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Breast Cancer, as the second most common cancer among women in the United States, 

has attracted specific attention for the research of diagnostic screening test, since the most 

common diagnostic methods for Breast Cancer, including diagnostic mammogram, magnetic 

resonance imaging and breast ultrasound, perform high false positive and negative rates and 

involve high risk of getting cancer during the diagnostic screening test. Breath analysis, as an 

accurate and non-invasive diagnosis method, is a promising replacement technique to perform 

better diagnostic result using the Volatile Organic Compounds (VOC) biomarkers of Breast 

Cancer, and nanowire as a one dimensional nanostructure with high sensitivity, reproducibility 

and accuracy in chemical and biomolecular sensing can be developed as an excellent sensing 

device for the detection of the VOC biomarkers of Breast Cancer for real-time breath sensing 

analysis.  

In this work, Palladium, Polypyrrole and Zinc Oxide nanowires, fabricated using 

electrochemical deposition method, perform quick response and high sensitivity to the four VOC 

biomarkers of Breast Cancer, including heptanal (Hep), 1-phenyl-ethanone (Ace), isopropyl 

myristate (IM), and 2-propanol. The lowest sensing limits of the single nanowires for Hep, Ace, 

IM and 2-propanol have achieved 8.982ppm, 798ppb, 134ppm and 129.5ppm, which are 

extremely low concentration approaching the concentrate level of these VOC biomarkers in 

human breath. The sensitivities for the sensing limits are around 1% which indicates the great 
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sensitivity of these single nanowires. The detection period applied for the single nanowire 

sensing test to achieve the maximum conductance change is 200 seconds, and the recovery time 

consumed after each detection period is less than 200 seconds which illustrate the excellent 

reproducibility of the single nanowires and the capability for the real-time sensing test of breath 

analysis. The properties and sensing mechanisms of these single nanowires will also be discussed 

in detail.  

By fabricating Palladium, Polypyrrole and Zinc Oxide nanowires in parallel on a single 

chip, a single nanowire array sensor is also developed. With the sensing test using the multi-

channel simultaneous sensing system, the single nanowire array sensor performs excellent 

discrimination between four VOC biomarkers by using the principal component analysis (PCA). 

The smell prints for the four VOC biomarkers are completely separated in 2-D and 3-D PCA 

plots, which prove the excellent specificity of this single nanowire array sensor and indicates a 

bright future of the application of this single nanowire array sensor for the actual breath 

diagnostic sensing test for Breast Cancer. 
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1.0  INTRODUCTION 

1.1 MOTIVATION 

 

Breast Cancer has already become the second most common cancer among women in the United 

States. According to the latest survey, there were 207,090 women diagnosed with breast cancer 

and 39,840 women died from it in the United States during 2010. Based on the study of the 

National Cancer Institute’s (NCI’s) Black/White Cancer Survival Study, delays in diagnosis of 4 

weeks or more were reported by almost 40% of women patients, and almost 25% of women 

patients reported delays in diagnosis of 8 weeks or more [1]. Early stage diagnosis and treatment 

are really necessary and important for decreasing breast cancer mortality. The normal techniques 

for the screening test are diagnostic mammogram, magnetic resonance imaging (MRI) and breast 

ultrasound.  

Diagnostic mammogram which uses low-energy-X-rays for the examination is the most 

common and effective method for the diagnosis of breast cancer now.  It includes many images 

of the area of concern. Special images known as cone or spot views with magnification are 

applied for making a small area of abnormal breast tissue to be easier to evaluate.  It is especially 

effective for those women who have mutations in their genes (BRCA1 and BRCA2) which are 

established to increase the risk of woman in developing breast cancer, according to National 
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Cancer Institute. However, despite the significant improvement, the false negative and false 

positive rates for X-ray diagnostic mammogram are still pretty high which will lead to delay in 

diagnosis or unnecessary biopsy examination. Besides, the risk of cancer from diagnostic X-ray 

also exists. According to the research of Amy Berrington de González and Sarah Darby [2], the 

diagnostic X-ray used in USA causes 1.0% of the cumulative risk of cancer to age 75 years in 

women, which corresponds to 3122 cases per year, and 0.9% of the cumulative risk of cancer to 

age 75 years in men, which corresponds to 2573 cases per year. In 1981, Doll and Peto’ 

estimated that about 0.5% of cancer mortality in USA was due to the attribution from diagnostic 

X-ray. Although the risk for each individual is low, the number of victims is comparatively large 

if the whole population of breast cancer patients is taken into consideration. 

As supplementary techniques of diagnostic mammogram, MRI and ultrasound are also 

applied for the screening test of breast cancer [3]. MRI uses radio waves and strong magnets 

instead of X-rays. The energy of the radio waves can be absorbed by the body tissue and then 

released in a pattern by certain disease which will be translated into images.  It is always applied 

for those women who have already been diagnosed with breast cancer using diagnostic 

mammogram to have a better knowledge of the actual size of the cancer part and to look for any 

other cancers in the breast. However, the effectiveness of MRI is still not quite clear. Besides, the 

time and expensive cost is also another concern for MRI. Breast ultrasound is another technique 

using sound waves to outline part of the body. It is also used following normal diagnostic 

mammogram to target a specific area of concern. It is helpful for women with dense breasts. No 

radiation is involved in ultrasound test. But, this is only used as complimentary test with 

diagnostic mammogram.  
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As mentioned above, diagnostic mammogram is the most significant technique that is 

used for the screening test of breast cancer. Other techniques can only provide more 

supplementary information. But the potential radiation risk and high false rates result in concern 

of the diagnostic mammogram. Therefore, accurate and non-invasive diagnosis method is 

necessary for the screening test of breast cancer.  

Breath test is a fast, non-invasive, convenient and accurate method which utilizes the 

links between specific volatile organic compounds (VOCs) and diverse medical conditions. The 

composition of VOCs in human breath has been analyzed [4-5]. The relationships between some 

VOCs and diseases were also studied. Several applications have been developed making use of 

the detection of specific VOCs in breath for the diagnosis or monitoring of diseases [6-9]. Since 

breast cancer is accompanied by increased oxidative stress and induction of polymorphic 

cytochrome P-450 mixed oxidase enzymes (CYP) which both will affect the concentration of 

specific VOCs in the breath, research in breath test and sensing for Breast Cancer VOC 

biomarkers is promising [10].  

Based on previous result of Michael Phillips, five VOC biomarkers of breast cancer in 

breath were identified: 1-phenyl-ethanone (Ace), 2,3-dihydro-1-phenyl-4(1H)-quinazolinone, 

heptanal (Hep) , isopropyl myristate (IM), and 2-propanol [11]. The prediction for breast cancer 

using these five VOC biomarkers performs 93.8% sensitivity and 84.6% specificity in previous 

research [11]. Some patients with abnormal mammograms but confirmed no breast cancer on 

biopsy examination can be eliminated using the breath analysis of these five VOC biomarkers. 

Therefore, it is more accurate to utilize this breath test method to develop new sensing device for 

the diagnosis of Breast Cancer.  
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The traditional method for breath test is using Gas Chromatography/Mass Spectrometry 

(GC-MS) [12-13]. GC-MS is precise in identifying different VOCs and measuring their 

concentration in median level. However, since the concentration of the VOC biomarkers in 

breath is as low as ppm or ppb level, normal test using GC-MS is not able to complete 

measurement and identification. A complicated and expensive pre-concentration procedure is 

required. This introduces problems and extends the time for the diagnosis breath test.  

Here a simple, low-cost, sensitive and accurate nanowire array sensor for VOC 

biomarkers of Breast Cancer is demonstrated. Nanowire sensor is attracting more and more 

attention as nanosensor for biomarkers because of its nanoscale dimension, surface interaction 

and conducting characteristics [14-20]. The interactions between biomarkers and nanowires will 

lead to the change of the conductance of the nanowire which can be utilized as sensing 

mechanism for biomarker sensor. Because of its high surface-volume ratio and nanoscale 

structure, it shows quick response and high sensitivity to biomarkers with comparatively low 

concentration. In this paper, we present nanowire array sensor for Breast Cancer VOC 

biomarkers with Palladium (Pd), Polypyrrole (PPy) and Zinc oxide (ZnO) nanowires fabricated 

in parallel using electrochemical method. The nanowire array shows high sensitivity, good 

repeatability and low sensing limit to the four VOC biomarkers of Breast Cancer: Hep, Ace, IM 

and 2-Propanol. Besides, the sensing period required is less than 5 minutes. The PCA results also 

show excellent discrimination between these four VOC biomarkers. These features indicate that 

this nanowire array sensor can be developed as a fast, sensitive, accurate and cost-effective 

sensor for the breath test of Breast Cancer in the future. It is a promising replacement of 

traditional diagnosis method for Breast Cancer. 
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1.2 THESIS ORGANIZATION 

Chapter 1 introduces the background information of this work, and the outline of this 

dissertation. In, Chapter 2, the detail background information about the VOC biomarkers and Pd, 

PPy, ZnO nanowires, including the general properties and sensing mechanisms, is presented. The 

composition of single nanowire array sensor and the fundamental knowledge of PCA will also be 

covered. 

Chapter 3 includes the fabrication method for single nanowire and nanowire array, and 

the set up for single nanowire sensing test and multi-channel simultaneous sensing test. The test 

procedure and sensing signal processing method will be introduced in detail. Chapter 4 discusses 

about the sensing results of the experiments. The sensing signals for each kind of nanowire, with 

sensing limit, sensitivity, specificity, and response time will be illustrated separately in detail. 

The sensing results collected from the simultaneous sensing test and the PCA result will also be 

discussed. Finally, Chapter 5 summarizes the achievements and list of publishment related to this 

work. 
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2.0  BACKGROUND 

2.1 VOLATILE ORGANIC COMPONENT BIOMARKERES FOR  

BREAST CANCER 

Alveolar breath is a specific gas whose chemical composition differs markedly from the inspired 

air. Volatile organic compounds (VOCs) are either subtracted from the inspired air or added to 

the alveolar breath as products of metabolism [21]. Based on Pauling’s research in 1971, cold 

trapping can be employed to concentrate the VOCs in breath and several hundred different VOCs 

were found in normal human breath in low concentrations [22]. Subsequently, in many different 

laboratories, the same result was confirmed with more sophisticated and sensitive assays.  More 

than a thousand different VOCs were observed in low concentrations using more sophisticated 

technique [4]. Since the production of the VOCs in alveolar breath is related to the metabolism 

which can be affected by the disease, the composition and concentration of the VOCs in human 

breath can be taken as the biomarkers for the detection of certain disease.  

Based on previous research, breast cancer is accompanied by increased oxidative stress 

and induction of polymorphic cytochrome P-450 mixed oxidase enzymes (CYP) [23,24], which 

can be detected by increased excretion of volatile alkanes and alkane derivatives in the breath 

[24,25]. With the breath analysis research of Michael Phillips, five breath biomarkers of breast 

cancer were identified: 2-propanol, 2,3-dihydro-1-phenyl-4(1H)-quinazolinone,1-phenyl-
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ethanone (Ace), heptanal (Hep), and isopropyl myristate (IM) [11]. By using the combination of 

these five VOCs in breath, the presence or absence of breast cancer can be predicted with 93.8% 

sensitivity and 84.6% specificity. The predictive model using these VOC biomarkers would 

probably identify healthy women with abnormal mammograms. Therefore, the false positive and 

negative rates could be decreased using this breath analysis method.  

Limited by the purchase source, four of these five VOC biomarkers are chosen as the 

target gases for my research: heptanal (Hep), 1-phenyl-ethanone (Ace), isopropyl myristate (IM) 

and 2-propanol. The structures and vapor pressures are shown in Table.1. 

Table.1  Molecule Structure and vapor pressure of the four VOC biomarkers of Breast Cancer 

VOC 

biomarker 

Molecule Structure 

Vapor 

Pressure 

(mmHg ) 

Hep  3.395 

Ace 

 

 
0.299 

IM 
 

51.03 

2-Propanol 

 
49.25 
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2.2 PALLADIUM NANOWIRE AND ITS SENSING BEHAVIORS 

As mentioned in [26], palladium (Pd) is a soft silver-white metal which belongs to the platinum 

group metal with the lowest melting point. It has great capability of absorbing hydrogen which 

can be up to 900 times its own volume at room temperature. When Pd nanowire is exposed to 

hydrogen, it will undergo a phase change which leads to a chemical and physical property 

change. It might switch the chemical state from one hydride phase (alpha (α) phase) to another 

hydride phase (beta (β) phase) [27]. Usually, at room temperature, α phase has lower atomic ratio 

of H/Pd (<0.1), but β phase has higher atomic ratio (H/Pd≈0.7) [28]. When the atomic ratio is in 

the middle of these two ranges, both two phases can coexist inside the nanowire structure. When 

the hydrogen concentration increases, Pd nanowire prefers to switch to β phase and the partial 

atomic ratio in Pd nanowire will also increase according to the adsorption. Since the resistance 

for β phase is higher than α phase [27], the overall resistance of the Pd nanowire with absorbed 

hydrogen is going to be increased.  

At the same time, accompany with the phase changing, there is also volume expansion 

which results from the structural lattice change [26]. Normally at room temperature, Pd with α 

phase has a FCC structure with a lattice parameter of 0.3890 nm. Accompany with the phase 

change, the lattice performs an isotropic expansion while keeping its FCC structure. At room 

temperature, the lattice parameter of Pd with β phase is around 0.4025 nm since the H/Pd 

component ratio is much higher [28,29]. Comparing the lattice parameters, it is obvious that, 

after the phase change with hydrogen absorption, the volume expanses for about 10.4% which 

might become a dominant factor corresponding to the reduction of the resistance change. 

Therefore, both the phase change and volume expansion affect the final result of resistance 

change with opposite effects.  
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Similar with the sensing mechanism with hydrogen, when the Pd nanowire is exposed to 

VOC biomarker gas, Pd nanowire is suspected to act as an effective catalyst for the partial 

decomposition of VOC biomarker gas. Just like the undergo reaction of methanol on the surface 

of Pd [30], hydrogen presents as a product of the interaction between Pd nanowire and the VOC 

biomarker gas, and the producing hydrogen will lead to the phase change and volume expansion 

of Pd nanowire. Although the VOC biomarker gas itself can not affect the conductance of Pd 

nanowire a lot, the decomposition product hydrogen can make big difference. 

2.3 POLYPYRROLE NANOWIRE AND ITS SENSING BEHAVIORS 

Polypyrrole (PPy) is a chemical compound which can be fabricated through electro-

polymerization of connected pyrrole monomers. The monomer pyrrole is a heterocyclic aromatic 

organic compound which has a five-component ring with four carbon atoms and one nitrogen 

atom. The chemical structure of pyrrole is shown below: 
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The electrochemical-polymerization process of pyrrole is completed via the anion Cl- and 

the detail steps are shown below: [31] 

Step 1 :  Single electron oxidation of pyrrole with incorporation of Cl- 

 

Step 2 :  Formation of a dimer 

 

Step 3:   Formation of polypyrrole 

 

 

With the help of anion (Cl-), PPy is conductive since the electrons can be transferred 

along the conjugated π-molecular orbital backbone. This electron transfer is most linked with the 

motion of the charge carriers in the material. As a conductive polymer, PPy performs high 

conductivity, high electron mobility and good bio-affinity which can be utilized for bio-sensing 

development. 



 11 

The sensing mechanism for the PPy nanowire versus VOC biomarkers is normally 

explained with doping or dedoping effect.  According to the model developed by Hwang and Lin 

[32-34] based on Langmuir isotherm, active sites for VOC absorption are disputed on the surface 

of the PPy nanowire. The overall resistance of the nanowire is taken as m resistances of R in 

parallel and each R is considered as n resistances of r0 in series. Here, m,R,n,r0  represent the 

number of conduction paths, the resistance of one conduction path, number of active site in one 

conduction path and the resistance of original active site.  

When PPy nanowire is exposed to the VOC biomarker gas, some of the VOC molecule is 

absorbed onto the surface active sites. Due to the doping or dedoping effect, the VOC 

biomarkers will donate electrons as electron-donator after the absorption. Since PPy nanowire is 

considered as p-type conductive polymer, as shown in Fig. 2.3.1, the doping level is decreased 

and the work function is increased.  

 

Fig. 2.3.1   Sensing mechanism expression of PPy nanowire versus VOC biomarkers.  

 

Finally, the partial resistance of the active site with absorbed VOC molecule is increased 

to r1. With the site coverage of absorption represented by θ, the resistance R is: 
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As a combination of the empty and occupied active sites, the overall resistance of the PPy 

nanowire is increased. For different VOC biomarkers, the site coverage of absorption and the 

extent of dedoping effect are different. Therefore, the resistance change and the sensitivity will 

be distinct for different VOC biomarkers. Since there is no actual chemical reaction between the 

nanowires and the VOC biomarkers, the absorbed VOC molecule can be desorbed by the 

dilution gas and doping level of the conductive polymer will be recovered to original level.  

2.4 ZINC OXIDE NANOWIRE AND ITS SENSING BEHAVIORS 

Zinc oxide is an inorganic compound, and the synthetic ZnO is primarily used as a white powder 

that is insoluble in water. The powder is widely used as an additive in various materials and 

products including plastics, ceramics, glass, cement, rubble, etc. ZnO is a semiconductor with 

wide-bandgap around 3.3 eV at room temperature, which performs several favorable properties, 

including high electron mobility, high breakdown voltages, high capability to sustain large 

electric fields, low electronic noise and high-temperature and high-power operation [26].  

The electrochemical deposition process of ZnO nanowire contains two parts in order to 

achieve both fast growth and good contact between the ZnO nanostructure and the electrodes 

[26]. First, with the electrolyte solution for ZnO nanowire growth, a Zn nanowire is grown inside 

the nanochannel by applying the normal procedure of electrochemical deposition process. Since 

the conductivity of Zn is much higher than that of ZnO, the resistance of the nanowire right after 

the electrochemical deposition is comparably low and easily done by applying the electric field. 

Then, since the electrolyte solution contains Zn(NO2)2∙6H2O and HTMA, the Zn nanowire will 

start to be oxidized and act as the seed for ZnO nanostructure growth. Therefore, as the voltage 
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across the nanowire is monitored, an increasing curve will be observed after the large drop of the 

voltage signal, and the ZnO nanowire is formed through the oxidization.  

The commonly accepted sensing mechanism for ZnO nanowire related with gas sensing 

is the charge accumulation and depletion on the surface of n-type ZnO nanowire according to the 

electron trapping on absorbed oxygen species [35,36]. The structure of the ZnO nanowire is rich 

in ionizable oxygen vacancies which makes ZnO an n-type semiconductor. When the VOC 

biomarker is absorbed on the ZnO surface, the reactive oxygen species, such as O2
- and O2-, will 

attract the free electrons inside the ZnO nanowire [37]. The conduction electrons will react with 

the oxygen species and the resistance of the nanowire will increase.  

 

 

For Hep, Ace and IM, the molecule structure contains aldehyde which acts as the reactive 

oxygen species after the absorption. The concentration of conduction electron will decrease due 

to the reaction, and the resistance will increase as a result. However, since the hydroxide radical 

is weaker than aldehyde, the attractive capability of 2-propanol will be weaker than the other 

three VOC biomarkers. Therefore, the increasing partial of the resistance will be less and the 

effect of structure modification will be more obvious. 

2.5 NANOWIRE ARRAY SENSOR AND PRINCIPAL COMPONENT ANALYSIS 

Single nanowire is effective when applied for sensing test of specific target gas. Upon exposure 

to the target gas, the conductance of the single nanowire will be affected and the electrical signal 
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is detected as the sensing signal for data analysis. However, this is expected in ideal situation. In 

reality, the single nanowire does not respond to only one kind of analyte with especially high 

sensitivity. The most common phenomenon is that the single nanowire shows response to variety 

of gases only with slight difference of sensitivity. To identify several target gases with similar 

properties, it is more effective using the nanowire array consisting of several kinds of nanowire 

as the gas sensor. The combination of the sensing signals from different kinds of nanowires 

includes more specific information corresponding to each kind of target gas. The multi-target gas 

sensing can be completed using nanowire array with high sensitivity and selectivity.  

With the sensing signals of the nanowire array, principle component analysis (PCA) as a 

specific data analysis method is used to extract and maximize the difference between the sensing 

feature of each target gas. PCA is the usual mathematical analysis procedure applied for 

converting a set of observations of possibly correlated variables into a set of values of 

uncorrelated variables. It offers an effective tool to compress the data by reducing the number of 

dimensions and eliminating the redundant information without losing much information. For the 

nanowire array of Pd, PPy and ZnO nanowires, 2D and 3D sensing space can be constructed 

using PCA which the relative response (RS) of each nanowire is represented as one axis. The 

basic steps for PCA are described as follows [26]: 

1.  Extract all the RS data from the original sensing data. Here, for the VOC biomarker 

sensing test, the slope of the resistance change versus time in each detection period is selected as 

the RS data used for the PCA.  The RS data sets form a matrix in which the data from one kind 

of nanowire represents a column and the data for each target VOC biomarker forms a row; 

2.  The mean matrix is calculated, and the original data sets are converted to mean 

adjusted data sets without any affection of the accuracy of the PCA process; 
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3.   The covariance matrix is constructed using the mean-adjusted data matrix, and the 

eigenvalues and eigenvectors are found for the covariance matrix; 

4.  The eigenvalues are sorted from largest to smallest in terms of the absolute value, and 

the first few eigenvectors corresponding to the largest eigenvalues are selected as the principal 

components. The selected eigenvectors form a feature vector; 

5.  By multiplying the transposed feature vector and the transposed mean-adjusted data 

sets, the final transformed data matrix is obtained. The data in the final matrix is called score and 

used for the PCA plot.  

By following the above steps, the original data sets can be transformed into data sets with 

desired dimension. The variance between different groups of data sets can be maximized and the 

discrimination is illustrated in the PCA plot.  
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3.0  EXPERIMENT 

3.1 FABRICATION OF SINGLE NANOWIRE AND NANOWIRE ARRAY 

 

 (100) p-type Si wafer is used as the substrate. For the first step, a layer of SiO2 with 100nm to 

150nm thickness is thermally grown to work as an insulation layer on top. In the second step, by 

using optical lithography, the pattern of Ti/Au electrodes and bonding pads are transformed onto 

the substrate. Right on top of the pattern, a layer of Ti with 5 nm thickness is deposited, followed 

by the deposition of 95nm thick Au layer using e-beam evaporator. Then the patterned 

photoresist is removed by warm acetone and the Ti/Au electrodes and bonding pads are formed. 

In the next step, a layer of 100nm to 150nm PMMA is spun on top of the substrate. By using e-

beam lithography, arrays of 100nm wide, 15um long nanochannels are patterned across the gap 

between the pair of Ti/Au electrodes. Nanochannels are formed after the development of 

photoresist. Once the fabrication process of the substrate is finished, the wafer is cut into small 

chips with 16 pairs of Ti/Au electrodes and bonding pads on each slice.   

 Before the electrochemical deposition process, the electrolyte solution for nanowire 

deposition is prepared. The composition of the electrolyte solution for Pd, PPy, ZnO nanowire 

deposition is shown in Table.2 [38].  

 



 17 

Table 2. Electrolyte solution for electrochemical deposition of Pd, PPy, ZnO nanowire  

Nanowire Composition Concentration 

Pd Pd(NH2)2(NO2)2 , NH4SO3NH2  10 g/L, 100 g/L 

PPy NaCl , pyrrole monomer 0.1mol/L, 98% 

ZnO ZnCl2, NaCl,,  

Zn(OH)2∙6H2O, C6H12N4  

5 mmol/L, 15 mmol/L,  

50 mmol/L, 50 mmol/L 

 

All the chemicals mentioned above were purchased from Sigma Aldrich. 

 The electrochemical deposition process of the nanowire within the nanochannel is 

completed using probe station. The probes are connected via coaxial cables to a semiconductor 

analyzer (Agilent B1500A) which is able to supple and collect electrical signals for the 

electrochemical deposition process. Two probes are placed on top of the bonding pads which are 

fabricated to be connected with the pair of Ti/Au electrodes. A drop of electrolyte solution is 

placed on top of the nanochannel. Then, a constant current is applied to the two electrodes and 

the voltage across the nanowire is monitored through the probes. The applied currents for Pd, 

PPy and ZnO nanowire deposition are 400nA, 700nA and 700nA, respectively. Once there is an 

obvious large drop of the monitored voltage signal, the nanowire is formed successfully. The 

applied current is stopped just in a few seconds in order to stabilize the conductance of the 

nanowire and prevent extra growth. Since this electrochemical deposition method is applied to 

one nanochannel at one time and all the deposition process is localized and independent, Pd, PPy 

and ZnO nanowire array can be fabricated on the same chip following the same procedure while 

no interference is involved.  
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3.2 VOLATILE ORGANIC COMPONENT SENSING SYSTEM SET-UP 

3.2.1 Single nanowire sensing system 

The single nanowire sensing system controlled by Labview is shown in Fig.3.2.1. 

 

Fig.3.2.1   Flow of Single nanowire sensor sensing system 

 

The composition of the single nanowire sensing system includes two gas lines with gas valve 

controlled by a MKS flow control system (MKS Multi Gas Controller 647C, MKS Instruments 

Inc., USA), one plastic gas chamber with inner size of 29.4 mL, current amplification instrument 

(Keithley 428 Current Amplifier) and the data acquisition system. One gas line is directly 

plugged into the gas chamber with pure N2 as dilution gas. The other gas line with N2 as carrier 

gas goes through the VOC biomarker chemical solution first and then plugs into the gas 

chamber. The VOC biomarker gas is mixed with dilution N2 in the gas chamber at room 

temperature. The actual mixed concentration of VOC biomarker can be calculated using the 

following equation: 
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Here, C, CVOC and CN2 represent the target VOC biomarker concentration among the mixed gas, 

original VOC biomarker concentration and original concentration of pure N2, respectively. F1 

and F2 represent the flow rate of carrier N2 and dilution N2. By controlling the flow rate ratio 

between two gas lines, the concentration limit for VOC biomarker gas is able to reach 500 ppb 

which is in the same concentration level of VOC biomarker in human breath.   

In order to enable the connection between the nanowire chip and the external circuit, the 

chip is attached to a 44-pin chip carrier and wirebonding process is applied to connect the Ti/Au 

bonding pads with the pins on the chip carrier. Then the chip carrier is plugged into a PLACC 44 

socket which has independent wire for each pin used for the connection with external current 

amplification instrument [26]. The socket is finally placed inside the gas chamber and the gas 

atmosphere around the nanowires is isolated.  

During the sensing test, by using the current amplification instrument, a constant DC 

voltage (13.6 mV) is applied to the two connection wires of the individual nanowire, and the 

current signal through the nanowire is monitored and amplified which is finally collected by the 

data acquisition system.  

3.2.2 Multi-channel simultaneous sensing system for single nanowire array sensor 

Multi-channel simultaneous sensing system is developed in order to provide the exact same 

sensing condition for Pd, PPy and ZnO nanowires. For one VOC biomarker sensing test, three 

kinds of nanowires need to share the same atmosphere and voltage bias signal. At the same time, 

the current through each nanowire needs to be collected simultaneously and separately. Single 

nanowire array fabricated in electrochemical method provides the capability of sharing the gas 
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atmosphere and an additional control circuit is applied to complete the biasing and signal 

collection process. The complete multi-channel simultaneous sensing system is shown in 

Fig.3.2.2 and the schematic of the control circuit is shown in Fig.3.2.3. 

 

 

Fig.3.2.2  Multi-channel sensing system 

 

 

Fig.3.2.3  Schematic of the Control Circuit in multi-channel sensing system 

 

Here, chip 74193 is applied as a counter in which two-bit output is utilized, and the clock 

signal is activated by a square wave which enables the counter to be cycling. With the 

combination of inverters and AND gates, only one output line of 1E-4E is enabled to be high and 
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the other three lines are kept low. The output line with high voltage enables the corresponding 

switch to be closed. Therefore, the bias voltage signal is applied to the nanowire with closed 

switch and the current through the nanowire is collected. Following the counting output, the 

nanowires are cycling for the voltage bias and current collection. With high counting frequency, 

the nanowires can be taken as connected all the time and the current is collected only when the 

connecting switch is closed. In order to match the data acquisition system, the counting 

frequency is set to be 1 Hz. Here, one resistor is placed as the fourth nanowire to provide a 

reference value for the sensing test.  

 

3.2.3 Signal collection and processing 

For both the single nanowire and multi-channel sensing system, a constant DC voltage of 13.6 

mV is applied to each individual nanowire, and the conducting current is amplified by the current 

amplifier. The amplification ranges from 103 to 1010 V/A. The output voltage signal is collected 

by data acquisition system (Keithley 2701) and a Labview program records the collected data.  

For the data analysis, the collected data is divided by the amplification number which 

gives the exact value of the current. Then, by applying Ohms Law, the resistance of the nanowire 

is calculated. To achieve the sensitivity of the nanowire, the resistance value is converted into the 

resistance change ratio of (R-R0)/R0. Here, R represents the resistance of individual nanowire 

during detection and R0 represents the initial resistance as reference value. 

For the multi-channel sensing test, the sensitivity curve is approached in the same method 

mentioned above. Besides, the slope of the resistance change ratio during each detection period 

is also calculated for principle component analysis (PCA) since it contains both the information 
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of sensitivity and sensing speed. The PCA will provide the 2-D and 3-D plots which show the 

smell prints of the four VOC biomarkers versus Pd, PPy and ZnO nanowires. The plot will be 

analyzed for the characterization of the sensing capability of the single nanowire array sensor.  
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4.0  RESULTS AND DISCUSSION 

4.1 SINGLE NANOWIRE SENSING RESULTS AND DISCUSSION 

By using the single nanowire sensing system, the VOC biomarker sensing test is completed 

using Pd, PPy and ZnO nanowire separately. The sensing performance and characterization for 

each kind of nanowire are analyzed, and the results and discussions are shown in the following 

sections.  

4.1.1 Palladium nanowire sensing signal 

Palladium nanowire is fabricated using electrochemical method as mentioned in previous 

section. After implemented into the single nanowire sensing system, the sensing test for Pd 

nanowire versus four VOC biomarkers of Breast Cancer is completed. The performance of Pd 

nanowire is characterized by the following factors: sensing limit, sensitivity, repeatability and 

response time.  

 Limited by the controllability of the flow rate controller, the largest flow rate ratio 

between dilution N2 and carrier N2 that can be achieved for the sensing test is 500 : 1. Based on 

the vapor pressure of the VOC biomarkers, the lowest concentrations that are used for the 

sensing test are 8.982ppm, 798ppb, 134ppm, 129.5ppm for Hep, Ace, IM and 2-Propanol, 
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respectively. The sensing test with flow rate ratios of 500:10, 500:8, 500:6, 500:4, 500:2, 500:1 

and 500:5 is preceded and the sensing results are shown in Fig.4.1.1.  

 

Fig.4.1.1  The single nanowire sensing test for Pd nanowire versus four VOC biomarkers of Breast Cancer 

with seven detection periods of 200 seconds. The flow rate ratios between the carrier N2 and dilution N2 for each 

detection period were 10-500, 8-500, 6-500, 4-500, 2-500, 1-500 and 5-500. 

 

Seeing from the sensing figure, the sensing test for the four VOC biomarkers of Breast 

Cancer is successful. As proposed in the sensing mechanism section, as the VOC biomarker gas 

is inserted into the gas chamber during the detection period, the resistance of the Pd nanowire 

increases rapidly. Only 2-Propanol shows different sensing feature from the other VOC 
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biomarkers. The suspected mechanism for this sensing feature is the trade-off between the phase 

change and volume expansion. As similar to the other three VOC biomarkers, the resistance is 

supposed to increase due to the phase change. However, because of the structure, the ratio of 

volume expansion is taken as the major factor for the high concentration sensing test and the 

resistance leads to decrease because of the volume change. Therefore, the sensing feature of 2-

propanol is specific and different from the other VOC biomarkers.  

The sensitivity for the lowest approachable concentration is around 0.5%, which indicates 

high sensitivity of the Pd nanowire. With the improvement of the flow rate control system, the 

detection limit for Pd nanowire can be lower if the limit for the sensitivity is set to be 0.1%.  

With the same flow rate ratio of 500:10, the concentrations of Hep, Ace, IM and 2-

Propanol are 88.24ppm, 7.84ppm, 1315.69ppm, 1272.55ppm, respectively, and the related 

sensitivities are 2.99635%, 2.75288%, 2.6648% and 0.98435%. Although, Pd nanowire shows 

high sensitivity for all four VOC biomarkers, Pd nanowire performs the highest sensitivity with 

Ace and the lowest sensitivity with 2-Propanol. This indicates that Pd nanowire is preferable for 

the specific sensing test of Ace, and it is easy to detect the Ace in breath analysis using the Pd 

nanowire. Besides, seeing from the trend of the sensing curve, the sensitivity seems to be linearly 

decreased as the concentration reduces, which illustrates the linear performance of the Pd 

nanowire. 

For the repeatability sensing test, after the detection period of 200 seconds, the VOC 

biomarker gas is cleared out of the gas chamber by pure dilution N2. Within 200 seconds, the 

resistance of the Pd nanowire is able to recover to the original value before the detection period, 

and the next detection period can be started without any affection. This is best illustrated by the 

last sensing test with flow rate ratio of 500:5. After several detection periods, the sensitivity for 
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the last detection period performs the expected value without any degradation. Besides, since the 

maximum conductance change is achieved during the detection period of 200 seconds even for 

the sensing limit, the response time for Pd nanowire is short. Both sensing features prove the 

excellent repeatability of the Pd nanowire and the promising capability for the real-time sensing 

test for industry application.  

4.1.2 Polypyrrol nanowire sensing signal 

With the same fixed flow rate ratios, the sensing capability of PPy nanowire is tested and the 

results are shown in Fig. 4.1.2.  

      

Fig. 4.1.2  The single nanowire sensing test for PPy nanowire versus four VOC biomarkers of Breast 

Cancer with seven detection periods of 200 seconds. The flow rate ratios between the carrier N2 and dilution N2 for 

each detection period were 10-500, 8-500, 6-500, 4-500, 2-500, 1-500 and 5-500. 
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As explained in sensing mechanism section, the resistance of the PPy nanowire is 

increased after the absorption of VOC biomarkers of Breast Cancer. The sensing feature for 2-

Propanol still shows different from the other three VOC biomarkers, and the suspected reason for 

this is the swelling effect [39]. The swelling effect could break the grain boundary and involve 

obvious change of the chain structure of the nanowire. Since the 2-Propanol molecule could 

permanently stay inside the chain after the swelling effect, the resistance of the nanowire will not 

be able to be recovered back to original value.  

The sensitivities for the sensing limit of Hep, Ace, IM and 2-Propanol for PPy nanowire 

are 1.128%, 0.236%, 0.663% and 0.5612%, respectively. As the same as Pd nanowire, the 

sensitivity is excellent for the sensing limit and the detection limit is expected to be lower if the 

limit for sensitivity is set as 0.1%. For the flow rate ratio of 500:10, the sensitivities of Pd 

nanowire versus Hep, Ace, IM and 2-Propanol are 3.693%, 4.053%, 4.047% and 2.008%, 

respectively. Compared with Pd nanowire, the sensitivities of PPy nanowire are almost 30% 

higher, and sensitivity for Hep seems to be lower than for IM at this fixed flow rate ratio which is 

opposite of Pd nanowire. Therefore, the sensing feature of PPy nanowire is different from the 

one of Pd nanowire both for sensitivity and specificity.  

The repeatability and response time of the PPy nanowire are similar as Pd nanowire. 

With the last detection test with flow rate ratio of 500:5, no degradation is found for PPy 

nanowire. Therefore, the repeatability of PPy nanowire seems excellent since no permanent 

change is detected except for 2-Propanol sensing test. Besides, with the detection period of 200 

seconds, the maximum resistance change is achieved within each detection cycle which also 

indicates the quick response of PPy nanowire versus VOC biomarkers.  
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4.1.3 Zinc Oxide nanowire sensing signal 

The same sensing test is processed for ZnO nanowire and results are illustrated in Fig. 4.1.3. 

 

Fig.4.1.3  The single nanowire sensing test for ZnO nanowire versus four VOC biomarkers of Breast 

Cancer with seven detection periods of 200 seconds. The flow rate ratios between the carrier N2 and dilution N2 for 

each detection period were 10-500, 8-500, 6-500, 4-500, 2-500, 1-500 and 5-500. 

 

After the VOC biomarker gas is inserted into the gas chamber, the resistance of ZnO 

nanowire increases due to the extraction of electron as mentioned above. The specific sensing 

feature for the first sensing test of 2-Propanol is suspected with specific volume change factor 

which is similar to the Pd nanowire and PPy nanowire. As the 2-Propanol molecule is absorbed 

on ZnO nanowire, some permanent structure change is completed and finally leads to the 
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unrecoverable change of the conductance. But the detail of the specific volume change factor has 

not been discovered.  

The sensitivities for the sensing limits of Hep, Ace, IM and 2-Propanol are 4.59417%, 

3.11027%, 5.46062% and 2.67274%, respectively. ZnO nanowire shows the highest sensitivity 

of IM at this fixed flow rate ratio which is different from Pd nanowire and PPy nanowire. And 

the difference between the sensitivity of Hep, Ace and IM seems to increase. This implies the 

better specificity of ZnO nanowire versus four VOC biomarkers.  

Besides, the repeatability of ZnO nanowire also seems better than Pd and PPy nanowire, 

since the baseline of the reference resistance is flat and the difference after the recovering period 

seems less. This indicates the good physical absorption between VOC biomarkers and ZnO 

nanowire, and the excellent repeatability of ZnO nanowire.  

4.1.4 Specificity sensing test of Pd, PPy and ZnO nanowires 

Another sensing test is completed for the specificity test, and the results of two groups of 

sensing test of IM versus three kinds of nanowires are shown in Table 2. The flow rate ratio 

between carrier N2 and dilution N2 is fixed as 1-500 and the concentration is 134ppm, and the 

nanowires with resistance around 1 kΩ - 2 kΩ are chosen for the test. As described in [20], the 

nanowire performs higher sensitivity when the resistance of the nanowire is among the 

significant effective range. As illustrated in Table 3, the Pd nanowire with resistance of 1,055 Ω 

shows sensitivity of 0.50% which is 50 times of the sensitivity of the Pd nanowire with the 

resistance of 184 Ω. The PPy nanowire with the resistance of 1,300 Ω also shows much higher 

sensitivity compared with the one with resistance of 7,824 Ω. The sensitivities for the two ZnO 

nanowires are close since the resistance values are in the same range. These results indicate the 
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importance of the deposition process of the nanowire. To achieve better sensitivity, the 

deposition process requires to be consistent and resistance of the nanowire should be limited 

within the effective range around 1 kΩ - 2 kΩ. By comparing the best sensitivities for each kind 

of nanowire, the Pd nanowire shows the highest value of 0.50%, and PPy and ZnO show 

sensitivity of 0.29% and 0.26% respectively. This indicates that Pd nanowire shows best sensing 

performance corresponding to IM sensing test. It also identifies the great specificity of these 

three kinds of nanowires for the sensing test of VOC biomarkers.  

Table 3.  Specificity sensing test for isopropyl myristate (IM)         

  

4.2 NANOWIRE ARRAY SENSING RESULTS AND DISCUSSION 

Fabricated using electrochemical method, Pd, PPy and ZnO nanowires are deposited in parallel 

on single chip as a nanowire array sensor. By using the multi-channel sensing system, the 

simultaneous sensing test is processed for the nanowire array sensor, and the results and 

discussion are shown in the following sections.  
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4.2.1 Sensing results and discussion for four VOC biomarkers of Breast Cancer 

With the control circuit of the multi-channel simultaneous sensing system, as the VOC 

biomarker is filled into the gas chamber during the detection period, the sensing signals for Pd, 

PPy and ZnO nanowires can be collected simultaneously, and the sensing features with the 

exactly same sensing condition are analyzed. The sensing results with flow rate ratio between 

dilution N2 and carrier N2 ranging from 500:10 to 500:1 are shown in the Figure 4.2.1.  

 As the counter alters the two-bit output signals, the switch is switching between open and 

close. Therefore, the resistance of the nanowire is not as stable as the single nanowire sensing 

test, and the vibration can be observed from the sensing signals. Fortunately, the major sensing 

feature is still the same as the single nanowire sensing test, and it is easy to be extracted from the 

sensing results.  

As shown in the sensing figure, the sensitivity value is different from the single nanowire. 

This is due to the specific structure and deposition result, since the deposition process and the 

nanochannel condition can not be exactly the same for each nanowire.  Therefore, the sensitivity 

and specificity for each nanowire will be slightly different, but the major preference will be the 

same. 
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Figure. 4.2.1  Simultaneous sensing signals of nanowire array sensor versus four VOC biomarkers of 

Breast Cancer at fixed flow rate ratio ranging from 500:10 to 500:1 between dilution N2 and carrier N2. 
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4.2.2 PCA analysis results and discussion 

With the sensing signals from the multi-channel sensing system, the maximum of the 

conductance change during each detection period is extracted and the slope of the maximum 

change versus time is calculated as the reference signal (RS) used for PCA analysis. The 3-D 

PCA plots for the simultaneous sensing test with flow rate ratio ranging from 500:10 to 500:1 are 

shown in Fig. 4.2.2. Here the points with distinct colors represent four VOC biomarkers of 

Breast Cancer. The points with larger size correspond to the sensing signals with lower 

concentration. The variances possessed by the principal components are 73.25% (PC1), 22.00% 

(PC2), 4.75% (PC3), and all the sensing information from the nanowire array sensor is applied 

for the 3-D PCA plots.  

 Seeing from the figure, the four groups of points with different colors are completely 

separated into different directions, and the points in the same color seem to locate as a straight 

line since the nanowire performs linear sensing characteristics. By altering the angle of view, it is 

clear that, the sensing signals can be discriminated clearly as the smell prints for each kind of 

VOC biomarker of Breast Cancer. The smell print is the specific area for one group of data 

points, and it is used to identify individual target in PCA analysis result just like the 

“fingerprints” for each individual. 

Another simultaneous sensing test is completed with fixed concentration for four VOC 

biomarkers. By applying different flow rate ratios, same concentration of four VOC biomarkers 

in the range of 107.19ppm – 267ppm is achieved. The applied detection period is kept as 200 

seconds and the calculated slope of resistance change is applied for the PCA. The PCA results 

are shown in Fig.4.2.3 and colors for four VOC biomarkers were the same as Fig.4.2.2.  
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Fig. 4.2.2.  3-D PCA plot for Pd, PPy and ZnO nanowires versus four VOC biomarkers of Breast Cancer. 

The flow rate ratio varies from 10-500 to 1-500. 
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As expected, the smell prints keep the same as previous simultaneous test. All four VOC 

biomarker smell prints are distinguishable in the same low concentrations.  
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Fig.4.2.3  3-D PCA plot for Pd, PPy and ZnO nanowires versus four VOC biomarkers of  

Breast Cancer. The concentration varies from 1107.19ppm to 267ppm. 
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Both simultaneous sensing tests indicate that it is successful to specify the individual 

smell prints for four VOC biomarkers of Breast Cancer down to a ppb concentration level based 

on the nanowire array sensor consisting of Pd, PPy and ZnO nanowires, and this nanowire array 

is promising for the application of real time diagnostic sensing test for VOC biomarkers in 

human breath. 
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5.0  SUMMARY AND ACHIEVEMENTS 

5.1 ACHIEVEMENTS 

Nanowire array sensor with Pd, PPy and ZnO nanowires fabricated in parallel is 

successfully deposited using electrochemical deposition method. It shows rapid response during 

the detection period of four kinds of VOC biomarkers of Breast Cancer in low concentration, and 

no pre-concentration procedure is required. The sensing limits for the nanowire array sensor are 

around 1ppm -100 ppm, which are close to the normal concentration level of VOC biomarkers in 

human breath, and the sensitivities for the sensing limits are around 0.1%-1.0%. The smell prints 

for four VOC biomarkers of Breast Cancer are completely separated after PCA of the 

simultaneous sensing data, which indicates great specificity of this nanowire array sensor. The 

sensing results of this nanowire array sensor show great sensitivity, reproducibility, specificity 

and high accuracy. Besides, the electrochemical deposition procedure is simple and consistent, 

and the sensing test is able to be completed within 5 min in real time sensing process. All these 

features of this nanowire array sensor indicate the great capability of this nanowire array sensor 

to be a promising replacement for the diagnosis of Breast Cancer and bright economic future for 

real industry application. 
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