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The ability of epithelial cells to change shape is essential to the patterning of tissues and organs 

during development of the vertebrate embryo.  Epithelial morphogenesis is mediated by the 

molecular regulation of cytoskeletal dynamics which underlies cellular adhesion, motility, 

polarity, and proliferation.  The Shroom family of proteins regulates epithelial morphogenesis by 

promoting MyosinII-dependent changes in epithelial morphology through the ability to bind both 

F-actin and Rho kinase (Rock). Shroom3 is necessary to induce apical constriction of the neural 

epithelium and is required for proper neural tube closure during development.  However, the 

roles of other family members are unknown.  This work seeks to determine the role and 

mechanism of action for Shroom2 in epithelial cell biology. 

Through RNAi, the loss of Shroom2 reduces contractility of endothelial cells.  Shroom2 

physically interacts with Rock and is necessary for its cortical localization.  By impeding Rock 

localization and reducing contractility, Shroom2 knockdown alters cytoskeletal organization, 

adhesion, and motility which ultimately affects in vitro angiogenesis.  During these studies, it 

also became clear that Shroom2 localizes to the centrosome where it is required to maintain 

efficient centrosome duplication in a Rock-dependent manner.  The results described here 

expand a role for the Shroom proteins in the sub-cellular localization of Rock which mediates a 

subset of Rock functions within epithelial cells. 
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1.0  INTRODUCTION 

Epithelial morphogenesis is the process in which cells change shape in order to pattern diverse 

organ shape and function.  Cellular functions such as motility, polarity, adhesion, and 

cytoskeletal dynamics are essential in specifying cell shape changes.  Understanding the various 

mechanisms behind epithelial morphogenesis provides insight into animal development, 

congenital diseases, regeneration, and tissue engineering.   

An epithelium is typically a polarized monolayer of cells where cell adhesion is essential 

for the formation of coherent sheets [1].  Subsequent changes in cell shape, intercalation, 

migration, proliferation, and apoptosis pattern more complex structures and forms the variety of 

tissues and organs of the body.  A variety of mechanistic processes facilitate such shape changes.  

First, extracellular cues such as morphogens, the extracellular matrix, and physical forces initiate 

signal transduction to cells.  Second, cells must possess the ability to transduce such signals 

through integrins and cellular adhesion structures.  Third, as an outcome of signal transduction, 

cells must physically change their shape by altering the cytoskeleton and adhesive properties.  

And finally, cell morphogenesis can be specified by specific transcription factor profiles [2].  By 

varying the expression of signal transduction pathway components, the cell’s ability to sense 

cues and execute morphogenesis can change.  While this dissertation will discuss many of these 

processes, the focus will be on understanding cytoskeletal dynamics which influence epithelial 

morphogenesis through adhesion, migration, and contractility. 
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1.1 ACTIN DYNAMICS 

The most basic element of cell shape change is the cytoskeleton.  Just as a building cannot stand 

without a wooden, steel, or concrete infrastructure, a cell cannot take form without the 

cytoskeleton.  The complex networks of actin filaments, microtubules (MT), and intermediate 

filaments (IF) make up the structural integrity of the cell and are responsible for a variety of 

cellular functions such as mitosis, migration, adhesion, and intracellular transportation.  

Microtubules are long, hollow cylinders with subunits of  and  tubulin heterodimers and are 

best known for their role in bi-polar spindle formation and chromosome segregation during 

mitosis [3].  They also play a structural role and provide intracellular networks on which to 

transport cargo.  IFs consist of coiled-coil dimers which closely interact to form a rope-like 

filament [4].  IFs are best known for formation of a meshwork lining within the nuclear 

membrane.  Within the cytoplasm, it is believed that IF networks impart physical strength to the 

cell.  Actin is composed of a single monomer of globular (G) actin which polymerizes into two-

stranded helices termed filamentous (F) actin [5].  Actin is closely associated with the plasma 

membrane, and as such, remodeling of the actin cytoskeleton greatly influences cell morphology.  

Changes in actin architecture underlie changes in cell migration, adhesion, and contractility.  The 

molecular mechanisms of these processes are described in subsequent sections. 

1.1.1 Actin binding proteins 

Based upon the head-to-tail alignment of actin monomers within a filament, F-actin contains 

inherent polarity with a “pointed” and “barbed” end [6].  F-actin elongates when ATP-bound 

monomers are added to the barbed end.  As the actin filament matures, ATP is hydrolysed and 
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the resulting ADP-actin monomers are released resulting in net depolymerization at the pointed 

end [7].  While actin can self polymerize, a variety of actin binding proteins are involved to 

expedite and control actin networks through regulation of the nucleation of new branches, the 

assembly and disassembly of existing fibers, and the organization of filaments into higher-order 

structures. 

Two primary types of actin networks are prevalent throughout the cell: long cables and 

short, branched networks.  The type of actin network depends upon the activity of nucleation 

promoting factors. For example, branched actin networks occur through the protein Arp2/3 

which nucleates filaments from the side of existing fibers [8].  This activity is enhanced by 

interactions with members of the Wiskott-Aldrich syndrome protein family (ex: WASP, WAVE, 

and WASH) which are thought to provide actin monomers to new branches [9].  In addition, 

cortactin binds to cortical F-actin and recruits and stabilizes Arp2/3.  Actin capping proteins such 

as gelsolin and capping protein, bind to the barbed end of F-actin and prevent the addition of new 

monomers [10].  By limiting the polymerization of exisiting filaments, capping protein also 

promotes Arp2/3 dependent branched network assembly [11].  Anti-capping proteins, such as the 

Ena/VASP family, can counter capping proteins by preferentially binding to the barbed end of F-

actin while simultaneously binding to G-actin, promoting long, unbranched filament assembly 

[12].  The formin family of proteins also binds to the barbed end and enhances polymerization of 

long filaments [13]. 

Several actin binding proteins have been identified which either promote strand stability 

or depolymerization.  The ADF/cofilin proteins remove ADP-actin from the pointed end thus 

promoting depolymerization [14].  In addition to capping function, gelsolin can act as a severing 

protein [15].  On the other hand, tropomyosin proteins bind along the filament length and 
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stabilize the filament from depolymerization [16].  While these proteins all interact with F-actin, 

certain proteins can interact with actin monomers.  With an affinity for G-actin, profilin 

sequesters the available pool of monomers and can prevent spontaneous actin assembly [17].  

Additionally, profilin promotes nucleotide exchange, converting less stable ADP-actin into 

filament friendly ATP-actin [18].  The addition of G-actin to the barbed end by Ena/VASP 

proteins is further enhanced by its ability to interact with profilin [19].  The molecular regulation 

of actin binding proteins and their roles in cell biology will be discussed in later sections. 

Just as more force is required to tear a stack of papers than a single sheet, bundles of actin 

can withstand greater stress than single fibers.  Some actin binding proteins organize F-actin into 

higher order networks by bundling or crosslinking actin fibers.  Parallel actin bundles can be 

formed in one of two ways.  First, certain actin binding proteins like -actinin are homodimers 

with a single actin binding domain [20].  As they dimerize, they can bind to two separate F-actin 

fibers leaving about 30nm of space between the fibers [21].  Other proteins like fimbrin and 

villin are small in size and possess two actin binding motifs [22, 23]. Therefore they bundle F-

actin into a tighter network (Figure 1).  

While -actinin and fimbrin form parallel actin networks, other proteins can form an 

actin web or gel.  Spectrin is a long, flexible tetramer with two actin binding domains 200nm 

apart [24].  As spectrin can bind to peripheral membrane proteins, spectrin forms a gel-like 

network of actin fibers at the cell cortex.  Filamin dimers position two actin binding domains at 

right angles and thus create a mesh-like network which is important for the formation of thin, flat 

lamellipodia during migration [25].  Depending on the organization of the actin network, 

different proteins gain access.  For example, non-muscle Myosin II cannot fit between the small 

 4 



spaces of fimbrin packed actin fibers but fits well in the space created by -actinin.  The 

relationship between actin and myosin will be discussed in the next section. 

 

 

Figure 1: Actin binding proteins shape actin networks. 

(A) Fimbrin is a small protein with two actin binding domains which forms tightly packed parallel actin 

fibers.  (B) -actinin has one actin binding domain but dimerizes, thus forming more loosely packed 

parallel actin fibers.  (C) Spectrin is a long heterodimer with actin binding properties at either end.  (D)  

Spectrin forms a mesh like network with actin at the cortex of red blood cells.  (E)  Filamin has one actin 

binding domain but dimerizes to bind two actin fibers at right angles.  Figure adapted from [26]. 
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1.1.2 Non-muscle Myosin II 

Myosins contain a large family of motor proteins which are vital to cellular processes such as 

cytokinesis, intracellular transport, motility, and morphogenesis.  Through ATPase and actin 

binding activity, myosin transfers energy into protein conformational change allowing the 

molecules to exert force upon F-actin, be it by walking along filaments or exerting tension 

between them [27].  Non-muscle myosin II (MyosinII) is the largest class of myosin and is 

responsible for most myosin-dependent processes in non-muscle cells.  MyosinII contains three 

pairs of peptides: two myosin heavy chains (MHC), two myosin regulatory light chains (MRLC), 

and two myosin essential light chains (MELC).  The MHCs constitute the bulk of MyosinII and 

contain two globular heads, a neck region, and a long coiled-coil; the two heads contain the 

ATPase and the actin binding domain.  MRLC and MELC bind within the neck region, and the 

coiled-coil is responsible for dimerization and filament assembly [28].  While the globular head 

domain can bind to actin and exert force by itself, both ATPase activity and force exertion are 

greatly enhanced by phosphorylation of Ser19 in the MRLC [29].  In addition, it is thought that 

the MRLC is responsible for regulating actomyosin filament assembly.  In vitro, 

unphosphorylated MyosinII folds into a looped conformation through an interaction between the 

head and tail; globular heads are inaccessible to actin and the coiled-coil is unable to form 

filaments [30].  Phosphorylation of MRLC may disrupt the head to tail interaction, inducing 

polarized filament assembly as demonstrated in vitro through smooth muscle myosin [31].  

When MyosinII filaments bind to anti-parallel F-actin fibers, ATP hydrolysis induces a 

conformational change in the globular head which causes the F-actin fibers to contract.  

Contraction of actomyosin networks and their regulation are the fundamental basis of 

morphogenesis. 
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Many kinases have been linked to the phosphorylation of MRLC and activation of 

MyosinII such as Rho-kinase (Rock), Myosin light chain kinase (MLCK), citron kinase, Zipper 

interacting protein kinase (ZIPK), and myotonic dystrophy kinase-related CDC42-binding kinase 

(MRCK) [32-34].  These kinases target Ser19, Thr18, or both to relieve the inhibition described 

above, but the activation of each kinase differs.  For example, MLCK is activated by Ca2+ 

calmodulin signaling, whereas Rock and citron kinase are activated by RhoA.  As another 

difference, MLCK only phosphorylates MLC, whereas Rock targets additional effectors which 

are described in section 1.1.4.3 [35].  Protein kinase C (PKC) phosphorylates MLC on Ser1, 

Ser2, and Thr9, which hinders the interaction between MLC and MLCK, thus decreasing 

MyosinII activity [36]. 

  There are three different MHC genes in vertebrates which determine one of three 

MyosinII isoforms, A-C [37]. At least in vitro, it is apparent that the three differ in their kinetic 

properties.  MyosinIIA has the highest rate of ATP hydrolysis and contracts filaments more 

quickly than the other two [38].  MyosinIIB remains bound to F-actin in a force generating state 

longer than MyosinIIA [39].  And MyosinIIB possesses a higher affinity for ADP, the release of 

which is slowed by backward strains exerted by actin filaments [40].  Thus MyosinIIA may 

function in more rapid, dynamic contraction events, while MyosinIIB is engaged with actin 

filaments for a longer period of time to maintain tension.  Differential roles for MyosinII 

isoforms in cell function will be discussed below. 

1.1.3 Rho Family of p21 Small GTPases 

In order to elicit morphogenesis, the variety of actin networks within the cell must undergo 

remodeling through the molecular regulation of actin binding proteins and nucleation promoting 
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factors.  The Rho-family of p21 small GTPases regulate a variety of cellular proteins, including 

actin binding proteins, to influence cell functions such as motility, adhesion, and proliferation.  

Rho family GTPases are known as molecular switches, interacting with downstream effectors to 

continue signal transduction pathways [41].  GTPases are in the “on” state when bound to GTP 

and in the “off” state following intrinsic phosphatase activity which dephosphorylates GTP into 

GDP.  Hydrolysis of GTP by GTPases can be accelerated through interactions with GTPase 

activating proteins (GAPs), whereas the exchange of GDP for GTP is mediated by guanine-

nucleotide exchange factors (GEFs) [42, 43].  The relative affinity of a GTPase for its effector in 

GTP versus GDP bound states can be as high as 100-fold, leading to very specific effector 

interactions in the “on” state only [44].  An additional means of GTPase regulation comes by 

way of guanine-nucleotide dissociation inhibitors (GDIs).  By binding to GDP-bound GTPases, 

GDIs prevent nucleotide exchange and thus block activation of effectors [45]. 

The Rho family GTPases, RhoA, Rac1, and Cdc42, have been traditionally thought of as 

cytoskeletal regulators based on seminal work showing the effects of over expression in 

Swiss3T3 fibroblasts.  RhoA increased stress fiber and adhesion formation, Rac1 caused flat 

lamellipodial extensions, and Cdc42 induced filopodial extensions [46-48].  In the years since, it 

has become apparent that these changes in actin structures are due to the regulation of actin 

binding proteins.  For example, the mammalian formin Diaphanous (mDia) is an effector of Rho, 

and activation of mDia is sufficient to induce stress fibers [49].  As another example, Rac1 can 

activate WAVE proteins, a member of the WASP family [50].  WASP proteins contain an auto-

inhibitory region which is repressed upon binding to Rac1.  Following activation, WASP 

proteins can bind to Arp2/3 and induce branched actin networks as found in lamellipodia [51, 

52].   
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Figure 2: Overview of Rho GTPase signaling 

Rho GTPases are molecular switches which contribute to signal transduction to influence cell functions.  GEFs and 

GAPs can influence the activity of GTPases by promoting the exchange of GDP for GTP (GEFs) or accelerating the 

hydrolysis of GTP (GAPs).  Additionally, GTPase activity can be sequestered through GDIs which bind GDP 

GTPases and prevent exchange of GTP.  Rho GTPases target a variety of proteins including actin nucleation 

proteins which influence actin dynamics, kinases which induce actomyosin contractility, and polarity proteins such 

as PAR3 which mediate cell polarity. 

1.1.4 Rho Kinase 

Rho kinase (Rock) is a Rho effector involved in cytoskeletal dynamics [53].  Functioning as a 

serine/threonine kinase, Rock is composed of an N-terminal catalytic domain, a central coiled-

coil domain, and a C-terminal Plekstrin homology (PH) domain.  In crystallographic studies, the 

N- and C-terminal extensions around the catalytic domain facilitate formation of a head-to-head 
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homodimer [54].  Because Rock forms multimeric complexes and does not elute as a monomer, 

it is likely that Rock dimerizes in a parallel orientation [55]. 

1.1.4.1 Rock1 and Rock2 

Two Rock isoforms exist in vertebrates, Rho-kinase  / p160ROCK / Rock1 and Rho-

kinase  / Rock2, both sharing 65% identity between amino acids overall and 83% identity 

within the kinase domain.  Rock1 and Rock2 are ubiquitously expressed in mouse tissues; 

however, Rock2 transcripts are more abundant in muscle and neural tissue, while higher levels of 

Rock1 are found in tissues such as the lung, liver, and testis [56].  There is also some evidence 

for differential regulation of Rock isoforms during apoptosis as Rock1 is cleaved by caspase-3, 

whereas Rock2 is cleaved by granzyme B [57, 58].  It has been speculated that Rock isoforms 

play different developmental roles, because mutant mice display different phenotypes.  Rock1-/- 

mice display eyelid and ventral closure defects, while Rock2-/- mice display placental 

dysfunction [59, 60].  However, it was subsequently shown that altering the genetic background 

of Rock2-/- mice also resulted in eyelid closure defects and umbilical herniation.  In support of 

functional redundancy between Rock1 and Rock2, heterozygosity for either Rock1 or Rock2 

yields no phenotype, whereas Rock1 +/- Rock2 +/- compound heterzygotes lead to eyelid close 

defects [61].  Additionally, Rock1 -/- Rock2 -/- embryos die between embryonic day (e) 3.5 and 

e9.5, but Rock1 -/- Rock2 +/- or Rock1 +/- Rock2 -/- embryos show defects in the yolk sac 

vasculature [62].  Based on these results and the lack of evidence for unique substrates for either 

isoform, it is likely that Rock1 and Rock2 function redundantly and from henceforth will simply 

be referred to as Rock. 
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1.1.4.2 Activation of Rock 

Interaction with Rho at the C-terminus of the coiled-coil domain moderately activates 

Rock activity [63].  Rock is subject to intramolecular inhibition by the C-terminal half of the 

protein, and Rho is thought to relieve this inhibition.  Several lines of evidence support this 

hypothesis.  First, deletion or proteolytic cleavage of the C-terminus leads to constitutive 

activation of Rock [53, 57, 58].  Second, expression of the C-terminal region is sufficient to 

inhibit the constitutive active form of Rock [64].  And finally, an antibody against the Rho 

binding region of Rock induces Rock activity [55].  While most Rock-dependent activities 

require Rho, some lipids, especially arachidonic acid, can activate Rock independent of Rho 

[65].  In addition, it has been shown that interaction of DynaminI with the PH domain of Rock is 

sufficient to induce catalytic activity [66].  If the alleviation of intramolecular inhibition within 

Rock is a key event to its activation, then it is highly likely that other protein interactions within 

the PH domain or coiled-coil region are also sufficient to induce Rock activity. 

However, not all proteins that bind Rock activate its catalytic function.  Gem and Rad, 

members of a small GTP binding family of proteins within the Ras family, bind near the Rho-

binding motif but exert an inhibitory function.  While Gem and Rad do not directly affect Rock 

catalytic activity, it is likely that they block accessibility of other interactions [67].  Another 

Rock inhibitor, RhoE, is a member of the Rnd subfamily of GTP binding proteins.  RhoE binds 

near the kinase domain and interacts with Rock when it is activated by RhoA or cleaved by 

caspase.  Because RhoE binds near the catalytic domain, it is likely that interaction with RhoE 

blocks the interaction with yet-to-be-determined Rock effectors [68]. 
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1.1.4.3 Rock effectors and functions 

One of the key molecular regulatory mechanisms responsible for induction of contractile 

actomyosin is the balance between kinases that phosphorylate MRLC and the activity of Myosin 

light chain phosphatase.  Myosin phosphatase contains a catalytic subunit and two regulatory 

subunits, myosin phosphatase targeting subunit 1 (MYPT) and M20 [69]. As previously stated, 

phosphorylation of MRLC at Ser19 induces MyosinII contractility, whereas Myosin phosphatase 

acts to remove this phosphate and abrogate MyosinII activation.  Rock is at the crux of this 

balance, as it directly phosphorylates MRLC to increase ATPase activity [70] and also 

phosphorylates and inactivates MYPT [71].  Rock can also phosphorylate and activate ZIPK 

[72].  Similar to Rock, ZIPK also phosphorylates MYPT and MRLC, however the net 

contribution of ZIPK to Rock-induced contractility is unknown [34]. 

LIM kinases (LIMK) are serine/threonine kinases which influence actin dynamics.  Rock 

has been shown to phosphorylate both LIMK1 and LIMK2, which enhances LIMK activity and 

leads to phosphorylation of ADF/cofilin [73].  Phosphorylation of cofilin at this site inactivates 

the ability of cofilin to depolymerize actin [74].  Thus, Rock phosphorylation of LIMK 

inactivates cofilin and stabilizes F-actin.  However, Cdc42 and Rac can also promote LIMK 

phosphorylation [75].  Given that only CA-Rock and not full-length Rock activates LIMK [76], 

it is likely that the other Rho GTPases are the predominant cofilin mediators. 

Finally, Rock is important in the regulation of several proteins which link the actin 

cytoskeleton to the plasma membrane.  Adducin is a filamentous protein which binds to F-actin, 

attenuates polymerization, and recruits spectrin.  Phosphorylation of -adducin by Rock 

enhances actin binding [77].  The ERM (Ezrin-Radixin-Moesin) proteins also act to crosslink 

actin and transmembrane proteins.  Unphosphorylated ERM proteins retain a head to tail 
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conformation which masks actin and protein interaction domains.  Phosphorylation of ERM 

proteins by Rock disrupts the head to tail conformation and permits protein interactions [78].  

The molecular regulation of actomyosin contractility through Rho GTPases, Rock, and actin 

binding proteins is essential to drive morphogenesis of cells and tissues during development and 

will be discussed in more detail in subsequent sections. 

1.2 EPITHELIAL ADHESION 

Polarized epithelial cells are characterized by an apical surface which faces a lumen and a 

basolateral surface that contains adhesive structures which connect the lateral side with 

neighboring cells and the basal side with the underlying extracellular matrix (ECM) (Figure 3).  

Cellular adhesion is important for both transducing extracellular signals into morphogenetic 

responses and integrating cytoskeletal dynamics across a tissue.  Such interactions must be 

dynamic and strong in order to resist and respond to stress. Especially during development, as 

cells and tissues undergo dramatic changes in morphology, cellular adhesion must persist to 

maintain the integrity of the tissue.  Circumscribed along the apical-lateral region of epithelia are 

two distinct intercellular junctions, together referred to as the apical junctional complex (AJC).  

The AJC consists of lateral adherens junctions (AJ) which mediate cell-cell adhesion and apical 

tight junctions (TJ) which regulate the movement of molecules and cells through the epithelial 

monolayer.  Basal adhesion is mediated by focal adhesions (FA) which connect the cell to the 

ECM. 
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Figure 3: Basic Epithelial Organization 

(A-B) Lungs from e11.5 mice were dissected and processed for SEM as described in section 5.17.  The 

region of magnification in A is marked with a box and presented in B.  The ECM can be seen as a 

meshwork of fibers which underlie the pulmonary epithelia. 

1.2.1 Tight Junctions 

The apical most adhesion structures within epithelia are TJs which are composed of the 

transmembrane proteins occludin [79], claudin [80], and junctional adhesion molecule (JAM) 

[81].  Tight junctions also contain many PSD/SAP90, Discs large, ZO-1 (PDZ) domain proteins 

which connect transmembrane proteins and the actin cytoskeleton.  PDZ domains are 

characteristic of scaffolding proteins and facilitate protein-protein interactions [82].  Though this 

100 amino acid domain occurs 785 times in 436 human proteins and shares structural similarity, 

PDZ domains greatly differ in their binding partners [83, 84]. 

Several PDZ-containing complexes are required for TJ assembly and apical-basal 

polarity.  For example, apical localization of the PAR-3/aPKC/PAR-6 complex is mediated by 

interaction of PAR-3 and JAM-1 [85, 86] and is required for later stages of TJ assembly [87].  
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Another polarity complex, Crumbs/PALS1/PATJ localizes to TJs through an interaction between 

PALS and PAR-6 [88].  Localization of this complex to the TJ is further enhanced by an 

interaction between PATJ and claudin-1 [89].  Expression of a dominant negative (D/N) PATJ 

disrupts apical localization of the PAR-3/aPKC/PAR-6 and the Crumbs/PALS1/PATJ complexes 

implicating it in maintaining polarity and TJs [88]. 

Additional PDZ proteins important for TJ structure are ZO-1, ZO-2, and ZO-3 [90-92].  

The ZO proteins are cytoplasmic proteins which can directly interact with each other, claudin, 

and occludin [93-95].  Because ZO proteins also interact with actin related proteins such as -

catenin, AF-6/afadin, and vinculin, it is thought that ZO proteins form scaffolding complexes 

which maintain connections between TJs and the actin cytoskeleton [95-97].  Additionally, the 

ZO proteins are essential for TJ formation as depletion of ZO-1 and ZO-2 in a model epithelial 

cell line completely abolishes TJ assembly [98].  However, disruption of ZO-1 or ZO-2 in mice 

leads to embryonic lethality due to failure in yolk sac angiogenesis or gastrulation, respectively 

[99, 100] suggesting these proteins may not function redundantly in every tissue.  ZO-3 mutants 

have no discernable phenotype [99]. 

In addition to proteins which serve as links between integral TJ proteins and the actin 

cytoskeleton, a variety of non-PDZ, cytosolic, and nuclear proteins have been identified as TJ 

associated proteins which coordinate diverse functions such as paracellular permeability, 

proliferation, and tumor suppression (reviewed in [101]).  

1.2.2 Adherens Junctions 

AJs were first identified through electron microscopy as plasma membrane “organelles” found at 

cell-cell contacts [102].  The primary adhesion molecule found in AJs are the classical cadherins, 
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such as E-cadherin, which are transmembrane proteins that engage in homophilic interactions 

[103].  Classic cadherins contain a highly conserved cytoplasmic tail which interacts with 

p120catenin and -catenin.  -catenin binds to -catenin, an F-actin binding protein, thus 

connecting the cadherin-catenin complex to the actin cytoskeleton. Although -catenin can 

directly bind to F-actin, it is also known to interact with several other actin binding proteins such 

as vinculin, formin, and ZO-1 [104, 105].  In Drosophila p120catenin and -catenin may serve 

little regulatory function at AJs and only act to connect cadherin to -catenin, because a 

cadherin--catenin fusion protein fully compensates for the loss of DE-cadherin or the -catenin 

homologue, Armadillo [106].  However, in mammalian cells, -catenin and p120catenin may 

regulate AJ stability, as loss of either protein increases cadherin turnover and endocytosis [107-

109].  Additionally p120 catenin and -catenin interact with kinesin and dynein respectively and 

may link cadherins to microtubules, facilitating the directed transport of AJ proteins [110, 111]. 

A second class of transmembrane proteins, nectins, also exists within AJs.  Nectins bind to 

AF6/afadin which interacts with F-actin.  Because afadin and -catenin can physically interact, it 

is thought that cadherins and nectins perform similar function at AJs [112, 113].  

Maintaining a connection between AJs and the actin cytoskeleton is critical to tissue 

morphogenesis.  During Drosophila gastrulation, the ventral epithelium apically constricts to 

promote invagination in a process dependent upon apical actomyosin.  Deletion of canoe, the 

Afadin homologue, leads to morphogenesis failure due to a disconnection of the cytoskeleton 

and AJs.  canoe mutants show a striking accumulation of actin and MyosinII in the center of the 

cell as the contractile arrays separate from the plasma membrane and accumulate in the middle 

[114].  This study highlights the necessity of AJs during epithelial morphogenesis. 
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1.2.3 Focal Adhesions 

FAs are vital protein complexes which link the cell to the extracellular matrix [115].  Integrins 

are the primary adhesive protein of FAs and consist of non-covalent heterodimers of  and  

subunits.  As transmembrane proteins, integrins have a large extracellular domain and a short 

cytoplasmic tail.  As the extracellular domain binds to specific ECM proteins, the tail changes 

conformation and facilitates the accumulation of a large protein complex with estimates of as 

many as 156 proteins with 690 interactions [116].  Similar to AJs, a network of actin binding 

proteins connects integrins to the cytoskeleton.  The best characterized are talin which initially 

binds and activates the cytoplasmic tail of integrins and vinculin which recruits another actin 

binding protein, -actinin [117, 118].  FAs also contain many scaffolding proteins such as 

paxillin and signaling proteins such as focal adhesion kinase (FAK) [119, 120].  Effectors of 

FAK include GEFs and GAPs which control activation of Rho-family GTPases and subsequently 

regulate contractility and F-actin organization.  An overview model of epithelial adhesion 

structures is presented in Figure 4. 
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Figure 4: Model of Epithelial Adhesion Structures 

The tight junction (TJ) is the apical-most junction in an epithelial cell whose position is defined by the polarity 

complexes PAT-J/Crumbs/PALS1 and PAR-3/aPKC/PAR-6.  Through interactions with the transmembrane proteins 

occludin, claudin, and JAM, ZO proteins recruit the actin binding proteins catenin and vinculin to maintain a 

connection with the cytoskeleton.  Adherens junctions (AJs) along the lateral side involve cadherins which interact 

with p120 and -catenin.  -catenin can recruit a number of actin binding proteins to connect AJs with the actin 

cytoskeleton.  In addition, AJs serve as points of connection for MTs, since p120 and  -catenin can also interact 

with MT binding proteins.  Along the basal surface, focal adhesions (FAs) connect the epithelial cell to the 

underlying ECM.  Again through the recruitment of actin binding proteins, integrins maintain a connection with the 

cytoskeleton.  Additionally, FAs recuit signaling molecules like FAK to induce further changes in the cytoskeleton. 
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1.3 CONTRACTILE ACTOMYOSIN AND MORPHOGENESIS 

As observed by D’Arcy Wentworth in On Growth and Form in 1917,  

"An organism is so complex a thing, and growth so complex a phenomenon, that 

for growth to be so uniform and constant in all the parts as to keep the whole 

shape unchanged would indeed be an unlikely and an unusual circumstance. Rates 

vary, proportions change, and the whole configuration alters accordingly." [121] 

Although early descriptions of developmental biology focused on the variety of gross 

morphological changes that shape the embryo, modern descriptions have focused on spatial and 

temporal gene expression which patterns the embryo.  We now understand that it is a 

combination of these two ideas which lends a more precise understanding of cell and 

developmental biology where regulated gene expression influences cellular mechanics to shape 

cells, tissues, and organs.  Some examples of the molecular regulation of actomyosin dynamics 

which may influence cell behavior during development are discussed below. 

1.3.1 Actomyosin-dependent mechanisms in cell biology.  

1.3.1.1 Stress fiber formation 

Early studies described long, straight bundles of microfilaments which terminated in 

dense plaques at the base of the cell.  Because these microfilaments were thought to arise due to 

tension on the cytoplasm, they were termed stress fibers [122].  Stress fibers are bundles of actin 

filaments held together by -actinin, marked with intermittent MyosinII.  The insertion of 

MyosinII between anti-parallel actin filaments allows contractility and shortening of the bundle.  

As stated previously, RhoA seems to be a major regulator of stress fiber formation which 
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functions through Rock to activate MyosinII and mDia.  Inhibition of Rock signaling through 

overexpression of RhoE, Gem, Rad, or DN-RhoA blocks stress fiber formation [67, 68].   

The activity of both Rock and mDia is required for stress fiber formation [49].  Alone, 

Rock activation induces disorganized stress fibers in the center of the cell, whereas mDia 

overexpression forms parallel actin filaments that are loosely bundled [49].  It is the combination 

of the two which leads to the organized, contractile bundles in stress fibers.  While Rock is 

responsible for inducing MyosinII filament assembly, mDia localizes to focal adhesions where it 

is thought to nucleate actin filaments [123]. 

Stress fibers are critical for the mechanics of many cells.  As an example, endothelial 

cells of the vasculature experience continual mechanical stress from hydrostatic pressure, cyclic 

stretch, and fluid shear.  As blood flows across endothelial cells, actin stress fibers become 

enriched and aligned along the direction of flow [124].  Stress fiber formation from fluid shear 

has been connected to RhoA and Rock activation [125].  It is thought that within blood vessels, 

stress fibers help endothelial cells retain a flat and smooth luminal surface. 

1.3.1.2 Cell Migration 

As cells move, they must cycle between protrusive and contractile motions.  In a 

polarized cell, a protrusion, such as a lamellipodium, extends from the cell and attaches to the 

substrate.  Adhesion to the substrate then facilitates the contraction of the tail, allowing the cell 

to move in one direction. 

The lamellipodium is formed by Arp2/3 and branched actin networks, and as such, 

MyosinII is not required for its formation [126].  Proximal to the lamellipodium is a structure 

known as the lamellum which is composed of thick actin bundles.  Both regions undergo 

retrograde actin flow with lamellipodial actin coalescing into the bundles of the lamellum. 
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Following knockdown of MyosinII or inhibition by blebbistatin, the lamellum collapses and the 

net rate of protrusion is delayed [126].  It appears that MyosinII is responsible for slowing 

retrograde actin flow in the lamellum which counters actin polymerization at the lamellipodium.  

Adhesion to the substratum balances these two opposing forces and creates traction points to 

oppose retrograde actin flow, resulting in net protrusive activity [127].  Thus, focal adhesive 

contacts create a ‘molecular clutch’ which is essential for migration.  Just as the loss of 

contractility can abolish migration, migration is also lost following excessive MyosinII activation 

[128].  There likely exists a precise amount of MyosinII activity which promotes cellular 

migration, as it has long been known that enhancing contractility also reduces migration.   

Because the molecular clutch or FA is required for some forms of migration, its 

formation is essential for function.  The lamellipodium contains nascent focal contacts to the 

substratum which begin to mature at the transition zone between the lamellipodium and the 

lamella.  MyosinII is required for the maturation of these focal adhesions [129].  There are two 

possible roles for MyosinII in FA maturation.  First, MyosinII bundles actin filaments.  As a 

consequence of actin bundling, adhesive proteins at the ends of the fibers coalesce and can form 

larger complexes [130].  Another non-exclusive possibility is that MyosinII-generated tension 

induces conformational changes in FA components, exposing additional binding sites which lead 

to maturation.  To support this hypothesis, it has been shown that when talin is mechanically 

stretched, it binds to vinculin which would serve to bind additional F-actin fibers and other FA 

proteins [131]. In this manner, the stiffness of the underlying substrate can affect the stiffness of 

the cytoskeleton. With decreased stiffness of the substrate, the clutch cannot generate sufficient 

force to remodel the actin cytoskeleton.  For example, cells grown on softer substrates contain 
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smaller, dynamic adhesions compared to cells grown on stiffer substrates which contain large, 

stable adhesions [132]. 

Within motile fibroblasts, MyosinII isoforms have different roles.  MyosinIIB localizes to 

non-dynamic actomyosin structures in the center and rear of the cell.  MyosinIIA is dynamic and 

localizes to protrusions at the cell front [133].  Additionally, MyosinIIA activity is essential for 

tail retraction.  General inhibition of MyosinII causes cells to elongate as they fail to retract the 

tail [134].  Differential localization of MyosinII isoforms establishes a front and rear to the cell 

and likely contributes to different actomyosin dynamics in these regions.  In addition, the control 

of actomyosin in migrating cells creates stable FAs and highly bundled actin.  These structures 

prevent protrusion and specify the sides of the cell [133].   

1.3.1.3 Cell adhesion 

The regulation of cell adhesion is critical in mediating the transition between 

mesenchymal and epithelial behavior.  In addition, AJs must be dynamic in order to allow cell 

rearrangement and morphogenesis in the context of a tissue while still maintaining adhesion.  

Initial E-cadherin based cell-cell contacts are dependent upon local activation of Rac which 

drives actin-based filopodial protrusions enriched with E-cadherin [135, 136].  These filopodial 

protrusions extend into neighboring cells and establish nascent cell-cell contacts which recruit -

catenin, vinculin, Mena, VASP, and formin-1 [13, 136].  Additionally, Rac can activate 

phosphatidylinositol 3-kinase leading to Cdc42 and Arp2/3 activation [136].  The combined 

effects of activating actin binding proteins at early sites of cell adhesion are thought to expand 

the area of contact between cells and extend E-cadherin interactions.   

The activities of Rac and Cdc42 can also activate Par6 and aPKC, leading to AJ 

maturation and apical-basal polarity [137].  Additionally, RhoA maintains E-cadherin based 
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cellular adhesion through control of Dia1 and Rock [138].  Actomyosin networks are critical to 

maintaining cellular adhesion as knock out of MyosinII leads to loss of E-cadherin at cell-cell 

junctions [139].  Inhibition of Rock phenocopies inhibition of MyosinII [140].  These results 

suggest that a balance of actomyosin networks and Rho family GTPases is required to promote 

and maintain adhesion.  Recent evidence has suggested a differential role for MyosinII isoforms 

in maintaining AJs.  Within MCF-7 cells the loss of MyosinIIA leads to the discontinuity of E-

cadherin within the AJC, whereas the loss of MyosinIIB depletes the apical F-actin belt.  In these 

cell lines, MyosinIIA is under the control of Rock, but MyosinIIB is regulated by Rap1 [141]. 

A mechanistic role for MyosinII in maintenance of AJs has recently been described.  AJs 

are important for maintaining the integrity of cells within a tissue, but they can also be used to 

sense and respond to mechanical cues.  Recent studies demonstrate that-catenin binds to 

vinculin in a force dependent manner.  Inhibition of MyosinII leads to the loss of vinculin at AJs, 

whereas localized MyosinII activation at AJs recruits vinculin to the areas subjected to force 

[142].  -catenin contains a region within the protein that inhibits the interaction with vinculin 

[143].  Because the actin binding region of -catenin, actin filaments, cadherin interactions, and 

MyosinII contractility are all required for -catenin and vinculin binding, a model has been 

proposed where force exerted upon AJs causes stretching of -catenin to expose the site for 

vinculin binding thereby promoting additional F-actin recruitment [143]. Such a mechanism 

ensures the localization of sufficient amounts of F-actin to maintain adhesion and balance within 

a cell population and provides insight into how cells can rapidly remodel AJs during 

development. 
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1.3.1.4 Wound closure 

The process of wound closure involves the coordination of adhesion and migration as 

cells must maintain epithelial integrity while migrating into the open space.  As thick actomyosin 

cables are present at the leading edge, it has long been hypothesized that a purse-string 

mechanism draws cells together as they migrate into the wound [144, 145].  Further analysis of 

actomyosin dynamics during wound closure of MDCK cells has revealed two roles for MyosinII.  

MyosinII is recruited to two distinct locations immediately after wounding: in a ring at the TJ 

and near lamellipodia at the base of the cell [146].  Inhibition of MyosinII blocks contraction of 

the apical ring and switches basal motility from a lamellipodia-based mechanism to a filopodia-

based mechanism [146].  Rock predominately localizes to the TJ but is the primary effector of 

MyosinII activity at both locations [146].  ZO-1 co-localizes with apical MyosinII in this system 

and has been proposed to facilitate the connection between actomyosin and TJs [146].  Once the 

apical purse string has constricted, ZO-1 localizes to the leading edge and is required for 

localization of aPKC-Par3 and PATJ, likely mediating directed cell migration through activation 

of phosphatidylinositol 3 kinase [145, 147]. 

1.3.2 Actomyosin-dependent mechanisms in development. 

Though vertebrate species show expansive diversity in adult form and function, there are striking 

gross morphological similarities between the early embryonic stages of vertebrates.  As 

infamously drawn by Ernst Haeckel in his publication Anthropogenie in 1874, the early 

developmental stages of fish, salamanders, pigs, dogs, and humans are nearly indistinguishable.   

As all vertebrates must undergo similar developmental processes such as proliferation, 

differentiation, gastulation, elongation, neural tube closure, and organogenesis, it is through 
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conserved mechanisms of cellular morphogenesis that similar structures arise.  A few roles for 

contractility during development are discussed below. 

1.3.2.1 Germline ablation of MyosinII isoforms. 

Given the significance of MyosinII in mediating cellular migration and adhesion, it is 

likely an important protein for normal development.  The in vivo implications of MyosinII 

isoforms have been addressed through germline ablation and have revealed different phenotypes 

for each isoforms.  MyosinIIA deficiency is lethal by e6.5 due to failure in cell adhesion and 

visceral endoderm formation [139].  MyosinIIB deficiency is lethal by e.14.5 due to cardiac and 

brain defects [148].  These differences suggest non-redundant functions for MyosinII isoforms, 

and in support of this notion, knock-in of MHC IIB into the MHC IIA locus in MyosinIIA 

deficient mice only rescues brain but not cardiac defects [149].  Similarly knock-in of MHC IIA 

into the MHC IIB locus in MyosinIIB deficient mice rescues cell adhesion defects but the 

embryos still die around e11.5 from angiogenesis and migration defects [150].  These results 

suggest that Myosin isoforms have overlapping but non-redundant functions.   It is hypothesized 

that actomyosin-dependent functions during development which require only the actin cross-

linking ability of MyosinII are not isoform specific, however those functions which require the 

specific kinetic properties of a particular MyosinII isoform cannot be rescued.  While many 

studies to date utilize general MyosinII inhibition in the analysis of contractility, in the future it 

will be important to consider how different isoforms impart specific functions and how they are 

differentially regulated. 
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1.3.2.2 Embryo stiffness 

During development the notochord is a well-known organizing center which produces 

morphogens to influence the differentiation of surrounding tissues.  Though disruption of the 

notochord may impart loss of developmental signaling to surrounding tissues, some evidence 

suggests that mechanical cues to surrounding tissues are lost in several model systems including 

frog [151], newt [152], and zebrafish [153].  In a process known as convergent extension which 

is dependent upon RhoA and actomyosin, cells converge upon a midline within the plane of the 

cells in order to elongate the tissue [154].  Actomyosin-induced changes in shape influence the 

elongation of the overlying neural plate.  The notochord also contains inherent tissue stiffness 

which prevents buckling during straightening of the Xenopus embryo [155].  It has also been 

demonstrated that the notochord, paraxial mesoderm, and endoderm exhibit actomyosin-

dependent differences in stiffness compared to one another [156].  It is possible then that 

differences in adhesive strength and stiffness may function in boundary formation between 

tissues and may provide mechanical support between tissues during morphogenesis, however 

such a role has yet to be examined. 

Stiffness of the underlying substrate has also been shown to be an important determinant 

of cell behavior and not just reactionary to cell signals.  When the stiffness of the substratum is 

reduced, cell spreading, stress fiber formation, and FA maturation are reduced [157].  

Mesenchymal stem cell (MSC) differentiation is dependent upon substrate stiffness.  When 

MSCs are cultured on hard substrates which mimic the physiological stiffness of bone, cells 

differentiate along an osteogenic lineage.  When MSCs are cultured upon soft substrates which 

mimic neural tissue, cells express neural markers [158].  The ability of MSCs to respond to their 

environment is dependent upon contractile actomyosin, as inhibition of MyosinII prevents 
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differentiation into all tested lineages [158].  It is likely that the ability of these cells to change 

shape underlies their ability to differentiate.  In support of this notion, RhoA activation and Rock 

activity is essential for guiding MSCs along an osteogenic lineage.  Upon ablation or inhibition 

of Rho or Rock activity, cells divert to an adipogenic lineage [159].  Rock-dependent cell shape 

changes during MSC differentiation mediate responsiveness to BMP and SMAD signaling which  

guides differentiation, however a molecular connection between the two has yet to be determined 

[160]. 

1.3.2.3 Apical constriction 

While tissue stiffness may be associated with cortical contractility of the entire cortex, 

specific localization of actomyosin can mediate more specific morphogenetic changes.  For 

example, apical constriction of the mesoderm during Drosophila gastrulation leads to 

invagination and generation of the primary germ layers.  This process is dependent upon the 

transcription factors Snail and Twist which promote activation of RHOGEF2.  RHOGEF2 then 

activates Rho and promotes the formation of apical contractile actomyosin through the 

stimulation of Rock [161, 162].  Constriction in this system is not uniform, but follows a cyclical 

pattern of brief contractility which correlates with MyosinII accumulation [163].  If such bursts 

were allowed to relax and revert to the original position, then a net change in the apical surface 

would not arise.  Thus it is hypothesized and has been observed that a ratchet-like mechanism 

exists to maintain tension between contractions.  The molecular identity of this system is 

unknown, but it also relies upon the expression of twist [163].  Pulsed apical contractility also 

plays a role in dorsal amnioserosa cells, essentially pulling the overlying epidermis towards the 

center [164]. Actomyosin also regulates apoptosis of amnioserosa cells and the leading edge 
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purse string in the epidermis.  Together with apical constriction of the amnioserosa, these 

different functions of actomyosin are required for dorsal closure [164-166]. 

Twist transcription itself is likely mediated by changes to the cytoskeleton as physical 

compression of the stomodeal cells during germband extension increases twist expression, 

inducing apical constriction of the mesoderm which will pattern the gut [167].  Experimental 

manipulation of cellular tension through uniaxial stretching of the embryo also upregulates twist 

[168].  It is intriguing that a regulator of one contraction event can be regulated by another.  

These results likely reflect the dynamic nature of contractile actomyosin networks during 

mechanotransduction, demonstrating how actomyosin networks can remodel as needed in 

response to molecular signals or force. 

1.3.2.4 Angiogenesis 

As the embryo grows in size and cell number, tissues must be properly vascularized to 

supply oxygen as needed.  The sprouting of new blood vessels from existing ones is not only 

important for development, but also for tissue engineering and vascularization of tumors.  During 

angiogenesis, cells must sprout from formerly quiescent vessels, maintaining adhesion while 

migrating towards a stimulus.  During this process, the cell at the forefront of migration is termed 

a “tip cell” while those that follow are termed “stalk cells.”  A primary activator of tip cell 

specification is VEGF, which upon binding to VEGFR2, stimulates a signal transduction cascade 

which activates Delta-like 4 (Dll4) [169].  Through lateral inhibition, Dll4 activates Notch 

signaling in neighboring cells which in turn, downregulates VEGFR2 expression, ensuring that 

only tip cells respond to VEGF [170]. 

Early studies of capillary morphogenesis identified filopodial extensions within the tip 

cells which guide migration [171].  Increasing evidence suggests that VEGF activates Rho 
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GTPases to influence cell migration within the tip cell.  Both Cdc42 and Rac1 are activated by 

VEGF which induces filopodia and lamellipodia respectively [172, 173].  VEGF also activates 

RhoA in endothelial cells.  Expression of D/N RhoA or inhibition of Rock abolishes VEGF-

induced changes in the actin cytoskeleton and prevents angiogenesis [174, 175].  Indeed, 

stimulation of individual endothelial cells with VEGF increases their contractility in a Rock-

dependent manner [176].  However conflicting reports on the role of Rock in angiogenesis exist 

such that Rock inhibition or knockdown in a retinal neovascularization model actually enhances 

angiogenesis [177].  Consistent with these results, MyosinII can be visualized at the endothelial 

cell cortex and is lost prior to sprouting activity [178].  Localized inhibition of Rock abolishes 

cortical MyosinII localization and promotes sprouting, suggesting that Rock induced contractility 

negatively regulates branching [178].  It was recently demonstrated that an ideal level of cellular 

adhesion to the substrate promotes angiogenesis; too few or too many adhesions can be 

detrimental to angiogenesis [179].  While it is difficult to compare the role of Rock in different 

endothelial cell lines and angiogenesis models, it may be that differential responses to Rock 

inhibition create differences in cellular adhesion thus altering the angiogenic response.  

Determining how angiogenic signals induce sprouting in relation to contractile actomyosin in 

vivo will be an important task in understanding developmental angiogenesis and the development 

of anti-tumor drugs.     

1.4 THE SHROOM FAMILY OF PROTEINS 

The first Shroom protein was serendipitously identified in 1992 while trying to generate a cDNA 

against the  subunit of a Na+, K+ –ATPase in Bufo marinus.  Named after the characterization 
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of its localization, Apical Protein from Xenopus leavis (APX) was identified as a protein 

essential for amiloride-sensitive sodium channel activity but was not a physical pore component 

[180].  Subsequent experiments confirmed a role for Apx in epithelial sodium channel activity 

(ENaC) [181] and suggested apical localization was due to the formation of a macromolecular 

complex containing -spectrin [182].  Additional studies found related proteins in mammals, 

named APX-like (APXL) [183], Shroom [184], and KIAA1202 [185].  Identified as distinct 

family members with conserved domains rather than as homologues to the Xenopus APX, the 

proteins were renamed in the chronological order in which they were identified: Shroom1 (Apx), 

Shroom2 (Apxl), Shroom3 (Shroom), and Shroom4 (KIAA1202) [186].   

The Shroom family of proteins is characterized by possession of several conserved 

domains: an N-terminal PDZ domain, a central Shroom Domain 1 (SD1), and a C-terminal 

Shroom Domain 2 (SD2) [187, 188].  At present, the function of the PDZ domain remains 

unclear, as it is not required for Shroom3 function nor for Shroom4 localization and only mildly 

affects Shroom2 localization [188, 189].  The SD1 lies near an actin binding region, yet while 

not all Shroom proteins contain an SD1, they all bind F-actin. [188, 190, 191].  The only domain 

common to all family members is the SD2 (Figure 5 and Table 1).  The SD2 is required for the 

formation of Shroom-dependent actomyosin networks and has recently been shown to physically 

bind to Rock 1/2 [189, 192].  Thus far, only Shroom3 and dShroom have been shown to 

physically interact with Rock, however due to the high degree of conservation amongst the SD2 

of all family members and the ability of all members to induce morphological changes, Rock 

binding is likely a shared function of the Shroom family. 
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Table 1: Overview of Shroom family of proteins 

Previous name Current name Domains Present Actin Binding? 

APX Shroom1 SD1   SD2 Y 

APXL Shroom2 PDZ   SD1   SD2 Y 

Shroom L Shroom3 PDZ   SD1   SD2 Y 

KIAA1202 Shroom4 PDZ             SD2 Y 

CG8603 dShroom A 
dShroom B 

SD2
SD2

Y 
N 

1.4.1 Shroom3 and implications for conserved Shroom family functions. 

The ability of Shroom family members to induce cell shape change in a variety of animal model 

systems and tissues will be described in the following sections. The first example of a 

morphogenetic role for Shroom proteins was identified for Shroom3 in which mutant mice were 

generated through a series of gene trap mutagenesis experiments in embryonic stem (ES) cells 

[184].  Shroom3 mutant embryos show open neural tubes at embryonic day (e) 9.5 and extensive 

neural tube defects by e14.5 including exencephaly (100%), facial clefting (87%), spina bifida 

(23%), and ventral closure defects which result in organ herniation (12%) [184].  Though ventral 

closure defects occur infrequently, 100% of Shroom3 mutant ventral neural tubes are malformed 

with a collapsed lumen, apparent loss of rigidity, and aberrant roof plate morphogenesis [184].   

Within murine neural epithelia and MDCK cells, Shroom3 localizes to tight junctions and 

induces apical constriction and apical-basal epithelial lengthening [187, 189, 193].  It is believed 

that Shroom3-induced morphogenesis is sufficient to induce wedge-shaped cells which promote 

neural plate bending and subsequent NT closure [187].  The necessity of Shroom3 for apical 

constriction and NT closure is consistent in other model systems as depletion of Shroom3 in 
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Xenopus and chick embryos also leads to aberrant epithelial morphology and NT closure defects 

[187, 192]. 

In addition to expression within the neural epithelium, Shroom3 is expressed within most 

developing epithelial tissues particularly the optic pit, hindgut, foregut, lungs, and somites [184].  

Shroom3 likely contributes to morphogenesis of these tissues, as Shroom3 mutant embryos also 

display defects in lens placode invagination and foregut looping, each of which are attributed to 

the loss of apical constriction and epithelial lengthening [194-196]. 

Shroom-induced epithelial lengthening is thought to occur through tubulin recruitment 

to the apical surface, orienting MTs along the apico-basal axis [194, 197].  As Shroom proteins 

and apical  tubulin have not been shown to interact and do not precisely co-localize, apical 

tubulin localization could be a secondary effect.  A direct role for Shroom3 and apical 

constriction is better understood. The ability of Shroom3 to induce apical constriction is 

dependent upon its ability to bind to actin and establish a contractile MyosinII-dependent 

network [189, 195].  Interestingly, Shroom3 is the only family member which induces apical 

constriction of MDCK cells when over expressed, yet all Shroom proteins retain the ability to do 

so when properly targeted.  When a chimeric protein is generated in which the SD2 of Shroom3 

is replaced with another family member’s SD2, apical constriction is rescued [188].  Because 

apical constriction is dependent upon the SD2 through physical recruitment of Rock and 

establishment of actomyosin networks, this suggests that all Shroom proteins have the ability to 

elicit morphogenetic changes through actomyosin recruitment.  

Why then can not all Shroom proteins elicit apical constriction in MDCK cells?  There 

are seemingly two possibilities.  First, while all Shroom proteins can bind to actin, they may do 

so in different ways.  This is best demonstrated in Rat1 fibroblasts as Shroom2, Shroom3, and 
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Shroom4 all display differential actin-based localization.  In Rat1 cells, Shroom3 can bind and 

bundle F-actin stress fibers; Shroom2 cannot bundle actin and preferentially localizes to cortical 

actin; and Shroom4 uniquely recruits actin into unknown structures which perpendicularly span 

stress fibers [188, 190].  Specifically how these proteins interact with different populations of F-

actin may influence apical constriction.  It might also be possible that Shroom proteins bind actin 

with different affinities.  Second, unique protein binding partners have been identified for several 

Shroom proteins (Figure 5) which will be elaborated upon in the following sections.  In regards 

to Shroom3, Shroom3 is the only family member to possess an EVH1 domain.  Deletion of this 

region or transfection of the Mena EVH1 domain which acts as a D/N blocks apical constriction 

[195].  Because the EVH1 domain of Shroom3 is required for apical constriction, it is likely that 

other interacting proteins, the identity of which remains to be determined, are necessary for 

morphogenesis.  Plenty of SH3s (POSH), a multi-domain scaffolding protein which assembles an 

active JNK / MAPK module also interacts with Shroom3 [198].  Such an interaction is required 

for negative regulation of axon length [199].  From these observations it is clear that differential 

actin binding and protein interactions are important for mediating apical constriction.  

Specifically how unique proteins influence localization and whether or not they influence actin 

binding remain to be determined. 

Ultimately, precise sub-cellular localization of each Shroom protein is also important for 

its function.  In support of this notion, the SD2 of any Shroom protein can be targeted to the 

apical membrane with an Endolyn tag.  Within MDCK cells, Endolyn sorts to the apical plasma 

membrane and can be over expressed without affecting morphology [200].  Apical localization 

of the SD2 with this tag induces apical constriction [189].  Without a localization signal, the SD2 

is cytoplasmic and fails to induce morphogenetic change.  As the SD2 is not required for 
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localization of Shroom proteins, Shroom proteins likely localize through unique protein 

interactions outside of the SD2.  Determining additional protein interactions which may mediate 

localization of the Shroom proteins will be useful to elucidate specific Shroom protein functions.   

While Shroom3 influences Rock localization, precisely how Rock is activated after 

recruitment remains unclear.  Overexpression of D/N RhoA has no effect on alleviating the high 

frequency of apically constricted MDCK cells after Shroom3 expression [187].  While D/N Rap1 

can abolish apical constriction, Rap1 has not been shown to regulate Rock activity [187].  Rap1 

was recently shown to mediate the connection of the actin cytoskeleton with AJs in Drosophila 

through regulation of the Afadin homologue Canoe.  Loss of either Rap1 or Canoe leads to a 

striking accumulation of actomyosin balls which have detached from AJs, preventing 

morphological change [114].  These results may explain the effect of D/N Rap1 on eliminating 

Shroom3-dependent apical constriction as the cytoskeleton may have lost association with AJs.  

Alternatively, MyosinIIB is regulated by Rap1 in MCF-7 cells [141], so it might be that 

Shroom3 functions primarily through MyosinIIB.  Because D/N RhoA fails to abolish apical 

constriction, it remains a possibility that physical interaction of Rock with Shroom proteins is 

sufficient for activation.  Interestingly, the region with which Rock binds to Shroom lies just N-

terminal to the RhoA binding site [192]. Because intermolecular inhibition of Rock is relieved by 

an interaction with RhoA, it is an appealing idea that Shroom activates Rock in a similar manner.  

There is no current evidence for post-translational modification of Shroom proteins.   

Transcriptional regulation can influence cell morphogenesis by controlling the presence 

or absence of key regulators within a cell population.  Two examples of transcriptional 

regulation have been identified for Shroom3.  First, Pax6 is a transcription factor present in the 

lens placode which is essential for shroom3 expression [195].  A direct or indirect effect for Pax6 
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remains to be determined.  Second, Pitx1 is required for shroom3 expression within the Xenopus 

gut.  The promoter of shroom3 contains several Pitx1 consensus sequences.  When this promoter 

is attached to a luciferase reporter, Pitx1 increases expression 18-fold, implicating a direct role 

for Pitx1 and shroom3 expression in the gut [194]. 

1.4.2 Shroom2 

Shroom2 was first identified by sequencing genes within a large X-chromosomal deletion 

thought to underlie Ocular albinism type 1 (OA1) [183].  OA1 is an X-linked disorder which 

causes impairment of visual acuity, involuntary eye movement, misalignment of the eye, and 

retinal hypopigmentation.  Shroom2 lies upstream of the OA1 gene, yet its role in OA1 remains 

unclear [183].   

The best support for the involvement of Shroom2 in ocular albinism comes from studies 

in Xenopus.  When expressed within naïve epithelial blastomeres, Shroom2 ectopically recruits 

pigment to the apical surface [197].  Shroom3 exhibits similar activity, yet consistent with 

previous studies in MDCK cells, Shroom3 induces apical constriction while Shroom2 does not.  

Shroom2 is expressed within the developing eye and when knocked down by morpholino, loss of 

Shroom2 leads to hypopigmentation and disruption of Retinal Pigment Epithelium (RPE) 

morphology [197].  The exact role for Shroom2 in this process is unclear, but morphological 

change brought about by Shroom2 activity may help establish apical accumulation of  tubulin 

and apical / basal oriented MTs for pigment transport [197].  A second hypopigmentation 

disorder, ocular albinism with sensorineural deafness (OASD), also maps to the same region of 

the X-chromosome as OA1 [201, 202].  Because Shroom2 is expressed within epithelial cells of 

the retina and the inner ear in mice [188, 203], Shroom2 is a likely candidate for mediating 
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proper development of such organs, disruption of which may lead to sensory diseases such as 

OA1 and OASD.  There is currently no Shroom2 mutant mouse to address such questions.  As 

Shroom2 is also expressed within the embryonic vasculature, gut, neural tube, and kidney [188] 

and a variety of adult epithelial tissues [203], additional studies are necessary to understand 

Shroom2 function in these tissues. 

MyosinVIIa is an unconventional myosin which is abundant at cell-cell junctions and 

binds to vezatin, a transmembrane protein incorporated into the cadherin-catenin complex [204].  

Mutations in MyosinVIIa lead to Usher syndrome type I, identified by congenital deafness, 

vestibular dysfunction, and progressive retinitis pigmentosa [205, 206].  Through a yeast two 

hybrid screen, Shroom2 was identified as an interacting protein, binding to MyoVIIa through a 

region N-terminal to the SD1 (a.a. 350-721) [203].  The smallest MyoVIIa construct which binds 

to Shroom2 contains the MyTh4 and FERM domain.  However, interaction with MyoVIIa does 

not likely mediate Shroom2 localization, as Shroom2 still localizes to TJs of hair cells in 

MyoVIIa defective shaker-1 mice [203, 207].  Both MyoVIIa and Shroom2 are important for 

proper melanosome biogenesis and apical localization [197, 208]. In addition, Shroom2 and 

MyoVIIa are localized to inner hair cells of the ear [209, 210].  Therefore, it will be interesting to 

examine the relationship between the two for insight into the development of certain auditory-

visual disorders. 

 Consistent with the observation that MyoVIIa is not sufficient for Shroom2 localization, 

the PDZ and Serine/Proline Rich region (SPR) (a.a. 1-513) of Shroom2 localize efficiently to TJs 

in MDCK cells [188]. In order to elucidate the molecular target of Shroom2 at the TJ, Etournay 

et al. performed a yeast two hybrid with Shroom2 PDZ/SPR bait against an inner ear cDNA 

library.  They identified and confirmed ZO-1 as an interacting partner with an interaction 
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between the SH3/GuK domains of ZO-1 and the SPR region of Shroom2 [203].     Interestingly, 

the PDZ domain of Shroom2 is not essential for the interaction with ZO-1.  However, the 

relationship between ZO-1 and Shroom2 in the context of a cell is not as straightforward.  While 

TJ formation has been shown to precede Shroom2 recruitment, Shroom2 localizes to cortical 

actin and nascent adherens junctions devoid of ZO-1 [188, 203].  More importantly, in 

fibroblasts which express E-cadherin and form junctions which contain ZO-1 but lack true TJs, 

Shroom2 fails to localize [203].  These observations suggest that either a multi-step process or 

multi-protein complex at mature TJs is responsible for Shroom2 localization.  Additionally, it 

may be that Shroom2 can interact with other ZO proteins, as murine ZO-1 and ZO-2 share 66% 

identity within the SH3/GuK region.  ZO-1 and ZO-3 share 49% identity within the same region. 

The mechanism of Shroom2 localization is confounded further because the PDZ domain, a 

common domain of scaffolding proteins and TJ-associated proteins, is not required for Shroom3 

localization and only mildly affects Shroom2 localization in vitro yet contains 64% identity 

between Shroom2 and Shroom3 [184].  As Shroom3 also localizes to TJs and shares loose 

similarity to Shroom2 within the SPR, Shroom3 may also interact with ZO-1. 

1.4.3 Shroom4 

Gross defects in morphogenesis can be severely detrimental, i.e. lethal, to an organism.  More 

subtle defects in morphogenesis may allow survival yet severely disable the organism.  As a 

consequence of subtle neural defects, mental retardation affects 1-3% of the population.  Over 

10% of these cases are due to mutations or gross chromosomal abnormalities within the X 

chromosome, termed X-Linked Mental Retardation (XLMR) [211].  A number of genes 

responsible for XLMR involve actin dynamics including several Rho effectors and actin binding 
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proteins [212].  Two XLMR patients have been identified with causative X chromosome 

breakpoints within Shroom4 [185].  As Shroom4 is an actin binding protein which can induce 

MyosinII dependent changes in the cytoskeleton, it is likely that defects in neural morphogenesis 

underlie the development of XLMR in Shroom4 defective patients [190].  As Shroom4 is 

expressed within the epithelium of many adult and embryonic structures, additional studies will 

be essential to elucidating Shroom4 interactions and function [190]. 

1.4.4 Shroom1 

hShroom1 was recently identified in a yeast two hybrid screen as an interacting protein with 

melanoma cell adhesion molecule (MCAM) [213].  Within which region of Shroom1 MCAM 

interacts remains unclear.  hShroom1 contains the characteristic SD1 and SD2 of the Shroom 

family and may bind to F-actin, however the SD2 of Xenopus Shroom1 is more similar to 

hShroom2, 3, and 4, suggesting that hShroom1 is not the homologue of  Xenopus Shroom1 

[213].  hShroom1 is expressed in brain, heart, skeletal muscle, colon, small intestine, kidney, 

placenta, lung, and melanoma cells lines.  In addition, it is strongly expressed in a variety of 

tumor tissues, yet its role in such cells has yet to be determined [213]. 

1.4.5 dShroom and evolutionary implications for the Shroom family 

Based on homology to the SD2, the invertebrate Drosophila ortholog, dShroom, was identified 

[188].  While the SD2 is the only region of conservation between dShroom and vertebrate 

Shroom proteins, dShroom still retains the ability to bind to F-actin.  Two isoforms, dShroomA 

and dShroomB are detectable with dShroomA as the most abundant isoform.  dShroomA, the 
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longer isoform, localizes to AJs which are in a synonymous location as vertebrate TJs.  

dShroomB is shorter, lacks the actin binding motif, and localizes to the surface of epithelial cells.  

dShroomA and dShroomB both induce different actomyosin networks based on their 

localization.  When overexpressed in the dorsal ectoderm, dShroomA induces robust apical 

constriction from AJs while dShroomB assembles a disorganized actin network at the apical 

surface.  Consistent with vertebrate Shroom proteins, dShroom-induced actomyosin networks are 

dependent upon an interaction between the SD2 and dRok [191]. 

Despite a lack of sequence conservation in the N-terminus between dShroomA and 

vertebrate Shroom3, they share localization to a particular region which is conducive to apical 

constriction.  As dShroom does not contain a PDZ, SD1, or any other region of similarity with 

vertebrate Shroom proteins outside of the SD2, it appears selective pressure was exerted upon 

Shroom3 to maintain the appropriate localization conducive for apical constriction [191].  It is 

then quite possible that other Shroom proteins were adapted for additional Rock-dependent 

functions as more complex mechanisms evolved. 

The SD2 appeared very early in the animal lineage as a distantly related open reading 

frame is identified in the cnidarian Hydra magnipapillata and potential orthologs are found in the 

ascidian Ciona intestinalis and the echinoderm Strongylocentrotus purpuatus [188].  Unlike 

dShroom, the predicted proteins from the sea squirt and sea urchin contain a PDZ domain.  As 

yeast and Arabidopsis thaliana genomes do not contain any Shroom-like proteins, it is likely that 

Shroom is an animal specific protein; however not all animals possess shroom as the nematode 

worm Caenorhabditis elegans and the flatworm Schmidtea mediterranea contain no clear 

orthologs.  Phylogenetic analysis of SD2 sequences in vertebrates suggests that a duplication of 
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the ancestral Shroom gene gave rise to two homologues, one that became Shroom4 and one that 

duplicated again to form Shroom2 and Shroom3 [188].  

1.4.6 Summary 

The Shroom proteins are regulators of epithelial morphogenesis, best characterized by their 

ability to organize actomyosin networks.  All Shroom proteins are characterized by their ability 

to bind F-actin and by high conservation of the C-terminal SD2 which binds to Rock.  

Establishment of actomyosin networks relies upon two modules within the Shroom proteins.  

First the protein must properly localize through actin binding and interaction with additional 

proteins.  Second, from specific sub-cellular locations within the cell, Shroom recruits Rock 

through an interaction with the SD2, activating contractile actomyosin.  Due to high conservation 

within the SD2 and the ability for all Shroom proteins to bind to actin and cause apical 

constriction when properly targeted, the establishment of actomyosin networks through 

recruitment of Rock is the key mechanism of Shroom function.  Unique sequences within the N-

terminus of the Shroom proteins convey unique protein interactions and differential protein 

localization.  Thus each Shroom protein may act in similar yet unique ways.  A summary of 

known domains and protein interactions is provided in Figure 5.  While Shroom3 has been well 

characterized, the roles for other Shroom proteins in cell and developmental biology remain to be 

determined. 
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Figure 5: Shroom Family of Proteins Schematic 

An overview of known protein domains (grey boxes) and known protein interactions (underlying lines). 

1.5 DISSERTATION AIMS 

To date only Shroom3 has been well defined as a regulator of epithelial morphogenesis during 

development. While Shroom2 binds to actin and mediates apical constriction of MDCK cells 

when properly targeted, no study has yet identified a role for Shroom2 in morphogenesis.  Given 

that certain endothelial cells endogenously express Shroom2 which localizes to cortical actin, 

and cortical actomyosin networks are essential for angiogenesis, we thought endothelial 

morphogenesis provides an ideal model to address Shroom2 function.  Thus, the first aim of this 

dissertation is to elucidate and characterize the function of Shroom2 in endothelial cells. 

In Xenopus embryos, Shroom2 recruits  tubulin to establish apically oriented 

microtubules for apical/basal elongation and directed transport of cargo [197].  While this 

phenomenon has not been observed in mammalian systems, I have observed Shroom2 

 41 



localization at the centrosome, a  tubulin rich structure important for ciliogenesis and mitotic 

spindle orientation during mitosis [214, 215].   It is currently unknown how Shroom2 plays a role 

in the regulation of the centrosome.  Thus the second aim of this dissertation is to establish 

Shroom2 as a bona fide centrosomal protein, to determine how Shroom2 localizes to the 

centrosome, and to identify its role in centrosome function. 
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2.0  SHROOM2 REGULATES CONTRACTILITY TO CONTROL ENDOTHELIAL 

MORPHOGENESIS 

The intrinsic contractile, migratory, and adhesive properties of endothelial cells are central 

determinants in the formation of vascular networks seen in vertebrate organisms. Because 

Shroom2 is expressed within the endothelium, is localized to cortical actin and cell-cell 

adhesions, and contains a conserved Rho kinase (Rock) binding domain, we hypothesized that 

Shroom2 may participate in the regulation of endothelial cell behavior during vascular 

morphogenesis. Consistent with this hypothesis, depletion of Shroom2 results in elevated 

branching and sprouting angiogenic behavior of endothelial cells. This is recapitulated in 

HUVECs and in a vasculogenesis assay where differentiated embryonic stem (ES) cells depleted 

for Shroom2 form a more highly branched endothelial network.  Further analyses indicate that 

the altered behavior observed following Shroom2 depletion is due to aberrant cell contractility, 

as evidenced by decreased stress fiber organization and collagen contraction with an increase in 

cellular migration.  Because Shroom2 directly interacts with Rock and Shroom2 knockdown 

results in the loss of Rock and activated MyosinII from sites of cell-cell adhesion, I conclude that 

Shroom2 facilitates the formation of a contractile network within endothelial cells, the loss of 

which leads to an increase in endothelial sprouting, migration, and angiogenesis. 
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2.1 INTRODUCTION 

Shroom3 has been shown to be a critical regulator of cell morphology in several cellular contexts 

and animal model systems [184, 187, 189, 192, 194, 199, 216]. Shroom3-mediated 

morphogenesis is dependent on its ability to bind both F-actin and Rock [189, 192].  It is 

predicted that actin binding targets Shroom3 to the tight junction in polarized epithelia.  

Shroom3 can then recruit Rock to the tight junction, resulting in the localized activation of 

MyosinII and subsequent apical constriction [189, 192].  In addition to the ability to regulate 

actomyosin networks, Shroom3 has been implicated in regulating the apical positioning of γ 

tubulin and subsequent microtubule organization in Xenopus epithelial cells [216].  It is unclear 

if these two activities of Shroom3 are directly related or occur independently.  In vertebrates, the 

Shroom proteins contain another family member, Shroom2, which shares several structural and 

functional characteristics with Shroom3.  Like Shroom3, Shroom2 contains an N-terminal PDZ 

of unknown function, a centrally located, conserved actin binding module centered around the 

SD1, and a C-terminally located SD2, which, in the case of Shroom3, directly binds to Rock 

[188, 192].  Unlike Shroom3, Shroom2 does not induce apical constriction in either Xenopus 

ectodermal epithelium [197] or cultured MDCK epithelial cells [192].  However, Shroom2 has 

been shown to control other aspects of morphogenesis in Xenopus embryos, such as epithelial 

thickening and pigment accumulation [193, 197].  

In mice, Shroom2 is highly expressed in various populations of polarized epithelial cells, 

including the neural epithelium, gut, eye, lung, and kidney.  Additionally, Shroom2 is highly 

expressed in the endothelium of the developing vasculature [188].  This is consistent with the 

other cell types that express Shroom2, as the endothelium itself is a polarized population of 

epithelia.  Endothelial cells exhibit the remarkable capacity to undergo dramatic changes in 
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morphology and migration in order to form the network of tubes that are seen in the embryo 

during and after vasculogenesis.  Initial formation and subsequent remodeling of the vascular 

network are dependant on both the ability of endothelial cells to sprout new branches via the 

formation of filopodia and migration to new positions in the network [217].  One of the critical 

determinants of the migratory behavior of endothelial cells is MyosinII contractility downstream 

of Rock.  It has been demonstrated that inhibition of MyosinII or Rock results in increased 

endothelial sprouting, suggesting that this pathway is a critical regulator of vascular 

architecture [177, 178, 218, 219].  In this context the function of Rock seems to negatively 

regulate membrane protrusion and cell migration at the level of cortical contractility. 

Specifically, a cortical Rock-MyosinII network inhibits the ability of cells to form membrane 

protrusions and migrate. This is supported by the observation that localized addition of 

pharmacological inhibitors of this pathway results in the rapid formation of endothelial filopodial 

outgrowth followed by cell migration [178].  

In this study I have investigated the function of Shroom2 as a potential regulator of the 

cellular and angiogenic behavior of endothelial cells.  Based on previous work, I hypothesized 

that Shroom2 might regulate these biological processes via Rock localization, impacting 

subsequent contractility.  Using siRNA and shRNA approaches in both established endothelial 

cells and in primary endothelia derived from mouse ES cells, I show that depletion of Shroom2 

results in increased angiogenesis due to decreased cellular contractility.  This decrease in 

contractility appears to result from diminished Rock and MyosinII activity at the cell cortex and 

the disorganization of the actin cytoskeleton.  These alterations in cellular architecture cause 

increases in cell protrusions and alter cellular migration.  Together, these data indicate that 

Shroom2 is a vital regulator of endothelial cell behavior during vascular morphogenesis.  
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Additionally, my findings expand the inclusion of the Shroom-Rock complex in multiple cellular 

processes and suggest that this conserved signaling complex may be utilized in a variety of 

biological events that require Rock activity. 

2.2 RESULTS 

2.2.1 Knockdown of Shroom2 increases sprouting in angiogenesis and vasculogenesis 

assays 

Previous studies from our lab have described the expression and localization of Shroom2 in the 

developing vasculature of mouse embryos and the C166 endothelial cell line [188].  Because 

C166 cells are derived from the murine yolk sac [220], I sought to confirm endogenous 

expression and localization of Shroom2 in the yolk sac in vivo.  Staining of yolk sacs of e9.5 

embryos to detect both Shroom2 and PECAM-1, an endothelial specific adhesion protein, shows 

that Shroom2 is expressed throughout the yolk sac vasculature, in both large vessels (Figure 6A) 

and the capillary plexus (Figure 6B).  In addition, the Shroom2 protein is enriched at sites of 

cell-cell adhesion, similar to what is seen in the embryo proper and in C166 cells. Based on these 

data and that from other published works [220, 221], C166 cells are a viable cell type to explore 

the function of Shroom2 in endothelial cell behavior.  Therefore, I utilized siRNA to knockdown 

the expression of Shroom2 in these cells.  C166 cells treated with a control non-targeting siRNA 

(siControl) form a confluent monolayer and exhibit Shroom2 and ZO1 distribution at cell-cell 

junctions (Figure 6C).  Cells treated with Shroom2 specific siRNA (siShroom2) also form 

confluent monolayers with no appreciable change in adherens junctions or tight junctions, but 

 46 



Shroom2 staining is virtually eliminated from the majority of these cells (Figure 6D, Figure 7A, 

B).  Consistent with the immunostaining results, Western blotting shows that Shroom2 protein is 

reduced by approximately 70% using two different siRNAs, one targeting the 3’ UTR 

(siShroom2-7) and the other targeting the coding sequence (siShroom2-8) of the Shroom2 

mRNA (Figure 6E).  Treatment of cells with siRNA did not alter the rates of proliferation (data 

not shown) and all results have been verified using both Shroom2 siRNAs, but data are typically 

shown from experiments using siShroom2-8.  Because I obtain similar results using two different 

siRNAs that target unique regions of the Shroom2 transcript, the observed phenotypes likely 

result from specific depletion of Shroom2 protein. 

 

Figure 6: Expression and knockdown of Shroom2 in yolk sac endothelial cells. 

(A-B) Murine yolk sacs at E9.5 stained with PECAM and Shroom2 antibodies show Shroom2 localization at cellular 

junctions in both large vessels (A) and the capillary plexus (B). (C-D) C166 endothelial cells were treated with a 
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nontargeting siRNA (siControl) (C) or a Shroom2-specific siRNA (siShroom2) (D) and were stained with Shroom2 

(inset) and ZO1. (E) Shroom2 knockdown from two different siRNAs was confirmed via Western blot. α-Tubulin 

was used as a loading control.  Scale bars = 25 μm. 

 

 

Figure 7: Shroom2 knockdown does not impact cellular adhesion in a monolayer. 

(A-B) siControl (A,Ai) or siShroom2 (B,Bi) C166 cells were stained with β-catenin (A,B) and Shroom2 (Ai,Bi) 

antibodies 72 hours after transfection. There is no apparent difference in β-catenin staining. Scale bars = 25μm. 

 

One hallmark of endothelial cells is their ability to form a capillary network when 

cultured on matrigel.  Control C166 cells form a multi-cellular vascular network when grown 

under these conditions (Figure 8A).  To test the role of Shroom2 in this endothelial behavior, 

siShroom2 C166 cells were plated on matrigel and allowed to undergo angiogenesis.  Under 

these conditions, not only do siShroom2 C166 cells retain the ability to form vascular networks, 
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but they actually show elevated branching capacity (Figure 8B, C).  Shroom2 remains depleted 

throughout the matrigel angiogenesis experiments (Figure 9D-E).  When fewer numbers of C166 

cells are plated (1.2x106), short cords emerge but fail to form an interconnected network, 

whereas Shroom2 siRNA increases network formation (Figure 9A-B). 

 While treatment with both siShroom2-7 and siShroom2-8 yields a more highly branched 

network, C166 cells with the greatest degree of knockdown (siShroom2-8), show areas which 

have failed to undergo cord formation (arrow, Figure 8C).  Similar outcomes have been seen 

with a broad Rock inhibitor, Y27632, such that angiogenesis is inhibited in both C166 cells (data 

not shown) and bovine retinal endothelial cells [222].  Since Shroom2-deficient endothelial cells 

form a more branched network on matrigel, I wanted to further investigate and validate the effect 

of Shroom2 loss using an in-gel sprouting angiogenesis assay.  Control siRNA and siShroom2 

spheroids of equal cell number were embedded in collagen gels, cultured for 48 hours, and then 

analyzed for the extent of sprouting.  Consistent with the matrigel angiogenesis assay, siShroom2 

cells demonstrated significantly elevated sprouting compared to control cells (Figure 8D-F).  In 

order to verify these results in a primary cell line, I confirmed expression of hShroom2 in 

primary human umbilical vein endothelial cells (HUVEC) (Figure 8G).  After transfection with 

hShroom2 siRNA, Shroom2 protein is reduced by approximately 75% (Figure 8G).  Similar to 

C166 cells, Shroom2 knockdown in HUVECs increases branching during matrigel angiogenesis 

(Figure 8 H, I).   
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Figure 8: Transient Shroom2 knockdown stimulates angiogenesis. 

(A-C) siControl (A), siShroom2–7 (B), or siShroom2–8 (C) –treated C166 cells were plated on matrigel to examine 

angiogenic potential. Arrow indicates an area that has failed to undergo angiogenesis. (D-F) siControl (D) and 

siShroom2 (E) C166 cells were grown as spheroids for use in a collagen sprouting angiogenesis assay. 

Quantification of collagen sprouting angiogenesis is shown in (F). The numbers of branch tips are represented as the 

mean ± SD (n = 7 spheroids). (G) Western blot of Shroom2 knockdown in HUVECs. (H-I) Matrigel angiogenesis 

assay for siControl (H) and siShroom2 (I)–treated HUVECs. Scale bars = 1 mm in A-C; 125 μm in D,E,H, and I. 
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Figure 9: Shroom2 knockdown persists during angiogenesis assays. 

(A-B) 72 hours after siRNA transfection, 1.2x106 C166 cells were plated on a matrigel-coated coverslip in a 6 

well plate and photographed after 24 hours. Lower numbers of cells fail to form an interconnected network of 

multicellular cords, however there is still a difference in branching between control (A) and Shroom2-deficient 

cells (B). (C) 1.2x106 HUVEC cells form much smaller, single cellular, capillary networks on matrigel. (D-E) 

After 24 hours on matrigel, control (D) or siShroom2 (E) C166 cords were stained directly on coverslips with 

ZO1 (Di,Ei) and Shroom2 (Dii,Eii) antibodies. No Shroom2 is detected in siShroom2-treated cells.  Scale bars = 

1mm in A-C; 25μm in D-E. 

 

While Shroom2 knockdown in both C166 cells and HUVECs leads to an increase in 

branching, these cell types form morphologically distinct networks on matrigel.  C166 cells form 

large multicellular cords, while HUVECs form a single cellular capillary-like network (Figure 9 

A-C).  Thus, I sought to determine the effect of Shroom2 knockdown in a model more similar to 

C166 cells and the vascular network observed in the yolk sac and embryo during development.  

Because C166 cells are derived from the yolk sac where initial vasculogenesis occurs, I 
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employed a vasculogenesis assay in which ES cells can be differentiated into a multicellular 

branching endothelium [223].  It should be noted that ES cells express Shroom2 endogenously 

(Figure 10A).  In order to address the role of Shroom2 in endothelial cells derived from ES cells, 

I generated cell lines that stably express Shroom2-specific shRNAs.  Shroom2 knockdown was 

confirmed via both immunofluorescence staining (Figure 10Ai, Bi) and Western blot (Figure 

10C). Stable ES cells were then grown in suspension to form embryoid bodies, allowed to 

reattach to tissue culture dishes, and grown for 9-11 days in differentiation media.  Differentiated 

cultures were fixed and immunostained against PECAM to visualize the vasculature.  Consistent 

with the results obtained using C166 cells and HUVECs, shShroom2 ES cells generate hyper-

branched endothelial networks when compared to vector control ES cells (Fig 10D, E).  When 

observed at higher magnification, the control vasculature exhibits uniform cell borders and few 

filopodial extensions (Figure 10Di).  In stark contrast, the Shroom2 deficient vasculature exhibits 

a plethora of filopodia-like extensions (Figure 10Ei).  Shroom2 remains efficiently knocked 

down after differentiation (Figure 10F-G).  Together, these experiments suggest that within the 

endothelium, Shroom2 is involved in negatively regulating vessel branching, and that this may 

be controlled at the level of the cytoskeleton. 
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Figure 10: Stable knockdown of Shroom2 in murine ES cells enhances vasculogenesis. 

(A–C) ES cells stably transfected with the parental vector pSuper-GFPneor (pSuper) (A) or pSuper-shShroom2 

(shShroom2) (B) were stained to detect GFP and Shroom2. Knockdown was confirmed by Western blotting (C). (D-

E) After differentiation, pSuper (D) and shShroom2 (E) cells were stained with PECAM.  Boxed regions in D and E 

are enlarged in Di and Ei. While distinct boundaries exist between control endothelial and surrounding cells (Di), 

numerous filopodia-like extensions are found throughout the Shroom2-deficient endothelium (Ei) (compare arrows). 

(F-G) After endothelial differentiation of pSuper (F) or shShroom2 (G) stable ES cells, cells were stained to detect 

PECAM (Fi,Gi) and Shroom2 (Fii,Gii).  Scale bars = 25 μm in A-B and F-G; 100 μm in D and E. 
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2.2.2 Shroom2 regulates endothelial contraction through an interaction with Rock. 

Several studies have previously shown that reduced Rock and MyosinII activity correlate with 

both increased angiogenesis and increased filopodia formation in endothelial cells [177, 178, 

219].  Along these lines, Shroom2 contains the conserved SD2 motif that has been shown to 

mediate a direct interaction between Shroom3 and Rock and between Drosophila Shroom and 

dRok to facilitate apical constriction [188, 191, 192].  Based on these observations, I 

hypothesized that the increase in sprouting observed from Shroom2 knockdown is due to loss of 

Rock-mediated contractility.  To test this hypothesis, I first verified an interaction between Rock 

and Shroom2.  In GST pull down experiments, the Shroom Binding Domain (SBD) of hRock1 

interacts with Shroom2 (Figure 11A).  This interaction does not appear to be isoform specific as 

the Shroom2 SD2 interacts with endogenous Rock1 and Rock2 (Figure 11B).  In addition, the 

Shroom2 SD2 and the hRock1 SBD domain can be co-purified when co-expressed in bacteria 

(Figure 11C). This is a specific interaction, as the actin binding domain (SD1) of Shroom2 does 

not pull-down the Rock SBD (data not shown).  In C166 cells grown on coverslips, Rock 

intermittently localizes to cell-cell junctions as indicated by co-localization with ZO1 (Figure 

12A).  Importantly, this localization appears to be dependent on Shroom2, as this population of 

Rock is lost in siShroom2 C166 cells (Figure 12B).  Knockdown of Shroom2 has no effect on 

Rock expression as indicated by Western blot (Figure 11D).  Shroom2 recruitment of Rock is 

also observed in MDCK cells engineered to express Shroom2 following withdrawal of 

doxycyclin.  In the presence of doxycycline, no Shroom2 is detected and no Rock is observed at 

tight junctions (Figure 12C).  After Shroom2 induction, both Shroom2 and Rock co-localize at 

tight junctions (Figure 12D).  These data indicate that Shroom2 can directly bind Rock in vitro 

and regulate its sub-cellular distribution in vivo. 
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Figure 11:  Shroom2 physically interacts with Rock. 

(A) A GST-tagged mShroom2 SD2 or a GST-tagged Shroom binding domain (SBD) of hRock1 were incubated with 

total cell lysate from T23 cells engineered to express myc-Shroom2 under the tetracycline response element 

promoter (T23:TRE Apxl). Following GST pull down, the Shroom2 SD2 interacts with endogenous Rock1, and the 

Rock1 SBD interacts with full-length myc-Shroom2.  (B) The GST-tagged Shroom2 SD2 was subjected to a pull 

down assay with C166 total cell lysate. The Shroom2 SD2 interacts with endogenous Rock1 and Rock2. (C) His-

tagged mShroom2 SD2 and the untagged Shroom binding domain (SBD) of hRock1 were individually or co-

expressed in bacteria. Shroom2 SD2 was purified with Ni-NTA resin and bound proteins eluted and visualized by 

SDS-PAGE and Coomassie staining. (D) There is no change in Rock1 or Rock2 protein levels 72 hours after 

Shroom2 knockdown as indicated by Western blot. 
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Figure 12:  Shroom2 mediates the sub-cellular localization of Rock. 

(A-B) siControl (A) or siShroom2 (B) C166 cells were stained with Rock1 (Ai and Bi) and ZO1 (Aii and Bii) 

antibodies. Arrows indicate loss of Rock localization to tight junctions after Shroom2 knockdown.  (C-D) T23 

MDCK cells with inducible myc-Shroom2 expression show no Rock1 immunostaining (Cii) at tight junctions (Ciii) 
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when Shroom2 expression is inhibited (Ci). Upon expression of Shroom2 (Di), Rock1 (Dii) is localized to tight 

junctions (Diii). As Shroom2 expression was leaky, cells were also treated with Shroom2 (C) or control (D) siRNA 

for 72 hours prior to immunostaining. Scale bars = 25μm. 

 

It has been speculated that Shroom proteins can regulate cell and tissue morphology by 

controlling MyosinII activity.  Based on this notion and the above results, I hypothesized that if 

Shroom2 is involved in localizing Rock to cell-cell junctions, then it may play a role in 

establishing endothelial contractility.  To test this, I analyzed the ability of Shroom2-deficient 

cells to contract collagen gels.  Control and siShroom2 C166 cells were plated on a bed of 

collagen attached to the well and allowed to form a confluent monolayer. Following monolayer 

formation, the mechanically loaded gels were detached from the well and allowed to contract for 

6 hours.  Quantification shows that Shroom2 deficient cells are not able to contract the collagen 

gel to the same extent as control cells (Figure 13A).  Collagen gel contraction is also dependent 

upon Rock, as treatment of control cells with Rock inhibitor contracted gels to a lesser extent.  

Interestingly, Shroom2-deficient endothelial cells are more sensitive to Rock inhibition and 

contract the gel less than the inhibitor or siShroom2 alone.  This sensitivity may be due to an 

interaction between Shroom2 and Rock, which helps establish endothelial contractility.  These 

results document for the first time that Shroom proteins can indeed control the contractile 

properties of a population of polarized cells. 

Activated Rock is thought to cause MyosinII contraction by directly phosphorylating the 

Regulatory Myosin Light Chain 2 (MLC2) [70] and inhibiting the targeting subunit of myosin 

phosphatase–1 (MYPT) [71].  Rock may also influence contractility by regulating actin 

dynamics through activation of LIM kinase and subsequent cofilin phosphorylation [73].  To 

examine whether or not Shroom2 knockdown affects Rock activity, I examined the 
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phosphorylation state of several downstream Rock effectors.  Interestingly, while mono-

phosphorylated MLC2 (pMLC) is unaffected, di-phosphorylated MLC2 (ppMLC) levels are 

reduced 50% in siShroom2 C166 cells (Figure 13B). These results suggest that loss of Shroom2 

leads to a loss of Rock activity.  A similar role for Rock in the regulation of ppMLC2 but not 

pMLC2  has been observed in MDCK cells [224].  Additional Rock effectors, MYPT and FAK 

[225] show reduced phosphorylation by approximately 25% while p-cofilin levels remain 

unchanged (Figure 13B). These observations suggest that the Shroom2-Rock complex could be 

working at the level of MyosinII activity to control actin organization.  To address this issue, 

control and siShroom2 cells were stained to detect ppMLC2 at cell-cell junctions (apical) and 

stress fibers (basal) (Figure 13C-F).  In control cells ppMLC can be detected at both of these 

subcellular locations (Figure 13Ci, Ei).  In contrast, the staining in cell-cell junctions is largely 

lost and the stress fiber staining is both reduced and disorganized in the siShroom2 cells (Figure 

13Di, Fi). Based on these results, Shroom2 may control endothelial contractility via the localized 

activation of actomyosin. 
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Figure 13: Shroom2 regulates endothelial contractility. 

(A) Contractility of siControl or siShroom2 C166 cells with or without the Rock inhibitor Y27632 was assessed 

through the ability of a monolayer to contract a collagen gel. Quantification is graphed as the percentage of area of 

the original after 6 h, represented by the mean ± SD (n = 3). (B) Phosphorylation of Rock effectors was visualized 

by Western blotting. α-Tubulin was used as a loading control. Representative blots from three independent 

experiments are shown. p-MLC2, phospho-myosin light chain 2 (Ser-19); pp-MLC2, diphospho-myosin light chain 

2 (Thr-18/Ser-19); p-MYPT, phospho-myosin phosphatase binding subunit 1 (Thr-696); pFAK, phospho-focal 

adhesion kinase (Tyr-397). (C-F) Control (C and E) and Shroom2 knockdown (D and F) C166 cells were stained for 

ppMLC (Ci-Fi) and either ZO1 (C and D) or actin (E and F). Loss of Shroom2 leads to loss of pp-MLC2 at both 

stress fibers and cell–cell junctions (compare arrowheads).   Scale bars = 25 μm. 
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Because Rock activity and MyosinII contractility have been shown to play a significant 

role in the formation and organization of actin stress fibers [226, 227], I examined stress fibers in 

siShroom2 C166 cells.  In control cells, stress fibers are typically arranged in thick bundles that 

are aligned parallel to each other within the cell and appear to be contiguous with bundles in 

adjacent cells (inset, Figure 14A); a similar organization has been observed in HUVEC 

endothelial cells [228].  This organization is lost in siShroom2 cells, as stress fibers appear 

randomly oriented (Figure 14B).  A similar change in stress fiber organization can be found in 

control C166 cells treated with a low concentration of Rock inhibitor (1 M) (Figure 14C).  

Because Rock activity is required for stress fiber formation and high concentrations of Rock 

inhibitors abolish stress fiber formation, a low concentration was selected to slightly reduce but 

not eliminate Rock activity. Consistent with the idea that Shroom2 and Rock work together to 

control cell morphology, stress fibers are greatly diminished and further disorganized in 

siShroom2 cells that are treated with 1 M Rock inhibitor (Figure 14D).  Because Shroom2 is 

not detected at focal adhesions, a major regulator of stress fibers, yet changes occur in stress 

fiber organization and pFAK levels are reduced after Shroom2 knockdown, these changes may 

occur indirectly through the reduction of cortical contractility. 
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Figure 14: Shroom2 influences stress fiber organization. 

(A-D) Stress fiber organization was examined by immunostaining for actin in C166 cells treated with siControl (A), 

siShroom2 (B), siControl and Y27632 (C), and siShroom2 and Y27632 (D). Inset is a merge for apical Shroom2 

(green) and basal stress fibers (red). Scale bars = 25 μm. 
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2.2.3 The loss of Shroom2 influences endothelial migration 

Rock activity can enhance or inhibit cellular migration depending on the particular cell type 

[reviewed in [229]].  In order to observe the effect of Shroom2 knockdown and concomitant loss 

of endothelial contractility on C166 migration, I subjected siShroom2 C166 cells to a scratch 

wound assay.  Loss of Shroom2 significantly increases migration of C166 cells into the wound 

relative to control cells (Figure 15A). siShroom2 cells completely closed the wounds by 24 hours 

while control wounds were about 90% closed at this time (Figure 15B).  To confirm these 

results, migration was also assessed using a Boyden chamber.  Consistent with the above wound 

closing assay, siShroom2 cells demonstrate a significant increase in migration in comparison to 

control cells (Figure 15C). I next examined the effects of Rock inhibition on C166 migration.  

Rock inhibition enhances migration in both a scratch wound (Figure 15A) and Boyden chamber 

assay (Figure 15C).  After incubation with a low concentration of Rock inhibitor, Shroom2 

deficient cells migrate more quickly than with Rock inhibition or siShroom2 alone.  The opposite 

has been observed in HUVEC cells, where Rock inhibition attenuates VEGF stimulated 

migration [174].  Similarly, Shroom2 knockdown in HUVEC cells results in significant 

reduction of migration as assayed in a Boyden chamber (Figure 15D).  
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Figure 15:  Shroom2 knockdown affects cell migration. 

(A) siControl, siShroom2, or untreated cells with Y27632 were subjected to a scratch wound assay and were stained 

with phalloidin at 1, 12, and 24 h postscratch. (B) Quantification of a scratch wound assay from live C166 cells 

treated with siControl or siShroom2, represented by the mean percentage of wound closure ± SD (n = 5). (C) 

Migration of siControl and siShroom2 C166 cells in the presence or absence of Y27632 was assessed with a Boyden 

chamber. (D) Migration of siControl and siShroom2-treated HUVEC cells in a Boyden chamber. The number of 

migrated nuclei is represented by the mean ± SEM (n = 6) in C and D.  Scale bar = 100 μm. 

 

To better understand how Shroom2 may regulate migration, I evaluated the localization 

of Shroom2 during wounding.  Wounded monolayers of C166 cells were fixed and stained to 

detect Shroom2 and actin (Figure 16A).  Two hours after wounding, Shroom2 can be found on 
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thick F-actin cables at the leading edge.  This structure is hypothesized to resemble a purse 

string, drawing cells into the wound [146].  At this time, Rock is also found at the leading edge.  

Again, this localization is dependent upon Shroom2, as Shroom2 knockdown abolishes Rock 

localization at the leading edge (Figure 16B, C).  12 hours after wounding, Shroom2 is diffusely 

localized at the leading edge and by 24 hours is ultimately lost from the leading edge as cells 

completely detach from the monolayer.  Because these detached cells have little Shroom2 

protein, it seems logical that reduction of Shroom2 promotes migration into the wound.  

 

Figure 16: Transient knockdown of Shroom2 regulates endothelial migration. 

 (A) Untreated C166 cells were scratch wounded and stained for Shroom2 and actin at 2, 12, and 24 h post scratch. 

Asterisks indicate cells that have detached from the epithelial sheet and have lost Shroom2 expression. (B-C) 2 h 

after scratch wounding C166 cells, Rock1 localizes to the leading edge of siControl (B) but not siShroom2 (C) C166 

cells. Immunostaining for β-catenin (Bi and Ci). Scale bars =  25 μm. 

 64 



To better understand the consequence of long-term loss of Shroom2 function in 

endothelial cells, I generated a stable C166 cell line expressing a Shroom2 specific shRNA from 

the pSuper-GFPneor vector.  Stable expression of the shRNA leads to apparent 100% knockdown 

as Shroom2 protein is undetectable via Western blot (Figure 17A).  Analysis of the effect of 

stable Shroom2 knockdown indicates a change in morphology: a loss of dense peripheral actin 

bundles observed in control cells and an increase in filopodial extensions (Figure 17C, D).  

Control cells are often found clustered and adherent to one another, while shShroom2 cells fail to 

cluster or form stable cell-cell contacts.  shShroom2 C166 cells contain fewer central focal 

adhesions (FAs) but larger peripheral FAs (Figure 17E-H).  The loss of central FAs has also been 

observed in MEFs treated with Y27632, highlighting the importance of Rock-mediated 

contractility in FA regulation [230].  As expected, expression of shShroom2 further enhances 

migration in a Boyden chamber compared to control or transient siRNA knockdown (Figure 

17B).  Because shShroom2 cells fail to adhere to one another and form a monolayer, wound 

healing was assessed by mixing vector control (pSuper) or stable shShroom2 cells (both GFP 

positive) with wildtype C166 cells.  Monolayers were then wounded and the migration of control 

or shShroom2 cells into the wound was assayed 30 minutes later.  In controls, the GFP positive 

cells are still integrated into the monolayer (arrow) and possess robust actin belts at the leading 

edge (arrowhead) (Figure 17I).  In contrast shShroom2 cells fail to adhere to the monolayer and 

after only 30 minutes, have started to migrate into the wound, past the actin belt (Figure 17J).  

Presumably due to the increase in migration and loss of cellular adhesion, these cells fail to 

undergo angiogenesis on matrigel (data not shown). Based on these results and those presented 

above, I predict that loss of signaling via the Shroom2-Rock complex reduces that degree of 

cortical actomyosin contractility, which in turn promotes the migration of the C166 cells. 
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Figure 17: Stable expression of shShroom2 changes endothelial morphology and enhances migration. 

(A) Western blot of transient siShroom2, stable shShroom2, or stable vector control (pSuper) C166 cells for 

Shroom2. α-Tubulin was used as a loading control. (B) Quantification of Boyden chamber migration for siControl, 

siShroom2, or shShroom2 C166 cells. The number of migrated nuclei is represented by the mean ± SEM (n = 6). (C-

D) pSuper (C) or shShroom2 (D) C166 cells were allowed to spread on fibronectin-coated coverslips for 4 h and 

were immunostained for actin. Arrowheads indicate differences in cortical actin. (E–H) pSuper (E and G) or 

shShroom2 (F and H) C166 cells were immunostained for vinculin (E and F) or phospho-tyrosine (G and H) to 
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visualize focal adhesions. (I-J) pSuper (I) or shShroom2 (J) C166 cells (indicated by GFP) were mixed with parent 

C166 cells and wounded. Cells were allowed to migrate for 30 min and were then stained for GFP and actin. Arrows 

indicate stable junctions formed between pSuper and parent C166 cells. Arrowheads indicate pSuper cells that 

contribute to the actin belt or shShroom2 cells that migrate quickly into the wound past the actin belt. Scale bars = 

25 μm. 

2.3 DISCUSSION 

The actin and Rho kinase binding protein, Shroom2, is expressed within the mouse vasculature 

during development.  Here, I demonstrate a role for Shroom2 in the regulation of endothelial 

morphology, as knockdown of Shroom2 in C166 endothelial cells, HUVECs, and differentiated 

mES cells results in increased endothelial branching.  I propose the following role for Shroom2 

in the regulation of angiogenesis during embryonic development (Figure 18).  Through the actin 

binding SD1, and perhaps through the Serine/Proline rich region (SPR) responsible for 

interaction with ZO1, Shroom2 localizes to cortical actin [188, 203].  Through the SD2, 

Shroom2 recruits Rock, which is predicted to phosphorylate the MRLC and activate MyosinII, 

thereby establishing a cortical, contractile network.  As indicated by changes in stress fiber 

organization, pFAK levels, and FA architecture in Shroom2 knockdown cells, Shroom2-

dependent contractility can influence additional cellular processes including actin organization, 

cellular migration, and endothelial branching, ultimately affecting the morphology of the 

vascular network. 
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Figure 18: Model of Shroom2 function in endothelial cells. 

Shroom2 localization to cortical actin is mediated, in part, by the actin binding domain SD1. The Shroom2 SD2 

recruits Rock to cortical actin, where it activates the myosin regulatory light chain of MyosinII, establishing cellular 

contractility. Changes in contractility are thought to influence cellular migration and branching through changes in 

actin organization, which ultimately impacts vascular morphology. 

 

It is currently unknown how the Shroom2-Rock complex might be regulated.  While 

many processes that require Rock also require the activity of Rho, previous studies suggest that 

the ability of Shroom proteins to control contraction is independent of RhoA [187, 189].  

Therefore it is possible that Shroom2 binding to Rock serves to both localize and activate the 

kinase.  It is possible that one critical step in regulation is correct sub-cellular distribution.  This 

is supported by previous observations that Shroom2, Shroom3, and Shroom4 exhibit different 

sub-cellular localization and cause different phenotypes when expressed in cells despite the fact 

that they all have the capacity to trigger MyosinII-dependent changes in cell shape [188].  While 
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actin binding is a critical aspect of the correct localization of Shroom proteins, other sequences in 

the N-terminal region, including the PDZ and SPR domains, likely contribute to their functions.  

The SPR domains of Shroom2 and Shroom3 appear to participate in direct interactions with ZO1 

and POSH, respectively, and their SH3 domains are required for these interactions [199, 203].  

Through an interaction with POSH, Shroom3 negatively regulates neurite outgrowth in a Rock-

dependent manner [199].  It is intriguing that both Shroom2 and Shroom3 can negatively 

regulate two physiologically different branching processes.  While the Shroom family of proteins 

have the capacity to alter morphology through an interaction with Rock, Shroom2 is not able to 

reproduce the apical constriction of MDCK cells caused by Shrm3 expression [188].  It is 

therefore apparent that through tissue-specific expression and unique localization mechanisms, 

the Shroom family can alter morphology in similar yet unique ways.  It has been proposed that 

the ZO1/Shroom2 interaction helps facilitate tight junction stability [203]. However, I see no 

changes in ZO1 localization following Shroom2 knockdown, and siShroom2 treated cells can 

readily form tight junctions after passage to a new plate (data not shown).  Reciprocally, ZO1 

knockdown has no effect on Shroom2 localization (Figure 19), suggesting that Shroom2 does not 

localize via ZO1 alone.  Additional experiments will be necessary to elucidate the relationship 

between ZO1, Shroom2, and the establishment of cortical contractility. 

 69 



 

Figure 19:  ZO1 knockdown does not impact Shroom2 localization. 

(A-B) siControl (A) or siTJP1 (ZO1) (B) treated C166 cells were stained with ZO1 (Ai, Bi) and Shroom2 (Aii,Bii) 

antibodies 72 hours after transfection. Following ZO1 knockdown, there is no appreciable change in Shroom2 

localization. Scale bars = 50μm. 

 

The Shroom proteins are characterized by their evolutionarily conserved Rock binding 

domain, SD2 [188, 192].  These results demonstrate an interaction between the SD2 of Shroom2 

and Rock.  I also show that Shroom2 is required for localization of Rock at endothelial tight 

junctions, and that Shroom2 deficient C166 cells are more sensitive to Rock inhibition, 

decreasing contractility and increasing migration.  These data support a role for Shroom2 in the 

localization of Rock and establishment of endothelial contractility, the loss of which results in 

increased angiogenesis.  Interestingly, near complete reduction of Shroom2 through stable 

expression of shRNA or incubation with a Rock inhibitor completely abolishes matrigel 
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angiogenesis of C166 cells (data not shown).  Because transient knockdown with Shroom2 

siRNA leads to an increase in branching, I propose that a certain level of Shroom2 / Rock-

dependent contractility threshold exists such that slight reductions in contractility increase 

branching, whereas significant reduction abolishes angiogenesis.  It is also likely that Shroom2 

mediates only a subset of Rock activity essential for angiogenesis, as Rock activation and 

localization can be regulated by other factors such as RhoA, lipids, and Dynamin I [66].  And 

while Shroom2 can interact with both Rock1 and Rock2, it remains to be determined whether or 

not the different Rock isoforms impact angiogenesis 

Conflicting reports for the role of Rock in angiogenesis have been well documented 

(reviewed in [231]).  Many of these studies utilize general Rock inhibitors which present the 

possibility of off-target effects.  Here, I suggest that Shroom2 is involved in a specific aspect of 

Rock activity during angiogenesis, specifically the cortical recruitment of Rock and activation of 

downstream MyosinII activity.  The unique ability of Shroom2 to recruit Rock to a specific sub-

cellular location, suggests that Shroom2 may provide a novel way to target specific Rock-

dependent processes while leaving others unaffected.  Several studies of the role of Rock in the 

vasculature support our findings and predictions.  Rock RNAi increases endothelial sprouting in 

both HUVEC spheroid culture and murine retinas [177].  It has also been demonstrated that local 

loss of MyosinII cortical contractility results in filopodia-like extensions in endothelial cells 

[178].  Additional studies suggest that Rock-dependent actomyosin contractility can lead to VE-

cadherin accumulation at endothelial cell-cell junctions promoting cell adhesion, inhibition of 

VEGFR2, and vessel quiescence.  Perturbation of this system through Rock inhibition or 

knockdown of VE-cadherin leads to an increase in vessel sprouting [218].   The phenotypic 

outcome of Shroom2 knockdown is reminiscent of that observed following VE-cadherin 
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knockdown such that both lead to increased cord formation and decreased MLC2 

phosphorylation [218]. Interestingly, following transient knockdown of Shroom2 in C166 cells, I 

do not see changes in cell-cell adhesion, as measured by -catenin and ZO1 staining. Therefore, 

it appears that the ability of Shroom2 to control contractility and subsequent endothelial 

morphogenesis may be independent of cadherin-mediated adhesion.  However, it should also be 

noted that C166 cells are devoid of VE-cadherin (data not shown) and thus may use another 

cadherin for cell-cell interactions that does not function in an analogous manner to VE-cadherin.  

Another distinction between these experimental systems is that C166 cells do not require the 

addition of VEGF, suggesting that the relationship between VEGF, VE-cadherin, and 

morphogenesis has been uncoupled in these cells. This suggests that there may be different, 

independent pathways working to promote the formation of peripheral actomyosin networks 

which control the angiogenic behavior of endothelial cells. Alternatively, it could be that these 

two pathways may intersect at the level of the cortical actin network in adherent cells in order to 

reinforce one another and that both are required to maintain cortical contractility and restrict the 

migratory and branching potential of endothelial cells. The link between cadherin signaling and 

Shroom2 will be an interesting and valuable avenue of investigation. 

In conclusion, I show that Shroom2 is expressed in the developing vasculature and is 

required for proper angiogenesis.  Reducing Shroom2 levels with Shroom2 RNAi decreases 

endothelial contractility and leads to increased endothelial sprouting.  Because Shroom2 

physically interacts with Rock and Shroom2-deficient cells are more sensitive to Rock inhibition, 

I propose that Shroom2 and Rock interact to regulate cellular contractility which in turn controls 

cytoskeletal architecture, motility, and ultimately, endothelial angiogenesis. 
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3.0  SHROOM2 IS A CENTROSOME-ASSOCIATED PROTEIN IMPORTANT FOR 

CENTROSOME DUPLICATION 

The Shroom proteins are regulators of epithelial morphogenesis and are characterized by their 

ability to bind both F-actin and Rho-kinase (Rock), an activator of contractile, nonmuscle 

MyosinII.  In this section, I describe the characterization of a novel function for Shroom2 in the 

regulation of centrosome duplication.  The centrosome consists of two orthogonal microtubule 

structures termed centrioles which duplicate precisely once during the cell cycle.  Disruptions to 

the temporal, spatial, or numerical control of centrosome duplication can lead to extra 

centrosomes which have been linked to chromosomal instability and cancer.  Through 

immunostaining, biochemical isolation, and exogenous protein localization, I demonstrate that 

Shroom2 is a centrosome-associated protein.  Chronic depletion of Shroom2 leads to inhibited 

proliferation, increased multi-nucleation, and ectopic centrosomes.  Results from deletion and 

rescue analysis suggest that Rock activity is required for Shroom2 function at the centrosome.  

From these observations I propose a novel role for Shroom2 in the regulation of centrosome 

duplication. 
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3.1 INTRODUCTION 

Shroom-family proteins are regulators of epithelial morphogenesis and are essential for the 

development of vertebrate tissues such as the neural tube [184, 187, 192], gut [194, 196], lens 

placode [195], and vasculature [232].  In vertebrates, the Shroom2-4 proteins have been 

characterized by two distinct activities.  First, all contain a highly conserved C-terminal SD2 that 

binds to Rock1/2 [184, 188, 192, 232] and leads to subsequent activation of Myosin II.  Second, 

these proteins directly bind F-actin.  Actin dependent localization of Shroom proteins and their 

recruitment of Rock to specific sub-cellular locales is important in the establishment of 

contractile actomyosin networks required for apical constriction and subsequent neural tube 

closure, bending of lens epithelium, looping of the gut, and branching morphogenesis of 

endothelial cells [184, 187, 189, 192, 232].   

While the ability to bind both Rock and actin is conserved amongst the Shroom proteins, 

Shroom family members may not function redundantly.  For example, only Shroom3 can elicit 

apical constriction of either MDCK cells or ectodermal cells in Xenopus embryos [188].  

However, in such a model of apical constriction, when chimeric proteins are generated in which 

the Shroom3 SD2 is replaced with a Shroom2 or Shroom4 SD2, apical constriction is rescued 

[188].  This confirms the importance of the SD2 / Rock interaction in mediating morphogenesis, 

but also suggests the importance of the N-terminus in defining localization and/or function.  

Consistent with this notion, I have recently identified the importance of Shroom2 and Rock in 

controlling endothelial cell morphology as described above.  These results suggest that in 

endothelial cells, Shroom2 is targeted to the cortical actin cytoskeleton and cell-cell junctions, 

likely through actin binding and a Serine/Proline-rich region shown to interact with ZO-1 [188, 

203].  Shroom2 then recruits Rock to these sub-cellular locales.  In these cells, transient 
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knockdown of Shroom2 leads to aberrant Rock distribution, a loss of cortical contractility, and 

increased angiogenesis [232].   

While Rock1 and Rock2 are well-defined regulators of cytoskeletal dynamics and 

architecture, they also play important roles in centrosome biology.  The centrosome consists of 

two orthogonally aligned centrioles which are surrounded by an amorphous protein matrix 

known at the pericentriolar material (PCM).  The centrosome duplicates precisely once during 

mitosis to ensure the proper assembly of a bi-polar spindle (reviewed in [233]). Initiation of 

duplication is tightly controlled to ensure proper centrosome number.  In mammalian cells, a 

procentriole forms perpendicular to the wall of each parent centriole around the G1/S transition.     

A primary regulator of centrosome duplication is Polo-like kinase 4 (Plk4).  Inhibition of Plk4 

blocks centrosome duplication, whereas overexpression induces excessive duplication, however 

the specific targets of this kinase remain unknown [234, 235].  Additional procentriole 

components have been identified which determine centriole structure such as Sas6, CPAP, and 

Cep135.  Upon initiation of duplication, SAS6 and Cep135 form a procentriolar ‘cartwheel’ 

which forms the structural basis for the nine-fold symmetry of the microtubules [236, 237].  

CPAP also localizes to the procentriole before MT assembly and is required for initial 

attachment of singlet MTs [238]. CPAP may also regulate centriole length as overexpression 

results in abnormally long centrioles [239].  By unknown mechanisms, the existence of the 

procentriole limits additional centriole duplication [240].  Disengagement of orthogonal 

centrioles during anaphase is required for initiation of duplication and relies upon the activity of 

separase, however the protein which engages orthogonal centrioles and the substrates of separase 

during disengagement are unknown [241]. 
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Deregulation of centrosome duplication can lead to excess centrosomes which perturb 

proper spindle assembly, promote chromosome segregation errors, and ultimately promote 

chromosomal instability and tumorigenesis [242, 243].    Rock2 localizes to the centrosome and 

participates in centrosome duplication such that overexpression of constitutively active Rock2 

promotes centrosome duplication and down-regulation of Rock2 inhibits duplication [244].  

While regulators of Rock2 activity at the centrosome have been identified, such as Morgana/chp-

1 and Nucleophosmin (NPM)/B23, it remains unclear how Rock2 localizes to the centrosome 

and which effectors mediate centrosome duplication [244, 245].   

Here I present evidence through immunofluorescence, biochemistry, and domain 

mapping that Shroom2 is a centrosome-associated protein.  In order to determine whether or not 

Shroom2 regulates centrosome function, I examined an endothelial cell line deficient for 

Shroom2 which was described in section 2.2.3.  With little to no Shroom2 protein, these cells 

exhibit inhibited proliferation, increased multi-nucleation, and inefficient centrosome 

duplication.  Despite the observation that centrosomes duplicate less efficiently without 

Shroom2, knockdown cells may assemble extra centrosomes through the accumulation of centrin 

aggregates.  The excess centrin and centrosome phenotypes are rescued upon reintroduction of 

RNAi-resistant Shroom2 protein and is dependent upon the SD2 and Rock.  Taken together, our 

results identify Shroom2 as a centrosome-associated protein which is important for regulation of 

centrosome duplication. 
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3.2 RESULTS 

3.2.1 Shroom2 is a centrosome associated protein. 

To confirm Shroom2 as a centrosome associated protein, I co-stained HUVECs, C166, HeLa, 

and NIH 3T3 cells to detect both Shroom2 and γ tubulin, a marker of the PCM (Figure 20).  

Results from these experiments suggest that Shroom2 is localized to the centrosome.  In all cell 

lines tested, significantly less Shroom2 protein is observed at the centrosome during Anaphase, 

yet returns by G1 phase (Figure 20).  To validate Shroom2 immunostaining at the centrosome, I 

fixed and immunostained HeLa cells with two different Shroom2 sera.  Both sera mark the 

centrosomes (Figure 21A-B).  In all cell lines tested, Shroom2 and  tubulin immunostaining do 

not precisely correlate, indicating that Shroom2 does not localize to the PCM. Therefore I 

examined Shroom2 localization in relation to centrin, a protein incorporated into the distal ends 

of centrioles [246].  Shroom2 localizes precisely between the two distal centrin puncta, 

suggesting that Shroom2 either lies at the proximal end of centrioles or is a linker between the 

two centrioles that comprise the centrosome (Figure 21C).  To further confirm that Shroom2 is a 

centrosome-associated protein, I purified centrosomes by sub-cellular fractionation of C166 cells 

and subjected the fractions to Western blot analysis.  In this assay, Shroom2 co-sediments with γ 

tubulin in the fractions that correspond to the density at which centrosomes typically sediment 

(Figure 21D).  Based on these observations, I conclude that Shroom2 is a centrosome-associated 

protein.  Within the Shroom family, localization to the centrosome is likely specific to Shroom2 

as I cannot detect either Shroom3 or Shroom4 in centrosomes (Figure 22). 
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Figure 20: Shroom2 localizes to the centrosome in a variety of cell lines. 

(A-D) C166 (A), HeLa (B), HUVEC (C), and NIH 3T3 (D) cells were immunostained with Shroom2 and  tubulin 

antibodies and TO-PRO (blue).  In all tested cell lines, centrosomal Shroom2 is diminished in anaphase and 

telophase.  C166 cells contain a significant amount of cytoplasmic Shroom2. In A, cells were transiently transfected 

with siRNA specific for Shroom2 to eliminate the cytoplasmic population.  Scale bars = 10m. 
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Figure 21: Shroom2 is a centrosome-associated protein. 

(A-B) Hela cells stained with two different Shroom2 sera also show localization of Shroom2 at the centrosome.  

Displayed images are representatives of G2 (A, B) and metaphase (Ai, Bi).  Cells were also stained with TO-PRO 

(blue).  All Insets are a magnification of the centrosome denoted by an asterisk.   tubulin (top), Shroom2 (bottom). 

(C) C166 cells were permeabilized, fixed, and immunostained with affinity-purified Shroom2 and centrin 

antibodies.  Regions of magnification are boxed.  (D) Centrosome isolation through sucrose density gradients 

indicates that Shroom2 is present in the centrosome fraction.   Scale bars = 10m. 
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Figure 22:  Localization to the centrosome is Shroom2-specific. 

(A-B) Hela cells stained with Shroom3 (A) or Shroom4 (B) sera show no localization at the centrosome.  Displayed 

images are representatives of G2 (A, B) and Metaphase (Ai, Bi).  All insets are a magnification of the centrosome 

denoted by an asterisk.   tubulin (top), Shroom3 or Shroom4 (bottom).  TO-PRO staining is in blue.  Scale bars = 

10m. 
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 To determine the region important for Shroom2 localization at the centrosome, I 

generated a series of hShroom2 deletion mutations and expressed these in Cos7 cells.  Beginning 

from the C-terminus, these constructs delete a series of motifs known to influence Shroom2 

localization and function.  They include the C-terminal SD2, a central, actin binding motif, a 

MyoVIIA binding region, a Serine / Proline-rich region (SPR) thought to interact with ZO-1, and 

an N-terminal PDZ domain of unknown function (Figure 23A) [188, 203].  All deletion 

constructs were tagged at the C-terminus with GFP protein.  When expressed in Cos7 cells and 

subject to Western blot, all truncated proteins exhibit the appropriate molecular mass (Figure 

23C).  In order to determine localization to the centrosome, constructs were transiently expressed 

in Cos7 cells and detected by immunofluorescence. Many deletion constructs, including 

hShroom2 full-length (FL) GFP localize to the centrosome in a manner consistent with 

endogenous protein (Figure 23B, 23D-G, Figure 24). While hShroom2 1-513 GFP localizes to 

the centrosome (Figure 23F), hShroom2 1-128, which contains only the PDZ domain, does not 

(Figure 23G).  These results suggest that amino acids 128-513, which contain the SPR, are 

important for centrosome localization of Shroom2. 
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Figure 23: Characterization of Shroom2 localization to the centrosome. 

(A) Schematic of known Shroom2 domains (boxes) and interactions (bars). (B) Schematic of deletion constructs 

with a C-terminal, GFP fusion or N-terminal, myc fusion and indication whether they localize to the centrosome (+) 

or not (-). (C)  Western Blot (anti-GFP) of Cos7 lysate after transient transfection of the indicated constructs.  (D-G) 

Representative images of Cos7 cells transiently transfected with hShroom2 FL GFP (D), hShroom2 1-1334 GFP (E), 

hShroom2 1-513 GFP (F), and hShroom2 1-128 GFP (G).  Localization to the centrosome was visualized by 

immunostaining with GFP and  tubulin antibodies.  Insets are a magnification of the boxed region.  Merge (top),  

tubulin (middle), GFP (bottom).  Arrows indicate the centrosomes of untransfected cells with no GFP staining.  

Scale bar = 10m. 
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Figure 24: hShroom2 GFP constructs localize to a similar location as endogenous protein. 

Cos7 cells transiently transfected with hShroom2 1-719 GFP were permeabilized, fixed, and immunostained with 

GFP and centrin antibodies.  The region of magnification is boxed. Scale bar = 10m. 

3.2.2 Shroom2 is required for centrosome function. 

To determine if Shroom2 is important for centrosome function in C166 endothelial cells, I stably 

knocked down Shroom2 with two different shRNAs (shShroom2-7, shShroom2-8) expressed 

from the pSuper vector.  As described above, little to no Shroom2 protein is detected in these 

cells via Western blot (Figure 17A).  Upon selection of stable knockdown cells, I observed 

decreased proliferation in both shShroom2 C166 cell lines compared to control (Figure 25A).  

Stable knockdown of Shroom2 also leads to a significantly higher percentage of multinucleated 

cells compared to control (Figure 25B).  Because inhibited proliferation, multi-nucleation, and 

chromosomal instability can result from defects in centrosome duplication, I examined 

centrosome number in these cells [247].  Compared to control, in which 4% of cells have ectopic 

centrosomes, 28% of shShroom2-7 and 26% of shShroom2-8 cells have three or more 
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centrosomes, as indicated by  tubulin immunostaining (Figure 25C-H).  While many shShroom2 

C166 cells lack Shroom2 staining at the centrosome and possess ectopic centrosomes (Figure 

25G), some cells with normal centrosome numbers exhibit detectable Shroom2 staining at the 

centrosome (Figure 25E, H).  In these cells, some transcripts may have escaped the RNAi 

machinery so that enough Shroom2 protein is made to function at the centrosome.  

Overexpression of Shroom2 yields no observable defects in centrosome function (data not 

shown).  These results suggest that loss of Shroom2 at the centrosome disrupts centrosome 

duplication.   

 

 

Figure 25: Shroom2 deficiency induces mitotic defects. 

(A) C166 cells were stably transfected with parental vector (pSuper) or one of two shRNAs against Shroom2 

(shShroom2-7, shShroom2-8).  shShroom2 C166 cells proliferate less than control. Average cell number is 

represented ± SD of triplicate experiments.  (B) shShroom2 C166 cells display a significant increase in multi-
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nucleation compared to control cells.  Population percentage is represented ± SD of triplicate experiments.  (C) 

shShroom2 C166 cells were stained with  tubulin antibodies to determine centrosome number.  A higher percentage 

of Shroom2 deficient cells possess ectopic centrosomes compared to control. Population percentage is represented ± 

SD of triplicate experiments.  For (A-C) at least 100 cells were counted per cell line per experiment. (D-H) Control 

(D-Eii) or shShroom2 (F-Hii) C166 cells were immunostained with Shroom2 (Eii, Gii, Hii) and  tubulin (Ei, Gi, Hi) 

antibodies and TO-PRO (blue).  A magnification of the boxed region represents ectopic (G) or normal (H) 

centrosomes.  Robust Shroom2 staining can be observed at the centrosome in control cells (D,Eii).  In shShroom2 

C166 cells, Shroom2 is absent from the centrosomes of many cells (F,Gii).  In shShroom2 cells with normal 

centrosome numbers, Shroom2 immunostaining resembles control (Eii,Hii).  Scale bars = 10m. 

 

In order to determine the nature of shShroom2-induced ectopic centrosomes, I stained 

shShroom2 C166 cells to detect centrin.  Interestingly, Shroom2 deficiency causes a striking 

accumulation of centrin aggregates in more than 80% of shShroom2 C166 cells, compared to 6% 

in control cells (Figure 26).  Ectopic centrosomes, as indicated by γ tubulin, always contain 

centrin protein, suggesting they are not PCM fragments.  However, each mature centrosome 

should contain two centrin puncta corresponding to the two centrioles.  This is not the case, as I 

frequently observe small γ tubulin puncta co-localized with large centrin aggregates (Figure 

26B).  This suggests that ectopic centrosomes may form through de novo centriole assembly.  In 

this process, centrin aggregates accumulate without a mother centriole, and over the course of the 

next cell cycle, mature into functional centrosomes [248]. The centrin aggregates in shShroom2 

C166 cells are not pre-centriole intermediates, as they contain neither SAS-6, a proximal 

centriole protein, nor acetylated tubulin (Figure 27, data not shown).   
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Figure 26: Loss of Shroom2 leads to ectopic centrin aggregates. 

(A-B) pSuper control (A) or shShroom2 (B) C166 cells were immunostained with  tubulin (Ai, Bi) and centrin (Aii, 

Bii) antibodies and TO-PRO (blue).  Shroom2 deficient cells display ectopic centrin aggregates compared to control 

cells. (C) Quantification of centrin puncta in pSuper and shShroom2 C166 cells.  Population percentage with normal 

or abnormal centrin is represented as the mean ± SD. At least 100 cells were counted in triplicate per cell line.  Scale 

bars = 10m. 
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Figure 27: Ectopic centrin aggregates are not pre-centrioles. 

(A-B) pSuper (A) and shShroom2 (B) C166 cells were immunostained with centrin (Ai, Bi) and SAS-6 (Aii, Bii) 

antibodies and TO-PRO (blue).  Scale bars = 10m. 

 

To determine if centrin aggregates are the result of a loss of Shroom2, I attempted to 

rescue centrin accumulation by transiently transfecting GFP control or full-length hShroom2-

GFP, which is shShroom2 resistant.  Transfected cells were grown for 48 hours, stained to detect 

centrin and hShroom2 GFP, and binned based on either normal (one or two centrin puncta) or 

abnormal (excess centrin puncta) centrin staining.  Full-length hShroom2 significantly rescues 

the excess centrin phenotype compared to control (Figure 28A, C).  This activity at the 

centrosome is specific to Shroom2 as Shroom3 fails to rescue centrin aggregates (data not 

shown). 
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3.2.3 Shroom2 activity is required for proper centrosome duplication. 

While microtubules are vital to centrosome function, cortical contractility through F-actin and 

MyosinII are also important for centrosome function [249, 250]. Because long term Shroom2 

knockdown in C166 cells leads to changes in cortical contractility and actin organization, I 

sought to rule out the influence of actin dynamics by measuring duplication directly through a 

centrosome duplication assay [232].  Such an assay is possible in cells with defective p53 

signaling where incubation with DNA synthesis inhibitors such as aphidicolin, blocks DNA 

synthesis but permits centrosome duplication [251].  C166 cells were created through expression 

of the fps/fes proto-oncogene [220] and likely are defective in p53 signaling, as centrosome 

duplication persists after exposure to aphidicolin (see below).  For this experiment, pSuper or 

shShroom2 C166 cells were exposed to aphidicolin or DMSO for 48 hours at which point 

centrosome number was determined.  The ratio of average centrosome numbers between DMSO 

and aphidicolin treated cells was used to determine the fold change in centrosome number.  In 

these experiments, control C166 cells exhibit an approximate 2-fold increase in centrosome 

number.  In contrast, cells with a Shroom2 deficiency do not duplicate centrosomes as 

efficiently, exhibiting only a 1.25 fold change in centrosome number (Figure 28D).  These 

results suggest that centrosome duplication is negatively impacted by the absence of Shroom2.  

Because the loss of Shroom2 also yields an increase in centrin accumulation, I propose that 

ectopic centrosomes arise through the formation of centrin aggregates and that Shroom2 is 

required to maintain the efficiency of centrosome duplication. 
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3.2.4 Rock is required for Shroom2 function. 

It has been well documented that Shroom family proteins bind and act via Rock through 

interaction with the C-terminal SD2 [188, 192, 232].  Because it has been shown that Rock1 and 

Rock2 are important for centrosome positioning and duplication respectively, I sought to 

determine whether Shroom2 activity is dependent upon Rock.  To investigate this possibility, 

Shroom2 deficient C166 cells were transiently transfected with expression vectors for either 

GFP, full-length GFP tagged hShroom2, or a GFP-tagged hShroom2 1-1334, which lacks the 

SD2, and assayed for centrosome number 48 hours post transfection.  Expression of GFP- 

hShroom2 restores normal centrin in approximately 50% of the cells.  In contrast, expression of 

the SD2 deletion mutant fails to rescue the excess centrin phenotype compared to GFP alone 

(Figure 28B, C).  To further show that this activity of Shroom2 is working through Rock, I 

performed this rescue experiment in the presence of the Rock inhibitor Y27632.  Y27632 

abrogates the ability of Shroom2 to rescue ectopic centrin (Figure 28C). Rock inhibition itself 

does not lead to ectopic centrin accumulation (Figure 29).  These results suggest that Rock is 

essential for Shroom2 function at the centrosome.  A Shroom2 construct with the N-terminal half 

deleted, mShroom2 880-1479, also fails to rescue the centrin phenotype (Figure 28C).  As seen 

with other Shroom proteins, the need for full-length protein suggests that proper targeting of 

Shroom2 is essential for mediating Rock activity [187, 189].  
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Figure 28: Ectopic centrin can be rescued by exogenous Shroom2. 

(A-C) shShroom2 C166 cells were transiently transfected with GFP, hShroom2 FL GFP, hShroom2 1-1334 GFP, 

hShroom2 FL GFP with 10 M Y27632, or myc-mShroom2 880-1479 and immunstained to detect centrin. (A-B) 

Representative images of hShroom2 FL GFP (A) and hShroom2 1-1334 GFP (B).  Inset is centrin. (C) Population 

percentage of cells with normal centrin puncta is represented ± SD of triplicate experiments.  (D) pSuper and 

shShroom2 cells were subjected to a centrosome duplication assay.  The ratio of the change in average centrosome 

number is indicated ± SD of three experiments.  For (C,D) at least 100 cells were counted per cell line per 

experiment.  Scale bars = 10m. 
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Figure 29: Rock inhibition does not lead to ectopic centrin aggregates. 

(A-B) C166 cells were treated with DMSO (A) or 10M Y27632 (B) for 48 hours and immunostained to detect 

centrin and  tubulin.  Scale bars = 10m. 

 

The presence of supernumerary centrosomes is a common trait of many human tumors 

[252].  In addition, centrosome amplification promotes tumorigenesis in Drosophila, implicating 

conservation of centrosome-mediated carcinogenesis [253].  While it had been believed that 

extra centrosomes may promote tumorigenesis through formation of multi-polar spindles and 

aneupoloidy, it has recently been shown that mechanisms exist to cluster multiple centrosomes 

into two poles [254, 255].  As a result, multipolar spindles occur infrequently, and even then, 

such progeny mitotically arrest or apoptose [243].  It is more likely that extra centrosomes form 

multipolar spindle intermediates prior to anaphase where merotelic kinetochore attachments 

cause lagging chromosomes, segregation errors, and chromosomal instability [243].  Ectopic 

centrosomes in shShroom2 C166 cells still cluster during anaphase, however chromosomal 

bridges caused by lagging chromosomes are frequently observed (Figure 30).  In addition to 

spindle formation and tumorigenesis, the centrosome plays a critical role in the formation of 

cilia.  During interphase, many mammalian cells extend a primary cilia which is nucleated by a 
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centrosome termed the basal body.  Shroom2 localizes to the basal body in retinal pigmented 

epithelial (RPE) cells (Figure 31).  As C166 cells do not form cilia in culture, a role for Shroom2 

in ciliogenesis has yet to be investigated. 

 

 

Figure 30: Shroom2 deficient cells contain lagging chromosomes. 

(A-B) Asynchronous pSuper (A) or shShroom2 (B) C166 cells were fixed and immunostained for  tubulin and  

tubulin and TO-PRO (blue).  Stages of mitosis are indicated.  Arrowhead indicates clustering of ectopic 

centrosomes.  Arrow indicates lagging chromosomes.  Scale bars = 10m.  
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Figure 31:  Shroom2 localizes to the basal body of cilia. 

RPE1-hTert cells were grown to confluency, fixed, and immunostained with Shroom2 and acetylated tubulin 

antibodies and TO-PRO (blue).  Scale bar = 10m. 

3.3 DISCUSSION 

From these results, I provide the first evidence for Shroom2 as a centrosome-associated protein.  

Localization to the centrosome was first observed in C166 endothelial cells after transient 

transfection with siRNA against Shroom2 [232]. This was the first study to employ knockdown 

of Shroom2 in order to elucidate function in cell culture, and because cytoplasmic Shroom2 

protein can obscure visualization of the centrosome, centrosomal localization may have passed 

unnoticed in other studies.  Nonetheless, it is intriguing that centrosomal Shroom2 protein 

remains at the centrosome after transient knockdown.  This suggests that centrosomal Shroom2 

is either highly resistant to degradation or localizes with high affinity or by post translational 

modification, such that any protein still expressed after RNAi preferentially localizes to the 

centrosome.  Results from several different experiments, including immunohistochemistry, 

biochemistry, and localization of exogenous protein, indicate that Shroom2 is a bona fide 
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centrosome protein.  Although the centrosome localization domain of Shroom2 lies within amino 

acids 128-513, further experimentation is required to identify the resident protein(s) that recruits 

Shroom2 to the centrosome. 

While this is the first study to implicate Shroom2 in centrosome function, a connection 

between Shroom2 and  tubulin has been established in Xenopus.  In these studies, expression of 

Shroom2 in blastomeres leads to apical recruitment of  tubulin which is proposed to be essential 

for epithelial lengthening and pigment accumulation in Retinal Pigmented Epithalial (RPE) cells 

[193, 197].  Shroom3 functions similarly in this system, yet the mechanism of  tubulin 

recruitment by Shroom proteins remains to be determined [216].  With regards to mammals, the 

only relationship reported between Shroom2 and  tubulin comes from these experiments which 

demonstrates that centrosomal localization is specific to Shroom2 and not Shroom3 or Shroom4. 

Stable, long term knockdown of Shroom2 in C166 cells leads to decreased proliferation, 

increased multi-nucleation, excess centrin aggregates, and ectopic centrosomes.  However when 

subjected to a centrosome duplication assay, shShroom2 C166 cells duplicate centrosomes less 

efficiently than control.  Because of these observations, it is likely that extra centrosomes derive 

from centrin aggregates in a process known as de novo centrosome assembly, whereby 

centrosomes are assembled in the absence of a centriole template. Under normal conditions, the 

mother centriole serves as a base for the formation of the daughter centriole.  Mechanisms exist 

to ensure the proper spatial, temporal, and numerical duplication of centrioles (reviewed in 

[256]) as well as to inhibit de novo assembly [257].  In mammalian cell lines, as displayed in 

CHO and HeLa cells, de novo centriole assembly can occur in the absence of a centrosome [248, 

258].  After centrosome ablation in HeLa cells, centrin aggregates converge upon each other and 

mature into a  tubulin-containing centrosome over the course of the next cell cycle [248].  While 
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Shroom2-deficient cells still retain centrosomes, they display a striking accumulation of centrin 

aggregates.  These observations suggest that knockdown of Shroom2 has uncoupled the 

mechanisms which regulate centrosome number or the de novo pathway.  The precise nature of 

excess centrin accumulation and the mechanistic connection between Shroom2 and centrosome 

regulatory mechanisms remains to be determined. 

Possible insight for Shroom2 function at the centrosome comes from previous studies of 

Rock2.  Rock2 is a known centrosome-associated protein which specifically localizes between 

centrioles.  Rock2 is important for centrosome function, as knock down inhibits centrosome 

duplication [244].  Another centrosome protein NPM/B23 is a positive regulator of Rock2 

activity.  Upon phosphorylation of NPM/B23 on Thr199 by CyclinE/cdk2, NPM/B23 acquires 

high binding affinity for Rock2, increasing its kinase activity 5-10 fold [244].  This process is 

opposed by Morgana/chp-1 which blocks the interaction between NPM/B23 and Rock2, 

inhibiting centrosome duplication [245].  The small GTPases RhoA and RhoC have also been 

shown to be important for Rock activity at the centrosome [259]. Though these proteins 

influence Rock2 activity at the centrosome, they are not sufficient for Rock2 localization.  It has 

been proposed that an unknown interaction with the coiled-coil region of Rock2 is essential for 

its localization to the centrosome [244].  Interestingly, Shroom2 binds to Rock2 within the 

coiled-coil region [191, 192, 232].  Because the ability to rescue ectopic centrin accumulation 

relies upon an interaction between Shroom2 and Rock2, Shroom2 is an excellent candidate as the 

mediator of Rock2 localization at the centrosome (Figure 32).  Due to the subcellular localization 

of Shroom2 during mitosis, it remains a possibility that Shroom2 and Rock mediate linkage of 

centrioles with subsequent regulation of Rock activity initiating centrosome duplication.  
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Additional studies will be necessary to characterize such an interaction and to identify kinase 

targets at the centrosome.   

 

 

Figure 32: Model of Shroom2 function at the centrosome. 

(A) Shroom2 localizes to centrosomes through amino acids 128-513 and likely recruits Rock to the centrosome 

through its SD2. Once CyclinE/cdk2 phosphorylates Thr199 on NPM/B23, NPM acquires high binding affinity for 

Rock2 and increases Rock2 kinase activity 5-10 fold.  (B) The localization of Shroom2, Rock, and NPM/B23 are all 

essential for efficient centrosome duplication though their effectors remain unknown. 

 

 In conclusion,  I have demonstrated that Shroom2 is a centrosome-associated protein.  

Long term loss of Shroom2 leads to centrosomal defects such as delayed centrosome duplication, 

excess centrin accumulation, hindered proliferation, and lagging chromosomes.  Because 

Shroom2 interacts with Rock2 and this interaction is necessary to rescue ectopic centrin 

aggregates, I propose that recruitment of Rock2 to the centrosome is mediated by Shroom2 and 

is essential for efficient centrosome duplication.  Because centrosome defects promote genetic 

instability and are a feature of many cancer cells, it will be interesting to investigate a role for 

Shroom2 in tumorigenesis in future studies. 
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4.0  CONCLUSIONS AND FUTURE HYPOTHESES 

4.1 SHROOM2 MEDIATES THE SUB-CELLULAR LOCALIZATION OF ROCK 

Chapter 2.0 describes the characterization of Shroom2 in endothelial cells.  Because the Shroom-

family proteins are capable of inducing MyosinII-dependent actomyosin networks, I 

hypothesized that Shroom2 was important for mediating contractility in endothelial cells.  

Following Shroom2 knockdown, endothelial sprouting was enhanced, suggesting that Shroom2 

negatively regulates angiogenesis.  As Shroom2 deficient cells cannot constrict a gel as 

sufficiently as control, Shroom2 likely mediates angiogenesis through the control of contractility.  

These results suggest that Shroom proteins may influence the contractility of an entire tissue.  

During the course of this work, it was shown that Shroom3 physically interacts with Rock 

through the SD2 [192].  Because all Shroom family members share high similarity within the 

SD2 [188], I tested whether or not Shroom2 also interacts with Rock.  I was able to demonstrate 

a physical association between Shroom2 and Rock and also demonstrate Shroom2-dependent 

sub-cellular localization of Rock at the cell cortex, supporting a role for Shroom2 in establishing 

cortical contractility.  These findings are significant, because Rock has historically been thought 

of as a cytoplasmic kinase with little to no specific localization patterns in vivo [229].  My results 

demonstrate that Shroom2 is responsible for the localization of Rock to the cortex, and this 

precise localization is necessary for Rock activity. 
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How then does Shroom2 mediate Rock activity through sub-cellular localization?  There 

are several possibilities.  First, Shroom2-dependent localization of Rock may simply place Rock 

in close proximity to activation signals.  While RhoA is a key activator of Rock, previous studies 

suggest that the ability of Shroom proteins to control contraction is independent of RhoA [187, 

189].  As lipids have also been shown to activate Rock [260], it could be that localization to the 

cortex is sufficient to allow lipid-activation of Rock.  As a second possibility, the physical 

interaction between Shroom2 and Rock may be sufficient to induce activation.  The Shroom 

binding domain within Rock is located in close proximity to the Rho binding domain.  Because 

the relief of intramolecular inhibition activates Rock activity, the simple binding of Shroom2 and 

Rock may relieve intramolecular inhibition of Rock, leading to its activation.  And last, Shroom2 

may simply be a scaffolding protein which recruits all of the necessary components to establish 

actomyosin networks.  Shroom2 binds to actin and Rock, so additional, unidentified interactions 

with Rock activating proteins could exist.  One might speculate that the PDZ domain is 

important for function however it is not required for Shroom3-induced apical constriction and 

only mildly affects Shroom2 localization.  The highest region of identity between Shroom2 and 

Shroom3 lies within the PDZ domain, so its function remains an intriguing question. 

 Regardless of how Rock is activated, there are likely additional mechanisms which 

mediate the interaction between Rock and Shroom2.  For example, Shroom2 and Rock do not 

always co-localize (compare Figure 4C with Figure 10A).  Post-translational modifications such 

as phosphorylation of Shroom2 may mediate an interaction with Rock.  Another level of 

regulation could be through additional protein interactions like Gem/Rad which are hypothesized 

to block protein interactions with Rock [67]. 
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Shroom3 interacts with Rock to induce apical constriction in MDCK cells [192].  Placed 

within this same system, Shroom2 does not elicit apical constriction [188].  Because Shroom2 

can mediate the activity of MyosinII through Rock localization, it is likely that Shroom2 and 

Shroom3 enable different contractile events.  Shroom3 may promote dynamic, rapid contraction, 

and Shroom2 may promote stable, cell tension.  It will be interesting to examine the effects of 

Shroom2 expression in MDCK cells by measuring changes in cell rigidity through techniques 

such as traction force microscopy or atomic force microscopy.  Although Shroom2 shows no 

Rock isoform specificity, we have yet to examine MyosinII isoforms.  Based on the kinetic 

studies of MyosinIIB which implicate it in the maintenance of stable, tension generating fibers, it 

might be that Shroom2 promotes only MyosinIIB activity.  As Shroom2 and Shroom3 are co-

expressed and co-localize to the TJ of many epithelial tissues [188, 189, 192], it will be 

interesting to examine the relationship between the two.  A combinatorial approach to studying 

multiple Shroom proteins in morphology has yet to be addressed.   

An additional question concerning not only the Shroom proteins but the cell biology field 

as a whole is how actin binding proteins target specific populations of F-actin.  Shroom2 and 

Shroom3 both contain the SD1 and can bind to actin, however they do so differently.  Shroom3 

can bundle actin, while Shroom2 cannot.  In Rat1 fibroblasts, the SD1 of Shroom2 localizes to 

the cortex, while the SD1 of Shroom3 localizes to and bundles basal stress fibers.  Outside of the 

SD1 and SD2, unique protein interactions have been identified for Shroom3 and Shroom2, so it 

is also likely that different protein interactions influence differential localization.  Examination 

of the crystal structure of the different SD1 regions will provide valuable insight into the 

differential localization of Shroom proteins and hence the differential localization of Rock. 
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4.2 IMPLICATIONS FOR ANGIOGENESIS 

Shroom2 influences endothelial morphology through the regulation of cortical contractility.  The 

loss of Shroom2 abolishes cortical Rock localization and leads to changes in the actin 

cytoskeleton such as decreased stress fibers and increased filopodial extensions.  Because 

contractility influences adhesion and migration, Shroom2 deficiency alters the angiogenic 

potential of these cells.   

It is interesting that transient knockdown of Shroom2 exhibits different effects than stable 

knockdown in C166 cells.  With normal levels of Shroom2 and high levels of contractility, 

endothelial cells exhibit moderate angiogenic potential.  Following transient knockdown of 

Shroom2, contractility is reduced but not abolished, and these cells show the highest ability to 

undergo sprouting angiogenesis.  Finally, after near depletion of Shroom2, cortical contractility 

is largely ablated and cells can no longer undergo angiogenesis.  These results support the notion 

that an ideal level of contractility is essential to cell behavior, particularly angiogenesis, and by 

tipping the balance in one direction or the other, we can alter the outcome.  These results are 

supported by a recent study which shows endothelial cell adhesion is regulated by varying 

adhesive ligand density as an independent variable in synthetic hydrogels [179].  In this model, 

too much or too little adhesion is detrimental to angiogenesis.  As the loss of Shroom2 also leads 

to changes in stress fiber and FA organization, it is likely that contractility influences 

angiogenesis through changes in cell adhesion. 

Shroom2 knockdown may also influence the stability of adherens junctions.  While 

transient Shroom2 knockdown did not affect -catenin localization, the impact on cadherins 

remains unknown.  As I could not detect PECAM or VE-cadherin in C166 cells, it will be 

necessary to examine a more “endothelial-like” cell line which expresses these endothelial-
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specific adhesion proteins.  Based on the failure of shShroom2 C166 cells to form stable 

adherens junctions, it is likely that Shroom2 influences endothelial adhesion through the control 

of Rock activity and cortical contractility. 

Although Shroom2 interacts with Rock1 and Rock2, it is unknown if Shroom2 utilizes 

both isoforms to mediate endothelial morphogenesis.  As discussed in section 1.1.4.1, Rock may 

function redundantly in vivo, however in fibroblasts, knockdown of Rock1 and Rock2 have 

different effects.  Loss of Rock1 impedes stress fiber and FA organization, while loss of Rock2 

enhances the actin cytoskeleton.  A role for Rock isoforms in angiogenesis has not been 

addressed.  In the future, obtaining Rock2 antibodies for immunostaining and utilizing isoform 

specific siRNAs will address any differential roles for Rock1 and Rock2 during angiogenesis. 

Abnormal regulation of Rock signaling is associated with various cardiovascular diseases 

such as hypertension, coronary and cerebral vasospasm, restenosis, atherosclerosis, stroke, and 

heart failure, and thus Rock inhibitors are currently under development for clinical use [261].  In 

addition, solid tumors stimulate angiogenesis in order to supply cells with nutrients from the 

body, so developing the means to inhibit angiogenesis could effectively reduce tumor size.  In 

terms of cardiovascular disease, many drugs currently in development, such as Fasudil, are 

general Rock inhibitors.  Due to the plethora of roles for Rock in cell biology such as 

contraction, actin organization, adhesion, motility, and proliferation, general Rock inhibition 

may lead to many detrimental secondary effects.  More specific inhibitors have been developed, 

such as SLx2119, a Rock2 inhibitor, yet this only prevents promiscuity of interactions with other 

kinases and could still block all Rock2-dependent functions.  Here, I report a mechanism in 

which Shroom2 mediates only a subset of Rock activity.  These results create the possibility that 

by blocking the interaction between Shroom2 and Rock, we may effectively inhibit only one 
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facet of Rock activity in the cell, thus developing a means to specifically inhibit in vivo 

angiogenesis. 

An important question remains: what role does Shroom2 play during the formation of a 

three dimensional vascular network. No matter the assay, angiogenesis and vasculogenesis 

assays rely upon cellular adhesion, migration, and sprouting to influence the resulting network.  

Based on evidence that Shroom2 mediates Rock activity to influence these three traits in two 

dimensions, it is likely that during early stages of cord-formation, decreased adhesion and 

enhanced migration and sprouting increases branching of the vascular network.  The primary 

benefit of in vitro angiogenesis experiments lies with ease of use.  In vitro models allow for 

relatively easy manipulation of cells or growth factors to visualize the impact on angiogenesis, 

however they restrict analysis to a preslected pool of cells which do not interact in a 

heterogenous cell population [262].  Ultimately the effects of Shroom2 on angiogenesis must be 

carried out in vivo to confirm the findings described above.  The chick chorioallentoic membrane 

assay provies an in vivo tool in which endothelial cells can still be targeted for siRNA.  But 

ultimately, conditional knockout of Shroom2 in endothelial cells during development will allow 

the best physiological evaluation of the role of Shroom2 in angiogenesis.  Based on the 

experiments described above, a likely role exists for Shroom2 / Rock in the promotion of stable 

endothelial vessels.  Upon reduction of Shroom2 or Rock activity, cellular adhesion structures 

may break down, promoting endothelial migration and subsequent sprouting angiogenesis. 
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4.3 SHROOM2 AND THE CENTROSOME 

Chapter 3.0 describes the characterization of Shroom2 and the centrosome.  I have employed 

several techniques to confirm that Shroom2 is a centrosome-associated protein.  First, 

centrosome localization of Shroom2 is observed in multiple cells lines with two different 

Shroom2 sera.  Second, biochemical purification of the centrosome through sucrose gradient 

centrifugation leads to the co-fractionation of Shroom2 and the centrosome.  And finally, 

exogenous Shroom2 protein localizes to the centrosome in a manner consistent with endogenous 

protein.  These results confirm the novel localization of Shroom2 at the centrosome.  This is a 

unique observation as this is the first example of localization of Shroom2 which is not associated 

with F-actin.  While we cannot exclude the possibility that actin may be present at the 

centrosome in very small amounts, there is no significant evidence demonstrating centrosomal 

actin, and treatment of cells with the actin depolymerizing drug Cytochalasin D does not affect 

Shroom2 localization at the centrosome (data not shown).  Additionally, the region of Shroom2 

responsible for centrosome localization lies outside of the actin binding domain within a.a. 128-

513 which corresponds to the SPR.  To identify protein interactions responsible for Shroom2 

localization to the centrosome, it will be necessary to perform pull-down experiments using 

hShroom2 128-513 GFP with isolated centrosomes followed by mass spectrometry. 

I first observed centrosomal localization of Shroom2 following transient knockdown in 

C166 cells.  The observation that a population of Shroom2 protein persists at the centrosome 

after transient knockdown suggests one of two things.  First, the turnover of Shroom2 protein at 

the centrosome may be slow, thus localization persists throughout the time course of the 

knockdown experiment.  Second, Shroom2 may localize with high affinity such that any protein 

which escapes the RNAi machinery preferentially localizes to the centrosome.  Stable 
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knockdown of Shroom2 leads to a depletion of Shroom2 at the centrosome in some cells, but 

residual protein in other cells still results in Shroom2 localization to the centrosome.  This 

observation supports the hypothesis that Shroom2 has a high affinity for the centrosome.  This 

could be tested in the future through fluorescence recovery after photobleaching (FRAP). 

Long term knockdown of Shroom2 leads to centrosome defects.  Shroom2-deficient cells 

cannot duplicate centrosomes as efficiently as control.  Interestingly, a similar role for Rock2 has 

been proposed as knockdown or inhibition of Rock during centrosome duplication assays also 

hinders centrosome duplication [244].  As the ability of Shroom2 to rescue centrosome defects 

relies upon the presence of the SD2 and hence an interaction with Rock, Shroom2 likely 

mediates localization of Rock at the centrosome.  Additional experiments such as examining the 

localization of Rock at the centrosome before and after Shroom2 knockdown will be useful to 

determine the relationship between Shroom2 and Rock at the centrosome.  In addition, we can 

test if the Shroom binding domain of Rock localizes to the centrosome in a Shroom2-dependent 

manner.  Ideally, it may act as a dominant-negative, and recapitulate the Shroom2 knockdown 

phenotype.  The effectors of Rock which mediate centrosome duplication are unknown. 

While I have shown that the loss of Shroom2 directly impacts centrosome duplication 

through aphidicolin treatment, the possibility remains that shShroom2-induced changes in 

cellular architecture still affect centrosome duplication.  To exclude this possibility it will be 

necessary to show that other cellular processes or organelles such as the Golgi and nucleus are 

unaffected in the shShroom2 C166 cell line.  Alternatively, targeting Shroom2 activity to the 

apical surface with an endolyn tag would address the need for cortical contractility in centrosome 

duplication. Additionally, the development of a functional dominant-negative protein which 
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blocks localization or activity of Shroom2 at the centrosome will address any secondary defects 

brought about by long-term Shroom2 knockdown. 

In addition to defects in centrosome duplication, stable Shroom2 knockdown leads to the 

accumulation of ectopic centrin aggregates.  The nature of these aggregates is unknown, and they 

do not appear to be pre-centriole intermediates.  Centrin aggregates have also been observed in 

HeLa cells in which the centrosome has been ablated.   Over time, the centrin aggregates mature 

into a functional centrosome in a process known as the de novo centrosome assembly pathway, 

the molecular regulation of which is currently unknown [248].  To determine whether or not 

centrin aggregates following Shroom2 knockdown participate in a similar mechanism, it will be 

necessary to visualize centrin and  tubulin through live cell imaging. 

Knockout mice are great models to understand gene functions in vivo.  Unfortunately, no 

shroom2 mutant mice are available.  During the course of this work, I attempted to make 

transgenic mice through the injection of pSuper shShroom2 ES cells into blastocysts.  While I 

did recover chimeric animals, the contribution from shShroom2 cells was low, and I never 

obtained mutant embryos in subsequent crosses.  Given the role of Shroom2 in centrosome 

duplication, it is highly likely that loss of Shroom2 is deleterious to cell division and 

development.  In moving forward with the generation of shroom2 mutant mice, these results 

suggest the importance of utilizing conditional knockouts. 
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4.4 SUMMARY 

In summary, Shroom2 is an actin and Rock binding protein which mediates the sub-cellular 

localization of Rock to establish specific actomyosin networks that generate cellular contractility.  

Through this mechanism, Shroom2 is able to mediate a subset of Rock activities which are 

important for endothelial morphology during angiogeneiss and centrosome duplication.  As 

many other epithelial tissues express Shroom2, it will be interesting to identify additional roles 

for Shroom2 and Rock during development. 
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5.0  MATERIALS AND METHODS 

5.1 CELL CULTURE AND TRANSIENT TRANSFECTIONS 

Most cell lines were maintained at 37°C and 5% CO2 in DMEM supplemented with 10% fetal 

bovine serum, pen/strep, and L-glutamine.  Pooled HUVECs were purchased from ATCC and 

cultured in Vascular Cell Basal media (ATCC) supplemented with Endothelial Cell Growth Kit 

(ATCC).  Depending on the timing of the experiment or transfection efficiency, cells were 

transfected in suspension or while adherent with Lipofectamine 2000 (Invitrogen) according to 

manufacturer’s instructions.  Inducible Shroom2-expressing cells were made by transfecting T23 

MDCK cells with pTRE2-hygro containing a full length Shroom2 cDNA.  Cells were selected in 

EMEM/10% FBS containing 200g/mL hygromycin and 40ng/mL doxycyclin for 10 days (d).  

Individual clones were isolated, expanded, and tested by Western blotting for inducible 

expression of Shroom2 protein. 

5.2 IMMUNOHCYTOCHEMISTRY 

Cells were grown on fibronectin-coated coverslips, fixed in 4% paraformaldehyde for 20 min, 

and permeabilized with 0.2% Triton-X for 5 min or fixed in -20° MeOH for 5 min.  Fixed cells 

were then blocked with 4% Normal Goat Serum for 20 min.  Primary and secondary antibodies 
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were applied for 1 hour (h) each with three subsequent washes in PBT for 5 min each.  For 

localization mapping experiments, cells were permeabilized prior to MeOH fixation with 0.1% 

Triton-X for 20 sec followed by two rinses with PBS. Polyclonal antibodies for Shroom2, 

Shroom3, and Shroom4 were previously generated in the lab [188-190].  Additional antibodies 

were purchased: PECAM, E-cadherin (BD Biosciences), ZO1, SAS6 – clone H300 (Santa Cruz 

Biotechnology), α Tubulin,  tubulin, acetylated tubulin (Sigma-Aldrich), monoclonal  tubulin 

(Abcam), Rock1, pMLC2 – Ser19, ppMLC2 – Thr18/Ser19, p-cofilin, and pFAK-Tyr397 (Cell 

Signaling), Rock2 (Bethyl Labs), p-MYPT, centrin - clone 20H5 (Millipore), mono- and 

polyclonal GFP, TO-PRO3, goat anti-mouse, goat anti-rat, or goat anti-rabbit secondary 

antibodies conjugated to Alexa-488 or Alexa-568 (Invitrogen). 

5.3 WESTERN BLOTTING 

In most cases, cells were lysed in radio immunoprecipitation assay (RIPA) buffer supplemented 

with protease inhibitor (Sigma), separated on 10% polyacrylamide gels, transferred to 

nitrocellulose, blocked in TBST + 4% milk, and subjected to immunoblotting with HRP 

secondary antibodies.  SuperSignal West Pico Chemiluminescent Substrate was used to detect 

HRP (Thermo-Fisher Scientific).  For Western blots of phospho-proteins, cells were directly 

lysed and resuspended in sample buffer (62.5mM Tris-HCL pH 6.8, 2% SDS, 10% Glycerol, 

50mM DTT). 
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5.4 RNA INTERFERENCE 

ON-TARGETplus siRNAs were ordered from Dharmacon and were tested for knockdown 

efficiency by immunofluorescence analysis and Western blotting. The following two siRNA 

duplexes were most efficient: mShroom2-7 sense sequence: AGUCAAGAUUGGCGAGA.  

mShroom2-8 sense sequence: GGAUAAUGUUGAACCCAAA.  The ON-TARGETplus 

SMARTpool for hShroom2 was used in HUVEC cells. ON-TARGETplus non-targeting siRNA 

#1 was used as a control.  C166 cells were transfected in suspension with 100nM siRNA using 

Lipofectamine2000.  Adherent HUVEC cells were transfected with 100nM siRNA using 

Dharmafect #1 (Dharmacon).  Cells were allowed to grow for 48-72 h before use. 

5.5 STABLE TRANSFECTION OF C166 CELLS 

shRNA oligos corresponding to mShroom2-7 and mShroom2-8 siRNAs (Oligoengine) were 

cloned into the pSuper-gfpneor vector (Oligoengine).  Uncut vector and both shShroom2 

constructs were individually transfected into C166 cells and after 24 h, stably incorporated cells 

were selected for G418 resistance.  Drug-resistant cells were pooled and tested via 

immunofluorescence and Western blot for GFP and Shroom2 expression.  Cell proliferation was 

measured by plating cells at the same density on day 0 and then performing hemocytometer cell 

counts every 24 h.   

 109 



5.6 MATRIGEL ANGIOGENESIS ASSAY 

A thin layer of Matrigel (BD BioSciences) was spread onto 6-well plates and allowed to harden.  

2x106 C166 cells or 5x105 HUVECs were placed in each well with complete media.  For C166 

cells, multi-cellular chords form after 24 h and after ~5 d resolve into a thinner network with no 

change in the branching architecture [232].  Cells were photographed on an Olympus MVX10. 

5.7 SPROUTING ANGIOGENESIS ASSAY 

48 h after transfection with siRNA, spheroids of C166 cells were formed by re-suspending 400 

cells/ well in Methocel media (20% Methocel, 80% culture media) in a non-tissue culture treated 

96-well plate  which was placed at 37° overnight.  Spheroids were harvested and re-suspended in 

DMEM with 20% FBS and 30ng/mL rmVEGF (R&D Systems).  250µl of spheroids were mixed 

with 250µl of collagen (Upstate), neutralized with NaOH, and plated in a 24-well plate.  

Collagen gels were given 30 min to polymerize at 37° and were then overlaid with media and 

300ng/mL rmVEGF.  Sprouts were photographed after 48 h. 

5.8 VASCULOGENESIS ASSAY 

pSuper, shShroom2-7, or shShroom2-8 was linearized and electroporated into mouse ES cells 

(cell line AK7 – gift from Philippe Soriano).  ES cells were cultured in DMEM with L-

glutamine, Pen/Strep, 20% ES certified FBS (Thermo Scientific Hyclone), 0.1mM NEAA (Life 
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Technologies), and 0.1mM BME were grown on a layer of SNL fibroblasts (gift from Philippe 

Soriano) which had been mitotically inactivated with Mitomycin C (Sigma).  SNLs were grown 

on gelatin-coated tissue culture plates. After 24 h, positive transformants were selected in 

300ug/mL G418 for 9-11 d, changing media every day.  GFP positive colonies were selected for 

expansion and were verified for Shroom2 knockdown via immunostaining and Western blot.  

Differentiation of ES cells into endothelial vessels was performed as described by Kappas and 

Bautch (2007) [223]. Briefly, older, more flattened ES colonies were chosen for differentiation.  

ES colonies were detached with Dispase and cultured on bacteriological Petri dishes for 3 d.  

Resultant embryoid bodies were allowed to reattach on fibronectin-coated coverslips in 

differentiation media: DMEM, 20% ES certified FBS, pen/strep, L-Glutamine, 300ug/mL G418, 

and 75µm Monothioglycerol.  After 8-10 d, endothelial vessels were examined by 

immunostaining with a PECAM antibody. 

5.9 COLLAGEN GEL CONTRACTION 

1mg/mL collagen gels were prepared by diluting collagen with media, neutralizing with NaOH, 

and plating 500µL / well in a 24-well plate. C166 cells were used 48 h after siRNA transfection.  

2.5x105 cells / well in 500 µL media were placed in each well.  After 24 h, the collagen gel was 

detached with a yellow tip pipette and photographed after 6 h. 
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5.10 IN VITRO BINDING 

mShroom2 cDNA corresponding to amino acids (aa) 1286-1479 (SD2) was cloned into the 

pET151 vector which contains a His tag.  hRock1 cDNA corresponding to aa 681-942 (SBD) 

was cloned into the pRSF vector.  Both vectors were transformed into BL21 cells.  Expression 

was induced with 0.5mM IPTG for 1 h before lysing via sonication.  His-tagged SD2 was bound 

onto Ni-NTA resin, eluted with sample buffer, separated on a polyacrylamide gel, and coomassie 

stained. 

5.11 GST PULL DOWN 

mShroom2 cDNA corresponding to aa 1068-1480 was cloned into pGEX-2T and hRock1 cDNA 

corresponding to aa 593-1062 were cloned into pGEX-3X and transformed individually into 

RIPL cells.  After IPTG induction and lysing, GST-mShroom2-SD2, GST-hRock1-SBD, and 

GST alone were bound to glutathione Sepharose beads (GE Healthcare) and then incubated with 

cell lysate at 4°C for 2 h. C166 or T23:TRE Apxl (Shroom2) cells were lysed via sonication in 

NETN buffer (20mM Tris pH8.0, 100mM NaCl, 1mM EDTA, 0.5% NP-40, 1:100 protease and 

phostphatase inhibitor cocktails(Sigma)).  After incubation, glutathione Sepharose was washed 4 

times in NETN buffer, resuspended in SDS sample buffer, and analyzed via Western blot. 
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5.12 SCRATCH WOUND ASSAY 

6x105 C166 cells were transfected in suspension and plated on fibronectin-coated coverslips in a 

six-well plate.  After 72 h, cells were scratched with a yellow tip pipette to generate consistently 

sized wounds.  Representative wounds were fixed in PFA and stained with phalloidin.  To 

quantify migration, live cells at the same wound site were photographed at 1, 12, and 24 h 

postscratch and quantified by measuring the remaining wound length.  

5.13 BOYDEN CHAMBER ASSAY 

At 72 h after transfection with siRNA, 1x105 C166 cells or 7.5x104 HUVECs were plated in the 

upper chamber of a fibronectin-coated, 8.0µm polycarbonate, 24-well transwell insert (Costar, 

Corning).  Cells were allowed to migrate for 4 h.  The top chamber was scraped with a Q-Tip, 

and the bottom cells were fixed in PFA, stained with phalloidin and TO-PRO, and photographed.  

Nuclei were counted from three random fields of view of two independent experiments. 

5.14 GENERATION OF SHROOM2 GFP CONSTRUCTS 

For rescue and localization mapping experiments, I obtained hShroom2 cDNA (Image ID: 

9021734) from ATCC and through restriction digest and PCR amplification, cloned various 

fragments into pAcGFP1-Hyg-N1 (Clontech). 
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5.15 CENTROSOME ISOLATION 

Isolation of centrosomes was based on protocols developed by Moudjou and Bornes [263] and 

described by Hsu and White [264].  5x150mm confluent plates with exponentially growing cells 

were incubated with 1μg/mL cytochalasin D and 2μg/mL nocodazole in culture media for 1 h at 

37°C.  Plates were washed once with PBS, 0.1% PBS with 8% sucrose, and 8% sucrose in H2O.  

The remaining steps were carried out at 4° C.  2mL of lysis buffer (1mM Hepes pH7.2, 0.5% 

NP-40, 0.5mM MgCl2, 0.1%BME, 1:100 Protease inhibitor, 1:100 Phosphatase inhibitor cocktail 

1) was added to each plate and placed on a shaker for 10 min.  Cells were scraped and collected 

into a 15mL tube and centrifuged at 2,500g for 10 min to remove chromatin aggregates.  The 

supernatant was filtered through a 50μm nylon mesh into a glass tube and was adjusted to 10mM 

Hepes.  DNaseI (Roche, San Francisco, CA) was added to 2 units/mL and incubated for 30 min.  

The lysate was underlaid with 1mL 60% sucrose and centrifuged at 10,000g for 30 min.  2mL 

was removed from the bottom and this crude centrosome fraction was further concentrated on a 

sucrose gradient consisting of 500μL 70% sucruse, 300μL 50% sucrose, and 300μL 40% sucrose 

in 3.5mL thickwall polycarbonate tubes (Beckman, Palo Alto, CA).  The discontinuous sucrose 

gradient was centrifuged in a Beckman Ultrafuge L8-70M with a SW55TI rotor at 120,000g for 

1.5hr.  Fractions were collected from the top; 1mL for fraction 1, 0.5mL for fraction 2, and 

0.2mL for the remaining fractions.  30μL from each fraction was denatured in SDS sample buffer 

and subjected to Western blotting. 

 114 



5.16 CENTROSOME DUPLICATION ASSAY 

Cells were plated on fibronectin-coated coverslips and allowed to spread overnight.  The 

following day, either DMSO or 2g/mL aphidicolin (Sigma-Aldrich) was added per well for 48 

h.  Cells were then fixed and immunostained for  tubulin and centrin in order to count the 

centrosome number of at least 100 cells.  The experiment was performed in triplicate, 

centrosome numbers were averaged, and a ratio between DMSO and aphidicolin-treated cells 

determined fold change in centrosome number. 

5.17 SCANNING ELECTRON MICROSCOPY 

Embryos or tissues were fixed in 2.5% Gluteraldehyde in PBT overnight and were washed three 

times for 10 min in 0.1M cocadylate.  Tissues were post-fixed for 2.5 hr in 1% osmium tetroxide 

in 0.1M cocadylate and subsequently washed 4 times for 10 min in 0.1M cocadylate.  Tissues 

were then dehydrated in 25%, 50%, 75%, and 100% EtOH for 30 min each and incubated with 

25%, 50%, 75%, and 100% HMDS in EtOH also for 30 min each.  Tissues remained in 

hexamethyldisilazane (HMDS) overnight.  Tissues were air-dried, sputter coated, and observed 

using a Jeol JSM6390LV SEM. 

5.18 STATISTICS 

All measures of significance were determined by one-tailed, unpaired t test. 
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