical status. Lack of usable data due to the 

difficulty of the task, particularly at the longer stimuli lengths, resulted in there not being enough 

power to reliably analyze the data. These findings are thus deemed to be inconclusive due to the 

difficulties inherent in the task. The inconclusive results prevent further speculation as to what 

core mechanisms that contribute to phonological awareness performance may be different in 

adults who stutter. Still, examination of the results for the phonological memory tasks for the 

current can provide further insight into the nature of phonological processing tasks in people who 

stutter. 
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5.5 PHONOLOGICAL MEMORY 

 

5.5.1 Phonological memory tasks  

 

The Memory for Digits and the Nonword Repetition subtests of the CTOPP were administered as 

measures of phonological memory in individuals who do and do not stutter. Participants who 

stutter performed significantly below nonstuttering participants on the Nonword Repetition task 

only. No between-group differences were present for the Phonological Memory Composite score 

or for the Memory for Digits subtest. A previous study by Pelczarski and Yaruss (2008) 

administered these same phonological memory tasks to preschool children who stutter with a 

similar outcome. Significant between-group differences were reported on the Phonological 

Memory Composite Score and the Nonword Repetition subtest, but no differences were present 

for the Memory for Digits subtest for preschool children who stutter. These results indicate that 

difficulties with nonword repetition exist for both children and adults who stutter and this 

between-group difficulty does not resolve with age. 

As noted in section 2.2.2., nonword repetition is often used as a measure of phonological 

memory, although memory is not the only factor involved in nonword repetition. Like the other 

phonological processing tasks, successful completion of nonword repetition tasks requires the 

ability to not only hold phonological code in memory, but to construct a novel phonological plan, 

and to have robust phonological representations with which to build that plan. Weakness in any 

of these areas can be reflected in nonword repetition performance (Coady & Evans, 2008; 



 
129 

 

 

Edwards & Lahey, 1998; Gathercole, 2006). It appears that sufficient memory was present for 

individuals who stutter because performance on the Memory for Digits subtest was comparable 

for each of the groups. Memory capacity is tested in the Memory for Digits task by requiring the 

naming of longer and longer strings of digits, thereby requiring sufficient memory to complete 

the task. Memory capacity was not limited because people who stutter were able to perform 

typically on the digit span test but not on the nonword repetition task (Gathercole, 2006). 

Difficulty on only the nonword repetition task suggests that a factor other than phonological 

memory may be contributing to reduced performance on nonword repetition tasks for adults who 

stutter. These findings suggest that memory capacity (i.e., the ability to sustain phonological 

code in memory) is not an impaired mechanism for people who stutter. Results from the real 

word and nonword phonological awareness tasks discussed above imply that the stability of 

phonological representations is not impaired either. Thus, together these data suggest that the 

reduced performance on phonological processing tasks is likely due to a deficit or difference in 

the online construction of novel phonological codes. A discussion of nonword repetition tasks 

that are designed to vary in terms of articulatory complexity may provide additional information 

on the nature of phonological processing skills of people who stutter.  

 

5.5.2 Nonword repetition and late-8 nonword repetition tasks  

 

The NRT was designed to be a developmentally easy task with fewer articulatory demands as 

compared to the L8NRT. It was anticipated that all participants would show better performance 

on NRT than on the L8NRT. Indeed, both groups demonstrated this trend of reduced 



 
130 

 

 

performance on the more demanding L8NRT as compared with the NRT. Between-group 

differences existed for the NRT at the 2- and 3- syllable levels as well as for the Total Score. The 

differences for the NRT at the 2- and 3-syllable level were strong enough to result in the Total 

Score being significantly different even when only half of the stimuli showed a difference (i.e., 

2- and 3-syllable stimuli demonstrated a difference, while 1- and 4-syllable stimuli did not). The 

L8NRT was significantly more difficult for adults who stutter at the 2-, 3-, 4-syllable levels and 

the Total Score. Thus, between-group differences were present for the majority of syllable 

lengths, but not for all of them. It is not surprising that the groups performed equally well on the 

1-syllable nonwords for NRT and L8NRT, as these stimuli were the least difficult. Longer 

stimuli are presumed to be more difficult due to the additional cognitive and memory demands 

placed on the task. Still, a difference was only present for the 4-syllable L8NRT and not the 4-

syllable NRT. Closer examination of the data for the 4-syllable NRT reveals that 6 adults who 

stutter who outperformed their matched typically fluent partner. Adults who do not stutter 

performed better than adults who stutter in 11 of the 19 pairs. Two pairs were equally matched. It 

is unclear why the data were distributed this way for the NRT 4-syllable stimuli only, while the 

other syllable levels showed clear trends. A replication and expansion of the study would need to 

be conducted to determine if there was something in particular about those 4-syllable NRT 

stimuli or if this is a trend for other adults who stutter.  

Novel phonological codes must be constructed online for nonword repetition since no 

pre-existing phonological representations are available for nonwords. This means that any 

difficulty in constructing new phonological codes would be revealed in reduced nonword 

repetition performance. Taken in sum, the robust between-group differences found on the 
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nonword repetition tasks combined with data from the phonological awareness and phonological 

memory tasks provide further support for the argument that the ability to construct novel 

phonological representations is different in people who stutter as compared to nonstuttering 

individuals. 

 

5.6 RAPID AUTOMATIC NAMING 

 

Both groups of participants in this study performed equally well on the Rapid Automatic Naming 

Composite Score and subtests that contained letters and digits as compared to subtests that 

contained colors and objects. Adults who stutter performed less well than typically fluent adults 

only on rapid automatic naming tasks with the color and object stimuli. A number of factors, 

including articulatory differences and motoric sequencing, could account for people who stutter 

naming colors and objects more slowly than nonstuttering adults. One explanation may be that 

the articulatory difficulty is higher for naming colors (blue, black, red, green, brown, yellow ) 

and objects (chair, star, boat, fish, pencil, key ) due to the presence of later developing phonemes 

and consonant clusters (Moore et al., 2010; Shriberg & Kwiatkowski, 1994; Storkel, 2001). An 

alternate possibility is that the oral motor planning or sequencing required to rapidly name the 

stimuli aloud was more difficult for adults who stutter. Speech articulators in adults who stutter 

have less stable motor movements, even during perceptually fluent speech (de Nil, 1995; 

McClean et al., 1990; McClean et al., 1994; Smith et al., 2010; Zimmermann, 1980). Color and 

object names have longer articulatory durations that require more coordinated planning due to 

the increased number of phonemes. It has been argued in this discussion that people who stutter 
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may have difficulty in the ability to construct phonological codes, particularly novel 

phonological codes. Colors and objects are well known lexical items to most people and would 

have well established phonological representations available in the lexicon, yet adults who stutter 

still demonstrated slower naming rates than nonstuttering adults. This discrepancy can be 

resolved if the additional time pressure required to “rapidly name” is considered. Added time 

pressure could be enough to tax the system while assembling the phonological code for these 

stimuli (Oomen & Postma, 2001). So even though lexical-semantic knowledge is available for 

these stimuli, the time pressure to “rapidly name” the colors and objects could potentially disrupt 

a vulnerable phonological assembly system, mitigating the effect of redintegration. Thus, the 

between-group difference revealed for rapid automatic naming can be accounted for, along with 

the other findings of this phonological processing study, by a reduced ability to assemble 

phonological code efficiently in adults who stutter.  

 

5.7 THEORETICAL IMPLICATIONS 

 

The prior sections have discussed the results of this study in light of the core mechanisms that 

may be deficient or different in people who stutter as compared to people who do not stutter (i.e., 

difficulty or differences in the quality, construction, and/or maintenance of the phonological 

code). The results can be discussed through a theoretical lens and interpreted in light of the 

psycholinguistic theories of stuttering and models of typical language formulation. 

Psycholinguistic theories of stuttering posit that a disruption or delay occurs during phonological 

encoding that can result in disfluent speech. The Output Sublexical Phonological Representation 

level in the Ramus et al. model was designed to be roughly equivalent to the Weaver++ model’s 
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phonological encoding. Please refer to Figure 4 to view the model again. Ramus et al.’s model 

incorporates the Weaver++ model as part of the larger model. As such, discussions of the 

theoretical models will include phonological encoding from Weaver++ and incorporate it into 

the Ramus model. The data from this study’s real word and nonword phonological awareness 

tasks can be accounted for using the Ramus model (Figure 4 presented again for convenience) 

particularly if we assume that a disruption occurs during Output Sublexical Phonological 

Representation /phonological encoding. In either situation (real word or nonword) the input will 

go up Arrow 2b to Input phonological representation level. From that point the input can follow 

Arrow 1b up to the lexicon and across the bidirectional pathway between input and output 

phonological representation. In all likelihood, the input is sent both up to the lexicon (to see if 

there is a phonological code for the item in question) and across to the output phonological 

representation (to see if the task can be completed there). If this is the case, then the input goes 

up to the lexicon, does not find established phonological code for the nonword, then circles down 

Arrow 1a to the output phonological representation. When there is phonological code from the 

lexicon available, it can bolster a delayed or disrupted process of the construction of the 

phonological code occurring at the level of the Output Sublexical Phonological Representation as 

the data suggests. With no input from the lexicon, the phonological representations must be 

constructed at the level of Output Sublexical Phonological Representation. If a delay or 

disruption occurs at that level, then these data provide support for the psycholinguistic theories  
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Figure 4. Information processing model of speech perception and production. Blue (short dashes) and red (long 
dashes) colored routes added by the current author for illustrative purposes. (Ramus et al., 2010) 
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of stuttering that implicate phonological encoding and hypothesize that a delay or breakdown 

does occur at the level of phonological encoding. The between-group differences reported for 

nonword repetition can also be interpreted within the framework of the Ramus et al. (2010) 

model. Three possible speech production routes (i.e., lexical, nonlexical, or combination) were 

outlined in the model. Ramus and colleagues would likely argue that nonword tasks would use 

the nonlexical route to complete a nonword repetition task. The nonlexical route crosses straight 

over from Input to Output Sublexical Phonological Representation would not be able to access 

pre-existing lexical knowledge (were any available). A deficit at the level of the Output 

Sublexical Phonological Representation, essentially the level where the phonological code is 

combined just prior to being sent to the articulators, would affect each route equally. The 

nonwords used in the repetition task would need to be constructed online, thus, if phonological 

encoding was disrupted, nonword repetition tasks would be difficult.  This disruption would 

account for the reduced performance in nonword repetition tasks for people who stutter. Again, it 

is important to stress that these hypothesized disruptions are significant enough to result in a 

performance decrement, but not so severe as to cause clinically identifiable deficits.  

 

5.8 LIMITATIONS OF THE STUDY 

 

A limitation of the current study involved the silent phoneme blending/lexical decision task. As 

noted above, the task was designed to be difficult in order to reveal subtle differences that may 

have been present between adults who do and do not stutter, but the task turned out to be too 

challenging for both groups to perform with accuracy. Thus, it became impossible to determine 
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conclusively if phonological awareness tasks take longer in people who stutter. In future studies, 

modifications to the original task could be made to slightly lessen the difficulty while still 

maintaining the complexity that is necessary in order to identify potential differences between 

people who do and do not stutter. An increase the amount of data collected will address the 

concern that there was not enough power (i.e., enough data) to answer the original question of 

whether people who stutter are delayed in the performance of phonological awareness tasks as 

compared to typically fluent adults. Stimuli containing fewer phonemes (i.e., shorter in length) 

would perhaps be more manageable for participants to complete, thus increasing the amount of 

usable data. Determining whether adults who stutter take longer to complete phonological 

awareness tasks could provide additional evidence of disordered phonological encoding. 

 A potential limitation of the study may be due to the fact that it was not possible to fully 

blind the experimenter to the participant’s group. As described above, the inter-rater reliability 

ratings were obtained at the very beginning of data collection to determine if examiner bias was 

present in the scoring. Inter-rater reliability was sufficiently high to suggest that bias was not 

present. Although it is difficult to blind the examiner to a participant’s group status, steps could 

be taken to ensure that the second rater (used to determine inter-rater reliability) was blinded to 

group status.  Stuttering is typically an overt behavior and one that would be apparent to the 

experimenter. Very little stuttering was evident during the completion of the tasks, but was more 

evident during the speech sample and conversations with the participant in between tasks that 

would be seen if the whole experimental session was viewed to determine inter-rater reliability. 

Video recordings of tasks can be edited to include the task only and then be viewed by a third 

party to determine if any stutter-like behaviors were observed. If stuttering was evident, another 
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task could be randomly selected until there were enough samples for the second clinician to use 

determine inter-rater reliability. This would allow for a quasi-randomized selection of samples to 

be evaluated while blinding the second rater to group status in an effort to reduce experimenter 

bias.  

 

5.9 FUTURE DIRECTIONS 

 

Despite these robust findings that support current psycholinguistic theories of stuttering, there 

were some limitations in the current study.  A major assumption of this investigation was that 

phonological processing skills reflect phonological encoding abilities. The data are congruent 

with this assumption and provide additional evidence that a disruption in the construction of 

phonological codes occurs at the level of phonological encoding. Still, it cannot be assumed that 

phonological processing is reflective of phonological encoding. It does, however, suggest that 

the same underlying core mechanisms are different in people who stutter as compared to 

typically fluent adults. Further investigation of the nature of phonological processing skills as 

evidence of phonological encoding abilities is required. 

This study demonstrated that the phonological processing skills of individuals who stutter 

are different from those who do not stutter. This difference is likely due to the ability to construct 

novel phonological code at the level of phonological encoding. If this is the case, then it would 

be reasonable to suggest that phonological processing/phonological encoding ability and 

stuttering severity level would be related. Individuals with more severe stuttering would then 

perform less well on phonological processing tasks in comparison to adults with milder 
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stuttering. Future investigations could examine the phonological encoding abilities of individuals 

who stutter based on severity level to further examine the idea that phonological processing and 

phonological encoding are related. 

 Education level is known to have a positive affect phonological processing skills; the 

more education, the better phonological processing skills. This study was balanced for education 

through the matching of pairs, however preliminary analyses based on level of education 

revealed differences between education levels in some aspects of phonological processing (e.g., 

nonword repetition tasks, segmenting nonwords). Just over half of the sample had earned a 

graduate degree, and there was not enough power to be able to analyze each education level. It 

would be informative to explore whether educational differences would account for any of the 

variance revealed.  

Investigation of the fast-mapping abilities in children and adults who stutter would also 

be helpful in determining if the differences uncovered in the current study were the result of 

difficulties establishing and/or storing new phonological codes. Fast-mapping is the ability to 

construct a lexical representation for a novel phonological item on the basis of a single exposure 

(Alt, Plante, & Creusere, 2004; Carey & Bartlett, 1978; Dollaghan, 1985; 1987). It is the process 

by which new words are initially learned and stored in the lexicon. Ludlow et al. (1997) reported 

that adults who stutter demonstrated greater difficulty sequencing nonwords than typically fluent 

adults even after repeated practice. The authors attributed the difference to a difficulty with 

motor sequencing, but it could also be explained as difficulty in the construction of a new 

phonological code. Learning more about how both children and adults who stutter learn new 
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words and generate new phonological codes could help to clarify some of the questions raised by 

the results of the current study. 

5.10 CONCLUSION 

 

The current study accomplished the goal of conducting a broad-based exploratory study to 

investigate the phonological processing abilities of adults who stutter. The differences revealed 

in the present study between adults who do and do not stutter support current psycholinguistic 

theories. These theories account for stuttering in different ways, but primarily argue that 

phonological encoding is disrupted or delayed in people who stutter.  An investigation into the 

core mechanisms that contribute to the completion of the various phonological processing tasks 

provided clear evidence that people who stutter have difficulty assembling phonological code, 

presumably at the level of phonological encoding. Although significant differences were present 

between individuals who do and do not stutter on phonological processing tasks, these 

differences appear to be “sub-clinical;” meaning that the phonological processing/phonological 

encoding abilities of people who stutter were significantly different from nonstuttering adults, 

but the majority of the scores still fell within normal limits. This may indicate that the difference 

in phonological processing/phonological encoding present between people who do and do not 

stutter may be just one of the contributing factors (e.g., various linguistic factors, speech-motor 

planning, temperament) that can lead to an unstable speech system in people who stutter.  
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APPENDIX A 

 

 

DISTRIBUTION OF STIMULI FOR SILENT PHONEME BLENDING/LEXICAL 

DECISION TASK 
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Table 32. Number of stimulus items at each condition level in the silent phoneme blending/lexical decision task. 

 

  

Pair Stimuli 
Adults Who 
Stutter - 
Short 

Adults Who 
Stutter - 
Medium 

Adults Who 
Stutter - 
Long 

Adults Who 
Do Not 
Stutter - 
Short 

Adults Who 
Do Not 
Stutter - 
Medium 

Adults Who 
Do Not 
Stutter - 
Long 

Pair 1 Number of Stimuli 1 0 0 3 4 4 
 WORD 748 - - 861.66 717 864 

 Number of Stimuli 1 1 0 2 4 1 
 Nonword 2388 1305 - 1009.5 1042.5 716 

 
Pair 2 Number of Stimuli 3 2 4 4 3 3 
 WORD 1137.6 1560 1706.2 386.7 751.6 407.3 
 Number of Stimuli 2 3 0 4 2 2 
 Nonword 2045.5 2404 - 982.5 909 1101.5 

 
Pair 3 Number of Stimuli 3 4 1 3 4 1 
 WORD 701.3 1054.7 45 713.3 375 339 
 Number of Stimuli 1 0 1 1 2 0 
 Nonword 1243 - 1660 1215 1117 - 

 
Pair 4 Number of Stimuli 3 4 2 4 2 0 
 WORD 632.3 1681.5 627 863.5 621.5 - 
 Number of Stimuli 4 2 1 3 1 0 
 Nonword 1766.5 1717 2577 1202.3 539 - 
        
Pair 5 Number of Stimuli 4 4 1 1 2 1 
 WORD 970.25 1586.2 1026 2260 2938 1312 
 Number of Stimuli 3 0 0 2 1 0 
 Nonword 2065 - - 3095 3265 - 
        
Pair 6 Number of Stimuli 4 3 4 4 6 4 
 WORD 930.7 1023 1155.5 2392.5 993.1 1096 
 Number of Stimuli 3 1 0 1 2 0 
 Nonword 1454.6 1459 - 1843 1884 - 
        
Pair 7 Number of Stimuli 2 1 2 3 6 3 
 WORD 1495.5 1921 914 369 731.5 558.3 
 Number of Stimuli 2 2 0 3 2 1 
 Nonword 2048 2143.5 - 1107.67 625.5 3978 
        
Pair 8 Number of Stimuli 4 4 2 4 4 2 
 WORD 970.2 849.2 542.5 1252.5 1259.5 174 
 Number of Stimuli 2 1 0 3 1 1 
 Nonword 2608 1263 - 1744.3 1591 5274 
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Pair Stimuli 
Adults Who 
Stutter - 
Short 

Adults Who 
Stutter - 
Medium 

Adults Who 
Stutter - 
Long 

Adults Who 
Do Not 
Stutter - 
Short 

Adults Who 
Do Not 
Stutter - 
Medium 

Adults Who 
Do Not 
Stutter - 
Long 

Pair 9 Number of Stimuli 4 2 1 4 4 4 
 WORD 1116.5 1617 1845 1894.2 3097.7 1340 
 Number of Stimuli 3 0 0 1 2 0 
 Nonword 2044.3 - - 2528 2994.5 - 
        
Pair 10 Number of Stimuli 4 3 1 4 4 2 
 WORD 1436.7 1559.3 159 694 863.2 685.5 
 Number of Stimuli 4 2 0 2 0 0 
 Nonword 1737.7 3001 - 1095 - - 
        
Pair 11 Number of Stimuli 3 3 1 2 3 1 
 WORD 1249.6 1583.6 1418 1598.5 1200 1564 
 Number of Stimuli 3 1 0 3 0 1 
 Nonword 2161.6 3159 - 1664.6 - 2838 
        
Pair 12 Number of Stimuli 2 3 0 2 3 1 
 WORD 2125 988.3 - 701.5 5274 681 
 Number of Stimuli 3 1 0 1 0 0 
 Nonword 1445.3 2701 - 7147 - - 
        
Pair 13 Number of Stimuli 4 5 3 3 1 0 
 WORD 1392.7 465.2 581.6 705.6 402 - 
 Number of Stimuli 3 0 0 2 1 0 
 Nonword 893.3 - - 949 1720 - 
        
Pair 14 Number of Stimuli 1 0 0 4 2 0 
 WORD 1182 - - 939.2 954 - 
 Number of Stimuli 1 0 0 0 0 0 
 Nonword 2234 - - - - - 
        
Pair 15 Number of Stimuli 3 2 1 4 3 2 
 WORD 995 1041 488 816.5 1216 1432.5 
 Number of Stimuli 4 1 1 2 3 0 
 Nonword 1001.2 930 954 1638.5 2428.6 - 
        
Pair 16 Number of Stimuli 3 1 2 4 3 1 
 WORD 972.3 1338 813.5 713.7 498.6 1908 
 Number of Stimuli 3 1 0 2 1 2 
 Nonword 1501.6 1328 - 1654.5 1172 1439.5 
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Pair Stimuli 
Adults Who 
Stutter - 
Short 

Adults Who 
Stutter - 
Medium 

Adults Who 
Stutter - 
Long 

Adults Who 
Do Not 
Stutter - 
Short 

Adults Who 
Do Not 
Stutter - 
Medium 

Adults Who 
Do Not 
Stutter - 
Long 

Pair 17 Number of Stimuli 3 5 2 4 5 3 
 WORD 683.3 1238.2 765.5 663.2 894.2 791.3 
 Number of Stimuli 2 2 0 3 4 1 
 Nonword 1554 1570 - 978.6 1135.5 1143 
        
Pair 18 Number of Stimuli 2 1 3 4 2 1 
 WORD 651 81 662 1923.5 1334.5 1919 
 Number of Stimuli 1 0 0 2 0 0 
 Nonword 821 - - 2040.5 - - 
        
Pair 19 Number of Stimuli 3 4 4 4 6 3 
 WORD 1622.6 787 1268.2 2202.2 910 592.6 
 Number of Stimuli 3 1 0 1 2 1 
 Nonword 1750 1501 - 111 677.5 7351 
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APPENDIX B 

 

MOTORIC, LINGUISTIC, AND TEMPERAMENTAL FACTORS 

 

Stuttering has long been considered a disorder of the oral speech musculature (Kleinow & Smith, 

2000; Ludow et al., 1997; Smith & Goffman, 2004; Tasko, McClean, & Runyan, 2007; van 

Lieshout, Hulstijn, & Peters, 1996; Zimmerman, 1980). Researchers have historically argued that 

deficiencies in the motor system of people who stutter were the cause of stuttering, although the 

contribution of a motoric component in stuttering has evolved to suggest the motor system in 

people who stutter may become taxed or overwhelmed by internal demands that compete for 

shared resources (Bosshardt, 2002; Bosshardt et al., 2002; Kleinow & Smith, 2000; Packman et 

al., 2001; Smits-Bandstra & de Nil, 2009; van Lieshout et al., 2004). In the last 20 years, 

however, theorists have begun to investigate linguistic factors that affect stuttering and forward 

theories that argue stuttering results from deficits or dissynchronies in language production 

(Howell & Au-Yeung, 2002; Karniol, 1995; Perkins et al, 1991; Postma & Kolk, 1993; Wingate 

1988). Recent research also suggests that an individual’s temperament and emotional reactivity 

may influence stuttering (Anderson et al., 2003; Karrass et al., 2006; Schwenk, Conture, & 

Walden, 2007). This paper focuses solely on psycholinguistic factors that can affect stuttering, 

but is not meant to disregard the importance of studying all aspects affecting fluency disorders.  
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APPENDIX C 

 

PSYCHOLINGUISTIC THEORIES OF STUTTERING 

 

Psycholinguistic theories of stuttering suggest that the locus of stuttering may exist at the level of 

phonological encoding (Howell & Au-Yeung, 2002; Karniol, 1995; Perkins et al., 1991; Postma 

& Kolk, 1993; Wingate 1988). The current section provides an overview of the psycholinguist 

models of stuttering which all propose that some sort of delay or disruption occurs at the level of 

phonological encoding. Although each theory differs in terms of the details, they all suggest that 

phonological encoding plays a central role in the disorder. These theories are discussed in more 

detail below. 

 

C.1 FAULT LINE THEORY 

 

One of the first psycholinguistic theories of stuttering was forwarded by Wingate (1988) who 

suggested that stuttering occurred at the level of the syllable. He hypothesized that a disruption 

occurred along a “fault line” between the onset (i.e., initial consonant cluster of a syllable) and 

rime (i.e., vowel or nucleus plus the final consonant cluster or coda) of a word (Wingate, 1988).  
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Wingate argued that stuttering was not limited to difficulty at the level of motoric execution but 

rather the “phonological elaboration of the retrieved lemma” (p. 5) (i.e., phonological encoding). 

He further suggested that stuttering was the result of unstable or impoverished representations of 

non-initial phonemes, arguing that only the onset of the word possessed robust enough encoding 

to be maintained. The rime was believed to be less stable in individuals who stutter, thus creating 

difficulties at the “fault line” of a syllable. He also argued that there was also an asynchrony in 

timing of the linguistic components due to weakly encoded segments, resulting in a delay in the 

planning and construction of syllables. Wingate indicated that there may also be difficulty 

retrieving suprasegmental markers, such as lexical stress, that may impede proper planning and 

result in disfluency, in addition to delays or disruptions at the level of phonological encoding. 

 

C.2 NEUROPSYCHOLINGUISTIC THEORY 

 

Perkins et al. (1991) presented a psycholinguistic theory of stuttering based on the slots and 

fillers model of speech planning (Shattuck-Hufnagel, 1984). The slots and fillers model proposed 

that language was planned through the creation of linguistic scaffolding consisting of syllable 

frames (i.e., slots), which were then filled with the phonological code of a syllable (i.e., fillers). 

Perkins et al. argued that the filling of slots with phonological code was occasionally mistimed 

and usually coupled with a sense of real or perceived time pressure. The addition of time 

pressure would tax the speaker’s linguistic system and result in an asynchronous delivery of the 

syllable’s phonological code. This mistiming was believed to result in stuttering. Perkins et al. 
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further suggested that in addition to a delay in the retrieval of the phonological code (i.e., the 

filler); there may also be a delay in the retrieval of the syllable frames as well. A delay in 

retrieval of either the phonological code or the syllable frames would occur during the process of 

phonological encoding and would result in both stutter-like and non-stuttered disfluencies. 

 

C.3 COVERT REPAIR HYPOTHESIS 

 

The covert repair hypothesis proposed by Postma and Kolk (1993; Kolk & Postma, 1997) 

suggested that stuttering occurred when “prearticulatory repairing of segmental and 

subsegmental phonological encoding errors" (Postma & Kolk, 1993, p. 478) occurs.  The authors 

used a broad definition of phonological encoding to include both phonetic encoding as well as 

semantic encoding. They argued that an internal speech monitor detects an error prior to 

articulation and attempts to correct it. Detected errors may be successfully repaired prior to 

articulation and result in fluent speech. Occasionally, the detected errors are unable to be 

repaired in a timely manner and result in stuttering. Postma and Kolk argued that the system 

retraces the phonological plan back to the syllable boundary marker preceding the error in an 

attempt to self-correct prior to articulation. How much of the speech and/or articulatory plan has 

been executed will dictate how much retracing of the phonetic code will occur. Regardless of 

whether a large or small segment requires repair, the authors argued that the retracing will 

always occur at a syllabic boundary. Postma & Kolk suggested the type of disfluency depends on 

where the error is detected during encoding. Errors in grammatical encoding are hypothesized to 
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result in repetitions of larger syllabic segments, while phonological encoding errors are believed 

result in part-word repetitions. Thus, the covert-repair hypothesis is another example of a 

psycholinguistic theory that argues that errors at the level of phonological encoding may result in 

stuttering.  

 

C.5 EXPLAN 

 

Howell and Au-Yeung (2002) proposed the EXPLAN model of stuttering to account for 

stuttering in terms of phonological complexity. The authors outlined two concurrently occurring 

stages; the planning stage (e.g., PLAN) and the execution stage (e.g., EX), and suggested that 

stuttering would occur if the “interface of linguistic planning and motoric execution” (i.e., during 

phonological encoding) was mistimed (p. 82). Howell and Au-Yeung argued that dissynchrony 

can occur when a segment is "difficult and, therefore, time-consuming to generate" (p. 81). The 

authors defined difficult segments as phonologically complex segments containing consonant 

clusters, late-developing consonants, or possess increased word or segment length. Words 

belonging to an open class, such as content words, are classified by Howell and Au-Yeung to be 

more difficult to produce than closed-class words (i.e., function words). Thus, the increased 

phonological difficulty would result in slower retrieval of those segments during phonological 

encoding and a dissynchrony between the speech and motor systems would occur. 
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C.6 SUMMARY 

 

The theories discussed above share some basic tenants, although they differ in the exact 

mechanism deemed to be responsible for stuttering.  All of the theories suggested that either a 

difficulty or a delay occurs at the level of phonological encoding. These delays may be due to 

difficulty in retrieving the segmented plan, or due to a mistiming of segmental or suprasegmental 

components of the speech plan. Many of the theories included some mechanism for error 

detection, even if it was not fully specified (Howell & Au-Yeung, 2002; Kolk & Postma, 1997; 

Perkins et al., 1991; Postma & Kolk, 1993). Fundamentally, all theories assumed that the 

retrieval or assembly of the phonological code of words occurred in an incremental way; in that 

the code is able to be broken apart into smaller components (i.e., individual phonemes). They all 

also argued that a delay or disruption occurs at some point during the retrieval or assembly of 

these constituent phonological segments that results in stuttering. With so many theories 

implicating phonological encoding, further investigation into the intricacies of phonological 

encoding in people who stutter is certainly warranted. 
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APPENDIX D 

 

INFLUENCES ON PHONOLOGICAL PROCESSING 

 

The phonological processing skills of phonological awareness, phonological memory, and rapid 

automatic naming appear to be separate, albeit intertwined, skills that have been demonstrated by 

researchers to mutually influence the development of phonological processing abilities. There is 

a particularly strong interaction between phonological awareness and phonological memory 

skills (Dickinson et al., 2003; Dickenson & Snow, 1987; Snowling & Hulme 1987; Wagner et 

al., 1994). Each phonological processing skill is thought to influence the others in various ways, 

primarily by helping hone and refine skills enabling them to operate at a more automatic level. 

Empirical evidence suggests phonological processing skills interact more in younger children 

and separate into distinct processing in older children and adults (Cornwall, 1992; Gathercole et 

al., 1991; Savage et al., 2005).  

In addition to the influence phonological processing skills have on one another, a number 

of other variables can affect an individual’s phonological processing ability. Age, socio-

economic status, general language skills, vocabulary, and speech sound production ability all 

influence an individual’s performance on phonological processing tasks.  
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D.1  AGE 

 

Phonological processing skills gradually develop over time beginning around age three (Anthony 

& Francis, 2005; Chaney, 1994; Metsala, 1999). Phonological awareness becomes increasingly 

refined as a child’s awareness becomes sensitive to smaller phonological components of lexical 

items (Anthony & Lonigan, 2004; Anthony et al., 2003; Fox & Routh, 1975; Liberman et al., 

1974; Nittrouer et al., 1989; Treiman, 1992; Treiman & Breaux, 1982, Treiman & Zukowski, 

1996). Continued exposure to print material and reading facilitates children’s increasing 

awareness of syllables, onset/rime, and individual phonemes. Previously, phonological 

awareness abilities were believed to stabilize around age five, but recent research indicates some 

early phonological awareness skills can be stable at even younger ages when memory load is 

controlled (Anthony et al., 2003; Anthony et al., 2007; Lonigan et al., 2007).  A modified 

phonological awareness blending task has been implemented by a number of researchers to 

account for differences in phonological memory of young children (Anthony et al., 2003; 

Anthony et al., 2007; Lonigan et al., 2007).  Pictures depicting a compound word to be blended 

(e.g., cow and boy = cowboy) provided along with auditory presentation of the stimuli allowed 

young preschool children to perform the phonological awareness blending task (at least for larger 

units like words and compound words). The developmental progression of phonological 

awareness evolves to include awareness of finer phonological distinctions as the child ages. This 

evolution occurs in a gradual fashion over a number of years.  

Age also affects performance on phonological memory tasks. Adults are able to maintain 

longer, more complex strings of information in phonological memory than children (Baddeley, 
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2003; Gathercole, 2007). This occurs, in part, due to well-established connections to vocabulary 

knowledge. A number of researchers argue that increased lexical knowledge helps decrease 

reliance on phonological memory (Gathercole et al, 1999; Roodenrys & Hinton, 2002; Thorn and 

Frankish, 2005; Vitevitch & Luce, 2005). Thus, as older children and adults acquire additional 

vocabulary, phonological representations overlap and aid in the activation of the phonological 

form at the lexeme rather than relying solely on phonological memory. Phonological processing 

skills develop along a continuum as a child matures. Thus, it is important to control for age when 

investigation the phonological processing skills of children.  

 

D.2  SOCIOECONOMIC STATUS 

 

The household environment greatly influences a child’s language and reading development (Bird 

et al., 1995; Bowey, 1995; Dickinson & Snow, 1987; Dollaghan & Campbell, 1998; Engel, 

Santos & Gathercole, 2008; Hauser, 1994; Hecht & Greenfield, 2002; Lonigan et al., 1998; 

McDowell, Lonigan, & Goldstein, 2007; Nittrouer, 1996; Nittrouer & Burton, 2005). As such, 

socio-economic status is a background factor often documented in current research. 

Measurements used to estimate socio-economic status include household income, 

maternal/parental education level, and parental occupation (Cooper et al., 2002; Dollaghan & 

Campbell, 1998; Engel et al., 2008). Low socio-economic status has been shown to negatively 

influence a child’s general language skills (Chaney, 1994; Dickinson & Snow, 1987; Dollaghan 

et al., 1998), vocabulary acquisition (Bee et al., 1969; Bryant, MacLean & Bradley, 1990; 

Dickinson et al., 2003; Dickinson & Snow, 1987; Duncan & Brooks-Gunn, 1997; Farran, 1982; 
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Farran & Haskins, 1980; Hart & Risley, 1995; Heath, 1983; Hess & Shipman, 1965; Hoff-

Ginsberg, 1991; McDowell et al., 2007; Schacter, 1979; Warren-Leubecker & Carter, 1988), 

phonological awareness abilities (Bowey, 1995; Burgess, 2002; Chaney, 1994; Lonigan et al., 

1998; McDowell et al., 2007; Nittrouer, 1996; Nittrouer, & Burton, 2005), and phonological 

memory (Chaney, 1994; Dickinson & Snow, 1987; Engel et al., 2008; Lonigan et al., 1998; 

McDowell et al., 2007). Family environments with higher socio-economic status are reported to 

be more likely to employ teaching through maternal discourse, model early literacy behaviors, 

and provide early exposure to print and literacy (Brody & Flor, 1998; Fuligni, 1997; Hart & 

Risley, 1995; Hoff, 2003; Hoff & Tian, 2005; Huttenlocher, Haight, Bryk, Seltzer, & Lyons, 

1991; Tomblin et al., 1997; Walker, Greenwood, Hart, & Carta, 1994). These elements positively 

influence phonological processing, reading, and other linguistic abilities. Socio-economic status 

exerts a powerful influence on many aspects of language and phonological processing that 

should be controlled for in studies involving any linguistic ability, particularly phonological 

processing.  

 

D.3  GENERAL LANGUAGE 

 

General language ability also influences phonological awareness and phonological memory, 

particularly in children (Dickinson et al., 2003; Frijters et al., 2000; Lonigan et al., 2000; 

Metsala, 1999; Olofsson & Neidersoe, 1999; Sénéchal & LeFevre, 2002; Silven, Niemi, & 

Voeten, 2002; Storch & Whitehurst, 2002). Chaney (1994) conducted a multiple regression 

analysis exploring phonological processing and general oral language skills. The study revealed 
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that general oral language ability is strongly related to phonological processing skills, 

particularly phonological awareness abilities. Cooper et al. (2002) investigated the relationship 

of oral language skills and the development of phonological awareness in reading and non-

reading children (kindergarten through 2nd grade). Oral language accounted for nearly 28% of the 

variance in phonological awareness for non-readers in kindergarten, 42% of the variance for non-

readers in the first grade, and 41% for non-readers in the second grade. The influence of general 

language ability was not as high for children who already knew how to read. The authors 

interpret these findings as demonstrating the importance of general language ability in the 

development of phonological awareness. The studies discussed above highlight the importance 

of controlling for general language ability when investigating the phonological processing skills 

of children. 

 

D.4  VOCABULARY 

 

Phonological awareness ability in children is influenced by vocabulary knowledge (Carroll et al, 

2003; Leseman & De Jong, 1998; Metsala, 1999; Silven et al., 2002). Metsala (1999) 

investigated the influence of vocabulary size on phonological processing in a sample of four- to 

six-year old children. She reported a significant correlation between phonological awareness 

segmentation tasks and receptive vocabulary size. A longitudinal study conducted by Leseman 

and de Jong (1998) reported vocabulary knowledge at age four predicted word decoding (a 

phonological awareness skill) at age seven.  Early language development and phonological 
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awareness was also investigated via another longitudinal study, this time by Silven et al. (2002). 

The authors reported that vocabulary knowledge at age two predicted onset-rime awareness at 

age four.  Carroll et al. (2003) explored the relationship between a number of language measures 

and the development of phonological awareness in typically developing preschool children.  

Carroll et al. reported a strong correlation between receptive vocabulary skills and phonological 

awareness, particularly in what the authors termed “large-segment awareness” which is a 

combination of rime and syllable matching. It is also one of the first phonological awareness 

skills to develop. The authors interpreted this finding as support for the assertion that “early 

global sound sensitivity may be related to the growth of vocabulary knowledge” (Carroll et al 

2003, p. 920). 

Phonological memory is also influenced by vocabulary knowledge in young children 

(Baddeley & Wilson, 1993; Gathercole & Baddeley, 1989; Gathercole et al., 1992; Masoura & 

Gathercole, 2005.) A longitudinal study conducted by Gathercole and Baddeley (1989) 

investigated the relationship of phonological memory and vocabulary growth in typically 

developing children aged four and five. Phonological memory, as measured by a nonword 

repetition task completed by four year olds, was a strong predictor of vocabulary growth at five 

years old. This study provided evidence that phonological memory, as measured by nonword 

repetition, is implicated in new vocabulary acquisition. Nonword repetition requires the ability to 

form novel phonological representations in the same way new vocabulary words are formed. 

Any difficulties in nonword repetition could affect a child’s ability to acquire new words by 

delaying the establishment of stable representations or by development of incomplete or unstable 

representations. The literature provides evidence of a positive relationship/correlation between 
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vocabulary knowledge and phonological processing ability. "There is substantial evidence 

linking the process of storing the unfamiliar phonological structure of a new word with verbal 

short-term memory" (p.762).  The contribution of vocabulary knowledge to phonological 

memory in older children and adults responds differently than younger children (Masoura & 

Gathercole, 2005, Paulesu et al. 2009). As discussed briefly above, lexical knowledge appears to 

reach a critical level at approximately eight years of age. Lexical knowledge begins to be 

utilized, decreasing dependence on phonological memory for short-term memory recall and can 

also be used to bolster weaker systems. 

 

D.5  SPEECH SOUND ABILITIES 

 

The relationship of speech sound production abilities and phonological processing in children 

has also been investigated by a number of researchers. Webster and Plante (1992) conducted a 

study of phonological awareness abilities in children with speech sound production disorders 

compared to a matched control group. The group with speech sound disorders performed 

significantly less well than the typical group on three phonological awareness tasks. Bird et al. 

(1995) investigated the relationship between speech sound abilities, phonological awareness and 

general reading ability in a longitudinal study of children aged five to seven. Children from the 

phonologically impaired group performed significantly lower than controls on measures of 

phonological awareness and reading ability. Carroll et al. (2003) investigated the development of 

phonological awareness and related language abilities in typically developing preschool children. 

Articulation accuracy exerted a significant influence on phonological awareness. The authors 
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reported children with large numbers of articulation errors performed less well on measures of 

phonological awareness. Not all studies report an interaction between articulation abilities and 

phonological awareness skills. Rvachew and Grawburg (2006) investigated articulatory abilities 

as a factor that affects phonological awareness skills in preschool children. The authors reported 

findings contrary to earlier studies and reported articulation accuracy was not a factor that 

affected phonological awareness abilities in children four to five years old. These results were 

similar to those presented by Larrivee and Catts (1999) who reported the severity of the 

articulation disorder could not account for phonological awareness skills; however, the 

phonological disorders group also included a large percentage of participants with concomitant 

language disorders as well. Larrivee and Catts split up the phonological disorders group into two 

further groups according to reading ability to explore the relationship between the language 

abilities of good and poor readers. A closer look at the data in both studies reveal not only 

significant differences between good and poor readers on phonological processing tasks, but also 

a significant difference in general language abilities that likely account for the paradoxical 

findings.  

      The discussion above provides evidence that many lexical factors appear to influence 

phonological processing. As such, experimental designs investigating phonological processing 

should account for the influence of age, socioeconomic status, general language ability, 

vocabulary, and speech sound production ability.  
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APPENDIX E 

 

PHONOLOGICAL AWARENESS IN CHILDREN WHO STUTTER 

 

There are only two studies that explicitly state phonological awareness as dependent measures in 

children who stutter; however, a number of studies do explore phonological awareness, 

phonological memory, and rapid automatic naming in children who stutter. These studies are 

reviewed below and interpreted within a phonological processing framework. 

 

E.I  IMPLICIT PHONOLOGICAL AWARENESS 

 

Phonological priming studies are believed to measure implicit phonological awareness, that is, 

awareness of word onsets on a subconscious, non-volitional level. Traditionally, prime words 

with the same beginning phoneme (onset) as the target word are named faster when an onset is 

shared, resulting in a facilitative effect. The goal of phonological priming studies with children 

who stutter is often to determine whether children who stutter demonstrate similar facilitative 

effects, but the studies have reported mixed results. 
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Melnick et al. (2003) used a picture-naming phonological priming paradigm to examine 

the speed of phonological encoding in 36 preschool children who stutter and their typically fluent 

peers, aged three to five years. Phonological facilitation (i.e., faster response times in the 

presence of phonologically similar primes) was the primary dependent measure. Auditory primes 

were presented in three conditions: 1) no prime, 2) matching prime, and 3) incongruent (i.e., non-

matching) prime. Melnick et al. hypothesized children who stutter would not benefit from 

phonological facilitation as much as children who do not stutter due to impairments in their 

ability to encode phonological information. All children individually demonstrated faster naming 

latencies when presented with an auditory prime with the same onset as the target word than 

when presented with an incongruent (i.e., non-matching) phonological prime. Results indicated 

no significant between-group differences in reaction times were present for any condition. The 

authors did report a great deal of variability in response times both between and within children 

who do not stutter. Conversely, children who stutter displayed relatively stable response times 

between ages three and five and did not demonstrate that same magnitude of change the non-

stuttering children demonstrated. Melnick et al. argue this lack of variability in response time 

between the younger and older age children who stutter groups indicates the five-year olds might 

not be able to encode phonological information as rapidly. The authors also reported children 

who do not stutter demonstrated a significant negative correlation in picture-naming latencies 

when compared with scores on a measure of speech sound articulation (Goldman-Fristoe Test of 

Articulation–2 [GFTA-2]; Goldman & Fristoe, 2000), whereas children who stutter did not. 

Children who do not stutter with shorter naming latencies demonstrated greater articulatory 

mastery, whereas those with longer naming latencies demonstrated less articulatory mastery. In 

contrast, children who stutter did not exhibit an association between speech sound articulation 
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and naming latencies. Melnick et al. interpret the lack of negative correlation between 

articulation skills and response time to be indicative of less well developed/organized 

phonological encoding systems in children who stutter as compared to their typically developing 

peers. Other researchers (Anderson & Byrd, 2008; Hakim & Ratner, 2004) have suggested the 

findings could be indicative of a difficulty for children who stutter to hold phonological 

information in memory rather than a deficit in the specificity of their phonological 

representations. The lack of variability in children who stutter suggests there are some 

differences in how children who stutter respond to implicit phonological awareness tasks, 

although results were far from conclusive. 

Byrd et al. (2007) explored the phonological encoding of three year-old and five year-old 

children who stutter and their age-matched, non-stuttering peers on their ability to respond to 

holistic (i.e., entire lexical item) and incremental (i.e., segment of a lexical item) phonological 

priming conditions. Participants were presented with incremental (e.g., “b” for book) or holistic 

(e.g., “ook” for book) auditory prime and were required to name pictures following the prime as 

quickly as possible. Speech reaction times revealed both groups of three year-olds responded to 

the holistic priming faster than incremental primes. The five year-old typically fluent children 

responded more quickly to the incremental priming conditions, much as adults do. Conversely, 

children who stutter continued to respond more quickly to holistic priming conditions and did not 

show developmental advancement. Byrd et al. suggests the retention of holistic processing for 

the children who stutter may be indicative of a delay in the incremental processing of 

phonological encoding. Alternatively, the differences between holistic and incrementally 
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processing could be representative of a delayed or reduced awareness of the component parts of 

lexical items.  

Byrd et al.’s (2007) results were replicated (although published before Byrd et al.) in a 

study by Arnold et al. (2006). Children were administered a holistic and segmental priming task, 

as in Byrd et al. Evoked-response potentials (ERPs) were also obtained while the task was 

performed. Children who stutter again responded faster in the holistic priming condition than in 

the segmental priming condition. Arnold et al. also reported differences in ERP signals between 

the two priming conditions, suggesting the two conditions demonstrate differences from both a 

behavioral and cognitive perspective. Replicated findings provide strong evidence for a different 

level of segmental awareness in young children who stutter. It is difficult to know if Byrd et al.’s 

findings are indicative of a delay that children who stutter eventually develop out of or a true 

difference in abilities compared to children who do not stutter. Further research with school-age 

children and adults would help to determine this distinction. 

 

E.2  EXPLICIT PHONOLOGICAL AWARENESS 

 

Explicit phonological awareness involves the volitional ability to parse apart phonological 

segments of language. Only three studies to date have specifically investigated explicit 

phonological awareness in children who stutter and are discussed in more detail below.  

Bajaj et al. (2004) explored select aspects of phonological and grammatical awareness in 

children who stutter.  Forty-six children in kindergarten through 2nd grade participated in the 
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study (10 in kindergarten, 24 in first grade, 12 in second grade), half of whom stuttered and the 

other half did not. The children ranged in age from 5;10 to 8;10 and all were male. The 

participants completed three phonological awareness tasks and a grammar judgment task. The 

phonological awareness tasks included administration of The Lindamood Auditory 

Conceptualization Test (LAC; Lindamood & Lindamood, 1979) which requires phoneme 

identification and manipulation, as well as the Phoneme Reversal subtest of the Comprehensive 

Test of Phonological Processing (CTOPP, Wagner et al., 1999). Bajaj et al. reported no 

significant differences in the phonological awareness tasks, but children who stutter performed 

significantly lower on the grammatical judgment task. The authors reported children who stutter 

mean scores were lower than their typically fluent peers for all measures, but no other measure 

reached significance. A number of methodological concerns exist with Bajaj et al.’s study that 

should be taken into consideration. The children in each group ranged in age from 5:10 to 8:10 

and many older, more experienced readers in each group than younger readers. Each group 

contained 10 kindergarteners, 24 first-graders, and 12 second-graders. Collapsing data across age 

groups without accounting for the effect of age on phonological awareness would mask any 

potential difference between groups. Also of concern in this study design is the use of phoneme 

reversal as one measure of phonological awareness. Phoneme reversal is a more developmentally 

advanced ability, requiring greater memory resources while the reversal task is conducted (Mann 

& Lieberman, 1984). In fact, according the CTOPP authors, the task is only recommended for 

children seven and older, suggesting it too difficult for over half the participants in Bajaj et al.’s 

study. Thus, regardless of group affiliation, the task may have been too difficult for many of the 

participants and resulted in a ceiling effect. In light of the above-stated methodological concerns, 
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it is difficult to draw conclusions regarding the phonological awareness ability of children who 

stutter from the study.  

In an attempt to account for the full spectrum of phonological awareness tasks, Pelczarski 

and Yaruss (2008) investigated a broad range of phonological processing skills in 5- and 6- year 

old children who stutter and children who do not stutter.  The CTOPP (Wagner et al., 1999) was 

administered to all participants. The CTOPP is a standardized test developed to measure 

phonological awareness, phonological memory, and rapid automatic naming in children. The two 

versions differ in terms of task complexity, with more phonological awareness skills tested in the 

version for older children. A variety of subtest gauged performance on phonological awareness 

(e.g., Elision, Word- and Sound-Blending, Sound Matching), phonological memory (e.g., 

Nonword Repetition and Memory for Digits), and rapid automatic naming (e.g., Rapid Color 

Naming and Rapid Object Naming). Participants were well-matched on general language ability, 

sex, and SES. Significant differences between groups were found for phonological awareness, 

phonological memory, but not for rapid automatic naming (to be discussed in more detail below), 

further supporting the premise that aspects of phonological processing are different or delayed in 

children who stutter. Results indicate significant between-group differences in phonological 

awareness, despite all participants scoring within normal limits. Indeed, the differences were 

subtle, yet robust, indicating differences were present even when confounding factors were 

controlled.  

Weber-Fox et al., (2008) investigated phonological awareness using a visual rhyming 

task in 10 children who stutter and 10 children who do not stutter. Participants ranged in age 

from 9;4 to 13;9 and were matched according to gender and age. The primary behavioral 
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assignment was a rhyming judgment task utilizing four conditions: 1) rhyming pair of 

orthographic similarity (thrown, own), 2) rhyming pair with dissimilar orthography (cone, own), 

3) non-rhyming pair with similar orthography (gown, own), and 4) non-rhyming pair with 

dissimilar orthography (cake, own).  These same pairs were used in an earlier ERP study 

investigating the rhyming abilities of adults who stutter. Accuracy and reaction times were 

measured for the task and ERP data collected during the entirety of the task. Results reveal 

children who stutter were significantly less accurate across all conditions and both groups 

demonstrated particular difficulties with the non-rhyming, orthographically similar condition, as 

it was the most cognitively taxing of the four conditions. No between-group differences were 

reported for reaction times, only accuracy judgments. Although the authors suggest their 

rhyming task is simply a task of phonological awareness, closer examination of the task reveals 

the participation of two separate phonological processing skills – phonological awareness 

(rhyming judgment) and aspects of rapid automatic naming (rapid orthographic symbol decoding 

into a phonological representation).  The design of the study makes it difficult to determine 

which skill may be contributing to any differences revealed.  Growing evidence supports the 

premise that phonological awareness skills in children who stutter are different or delayed as 

compared to children who do not stutter.  
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APPENDIX F 

 

 

PHONOLOGICAL MEMORY AND CHILDREN WHO STUTTER 

 

Nonword repetition abilities reflect phonological knowledge and phonological working memory 

capacity (Baddeley et al., 1998). Phonological memory is another aspect of phonological 

processing studied in the literature, primarily through nonword repetition studies. No 

phonological template exists for nonwords, thereby requiring the use of phonological memory 

and online generation of the speech plan. A number of studies have explored the non-word 

repetition abilities of children who stutter across multiple age ranges.   

Hakim and Bernstein Ratner (2004) studied nonword repetition ability in 8 children who 

stutter (mean 5-10; range 4;3-8;4) and 8 children who do not stutter (mean 5-9; range 4;1 – 8;4). 

The authors’ stated rationale for using a nonword repetition task was based on previous research 

which suggested nonword repetition ability is a more accurate measure of overall language 

ability (Dollaghan & Campbell, 1998).  Nonword repetition is also a task used to measure 

phonological memory in the context of phonological processing skills. All participants were 

administered the Children’s Test of NonWord Repetition (CNRep; Gathercole et al., 1994). The 

CNRep is a standardized measure that requires participants to repeat 40 nonsense words after 

hearing them spoken aloud. The participants were administered ten nonwords from each syllable 

length condition (2-syllables, 3-syllables, 4-syllables, and 5-syllables). The stimuli are not real 
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words, but are more “word-like” than other widely used tests of nonword repetition ability.  The 

results reveal that children who stutter made more errors than their non-stuttering peers on both 

subtests of the CNRep, however, only the 3-syllable non-words reached significance.  

Anderson et al. (2006) explored the non-word repetition abilities of young children who 

stutter between the ages of three and five. This study was similar to one conducted by Hakim and 

Bernstein Ratner (2004) that explored non-word repetition abilities of slightly older children who 

stutter (4-8 years old) and their non-stuttering peers. Participants were matched according to 

general language, sex, socioeconomic status and age (plus or minus four months). The CNRep 

was scored using procedures similar to those utilized by Hakim and Ratner (2004) to allow for 

direct comparison between the two studies. Children who stutter produced significantly fewer 

correct productions of 2- and 3- syllable nonwords than matched nonstuttering peers. Hakim and 

Bernstein Ratner’s results with slightly older children revealed significant differences for only 

the 3-syllable stimuli. Anderson et al. noted a ceiling effect was present in the Hakim and 

Bernstein Ratner study, but was not present in the current investigation with younger 

participants. Anderson et al. indicated a floor effect was present with the younger children as 

evidenced by difficulties from both groups with the five-syllable stimuli.  

A further exploration of the nonword repetition abilities of children who stutter was 

conducted by Seery et al. (2006) using the CNRep as well. The participants consisted of an older 

group of children than had been previously studied and ranged in age from 8 ½ to 12 ½. 

Participants included 14 children who stuttered (11 boys, 3 girls) and 11 non-stuttering peers (9 

boys, 2 girls). The CNRep was again the primary dependent measure, and unlike studies of 

younger children who stutter, the authors reported a significant difference between groups at the 
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5-syllable level only, with controls repeating more 5-syllable nonwords correctly. The authors 

report no significant differences in the types of errors produced. One limitation of this study goes 

back to the use of the CNRep as the primary measure. The CNRep counts an item as incorrect if 

at least one error is made, but does not explore the total number of errors produced, therefore it is 

difficult to know if any potential differences may have been masked due to the standard of 

scoring. Although the authors do not analyze these values specifically, the total number of errors 

made at each syllable level per group reveals that the group of children who stutter made 

approximately 17 errors across syllable levels whereas the children who do not stutter produced 

approximately 9 errors. A statistical analysis of the ratio the percent syllable/phoneme correct 

was not reported or analyzed, therefore it is impossible to say if they are significantly different. It 

can be stated that the number of phonemic errors were higher at each syllable level for the 

children who stuttered than the control group.  The authors did compare the mean number of 

phoneme error types. This study was the first to examine nonword repetition in older school-age 

children who stutter. Although the authors do not report significant differences at all levels (only 

at the 5-syllable level), there are enough inconsistencies in the methodology to warrant further 

investigation. It is unknown if more differences would have been revealed with a different 

scoring structure/rubric or with a different nonword repetition test that did not have so many 

lexically embedded words.  

Pelczarski and Yaruss (2008) also reported significant differences in nonword repetition 

and digit recall subtests of the CTOPP with 5- and 6- year old children who stutter. The CTOPP 

nonword repetition subtest consists of 18 items ranging from one to seven syllables. Children 

who stutter scored significantly lower than their matched, non-stuttering peers while still scoring 
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within normal limits of the standardized subtest. The CTOPP nonword repetition subtest, like the 

CNRep, is scored only as correct/incorrect and does contain more “word-like” nonwords. Still, 

between group differences were present among the 5- and 6- year old participants. Perhaps 

differences were more obvious with the inclusion of harder (i.e., longer) stimuli that may tax the 

phonological memory of children who stutter.  

Bakhtiar et al. (2009) conducted a nonword study with different results. Twelve children 

who stutter (8 boys, 4 girls) and 12 children who do not stutter (8 boys, 4 girls) between the ages 

of 5;1 and 7;10 were reported to possess typical language, articulation and short-term memory 

abilities. The participants repeated 2- and 3- syllable nonwords. Reaction times as well as 

percentage of phonemes correct were recorded. Participants were encouraged to say the 

nonwords as accurately and quickly as possible. Bakhtiar et al. reported more errors and slower 

response times for children who stutter, but these differences did not reach significance.  This 

data conflicts with other studies exploring nonword repetition in children who stutter and may 

have been due in part to the length of stimuli used.  Use of only 2- and 3- syllable nonwords in 

the older children may have resulted in a ceiling effect, not revealing potential differences 

resulting from differences in phonological memory or a larger cognitive processing load.   

Weber-Fox et al. (2008) investigated a visual rhyming task in 10 children who stutter and 

10 typically fluent peers. Participants ranged in age from 9;4 to 13;9 and were matched 

according to gender and chronological age. Children all possessed typical language skills. 

Additionally, all children were administered the Nonword Repetition Task (NRT; Dollaghan & 

Campbell, 1998) as an additional measure of language ability, but could also be considered a 

measure of phonological memory. No between-group differences were reported for the general 
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language measures or the NRT. Although no significant differences were found between groups, 

closer examination of the data for NRT reveal that descriptively, children who stutter began to 

experience more difficulty with the task at the 3-syllable level. This is similar to findings from 

Hakim and Ratner (2004). Although the scores may not be significantly different, six out of ten 

children who stutter produced errors, while only two out of ten children who do not stutter 

produced errors. The authors do acknowledge that many participants performed at ceiling and 

suggest that longer and more phonologically complex nonwords might have revealed between-

group differences. 

Another non-significant finding was reported by Bajaj et al. 2004. Although phonological 

memory skills were not expressly investigated, Bajaj (2007) argues the lack of significant finding 

on phonological awareness tasks in his 2004 study can be translated as support for non-

significant differences in phonological memory as well. Phonological awareness and 

phonological memory tasks are somewhat interdependent, particularly at younger ages, but as 

discussed above, the phonological awareness tasks used were too developmentally advanced for 

the majority of the children. Additionally, it is very difficult to parse apart the influence of 

phonological awareness and phonological memory when only phonological awareness was in 

fact measured. Still, additional research with more specific tasks and stimuli across different ages 

will provide further insight into the relationships of phonological processing and children who 

stutter. 

 Studies that have explored nonword repetition in children who stutter across a range of 

ages have all shown general trends of children who stutter performing less well than non-

stuttering peers, but not all age ranges appear to perform/behave the same.  Anderson and 
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colleagues (2006) reported significant differences at the 2- and 3- syllable nonword level as 

compared to controls examined the youngest group of children who stutter (i.e., 3-5 year olds). 

Participants in Pelczarski and Yaruss’ (2008) study of 5- and 6- year olds revealed significant 

differences in non-word repetition. Bakhtiar et al. (2009) conducted a non-word repetition task 

with 5- to 8-year old children and reported lower overall scores for children who stutter, but no 

significant differences. Hakim and Ratner (2004) studied children 4 to 8 years of age and 

reported generally lower scores with only a significant difference at the 3-syllable level. The 

oldest group of children, aged 8 ½ through 12 ½, was studied by Seery et al. (2006) who reported 

that although the children who stutter on average scored lower than nonstuttering peers, were 

only significantly different on stimuli at the 5-syllable level. In summary, all studies reported 

lower scores for children who stutter, which did not always result in statistically significant 

differences. Still some studies, particularly with younger children did demonstrate significant 

differences at some levels. The general trend appears to be that children who stutter have more 

difficulty with nonword repetition at younger ages and lessens as the children age. Nevertheless, 

the findings suggest any differences may be subtle; therefore, tasks must be sensitive enough to 

detect potential differences.  Further study is needed taking into consideration the factors that 

may affect phonological memory/nonword repetition tasks. Phonological memory skills, along 

with phonological awareness skills, continue to develop and stabilize as children receive more 

exposure to and practice with reading and other phonological processing skills.  
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APPENDIX G 

 

RAPID AUTOMATIC NAMING IN CHILDREN WHO STUTTER 

 

Rapid automatic naming is considered and important skill for the acquisition and ease of learning 

to read. This early literacy skill is particularly important in determining visual-verbal 

associations and the learning of arbitrary associations between sound and print. Rapid automatic 

naming is included as a phonological processing skill due to its important contribution to literacy 

acquisition. Indeed, the specific value of measuring rapid automatic naming lies in the ability to 

quickly and efficiently retrieve phonological code from visually presented symbols. Few studies 

have investigated this skill in children who stutter, with contrary results reported. As discussed in 

the phonological awareness section, a study by Pelczarski and Yaruss (2008) explored the 

phonological processing skills of young children who stutter, including rapid automatic naming. 

Despite the timed nature of the task, children who stutter performed equally as well as children 

who do not stutter. The study’s hypothesis was children who stutter would have difficulty with 

segmentation tasks (measuring phonological awareness) and phonological memory (which is a 

necessary skill whenever a lexical item needed to be retrieved and maintained in memory while 

it is manipulated). Considering the speeded nature of rapid automatic naming (naming objects or 

colors as quickly as possible) it was hypothesized that children who stutter would perform rapid 
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naming more slowly than their non-stuttering counterparts; however, no difference for children 

who stutter was reported.  

As discussed in the phonological awareness section above, Weber-Fox et al. (2008) used 

a visual rhyming paradigm with congruent and incongruent orthographic pairs. Children who 

stutter produced significantly more errors than children who do not stutter, demonstrating 

particular difficulty with the non-rhyming, orthographically similar condition. The interplay of 

both phonological awareness and rapid automatic naming in the study design makes it difficult to 

determine if children who stutter were less accurate due to rhyme identification or due to some 

aspect of rapid automatic naming. Additionally, Weber-Fox and colleagues suggest an 

alternative explanation where children who stutter reach a critical level of processing at which 

point a breakdown occurs. Further specified studies across age groups will help determine 

contributions of each skill set and possible interactions of processing limitations. 
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APPENDIX H 

 

PHONOLOGICAL PROCESSING IN CHILDREN WHO STUTTER SUMMARY 

 

It has been determined that reading acquisition is based on a number of skills including 

phonological awareness, phonological memory, and rapid naming. Evidence exists to support the 

premise that differences in phonological awareness, phonological memory, and rapid automatic 

naming exist in children who stutter. Children with reading difficulties or dyslexia may possess 

deficits in phonological awareness, phonological memory, rapid automatic naming, or a 

combination of these skills. Oftentimes, poor readers may have a deficit in a single skill area, but 

may be able to compensate for deficits in one area with strengths in another. (e.g., a child may 

have difficulty in phonological awareness, but have strong phonological memory skills or vice 

versa). As a result, children may have deficits that do not reveal themselves until specifically 

tested due to compensatory strategies the brain employs.  This may account for why there is not 

currently any strong evidence that children who stutter have deficits in overall reading ability. 

Rather, it is likely that there may be a sub-group of children who stutter who have difficulty in 

reading ability due to deficits in multiple areas (phonological awareness, phonological memory, 

and rapid automatic naming) that affect their ability to acquire efficiently acquire literacy skills. 

Further specification of these subtle differences may allow for the creation of a phonological 
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processing profile for individual children who stutter. It may be possible for children who stutter 

to display difficulties in just one aspect of phonological processing that are compensated for by 

other aspects of phonological processing. Once the system is taxed enough or tested specifically 

enough potential deficits be likely be revealed.  

In many instances researchers explore a single aspect of phonological awareness, be it 

rhyme monitoring, segmentation, or nonword repetition and interpret their results in a 

sweeping/general statement asserting a statement about phonological processing in general, 

when only a small snapshot of phonological processing was in fact being measured and 

investigated. As discussed previously, aspects of phonological awareness can be measured using 

up to six different types of tasks depending on the age of study participants. Selective inclusion 

of isolated phonological processing tasks results in number of difficulties. First, investigation of 

only one or two phonological processing skills results in an incomplete picture of an individual 

who stutter’s phonological processing profile. Second, non-specification of which phonological 

processing skills being measured coupled by the use of different nomenclature increases the 

difficulty of comparing and analyzing available evidence.  

  



 
175 

 

 

 

 

APPENDIX I 

 

CORRELATIONAL ANALYSES OF PHONOLOGICAL PROCESSING   

 

I.1  VOCABULARY 

 

Vocabulary measures typically have strong correlations with measures of phonological 

awareness and phonological memory for children, although these relationships are not as strong 

in adults (Gathercole et al., 1992). Table 33 outlines the correlations between the expressive and 

receptive vocabulary measures and the phonological processing tasks for adults who stutter. 

Moderate correlations (r > .476; p < .05) were revealed between vocabulary scores and 

Phonological Memory, Late-8 NRT, and Rapid Automatic Naming. As seen in Table 34, the 

vocabulary scores for adults who do not stutter were weakly to moderately correlated (r > .440; p 

< .05) with the Alternate Phonological Awareness Composite score and the NRT.   
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Table 33. Vocabulary tests and phonological processing tasks correlation table for adults who stutter. 

Phonological Processing Tasks Expressive 
Vocabulary Test 

Peabody Picture  
Vocabulary Test 

Phonological Awareness Composite r = .125 
p = .316 
N = 17 

r = .354 
p =.075 
N = 18 

Alternate Phonological Awareness Composite r = .299 
p = .122 
N = 17 

r = .265 
p =.143 
N = 18 

Phonological Memory Composite r = .589 
p = .005 
N = 18 

r = .563 
p = .006 
N = 19 

Nonword Repetition Task total r = -.084 
p = .370 
N = 18 

r = .192 
p = .215 
N = 19 

Late-8  Nonword Repetition Task total r = .476 
p = .023 
N = 18 

r = .504 
p = .014 
N = 19 

Rapid Automatic Naming Composite Score r = -.499 
p = .025 
N = 16 

r = -.559 
p = .010 
N = 17 

Alternate  Rapid Automatic Naming Composite Score r = .201 
p = .219 
N = 17 

r = -.034 
p = .447 
N = 18 

Expressive Vocabulary Test  r = .664 
p = .001 
N = 18 
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Table 34. Vocabulary and phonological processing tasks correlation table for adults who do not stutter. 

Phonological Processing Tasks Expressive 
Vocabulary Test 

Peabody Picture  
Vocabulary Test 

Phonological Awareness Composite r = .161 
p =  .268 
N = 17 

r = 316 
p = .100 
N = 18 

Alternate Phonological Awareness Composite r = .491 
p =  .019 
N = 18 

r = .393 
p = .048 
N = 19 

Phonological Memory Composite r = .313 
p = .110 
N = 17 

r = -.006 
p = .491 
N = 18 

Nonword Repetition Task total r = .514  
p = .017 
N = 17 

r = .440  
p = .034 
N = 18 

Late-8  Nonword Repetition Task total r = .112 
p = .329 
N = 18 

r = .036  
p = .441 
N = 19 

Rapid Automatic Naming Composite Score r = -.136  
p = .296 
N = 18 

r = .165  
p = .250 
N = 19 

Alternate  Rapid Automatic Naming Composite Score r = -.019 
p = .470 
N = 18 

r = .097  
p = .347 
N = 19 

Expressive Vocabulary Test  r = .555 
p =.008 
N = 18 
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I.2 PHONOLOGICAL AWARENESS COMPOSITE SCORE 

 

Table 35 displays within-group correlations for adults who stutter on all Phonological Awareness 

Composite Scores and subtests of the CTOPP. Adults who stutter demonstrated significant 

correlations between the Phonological Awareness Composite score and the Alternative 

Phonological Awareness Composite score, the Segmenting Nonwords, and the Segmenting 

Words subtests (r > .475; p < .05). The Elision subtest for adults who stutter was highly 

correlated with the Segmenting Nonwords and Segmenting Words subtests (r > .543; p < .01). 

The Blending Words subtest was moderately correlated with Phoneme Reversal and Segmenting 

Words (r >.470; p < .05) for adults who stutter. Segmenting Words was moderately correlated 

with Segmenting words and Phoneme Reversal subtests (r > .546; p < .01). Table 36 illustrates 

that the Phonological Awareness Composite scores for adults who do not stutter were highly 

correlated with two different subtests: Blending Nonwords and Phoneme Reversal (r > .542; p < 

.05). Non-stuttering adults demonstrated a moderate correlation between Elision and Phoneme 

Reversal (r = .587; p = .007). Both adults who stutter and those who do not demonstrated 

moderate correlations between the Blending Words subtest and the Blending Nonwords and 

Segmenting Nonwords subtest (r > .439; p < .05). Both adults who stutter and adults who do not 

stutter demonstrated the expected strong correlations between Phonological Awareness 

Composite score and the Elision and Blending Words subtests from which it is comprised (r > 

.691; p < .05).  
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Table 35. Correlations for adults who stutter for all phonological awareness tasks of the Comprehensive Test of 

Phonological Processing. 

 Alternate 
PA 
Composite 

Elision Blending 
Words 

Blending 
Nonwords 

Segmenting 
Nonwords 

Phoneme 
Reversal 

Segmenting 
Words 

PA 
Composite 

r = .475 
p = .023 
N =18 

r = .831 
p = < .001* 
N =18 

r = .727 
p = < .001* 
N =18 

r = .319 
p = .098 
N =18 

r = .589 
p = .005 
N =18 

r = .382 
p = .072 
N =18 

r = .542 
p = .010 
N =18 

Alternate 
PA 
Composite 

 r = .223 
p = .187 
N = 18 

r = .557 
p = .008 
N = 18 

r = .904 
p = < .001* 
N = 18 

r = .713 
p = <.001* 
N = 18 

r = .242 
p = .183 
N = 16 

r = .559 
p = .008 
N = 18 

Elision 
  r = .335 

p = .068 
N = 19 

r = .160 
p = .256 
N = 19 

r = .569 
p = .006 
N = 19 

r = .378 
p = .068 
N = 17 

r = .543 
p = .008 
N = 19 

Blending 
Words 

   r = .563 
p = .006 
N = 19 

r = .601 
p = .003 
N = 19 

r = .559 
p = .010 
N = 17 

r = .470 
p = .021 
N = 19 

Blending 
Nonwords 

    r = .475 
p = .020 
N = 19 

r = .223 
p = .194 
N = 17 

r = .473 
p = .020 
N = 19 

Segmenting 
Nonwords 

     r = .546 
p = .012 
N = 17 

r = .660 
p = .001 
N = 19 

Phoneme 
Reversal 

      r = .321 
p = .104 
N = 17 

*expected significant correlations  
 Subtests not included in composite scores  
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Table 36. Correlations for adults who do not stutter for all phonological awareness (PA) tasks of the Comprehensive 

Test of Phonological Processing. 

 

 
Alternate 
PA 
Composite 

Elision Blending 
Words 

Blending 
Nonwords 

Segmenting 
Nonwords 

Phoneme 
Reversal 

Segmenting 
Words 

PA 
Composite 

 
r = .402 
p = .049 
N = 18  

 
r = .691 
p = <.001* 
N = 17 

 
r = .725 
p = <.001* 
N = 18 

 
r = .450 
p = .030 
N = 18 

 
r = .045 
p = .432 
N = 17 

 
r = .588 
p = .007 
N = 17 

 
r = -.141 
p = .289 
N = 18 

Alternate 
PA 
Composite 
 

 r = .266 
p = .143 
N = 18 

r = .642 
p = .002 
N = 19 

r = .781 
p = <.001* 
N = 19 

r = .780 
p = < .001* 
N = 18 

r = .407 
p = .047 
N = 18 

r = .327 
p = .086 
N = 19 

Elision 
 

  r = .366 
p = .068 
N = 18 

r = .152 
p = .273 
N = 18 

r = .194 
p = .227 
N = 17 

r = .587 
p = .007 
N = 17 

r = -.148 
p = .278 
N = 18 

Blending 
Words 

   r = .618 
p = .002 
N = 19 

r = .439 
p = .034 
N = 18 

r = .388 
p = .056 
N = 18  

r = -.083 
p = .386 
N = 19 

Blending 
Nonwords 

    r = .150 
p = .277 
N = 18 

r = .319 
p = .098 
N =18 

r = .200 
p = .206 
N = 19 

Segmenting 
Nonwords 

     r = .352 
p = .083 
N = 17 

r = .440 
p = .034 
N = 18 

Phoneme 
Reversal 

      r = .042 
p =.435 
N = 18 

*expected significant correlations  
 Subtests not included in composite scores 
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I.3 ALTERNATE PHONOLOGICAL AWARENESS COMPOSITE SCORES 

 

Correlational analyses displayed in Table 35, found above, showed that adults who stutter 

demonstrated moderate correlations between the Alternate Phonological Awareness Composite 

score and the Blending Words and Segmenting Words subtests (r > .557; p < .05). Individuals 

who stutter demonstrated moderate correlations between the Blending Nonwords subtest and the 

Segmenting Nonwords and Segmenting Words subtests (r > .473; p < .05). Additionally, the 

Segmenting Nonwords subtest was significantly correlated with Phoneme Reversal and 

Segmenting Words in adults who stutter (r > .440; p < .05). Both groups demonstrated the 

expected strong correlations between the composite score and the subtests it was comprised of: 

Blending Nonwords and Segmenting Nonwords (r > .713; p < .05). Table 36 found above shows 

the Alternate Phonological Awareness Composite score was moderately correlated with the 

Blending Words and Phoneme Reversal subtest for nonstuttering adults (r > .407; p < .05). 

Typically fluent adults demonstrated a significant correlation between the Blending Nonwords 

subtest and the Blending Words subtest (r > .618; p < .05) but no significant correlations with the 

Segmenting Nonwords and Segmenting Words subtests (r < .150; p > .05). Adults who do not 

stutter demonstrated a moderate correlation between Segmenting Nonwords and Segmenting 

Words (r =.440; p = .034).  
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I.4  PHONOLOGICAL MEMORY COMPOSITE SCORES 

 

Table 37 shows the correlational analyses of phonological memory tasks for adults who stutter. 

The expected correlations were demonstrated between the Phonological Memory Composite 

score and the component/constituent subtests of Memory for Digits and Nonword Repetition (r > 

.584; p < .05). The Phonological Memory Composite score was also strongly correlated with the 

Segmenting Nonwords subtest, one of the non-lexical phonological awareness tasks (r = .769; p 

< .001).  Accordingly, Segmenting Nonwords was also highly correlated with the Phonological 

Memory subtests, Memory for Digits and Nonword Repetition (r > .574; p < .05). Segmenting 

Nonwords and Blending Nonwords, the two non-lexical phonological awareness subtests, were 

moderately correlated with one another (r = .475; p = .02). The Phonological Memory 

Composite score was not significantly correlated (r > -.156; p > .05) with either the NRT or the 

Late-8 NRT for adults who stutter.  

Table 38 shows that adults who do not stutter demonstrated the expected correlation 

between the Phonological Memory Composite score and the Memory For Digits subtest was 

present (r = .896 p < .001), but not with Nonword Repetition, the other constituent subtest (r = 

.209; p = .203). A mildly significant correlation between the Phonological Memory Composite 

score and the NRT Total Score was present (r = .429; p = .04). There were no additional 

significant correlations between the phonological awareness subtests that use nonword stimuli 
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(i.e., Blending Nonwords and Segmenting Nonwords) and the Phonological Memory Composite 

score or the Late-8 Nonword Repetition Task for adults who do not stutter (r > .054; p > .05). 

 

 

 
Table 37. Correlations for phonological memory tasks for adults who stutter. 

 
 

Memory for 
Digits 

Nonword 
Repetition 

Blending 
Nonwords 

Segmenting 
Nonwords NRT total L8NRT 

total 

PM 
Composite 

r = .794 
p = < .001* 
N = 19 

r = .584 
p = .005* 
N = 18 

r = .395 
p = .047 
N = 19 

r = .769 
p = < .001 
N = 19 

r = .364 
p = .063 
N = 19 

r = -.156 
p = .262 
N = 19 

Memory for 
Digits 

 
 

r = .157 
p = .267 
N = 18 

r = .140 
p = .283 
N = 19 

r = .623 
p = .002 
N = 19 

r = .183 
p = .226 
N = 19 

r = -.018 
p = .471 
N = 19 

Nonword 
Repetition 

  
r = .629 
p = .003 
N = 18 

r = .574 
p = .006 
N = 18 

r = .267 
p = .142 
N = 18 

r = -.393 
p = .053 
N = 18 

Blending 
Nonwords 

  

 
r = .475 
p = .020 
N = 19 

r = .199 
p = .208 
N = 19 

r = -.011 
p = .481 
N = 19 

Segmenting 
Nonwords 

  

  
r = .447 
p = .027 
N = 19 

r = -.245 
p = .156 
N = 19 

NRT total 

     
r = -.073 
p = .382 
N = 19 

           * Expected significant difference 
Phonological Memory (PM Comp), Nonword Repetition Task (NRT) and the Late-8 Nonword 
Repetition Task (L8NRT). 
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Table 38. Correlations for phonological memory tasks for adults who do not stutter. 

 
Memory for 
Digits 

Nonword 
Repetition 

Blending 
Nonwords 

Segmenting 
Nonwords 

NRT total 
L8NRT 
total 

PM 
Composite 

r = .896 
p = < .001* 
N = 18 
 

r = .209 
p = .203 
N = 18 

r = -.237 
p = .172 
N = 18 

r = .238 
p = .179 
N = 17 

r = .429 
p = .04 
N = 17 

r = .365 
p = .068 
N = 18 

Memory for 
Digits  

r = .006 
p = .491 
N = 19  

r = -.062 
p = .401 
N = 19 

r = .352 
p = .076 
N = 18 

r = .396 
p = .052 
N = 18 

r = .269 
p = .133 
N = 19 

Nonword 
Repetition  

 r = .222 
p = .181 
N = 19 

r = .237 
p = .172 
N = 18 

r = .465 
p = .026 
N = 18 

r = .289 
p = .115 
N = 19 

Blending 
Nonwords  

  r = .150 
p = .277 
N = 18 

r = .248 
p = .160 
N = 18 

r = .054 
p = .414 
N = 19 

Segmenting 
Nonwords  

   r = .216 
p = .203 
N = 17 

r = .179 
p = .239 
N = 18 

NRT total  
    r = .269 

p = .140 
N = 18 

* Expected significant difference 
Phonological Memory (PM Comp), Nonword Repetition Task (NRT) and the Late-8 Nonword 
Repetition Task (L8NRT). 
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I.5  RAPID AUTOMATIC NAMING COMPOSITE SCORES 

 

Correlational analyses of performance on Rapid Automatic Naming tasks by adults who stutter 

are outlined in Table 39. The expected correlations between the Rapid Automatic Naming 

Composite score and the constituent subtests of Rapid Digit Naming and Rapid Letter Naming 

were demonstrated (r < .829; p < .05). The Alternative Rapid Automatic Naming Composite 

score and constituent subtests Rapid Color Naming and Rapid Object Naming also demonstrated 

the expected relationship (r < .935; p < .05). Additionally, there were moderate correlations (r > 

.492; p < .05) between Rapid Digit Naming and Rapid Letter Naming, Rapid Color Naming and 

Rapid Digit Naming, and Rapid Color Naming and Rapid Object Naming.  

Table 40 displays the correlational analyses of Rapid Automatic Naming tasks for 

individuals who do not stutter. Many more statistically significant correlations were revealed for 

typically fluent adults than for adults who stutter. The expected strong correlations (r > .981; p < 

.05) between the Rapid Automatic Naming Composite score and the associated subtests were 

present (i.e., Rapid Digit Naming and Rapid Letter Naming). Performance for typically fluent 

adults on the Rapid Automatic Naming Composite score was moderately correlated with the 

Alternate Rapid Automatic Naming Composite score, Rapid Object Naming and the Rapid Color 

Naming subtest (r > .484; p < .05). The Alternate Rapid Automatic Naming Composite score 

was strongly correlated (r > .930; p < .05) with the expected subtests (i.e., Rapid Color Naming 
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and Rapid Object Naming), as well as moderately correlated to the Rapid Digit Naming and 

Rapid Letter Naming subtests (r > .522; p < .05).  Adults who do not stutter also demonstrated 

strong correlations between the Rapid Automatic Naming subtests. Rapid Digit Naming was 

moderately correlated with Rapid Letter Naming and Rapid Object Naming (r > .443; p < .05). 

Rapid Letter Naming was moderately correlated with Rapid Color Naming and Rapid Object 

Naming (r > .575; p < .05). Finally, Rapid Color Naming was also strongly correlated with 

Rapid Object Naming (r = .816; p = .001). 

 

 

Table 39. Correlations for rapid automatic naming tasks for adults who stutter. 

 Alternate 
RAN 
Composite 

Rapid Digit 
Naming 

Rapid Letter 
Naming 

Rapid Color 
Naming 

Rapid Object 
Naming 

RAN 
Composite 

r = .140 
p = .303 
N = 16 

r = .869 
p = <.001* 
N =17 

r = .829 
p =<.001* 
N =17 

r = .112 
p = .335 
N = 17 

r = .021 
p = .467 
N = 17 

Alternate 
RAN 
Composite 

 
r = .379 
p = .067 
N = 17 

r = .101 
p = .355 
N = 16 

r = .935 
p = <.001* 
N = 18 

r = .966 
p =<.001* 
N = 18 

Rapid Digit 
Naming   

r = .661 
p = .002 
N = 17 

r = .429 
p = .038 
N = 18 

r = .289 
p = .123 
N = 18 

Rapid Letter 
Naming    

r = .376 
p = .069 
N = 17 

r = .210 
p = .209 
N = 17 

Rapid Color 
Naming     

r = .833 
p = <.001 
N = 19 

           * expected significant correlations 
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Table 40. Correlations for rapid automatic naming tasks for adults who do not stutter. 

 Alternate 
RAN 
Composite 

Rapid Digit 
Naming 

Rapid Letter 
Naming 

Rapid Color 
Naming 

Rapid Object 
Naming 

RAN 
Composite 

r = .617 
p = .002 
N = 19 

r = .982 
p = <.001* 
N = 19 

r = .981 
p = <.001* 
N = 19 

r = .484 
p = .021 
N = 18 

r = .523 
p = .011 
N = 19 

Alternate 
RAN 
Composite 

 r = .522 
p = .011 
N = 19 

r = .693 
p = .001 
N = 19 

r = .932 
p = <.001* 
N =18 

r = .930 
p = <.001* 
N =19 

Rapid Digit 
Naming 

  r = .927 
p = <.001 
N = 19 

r = .374 
p = .63 
N = 18 

r = .443 
p = .029 
N = 19 

Rapid Letter 
Naming 

   r = .575 
p = .006 
N = 18 

r = .588 
p = .004 
N = 19 

Rapid Color 
Naming 

    r = .816 
p = <.001 
N = 18 

          * expected significant correlations 
 

 

I.6  CORRELATION SUMMARY 

 

Exploratory correlational analyses were conducted with the various composite scores and 

subtests of the CTOPP to determine if any strong relationships in phonological encoding abilities 

were present within groups. Both groups demonstrated the expected strong relationships and 

large effect sizes between composite scores and the constituent subtests. The remaining 

correlational analyses for phonological awareness, phonological memory, and rapid automatic 

naming tasks for both groups revealed some moderate relationships, but no large effects were 

revealed. A number of analyses were conducted in an attempt to determine if any significant 



 
188 

 

 

patterns emerged with the many subtests that comprise the CTOPP. As expected, however, 

interpretation of the significance of the small and moderate correlations reported in the results 

section is complicated by the large number of analyses conducted. Had strong relationships been 

revealed in these exploratory analyses, then further exploration of those factors could have been 

targeted for future research. Since this was not the case, the correlations were not discussed 

further in this document. 
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