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While the biomedical informatics community widely acknowledges the utility of domain 

ontologies, there remain many barriers to their effective use. One important requirement of 

domain ontologies is that they achieve a high degree of coverage of the domain concepts and 

concept relationships. However, the development of these ontologies is typically a manual, time-

consuming, and often error-prone process. Limited resources result in missing concepts and 

relationships, as well as difficulty in updating the ontology as domain knowledge changes. 

Methodologies developed in the fields of Natural Language Processing (NLP), Information 

Extraction (IE), Information Retrieval (IR), and Machine Learning (ML) provide techniques for 

automating the enrichment of ontology from free-text documents. In this dissertation, I extended 

these methodologies into biomedical ontology development. First, I reviewed existing 

methodologies and systems developed in the fields of NLP, IR, and IE, and discussed how 

existing methods can benefit the development of biomedical ontologies. This previously 

unconducted review was published in the Journal of Biomedical Informatics. Second, I compared 

the effectiveness of three methods from two different approaches, the symbolic (the Hearst 

method) and the statistical (the Church and Lin methods), using clinical free-text documents. 

Third, I developed a methodological framework for Ontology Learning (OL) evaluation and 

comparison. This framework permits evaluation of the two types of OL approaches that include 

three OL methods. The significance of this work is as follows: 1) The results from the 

comparative study showed the potential of these methods for biomedical ontology enrichment. 

For the two targeted domains (NCIT and RadLex), the Hearst method revealed an average of 

21% and 11% new concept acceptance rates, respectively. The Lin method produced a 74% 

acceptance rate for NCIT; the Church method, 53%. As a result of this study (published in the 

Journal of Methods of Information in Medicine), many suggested candidates have been 
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incorporated into the NCIT; 2) The evaluation framework is flexible and general enough that it 

can analyze the performance of ontology enrichment methods for many domains, thus expediting 

the process of automation and minimizing the likelihood that key concepts and relationships 

would be missed as domain knowledge evolves.  
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1.0  INTRODUCTION 

1.1 WHAT IS ONTOLOGY? 

The term “ontology” has been used for centuries. However, because the determination of what 

constitutes an ontology varies based on assumed perspectives, philosophers, lexicographers, 

librarians, and computer scientists have defined “ontology” in many different ways [1-4]. From a 

computer scientist perspective, Gruber [3] stated that “ontology is an explicit, formal 

specification of a shared conceptualization of a domain of interest.” Here, the word 

“conceptualization” refers to an abstract model of some phenomenon in the world that identifies 

the relevant concepts of that phenomenon. Gruber uses the term “explicit” to make the point that 

the types of concepts and the constraints on their use are clearly defined. Gruber’s requirement of 

“formal[ity]” refers to the fact that the ontology should be machine understandable, and his 

specification that the conceptualization be “shared” reflects the notion that an ontology captures 

consensual knowledge that is not private, but accepted by a group people who have a common 

interest. Sowa [5] defined ontology as “the study of the categories of things that exist or may 

exist in some domain.” “The product of such study,” he wrote, “is a catalog of the types of things 

that are assumed to exist in a domain of interest from the perspective of a person who uses a 

language for the purpose of talking about the domain.” A more practical perspective and 
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technical definition dictates that an ontology is a standardized classification system that enables 

data from different sources to be combined, accessed, and manipulated. 

 

What these perspectives have in common is that they define an ontology as a representation of 

entities and their relationships in a particular domain. Debates as to whether the ‘entities’ 

represented are concepts [6] or real-world things [7] continue.  Nevertheless, a key requirement 

is that each entity has one unique reference in the ontology (typically a meaningless identifier to 

avoid confusion among natural language terms).  Each identifier is linked to at least one natural 

language term, and is often linked to greater than one natural language term to capture the 

synonymy inherent in human language.  A standard ontology facilitates aggregation of data from 

multiple data sources if each source uses the identifiers from the ontology.  Interoperability is 

one of the primary reasons, if not the primary reason, that groups have been engaged in the 

development of ontologies. 

 

Ontology developers usually capture the relationships among entities as formal, logical 

relationships.  To do so, they frequently use one type of logic from a family of logics known as 

“description logics.”  Description logics constitute a family of fragments of first-order logic 

(nearly all of which are decidable), in which members of this family are primarily differentiated 

based on the set of allowed logical operators. For example, some logics exclude negation and 

universal quantification, which in turn determine the computational complexity of inference with 

the language.  The Web Ontology Language (OWL) is a standard ontology language that 

captures the semantics of many description logic languages. 
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1.2 APPLICATION OF ONTOLOGY  

Natural Language Processing (NLP) and text mining are research fields aimed at exploiting rich 

knowledge resources with the goal of understanding, extraction, and retrieval from unstructured 

text. Knowledge resources that have been used for these purposes include the entire range of 

terminologies, including lexicons, controlled vocabularies, thesauri, and ontologies. For the 

purposes of this description, I followed the framework for describing terminologies and 

terminological systems defined by de Keizer [8, 9] and Cornet [10]. The authors define concepts 

as “cognitive constructs” of objects that are built using the “characteristics of the objects,” terms 

as “language labels” for concepts, and synonyms as two or more terms that designate “a unique 

concept.” 

 

For simple NLP tasks, such as named entity recognition, almost any type of terminology can be 

used. Slightly more complex tasks, such as identification of concepts, require the representation 

of synonyms, and therefore limit the resources to terminological systems such as controlled 

vocabularies, thesauri, and ontologies that encode multiple lexical representations in natural 

language [11]. For example, “liver cell” and “hepatocyte” would be represented in the 

vocabulary or ontology as synonyms. Therefore, during Named Entity Recognition (NER) they 

would be classified as the same concept.  

  

In contrast, some NLP tasks require more complex relationships between concepts and limit the 

types of terminological systems that may be used. Examples include word sense disambiguation 

[12], co-reference resolution [13-15], discourse reasoning, and extraction of attributes and values 
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[16]. For example, if “hepatocellular carcinoma” and “liver neoplasm” are both used in a 

document to refer to the same entity, then these terms can be determined to co-refer if a 

relationship is represented in the terminology [17]. 

 

Ontologies can be used to make even more complex inferences and to derive rules necessary for 

semantic interpretation [18, 19] and question-and-answering systems [20]. For this reason, 

ontologies have been of particular interest to researchers developing NLP systems. For example, 

to answer the question: “What role do infectious organisms play in liver cancer?” an ontology 

can be used to perform the query expansion and retrieve related textual information, if the 

ontology contains the following information: 1) a synonym relationship between ‘liver cancer’ 

and ‘hepatocellular carcinoma’; 2) a hierarchical relationship between various hepatitis viruses 

and ‘infectious organisms’; and 3) an etiologic relationship between hepatitis viruses and 

hepatocellular carcinoma.  

1.3 ONTOLOGY DEVELOPMENT AND CURRENT PROBLEMS  

At present, the process of ontology development is largely manual.  One by one, humans must 

add identifiers, their synonyms and relationships.  The financial investment in labor-intensive 

ontology development is huge. The National Human Genome Research Institute has funded the 

Gene Ontology (GO) Consortium since 2001 [21], when the GO was already enjoying 

widespread success.  In 2009, this funding was $3.4 million plus a $1 million supplement [21].  

In 2005, the National Center for Biomedical Ontology (NCBO) received $18.8 million over five 
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years [22].  An effort to build the infectious disease ontology just received $1.25 million over 

four years [23].  The National Science Foundation recently invested >$900,000 over two years in 

an ontology of Hymenoptera [24].  The National Library of Medicine has paid approximately $6 

million per year for the ongoing development of SNOMED-CT since 2007 [25], after an initial 

investment of $32.4 million in 2003 [26]. 

  

One approach to accelerating the manual process of ontology development is to use informatics 

tools to improve and facilitate the interactions among domain experts and ontologists.  An 

important recent development is the NCBO’s BioPotal. BioPortal enables the biomedical 

community to find, comment on, and contribute to biomedical ontologies, thereby facilitating 

interactions among ontology users and developers to increase the value of the ontologies  [27].  

Stanford has developed Collaborative Protégé to allow synergistic ontology development in real 

time by users in different locations [28].  The earliest examples of such technologies date to the 

mid-1990s, with work done by Campbell et al. to facilitate geographically distributed 

development of SNOMED-RT and its successor, SNOMED-CT [29] . 

 

Another approach to reducing resources required in ontology development is the division of 

labor.  The goal is to avoid the wastefulness of recreating multiple representations of the same 

entity, and its synonyms and relationships, in multiple ontologies. Multiple ontologies  result in 

multiple identifiers for entities, one per ontology. The Open Biological and Biomedical 

Ontologies (OBO) Foundry seeks to alleviate duplication of efforts and thereby facilitate 

ontology development by mandating orthogonality of ontologies. That is, it has a well-defined 

goal of having only one representation of an entity in all of the ontologies in the Foundry [30].  
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Already, per Smith et al., this principle has resulted in the consolidation of several ontologies 

[30].  This project also has the goal of increasing interoperability by avoiding the necessity for 

‘mapping’ identifiers among ontologies that represent the same entities (i.e., asserting that 

identifiers from multiple ontologies refer to the same entity). 

 

Lastly, there is a large body of research that describes automating the development and 

maintenance of ontologies using NLP.  Because literature and text documents are major 

mechanisms for reporting new knowledge about a domain, ontological knowledge is usually 

stated explicitly or implicitly within the text. These reference documents serve as important, 

knowledge-rich resources for ontology learning. Since the NLP often uses ontological 

knowledge to interpret the texts (see Section 1.1), it can also help to enrich and enhance the 

linguistic representations of an ontology. Many researchers have been utilizing methods from 

fields of Natural Language Processing (NLP), Computational Linguistics (CL), and Artificial 

Intelligence (AI) to partially or fully automate semantic knowledge extraction. This approach has 

been termed “ontology learning,” and represents a sub-field of Knowledge Acquisition (KA), 

which is the focus of this dissertation.  

1.4 KNOWLEDGE ACQUISITION AND ONTOLOGY LEARNING 

Knowledge Acquisition (KA) is a broad field that encompasses the processes of extracting, 

creating, and structuring knowledge from experts and heterogeneous resources [31]. Semi-

automated and automated approaches to KA utilize data derived from structured, semi-
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structured, or unstructured data sources, and result in many different types of knowledge 

representation [32]. Ontology learning (OL), however, is limited to the extraction of ontological 

elements from knowledge-rich resources. A further delineation is made for ontology learning 

from text, which builds on a large body of work within the fields of NLP, CL, and AI [33, 34].  

Biomedicine text resources for ontology learning from text include scientific literature and 

clinical documents, many of which are already available in electronic format. Additionally, 

ontology learning from text can be further subdivided by task based on the ontological element 

learned from the resources [33]. These tasks include term extraction, synonym extraction, 

concept extraction (both taxonomic and non-taxonomic), relationship extraction, and axiom 

extraction. An axiom is often defined as a set of logical assertions (including rules) used to 

constrain information in an ontology.  

 

Although there continues to be dissent over whether instances (individuals) should be included in 

biomedical ontologies at all, many NLP tasks cannot be accomplished without knowledge of 

instances and their relationship to the corresponding ontology classes. These tasks include 

information extraction, co-reference resolution, and question answering. Many researchers in KA 

and OL consider learning of new instances represented in the ontology to be part of ontology 

learning [33], as encompassed by some combination of term extraction, synonym extraction, and 

concept extraction, depending upon the way knowledge is modeled in the ontology.  

 

For this dissertation, I choose to define instance learning as a task of ontology learning. I 

recognize that this task may not be relevant to all ontology engineering efforts. As previously 

described, the broader field of KA includes research that is easily applied to some of these tasks 
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(particularly term and synonym extraction). Therefore, for these tasks, I have not strictly limited 

our review to those methods that could be labeled as “ontology learning.” For a more complete 

treatment of the general field of KA and automated approaches, recent review articles and book 

chapters [31, 35-37] can provide background information for a better understanding of this field. 

 

I have chosen to exclude axiom learning from the ontology learning tasks reviewed, because 

there has been so little relevant work done in this area. 

1.5 NATURAL LANGUAGE PROCESSING APPROACH FOR ONTOLOGY 

LEARNING 

For several decades, fields of studies such as CL, NLP, AI, and Machine Learning (ML) have 

been developing methods and algorithms for information retrieval and extraction from free-text 

knowledge resources. Some of these methods have been used and tested for ontology learning 

from text and have shown promising results. In general, these methods can be categorized into 

symbolic, statistical, and hybrid approaches (Table 1).  

 

The symbolic approach utilizes linguistic components to extract information from text. For 

instance, noun phrases are considered to be linguistic representations of concepts and are often 

used to represent concepts in an ontology. Linguistic rules describing the relationships between 

terms in the text can also be used to identify conceptual relationships within an ontology. As first 

explored by Hearst [38], the most common symbolic approach is to use lexico-syntactic pattern 

(LSP) matching. LSPs are surface relational markers that exist in a natural language. In the 
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phrase “systemic granulomatous diseases such as Crohn's disease or sarcoidosis,” the words 

“such as” can help us infer that “systemic granulomatous diseases” is a hypernym of “Crohn's 

disease” and “sarcoidosis.” Another symbolic approach is to use the internal syntactic structure 

of component terms. Concepts are often represented using compound or multi-word terms. In 

general, a compound term is more specific than a single compositional term. The basis of this 

method is the assumption that a compound term is likely a hyponym of a single term. Using this 

approach, the term “prostatic carcinoma” can be considered to be a hyponym of “carcinoma.” It 

is also possible to use multiple symbolic approaches at the same time.  For example, the LSP 

method can be combined with information from compound terms.  

 

The statistical approach, which has also been labeled as the “corpus-based approach,” 

utilizes large corpora of text data. Harris [39] popularized this approach with his distributional 

hypothesis, advancing Firth’s notion that “a word is characterized by the company it keeps” [40].  

Building on Harris’s theory, it became common practice to classify words not only on the basis 

of their meaning, but also on the basis of their co-occurrence with other words. The advantage of 

this method is that it requires minimal prior knowledge of the corpus and can be generalized to 

other domains. However, a large corpus of text is needed for reliable information to be obtained. 

Statistical techniques often utilize different linguistic principles and features for statistical 

measurements to extract semantic information. One of these linguistic principles is known as 

selectional restriction [41],  a limitation on what words can logically accompany particular words 

in a sentence. For example, the problem with the sentence “A rooster laid an egg” is that a 

rooster is a male, and thus cannot lay an egg. Therefore, it is incorrect to use the word “rooster” 

with the word “egg” in this sentence. 
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Statistical methods (machine learning) can be categorized into two major subsets: unsupervised 

clustering and supervised classification. The clustering technique for extraction is based on a 

similarity measure, while the supervised classification attempts to treat the knowledge extraction 

problem as a classification process. The following paragraphs describe the characteristics of 

these two techniques. 

 

Clustering is useful for two purposes: first, the similarity measurements can provide information 

about the hierarchical relationships of concepts for relationship extraction; second, the 

identification of distinct clusters of similar terms can aid in identifying concepts and their 

synonyms. The extraction techniques for clustering similar terms are based on definitions of a 

context within a given corpus. In general, the context of the target word refers to the surrounding 

linguistic elements. The precise definition of context can vary somewhat depending on the scope. 

For example, the “first order word context” defined by Grefenstette [42] utilizes information 

only in the immediate vicinity of the target word [43, 44]. In contrast, the “second order word 

context” utilizes syntactic information, such as noun-modifiers [45], dependency triples [46], 

verb-arguments [47], and preposition structures [42, 48]. When utilizing second order context 

similarity to cluster similar words, semantically similar words are expected to cluster even 

though they would not typically appear next to each other. For example, the synonyms ‘tumor’ 

and ‘tumour’ would cluster together because they are likely to appear in similar contexts, even 

though they would not be found together. Context can be further defined as the entire document. 

In this approach, concepts are represented by a concept signature, which is a vector of co-
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occurring terms within a set of domain-specific documents [46, 49]. Similarity between concepts 

can then be calculated by comparing concept signatures. Another approach that utilizes the 

context of the entire document is the association rule mining technique for concept relationship 

discovery [50-52]. This technique will be described later in section 2.1.3.2. 

 

Supervised classification, a subcategory of machine learning, is another technique used for many 

NLP tasks, such as POS tagging, chunking, and co-reference resolution. Most applications of this 

type of machine learning to ontology learning from text focus on the relatively simpler task of 

new concept identification, and use supervised methods [53-57]. Using machine learning 

methods to identify the precise taxonomic location for a concept is a much more difficult task for 

fully automated systems [58-61]. 

 

There are limitations to both symbolic and statistical approaches. Despite the widely accepted 

belief that statistical methods for ontology learning provide better coverage and scalability than 

symbolic methods, Basili [62] points out that statistical methods only provide a probability. The 

output is often represented by words, word strings, or word clusters with associated probabilities. 

The conceptual explanation of the results is not provided. Ultimately, a human analyst must 

make sense of this data, because, at present, full automation seems unachievable. Therefore, 

many researchers have explored a hybrid approach that has the potential to combine the 

statistical and the symbolic approaches for knowledge extraction. The following section, 2.0, 

includes my review of existing NLP methods and systems on knowledge acquisition and 

ontology learning. 
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2.0  NATURAL LANGUAGE PROCESSING METHODS AND SYSTEMS FOR 

BIOMEDICAL ONTOLOGY LEARNING  

This section is devoted to the review of prior research on NLP approaches and systems that apply 

to ontology learning from text and are based on associated learning tasks: synonym and concept 

extraction (Section 2.1); taxonomic relationship extraction (Section 2.2); non-taxonomic 

relationship extraction (Section 2.3); and generation of ontologies de novo (Section 2.4). The 

task of term extraction (instance extraction) is encompassed by concept or synonym extraction 

and not separately considered. In many cases, a particular method, especially the statistical 

method, can be used for more than one task. For the purposes of this review, I have classified 

each paper by the task considered most salient, and other tasks that may be accomplished when 

are relevant to this topic. Because the focus is on describing approaches and algorithms, I have 

further defined approaches by primary methodology type (e.g., LSP and clustering) and 

distinguished approaches that are primarily symbolic from those that are primarily statistical, 

noting those cases in which the approaches overlap. 

 

First, ontology learning methods and algorithms are reviewed (Section 2.1) and categorized by 

ontology learning task and by approach (Table 1). For each of these categories, I reviewed 

related papers that are prominent in the field of ontology learning, focusing on algorithmic 

methods and the advantages and disadvantages of each method. Second, I provided examples of 
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several state-of-the art systems that use these various approaches to support ontology learning 

from text (Section 2.2).  
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Table 1. Ontology learning task and their corresponding learning methods 

Task Primary Method Secondary Method Authors 

Synonym and 
Concept extraction 

  

 Compound noun information Hamon [63] 
Symbolic  Lexico-syntactic patterns (LSP) Downey [64] 
 LSP + compound noun information Moldovan, Girju [65] 
  Church [43] 
    Smadia [44] 
 Clustering  Grefenstette [66], Hindel [47] 
  Geffet, Dagan [67] 
  Agirre [49] 
Statistical  Faatz, Steimetz [68] 
   Collier [53] 

 

 Hidden Markov Model (HMM) Bikel [69] 
  Morgan [54] 
  Shen [55] 
 Support Vector Machine (SVM) Kazama [56] 
   Yamamoto [57] 

  Conditional Random Fields (CRFs) Chanlekha [70] 

Taxonomic 
relationship 
extraction 

    Hearst [38] 
  Caraballo [71] 
 LSP Cederberg, Widdow [72] 
Symbolic   Fiszman [73] 
  Snow [74] 
  Riloff [75] 
 Compound noun information Velardi [76] Cimiano [77] 
  Rinaldi [78] 
    Morin [79] 
  Bodenreider [80] 
  Ryu [81] 
Statistical Clustering  Alfonseca, Manandler [59] 
 Machine learning Witschel [82] 

  
Non-taxonomic 
relationship 
extraction 

  

    Berland [83] 
Symbolic  LSP Sundblad [84] 
    Girju [85] 
  Nenadić, Ananiadou [86] 
Statistical Co-occurring information  Kavalec [87] 
    Gulla [50] 
 Association rule mining Chefi [51] 
   Bodenreider [52] 

Ontology generation 
(combining all tasks)  

Statistical Dependency triples Lin [46] 
 Nearest neighbor clustering Blaschke, Valencia [88] 
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2.1 NATURAL LANGUAGE PROCESSING METHODS 

2.1.1 Synonyms and concepts extraction 

Extraction of synonyms and concepts has been approached using a variety of methods, because, 

in many cases, a single method alone cannot distinguish between these ontological elements. In 

other cases, a particular method that has been used for one of these tasks could easily be used for 

another learning task. Thus, I consider approaches in this category along a spectrum of 

complexity, starting with symbolic methods designed primarily to extract synonyms. 

2.1.1.1 Symbolic methods 

 
Compound noun information provides a simple symbolic method for synonym identification. 

Hamon et al. [63] used a general purpose thesaurus as the knowledge resource, along with the 

following three heuristics: (1) IF two compound terms’ noun heads are identical and have 

modifiers which are synonyms; or (2) IF two noun heads are synonyms and have modifiers 

which  are identical; or (3) IF two noun heads are synonyms and have modifiers which are also 

synonyms, THEN the two compound terms are synonyms. To use a biomedical example: the 

terms “hepatic tumor” and “hepatic tumour” can be considered synonyms because the modifiers 

are identical and the head nouns “tumor” and “tumour” are synonyms. Working with a corpus of 

engineering documents, Hamon et al. evaluated this method and found that 37% of the extracted 

synonym pairs were correct. The first two heuristics were most effective, producing 95% of the 

total of correct synonyms. 
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Another approach for extracting synonyms and concepts relies on the application of LSP, often 

using a bootstrap method. In this case, a set of seed concepts or patterns is used to extract new 

concepts or patterns, initiating a cycle of discovery and extraction. An important problem is to 

control the quality of the extraction, using some discriminating performance metric. Downey and 

colleagues [64] illustrated  this approach, which they defined as the Pattern Learning algorithm 

(PL). The algorithm started with a set of seed instances generated by domain-independent 

patterns (e.g. Hearst patterns). For each seed word in the set, they retrieved more instances that 

contained the seed word from the WWW. Patterns were obtained by creating a window of w 

words around the seed word (w was set to 4 in their experiment), which acted as a threshold for 

selecting pattern candidates. In the first step, patterns with relatively high estimated recall and 

precision were selected, and these patterns were used to extract new concept candidates from the 

WWW in order to improve the recall. Use of the selected patterns boosted recall from 50% to 

80%. In the second step, they used Turney’s [89] Pointwise Mutual Information (PMI) in order 

to improve the precision. PMI is a statistical measure of the strength of association between an 

extraction and discriminator (pattern). PMI is calculated as Counts (D+E) / Counts (E) where D 

is the pattern, E is the extraction and D+E is the pattern with the extraction as the instance 

placeholder. Downey and colleagues used the PMI scores for a given extraction as features in a 

Naïve Bayes classifier, to determine whether the pattern should be used as an extractor. For 

example, in the pattern “city of <CITY>” D represents the pattern “City of <X>”, while E 

represents the various instances extracted as “<CITY>”. This pattern has a high PMI because 

“City of” rarely extracts instances that are not cities, and the cities extracted are frequently 

associated with this pattern. In contrast, the pattern “<CITY> hotels” has a low PMI because 

many other terms (such as “budget”) are also extracted. The classification step is performed to 
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improve accuracy because a single threshold will not work for every domain. Using this method 

of discrimination, Downey increased precision from 70% to 87%. This method seems highly 

amenable to applications in the biomedical domain, as we often observe patterns that have high 

PMIs. For example, “<protein> activates <X>” will extract either a “Protein” or “Process” in the 

biomedical domain (e.g. “Fyn activates Cbl,”; “Bcl-2 activates apoptosis”). The method could be 

used to extract terms which may be either new synonyms or new concepts, but it is unlikely to 

distinguish between them. 

 

Combining both compound noun information and LSP matching, Moldovan and Girju [65] 

developed an approach to enrich domain-specific concepts and relationships in WordNet. The 

source for acquiring new knowledge was a general English corpus, augmented by other lexical 

resources such as domain-specific corpora and general dictionaries. The user provided domain-

specific seed concepts, which were used to discover new concepts and relationships from the 

source. The method was tested on five seed concepts selected from the financial domain: 

“interest rate”; “stock market”; “inflation”; “economic growth”; and “employment.” Queries 

were formed with each of these concepts, and a corpus of 5,000 sentences was extracted 

automatically from the Internet and TREC-8 corpora. From these extractions, they discovered a 

total of 264 new concepts not defined in WordNet, of which 221 contained the seed concepts and 

43 are other related concepts. Compound noun information and LSP can also be used to extract 

taxonomic relationships. Moldovan and Girju used this combined method to discover 64 new 

relationships that linked these concepts with each other or with other WordNet concepts. 
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2.1.1.2 Statistical methods 

(a) Methods that use clustering approaches 

 

Clustering methods have been commonly applied to concept and synonym extraction, because 

text corpora provide a great deal of data for computing similarity measures. These methods may 

be able to distinguish synonyms from new concepts based on the degree of statistical similarity. 

Because these measures can be compared to the existing ontology, these methods can also be 

used to suggest placement of the concept in the hierarchy. 

 

One of the first to suggest the clustering approach was Church [43], who proposed methods to 

measure word association based on the information theoretic notion of mutual information. In 

this approach, the association ratio of two words (x, y) is calculated as the probability of 

observing x and y in the same context (the joint probability) divided by the probability of 

observing x and y independently (the product of the marginal probabilities).  If there is a genuine 

association between x and y, then the joint probability P(x, y) should be larger than chance P(x) 

P(y). In this case, context is the immediate vicinity of a given word in a window. Church 

suggested that smaller window sizes might identify fixed expressions (idioms) and other 

relationships that hold over short ranges, while larger window sizes might highlight semantic 

concepts and other relationships over a larger scale.  

 

Smadia [44] further extended Church’s proposal by using Church’s method as the first stage and 

adding two more stages to raise the precision. The two added stages are both filtering functions. 

One of them calculated the histogram of the frequency of the target word (x) relative to position 
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of the collocated word (y) with a five word window before and after the target. If the histogram 

was flat, the association between x and y was rejected. The other filter calculated which spike to 

pick if more than one spike appeared in the histogram. These two additional functions eliminated 

the noise introduced by non-specific associations.  

 

A similar approach is used in Grefenstette [66] and Hindle [47], both of whom describe the 

clustering of terms according to the verb-argument structures they display in the text corpus. The 

approach termed “selectional restriction” exploits the restrictions on what words can appear in a 

specific structure. For example, wine might be “drunk,” “produced,” or “sold,” but not “pruned.” 

Using 6 million words in the 1987 AP news corpus, Hindle extracted a set of Subject-Verb-

Object triples and calculated the mutual information between verb-noun pairs. Using this 

approach, Hindle found that the nouns with the highest associations as objects of the verb 

“drink” were “beer,” “tea,” “Pepsi,” “wine,” and “water,” etc. Then, he calculated the similarity 

between nouns by considering how much mutual information these nouns shared with the verbs 

in the corpus. The similarity between nouns with high associations with the same verb may be 

even more pronounced in biomedical domains, in keeping with Harris’s sublanguage theory [90, 

91], as meanings of a term and vocabularies are further restricted. For example, in the 

biomolecular domain, the predicate “interaction” includes two subcategories, “activate” and 

“attach.” For the semantic groups "protein" and “process,” “protein” is constrained to co-occur 

with the “activates process” pattern, rather than the "attaches process" pattern. Therefore, the 

Subject-Verb-Object triple approach may prove to be very effective for similar-term extraction. 

Examples of the effective use of this technique in biomedical domains include Friedman’s 

MedLEE [92] and Sager’s Linguistic String Project (LSP) system [93].  
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Geffet and Dagan [67] further explore the relationship between the distributional characterization 

of words, proposing two new hypotheses as refinements to the distributional similarity 

hypothesis. They claimed that distributional similarity captures a somewhat loose notion of 

semantic similarity, but in the case of tight semantic relationships (for example, synonym 

relationships), the distributional similarity measure may not be sufficient. Particular attention is 

paid to this type of semantic relationship. They describe a “lexical entailment relationship” as a 

relationship between a pair of words such that the meaning of one word sense can be inferred 

through substitution with the paired word. The refined versions of the distributional similarity 

hypothesis for lexical entailment inference are as follows: First, let “vi” and “wj” be two word 

senses of the words v and w, correspondingly, and let “vi => wj” denote the (directional) 

entailment relation between the two words senses; further, assume that they have a measure that 

determines the set of characteristic features for the meaning of each word sense. From this step, 

1) if “vi => wj”, then all the (syntactic) characteristics of “vi” are expected to appear with “wj”, or 

2) if all the syntactic characteristic features  of “vi” appear with “wj”, then we expect that “vi => 

wj”.  An empirical analysis performed on a selected sample to test the validity of the two 

distributional inclusion hypotheses revealed that the first hypothesis completely fit the data, 

while the second hypothesis held 70% of the time. Geffet and Dagan further employed the 

inclusion hypotheses as a method to filter out non-entailing word pairs, with the result that 

precision was improved by 17% and F1 was improved by 15% over the baseline. 
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By incorporating information from an entire document, Agirre [49] exploited a topic signature 

approach for concept clustering to enrich WordNet. He showed that topic signatures could be 

used to disambiguate word senses, a common problem in using text corpora for ontology 

learning. His work followed Lin and Hovy [46], who originally developed this approach for text 

summarization.  First, Agirre composed a query using the WordNet concept with its synset to 

extract documents from the WWW. Each document collection was used to build a topic 

signature for each concept sense. The topic signature for a concept sense, derived from WordNet, 

was a set of words from a collection of selected documents that revealed a higher frequency of 

the concept sense when compared with the the frequency of concept sense in the remaining 

documents. For a given new concept candidate, the topic signature was obtained and compared 

to the signature calculated for the concept sense, using the chi-square statistic. The word sense 

with the highest chi-square score was the chosen sense for that concept candidate. 

 

Faatz and Steinmetz [68] developed a sophisticated method to utilize distances inherent to an 

existing ontology in order to optimize enrichment. The method utilized a comparison between 

the statistical information of word usage in a corpus and the structure of the ontology itself, 

based on the Kullback-Leibler divergence measure. Although Faatz and Steinmetz also used 

collocation information for the similarity measure, their method differed in that they defined a 

parameterization by assigning weights to each word collocation feature so that the parameters 

used in the calculation could be optimized. One interesting advantage of this approach is that it 

might preferentially select candidates which approximate the level of abstraction for a given 

ontology. 
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(b) Methods that use a supervised machine learning approach 

 

Supervised classification machine learning methods can also be used for concept and synonym 

extraction. Collier et al. [53] described how to extract Molecular Biology terminology from 

MEDLINE abstracts and texts using Hidden Markov models (HMM). They trained the HMM 

with bigrams based on lexical and character features in a relatively small corpus of 100 

MEDLINE abstracts that had been marked up by domain experts with eleven term classes, such 

as “proteins” and “DNA.” Word features used for their HMM were based on Bikel [69] and 

included 23 features, such as Digital Number, Single Capitalized Letter, Greek Letter, 

Capitalized and Digits, Hyphen etc. The testing data consisted of 3,300 MEDLINE abstracts 

from a subdomain of molecular biology, retrieved using the query terms human, blood cell, and 

transcription factor. Using the HMM classifier, they extracted named entities related to the 

eleven classes, and determined the accuracy of classification of the named entities, using F-score 

as their metric. The method performed adequately, with an average F-score of 73%. 

  

Morgan [54] further extended Collier’s approach, developing a method  appropriate for learning 

new instances without human-annotated training data. Considering such hand-annotation to be a 

limitation of Collier’s method, Morgan leveraged an existing FlyBase resource to provide 

supervision. The FlyBase model database was created by human curation of published 

experimental findings and relations in the Drosophila literature. The resource contains a list of 

genes, related articles from which the gene entries were drawn, and a synonym lexicon. Morgan 

applied a simple pattern matching method to identify gene names in the associated abstracts, and 

filtered these entities using the list of curated entries for that article. This process created a large 
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quantity of imperfect training data in a very short time. Using a process similar to Collier, an 

HMM was trained and used to extract relevant terminology. The resulting F-score was 75%, 

making it quite comparable to that of Collier’s report. This method has the advantage of being 

rapidly transferable to new domains wherever similar resources exist. 

 

Shen et al. [55] used feature selection to identify lexical features that can capture the 

characteristics of a biomedical domain. Using HMM, they determined the additive benefit of (1) 

simple deterministic features such as capitalization and digitalization, (2) morphological features 

such as prefix/suffix, and (3) part-of-speech features, and compared these features alone as 

compared to adding (4) semantic trigger features such as head nouns and special verbs. Head 

noun trigger features enable classification of n-grams. For example, the n-gram “activated human 

B-cells” would be classified as “B-cells.”  Similarly, special verb trigger features are verbs such 

as “bind” and “inhibit” that prove useful in biomedical documents for extracting interactions 

between entities. The GENIA corpus (Ver. 1.1) [94], a human-annotated corpus of 670 

biomedical journal abstracts taken from the MEDLINE database, and which includes annotations 

of 24 biomedical classes by domain experts, was used as the training and evaluation corpus.. The 

overall F-score was 66.1%, which is 8% higher than that of Kazama’s work [56], which used the 

identical data set. Simple deterministic features only achieved an F-score of 29.4%. Addition of 

morphological features increased the F-score to 31.8%. Addition of POS features provided the 

largest boost, increasing the F-score to 54.3%. Head nouns provided an additional improvement, 

leading to an F-Score of 63.0%, but special verb trigger features did not increase the F-score at 

all. They speculated that past and present participles of some special verbs often play adjectival 

roles within the biomedical terms, and may have influenced the classification. For example, in 
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the phrase “IL-10 inhibited lymphocytes,” the term “inhibited” is a past participle, linking two 

terms that are not taxonomically related. This may limit the accuracy of this method for 

taxonomic classification, but suggests that other kinds of ontological relationships could be 

derived using this method. 

 

Support Vector Machines (SVM) have also been utilized for biomedical Named Entity 

Recognition (NER) and subsequent classification. Both Kazama [56] and Yamamoto [57] used 

the GENIA corpus as training data for their work with SVM. Kazama formulated the named 

entity recognition as a classification task, representing each word with its context as three simple 

features (termed “BIO”) to facilitate the SVM training. B indicates that the word is the first word 

in the named entity, I indicates that the word is in another position in the named entity, and O 

indicates that the word is not a part of the named entity. B and I can be further differentiated by 

the named entity class annotated within GENIA. Thus, there can be a total of 49 (2N+1) classes 

when the BIO representation is used. For example, in the sentence fragment “Number of 

glucocorticoid receptors in lymphocytes and ...,” where “glucocorticoid receptors” has been 

human-annotated as a member of the class PROTEIN and “lymphocytes” has been human-

annotated as a member of the class CELL-TYPE, the sentence fragment can be represented the 

following way:             

Number  of   glucocorticoid    receptors      in   lymphocytes    and  ... 

O          O            Bprotein           I protein         O          Bcell-type        O 

 

Because the GENIA corpus has a skewed distribution of classes, with the majority of words 

belonging to the O class, Kazama used a splitting technique to subclass all words in the O class 
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based on POS information. This technique not only made training feasible, but had the added 

benefit of improving accuracy, because in NER we need to distinguish between nouns in the 

named entities and nouns in ordinal noun phrases that do not participate in named entities.  

Kazama achieved an average F-score of 54.4% using these techniques.   

 

Yamamoto [57] explored the use of morphological analysis as preprocessing for protein name 

annotation using SVM. He noted that Kazama’s work ignored the fact that biomedical entities 

have boundary ambiguities that are unlike those found in general English. For example, in 

general English, it may be assumed that the space character is a token delimiter. In contrast, 

named entities in biomedical domains are often compound nouns, where the space character is 

not a token delimiter. Consequently, simple tokenization and POS-tagging developed for general 

English may not be adequate for biomedical domains. Kazama proposed a new morphological 

analysis method that identifies protein names by chunking based on morphemes (the smallest 

units determined by morphological analysis) as well as by word features. This method can avoid 

the under-segmentation problem that often exists with traditional word chunking. Thus, if a 

named entity appeared as a substring of a noun phrase, chunking based on noun phrase only 

would fail to identify the named entity because of coarse segmentation. For example, for the 

noun phrase “SLP-76-associated substrate,” use of a traditional chunking method would only 

tokenize “SLP-76-associated substrate.” In contrast, Yamamoto’s morpheme-based chunking 

method would tokenize both “SLP-76” and “SLP-76-associated substrate.”  Using the GENIA 

corpus 3.01, Yamamoto achieved an F-score of 70% for protein names and an F-score of 75% 

for protein names including molecules, families, and domains. These results suggest that this 



40 

 

preprocessing method can be easily adapted to any biomedical domain and improve language 

processing. 

  

Another machine-learning algorithm, the Conditional Random Fields (CRFs) model, has become 

popular for term extraction due to its advantages over Hidden Markov Models (HMMs) and 

Maximum Entropy Markov Models (MEMMs) [95]. Like HMMs and MEMMs, CRFs are 

discriminative probabilistic models that have been applied to a wide range of problems in text 

and speech processing. However, CRFs permit relaxed independence assumptions about the 

random variables and use undirected graphic representations that avoid bias toward states with 

fewer successor states, the major shortfall of HMMs and MEMMs.  For example, Chanlekha and 

Collier [70] used a CRFs-based NER module to learn new concepts of a specific semantic type, 

namely the spatial information of  an event (the predicate that describes the states or 

circumstances in which something changes or holds true ). They treated spatial terms as 

attributes to each event, and tried to identify the spatial location of an event based on three sets 

of features. First, they studied the kinds of textual features that people often use to perceive the 

place where an event in a news report occurred and found eleven, such as: “location of the 

subject” and “location of the object.” Such features can be used to train the CRFs model; for 

example, the location of the subject can often indicate the location of an event.  In this sentence, 

“Head of South Halmahera district health office, Dr. Abdurrahman Yusuf, confirmed the spread 

of diarrhea and malaria in the villages,”.the phrase “South Halmahera district” indicates the 

location of the subject “Dr Abdurrahman Yusuf,” and serves as a clue for the location of the 

event embodied in the phrase “confirmed the spread of diarrhea and malaria.”  Second, the 

researchers discovered that the type of event could also be a beneficial feature for spatial term 



41 

 

extraction. Using an automatic classifier that they developed, Chanlekha and Collier categorized 

the events into three groups: spatially locatable event; generic informational event; and 

hypothetical event. Third, they incorporated the subject type (disease, pathogen, symptom, 

government or medical officers, person, organization, and location) into the feature set. For 

evaluation, they compared the CRFs for spatial term recognition with two other methods (a 

simple heuristic approach and a probabilistic based approach), from a set of 100 manually 

annotated outbreak news articles from the BioCaster corpus. Using n-fold cross validation, they 

found that the CRFs approach achieved the highest performance (precision 86.3%, recall 84.7%, 

and F-score 85.5%) when compared with both a probabilistic approach (precision 69%, recall 

74.3%, and F-score 71.6%) and a simple heuristic approach (precision 52.8%, recall 51.2%, and 

F-score 52%).  

2.1.2 Taxonomic relationship extraction  

Extraction of taxonomic relationships has been extensively studied, using both symbolic and 

statistical methods. 

2.1.2.1 Symbolic methods 

 
One of the earliest attempts to derive relationships from text corpora was described by Hearst 

[38], who used LSPs for semantic knowledge extraction. She hypothesized those linguistic 

regularities such as LSPs within a corpus can permit identification of the syntactic relationship 

between terms of interest, and therefore can be used for semantic knowledge acquisition. To 

prove this hypothesis, Hearst searched for a set of predefined LSPs that indicated general 
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relationships, such as hyponym/hypernym, in Grolier’s American Academic Encyclopedia text.  

Out of 8.6 million words in the encyclopedia, she found 7,067 sentences that contain the pattern 

‘such as,’ from which 330 unique relationships were identified. Of these, 152 relationships 

involved unmodified nouns for both hypernym and hyponym, comprising a total of 226 unique 

words. Using WordNet as a validation resource, Hearst found that 180 of these 226 words were 

present in the WordNet hierarchy, suggesting that these linguistic rules extract meaningful 

information. She concluded that the LSP matching method could be an effective approach for 

finding semantically related phrases in a corpus because a) the method does not require an 

extensive knowledge base; b) a single, specially expressed instance of a relationship is all that is 

required to extract meaningful information; and c) the method can be applied to a wide range of 

texts.  Hearst acknowledged low recall as an inherent problem with this method.  

 

Other researchers have applied the LSP matching approach to other domains and investigated 

methods to increase recall and precision of the LSP approach. Caraballo  [71] addressed the low 

recall problem by applying noun coordination information to the LSP method. Coordination is a 

complex syntactic structure that links two or more elements, known as conjuncts or conjoins. 

The conjuncts generally have similar grammatical features (e.g. syntactic category, semantic 

function). He assumed that nouns in a coordination structure, such as conjunction and 

appositives, are generally related, as has been discussed previously by Riloff and Shepherd [96] 

and Roark and Charniak [97]. For example, in the sentence “Sugar, honey, nutmeg, and cloves 

can increase the flavor of a dish,” the words “nutmeg” and “cloves” share a conjunction 

structure, and are therefore considered to be semantically similar.  If “spice” is known to be a 

hypernym to “nutmeg,” then from the sentence above, it can be inferred that “spice” is also a 
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hypernym to “cloves.”  This linguistic structure can be observed often in biomedical corpora, as 

in the sentence "In the ovine brain, GnRH neurons do not contain type II glucocorticoid (GR), 

progesterone (PR), or α estrogen (ERα) receptors." Thus, if α estrogen receptor (ERα) is a steroid 

receptor in the ontology, we can define GR and PR as steroid receptors as well. 

 

Cederberg and Widdows [72] described two other methods that can be added to the extraction 

process to increase recall and precision: a graph-based model method and latent semantic 

analysis. In the first method, they used a graph-based model of noun-noun similarity learned 

automatically from coordination structures. This method is very similar to Caraballo’s method 

using coordination information. But in contrast to Caraballo’s hierarchy-building method, 

Cedeberg used an alternative graphic-based clustering method developed by Widdows [98], in 

which nouns are represented as nodes and noun-noun relationships are represented as edges. In 

Cederberg’s graph, the edges between two nouns are connected if they appear in a coordination 

structure. The algorithm extracts similar words when a seed word is provided by the user, where 

the seed word is normally a known hyponym of one category. For example, if “clove” is the seed 

word and is a hyponym of “spice,” then all the words that appear in the coordination structure 

will be hyponyms of “spice” as well. This method obtained additional hypernym-hyponym pairs 

extracted by LSPs and improved recall five-fold.  

 

In the second method, Cederberg and Widdows used latent semantic analysis [99, 100] to filter 

the LSP-extracted hyponyms. Latent semantic analysis is a statistical method that can measure 

the similarity of two terms based on the context in which they appear. Each term’s context is 

represented by a vector of words that co-occur most frequently with the target term. Similarity 
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between two terms was calculated using the cosine of the angle between the two vectors. A 

hyponym and its hypernym extracted with the LSP matching method should be very similar. 

Therefore, by establishing a threshold, term pairs with low scores can be filtered and excluded 

from further consideration. Using this method, the researchers increased precision of LSP 

matching from 40% to 58%.  

 

Within the biomedical domain, Fiszman et al. [73] have shown that the Hearst LSPs can be used 

for hypernymic propositions to improve the overall accuracy of the SemRep semantic processor 

developed by Rindflesch and Fiszman [101, 102]. SemRep uses syntactic analysis and structured 

domain knowledge such as the SPECIALIST lexicon and UMLS Semantic Network to capture 

semantic associations in free-text biomedical documents such as MEDLINE. For example, given 

the sentence “Alfuzosin is effective in the treatment of benign prostatic hyperplasia,” SemRep 

produces the semantic predication: “Alfuzosin-TREAT-Prostactic Hypertrophy, Benign.”  

SemSpec is an extension to SemRep that utilizes LSPs such as appositive structures and Hearst 

patterns (e.g. “including,” “such as,” and “especially”) to identify hypernymic propositions. 

Once a hypernymic proposition is established, the more specific term can replace the more 

general terms in a semantic association that has been captured by SemRep. For example, for the 

sentence “Market authorization has been granted in France for pilocarpine, an old 

parasympathomimetric agent, in the treatment of xerostomia,” SemRep produces 

“Parasympathomimetric Agents-TREATS-Xerostomia” and captures the hypernymic position 

“Pilocrapine-ISA-Parasymphomimetic Agents.” From this extraction, a more accurate semantic 

association, “Pilocrapine-TREATS-Xerostomia,” can be inferred. Using a manually tagged set of 

340 sentences from MEDLINE citations that were limited to the UMLS Semantic Network 
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predicate TREATMENT, Fizman et al. found that SemSpec increased SemRep’s recall by 7% 

(39% to 46%) and precision by 1% (77% to 78%).  

 

The LSP matching method can be further improved by using machine learning methods to learn 

LSP patterns. Snow [103] represented the Hearst patterns using a dependency parse tree, and 

found all features along the path for each LSP. These features were used to train a classifier. 

Snow not only rediscovered the Hearst patterns, but also identified several new patterns. Riloff 

[75] developed the Autoslog-TS system, which uses a bootstrapping method for generating LSPs 

from untagged text. This system is an extension of her earlier Autoslog work [104] and has been 

further extended in Thelen and Riloff’s [105] Basilisk system for semantic lexicon extraction. 

The input for Autoslog-TS was a text corpus and a set of seed words that belonged to six 

semantic categories (building, event, human, location, time, and weapon). The seed words were 

generated by sorting all words in the corpus based on frequency, and then manually assigning 

high frequency words to a category. For example, “bomb,” “dynamite,” “guns,” “explosives,” 

and “rifles” are seed words for “weapon.” Seed words were then used to extract contiguous 

LSPs, and the resulting patterns were ranked based on their tendency to extract known category 

terms. The top patterns were used to extract other terms, which were then scored; those with high 

scores were added into the semantic lexicon. Using a bootstrapping method, this process was 

then repeated multiple times. The MUC-4 corpus was used to evaluate performance of both 

Autoslog and Autoslog-TS pattern extraction for aiding semantic information extraction. 

Autoslog achieved 62% recall and 27% precision, while Autoslog-TS achieved 53% recall and 

30% precision.  The difference between Autoslog and Autoslog-TS is that Autoslog-TS creates a 

pattern dictionary with an unannotated training text, whereas Autoslog uses an annotated text and 
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a set of heuristic rules. This method has some specific advantages in biomedicine, because of the 

breadth of resources available for obtaining seed words for a particular semantic category. For 

example, “ATP,” “kinase,” “gene transcription,” and “binding site” are seed words for “cell 

activation,” and can be obtained from the UMLS or existing biomedical ontologies. Markó and 

Hahn [106] have developed a methodology for automatic acquisition and augmentation of a 

multilingual medical subword thesaurus using seed terms from the UMLS Methathesaurus. 

 
Another linguistic technique for relationship extraction uses compound noun information. For 

example, Velardi [76] and Cimiano [77] used the following head matching heuristic for 

hyponym term discovery: IF term A and term B head nouns are the same and term A has an 

additional modifier THEN  term A is a hyponym of term B. Using a tourism domain corpus, 

Velardi achieved 82% precision while, Cimiano achieved 50% precision. However, the 

precisions obtained from the different studies are not directly comparable due to the different 

corpora used. 

 

Rinaldi  [78] further expanded Hamon’s work, by using Hamon’s method to extract all the 

synsets for each concept and adding the following simple heuristic to organize these synsets into 

a taxomomic hierarchy: IF term A is composed of more individual terms than term B, THEN 

term A is a hyponym of term B. A manual expert evaluation found 99% accuracy for synonym 

discovery and 100% accuracy for hyponym links. Morin et al. [79] explored to add a hypernym 

relationship by mapping one word terms to multiword terms. For example, given a link between 

“fruit” and “apple,” a relationship between the multi-word terms “fruit juice” and “apple juice” 

can be added. This is often the case in biomedical domains as well; for example, given a 

relationship between "nucleotide" and "ATP," relationship between the multiword terms 
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"nucleotide transport" and "ATP transport" can be added. Morin et al. based their work on 

several heuristics: IF (1) two multi-terms share the same head noun (juice); and (2) the 

substituted words have the same grammatical function (modifiers); and (3) the substituted words 

are semantically similar (“apple” and “fruit”), THEN the two terms are related. For the third 

clause of the heuristic, semantic information would come from an existing semantic resource, 

such as an ontology.  For their knowledge resource, Morin et al. used the Agrovoc Thesaurus, a 

multilingual thesaurus in the agriculture domain managed by the Food and Agriculture 

Organization of the United Nations. This method could potentially be very effective in the 

medical domain, where multiword terms like “diabetes mellitus” and “insulin-dependent diabetes 

mellitus” are quite common and are likely to express taxonomic relationships.  

 

Bodenreider and colleagues [80] explored ways to use modifier information to establish groups 

of similar terms.  First, a group of compound nouns was collected from MEDLINE citations. 

Terms extracted from MEDLINE were compared to current UMLS concepts in an attempt to 

discover concept candidates for the UMLS Methathesaurus. Each component noun was then 

parsed into a modifier and head noun using an underspecified syntactic analysis [101] and the 

SPECIALIST Lexicon. The component noun became a concept candidate if: 1) the head noun of 

the component noun was found in the Methathesaurus; and 2) concepts existing in the 

Methathesaurus had the same modifier. The concept candidate was incorporated into the 

Methathesaurus based on the head noun’s position in the hierarchy.  From three million 

randomly selected MEDLINE component nouns, 125,464 were captured as concept candidates 

for Methathesaurus. Evaluation of a sample of randomly selected concept candidates determined 

how well these candidates could be incorporated into the Methathesaurus using head noun 
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matching.  The authors defined three levels of relevance: the highest level, “relevant,” was used 

for cases where the addition of the candidate to the terminology was relevant even if there was a 

more specific concept available. The intermediate level, “less relevant,” was used for cases 

where the parent selected for the candidate was too general to be informative. The lowest level, 

“not relevant,” was used for cases where the parent selected for the concept was irrelevant. Of 

the 1,000 randomly selected candidates, 834 were classified as “relevant,” 28 were classified as 

“less relevant,” and 138 were classified as “irrelevant.”  

 

Investigating an alternative approach to heuristics, Ryu [81] explored a mathematical method for 

determining hierarchical position using ‘specificity’ as defined in the field of information theory 

[107], where specificity of a term is a measure of the quantity of domain-specific information 

contained in the term. In this method, the higher the specificity of the term, the more specific the 

information it contained (further details regarding this measure are discussed in section 3.2). A 

weighting scheme excluded terms that appeared frequently as modifiers but provided no 

additional information. The taxonomic position of the term was then determined based on the 

specificity. For example, “insulin-dependent diabetes mellitus” had a higher specificity, and thus 

could be positioned as a child of “diabetes mellitus.” Using a flat collection of terms obtained 

from a sub-tree of MeSH and a set of journal abstracts retrieved from the MEDLINE database, 

the authors generated a hierarchy for the MeSH terms, and compared it to the MeSH hierarchy. 

The precision for ontological hierarchy placements was increased from 69% (for a word 

frequency baseline method) to 82%.  
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2.1.2.2 Statistical methods 

 
Clustering and machine learning methods have also been applied to the extraction of 

relationships, albeit less frequently and with less success than the extraction of concepts. 

Alfonseca and Manandhar [59] followed Agirre’s [49] topic signature technique. Through a top-

down search, starting with the most general concept in the hierarchy, the new concept was added 

to the existing concept whose topic signature was the closest to its own. Several experiments 

with seven general target words were conducted.  The task was to place these words into the 

right category in the ontology; the best result was an 86% accuracy. The researchers concluded 

that it was better, for this task, to consider a smaller context of highly related words to build the 

signature rather than a larger context that included more words. 

 

Another group led by Witschel [82] extended a decision tree model for taxonomy enrichment. 

They first identified potential new concepts using a combination of statistical and linguistic 

methods [108], termed “semantic description,” that is based on co-occurrence within German 

language texts (such as newspapers, fiction, etc.). Witschel’s ‘semantic description’ method is 

similar to Alfonseca’s ‘distributional signature’ [58].  Witschel’s group evaluated its method 

using a general-German language text to enrich a sub-tree of GermaNet (the German equivalent 

to WordNet). Two measures were computed: accuracy of the decisions (the percentage of nodes 

that were correctly classified as hypernyms); and learning accuracy [61], which takes into 

consideration the distance of the automated placement from the expected location in the tree. The 

accuracies for enriching a furniture sub-tree and a building sub-tree were 11% to 14% 

respectively, findings comparable to Alfoneca’s results. The learning accuracy reached 59%, a 
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result that was significantly better than Alfoneca’s. Again, the absence of a common reference 

standard for testing makes it difficult to directly compare these results. 

2.1.3 Non-taxonomic relationships extraction  

Extraction of non-taxonomic relationships, i.e. non-IS-A relationships, has also been studied, and 

has been considered to be the most difficult ontology learning task. Both symbolic and statistical 

methods have been employed. 

2.1.3.1 Symbolic methods 

 
The LSP method has been used by Berland [83], Sundblad [84], and Girju [85] for part-whole 

(meronymic) relationship discovery. Berland combined both the LSP method and statistical 

methods and used them on a very large corpus. The output of the system was an ordered list of 

possible parts for a set of six seed “whole” objects. Berland achieved 55% accuracy.  

 

Nenadić and Ananiadou [86] used three symbolic approaches to discover terms from MEDLINE 

abstracts: 1) an LSP-based similarity measure (SS) using Hearst patterns, coordination patterns, 

apposition patterns, and anaphora; 2) a component noun-based similarity measure (called the 

“lexical similarity measure,” or LS); and 3) a contextual pattern-based similarity measure. The 

third approach, which was considered novel by the author, learns contextual patterns by 

discovering significant term features. The procedure is performed as follows and illustrated using 

a ATP example: First, for each target term, its context constituents are tagged with POS tags and 

grammatical tags. These tags became the context pattern for the target term. For example, in the 
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phrase “ATP binds heterodimers with high affinity,” “high affinity” is the target term, and the 

left context pattern (CP) is “V: bind TERM: rxr_heterodimers PREP:with.” Second, all the CPs 

for each term are collected, and a normalized CP-value is calculated in order to measure the 

importance of the CP. The CP-value is calculated based on the length and the frequency of the 

pattern. The similarity between two terms based on CP is termed “CS (t1, t2),” and is calculated 

based on the number of common and distinctive CPs of the two terms. Since none of the three 

similarity measures is sufficient on its own, the researchers introduced a hybrid term similarity 

measure called “Contextual Lexical Similarity” (CLS), which is a linear combination of the three 

similarity measures with three parameters: CLS(t1, t2) = α CS(t1, t2) + β LS(t1, t2) + γ SS(t1, t2). In 

the final step, the three parameters (α, β, γ) were adjusted automatically by supervised learning 

methods. Nenadić and Ananiadou tested the CLS measure on a corpus of 2008 abstracts 

retrieved from MEDLINE. Random samples of results were evaluated by a domain expert to see 

whether the two similar terms based on CLS measure were indeed similar.  They also used the 

CLS measure for term clustering, and achieved a precision of 70%. 

2.1.3.2 Statistical methods 

 

Kavalec [87] used a statistical approach, supplemented with some linguistic information to 

extract non-taxonomic relationships. In this case, the linguistic feature used was based on the 

assumption that relational information is typically conveyed by verbs at the sentence level. For 

example, the verb “induce” defines a non-taxonomic (associational) relationship between a gene 

and a protein. Therefore, Kavalec first selected verb v and a pair of concepts that co-occur within 

a certain window of verb v. Second, the concept-concept-verb triples were ordered by frequency. 
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The highest frequency triples were candidates for relationship labels of the given concept 

association. The association measure was a simple statistical measure based on a verb and a 

concept pair’s conditional frequency (co-occurrence), P(c1, c2|v). However, the conditional 

frequency of a pair of concepts, given a verb, could be high even in the absence of a relationship 

between the concepts and the verb, because a verb may occur separately with each of the 

concepts at high frequency, even though it has nothing to do with any of the mutual relationships 

between the two concepts. Therefore, the authors defined an “above expectation” (AE) measure 

(see equation 1 below), which was a measure of the increased frequency when compared to the 

frequency expected under the assumption of independence of association of each of the concepts 

with the verb. This measure is very similar to the “interest measure” suggested by Kodratoff  

[109] for knowledge discovery in text, and is also similar to the Church mutual information 

metric [43]. 

AE (c1, c2|v) =  
)|()|(

)|,(
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⋅
                                   Equation 1 

 

The authors performed several experiments to evaluate this approach. In one of the experiments, 

an ad hoc tourist document collection was used as input for the method. In another experiment, 

the SemCor corpus that had been semantically tagged with the WordNet senses was used. The 

results were promising: at AE=1.5 (1 is equal to expectation value), the recall was 54% and 

precision was 82% for the tourist corpus (measured against a human annotated reference 

standard). For the SemCor corpus, expert judges evaluated the output, yielding a precision of 

72%. Recall could not be measured. 
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An alternative statistical approach uses association rule mining methods to extract relationships 

between concepts [50-52]. This method was first introduced by Agrawal et al. [110] as a 

technique for market  analysis using a large database of transaction data. The rules extracted can 

be exemplified as “90% of the transactions that purchased bread and butter also purchased milk.” 

The advantage of this method, which has been adapted to mine domain text for concept 

relationships, is that it does not require deep textual analysis. However, it does tend to generate a 

large number of association rules.  Statistical indices such as support and confidence are then 

used to select the most meaningful and significant rules. Although the method does not 

distinguish among types of relationships, it could easily be used as a starting point for human 

curation.  

 

Gulla [50] evaluated and compared this method with traditional similarity measure methods that 

utilize vector space models. The output was judged by four human experts who separated 

extracted relationships into three categories: “not related”; “related”; and “highly related.” The 

results revealed that more than half of the relationships found by association rule methods were 

also identified by the similarity measure method.  However, the distribution of mined rules 

differed for these two methods. A further experiment combining the methods produced much 

improved results. The authors concluded that these two methods might be complementary when 

combined for relationship extraction. Cherfi, et al, did another work on association rule method. 

[51]. They investigated how the characteristics of several statistical indices such as support, 

confidence, interest, conviction, and novelty influence the performance of association rule 

mining and how a combination of different indices ensures that a subset of valid rules will be 

extracted. 
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In the biomedical domain, Bodenreider, et al. [52] evaluated and compared the association rule 

method (ARM) with two other statistical methods that use similarity measures: the vector space 

model (VSM); and co-occurrence information (COC), for identifying associations of GO terms 

between three GO sub-ontologies (molecular function, cellular components, and biological 

processes). The authors took advantage of several existing databases of human annotations, using 

GO terms that were publicly available. For the VSM method, gene products that associated with 

the GO term in the databases were used to form a vector, and the similarity of two GO terms was 

calculated as the cosine of the two vectors. For the COC method, the frequencies of co-occurring 

GO terms in the database was represented as a contingency table (number of gene products 

annotated with both term A and B, number of gene products annotated with term A only, number 

of gene products annotated with term B only, number of gene products annotated with neither 

term A or B), and a chi-square test was used to test the independence of the two GO terms. If the 

terms were not dependent, they were considered to be associated. For the ARM method, each 

annotation of gene products with GO terms was treated as a transaction.  Association rules were 

extracted using the Apriori algorithm [111]. Bodenreider, et al. evaluated the validity of the 

extraction by comparing the overlap between the statistical methods, and by comparing statistical 

methods to another set of methods that were non-statistical and not based on a document corpus. 

These non-statistical methods included extracting relationships between GO terms existing in 

UMLS or MeSH (where the relationship is not also included in GO), and determining lexical 

relationships based on composition between existing between GO terms (where the relationship 

is not also included in GO). A total of 7,665 associations between GO terms was identified by at 

least one of the three statistical methods (VSM, COC, and ARM). Among the 7,665 associations 
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extracted by these statistical methods, 936 (12%) were identified by at least two of the three 

statistical methods, and 201 (3%) were identified by all three statistical methods. When the non-

statistical methods were employed, 5,963 associations were identified. However, the authors note 

that when comparing the relationships extracted by statistical methods to those obtained using 

the non-statistical methods, only 230 overlapping associations were found. They conclude that 

multi-method approaches may be necessary to extract a more complete set of relationships. 

2.1.4 Denovo generation of ontologies 

In contrast to the process of ontology enrichment (which seeks to add or modify existing 

ontologies), a few researchers have explored the possibility of learning the entire ontology by 

combining methods for multiple tasks. 

 

Lin [46] explored the distributional pattern of dependency triples as the word context to measure 

word similarity. Lin’s work is very similar to Grefenstette's approach [112], in which 

dependency triples were treated as features. A dependency triple consists of two words and the 

grammatical relationship between them in the input sentence. As an example in our own domain, 

the triples extracted from the sentence “The patient has a mild headache” would be “(has subj 

patient), (patient subj-of has), (headache obj-of has), (headache adj-mod mild), (mild adj-mod-of 

headache), (headache det a), (a det-of headache). The description of a word w consists of the 

frequency counts of all the dependency triples that matched the pattern (w, *, *). Therefore, the 

similarity between two words is calculated based on the count of dependency triples for each 

word. Using this similarity measure, Lin created a thesaurus and evaluated it against WordNet 



56 

 

and Roget’s Thesaurus. He found that his thesaurus was more similar to WordNet than it was to 

Roget’s Thesaurus, and that using all types of dependency triples was better than using only 

subject and object triples, as Hindle did [47]. 

 

Blaschke and Valencia [88] explored the statistical clustering method for building an ontology-

like structured knowledge base using the biomolecular literature. They adapted Wilbur’s method 

[113] by clustering the key terms that have been derived from the documents associated with 

each individual gene. They first retrieved over 6,000 gene names associated with Saccharomyces 

cerevisiae from SWISS-PROT and SGD. 63,131 MEDLINE abstracts were obtained with the 

search terms “saccharomyces” and/or “cerevisiae.” The authors then grouped the documents 

based on each gene name with which they were associated, and created a fingerprint for each 

group that could describe the specific content of the documents. The fingerprint consisted of a 

list of key terms (including bi-grams) and the scores (calculated by comparing frequencies 

between groups of documents) for each term. This fingerprint was used to calculate the similarity 

between two genes, a and b (SimScore a,b), as the sum of the scores for all significant terms that 

appear in both fingerprints.  

 

SimScore a,b = 
2

)( b
i

a
i scorescore∑ +

   Equation 2
 

 

To construct the ontology, a distance matrix for all pairs of genes was created by calculating the 

similarity score for each pair of genes. Two genes with the highest score were clustered together 

and removed from the distance matrix, and the two groups of documents for these two genes 

were merged. A new fingerprint for the merged documents was created. This process was 
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repeated until none of the clusters shared more significant terms. The final output was a gene 

tree, which was compared with the hand-curated GO ontology by domain experts and found by 

them to be compatible. Some relationships in the tree that were not in the GO could be added. 

The authors concluded that this automatic clustering method can be utilized as an instrument to 

assist human expert ontology building, and could be particularly useful for domains experiencing 

rapid growth. For example, in genomics, many new genes have been discovered as a result of the 

advances in genomic sequencing. The number of potential relationships among these genes and 

proteins is quite large, and therefore could be amenable to a semi-automated approach. 

2.2 NATURAL LANGUAGE PROCESSING SYSTEMS  

In recent years, a number of ontology learning systems have been developed using one or more 

of the algorithms described above, with the goal of reducing the human effort required for 

ontology development. In this section, I compare eleven state-of-the-art ontology learning 

systems. Three of these systems were developed primarily for the biomedical domain, and the 

remaining eight systems were developed for general language or other domains. I examine and 

compare the elements learned from the text, as well as the different approaches employed and the 

different evaluations performed. Table 2 summarizes these comparisons.  All eleven systems are 

able to learn concepts and taxonomic relationships. Additionally, the DOODLE II, HASTI, 

STRING-IE, Text-To-Onto, and Text2Onto systems can also learn non-taxonomic relationships.  
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Table 2. Characteristics of existing ontology learning systems 

  

ASIUM [114] (Acquisition of Semantic Knowledge Using Machine Learning Methods) is a 

system developed to acquire ontological knowledge and case frames. The input to the system is a 

set of domain-specific documents in French that have been syntactically parsed. The system uses 

clustering methods, based on a two-step process which produces successive aggregations. The 

first step is conceptualization clustering, which is similar to work done by Harris [39], 

Grefenstette [42], and Peat [115], in which the head words associated with their frequencies of 

appearance in the text are used to calculate the distances among concepts. Based on the sub-

categorization of verbs, the head words that occur with the same verb after the same preposition 

Input Language Ontological 
elements learned

Degree of 
automation

Resource Ontology enrichment 
or De Novo generation

Learning Methods

ASIUM Free text 
documents.

French Concepts, 
taxonomic relations.

Semi-automated N/A Deno Vo Conceptual and hierarchical 
clustering

DODDLE II Dictionary, 
domain 
specific text 
documents

English Concepts,
taxonomic relations, 
non-taxonomic 
relations.

Semi-automated WordNet Enrichment Matching and trimming against 
WordNet for taxonomic 
relations; statistical co-
occurrence information. 

HASTI Free text 
documents

Persian Concepts, 
taxonomic relations, 
non-taxonomic 
relations, axioms.

Two modes: 
semi-automated 
and fully-
automated

N/A Deno Vo Combination of logical, 
linguistic, template, and 
heuristic

KnowItAll Web pages English Concepts, Automatic Domain ontology Enrichment Combination of linguistic and 
statistic methods

MEDSYNDIKATE Medical 
domain 
documents

German Concepts, 
taxonomic relations.

Semi-automated Own general and 
medical lexicons; 
Fully lexicalized 
dependency 
grammar.

Enrichment Input text is mapped to 
corresponding text knowledge 
bases (TKB) which represent 
the text content; Generates 
concept hypothesis and ranks 
hypothesis based on quality

OntoLearn
Free text 
documents

English Concepts, 
taxonomic relations

Semi-automated WordNet; 
SemCor

Enrichment Machine learning; Statistical 
approach

STRING-IE Free text 
documents 
from PubMed

English Non-taxonomic 
relations

Automated SWISS-PROT, 
Saccharomyces 
Genome 
Database

Enrichment Linguistic and rule based 
approach

Text-To-Onto
Text2Onto

Dictionaries, 
Databases, 
Semi-
structured text, 
Free text 
documents.

German Concepts,
taxonomic relations, 
non-taxonomic 
relations,

Semi-automated Domain ontology 
(Tourism )

Enrichment Combination of association 
rules, formal concept analysis 
and clustering

TIMS Free text 
documents

English Concepts, 
taxonomic relations

Automated N/A Enrichment Automatic term recognition 
using both linguistic and 
statistical approach and 
automatic clustering using 
average mutual information

WEB→KB Web pages English Concepts, 
taxonomic relations

Automated Domain ontology Enrichment Statistical and Logical
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(or with the same syntactical role) are clustered into the basic cluster. The second step is a 

pyramidal clustering approach adopted from Diday [116], in which the basic clusters are built 

into the hierarchy of the ontology [117]. This approach is promising, but an evaluation with real 

cases and real problems has not yet been performed.  

 

DODDLE II [118] is a domain ontology rapid development environment. The inputs to the 

system are a machine-readable dictionary and domain-specific texts. It supports the building of 

both taxonomic and non-taxonomic relationships. The taxonomic relationships come from 

WordNet, while the non-taxonomic relationships come from domain-specific text and from 

analyzing the lexical co-occurrences based on WordSpace [119], which is a multi-dimensional, 

real-valued vector space representing lexical items according to how semantically close they are. 

Evaluation in the domain of Law was done with two small-scale case studies. One study used 46 

legal terms from Contract for the International Sale of Goods part II (CISG); the other study used 

103 terms that included general terms from the CISG corpus. For taxonomic relationships, the 

precision was 30%. For non-taxonomic relationships, the precision was 59%.  

 

HASTI [120] is a system that learns concepts, taxonomic and non-taxonomic relationships, and 

axioms. It is the only system that also learns axioms from text documents (in Persian). HASTI 

employs a combination of symbolic approaches, such as Hearst patterns [38], logic, and 

template, as well as semantic analyses and heuristic approaches. It has two modes for conceptual 

clustering: automatic and semi-automatic. HASTI requires only a very small kernel of an 

ontology containing essential meta-knowledge, such as primitive concepts, relations and 

operators for adding, moving, deleting, and updating ontological elements. Based on this kernel, 
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the system can learn both lexical and ontological knowledge. The kernel is language-neutral and 

domain-independent. Therefore, it can be used to build both general and domain ontologies, 

essentially from scratch. To prove that the system can be generalized, the authors evaluated 

HASTI with two test cases. With a text corpus consisting of primary school textbooks and 

storybooks, the precision was 97% and the recall was 88%.  With a text corpus consisting of 

computer technical reports, the precision was 78% and the recall was 80%. 

 

KnowItAll [121] is an automatic system that extracts facts, concepts, and relationships from the 

WWW. There are three important differences between this system and other, similar systems. 

First, KnowItAll addresses the scalability issue by using weakly supervised methods and by 

bootstrapping learning techniques. Using a domain-independent set of generic extraction 

patterns, it induces a set of seed instances, thus overcoming the need for a hand-coded set of 

training documents that is typically required for these kinds of systems.  Second, it uses Turney’s 

PMI-IR methods [89] to assess the probability of extractions using statistics computed by 

treating the web as a large corpus of text (so called “web-scale statistics”). This assessment 

overcomes the problem of maintaining high precision, and enables the system to automatically 

trade recall for precision. Third, it is able to make use of the ample supply of simple sentences on 

the WWW that are relative easy to process, thus avoiding the extraction of information from 

more complex and problematic texts. Details of the algorithmic methods [64] were described 

earlier in section 3.1.1. 

 

MEDSYNDIKATE [122] is an extension of the SYNDIKATE system. It is the only knowledge 

acquisition system aimed at acquiring medical knowledge from medical documents (in German).  
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MEDSYNDIKATE enables the transformation of text documents to formal representation 

structures. The system addresses one of the shortcomings of information extraction systems by 

providing a parser that is particularly sensitive to the treatment of textual reference relationships 

as established by various forms of anaphora [123]. It distinguishes between text at the sentence 

level and the text level. A deeper understanding of textual referential relationships is based on 

their centering mechanism [124]. Additionally, MEDSYNDIKATE initiates a new conceptual 

learning process (knowledge enrichment) while understanding the text. Domain knowledge and 

grammatical constructions, such as LSPs in the source document in which the unknown word 

occurs, are used to access the linguistic quality and conceptual evidence. This information is then 

used to rank the concept hypotheses. The most credible hypotheses based on ranking are selected 

for assimilation into the domain knowledge base. Another technique for concept generation is 

based on the reuse of available comprehensive knowledge sources such as UMLS. Evaluation of 

MEDSYNDIKATE was performed on the deep semantic understanding of the input text but not 

on the concept learning aspect of the system. Although this is a system developed for the medical 

domain, the German language basis of the system may somewhat limit its transfer to English 

language documents. Nevertheless, methodologies developed and insights derived from 

MEDSYNDIKATE are extremely valuable to researchers developing ontology enrichment 

systems for English language documents in biomedical domains. 

 

OntoLearn [76] is a very sophisticated system that uses a combination of symbolic and statistical 

methods. Domain-specific terms are extracted and related to corresponding concepts in a general 

purpose ontology, and relationships between the concepts are examined. First, statistical 

comparative analysis is done on the target domains and the contrasting corpora to identify 
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terminology that is used in the former but not the latter. Second, lexical knowledge of WordNet 

is used to interpret the semantic meaning of the terms. OntoLearn then organizes the concepts, 

based on taxonomic and non-taxonomic relationships, into a forest, using WordNet and a rule-

based inductive learning method. Finally, it integrates the domain concept forest with WordNet 

to create a pruned and specialized view of the domain ontology. The validation of the process is 

performed by an expert. The system has been evaluated by two human judges, across a variety of 

ontology learning algorithms, with encouraging results. Across several different domains (art, 

tourism, economy, and computer network), the authors achieved recall ranging from 46% to 96% 

and precision ranging from 65% to 97%. 

 

STRING-IE [125] is a system designed to extract non-taxonomic relationships between concepts 

in the biomedical domain using symbolic features and rules (heuristic). More specifically, it 

extracts regulation of gene expression and (de-)phosphorylation related to yeast S.cerevisae. 

Although the language rules reated are specific for S.cerevisae organism, the algorithm has been 

tested on three other organisms (Escherichia coli, Bacillus subtilis and Mus musculus) and has 

achieved equally good results. Therefore, the method appears to be generalizable. The input to 

the system is a set of abstracts and full text papers from PubMed Central, retrieved with the 

terms ‘Saccharomyces cerevisiae,’ ‘S.cerevisiae,’ ‘Baker’s yeast,’ ‘Brewer’s yeast,’ and 

‘Budding yeast.’ The documents were POS-tagged, and a name-entity recognition was used to 

identify names of genes and proteins. The NER module uses syntactic-semantic chunking.  For 

example, the text “the ArcB senory kinase in Escherichia coli” would be chunked as “[nx_kinase 

[dt the] [nnpg ArcB] [jj senory] [kinase kinase] [in in] [org Escherichia coli]]. The label nx_kinase 

indicates that this is a noun chunk (nx) semantically denoting a kinase. After NER, two types of 
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relationships were extracted using heuristics to identify verbs related to these relationships, as 

well as other symbolic features, such as the pattern “x but not y” and pre-defined information 

about linguistic restriction. A set of rules over groups of verbs and relational nouns, triggered by 

key words related to the regulation of gene expression, such as “phosphorylate,” “induce,” 

“decrease,” “regulate,” and “mediate,” was also created. For evaluation, one million PubMed 

abstracts that related to the organisms above were used. A total of 3,319 regulatory network and 

phosphorylation relationships were extracted, with an accuracy of 83-90% for regulation of gene 

expression and 86-95% for phosphorylation.  

 

Text-To-Onto [126] is a semi-automatic ontology learning system that employs a shallow parser 

(in German) to pre-process text documents coming from the WWW. The advantage of this 

system is that it has a built-in algorithm library that supports several distinct ontological 

engineering tasks. The library includes several algorithms for ontology extraction and several 

algorithms for ontology maintenance, such as ontology pruning and refinement. It gives the user 

the ability to pick extraction and maintenance algorithms for various inputs and tasks. For 

ontology concept and concept relationship extraction, Text-To-Onto utilizes a combination of 

statistical methods, such as Srikant’s [127] generalized association rule discovery, and symbolic 

methods, such as Hearst’s LSP method. Details of extraction algorithms are described in other 

manuscripts [128-131]. The Text2Onto system which was developed later [132] was 

distinguished from the earlier system in three important ways. First, the learned knowledge is 

represented at a meta-level, termed the Probabilistic Ontology Model (POM), in the form of 

instantiated model primitives. In this way, learned knowledge remains independent of a concrete 

target language and can be translated into any knowledge representation formalism (e.g. RDFS, 



64 

 

OWL, and F-Logic). Second, to facilitate user interaction, the POM is employed to calculate a 

confidence for each new learned object. Users can thus filter the POM, selecting only a number 

of relevant instances of modeling primitives that fit Text2Onto’s interests.  Third, changes to the 

ontology since the last change in the document collection are explicitly tracked so that users can 

trace the evolution of the ontology over time as new documents are processed. An obvious 

benefit is that there is no longer the need to process the entire document collection when 

additional documents are added later. Such transparency into the working of the system over 

time could also enable greater human supervision of the enrichment process. 

 

Both taxonomic relationship discovery using Hearst’s pattern match method, and non-taxonomic 

relationship discovery using Srikant’s generalized association rule discovery method [127], were 

evaluated in a tourism domain.  For taxonomic relationship (IS-A) discovery, 76% accuracy was 

achieved.  For non-taxonomic relationship discovery, a small ontology, with 284 concepts and 88 

non-taxonomic relationships as the gold standard, was manually developed. Because the 

traditional evaluation metrics, precision and recall, cannot measure the real quality of automatic 

relationship discovery if the relationships are of varying degrees of accuracy, four categories of 

relationship matches against the gold standard were defined as “utterly wrong,” “rather bad,” 

“near miss,” and “direct hit.” A new metric called Generic Relation Learning Accuracy (RLA) 

was then defined in order to measure the average accuracy of an instance of a relationship 

discovered against the best counterpart from the gold standard. The best RLA earned when 

experimenting with different parameters (support and confidence) was 67%. 
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TIMS (Tag Information Management System) [133] is a terminology-based knowledge 

acquisition and integration system in the domain of molecular biology. The system is very 

comprehensive and can support ontology population using automatic term recognition and 

clustering, and knowledge integration and management, using XML-data management 

technology, as well as information retrieval. For knowledge acquisition, TIMS uses automatic 

term recognition (ATR) and automatic term clustering (ATC) modules. The ATR module is 

based on the C/NC –value method [134], which uses both symbolic information, such as POS 

tagging, and statistical information, such as the frequency of occurrence of a term. The C/NC 

method is specifically adapted to multi-word term recognition. The ATC module is based on 

Ushioda’s AMI (Average Mutual Information) hierarchical clustering method [135], and is built 

on the C/NC results. The output of ATC is a dendrogram of hierarchical term clusters. 

Preliminary evaluation of ATR showed precision from 93% to 98% for the top 100 terms taken 

from a NACSIS AI-domain corpus and a set of MEDLINE abstracts.  

 

Focusing on the vast quantity of information available on the WWW, WEB → KB [136] is an 

ontology learning system that uses a machine-learning approach for trainable information 

extraction. The system takes two inputs: 1) a knowledge base consisting of ontology-defined 

classes and relationships; and 2) training examples from the Web that describe instances of these 

classes and relationships. Based on these inputs, the system determines general procedures 

capable of extracting additional instances of these classes, as well as rules for extracting new 

instances, rules for classifying pages, and rules for recognizing relationships among several 

pages. WEB → KB uses mainly statistical, machine-learning approaches to accomplish these 

tasks.  For evaluation, the authors attempted to learn information about faculty, student, course, 
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and departments from Web pages, creating an organizational knowledge base. The average 

accuracy was over 70%, at a coverage level of approximately 30%. The authors also explored 

and compared a variety of learning methods, including statistical bag-of-words classifier, first-

order rule learner, and multi-strategy learning methods. More complex methods, such as first-

order rule learning, tended to generate greater accuracy than the simple bag-of-word classifier, at 

the expense of lower coverage. 

 



67 

 

3.0  DEVELOPMENT OF RESEARCH QUESTIONS  

Based on the literature review described in the previous chapter, I believe that methodologies 

developed in the fields of Natural Language Processing, Information Retrieval, Information 

Extraction, and Artificial Intelligence can be utilized for ontology enrichment to alleviate the 

knowledge acquisition bottleneck in Biomedicine. However, there are many issues that must be 

addressed before we can completely realize the potential benefits of these methods for fully 

automated or even semi-automatic ontology enrichment in biomedical domains.  

 

Although current methods can be applied to ontology learning in biomedical domains, some 

methods may be more useful than others, due to the constraints of medical and biological 

language. Some features utilized by the various linguistic approaches are quite prevalent in 

medical and biological text, and make it particularly appealing to attempt ontology enrichment 

using these methods.  For example, compound nouns are common in the biomedical domain, 

because many biomedical terms are composed by adding additional modifiers to the existing 

terms. A number of researchers have explored this phenomenon in detail [137-139], especially 

because of its implication for post-coordination and compositional models [139]. Methods that 

utilize such component information could be effective for hyponym placement [63, 79].  
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Our field boasts many well-developed knowledge and lexical resources, such as existing 

ontologies and terminologies, domain-specific corpora, and general dictionaries that are 

necessary for knowledge extraction. WordNet provides an important resource for ontology 

learning of general English domains [49], and could be utilized in ontology learning in 

biomedical domains.  Combined approaches that leverage both WordNet and biomedical 

ontologies and vocabularies could be particularly interesting.  With wide recognition of the 

importance of sound and complete ontologies in the field of biomedical informatics, endeavors 

such as the NCI’s Enterprise Vocabulary Services, Open Biomedical Ontologies Consortium, 

and the Gene Ontologies Consortium provide ample opportunities to explore the benefit of the 

enrichment of existing biomedical ontologies. However, many of these techniques have never 

been tested and evaluated in biomedical domains. Nearly all systems built for ontology 

knowledge learning and extractions have been developed specifically for domains other than the 

biomedical, and often in languages other than English.  

 

There are significant barriers to the immediate translation of previous research to the biomedical 

domain. First, biomedical language is very different from that used in these other domains [140-

143]. Sources of biomedical text, such as clinical and biomedical texts, also differ in their 

characteristics. Many clinical reports are structured in such a way that the header or sections 

provide context that must be used to make inferences regarding further content. For example, in 

pathology reports, text such as “PROSTATECTOMY: Adenocarcinoma,” requires an inference 

about the origin of the disease from knowledge regarding the procedure. Few algorithms have 

specifically addressed the issues related to section segmentation and inference. Most of patterns 

used in the symbolic approach were discovered from general English domain. They may miss 
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some domain specific patterns existed in the biomedical domain. Researchers have suggested 

that this difficulty might be alleviated by the discovery of domain-specific patterns from domain 

corpus using a pattern-learning approach, such as Hearst’s pattern matching method [103, 144, 

145]. 

 

Second, because sublanguages differ widely from one another, many general English-based 

algorithms may not be effective when applied to more specific sublanguages. The performance 

of existing methods is likely to vary by domain and task, and little research into a systematic 

evaluation of these methods in the biomedical domain has been conducted. In general, 

investigators in this area would benefit from systematically testing and extending existing 

approaches that can best explore the characteristics of biomedical and clinical text, and directly 

comparing the performance of these methods.   

 

Third, because of the lack of an evaluation framework and reference standards for methods used 

in the biomedical domain, the direct application of previous work is rendered more challenging. 

Furthermore, researchers working in the same area may be evaluating different aspects of 

ontology enrichment; thus, their work cannot be compared. Only a few researchers have 

dedicated significant work to developing appropriate evaluation methods. The OntoClean 

methodology [146] developed by Guarino’s group describes a set of rules that can be applied 

systematically to taxonomies to remove the erroneous subclass (in the is-a relationship) and that 

may be useful for ontology pruning and refinement. Another group led by Faatz and Steinmetz 

[147] studied an evaluation framework for ontology enrichment, describing a quality 

measurement framework for ontology enrichment methods with relevance and overlap heuristics. 



70 

 

More research is needed in this area to develop robust performance metrics, and to move the 

field towards more standardized approaches that permit meta-analysis. 

 

The goals of this thesis study are to address two of the barriers mentioned above. First, I sought 

to design a comparative study in which the existing NLP approaches will be evaluated for 

ontology enrichment in the biomedical domain. I intended to explore the extent to which these 

techniques can be used to discover new concepts, and to determine how the techniques can be 

incorporated into the existing ontologies: in what ways can the existing biomedical domain 

knowledge and resources be utilized for ontology enrichment? Second, while comparing the 

different approaches for ontology learning, I intended to explore and develop a framework that 

can be used for the evaluation and development of ontology learning methods in the biomedical 

domain. I especially sought to develop metrics for rapid and repeatable evaluation. With such 

metrics and a defined set of evaluation strategies, one can compare different learning methods 

for certain domains more rapidly than the current methods allow. Comparing and analyzing these 

metrics can provide complementary insights for ontology learning from texts. With these goals in 

mind, I developed the following research questions for this study. 

 RESEARCH QUESTIONS 

1. How do certain characteristics of biomedical texts have an impact on the effectiveness of 

NLP methods for biomedical ontology enrichment? 
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2. How effective are various NLP approaches for biomedical ontology enrichment using 

free-text medical documents as a learning resource? 

3. How do the structure and contents of the biomedical ontology itself affect the efficacy of 

these NLP approaches for ontology enrichment? 

4. How can the existing biomedical ontology be utilized for ontology enrichment method 

evaluation? 

5. Are traditional evaluation metrics, such as recall and precision, suitable for ontology 

enrichment methods?  If not, what kind of metrics should be used? 

 

To answer these questions, I studied three commonly used NLP methods for ontology 

information extraction and determined their suitability and efficacy for ontology concept 

discovery. These three methods represent two fundamentally different methodological 

approaches--the symbolic and the statistical--and have been highly regarded in their respective 

fields.  The three methods include the following: 1) the LSP matching method: 2) Church’s 

mutual information method; and 3) Lin’s combination of the mutual information method and the 

syntactic context information method.  

 

I also used two domain free-text learning resources, a large corpus of pathology reports and a 

large corpus of radiology reports, which represent two different subdomains of medical 

language, as well as two biomedical ontologies: the National Cancer Institute Thesauri (NCIT) 

and RADLex, both of which serve as target ontologies as well as knowledge resources.   
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The focus of this thesis is two-fold: to study the interactions between the three variables 

expressed in the research questions – learning methods, domain corpus, and domain ontology -- 

and to explore and develop an evaluation framework that can be used for researchers to compare 

and develop different OL methods for ontology enrichment for different domains. These two 

goals are not mutually exclusive; in fact, they are actually synergistic, as I cannot compare and 

evaluate the OL methods without evaluation strategies and metrics.  
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4.0  RESEARCH DESIGN AND METHODS  

Figure 1 provides an overview of the study’s design, and includes some of the results of this 

dissertation work. To fulfill one of the goals of this study, I developed a methodology framework 

and metrics that enabled me to evaluate and compare several OL methods for ontology 

enrichment in the biomedical domain. The clinical documents and knowledge resources 

described below were used for both OL method studies. In the following sections (4.1 and 4.2), I 

will describe the studies conducted on each type of OL method, as well as the development of an 

evaluation framework and evaluation metrics in the context of method study in the 

corresponding sections (4.1 and 4.2). 

 

Clinical corpora used in this study 

 

I used two clinical document types as ontology learning resources: surgical pathology reports 

and radiology reports. The corpus of surgical pathology reports included a total of 852,764 

documents; the corpus of radiology reports included a total of 209,997 documents. Both corpora 

were obtained from the clinical information systems of the University of Pittsburgh Medical 

Center (UPMC), which includes a total of 18 hospitals. Both corpora were de-indentified to meet 

the requirements of HIPAA “safe harbor” [45]. Use of the clinical corpora was approved by the 

University of Pittsburgh Institutional Review Board (IRB# PRO07070252). 
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Targeted biomedical knowledge resources 

 

I selected two biomedical knowledge resources in active development that had the potential to 

benefit from ontology enrichment using clinical text. The National Cancer Institute Thesaurus 

(NCIT) [148] is a description logic-based ontology sponsored by the National Cancer Institute. It 

includes more than 75,000 key biomedical concepts in over 20 categories, including Disease, 

Abnormal Cell, Molecular Abnormality, Organism, Biological Process, etc. RadLex [149] is a 

lexicon for the uniform indexing and retrieval of radiology information resources, sponsored by 

the Radiology Society of North American (RSNA). It includes over 11,000 concepts in 12 

categories, including Imaging Observation, Procedure, Characteristic, Treatment, etc. RadLex 

has previously been used to derive an application ontology for radiologic reporting, and seems 

likely to evolve into a formal ontology. 
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Figure 1. Overview of the study design
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4.1 STUDY METHOD FOR EVALUATING THE LSP MATCHING METHOD FOR 

ONTOLOGY ENRICHMENT USING CLINICAL DOCUMENTS  

4.1.1 Lexico-Syntactic Pattern (LSP) matching method  

LSPs are surface markers that exist in natural language and often indicate a semantic relationship 

between terms in the text. For example, in the phrase “systemic granulomatous diseases such as 

Crohn’s disease or sarcoidosis,” the LSP “such as” can help us infer that “systemic 

granulomatous diseases” is a hypernym of “Crohn’s disease” and “sarcoidosis.”  I identified a set 

of LSPs for use in this study, including those LSPs identified by Hearst [150] and Berland [151], 

and supplemented by some from our own manual inspection of clinical documents. Table 1 lists 

LSPs used in this study and provides example sentences that contain patterns observed in the 

corpora. 

4.1.2 Extraction of sentences containing LSPs 

Free-text pathology and radiology reports were processed in two steps (Figure 1). First, I tagged 

Parts Of Speech (POS) using a maximum entropy POS tagger that I had previously retrained 

with pathology reports [152]. Second, I used regular expressions over POS tags to extract all of 

the LSPs shown in Table I. For example, in the phrase “Compatible with benign eccrine 

neoplasia, such as nodular hidroadenoma,” the terms “benign eccrine neoplasia” and “nodular
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LSP Category LSP Examples 

Hearst 

NP0 such as {NP1, NP2 …, and|or} NPn  

Such NP0 as {NP1,}* { or | and} NPn 

Compatible with benign eccrine neoplasia, such as nodular 

hidroadenoma  

Such atypical pneumonia as mycoplasma or viral pneumonitis 

NP1 {, NP2} * {,} or other NP0  

NP0{, NP1}*{,} and other NP2 

Residual basal cell carcinoma or other malignancy  

Pneumoconiosis and other chronic process 

NP0{,} including {NP1 ,}*{or | and} NP2 

Peripheral blood pancytopenia including macrocytic 

anemia and rare nucleated red blood cells 

Chronic obstructive pulmonary disease including 

bronchial wall thickening 

Other 
NP0  [a.k.a.|aka | also known as] NP1 *{or | and} NPn Sebaceoma (aka sebaceous epithelioma) 

NP0  so called {NP1 ,}*{or | and} NPn Pleomorphic adenoma (so called hybrid adenoma) 

Berland 

Part NN in PREP {the | a} DET mods [JJ|NN]* whole NN 

Parts NN-PL in PREP wholes NN-PL 
Phospholipids in the cell membrane… 

Part NN-PL of PREP {the | a} DET mods [JJ|NN]* whole NN 

Parts NN-PL of PREP wholes NN-PL 
Membrane of a cell  

 
Table 3.  Lexico-Syntactic Patterns with examples from corpora 

NP: Noun Phrase; NN: Noun; PREP: preposition; DET: determiner; JJ: adjective; NN-PL: Noun plural form; mods: modifiers. 

Regular expression notation: {x }: x is optional; x|y: either x or y; x*: zero or more instances of repetition of x  
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hidroadenoma” are Noun Phrases (NPs) and will match the LSP “NP0 such as NP1.”  This phrase 

will then be extracted for presentation to the domain experts. The output is a list of all sentences 

containing LSPs for each corpus. Processing was performed using the GATE platform [153]. 

4.1.3 Calculating LSP frequencies and distributions  

For each LSP, I calculated the number of documents and sentences in which it was contained. 

Because many sentences contained the same terms and LSPs, I also calculated the number of 

sentences containing unique LSPs. Frequency data enabled us to compute the potential yield of 

concepts and relationships within a corpus if the rate at which LSPs provide useful information 

for ontology or lexicon curators is known. Additionally, I used frequency data to determine the 

sample number for each LSP that was provided to human judges. For LSPs with more than 50 

unique instances, I sampled 50 instances. For LSPs with 25 to 50 unique instances, I included all 

instances. I excluded LSPs with fewer than 25 unique instances. 

4.1.4 Evaluation of ontology suggestions  

I developed a two-step process to determine the value of suggestions generated with the LSP 

approach. The evaluation approach relies on manual annotations, assuming that automated 

methods using POS and noun-phrase identification can later be used to approximate the results of 

the human annotation.  
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In Step 1, domain experts examined each sentence containing an LSP and identified the 

Medically Meaningful Terms (MMTs) preceding and following the LSP. From the manual 

annotations, I could evaluate the maximum yield expected from applying LSPs to each corpus 

when the assumption is that all the MMTs have been correctly extracted. Manually identified 

MMTs from Step 1 were used as input to Step 2, in which I evaluated the value of the MMTs for 

ontology enrichment. The use of human annotations of MMTs for the evaluation of Step 2 

permitted us to more accurately determine the true value of ontology enrichment without 

confounding the evaluation with possibly incorrect MMTs.  

 

In Step 2, NCIT and RadLex curators determined whether the MMT was already present in the 

knowledge resource and, if not, whether it should be added. Next, they judged whether there was 

a relationship between the paired MMTs. If there was a relationship, the curators annotated the 

type of relationship and indicated whether it already existed in the ontology. If it did not exist, 

they determined whether it should be added. Finally, if the curators determined that the 

relationship should not be added, they provided a reason for their decision. I restricted the 

relationship types to synonym, hypernym, meronym, and other (if the relationship did not fall 

into any of the three predetermined relationships). These judgments required not only domain 

knowledge, but also an in-depth understanding about a knowledge resource’s structure and 

content.  

 

Step 1: Identify the medically meaningful terms from extracted sentences 

 

Domain experts included two resident pathologists (second and third year) and two resident 

radiologists (second and fourth year). Each group was presented with a sample of LSP-
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containing sentences from the pathology or radiology corpus, respectively. Domain experts were 

asked to annotate the MMTs, before and after the LSP, that could stand alone. For example, in 

the following text, “Abnormal slightly high T2 signal seen in the porta hepatis which may be 

secondary to an underlying malignancy such as Klatskin tumor or gall bladder carcinoma,”, the 

bold and italic term such as is the LSP. Domain experts would annotate “malignancy” as the 

MMT before the LSP and “Klatskin tumor” and “gall bladder carcinoma” as the MMTs after the 

LSP. The final product of the annotation was a table of paired MMTs from each sentence. When 

multiple terms were annotated before or after the LSP, I created a separate term-pair for each 

combination. All annotation was performed using Microsoft Excel. Domain experts were given a 

spreadsheet containing the sentences extracted with bolded LSPs. They annotated the MMTs 

before and after the LSP by copying and pasting them into a second and third column. 

 

Domain experts were trained to perform the annotation using a modification of an existing 

annotation guideline for manual annotation of clinical conditions from emergency department 

reports developed by Chapman et al [50]. On a development set, I used a Delphi method with 

repeated training until the F measure exceeded the threshold of 0.9, as depicted in Figure 2. 

Subsequently, expert annotators were given the final sample, which consisted of 50 unique 

sentences for each LSP, to annotate.  
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Figure 2. Domain expert training process 

 

Step 2: Determine the value of concepts and conceptual relationships obtained from MMTs 

 

Domain expert annotations resulted in a list of paired MMTs for pathology and a similar list for 

radiology. I then invited two experienced curators to judge the MMTs produced by the domain 

experts in Step 1. One ontology curator, a pathologist who is currently curating the National 

Cancer Institute Thesaurus, evaluated the term list obtained from the surgical pathology corpus. 

The other curator, a radiologist who is currently curating RadLex, evaluated the term list 

obtained from the radiology corpus.   

 

For each term in a term-pair, curators asked the following questions: 

1) Is the term already represented in the resource (possibly as a synonym)? 

2) If not, should a new concept based on this term be added to the resource?  
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3) If not, what is the reason for the determination that it should not be added? 

 For each pair of terms, ontology curators also explored the following questions: 

4) If there is a relationship between the two terms, what is the relationship?  

(Relationship choices were restricted to synonym, hypernym/hyponym, meronym, and 

other.) 

5)  Does this relationship exist in the resource? 

6)  If not, should the relationship be added to the resource? 

7)  If no new relationship should be added, what is the reason for this determination? 

4.1.5 Defining evaluation metrics  

 

The classic measure of precision is not entirely adequate in summarizing the resulting data, since 

it does not capture the two-step process I anticipate using for suggesting new ontological 

elements. Therefore, I defined more specific evaluation metrics to quantify efficacy for the two 

discrete steps. 

 

Concept Suggestion Rate (CSR): 

CSR = 
method by the extracted MMTs of # Total

ontology  in thenot   that wereMMTs of #   Equation 3 

 

This metric indicates the percentage of terms, extracted using the enrichment method, that are 

new concept candidates and would be presented to the curator for a given target ontology. 
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Concept Acceptance Rate (CAR): 

CAR = 
method by the extracted MMTs of # Total

ontology  in the synonymor  instance, concept, new as included be should that MMTs of #

 

             
Equation 4 

 

This metric indicates the percentage of terms, extracted using the enrichment method, that would 

be added to the relevant ontology (these may represent new concepts or new instances). 

 

Relationship Suggestion Rate (RSR): 

RSR = 
method by the  extracted ipsrelationsh of # Total

ontology  in thenot    that wereipsrelationsh of #

 
      Equation 5 

 

This metric indicates the percentage of concept relationships, extracted using the enrichment 

method, that are candidates for a new concept relationship and would be presented to the curator 

for a given target ontology. 
  

Relationship Acceptance rate (RAR): 

RAR = 
method by the extracted ipsrelationsh of # Total

ontology  in the included be should that ipsrelationsh of #

 
      Equation 6 

 

This metric indicates the percentage of concept relationships, extracted using the enrichment 

method, that would be added to the relevant ontology. 

 

Additionally, I defined two measures that combine this information to provide an estimate of the 

total number of concepts or relationships extracted from a given corpus using the LSP matching 

method.  
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Estimated Concept Yield (ECY) LSP:  

                 ECY LSP = N * R* CAR             Equation 7 

 N:  Total number of unique LSPs in the corpus 

R:  Average number of MMTs that can be extracted per LSP, which is 

equal to the total number of MMTs divided by the total number of 

LSPs   

 CAR: Concept Acceptance Rate   

     
Estimated Relationship Yield (ERY) LSP: 

                ERY LSP = N * P * RAR            Equation 8 

   N: Total number of unique LSPs in the corpus 

P:  Prevalence of a single relationship that is equal to the percentage of a    

single type of relationship among all of the relationships being 

extracted 

RAR:  Relationship Acceptance Rate 
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4.2 STUDY METHOD FOR EVALUATING THE STATISTIC METHODS FOR 

ONTOLOGY ENRICHMENT USING CLINICAL DOCUMENTS  

4.2.1 The statistical methods   

Two statistical methods are being evaluated and compared in this study: Church’s mutual 

information method [43] and Lin’s similarity measure method [46]. I selected these two methods 

because they differed in their utilization of syntactic features for similarity measures, allowing a 

comparison of efficacy for ontology enrichment, and because each of the methods was well 

respected in its particular field.  

4.2.1.1 Church method  

Church [43] used word co-occurrence information to measure the degree of similarity 

between two words. The mutual information (I) between two words in a corpus, x and y, 

is defined as follows:  

 

                                     I(x, y) = log 2
)(*)(

),(
yPxP

yxP
                   Equation 9 

Where P(x) is the probability of x, P(y) is the probability of y, and P(x, y) is the joint 

probability of x and y.  If there is a genuine association between x and y, then the joint 

probability P(x, y) will be much higher than chance, P(x)* P(y), and consequently I(x, y) 

>> 0. If there is no relationship between x and y, then P(x, y) ≈  P(x)* P(y), and thus I(x, 
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y) = 0. If x and y have complementary distribution, P(x, y) will be much less than 

P(x)*P(y) and I(x, y) <<0. 

 

The P(x) and P(y) can be estimated by calculating the frequency of the word in a corpus. 

For x and y to be considered highly associative, there are two variables that can influence 

the results: one is the window (W) of x and y; and the other is the threshold of I. The 

output is given in a table with three columns. The first column contains the target word x. 

The second column contains y words that are similar to x based on the mutual 

information measure I. The third column contains the I score.  

4.2.1.2 Lin method  

 

Lin’s method [46] uses the syntactic information between two words for similarity 

measure in addition to word co-occurrence. The co-occurrence information between two 

words (w1, w2) and the grammatical relationship r between them are collected as the 

dependency triples (w1, r, w2).  For example, in the sentence “Patient had a high fever,” 

the following set of dependency triples can be obtained: (had – subject – Patient); (had – 

object – fever); (fever – adjective-modifier – high); and (fever – determiner – a). The 

similarity between the two words, w1 and w2, can be calculated as follows: 

 

Sim (w1, w2) =∑ ∑
∑

∈+∈

+∩∈

),,()(),(),,()(),(
)),,(),,()(()(),(

2211

2121

wrwIwTwrwrwIwTwr
wrwIwrwIwTwTwr

    Equation 10 
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   Where I(w1, r, w2) = log 
||,*,||*||,*,||
||,**,||*||,,||

21

21

wrrw
rwrw

   Equation 11 

 

There are two parameters in this formula: one is the threshold of I; the other is the type of 

syntactic relationship I that needs to be included in the calculation. The output is given in 

a table similar to that for Church’s method, as detailed in the previous paragraph.  

4.2.2 Named Entity Recognition system used in this study 

A Named Entity Recognition (NER) system, based on IndexFinder [154], was developed in our 

research group in order to help us identify ontology concepts present in the clinical documents. 

This NER engine is built in such a way that the knowledge resource it used to annotate the class 

concept in the corpus can be changed based on user selection. Given a text corpus as input, the 

NER system can identify named entities in a free-text corpus based on any knowledge resource 

provided by the user (Fig. 3). The clinical documents annotated with the knowledge resource by 

NER constitute the system’s output, from which I determined how many terms in the corpus 

were present in the knowledge resource.   
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NER
Knowledge 
Resource or 

ontology

Text 
documents

Documents being 
annotated with 

concepts

NCIT

RadLex

Pathology 
Reports

Radiology 
Reports

 List of annotated terms

……

……

…...

List of unannotated terms

……

……

…...

Text Input

Knowledge 
Resource

Output

  
                Figure 3. NER system 

 

4.2.3 Generating new concept suggestions  

The clinical documents were divided into two equal sets: the development set and the evaluation 

set. I used the development set to experiment with the statistical methods in order to determine 

the optimal parameters; the evaluation set was used for the final evaluation of the efficacy of 
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these statistical methods for ontology enrichment. Both data sets served as document input for 

statistical methods to produce new concept suggestions (Fig. 4). 

Calculate 
similarity score

Text Input

Threshold

Annotated 
documents 

(pathology or 
radiology)

For each unannotated 
term

OL Method

Evaluation
Optimize 

parameters 

Domain Expert 
Evaluation

 

Figure 4. New Concept Suggestion Generated using Statistical Methods 
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As noted in Section 4.2.1), both the Church and Lin methods use word co-occurrence and/or 

other syntactic features to measure the similarity of two terms. For an ontology enrichment task, 

I sought to discover new concepts that are similar to existing concepts in the target ontology. If a 

term in the concept was found to be similar to an existing concept, as determined by the 

statistical methods, this term was suggested as a new concept candidate.  The benefit of this 

approach is twofold: 1) any new concept suggestions are more likely to fall within the scope of 

the target ontology; and 2) the information that a suggested concept is associated with an existing 

concept may help an ontology developer to appropriately place it.  

I first used NER (see Fig.1) to annotate the clinical corpora (pathology or radiology) with the 

ontologies (NCIT 0609d or RadLex v2.00). These annotated clinical reports were then run 

through the two statistical enrichment methods. For each of the annotated terms, the methods 

returned a list of similar terms, with similarity scores given in descending order. The output of 

the methods consisted of lists of paired terms that were considered similar based on 

determinations from the statistical methods that one of the two terms was already in the 

ontology. Terms were added to the list of new concept suggestions when similarity scores 

exceeded the threshold. Different thresholds produced different sets of concept suggestions.  

4.2.4 Evaluation study  

The conventional evaluation study for a statistical method involves the use of a pre-established 

reference standard, against which the output is compared; evaluation metrics, such as recall and 

precision, are also employed. In most cases, the reference standard is divided into two subsets: a 



  

 

91 

training data set and a testing data set. The training data set is used to train the statistical method 

in order to obtain the optimal parameters used in the statistical method. Because the optimal 

parameters vary for different domains, this training process allows the optimal parameters for the 

targeted domain to be more easily obtained. The evaluation data set is used for the final 

evaluation, in which the method is tuned and optimal parameters are discerned. Therefore, I 

divided the study into a methodology development phase and a method evaluation phase. 

4.2.4.1 Methodology development 

 

I first tested the statistical methods for specific domains (pathology and radiology) and 

task (new concept suggestion). As noted earlier, two parameters, window size and 

similarity score threshold in the Church method and syntactic triples and similarity score 

threshold in the Lin method, can influence a similarity score. For example, In the Church 

method, the window size (w) of two terms appearing together in text can influence the 

similarity score, I; the threshold I is used to determine to what degree the two terms are 

similar enough to be considered a new concept suggestion. The optimal parameters are 

those that can capture all the new concept suggestions without introducing a lot of noise 

(e.g., false positives).  In this phase of the study, I utilized the existing ontologies to 

create our reference standards. The following section describes the process of this 

methodology development for both statistical methods.   
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(a) Establishing a reference standard for methodology development 

Our task was to enrich an existing ontology by adding new concepts through use 

of statistical methods on free-text clinical reports. There were no reference 

standards readily available for this study, and it was not possible to create them 

due to the extensive labor, resource, and time such a project would require. 

Manual evaluations by human experts were very time consuming and expensive.  

Therefore, I sought to utilize the existing ontologies to generate the reference 

standards.  Although the target ontologies used in this study (NCIT and RadLex) 

have shortcomings, they were developed manually under the supervision of a 

group of domain experts. I believe for the purpose of methodology development, 

these ontologies could be used as the reference standard. 

 

For each targeted ontology, I retrieved  early, published ontology:  for the NCIT, I 

used NCIT 0909c (published in 2009), and for the RadLex, I used version v.3.03 

(also published in 2009). I first used the NER system to identify all the concepts 

of these two ontologies that could be found in the respective clinical corpus 

(NCIT for the pathology corpus, and RadLex for the radiology reports). I then 

extracted concepts and compiled a list of those from each ontology that also 

appeared in the clinical corpus. These lists became our reference standard data 

sets. The assumption was that if these concepts did not already exist in the 

ontologies, and we were going to discover them from the corpus using statistical 

methods, the entire list would constitute the upper-bond, or the majority, of the 

concepts we could discover. Once the reference standard has been established, 
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traditional evaluation metrics, such as recall and precision, can be applied to the 

concepts.  

 

The traditional precision and recall considers the matching of two concepts at the 

lexical level. In this definition, the reference standard set consists of all the 

concepts that presented in the corpus. When I judge whether a suggested term has 

achieved a positive result, I look at both terms in the pairs. If both can be found in 

the reference standards, then the result is positive; otherwise, the result is a false 

positive. I also calculate the F-measure, which is the harmonic mean of recall and 

precision. 

   Recall (R) =
standards reference of # Total

 positives of # Total          Equation 12 

 

   Precision (P) =
    ssuggestion of  #  Total    

 positives of # Total
     Equation 13 

    

   F-measure (F) =
Recall Precision 

 Recall Precision 2
+
×     Equation 14 

(b) Generating optimal parameters for the statistic methods using precision and 

recall curve 

 
I performed the same study for both the pathology and radiology corpora, as 

described below.  

liuk
Cross-Out



  

 

94 

 
For each set of suggestions, I calculated recall and precision; a precision and 

recall curve based on these metrics was then drawn. 

 

For the Church method, I used seven window sizes (2, 3, 4, 5, 6, 7, and 15) and a 

series of incremental thresholds for I, and generated a precision and recall curve 

for each window size. After examining all the precision and recall curves, the best 

combination of window size and threshold was determined.  

 

For the Lin method, the parameters are threshold and type of syntactic 

relationship. I experimented with several sets of syntactic relationships and 

summarized them in Table 2. I then generated a precision and recall curve for 

each syntactic relationship; the best combination of syntactic relationship and 

threshold was determined after examining all the precision and recall curves. 

Set Syntactic Relationship (SR) 

1 All  syntactic relationships 

2 Top ten most frequent syntactic relationships  

3 obj  

4 mod  

5 nn  

6 conj  

7 obj, mod, conj, nn  

8 obj, mod, conj, nn, det  

9 subj  
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10 obj, mod, conj, nn, det, s  

11 lex-mod 

 
        Table 4. Syntactic relationships experimented with Lin’s method  

(obj: objective; mod: modifier; nn: noun; conj: conjounction; det: determiner; s: sentence; 

lexmod: lexical modifier). 

4.2.4.2 Final evaluation by domain experts  

 
 After I obtained suitable parameters for each method and domain, I proceeded to the final 

 stage: evaluation by domain experts. A set of 30,000 clinical reports for each domain 

 (pathology and radiology) was used as the learning resource. OL methods were run 

 separately on each set of clinical documents.  Although human expert evaluation provides 

 the best estimated value of suggestions generated by statistical approaches, it isn’t 

 possible to have domain experts evaluating every single suggestion; the time and 

 resources required for such a tedious process are daunting. Consequently, I randomly 

 selected a subset of 100 pairs of terms from each output, and gave these data to the 

 domain experts for final evaluation.   

 

The domain expert evaluation method and evaluation metrics such as concept suggestive 

rate and concept acceptance rate are the same as those used in the symbolic method 

evaluation study (see 4.1.5 and 4.1.6). 
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5.0  RESULTS 

5.1 RESULTS FROM SYMBOLIC METHOD STUDY 

5.1.1 Lexico-Syntactic Pattern (LSP) matching method  

Table 5 shows the frequency of seven LSPs across the radiology and pathology corpora. 

Sentences that contained any LSPs were extracted. The data are shown as LSPs per sentence and 

per unique sentence. The overall frequency of patterns appearing in the corpora was low.  

Although it is not possible to determine how accurate the LSPs are in extracting all relevant 

instances, the method is expected to perform well in this regard because it is based on string 

matching. I have not observed false negatives during manual inspection of sample documents 

from the corpus. Nevertheless, there are factors that could affect the accuracy of results: a POS 

tagging error could occur, and it is possible that some instances of LSPs could be missed due to 

misspellings and other typographical errors. The POS tagger was trained with a pathology 

corpus, and achieved 93% POS tagging accuracy; the accuracy was 91% when the radiology 

reports were tagged. 
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LSP 

Surgical pathology reports  Radiology reports  

852,764 reports 

16,157,608 sentences 

209,997 reports 

4,057,228 sentences 

# sentences 

#  sentences 

containing 

unique LSP 

# randomly 

selected 

sentences # sentences 

#  sentences  

containing 

unique LSP 

# randomly 

selected 

sentences 

NP such as NP 98 95 50 906 251 50 

NP including NP 6291 4952 50 1403 747 50 

NP other NP 6940 2251 50 10622 1407 50 

NP also called NP 48 37 37 29 22  0 

NP aka NP 5396 460 50 2 2 0 

NP in the NP 47124 23178 50 64044 29285 50 

NP of the NP 246798 70735 50 173016 54895 50 

total 312695 101708 337 250022 86609       250 

 
Table 5. Frequencies of various LSPs in the pathology and radiology corpora 
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5.1.2 How many medically meaningful terms (MMTs) could be identified for each LSP 

presented in the corpus  

Table 6 shows the number of medically meaningful terms (MMTs) that could be identified by 

domain experts in a sample of sentences obtained from each corpus. The total number of 

sentences used for each LSP is shown in Table 3. For each LSP, there was at least one MMT 

preceding the LSP and more than one MMT following the LSP. Thus, multiple MMTs could be 

extracted from a sentence that contained a single LSP. 
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LSP 

Surgical pathology reports Radiology reports 

Preceding the LSP Following the LSP Preceding the LSP Following the LSP 

Ratio  

(# of MMTs/ # of 

instances of LSP ) 

Ratio  

(# of MMTs/ # of 

instances of LSP)  

Ratio 

(# of MMTs/ # of 

instances of LSP) 

Ratio 

(# of MMTs/ # of 

instances of LSP) 

NP such as NP1, NP2 1.04 (52/50) 1.88 (94/50) 1.0 (50/50) 1.9 (95/50) 

NP including NP1, NP2 0.98 (49/50) 1.62 (81/50)  1.0 (50/50) 1.72 (86/50) 

NP other NP1, NP2 1.0 (50/50) 1.06 (53/50) 1.0 (43/43) 1.0 (43/43) 

NP also called NP1, NP2 0.95 (35/37) 0.97 (36/37) NA NA 

NP aka NP1, NP2 0.96 (47/50) 1.18 (59/50) NA NA 

NP in NP1 1.0 (50/50) 1.0 (50/50 ) 0.94 (47/50) 0.76 (39/50) 

NP of NP1 1.0 (50/50) 1.0 (50/50) 0.8 (40/50) 0.68 (34/50) 

Average 0.99 (333/337) 1.26 (423/337) 0.95 (230/243) 1.22 (296/243) 

Average # MMT per LSP 2.25 2.21 

 
Table 6. Number of medically meaningful terms (MMTs) extracted by the LSP method 

 

5.1.3 New Concept Suggestion Rate (CSR) and new Concept Acceptance Rate (CAR) 

Table 7 shows the new concept suggestion rate and the new concept acceptance rate as 

determined by the curators. For NCIT, the concept suggestion rates ranged from 37% for the 

pattern “NP such as NP1, NP2” to 11% for the pattern “NP of NP1,” with an average of 24% 

over seven patterns. For RadLex, the suggestion rates were higher, ranging from 52% for the 

pattern “NP such as NP1, NP2” to 18% for the pattern “NP in NP,” with an average of 37% over 

five patterns. However, nearly all the terms suggested would be accepted into the NCIT. The 

concept suggestion rate and concept acceptance rate were nearly equal. In contrast, the majority 

of terms suggested for RadLex would not be accepted into the terminology by the curator. 
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LSP 
Surgical pathology reports Radiology reports 

CSR CAR CSR CAR 

NP such as NP1, NP2 37% (52/140) 31% (43/140) 52% (75/145) 10% (14/145) 

NP including NP1, NP2 32% (61/189) 32% (60/189) 39% (54/138) 14% (19/138) 

NP other NP1, NP2 16% (18/113) 16% (18/113) 33% (28/86) 8% (7/86) 

NP also called NP1, NP2 14% (10/74) 10% (7/74) NA NA 

NP aka NP1, NP2 31% (37/119) 31% (37/119) NA NA 

NP in NP1 12% (12/100) 6% (6/100) 18% (13/74) 8% (6/74) 

NP of NP1 11% (11/98) 6% (6/98) 26% (21/80) 14% (11/80) 

Average 24% (201/833) 21% (177/833) 37% (191/523) 11% (57/523) 

 

   Table 7. Comparison of new concept suggestion rate and acceptance rate  

 

5.1.4 Distribution of semantic relationships that being extracted by each type of LSP  

One of the advantages of the LSP matching method is that the extracted terms preceding and 

following the LSP are expected to be semantically related. In our study, curators evaluated the 

semantic relationships between the pairs of MMTs and I calculated the distribution of each type 

of relationship based on the curator annotation (Table 8).  
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Corpus 
 

LSP 
 

Semantic Relationship 

Hyponym Synonym Meronym Other None 

Surgical 
Pathology 
Reports 

NP such as NP1, NP2 37% (24/65) 0% 2% (1/65) 57% (37/65) 5% (3/65) 

NP including NP1, NP2 10% (11/114) 1% (1/114) 6% (7/114) 78% (89/114) 5% (6/114) 

NP other NP1, NP2 39% (24/61) 0% (0/61) 2% (1/61) 46% (28/61) 8% (5/61) 

NP also called NP1, NP2 22% (9/41) 20% (8/41) 0% 37% (15/41) 10% (4/41) 

NP aka NP1, NP2 10% (6/59) 44% (26/59) 0% 39% (23/59) 5% (3/59) 

NP in NP1 0% 0% 0% 100% (45/45) 0% 

NP of NP1 5% (2/44) 0% 18% (8/44) 61% (27/44) 16% (7/44) 

Average 18% (76/429) 8% (35/429) 4% (17/429) 62% (264/429) 7% (28/429) 

Radiology 
Reports 

NP such as NP1, NP2 72% (26/36) 0% 0% 28% (10/36) 0% 

NP including NP1, NP2 39% (7/18) 0% 11% (2/19) 33% (6/18) 17% (3/18) 

NP other NP1, NP2 76% (16/21) 0% 0% 0% 24% (5/21) 

NP in NP1 4% (1/26) 0% 12% (3/26) 42% (11/26) 42% (11/26) 

NP of NP1 4% (4/27) 0% 0% 0% 96% (26/27) 

 Average 40% (51/128) 0% 4% (5/128) 21% (27/128) 35% (45/128) 
 

Table 8. Distribution of semantic relationships extracted using the LSP matching method 
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5.1.5 New Relationship Suggestion Rate (RSR) and new Relationship Acceptance Rate 

(RAR) 

Table 9 shows the new relationship suggestion rate and the new relationship acceptance rate as 

determined by the curators. For NCIT, on average, the relationship suggestion rate was 64%, and 

the relationship acceptance rate was 14%. For RadLex, on average, the relationship suggestion 

rate was 55%, and the relationship acceptance rate was 44%. 

 

 Pathology reports (Enrich NCIT) Radiology reports (Enrich RADLex) 

LSP RSR RAR RSR RAR 

NP such as NP1, NP2 55% (36/65) 26% (17/65) 94% (34/36) 94% (34/36) 

NP including NP1, NP2 78% (89/114) 15% (17/114) 61% (11/18) 39% (7/18) 

NP other NP1, NP2 51% (31/61) 8% (5/61) 57% (12/21) 57% (12/21) 

NP also called NP1, NP2 29% (12/41) 10% (4/41) NA NA 

NP aka NP1, NP2 73% (43/59) 24% (14/59) NA NA 

NP in NP1 84% (38/45) 0% (0/45) 50% (13/26) 12% (3/26) 

NP of NP1 64% (28/44) 5% (2/44) 0% (0/27) 0% (0/27) 

Average 64% (277/429) 14% (59/429) 55% (70/128) 44% (56/128) 

 

Table 9. Comparison of new concept relationship suggestion rate and acceptance rate 

 

liuk
Sticky Note
Accepted set by liuk

liuk
Sticky Note
Accepted set by liuk



  

 

103 

5.1.6 Estimated Concept Yield (ECY) and Estimated Relationship Yield (ERY)  

Using the metrics Estimated Concept Yield (ECY) and Estimated Relationship Yield (ERY) for 

both pathology corpus and radiology corpus, I estimated that as many as 15,000 (for radiology 

corpus) to 16,000 (for pathology corpus) new concepts, instances, or synonyms could be added, 

and perhaps as many as 2,000 (for pathology corpus) to 5,000 (for radiology corpus) new 

relationships could be added. 

 

5.1.7 Reasons for why some of the suggested relationships would not be added in the 

corresponding resource  

I also explored reasons why some of the suggested relationships would not be added into the 

corresponding resource. The top three reasons were: 1) that the relationships between classes of 

concepts are not modeled in the ontology (60%; e.g., the NCIT does not support relationships 

between anatomic concepts, procedure concepts, and findings); 2) that the relationship between 

two concepts is too general or vague to be included (20%; e.g., the relationship between 

“complication” and “Primary biliary cirrhosis” was considered to be too general); and 3) that 

there is no relationship between the two extracted concepts (10%). 
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5.2 RESULTS FROM STATISTIC METHOD STUDY 

5.2.1 Reference standards  

I obtained a total of 5,281 NCIT entities that were identified in the corpus of pathology reports, 

and a total of 660 RadLex entities that were identified in the corpus of radiology reports. These 

two sets of entities served as our reference standards for ontology learning algorithms for each 

respective domain. 

 

5.2.2 Precision and recall curves 

The following Figures show the precision and recall curves I obtained while tuning OL methods 

for ontology enrichment using clinical documents. Figure 5 shows the precision and recall for the 

Lin Method using all syntactic relationships (Set 1) for NCIT enrichment using pathology 

reports, while Figure 6 shows the precision and recall for the Lin method using all syntactic 

relationships (set 1) for RadLex enrichment using radiology reports. In general, with increased 

threshold, recall increases and precision decreases.  
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Figure 5. Precision and recall curve of Lin method for NCIT enrichment using pathology reports 

for all syntactic relationships (Set 1) 
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Figure 6. Precision and recall curve of Lin OL method for RadLex enrichment using radiology 

reports for all syntactic relationships. 

 

For each values of the parameter (e.g. syntactic sets), I selected the best threshold based on the 

operating point on the curve that is the best combination of recall and precision. In Figure 2, the 

arrow designates the operating point, which has 22% recall and 50% precision. The threshold for 

that point is 0.07. The operating point for Figure 3 is at threshold 0.09, with 27% recall and 12% 

precision.  
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5.2.3 Parameters generated for Lin method  

Table 10 shows the different combinations of syntactic relationships, with the operating point for 

enrichment of both NCIT and RadLex. It is evident that the top ten most frequent relationships 

(Set 2) is the best combination of syntactic relationships for the Lin OL method using NCIT and 

pathology reports. With a threshold of 5.46, Lin method achieved 22% recall and 51% precision. 

In contrast, the combination of object, modifier, conjunctive, noun phrase, and determiner (set 8) 

is the best combination of syntactic relationships for the Lin OL method using RadLex and 

radiology reports. This combination achieved 25% recall and 13% precision at 7.0 thresholds.  

 

Syntactic 

Relationship 

Set (description) 

NCIT RadLex 

T Recall Precision F T Recall Precision F 

1 (all relationships) 0.07 0.22 0.48 0.30 0.09 0.27 0.12 0.16 

2 (top ten frequent 

relationships) 5.46 0.22 0.51 0.30 -2.63 0.05 0.03 0.08 

7(obj, mod, conj, nn) 0 0.22 0.43 0.30 3.4 0.28 0.11 0.16 

8 (obj, mod, conj, nn, 

det) 0.1 0.22 0.43 0.30 7.00 0.25 0.13 0.18 

 

Table 10. Precisions and recalls of Lin method with different syntactic relationships combination 
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5.2.4 Parameters generated for Church method  

The same approach described above was followed for the investigation of window size through 

use of the Church method; however, only the final results are detailed below. Table 11 shows the 

different window sizes, with the operating point for enrichment of both NCIT and RadLex. From 

this table, it is evident that window sizes 3 and 5 generate the best evaluation results and are 

nearly identical. In this case, I selected window size 3 over window size 5 for computational 

efficiency.  

 

Window 

Size 

NCIT RadLex 

T Recall Precision F T Recall Precision F 

2 

15.74 

0.36 0.54 0.22 

16.38 

0.61 0.04 0.08 

3 0.46 0.48 0.23 0.64 0.04 0.08 

4 0.42 0.49 0.23 0.53 0.04 0.08 

5 0.46 0.48 0.23 0.64 0.04 0.08 

15 0.52 0.41 0.23 0.52 0.04 0.08 

 

Table 11. Precisions and recalls of Church method using different window sizes 

5.2.5 Summarization of the best parameters generated for both Lin and Church methods  

Table 12 summarizes the best parameters selected for each method and domain, along with the 

recalls and precisions obtained with these parameters. For the Church OL method, window size 3 

and threshold 14.2 are most effective for NCIT, and window size 3 and threshold 15.9 for 
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RadLex. For the Lin OL method, the best results are attained with a syntactic relationship set 8 

and threshold 7 for NCIT domain and syntactic relationship set 2 and threshold 5.46 for a 

RadLex domain. Both methods performed better for NCIT than for RadLex. Overall, the Church 

OL method generated better recall than the Lin method (46% vs 22% for NCIT and 64% vs 25% 

for RadLex). 
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 Church OL Method Lin OL Method 

 Parameter Evaluation Metrics Parameter Evaluation Metrics 

Domain WS T Recall Precision F SR T Recall Precision F 

Pathology 3 14.0 46% 48% 0.46 8 (obj, mod, conj, nn, det) 7 22% 51% 0.30 

Radiology 3 15.9 64% 4% 0.08 
2 (top 10 most frequent 

relationships) 
5.46 25% 13% 0.18 

 
Table 12. Best parameters for Church and Lin methods for each domain 
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5.2.6 New concept suggestion rate and acceptance rate  

From the thresholds obtained during the development of the OL methods, I was able to extract a 

total of 2,249 suggestions for NCIT and a total of 1,300 for RadLex using Lin’s method. Among 

these, 49% of the 2,249 suggestions had not been found in the NCIT, and 87% of the 1,300 

suggestions had not been found in the RadLex. Using Church’s method, I attained a total of 

4,529 suggestions for NCIT and 12,174 for RadLex. 52% of the 4,529 had not been found in the 

NCIT and 96% of the 12,174 were not in the RadLex. These results are represented in Table 11 

as Suggestion Rates (SRs). The Acceptance Rates (ARs) were based on the domain experts’ 

evaluations on 100 of sampled terms from all the suggestions. For NCIT, among the 100 

sampled terms from Lin’s extractions, 38 had not been found in the ontology; domain expert 

determined that 28 of these 38 terms should be added, for an AR was 74%. Among the 100 

sampled terms from Church’s extraction, 73 were not in the ontology; domain expert determined 

that 39 of the 73 terms should be added, for an AR of 53% (Table 13). For RadLex, among the 

100 sampled from Lin’s extractions, 38 had not been found in the ontology; domain expert 

determined that 9 of the 38 terms should be added, for an AR of 9% (Table 13). I also manually 

examined the two lists of suggested terms for NCIT and two lists of suggested terms for RadLex 

by each method. I found there were no overlapping terms. These lists have been attached to this 

thesis as Appendix C. 
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  Pathology reports (Enrich NCIT) Radiology reports (Enrich RADLex) 
OL Method SR AR SR AR 

Lin Method 49%(1,100/2,249) 28%(28/100) 87%(1,135/1,300) 9% (9/100) 

Church Method 52%(2,159/4,529) 39%(39/100) 96%(11,743/12,174) 16% (16/100) 
 

Table 13. Suggestion and acceptance rates for the Lin and Church methods 
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6.0  DISCUSSION 

The goal of this dissertation study was threefold. The first goal was to systematically review 

past research work on NLP methods and systems used for ontology learning and provide an 

overview of current advances and problems related to biomedical ontology learning. I sought 

to answer the following question: What could be the potential benefits of NLP methods for 

biomedical ontology learning? The second goal was to design a comparative study in which 

the existing NLP approaches were evaluated and compared for ontology enrichment in the 

biomedical domain. Finally, while comparing the different approaches for ontology learning, 

I explored and developed a methodology that can be utilized to extend and evaluate ontology 

learning. With this methodology and the metrics I developed for it, I was able to compare 

different learning methods for the biomedical domain. Comparing and analyzing these 

metrics provided useful insights for ontology learning from text. In the following paragraphs, 

I will discuss what has been learned regarding these goals. 
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6.1 THE EFFECTIVENESS OF THE SYMBOLIC-BASED APPROACH FOR 

ONTOLOGY ENRICHMENT USING CLINICAL DOCUMENTS  

The LSP matching method is a symbolic method that has been studied by many researchers 

for domain knowledge extraction in the past; therefore, it was the first method I selected for 

my research.  In this study, I evaluated the LSP matching method for ontological knowledge 

extraction using two types of clinical documents, pathology and radiology, that represent two 

sub-medical domains. My results indicated that the LSP matching method is an effective tool 

for semantic information extraction from clinical documents, with some limitations.   

 

First, the LSP matching method can be expected to produce many suggestions for new 

concepts, instances, synonyms, and relationships. Several factors contribute to this 

expectation. Each instance of a pattern that appeared in the text resulted in the extraction of 

more than two Meaningful Medical Terms (MMTs) per sentence. Second, for both corpora 

tested, at least one quarter of the terms that could be extracted were not associated with 

corresponding concepts in the existing knowledge resource. With regard to acceptance, the 

results were mixed. For the pathology corpus, nearly all of these terms were accepted by the 

curator as useful concepts for the ontology. For the radiology corpus, however, less than one 

third of the suggested concepts were accepted by the curator as useful. In many cases, the 

scope and structure of the knowledge resource was the limiting factor in concept acceptance. 

Using this LSP approach, more than half of the relationships identified in the text corpora 

were not found to be present in either resource. However, curators rated these relationships 

for acceptance quite differently between NCIT and RadLex, with a much lower overall 
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acceptance rate for NCIT. The low relationship acceptance rate for NCIT was mainly due to 

the fact that many relationships in the text were not within the scope of the ontology. For 

example, relationships between findings and disease are not defined in the NCIT, but these 

relationships are plentiful in the corpus. In future work, syntactic information derived from 

concepts and conceptual relationships in the ontology could be used to further constrain 

suggestions. Selecting candidate concepts based on the type of relationships modeled in the 

ontology might increase the acceptance rate by limiting suggestions that are clearly not 

modeled in the ontology. 

 

The value of the LSP matching method also depends on how frequently these patterns occur 

in a domain corpus, given that these patterns are likely to extract more meaningful medical 

terms. Quantity is not the only measure. Our study showed that distributions of LSPs are 

heterogeneous. Some LSPs have higher frequencies than others; these proportions differ 

across the two corpora studied. Some of the patterns can be highly effective because a single 

specifically expressed instance of a relationship is all that is required for new semantic 

knowledge extraction. For example, even though the “NP_aka_NP” pattern in “Schwannoma 

(aka neurilemoma)” has a low frequency of occurrence, we can extract from a single instance 

a correct synonym relationship between schwannoma and neurilemoma. The frequencies of 

pattern occurrence in two different types of clinical documents varies; some of the patterns 

(e.g. “NP_aka_NP” and “NP_so called_NP” in radiology reports) either do not occur or 

occur at a very low frequency. Thus, the frequency of the patterns in the corpus does not 

guarantee a high suggestion rate. Based on suggestion rates, the top three patterns are “NP 
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such as NP1, NP2,” “NP including NP1, NP2,” and “NP other NP1, NP2” for both corpora. 

However, these three patterns have relatively low frequencies in both corpora.  

 

To determine the overall value of the LSP pattern set as a method of semantic extraction, I 

computed an estimate of the yield of concepts and relationships for each corpus. For a large 

corpus, the yield of concepts and relationships could be quite substantial.  However, this 

method carries with it several limitations. In contrast to the findings in Hearst’s paper, there 

is little information in the LSP that accurately predicts the semantic relationship between 

concepts in the LSP, a finding borne out in both of the domains I studied. The distribution of 

relationships extracted with the LSP method was heterogeneous. Of the three named 

relationship types that curators evaluated (hyponym, meronym, and synonym), the most 

frequent relationship extracted with “NP_such as_NP,” “NP_including_NP,” or 

“NP_other_NP” patterns was hypernym/hyponym, and the most frequent relationship 

extracted using “NP_aka_NP’ was synonym. In some cases, there was no identifiable 

relationship between the Meaningful Medical Terms extracted. In many cases, the 

relationship was determined to be of some other type. Thus, the LSP cannot be used as an 

indicator of the type of relationship expressed between the entities. Because the LSP extracts 

terms in pairs, if one of the terms extracted by the LSP method is already in the ontology, a 

general position in the hierarchy for a concept based on the complementary term can be 

determined. The ability to assign one of the terms to the ontology based on the other term’s 

position can also become a very useful feature for a semi-automated ontology learning 

platform where a human curator is required to determine the type of relationship between two 

terms. 
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A second limitation of this method, as noted in previous research [71, 72, 75], is low recall. 

Many candidate concepts in the corpus never appear in any pattern. Attempts to improve the 

recall of the LSP method have focused on three major approaches. The first approach is to 

use additional syntactic features, such as noun coordination information, in combination with 

LSPs. For example, consider the following sentence containing a coordination structure: “In 

the ovine brain, GnRH neurons do not contain Type II glucocorticoid (GR), progesterone 

(PR), or α estrogen (ERα) receptors.” If “ERα” is a steroid receptor in the ontology, the 

assumption that coordinated concepts are related permits defining “GR” and “PR” as steroid 

receptors as well. Caraballo [155] and Cederberg [156] used this approach to obtain 

additional related pairs of terms. The second approach is to use the machine learning method 

to acquire new patterns with either seed terms (Riloff [145] and Downey [157]) or seed 

patterns (Xu [158]), in an iterative bootstrapping process. A third approach combines pattern 

and co-occurrence information to learn new patterns.  To illustrate this approach, Pantel et al. 

[159] used the minimal edit distance algorithm for pattern learning. 

 

A final limitation of the LSP method is that it focuses on the use of simple English patterns, 

rather than on domain-specific patterns. The pattern learning approaches discussed above 

have been applied to specific corpora to learn domain-specific extraction patterns [145, 160].  

Embarek and Ferret [144] discovered many medically related patterns using Pantel’s 

algorithm, using them to discover semantic relationships in the medical domain. These 

patterns showed good results when evaluated via a medical corpus of the EQueR evaluation 

campaign for question-answering systems in French. Future enhancements that build on the 
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work of Riloff [145], Snow [160], and other investigators [155, 156] could further reduce the 

limitations of the LSP method for ontology enrichment in biomedicine. 

6.2 THE FFECTIVENESS OF THE STATISTICAL-BASED APPROACH FOR 

ONTOLOGY ENRICHMENT USING CLINICAL DOCUMENTS  

The statistical algorithm, or the corpus-based approach for knowledge extraction, has been 

regarded as having the benefits of broad coverage, speed, and scalability, utilizing large 

corpora to generate statistics of features that capture the characteristics of a domain. Despite 

significant work in the area of OL, these methods have rarely been applied to biomedical 

ontologies [56, 88, 161].  One of the major barriers to progress in using these methods is the 

significant difficulty in evaluating OL methods [162]. Currently, there are no systematic 

evaluation methods or reference standards. Consequently, it is extremely hard to compare 

performance between algorithms, among domains, or for different knowledge resources. The 

absence of human reference standards for this task makes it particularly difficult to select 

parameters for statistical methods.  In my dissertation study, I sought to address this problem 

by utilizing existing ontologies. In my experiments, I derived a set of reference standards 

from two existing ontologies: NCIT and RadLex. I limited the extraction task to new entities 

only, as the reference standards for these are the easiest to obtain. For other extraction tasks, 

such as relationship extraction, establishing reference standards is not easily accomplished 

without further research. Given the reference standards I was able to obtain, I tested, tuned, 

and directly compared, through recall, precision, and F-score, two statistical OL methods for 
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ontology enrichment using clinical documents.  I found that the Church mutual information 

method performed better than Lin’s similarity measure for both domains, with 46% vs. 22% 

recall for NCIT, and 64% vs. 25% recall for RadLex using these reference standards. Further 

examinations of the results of Lin’s method suggest that the lower performance may have 

been partly due to parsing errors. For Lin’s method to work, the texts have to be fully parsed 

so that all the dependency triples can be extracted. I selected the Minipar parser for this task, 

because it was created by the Lin method’s creator, Dekang Lin, and is available free of 

charge for noncommercial use. It is a broad-coverage parser for general English language and 

gives an output of dependency triples from inputted text documents. An evaluation with a 

general English corpus, SUSANNE Corpus, showed 88% precision and 80% recall with 

respect to dependency triples [163]. As there is no annotated medical domain corpus 

available, I was unable to determine the performance of the Minipar on medical corpora. 

Therefore, it is difficult to estimate how greatly the parsing errors may have contributed to 

the low performance of the new entity extraction task - a difficulty that will need to be 

addressed in future studies. In contrast, the Church method doesn’t require texts to be fully 

parsed, as only noun phrases are used for similarity measures. I was able, however, to use the 

medical domain corpus to train the POS tagger used in the Church method, and made the 

preliminary determination that the occurrence of preprocessing errors was greatly minimized. 
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6.3 ESTABLISHING AN EVALUATION FRAMEWORK AND METRICS THAT 

CAN BE USED FOR COMPARISON OF THE EFFECTIVENESS OF THE OL 

METHODS FOR BIOMEDICAL ONTOLOGY DEVELOPMENT   

The establishment of an evaluation framework for OL methods is essential for fully realizing 

their potential for biomedical ontology development; as such, it serves as the most important 

contribution of my thesis to the field. The framework I established has helped me to evaluate 

and compare different OL methods across different domains. 

 

The evaluation of ontology learning methods is a difficult task because traditional evaluation 

metrics, such as recall and precision, which are often used in Information Retrieval and 

Natural Language Processing, cannot easily be used in this context, because they aren’t as 

clearly defined. Take Part-of-Speech (POS) tagging as an example: in this task, a set of POS 

tags is often predefined. The performance of the POS tagging algorithm can be evaluated 

based on how many POS tags can be identified among all the POS tags that exist in the 

corpus (recall), and, of these, how many have been correctly identified (precision). In 

ontology learning, one needs to acquire such ontological knowledge as the discovery of new 

entities and new relationships between entities. Often, there is no clear definition of what 

constitutes correct knowledge, nor is there a clearly predefined set of knowledge that needs 

to be acquired.  Therefore, the evaluation framework and metrics need to be modified to 

reflect the more complicated characteristics of ontology learning.   
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In the symbolic method study, I described a two-step method for evaluating purely 

symbolic/syntactic OL for biomedical domains. In the first step, domain judges identified the 

meaningful medical terms on either side of the lexical pattern in text documents. In the 

second step, ontology developers evaluated the accuracy of the entity candidate and 

relationships. However, for OL methods that are either statistical or hybrid, the two-step 

human evaluation approach is inefficient. Given the wide range of possible parameters for 

any of these methods, the effort required for human evaluation could be enormous. I have 

therefore devised a variation of a previous approach that begins with automated parameter 

selection using the target ontology as a reference standard. This method would be considered 

as the first step of a two-step evaluation approach for OL method development. In the second 

step of the evaluation, the performance of each OL method can be determined through 

judgments by ontologists, based on metrics that include the Concept Suggestion Rate, 

Concept Acceptance Rate, Relationship Suggestion Rate, and Relationship Acceptance Rate 

for individual OL methods (all described previously in section 4.1.5).  

 

The method for formative evaluation described here offers the following advantages: 1) it 

utilizes existing ontologies; 2) it allows for the automation of formative aspects of 

evaluation; 3) it facilitates a comparison of the performance of OL methods used for the 

same domain; and 4) it ensures that OL methods developed using this approach will be more 

likely to learn new entities that reside within the scope of the targeted ontology. Another 

potential benefit of using a reference standard for OL method evaluation is that it provides a 

systematic method of evaluation for multiple OL tasks, including learning of entities and 

taxonomic relationships. Although I limited our evaluation in this study to the entity 
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enrichment by OL method, similar methods can be used to evaluate algorithms for other OL 

tasks. 

 

I believe this methodology is sufficiently general and flexible enough to permit comparison 

of any OL method for a specific corpus and ontology of interest.  However, I also see some 

limitations to this approach. First, a basic assumption is that the ontology or knowledge 

resource used to generate the reference standard is adequate and correctly represents the 

domain knowledge. But sometimes this is not the case. A second assumption is that the 

corpus used for ontology enrichment has some overlap with the target ontology. When 

overlap is absent, however, the size of the reference standard may not be adequate for OL 

method evaluation. For example, I was only able to identify a total of 660 RadLex entities in 

the radiology corpus. The poor overlapping between corpuses and targeting ontology is 

perhaps the most important contribution to the poor precision results for RadLex enrichment 

(4% for Church’s method and 13% for Lin’s method). Though, valid comparisons can be 

made across OL methods for a single corpus and ontology, but cannot be made across 

corpora and multiple ontologies.   

 

As a second step, suggested entities that do not exist in the current ontologies have to be 

judged by domain ontologists to determine whether they can be added to an ontology; this 

evaluation must be performed by ontologists, as only they have the knowledge, experience 

and authority necessary to make these judgments. However, this process is tedious and time 

consuming. We decided to give the ontologists a randomly selected subset of suggestions 

from the output of OL methods for evaluation. The acceptance rate (AR), therefore, is 



  

 

123 

defined in the section 4.1.5 to be an estimated value of the suggested terms generated by the 

OL methods. A comparison of the ARs of the methods revealed that both are quite good for 

NCIT enrichment (39% for Church method and 28% for Lin method).  For Radlex, the AR is 

16% for Church method and 9% for Lin method. 

 

Using this framework, I found that the Church method engendered the best acceptance rate 

(39%) for NCIT compared to that produced by the two other methods (Lin’s 28% and 

Hearst’s 21%; Table 14).  

 

 

 

  
Table 14. Comparison of acceptance rates of suggested terms extracted by different OL methods 

 

Because the acceptance rate is the percentage of suggested terms that can be added to the 

target ontology, as determined by the ontologist, it is a good measure of the value of an OL 

method. In general, the higher the acceptance rate, the better the method. The preference is 

for a method whose suggested terms can be included in an ontology as many times as is 

possible. 

 

However, the acceptance rate should not be used as the only indicator of the effectiveness of 

an OL method. Other factors, including the following, may be influencing the results. First, 

computational resources required for an OL method could influence how quickly an 

OL method Acceptance Rate  
  NCIT RadLex 
Hearst method 21% 11% 
Church method 39% 16% 
Lin method 28% 9%  
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algorithm can run on a set of corpus. Some statistical methods require longer running times 

when the size of the corpus increases. In such cases, the Lin method is more computer-

intensive than the Church method; the generation of new entity suggestions takes a lot longer 

to complete.  The LSP matching method, however, uses a simple string-matching algorithm 

that renders it a more swift and efficient process.   

 

Preprocessing is another factor that can influence the results of ontology learning. Because 

text corpora are learning resources, all OL methods will require some degree of text 

preprocessing. However, text preprocessing is less crucial to some methods than to others.  

For example, POS tagging is the preprocessing step for the LSP matching method. It has 

minimal effect on the LSP matching method because of its simple string-matching algorithm 

and the high accuracy of its POS tagging. Preprocessing for the Lin and Church methods is 

more complex, as it consists of sentence boundary detection, chunking, and named entity 

recognition. These preprocessing events have been packed into the NER system we 

developed. A shortcoming of my study is that the new NER system has not been formally 

evaluated. Manual examination of the output of the NER system reveals that some terms 

were not properly chunked and some terms were misrecognized as the named entities. During 

the development of statistical methods, the preprocessing errors will systematically present 

for all experiments. While these errors are acceptable for fine-tuning the methods, their 

presence is unacceptable in the final human evaluation. 
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7.0  LIMITATIONS 

One of the limitations of this study is that the NER system used here was not formally 

evaluated. I have found that some of the terms are not properly chunked, and some of the 

terms in the clinical corpus have not been identified as concepts (i.e.: they are false 

negatives). These weaknesses have no impact on the Hearst method, as it doesn’t require the 

NER system for preprocessing (simple pattern matching). For the Church and Lin methods, 

however, the improper chunking can affect the statistical calculation for similarity scores. 

During the development of statistical methods, the preprocessing errors will systematically 

present for all experiments. While these errors are acceptable for fine-tuning the methods, 

their presence may not be acceptable in the final human evaluation. Thus, the extent of the 

effect of NER errors on ontology learning is hard to estimate. 

 

One basic assumption for utilizing an existing ontology or knowledge resource as a reference 

standard is that the ontology is adequate and correctly represents the domain knowledge. 

Sometimes, however, such may not be the case. A second assumption is that the corpus used 

for ontology enrichment has some overlap with the target ontology. When this is not the case, 

the size of the reference standard may not prove adequate for OL method evaluation. I have 

found that I was only able to identify a total of 660 RadLex entities in the radiology corpus, 
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which was, perhaps, a very important factor in the poor precision results achieved with the 

RadLex enrichment (4% for Church’s method and 13% for Lin’s method). Another limitation 

of this study is that I was only able to explore these OL methods in two medical domains, 

instead of in the three that I had originally planned to use, due to the difficulty of finding a 

sufficient number of domain experts. Both the Church and Lin methods performed poorly for 

the RadLex domain.  I believe the inadequate quantity of reference standards available with 

the radiology domain may have contributed the lower performance of the statistical methods 

employed. However, as I have done only two domain studies, I was unable to draw definite 

conclusions when I compared the effectiveness of OL methods across the domains.  

 

Although I believe that the evaluation framework can be used to evaluate algorithms that are 

aimed at other OL tasks, such as relationship extraction, I have limited my evaluation in this 

study to entity enrichment by OL methods, due to time constraints.  Further study in this area 

is warranted.  
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8.0  CONCLUSION AND FUTURE WORK 

Ontology development is a very challenging task because it requires grappling with many 

unresolved issues, such as the knowledge acquisition bottleneck, the difficulty of ontology 

learning evaluation, and the extent of an ontology’s scope and cycle. I have argued the notion 

that extending OL methods into the biomedical domain is a powerful approach for alleviating 

the knowledge acquisition bottleneck. To that end, I have evaluated three methods for 

ontology enrichment from two types of OL approaches (the symbolic and the statistical) in 

two medical domains (pathology and radiology). Overall, these methods proved very 

effective for new entity extraction from clinical corpora for both the pathology and radiology 

domains, with some limitations. I have found that the Hearst method, because of its 

simplicity, is the superior method: it can be applied easily to a wide range of domain corpora 

and doesn’t require a language or knowledge resource; thus, its implementation can be easy 

and swift. It does, however, suffer from the shortfall of low recall. Both the Church and Lin 

methods have the advantage of producing higher recall than the Hearst method, but their 

precisions are low. One important finding I can attest from my study is that the statistical 

method necessitates the use of high-quality preprocessing tools that require time and 

resources to develop. Further research on reducing preprocessing errors is greatly needed. 
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The lack of a formal evaluation method and reference standards is another major impediment 

to ontology development. I believe a systematic evaluation methodology is required before 

we can fully realize the potential of NLP methods for ontology learning. In this study, I have 

established a framework and metrics that have enabled me to evaluate and compare the 

performance of three NLP methods for ontology enrichment across two medical domains. 

The new entity suggestion rate and acceptance rate metrics that I created along with this 

framework allow for a subjective comparison of the performance of several OL methods as 

well.  I believe this framework offers the following advantages: 1) it utilizes existing 

ontologies; 2) it allows for the automation of formative aspects of evaluation; 3) it facilitates 

a comparison of the performance of OL methods used for the same domain; and 4) it ensures 

that OL methods developed using this approach will be more likely to learn new entities that 

reside within the scope of the targeted ontology. Another potential benefit of using a 

reference standard for OL method evaluation is that it provides a systematic method of 

evaluation for multiple OL tasks including learning of entities and taxonomic relationships. 

The framework is flexible and carries with it the potential for other ontology developers to 

test and evaluate NLP methods for other domains.  

 

The effectiveness of the use of these OL methods in the medical domains of my study has 

pointed to several directions for future research in this field. First among these is the testing 

and evaluation of alternative NLP methods for ontology learning. In this study, I have tested 

only one symbolic method and two statistical methods. As I described in section 2.0., there 

are many alternative methods with different approaches that have been well studied in the 

fields of NLP, A, IE, and IR. The comparison of the performance of these methods under the 
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same framework and metrics would provide a beneficial contribution to the biomedical 

ontology development community. 

 

Second, while many alternative methods should be tested, I believe the symbolic approach 

embodied in Hearst’s pattern matching method has the potential for superior performance of 

new entity discovery, due to its simplicity and precision. This method can be easily and 

quickly implemented across different domains; therefore, it can be very beneficial for the 

ontology developer who does not have the time and resources for method development and 

implementation. I would like to continue to study this method and focus on the improvement 

of its performance by increasing its recall. In the past, many researchers have explored a 

variety of techniques for boosting performance, such as the utilization of additional noun 

coordination information [71, 72], bootstrapping in order to learn new patterns [64, 75] [164, 

165], and using a hybrid of these two processes. The pattern-learning technique is 

particularly interesting, because it can assimilate patterns that are domain-specific.   

 

Third, ontology relationship learning from text represents another important subject for 

research in the field of ontology learning.  Because of time constraints, my study has mainly 

focused on new entity discovery. Although I have found that the Hearst method is the 

superior method for discovery of new entities that are related in some way, the relationships 

between the paired entities is not uniformly associated with one particular pattern.  Further, 

the other two statistical methods give little support to relationship discovery. I would like to 

address these weaknesses by testing other OL methods, especially those that focus on 

relationship discovery, such as the association rule learning method.  
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Fourth, the development of evaluation methodology is crucial for ontology learning. I would 

like to further the study by contrasting the framework I developed here against other standard 

methods, such as data-driven ontology evaluation [166]. With objective metrics as evaluation 

measures, such study could provide a valuable assessment of the efficacy of this framework.  

 

Finally, I would like to address an even larger research question about biomedical ontology 

learning: what is the most effective way to utilize ontology learning methods for biomedical 

ontology development? While automated ontology learning from texts using the NLP method 

is an effective approach for new entity and/or relationship discovery, semi-automatic 

ontology development platform is considered to be the more practical approach at this 

current stage. While OL methods can effectively generate many new entity candidates from 

text corpora, human judgment is required when deciding whether a suggested new entity 

should be incorporated to an ontology. Therefore, human-computer interaction is another 

compelling research area that holds the promise of making a positive contribution to the 

biomedical ontology development community. Research on ways to effectively present new 

entity candidates to domain experts is paramount in helping domain experts with the 

decision-making process. 
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APPENDIX C 

APPENDIX C1 TERMS EXTRACTED USING LIN METHOD AND PRESETNED TO NCIT 
ONTOLOGIST 
 

ID Term existed in 
the ontology Proposed Term 

Is this entity 
already 

present in the 
ontology? 

If the entity is not 
present, should it be 

added to the 
ontology? 

1 adjacent 
biliary NCIT: Biliary(Code 
C2801) Yes   

2 cavity 
cysts NCIT: Cyst (Code 
C2978) Yes   

3 cirrhotic 

dense NCIT: Dense 
Connective Tissue (Code 
C32450) Yes   

4 confirms 

destruction NCIPT: 
Destruction (Code 
C62100) Yes   

5 annular 
distal NCIPT: Distal (Code 
C25237) Yes   

6 cholestasis dropout No No 

7 crusted 
dry NCIT: Dry Skin (Code 
C74592) Yes   

8 chronicity 

dyspoietic 
Myelodysplastic 
Syndrome (Code C3247) Yes   

9 cellular 

eosinophilic NCIT: 
Eosinophilic Infiltrate 
(Code C35981) Yes   
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10 cytological 
epithelial NCIT: Epithelial 
(Code C13315) Yes   

11 elongation 
fibrosis NCIT: Fibrosis 
C30444 Yes   

12 five fourteen No No 

13 capsular 
glandular NCIT: Glandular 
Cell C33923 Yes   

14 dermatopathic 
granulomatous NCIT: 
Granulomatous C25302 Yes   

15 dry 
gritty NCIT: Gritty Cut 
Surface C96185 No   

16 gallstones 
hemorrhages NCIT: 
Hemorrhage C26791 Yes   

17 golden 
opaque NCIT: Opaque 
C82125 Yes   

18 cavity hilum NCIT: Hilum C73467 Yes   

19 eosinophilia 
histiocytosis NCIT: 
Histiocytic Infiltrate C3106 Yes   

20 cholestasis 
hyalin NCIT: Mallory 
Bodies Present C35381 Yes   

21 dysplasia 
hyalinization NCIT: 
Hyalinization C96238 No yes 

22 glomerulosclerosis 

hypertrophy NCIT: 
Glomerular Hypertrophy 
C96239 No yes 

23 blasts 
hypogranularity NCIT: 
Hypogranularity C96264 No yes 

24 alveolar 
intramedullary NCIT: 
Intramedullary C96266 No yes 

25 classic 
invasive NCIT: Invasive 
C14159 Yes   
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26 edematous 
irregular NCIT: Irregular 
C63815 Yes   

27 bronchial labial NCIT: Labial C96267  No   

28 inclusions lesions NCIT: Lesion C3824 Yes   

29 circular linear No No 

30 iris 

lipofuscin NCIT: 
Intracytoplasmic 
Lipofuscin Present C96268 No yes 

31 atelectatic 
lobular NCIT: Lobular 
C25557 Yes   

32 adenomatous 
lymphoid NCIT: Lymphoid 
C 13810 Yes   

33 inguinal malar NCIT: Malar C96269 No yes 

34 desmin 
margins NCIT: Margin 
C25563 Yes   

35 caval 
mediastinal NCIT: 
Mediastinal C25310 Yes   

36 lesions 
microabscesses NCIT: 
Microabscess C96272 No yes 

37 finely mildly No No 

38 bodies 
mitoses NCIT: Mitosis 
C16864 Yes   

39 discolored 
mottled NCIT: Mottled 
Skin C96273 No yes 

40 hyperplasia 

neovascularization NCIT: 
Neovascularization 
C16900 Yes   

41 anisocytosis 
nuclei NCIT: Nucleus 
C13197 Yes   

42 inclusions 
organisms NCIT: Organism 
C14250 Yes   

43 bundles 
osteoid NCIT: Osteoid 
C33228 Yes   

44 largest ovoid No No 
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45 intramural 
parenchymal NCIT: 
Parenchyma C74601 Yes   

46 cortical 
patchy NCIT: Patchy 
C73945 Yes   

47 duodenum 
pedicle NCIT: Pedicle of 
Vertebral Arch C96274 No yes 

48 aortic 
pericolonic NCIT: Pericolic 
C25614 Yes   

49 mesenteric 
perigastric NCIT: 
Perigastric C96275 No yes 

50 abundant 
perimysial NCIT: 
Perimysial C96276 No yes 

51 anterior 
peroneal NCIT: Peroneal 
C96277 No yes 

52 erosions 
plasmacytosis NCIT: 
Plasmacytosis C96278 No yes 

53 discoloration 
pleomorphism NCIT: 
Pleomorphism C17000 Yes   

54 firm 
polypoidal NCIT: Polypoid 
C96279 No yes 

55 plasmacytoid 
positive NCIT; Positive 
C25246 Yes   

56 intense preponderantly No No 

57 pmn 
promyelocyte NCIT: 
Promyelocyte C13114 Yes   

58 edematous red NCIT: Red C48326 Yes   

59 dense 

redundant NCIT: 
Redundancy (Code 
C55286) Yes   

60 dermoid 
remnant NCIT: Remnant 
C96280 No yes 

61 lingular 
retroperitoneal NCIT: 
Retroperitoneal C28256 Yes   
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62 post scar NCIT: Scar C34483 Yes   

63 forehead 
segment NCIT: Segment 
(Code C45312) Yes   

64 abundant 
semitransparent NCIT: 
Semitransparent C96284 No yes 

65 obvious 
serous NCIT: Serous 
C14168 Yes   

66 hyalinization 
thrombus NCIT: Blood Clot 
C27083 Yes   

67 lumina 
sinuses NCIT: Sinus 
C33556 Yes   

68 fragmented smaller No No 

69 ectasia 
spongiosis NCIT: 
Spongiosis C96291 No yes 

70 crohn 
sprue NCIT: Celiac Disease 
C26714 Yes   

71 retroperitoneal 
stellate NCIT: Stellate 
C94437 Yes   

72 glomeruli 
stones NCIT: Stone 
C35708 Yes   

73 bladder 
stump NCIT: Stump 
C96294 No yes 

74 necrotizing subacute No No 

75 biopsies 
submucosal NCIT: 
Submucosal C96296 No yes 

76 deposition 
suture NCIT: Suture 
C50365 Yes   

77 cadherin 

synaptophysin NCIT: 
Synaptophysin Staining 
Method C23029 Yes   

78 hemorrhagic synthetic No No 

79 suture tag NCIT: Skin Tag C3374 Yes   

80 brown tan NCIT: Tan C96298 No yes 
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81 dupuytren 
tenosynovium NCIT: 
Tendon Sheath C96299 No yes 

82 ligation vein NCIT: Vein C12814 Yes   

83 apoptosis 
thrombi NCIT: Blood Clot 
C27083 Yes   

84 leiomyomas 
tissues NCIT: Tissue 
C12801 Yes   

85 membranous 
translucent NCIT: 
Translucent C96300 No yes 

86 opaque 
transparent NCIT: 
Transparent C94589 Yes   

87 cytokeratin 

trichrome NCIT: 
Trichrome Staining 
Method C23012 Yes   

88 spongy 
uniform NCIT: Uniform 
C73944 Yes   

89 immature 
unremarkable NCIT: 
Unremarkable C96301 No yes 

90 occipital 
upper NCIT: Upper 
C25355  Yes   

91 fibroelastosis 

vacuolation NCIT: 
Cytoplasmic Vacuolation 
C96302 No yes 

92 identifiable 
vague NCIT: Vague 
C96303 No yes 

93 ankle 
valve NCIT: Cardiac Valve 
C12729 Yes   

94 hyperplastic 
variegated NCIT: 
Variegated C96304 No yes 

95 abscesses 
vasculitis NCIT: 
VasculitisC26912 Yes   

96 nodular 
verrucous NCIT: Verrucous 
Lesion C5028 Yes   

97 lumen 
vessel NCIT: Blood Vessel  
C12679 Yes   

98 cells 
villi NCIT: Microvillus 
C33112 Yes   

99 pedunculated wrinkled No No 
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100 grayish 
yellow NCIT: Yellow 
C48330 Yes   
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APPENDIX C2 TERMS EXTRACTED USING CHURCH METHOD AND PRESETNED TO 
NCIT ONTOLOGIST 
 

ID Term existed in the 
ontology Proposed Term 

Is this entity 
already present 
in the ontology? 

If the entity is 
not present, 
should it be 
added to the 

ontology? 

1 
a band-like inflammatory 
cell infiltrate 

an occasional macrophage 
NCIT: Occasional 
Macrophages Present 
C96168 No yes 

2 
an immunohistochemical 
profile 

architectural disorder NCIT: 
Dysplastic Nevus C3694 Yes   

3 
a minimal interstitial 
infiltrate 

arteriolosclerosis NCIT: 
Arteriolosclerosis C35543 Yes   

4 adenocarcinoid 

atypical carcinoid NCIT: 
Atypical Carcinoid Tumor 
C72074 Yes   

5 cholesterosis 

chronic acalculous NCIT: 
Chronic Acalculous 
Cholecystitis C96169 No yes 

6 
columnar mucosa 
showing intestinalization 

columnar mucosa shows 
NCIT: Intestinal Metaplasia 
of Columnar Epithelium 
C96170 No yes 

7 bunionectomy 

revision hammer toe left 
foot NCIT: Revision Hammer 
Toe Surgery C96172 No yes 

8 atypical features 

darkly pigmented 
melanophages NCIT: Darkly 
Pigmented Melanophages 
Present C96173 no yes 

9 adventitia 

deep adventitial inked 
margin NCIT: Deep 
Adventitial Inked Margin 
C96174 no yes 

10 
a piece of soft tissue 
reddish 

deep lobe NCIT: Parotid 
Gland Deep Lobe C96176 no yes 

11 deep edges 
early neurotization NCIT: 
Nerve Regeneration C96177 no yes 

12 
damaged and 
regenerating glands 

early regeneration NCIT: 
Early Regeneration C96178 no yes 

13 
a well differentiated 
hepatocellular neoplasm 

effacement NCIT: 
Architectural Distortion Yes   
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C82986 

14 diabetic nephropathy 

efferent arteriolar hylinosis 
NCIT: Efferent Arteriolar 
Hyalinosis C96179 no yes 

15 atrophic squamous 

endocervical glandular 
epithelium NCIT: 
Endocervical Glandular 
Epithelium C96180 no yes 

16 
an inflammatory lamina 
propria 

epithelial damage NCIT: 
Epithelial Gamage C 96181 no yes 

17 
a superficial lymphocytic 
infiltrate 

epithelial projections NCIT: 
Cilium C32318 Yes   

18 amorphous debris 
fascicles NCIT: Fascicle 
C32586 Yes  

19 an igg 

fibrillary 
glomerulonephropathy NCIT: 
Fibrillary Glomerulonephritis 
C96182 no yes 

20 eccentric thickening 

fibroblast proliferation NCIT; 
Fibroblastic Proliferation 
Present C96183 No yes 

21 a moist 

focal hemorrhage and 
ulceration NCIT: Localized 
Hemorrhagic and Ulcerated 
Lesion C96184 No yes 

22 any gallstones focally greenish stained No No 

23 
focally hemorrhagic 
parenchyma 

gritty sensation NCIT: Gritty 
Cut Surface C96185 No yes 

24 
bilateral salpingo-
oophorectomy 

histerectomy and bilater 
salpingo-oophorectomy 
NCIT: Total Abdominal 
Hysterectomy with Bilateral 
Salpingo-Oophorectomy 
C51761 Yes   

25 beta-hcg 

human chorionic 
gonadotropin NCIT: Human 
Chorionic Gonadotropin 
C2275 Yes   

26 cholesterol clefts 

hyaline angiopathy NCIT: 
Hyaline Arteriolosclerosis 
C96186 No yes 

27 
focal intraepithelial 
microvesicle formation 

intramucosal neutrophils 
NCIT: Intramucosal 
Neutrophilic Infiltrate 
C96187 No yes 

28 a markedly distorted intrathyroid parathyroid No yes 
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total thyroidectomy NCIT: Intrathyroidal 
Parathyroid C96188 

29 
but not into mascularis 
propria 

invades into muscularis 
mucosae NCIT: Invasion of 
Muscularis Mucosa Present 
C96189 No yes 

30 an mst stain 

ischemic glomerulopathy 
NCIT: Ischemic 
Glomerulopathy C96190 No yes 

31 cmv negative 
kappa immunoglobulin light 
chain non-contributory No No 

32 focal stainable iron mainly periportal No No 

33 a hypercellular marrow 

markedly decreased 
erythroids NCIT: Erythroid 
Series Cells Decreased 
C96203 No yes 

34 breast lobules 
mastopexy NCIT: Mastopexy 
C96204 No yes 

35 immunoperoxidase 
mature chromatin NCI PT: 
Heterochromatin C13241 Yes   

36 
a nodular and diffuse 
infiltrate 

medium-sized lymphoid cells 
NCI PT: Neoplastic Medium-
Sized Lymphocyte C37004 Yes   

37 
arthroscopic shavings 
right knee 

meniscal cyst right knee 
NCIT: Meniscal Cyst C96205 No yes 

38 kossa stain 
michalis NCIT: Michaelis-
Gutmann Body C36016 Yes   

39 a red blood cells 

mild-moderate 
anisopoikilocytosis NCIT: 
Mild to Moderate 
Anisopoikilocytosis C96207 No yes 

40 arteriolar hyalinosis 

moderate arteriosclerosis 
NCIT: Arteriosclerosis 
C34398 Yes   

41 left lateral lobe mostly soft pale tan tissue No No 
42 mesosalpinx multiple translucent grape No No 

43 ganglionic tissue 

negative for neoplasia NCIT: 
Negative for Neoplasia 
C96208 No yes 

44 cortical gliosis 

neocortex NCIT: Cortical Cell 
Layer of the Cerebral Cortex 
C49136 Yes   

45 a femoral head specimen eburnation or fibrillation No No 

46 length metallic prosthesis 
 femoral shaft NCIT: Femoral 
Shaft C96209 No yes 

47 myopathic changes  neuropathic NCIT: No yes 
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Neuropathic Pain C96210 

48 a stellate 
 serosal lesions NCIT: Serosal 
Lesion C96211 No yes 

49 a few elongated nuclei 
nuclear palisading NCIT: 
Nuclear Palisading C49015 Yes   

50 a chondroid 
osseous areas NCIT: Osseous 
Component Present C54171 Yes   

51 lens 
other interior globe 
structures No No 

52 appendiceal abscess overall specimen dimensions No No 

53 
an interfollicular 
expansion paler cells No No 

54 abdominal apron 

panniculectomy NCIT: 
Abdominal Panniculectomy 
C51597 Yes   

55 a warthin 

papillary cystadenoma 
lymphomatosum Warthin 
Tumor C2854 Yes   

56 a few myofibers 

perimysial and endomysial 
inflammatory cells NCIT: 
Perimysial and Endomysial 
Inflammatory Infiltrate 
C96212 No yes 

57 
dyskeratotic squamous 
cells 

perivascular lymphocytic 
infiltrate NCIT: Perivascular 
Lymphocytic Infiltrate 
C62777 Yes   

58 endoscopic excision 
pituitary tissue NCIT: 
Pituitary Gland C12399 Yes   

59 pituitary adenoma 

pitutary NCIT: Anterior Lobe 
of the Pituitary Gland 
C12772 Yes   

60 lined cystic structure possible urachal remnant No No 

61 
an unoriented 
fibroadipose tissue posterior renal space tumor No No 

62 antibiotics 
preparation NCIT: 
Preparation C25625 Yes   

63 a fibroepithelial polyp procto NCIT: Anus C43362 Yes   
64 fewer eosinophils prominent interface activity No No 

65 mild mucosal atrophy 
quiescent NCIT: Inactive 
C45422 Yes   

66 mastoid 

radical 
tympanomastoidectomy 
NCIT: Radical 
Tympanomastoidectomy 
C96213 No yes 
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67 
fine needle aspirate 
biopsy 

reactive lymphoid tissue 
showing crushed No No 

68 re-excised tissue 
right malar border stitch 
superior No No 

69 a few small vessels 

scattered interstitial 
eosinophils NCIT: Scattered 
Interstitial Eosinophils 
Present C96214 No yes 

70 sialolith 
single amorphous structure 
identified No No 

71 especially anterior dome small irregular elevation No No 

72 lul 
stem bronchus NCIT: Main 
Bronchus C12284 Yes   

73 
localized intraluminal 
neutrophils 

stromal hemosiderin NCIT: 
Stromal Hemosiderin 
Deposition C96215 No yes 

74 a tan discoloration 

subcutaneous mass NCIT: 
Subcutaneous Nodule 
C39618 Yes   

75 mild focal thickening 

subepithelial collagen band 
NCIT: Subepithelial Collagen 
Band Present C96216 No yes 

76 focal severe atypia 
subepithelial connective 
tissue melanophages No No 

77 pseudohyphae 
superficial and intermediate 
squamous cells No No 

78 no fallopian tissue 

surface membranous tissue 
and deeper smooth muscle 
tissue No No 

79 a neuronal phenotype 

synaptophysin NCIT: 
Synaptophysin Staining 
Method C23029 Yes 11/23/2009 m 

80 a thickened area tan prominent rugae No No 

81 dorsal portion 
the cingulate gyrus NCIT: 
Cingulate Gyrus C96217 No yes 

82 no definite sinus tracts the dissected tibial and fibula No No 
83 crushed cyst the fibrotic band No No 

84 
the excised periprostatic 
tissue the left posterior region No No 

85 
moderate amyloid 
angiopathy 

the leptomeningeal and 
parenchymal blood vessels No No 

86 bifurcated vascular tissue the long side measures No No 

87 mild accentuation 
the pericentral sinusoidal 
fibrous tissue No No 

88 fibula the skin eschar NCIT: Skin No yes 
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Eschar C96218 
89 the subvalvular tissue the supravalvular wall No No 

90 
periduodenal adipose 
tissue the surrounding pancreas No No 

91 

the ongoing 
lymphoplasmacytic 
interface activity the thin fibrous bridges No No 

92 binucleate the total population No No 

93 
decidualized 
endometrium tissue passed per vagina No No 

94 labial mucosa 

tobacco induced 
hyperparakeratosis NCIT: 
Tobacco Induced 
Hyperparakeratosis C96220 No yes 

95 glandularis 
urethritis cystica NCIT: 
Urethritis Cystica C96225 No yes 

96 mixed composition viscid yellow-green bile No No 

97 some adjacent haversian 
volkmann canals NCIT: 
Perforating Canal C33293 Yes   

98 pneumocytes 

widespread alveolar 
pneumocyte damage NCIT; 
Widespread Alveolar 
Pneumocyte Damage 
Present C96237 No yes 

99 a remnant 
wrinkled and interrupted 
fragments lens capsule No No 

100 a well circumscribed tan yellow mass No No 
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APPENDIX C3 TERMS EXTRACTED USING LIN METHOD AND PRESETNED TO 
RADLEX ONTOLOGIST 
 

ID Term existed 
in the ontology 

Proposed 
Term 

Is this entity 
already present 
in the ontology? 

If the entity is not 
present, should it 
be added to the 

ontology? 
1 acetabular anterior Yes   
2 artery bifurcation Yes   
3 amount blood Yes   

4 
any joint without 
contrast left 

ct upper 
extremity 
without 
contrast left No No 

5 biopsy cytology Yes   
6 circumferential diffuse Yes   
7 canal disc Yes   
8 colon diverticulum Yes   
9 bronchoscopy drainage No No 
10 aspect duodenum No No 
11 cholecystitis embolism Yes   
12 colon esophageal Yes   
13 correlation evaluation No No 
14 activity focus No No 
15 cavernous frontal Yes   
16 flexure fundus No Yes 
17 adenoma gallstone Yes   
18 catheter ganz Yes   
19 calcaneocuboid glenohumeral No No 
20 cystic globular No No 
21 fracture hemorrhage Yes   
22 adrenal hepatic Yes   
23 esophagus ileum Yes   
24 hypervascular intraluminal Yes   
25 fracture ischemia Yes   
26 embolism leak Yes   
27 gallstones lesions Yes   
28 duct loop Yes   
29 active malignant No No 
30 clip marker No Yes 
31 area mass No No 
32 hilum mediastinum Yes   
33 mediastinum mesentery Yes   
34 base middle Yes   
35 horizontal minor Yes   
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36 angiogram mra Yes   
37 duodenum muscles Yes   
38 mediastinum musculature Yes   
39 infiltration necrosis Yes   
40 gallstones nodules Yes   
41 inflamed normal Yes   
42 normal oblique Yes   
43 intraparenchymal occipital Yes   
44 activity opacity No Yes 
45 area osteophyte No No 
46 occipital paratracheal No No 
47 flank paravertebral Yes   
48 hemisphere pole Yes   
49 ganglia pontine No Yes 
50 location position No No 
51 perfusion postcontrast Yes   
52 patellar posterior Yes   
53 fixation process Yes No 
54 infiltration prominence Yes   
55 pressure question Yes   
56 mri radiographs Yes   
57 cholecystectomy reconstruction Yes   
58 dilatation recurrence Yes   
59 chronic respiratory Yes   

60 
right breast 
sonogram 

right breast 
ultrasound No No 

61 left wrist right shoulder No No 
62 disease sclerosis No Yes 
63 disease scoliosis No Yes 
64 collection segment No No 
65 saturation sequences No No 
66 gallstones sludge Yes   
67 soft solid No No 
68 diffusion spgr Yes   
69 neck spine Yes   
70 progression stenosis No No 
71 paravertebral subareolar No No 
72 Body subchondral Yes   
73 occipital suboccipital No No 
74 aortocaval subpleural No No 
75 segment subsegmental No Yes 
76 subcutaneous superficial Yes   
77 presence surgery Yes   
78 apex tail Yes   
79 progression tear No No 
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80 cartilage tendons Yes   

81 the chest 
the intracranial 
circulation Yes   

82 
the left adrenal 
gland 

the right 
hepatic lobe No No 

83 
the left lower 
lung 

the right 
paratracheal 
region No No 

84 
the left adrenal 
gland 

the satellite 
nodule No No 

85 enhancement thinning Yes   
86 pancreatic thyroid Yes   
87 glenohumeral tibiotalar No No 
88 disease tortuosity No Yes 
89 malignancy tumor Yes   

90 guidance 
ultrasound 
guidance No No 

91 flow uptake Yes   
92 bronchus ureter No Yes 
93 contours vasculature Yes   
94 cortex ventricle Yes   
95 granulomatous vessel Yes   
96 subcentimeter water Yes   
97 noncontrasted weighted No No 
98 sensitive weighted No No 
99 pancreatectomy whipple Yes   

100 valve wires Yes   
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APPENDIX C4 TERMS EXTRACTED USING CHURCH METHOD AND PRESETNED TO 
RADLEX ONTOLOGIST 
 

ID Term existed in the 
ontology Proposed Term 

Is this entity 
already present 
in the ontology? 

If the entity is not 
present, should it 
be added to the 

ontology? 

1 lung attenuation 
 vascular 
abnormalities No no 

2 

a left pelvic 
extraperitoneal 
infiltration adjacent hematoma No no 

3 an anatomic variant aneurysm  No no 

4 a rectal stump 
barrel right lower 
quadrant ostomy No no 

5 
abdomenfollowing oral 
barium biphasic abdominal No no 

6 a nasal tube cervical esophagus No yes 
7 a proximal wire chest pacer No no 

8 a side branch ipmn 
cystic pancreatic 
neoplasms No yes 

9 bilateral iliac arteries 
diffuse atheromatous 
calcification No yes 

10 
diffuse osteopenia 
withmultilevel facial ct scanning No no 

11 left vocal cord fdg activity No no 

12 
a contrast-enhanced ct 
scan femoral canal No yes 

13 benign enhancement fibrocystic change No no 
14 evaluate due film technique No no 

15 
a normal unenhanced 
appearance indicate c-diff colitis No no 

16 a y view 
internal rotation 
grashey view No no 

17 fat herniates 
intrathoracic 
lymphadenopathy No no 

18 
a complex perianal 
abscess ischioanal fossa No no 

19 
compromise 
evaluation kidneys secondary No no 

20 blends lacrimal gland No no 

21 

expected 
postoperative subdural 
and intraventricular left occipito No no 

22 a completely drowned lower lobe bronchi No no 
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right lower lobe and 
right 

23 a peripheral nodular 
lower lobe 
parenchyma No yes 

24 
evaluate lung 
expansion meconium aspiration No no 

25 hyperintense signal median nerve No yes 

26 medical attention 
medication 
restrictions No no 

27 a representative node mesenteric adenitis No no 

28 
intraluminal 
fluidpredominantly 

middle andbasilar 
segments No no 

29 
bilateral ligamentum 
flavum hypertrophy 

mild bilateral neural 
foramen narrowing No yes 

30 contrast bilateral mr breast No no 
31 contrast left tibia mri lower extremity No no 

32 fluid filled small bowel 
multiple dilated 
loops No yes 

33 
a diffuse bone marrow 
edema 

naviculocuneiform 
joint No no 

34  ct criteria 
discrete cervical 
nodes No no 

35 a bladder calculus pelvic ureteral Yes   

36 
left inguinal hernia 
containing loops nondilated bowel No no 

37 
a ventral abdominal 
hernia 

nonobstructed 
transverse colon Yes   

38 a thyroid ultrasound 
nontoxic 
multinodular goiter No yes 

39 a widely patent graft normal amplitude No no 
40 biceps groove normal infraspinatus Yes   

41 acuteischemia 
normal mr 
angiography No no 

42 fungal 
organisms such as 
nocardia No yes 

43 
sonographic 
appearance pap smear No no 

44 both sca pca vessels No no 
45  prior pelvic ct pelvis radiograph No no 

46 post hysterectomy 
periaortic and pelvic 
lymph No no 

47 
mesenous appendiceal 
carcinoma peritoneal disease No no 

48 
intracranial mr 
angiography 

phase contrast 
technique No yes 
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49 
possible submucosal 
hemorrhage post fundoplication No no 

50 
one right superior 
pulmonary vein 

postobstructive 
consolidation No yes 

51 mri findings 
preoperative needle 
localization No no 

52 embolism protocol 
pulmonary arterial 
enhancement No no 

53 minimal left basilar residual pleural fluid No no 
54 a subpleural reticular opacities Yes   

55 
a myelomatous 
deposit 

right hypoglossal 
canal No no 

56 multiple other stones 
right lower quadrant 
ileal conduit No no 

57 
choledocholithiasis 
withbiliary sludge 

right upper quadrant 
ultrasound No no 

58 residual disease 

right-sided 
retropharyngeal 
metastatic node No yes 

59 
a nonobstructed 
appearance scattered bowel gas No no 

60 

an enlarged and 
tortuous left gonadal 
vein 

several parametrial 
collateral vessels No no 

61 
overt cirrhotic 
morphology 

severe diffuse fatty 
infiltration No no 

62 parietal scalp similar soft tissue No no 

63 
bowel loops show 
normal caliber sma and celiac trunk No no 

64 
anatomic 
impingement 

small subacromial 
subdeltoid bursitis No no 

65 
right upper quadrant 
sonography 

speckled doppler 
analysis No no 

66 exam  spine mr Yes yes 

67 
an unexpected 
occurrence 

splenic artery coil 
embolization No no 

68 

residual mild 
pancreatic tail ductal 
dilatation splenic vein patent No no 

69 post-radiation change 
stable low density 
infiltration No yes 

70 mitral valve repair status post tricuspid No no 

71 mri findings 

subacromial 
impingement 
secondary No no 
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72 
occasional 
honeycombing subpleural fibrosis No no 

73 glenoid attachment 

superior 
glenohumeral 
ligaments No no 

74 a para 
suprascapular 
ganglion No no 

75 caliber of aneurysmal 
the aortobifemoral 
endovascular stent No no 

76 rectus the deep fascia Yes   

77 fat density focus 
the gastric antral 
lumen No no 

78 
mesenteric and 
omental infiltration the greater sac No no 

79 
shaped vertebral 
bodies 

the humeral heads 
and h No no 

80 hepatofugal flow 
the intrahepatic 
portal No no 

81 post procedural the left hemithorax  No no 

82 
predominantly air-
filled the left-sided ducts No no 

83 fluid distention 
the peroneal longus 
tendon sheath No no 

84 advance narrowing 
the radial carpal 
interface No no 

85 benign thyroid disease the thyroid glandis No yes 
86 irregular sigmoid colon the tract caudally No no 

87 
oblong soft tissue 
nodular 

the upper anterior 
mediastinum No no 

88 
an associated soft 
tissue mass 

the upper sternal 
sclerotic No no 

89 malignancy elsewhere 
thoracic nodal 
metastases No no 

90 
the common iliac vein 
compatible trace fluid No no 

91 
 cirrhotic liver 
morphology 

trace upper 
abdominal ascites No no 

92 recent anoxic injury transependymal flow No no 

93 a biliary obstruction 
transhepatic biliary 
catheter No yes 

94 a cyst with placement 
ultrasound guided 
aspiration No no 

95 
parietal and right 
frontal lobes 

underlying small 
vessel No no 

96 intrinsic bone lesions  left elbow No no 
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radiographs 

97 a subtle occult fracture 

unremarkable 
portable pelvis 
radiograph No no 

98 
high attenuation 
material 

ureteral calculi or 
neoplasm No no 

99 colon likely secondary wall edema No no 

100 marked loss of gray 
white matter 
differentiation No no 
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