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Kelvin probe force microscope (KPFM) has evolved into an effective tool to characterize 

electronic properties of materials and devices. However, there is lack of systematic analysis of its 

practical aspects such as resolution and sensitivity.  

By analyzing the electrostatic model of the tip and sample, we can show that KPFM 

images are two-dimensional convolution of the actual surface potential distribution with a point 

spread function (PSF) derived from the tip geometry. Point spread function is a powerful tool, 

which can help us analyze the resolution. This thesis presents an analytical approach to find PSFs 

for probes with different geometric shapes in both amplitude-modulation and frequency-

modulation KPFM. 

Based on PSF, we can define the resolution of KPFM according to Raleigh criteria. With 

this definition, we analyze the resolution of KPFM image corresponding to different shapes and 

positions of tips. This method leads us to find an optimal shape of tip to obtain good resolution in 

KPFM. Also, the resolution of single-pass scan KPFM and dual-pass lift-up scan KPFM is 

compared. In addition, we investigate the sensitivity of KPFM under different operation modes 

with various scanning parameters. The findings in this research provide practical guidance for 

setting proper parameters in KPFM. 
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1.0  INTRODUCTION 

The atomic force microscopy (AFM) based Kelvin probe force microscopy has evolved into an 

effective tool to measure local surface potential distribution of metal/semiconductor surfaces and 

semiconductor devices. For example, KPFM has been used to investigate electrical properties of 

semiconductors [1-6] organic materials [7-9] and biomolecules [10-12] as well as devices such 

as photovoltaic cells [13-16] field effect transistors [17], and etc.  

KPFM is an advanced mode of AFM. In KPFM measurements, both topographical image 

and contact surface potential image are obtained. The AFM tapping mode is usually utilized to 

obtain the topography of the sample. Tapping mode is an intermittent contact mode of AFM in 

which the cantilever is driven at, or close to its resonant frequency. As the tip-sample distance 

changes, the oscillation amplitude is also change from the reference amplitude. These changes 

are used as feedback signals to measure the topography of the sample surface. The details of the 

contact surface potential measurements will be explained in next section.  

1.1 FUNDAMENTALS OF KPFM 

A conductive AFM tip (coated with Pt/Ir or others) is usually used in KPFM measurements. We 

apply an AC voltage ( acV ) with angular frequency ( eω ) superimposed on a DC voltage ( dcV ) on 
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the tip, such that V= Vdc + Vacsin(ωet). When this tip is brought close to the sample surface, 

electrostatic force is generated, which can be represented by the following equation: [12] 

( ) ( ) )2cos(
4
1)sin(

2
1

2
1 222 tV

d
CtVVV

d
CVVV

d
CF eaceacglobaldcacglobaldcel ωω ×

∂
∂

−−
∂
∂

+



 +−

∂
∂

=     (1.1) 

where, C is the capacitance between tip and sample surface, globalV  is the surface potential 

distribution two-dimensional convoluted with a point spread function, d is tip-sample distance.  

This electrostatic force consists of a static part and two contributions at eω  and eω2 . The 

electrostatic force at the electrical driving frequency ( eω ) is: 

( ) )sin()( tVVV
d
CF eacglobaldceel ωω −
∂
∂

=     (1.2) 

The oscillation at the electrical driving frequency is majorly caused by the electrostatic force 

)( eelF ω . The amplitude of the cantilever oscillation at the frequency ( eω ) can be detected and 

used as a feedback signal to nullify the electrostatic force )( eelF ω  by adjusting the DC bias on 

the tip such that globaldc VV = . The surface potential distribution can then be acquired from the DC 

bias  dcglobal VV = . 

1.1.1 Single-pass scan mode vs. dual-pass lift-up scan mode 

Now, KPFM has been implemented into two basic scanning modes, single-pass scan mode and 

dual-pass lift-up scan mode. Dual-pass lift-up scan mode acquires the topography using AFM’s 

tapping mode in the first pass. And then the conductive tip is lifted up by a small distance 

(10~20nm) above the sample surface and applied an AC voltage with the same frequency as the 

tip’s resonant frequency, superimposed on a DC voltage. By following the exact surface 



 3 

topography acquired in the first pass, the surface potential information can be obtained in the 

second pass. The advantage of this mode is that coupling of topography and surface potential can 

be minimized since these two measurements are preformed separately. Furthermore, the 

electrical drive frequency of dual-pass lift-up scan is set at the cantilever’s mechanical resonant 

frequency, which will lead to higher sensitivity. Because the resolution of KPFM highly depends 

on the tip-sample distance, the dual-pass lift-up scan mode, which lifts the tip up and increases 

the tip-sample distance, leads to low spatial resolution. 

Single-pass scan mode uses one feedback loop to nullify the electrostatic force )( eelF ω  

induced oscillation amplitude to acquire the measured surface potential and uses another 

feedback loop to lock in the mechanical drive frequency ( mω ) to acquire topographical 

information. Both topography and surface potential image can be obtained at the same time in 

single-pass scan KPFM. Single-pass scan mode performs much better than dual-pass lift-up scan 

mode in terms of resolution and accuracy. However, this mode requires different electrical drive 

frequency from the resonant frequency of the tip, which will affect the sensitivity of KPFM 

measurement, and may cause crosstalk. 

1.1.2 Amplitude modulation KPFM vs. frequency modulation KPFM 

Amplitude modulation KPFM acquires surface potential distribution images by nullifying the 

oscillation amplitude at eω , while frequency modulation KPFM minimizes the oscillation 

amplitude at eωω +0  where 0ω  is the resonant frequency of the cantilever and tip system.  

The oscillation pattern at these two lock-in frequencies is one of the major difference 

between these two modes, and of great importance for studying the sensitivity.  
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For a cantilever with resonant frequency 0ω  and quality factor Q, the oscillation 

amplitude eA  at electrical drive frequency eω  in AM-KPFM measurement, under a driving force, 

)( eelF ω , can be calculated from the following equation: 

2
0

2

2
2

2
0

2 1)1(

1)(

ω
ω

ω
ω

ω

ee

ed
e

Q
k

FA
+−

=     (1.3) 

where k is the spring constant of the cantilever and Fd is the force amplitude at eω . If we plug 

Equation (1.2) into Equation (1.3), we can get 
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2
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2 1)1(
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ω

ω
ω ee

acglobaldc
e

Q
k

VVVdC
A

+−

−∂∂
=     (1.4) 

In AM-KPFM, a lock-in amplifier locks in the electrical drive frequency to detect eA . eA  

is then nullified by adjusting the DC voltage such that globaldc VV = . This is equivalent to nullify 

electrostatic force at the electrical drive frequency, eω . In single-pass scan AM-KPFM, the 

mechanical drive is set at, or close to, the resonant frequency of the cantilever while the electrical 

drive is set at a lower frequency than the resonant frequency. In dual-pass lift-up scan AM-

KPFM, the electrical drive and the mechanical drive can be both set at the resonant frequency of 

the cantilever. 

AM-KPFM minimizes the electrostatic force. On the contrary, FM-KPFM detects the 

force gradient, which has already been proved that its effect is much more confined to the tip 

apex than the force [18]. In FM-KPFM measurements, with the presence of small force 

gradient dF ∂∂ , the phase of the oscillation at the drive frequency 0ω  shifts 
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( ) kdFQ /∂∂−=∆ϕ . Noting Equation (1.1), the oscillation of cantilever at resonant frequency 

becomes 
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















−−+






 +−

∂
∂

−= )2cos(
2
1)cos(2

2
1

2
sin)( 222

2

2

0 tVtVVVVVV
d
C

k
QtAtA eaceacglobaldcacglobaldcm ωωω

    (1.5) 

When the phase shift is small, Equation (1.5) can be written as the following form 

( ) ( ) ( ) ( ) ( )φωωφωωφω −+−+−= ±± ttAttAtAtA meemmeemm cos2cos2cossin2sin)( 20     (1.6) 
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This emA ±  represents the oscillation amplitude at the sidebands em ωω ± . In FM-KPFM, 

the oscillation amplitude at the sidebands em ωω ±  is detected through a lock-in amplifier. The 

control loop nullifies the amplitude at the sidebands em ωω ±  by adjusting the DC voltage such 

that globaldc VV = . In ambient FM-KPFM, the mechanical drive is often set at the resonant 

frequency of the cantilever while the electrical drive is set at a lower frequency than the resonant 

frequency.  
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1.2 POINT SPREAD FUNCTION AND ELECTROSTATIC FORCE MODELS 

Because Columbic interaction (the electrostatic force) is a long-range force, the surfaces 

on tip apex, the tip cone, and the cantilever all have interaction with the sample surface. When 

the surface potential is not constant, the KPFM-measured potential is a weighted result from a 

much larger effective area than the tip apex. The surface contact potential difference, globalV , in 

Equation (1.1) becomes a 2D convolution of a point spread function (PSF) and surface 

potentials over a large effective area such that 

),(),( yxyyxxhV S
ttglobal Φ∗−−=       (1.6)  

where ( tx , ty ) represents the tip location, ),( tt yyxxh −−  is a PSF, ),( yxSΦ  is the surface 

potential difference at (x,y). Basically there are two different models presented and analyzed by 

several authors to derive the PSFs.  

Jacob et al. derived the PSF based on a capacitance model that formulates a set of ideal 

conductors with mutual capacitances between a semiconductor specimen and the tip. [19]. But 

this method suffers from a few drawbacks. In this model, we can calculate the capacitances 

either by finding the ratio of the charge on the tip and the potential difference, or by using the tip 

geometry. For the first approach, the charge on tip is difficult to find. For the latter one, the 

whole idea is based on the assumption that the electric field has same magnitude along the field 

lines. In Figure 1, those arrows denote the direction and the magnitude of the electric field lines. 

From Figure 1, we can see that the magnitude along the field lines varies a lot. Following this 

model will give us inaccurate electrostatic force and point spread function. 
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Figure 1. Electrical field distribution of a tip consisted of a hemispherical and a conical part. 

Strassburg et al. introduced another model to evaluate the electrostatic force between 

conductive tip and semiconductor specimen by using the boundary element method [20]. Using 

this method, the electrostatic force is determined only by the charge density on the tip surface. So 

that we can calculate electric field near the tip surface and acquire more accurate results. Since 

the charge density is only an intermediate variable that we can cancel later on, there is no need to 

find the exact value of the charge density. So this method overcomes the problems in the ideal 

capacitance model. 
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2.0  ELECTROSTATIC MODEL 

A conductive tip with a length l, half aperture angle θ , spherical apex radius R and a surface tS , 

is located at a height d above the sample with planar surface placed on a grounded plane at the z 

= 0 plane (Figure 2). We use a notation r to represent the vector point to the tip surface tS  in the 

(x, y, z) space.  

In AM-KPFM measurements, the tip potential dcV  is applied to minimize z-direction force. 

Hudlet et al. prove that minimizing z-direction force is equivalent to nullify the modulated force 

at the electrical drive frequency [20]. In FM-KPFM measurements, the force gradient was used 

as interaction signal. Minimizing z-direction force gradient is also equivalent to nullify the 

modulated force at the electrical drive frequency. We will have a detailed discussion about that 

in Section 2.4 and 2.5. 

The surface potential is modeled by a dipole layer located on the top of a grounded plane 

at z = 0. The potential of any point in the upper half-space is consisted of the potential generated 

by the charge dwelling on the tip surface (r)Φ t  and the potential generated by the dipole layer 

(r)Φd . (r)Φ t  and (r)Φd  will be determined separately. 

Charge density is used as an intermediate variable. By imposing boundary condition along 

with either minimum force or minimum force gradient condition, we can cancel the intermediate 

variable and find the relation between surface potential y)(x,ΦS  and the measured dcV . 
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Figure 2. Schematics of the tip-sample system used for electrostatic force modeling. 
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2.1 THE POTENTIAL GENERATED BY THE TIP CHARGES 

In this section, the potential generated by the tip charges (r)Φ t  was determined by using the 

method of images. Based on the tip geometry, we can find the relation between tip charge 

density and (r)Φ t . 

2.1.1 Determine the potential by using space charge density in free space 

Based on Coulomb’s law, the electric field at position r due to a system of point charges iq , 

located at ir , i=1, 2, …, n, can be represented by the following equation: 

( ) ∑
−

−
=

=

n

i
i

i
i

rr
rrqrE

1
3

04
1
πε

    (2.1) 

The sum can be replaced by an integral 

( ) '
'
)'(

4
1'

'
')'(

4
1

0
3

0

dr
rr

rdr
rr
rrrrE VV ∫

−
∇−=∫

−

−
=

ρ
πε

ρ
πε

    (2.2) 

where )'(rρ  is the space charge density at r’. Based on the well known equation Φ−∇=E , 

where Φ  is the potential, we have 

'
'
)'(

4
1)(

0

dr
rr

rr V∫ −
=Φ

ρ
πε

    (2.3) 

where )(rΦ  is the potential generated by the charges resided in space V. 
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2.1.2 Determine the potential by using area charge density over a grounded plane 

The charge of the conductive tip dwell on its surface, so the potential caused by the charges in 

free space can be expressed as: 

ds
rr

rr tS∫ −
=Φ

'
)'(

4
1)(

0

σ
πε

      (2.4) 

where )σ(r'  is the area charge density at r’. 

Because we place the sample on a grounded plane, the image method should be utilized 

here by placing the negative charge tip on the other side of the sample to make the potential on 

the plane equal 0. Thus we have the potential caused by the tip charges, 

ds'
'r'r
)'σ(r'

πε4
1ds'

r'r
)σ(r'

πε4
1(r)Φ tt S

0
S

0

t
∫∫

−
−

−
=

      (2.5) 

where )z',y',(x''r' −=  is the image point of )z',y',(x'r'= . 

2.2 THE POTENTIAL CAUSED BY THE SAMPLE MODELED AS A DIPOLE 

LAYER 

In this section, we want to find the relation between the potential caused by the dipole layer 

(r)Φd  and the actual sample surface potential y)(x,ΦS .  
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2.2.1 One dipole layer in free space 

We model the sample surface as a dipole layer placed on a grounded plane. To find the potential 

generated by a dipole layer, we should first consider a single dipole and then superpose a surface 

density of them [21]. 

With n̂ , the unit normal to the sample surface S, the potential due to the two close 

surfaces of a dipole is 

'ds
dn̂r'r

)(r'σ
4π

1ds'
r'r
)(r'σ

4π
1Φ(r) S

dipole

S

0
S

S

0
∫∫

+−
−

−
=

εε
    (2.6) 

where dipoled  is the small distance between the two surface of a dipole, r’ is a point on the small 

surface s’. 

Since d is very small, we can expand 
dipoledn̂r'r

1
+−

with a Taylor series expansion in 

three dimensions: 

ds'
r'r
)(r'σ'dn̂

4π
1ds'

r'r
)(r'σ

4π
1ds'

dn̂r'r
)(r'σ

4π
1

S

S

dipole
0

S

S

0
S

dipole

S

0
∫

−
∇⋅⋅−∫

−
=∫

+− εεε
    (2.7) 

Plug Equation (2.7) into Equation (2.6), we have 

ds'
0'z'

r'r
1

d)(r'σ
4π

1ds'
r'r
)(r'σ'dn̂

4π
1Φ(r) S dipole

S

0
S

S

dipole
0

∫ =∂
−

∂
⋅⋅=∫

−
∇⋅⋅=

zεε
    (2.8) 

According to Gauss’ Law, we have (r)Φ
ε
dσ

dn̂E S

0

dipole
dipole =

⋅
=⋅⋅ , where SΦ  represents 

the surface potential, we can find the relation between the potential generated by one dipole layer 

and the surface potential of the dipole layer by plugging this equation into Equation (2.8), 
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)ds'(s'Φ
0'z'

r'r
1

4π
1Φ(r) S

S∫ =∂
−

∂
=

z
    (2.9) 

2.2.2 One dipole layer located over a grounded plane 

Because dipoled  is very small, when we use image method by placing another dipole layer on the 

other side of the grounded plane to make the potential on the plane equal 0, we can neglect this 

small distance dipoled . The potential caused by these two dipole layers is given by 

)ds'(s'Φ
0'z'

r'r
1

2π
1Φ(r)2(r)Φ S

S
d ∫ =∂

−
∂

==
z

      (2.10) 

2.3 THE BOUNDARY CONDTION 

In this section, we will connect the measured potential V(r) with the actual surface potential by 

imposing the boundary condition. You will see that the measured potential V(r) is also a function 

of charge density, but this charge density will be canceled later on.  

The total potential at any point in the upper half-space, z>0, is given by the superposition 

(r)Φ(r)ΦΦ(r) dt +=       (2.11) 

where (r)Φ t  is the potential produced by the charges residing on the tip, and (r)Φd  is the 

potential generated by the dipole layer. 
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Since the tip surface is conductive, we assume that the tip surface is equipotential. So we 

can impose the boundary condition V(r)
Sr

Φ(r) t =∈
 where tSr

Φ(r)
∈

 is the potential on the tip 

surface and V(r) is the measure potential when r=(x, y, z). 

Employing Equation (2.11), we obtain an integral equation for the tip surface charge 

density 

tS
SS

0
S

0

Sr ,)ds'(s'Φ
0'z'

r'r
1

2π
1ds'

'r'r
)'σ(r'

πε4
1ds'

r'r
)σ(r'

πε4
1)( tt ∈∫ =∂

−
∂

+∫
−

−∫
−

=
z

rV       (2.12) 

where )z',y',(x''r' −=  is the image point of )z',y',(x'r'= . 

2.4 THE MINIMUM FORCE CONDITION FOR AM-KPFM 

For amplitude-modulation KPFM, minimizing the vertical electrostatic force is equivalent to 

nullifying the oscillation amplitude at electrical drive frequency. AM-KPFM works by applying 

an ac voltage with frequency eω  and amplitude acV , superimposed on a dc voltage V between tip 

and sample. Under this configuration, the electrostatic force elF  is given by Equation (1.1) as 

follows 

( ) ( ) )2cos(
4
1)sin(

2
1

2
1 222 tV

d
CtVVV

d
CVVV

d
CF eaceacglobaldcacglobaldcel ωω ×

∂
∂

−−
∂
∂

+



 +−

∂
∂

=  

where C is the capacitance of the tip-sample system, globalV  is the 2D convolution of point spread 

function and surface potential, d is tip-sample distance. 
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This electrostatic force consists of a static part and two contributions at eω  and eω2 . We 

can see from Equation (1.1) that the amplitude at eω  is nullified as the static part minimized. 

Consider a small area on tip surface with area charge density σ(r)  and the unit normal n̂ , 

the electrical field in this area can be expressed as n̂
ε
σ(r)E

0

= . The electrical field this charged 

area generated should be subtracted when we calculate the vertical force. Based on Gauss’s law, 

half of E in n̂  direction should be subtracted, so n̂
2ε
σ(r)E

0
out = , dsn̂

2ε
(r)σdF
0

2

= , where outE  is the 

electrical field generated by other sources outside this charged area. 

The electrostatic force F can be obtained by an integral 

dsn̂
2ε

(r)σF
0

2

∫= tS       (2.13) 

The z component of the force can be expressed as 

dsẑn̂
2ε

(r)σF
0

2

z ∫ ⋅= tS       (2.14) 

The minimum force condition 0
V
Fz =
∂
∂  can be expressed via Equation (19) as 

0
V

dsẑn̂
2ε

(r)σ

V
F

tS
0

2

z =
∂

∫ ⋅∂
=

∂
∂       (2.15) 
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2.5 THE MINIMUM FORCE GRADIENT CONDITION FOR FM-KPFM 

For frequency-modulation KPFM, a better measurement of surface potential can be achieved by 

using the force gradient as interaction signal [22]. Take derivative of Equation (1.1), the force 

gradient is given by 

( ) ( ) )2cos(
4
1)sin(

2
1

2
1 2

2

2

2

2
22

2

2
' tV

d
CtVVV

d
CVVV

d
CF eaceacglobaldcacglobaldcel ωω ×

∂
∂

−−
∂
∂

+



 +−

∂
∂

=

    (2.16) 

 In order to let globaldc VV = , the static part of the force gradient should be minimized with 

respect to tip potential V. Take derivative of Equation (2.15) with respect to tip-sample distance 

d will give 

d

dsẑn̂
2ε

(r)σ

d
F 0

2

z

∂

∫ ⋅∂
=

∂
∂

tS

      (2.17) 

The minimum force gradient condition 0
Vd

Fz
2

=
∂∂

∂  can be expressed via Equation (2.17) 

as 

0
Vd

dsẑn̂
2ε

(r)σ

Vd
F

tS
0

2
2

z
2

=
∂∂

∫ ⋅∂
=

∂∂
∂       (2.18) 
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2.6 THE POINT SPREAD FUNCTION FOR A POINT 

If we only consider the presence of the dipole layer, the dipole layer’s contribution to the 

potential on the observation point can be expressed as a convolution by employing Equation 

(2.10), 

y)(x,Φ
0z'z'

z'r
1

2π
1y)(x,Φy)(x,h(r)Φ SS

d
d ∗

=∂
−

∂
=∗=       (2.19) 

So the point spread function for a point ),,( ttt zyx  is 

2
3

)(
20''

)'(
1

2
1),( 222

222
−++=

=∂
−++

∂

= t
tt

d zyxz
zz

zzyx
yxh

ππ
      (2.20) 



 18 

3.0  POINT SPREAD FUNCTIONS FOR DIFFERENT TIP PARAMETERS AND 

SCAN MODES 

In this section, we will find the point spread functions for AM-KPFM and FM-KPFM 

corresponding to different tip parameters. The integral Equation (2.12) is difficult to solve 

because of the unknown charge density on the tip surface. So we will introduce a finite elements 

analysis to cancel this charge density. 

3.1 THE POINT SPREAD FUNCTIONS FOR DIFFERENT TIP SHAPES IN AM-

KPFM MEASUREMENT 

For AM-KPFM, Strassburg et al. [20] proposed a method to split the tip surface into a set of 

elements { }N
1i

t
iS =  such that N

1i
t
i

t SS == . We assume each small area t
iS  has the same charge 

density. Equation (2.12) can then be written as 

[ ] dΦ1VσA


−=       (3.1) 

where [A] is an N by N matrix whose ijth element is given by 

ds'
'r'r

1
4π

1ds'
r'r

1
4π

1A t
j

t
j S

i0
S

i0
ij ∫

−
−∫

−
=

εε
      (3.2) 
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ijA  represents the contribution of charge density in t
jS  to the potential in t

iS . In Equation 

(3.1), σ


, 1


 and dΦ


 are N vectors whose ith elements are iσ


, 1, and )(rΦ i
d



, respectively. The 

charge density can be solved as 

[ ] )Φ1(VAσ d-1 
−=       (3.3) 

We need to plug Equation (3.3) into minimum force condition to solve for V and cancel 

this σ


. In discrete form, electrostatic force in z direction, Equation (2.14), can be expressed as 

[ ]σσ  BF t
z =       (3.4) 

where [B] is an N by N diagonal matrix whose ith diagonal element is given by 

dsẑn̂
2ε
1B

0
∫ ⋅= t

iSii       (3.5) 

where ẑ  denotes a unit vector in the z direction. The minimum force condition 0
V
Fz =
∂
∂  can be 

expressed via Equation (3.4) 

[ ] 0=






∂
∂ σσ 


B
V

t

      (3.6) 

We plug Equation (3.3) into Equation (3.6) and obtain the relation between the 

measured tip potential and the potential produced by the dipole layer: 

( ){ } ( ) (r)Φ[B][A]1[A]1[B][A]1[A]V(r) d1-t1
1

1t1


−
−

−−=       (3.7) 

Since (r)Φd


 can be represented by a two-dimensional convolution of the surface 

potential and a mask in Equation (2.19), we find that the measured tip potential can be 

expressed as 

y)(x,Φy)(x,hy)V(x, S
AM ∗=       (3.8) 

with the continuous point spread function, 



 20 

[ ]( ) [ ][ ]{ } [ ]( ) [ ][ ] d
1t1

1
1t1

AM hAB1A1AB1Ay)(x,h
 −−

−
−−=       (3.9) 

3.1.1 The point spread functions of a spherical shape tip with different tip parameters 

For a spherical tip surface (Figure 3) with tip-sample distance d and radius R, we can split the 

cone into n segments in z-direction, and then we equally split one segment into m pieces in 360 

degree to form a small area t
iS . We need to carefully choose the value of m to avoid singularity 

of matrix [A]. We first determine [A] matrix based on Equation (3.2). 

ds'
'r'r

1
4π

1ds'
r'r

1
4π

1A t
j

t
j S

i0
S

i0
ij ∫∫

−
−

−
=

εε  

where ϕβdsinβRds' 2 d= . 

The first term of ijA  can be written as: 

( ) ( ) ( ) 
  ϕβ

πε
ϕ
ϕ ββϕβ

β ddA j

j
iii

nmj
nmj RzRdzRdRRRzRdR

R
ij ∫ ∫=

− −−++−+−−+−+−1 2222222

2)//arcsin(
)//arcsin( cossincos2sin

sin

04
11     (3.10) 

The second part of Aij can be written as 

( ) ( ) ( ) 
  ϕβ

πε
ϕ
ϕ

ββϕβ

β ddA j

j
iii

nmj
nmj

RzRdzRdRRRzRdR

R
ij ∫ ∫

− −+++−+−−+−+−
=

1 2222222

2)//arcsin(
)//arcsin(

cossincos2sin

sin

04
12

    

(3.11) 

where t
iiiiiii SzyxyxRRdz ∈−−−+= ),,(,222 . 

We then can find the explicit expression of [A], whose ijth element is ijijij A2A1A −=  

We can determine matrix [B] from Equation (3.5) 

dsẑn̂
2ε
1B

0
∫ ⋅= t

iSii  
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where ( ) ϕdzdzRddsz i−+=ˆ . 

So iiB  can be written as 

 ( )
 ( )

∫ ∫ −+=
−

−−+

−−+

i

i

m
i

m
i

dzdzRdnRRRd

nRRRd iii
ϕ
ϕ ϕ

ε 1

2222

2222

/

/
0

)(
2
1B       (3.12) 

where t
iiiiiii SzyxyxRRdz ∈−−−+= ),,(,222  

With [A] and [B], we can determine the continuous point spread function for the conical 

part of the tip from Equation (3.9). 

[ ]( ) [ ][ ]{ } [ ]( ) [ ][ ] d
1t1

1
1t1

AM hAB1A1AB1Ay)(x,h
 −−

−
−−=  

where dh


is an N vector whose ith element is the ith segment’s point spread function for a point 

t
iiii Szyx ∈),,(  on the ith segment of tip surface. It can be represented by the following equation: 

( ) ( )[ ] 2
3

2
i

2
i

2
i

i
id, zyyxx

2π
zy)(x,h

−
+−+−=       (3.13) 

where t
iiiiiii SzyxyxRRdz ∈−−−+= ),,(,222 . 

We choose typical KPFM tip parameters: length ml µ10= , half-aperture angle 5.22=θ . 

One-dimensional point spread functions calculated for various tip parameters are shown in 

Figure 5 (a), (b). 
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Figure 3. Hemisphere and flat sample surface 

3.1.2 The point spread functions of a conical shape tip with different tip parameters 

For a conical tip surface (similar to Figure 2) with tip-sample distance d, and length l, we can 

split the cone into n segments in z-direction, and then we equally split one segment into m pieces 

in 360 degree to form a small area t
iS . The number of m should be chosen carefully to avoid 

singularity of matrix [A]. We first determine [A] matrix based on Equation (3.2). 

ds'
'r'r

1
4π

1ds'
r'r

1
4π

1A t
j

t
j S

i0
S

i0
ij ∫∫

−
−

−
=

εε  
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where 
( )

ϕ
θ

θ
ddz'

cos
tan'

ds' fzz −
= , θsinRRdz f −+=  is the apex of the cone. 

The first part of Aij can be written as 

( )
( ) ( ) ( ) ( )( )∫ ∫=

−

−

−−
++

++ −−−−+−+−

−j

j

n
jRl

n
jRl

ffiffii

fRd
Rd zzzzzzzzzz

zz
ij ddzA ϕ

ϕ ϕθθθ

θθ ϕ
πε 1

)(

)1)(( 222222 '
4

11
costan'2tan'tan'

cos/tan'

0

      (3.14) 

The second part of Aij can be written as 

( )
( ) ( ) ( ) ( )( )∫ ∫=

−

−

−−
++

++ −−−−+−++

−j

j

n
jRl

n
jRl

ffiffii

fRd
Rd zzzzzzzzzz

zz
ij ddzA ϕ

ϕ ϕθθθ

θθ ϕ
πε 1

)(

)1)(( 222222 '
4

12
costan'2tan'tan'

cos/tan'

0

      (3.15) 

where ( ) t
iiiiiii SzyxRyxctgRdz ∈−+++= ),,(,22θ . 

We then can find the explicit expression of [A], whose ijth element is 

ijijij AAA 21 −=       (3.16) 

We can determine matrix [B] from Equation (3.5) 

dsẑn̂
2ε
1B

0
∫ ⋅= t

iSii
 

where ( ) ϕθ ddz'tan'dsẑ 2dz −= . 

So iiB  can be written as 

ϕθ
ε

ϕ
ϕ ddz'tan)'(

2
1 2

0
1

)(

1)(∫ ∫ −=
−

−

−−
++

++
mi

mi

n
niRl

n
niRl

Rd

Rdii dzB       (3.17) 

where ( ) t
iiiiiii SzyxRyxctgRdz ∈−+++= ),,(,22θ , nin ,...,3,2,1= , mim ,...,3,2,1= , and 

( ) mn imii +−= 1 . 

With [A] and [B], we can determine the continuous point spread function for the conical 

part of the tip from Equation (3.9). dh


 in Equation (3.9) is an N vector whose ith element is 

( ) ( )[ ] 2
3

2
i

2
i

2
i

i
d,i zyyxx

2π
zy)(x,h

−
+−+−=  
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where ( ) t
iiiiiii SzyxRyxctgRdz ∈−+++= ),,(,22θ . 

3.1.3 The point spread function of a tip with both spherical part and conical part 

For a tip with both hemispherical part and conical part, we use the same method to segment the 

hemispherical part into hhh mnt ×=  segments and the conical part into ccc mnt ×=  segments, 

and form a tt ×  [A] matrix where ch ttt += . As we mentioned in III, the [A] matrix represent the 

contribution of charge density to potential, we can thus calculated separately by dividing [A] into 

4 segments: [ ]1A  with elements hhij tjtiA ,...,2,1,,...,2,1, == , represents the contribution of charge 

dowelling on hemispherical part to its own potential, [ ]2A  with elements 

hhhij tjtttiA ,...,2,1,,...,,, 21 == ++ , represents the contribution of charge dowelling on 

hemispherical part to the potential on conical part, [ ]3A  with elements 

tttjtiA hhhij ,...,,,,...,2,1, 21 ++== , represents the contribution of charge on conical part to 

hemispherical part, and [ ]4A  with elements tttjtttiA hhhhij ,...,,,,...,,, 2121 ++++ == , represents the 

contribution of charge on conical part to itself.  [ ]1A  and [ ]4A  were already solved in III. A and 

III. B.  [ ]2A  and [ ]3A  can be calculated using the same equation for  [ ]1A  and [ ]4A  but with 

different  iz , indicating the influence on the other part of the tip surface. 

We choose typical KPFM tip parameters: length ml µ10= , half-aperture angle 5.22=θ . 

One-dimensional point spread functions calculated for various tip parameters are shown in 

Figure 5 (c), (d). 
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3.1.4 The point spread functions of a tip consisted of spherical part, conical part with a 

carbon nanotube attached  

For a tip consist of hemispherical part, conical part, and a carbon nanotube attached (Figure 4), 

we use the same method to segment the spherical part into hhh mnt ×=  segments, the conical 

part into ccc mnt ×=  segments, the wire into www mnt ×=  segments and form a tt ×  [A] matrix 

where wch tttt ++= . The [A] matrix represents the contribution of charge density to potential, 

we can thus calculated separately by dividing [A] into 9 segments. Each segment represents the 

contribution of the charge dowelling on a segment to the potential of one of the three segments. 

 

Figure 4. A tip consisted of hemispherical part, conical part with a carbon nanotube attached over flat sample 

surface 
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We choose typical KPFM tip parameters: length ml µ10= , half-aperture angle 5.22=θ , 

tip radius R = 15 nm. One-dimensional point spread functions calculated for various tip 

parameters are shown in Figure 7. As we can see from Figure 7 (a), the area under the curve of 

tip consisted of only spherical and conical part is broader than the ones of tips with carbon 

nanotube attached. That is due to the effect of the conical tip bodies, which will lower the 

resolution of KPFM measurement. Also, as the length of the carbon nanotube increases, the PSF 

gets sharper. Therefore, attaching a carbon nanotube can reduce the tip body effect in AM-

KPFM measurements, and gives better resolution as we can see from Figure 7. 

3.2 THE POINT SPREAD FUNCTIONS FOR DIFFERENT TIP SHAPES IN FM-

KPFM MEASUREMENT 

For FM-KPFM, we can utilize the same method to split the tip surface and assume each small 

area has the same charge density. From Equation (3.2) and (3.3), we can see that σ  is a 

function of both V and d. 

Here minimum force gradient condition Equation (2.18) is utilized. We need to plug 

Equation (3.3) into minimum force gradient condition to solve for V. We can use the same [A] 

and [B] matrix in Section 3.1. The minimum force gradient condition 0
Vd

Fz
2

=
∂∂

∂  can be 

expressed via Equation (3.4) 

[ ] [ ] 0
2

=
∂
∂








∂
∂

+







∂∂

∂
V

B
d

B
Vd

tt
σσσσ 




      (3.18) 
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We plug Equation (3.3) into Equation (3.18) and obtain the relation between the 

measured tip potential and the potential produced by the dipole layer: 

( )








∂
∂

+
∂
∂

−=
∂
∂ −−

d
VA

d
AA

d

d
d11 ΦΦ-1][][][


σ       (3.19) 

1][][][ 11
2 

−−

∂
∂

−=
∂∂

∂ A
d
AA

Vd
σ       (3.20) 
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d

d d
(r)Φ][(r)Φ][

V(r)

d
d

∂
∂

−
=

ΦΦ




      (3.21) 

where prefactor for V(r)  is 1[B][A]1][][][2 1
t

11


−−− 







∂
∂

= A
d
AAPV , prefactor matrix for (r)Φd


 is 

( ) 1
t

1111t1- [B][A]1][][][][][][1[B][A]][ −−−−−
Φ 








∂
∂

+
∂
∂

=


A
d
AAA

d
AAP d , prefactor matrix for 

d∂
∂ dΦ


 is 

( ) 1t1- ][1[B][A]][ −
Φ

= AP d
d


. 

Using (24), we find that the measured tip potential can be expressed as 

y)(x,Φy)(x,hy)V(x, S
FM ∗=       (3.22) 

with the continuous point spread function, 

VP

PP d
d

d d
h][h][

y)(x,h
d

d

FM
∂
∂

−
=

ΦΦ




      (3.23) 

We choose typical KPFM tip parameters: length ml µ10= , half-aperture angle 5.22=θ ,. 

One-dimensional point spread functions calculated for various tip shapes and parameters are 

shown in Figure 6 (a), (b), (c), (d). In AM-KPFM, significant PSFs’ differences are observed 

between those plots of the tips with and without conical tip body part. FM-KPFM measurement 

significantly eliminates the tip body effect by reducing those differences. We can see that the 
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area under the curves in FM-KPFM is narrower than the area in AM-KPFM. This will give FM-

KPFM measurements better resolution. In order to acquire better resolution for both AM-KPFM 

and FM-KPFM, it is better to use the tips with carbon nanotube attached. 

 

Figure 5. One-dimensional point spread functions of various tip shapes for different tip parameters in AM-KPFM 

measurement (a) One-dimensional PSFs of spherical tip for tip-sample distance, d of 1, 2, 5, 10, 20, 50 nm, R= 10 

nm. (b) One-dimensional PSFs of spherical tip for tip apex radius, R of 1, 2, 5, 10, 20 nm, d=5 nm. (c) One-

dimensional PSFs of tip consisted of spherical and conical parts for tip-sample distance, d of 1, 2, 5, 10, 20, 50 nm, 

R= 10 nm. (d) One-dimensional PSFs of tip consisted of spherical and conical parts for tip apex radius, R of 1, 2, 5, 

10, 20 nm, d=5 nm. 
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Figure 6. One-dimensional point spread functions of various tip shapes for different tip parameters in FM-KPFM 

measurement (a) One-dimensional PSFs of spherical tip for tip-sample distance, d of 1, 2, 5, 10, 20, 50 nm, R= 10 

nm. (b) One-dimensional PSFs of spherical tip for tip apex radius, R of 1, 2, 5, 10, 20 nm, d=5 nm. (c) One-

dimensional PSFs of tip consisted of spherical and conical parts for tip-sample distance, d of 1, 2, 5, 10, 20, 50 nm, 

R= 10 nm. (d) One-dimensional PSFs of tip consisted of spherical and conical parts for tip apex radius, R of 1, 2, 5, 

10, 20 nm, d=5 nm. 
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Figure 7. One-dimensional point spread functions of tip consisted of spherical part, and conical part with a carbon 

nanotube attached for different tip parameters (a) One-dimensional PSFs in AM-KPFM for the length of the carbon 

nanotube, twl  of 0, 50, 100, 150, 200 nm, d = 5 nm, R= 15 nm, wR  = 1 nm. (b) One-dimensional PSFs in FM-

KPFM for the length of the carbon nanotube, twl  of 0, 50, 100, 150, 200 nm, d = 5 nm, R= 15 nm, wR  = 1 nm. 
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4.0  RESOLUTION 

The resolution of KPFM has already been discussed by several authors [18, 19]. However, there 

is lack of a clear definition of the resolution for KPFM. Colchero et al defined the resolution for 

electrostatic force microscopy as the radius of a circle under the tip that contributes half to the 

total interaction [23]. This definition is difficult to use for analysis since the interaction is 

difficult to determine analytically. 

We argue that the point spread function is a major determinant of the KPFM resolution. 

We define the resolution of KPFM using Rayleigh criterion with PSFs that have no zero in the 

neighborhood of their central maxima. Composite distribution can be generated using a certain 

PSF to convolute two points on the sample. This composite distribution has a dip in the center 

and two maxima. The resolution limit is defined as the distance for which the ratio of the value at 

the central dip in the composite intensity distribution to that at the maxima on either side is equal 

to 0.81 [24]. With this definition, we can analyze and compare the resolution of KPFM for 

different scanning parameters under different scan modes. 
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4.1 RESOLUTION OF KPFM WITH AMPLITUDE MODULATION 

PSFs for different tip shapes are calculated to compare their effect on Rayleigh criterion 

resolution. We use typical KPFM tip parameters: length ml µ10= , half-aperture angle 5.22=θ . 

The resolution for different tip parameters is listed in Table 1. 

Table 1. Comparison of resolution for the tip with spherical and conical part in AM-KPFM 

Rayleigh Criteria 

Resolution (nm) 

Tip Apex Radius (nm) 

1 2 5 10 20 

Tip-Sample 

Distance (nm) 

1 2.6 3.3 4.9 6.8 9.3 

2 4.4 5.2 7.2 9.8 13.6 

5 9.7 10.3 12.5 16.3 22.2 

10 18.8 19.5 21.1 25.0 32.0 

20 38.3 39.8 40.9 42.2 48.4 

50 110.4 109.0 105.0 101.6 101.9 

100 224.6 222.7 216.8 210.0 203.1 

It shows that smaller tip-sample distance and tip apex radius gives better resolution. 

Comparing to tip apex radius, tip-sample distance has larger effect on the resolution. It can be 

seen from Figure 8 (a) that as tip-sample distance increasing for 1 nm to 20 nm, the effect of tip 

apex radius on the resolution is decreasing. Based on our calculation, we can acquire higher 

resolution KPFM image by limiting the value of tip-sample distance. Single-pass scan KPFM is 

able to control tip-sample distance to a smaller value than dual-pass scan lift-up approach, which 

inevitably ends up with larger tip-sample distance. 
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Figure 8. Resolution of AM-KPFM and FM-KPFM for different tip parameters (a) AM-KPFM Resolution vs. Tip-

sample distance for tip apex radius, R=1 nm, 2 nm, 5 nm, 10 nm, 20 nm. (b) AM-KPFM Resolution vs. Tip apex 

radius for tip-sample distance, d=1 nm, 2 nm, 5 nm, 10 nm, 20 nm. (c) FM-KPFM Resolution vs. Tip-sample 

distance for tip apex radius, R=1 nm, 2 nm, 5 nm, 10 nm, 20 nm. (d) FM-KPFM Resolution vs. Tip apex radius for 

tip-sample distance, d=1 nm, 2 nm, 5 nm, 10 nm, 20 nm. 

Finally, to further increase the resolution, we look into the effect of the tip with carbon 

nanotube attached, or more specifically, the carbon nanotube’s effect on KPFM resolution 

(Table 2). We can see from Table 2 that the tip with carbon nanotube attached does improve the 

resolution over the tip with spherical and conical part by further reducing the tip body effect. 

However, if we further increase the length of the carbon nanotube attached, the resolution only 
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has small changes. As the tip-sample distance increases, this change becomes larger but not yet 

substantial. Besides that, in KPFM measurements, increasing the length of the carbon nanotube 

may introduce other problems, such as making the carbon nanotube more fragile and easy to 

break. 

Table 2. Comparison of resolution for the tip with carbon nanotube attached in AM-KPFM 

Rayleigh Criteria 

Resolution (nm) 

Length of the carbon nanotube (nm) 

0* 50 100 150 200 

Tip-Sample 

Distance (nm) 

1 6.6 2.3 2.3 2.3 2.3 

2 10.5 3.9 3.9 3.9 3.9 

5 18.0 9.0 9.0 9.0 9.0 

10 27.3 17.2 16.8 16.8 16.8 

20 43.8 34.0 33.6 33.2 33.2 

50 101.4 100.78 93.8 85.0 83.8 

*: Here 0 means a tip with tip radius, R = 15 nm, and no carbon nanotube attached 

4.2 RESOLUTION OF KPFM WITH FREQUENCY MODULATION 

Since the FM-KPFM nullifies the oscillation amplitude at eωω +0 , which is related to the force 

gradient, we calculated the PSF by utilizing minimum force gradient condition. The PSFs for 

FM-KPFM is expected to provide us better resolution. The resolution results we computed is 

listed in Table 3. It shows that FM-KPFM further increase the resolution than single scanned 

AM-KPFM. It can be seen from Table 3 that as tip-sample distance increasing from 1 nm to 20 

nm, the improvement of resolution over AM-KPFM measurements becomes more significant. 
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Zerweck et al. state that the force gradient is much more confined to the tip front end than the 

force [18]. Compared Figure 8 (a) with (c), (b) with (d), our results support Zerweck’s 

statement since the effect of tip apex’s parameters on the resolution is larger than the one in AM-

KPFM measurement. 

Table 3. Comparison of resolution for the tip consisted of spherical and conical parts in FM-KPFM 

Rayleigh Criteria 

Resolution (nm) 

Tip Apex Radius (nm) 

1 2 5 10 20 

Tip-Sample 

Distance (nm) 

1 1.9 2.5 3.8 5.2 6.9 

2 3.0 3.8 5.5 7.6 10.4 

5 6.6 7.0 9.4 12.4 17.1 

10 12.5 12.9 14.8 18.4 24.7 

20 24.6 25.0 26.6 29.7 36.3 

50 64.0 63.3 62.0 62.0 66.0 

100 130.0 128.9 126.0 124.0 124.0 

 

We can see from Table 4 that FM-KPFM provides better resolution for tip with carbon 

nanotube attached than AM-KPFM. Using a carbon nanotube attached tip with radius about 1 nm 

will provide a resolution of 6 nm for FM-KPFM in ambient condition when the tip-sample 

distance is controlled within 5nm. 
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Table 4. Comparison of resolution for FM-KPFM 

Rayleigh Criteria 

Resolution (nm) 

Length of the carbon nanotube (nm) 

0* 50 100 150 200 

Tip-Sample 

Distance (nm) 

1 5.5 2.0 2.0 2.0 2.0 

2 8.2 3.1 3.1 3.1 3.1 

5 14.1 6.3 6.3 6.3 6.3 

10 21.1 11.7 11.7 11.7 11.7 

20 32.8 23.4 23.0 23.0 23.0 

50 68.0 60.4 58.0 57.4 56.8 

*: Here 0 means a tip with tip radius, R = 15 nm, and no carbon nanotube attached 
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5.0  SENSITIVITY 

In KPFM measurements, the comparison between the electrostatically induced oscillation 

amplitude and the noise N gives the sensitivity of the smallest measurable contact potential 

difference. This noise, N, consists of two major parts: the thermally induced noise of the 

cantilever by Brownian motion, and the noise of optical beam deflection sensor. 

For the optical beam deflection sensor noise, the noise density zOn  is about 100 to 1000 

fm / Hz . 

For the thermally induced noise, the noise density zBn  can be determined by: 
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where bk  is the Boltzmann constant, T is the absolute temperature, k is the spring constant of the 

cantilever, Q is the quality factor of the cantilever, 0ω  is the resonant angular frequency of the 

cantilever. 

We also need to calculate the detected electrostatic force at the frequency of electrical 

drive and the oscillation amplitude at the same frequency caused by it. Equation (1.2) provides 

us an approach to determine )( eelF ω  by computing 
d
C
∂
∂  first.  
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It is suspect that the carbon nanotube attached tip may not provide sufficient sensitivity 

because of the small area between the carbon nanotube end the sample surface. In this section, 

we will analyze the sensitivity of KPFM especially when a carbon nanotube attached tip is used.   

5.1 ELECTROSTATIC FORCE FOR TIP WITH CARBON NANOTUBE 

ATTACHED 

The tip and sample system can also be modeled as Figure 4. Besides Equation (1.2), the 

electrostatic force between the tip and sample can be also represented by the following equation: 

ds
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22
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2
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    (5.2) 

where ),,( zyxa  is the arc length of the circular segment coming from the tip at position x, y, z. 

From Equation (5.2), we can get the relation 

ds
zyxad

C
S∫≈

∂
∂

20 ),,(
1ε     (5.3) 

The total electrostatic force consists three parts: spherical contribution, conical 

contribution, and carbon nanotube’s contribution. We can evaluate these three parts separately. 

Typical tip parameters are used: tip radius, R=15 nm, half apex angle, 5.22=θ , radius of 

carbon nanotube, nmRw 1= . 
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5.1.1 Spherical contribution 

For this spherical part, we can use Figure 3 to illustrate the relation of the tip surface and the 

sample. Here ),,( zyxa  can be evaluated by the following equation 

( )[ ]
β

ββ
sin

cos1),,( −++
=

Rldzyxa tw     (5.4) 

where d is the tip-sample distance, twl  is the length of the carbon nanotube. 

On this spherical surface, we can construct an infinitesimal surface ϕβdsinβRds 2 d= . 

Plugging Equation (5.4) to Equation (5.3), the derivative of the capacitance for this part 

d
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∂
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When wRR >> R, the analytical solution can be found by determining the upper and 

lower limit for Equation (5.5), 
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5.1.2 Conical contribution 

Now we need to calculate the conical part’s contribution. At height z, ),,( zyxa  can be evaluated 

by the following equation 

θ
θπ
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),,( zzyxa 



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
 −=     (5.7) 
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On this spherical surface, we can construct an infinitesimal surface 

dzdanzz f ϕθ2)t(ds −= , where θsinRRldz twf −++=  is the apex of the cone. 

Plugging Equation (5.7) into Equation (5.3), we have 
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5.1.3 Carbon nanotube contribution 

The front top of the carbon nanotube is modeled as a hemisphere with radius, nmRw 1= . In 

Figure 4, we can see that in our model, the carbon nanotube is perpendicular to the sample 

surface. Since the area on the cylinder will not contribute to 
d
C
∂
∂ , we can only consider the 

hemispherical part of the carbon nanotube. 

We can use similar analysis as we did in Section 5.1.2. 
d

Cw

∂
∂ can be calculated by the 

following equation 
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For a tip consisted of spherical and conical parts with a carbon nanotube attached, the 

derivative of capacitance C is given by: 
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5.2 SENSITIVITY OF AM-KPFM 

In AM-KPFM, the electrostatically induced amplitude at lock-in frequency can be estimated by 

modeling the cantilever as a harmonic oscillator with resonant angular frequency 0ω , quality 

factor Q, and spring constant k. The oscillation amplitude A at drive frequency ω  under a 

driving force, )cos( tFd ω , is given by the following equation: 
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According to Equation (1.2), ( ) acglobaldcd VVVdCF −∂∂= , the oscillation amplitude at ω  

becomes: 
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For a tip consisted of spherical and conical parts with a carbon nanotube attached, the 

derivative of capacitance C is given by Equation (5.10)  

By letting BnA zOe =  (B is the band response width of the lock-in amplifier), we can 

find the minimum detectable potential difference limited by the optical beam deflection sensor 

noise:  
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Letting BnA zBe = , we can find the minimum detectable potential difference limited by 

the thermally induced noise:  
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ac

b
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The combination of the sensitivity derived from the two noise sources become the 

ultimate sensitivity, which can be determined as: 

22
min, mBmOCPD VVV +=     (5.15) 

For a probe (Bruker-AXS SCM-PIT, coated with Pt/Ir) with k=2.8N/m, 0f =75kHz, 

Q=100 in ambient condition, 5.22=θ and the following typical parameters: T=300K, B=5Hz, 

VVac 2= , the sensitivities corresponding to tip-surface distance and the length of the carbon 

nanotube are plotted in Figure 9 (a), (b) for single pass AM-KPFM. For dual-pass lift-up scan 

AM-KPFM, the sensitivities are plotted in Figure 9 (c), (d) for comparison. 

5.3 SENSITIVITY OF FM-KPFM 

In FM-KPFM measurements, with the presence of small force gradient dF ∂∂ , the phase of the 

oscillation at the drive frequency 0ω  shifts ( ) kdFQ /∂∂−=∆ϕ . Noting Equation (1), the 

oscillation of cantilever at resonant frequency becomes 
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When the phase shift is small, Equation (5.16) can be written as the following form 

( ) ( ) ( ) ( ) ( )φωωφωωφω −+−+−= ±± ttAttAtAtA meemmeemm cos2cos2cossin2sin)( 20     

(5.17) 
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where 
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This emA ±  represents the oscillation amplitude at the sidebands em ωω ± . The mechanical 

oscillation 0A  is fairly close to the tip-sample distance d in single pass KPFM. The deflection 

sensor noise and the thermally induced noise can be calculated using the similar way as we 

explained in Section 5.2. 

By letting BnA zOe =  (B is the band response width of the lock-in amplifier), we can 

find the minimum detectable potential difference limited by the optical beam deflection sensor 

noise:  
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Letting BnA zBe = , we can find the minimum detectable potential difference limited by 

the thermally induced noise:  
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The combination of the sensitivity derived from the two noise sources become the 

ultimate sensitivity, which can be determined as: 

22
min, mBmOCPD VVV +=     (5.20) 
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For a probe (Bruker-AXS SCM-PIT, coated with Pt/Ir) with k=2.8N/m, 0f =75kHz, 

Q=100 in ambient condition, 5.22=θ and the following typical parameters: T=300K, B=5Hz, 

VVac 2= , the sensitivities corresponding to tip-surface distance and the length of the carbon 

nanotube are plotted in Figure 10 (a), (b) for FM-KPFM. 

 

 

Figure 9. Sensitivity of tips with carbon nanotube attached in AM-KPFM, twl  of 0, 50, 100, 150, 200 nm, d=1, 2, 5, 

10 nm, R=15 nm, wR =1nm (a) Sensitivity of AM-KPFM single scan vs. twl  with different tip-sample distances, d. 

(b) Sensitivity of AM-KPFM single scan vs. tip-sample distances d with different twl . (c) Sensitivity of AM-KPFM 
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dual-pass lift-up scan vs. twl  with different tip-sample distances, d. (d) Sensitivity of AM-KPFM dual-pass lift-up 

scan vs. tip-sample distances d with different twl . 

 

Figure 10.Sensitivity of tips with carbon nanotube attached in FM-KPFM, twl  of 0, 50, 100, 150, 200 nm, d=1, 2, 5, 

10 nm, R=15 nm, wR =1nm  (a) Sensitivity vs. twl  with different tip-sample distances, d. (b) Sensitivity vs. tip-

sample distances d with different twl . 

5.4 SENSITIVITY COMPARASION 

According to Equation 5.13 and 5.14, it can be easily seen that the minimum detectable voltage 

is proportional to tip-sample distance, d (Figure 9 (b), (d)) and inverse proportional to the tip 

radius R. Thus, smaller tip-sample distance results in both better sensitivity and resolution (See 

Section 4). However, a better sensitivity requires a larger tip apex radius, which leads to lower 

resolution.  

The sensitivity in single-pass scan is given in Figure 9 (a), (b). Dual-pass lift-up scan 

mode results is plotted in Figure 9 (c), (d). Even though the sensitivity of single-pass scan AM-
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KPFM is lower than that of dual-pass scan AM-KPFM for same tip-sample distance. In practical 

usage, the sensitivity of single-pass scan AM-KPFM is comparable to that of dual-pass scan 

AM-KPFM considering it is much easier to maintain a smaller tip-sample distance in single-pass 

scan mode. If we consider the typical parameters we are using for these two modes without 

carbon nanotube attached on tip, single-pass scan mode offers similar sensitivity, 

min,CPDV =2.8mV (tip-sample distance, d=5nm, tip radius, R=15nm), to dual-pass lift-up scan 

mode, min,CPDV =2.6mV (d=20nm, R=15nm). When a carbon nanotube is attached, the comparison 

is similar. In general the sensitivity of KPFM has lower sensitivity when a carbon nanotube 

attached tip is used.  

From the finding, it can be seen that FM-KPFM provides better sensitivity as well as 

better resolution than AM-KPFM. In Figure 10, we can see the sensitivity of FM-KPFM is at 

least two orders of magnitude better than single-pass AM-KPFM. If we compare the sensitivity 

of FM-KPFM using a carbon nanotube attached tip and that of dual-pass lift-up AM-KPFM 

using bare tip, FM-KPFM still outperforms dual-pass lift-up scan mode AM-KPFM under same 

operating conditions. . 

 As we can see from Figure 9 and Figure 10, the sensitivity deteriorates as the length of 

the carbon nanotube increases when the tip-sample distance is larger. Therefore, a short length of 

carbon nanotube is beneficial to the sensitivity.  Considering a longer carbon nanotube does not 

improve the resolution so much (Table 4), we suggest that the length of carbon nanotube should 

less than 50nm in order to obtain both better resolution and sensitivity.  
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6.0  CONCLUSION 

In this thesis, we study the resolution of KPFM and understand different working mechanisms 

and probe parameters, we find the analytical expressions of point spread function by establishing 

an electrostatic model. Analytical expressions of PSFs of both amplitude-modulation and 

frequency-modulation Kelvin Probe Force Microscopy for tips with and without carbon 

nanotube attached are calculated. From these PSFs, we can find the resolution limit and 

sensitivity in KPFM measurement.  

Our study shows that tips with carbon nanotube attached gives better resolution and 

relatively good sensitivity. Since the single-pass scan KPFM is able to precisely control the tip-

sample distance to a much smaller value than dual-pass lift-up scan KPFM, it is safe to say that 

single-pass scan KPFM has the ability to achieve higher resolution than dual-pass scan KPFM. 

Also, FM-KPFM can achieve better resolution and sensitivity than AM-KPFM. Attaching a 

carbon nanotube will provide better resolution. However, further increase the length of the 

carbon nanotube may not get better result, and can cause other problems, such as making the 

carbon nanotube easier to break. 

Our study also shows that the single-pass scan KPFM has comparable or even better 

sensitivity than dual-pass lift-up scan KPFM in AM-KPFM measurements. In FM-KPFM 

measurements, the sensitivity performance is much better than AM-KPFM. Attaching a carbon 
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nanotube to the tip will reduce the sensitivity. This is another reason why we should not use very 

long carbon nanotube in this circumstance. 
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