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Globally, cardiovascular disease (CVD) is the leading cause of morbidity and mortality. 

Overweight/obese individuals are at increased risk for CVD because the increased metabolic 

requirements and inflammation caused by excess weight drive adverse cardiovascular changes. 

Elevated circulating aldosterone and platelet activity are hypothesized to be important factors 

linking obesity to declining cardiometabolic health, but little longitudinal data is available in 

young adults with no clinically apparent obesity-related comorbidities. We sought to evaluate the 

roles of elevated serum aldosterone and plasma β-thromboglobulin, a marker of platelet activity, 

in vascular remodeling and cardiometabolic risk in overweight/obese young adults. These 

questions were investigated in a sample from the Slow Adverse Vascular Effects of excess 

weight trial, a randomized trial that evaluated the effects of a one year lifestyle intervention 

targeting weight loss, increased physical activity, and dietary sodium reduction on vascular 

health. 

We found that lower circulating platelet activity at the end of the two year study was 

associated with smaller common carotid artery IMT and greater weight loss during the study. In 

addition, non-Hispanic white individuals carrying the T allele of rs168753 in the gene encoding 

PAR-1, the main thrombin receptor, had greater carotid bulb IMT than non-carriers at baseline 

but not at the end of the study. In another analysis, higher arterial stiffness over the course the 
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study was found to predict higher circulating platelet activity at the end of the study. However, 

this association was partly explained by the effect of obesity. Finally, in our study of serum 

aldosterone and obesity-related factors, we found that  reductions in aldosterone were associated 

with reductions in insulin resistance, C-reactive protein, leptin, heart rate, tonic cardiac 

sympathovagal balance, and increases in adiponectin, independent of changes in dietary sodium 

and weight. In addition, weight loss and reduced intermuscular fat were associated with reduced 

aldosterone in individuals who had metabolic syndrome at baseline. 

The public health relevance of these findings is that elevated aldosterone and platelet 

activity are important modifiable cardiometabolic risk factors in overweight/obese otherwise 

healthy young adults. These factors may be useful targets for therapies to reduce the burden of 

CVD is this population.  
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1.0  DISSERTATION OVERVIEW AND OBJECTIVES 

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the US and 

throughout the developed world (1). Worldwide, over 7.1 million people die from coronary heart 

disease (CHD) each year (1). Large epidemiologic cohort studies such as the Framingham Heart 

Study have shown that excess weight increases the risk of stroke, incident CVD, cardiovascular 

mortality, and all-cause mortality (2-5). It is also clear that obesity brings about early adverse 

vascular changes in adolescents (6, 7) and young adults (8). Obesity is a growing public health 

problem in much of the world. In the USA, almost two-thirds of the adult population is 

overweight (BMI≥25) and approximately one-third is obese (BMI≥30) according to a recent 

report from the National Health and Nutrition Examination Survey (9). In addition to CVD and 

stroke, obesity predisposes individuals to other serious chronic diseases, such as hypertension, 

type 2 diabetes, respiratory complications, and some cancers (10, 11). It has been hypothesized 

that elevated renin-angiotensin-aldosterone-system (RAAS) activity (12) and elevated platelet 

activity (13-15) are two important mechanisms linking obesity to the decline in vascular health 

that eventually can lead to clinical CVD events.  

The objective of this dissertation was to evaluate the roles played by RAAS activity, as 

measured by circulating aldosterone, and platelet activity, as measured by plasma β-

thromboglobulin (β-TG), in vascular remodeling and elevated cardiometabolic risk in 

overweight and obese young adults. These research questions were investigated in a sample of 
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normotensive overweight and obese young adults who participated in the Slow Adverse 

Vascular Effects of excess weight (SAVE) trial, a randomized clinical trial that evaluated the 

effects of a one year lifestyle intervention targeting weight loss, increased physical activity, and 

dietary sodium reduction on vascular health. In the study, circulating platelet activity was 

measured as plasma β-thromboglobulin (β-TG) at 24-month follow-up visits. Serum aldosterone 

was measured at all study visits (see Appendix I for table listing all data collected in the SAVE 

trial). Higher levels of β-TG are indicative of excess platelet activity and higher serum 

aldosterone levels are indicative of excess RAAS activity.  

 

Research questions were addressed in a series of three studies that addressed these aims: 

1. Are previously studied single nucleotide polymorphisms (SNPs) in platelet 

membrane receptor genes associated with segment-specific carotid intima-media thickness 

(CIMT) and circulating platelet activity? Do positive lifestyle changes counteract any excess risk 

brought about by these genetic variants? Is lower circulating platelet activity one year post-

intervention associated with greater weight loss during the study or with smaller concurrently 

measured CIMT?  

2.  Independent of changes in urinary sodium excretion, are reductions in circulating 

aldosterone associated with weight loss and reduced abdominal visceral and subcutaneous 

adiposity, intermuscular adiposity, C-reactive protein, leptin, insulin resistance, cardiac 

sympathovagal balance and increased adiponectin and ghrelin over the course of the two year 

study? Independent of weight loss, are decreases in serum aldosterone and urinary sodium 

associated with decreases in blood pressure? 



3 

3. Is there a positive association between cumulative arterial stiffness exposure 

during the two year study and circulating platelet activity at the final study visit? Are 

associations between arterial stiffness and platelet activation independent of cumulative 

exposure to other cardiovascular and metabolic risk factors? 
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2.0  INTRODUCTION 

2.1 OBESITY AND CARDIOVASCULAR DISEASE 

Obesity leads to poor vascular health and increases the risk of cardiovascular disease (CVD) (16-

18). The metabolic requirements of excess weight necessitate increases in total blood volume and 

cardiac output, and these hemodynamic changes elevate arterial wall stress, smooth muscle cell 

proliferation, vessel wall thickness and diameter, and eventually arterial stiffness (16, 19). 

Adverse hemodynamic factors work together with other features of obesity, such as chronic 

inflammation and endothelial dysfunction, to impair vascular structure and function in obese 

individuals (20). Weight loss reverses many adverse vascular changes (8, 21-23) and lowers 

CVD risk (23-25), but the mechanisms by which this occurs are not completely understood. In 

addition, weight loss is difficult to achieve and maintain through lifestyle modification. Thus, in 

addition to recommending weight loss, targeted treatment of cardiovascular and metabolic risk 

factors that are elevated in young overweight/obese individuals can be helpful to reduce long-

term CVD risk.   
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2.2 SUBCLINICAL CARDIOVASCULAR DISEASE 

In recent decades, large population-based and clinical studies have used non-invasive techniques 

to examine early functional and structural vascular changes. CIMT and pulse wave velocity 

(PWV) are two such measures. Because established cardiovascular risk factors are not sufficient 

to prospectively identify all individuals who will suffer from CVD, measures of functional and 

structural arterial characteristics can be useful to improve these predictions (26). Non-invasive 

measures of functional and structural arterial characteristics also allow us to study the 

pathophysiological mechanisms leading to CVD and the effects of various interventions on 

vascular health in much smaller samples than are required for studies of clinical events (26). 

2.2.1 Carotid Intima-Media Thickness  

Carotid intima-media thickness (CIMT), measured using B-mode ultrasound, is an established 

measure of subclinical CVD. CIMT is predictive of incident cardiac and cerebrovascular events 

(27) and has also been associated with numerous CVD risk factors. Traditional risk factors, such 

as male sex (28), increased age (28), excess weight (28), elevated blood pressure (29-34), high 

blood cholesterol (35-37), diabetes and insulin resistance (38-40) and cigarette smoking (41) 

have been associated with higher CIMT in numerous observational studies both in patients at 

elevated CVD risk and in the general population. Of these factors, hypertension appears to have 

the greatest effect on carotid IMT, probably as a result of its stimulation of medial hypertrophy 

(35-37). 

CIMT has been found to be associated with other measures of subclinical and clinical 

CVD. For example, CIMT has been associated with angiographically assessed coronary artery 



6 

disease (42), electron beam computed tomographically (EBCT) assessed coronary artery 

calcification (43) and echocardiographic left ventricular hypertrophy (44-46). It has been linked 

to endothelial dysfunction, as measured by flow-mediated dilation of the brachial artery (47). 

The relations of CIMT with cardiovascular risk factors, other measures of cardiac and vascular 

health, and clinical vascular events suggest that increased CIMT may provide a comprehensive 

picture of the remodeling, both atherosclerotic and non-atherosclerotic, that occurs over time in 

the artery wall as a result of chronic exposure to risk factors (48). Interestingly, there is also 

evidence that the effects of both traditional (49-51) and genetic (52) cardiovascular risk factors 

differ depending on which segment of the carotid artery is being evaluated. The distinctive 

anatomy and hemodynamics in each segment of the carotid artery support different pathological 

mechanisms (49-51), such that risk factors may contribute differently to intimal thickening in the 

common carotid artery (CCA), internal carotid artery (ICA), and carotid bulb, and in turn, CIMT 

may present different predictive  ability for vascular events depending on which segment is 

measured (53). 

2.2.2 Pulse Wave Velocity 

Arterial stiffness, often measured non-invasively as PWV, is an established measure of vascular 

health. Carotid-femoral pulse wave velocity (cfPWV), a measure of aortic stiffness, and brachial-

ankle pulse wave velocity (baPWV), a mixed measure of central and peripheral arterial stiffness, 

are both predictive of incident vascular events and cardiovascular and all-cause mortality in the 

general population (54, 55), though cfPWV has been by far the more frequently reported 

predictor. Mechanisms behind arterial stiffening include elastin degeneration and altered 

collagen and fibronectin within the vascular wall, vascular smooth muscle cell (VSMC) 
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hypertrophy, damage from proinflammatory cytokines, and calcium deposition within the medial 

layer of the vascular wall (56). Recent studies have also highlighted associations between 

increased aortic stiffness and elevated renin-angiotensin-aldosterone system (RAAS) activity 

(56-59) or sympathovagal balance (60). CfPWV is associated with numerous CVD risk factors in 

apparently healthy adults. It has been found to be higher in males (61-63) and African Americans 

(64) in some studies. Greater aortic stiffness is associated with higher systolic (64-66), diastolic 

(62), and mean arterial blood pressure (61, 63), as well as pulse pressure (PP) (62), prevalent 

hypertension (67), and incident hypertension (68). Elevated cfPWV is also associated with 

higher fasting glucose (62), higher homeostasis model assessment of insulin resistance (HOMA-

IR) (63, 64), cigarette smoking (64, 66), increased age (61-65), higher C-reactive protein (CRP) 

(59, 61, 65), lower adiponectin (63, 65), greater waist circumference (63), greater abdominal 

visceral fat (66), higher hemoglobin A1C (66), and higher heart rate (61, 63, 66). Individuals 

with elevated aortic stiffness have also been found to have poor vascular health according to 

other metrics such as increased CIMT (61, 69) and increased aortic (61) and coronary 

calcification (70).   

Brachial-ankle pulse wave velocity (baPWV), a mixed measure of both central (aortic) 

and peripheral arterial stiffness, has also been found to be higher in males (71, 72) and African 

Americans (71). In apparently healthy adults, baPWV has been associated with higher systolic 

blood pressure (SBP) (71-74), prevalent hypertension (75), higher body weight (76), higher BMI 

(72), higher age (73, 75), cigarette smoking (71, 72), higher CRP (59, 77), higher heart rate (59, 

78), higher triglycerides (71), and lower HDL cholesterol (71). BaPWV has also been found in 

one study to predict cardiovascular and all-cause mortality in a general population of older adults 

(55). Both peripheral and central arterial stiffness have been shown to be greater in obese 
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individuals at all ages (16). Such stiffening likely occurs as a result of hemodynamic forces, 

namely increased shear stress, blood volume, and blood pressure, as well as the nervous and 

hormonal alterations that accompany obesity (60). 

2.3 RENIN-ANGIOTENSIN-ALDOSTERONE SYSTEM 

The RAAS plays an important role in blood pressure regulation, water and electrolyte balance, 

and tissue growth. The RAAS functions both as an endocrine system in circulation and as a 

paracrine/autocrine system within tissues such as the heart, brain, kidney and vasculature. In the 

endocrine system, renin is released by the kidneys and converts angiotensinogen into angiotensin 

I, which is then converted to angiotensin II by angiotensin converting enzyme (ACE) (12). 

Angiotensinogen is produced primarily by the liver, but several studies over the last two decades 

have shown that angiotensinogen and other RAAS components are also secreted by adipose 

tissue (79). Under pathophysiological conditions such as hypertension or obesity, overactivation 

of the RAAS at the tissue level may contribute to the development and progression of 

cardiovascular and renal diseases (12, 80). 

2.3.1 Aldosterone and obesity 

Although obesity is well established as a cause of hypertension, the mechanisms behind this 

causal relationship remain poorly understood. Increased renal tubular sodium and water 

reabsorption in obesity is thought to be one of the most important mechanisms driving obesity-

related hypertension (81). Mechanisms such as sympathetic nervous system activation by 
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hyperinsulinemia and hyperleptinemia, excess RAAS activation, and physical compression of the 

kidney, have been proposed to explain the altered sodium and fluid handling in obesity (82). 

Aldosterone, the most potent mineralocorticoid secreted by the adrenal cortex, plays an 

important role in the regulation of blood pressure by influencing salt-water balance (12). Its 

primary role is to induce sodium and fluid retention, resulting in increased intravascular volume 

(83). Aldosterone stimulates cytoplasmic mineralocorticoid receptors in distal renal tubular cells, 

which upregulates the activity and number of epithelial sodium channels, thus promoting 

transepithelial sodium transport (83). Both experimental and clinical studies suggest that 

aldosterone participates in the pathogenesis of hypertension (84-86). Primary aldosteronism, the 

classic clinical example of aldosterone excess, is a well-established cause of secondary 

hypertension and has an estimated prevalence of 5-10% in the general hypertensive population 

and 20% in severe or resistant hypertension (83). In addition to aldosterone’s classical effect on 

sodium and water retention, animal and human studies suggest that aldosterone may play a pro-

inflammatory and pro-fibrotic role in the heart and vasculature (12, 87-90).   

Several clinical studies have found that aldosterone levels are elevated in overweight and 

obese individuals, especially in those with excess visceral fat (91-96). Several investigations 

have found a significant decrease in aldosterone with weight loss when subjects either 

maintained a moderate to high dietary sodium intake (93, 96-98) or severely restricted their 

calorie intake irrespective of dietary sodium intake (96, 99). Other factors that have been found 

to correlate with higher aldosterone levels include increased blood pressure (85), female sex 

(100), increased inflammation (101), increased triglycerides (102), and decreased HDL 

cholesterol (102). In addition, greater circulating aldosterone is associated with several metabolic 

abnormalities of obesity including insulin resistance (91, 95, 96, 102) and the metabolic 
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syndrome (103-107). Interestingly, adipose tissue contains all components of the RAAS, and 

increased adipose-tissue and circulating RAAS activity are thought to play key roles in the 

metabolic abnormalities and hypertension that often accompany obesity (79, 80, 98, 108-111). A 

few studies have also found that several different substances released by adipocytes are able to 

stimulate adrenal aldosterone secretion (112-115). The relationship between aldosterone and 

adiposity also appears to go in the reverse direction, with several studies finding that exposure to 

aldosterone and/or activation of the mineralocorticoid receptor in adipose tissue can affect the 

tissue’s development and adipokine expression or secretion (116-118). 

2.3.2 Role of Aldosterone in Cardiac and Vascular Decline 

Studies in hypertensives have shown BP-independent associations between increased circulating 

aldosterone and reduced systemic arterial compliance (119), and studies in both hypertensives 

(58) and normotensives (59) have found BP-independent associations between elevated 

aldosterone and heart-femoral pulse wave velocity (hfPWV), a measure of aortic stiffness. In 

addition, individuals with primary aldosteronism have greater arterial stiffness than either 

normotensives or hypertensives with normal aldosterone matched for BP and duration of 

hypertension (120). One study in hypertensive individuals found that aldosterone-to-renin ratio 

(ARR), which reflects an excess secretion of aldosterone relative to renin secretion, is positively 

associated with several measures of arterial stiffness, including cfPWV (121). Another study 

found a positive correlation between ARR and carotid-femoral PWV in normotensive individuals 

(122). However, not all studies have found such a relationship (58, 123). Significant BP-

independent reductions in conduit and resistance artery stiffness have been reported with the 

aldosterone antagonists spironolactone and eplerenone (124, 125). Elevated aldosterone levels 
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also contribute to adverse cardiac remodeling, particularly left ventricular hypertrophy and 

fibrosis, which can lead to heart failure and acute vascular events (126). Together this evidence 

suggests that aldosterone, through mineralocorticoid receptors present throughout the 

cardiovascular system, participates in cardiac and vascular damage, leading to hypertension and 

CVD. Because aldosterone is closely associated with obesity and cardiometabolic risk, 

overweight and obese individuals may be at an increased risk for the decline in cardiometabolic 

health caused by inappropriate aldosterone levels. 

2.4 PLATELET ACTIVITY 

2.4.1 Mechanisms and Measurement of Platelet Activation 

Elevated platelet activity is another mechanism that may link obesity to cardiovascular decline. 

Platelets play a key role in the normal hemostasis response to injury, but they are also 

responsible for the formation of pathologic thrombi that cause such events as acute coronary 

syndrome (ACS), unstable angina, myocardial infarction (MI), ischemic stroke/transient 

ischemic attack and symptomatic peripheral artery disease (PAD) (127). It is well established 

that platelets also act as mediators of inflammation, contribute to atherogenesis, and have 

immunomodulatory activity (127). The initial step in primary hemostasis occurs when platelets 

adhere to the extracellular matrix. Platelets roll and spread on the collagen matrix to form an 

activated monolayer. At sites of vascular injury, platelet adhesion is mediated by the interactions 

between (1) the glycoprotein (GP) Ib/V/IX receptor complex on the platelet surface and von 

Willebrand factor (vWF) and (2) GPVI/GPIa and collagen (127). Under high shear, as found in 
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small arteries and arterioles, the interaction between vWF and GPIb/V/IX is necessary for the 

initial adhesion of platelets to the subendothelium. vWF interacts with GPIb/V/IX  only when 

platelets become immobilized on exposed collagen at sites of injury. Platelet activation and 

recruitment to sites of vascular injury is stimulated by platelet secretion products and local 

prothrombotic factors (127). Many different pathways lead to platelet activation, including those 

stimulated by collagen, adenosine diphosphate (ADP), thromboxane A2, epinephrine, serotonin 

and thrombin. Activation results in platelet shape change, expression of pro-inflammatory 

molecules such as P-selectin and soluble CD40 ligand (sCD40L), procoagulant activity, and 

conversion of GPIIb/IIIa into an active form (127, 128). These changes enable platelet 

aggregation and provide the potential for pathologic thrombosis. Thrombin-mediated generation 

of fibrin from fibrinogen also contributes to the hemostasis, providing a link between platelets 

and the coagulation cascade (127, 128).  

An important link between atherosclerosis progression and platelet function is the role 

played by platelets in the migration of vascular smooth muscle cells (VSMCs) from the media to 

the intima. Accumulation of platelets at sites of vascular injury can cause excessive proliferation 

of VSMCs. This proliferation is a contributing factor to a number of vascular disease states, 

including atherosclerosis and hypertension (129, 130). Platelets contain an assortment of growth 

factors (GFs), that play a crucial role in wound repair, angiogenesis, and defense against 

infectious agents (131). However, when platelets become hyperactive, they promote 

atherosclerosis and/or cause an acute thrombotic event. Antiplatelet drugs, such as aspirin, 

reduce the levels of platelet-secreted proteins (132) and reduce the risk of CVD events (133, 

134). However, the percentage of people who do not respond adequately to antiplatelet therapies 

is high (130, 131). In addition, the increased bleeding risk associated with these therapies makes 
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non-pharmacologic options to reduce platelet activation a better option for primary CVD 

prevention in healthy individuals (134). 

 Many different methods are used to quantify platelet activation. Because platelet 

activation comprises a change in platelet shape, platelet aggregation, and the release of granule 

contents from within the platelet, activation can be quantified by diverse factors such as a change 

in shape and the corresponding tendency to aggregate or by measuring the blood or urine levels 

of platelet metabolic products (128). Methods to measure in vitro platelet activation are most 

frequently used. One such in vitro method involves the use of a platelet aggregometer to measure 

aggregation response to agonists such as ADP, collagen, or thrombin (128). The extent of 

aggregation is quantified by the amount of light that passes through platelet rich plasma in 

comparison with platelet-free plasma (128).  Platelet adhesion response to a collagen or 

endothelial cell surface is another measure of in vitro activation (128). It is important to keep in 

mind that measures of in vitro platelet activation do not accurately quantify the true amount of 

activation occurring in vivo (135, 136). The basal level of activation taking place in vivo, which 

has a wide range in healthy adults, likely plays an influential role in atherosclerosis progression 

(128). Measures of in vivo platelet activation include flow cytometry detected expression of 

surface proteins expressed upon activation such as P-selectin (128) and measures of soluble 

markers in plasma or urine such as beta thromboglobulin (β-TG), platelet factor 4, soluble P-

selectin, or thromboxane (128). Results from plasma β-TG measurement are comparable to those 

obtained by flow cytometry (137), but β-TG measurement is less costly and does not require 

immediate measurement using fresh blood samples. Thus plasma β-TG measurement is more 

logistically realistic for large epidemiology studies. 
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2.4.2 Platelet Activity and Cardiovascular Risk Factors 

Numerous cardiovascular risk factors have been found to correlate with elevated platelet activity 

(15). Several studies have shown a positive relationship between platelet activation and BMI 

and/or a decrease in platelet activation with weight loss (13, 138-142). Larger volume platelets 

contain more dense granules, are more metabolically and enzymatically active, and have higher 

thrombotic potential than smaller platelets, which may explain the increased platelet activity in 

obese individuals (13). Obese individuals also have greater platelet activity as measured by 

urinary 11-dehyhdro-TxB2  (138), plasma sCD40L (139), or agonist induced platelet aggregation 

(140). One small study (n=65), however, found no significant differences between obese and 

non-obese individuals in surface markers of activation detected with flow cytometry (14). High 

blood pressure and the presence of hypertension have been associated with increased platelet 

activation (143, 144). Increased waist-hip ratio, BMI, and CRP have been associated with 

multiple measures of platelet activation in obese women (138). Measures of platelet activation 

are higher in cigarette smokers and individuals with hypercholesterolemia (145), metabolic 

syndrome (146), or Type 2 diabetes (138, 146). Female gender is associated with increased in 

vitro platelet reactivity, but it remains unclear if in vivo activation varies by sex in healthy 

individuals (147-149). Leptin and insulin, which are elevated in individuals with metabolic 

syndrome and/or obesity, have been shown to participate in platelet aggregation and activation 

(13). Normal insulin levels inhibit platelet aggregation and activation, but insulin resistance has 

been linked to platelet hyperactivity (13, 150). Leptin has a strong positive effect on platelet 

activation (13). Decreased vascular endothelial production of prostacyclin and nitric oxide in 

insulin resistant individuals promote the activation of platelets, as does the osmotic effect of 

hyperglycemia (151). Together, these relationships help to explain the increased risk of 
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thrombosis in obesity. Fortunately, it appears that weight loss and other positive lifestyle changes 

may be able to reduce platelet activation (13, 138). 

2.4.3 Platelet Activity and Subclinical Cardiovascular Disease 

Platelet hyperactivity occurs simultaneously with vascular remodeling as measured by carotid 

intima-media thickening and arterial stiffening. Greater platelet activation has been associated 

with increased CIMT in several cross-sectional studies (152-159). Three of these studies 

specifically found plasma β-TG to be associated with CIMT (153-155). However, two of these 

three studies were small and none consisted of a majority of individuals free of prevalent CVD. 

In addition, none investigated associations between platelet activation and segment-specific 

CIMT. Some tudies have also shown a prospective association between greater platelet 

activation or aggregation and greater CIMT progression (160, 161) or a reduction in CIMT 

progression with antiplatelet drug treatment (162-164). In contrast, one study found no 

relationship between platelet activation, as measured by mean platelet volume (MPV), and CIMT 

(165). This study included only patients who had an indication for coronary angiography, thus 

the characteristics of this particularly high risk sample may explain the different results of this 

study.  

 Arterial stiffness has been shown to correlate with platelet activation in a small number of 

studies. Yamasaki et al. found that platelet activation, measured by flow cytometry detected 

surface expression of P-selectin, was positively correlated with both brachial-ankle PWV and 

heart-brachial PWV (166). Dotsenko et al. found that increased platelet activation, as measured 

by circulating platelet-monocyte complexes (PMC), was associated with aortic PWV (167).  

Both of these PWV studies had small sample sizes (N<60), so larger studies are needed to 



16 

reliably determine if platelet activation and arterial stiffness are related. One large study of 

apparently healthy Chinese adults found that MPV was positively associated with baPWV 

independent of other CVD risk factors (168). Importantly however, this study did not measure 

any inflammatory markers, and inflammation is an important confounder in the relationship 

between platelet activation and vascular health. Similarly to the studies of PWV, greater platelet 

activation has been shown to be positively correlated with carotid stiffness index β, a measure of 

local artery stiffness in one study (152). Although none of these cross-sectional studies of 

platelet activation and subclinical CVD measures could determine causality, it is possible that the 

accumulation of activated platelets at sites of vascular injury plays a causal role in vascular 

remodeling and atherosclerosis. Conversely, it is also possible that atherosclerotic plaque 

formation and changes in shear stress and endothelial structure influence platelet activation. The 

present research project investigates not only cross-sectional associations between subclinical 

CVD measures and platelet hyperactivity, but also determines whether platelet activity or 

increases in platelet activity that occur after the conclusion of a lifestyle intervention are 

associated with changes in or cumulative exposure to subclinical atherosclerosis and 

arteriosclerosis. These are key questions to address in the targeting of healthy overweight and 

obese adults for CVD prevention.   

2.4.4 Genetic Variants in Genes Encoding Platelet Membrane Receptors 

In addition to the CVD risk factors discussed above, genetic factors also influence in vivo 

platelet activation. A number of common functional variants in platelet membrane receptors have 

been associated with platelet function, and several have been linked to an increased risk of 

cardiovascular events. Many molecules are important in platelet activation and aggregation: 
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coagulation factors, inflammatory factors, endothelium-derived molecules, platelet receptors and 

others. Importantly, platelet receptors are the key mediators between platelets and other cells or 

molecules in both acute thrombosis and chronic atherosclerosis (169). Allelic variants in genes 

encoding platelet membrane receptors have been found to be associated with altered platelet 

activation or aggregation (170-175) and/or an increased risk of clinical CVD events (169, 176-

189). Examples of such variants include single nucleotide polymorphisms (SNPs) present in the 

genes encoding glycoprotein (GP) IIIa (rs5918), P2Y12 (rs2046934), protease-activated receptor 

1 (PAR-1) (rs168753), GP VI (rs1613662), and GP Ib (rs2243093, rs6065). Each of these six 

SNPs has been found to be associated with the risk of cardiovascular events and/or with excess 

platelet activation, but the associations for each SNP have been inconsistent (169-191), likely 

due to the small sample size of many of the studies and the heterogeneity of outcomes. Each of 

the membrane receptors containing these genetic variants plays a critical role in platelet function. 

GP IIb/IIIa is a receptor for fibrinogen and von Willebrand factor (vWF) (169). P2Y12 is an 

adenosine diphosphate (ADP) receptor that is essential for complete aggregation response to 

ADP (192). PAR-1 is the most potent thrombin activated receptor (193). GP Ib is part of the GP 

Ib-IX-V complex, which attaches platelets to vWF, a crucial step in plaque progression and 

thrombus development (169). GP VI is a collagen receptor that augments the transduction of 

signals initiated by GP Ib-IX-V (194). SNP PlA1/PlA2 (rs5918) leads to a leucine to proline 

substitution at position 33 in GP IIIa. Results from studies evaluating the association of the 

PlA1/PlA2 SNP with clinical CVD endpoints have been both positive and negative (169). SNP 

744T/C (rs2046934) defines the H1/H2 haplotype in P2Y12, the latter of which has been 

associated with increased reactivity to ADP as well as with peripheral arterial disease (PAD) and 

coronary artery disease (CAD) (192). The intervening sequence-14 A/T dimorphism (rs168753) 
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has been linked to platelet PAR-1 density, activation, and aggregation (170, 171). The A allele 

has been linked to platelet hyperactivity in patients with CAD (170). SNP T13254C (rs1613662) 

is responsible for changing amino acid 219 in GP VI from serine to proline. Genotype 13254CC 

has been associated with risk of MI (194). GPIb is part of the GP Ib-IX-V complex, which 

attaches platelets to vWF, a crucial step in plaque progression and thrombus development (169). 

The “Kozak”-sequence SNP (rs2243093) is correlated with platelet surface density of GP Ibα 

(169, 195). The C allele has been associated with acute coronary syndrome (ACS) in some 

populations (169, 196). The Thr145Met SNP (rs6065) in GP Ibα is in linkage disequilibrium 

with a variable number of tandem nucleotide repeats (VNTR) polymorphism. The haplotypes 

composed of Met145 and VNTR A (four repeats) or VNTR B (three repeats) have been 

associated with MI and stroke (169, 180). According to HapMap data, each of the six SNPs 

chosen for our study has a minor allele frequency (MAF) of >5% in both Yoruba Africans and 

Caucasian Americans with northern and western European ancestry . Though a substantial 

amount of research has been performed on platelet receptor gene SNPs and clinical CVD 

outcomes, further study is needed to determine if these SNPs are associated with intermediate 

endpoints such as platelet hyperactivity and subclinical CVD in healthy adults. 
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2.5 ANALYSIS OF LONGITUDINAL STUDIES WITH MISSING DATA 

2.5.1 Linear Mixed Effects Models 

The primary goal of longitudinal analysis is to assess within-individual changes in characteristics 

of interest over time and to determine which factors influence heterogeneity among these within-

individual changes. Mixed models are widely used in health studies for longitudinal analysis. 

Linear mixed effects models can be used to model continuous outcome variables and, as the 

name implies, these models assume that some of the regression parameters vary randomly 

between subjects (random effects) and some are common to all subjects (fixed effects). The 

introduction of random effects induces within-subject correlation among outcomes. Such 

correlation must be accounted for in order to avoid obtaining biased standard errors for both 

within- and between-subject factors (198). Another appealing aspect of linear mixed effect 

models, in addition to their capacity to differentiate within-subject and between-subject sources 

of variation, is their ability to accommodate imbalanced data. Linear mixed effects models, 

unlike univariate or multivariate repeated-measures analysis of variance (ANOVA), require 

neither the same number of observations nor the same timing of measurement occasions on all 

subjects. Thus, mixed models are particularly convenient for handling unbalanced longitudinal 

data. 

In the simplest case of a linear mixed effects model, only the intercept is treated as 

random, thereby assuming that each subject has a latent underlying level of response that persists 

throughout the study duration: 

Yit = X’itβ + bi + eit 
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In this model, bi is the random intercept for subject i and eit is the measurement or 

sampling error for subject i and time t. It is typically assumed that bi ~ N(0,σ2
b) and ei ~ N(0, 

σ2Ini) where Ini is the ni-dimensional identity matrix, though additional within-subject serial 

correlation beyond that accounted for by random effects can be investigated. In addition, bi and 

eij are assumed to be independent of one another. In this model, the conditional mean of Yij given 

the subject-specific effect, is: 

E(Yit|bi) = X’itβ + bi 

and the marginal mean of Yij in the population (averaged over the subject-specific effects) is: 

E(Yit) = X’itβ 

Linear mixed effect models can also include random coefficients. For example, in 

longitudinal studies time is often treated as a random effect. In general, a linear mixed effect 

model is any model that satisfies the four properties below: 

Yi = Xiβ + Zibi + ei 

bi ~ N(0, D) 

ei ~ N(0, Σi) 

b1,…, bN, e1,…,eN independent 

where Yi is the ni-dimensional response vector for subject i, 1≤i≤N, N is the number of subjects, 

Xi and Zi are (ni x p) and (ni x q) dimensional matrixes of known covariates, β is a p-dimensional 

vector containing the fixed effects, bi is a q-dimensional vector containing the random effects, 

and ei is an ni-dimensional vector of residual components. D is a general (q x q) covariance 

matrix with (i, j) element dij = dji and Σi is a (ni x ni) covariance matrix which depends on i only 

through its dimension ni (199).  
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Though the main goal of a longitudinal study is to investigate within-individual changes 

in responses over time, longitudinal studies provide both longitudinal and cross-sectional 

information. These two sources of information can sometimes be at odds. Care must be taken in 

model specification in order to avoid the confounding of longitudinal effects with cross-sectional 

effects when the two differ. This can be accomplished by including separate parameters for the 

cross-sectional (between-subject) and longitudinal (within-subject) effects of time-varying 

variables in the model, as shown below: 

Yij = Z’iβ0 + X’i1β(C) + (X’ij – X’i1)β(L) + eij 

where X’ij is the row vector of q time-varying covariates for the jth response on the ith subject and 

Z’i is the row vector of p – q time-stationary covariates. This model allows the simultaneous 

estimation of both cross-sectional effects, β(C), and longitudinal effects, β(L). When investigating 

the associations between time-varying covariates and an outcome of interest during an 

intervention, such as in this dissertation, it is mainly β(L) that is of interest (198). 

2.5.2 Missing Data 

Although mixed models for longitudinal data have many advantages, they are not guaranteed to 

produce unbiased parameter estimates in studies with missing data. Missing data are ubiquitous 

in longitudinal biomedical research, in which missing data usually occur in the form of dropouts. 

Since the form of the non-response process can never be fully known, assumptions must be made 

in any analysis of available data (200). According to widely used terminology first conceived by 

Rubin (201), missing data are missing completely at random (MCAR) if missingness is 

independent of both unobserved and observed outcome and covariate data, and missing at 

random (MAR) if, conditional on the observed outcome and covariate data, missingness is 
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independent of the unobserved data. Missing data that is neither MCAR nor MAR is termed 

missing not at random (MNAR). In the context of likelihood inference, which is used in linear 

mixed effects modeling, when the parameters describing the measurement process are 

independent of the parameters describing the missingness process, MCAR and MAR processes 

are ignorable whereas an MNAR missingness process is non-ignorable. Thus, as long as the 

observed outcome and covariate data included in a linear mixed effects model are sufficient to 

bring about a MAR mechanism for the missing data, the parameter estimates of the model will 

be unbiased. This is not the case for frequentist methods such as repeated-measures ANOVA, 

which require the missing data to be MCAR (200). In the past, simple methods for dealing with 

missing data, such as last observation carried forward (LOCF), single imputation, and complete 

case analysis have been popular. However, given the commercial software available today, there 

is little reason to use these simple, typically biased methods (200).  

To examine the non-response process, one must first assume that the outcome vector, Yi 

= (Yi1, . . . ,Yin), contains a sequence of responses designed to be measured at occasions j = 1, . . . 

, n for all subjects i = 1, . . . , N. Next, one can define a dropout indicator Di for the occasion at 

which dropout occurs and assert that Di = n + 1 for a complete sequence. Yi can be split into 

observed (Yoi) and missing (Ymi) components. Generally the aim is to examine the full data 

density f(yi,di|θ,ψ), in which the parameter vectors θ and ψ describe respectively the 

measurement and missingness processes. To examine the full data, one method that can be used 

is pattern-mixture modeling, which is based on the factorization 

f(yi,di|θ,ψ) = f(yi|di,θ)f(di|ψ) 

Pattern-mixture models can easily be seen to be a mixture of subpopulations each 

characterized by a distinct non-response pattern. This method assume that covariates included in 



23 

the analysis are fully observed, often not the case for time-varying covariates in longitudinal 

studies (200). Using multiple imputation, however, both missing covariate and outcome data can 

be imputed consistent with an a priori hypothesis for the missing data process, often called an 

identifying restriction.  

An important problem with pattern-mixture models is that they are always under-

identified. There are two main strategies used for pattern-mixture modeling, and they handle the 

problem of under-identification quite differently (202). Little, Thijs, and others have advocated 

the use of identifying restrictions, in which data that are unavailable for a particular pattern are 

borrowed from a pattern or patterns in which such data are available (202, 203). Alternatively, 

model simplification can be used to identify parameters. With this technique, parameters are 

made to vary across patterns in a controlled parametric way by including pattern as a covariate in 

the pattern-mixture model. Though the second strategy is computationally simple, it requires the 

untestable assumption that it is appropriate to extrapolate time trends beyond the point of 

dropout. The first strategy, on the other hand, can accommodate a greater variety of hypotheses 

about the missing data mechanism through the use of multiple imputation (202).  

Multiple imputation is a valuable tool for longitudinal biomedical research studies, 

especially in the area of sensitivity analysis. In multiple imputation, the imputation model can be 

easily changed to reflect hypothesized departures from the MAR assumption and the analytical 

model subsequently refitted to the imputed data (204). With a general (non-monotone) pattern of 

missingness, such as occurs in many clinical trials and observational epidemiologic studies, 

Bayesian methods based on Markov Chain Monte Carlo (MCMC) can be used to multiply 

impute missing covariate and outcome data. This method assumes that the missing data, given 

the observed data, follows a multivariate normal distribution. The method is based on the 
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construction of a Markov chain long enough for the distributions of the imputed variables to 

stabilize to a stationary distribution (204). 
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3.1 ABSTRACT 

Objectives Obesity is associated with increased platelet activation and elevated cardiovascular 

disease risk, but the role of platelet activation in early atherosclerosis and whether genetic 

variants influence activation in obese individuals remains unknown. We aimed to determine 

whether (1) allelic variants in genes encoding platelet membrane receptors are associated with 
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segment-specific carotid intima-media thickness (IMT) and circulating platelet activity, as 

measured by plasma beta-thromboglobulin (β-TG) (2) positive lifestyle changes counteract any 

excess risk associated with these genetic variants, and (3) lower circulating platelet activity one 

year after a behavioral weight loss intervention is associated with smaller carotid IMT and 

greater weight loss. 

Methods This analysis included participants in the Slow Adverse Vascular Effects of excess 

weight (SAVE) trial, a study evaluating the effects of positive lifestyle changes on vascular 

health in normotensive overweight and obese young adults. For the genetic study, 266 non-

Hispanic white participants were examined. For the study of platelet activity, 92 individuals were 

assessed. 

Results At baseline, T allele carriers of rs168753 in the gene encoding PAR-1, the main 

thrombin receptor, had higher carotid bulb IMT after adjustment for cardiovascular risk factors 

(p=0.02). This association was no longer significant one year after the lifestyle intervention. 

Lower plasma β-TG one year after the intervention was associated with smaller common carotid 

artery IMT and greater weight loss (p<0.05 for both).  

Conclusions Reduced circulating platelet activity may be one pathway by which weight loss 

reduces cardiovascular risk in young adults with excess weight. Weight loss may counteract any 

potential atherosclerotic risk associated with carrying the T allele of rs168753.  

3.2 INTRODUCTION 

Platelets play a key role in the processes of atherosclerosis and thrombosis that cause acute 

cardiovascular events. Platelets release inflammatory molecules and growth factors, thereby 
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stimulating the migration and proliferation of vascular smooth muscle cells and monocytes in 

early atherosclerosis (127, 169). In populations at moderate to high cardiovascular disease 

(CVD) risk, increased platelet activation has been associated with increased carotid intima-media 

thickness (IMT) (152-156, 159), a marker of subclinical atherosclerosis and an established 

predictor of cardiovascular events(27).  In addition, platelet activation is increased in individuals 

with hypercholesterolemia, type II diabetes, and hypertension (135, 205), and several studies 

have detected excess platelet activation in obese individuals and a reduction in platelet activation 

with weight loss  (13, 138, 159), which suggests that reduced platelet activation may be one of 

the numerous mechanisms by which weight loss slows the progression of atherosclerosis in 

obese individuals.  

The ability of platelets to mediate atherosclerotic processes is dependent on their 

membrane receptors, which enable platelets to attach to leukocytes, endothelial cells, and 

molecules such as thrombin and fibrinogen. Platelets become activated when their membrane 

receptors contact specific agonists such as collagen, adenosine diphosphate (ADP), or thrombin 

(169). This activation enables platelets to adhere to extracellular matrix components and 

subsequently aggregate (127). Several allelic variants in genes encoding platelet membrane 

receptors have been repeatedly associated with altered platelet activation or aggregation (170-

175) and/or an increased risk of clinical CVD events (169, 176-189). Examples of such variants 

include single nucleotide polymorphisms (SNPs) present in the genes encoding glycoprotein 

(GP) IIIa (rs5918), P2Y12 (rs2046934), protease-activated receptor 1 (PAR-1) (rs168753), GP VI 

(rs1613662), and GP Ib (rs2243093, rs6065), each of which plays a critical role in platelet 

function (169, 192-194). Each of these SNPs has been associated with platelet activation and 

examined as a predictor of cardiovascular disease, but the associations for each SNP have been 
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inconsistent (169-191, 206), likely due to the small sample size of many of the studies and the 

heterogeneity of the outcomes studied. Because of the importance of platelet activation in 

atherosclerotic progression, further study is warranted to determine if these variants are 

associated with subclinical atherosclerosis in healthy adults. In addition, there is some evidence 

that both traditional (49, 50) and genetic (52) risk factors may have heterogeneous effects on the 

different segments of the carotid artery. The distinctive anatomy and hemodynamics in each 

segment of the carotid artery support different pathological mechanisms (49, 50), such that 

proatherosclerotic genetic variants may contribute differently to intimal thickening in the 

common carotid artery (CCA), internal carotid artery (ICA), and carotid bulb. 

The Slow Adverse Vascular Effects of Excess Weight (SAVE) trial is a randomized 

clinical trial evaluating the effects of positive lifestyle changes on vascular health in 

normotensive overweight and obese young adults. Because obesity has been associated with both 

increased platelet activation and subclinical atherosclerosis, this trial provided a valuable 

opportunity to test whether (1) previously studied allelic variants in genes encoding platelet 

membrane receptors are associated with segment-specific carotid IMT and circulating platelet 

activity, as measured by plasma beta-thromboglobulin (β-TG) (2) positive lifestyle changes 

counteract any excess risk associated with these genetic variants, and (3) lower circulating 

platelet activity one year post-intervention is associated with smaller carotid IMT and greater 

preceding weight loss. 
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3.3 METHODS 

3.3.1 Study Population 

The Slow Adverse Vascular Effects of excess weight study (SAVE) is a randomized-controlled 

trial (NCT00366990) evaluating the effects of weight loss, increased physical activity, and 

reduced dietary sodium intake on vascular health. Participants were recruited from June 2007 

through May 2009 using mass mailing. 

 Eligible participants were men and women 20-45 years of age who were overweight or 

obese (body mass index (BMI) 25-39.9 kg/m2) and physically inactive (<8 months of consistent 

physical activity (PA) during the past 12 months).  Exclusions included 1) diabetes, 2) 

hypertension or average screening blood pressure ≥140/90 mmHg, 3) cholesterol lowering, anti-

psychotic, or vasoactive medication use and 4) current pregnancy or lactation. For the present 

genetic study, those participants who were of non-Hispanic white race and had genotype data for 

at least one SNP under investigation were included (n=266). Participants of any race who 

provided a blood sample for the measurement of β-TG at the final study visit were included in 

the analysis of platelet activity (n=92). All subjects signed informed consent, and the study was 

approved by the institutional review board of the University of Pittsburgh (Pittsburgh, PA).  

3.3.2 Intervention 

Three hundred and forty-nine participants received a 1-year lifestyle intervention consisting of 

diet and physical activity (PA). Participants were randomized to either 1) diet and PA alone 

(Control Na/lifestyle) or to 2) diet and PA plus reduced sodium intake (Low Na/lifestyle). The 
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lifestyle intervention was delivered in group sessions that occurred weekly for months 1-4, 

biweekly for months 5-8, and monthly for months 9-12. The goal of the intervention was a 10% 

reduction in body weight over 6 months and continued maintenance of weight loss thereafter. 

The additional goal of the sodium reduction intervention (Low Na) was to gradually reduce daily 

sodium intake to approximately 1 mg Na+/1 kcal/day, an average reduction of about 50% from 

the participant’s usual diet (207). 

3.3.3 Clinic Visits 

Participants were to complete clinic visits at screening, baseline, and 6, 12, and 24 months 

following randomization. Self-reported demographic information, self- and interviewer-

administered questionnaires, anthropometric measurements, fasting blood draw, 24-hour urine 

collection, and non-invasive tests of vascular structure and function were collected at these visits. 

3.3.4 Demographic and Physical Measures 

Age, race, and smoking status were self-reported.  Race was coded as White or Caucasian, Black 

or African American, Asian, American Indian or Alaska Native, Native Hawaiian or other 

Pacific Islander, or other. Ethnicity was coded as Hispanic or Non-Hispanic. Smoking status was 

assessed as current or past vs. never. Weight was measured in kilograms using a balance scale. 

Height was measured in centimeters using a stadiometer.  BMI was calculated as weight in 

kilograms divided by height in meters squared. Waist circumference was measured against the 

participant’s skin at the narrowest part of the torso between the ribs and the iliac crest. Blood 

Pressure (BP) was measured with a mercury sphygmomanometer after participants sat quietly for 
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5 minutes with feet flat on the floor. Final BP was the average of the last 2 of 3 readings taken 30 

seconds apart. 

3.3.5 Blood Assays 

Blood analytes were measured at the Heinz Laboratory at the University of Pittsburgh’s 

Graduate School of Public Health. Total cholesterol and high density lipoprotein cholesterol 

(HDL-C) were determined using the enzymatic method of Allain et al.(208). HDL-C was 

determined after selective precipitation by heparin/manganese chloride and removal by 

centrifugation of very low density lipoprotein and low density lipoprotein cholesterol (LDL-

C)(209). LDL-C was calculated indirectly using the Friedewald equation. Triglycerides were 

assessed enzymatically using the procedure of Bucolo et al.(210). C-reactive protein (CRP) was 

measured using an enzyme-linked immunoassay (Alpha Diagnostic International, Inc., San 

Antonio, TX). Serum glucose was determined enzymatically with a procedure similar to that 

described by Bondar and Mead (211). Insulin, leptin, and adiponectin were measured using 

radioimmunoassays developed by Linco Research, Inc. (St. Charles, MO). The intra- and inter-

assay CV% for insulin were 4.8% and 10.5% respectively. The CV% for the other assays were 

all <3%.  

3.3.6 Urine Collection 

Valid 24-hour urine collections had volume between 500 mL and 4000 mL, duration ≥22 hours 

and ≤26 hours, and total creatinine within the expected range(212). From April 13, 2007 to 

March 6, 2009, analytes were measured using an Ortho Vitros 950. Direct potentiometry was 
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used to measure sodium and colorimetry to assess creatinine levels.  Afterward, results were 

determined using a Beckman Coulter DxC 800 instrument employing an indirect ion selective 

method for sodium and an alkaline picric kinetic method for creatinine.  

3.3.7 Platelet Activity 

Circulating platelet activity was measured as plasma β-TG, a platelet-specific alpha granule 

protein released upon activation (213). Participants were eligible to provide a blood sample for 

the measurement of plasma β-TG if they had not taken aspirin in the preceding 14 days or any 

NSAID, antiplatelet, or anticoagulant medication in the preceding 10 days. At the 24 month visit, 

blood for the measurement of β-TG was drawn into a 4.5 mL vacutainer tube (Becton-Dickinson, 

Franklin Lakes, NJ) containing an anticoagulant/antiplatelet mixture of citric acid, theophylline, 

adenosine, and dipyridamole (Thermo Fischer Scientific, Pittsburgh, PA). The tube was chilled 

on ice for 15-60 minutes then centrifuged at 2000G for 30 minutes at 4°C, after which platelet-

poor plasma was obtained from the upper portion of the supernatant and kept frozen at -70°C 

until assayed. Plasma β-TG was determined using an enzyme linked immunosorbent assay 

(Asserachrom, Diagnostica Stago, Parsippany, NJ). The intra- and inter-assay CV% were 3.8% 

and 13.2% respectively. 

3.3.8 Genotyping of Polymorphisms 

Genomic DNA was extracted from peripheral blood leukocytes from a blood sample provided at 

the screening visit using a commercially available kit (Qiagen Inc., Hilden, Germany). 

Genotyping of each variant was performed using the TaqMan method. Assays were purchased 
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from Applied Biosystems (ABI) (Foster City, CA) and the TaqMan Universal PCR protocol was 

used to perform the amplification reaction. The plates were placed in the 7900HT Fast Real Time 

PCR System (ABI), and the fluorescence intensity in each well of the plate was read using the 

program SDS 2.2.1 (ABI). The call rate for each SNP was ≥96%. Based on the analysis of ≥25 

pairs of blind duplicates for each variant, there was 100% concordance in genotyping. All SNPs 

were in accordance with Hardy-Weinberg equilibrium (p>0.05). 

3.3.9 Carotid Ultrasound 

Carotid ultrasound measures and readings were performed at the Ultrasound Research 

Laboratory of the Department of Epidemiology, University of Pittsburgh, by sonographers using 

an Acuson Sonoline Antares high resolution duplex scanner (Siemens, Malvern, PA).  At 

baseline and 24 month visits, digitized images were obtained from 8 locations (4 locations each 

from the left and right carotid arteries):  the near and far walls of the distal common carotid 

artery (1 cm proximal to the carotid bulb), the far walls of the carotid bulb (the point in which the 

near and far walls of the common carotid are no longer parallel, extending to the flow divider), 

and the internal carotid artery (from the flow divider to 1 cm distal to this point).  At 6 and 12 

month visits, digitized images were obtained from 4 locations, the near and far walls of the distal 

common carotid artery.  IMT measures were obtained by electronically tracing the lumen-intima 

interface and the media-adventitia interface across a 1-cm segment for each segment; one 

measurement was generated for each pixel over the area, for a total of approximately 140 

measurements for each segment. The reading software used was the AMS system developed by 

Dr. Thomas Gustavsson (214) which has an edge detection algorithm that allowed much of the 

reading to be done automatically. For this study the following IMT measures were used: 1) the 
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mean of the average readings at ICA, 2) the mean of the average readings at the carotid bulb, and 

3) the mean of the average readings at the CCA. Reproducibility of IMT was excellent with 

intraclass correlation coefficients of ≥0.87 between sonographers and ≥0.92 between readers. 

3.3.10 Statistical Methods 

Descriptive statistics were calculated to summarize study variables at baseline and 6, 12, and 24 

months follow-up and were presented as median/inter-quartile range (IQR) or mean (SD) for 

continuous variables and frequency and percentages for categorical variables. Whether the 

changes in body size, cardiometabolic risk factors, and IMT were statistically significantly 

different from zero at each follow-up visit was determined by testing the coefficient for time, as 

a nominal variable, in linear mixed models with unstructured covariance. Non-normally 

distributed variables were transformed as necessary before mixed modeling. Intervention arm 

(Low Na/lifestyle versus Control Na/lifestyle) was included as a covariate in every mixed model 

for consistency with trial design. Interactions between intervention arm and time since baseline 

were included only if statistically significant at p<0.10.  

Next, mean (SD) for the mean ICA IMT, mean CCA IMT, and mean carotid bulb IMT 

were presented by genotype for each of the six SNPs of interest. A dominant genetic model was 

employed because of the small number of minor allele homozygotes for all variants. Segment 

specific carotid IMT measures were analyzed because 1) the different segments of the carotid 

artery show different relationships with both genetic(52) and traditional cardiovascular risk 

factors (49, 50) and 2) only CCA IMT was measured at all study visits.  

Covariates of interest were the following cardiovascular and/or metaboolic risk factors, 

all of which are known or hypothesized to have a role in subclinical atherosclerosis: age, sex, 
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BMI, waist circumference, blood pressure, LDL-C, HDL-C, triglycerides, insulin, C-reactive 

protein (CRP), leptin, adiponectin, smoking status (ever vs. never), and 24-hour urinary sodium 

excretion. Pearson correlations or t tests were used to examine the associations between each 

baseline segment-specific carotid IMT and baseline covariates of interest. Analysis of covariance 

(ANCOVA) was used to evaluate the relationships between each SNP and IMT; covariates 

associated with any segment-specific IMT measure at p<0.10 were added in order of increasing 

p-value from correlation analysis and kept if statistically significant in the multivariable model at 

p<0.10. Linear mixed effects models were used to evaluate whether changes in segment-specific 

IMT over the course of the two year study varied by genotype for any SNP. This was 

accomplished by testing the interaction between time since baseline and genotype for each SNP. 

The mixed models included random intercepts and slopes as well as baseline age, sex, 

intervention arm, and concurrent values of the covariates included in the baseline multivariable 

models if statistically significant at p<0.10. Differences in segment-specific IMT by genotype at 

24 months were also determined from the mixed models. The Benjamini-Hochberg method to 

control the false discovery rate (FDR) was used for each carotid segment individually to correct 

p values for multiple hypothesis testing.  

After log transforming β-TG to normalize its distribution, the association between each 

SNP and plasma β-TG in non-Hispanic white individuals (n=70) was evaluated with the use of a 

two sample t test and with ANCOVA after adjustment for age, sex, race, and BMI. Associations 

between  plasma β-TG and IMT or CVD risk factors in individuals of any race were evaluated 

using Pearson correlations or t tests. Multivariable linear regression models were used to 

evaluate the relationships between concurrent measures of IMT and β-TG after adjustment for 

age, sex, race, BMI, and SBP. Similar models were used to evaluate the relationships between 
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measures of change in body size during the two year study and plasma β-TG at the final study 

visit. P values ≤0.05 were considered statistically significant. Statistical analyses were performed 

using SAS (Statistical Analysis Software release 9.2, Cary, NC). 

3.4 RESULTS 

3.4.1 Genetic Study 

Two hundred and sixty-six participants of non-Hispanic white race had both valid genotype and 

baseline IMT data and thus were included in the genetic study. The mean age of the sample was 

37.9 (SD 6.3) years, 74.8% of the sample was female, and 39.5% were either past or current 

smokers. With the exception of race, there were no significant differences between these subjects 

and other SAVE trial participants. Key clinical characteristics and IMT measures over the course 

of the two year study are presented in Table 3.1.   

All baseline segment-specific IMT measures were positively associated with male sex, 

greater age, BMI, waist circumference, and SBP. Baseline ICA IMT was additionally positively 

associated with LDL-C. Baseline carotid bulb IMT was additionally positively associated with 

LDL-C and triglycerides and negatively associated with HDL-C. Baseline CCA IMT was 

additionally negatively associated with HDL-C and positively associated with triglycerides 

(P<0.05 for all). Because BMI and waist circumference were highly correlated (r=0.72, 

p<0.0001) and correlations with IMT measures were stronger for BMI than waist circumference, 

only BMI was retained in multivariable regression models. In multivariable linear regression 

models, with adjustment for sex and baseline age, BMI, SBP, LDL-C, and HDL-C, C allele 
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carriers of rs5918 in the gene encoding GPIIIa had a higher mean CCA IMT, C allele carriers of 

rs2243093 in the gene encoding GPIbα had a higher mean bulb IMT, and T allele carriers of 

rs168753 in the gene encoding PAR-1 had a higher mean carotid bulb IMT at baseline (Table 

3.2). However, only the association with rs168753 remained statistically significant after FDR-

adjustment for multiple testing. There were no significant associations found between any SNP 

and ICA IMT.  

Weight loss was statistically significant at all follow-up time points. In addition, the CVD 

risk profile was significantly improved from baseline at all follow-up visits, with the largest 

improvements seen at either 6 or 12 months (Table 3.1). CCA IMT was not significantly 

changed at six months but was increased at 12 and 24 months. Carotid bulb IMT also increased 

between baseline and 24 months (Table 3.1). From linear mixed models adjusting for 

intervention arm, the mean rates of progression of segment-specific IMT were 0.007 mm/yr (SE 

0.001) for CCA IMT, -0.006 mm/yr (SE 0.004) for ICA IMT, and 0.01 mm/yr (SE 0.004) for 

carotid bulb IMT. Sodium excretion was the only measure that differed over time by intervention 

arm; the reduction in urinary sodium was greater in those randomized to the Low Na/lifestyle 

intervention at 6 and 24 months (p<0.05) but did not differ between groups at 12 months 

(p=0.74). 

In longitudinal analyses, mixed modeling showed that changes in segment-specific IMT 

over the course of the intervention and post-intervention periods did not differ statistically 

significantly by genotype for any of the investigated allelic variants. Importantly, the significant 

baseline difference in mean carotid bulb IMT between T allele carriers and non-carriers at 

rs168753 was no longer statistically significant at the 24 month time point (mean carotid bulb 
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IMT = 0.71 (95% CI 0.68, 0.72) in T allele carriers and 0.70 (95% CI 0.68, 0.75) in non-carriers, 

p=0.34) in a linear mixed model adjusting for age, sex, and concurrent BMI, SBP, and LDL-C.  

3.4.2 Study of Circulating Platelet Activity 

Plasma β-TG was measured in 92 individuals at the 24 month time point. The demographic and 

clinical characteristics of this sample are shown in Table 3.3. With the exception of SBP, which 

was slightly lower among individuals in whom platelet activity was measured, characteristics at 

the 24 month visit did not differ between trial participants with and without platelet activity data. 

Median plasma β-TG was within the normal range and did not differ by age, sex, or race. None 

of the investigated SNPs was associated with plasma β-TG in non-Hispanic white individuals 

either in univariable or multivariable models. Higher plasma β-TG was correlated with higher 

concurrent BMI and serum leptin (Table 3.4), though the association between β-TG and leptin 

lost significance after adjustment for BMI (p=0.49). Plasma β-TG was also significantly 

correlated with concurrently measured CCA IMT but not with ICA IMT or carotid bulb IMT 

(Figure 1). However, the lack of statistically significant correlation between ICA IMT and 

plasma β-TG appeared to be due to the influence of one subject with unusually large ICA (1.64 

mm) and bulb IMT (1.53 mm) measurements. When this individual was removed from the 

analysis, the correlation between plasma β-TG and ICA IMT became statistically significant 

(r=0.21, p=0.046), though the correlation between plasma β-TG and carotid bulb IMT did not 

(r=0.07, p=0.50).  In multiple linear regression models adjusting for age, sex, race (black/non-

black), BMI, and SBP, plasma β-TG was not significantly associated with any segment-specific 

IMT measure (p>0.20 for all). When the individual with unusually high ICA and bulb IMT was 

excluded, these associations remained nonsignificant. With regard to the effect of the lifestyle 
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intervention, lower β-TG at the 24 month follow-up visit was correlated with greater reductions 

in BMI (r=0.22, p=0.03) and weight (r=0.22, p=0.03) but not waist circumference (r=0.12, 

p=0.25) during the study. In multiple linear regression models, BMI reduction over the course of 

the study was a significant predictor of lower circulating platelet activity at the end of the study 

(Table 3.5). 

3.5 DISCUSSION 

An importantfinding in this study was that, among non-Hispanic white overweight/obese young 

adults, T allele carriers of SNP rs168753 in the gene encoding PAR-1, the main platelet thrombin 

receptor, had a higher mean carotid bulb IMT than non-carriers before but not one year after a 

lifestyle intervention. In addition, higher plasma β-TG, a measure of circulating platelet activity, 

was not associated with any of the investigated allelic variants in genes encoding platelet 

membrane receptors but was correlated with greater CCA IMT. In addition, lower plasma β-TG 

measured one year after the conclusion of the intervention was correlated with lower concurrent 

BMI as well as with greater reductions in body size. To our knowledge, this is the first study to 

show 1) an association between carotid IMT and an allelic variant in the gene encoding PAR-1 

and 2) an association between weight loss and lower circulating platelet activity a considerable 

time after the weight loss intervention occurred.  

Our findings suggest that the T allele of variant rs168753 in the gene encoding PAR-1 

may be associated with increased carotid bulb IMT in healthy overweight and obese adults. The 

A allele in rs168753 has been linked to increased platelet PAR-1 density, increased sensitivity to 

a PAR-1 activating peptide, and higher P-selectin expression in one study of healthy white males 



40 

(171). However, in a small study of platelets from healthy Swedish adults of both sexes, no 

significant association between rs168753 genotype and PAR-1 receptor density or platelet 

reactivity was found (190). Furthermore, a recent case-control study in a European population 

found that this allelic variant was not associated with symptomatic carotid stenosis (206). Thus, 

it remains unclear if this SNP plays any role in platelet activation or atherosclerotic progression, 

and if so which allele may increase risk. Nevertheless, it is known that platelet PAR-1 activation 

plays an important role in inflammatory response and neointimal proliferation at sites of vascular 

injury (215). In addition, PAR-1 is expressed in other vascular cells such as leukocytes, smooth 

muscle cells, and endothelial cells, and in these cells it also mediates responses that contribute to 

atherosclerotic progression (127, 216). Given that in this study, rs168753 was associated with 

only carotid bulb IMT, which is the carotid segment most prone to atherosclerotic plaque 

development (217), it could be that this SNP plays a role in early intimal plaque formation but 

not medial hypertrophy, the primary response to elevated shear and tensile stress that drives 

CCA intima-media thickening in healthy adults (218).  Interestingly, we found no associations 

between rs168753 and segment-specific CIMT at the end of the two year study or progression 

over the course of the study, thus it could be that positive lifestyle modifications eliminated the 

influence of this SNP on carotid bulb IMT. There is substantial evidence from gene-lifestyle 

interaction studies suggesting that lifestyle factors determine an individual’s propensity to 

develop obesity and obesity-related conditions and that genetic susceptibility may be partly or 

even completely controlled by lifestyle modifications (219). Thus, it is possible that positive 

lifestyle changes during the intervention were sufficient to remove the atherosclerotic risk 

associated with the T allele of rs168753.  However, it cannot be disregarded that the absence of 

this genetic association post-intervention could result from measurement error or selection bias 



41 

during follow-up. Importantly, it is also possible that rs168753 is in linkage disequilibrium with 

other SNPs that influence carotid IMT. Though no studies have reported an association between 

variants in the gene encoding PAR-1 and carotid IMT, three SNPs in this gene: an intronic SNP, 

a variant in the promoter region, and a SNP in the upstream regulatory region of PAR-1, have all 

been linked to an increased risk of CHD (220, 221). These three SNPs were not chosen for 

evaluation in this study because, to our knowledge, they had not been associated with altered 

platelet function in any previous studies. It could be that one or more of these SNPs is linked to 

rs168753, however we could not verify this post-hoc as rs168753 was not genotyped in the 

HapMap project. Finally, it is important to note that genome-wide association studies of 

segment-specific carotid IMT have not identified SNPs near or within genes encoding platelet 

membrane receptors, though SNPs in other genes relevant to platelet biology were identified 

(222, 223).  

In this study, we found no association between circulating platelet activity and any of the 

studied allelic variants. One potential reason for the lack of association between rs168753 and 

plasma β-TG could be that, because the production of thrombin, the main PAR-1 ligand, is 

constrained to cell surfaces, it is short lived in circulation and thus its role in the response to 

vascular injury can only be measured locally (193). In contrast, plasma β-TG is a measure of 

circulating (systemic) platelet activity. We did detect a correlation between β-TG and CCA IMT, 

though this association lost significance in a multivariable model. This suggests that circulating 

platelet activity may influence the generalized response of the vascular wall to obesity and other 

risk factors, as represented by CCA IMT, but not local plaque development, as represented by 

carotid bulb IMT. Elevated platelet activation can accelerate atherosclerosis through the actions 

of numerous factors secreted upon activation (15). These factors include CD40 ligand and P-
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selectin, both of which have been found to be associated with an increased rate of CCA IMT 

progression in individuals with type 2 diabetes mellitus (T2DM) (160). Our findings are in 

agreement with at least six cross-sectional studies reporting associations between elevated 

platelet activation and increased carotid IMT (152-156, 159), one of which specifically examined 

obese individuals (159) and three of which reported significant associations between plasma β-

TG and CCA IMT (153-155). None of these studies, however, evaluated segment-specific IMT 

and all consisted of a study sample at substantially greater CVD risk than the young adults in the 

current study. The finding that associations between platelet activity and carotid IMT remained 

significant after adjustment for other cardiovascular risk factors in previous studies (152, 155, 

156, 159) but not in this study may indicate that platelet activity plays a greater role in adverse 

vascular remodeling in individuals with more advanced atherosclerosis.  

The correlation found between lower circulating platelet activity and reduced body size is 

in agreement with past studies showing positive associations between platelet activation and 

measures of obesity (13, 138, 139, 142) as well as decreases in platelet activation with weight 

loss (13, 138, 139, 224). Unlike the current study, however, no previous studies measured 

platelet activity a substantial time period after the weight loss occurred. Thus, this study 

additionally discovered that, after weight loss and partial weight regain, circulating platelet 

activity is lower in individuals who maintained greater weight loss. There are several reasons for 

the increased platelet activation that is present in obese individuals. Platelet size, typically 

measured as mean platelet volume, is elevated in individuals with excess weight (142) and is 

positively correlated with the metabolic and enzymatic activity as well as thrombotic potential of 

platelets (225, 226). In addition, platelet count has been found to be increased in overweight and 

obese individuals in some (14, 227) but not all studies (228), and platelet count correlates 
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positively with plasma β-TG (229). Thus, increased platelet size and count in obesity may at 

least partly explain the associations found between lower β-TG and lower BMI or more 

successful weight reduction. In addition, insulin resistance and elevated circulating leptin are 

potent promoters of platelet activation and aggregation (15, 140, 230), and the correlation 

between β-TG and serum leptin in this study suggests that leptin may play a role in platelet 

activation in overweight/obese otherwise healthy young adults, though in the present study this 

correlation was explained by BMI. The absence of statistically significant correlations between 

plasma β-TG and many established cardiometabolic risk factors in this study was surprising. In 

particular, in a recent study by Csongradi et al., significant correlations were detected between 

several measures of circulating platelet activity and blood pressure, insulin resistance, lipids, and 

CRP in middle-aged obese adults, the majority of whom had hypertension, T2DM, or 

dyslipidemia (159). In another study of non-diabetic women, both normal weight and 

overweight/obese, soluble P-selectin was associated with BMI, insulin resistance, and blood 

pressure in univariable but not multivariable models (231).  These findings suggest that platelet 

activity may be more closely associated with insulin resistance, inflammation, and lipid levels in 

obese individuals with more advanced atherosclerosis, but that these factors may not be 

independently associated with platelet activity in overweight/obese adults with no other 

atherosclerotic comorbidities. Furthermore, it could be that other obesity-related factors, such as 

oxidative stress or endothelial dysfunction (15, 232), are more closely associated with platelet 

activity in young overweight/obese individuals at low CVD risk. 

There were several important limitations to this study. First, the sample sizes were small 

for both the genetic study and the study of platelet activity. Therefore, we were unable to 

evaluate additive or recessive genetic associations, and the power available to detect associations 
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with plasma β-TG was low. Second, because plasma β-TG was measured at the 24 month study 

visit only, relationships between concurrent changes in IMT, weight, or other CVD risk factors 

and changes in circulating platelet activity could not be determined. However, the prospective 

association between weight loss and plasma β-TG does strongly suggest that platelet activity was 

reduced by weight loss. Third, we evaluated only one measure of platelet activity, plasma β-TG. 

There are several widely used measures of in vivo platelet activity, including platelet specific 

proteins released into circulation upon activation that can be detected in plasma or urine and 

platelet surface proteins expressed upon activation that can be detected with flow cytometry. 

Plasma β-TG is a more sensitive marker of circulating platelet activity than flow cytometric 

measures, but requires very careful sample collection to avoid ex vivo artifacts (137, 233). We 

attempted to minimize ex vivo activation by avoiding any trauma during blood draws, by 

drawing the blood samples used for β-TG measurement as the last of three samples, and by 

keeping the samples on ice prior to centrifugation. Finally, a notable strength of this study was 

that all participants were normotensive and not on antihypertensive, lipid lowering, or vasoactive 

medications, which enabled us to evaluate associations of interest independent of any potentially 

confounding treatment effects.  

 In conclusion, the T allele of rs168753, a common allelic variant in PAR-1, appears to be 

associated with increased carotid bulb IMT in non-Hispanic white overweight/obese adults prior 

to but not after modest weight loss. In addition, greater BMI is associated with greater circulating 

platelet activity in young adults with excess weight. Weight loss clearly improves cardiovascular 

risk profiles, and the detected effect of weight loss on platelet activity suggests that a reduction 

in circulating platelet activity may be one pathway by which weight loss reduces CVD risk. 

Future studies should examine whether elevated platelet activity is a causative factor in early 
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atherosclerosis and adverse vascular remodeling and whether other genetic variants influence 

early atherosclerosis and/or platelet activation in overweight and obese individuals. 
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3.6 TABLES AND FIGURES 

Table 3.1 Clinical Characteristics and Carotid Intima-Media Thickness in Non-Hispanic White Study Participants 

Data from trial participants of non-Hispanic white race are included in this table. Mean (SD) or median (IQR) are shown. *P<0.05 
versus baseline in a linear mixed model with time since baseline as a nominal variable and with adjustment for intervention arm. 
Insulin, triglycerides, and CRP were log transformed for linear mixed modeling. BMI=body mass index; SBP=systolic blood pressure; 

Characteristic Baseline 
(N=266) 

6 Months 
(N=221) 

12 Months 
(N=199) 

24 Months 
(N=182) 

BMI (kg/m2) 32.9 (4.0) 30.3 (4.2)* 30.3 (4.6)* 31.3 (4.6)* 
Weight (kg) 92.8 (15.4) 85.6 (15.0)* 85.6 (15.6)* 88.8 (16.3)* 
Waist Circumference (cm) 101.0 (11.8) 95.6 (11.6)* 95.5 (12.6)* 98.1 (13.0)* 
SBP (mmHg) 113.1 (10.1) 109.6 (9.0)* 109.6 (9.2)* 111.6 (9.6)* 
DBP (mmHg) 72.9 (8.6) 70.8 (8.0)* 72.1 (8.1) 74.0 (8.9) 
LDL-C (mg/dL) 124.5 (33.2) 121.9 (30.9) 125.0 (30.8) 127.1 (32.4) 
HDL-C (mg/dL) 51.6 (12.6) 52.2 (11.8) 54.9 (12.6)* 54.2 (12.8)* 
Triglycerides (mg/dL) 121 (82, 175) 100 (73, 143.5)* 97 (72, 142)* 103 (77, 153)* 
Insulin (µU/mL) 12.2 (9.3, 17.2) 11.1 (8.9, 15.4)* 11.7 (9.3, 15.2) 11.7 (9.4, 15.5) 
CRP (mg/L) 2.6 (1.4, 5.6) 2.2 (0.99, 4.3)* 2.0 (0.94, 4.0)* 2.2 (0.90, 4.6)* 
Leptin (ng/mL) 24.8 (12.3) 17.2 (11.3)* 19.6 (12.9)* 21.5 (12.4)* 
Adiponectin (µg/mL) 12.2 (6.1) 12.4 (5.6) 12.4 (5.6) 11.1 (5.6)* 
Sodium Excretion 

 
187.2 (70.9) 158.2 (68.8)* 158.2 (59.8)* 154.1 (64.6)* 

Mean ICA IMT (mm) 0.57 (0.15) ------ ------ 0.55 (0.11) 
Mean Carotid Bulb IMT (mm)  0.68 (0.16) ------ ------ 0.70 (0.15)* 
Mean CCA IMT (mm) 0.59 (0.07) 0.60 (0.07) 0.60 (0.08)* 0.61 (0.07)* 
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DBP=diastolic blood pressure; LDL-C=low density lipoprotein cholesterol; HDL-C=high density lipoprotein cholesterol; CRP=C-
reactive protein; ICA=internal carotid artery; IMT=intima-media thickness; CCA=common carotid artery. #Baseline N=219, 6 Months 
N=171, 12 Months N=150, 24 Months N=134. 

 
 

Table 3.2 Associations between Allelic Variants and Carotid Intima-Media Thickness 

*Values shown are unadjusted Mean (SD). #Comparisons between non-carriers and carriers of the minor allele were adjusted 
for baseline age, sex, BMI, SBP, LDL-C, and HDL-C. $P<0.05 after correction for multiple hypothesis testing using FDR-adjustment 

(Benjamini-Hochberg method) for each carotid artery segment individually. 

SNP Gene Genotype (N) Baseline Mean* 
ICA IMT (mm) 

Nominal  
P value# 

Baseline Mean* 
Bulb IMT (mm) 

Nominal 
P value# 

Baseline Mean* 
CCA IMT (mm) 

Nominal 
P value# 

rs168753 PAR-1 
AA (190) 

AT/TT (75) 
0.56 (0.13) 
0.58 (0.19) 

0.27 
0.67 (0.14) 
0.72 (0.19) 

0.004$ 
0.59 (0.08) 
0.59 (0.07) 

0.89 

rs2046934 P2Y12 
AA (182) 

AG/GG (72) 
0.57 (0.16) 
0.56 (0.12) 

0.87 
0.69 (0.16) 
0.67 (0.13) 

0.75 
0.59 (0.07) 
0.59 (0.07) 

0.88 

rs2243093 GPIbα 
TT (195) 

TC/CC (61) 
0.57 (0.16) 
0.55 (0.13) 

0.39 
0.68 (0.16) 
0.71 (0.15) 

0.045 
0.59 (0.08) 
0.58 (0.07) 

0.96 

rs5918 GPIIb-IIIa 
TT (180) 

TC/CC (77) 
0.56 (0.13) 
0.59 (0.19) 

0.35 
0.68 (0.15) 
0.69 (0.16) 

0.73 
0.58 (0.07) 
0.60 (0.08) 

0.03 

rs6065 GPIbα 
CC (223) 

CT/TT (36) 
0.56 (0.15) 
0.58 (0.15) 

0.94 
0.68 (0.15) 
0.70 (0.20) 

0.84 
0.59 (0.08) 
0.59 (0.07) 

0.40 

rs1613662 GPVI 
AA (189) 

AG/GG (74) 
0.57 (0.15) 
0.56 (0.14) 

0.62 
0.69 (0.17) 
0.66 (0.12) 

0.18 
0.59 (0.07) 
0.59 (0.07) 

0.56 
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Table 3.3 Characteristics of Subjects in the Platelet Activity Sub-Study at the 24 Month 

Visit 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mean (SD) or Median (IQR) values from 24 month visit. BMI=body mass index; 
SBP=systolic blood pressure; DBP=diastolic blood pressure; LDL-C=low density lipoprotein 

cholesterol; HDL-C=high density lipoprotein cholesterol; CRP=C-reactive protein; ICA=internal 
carotid artery; IMT=intima-media thickness; CCA=common carotid artery. 

Characteristic Total (n=92) 

Age (years) 40.2 (5.9) 
Women (n, %) 60 (65.2) 
Black Race (n, %) 13 (14.1) 
Ever Smoker (n, %) 
    

28 (30.4) 
BMI (kg/m2) 31.1 (4.2) 

Waist Circumference (cm) 98.1 (12.6) 

SBP (mmHg) 110.9 (8.7) 

DBP (mmHg) 73.1 (8.5) 

LDL-C (mg/dL) 123.0 (33.7) 

HDL-C (mg/dL) 54.0 (14.2) 

Triglycerides (mg/dL) 98.0 (78.5, 
149 0) Insulin (µU/mL) 12.1 (9.5, 16.2) 

CRP (mg/L) 2.3 (0.83, 4.5) 

Leptin (ng/mL) 20.7 (13.3) 

Adiponectin (µg/mL) 9.6 (5.5) 

β-thromboglobulin (IU/mL) 25.8 (18.6, 35.9) 

Mean CCA IMT (mm) 0.62 (0.08) 

Mean ICA IMT (mm) 0.52 (0.47, 0.59) 

Mean Carotid Bulb IMT (mm) 0.69 (0.62, 0.79) 
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Table 3.4. Pearson Correlations between Circulating Platelet Activity and Cardiovascular 

Risk Factors at 24 Months 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

All variables were measured concurrently with plasma β-TG at the 24 month study visit. 
Plasma β-TG, triglycerides, insulin, CRP, ICA IMT, and Carotid Bulb IMT were log 

transformed. BMI=body mass index; SBP=systolic blood pressure; DBP=diastolic blood 
pressure; LDL-C=low density lipoprotein cholesterol; HDL-C=high density lipoprotein 

cholesterol; CRP=C-reactive protein. N=92. 
 

  

Variable r P value 
Age  0.13 0.23 

Female  0.09  0.42 

Black Race  0.02 0.87 
Ever Smoker  
    

0.02 0.82 

BMI  0.25 0.02 

Waist Circumference  0.06 0.60 

SBP  0.12 0.27 

DBP  -0.04 0.68 

LDL-C  0.09  0.40 

HDL-C  0.03 0.79 

Triglycerides  0.02 0.82 

Insulin  0.02 0.85 

CRP  0.12 0.27 

Leptin 0.21 0.049 

Adiponectin -0.06 0.60 
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Figure 3.1 Correlations between Plasma β-thromboglobulin and (a) Common Carotid 

Artery (b) Internal Carotid Artery, and (c) Carotid Bulb Intima-Media Thickness 

 
 

Table 3.5 Associations between Weight Loss during the Lifestyle Intervention and Plasma 

β-thromboglobulin One Year Post-Invention 

 
 
 
 
 
 
 
 

Plasmaβ-thromboglobulin at the 24 month study visit is the dependent variable in a 
multiple linear regression model including all listed independent variables. Plasma β-

thromboglobulin was log transformed. Change in BMI indicates change between baseline and 24 
months (time of plasma β-thromboglobulin measurement). BMI=body mass index. SE=standard 

error. N=92. 

Variable Parameter Estimate (SE) P value 

Age (years)  0.01 (0.009) 0.15 

Sex (Male vs. Female)  -0.09 (0.11) 0.42 

Race (Black vs. Non-Black) -0.02 (0.15) 0.91 

Baseline BMI (kg/m2) 0.03 (0.01) 0.07 

Change in BMI (kg/m2) 0.05 (0.02) 0.03 
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4.1 ABSTRACT 

Objectives Elevated aldosterone promotes cardiometabolic decline. This is particularly 

important in obesity because adipocytes secrete factors that increase aldosterone production. 

Weight loss is thought to lower aldosterone levels, but little longitudinal data is available. We 
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aimed to determine if, independent of changes in sodium intake, reductions in serum aldosterone 

are associated with reductions in weight, abdominal visceral and subcutaneous adiposity, thigh 

intermuscular adiposity, inflammation, leptin, insulin resistance, cardiac sympathovagal balance, 

blood pressure, and increases in adiponectin and ghrelin in normotensive overweight/obese 

young adults undergoing lifestyle modification.  

Methods Participants were overweight/obese adults aged 20-45 years (20% male, 15% black) 

from a clinical trial evaluating the relationships between weight loss, dietary sodium, and 

vascular health. Subjects were randomly assigned to a regular or reduced sodium diet, and all 

received a one-year nutrition and physical activity intervention. For this study, individuals 

providing valid baseline 24hr urine collections were included (n=285). Linear mixed models 

were used to evaluate associations between changes in aldosterone and changes in obesity-

related factors. 

Results Weight loss was significant at 6 months (~7%), 12 months (~6%), and 24 months (~4%) 

(p<0.0001for all). Decreases in aldosterone were associated with decreases in C-reactive protein, 

leptin, insulin, homeostasis assessment of insulin resistance, heart rate, tonic cardiac 

sympathovagal balance, and increases in adiponectin (p<0.05 for all) in models that adjusted for 

baseline age, sex, race, intervention arm, time since baseline, and baseline and concurrent 

changes in sodium and potassium excretion. Decreases in aldosterone were associated with 

weight loss and reductions in intermuscular fat (IMAT) in the subgroup (n=98) with metabolic 

syndrome (MetS) at baseline (MetS x percent weight loss p=0.04, MetS x change in IMAT 

p=0.04). Though no associations were detected between changes in aldosterone and blood 

pressure, an association was found between reduced mean arterial pressure and reduced sodium 

excretion in those with MetS (MetS x sodium excretion reduction p=0.07).  
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Conclusions Changes in aldosterone are associated with changes in many obesity-related factors 

in overweight/obese normotensive young adults. In persons with MetS, weight loss and sodium 

restriction are particularly useful to reduce aldosterone and blood pressure respectively. Given 

the adverse effects of excess aldosterone on cardiometabolic health, future studies should 

investigate the benefits of aldosterone antagonists in individuals with MetS. 

4.2 INTRODUCTION 

Aldosterone plays important roles in blood pressure regulation and sodium and water balance, 

but inappropriately elevated levels have been shown to contribute to left ventricular hypertrophy 

(126, 234), cardiac fibrosis (235), and aortic stiffness (58, 59, 235). Aldosterone secretion by the 

adrenal cortex is normally regulated by extracellular potassium and angiotensin II (Ang II) in 

response to intravascular volume depletion (236). However, several studies have found that 

aldosterone levels are elevated in overweight and obese individuals, especially in those with 

excess visceral fat (91-96). Aldosterone has also been found to decrease with modest weight loss 

in studies in which individuals either maintained a moderate to high dietary sodium intake (57, 

93, 96-98, 237) or severely restricted their calorie intake under any level of sodium intake (96, 

99).  In addition, elevated circulating aldosterone is associated with obesity-related abnormalities 

such as insulin resistance (91, 95, 96, 102) and the metabolic syndrome (103-106). This may be 

partially explained by the presence of numerous renin-angiotensin-aldosterone system (RAAS) 

components, including angiotensinogen, angiotensin converting enzyme, Ang II, and Ang II 

receptors, in adipose tissue, though there is contrasting evidence as to whether adipocytes 

produce aldosterone (236, 238, 239). Laboratory studies have demonstrated that adipocyte 
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mineralocorticoid receptor (MR) stimulation with aldosterone promotes inflammatory adipokine 

expression and lipid accumulation whereas such effects are removed by MR knockout or 

blockade (117, 240). Conversely, human adipocytes produce mineralocorticoid-stimulating 

factors that increase adrenal aldosterone secretion independently of AngII or potassium and that 

also sensitize adrenocortical cells to AngII (112, 241). Other studies have suggested that 

oxidized free fatty acids (114) or novel adipokines may stimulate aldosterone production in 

obese individuals (113). In addition, the imparied renal sympathovagal balance present in obese 

individuals stimulates renin release by the kidneys, which elevates RAAS activity (236). In 

addition, both renal and cardiac sympathovagal balance are worsened by inappropriately elevated 

aldosterone levels (242).  Finally, increased formation of Ang II by large insulin-resistant 

adipocytes in overweight/obese individuals inhibits the recruitment and differentiation of 

preadipocytes, which leads to ectopic fat storage and decreased insulin sensitivity (243, 244). 

Together, this evidence suggests a vicious cycle exists in obese individuals wherein excess 

adiposity promotes aldosterone production and aldosterone and other RAAS components in turn 

act as drivers of adipose inflammation, insulin resistance, and cardiovascular decline.  

Though several studies have reported decreases in aldosterone with weight loss (57, 93, 

96-98, 237), to our knowledge no study of healthy normotensive young adults has examined the 

longitudinal associations between changes in aldosterone and changes in obesity-related factors 

while accounting for discretionary changes in dietary sodium intake, an important determinant of 

circulating aldosterone levels. Because aldosterone plays an important role in the development of 

hypertension, metabolic dysfunction, and cardiovascular disease, particularly in overweight and 

obese individuals (236, 245), it is important to understand its associations with obesity-related 

factors prior to the development of these clinical conditions. We hypothesized that, independent 
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of changes in 24-hour urinary sodium excretion, reductions in serum aldosterone would be 

associated with weight loss and reductions in abdominal visceral and subcutaneous adiposity, 

thigh intermuscular adiposity, inflammation, leptin, insulin resistance, and sympathovagal 

balance, and increases in adiponectin and ghrelin in normotensive overweight and obese young 

adults. We also hypothesized that, independent of weight loss, decreases in both serum 

aldosterone and sodium excretion would be associated with decreases in blood pressure over the 

course of the study. Subjects were assessed at baseline, 6, and 12 months during a one year 

behavioral weight loss intervention and again 12 months after the conclusion of the intervention. 

4.3 METHODS 

To study the associations between changes in serum aldosterone and obesity-related factors, we 

measured these factors at baseline and 6, 12, and 24 month follow-up visits in overweight and 

obese adults participating in the Slow Adverse Vascular Effects of excess weight study (SAVE), 

a randomized-controlled trial (NCT00366990) evaluating the effects of weight loss, increased 

physical activity, and reduced dietary sodium intake on vascular health.  

4.3.1 Study Population 

Participants were recruited from June 2007 through May 2009 using mass mailing. The study 

was approved by the University of Pittsburgh IRB and all participants provided written informed 

consent to participate in the study.   
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 Eligible participants were men and women 20-45 years of age who were overweight or 

obese (body mass index (BMI) 25-39.9 kg/m2) and physically inactive (<8 months of physical 

activity (PA) during the past 12 months).  Exclusions included 1) diabetes, 2) hypertension or 

average screening blood pressure ≥140/90 mmHg, 3) cholesterol lowering, anti-psychotic, or 

vasoactive medication use and 4) current pregnancy or lactation. 

4.3.2 Intervention 

Three hundred and forty-nine eligible participants received a 1-year lifestyle intervention 

promoting diet and physical activity (PA). Participants were randomized to either 1) diet and PA 

alone (Control Na/lifestyle) or to 2) diet and PA plus reduced sodium intake (Low Na/lifestyle). 

The lifestyle intervention was delivered in group sessions that occurred weekly for months 1-4, 

biweekly for months 5-8, and monthly for months 9-12. The goal of the intervention was a 10% 

reduction in body weight over 6 months and continued maintenance of weight loss thereafter. 

The additional goal of the sodium reduction intervention (Low Na) was to gradually reduce daily 

sodium intake to approximately 1 mg Na+/1 kcal/day, an average reduction of about 50% from 

the participant’s usual diet (207). 

4.3.3 Clinic Visits 

Participants were to complete clinic visits at screening, baseline, and 6, 12, and 24 months 

following randomization. Self-reported demographic information, self- and interviewer-

administered questionnaires, anthropometric measurements, fasting blood draw, and 24-hour 

urine collection were collected at these visits. 
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4.3.4 Demographic and Physical Measures 

Age, race, and smoking status were self-reported.  Race was re-coded as black vs. non-black. 

Smoking status was assessed as current vs. past or never. Weight was measured in kilograms 

using a balance scale. Height was measured in centimeters using a stadiometer. BMI was 

calculated as weight in kilograms divided by height in meters squared. Waist circumference was 

measured against the participant’s skin at the narrowest part of the torso between the ribs and the 

iliac crest. Blood Pressure (BP) was measured with a mercury sphygmomanometer after 

participants sat quietly for 5 minutes with feet flat on the floor. Final BP was the average of the 

last 2 of 3 readings taken 30 seconds apart. 

4.3.5 Blood Assays 

Blood analytes were measured at the Heinz Laboratory at the University of Pittsburgh’s 

Graduate School of Public Health. Serum glucose was determined enzymatically with a 

procedure similar to that described by Bondar and Mead (211). Total cholesterol, high density 

lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), triglycerides and 

glucose were determined using standard laboratory procedures (246). Insulin, leptin, adiponectin 

and total ghrelin were measured using radioimmunoassay (Linco Research, Inc., St. Charles, 

MO). Insulin resistance was estimated using the homeostasis model assessment of insulin 

resistance index (HOMA-IR) derived from fasting insulin and glucose values (247). HOMA-IR 

(mmol/L x µU/ml) = fasting glucose (mmol/L) x fasting insulin (µU/ml)/22.5. C-reactive protein 

(CRP) was measured using an enzyme-linked immunoassay (Alpha Diagnostic International, 

Inc., San Antonio, TX). Aldosterone was measured using an enzyme-linked immunoassay 
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developed by Diagnostic Systems Laboratories (Webster, TX). The intra- and inter-assay CV% 

for insulin were 4.8% and 10.5% respectively. The CV% for the other assays were all <3%. 

4.3.6 Urine Collection 

Valid 24-hour urine collections had volume between 500 mL and 4000 mL, duration ≥22 hours 

and ≤26 hours, and total creatinine within the expected range (212). From April 13, 2007 to 

March 6, 2009, analytes were measured using an Ortho Vitros 950. Direct potentiometry was 

used to measure sodium and potassium and colorimetry to assess creatinine levels.  Afterward, 

results were determined using a Beckman Coulter DxC 800 instrument employing an indirect ion 

selective method for sodium and potassium and an alkaline picric kinetic method for creatinine.  

4.3.7 Regional Measures of Adiposity 

At the baseline and 12 month visits only, single-slice computed tomography (CT) scans of the 

abdomen and thigh were acquired using a C-150 Ultrafast CT Scanner (GE Imatron, San 

Francisco, CA). Slice thickness was set at 6 mm. Abdominal scans were transverse images 

between L4 and L5 obtained during suspended respiration; left thigh images were transverse 

images 15 cm above the patellar apex. 

CT images were interpreted by two independent readers using Slice-O-Matic software. A 

pixel range of -30 to -190 Hounsfield units was used to define fat in the scan circumference and a 

pixel range of 0-100 was used to define muscle.  Areas were calculated by multiplying the 

number of pixels of a given tissue type by the pixel area. Density values were determined by 

averaging the CT number (pixel density) values of the regions outlined on the images. For the 
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abdominal scan, region of interest lines were drawn along fascial planes. Fat above the more 

external fascial plane was considered superficial fat, fat between the external and internal fascial 

planes was considered deep fat, and fat below the internal fascial plane (i.e., plane at the interior 

of abdominal musculature) was considered visceral fat area. Subcutaneous fat was calculated as 

the difference between the whole image (total) and visceral fat area. For the thigh scan, a single 

region of interest line was drawn along the deep fascial plane surrounding the thigh muscle. Fat 

above this line was considered subcutaneous fat, and fat below this line was considered 

intermuscular fat (248). For these analyses, abdominal visceral and subcutaneous fat were 

examined and, as a measure of ectopic fat, thigh intermuscular fat was examined. 

4.3.8 Heart Rate Variability 

At the baseline and 6 month visits only, heart rate variability (HRV) was measured using an 

ANSAR monitor (ANX-3.0, ANSAR Group Inc, Philadelphia, PA), which provides continuous 

and noninvasive measurements of electrocardiogram signals (for HRV assessment) and 

bioimpedance plethysmography signals (for respiratory rate variability assessment; RRV) 

respectively. Testing began with attachment of electrocardiogram electrodes in a modified Lead-

II configuration to the participant’s chest, along with a blood pressure cuff to the left arm. 

Participants were asked to sit with their feet flat on the floor and refrain from sudden movements 

or talking. Resting measures at a normal breathing rate were taken for 5 minutes followed by 

deep breathing (6 breaths per minute) for 1 minute. Participants returned to their resting rate for 

1 minute, performed Valsalva challenge for 1.5 minutes and returned to resting again for 2 

minutes. To finish, participants remained in a standing position for 5 minutes. A spectral analysis 

of the HRV and RRV was generated using ANSAR software. The low-frequency area (LFa) was 
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centered on the HRV spectrum from 0.04 - 0.10 Hz, which is reflective of sympathetic cardiac 

activity. From the spectral analysis of the RRV, the frequency of the peak mode was defined as 

the fundamental respiratory frequency (FRF). A 0.12 Hz wide window from the HRV spectrum 

was centered at the FRF and was used to generate the respiratory frequency area (RFa), which is 

reflective of parasympathetic cardiac activity (249-252). During low FRF, the RFa shifts into the 

low-frequency bandwidth. The area under the spectral curve centered on the FRF is computed as 

RFa. The remaining area under the spectral curve in the low-frequency bandwidth is computed 

as LFa.  

The measures of HRV used for this analysis were LFa/RFa during the initial 5 minute 

resting period (corresponding to tonic sympathovagal balance) and LFa/RFa during the 5 minute 

standing period (corresponding to sympathovagal balance during orthostatic challenge). Between 

technologist ICCs ranged from 0.73 to 0.93. 

4.3.9 Statistical Methods 

Descriptive statistics were calculated to summarize study variables overall and by intervention 

arm at baseline and 6, 12, and 24 months follow-up and were presented as median/inter-quartile 

range (IQR) or mean (SD) for continuous variables and frequency and percentages for 

categorical variables. Only trial participants with a valid baseline 24-hour urine collection were 

included in this analysis. Whether the changes in body size, serum aldosterone, and other 

variables of interest were statistically significantly different from zero in the total sample at each 

follow-up visit was determined by testing the coefficient for time, as a nominal variable, in linear 

mixed models with unstructured error covariance. Non-normally distributed variables were 

transformed as necessary prior to modeling. Intervention arm was included as a covariate in 
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every model for consistency with trial design. An interaction between intervention arm and time 

since baseline was used to test whether changes over time in study variables differed by 

intervention arm. 

The main analysis began with linear mixed models for aldosterone at all study visits. 

Variables included in the models were age, sex, race (black/non-black), baseline and within-

subject changes in sodium and potassium excretion, and baseline and within-subject changes in 

independent variables of interest. In all models, baseline and change from baseline factors were 

included as separate effects in order to evaluate the longitudinal associations between changes in 

aldosterone and changes in the independent variables of interest without confounding by the 

cross-sectional between-subject associations among the same factors. The independent variables 

of interest were the following obesity-related factors: BMI, weight, waist circumference, 

abdominal visceral and subcutaneous adipose tissue areas, thigh intermuscular adipose tissue 

area, insulin, HOMA-IR, adiponectin, leptin, ghrelin, CRP, resting supine heart rate, and sitting 

and standing HRV (cardiac sympathovagal balance). A quadratic time since baseline effect as 

well as random intercepts and linear and quadratic time since baseline effects were individually 

tested and included if found to be statistically significant at p<0.10 using likelihood ratio tests. 

To determine whether longitudinal associations between aldosterone and obesity-related factors 

varied over time or varied between subgroups defined by demographic factors or metabolic 

dysfunction at baseline, first order interactions between changes in the obesity-related factors of 

interest and time since baseline, race, sex, age, or the presence of metabolic syndrome (MetS) at 

baseline were evaluated. Next, to evaluate whether the longitudinal associations between 

aldosterone and obesity-related factors were independent of weight loss, all previous models 
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were reexamined after additional adjustment for baseline and within-subject changes in body 

size.   

Next, to assess whether changes in urinary sodium excretion and/or serum aldosterone 

were associated with concurrent blood pressure changes independently of weight loss, mean 

arterial pressure (MAP), systolic blood pressure (SBP) and diastolic blood pressure (DBP) over 

the course of the study were individually modeled using linear mixed models that included 

baseline age, sex, race, weight, baseline and within-subject changes in serum aldosterone, 

sodium and potassium excretion, and percent weight loss. To determine if baseline demographic 

or metabolic factors influenced BP sensitivity to sodium, first order interactions between changes 

in sodium excretion and baseline serum aldosterone, race, sex, age, and baseline MetS status 

were evaluated. 

Several sensitivity analyses were performed. First, criteria other than the presence vs. 

absence of MetS at baseline were evaluated to determine whether other baseline factors 

characterizing metabolically “at-risk” obese individuals (253, 254)  better distinguished between 

subgroups of individuals showing stronger vs. weaker associations between changes in the 

obesity-related factors of interest. First, a dichotomous indicator of baseline insulin resistance 

(baseline HOMA-IR greater than vs. less than 65th percentile) was used in place of MetS. Next, 

baseline abdominal visceral adipose tissue (VAT) (greater than vs. less than sex-specific 65th 

percentile) was used in place of MetS. The 65th percentiles were chosen so that these 

metabolically “at-risk” subgroups would be the same size as the subgroup with MetS at baseline. 

Finally, each of the five components of metabolic syndrome (255) was investigated individually 

to determine whether the presense of any particular component of MetS characterized a subgroup 

of individuals who showed stronger longitudinal associations among the variables of interest. 
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The five criteria used to define MetS were: (i) SBP/DBP ≥130/85 mm Hg (ii) fasting 

triglycerides ≥150 mg/dL, (iii) high-density lipoprotein <40 mg/dL in men and <50 mg/dL in 

women, (iv) fasting glucose ≥100 mg/dL and (v) waist circumference ≥102 cm for men and ≥88 

cm for women (256). For the evaluation of individual MetS criteria, the Bonferroni method was 

used to correct for multiple comparisons, such that P values ≤0.01 were considered statistically 

significant.  

Finally, because the quantity of missing data was considerable in this study, several 

sensitivity analyses were performed to evaluate potential effects of the missing data. First, to 

evaluate whether the associations of interest were maintained when all available urinary 

excretion data was used rather than data from only valid 24-hr urine collections, 

sodium/creatinine and potassium/creatinine excretion ratios were examined in place of 24-hr 

sodium and potassium excretion respectively. Second, to evaluate the associations of interest 

under the hypothesis that participants with incomplete data were on average less successful in 

achieving weight loss than participants with complete data, pattern-mixture modeling and 

multiple imputation were used. Multiple imputation was performed for each missing data pattern 

(dropout after baseline (n=73), dropout after 6 months (n=32), and dropout after 12 months 

(n=38)), and the assumption was made that the conditional multivariate distribution of the 

missing outcome and covariate data for each pattern, given the observed data, followed the 

corresponding distribution in the subgroup of participants with complete follow-up data who had 

achieved less than the mean percent weight loss at follow-up visits with unavailable data for that 

pattern. Intermittently missing data (n=48) was treated as missing at random and was not 

imputed. P values ≤0.05 were considered statistically significant. Statistical analyses were 

performed using SAS (Statistical Analysis Software release 9.3, Cary, NC). 
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4.4 RESULTS 

The study population consisted of 285 participants in the SAVE clinical trial who provided valid 

baseline 24-hr urine collections and serum aldosterone data. These subjects were, on average, 

slightly older, less insulin resistant, and more likely to be female than the trial participants not 

included in this study (n=64) (p<0.05 for all). The sample had a mean age of 38.4 years (SD 5.8) 

at baseline and consisted of 20% males and 15% African-Americans. Eight percent of the study 

population identified themselves as current smokers at baseline. Mean values of key clinical 

characteristics over the course of the intervention are shown in Table 1. Average weight loss was 

7.1% at 6 months, 6.4% at 12 months, and 3.5% at 24 months. The only measures that differed at 

least marginally by intervention arm were changes in 24-hour urinary sodium and serum 

aldosterone. Mean sodium excretion was decreased from baseline by 48.1 mmol/24hr (SD 79.7) 

at 6 months, 35.0 mmol/24hr (SD 80.5) at 12 months, and 42.0 mmol/24hr (SD 75.8) at 24 

months in the Low Na/lifestyle arm, but decreased by only 9.1 mmol/24hr (SD 77.1) at 6 

months, 20.5 mmol/24hr (SD 84.8) at 12 months, and 7.6 mmol/24hr (SD 78.2) at 24 months in 

the Control Na/lifestyle arm (p<0.001, p=0.27, and p=0.01 respectively for between-arm 

comparisons). Serum aldosterone was marginally higher in the Low Na/lifestyle arm compared 

to the Control Na/lifestyle arm at 6 months only (p=0.06).   

At each follow-up visit, there were differences between participants who did vs. did not 

have missing data. Subjects missing 6 month data on at least one measure examined in the 

present study had slightly higher baseline BMI and serum leptin than those with complete 6 

month data (p<0.05 for both). Subjects missing data at 12 months were more likely to be of black 

race and had higher baseline SBP than those with complete 12 month data (p<0.05 for both). 

Study subjects missing data at 24 months were more frequently of black race, had higher 
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baseline BMI and leptin and lower baseline adiponectin, and had achieved lesser reductions in all 

measures of body size at 12 months than those with complete 24 month data (p<0.05 for all). At 

all visits, valid urinary electrolyte excretion data was the most frequently missing (Table 4.1).  

In linear mixed models for log aldosterone that included baseline age, sex, race 

(black/non-black), intervention arm, time since baseline, and baseline and within-subject changes 

in sodium and potassium excretion, no measures of change in body size or changes in abdominal 

adipose tissue areas were associated with changes in aldosterone over the course of the two year 

study.  However, changes in circulating levels of adipokines and changes in measures of insulin 

resistance, inflammation, and tonic cardiac sympathovagal balance were strongly associated with 

changes in aldosterone (Table 4.2). When tonic sympathetic (LFa) and parasympathetic (RFa) 

components were evaluated individually, it was found that parasympathetic activity was 

increased (p=0.02) but sympathetic activity was unchanged at 6 months, though neither 

component individually showed a statistically significant longitudinal association with 

aldosterone. There was a trend towards an association between decreased intermuscular adipose 

tissue area and decreased serum aldosterone (Table 4.2). As expected, there were at least 

marginally significant associations between increases in serum aldosterone and both decreases in 

sodium excretion and increases in potassium excretion over time in all models (p<0.10 for all). 

When interactions between within-subject changes and baseline demographic factors or MetS 

status were examined in the mixed models for log aldosterone, weight loss was associated with a 

reduction in serum aldosterone only in the subgroup of subjects (n=98, 34%) who had MetS at 

baseline (Figure 4.1). The significance of the interaction between BMI reduction and MetS was 

similar (p=0.046) to that between percent weight loss and MetS, but the interactions between 

MetS and changes in waist circumference or abdominal adipose tissue depots were not 
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significant (p>0.10 for all). The interaction between baseline MetS and change in thigh 

intermuscular adipose tissue area was statistically significant (Figure 4.2), suggesting that 

reductions in this ectopic fat depot were more strongly associated with reductions in serum 

aldosterone in subjects with MetS. No other first order interactions were found to be significant. 

The associations between changes in aldosterone and changes in each evaluated obesity-related 

factor were unaltered by additional adjustment for baseline and within-subject changes in weight, 

BMI, or waist circumference (results not shown). 

Neither changes in sodium excretion nor changes in serum aldosterone were associated 

with changes in BP during the two year study (Table 4.3). However, several marginally 

significant interactions were detected between changes in sodium excretion and baseline factors 

in the models for MAP and DBP. First, reductions in sodium excretion were found to be 

associated with decreases in DBP in subjects with MetS but not in subjects without MetS at 

baseline (Figure 4.3). This marginal interaction was similar for MAP (p=0.07) but did not 

approach statistical significance for SBP (p=0.40). Second, a marginal interaction between race 

and change in sodium excretion was detected in the model for DBP, such that decreases in 

sodium excretion were associated with decreases in DBP in black study participants but not in 

non-black participants (Figure 4.4). This interaction was not statistically significant in the models 

for MAP (p=0.13) or SBP (p=0.33). 

When other baseline factors characterizing metabolically “at-risk” obese individuals were 

investigated in place of MetS status, having baseline insulin resistance (baseline HOMA-IR 

greater than vs. less than the 65th percentile (3.66 mmol/L x µU/mL)) was associated with having 

greater log aldosterone at baseline (β(se)=0.14(0.05), p=0.007), but interactions between baseline 

insulin resistance and changes in body size were not significant in linear mixed models for log 
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aldosterone that included baseline age, sex, race, intervention arm, time since baseline, and 

baseline and within-subject changes in weight and sodium and potassium excretion. In similar 

models, baseline abdominal VAT (greater than vs. less than the sex-specific 65th percentile 

(179.0 cm2 in males, 115.4 cm2 in females)) was associated with greater log aldosterone at 

baseline (β(se)=0.12(0.06), p=0.03), but interactions between baseline abdominal VAT and 

changes in body size were not statistically significant in mixed models for log aldosterone. In the 

models for blood pressure, it was found that reductions in sodium excretion showed at least 

marginally stronger associations with decreases in blood pressure in the more insulin resistant 

subjects (p=0.03, p=0.08, and p=0.04 for baseline HOMA-IR*change in sodium excretion 

interactions in models for MAP, SBP, and DBP respectively). For example, independently of 

baseline demographic factors, baseline weight, weight loss, and baseline and within-subject 

changes in potassium excretion and serum aldosterone, a 50 mmol/24hr reduction in sodium 

excretion was associated with a change in MAP of -1.04 mm Hg (95% CI -1.83, -0.25) among 

more insulin resistant individuals (baseline HOMA-IR > 3.66 mmol/L x µU/mL), whereas in less 

insulin resistant individuals, no associations between changes in sodium excretion and BP were 

detected. Interactions between baseline abdominal VAT (greater than vs. less than 179.0 cm2 in 

males, 115.4 cm2 in females) and changes in sodium excretion were not statistically significant in 

the mixed models for blood pressure. Finally, when each of the five components of the metabolic 

syndrome was investigated individually in the models for log aldosterone, no single component 

showed an interaction with weight loss or changes in sodium or potassium excretion that was 

statistically significant at p≤0.01. Similarly, in the models for blood pressure, no statistically 

significant interactions were detected between individual components of the metabolic syndrome 

and changes in sodium excretion (data not shown).  



69 

The final sensitivity analyses examined potential effects of the missing data. When 

sodium/creatinine and potassium/creatinine excretion ratios were used in place of 24-hr sodium 

and potassium excretion, an additional 55 subjects could be included in the analyses. However, 

the associations of interest were very similar to those from the original models (data not shown). 

Next, pattern-mixture modeling and multiple imputation were used under the assumption that, 

for each dropout pattern (subgroups of subjects missing all data after either baseline, 6 months, 

or 12 months), the distribution of the missing follow-up data followed that of subjects with 

complete follow-up data who had achieved less than the mean percent weight loss at visits with 

unavailable data for that pattern. Under this assumption, marginal associations (averaged over all 

patterns) differed little from those in the original fully-adjusted mixed models for log aldosterone 

and BP, though most associations were slightly weaker under this particular assumption of less 

successful weight loss among non-completers (Tables 4.4 and 4.5). 

 

4.5 DISCUSSION 

The main findings of this study were that, independent of the stimulatory effect of dietary 

sodium reduction on systemic RAAS activity, decreases in serum aldosterone were associated 

with reductions in fasting insulin, HOMA-IR, CRP, leptin, heart rate, and tonic cardiac 

sympathovagal balance as well as increases in adiponectin in normotensive overweight/obese 

young adults during a one year lifestyle intervention and one year post-intervention period.  

Another notable finding of this study was that, though changes in weight and serum aldosterone 

were unassociated in the total study sample, such an association was evident in individuals who 
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had MetS at baseline. In addition, reductions in intermuscular thigh fat were marginally 

associated with reductions in serum aldosterone in the total sample and significantly associated 

with reductions in serum aldosterone in individuals who had MetS at baseline. Finally, as was 

expected from previous studies (257, 258), associations between decreases in sodium excretion 

and decreases in blood pressure were more evident in individuals who had greater baseline 

metabolic dysfunction or who were of black race. These findings are important because this is 

the first longitudinal study in a large sample of overweight/obese otherwise healthy young adults 

to report associations between changes in circulating aldosterone and changes in a wide variety 

of obesity-related factors.   

Previous small or moderate sized studies have reported decreases in serum aldosterone or 

aldosterone excretion with modest weight loss in obese postmenopausal women (98), young 

overweight/obese adults (96, 97), middle-aged overweight/obese adults (57, 259), and obese 

adults who submitted to very low calorie diets (99, 237). Surgical weight loss also reduced 

circulating aldosterone in severely obese hypertensive adults (260). Some studies have reported 

significant associations between reductions in circulating RAAS components and reductions in 

central adiposity (96, 98, 261) or insulin resistance (96) during periods of weight loss, though not 

all studies agree (97, 262). Reasons for the discrepant findings between studies include different 

levels of sodium intake and heterogeneous characteristics of the samples, such as varying levels 

of obesity, metabolic dysfunction, and blood pressure. Unlike the present study however, no past 

studies consisted of only normotensives, evaluated the effect of weight loss on aldosterone 

independent of changes in discretionary sodium intake, followed participants after weight loss, or 

examined as large a variety of obesity-related factors. 
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The importance of these findings lies in the recent insight that aldosterone is an important 

cardiovascular and metabolic risk factor, promoting not only hypertension, but also inflammation 

and remodeling of the heart, vasculature, kidneys, and adipose tissue (108, 111). Higher levels of 

circulating aldosterone predict incident hypertension (84, 263) and metabolic syndrome (104) in 

the general population. Furthermore, this study and several others have found that higher 

circulating aldosterone correlates with insulin resistance (91, 96, 105), an association that may be 

independent of anthropometric measures of body size (91). Thus, aldosterone appears to 

influence cardiometabolic health independently of BMI and other traditional risk factors.  

A likely explanation for the stronger associations of circulating aldosterone with markers 

of inflammation, insulin resistance, adipokines, and cardiac autonomic activity than with body 

size or abdominal adipose tissue area is that it is the quality rather than the quantity of adipose 

tissue that determines cardiometabolic dysfunction (236, 264). ‘Dysfunctional’ adipose tissue is 

characterized by hypertrophied adipocytes, increased macrophage infiltration, hypoxia, and 

marked changes in adipokine and free fatty acid secretion (264, 265). Elevated production of 

leptin, angiotensinogen, and reactive oxygen species, and reduced production of adiponectin 

accompany the accumulation of dysfunctional fat (264). In addition, as excess energy-intake 

overwhelms the body’s fat storage capacity, ectopic fat is stored in tissues such as skeletal 

muscle and the liver (264). These changes promote insulin resistance, chronic systemic 

inflammation, RAAS activation, sympathoactivation, and oxidative stress (264). In obese 

individuals with metabolic dysfunction, both visceral and subcutaneous adipose tissue depots are 

characterized by increased proinflammatory macrophage content and adipocyte hypertrophy 

(266, 267). However, these morphological changes in adipose tissue are not necessarily 

accompanied by significant changes in the amount of total body fat or visceral or subcutaneous 



72 

fat mass (266). Nonetheless, unfavorable adipose morphology is linked to intrahepatic and 

intramuscular fat storage, the latter of which has been found to be associated with metabolic 

syndrome (248), insulin resistance (268), and diabetes (269) even in normal weight individuals.  

In addition, intramuscular lipid content has been shown in animal studies to correlate more 

closely with insulin sensitivity, CRP and adiponectin levels than abdominal visceral fat (270). To 

our knowledge, this is the first study to examine associations between serum aldosterone and 

intermuscular fat. However, the findings from separate investigations showing that intermuscular 

fat (248, 268, 269) and serum aldosterone (104) predict metabolic abnormalities suggest both 

factors participate, perhaps in an interrelated way, in metabolic dysfunction in apparently healthy 

individuals.  

Although it is impossible in this observational study to determine which obesity-related 

factors had the greatest impact on serum aldosterone or, in reverse, which factors were most 

influenced by serum aldosterone, in reality it appears that the investigated factors are both causes 

and consequences of cardiometabolic decline (271). Adipocytes produce angiotensinogen and 

Ang II and contribute to the elevated circulating levels of these hormones in obese individuals 

(272, 273). Though adipocytes are not believed to produce aldosterone (238), one recent study 

suggests otherwise (239). Additionally, it has recently been discovered that several adipocyte-

derived factors increase adrenal aldosterone production independent of Ang II and serum 

potassium levels (112-114). These effects appear to be independent of well-known adipocyte-

derived factors such as leptin, IL-6, TNF-α, adiponectin, and adipose Ang II (112). On the other 

hand, increased aldosterone secretion by adrenocortical cells results in greater binding and 

activation of adipocyte MRs, which in turn impacts adipose differentiation, expansion, and 

inflammation (271). Finally, there is evidence that both circulating and adipose RAAS are 
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influenced by autonomic activity. Sympathetic nerve stimulation increases the release of both 

renin and Ang II as well as the stimulatory effect of Ang II on adrenal aldosterone secretion 

(274, 275). In the reverse direction, elevated circulating aldosterone induces cardiac and renal 

sympathetic activation through angiotensin type-1 receptor induced mitogen-activated protein 

kinase signaling in the brain (242). Clearly there seems to be a cycle linking inappropriately high 

aldosterone levels to adipose dysfunction, and this cycle promotes cardiometabolic decline over 

time in individuals with excess weight. In animal studies, prolonged obesity causes visceral fat 

accumulation, insulin resistance and hepatic steatosis, and eventually results in impaired insulin 

secretion (276). This slow progression may explain why reductions in weight and intermuscular 

fat correlated more strongly with reductions in serum aldosterone in study subjects who had 

MetS at baseline; these individuals were likely further along on the spectrum of metabolic 

dysfunction and thus could reap larger benefits from weight loss. Nevertheless, physical activity 

and weight reduction are lifestyle changes known to improve cardiometabolic health and are 

central in reducing adipose tissue dysfunction even in individuals who have had persistent 

obesity (265).  

The beneficial effects of weight loss on blood pressure were clear in this study, but it was 

somewhat surprising that changes in aldosterone and sodium were not statistically significantly 

associated with changes in blood pressure in the total study sample. It could be that chronically 

elevated aldosterone causes rises in blood pressure only over longer time periods, such as the 3 

to 4 years over which persons were followed in studies that found aldosterone to predict incident 

hypertension (84, 263). In addition, the strong effect of weight loss on blood pressure may have 

overwhelmed the effects of concurrent changes in dietary sodium and serum aldosterone. 

However, the associations between reductions in sodium excretion and reductions in blood 
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pressure in individuals of black race or who had MetS or elevated HOMA-IR at baseline agree 

with past studies (257, 258) and suggest that these subgroups in the overweight/obese young 

adult population may particularly benefit from sodium reduction along with weight loss to 

achieve reductions in blood pressure. 

Clinically, besides the well established adverse effects of RAAS hyperactivity on blood 

pressure, the effects of RAAS hyperactivity on adipose and metabolic dysfunction are beginning 

to be appreciated. These benefits are highlighted by the reduced incidence of type 2 diabetes in 

individuals treated with angiotensin-converting enzyme (ACE) inhibitors or angiotensin receptor 

blockers (ARBs) (277). In addition, in essential hypertensives, ACE inhibitors and ARBs lead to 

improvements in insulin sensitivity (244, 278), increases in adiponectin levels (244), and 

reductions in sympathetic activity (244, 278) without affecting body weight. In studies in animal 

models of obesity, MR blockade decreased obesity-related insulin resistance, adipose ROS 

production, induction of inflammatory cytokines, numbers of hypertrophic adipocytes and 

infiltrated macrophages in adipose tissue, and increased adipose expression of adiponectin (117, 

118); aldosterone had the opposite effects (118). Whether MR blockers have these effects in 

obese humans remains to be determined. 

There were several important limitations to this study. First, its observational design did 

not allow us to determine which obesity-related factors most influenced serum aldosterone or, in 

reverse, which factors were most affected by serum aldosterone levels. In reality, however, all of 

the factors investigated in this study are both causes and consequences of a worsening 

cardiometabolic profile; thus it is likely that most if not all of the associations detected in this 

study are in fact bidirectional (271). A second limitation of this study was the small number of 

males and African Americans, which provided insufficient power to stratify results by sex or 
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race. However, interactions with these factors were tested and found to be statistically not 

significant. Another limitation was the lack of data on other RAAS components, such as plasma 

renin activity and serum Ang II, the latter of which is known to also drive inflammation and 

insulin resistance (279). In addition, a measure of 24-hour aldosterone excretion might have 

reflected chronic circulating aldosterone exposure more accurately than a serum measurement. 

Another limitation of this study was the substantial loss to follow-up. Sensitivity analyses, 

however, suggested that the present findings were likely not biased by this missing data. One 

strength of this study was that all participants were normotensive and not using antihypertensive 

or vasoactive medications, which ruled out treatment related confounding. In addition, the large 

number and variety of obesity-related factors investigated provide novel insights into the 

complex role of aldosterone in cardiometabolic health. 

In conclusion, in normotensive, overweight/obese young adults followed over the course 

of a one year lifestyle intervention and one year follow-up period, reductions in fasting insulin, 

HOMA-IR, CRP, leptin, heart rate, tonic cardiac sympathovagal balance, and increases in 

adiponectin are associated with decreases in serum aldosterone. Additionally, weight loss and 

reductions in intermuscular fat are associated with reduced serum aldosterone in individuals with 

MetS. Importantly, given these findings, along with the recognition that MR antagonists improve 

overall adipose tissue function in animal models of obesity (117, 118) and have proven benefit 

for patients with heart failure or hypertension (280), future trials should test the efficacy of these 

drugs for reducing cardiometabolic risk in normotensive overweight/obese patients. Of course, 

lifestyle changes must continue to be recommended to all individuals with excess weight, as 

these can produce improvements in cardiometabolic health even before substantial weight loss 

occurs (281).    
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4.6 TABLES AND FIGURES 

Table 4.1 Clinical Characteristics across the One Year Intervention and at One Year Post-Intervention 

Characteristic Baseline 
(N=285) 

6 Months 
(N=233) 

12 Months 
(N=210) 

24 Months 
(N=189) 

Aldosterone (pg/mL) 108 (79, 156) 117 (84.3, 156) 104 (84, 140) 107 (83.1, 157.5) 
Weight (kg) 91.8 (13.3) 84.6 (13.3)* 85.1 (14.2)* 88.1 (14.6)* 
BMI (kg/m2) 32.9 (3.7) 30.3 (4.1)* 30.4 (4.4)* 31.4 (4.5)* 
Waist Circumference (cm) 100.1 (10.3) 94.8 (10.7)* 95.0 (11.8)* 97.5 (12.3)* 
SBP (mmHg) 113.2 (10.1) 109.5 (9.0)* 109.7 (9.6)* 112.2 (9.9) 
DBP (mmHg) 72.7 (8.5) 70.6 (8.2)* 71.7 (7.8) 73.8 (9.1)* 
Glucose (mg/dL) 97.3 (7.9) 97.8 (8.4) 98.2 (8.3) 97.6 (9.5) 
Insulin (µU/mL) 12.5 (9.4, 16.7) 11.4 (8.7, 15.4)* 11.8 (9.3, 15.3) 11.9 (9.5, 15.4) 
HOMA-IR (mmol/L x µU/mL) 3.0 (2.2, 4.2) 2.7 (2.1, 3.8)* 2.9 (2.2, 4.0) 2.9 (2.2, 3.8) 
LDL-C (mg/dL) 123.2 (32.8) 121.4 (29.1) 123.3 (30.8) 125.5 (32.6) 
HDL-C (mg/dL) 52.5 (12.7) 52.8 (12.1) 55.5 (13.7)* 54.5 (13.3)* 
Triglycerides (mg/dL) 115.5 (79, 169.5) 94 (67, 135)* 88 (71, 136)* 99 (75, 146)* 
CRP (mg/L) 2.6 (1.4, 5.6) 2.2 (1.0, 4.6)* 2.1 (0.94, 4.2)* 2.3 (0.91, 5.0)* 
Leptin (ng/mL) 26.2 (13.1) 18.6 (11.5)* 21.0 (13.5)* 22.7 (13.4)* 
Adiponectin (µg/mL) 11.9 (6.1) 12.1 (5.6)* 12.1 (5.7) 10.6 (5.7)* 
Ghrelin (pg/mL) 673.5 (547, 874.5) 774 (614, 1042)* 804.5 (629, 1121.5)* 875 (711, 1113)* 
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Mean (SD) or median (IQR) are shown. *P<0.05 versus baseline in a linear mixed model with time since baseline as a nominal 
variable and with adjustment for intervention arm. Aldosterone, insulin, HOMA-IR, triglycerides, CRP, ghrelin, sitting LFa/RFa, and 
standing LFa/RFa were log transformed. SBP=systolic blood pressure, DBP=diastolic blood pressure, LDL-C=low density lipoprotein 
cholesterol, HDL-C=high density lipoprotein cholesterol, HOMA-IR= homeostasis model assessment of insulin resistance, CRP=C-
reactive protein, LFa=low frequency area, RFa=respiratory frequency area.  #Baseline N=285, 6 Months N=184, 12 Months N=158, 
24 Months N=136.^Baseline N=277, 6 Months N=227. ^^Baseline N=273, 6 Months N=221. $Baseline N=272, 12 Months N=200. 

Sodium Excretion (mmol/24hr) # 185.8 (69.1) 154.5 (65.2)* 156.9 (58.9)* 157.6 (63.5)* 
Potassium Excretion (mmol /24hr) # 60.7 (22.1) 62.0 (21.0) 63.9 (23.1) 61.6 (21.3) 
Heart Rate (beats/min) 64.3 (9.2) 62.7 (8.4)* 64.0 (8.9) 63.6 (8.8) 
Sitting LFa/RFa^ 1.6 (0.87, 2.9) 1.1 (0.64, 2.6)* ------- ------- 
Standing LFa/RFa^^ 4.9 (2.3, 12.3) 4.4 (2.3, 10.0) ------- ------- 
Abdominal visceral fat area (cm2)$ 117.8 (56.0) ------- 99.1 (53.5)* ------- 
Abdominal subcutaneous fat area (cm2)$ 425.0 (122.4) ------- 361.0 (132.2)* ------- 
Thigh intermuscular fat area (cm2)$ 13.0 (4.8) ------- 7.7 (3.7)* ------- 
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Table 4.2 Associations between Changes in Serum Aldosterone and Changes in Obesity-

Related Factors Over the Course of the Study 

*P values are from linear mixed models for log aldosterone (pg/mL) that included baseline age, 
sex, race (black/non-black), intervention arm, time since baseline, and baseline and within-
subject changes in 24-hr urinary sodium excretion, potassium, and the specified independent 
variable. Aldosterone, sitting LFa/RFa, and standing LFa/RFa were log transformed. HOMA-
IR= homeostasis model assessment of insulin resistance. CRP=C-reactive protein. LFa=low 
frequency area. RFa=respiratory frequency area. To calculate percentage change in aldosterone 
for a one unit change in the independent variable, use the formula 100*(exp(β)-1). 

 
 

 

 

 

 

 

 

Independent Variable  
(Change from Baseline) 

Parameter Estimate 
(x102) 

Standard Error 
(x102) P value* 

Weight (%) 2.9 27.0 0.92 
BMI (kg/m2) -0.007 0.82 0.99 
Waist Circumference (cm) 0.12 0.29 0.69 
Insulin (µU/mL) 1.4 0.39 0.0005 
HOMA-IR (mmol/L x µU/mL) 3.1 1.3 0.02 
CRP (mg/L) 2.3 0.61 0.0002 
Leptin (ng/mL) 0.62 0.21 0.003 
Adiponectin (µg/mL) -2.0 0.54 0.0002 
Ghrelin (pg/mL) 0.0043 0.0053 0.42 
Heart Rate (beats/min) 0.91 0.28 0.001 
Sitting LFa/RFa 10.8 3.0 0.0004 
Standing LFa/RFa 4.4 2.7 0.11 
Abdominal visceral fat area (cm2) 0.12 0.11 0.28 
Abdominal subcutaneous fat area (cm2) 0.042 0.040 0.29 
Thigh intermuscular fat area (cm2) 2.2 1.2 0.053 
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Table 4.3 Associations between Changes in Blood Pressure and Changes in Weight, Serum 

Aldosterone, and Urinary Electrolytes Over the Course of the Study 

Independent Variable Parameter 
Estimate Standard Error P value* 

Mean Arterial Pressure    
Weight Loss (%) 22.91 4.18 <0.0001 
Sodium Excretion (mmol/24hr) 0.0062 0.0043 0.15 
Potassium Excretion 
(mmol/24hr)  

-0.0083 0.015 0.59 

Aldosterone (pg/mL) -0.47 0.62 0.45 
Diastolic Blood Pressure    

Weight Loss (%) 19.94 4.49 <0.0001 
Sodium Excretion (mmol/24hr) 0.0075 0.0047 0.11 
Potassium Excretion 
(mmol/24hr)  

-0.0059 0.016 0.72 

Aldosterone (pg/mL) -0.35 0.67 0.60 
Systolic Blood Pressure    

Weight Loss (%) 28.07 4.73 <0.0001 
Sodium Excretion (mmol/24hr) 0.0031 0.0049 0.52 
Potassium Excretion 
(mmol/24hr)  

-0.013 0.017 0.45 

Aldosterone (pg/mL) -0.85 0.70 0.23 
*P values are from linear mixed models for each respective blood pressure measure and included 
baseline age, sex, race (black/non-black), intervention arm, time since baseline, weight, percent 
weight loss, and baseline and within-subject changes in 24-hr urinary sodium, potassium, and 
serum aldosterone. Aldosterone was log transformed. 
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Figure 4.1 Change in Serum Aldosterone Associated with 5% Weight Loss: Differences by 

Baseline Metabolic Syndrome Status 

Parameter estimates and 95% confidence intervals shown are from a linear mixed effects model 
for log aldosterone that included baseline age, sex, race (black/non-black), weight, intervention 
arm, time since baseline, baseline and within-subject changes in 24-hr urinary sodium and 
potassium excretion, percent weight reduction, baseline MetS status, and the interaction between 
percent weight reduction and baseline MetS status. The p value shown is for the interaction 
between percent weight reduction and baseline MetS status in this model.  
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Figure 4.2 Change in Serum Aldosterone Associated with a 5 cm2 Reduction in Thigh 

Intermuscular Fat Area: Differences by Baseline Metabolic Syndrome Status 

Parameter estimates and 95% confidence intervals shown are from a linear mixed effects model 
for log aldosterone that included baseline age, sex, race (black/non-black), weight, intervention 
arm, time since baseline, baseline and within-subject changes in 24-hr urinary sodium and 
potassium excretion, change in thigh intermuscular fat area, baseline MetS status, and the 
interaction between change in thigh intermuscular fat area and baseline MetS status. The p value 
shown is for the interaction between change in thigh intermuscular fat area and baseline MetS 
status in this model.  
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Figure 4.3 Change in Diastolic Blood Pressure Associated with a 50 mmol/24hr Decrease in 

Sodium Excretion: Differences by Baseline Metabolic Syndrome Status 

Parameter estimates and 95% confidence intervals shown are from a linear mixed effects model 
for diastolic blood pressure that included baseline age, sex, race (black/non-black), weight, 
intervention arm, time since baseline, baseline and within-subject changes in urinary sodium and 
potassium excretion and serum aldosterone, percent weight reduction, baseline MetS status, and 
the interaction between change in sodium excretion and baseline MetS status. The p value shown 
is for the interaction between change in sodium excretion and baseline MetS status in this model. 
A decrease in sodium excretion of 50 mmol/day was approximately the median decrease from 
baseline to 24 months in the Low Na/lifestyle intervention arm. 
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Figure 4.4 Change in Diastolic Blood Pressure Associated with a 50 mmol/24hr Decrease in 

Sodium Excretion: Differences by Race  

Parameter estimates and 95% confidence intervals shown are from a linear mixed effects model 
for diastolic blood pressure that included baseline age, sex, race (black/non-black), weight, 
intervention arm, time since baseline, baseline and within-subject changes in urinary sodium and 
potassium excretion and serum aldosterone, percent weight reduction, and the interaction 
between change in sodium excretion and race. The p value shown is for the interaction between 
change in sodium excretion and race in this model. A decrease in urinary sodium excretion of 50 
mmol/24hr was approximately the median decrease from baseline to 24 months in the Low 
Na/lifestyle intervention arm. 
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Table 4.4 Marginal Associations between Changes in Serum Aldosterone and Changes in 

Obesity-Related Factors: Results from Pattern-Mixture Models with Multiply Imputed 

Data  

*P values are for marginal parameter estimates from linear mixed effects pattern-mixture models 
for log aldosterone that included baseline age, sex, race (black/non-black), intervention arm, time 
since baseline, baseline and within-subject changes in 24-hr urinary sodium, potassium, and the 
specified independent variable. Missingness pattern and its interactions with all time-varying 
covariates were also included in the models; however the estimates shown are marginalized over 
all patterns. Aldosterone, insulin, CRP, ghrelin, sitting LFa/RFa, and standing LFa/RFa were log 
transformed to meet the multivariate normality assumption needed for MCMC multiple 
imputation. HOMA-IR= homeostasis model assessment of insulin resistance. CRP=C-reactive 
protein. To calculate percentage change in aldosterone for a one unit change in the independent 
variable, use the formula 100*(exp(β)-1). 

 
  

Independent Variable Parameter Estimate 
(x102) 

Standard Error 
(x102) P value* 

BMI (kg/m2) -0.28 1.09 0.80 
Insulin (µU/mL) 16.25 6.90 0.02 
CRP (mg/L) 4.47 2.66 0.09 
Leptin (ng/mL) 0.49 0.26 0.06 
Adiponectin (µg/mL) -2.16 0.69 0.002 
Ghrelin (pg/mL) 1.58 6.18 0.80 
Heart Rate (beats/min) 0.63 0.31 0.04 
Sitting LFa/RFa 10.28 3.55 0.005 
Standing LFa/RFa 5.57 2.78 0.047 
Abdominal visceral fat area (cm2) 0.10 0.11 0.35 
Abdominal subcutaneous fat area (cm2) -0.0016 0.045 0.97 
Thigh intermuscular fat area (cm2) 1.52 1.21 0.21 
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Table 4.5 Marginal Associations between Changes in Blood Pressure and Changes in 

Weight, Serum Aldosterone, and Urinary Electrolytes: Results from Pattern-Mixture 

Models with Multiply Imputed Data   

*P values are from linear mixed models for each respective blood pressure measure that included 
baseline age, sex, race (black/non-black), intervention arm, time since baseline, and baseline and 
within-subject changes in 24-hr urinary sodium, potassium, and serum aldosterone. Missingness 
pattern and its interactions with all time-varying covariates were also included in the models; 
however the estimates shown are marginalized over all patterns.  Aldosterone was log 
transformed. 
 

 

Independent Variable Parameter 
Estimate Standard Error P value* 

Mean Arterial Pressure    
Weight Loss (%) 24.54 4.41 <0.0001 
Sodium Excretion (mmol/24hr) 0.003 0.003 0.36 
Potassium Excretion (mmol/24hr)  -0.005 0.010 0.61 
Aldosterone (pg/mL) -0.43 0.62 0.49 

Diastolic Blood Pressure    
Weight Loss (%) 20.99 4.68 <0.0001 
Sodium Excretion (mmol/24hr) 0.004 0.003 0.30 
Potassium Excretion (mmol/24hr)  -0.003 0.011 0.78 
Aldosterone (pg/mL) -0.36 0.66 0.59 

Systolic Blood Pressure    
Weight Loss (%) 31.17 5.09 <0.0001 
Sodium Excretion (mmol/24hr) 0.001 0.004 0.72 
Potassium Excretion (mmol/24hr)  -0.009 0.011 0.41 
Aldosterone (pg/mL) -0.61 0.71 0.39 
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5.1 ABSTRACT 

Objectives Obese individuals have elevated platelet activation and arterial stiffness, but the 

strength and temporality of the association between these two measures in overweight/obese 

individuals are unknown. We aimed to determine the effects of cumulative exposure to greater 

arterial stiffness, measured four times over the course of a two year study, on circulating platelet 

activity, measured at the end of the study, in overweight and obese young adults.  
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Methods This analysis included 92 participants (mean age 40 yrs, 60 women) in the Slow 

Adverse Vascular Effects of excess weight (SAVE) trial, a study evaluating the effects of 

positive lifestyle changes on vascular health in normotensive overweight and obese young adults. 

Carotid-femoral (cf), brachial-ankle (ba), and femoral-ankle (fa) pulse wave velocity (PWV) 

served as measures of arterial stiffness. Platelet activity was measured as plasma beta-

thromboglobulin (β-TG).  

Results Higher plasma β-TG was correlated with greater cumulative exposure to elevated 

cfPWV (p=0.02) and baPWV (p=0.04). After adjustment for serum leptin, greater exposure to 

elevated baPWV remained significant (p=0.03) and greater exposure to elevated cfPWV was 

marginally significant (p=0.054) in predicting greater plasma β-TG. 

Conclusions Greater arterial stiffness, particularly central arterial stiffness, predicts greater 

platelet activation in overweight and obese individuals.  This relationship might partly explain 

the association between arterial stiffness and incident atherothrombotic events.  

5.2 INTRODUCTION 

Platelets play an important role not only in thrombotic vascular events but also in the initiation 

and progression of atherosclerosis (127). Platelets release inflammatory molecules and growth 

factors that contribute to endothelial activation as well as the migration and proliferation of 

vascular smooth muscle cells, all of which are key processes in atherosclerosis (127). In the 

reverse direction, platelet activation is triggered by endothelial cell erosion and ruptured 

atherosclerotic plaques (127) as well as by elevated shear stress (282). Arterial stiffness is an 

established marker of vascular health, and stiffer central arteries promote greater wall shear and 
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tensile stresses, speed up the fatigue of arterial wall components, and promote the vulnerability 

of atherosclerotic plaques throughout the vasculature (283). Thus, it stands to reason that greater 

arterial stiffness may also promote a prothrombotic phenotype, including greater platelet 

activation, throughout the arterial tree. By measuring pulse wave velocity (PWV), arterial 

stiffness can be estimated in any region of the arterial tree (283). A previous small cross-

sectional study of apparently healthy men observed an association between increased platelet 

activation and increased carotid-femoral pulse wave velocity (cfPWV) (166, 167), a measure of 

aortic stiffness and independent predictor of cardiovascular events (27, 54). Other studies of 

apparently healthy adults have found associations between several markers of in vivo platelet 

activation and brachial-ankle pulse wave velocity (baPWV), a measure of mixed central (aortic) 

and peripheral arterial stiffness (166, 168). Such associations may be explained by either the 

influence of activated platelets on the vasculature or the effect of vascular damage and 

dysfunction on circulating platelets. 

 Overweight and obese individuals have increased arterial stiffness (284) as well as 

greater platelet reactivity as measured by agonist induced platelet aggregation (140) and greater 

circulating platelet activity as measured by urinary 11-dehyhdro-TxB2  (138), plasma sCD40L 

(139), soluble P-selectin levels (231), or mean platelet volume (MPV) (142). Several obesity 

related factors have been associated with increased circulating platelet activity, including 

elevated waist-hip ratio, body mass index (BMI), and circulating leptin, insulin, and C-reactive 

protein (CRP) in both adults (138) and children (232). In addition, increased oxidative stress and 

endothelial dysfunction promote the activation of platelets in obese individuals (15, 151, 232). 

 Though obesity is linked to both increased platelet activation and increased arterial 

stiffness, no studies have examined the temporality of this relationship. The aim of this study 
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was to determine the associations between cumulative exposure to greater arterial stiffness, 

measured three times during the course of a one year lifestyle intervention and again one year 

post-intervention, and circulating platelet activity, as measured by plasma β-thromboglobulin (β-

TG) (137, 213) at the final study visit, in overweight and obese young adults. We hypothesized 

that, of cfPWV, baPWV, and femoral-ankle (fa) PWV, the association with platelet activity 

would be strongest for cfPWV, due to the influence of aortic stiffness on wall stress, blood flow 

patterns, and atherosclerotic progression throughout the arterial tree (283). We also hypothesized 

that the association between cumulative cfPWV exposure and platelet activity would be 

independent of the effects of cumulative exposure to other cardiovascular and metabolic risk 

factors during the two year study. 

5.3 METHODS 

5.3.1 Study Population 

The Slow Adverse Vascular Effects of excess weight study (SAVE) is a randomized-controlled 

trial (NCT00366990) evaluating the effects of weight loss, increased physical activity, and 

reduced dietary sodium intake on vascular health. Participants were recruited from June 2007 

through May 2009 using mass mailing. 

 Eligible participants were men and women 20-45 years of age who were overweight or 

obese (body mass index (BMI) 25-39.9 kg/m2) and physically inactive (<8 months of consistent 

physical activity (PA) during the past 12 months).  Exclusions included 1) diabetes, 2) 
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hypertension or average screening blood pressure ≥140/90 mmHg, 3) cholesterol lowering, anti-

psychotic, or vasoactive medication use and 4) current pregnancy or lactation. 

Participants who provided a blood sample for the measurement of β-TG at the final study 

visit were included in this analysis (n=92). All subjects signed informed consent, and the study 

was approved by the institutional review board of the University of Pittsburgh (Pittsburgh, PA).  

5.3.2 Intervention 

Three hundred and forty-nine participants received a 1-year lifestyle intervention consisting of 

diet and physical activity (PA). Participants were randomized to either 1) diet and PA alone 

(Control Na/lifestyle) or to 2) diet and PA plus reduced sodium intake (Low Na/lifestyle). The 

lifestyle intervention was delivered in group sessions that occurred weekly for months 1-4, 

biweekly for months 5-8, and monthly for months 9-12. The goal of the intervention was a 10% 

reduction in body weight over 6 months and continued maintenance of weight loss thereafter. 

The additional goal of the sodium reduction intervention (Low Na) was to gradually reduce daily 

sodium intake to approximately 1 mg Na+/1 kcal/day, an average reduction of about 50% from 

the participant’s usual diet (207). 

5.3.3 Clinic Visits 

Participants were to complete clinic visits at screening, baseline, and 6, 12, and 24 months 

following randomization. Self-reported demographic information, self- and interviewer-

administered questionnaires, anthropometric measurements, fasting blood draw, 24-hour urine 

collection, and non-invasive tests of vascular structure and function were collected at these visits. 
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5.3.4 Demographic and Physical Measures 

Age, race, and smoking status were self-reported.  For this analysis, race was recoded as black 

vs. non-black. Ethnicity was coded as Hispanic or Non-Hispanic. Smoking status was assessed as 

ever vs. never. Weight was measured in kilograms using a balance scale. Height was measured in 

centimeters using a stadiometer.  BMI was calculated as weight in kilograms divided by height in 

meters squared. Waist circumference was measured against the participant’s skin at the 

narrowest part of the torso between the ribs and the iliac crest. Blood Pressure (BP) was 

measured with a mercury sphygmomanometer after participants sat quietly for 5 minutes with 

feet flat on the floor. Final BP was the average of the last 2 of 3 readings taken 30 seconds apart. 

5.3.5 Blood Assays 

Blood analytes were measured at the Heinz Laboratory at the University of Pittsburgh’s 

Graduate School of Public Health. Total cholesterol and high density lipoprotein cholesterol 

(HDL-C) were determined using the enzymatic method of Allain et al.(208). HDL-C was 

determined after selective precipitation by heparin/manganese chloride and removal by 

centrifugation of very low density lipoprotein and low density lipoprotein cholesterol (LDL-

C)(209). LDL-C was calculated indirectly using the Friedewald equation. Triglycerides were 

assessed enzymatically using the procedure of Bucolo et al.(210). C-reactive protein (CRP) was 

measured using an enzyme-linked immunoassay (Alpha Diagnostic International, Inc., San 

Antonio, TX). Serum glucose was determined enzymatically with a procedure similar to that 

described by Bondar and Mead (211). Insulin, leptin, and adiponectin were measured using 

radioimmunoassays developed by Linco Research, Inc. (St. Charles, MO). Aldosterone was 
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measured using an enzyme-linked immunoassay developed by Diagnostic Systems Laboratories 

(Webster, TX). The intra- and inter-assay CV% for insulin were 4.8% and 10.5% respectively. 

The CV% for the other assays were all <3%.  

5.3.6 Urine Collection 

Valid 24-hour urine collections had volume between 500 mL and 4000 mL, duration ≥22 hours 

and ≤26 hours, and total creatinine within the expected range (212). From April 13, 2007 to 

March 6, 2009, analytes were measured using an Ortho Vitros 950. Direct potentiometry was 

used to measure sodium and colorimetry to assess creatinine levels.  Afterward, results were 

determined using a Beckman Coulter DxC 800 instrument employing an indirect ion selective 

method for sodium and an alkaline picric kinetic method for creatinine.  

5.3.7 Platelet Activity 

Circulating platelet activity was measured as plasma β-TG, a platelet-specific alpha granule 

protein released upon activation (213). Participants were eligible to provide a blood sample for 

the measurement of plasma β-TG if they had not taken aspirin in the preceding 14 days or any 

NSAID, antiplatelet, or anticoagulant medication in the preceding 10 days. At the 24 month visit, 

blood for the measurement of β-TG was drawn into a 4.5 mL vacutainer tube (Becton-Dickinson, 

Franklin Lakes, NJ) containing an anticoagulant/antiplatelet mixture of citric acid, theophylline, 

adenosine, and dipyridamole (Thermo Fischer Scientific, Pittsburgh, PA). The tube was chilled 

on ice for 15-60 minutes then centrifuged at 2000G for 30 minutes at 4°C, after which platelet-

poor plasma was obtained from the upper portion of the supernatant and kept frozen at -70°C 
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until assayed. Plasma β-TG was determined using an enzyme linked immunosorbent assay 

(Asserachrom, Diagnostica Stago, Parsippany, NJ). The intra- and inter-assay CV% were 3.8% 

and 13.2% respectively. 

5.3.8 Pulse Wave Velocity 

Pulse wave velocity measures were generated using the VP2000 system (Omron Health Care 

Co., Kyoto, Japan), a noninvasive automated waveform analyzer. Aortic stiffness was assessed 

by cfPWV and peripheral arterial stiffness by faPWV; baPWV served as a mixture of central and 

peripheral arterial stiffness. Following ten minutes of rest in a supine position, the participant had 

occlusion and monitoring cuffs placed around both arms and ankles, ECG electrodes on both 

wrists and a phonocardiogram on the left edge of the sternum. Occlusion cuffs at the brachial and 

tibial arteries were connected to pressure sensors that measured blood pressure and pressure 

waveforms at these peripheral sites as previously described (285).  Handheld tonometers were 

used to simultaneously obtain femoral and carotid pulse waveforms. PWV (in cm/sec) was 

calculated as the path length between arterial sites of interest divided by the time delay between 

the foot of the respective waveforms. For cfPWV path length, the distance between the carotid 

and femoral sites was measured (in cm) over the surface of the body with a tape measure.  The 

path lengths for baPWV and faPWV were calculated using height-based formulas (285).  For 

baPWV and faPWV, results for the right and left legs were averaged. For all PWV measures, 

data were collected twice for each participant, and the values were averaged. Participants with 

valid PWV measures (defined as between 300 m/s and 2500 m/s) were included in analyses.  

Intraclass correlation coefficients (ICC) for within technologist replicate measures were 0.76 
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(cfPWV), 0.97 (baPWV), and 0.96 (faPWV), and for between technologists replicates were 0.60 

(cfPWV), 0.87 (baPWV), and 0.87(faPWV). 

5.3.9 Statistical Methods 

Descriptive statistics were calculated to summarize study variables at baseline and 6, 12, and 24 

months follow-up and were presented as median/inter-quartile range (IQR) or mean (SD) for 

continuous variables and frequency and percentages for categorical variables. Whether the 

changes in body size, cardiovascular and metabolic risk factors, and PWV measures were 

statistically significantly different from zero at each follow-up visit was determined by testing 

the coefficient for time, as a nominal variable, in a linear mixed model with unstructured 

covariance. Non-normally distributed variables were transformed as necessary prior to modeling. 

Intervention arm was included as a covariate in every model for consistency with trial design. An 

interaction between intervention arm and time since baseline was used to test whether changes 

over time in study variables differed by intervention arm. 

Similar descriptive statistics were presented for the area under the curve (AUC) of the 

four serial measurements of each factor of interest, and this served as a measure of cumulative 

risk factor burden over the two year study period. To calculate the AUC for each risk factor for 

every study participant, linear mixed models (growth curves) with the serial risk factor 

measurements as the dependent variable were used. For these models, the intercept, linear time 

since baseline, and quadratic time since baseline effects had both fixed and random components. 

Higher-order random and fixed effects were not kept in the model if not statistically significant 

at p<0.10. Intervention arm was also included as a covariate in each model for consistency with 

trial design. Time since baseline was centered at its mean value to minimize collinearity. The 
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AUC was then calculated by integrating the individual’s estimated growth curve over his/her 

total follow-up period (286). Finally, this value was divided by the individual’s total follow-up 

time, since there was subtantial variability in the timing of the 24 months visit due to participants 

being permitted to attend this visit outside of the prespecified visit window in order to maximize 

attendance. 

Next, associations between β-TG and either risk factor levels at 24 months or cumulative 

risk factor exposures were tested by examining Pearson correlation coefficients. Risk factors of 

interest were cardiometabolic and vascular factors known to be associated with CVD risk and 

included BMI, waist circumference, mean arterial pressure (MAP), pulse pressure (PP), LDL-C, 

HDL-C, triglycerides, insulin, HOMA-IR, CRP, leptin, adiponectin, aldosterone, 24-hr urinary 

sodium excretion, heart rate, and each PWV measure (cfPWV, baPWV, and faPWV). The 

available sample size provided 80% power to detect correlations of r=0.29. For those AUC PWV 

measures that showed statistically significant correlations with β-TG, multiple linear regression 

models for β-TG were examined. After centering covariates to reduce collinearity, stepwise 

selection of covariates (other than PWV) was used with entry and removal p-values of 0.15 and 

0.10 respectively. Covariates considered for inclusion included all measures of cumulative risk 

factor exposure that had shown statistically significant correlations with β-TG at p<0.10. In all of 

these analyses, non-normally distributed variables were transformed as necessary. Values of 

p<0.05 were considered statistically significant. Statistical analyses were performed using the 

statistical package SAS (Statistical Analysis Software release 9.3, Cary, NC, USA). 
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5.4 RESULTS 

Plasma β-TG was measured in 92 individuals at the 24 month visit of the parent trial. The sample 

had an average age of 40.2 yrs (SD 5.9) and consisted of 60 women, 13 African-Americans, and 

8 current and 20 past smokers. Clinical characteristics of this sample over the course of the two 

year study are shown in Table 5.1.With the exception of MAP, which was slightly lower among 

individuals in whom platelet activity was measured, characteristics were similar between trial 

participants with and without platelet activity data. Median plasma β-TG was 25.8 IU/mL (IQR 

18.6, 35.9), which was within the normal range and did not differ by race, sex, age, or smoking 

status (p>0.20 for all).  

In cross-sectional analyses, higher plasma β-TG was statistically significantly correlated 

with higher BMI (r=0.25, p=0.02), leptin (r=0.21, p=0.049), and baPWV (r=0.22, p=0.04), and 

marginally significantly correlated with higher cfPWV (r=0.19, p=0.07)  and faPWV (r=0.20, 

p=0.06). Similarly, higher plasma β-TG was correlated with higher BMI and leptin when these 

factors were assessed as AUC from baseline to the 24 month study visit (Table 5.2). In addition, 

higher plasma β-TG was statistically significantly correlated with greater cfPWV and baPWV 

when the latter were assessed as AUC (Figure 5.1).  

In multiple linear regression models derived from the stepwise selection of AUC 

exposures showing correlations with plasma β-TG at p<0.10, greater cumulative exposure to 

elevated baPWV and leptin were significant predictors and greater cumulative exposure to 

elevated cfPWV was a marginally significant predictor of greater plasma β-TG at the end of the 

two year study period (Table 5.3). Adding BMI AUC to these models resulted in no predictor 

being statistically significant in either model for plasma β-TG, but in these models cfPWV AUC 
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(p=0.15) and baPWV AUC (p=0.10) did come the closest to achieving statistical significance of 

all included predictors.   

5.5 DISCUSSION 

The main finding of this study was that, in overweight and obese but otherwise healthy young 

adults, greater circulating platelet activity, as measured by plasma β-TG, was predicted by 

greater exposure to stiffer arteries during the preceding two years. However, greater exposure to 

excess weight and serum leptin over the same time period, when examined together, removed the 

statistical significance of this association. Our findings suggest that elevated arterial stiffness, 

particularly central arterial stiffness, might be one of the mechanisms by which platelet 

activation is increased in overweight and obese individuals.  Because of the key roles that 

platelets play in thrombotic events and the initiation and progression of atherosclerosis (127), 

these findings might also partly explain the association between arterial stiffness and incident 

cardiovascular events (54).  

Arterial stiffness is an established marker of vascular health, and stiffer central arteries 

promote greater wall shear and tensile stresses, speed up the fatigue of arterial wall components, 

and promote endothelial damage and atherosclerotic plaque vulnerability throughout the arterial 

tree (283). The present findings agree with those from at least three cross-sectional studies of 

individuals at low to moderate CVD risk, in which associations were found between several 

markers of in vivo platelet activation and both cfPWV(167) and baPWV(166, 168). Though the 

present observational study cannot establish that arterial stiffening causes increased platelet 

activation, there are several potential mechanisms that may explain this prospective association. 
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First, platelet activation is triggered by endothelial damage (127), and several studies have found 

evidence of endothelial dysfunction, as measured by flow-mediated dilation (FMD), in 

individuals with elevated arterial stiffness, as measured by aortic PWV (287, 288), cfPWV (287, 

288) or baPWV (289). Circulating levels of endothelial microparticles, which are released upon 

endothelial cell activation and closely relate to reduced endothelial structural and functional 

integrity, are positively associated with baPWV in type 2 diabetics and healthy adults (290). 

Second, shear stress plays an important role in platelet activation and is influenced by arterial 

stiffness. Pathologically high shear stress activates platelets and is an important driver of 

thrombus formation in occluded vessels (282). However, even in individuals with minimal 

atherosclerosis, as central arteries stiffen blood flow velocity increases, thereby increasing shear 

stress and creating a steep systolic pressure waveform that enhances the pulsatility of shear 

stresses in peripheral vessels (283, 291). Such oscillatory shear stress can induce a 

prothrombotic, prooxidant, and proinflammatory state in vascular endothelial cells, particularly 

in less compliant vessels (292-294). In addition, flow reversal may occur during diastole in 

peripheral vessels as the central arteries stiffen, which may trigger pathological changes in the 

endothelium (295). Finally, cyclic strain of the vascular wall induces endothelial cell expression 

of adhesion molecules and vascular smooth muscle cell migration and proliferation (296). 

Altogether, these changes promote platelet activation and atherosclerosis (127). It is therefore 

evident that the close relationship between arterial stiffness, shear stress, and endothelial damage 

might explain the association between greater arterial stiffness and greater circulating platelet 

activity.  

Importantly, however, in this study the associations between plasma β-TG and both 

cfPWV and baPWV appeared to be explained by excess weight and serum leptin, when 
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considered together. Several studies have shown positive associations between platelet activation 

and excess body weight (13, 138, 139, 142) or reduced platelet activation with weight loss (13, 

138, 139, 224). One possible mechanism for these relationships is that obese individuals have 

larger platelets than normal weight individuals (142). These larger platelets have greater 

metabolic and enzymatic activity as well as thrombotic potential (225, 226). In addition, platelets 

exhibit membrane receptors for both insulin and leptin, and insulin resistance and elevated 

circulating leptin promote platelet activation and aggregation (15, 140, 230). The correlation in 

this study between plasma β-TG and serum leptin, measured either concurrently or as a 

cumulative exposure, suggests that leptin may play a role in platelet activation in overweight and 

obese adults.  

The lack of correlation between plasma β-TG and either MAP or PP in this study was 

somewhat surprising in light of the statistically significant correlations detected between β-TG 

and measures of arterial stiffness. Cross-sectional studies in obese and normal weight adults have 

found significant correlations between markers of in vivo platelet activation and both SBP and 

DBP (159, 231). One cross-sectional study of hypertensives also reported a correlation between 

pulse pressure and mean platelet volume (297). Furthermore, platelet activity is higher in 

hypertensives than normotensives (143, 298). It may be that the inclusion of only normotensives 

prevented the present study from detecting associations between plasma β-TG and blood 

pressure. Additionally, PP was measured at the brachial artery. Central PP is more closely 

associated with aortic stiffness and increases more with age and other cardiovascular risk factors 

(291, 299). Furthermore, central PP has a marginally better predictive ability for incident 

vascular events and is more closely associated with end-organ damage than brachial PP (299, 
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300). Thus, had central PP been measured, it may have shown a correlation with platelet activity 

similar to that of cfPWV.  

There were several important limitations to this study. First, the small sample size limited 

the power to detect associations between plasma β-TG and cumulative exposures in 

multivariable models. Second, despite the prospective design of this study, reverse causation 

could exist due to the tracking of plasma β-TG levels over time. It is possible that activated 

platelets may influence arterial stiffness, perhaps through their release of vascular smooth muscle 

cell growth factors and extracellular matrix modulators (301). Third, it would have been 

informative to evaluate several measures of platelet activity. The measurement of other platelet 

specific proteins in plasma or urine or the detection of platelet surface proteins using flow 

cytometry might have improved the accuracy of platelet activity assessment. However, plasma β-

TG is a more sensitive marker of circulating platelet activity than flow cytometric measures, 

though it requires very careful sample collection to avoid ex vivo artifacts (137, 233). We 

attempted to minimize ex vivo activation by avoiding trauma during blood draws, drawing blood 

samples used for β-TG measurement as the last of three samples, and keeping the samples on ice 

prior to centrifugation. A notable strength of this study is that all participants were normotensive 

and not on antihypertensive, lipid lowering, or vasoactive medications, which enabled us to 

evaluate associations of interest independent of potentially confounding treatment effects.  

 In conclusion, in overweight and obese but otherwise healthy young adults, greater 

exposure to arterial stiffness over a two year period is a predictor of greater circulating platelet 

activity, as measured by plasma β-TG. Greater exposure to excess weight and serum leptin over 

time are also associated with greater platelet activity. These findings suggest that elevated 

arterial stiffness, particularly central arterial stiffness, might be one of the mechanisms by which 



101 

platelet activation is increased in overweight and obese individuals. Future studies of lifestyle 

modification and other arterial “de-stiffening” strategies in overweight and obese adults should 

examine whether sustained reductions in arterial stiffness can reduce the risk of thrombotic 

events.
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5.6 TABLES AND FIGURES 

Table 5.1 Clinical Characteristics over the Course of the Study  

Characteristic Baseline 
(N=92) 

6 Months 
(N=90) 

12 Months 
(N=90) 

24 Months 
(N=92) 

Cumulative Risk 
(AUC) 
(N=92) 

BMI (kg/m2) 32.4 (3.6) 29.7 (4.0)* 29.9 (4.2)* 31.1 (4.2)* 30.3 (3.7) 
Waist Circumference (cm) 101.6 (11.0) 95.0 (11.7)* 96.0 (12.2)* 98.1 (12.6)* 96.4 (10.6) 
Mean Arterial Pressure (mmHg) 86.4 (7.6) 83.3 (7.2)* 84.1 (7.6)* 85.7 (7.8) 84.6 (5.4) 
Pulse Pressure (mm Hg) 40.0 (7.6) 39.3 (7.6) 37.0 (7.1)* 37.8 (7.5)* 38.6 (4.8) 
Glucose (mg/dL) 98.8 (9.2) 98.2 (9.2) 98.9 (8.8) 98.1 (10.4) 98.5 (6.1) 
Insulin (µU/mL)† 12.5 (10.1, 16.2) 11.3 (9.1, 14.9)* 12.0 (9.3, 16.0) 12.1 (9.6, 16.2) 11.4 (9.7, 14.3) 
HOMA-IR (mmol/L x µU/mL)† 3.0 (2.5, 4.2) 2.8 (2.2, 3.6)* 2.9 (2.2, 4.0) 3.1 (2.2, 4.0) 2.8 (2.4, 3.5) 
LDL-C (mg/dL) 124.9 (34.3) 120.6 (33.4) 124.5 (33.5) 123.0 (33.7) 123.0 (29.2) 
HDL-C (mg/dL) 51.3 (14.6) 52.5 (13.8) 54.3 (13.8)* 54.0 (14.2)* 53.4 (13.1) 
Triglycerides (mg/dL)† 110.5 (74, 189) 89 (64, 138)* 99.5 (73, 135)* 98 (77, 146)* 94.9 (73.0, 137.9) 
CRP (mg/L)† 2.5 (1.3, 5.2) 1.9 (0.85, 3.8)* 2.0 (0.80, 3.7)* 2.5 (0.83, 4.5)* 1.8 (0.76, 2.7) 
Leptin (ng/mL) 22.7 (13.0) 15.0 (10.6)* 19.1 (14.2)* 20.7 (13.3)* 17.7 (10.1) 
Adiponectin (µg/mL) 11.2 (5.9) 11.7 (5.9) 11.2 (5.7) 9.6 (5.5)* 11.0 (5.2) 
Aldosterone (pg/mL)† 97.1 (78.5, 126.5) 107 (79.3, 147) 102 (83.9, 140) 108.5 (88, 160)* 108.0 (97.4, 131.8) 
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Mean (SD) or median (interquartile range (IQR)) are shown. *P<0.05 versus baseline in a linear mixed model with time since baseline 
as a nominal variable and with adjustment for intervention arm. LDL-C=low density lipoprotein cholesterol, HDL-C=high density 
lipoprotein cholesterol, HOMA-IR= homeostasis model assessment of insulin resistance, CRP=C-reactive protein, PWV=Pulse Wave 
Velocity, AUC=area under the curve divided by total follow-up time in years. †Log transformed for mixed modeling and AUC 
calculation; median and IQR AUC values shown were back exponentiated. #Baseline N=71, 6 Months N=68, 12 Months N=68, 24 
Months N=60.  

Sodium Excretion (mmol/24hr)# 187.3 (64.3) 156.2 (66.3)* 154.0 (61.2)* 154.0 (61.6)* 157.4 (27.3) 
Heart Rate (beats/min) 62.7 (8.2) 60.7 (7.5)* 62.6 (8.8) 61.9 (8.3) 62.0 (5.2) 
Carotid-femoral PWV (cm/s)† 817 (700, 934.5) 767.5 (683, 907.5)* 785.5 (680.3, 907.5)* 787.3 (690.3, 903) 774.6 (717.0, 875.0) 
Brachial-ankle PWV (cm/s) 1218.7 (128.4) 1196.5 (140.8) 1201.2 (130.9) 1205.3 (130.5) 1207.9 (108.2) 
Femoral-ankle PWV (cm/s) 946.1 (102.9) 945.0 (112.9) 939.8 (105.5) 941.0 (100.6) 945.3 (78.0) 
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Table 5.2 Pearson Correlations between β-thromboglobulin and Cumulative Exposure to 

Cardiometabolic and Vascular Risk Factors Over the Preceding Two Years 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Plasma β-TG, triglycerides, insulin, HOMA-IR, and CRP were log transformed. BMI=body 
mass index; SBP=systolic blood pressure; DBP=diastolic blood pressure; LDL-C=low density 
lipoprotein cholesterol; HDL-C=high density lipoprotein cholesterol; CRP=C-reactive protein. 
N=92. 

Variable r P value 
BMI  0.28 0.007 

Waist Circumference  0.07 0.48 

Mean Arterial Pressure 0.05 0.63 

Pulse Pressure  0.14 0.17 

LDL-C  0.07 0.52 

HDL-C  0.06 0.58 

Triglycerides  0.09 0.39 

Insulin  0.14 0.17 

HOMA-IR 0.15 0.16 

CRP  0.19 0.08 

Leptin 0.25 0.01 

Adiponectin -0.07 0.48 

Heart Rate -0.04 0.71 

24-hr Sodium Excretion 0.02 0.83 
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Figure 5.1 Scatterplots of Cumulative Pulse Wave Velocity Exposures vs. β-

thromboglobulin for (a) cfPWV, (b) baPWV, and (c) faPWV 

 
 
Table 5.3 Multiple Linear Regression Models for log β-thromboglobulin: Associations with 

Cumulative Pulse Wave Velocity Exposures 

 

 

 

 

 

 

 
All independent variables are cumulative risk factor exposures over the course of the two year 
study (area under the curve divided by follow-up years).β-thromboglobulin and carotid-femoral 
PWV were log transformed. PWV=Pulse Wave Velocity

Variable 
Parameter 

Estimate (SE) P value 

Model including Carotid-femoral PWV  
Carotid-femoral PWV (cm/s)  0.71 (0.36) 0.054 

Leptin (ng/mL)  0.011 (0.005) 0.04 

Model including Brachial-ankle PWV  
Brachial-ankle PWV (cm/s) 0.0010 (0.0005) 0.03 
Leptin (ng/mL) 0.013 (0.005) 0.01 
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6.0  DISSERTATION DISCUSSION 

6.1 SUMMARY OF FINDINGS 

The objective of this dissertation was to examine the roles of circulating aldosterone and plasma 

β-TG in vascular remodeling and cardiometabolic risk in normotensive overweight and obese 

young adults. In our first study, we found that, among non-Hispanic whites, the T allele of SNP 

rs168753 in the gene encoding the main platelet thrombin receptor, was associated with having a 

higher mean carotid bulb IMT before but not after lifestyle modification. Higher plasma β-TG 

was not associated with any of the investigated allelic variants in genes encoding platelet 

membrane receptors but was correlated with greater CCA IMT. In addition, lower plasma β-TG 

measured one year after the conclusion of the intervention was correlated with lower BMI and 

greater weight loss during the study. This was the first study to show an association between 

carotid IMT and an allelic variant in the gene encoding PAR-1 and also the first study to show an 

association between weight loss and lower circulating platelet activity a considerable time after 

the weight loss intervention occurred. Given that recent genome-wide association studies of 

segment-specific carotid IMT have not detected significant SNPs near or within genes encoding 

platelet membrane receptors (222, 223), and given the nonsignificance of rs168753 as a 

determinant of carotid bulb IMT at the final study visit, it is probable that this SNP does not play 

a causal role in carotid atherosclerosis. However, it is known that platelet activation plays an 
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important role in early atherosclerosis and vascular remodeling. Activated platelets promote 

atherosclerosis through the actions of the numerous growth factors and cytokines they secrete 

(15). In obese individuals, platelets are larger and “angrier” than they are in normal weight 

individuals (141). This is thought to be due to obesity-related metabolic alterations, such as 

insulin resistance and elevated circulating leptin, which promote platelet activation and 

aggregation (15, 140, 230).  

In our third study, we found that higher cfPWV and baPWV, assessed as cumulative 

exposures during the two year SAVE study, predicted higher plasma β-TG at the end of the 

study. Given the key roles that platelets play in thrombosis and atherosclerosis (127), these 

findings might also partly explain the association between higher arterial stiffness and increased 

risk of incident cardiovascular events (54). The small sample size of this study, however, limited 

our ability to adjust the associations of interest for multiple cardiovascular and metabolic risk 

factors. From these two studies together, it is evident that circulating platelet activity is 

correlated with the amount of excess weight and the extent of adverse vascular remodeling in 

young overweight/obese adults. Though the observational design and potential presence of 

unknown confounders prevent us from determining causality from these studies, their 

longitudinal design does enable us to suggest that weight loss reduces platelet activity and that 

platelet activity is promoted by stiffer arteries. In reality however, given the slow and complex 

process of vascular remodeling that occurs over years, it is likely that platelet activity is both a 

cause and consequence of atherosclerosis and arteriosclerosis (302).  

Weight loss clearly improved cardiovascular risk profiles in SAVE trial participants, and 

a reduction in circulating platelet activity may be one pathway by which weight loss reduces 

CVD risk. Future studies should examine whether elevated platelet activity is a causative factor 
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in adverse vascular remodeling in apparently healthy overweight/obese young adults, for 

example by determining the long-term effects of low dose antiplatelet drugs on carotid IMT and 

PWV. These drugs have already been shown to lower carotid IMT progression in type 2 

diabetics (164) and individuals with symptomatic peripheral arterial disease (163). In addition, 

future studies of lifestyle modification and other arterial “de-stiffening” strategies in overweight 

and obese adults should examine whether long-term, sustained reductions in arterial stiffness 

reduce thrombotic risk. 

In our second study, we found that changes in serum aldosterone were associated with 

reductions in fasting insulin, HOMA-IR, CRP, leptin, heart rate, tonic cardiac sympathovagal 

balance, and increases in adiponectin, independent of dietary sodium reductions and weight loss. 

In addition, weight loss and reductions in intermuscular fat were associated with reduced serum 

aldosterone in individuals with MetS. Furthermore, associations between decreases in sodium 

excretion and decreases in blood pressure were more evident in individuals who had greater 

baseline metabolic dysfunction or who were of black race. This was the first longitudinal study 

in a large sample of overweight/obese otherwise healthy young adults to report associations 

between such a wide variety of obesity-related factors and circulating aldosterone.  Given these 

findings, along with findings from animal studies indicating that MR antagonists improve 

adipose tissue function (117, 118), future clinical trials should address the effects of these drugs 

on adipose tissue structure and function and overall cardiometabolic health in overweight/obese 

adults. To date, there have been no such clinical trials. However, at least two randomized trials 

examining the impact of MR inhibition on vascular, metabolic, and inflammatory parameters are 

currently in the recruitment phase; one is recruiting adults with hypertension and metabolic 

syndrome  and the other obese normotensive adults . 
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In conclusion, we found that (1) weight loss reduces circulating platelet activity, (2) 

higher arterial stiffness is prospectively associated with increased circulating platelet activity, 

and (3)  increases in serum aldosterone are associated with adverse changes in a wide variety of 

obesity-related factors in normotensive overweight/obese young adults. Although these studies 

had several weaknesses, such as small sample sizes and lack of measurement of some potential 

confounders, they had numerous strengths, particularly the longitudinal design and lack of 

treatment-related confounding in all studies. Overall, this research clearly shows that elevated 

platelet activity and  aldosterone play important roles in vascular remodeling and 

cardiometabolic health in overweight/obese young adults. These factors are likely to be useful 

targets for therapies to reduce cardiovascular and metabolic risk in this population.   

6.2 PUBLIC HEALTH SIGNIFICANCE 

Cardiovascular disease is the leading cause of death in the US and throughout the developed 

world (1). Overweight and obese individuals are at increased risk for cardiovascular disease 

compared to normal weight individuals (10, 304), and excess weight brings about adverse 

vascular changes long before the occurrence of clinical cardiovascular events (6-8, 304). 

Elevated aldosterone (12) and platelet activity (13-15) are two important factors linking obesity 

to declining vascular and metabolic health, which eventually can lead to hypertension, type 2 

diabetes, and cardiovascular disease.  

 Recent nationally representative data from the Centers for Disease Control and 

Prevention show that 32% of American men and 35% of American women are obese (BMI > 30 

kg/m2) (305). The prevalence of abdominal obesity (waist circumference ≥ 102cm in men and ≥ 
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88cm in women) is even higher, at 44% in men and 62% in women (305). Lifestyle modification 

must clearly continue to be recommended to overweight and obese individuals; as such changes 

produce marked improvements in cardiovascular and metabolic risk factors. Unfortunately, these 

changes are difficult for many overweight and obese individuals to initiate and maintain. Even 

among SAVE trial participants, who were highly motivated at study onset, there was substantial 

dropout, and among study completers average weight loss did not reach 10%, the goal of the 

intervention. Behavior modification programs that are both clinically effective and cost effective 

on a large scale remain elusive (306). Recently, several new and emerging tools and strategies 

for discussing weight and assisting overweight and obese patients in busy ambulatory settings 

have been shown to be useful, though more long-term research in this area is needed (306). 

Presently, it is clear that we must use all available and useful tools to reduce obesity and its 

comorbidities, including targeting obesity-related abnormalities such as elevated aldosterone and 

platelet activity. Only if we reduce obesity and its comorbidities in the population can we 

continue to see increases in quality of life and life expectancy in our society. 
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 APPENDIX 

SAVE TRIAL DATA COLLECTION TABLE 

 Screening 

 

Baseline 

 

Intervention 

 

3 mo. 6 mo. 12 mo. 24 mo. 
Physical Measures        
   Height X       
   Weight X   X X X X 
   Waist Circumference X    X X X 
   Blood Pressure X    X X X 
Physical Measures Updates         
    Weight (If screening visit >4 weeks ago)  X      
    Waist Circ. (If screening visit >4 weeks ago)  X      
    Blood Pressure  X      
Medications  X   X X X 
Demographics        
  Age X       
  Gender X       
  Race X       
  Marital Status X       
  Education X       
  SES X       
  Tobacco use X    X X X 
  Alcohol use X    X X X 
Fasting Lab Values        
  Glucose X    X X X 
  Insulin X    X X X 
  Total Chol. X    X X X 
  HDL X    X X X 
  LDL X    X X X 
  ApoB X    X X X 
  Triglycerides X    X X X 
  Adiponectin X    X X X 
  Leptin X    X X X 
  Ghrelin X    X X X 
  CRP X    X X X 
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  Aldosterone X    X X X 
  Beta-thromboglobulin      X X 
 DNA collection (buffy coat) X       
  24hr Urine        
        Sodium  X  X X X X 
        Creatinine  X  X X X X 
        Potassium  X  X X X X 
        Uric Acid  X   X X X 
Food Intake        
  DHQ – NCI Web Version  X    X X 
Physical Activity        
  Modifiable Activity Questionnaire  X    X X 
  Accelerometer (Actigraph)   X    X 
  7-Day Activity Diary   X    X 
Intervention        
 Weight Form   X     
 Intervention Tracking Form   X     
Vascular Measures        
 Aortic PWV (Complior)  X   X X X 
 Peripheral PWV (Omron)  X   X X X 
 Endothelial Function (FMD)  X   X   
 CCA Diameter/IMT  X   X X X 
 Full IMT  X     X 
 Cardiac Indices (Omron)  X   X X X 
 Sympathetic/Parasympathetic Activity 

 

 X   X   
CT        
  Abdominal and Thigh CT Scans  X    X  
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